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Preface

Over 40 years have already passed since the inception of fuzzy sets. During this

period we have witnessed a truly impressive wealth of theoretical developments and

conceptual pursuits, emergence of novel methodologies, algorithmic environments,

and a variety of applications. Contemporary technologies in the areas such as

information storage and retrieval, web search, image processing and understanding,

control, pattern recognition, bioinformatics and computational biology, e-markets,

autonomous navigation, and guidance have benefited considerably from the develop-

ments in fuzzy sets. What becomes equally important is that we have accumulated a

body of knowledge, developed sound design practices, and gained a comprehensive

insight into the role of the technology of fuzzy sets in system design and analysis.

With the existing affluence and apparent diversity of the landscape of intelligent

systems, fuzzy sets exhibit an important and unique position by forming a unified

framework supporting various facets of human-centric computing. Given the current

trends in the information technology, it becomes apparent that the increasing level of

intelligence, autonomy, and required flexibility comes hand in hand with the

increased human centricity of resulting systems. This manifests at the end level

when the delivered systems are expected to exhibit flexibility, significant commu-

nication abilities, user awareness, and a substantial level of adaptive behavior.

The human-centric facet of processing (or human centricity, briefly) supported by

the use of fuzzy sets is concerned with (a) user-friendly nature of the resulting systems

(manifesting though a high level of context awareness, realization of relevance feed-

back, etc.), (b) forming a sound trade-off between accuracy and transparency (inter-

pretability), and (c) incorporation of designer-friendly mechanisms of system

development facilitating an efficient aggregation of various sources of available

information being present at several quite different levels of abstraction (say, a highly

seamless integration of domain knowledge and numeric experimental data).

LEITMOTIV

The fundamental objective of this book is to offer a comprehensive, systematic, fully

updated, and self-contained treatise of fuzzy sets that will be of vital interest to a

broad audience of students, researchers, and practitioners. Our ultimate goal is to

offer solid conceptual fundamentals, a carefully selected collection of design meth-

odologies, a wealth of development guidelines, and pertinent, carefully selected

illustrative material. The book constitutes a departure from the conventional

approach to fuzzy systems engineering used to date. We explicitly cover concepts,

design methodologies, and algorithms inherently coupled with interpretation,
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analysis, and underlying engineering knowledge. This holistic view of the discipline

is helpful in stressing the role of fuzzy sets as a fundamental component of

computational intelligence (CI) and human-centric systems.

FOCAL POINTS

There are several focal points that make this book highly unique and relevant from

the perspective of the key fundamentals and practice of fuzzy sets

� Systematic exposure of the concepts, design methodology, and detailed algo-

rithms: Overall, we adhere to the top-down strategy starting with the concepts

and motivating arguments and afterward proceeding with the detailed design

that materializes in some specific algorithms.

� A wealth of illustrative material: All concepts covered are illustrated with a

series of small, numeric examples to make the material more readable,

motivating, and appealing.

� Self-containment of the material: No specific prerequisites are required (stan-

dard calculus, linear algebra, probability, and logic are deemed to be fully

sufficient).

� More advanced concepts explained in great detail and augmented by pertinent

illustrative material: Appendices offer a concise and focused coverage of the

subjects of neural networks and biologically inspired optimization.

� Down-to-earth exposure of the material: Although we maintain a required

level of formalism and necessary mathematical rigor, our ultimate goal is to

present the material in the way it emphasizes its applied side so that the reader

becomes fully aware of direct applicability and limitations of the presented

concepts, algorithms, and modeling techniques.

� Auxiliary editorial features: Historical and bibliographical notes included in

each chapter help the reader view the developments of fuzzy sets in a broader

perspective. Each chapter comes with a suite of well-balanced exercises and

problems.

CHAPTER SUMMARY

The following offers a concise summary of the topics covered in each chapter and

underlines the essential aspects of each of them.

In Chapter 1—Introduction—we introduce the reader to the subject, highlight

several motivating factors, elaborate on the origin of fuzzy sets, and cast them in a

certain historical perspective. Similarly, it is shownwhat role fuzzy sets play vis-á-vis

existing technologies. This discussion helps emphasize the enabling role of the

technology of fuzzy sets as well as highlight its key role in human-centric systems

when addressing the acute and widely spread problem of the semantic gap. Fuzzy sets

are also linked to the ideas of granular computing treated as a generalized conceptual
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and algorithmic environment. The fundamental areas of Artificial Intelligence

and CI are concisely discussed and contrasted in the context of the development of

intelligent systems. Some illustrative examples and case studies are covered.

Chapter 2—Notions and Concepts of Fuzzy Sets—serves as a coherent and

systematic introduction of the fundamental concept of a fuzzy set with focus on the

ideas of partial membership conveyed by membership functions, underlying ratio-

nale, examples, and most commonly encountered categories (classes) of membership

functions. The ideas of fuzzy quantities and numbers are also introduced.

In Chapter 3—Characterization of Fuzzy Sets—major properties of member-

ship functions are studied along with their interpretation. Discussed are geometric

features of fuzzy sets to help underline the differences between sets and fuzzy sets in

terms of operations defined therein, and in the sequel some global characterization of

fuzzy sets (expressed through energy, granularity, etc.) is offered. The properties of

families of fuzzy sets defined in the same space are presented. We emphasize here the

semantics of information granules represented as fuzzy sets.

Chapter 4—The Design of Fuzzy Sets—elaborates on the development of fuzzy

sets (membership functions) by emphasizing their syntax and semantics and linking

those concepts with the user- and data-driven mechanisms of elicitation of member-

ship functions. Some typical mechanisms supporting the construction of fuzzy sets

are presented and contrasted. A great deal of attention is paid to fuzzy clustering that

is regarded as one of the dominant technologies of information granulation.

In Chapter 5—Operations and Aggregations of Fuzzy Sets—we are concerned

with operations (union, intersection, complement) on fuzzy sets. The presentation

addresses the issues of formal requirements, interpretations, and realizations and

possible parametric adjustments. Covered are triangular norms (t-norms and

t-conorms) along with their conceptual and computing refinements such as, for

example, ordinal sums, uninorms, and nullnorms. Outlined are the aspects of

semantics conveyed by such logic operators and their possible parametric refine-

ments invoked by available experimental data.

The predominant concept presented in Chapter 6—Fuzzy Relations—is rela-

tions. Fuzzy relations are fundamental concepts expanding the idea of fuzzy sets to a

multivariable case. The very concept is introduced and illustrated. The closely linked

ideas of Cartesian products, projections, and cylindric extensions of fuzzy relations

are discussed.

In Chapter 7—Transformations of Fuzzy Sets—we introduce an idea of map-

pings of fuzzy sets between spaces and elaborate on its realization in the case of

functions (extension principle) and relations (relational calculus). In particular,

discussed are the principles of fuzzy arithmetic.

In Chapter 8—Generalizations and Extensions of Fuzzy Sets—various concepts

and ideas that augment fuzzy sets and discussed. In this chapter, fuzzy sets are discussed

in the framework of granular computing involving various formalisms of information

granulation including interval analysis and rough sets. Through an extended contrastive

analysis, we are able to emphasize the role played by fuzzy sets. The generalizations in

the form of type-2 and order-2 fuzzy sets are covered. The concept of shadowed sets is

presented as a vehicle of a more qualitative (three-valued) interpretation of fuzzy sets.
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The orthogonality of fuzzy sets and probability is underlined and illustrated. Further-

more, hybrid constructs resulting through a joint treatment of fuzzy sets and probability,

such as fuzzy probabilities, are discussed.

Chapter 9—Interoperability Aspects of Fuzzy Sets—is concerned with various

dependencies between fuzzy sets and other environments of granular computing and

numeric settings. In the latter case, the ideas of encoding and decoding (referred to as

a fuzzification and defuzzification mechanism, respectively) are introduced and

studied in detail. Both scalar and vector cases are investigated. The linkages between

fuzzy sets and sets are revealed and articulated in the language of a-cuts.

Chapter 10—Fuzzy Modeling: Principles andMethodology—offers an in-depth

discussion on the principles and underlying methodology of fuzzy modeling, their

design objectives (accuracy, interpretability, etc.), an overall design process, and

pertinent verification and validation procedures.

In Chapter 11—Rule-based Fuzzy Models—we concentrate on a class of models

that play a dominant and highly noticeable role in fuzzy modeling. We introduce the

main concepts and underlying terminology, classes of architectures, and discuss a

variety of design processes. The mechanisms of structural and parametric learning

with examples of the ensuing optimization vehicles are discussed as well.

The focal point of Chapter 12—From Logic Expressions to Fuzzy Logic Net-

works—is a category of fuzzy systems exhibiting logic-driven semantics and sig-

nificant parametric flexibility. Different classes of logic neurons are introduced and

afterward exploited as generic building components in the formation of highly

heterogeneous logic networks. The underlying interpretability issues are raised

and investigated in great detail.

In Chapter 13—Fuzzy Systems and Computational Intelligence—fuzzy systems

are discussed vis-à-vis the research agenda and main concerns of CI. The synergistic

linkages between fuzzy sets and other leading technologies of CI such as neural

networks and evolutionary methods are discussed. Several representative examples

are studied including recurrent neurofuzzy systems.

Human centricity of fuzzy systems is studied in Chapter 14—Granular Models

and Human-Centric Computing—This chapter serves as a carefully organized

compendium of human-centric architectures in the areas of data analysis, clustering,

and granular modeling. It involves a general methodological discussion and for-

mulates a series of guidelines. We highlight an important and active role of fuzzy sets

in learning processes.

Chapter 15—Emerging Trends in Fuzzy Systems—ventures into several emer-

ging and already promising areas of further developments of fuzzy sets with

emphasis placed on their applied side. In particular, this concerns examples of

relational ontology, information retrieval, and multiagent systems.

To make the material highly self-contained, we have included three appendices.

The first one is a concise summary of the most useful and commonly encountered

ideas and concepts of linear algebra and unconstrained and constrained optimization.

The two others offer a brief view of the essence of neurocomputing and biologically

inspired optimization that plays a vital role in the development of fuzzy systems and

various constructs of CI, in general.
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READERSHIP

Given the content of the book and an arrangement of the material, it will appeal to at

least three large communities of readers:

Senior undergraduate students: The key objective is to present fuzzy sets as a

coherent enabling technology that offers a unique and highly functional environment

for building human-centric systems in numerous subject areas to which the students

have been already exposed during the earlier years of their undergraduate programs.

The pedagogy of the resulting course may succinctly highlight the capabilities fuzzy

sets can offer as a coherent analysis platform augmenting, formalizing, and expand-

ing the existing detailed subject knowledge. The fundamental design practices

supported by fuzzy sets build upon the existing body of design knowledge being

now substantially enriched by fuzzy sets. The book can be also used to deliver a

standalone one-term course on fuzzy sets. Depending upon the objectives of the

instructor, the material could be structured to emphasize the fundamentals of fuzzy

sets or concentrate on their applied facet including modeling, classification, and data

analysis.

Graduate students: The book supports the need of a broad audience of graduate

students in engineering and science. Given this audience, we anticipate that the

detailed presentation of the fundamentals of fuzzy sets (along with their necessary

mathematical details) and the comprehensive design principles would be equally

appealing to them. Again, we envision that this might involve students working in the

realm of fuzzy sets or pursuing advanced research in other disciplines.

Researchers and practitioners: The organization and coverage of the material

will appeal to all those who are already familiar with fuzzy sets and are interested in

exploring further advancements in the area. The readers can benefit from a thorough,

in-depth, and critical assessment of the current state of the art of the area. Along with

the presentation of novel pursuits within the realm of the well-established domains of

fuzzy sets, the book embarks on a number of emerging areas of fuzzy sets. For those

who are looking for a brief yet highly informative introduction to fuzzy sets, the core

of the book brings solid exposure to the area. The holistic view of the discipline

embracing the fundamentals with the practice of fuzzy sets could greatly appeal to

those interested in pursuing the applied side of fuzzy sets.

Throughout the book we emphasize the role of fuzzy sets as an enabling

technology whose impact, contributions, and methodology stretch far beyond any

specific community and research area. Taking this into account, a substantial interest

arises from a vast array of disciplines like engineering, computer science, business,

medicine, bioinformatics, computational biology, and so on.

THE ROADMAP

The book is intended to serve the needs of a broad audience by covering a wealth of

territory of the discipline of fuzzy sets. Depending on the needs, several possible

routes can be projected:
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� A one-semester undergraduate course could cover Chapters 1–4 (possibly

excluding Sections 4.5, 4.8, and 4.10), Chapter 5–11.

� A one-term graduate course could be composed of Chapters 1–12 with some

selective choice of content of Chapters 13–15.

� For some specialized, short-term courses one could consider covering Chap-

ters 1–11.

INSTRUCTOR RESOURCES

Instructors will be provided with the following classroom-ready electronic resources:

� Viewgraphs to be used in class. They aim to be customized when used in more

specialized presentations or short courses.

� Solution manual with graphics presenting answers to selected problems.

� Sample assignments and examinations.

Although we strived for the delivery of a flawless material, we are aware that some

typos may be inevitable. Some concepts could have been presented differently. Some

algorithms could have been outlined in a more readable manner. Some interesting

generalizations could have been included. We greatly appreciate your comments;

please drop us a line (pedrycz@ee.ualberta.ca or gomide@dca.fee.unicamp.br).
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Chapter 1

Introduction

We live in the world of digital technology that surrounds us and without which

we can barely function. There are myriads of examples (which we take for

granted) in which computers bring a wealth of services. Computers constitute an

omnipresent fabric of the society (Vasilakos and Pedrycz, 2006). As once

succinctly captured by Weiser (1991), ‘‘the most profound technologies are those

that disappear. They weave themselves into the fabric of everyday life until they

are indistinguishable from it.’’

There is an ongoing challenge of building intelligent systems whose function-

ality could make them predominantly human centric. Human centricity is one of the

driving forces of ubiquitous and pervasive computing. Although there are interesting

developments along this line, there is a still a long way to go. Some important

milestones have been achieved, yet a lot of challenges lie ahead.

In this chapter, we investigate some fundamental features of human centricity of

intelligent systems and in this context raise a need for comprehensive studies in

information granulation and fuzzy sets, in particular.

1.1 DIGITAL COMMUNITIES AND A FUNDAMENTAL
QUEST FOR HUMAN-CENTRIC SYSTEMS

Problem solving, design, and creative thinking—these are all endeavors in which we

are inherently faced with conflicting requirements, incomplete information, numer-

ous constraints, and finally collections of alternative solutions. All of these lead us to

situations in which we have to effectively manage enormous amounts of hetero-

geneous data, deal with conflicting or missing evidence, and arrive at meaningful

conclusions being aware of the confidence associated with our findings.

In spite of ever growing complexity of the problems, we somewhat manage to

develop solutions. Both in analysis and in design (synthesis), we follow the key

principles of abstraction and decomposition that help us handle a phenomenon of

complexity and arrive at meaningful solutions. In essence, the effective use of

abstraction means that instead of being buried in a flood of details and mountains

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
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of data, we establish certain, perhaps most suitable conceptual perspective and set up

a framework in which the problems could be tackled. Granularity of the problem

representation is a fundamental manifestation of the principle of abstraction. The

decomposition is a meaningful and commonly used strategy in which on the basis of

some prudently established granularity we solve the problem by isolating its loosely

connected subproblems and handling them on an individual basis.

Computing systems that are around us in so visible abundance operate on

completely different principles of binary (Boolean logic), numeric information and

solutions, and predefined models of the world of two-valued logic and human

information processing. It becomes apparent that we are concerned with two con-

ceptually distinct worlds. To make them work together and take full advantage of the

computing faculties, we need a well-developed interface through which both worlds

could talk to each other. This is the key rationale behind the emergence of human-

centric systems and human-centric computing (HC2). The primary objective of the

HC2 is to make computers adjust to people by being more natural and intuitive to use

and seamlessly integrated within the existing environment. Various pursuits along

the line of e-society include intelligent housing, ambient intelligence (Vasilakos and

Pedrycz, 2006) and ubiquitous computing, semantic web, e-health, e-commerce and

manufacturing, sensor networks, intelligent data analysis, and wearable hardware.

All of these are concrete examples of the general tendency existing in the develop-

ment of HC2 systems. Referring to the general architectural framework as portrayed

in Figure 1.1, we easily note that in such endeavors a middleware of the semantic

layer plays a crucial role in securing all necessary efficient interaction and commu-

nication between various sources of data and groups of users coming with their

diversified needs and objectives. In the development of HC2 systems, we are

ultimately faced with an omnipresent challenge known as a semantic gap. To

alleviate its consequences, we have to focus on how to reconcile and interpret

detailed numeric information with the qualitative, descriptive, and usually linguistic

input coming from the user. For instance, in the design of a typical HC2 system, such

Semantic  layer (middleware) 

Human

Human

Other systems 

Sensors

Databases

WWW

Other resources 

Human-centric systems 

Figure 1.1 An overall architecture of human-centric systems; note a critical role of the semantic

layer linking the layers of computing and humans together.
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as a personalized digital photo album, we encounter a lot of detailed numeric data

(pixels of images) and have to accommodate a significant and highly descriptive

user’s input that comes in the form of some relevance feedback. The context

awareness and personalization invoke numerous collaborative aspects of processing

involving various sources of data and information (including those available directly

from the users). The user-based processing capability is an important aspect of HC2

systems that has to be taken into account in any design considerations.

The crux of the semantic layer lies in the formation and usage of entities that are

easily perceived and processed by humans. The difficulty is that the world of numeric

processing has to interact with humans who are quite resistant to the explicit use of

numbers and uncomfortable to process them. We operate at the higher level of

abstraction, and this essential design perspective has to be embraced by human-

centric systems through their underlying functionality.

Let us offer a sample of examples in which human centricity plays a pivotal role

(Table 1.1) (Frias-Martinez et al., 2005; Perkowitz and Etzioni, 2000; Spott and

Nauck, 2006). Most of them heavily rely on the idea of an effective relevance

feedback that needs to be implemented in an efficient manner.

1.2 A HISTORICAL OVERVIEW: TOWARDS
A NON-ARISTOTELIAN PERSPECTIVE OF THE WORLD

From the brief investigations covered above, it becomes apparent that in the realiza-

tion of the quest for human centricity of systems, the leitmotiv of many investigations

is in building effective mechanisms of communication including various schemes of

relevance feedback. Given that human processing is carried out at some level of

Table 1.1 Selected Examples of Human-Centric Systems and their Underlying Objectives.

Area Key objectives, existing trends, and solutions

Intelligent data analysis Effective explanatory analysis, delivery of findings at

the level of information granules, and effective

mechanisms of summarization.

System modeling Building transparent models that could be easily

interpreted and whose outcomes are readily

understood. Models should help the user justify

decisions being taken.

Adaptive hypermedia Personalization of hypermedia to meet needs of

individual users, development of specialized web

services, building collaborative filtering,

recommendation, content-based filtering,

personalization of web engines, and so on.

e-commerce Expressing preferences of customers formulated at

different levels of specificity (granularity).

Intelligent interfaces Face expression, emotion recognition and tracking,

formation and use of face-related features.
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abstraction, a concept of information granules and information granulation plays a

visible role. The question of dichotomy offered by some formal frameworks of

information granules has to be revisited as well.

The concept of dichotomy becomes profoundly imprinted into our education,

philosophy, and many branches of science, management, and engineering. Although

the formalism and vocabulary of Boolean concepts being effective in handling

various discrimination processes involving binary quantification (yes–no, true–false)

has been with us from the very beginning of our education, it becomes evident that

this limited, two-valued view at world is painfully simplified and in many circum-

stances lacks rapport with the reality. In real world, there is nothing like black–white,

good–bad, and so on. All of us recognize that the notion of dichotomy is quite simple

and does not look realistic. Concepts do not possess sharp boundaries. Definitions are

not binary unless they tackle very simple concepts (say odd–even numbers). Let us

allude here to the observation made by Russell (1923)

‘‘. . . the law of excluded middle is true when precise symbols are employed, but it is

not true when symbols are vague, as, in fact, all symbols are.’’

In reality, we use terms whose complexities are far higher and which depart from the

principle of dichotomy. Consider the notions used in everyday life such as warm

weather, low inflation, long delay, and so on. How could you define them if you were

to draw a single line? Is 25�C warm? Is 24.9�C warm? Or is 24.95�C warm as well?

Likewise in any image: Could you draw a single line to discriminate between objects

such as sky, land, trees, and lake. Evidently, as illustrated in Figure 1.2, identifying

boundaries delineating the objects in this way is a fairly futile task and in many cases

produces pretty much meaningless results. Objects in images do not exhibit clear and

unique boundaries (the location of the horizon line is not obvious at all) (Fig. 1.2(a)).

Experimental data do not come in well-formed and distinct clusters; there are always

some points in-between (Fig. 1.2(b)).

One might argue that these are concepts that are used in everyday language and,

therefore, they need not possess any substantial level of formalism. Yet, one has to

admit that the concepts that do not adhere to the principle of dichotomy are also

Figure 1.2 Objects, as we perceive and describe them, do not exhibit sharp boundaries. Such

boundaries implementing a principle of dichotomy exhibit limitations. Practically, they may not exist at

all: (a) images and (b) experimental data.
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visible in science, mathematics, and engineering. For instance, we often carry out a

linear approximation of nonlinear function and make a quantifying statement that

such linearization is valid in some small neighborhood of the linearization point.

Under these circumstances, the principle of dichotomy does not offer too much.

The principle of dichotomy, or as we say an Aristotelian perspective at the

description of the world, has been subject to a continuous challenge predominantly

from the standpoint of philosophy and logic. Let us recall some of the most notable

developments that have led to the revolutionary paradigm shift. Indisputably, the

concept of a three-valued and multivalued logic put forward by Jan Lukasiewicz and

then pursued by others, including Emil Post, is one of the earliest and the most

prominent logical attempts made toward the direction of abandoning the supremacy

of the principle of dichotomy. As noted by Lukasiewicz (1920, 1930,) the question of

the suitability or relevance of two-valued logic in evaluating the truth of propositions

was posed in the context of those statements that allude to the future. ‘‘Tomorrowwill

rain.’’ Is this statement true? If we can answer this question, this means that we have

already predetermined the future. We start to sense that this two-valued model, no

matter how convincing it could be, is conceptually limited if not wrong. The non-

Aristotelian view of the world was vividly promoted by Korzybski (1933). Although

the concept of the three-valued logic was revolutionary in 1920s, we somewhat

quietly endorsed it over the passage of time. For instance, in database engineering, a

certain entry may be two-valued (yes–no), but the third option of ‘‘unknown’’ is

equally possible—here we simply indicate that no value of this entry has been

provided.

1.3 GRANULAR COMPUTING

Information granules permeate human endeavors (Zadeh, 1973, 1979, 1996, 1997,

2005; Pedrycz, 2001; Bargiela and Pedrycz, 2003). No matter what problem is taken

into consideration, we usually cast it into a certain conceptual framework of basic

entities, which we regard to be of relevance to the problem formulation and problem

solving. This becomes a framework in which we formulate generic concepts adher-

ing to some level of abstraction, carry out processing, and communicate the results to

the external environment. Consider, for instance, image processing. In spite of the

continuous progress in the area, a human being assumes a dominant and very much

uncontested position when it comes to understanding and interpreting images.

Surely, we do not focus our attention on individual pixels and process them as

such but group them together into semantically meaningful constructs—familiar

objects we deal with in everyday life. Such objects involve regions that consist of

pixels or categories of pixels drawn together because of their proximity in the image,

similar texture, color, and so on. This remarkable and unchallenged ability of humans

dwells on our effortless ability to construct information granules, manipulate them,

and arrive at sound conclusions. As another example, consider a collection of time

series. From our perspective, we can describe them in a semiqualitative manner by

pointing at specific regions of such signals. Specialists can effortlessly interpret
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electrocardiograms (ECG signals). They distinguish some segments of such signals

and interpret their combinations. Experts can interpret temporal readings of sensors

and assess the status of the monitored system. Again, in all these situations, the

individual samples of the signals are not the focal point of the analysis and the

ensuing signal interpretation. We always granulate all phenomena (no matter if they

are originally discrete or analog in their nature). Time is another important variable

that is subjected to granulation. We use seconds, minutes, days, months, and years.

Depending on which specific problem we have in mind and who the user is, the size

of information granules (time intervals) could vary quite dramatically. To the high-

level management, time intervals of quarters of year or a few years could be mean-

ingful temporal information granules on the basis of which one develops any

predictive model. For those in charge of everyday operation of a dispatching power

plant, minutes and hours could form a viable scale of time granulation. For the

designer of high-speed integrated circuits and digital systems, the temporal informa-

tion granules concern nanoseconds, microseconds, and perhaps seconds. Even such

commonly encountered and simple examples are convincing enough to lead us to

ascertain that (a) information granules are the key components of knowledge

representation and processing, (b) the level of granularity of information granules

(their size, to be more descriptive) becomes crucial to the problem description and an

overall strategy of problem solving, and (c) there is no universal level of granularity

of information; the size of granules is problem oriented and user dependent.

What has been said so far touched a qualitative aspect of the problem. The

challenge is to develop a computing framework within which all these representation

and processing endeavors could be formally realized. The common platform emer-

ging within this context comes under the name of granular computing. In essence, it

is an emerging paradigm of information processing. Although we have already

noticed a number of important conceptual and computational constructs built in

the domain of system modeling, machine learning, image processing, pattern recog-

nition, and data compression in which various abstractions (and ensuing information

granules) came into existence, granular computing becomes innovative and intellec-

tually proactive in several fundamental ways:

� It identifies the essential commonalities between the surprisingly diversified

problems and technologies used there, which could be cast into a unified

framework we usually refer to as a granular world. This is a fully operational

processing entity that interacts with the external world (that could be another

granular or numeric world) by collecting necessary granular information and

returning the outcomes of the granular computing.

� With the emergence of the unified framework of granular processing, we get a

better grasp as to the role of interaction between various formalisms and

visualize a way in which they communicate.

� It brings together the existing formalisms of set theory (interval analysis),

fuzzy sets, rough sets, and so on under the same roof by clearly visualizing that

in spite of their visibly distinct underpinnings (and ensuing processing), they

exhibit some fundamental commonalities. In this sense, granular computing
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establishes a stimulating environment of synergy between the individual

approaches.

� By building upon the commonalities of the existing formal approaches,

granular computing helps build heterogeneous and multifaceted models of

processing of information granules by clearly recognizing the orthogonal

nature of some of the existing and well-established frameworks (say, prob-

ability theory coming with its probability density functions and fuzzy sets

with their membership functions).

� Granular computing fully acknowledges a notion of variable granularity whose

range could cover detailed numeric entities and very abstract and general

information granules. It looks at the aspects of compatibility of such informa-

tion granules and ensuing communication mechanisms of the granular worlds.

� Interestingly, the inception of information granules is highly motivated.We do

not form information granules without reason. Information granules are an

evident realization of the fundamental paradigm of abstraction.

Granular computing forms a unified conceptual and computing platform. Yet, it

directly benefits from the already existing and well-established concepts of informa-

tion granules formed in the setting of set theory, fuzzy sets, rough sets and others. Let

us now take a quick look at the fundamental technologies of information granulation

and contrast their key features.

1.3.1 Sets and Interval Analysis

Sets are fundamental concepts of mathematics and science. Referring to the classic

notes, set is described as ‘‘any multiplicity, which can be thought of as one. . . any

totality of definite elements, which can be bound up into a whole by means of a law’’

or being more descriptive ‘‘. . .any collection into a whole M of definite and separate

objects m of our intuition or our thought’’ (Cantor, 1883, 1895). Likewise, interval

analysis ultimately dwells upon a concept of sets, which in this case are collections

of elements in the line of reals, say ½a;b�, ½c;d�,. . . and so on. Multidimensional

constructs are built upon Cartesian products of numeric intervals and give rise to

computing with hyperboxes. Going back to the history, computing with intervals is

intimately linked with the world of digital technology. One of the first papers in this

area was published in 1956 by Warmus. Some other early research was done by

Sunaga and Moore (1966). This was followed by a wave of research in so-called

interval mathematics or interval calculus. Conceptually, sets (intervals) are rooted in

a two-valued logic with their fundamental predicate of membership (2). Here holds
an important isomorphism between the structure of two-valued logic endowed with

its truth values (false–true) and set theory with sets being fully described by their

characteristic functions. The interval analysis is a cornerstone of reliable computing,

which in turn is ultimately associated with digital computing in which any variable is

associated with a finite accuracy (implied by the fixed number of bits used to repre-

sent numbers). This limited accuracy gives rise to a certain pattern of propagation of
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error of computing. For instance, addition of two intervals ½a; b� and ½c; d� leads to a

broader interval in the form ½aþ c; bþ d� (Hansen, 1975; Jaulin et al., 2001; Moore,

1966). Here, the accumulation of uncertainty (or equivalently the decreased granu-

larity of the result) depends upon the specific algebraic operation completed for given

intervals. Table 1.2 summarizes four algebraic operations realized on numeric

intervals A ¼ ½a; b� and B ¼ ½c; d�.
Interestingly, intervals distributed uniformly in a certain space are at the center

of any mechanism of analog-to-digital conversion; the higher the number of bits, the

finer the intervals and the higher their number. The well-known fundamental rela-

tionship states that with n bits we can build a collection of 2n intervals of width

ðb� aÞ=2n for the original range of numeric values in ½a; b�. Intervals offer a

straightforwardmechanism of abstraction: all elements lying within a certain interval

become indistinguishable and therefore are treated as identical. In addition to

algebraic manipulation, the area of interval mathematics embraces a wealth of far

more advanced and practically relevant processing including differentiation, integral

calculus, as well as interval-valued optimization.

1.3.2 The Role of Fuzzy Sets: A Perspective
of Information Granules

Fuzzy sets offer an important and unique feature of describing information

granules whose contributing elements may belong to varying degrees of membership

(belongingness). This helps us describe the concepts that are commonly encountered

in real world. The notions, such as low income, high inflation, small approximation

error, and many others, are examples of concepts to which the yes–no quantification

does not apply or becomes quite artificial and restrictive. We are cognizant that there

is no way of quantifying the Boolean boundaries as there are a lot of elements whose

membership to the concept is only partial and quite different from 0 and 1.

The binary view of the world supported by set theory and two-valued logic has

been vigorously challenged by philosophy and logic. The revolutionary step in logic

was made by Lukasiewicz with his introduction of three and afterward multivalued

logic (Lukasiewic, 1930, 1970). It took ‘however’ more decades to dwell on the ideas

of the non-Aristotelian view of the world before fuzzy sets were introduced. This

Table 1.2 Arithmetic Operations on Numeric Intervals A and B.

Algebraic operation Result

Addition ½aþ c; bþ d�
Subtraction ½a� d; b� c�
Multiplication ½minðac; ad; bc; bdÞ;maxðac; ad; bc; bdÞ�
Division min a

c
; a
d
; b
c
; b
d

� �

;max a
c
; a
d
; b
c
; b
d

� �� �

assumption:

the interval ½c; d� does not contain 0
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happened in 1965 with the publication of the seminal paper on fuzzy sets by Zadeh

(1965). Refer also to other influential papers by Zadeh (1979, 1996, 1997, 1999,

2005). The concept of fuzzy set is surprisingly simple and elegant. Fuzzy set A

captures its elements by assigning them to it with some varying degrees of member-

ship. A so-called membership function is a vehicle that quantifies different degrees of

membership. The higher the degree of membership AðxÞ, the stronger is the level of
belongingness of this element to A (Gottwald, 2005; Zimmermann, 1996).

The obvious yet striking difference between sets (intervals) and fuzzy sets lies in

the notion of partial membership supported by fuzzy sets. In fuzzy sets, we dis-

criminate between elements that are ‘‘typical’’ to the concept and those of borderline

character. Information granules such as high speed, warm weather, fast car are

examples of information granules falling under this category and can be conveniently

represented by fuzzy sets. As we cannot specify a single, well-defined element that

forms a solid border between full belongingness and full exclusion, fuzzy sets offer

an appealing alternative and a practical solution to this problem. Fuzzy sets with their

smooth transition boundaries form an ideal vehicle to capture the notion of partial

membership. In this sense, information granules formalized in the language of fuzzy

sets support a vast array of human-centric pursuits. They are predisposed to play a

vital role when interfacing human to intelligent systems.

In problem formulation and problem solving, fuzzy sets emerge in two funda-

mentally different ways.

Explicit. Here, they typically pertain to some generic and fairly basic concepts

we use in our communication and description of reality. There is a vast amount of

examples as such concepts being commonly used every day, say short waiting time,

large dataset, low inflation, high speed, long delay, and so on. All of them are quite

simple as we can easily capture their meaning. We can easily identify a universe of

discourse over which such variable are defined. For instance, this could be time,

number of records, velocity, and alike.

Implicit. Herewe are concerned with more complex and inherently multifaceted

concepts and notions where fuzzy sets could be incorporated into the formal

description and quantification of such problems, yet not in so instantaneous manner.

Some examples could include concepts such as ‘‘preferred car,’’ ‘‘stability of the

control system,’’ ‘‘high performance computing architecture,’’ ‘‘good convergence

of the learning scheme,’’ ‘‘strong economy,’’ and so on. All of these notions

incorporate some components that could be quantified with the use of fuzzy sets,

yet this translation is not that completely straightforward and immediate as it

happens for the category of the explicit usage of fuzzy sets. For instance, the concept

of ‘‘preferred car’’ is evidently multifaceted and may involve a number of essential

descriptors that when put together are really reflective of the notion we have in mind.

For instance, we may involve a number of qualities such as speed, economy,

reliability, depreciation, maintainability, and alike. Interestingly, each of these

features could be easily rephrased in simpler terms and through this process at

some level of this refinement phase, we may arrive at fuzzy sets that start to manifest

themselves in an explicit manner.
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As we stressed, the omnipresence of fuzzy sets is surprising. Even going over

any textbook or research monograph, not mentioning newspapers and magazines,

we encounter a great deal of fuzzy sets coming in their implicit or explicit format.

Table 1.3 offers a handful of selected examples.

From the optimization standpoint, the properties of continuity and commonly

encountered differentiability of the membership functions become a genuine asset.

We may easily envision situations where those information granules incorporated as

a part of the neurofuzzy system are subject to optimization—hence the differentia-

bility of their membership functions becomes critical relevance. What becomes

equally important is the fact that fuzzy sets bridge numeric and symbolic concepts.

On one hand, fuzzy set can be treated as some symbol. We can regard it as a single

conceptual entity by assigning to it some symbol, say L (for low). In the sequel, it

could be processed as a purely symbolic entity. On the other hand, a fuzzy set comes

with a numeric membership function and these membership grades could be pro-

cessed in a numeric fashion.

Fuzzy sets can be viewed from several fundamentally different standpoints. Here

we emphasize the four of them that play a fundamental role in processing and

knowledge representation.

Table 1.3 Examples of Concepts Whose Description and Processing Invoke the Use of

Fuzzy Sets and Granular Computing.

p. 65: small random errors in the measurement vector. . .

p. 70: The success of the method depends on whether the first initial guess is already

close enough to the global minimum. . .

p. 72: Hence, the convergence region of a numerical optimizer will be large

(van der Heijden et al., 2004).

p. 162: Comparison between bipolar and MOS technology (a part of the table)

bipolar MOS

integration low very high

power high low

cost low low

(Katz and Borriello, 2005).

p. 50: validation costs are high for critical systems

p. 660: . . .A high value for fan-in means that X is highly coupled to the rest of the design

and changes to X will have extensive knock-on effect. A high value for fan-out

suggests that the overall complexity of X may be high because of the complexity

of control logic needed to coordinate the called components.

. . . Generally, the larger the size of the code of a component, the more complex and

error-prone the component is likely to be. . .

. . . The higher the value of the Fog index, the more difficult the document is to

understand

(Sommerville, 2007).
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As an Enabling Processing Technology of Some Universal

Character and of Profound Human-Centric Character

Fuzzy sets build upon the existing information technologies by forming a user-

centric interface using which one could communicate essential design knowledge

thus guiding problem solving and making it more efficient. For instance, in signal

processing and image processing wemight incorporate a collection of rules capturing

specific design knowledge about filter development in a certain area. Say, ‘‘if the

level of noise is high, consider using a large window of averaging.’’ In control

engineering, we may incorporate some domain knowledge about the specific control

objectives. For instance, ‘‘if the constraint of fuel consumption is very important,

consider settings of a PID controller producing low overshoot.’’ Some other exam-

ples of highly representative human-centric systems concern those involving

(a) construction and usage of relevance feedback in retrieval, organization, and

summarization of video and images, (b) queries formulated in natural languages,

and (c) summarization of results coming as an outcome of some query.

Second, there are unique areas of applications in which fuzzy sets form a

methodological backbone and deliver the required algorithmic setting. This concerns

fuzzy modeling in which we start with collections of information granules (typically

realized as fuzzy sets) and construct a model as a web of links (associations) between

them. This approach is radically different from the numeric, function-based models

encountered in ‘‘standard’’ system modeling. Fuzzy modeling emphasizes an aug-

mented agenda in comparison with the one stressed in numeric models. Whereas we

are still concerned with the accuracy of the resulting model, its interpretability and

transparency become of equal and sometimes even higher relevance.

It is worth stressing that fuzzy sets provide an additional conceptual and algo-

rithmic layer to the existing andwell-establishedareas. For instance, there are profound

contributions of fuzzy sets to pattern recognition. In this case, fuzzy sets build upon the

well-established technology of feature selection, classification, and clustering.

Fuzzy sets are an ultimate mechanism of communication between humans and

computing environment. The essence of this interaction is illustrated in Figure 1.3(a).

Any input is translated in terms of fuzzy sets and thus made comprehensible at the

level of the computing system. Likewise, we see a similar role of fuzzy sets when

communicating the results of detailed processing, retrieval, and alike. Depending

upon application and the established mode of interaction, the communication layer

may involve a substantial deal of processing of fuzzy sets. Quite often, we combine

the mechanisms of communication and represent them in a form of a single module

(Fig. 1.3(b)). This architectural representations stress the human-centricity aspect of

the developed systems.

As an Efficient Computing Framework of Global Character

Rather than processing individual elements, say a single numeric datum, an encap-

sulation of a significant number of the individual elements that is realized in the form

of some fuzzy sets, offers immediate benefits of joint and orchestrated processing.
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Instead of looking at the individual number, we embrace a more general point of view

and process a entire collection of elements represented now in the form of a single

fuzzy set. This effect of a collective handling of individual elements is seen very

profoundly in the so-called fuzzy arithmetic. The basic constructs here are fuzzy

numbers. In contrast to single numeric quantities (real numbers), fuzzy numbers

represent collections of numbers where each of them belongs to the concept (fuzzy

number) to some degree. These constructs are then subject to processing, say

addition, subtraction, multiplication, division, and so on. Noticeable is the fact that

by processing fuzzy numbers we are in fact handling a significant number of

individual elements at the same time. Fuzzy numbers and fuzzy arithmetic provide

an interesting advantage over interval arithmetic (viz. arithmetic in which we are

concerned with intervals—sets of numeric values). Intervals come with abrupt

boundaries as elements can belong to or are excluded from the given set. This means,

for example, that any gradient-based techniques of optimization invoked when

computing solutions become very limited: the derivative is equal to zero with an

exception at the point where the abrupt boundary is located.

Fuzzy Sets as a Vehicle of Raising and Quantifying Awareness About

Granularity of Outcomes

Fuzzy sets form the results of granular computing. As such they convey a global view

at the elements of the universe of discourse over which they are constructed. When

visualized, the values of the membership function describe a suitability of the

individual points as compatible (preferred) with the solution. In this sense, fuzzy

sets serve as a useful visualization vehicle: when displayed, the user could gain an

overall view of the character of solution (regarded as a fuzzy set) and make a final

choice. Note that this is very much in line with the idea of the human-centricity: We

present the user with all possible results however do not put any pressure as to the

commitment of selecting a certain numeric solution.

Fuzzy Sets as a Mechanism Realizing a Principle of the Least

Commitment

As the computing realized in the setting of granular computing returns a fuzzy set as

its result, it could be effectively used to realize a principle of the least commitment.

Computing
system

Human Computing
system

HumanInterface

(a) (b)

Figure 1.3 Fuzzy sets in the realization of communication mechanisms (a) both at the user end and

at the computing system side, (b) a unified representation of input and output mechanisms of

communication in the form of the interface, which could also embrace a certain machinery of processing

at the level of fuzzy sets.
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The crux of this principle is to use fuzzy set as a mechanism of making us cognizant

of the quality of obtained result. Consider a fuzzy set being a result of computing in

some problem of multiphase decision making. The fuzzy set is defined over various

alternatives and associates with them the corresponding degrees of preference, see

Figure 1.4. If there are several alternatives with very similar degrees of membership,

this serves as a clear indicator of uncertainty or hesitation as to the making of a

decision. In other words, in light of the form of the generated fuzzy set, we do not

intend to commit ourselves to making any decision (selection of one of the alter-

natives) at this time. Our intent would be to postpone decision and collect more

evidence. For instance, this could involve further collecting of data, soliciting expert

opinion, and alike. Based on this evidence, we could continue with computing and

evaluate the form of the resulting fuzzy set. It could well be that the collected

evidence has resulted in more specific fuzzy set of decisions on the basis of which we

could either still postpone decision and keep collecting more evidence or proceed

with decision making. Thus, the principle of the least commitment offers us an

interesting and useful guideline as to the mechanism of decision making versus

evidence collection.

1.3.3 Rough Sets

The description of information granules completed with the aid of some vocabulary is

usually imprecise. Intuitively, such description may lead to some approximations

called lower and upper bounds. This is the essence of rough sets introduced by Pawlak

(1982; 1991); refer also to Skowron (1989) and Polkowski and Skowron (1998).

Interesting generalizations, conceptual insights, and algorithmic investigations are

offered in a series of fundamental papers by Pawlak and Skowron (2007a,b,c).

Time 

Accumulation of evidence 

Decision 
released 

Decision postponed 

Figure 1.4 An essence of the principle of the least commitment; the decision is postponed until the

phase where there is enough evidence accumulated and the granularity of the result becomes specific

enough. Also examples of fuzzy sets formed at successive phases of processing that become more

specific along with the increased level of evidence are shown.

1.3 Granular Computing 13



To explain the concept of rough sets and show what they are to offer in terms of

representing information granules, we use an illustrative example. Consider a

description of environmental conditions expressed in terms of temperature and

pressure. For each of these factors, we fix several ranges of possible values where

each of such ranges comes with some interpretation such as ‘‘values below,’’ ‘‘values

in-between,’’ ‘‘values above,’’ and so on. By admitting such selected ranges in both

variables, we construct a grid of concepts formed in the Cartesian product of the

spaces of temperature and pressure, refer to Figure 1.5. In more descriptive terms,

this grid forms a vocabulary of generic terms using which we would like to describe

all new information granules.

Now let us consider that the environmental conditions monitored over some time

have resulted in some values of temperature and pressure ranging in-between some

lower and upper bound as illustrated in Figure 1.5. Denote this result by X. When

describing it in terms of the elements of the vocabulary, we end up with a collection

of elements that are fully included in X. They form a lower bound of description of X

when being completed in presence of the given vocabulary. Likewise, we may

Temperature

P
re

s
s
u

re

X

(a)

Temperature

P
re

s
s
u

re

X

Temperature

P
re

s
s
u

re

(b)

Figure 1.5 A collection of vocabularies and their use in the problem description. Environmental

conditions X result in some interval of possible values (a). In the sequel, this gives rise to the concept of

a rough set with the roughness of the description being captured by the lower and upper bounds

(approximations) as illustrated in (b).
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identify elements of the vocabulary that have a nonempty overlap with X and in this

sense constitute an upper bound of the description of the given environmental

conditions. Along with the vocabulary, the description forms a certain rough set.

As succinctly visualized in Figure 1.6, we are concerned with a description of a

given concept X realized in the language of a certain collection (vocabulary) of rather

generic and simple terms A1, A2, . . ., Ac. The lower and upper boundaries (approxi-

mation) are reflective of the resulting imprecision caused by the conceptual incom-

patibilities between the concept itself and the existing vocabulary.

It is interesting to note that the vocabulary used in the above construct could

comprise information granules being expressed in terms of any other formalism, say

fuzzy sets. Quite often we can encounter constructs like rough fuzzy sets and fuzzy

rough sets in which both fuzzy sets and rough sets are put together (Dubois and

Prade, 1990).

1.3.4 Shadowed Sets

Fuzzy sets are associated with the collections of numeric membership grades.

Shadowed sets (Pedrycz, 1998; 2005) are based upon fuzzy sets by forming a

more general and highly synthetic view at the numeric concept of membership.

Using shadowed sets, we quantify numeric membership values into three categories:

complete belongingness, complete exclusion, and unknown (which could be also

conveniently referred to as do not know condition or a shadow). A graphic illustra-

tion of a shadowed set along with the principles of sets and fuzzy sets is schemati-

cally shown in Figure 1.7. This helps us contrast these three fundamental constructs

of information granules.

In a nutshell, shadowed sets can be regarded as a general and far more concise

representation of a fuzzy set that could be of particular interest when dealing with

further computing (in which case we could come up with substantial reduction of the

overall processing effort).

X

{A1, A2,…,Ac}

R
o

u
g

h
 s

et

Figure 1.6 Rough set as a result of describing X in terms of some fixed vocabulary of information

granules {A1, A2, . . ., Ac}.
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1.4 QUANTIFYING INFORMATION GRANULARITY:
GENERALITY VERSUS SPECIFICITY

The notion of granularity itself and a level of specificity/generality seem to be highly

intuitive:We can easily sense what is more detailed and specific and what looks more

abstract and general. Formally, we can easily quantify granularity of information

granule by counting its number of elements. The more the elements are located in the

information granule, the lower its granularity (and the higher the generality). In this

limit, a single element exhibits the highest level of granularity (specificity). In the

case of sets, this will be the cardinality (number of elements) or the length of the

interval or a similar measure expressing a count of the elements. In case of fuzzy sets,

we usually use a so-called sigma count that is produced by summing up the member-

ship grades of the elements belonging to the fuzzy set under consideration. For rough

sets, we may consider the cardinality of their lower or upper approximations.

1.5 COMPUTATIONAL INTELLIGENCE

Emerged in the early 1990s (Bezdek, 1992; Pedrycz, 1997), Computational intelli-

gence (CI) offers a unique and interesting opportunity to narrow down the acute

semantic gap we encounter when building HC2 systems. The contributing technol-

ogies of CI (in particular, neural networks, granular computing, and evolutionary

optimization) along with their research thrusts are complementary to a high degree.

This has triggered a great deal of synergy, which in turn has made the CI a highly

cohesive conceptual and algorithmic platform exhibiting significant modifiability

(adaptability) and supporting mechanisms of context-awareness, human-centricity,

and user-friendliness. In this highly symbiotic CI environment, each of the techno-

logies listed above plays an important role. For instance, through the use of fuzzy

sets, detailed numeric data may be arranged into meaningful and tangible informa-

tion granules. Information granulation allows for the incorporation of a users’ prior

domain knowledge and preferences, as well as facilitates the management of

uncertainty. Neurocomputing delivers a rich diversity of learning techniques and

Figure 1.7 A schematic view at sets (a), shadowed sets (b), and fuzzy sets (c). Shadowed sets reveal

interesting linkages between fuzzy sets and sets.
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flexible neural or neuro-fuzzy architectures. Evolutionary methods help cope with

structural optimization and are often essential in the design of complex systems. CI

benefits from this both in terms of the overall methodology of problem understanding

and problem solving, as well as the ensuing system architectures. Again as strongly

advocated in the literature, CI addresses the very nature of human problem solving,

namely, problem modularization, dealing, for example, with numerous conflicting

criteria. The recently developed ideas and practices of granular computing promote a

general top-down design approach: knowledge tidbits are collected, afterward ana-

lyzed, refined, and used as a blueprint (backbone) of the ensuing detailed architec-

ture. Neurocomputing, on the contrary, supports the bottom-up design approach: here

one starts from ‘‘clouds’’ of data and attempts to reveal and describe some common

regularities (e.g., trends) and encapsulate them in the form of specific models. The

omnipresent tendency in the development of HC2 systems lies in itsmultistrategy and

multifaceted approach. It is strongly manifested in various architectures, different

design (learning) techniques, and more advanced user-friendly interfaces. In this

sense, CI becomes an ideal methodological, development, and experimental platform

for HC2 systems.

1.6 GRANULAR COMPUTING AND COMPUTATIONAL
INTELLIGENCE

Granular computing seamlessly integrates with architectures of CI. Given the fact

that information granules help set up the most suitable perspectivewhen dealing with

the problem, collecting data (that could be of heterogeneous character), carrying out

processing, and releasing the results (in a formal acceptable to the environment), the

general architecture is shown in Figure 1.8.

Although the communication layers are supported by granular computing, the

underlying processing is a domain of neurocomputing, while the overall optimiza-

tion of the architecture is supported by the machinery of evolutionary computing.

There are different levels of synergy; for instance, one could regard the overall

architecture as a neurofuzzy system. In this case, the interface delivers a unified

setting where various sources of data are effortlessly combined and presented to

the neural network, which constitutes the core of the processing layer. In many

cases, the architecture could have somewhat blurred delineation between the

communication layers and the processing core, in particular, when information

granules become an integral part of the basic processing elements. A typical

example here comes when we are concerned with a granular neuron—a construct

in which the connections are treated as information granules, say fuzzy sets (and

then we may refer to it as a fuzzy neuron) or rough sets (which gives rise to the

concept of rough neurons).

As discussed earlier, information granules help us cast the problem into some

perspective. This becomes visible in case of neural networks. To cope with huge

masses of data, we could granulate them (which naturally reduce their number and
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dimensionality) and treat those as meaningful aggregates and components of the

learning set.

1.7 CONCLUSIONS

Human centricity becomes a feature that is of growing interest, especially when

dealing with the development of more sophisticated and intelligent systems.Whereas

there is a remarkably diversified spectrum of possible applications and ensuing

realizations, in all of them, we can identify some commonalities and a visible role

of information granules and information granulation. The chapter offers some

Users

(relevance feedback) 

Sensors

Databases

Collaborating

systems

Processing

Users

Actuators

Other

systems

Interface

Interface

Databases

Figure 1.8 The layered architecture of systems of Computational Intelligence with the functional

layers of communication (interfacing) with the environment and the processing core.
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introduction to fuzzy sets and brings a number of motivating comments as far as their

methodology and applied side are concerned. Similarly, we looked at fuzzy sets

being an important component of granular computing. We also clarified a concept of

CI and pointed at the role of fuzzy sets within this framework.

EXERCISES AND PROBLEMS

1. Consider a certain concept A defined in the space of two variables (attributes) x1 and x2
whose geometric representation is shown below. We would like to describe it by means of

some Cartesian products of intervals. It becomes evident that such characterization cannot

be perfect. How would you define lower and upper bounds of the description of the concept

so that its ‘‘roughness’’ becomes as small as possible? Justify your construction of the

bounds.

A

x1

x2

2. Pick up some textbooks, newspapers, and magazines and identify terms (concepts) that

could be formalized as fuzzy sets. Justify your choice. Suggest possible models of member-

ship functions and link them with the semantics of the concepts being described in this

manner.

3. Discuss some additional functionality in commonly encountered computer systems that

could be beneficial in making them highly user centric or could be useful in enhancing their

user centricity.

4. Identify some concepts in which fuzzy sets could be used in explicit and implicit manner.

5. Unleash your imagination and suggest some functionality of future computing systems in

which human centricity could play an important role.

6. For the differentiable membership functions, we could evaluate their sensitivity by deter-

mining the absolute value of derivative of the membership function. Discuss the sensitivity

of piecewise linear membership functions (triangular fuzzy sets), parabolic membership

functions, and Gaussian membership functions. They are described by the following

membership functions:

(a) Triangular AðxÞ ¼

x� a

m� a
if x 2 ½a;m�

1� x� m

b� m
if x 2 ½m; b�

0; otherwise

8

>

>

>

<

>

>

>

:

where a < m < b

Exercises and Problems 19



(b) Parabolic AðxÞ ¼
1� x

a

� �2

ifx 2 ½�a; a�

0; otherwise

8

<

:

(c) Gaussian A ðxÞ ¼ expð�ðx� mÞ2=s2Þ
7. You are about to buy a new car. The info sticker you see on the windshield of the vehicle

in the dealer’s exhibition area tells you about economy ‘‘22 mpg in city and 35 mpg

on highway.’’ How could you interpret this information? Would you be dissatisfied

after buying this vehicle and learning that it makes 20 mpg in city driving? Suggest

models of fuzzy sets capturing the semantics of the concept of economy of a vehicle;

be realistic. While dealing with cars, also suggest some other concepts that directly lead

to the emergence of fuzzy sets that could serve as the meaningful descriptors of the

concepts.

HISTORICAL NOTES

While the inception of fuzzy sets has to be attributed to 1965 paper by Zadeh (Zadeh, 1965), we have

indicated that their conceptual and philosophical roots are dated back to the beginning of 20th century

where the most influential and prominent ideas of three-valued and multivalued logic came into

existence (Lukasiewicz, 1920, 1930, 1970). The philosophical underpinnings of non-Aristotelian

view at the world were laid down by Korzybski (1933). The Aristotelian view of the world was

challenged by Black in his 1938 study entitled ‘‘Vagueness: an exercise in logical analysis.’’ The others

include Klaua and Post.

Jan Lukasiewicz (1878–1956) is known as a founder of three-valued and multivalued logics. After

studies of law at the University of Lvov (Poland), his interests were focused on philosophy in which he

received his Ph.D. in 1902.While at the University of Lvov, in 1907–1908, he offered the first Polish course

in mathematical logic. During the WW I in 1915, he moved to Warsaw where he occupied one of the two

chairs of philosophy at the Warsaw University. In 1946, not accepting the new political system set up in

Poland under the Soviet occupation, he moved to Dublin, Ireland. Lukasiewicz’s Polish notation (known as

reverse Polish notation or postfix notation) of 1920 was an inspiration behind the idea of the recursive
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stack, a last-in, first-out computer memory store. The reverse Polish notation is used in Hewlett Packard

calculators and postscript language.

Alfred Korzybski (1879–1950) has contributed to the area of general semantics and the funda-

mentals of non-Aristotelian systems. He studied in Warsaw University of Technology, Germany and Italy.

Then, he volunteered in the Russian army and was sent to Canada and USA as an artillery expert. His book

entitled Science and Sanity: An Introduction to Non-Aristotelian Systems and General Semantics and

published in 1933 has become a landmark in studies of general semantics. Here, it is worth to recall

Korzybski’s note from this book that succinctly highlights the shortcomings of the Aristotelian perspective.

..in analyzing the Aristotelian codification, I had to deal with the two-valued,

‘‘either-or’’ type of orientation. In living, many issues are not so sharp, and therefore

a system that posits the general sharpness of ‘‘either-or’’ and so objectifies ‘‘kind,’’ is

unduly limited; it must be revised and more flexible in terms of ‘‘degree’’. . .

The developments of interval calculus emerged with inception of the era of digital computing and the

paper by J.Warmus was one of the first publications in this realm. It is interesting to follow a general way in

which the computing with such information granules is carried out (Fig. 1.9).

Fuzzy sets came into existence when the fundamental paper of L. A. Zadeh was published in

Information and Control (Fig. 1.10). Fuzzy sets departed from the principle of dichotomy by admitting

a notion of partial membership (degree of membership defined in the unit interval). Fuzzy sets offered a

rich conceptual and algorithmic setting in which granular information could be handled. Furthermore, they

provide a highly effective vehicle to express and quantify general principles of modeling and human-

centric systems, for example, the principle of incompatibility coined by Zadeh (1973).
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As the complexity of a system increases, our ability to make precise and yet

significant statements about its behavior diminishes until a threshold is reached

beyond which precision and significance (or relevance) become almost mutually

exclusive characteristics

The theory of rough sets established by Z. Pawlak (Fig. 1.11) opened another successful avenue of

investigations of information granules whose description realized in the setting of a certain vocabulary

leads to the concept of roughness of description (which itself manifests through lower and upper

boundaries or approximations).

Losfi Zadeh during his Student years in Tehran in the early 1940s (the large Russian sign ODIN which

means ‘‘alone,’’ was his early proclamation of Independence).

Figure 1.9 The first page of the paper by Warmus in which he outlined the concept of computing with

numeric intervals.

22 Chapter 1 Introduction



Figure 1.10 The first page of the Zadeh’s seminal paper on fuzzy sets.
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Zdzislaw Pawlak (1926–2006) was born in Lodz, 130 km south–west fromWarsaw, Poland. He studied in

Lodz University of Technology andWarsawUniversity of Technology. He has contributed to the number of

Figure 1.11 Dealing with information with unclear boundaries—an emergence of rough sets.
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disciplines of computer science and was one of the pioneers of computing. In 1961, he was on a research

team that constructed one of the first computers in Poland named UMC 1. He proposed and investigated

parenthesis-free languages, a generalization of reverse Polish notation introduced by Jan Lukasiewicz.

While working at the Institute of Mathematics, in 1965 he introduced the foundations for modeling DNA

what has come to be known as molecular computing. In 1968, he proposed a new formal model of a

computing machine. In 1970s, he introduced knowledge representation systems. The early 1980s saw the

inception of rough sets with the seminal papers published in the International Journal of Computer

Information Systems. The most comprehensive coverage of this subject was presented in his book entitled

‘‘Rough Sets. Theoretical Aspects of Reasoning about Data’’ published in 1991.
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Chapter 2

Notions and Concepts

of Fuzzy Sets

In this chapter, we introduce the fundamental concepts of fuzzy sets. We focus

on the underlying idea of partial membership being conveniently quantified

through membership functions. We present the basic rationale and then move on

to the detailed quantification of fuzzy sets by discussing the most commonly

encountered classes of membership functions and presenting their semantics.

Furthermore, some fundamental interpretations of fuzzy sets are given. In the

sequel, we refine the concept of fuzzy sets by introducing an idea of fuzzy

numbers along with their key operational aspects.

2.1 SETS AND FUZZY SETS: A DEPARTURE
FROM THE PRINCIPLE OF DICHOTOMY

Conceptually and algorithmically, fuzzy sets constitute one of the most fundamental

and influential notions in science and engineering. The notion of fuzzy set is highly

intuitive and transparent as it captures what really becomes an essence of a way in

which a real world is perceived and described. We encounter categories of objects

whose belongingness to a given category (concept) is always a matter of degree.

There are numerous examples in which we find elements whose allocation to the

concept we want to define can be satisfied to some degree. One may eventually claim

that continuity of transition from full belongingness and full exclusion is the major

and ultimate feature of the physical world and natural systems. For instance, we may

qualify an indoor environment as comfortable when its temperature is kept around

20�C. If we observe a value of 19.5�C, it is very likely that we still feel quite

comfortable. The same holds if we encounter 20.5�C—humans usually do not

discriminate changes in temperature within the range of 1�C. Avalue of 20�C would

be fully compatible with the concept of comfortable temperature, yet 0�C or 30�C
would not. In these two cases, as well as for temperatures close to these two values,

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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we would describe them as being cold and warm, respectively. We could question

whether the temperature of 25�C is viewed as warm or comfortable or, similarly, if

15�C is comfortable or cold. Intuitively, we know that 25�C is somehow between

comfortable and warm, whereas 15�C is between comfortable and cold. The value

25�C is partially compatible with the term comfortable and warm, and somewhat

compatible or, depending on observer’s perception, incompatible with the term cold

temperature. Similarly, we may say that 15�C is partially compatible with the

comfortable and cold temperature, and slightly compatible or incompatible with

the warm temperature. In spite of this highly intuitive categorization of environment

temperatures into the three classes, namely cold, comfortable, and warm, we note

that the transition between the classes is not instantaneous and sharp. Simply when

moving across the range of temperatures, these values become gradually perceived as

cold, comfortable, or warm. Similar phenomenon happens when we are dealing with

the concept of height of people. An individual of height of 1 m is short, whereas a

person of 1.90 m is perceived to be tall. Again the question is, what is the range of

height values that could qualify a person to be tall? Does a height of 1.85 m

discriminate between tall and short individuals? Or maybe 1.86 m would be the

right choice? Asking these questions, we sense that they do not make too much sense.

We realize that the nature of these concepts is such that we cannot use a single

number—a transition between the notion of tall and short is not abrupt in any way.

Hence, we cannot assign a single number that does the job. This sends a clear

message: The concept of dichotomy does not apply when defining even simple

concepts. The illustration of dichotomy is included in Figure 2.1 (a). In contrast,

defining a concept by not confining ourselves to the dichotomy is illustrated in

Figure 2.1(b).

Fuzzy sets and the corresponding membership functions form a viable and

mathematically sound setting. When talking about heights of Europeans, we may

refer to real numbers within the interval [0, 3] to represent a universe of heights that

range in between 0 and 3 m. This universe of discourse is suitable for describing the

concept of tall people.

Let us denote by X a universe of discourse (space) of all elements. The universe

can be either continuous or discrete. For instance, the closed interval [0, 3] consti-

tutes a continuous and bounded universe, whereas the setN ¼ f0; 1; 2; . . .g of natural
numbers is discrete, and countable, but there are no bounds.

(a) (b)

Short TallShort Tall

Threshold

XX

Figure 2.1 Contrasting a concept of a set and the principle of dichotomy itself versus a relaxation of

the concept of complete inclusion and exclusion.
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Consider the universe of discourseX ¼ ½0; 3� and the collection S of values inX
that are less than a threshold value t in X, for example, t ¼ 1:8. Consider the sets

S ¼ fx 2 Xj0 � x � 1:8g and T ¼ fx 2 Xj1:8 � x � 3:0g (Fig. 2.2). Each set is a

class whosemembers are elements of the universe that satisfy the same property. This

set is equivalent to a list of elements of the universe that are members of the set.

Given a value in X, the process of dichotomization imposes a binary, all or none

classification decision: either accept or reject the value as belonging to a given

collection. For instance, consider the set S shown in Figure 2.2. Clearly, the point x1
belongs to Swhereas x2 does not, that is, x1 2 S and x2 62 S. Similarly, for the set Twe

have x1 62 T ; and x2 2 T . If we denote the accept decision by 1 and the reject decision

by 0, for short, we may express the classification decision of x 2 X through a

characteristic function as follows:

SðxÞ ¼ 1; if x 2 S

0; if x =2 S

�

TðxÞ ¼ 1; if x 2 T

0; if x =2T

�

Figure 2.3 illustrates sets S and T with the use of their characteristic functions.

Because a characteristic function fully characterizes a set, it is synonymous of the

notion of set.

0 3.01.8

S T
X

x1 x2

t

Figure 2.2 Set as a collection of values in intervals.

S T

Threshold

0 1.8 1.80 33

1.0 1.0

T(x)S(x)

X

X X

Figure 2.3 Sets and their corresponding characteristic functions.

2.1 Sets and Fuzzy Sets: a Departure from the Principle of Dichotomy 29



In general, a characteristic function of set A defined on X assumes the following

form:

AðxÞ ¼ 1; if x 2 A

0; if x =2 A

�

ð2:1Þ

The empty set Ø has a characteristic function that is identically equal to zero,

�ðxÞ ¼ 0 for all x in X. The universe X itself comes with the characteristic function

that is identically equal to one, XðxÞ ¼ 1 for all x in X. Also, a singleton A ¼ fag, a
set with only a single element, has a characteristic function such that AðxÞ ¼ 1 if

x ¼ a and AðxÞ ¼ 0 otherwise.

Characteristic functions A: X! f0; 1g induce a constraint with well-defined

boundaries on the elements of the universe X that can be assigned to a set A. The

fundamental idea of fuzzy set is to relax this requirement by admitting intermediate

values of class membership. Therefore, wemay assign intermediate values between 0

and 1 to quantify our perception on how compatible these values are with the class

with 0 meaning incompatibility (complete exclusion) and 1 compatibility (complete

membership). Membership values thus express the degrees to which each element of

a universe is compatible with the properties distinctive to the class. Intermediate

membership values means that no natural threshold exists and that elements of a

universe can be a member of a class and at the same time belong to other classes

with different degrees. Gradual, less strict membership degrees are the essence of

fuzzy sets.

Formally, a fuzzy set A is described by a membership function mapping the

elements of a universe X to the unit interval [0,1] (Zadeh, 1965):

A : X! ½0; 1� ð2:2Þ

tall

X X0 1.5 1.50 33

1.0 1.0

T(x)S(x)

Short Tall

Short Tall

X

Figure 2.4 Fuzzy sets and their membership functions.
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The membership functions are therefore synonymous of fuzzy sets. In a nutshell,

membership functions generalize characteristic functions in the same way as fuzzy

sets generalize sets; refer to Figure 2.4.

Fuzzy sets can also beviewed as a set of ordered pairs of the form fx;AðxÞg, where
x is an element of X and AðxÞ denotes its corresponding degree of membership. For a

finite universe of discourse X ¼ fx1; x2; . . . ; xng, A can be represented by an n-

dimensional vector A ¼ ½a1; a2; . . . ; an� with ai ¼ AðxiÞ. Figure 2.5 illustrates a

fuzzy set whose membership function captures the concept of integer around 5.

Here n ¼ 10 and expressing the integer quantity around 5 in the finite universe x ¼
f0; 1; 2; . . . ; 10g A ¼ ½0; 0; 0; 0:2; 0:5; 1:0; 0:5; 0:2; 0; 0; 0�. An equivalent

notation of A is A ¼ f0=1; 0=2; 0:2=3; 0:5=4; 1:0=5; 0:5=6; 0:2=7; . . . ; 0=10g.
The choice of the unit interval for the values of membership degrees could be a

matter of convenience. The choice of the detailed membership values, say

Að4Þ ¼ 0:5865, is not crucial; in describing membership grades we are predomi-

nantly after reflecting an order of the elements in A in terms of their belongingness to

the fuzzy set (Dubois and Prade, 1979).

Being more descriptive, we may view fuzzy sets as elastic constraints imposed

on the elements of a universe. As emphasized before, fuzzy sets deal primarily with

the concept of elasticity, graduality, or absence of sharply defined boundaries. In

contrast, when dealing with sets we are concerned with rigid boundaries, lack of

graded belongingness, and sharp binary boundaries. Gradual membership means that

no natural boundary exists and that some elements of the universe of discourse can,

contrary to sets, coexist (belong) in different fuzzy sets with different degrees of

membership. For instance, as shown in Figure 2.6, x1 ¼ 1:5 is compatible with the

concept of short and x2 ¼ 1:8 belongs to the category of tall people (when assuming

the model of sets), but x1 is 0.8 short and 0.2 tall and x2 is 0.6 short and 0.6 tall when

assuming a perspective of fuzzy sets.

2.2 INTERPRETATION OF FUZZY SETS

In fuzzy theory, the concept of fuzziness comes with a precise meaning. Fuzziness

primarily means lack of precise boundaries of a collection of objects and, as such, it is

X1

1.0

A(x)

2 3 4 5 60 8 9 107

Figure 2.5 Fuzzy set A in a discrete universe.
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an evident manifestation of imprecision and a particular type of uncertainty. Let us

make some comments regarding this topic.

First, it is worth indicating that fuzziness is both conceptually and formally

different from the fundamental concept of probability. In general, it is difficult to

foresee the result of tossing a fair coin once it is impossible to know if either head or

tail will occur for certain. We may, at most, say that there is 50% chance to have head

or tail occur, but as soon as the coin falls, uncertainty vanishes. But, in the case of the

height of a person, say, tall imprecision remains. Formally, fuzzy sets are member-

ship functions, which are mappings from some given universe of discourse to the unit

interval as in (2.2). In contrast, probability is a set function, a mapping whose

universe is a set of subsets of a domain.

Second, there are differences between fuzziness, generality, and ambiguity. A

notion is general when it applies to a multiplicity of objects and keeps only a common

essential property. An ambiguous notion stands for several unrelated objects. There-

fore, from this point of view, fuzziness does not mean generality nor ambiguity, and

applications of fuzzy sets exclude these categories. Fuzzy set theory assumes that the

universe is well defined and has its elements assigned to the classes by means of a

numerical scale.

Applications of fuzzy set to areas such as data analysis, reasoning under

uncertainty, and decision-making suggest different interpretations of membership

grades in terms of similarity, uncertainty, and preference (Dubois and Prade, 1997,

1998). From the similarity point of view, AðxÞ means the degree of compatibility of

an element x 2 X with representative elements of A. This is the primary and most

intuitive interpretation of a fuzzy set, one that is particularly suitable for data

analysis. An example is the case where we question how to qualify an environment

as comfortable when we know that the current temperature is 25�C. As discussed at

the beginning of this chapter, such quantification is a matter of degree. For instance,

assuming a universe of discourse X ¼ ½0; 40� and choosing 20�C as the representa-

tive of comfortable temperature, we note, in Figure 2.7, that the degree at which 25�C
is comfortable is 0.2. In the example, we have adopted piecewise linearly decreasing

functions of the distance between temperature values and the representative value

20�C to determine the corresponding membership degree.

X

Short Tall

0 1.5 3

1.0

X1.50 3

1.0

0.8

0.6

0.2

Short Tall

1.8 1.8

Figure 2.6 The concept of Boolean (two-valued) membership in characteristic functions and gradual

membership represented by membership functions (fuzzy sets).
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Now let us assume that the values of a variable x are located within the support of

a fuzzy set A. Then given a value v ofX, AðvÞ expresses a possibility that x ¼ v given

that x is in A is all that is known about. In this situation, the membership degree of a

given tentative value v to the class A reflects the degree of plausibility that this value

is the same as x. This idea reflects a type of uncertainty because if the membership

degree is high, our confidence about the value of xmay still be low, but if the degree is

low, then the tentative value may be rejected as an plausible candidate. The variable

labeled by the class A is uncontrollable. This allows assignment of fuzzy sets to the

possibility distributions as presented in possibility theory (Zadeh, 1978). For

instance, suppose someone said that he felt comfortable when watching a soccer

game. In this situation, the membership degree of a given tentative temperature value,

say 25�C, reflects the degree of plausibility that this value of temperature is the same

as the one when he felt comfortable. Note that the temperature value felt is unknown,

but there is no question if it did occur or not. Possibility is whether an event may

occur and with what degree. On the contrary, probability is about whether an event

will occur.

Finally, let us assume that A reflects a preference on the values of a variable x in

X. For instance, x can be a decision variable and fuzzy set A be an elastic constraint

characterizing feasible values and decision-maker preferences. In this case, AðvÞ
denotes the grade of preference in favor of v as the value of x. This is the

interpretation that prevails in fuzzy optimization and decision analysis. For

instance, we may be interested in finding a comfortable value of temperature.

The membership degree of a candidate temperature value v reflects our degree of

satisfaction with the particular temperature value chosen. In this situation, the value

of the variable is controllable in the sense that the value being adopted depends on

our choice.

2.3 MEMBERSHIP FUNCTIONS AND THEIR
MOTIVATION

Formally speaking, any function A : X! ½0; 1� could be qualified to serve as a

membership function describing the corresponding fuzzy set. In practice, the form of

° C100 40

1.0

0.5

Comfortable

20 30

0.2

25

Figure 2.7 Membership function for a fuzzy set of comfortable temperature.
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the membership functions should be reflective of the problem at hand for which we

construct fuzzy sets. They should mirror our perception of the concept to be

represented and used in problem solving, the level of detail we intend to capture,

and the context in which the fuzzy set are going to be used. It is also essential to

assess the type of a fuzzy set from the standpoint of its suitability when handling the

ensuing optimization procedures. Given these criteria in mind, we elaborate on the

most commonly used categories of membership functions. All of them are defined in

the universe of real numbers, which is X ¼ R.

2.3.1 Triangular Membership Functions

They are described by their piecewise linear segments described in the form

Aðx; a;m; bÞ ¼

0; if x � a
x� a

m� a
; if x 2 ½a;mÞ

b� x

b� m
; if x 2 ½m; b�

0; if x � b

8

>

>

>

>

>

<

>

>

>

>

>

:

Using the more concise notation, the above expression can be written in the

form Aðx; a;m; bÞ ¼ maxfmin½ðx� aÞ=ðm� aÞ; ðb� xÞ=ðb� mÞ�; 0g. Also refer

to Figure 2.8. The meaning of the parameters is straightforward: m denotes a modal

(typical) value of the fuzzy set whereas a and b are the lower and upper bounds,

respectively. They could be sought as the extreme elements of the universe of

–5 –1 –20 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A(x)

x

a = –1
m = 2 
b  = 5

Figure 2.8 Triangular membership function.
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discourse that delineate the elements belonging to A with nonzero membership

degrees.

Triangular fuzzy sets (membership functions) are the simplest possible models

of grades of membership as they are fully defined by only three parameters. As

mentioned, the semantics is evident as the fuzzy sets are expressed on the basis of

knowledge of the spreads of the concepts and their typical values. The linear change

in the membership grades is the simplest possible model of membership one could

think of. Taking the derivative of the triangular membership function, which could be

sought as a measure of sensitivity of A, @A@x we conclude that its sensitivity is constant

for each of the linear segments of the fuzzy set.

2.3.2 Trapezoidal Membership Functions

They are piecewise linear function characterized by four parameters, a, m, n, and b,

each of which defines one of the four linear parts of the membership function, as

illustrated in Figure 2.9. They assume the following form:

AðxÞ ¼

0; if x < a
x� a

m� a
; if x 2 ½a;mÞ

1; if x 2 ½m; nÞ
b� x

b� n
; if x 2 ½n; b�

0; if x > b

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:
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Figure 2.9 Trapezoidal membership functions.
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Using an equivalent notation, we can rewrite A as follows:

Aðx; a;m; n; bÞ ¼ maxfmin½ðx� ag=ðm� aÞ; 1; ðb� xÞ=ðb� nÞ�; 0g

2.3.3 G-Membership Functions

They are expressed in the following form:

AðxÞ ¼ 0; if x � a

1� e�kðx�aÞ
2

; if x > a

�

or AðxÞ ¼
0; if x � a

kðx� aÞ2

1þ kðx� aÞ2
; if x > a

8

<

:

where k > 0, as illustrated in Figure 2.10.

2.3.4 S-Membership Functions

These functions are of the following form:

AðxÞ ¼

0; if x � a

2
x� a

b� a

� �2

; if x 2 ½a;mÞ

1� 2
x� b

b� a

	 
2

; if x 2 ½m; b�
1; if x > b
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>

>

>

>
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Figure 2.10 G-membership function.
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The point m ¼ ðaþ bÞ=2 is the crossover point of the S-function, shown in

Figure 2.11.

2.3.5 Gaussian Membership Functions

These membership functions are described by the following relationship:

Aðx;m; sÞ ¼ exp �ðx� mÞ2
s2

 !

An example of the membership function is shown in Figure 2.12. Gaussian member-

ship functions have two important parameters. The modal value m represents the

typical element of A, whereas s denotes a spread of A. Higher values of s correspond

to larger spreads of the fuzzy sets.

2.3.6 Exponential-Like Membership Functions

They are described in the following form:

AðxÞ ¼ 1

1þ kðx� mÞ2
; k > 0

See Figure 2.13. The spread of the exponential-like membership function increases

as the values of k get lower.
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Figure 2.11 S-membership function.
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Figure 2.12 Gaussian membership functions.
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Figure 2.13 An example of the exponential-like membership function.
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2.4 FUZZY NUMBERS AND INTERVALS

In practice, the exact values of the parameters of models are not so common.

Normally, uncertainty and imprecision arise due to the lack of knowledge and

incomplete information reflected in system structure, parameters, inputs, and possi-

ble bounds.

Fuzzy numbers and intervals model imprecise quantities and capture our

innate conception of approximate numbers, such as about five and around 10,

and intervals such as below 100, around two and three, and above 10. Fuzzy

quantities are intended to model our intuitive notions of approximate numbers and

intervals as a generalization of numbers and intervals, as Figure 2.14 suggests. In

general, fuzzy quantities summarize numerical data by means of linguistically

labeled fuzzy sets whose universe is R, the set of real numbers. For instance, if a

value of a real variable is certain, say x ¼ 2:5, then we can represent it as a

certain quantity, a singleton whose characteristic function is A2:5ðxÞ ¼ 1 if

x ¼ 2:5 and A2:5ð0Þ ¼ 0 otherwise, as shown in Figure 2.14. In this situation, the

quantity has both precise value and precise meaning. If we are uncertain of the

value of the variable, but certain about its bounds, then the quantity is uncertain

and can be represented, for instance, by the closed interval [2.2, 3.0] a set whose

characteristic function is A½2:2; 3:0�ðxÞ ¼ 1 if x 2 ½2:2; 3:0� and A½2:2; 3:0�ðxÞ ¼ 0

otherwise. Here the variable is characterized by an imprecise value, but its mean-

ing is precise. When bounds are also not sharply defined, the quantities become

fuzzy numbers or intervals, respectively, as Figure 2.14 shows. In these cases, both

fuzzy numbers and intervals are also quantities with precise meaning, but with

imprecise values.

1 1

2.5 2.5

1 1

2.2 3.0

2.2 3.0

2.2 3.0

Real number
2.5 

Fuzzy number
about 2.5

Real interval
[2.2, 3.0]

Fuzzy interval
around [2.2, 3.0]

2.5

A 2.5 

A [2.2, 3.0]

A about

A around

R R

R R

Figure 2.14 Examples of quantities and fuzzy quantities.
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To be meaningful, we expect that the membership functions of fuzzy quantities

should posses certain properties (Nguyen and Walker, 1999). For instance, we expect

that all the sets formed by the elements of the universe for which membership degrees

are different from zero always be bounded sets because numbers and intervals, even

imprecise ones, are bounded. Also, there must exist at least an element of the universe

for which the membership degree is unitary because numbers and intervals have

precise meanings and when represented by sets they must have characteristic func-

tions that value one for the corresponding numbers and intervals. This must also be the

case with fuzzy quantities once real numbers and intervals are particular instances of

fuzzy numbers and intervals (Klir and Yuan, 1995). Moreover, membership functions

cannot be multimodal because wewould otherwise face a conflict to assign a meaning

to the description of fuzzy numbers or intervals, as Figure 2.15 indicates.

Fuzzy quantities are essential in many applications including time-series mod-

eling, optimization, decision-making, control, and approximate reasoning. For

instance, time-series models produce forecasts by extrapolating the historical beha-

vior of the values of a variable. Time-series data are historical data in chronological

order. In general, it is possible to use nonlinear or linear functions to extrapolate a

series of observations. One alternative that is often considered in practice is to

assume a higher-order polynomial for which appropriate values for its parameters

must be derived from the available, often imprecise and noisy, observations. Under

these circumstances, fuzzy time-series models are of value because they are built

assuming that the parameters of the model are fuzzy numbers and hence conveymore

information. The same issue appears in fuzzy optimization models, as we rarely

know coefficients of the objective function and constraints. In most practical cases

model parameters can only be the rough estimates because of the lack of information,

data, or cost to obtain their values. Although in classical optimization models

uncertain data are replaced by their average surrogates, fuzzy optimization models

allow the use of subjective and approximate (granular) data. This increases robust-

ness of decisions, increases model credibility, and reduces costs of data processing.

2.5 LINGUISTIC VARIABLES

One can often deal with variables describing phenomena of physical or human

systems assuming a finite, quite small number of descriptors.

1

2.52.2 3.0

Fuzzy number

about 2.5 ???

A about

R2.8

Figure 2.15 Bimodal membership function.
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We often describe observations about a phenomenon by characterizing

its states that we naturally translate in terms of the idea of a variable. For

instance, we may refer to an environment through words such as comfortable,

sunny, and neat. In particular, we can qualify the environment condition through

the variable temperature with values chosen in a range such as the interval

X ¼ ½0; 40�. Alternatively, temperature could be qualified using labels such as

cold, comfortable, and warm. A precise numerical value such as 20�C seems

simpler to characterize the environment than the ill-defined term comfortable.

But the linguistic label comfortable is a choice of one out of three values, whereas

20�C is a choice out of many. The statement could be strengthened if the under-

lying meaning of comfortable is conceived as about 20�C. Although the numer-

ical quantity 20�C can be visualized as a point in a set, the linguistic temperature

value comfortable can be viewed as a collection of temperature values in a

bounded region centered in 20�C. The label comfortable can, therefore, be

regarded as a form of information summarization, namely; granulation, because

it serves to approximate a characterization of ill-defined or complex phenomena

(Zadeh, 1975). In these circumstances, fuzzy sets provide a way to map a

finite term set to a linguistic scale whose values are fuzzy sets. In general, it is

difficult to find incontestable thresholds, such as 15�C and 30�C for instance,

which allows us to assign cold¼ [0,15], comfortable ¼ [15,30], and warm

¼ [30,40]. Cold, comfortable, and warm are fuzzy sets instead of single numbers

or sets (intervals). As fuzzy sets concern the representation of collections with

unclear boundaries by means of membership functions taking values in an

ordered set of membership values, they provide a means to interface numerical

and linguistic quantities, a way to link computing with words and granular

computing.

In contrast to the idea of numeric variables as being commonly used, the notion

of linguistic variable can be regarded as a variable whose values are fuzzy sets. In

general, linguistic variables may assume values consisting of words or sentences

expressed in a certain language (Zadeh, 1999). Formally, a linguistic variable is

characterized by a quintuple h X; TðXÞ;X; G; Mi where its components are as

follows:

X—the name of the variable,

TðXÞ—a term set of X whose elements are labels L of linguistic values of X,

G—a grammar that generates the labels of X,

M—a semantic rule that assigns to each label L 2 TðXÞ a meaning whose

realization is a fuzzy set on the universe X whose base variable is x.

EXAMPLE 2.1

Let us consider the linguistic variable of temperature. Here, the linguistic variable is

formalized by explicitly identifying all the components of the formal definition:

X¼ temperature, X ¼ ½0; 40�
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T(temperature)¼ {cold, comfortable, warm}

M(cold) ! C, M(comfortable) ! F and M(warm) ! W, where C, F, and W are fuzzy sets

whose membership functions are illustrated in Figure 2.16.

The notion of the linguistic variable plays a major role in applications of fuzzy sets.

In fuzzy logic and approximate reasoning, truth values can be viewed as linguistic

variables whose truth values form the term set as, for example, true, very true, false,

more or less true, and the like.

2.6 CONCLUSIONS

Fuzzy set is a concept that extends the notion of a set by assigning to each element of

a reference set, the universe, a value representing its degree of membership in the

fuzzy set. Membership values correspond to the degree an element is compatible or

similar to typical elements of the class associated with the fuzzy set. Elements may

belong in a fuzzy set to a lesser or greater degree as quantified by lower or higher

membership values. Usually membership degrees are values in the unit interval, but

generally it can be any partially ordered set. Therefore, fuzzy sets abolish dichotomy

and provide flexibility needed to match real-world requirements. Fuzzy sets capture

important characteristics of different application contexts. These provide distinct

semantics and interpretations, namely similarity, preference, and uncertainty. Fuzzy

sets are also essential to interface words with computing carried out at the level of

comfortable
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Figure 2.16 An example of the linguistic variable temperature.
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linguistic variables and fuzzy numbers. Linguistic variable is a key notion to

construct fuzzy systems in application areas such as data analysis, pattern recogni-

tion, classification, approximate reasoning, fuzzy control, fuzzy optimization, and

decision analysis.

EXERCISES AND PROBLEMS

1. There is an interesting problem posed by Borel (1950) that could now be conveniently

handled in the setting of fuzzy sets:

One seed does not constitute a pile nor two or three. From the other side, everybody

will agree that 100 million seeds constitute a pile. What therefore is the appropriate

limit?

Given this description, suggest a membership function of the concept of pile. What type of

membership function would you consider in this problem?

2. Consider two situations: (a) The number of expected people to ride on a bus on a certain

day. (b) The number of people who could ride in a bus at any time. Both situations

describe an uncertain scenario. Which of these two situations involves randomness?

Which one involves fuzziness? What is the nature of fuzziness: similarity, possibility, or

preference?

3. We are interested in describing the state of an environment by quantifying temperature as

very cold, cold, comfortable, warm, and hot. Choose an appropriate universe of discourse.

Represent state values using (a) sets and (b) fuzzy sets.

4. Suppose that the allowed speed values in a city streets range between 0 and 60 km/h.

Describe the speed values such as low, medium, and high using sets and fuzzy sets. Would

this description be adequate also for highways? Justify the answer.

5. Given is the fuzzy set Awith the membership function

AðxÞ ¼
x� 4; if 4 � x � 5

�xþ 6; if 5 < x � 6

0; otherwise

8

<

:

(a) Plot the membership function and identify its type.

(b) What type of linguistic label could be associated with the concept conveyed by A?

6. Fuzzy set is a precise theory to describe imprecision. Elaborate on this statement and justify

your opinion.

HISTORICAL NOTES

A different notion of fuzziness from the one originally introduced by Zadeh (1965) was suggested by

Sugeno (1974). Assume an element x of universeX. Given any subset A ofX, a set function gxðAÞ assigns a
value in [0, 1] to specify the degree of fuzziness of the claim that x 2 A. The value quantifies a measure of

certainty if x is in A or is excluded from A. The function gx is such that gxðfÞ ¼ 0; gxðXÞ ¼ 1, and if

A;B � X then A � B) gxðAÞ � gxðBÞ. It has been shown (Klir and Yuan, 1995) that gx, called fuzzy

measure by Sugeno, encompasses other measures of uncertainty, notably the probability and possibility

measures.
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Kosko (1992, 1997) argues that fuzziness is a type of deterministic uncertainty that emerges as a

consequence of simultaneous membership of an element in a set and a complement of this set. This is a

contradiction in set theory because the intersection of a set and its complement is the empty set. The reason

is that set theory assumes dichotomy. Partial membership of fuzzy set theory avoids such a contradiction

once it admits an element of a universe to belong to different classes with distinct grades. Therefore, fuzzy

set theory does not require an assumption about empty intersection of a fuzzy set and its complement.
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Borel, E. Probabilité e Certitude, Press Universite de France, Paris, 1950.

Dubois, D., Prade, H. Outline of fuzzy set theory: an introduction, in: M. M. Gupta, R. K. Ragade,

R. R. Yager (eds.), Advances in Fuzzy Set Theory and Applications, North Holland, Amsterdam, 1979,

pp. 27–39.

Dubois, D., Prade, H. The three semantics of fuzzy sets, Fuzzy Set Syst., 2, 1997, 141–150.

Dubois, D., Prade, H. An introduction to fuzzy sets, Clin. Chim. Acta 70, 1998, 3–29.

Klir, G., Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice-Hall, Upper Saddle

River, NJ, 1995.

Kosko, B. Neural Networks and Fuzzy Systems, Prentice-Hall International, Englewood Cliffs, NJ, 1992.

Kosko, B. Fuzzy Engineering: A Dynamical Systems Approach to Machine Intelligence, Prentice-Hall

International, Upper Saddle River, NJ, 1997.

Nguyen, H., Walker, E. A First Course in Fuzzy Logic, Chapman&Hall CRC Press, Boca Raton, FL, 1999.

Sugeno, M. Theory of fuzzy integrals and its applications, Ph.D. dissertation, Tokyo Institute of

Technology, Tokyo, Japan, 1974.

Zadeh, L. A. Fuzzy sets, Inf. Cont. 8, 1965, 338–353.

Zadeh, L. A. The concept of linguistic variable and its application to approximate reasoning (part I),

Inf. Sci. 8, 1975, 301–357.

Zadeh, L. A. Fuzzy sets as a basis for a theory of possibility, Fuzzy Set Syst. 3, 1978, 3–28.

Zadeh, L. A. From computing with numbers to computing with words: from manipulation of

measurements to manipulation of perceptions, IEEE Trans. Circ. Syst. 45, 1999, 105–119.

44 Chapter 2 Notions and Concepts of Fuzzy Sets



Chapter 3

Characterization of Fuzzy

Sets

Fuzzy sets are fully characterized by their membership functions. Hence,

properties of fuzzy sets originate directly from the properties of the membership

functions. In particular, geometric features of fuzzy sets help visualize and underline

similarities and differences between sets and fuzzy sets. This chapter covers major

properties of membership functions, presents pertinent characterizations of fuzzy

sets, and offers their various interpretations. Furthermore, we emphasize the role of

semantics of fuzzy sets and discuss the position of fuzzy sets in granular computing.

The characteristics of individual fuzzy sets and their families are expressed in terms

of the fundamental concepts of specificity, energy measure of fuzziness, and

granularity. Furthermore, we elaborate on some fundamental properties of families

of fuzzy sets being regarded en block and used in this way in numerous constructs

of fuzzy models.

3.1 A GENERIC CHARACTERIZATION OF FUZZY SETS:
SOME FUNDAMENTAL DESCRIPTORS

In principle, any function A : X! ½0; 1� becomes potentially eligible to represent the

membership function of fuzzy set A. In practice, however, the type and shape of

membership functions should fully reflect the nature of the underlying phenomenon

we are interested to model. We require that fuzzy sets should be semantically

sound, which implies that the selection of membership functions needs to be

guided by the character of the application and the nature of the problem we intend

to solve.

Given the enormous diversity of potentially useful (viz. semantically sound)

membership functions, there are certain common characteristics (descriptors) that

are conceptually and operationally qualified to capture the essence of the granular

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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constructs represented in terms of fuzzy sets. In what follows, we provide a list of the

descriptors commonly encountered in practice.

3.1.1 Normality

We say that the fuzzy set A is normal if its membership function attains 1, that is,

sup
x2X

AðxÞ ¼ 1 ð3:1Þ

If this property does not hold, we call the fuzzy set subnormal. An illustration of the

corresponding fuzzy set is shown in Figure 3.1. The supremum (sup) in the above

expression is also referred to as the height of the fuzzy set A, hgtðAÞ ¼ sup
x2X

AðxÞ.
The normality of A has a simple interpretation: By determining the height of the

fuzzy set, we identify an element with the highest membership degree. The value of the

height being equal to one states that there is at least one element in X whose typicality

with respect to A is the highest one and which could be sought as fully compatiblewith

the semantic category presented by A. A subnormal fuzzy set whose height is lower

than 1, that is, hgtðAÞ < 1, means that the degree of typicality of elements in this fuzzy

set is somewhat lower (weaker) and we cannot identify any element in X that is fully

compatible with the underlying concept. Generally, while forming a fuzzy set we

expect its normality (otherwise why would such a fuzzy set for which there are no

typical elements come into existence in the first place?).

3.1.2 Normalization

The normalization operation, Norm(A), is a transformation mechanism that is used to

convert a subnormal nonempty fuzzy set A into its normal counterpart. This is

done by dividing the original membership function by the height of this fuzzy set,

that is,

NormðAÞ ¼ AðxÞ
hgtðAÞ ð3:2Þ

Although the height describes the global property of the membership grades, the

following notions offer an interesting characterization of the elements of X vis-à-vis

their membership degrees.

x

1
A

x

1
A

hgt(A)

hgt(A)

Figure 3.1 Examples of normal and subnormal fuzzy sets.
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3.1.3 Support

The support of a fuzzy set A, denoted by SuppðAÞ, is a set of all elements of X with

nonzero membership degrees in A

SuppðAÞ ¼ fx 2 XjAðxÞ > 0g ð3:3Þ
In other words, support identifies all elements ofX that exhibit some association with

the fuzzy set under consideration (by being allocated to Awith nonzero membership

degrees).

3.1.4 Core

The core of a fuzzy set A, CoreðAÞ, is a set of all elements of the universe that are

typical to A, that is, they come with membership grades equal to 1,

CoreðAÞ ¼ fx 2 XjAðxÞ ¼ 1g ð3:4Þ
The support and core are related in the sense that they identify and collect elements

belonging to the fuzzy set yet at two different levels of membership. Given the

character of the core and support, we note that all elements of the core of A are

subsumed by the elements of the support of this fuzzy set. Note that both support and

core are sets and not fuzzy sets (Fig. 3.2). We refer to them as the set-based

characterizations of fuzzy sets.

Although core and support are somewhat extreme (in the sense that they identify

the elements of A that exhibit the strongest and the weakest linkages with A), we may

also be interested in characterizing sets of elements that come with some intermedi-

ate membership degrees. A notion of a so-called a-cut offers here an interesting

insight into the nature of fuzzy sets.

3.1.5 a-Cut

The a-cut of a fuzzy set A, denoted by Aa, is a set consisting of the elements of the

universe whose membership values are equal to or exceed a certain threshold level

a where a 2 ½0; 1�. Formally speaking, we have Aa ¼ fx 2 XjAðxÞ � ag. A strong

x

1 A

Supp(A)

x

1 A

Core(A)

Figure 3.2 Support and core of A.
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a-cut differs from the a-cut in the sense that it identifies all elements in X for which

we have the following equality: Aþa ¼ fx 2 XjAðxÞ > ag. An illustration of the

concept of the a-cut and strong a-cut is presented in Figure 3.3. Both support and

core are limit cases of a-cuts and strong a-cuts. For a ¼ 0 and the strong a-cut, we

arrive at the concept of the support of A. The threshold a ¼ 1 means that the

corresponding a-cut is the core of A.

3.1.6 Convexity

We say that a fuzzy set is convex if its membership function satisfies the following

condition:

for all x1, x2 2X and all l 2 [0,1]:

A½lx1 þ ð1� lÞx2� � min ½Aðx1Þ;Aðx2Þ� ð3:5Þ

The above relationship states that whenever we choose a point x on a line segment

between x1 and x2, the point ðx;AðxÞÞ is always located above or on the line passing

through the two points (x1, Aðx1Þ) and (x2, Aðx2Þ); refer to Figure 3.4. Note that

the membership function is not a convex function in the traditional sense (Klir and

Yuan, 1995).

x

1
A

a

x

1
A

a

AaAa
+ 

Figure 3.3 Examples of a-cut and strong a-cut.

x

1 A

x1

λ x1+ (1-λ) x2

x2

Α(λ x1+ (1-λ)x2)

Figure 3.4 An example of a convex fuzzy set A.
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Let us recall that a set S is convex if, for all x1, x2 2 S, then x ¼ lx1þ
ð1� lÞx2 2 S for all l 2 [0,1]. In other words, convexity means that any line segment

identified by any two points in S is also contained in S. For instance, intervals of real

numbers are convex sets. Therefore, if a fuzzy set is convex, then all of its a-cuts are

convex, and conversely, if a fuzzy set has all its a-cuts convex, then it is a convex

fuzzy set; refer to Figure 3.5. Thus, we may say that a fuzzy set is convex if and only

if all its a-cuts are convex (intervals).

Fuzzy sets can be characterized by counting their elements and bringing a single

numeric quantity as a meaningful descriptor of this count. While in the case of sets,

this sounds convincing, here we have to take into account different membership

grades. In the simplest form, this counting comes under the name of cardinality.

3.1.7 Cardinality

Given a fuzzy set A defined in a finite or countable universeX, its cardinality, denoted

by CardðAÞ, is expressed as the following sum:

CardðAÞ ¼
X

x2X
AðxÞ ð3:6Þ

or alternatively as the following integral:

CardðAÞ ¼
ð

X

AðxÞdx ð3:7Þ

(we assume that the integral shown above does make sense). The cardinality produces a

count of the number of elements in the given fuzzy set. As there are different degrees of

membership, the use of the sum here makes sense as we keep adding contributions

coming from the individual elements of this fuzzy set. Note that in the case of sets, we

count the number of elements belonging to the corresponding sets. We also use the

alternative notation of CardðAÞ ¼ jAj and refer to it as a sigma count (s-count).

The cardinality of fuzzy sets is explicitly associatedwith the concept of granularity of

information granules realized in thismanner.More descriptively, themore the elements of

A we encounter, the higher the level of abstraction supported by A and the lower the

x

1 A

a

Aa x

1 A

a

Aa

Figure 3.5 Examples of convex and nonconvex fuzzy sets.
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granularity of the construct. Higher values of cardinality come with the higher level of

abstraction (generalization) and the lower values of granularity (specificity).

EXAMPLE 3.1

Consider fuzzy sets A¼ ½1:0; 0:6; 0:8; 0:1�, B ¼ ½0:1; 0:8; 1:0; 0:1�, and C ¼ ½0:6; 0:9; 1:0; 1:0�
defined in the same space.We can order them in a linear fashion by computing their cardinalities.

Here we obtain CardðAÞ ¼ 2:5, CardðBÞ ¼ 2:0, and CardðCÞ ¼ 3:5. In terms of the levels of

abstraction, C is the most general, A lies in-between, and B is the least general.

So far we have discussed properties of a single fuzzy set. The operations to be studied look

into the characterizations of relationships between two fuzzy sets.

3.2 EQUALITY AND INCLUSION RELATIONSHIPS
IN FUZZY SETS

We investigate two essential relationships between two fuzzy sets defined in the same

space that offer a useful insight into their fundamental dependencies. When defining

these notions, bear in mind that they build upon the well-known definitions encoun-

tered in set theory.

3.2.1 Equality

We say that two fuzzy sets A and B defined in the same universe X are equal if and

only if their membership functions are identical, meaning that

AðxÞ ¼ BðxÞ; 8x 2 X ð8:8Þ

3.2.2 Inclusion

Fuzzy set A is a subset of B (A is included in B), denoted by A � B, if and only if every

element of A also is an element of B. This property expressed in terms of membership

degrees means that the following inequality is satisfied:

AðxÞ � BðxÞ; 8x 2 X ð3:9Þ
An illustration of these two relationships in the case of sets is shown in Figure 3.6. In

order to satisfy the relationship of inclusion, we require that the characteristic

functions adhere to (3.9) for all elements of X. If the inclusion is not satisfied even

for a single point of X, the inclusion property does not hold.

If A and B are fuzzy sets in X, we have adopted the same definition of inclusion

as being available in set theory.

Interestingly, the definitions of equality and inclusion exhibit an obvious dichot-

omy as the property of equality (or inclusion) is satisfied or is not satisfied. Although

this quantification could be acceptable in the case of sets, fuzzy sets require more
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attention in this regard given that the membership degrees are involved in expressing

the corresponding definitions.

The approach being envisioned here takes into consideration the degrees of

membership and sets up a conjecture that any comparison of membership values

should rather return a degree of equality or inclusion. For a given element of finite

universe X, let us introduce the following degree of inclusion of AðxÞ in BðxÞ and
denote it by AðxÞ ) BðxÞ () is the symbol of implication; the operation of implica-

tion itself will be discussed in detail later on; we do not need these details for the time

being):

AðxÞ ) BðxÞ ¼ 1; if AðxÞ � BðxÞ
1� AðxÞ þ BðxÞ otherwise

�

ð3:10Þ

If AðxÞ and BðxÞ are confined to 0 and 1 as in the case of sets, we come up with the

standard definition of Boolean inclusion being used in set theory. Computing (3.10)

for all elements of X, we introduce a degree of inclusion of A in B, denoted by

k A 	 B k, to be in the form

k A 	 B k¼ 1

CardðXÞ

ð

X

ðAðxÞ ) BðxÞÞdx ð3:11Þ

We characterize the equality of A and B, k A ¼ B k, using the following expression:

k A ¼ B k¼ 1

CardðXÞ

ð

X

½minððAðxÞ ) BðxÞÞ; ðBðxÞ ) AðxÞÞÞ�dx ð3:12Þ

Again this definition is appealing as it results as a direct consequence of the

inclusion relationships that have to be satisfied with respect to the inclusion of A in

B and B in A.

EXAMPLE 3.2

Let us consider two fuzzy sets A and B described by the Gaussian and triangular membership

functions. Recall that Gaussian membership function is described as ðexpð�ðx� mÞ2=s2ÞÞ,
where themodal value and spread are denoted bym and s, respectively. The triangular fuzzy set

x

1

B

x

1

B

A

A

Figure 3.6 Set inclusion: (a) A 	 B and (b) inclusion not satisfied as A 6	 B.
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is fully characterized by the spreads (a and b) and the modal value equal to n. Figure 3.7

provides some examples of A and B for selected values of the parameters and the resulting

degrees of inclusion. They are intuitively appealing reflecting the nature of relationship (A is

included in B).

3.3 ENERGY AND ENTROPY MEASURES OF FUZZINESS

We can offer a global view at the collection of membership grades conveyed by fuzzy

sets by aggregating them in the form of so-called measures of fuzziness. Two main

categories of suchmeasures are known in the form of energy and entropy measures of

fuzziness (De Luca and Termini, 1972, 1974).

3.3.1 Energy Measure of Fuzziness

Energy measure of fuzziness of a fuzzy set A inX, denoted by EðAÞ, is a functional of
the membership degrees

EðAÞ ¼
X

n

i¼1
e½AðxiÞ� ð3:13Þ

0 5 10
0

0.5

1

AB

(a)

0 5 10
0

0.5

1

AB

(b)

0 5 10
0

0.5

1

AB

(c)

Figure 3.7 Examples of fuzzy sets A and B along with their degrees of inclusion: (a) a ¼ 0, n ¼ 2,

b ¼ 3, m ¼ 4, s ¼ 2, k A ¼ B k¼ 0:637; (b) b ¼ 7, k A ¼ B k¼ 0:864; (c) a ¼ 0, n ¼ 2, b ¼ 9, m ¼ 4,

s ¼ 0:5, k A ¼ B k¼ 0:987.
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if CardðXÞ ¼ n. In the case of the infinite space, the energy measure of fuzziness is

the following integral:

EðAÞ ¼
ð

X

e½AðxÞ�dx ð3:14Þ

The mapping e: ½0; 1� ! ½0; 1� is a functional monotonically increasing over [0,1]

with the boundary conditions eð0Þ ¼ 0 and eð1Þ ¼ 1.

As the name of this measure stipulates, its role is to quantify a sort of energy

associated with the given fuzzy set. The higher the membership degrees, the more

essential are their contributions to the overall energy measure. In other words, by

computing the energy measure of fuzziness we can compare fuzzy sets in terms of

their overall count of membership degrees.

A particular form of the above functional comes with the identity mapping, that

is, eðuÞ ¼ u for all u in [0,1]. We can see that in this case, (3.13) and (3.14) reduce to

the cardinality of A,

EðAÞ ¼
X

n

i¼1
AðxiÞ ¼ CardðAÞ ð3:15Þ

The energy measure of fuzziness forms a convenient way of expressing a total mass

of the fuzzy set. Since Cardð?Þ ¼ 0 and CardðXÞ ¼ n, the more a fuzzy set differ

from the empty set, the larger its mass. Indeed, rewriting (3.15) we obtain

EðAÞ ¼
X

n

i¼1
AðxiÞ ¼

X

n

i¼1
jAðxiÞ � ?ðxiÞj ¼ dðA;?Þ ¼ CardðAÞ ð3:16Þ

where dðA;?Þ is the Hamming distance between fuzzy set A and the empty set.

Although the identity mapping ðeÞ is the simplest alternative one could think of,

in general, we can envision an infinite number of possible options. For instance, one

could consider the functionals such as eðuÞ ¼ up, p > 0, and eðuÞ ¼ sin p
2
u

� �

.

Note that by choosing a certain form of the functional, we accentuate a varying

contribution of different membership grades. For instance, depending upon the form

of e, the contribution of the membership grades close to 1 could be emphasized

whereas those located close to 0 could be very much reduced. Figure 3.8 illustrates

this effect by showing two different forms of the functional ðeÞ.
When each element xi ofX appears with some probability pi, the energymeasure

of fuzziness of the fuzzy set A can include this probabilistic information in which

case it assumes the following format:

EðAÞ ¼
X

n

i¼1
pie½AðxiÞ� ð3:17Þ

A careful inspection of the above expression reveals that EðAÞ is the expected value
of the functional eðAÞ. For infiniteX, we use an integral format of the energymeasure

of fuzziness

EðAÞ ¼
ð

X

pðxÞe½AðxÞ�dx ð3:18Þ
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where pðxÞ is the probability density function (pdf) defined overX. Again, EðAÞ is the
expected value of eðAÞ.

3.3.2 Entropy Measure of Fuzziness

The entropy measure of fuzziness of A, denoted by HðAÞ, is built upon the entropy

functional h and comes in the form

HðAÞ ¼
X

n

i¼1
h½AðxiÞ� ð3:19Þ

or in the continuous case of X

HðAÞ ¼
ð

X

hðAðxÞÞdx ð3:20Þ

where h: ½0; 1� ! ½0; 1� is a functional such that (a) it is monotonically increasing in

[0, ½� and monotonically decreasing in [½, 1] and (b) it comes with the boundary

conditions hð0Þ ¼ hð1Þ ¼ 0 and hð½Þ ¼ 1. This functional emphasizes membership

degrees around ½; in particular the value of ½ is stressed to be the most ‘‘unclear’’

(causing the highest level of hesitation with its quantification by means of the

proposed functional).

3.4 SPECIFICITY OF FUZZY SETS

Quite often, we face the issue to quantify how much a single element of a

universe could be regarded as a representative of a fuzzy set. If this fuzzy set is a

singleton,

AðxÞ ¼ 1; if x ¼ x0
0; if x 6¼ x0

�

ð3:21Þ

1

1

1

1

Figure 3.8 Two selected forms of the functional e. In the first case, high values of membership are

emphasized (accentuated) (a), whereas the form of e shown in (b) puts emphasis on lower membership

grades.
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then there is no hesitation in selecting x0 as the sole representative of A. We say that A

is very specific and its choice comes with no doubt. On the other extreme, if A covers

the entire universe X and embraces all elements with the membership grade equal to

1, the choice of the only one representative of A comes with a great deal of hesitation

that is triggered by a lack of specificity being faced in this problem. These two

extreme situations are portrayed in Figure 3.9. Intuitively, we sense that the speci-

ficity is a concept that relates quite visibly to the cardinality of a set. The higher the

cardinality of the set (viz. the more evident its abstraction), the lower its specificity.

Having said that, we are interested in developing a measure that could be able to

capture this effect of hesitation

One of the possible ways to quantify the notion of specificity of a fuzzy set was

proposed by Yager (1983). The specificity of a fuzzy set A defined in X, denoted by

SpecðAÞ, is a mapping from a family of normal fuzzy sets in X into nonnegative

numbers such that the following conditions are satisfied:

1. SpecðAÞ ¼ 1 if and only if there exists only one element x0 of X for which

Aðx0Þ ¼ 1 and AðxÞ ¼ 0 8 x 6¼ x0;

2. SpecðAÞ ¼ 0 if and only if AðxÞ ¼ 0 8 x 2 X;

3. SpecðA1Þ � SpecðA2Þ if A1 
 A2.

Figure 3.10 illustrates the underlying concept of specificity.

1 1
A A

x0 x x

Figure 3.9 Examples of two extreme cases of sets exhibiting distinct levels of specificity.

x

1

x0

A1

A2

Figure 3.10 Expressing specificity of fuzzy sets: fuzzy set A1 is less specific than A2.
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In particular, Yager (1983) introduced the specificity measure in the following

form:

SpecðAÞ ¼
ðamax

0

1

CardðAaÞ
da ð3:22Þ

where amax ¼ hgtðAÞ. For finite universes, the integration is replaced by the sum

SpecðAÞ ¼
X

m

i¼1

1

CardðAaiÞ
Dai ð3:23Þ

where Dai ¼ ai � ai�1 with a0 ¼ 0; m stands for the number of the membership

grades of A.

3.5 GEOMETRIC INTERPRETATION OF SETS
AND FUZZY SETS

In the case of finite universes of discourse X, we can arrive at an interesting and

geometrically appealing interpretation of sets and fuzzy sets. Such an interpretation

is also helpful in contrasting between sets and fuzzy sets, as it also visualizes

interrelationships between them. For the n-element space X, any set can be repre-

sented as an n-dimensional vector xwith the 0–1 values. The cardinality of the family

of all sets defined in X is 2n. The ith component of vector x is the value of the

corresponding characteristic function of the ith element in the respective set. In the

simplest case when X ¼ fx1; x2g; n ¼ 2, the family of sets comprises the following

elements, namely ?, fx1g, fx2g, and fx1; x2g. The cardinality of X is 22 ¼ 4. Thus,

each of the four elements of this family can be represented by a two-dimensional

vector, say ? ¼ ½0; 0�, fx1g ¼ ½1; 0�, fx2g ¼ ½0; 1�, and fx1; x2g ¼ ½1; 1�. Those sets
are located at the corners of the unit square, as illustrated in Figure 3.11.

Owing to the values of the membership grades assuming any values in [0,1],

fuzzy sets being two-dimensional vectors are distributed throughout the entire unit

square. For instance, in Figure 3.11, fuzzy set A is represented as vector

x ¼ ð0:25; 0:75Þ. A family of fuzzy sets over X ¼ fx1; x2g occupies the whole

shaded area, including the borders and corners of the unit square. In general,

proceeding with higher dimensionality of the space, we end up with a unit cube

1   

{x1}

{x2} {x1,x2}

1

1

00

0.75

0.25

{x1}

{x2} {x1,x2}

1

A
F(X)

Figure 3.11 Sets and fuzzy sets represented as points in the unit square.
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ðn ¼ 3Þ and unit hypercubes (for the dimensionality of the space of dimensionality

higher than 3).

The geometric interpretation of fuzzy sets is interesting on its own by delivering

a useful visualization vehicle. As we will show later, treating such points are the

representatives of the corresponding fuzzy sets, we can easily show the distribution

of results of operations on fuzzy sets (such as union, intersection, and complement).

Associating with fuzzy sets, the measure of fuzziness, specificity, and alike, we can

visualize how they behave depending upon the location of the point (fuzzy set) in the

hypercube. For instance, the plot of the energy measure of fuzziness with the

functional of the form eðuÞ ¼ u4 is shown in Figure 3.12. This plot could be used

for different purposes. If we are required to identify all fuzzy sets whose energy

measure of fuzziness does not exceed some threshold, say l; l > 0 the plot can help

us locate all fuzzy sets satisfying this constraint; refer again to Figure 3.12.

3.6 GRANULATION OF INFORMATION

The notion of granulation emerges as a direct and immediate need to abstract and

summarize information and data to support various processes of comprehension and

decision-making. For instance, we often sample an environment for values of

attributes of state variables, but we rarely process all details because of our physical

and cognitive limitations. Quite often, just a reduced number of variables, attributes,

and values are considered because those are the only features of interest given the

task under consideration. To avoid all necessary and highly distractive details, we

require an effective abstraction procedure. As discussed earlier, detailed numeric

information is aggregated into a format of information granules where the granules

themselves are regarded as collections of elements that are perceived as being

indistinguishable, similar, close, or functionally equivalent.

Figure 3.12 Energy measure of fuzziness defined over the unit square of fuzzy sets (a) and a region

of [0,1]2—a collection of fuzzy sets satisfying the constraint EðAÞ < 0:8 (b).
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There are different formalisms and concepts of information granules. For

instance, granules can be realized as sets (intervals), rough sets (Lin, 2004). Some

typical examples of the granular constructs involve singletons and intervals. In these

two special cases, we typically allude to the notion of discretization and quantization

(Fig. 3.13). As the specificity of granules increases, intervals become singletons and

in this limit case the quantization results in a discretization process.

Fuzzy sets are examples of information granules.When talking about a family of

fuzzy sets, we are typically concerned with fuzzy partitions ofX. Given the nature of

fuzzy sets, fuzzy granulation generalizes the notion of quantization (Fig. 3.13) and

emphasizes a gradual nature of transitions between neighboring information gran-

ules (Zadeh, 1999).

More generally, the mechanism of granulation can be formally characterized by

a four-tuple of the form

hX;G; S;Ci ð3:24Þ
where X is a universe of discourse (space), G is a formal framework of granulation

(resulting from the use of fuzzy sets, rough sets, etc.), S is a collection of information

granules, and C is a transformation mechanism that realizes communication among

granules of different nature and granularity levels (Pedrycz, 2005); see Figure 3.14.

In Figure 3.14, notice the communication links that allow for communication

between information granules expressed in the same formal framework but at

different levels of granularity as well as communication links between information

granules formed in different formal frameworks.

x

A1 A2      A3     A 4

1

x

C1           C2     C3     C4    
1

x

F1           F2     F3     F4    
1

Figure 3.13 The concepts of discretization, quantization, and fuzzy granulation.

Fuzzy Interval       Rough

S

G

Sm

…

S2

S1

Figure 3.14 Granular Computing and communication mechanisms in the coordinates of formal

frameworks (fuzzy sets, intervals, rough sets, etc.) and levels of granularity.
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For instance, in the case of fuzzy granulation shown in Figure 3.14, if G is the

formal framework of fuzzy sets, S ¼ fS1; S2; S3; Smg, and C is a certain communica-

tion mechanism, then communicating the results of processing at the level of fuzzy

sets to the framework of interval calculus, one could consider the use of some a-cuts.

The pertinent computational details will be discussed later on.

3.7 CHARACTERIZATION OF THE FAMILIES
OF FUZZY SETS

As we have already mentioned, when dealing with information granulation we

often develop a family of fuzzy sets and move on with the processing that

inherently uses all the elements of these families. Alluding to the existing termi-

nology, wewill be referring to such collections of information granules as frames of

cognition. In what follows, we introduce the underlying concept and discuss its

main properties.

3.7.1 Frame of Cognition

A frame of cognition is a result of information granulation in which we encounter a

finite collection of fuzzy sets—information granules that ‘‘represent’’ the entire

universe of discourse and satisfy a system of semantic constraints. The frame of

cognition is a notion of particular interest in fuzzy modeling, fuzzy control, classi-

fication, and data analysis to name a few of the representative examples. In essence,

the frame of cognition is crucial to all applications where local and globally mean-

ingful granulation is required to capture the semantics of the conceptual and

algorithmic settings in which problem solving has to be placed.

A frame of cognition consists of several labeled, normal fuzzy sets. Each of these

fuzzy sets is treated as a reference for further processing. A frame of cognition can be

viewed as a codebook of conceptual entities. Being more descriptive, we may view

them as a family of linguistic landmarks, say small, medium, high, and so on. More

formally, a frame of cognition F

F ¼ fA1;A2; . . . :;Amg ð3:25Þ
is a collection of fuzzy sets defined in the same universe X that satisfies at least two

requirements of coverage and semantic soundness.

3.7.2 Coverage

We say thatF coversX if any element x 2 X is compatible with at least one fuzzy set

Ai in F, i 2 I ¼ f1; 2; . . . ;mg, meaning that it is compatible (coincides) with Ai to

some nonzero degree, that is,

8
x2X
9
i2I

AiðxÞ > 0 ð3:26Þ
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Beingmore strict, wemay require a satisfaction of the so-called d-level coverage, which

means that for any element of X, fuzzy sets are activated to a degree not lower than d

8
x2X
9
i2I

AiðxÞ > d ð3:27Þ

where d 2 ½0; 1�. Put it in a computational perspective: The coverage assures that

each element of X is represented by at least one of the elements ofF and guarantees

any absence of gaps, namely, elements of X for which there is no fuzzy set being

compatible with it.

3.7.3 Semantic Soundness

The concept of semantic soundness is more complicated and difficult to quantify. In

principle, we are interested in information granules of F that are meaningful.

Although there is far more flexibility in a way in which a suite of detailed require-

ments could be structured, we may agree upon a collection of several fundamental

properties.

1. Each Ai, i 2 I, is a unimodal and normal fuzzy set.

2. Fuzzy sets Ai, i 2 I, are made disjoint enough to assure that they are suffi-

ciently distinct to become linguistically meaningful. This imposes a maximum

degree l of overlap among any two elements of F. In other words, given any

x 2 X, there is no more than one fuzzy set Ai such that AiðxÞ � l, l 2 ½0; 1�.
3. The number of elements ofF is kept low; following the psychological findings

reported by Miller and others, we consider the number of fuzzy sets forming

the frame of cognition to be maintained in the range of 7� 2 items.

Coverage and semantic soundness (Valente de Oliveira, 1993) are the

two essential conditions that should be fulfilled by the membership functions

of Ai to achieve interpretability. In particular, d-coverage and l-overlapping

induce a minimal (d) and maximal (l) level of overlap between fuzzy sets

(Fig. 3.15).

Ai

x    

1

l

δ

Figure 3.15 Coverage and semantic soundness of a cognitive frame.
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3.7.4 Main Characteristics of the Frames of Cognition

Considering the families of linguistic labels and associated fuzzy sets embraced in a

frame of cognition, several characteristics are worth emphasizing.

3.7.4.1 Specificity

We say that the frame of cognition F1 is more specific than F2 if all the elements of

F1 are more specific than the elements of F2; for some illustration refer to Figure

3.16. Here the specificity of the fuzzy sets that compose the cognition frames can be

evaluated using (3.22) or (3.23). The less specific cognition frames promotes

granulation realized at the higher level of abstraction (generalization). Subsequently,

we are provided with the description that captures less details.

3.7.4.2 Granularity

Granularity of a frame of cognition relates to the granularity of fuzzy sets used there.

The higher the number of fuzzy sets in the frame, the finer the resulting granulation.

Therefore, the frame of cognition F1 is finer than F2 if jF1j > jF2j. If the converse
holds, F1 is coarser than F2 (Fig. 3.16).

3.7.4.3 Focus of Attention

A focus of attention (scope of perception) induced by a certain fuzzy set A ¼ Ai inF
is defined as a certain a-cut of this fuzzy set. By moving A along X while keeping its

membership function unchanged, we can focus attention on a certain selected region

of X, as portrayed in Figure 3.17.

3.7.4.4 Information Hiding

The idea of information hiding is closely related to the notion of focus of attention

and manifests through a collection of elements that are hidden when viewed from the

standpoint of membership functions. By modifying the membership function of

A ¼ Ai in F, we can produce an equivalence of the elements positioned within

Ai A2                  A 3

x

Ai A2          A 3          A 4

x

F1 F2

Figure 3.16 Examples of two frames of cognition;F1 is coarser (more general) than F2.
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some region of X. For instance, consider a trapezoidal fuzzy set A on R and its 1-cut

(viz. core), the closed interval ½a2; a3�, as depicted in Figure 3.18.

All elementswithin the interval ½a2; a3� aremade indistinguishable. Through the use

of this specific fuzzy set they aremade equivalent, namely, when expressed in terms ofA.

Hence, more detailed information, namely, a position of a certain point fallingwithin this

interval, is ‘‘hidden.’’ In general, by increasing or decreasing the level of the a-cut we can

accomplish a so-called a-information hiding through normalization.

3.8 FUZZY SETS, SETS AND THE REPRESENTATION
THEOREM

Any fuzzy set can be viewed as a family of fuzzy sets. This is the essence of an

identity principle known as the representation theorem. The representation theorem

states that any fuzzy set A can be decomposed into a family of a-cuts,

A ¼ [
a2½0;1�

aAa ð3:28Þ

or, equivalently in terms of membership functions,

AðxÞ ¼ sup
a2½0;1�

aAaðxÞ ð3:29Þ

Figure 3.19 illustrates the idea of the representation theorem.

a1 a2           a3      a 4
x

1 A

B

Figure 3.18 A concept of information hiding realized by the use of trapezoidal fuzzy set A: all

elements in ½a2; a3� are made indistinguishable. The effect of information hiding is not present in the case

of triangular fuzzy set B.

A A 

x

1

α   

Figure 3.17 Focus of attention; two regions of focus of attention implied by the corresponding fuzzy

sets are shown.
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Conversely, any fuzzy set can be reconstructed from a family of nested sets, assuming

that they satisfy the consistency constraint, namely, if a1 > a2 then Aa1
	 Aa2 .

The importance of the representation theorem lies in the its underscoring of the

generalization nature introduced by fuzzy sets. Furthermore, the theorem implies that

problems formulated in the framework of fuzzy sets (e.g. fuzzy optimization,

decision making, information processing, data mining, etc.) can be solved by

transforming these fuzzy sets into the corresponding families of nested a-cuts and

determining solutions to each using standard, nonfuzzy techniques. Subsequently, all

the partial results derived in this way can be merged, reconstructing a solution to the

problem in its original formulation based on fuzzy sets. By increasing the number of

a-levels of the membership values, that is, the a-cuts, the reconstruction can be made

more detailed.

Example 3.3 Consider a the universe X¼ {1, 2, 3, 4, 5} and the fuzzy set A

defined on X, A¼ {0/1, 0.1/2, 0.3/3, 1/4, 0.3/5} or, equivalently, A¼ [0, 0.1, 0.3, 1,

0.3]. Since the universe is finite, only the a-cuts for a1¼ 0.1, a2¼ 0.1, and a3¼ 1 are

of interest. They are as follows:

A0:1 ¼ f0=1; 1=2; 1=3; 1=4; 1=5g ¼ ½0; 1; 1; 1; 1� ! 0:1A0:1 ¼ ½0; 0:1; 0:1; 0:1; 0:1�
A0:3 ¼ f0=1; 0=2; 1=3; 1=4; 1=5g ¼ ½0; 0; 1; 1; 1� ! 0:3A0:3 ¼ ½0; 0; 0:3; 0:3; 0:3�
A1 ¼ f0=1; 0=2; 0=3; 1=4; 0=5g ¼ ½0; 0; 0; 1; 0� ! 1:0A1 ¼ ½0; 0; 0; 1; 0�

To recover the fuzzy set A from its a-cuts we first compute

0:1A0:1 ¼ ½0; 0:1; 0:1; 0:1; 0:1�
0:3A0:3 ¼ ½0; 0; 0:3; 0:3; 0:3�
1:0A1 ¼ ½0; 0; 0; 1; 0�

and find the membership function of A using (3.29) with sup replaced by max

(because the universe is finite) and the max operation performed componentwise

as follows

A ¼ maxf0:1A0:1; 0:3A0:3; 1A1g
¼ ½maxð0; 0; 0Þ;maxð0:1; 0; 0Þ;maxð0:1; 0:3; 0Þ;maxð0:1; 0:3; 1Þ;maxð0:1; 0:3; 0Þg

Therefore A ¼ ½0; 0:1; 0:3; 1; 0:3�:

A(x)

x

αi

αj

αk

Aαi

Aαj
Aαk

αk Aαk

A

Figure 3.19 Illustration of the representation theorem.
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3.9 CONCLUSIONS

Fuzzy sets are fully described by their membership functions. Therefore, a way to

view fuzzy sets and describing their key characteristics is to look at the attributes

shown by their membership functions. We investigated the concepts of normality,

convexity, cardinality, and specificity as the most generic descriptors of

information granules. The descriptors such as energy and entropy measures of

fuzziness are useful in discrete universes. In particular, fuzzy sets exhibit an

interesting geometric interpretation when being treated as points of the unit

hypercube.

For further processing and modeling activities, fuzzy sets rarely appear as single

entities, but form collections of semantically meaningful entities usually referred to

as frames of cognitions. We have investigated the fundamental properties of the

frame of cognition and provided with their detailed quantification.

EXERCISES AND PROBLEMS

1. Consider the fuzzy set A with the following membership function:

AðxÞ ¼
x� 4=2; if 4 � x � 5

�xþ 6=2; if 5 < x � 6

0; otherwise

8

<

:

(a) Sketch the graph of the membership function

(b) Is A normal? Does A have a core? What is the height of this fuzzy set?

(c) Find the support of A. Is A a convex fuzzy set?

2. Assume a fuzzy set A whose membership functions are defined in the following

form:

AðxÞ ¼
x� 4; if 4 � x � 5

1; if 5 < x � 6

�xþ 7; if 6 < x � 7

0; otherwise

8

>

>

<

>

>

:

(a) Sketch the graph of the membership function

(b) Find an analytic expression for its a-cuts

(c) Is A a convex fuzzy set?

3. Demonstrate that if a fuzzy set is convex, then all its a-cuts are convex.

4. Consider the following fuzzy sets defined in the finite universe of discourse

X ¼ f1; 2; 3; . . . ; 10g:

A ¼ ½0; 0; 0; 0; 0:4; 0:6; 0:8; 1; 0:8; 0:6�
B ¼ ½0; 0; 0; 0; 0:4; 0:5; 0:6; 1; 0:6; 0:4�
C ¼ ½0; 1; 0:2; 0:3; 0:4; 0:5; 0:6; 1; 0:5; 0�
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(a) Is A � B? B � A?

(b) Is C � A? C � B?

(c) Quantify the findings obtained in (a) and (b).

5. Determine the cardinality of fuzzy sets A, B, and C discussed in problem 4.

6. Suppose that fuzzy sets A and B defined in X ¼ fx1; x2; x3g are represented as vectors

whose components are the membership degrees of x1, x2, and x3 in A and B. Plot A and B in

the unit cube for each of the following cases:

(a) A ¼ ½1; 0; 0� and B ¼ ½0; 1; 1�
(b) A ¼ ½0; 1; 0� and B ¼ ½1; 0; 1�
(c) A ¼ ½0; 0; 1� and B ¼ ½1; 1; 0�
(d) A ¼ ½0:5; 0:5; 0:5� and B ¼ ½0:5; 0:5; 0:5�

7. Consider collections of information granules G1 and G2 of X as shown in the figures below.

Do G1 and G2 qualify to be frames of cognition? Justify your statement. Which one is more

specific? Comment on the granularity of the individual fuzzy sets of these families.

1

XX

A1 A2 A3A 4
1

A 1 A 2 A 3

Γ1 = {A 1, A 2, A 3, A 4} Γ2 = {A 1, A 2, A 3}

HISTORICAL NOTES

In the early 1970s, Zadeh (1971) suggested that the concept of a unit hypercube could be used as a model

for all fuzzy sets. The idea was further developed by Kosko (1992) in which he referred to it as a set-as-

points theory. Using the underlying geometry of the construct, Kosko argues that ‘‘fuzziness is all about

how much a thing and its opposite occur simultaneously; it is not how much the element belongs to the set.

It is how much one set belongs to another set’’ (McNeill and Freiberger, 1993).

The foundations of the theory of fuzzy information granulation were introduced by Zadeh (1973),

whereas the concept of linguistic variables involving collections of semantically meaningful information

granules in the form of fuzzy sets were studied in detail by Zadeh (1975, 1997).

The idea of granular computing (Lin, 2000; Bargiela and Pedrycz, 2003) encompasses various formal

settings of information granules. We related to them by stressing that there is a genuine need to form

suitable communication linkages that help complete processing in-between various platforms. This

concerns the development of effective mechanisms of communication between fuzzy sets and interval

analysis (in which case a-cuts play a predominant role) and fuzzy sets and rough sets (Pawlak, 1982).
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Chapter 4

The Design of Fuzzy Sets

In this chapter, we focus on the development of fuzzy sets by presenting various

ways of forming fuzzy sets and determining their membership functions. The

subject of elicitation and interpretation of fuzzy sets (membership functions) is of

paramount relevance from the conceptual, algorithmic, and application-oriented

standpoints. There is a significant diversity of the methods that support the

construction of membership functions. In general, one can clearly distinguish

between user-driven and data-driven approaches with a number of techniques that

share some features specific to both data- and user-driven techniques and hence

are located somewhere in-between. The determination of membership functions

has been a debatable issue for a long time almost since the very inception of fuzzy

sets. In contrast to interval analysis and set theory where the estimation of bounds

of the interval constructs has not attracted a great deal of attention and is seemed

to be taken for granted, an estimation of membership degrees became essential

and over time has led us to a suite of sound, well-justified, and algorithmically

appealing estimation techniques.

4.1 SEMANTICS OF FUZZY SETS: SOME GENERAL
OBSERVATIONS

Fuzzy sets are constructs that come with a well-defined meaning. They capture the

semantics of the framework they intend to operate within. Fuzzy sets are the building

conceptual blocks (generic constructs) that are used in problem description, model-

ing, control, and pattern classification tasks. Before discussing specific techniques of

membership function estimation, it is worth casting the overall presentation in a

certain context by emphasizing the aspect of the use of a finite number of fuzzy sets

leading to some essential vocabulary reflective of the underlying domain knowledge.

In particular, we are concerned with the related semantics, calibration capabilities of

membership functions, and the locality of fuzzy sets.

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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The limited capacity of a short term memory, as identified by Miller (1956)

suggests that we could easily and comfortably handle and process 7� 2 items. This

implies that the number of fuzzy sets to be considered as meaningful conceptual

entities should be kept at the same level. The observation sounds reasonable—quite

commonly in practice we witness situations in which this holds. For instance, when

describing linguistically quantified variables, say error or change of error, we may

use seven generic concepts (descriptors) labeling them as positive large, positive

medium, positive small, around zero, and negative small, negative medium, and

negative large. When characterizing speed, we may talk about its quite intuitive

descriptors such as low,medium, and high speed. In the description of an approxima-

tion error, we may typically use the concept of a small error around a point of

linearization (in all these examples, the terms are indicated in italics to emphasize the

granular character of the constructs and the role being played there by fuzzy sets.)

Although embracing very different tasks, all these descriptors exhibit a striking

similarity. All of them are information granules, not numbers (whose descriptive

power is very much limited). In modular software development when dealing with a

collection of modules (procedures, functions, and alike), the list of their parameters is

always limited to a few items, which is again a reflection of the limited capacity of the

short term memory. The excessively long parameter list is strongly discouraged due

to the possible programming errors and rapidly increasing difficulties of an effective

comprehension of the software structure and ensuing flow of control.

In general, the use of an excessive number of terms does not offer any advantage.

To the contrary, it remarkably clutters our description of the phenomenon and

hampers further effective usage of such concepts we intend to establish to capture

the essence of the domain knowledge. With the increase in the number of fuzzy sets,

their semantics also becomes negatively impacted. Fuzzy sets may be built into a

hierarchy of terms (descriptors), but at each level of this hierarchy (when moving

down toward higher specificity that has an increasing level of detail), the number of

fuzzy sets is kept relatively low.

Although fuzzy sets capture the semantics of the concepts, they may require

some calibration depending upon the specification of the problem in hand. This

flexibility of fuzzy sets should not be treated as any shortcoming, but rather viewed as

a certain and fully exploited advantage. For instance, a term low temperature comes

with a clear meaning yet it requires a certain calibration depending upon the

environment and the context it was put into. The concept of low temperature is

used in different climate zones and is of relevance to any communication between

people, yet for each of the community the meaning of the term is different thereby

requiring some calibration. This could be realized, for example, by shifting the

membership function along the universe of discourse of temperature, affecting the

universe of discourse by some translation, dilation, and alike. As a communication

means, linguistic terms are fully legitimate and as such they appear in different

settings. They require some refinement so that their meaning is fully understood and

shared by the community of the users.

When discussing the methods aimed at the determination of membership func-

tions or membership grades, (cf. Bortolan and Pedrycz, 2002; Civanlar and Trussell,
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1986; Chen and Wang, 1999; Hong and Lee, 1996; Meson and Denoeux, 2006;

Medaglia et al., 2002; Medasoui et al., 1998; Pedrycz, 1994;) it is worthwhile to

underline the existence of the twomain categories of approaches being reflective of the

origin of the numeric values of membership. The first one captures the domain

knowledge and opinions of experts. In the second one, we consider experimental

data whose global characteristics become realized in the form and parameters of the

membership functions. In the first group we can refer to the pairwise comparison

(Saaty’s approach, see Section 7) as one of the representative examples whereas fuzzy

clustering is usually presented as a typical example of the data-driven method of

membership function estimation. In what follows, we elaborate on several representa-

tive methods that will help us appreciate the level and flexibility of fuzzy sets.

4.2 FUZZY SET AS A DESCRIPTOR OF FEASIBLE
SOLUTIONS

The aim of the method is to relate membership function to the level of feasibility of

individual elements of a family of solutions associated with the problem in hand. Let

us consider a certain function f(x) defined inV, that is, f :V! R where V 	 R. Our

intent is to determine its maximum, namely xopt ¼ arg maxx2V f ðxÞ. On the basis of
the values of f ðxÞ, we can form a fuzzy set A describing a collection of feasible

solutions that could be labeled as optimal. Being more specific, we use the fuzzy set

to represent an extent (degree) to which some specific values of x could be sought as

potential (optimal) solutions to the problem. Taking this into consideration, we relate

the membership function of Awith the corresponding value of f ðxÞ cast in the context
of the boundary values assumed by f. For instance, the membership function of A

could be expressed in the following form:

AðxÞ ¼ f ðxÞ � fmin

fmax � fmin
ð4:1Þ

The boundary conditions are straightforward: fmin ¼ minx2V f ðxÞ and

fmax ¼ maxx2V f ðxÞ, where the minimum and the maximum are computed over V.
For other values of x where f attains its maximal value, AðxÞ is equal to 1 and around

this point, whereas the membership values are reduced when x is likely to be a solution

to the problem f ðxÞ < fmax. The form of the membership function depends upon the

character of the function under consideration. The following examples illustrate the

essence of the construction of membership functions.

EXAMPLE 4.1

Let us consider the problem of determining a maximum of the function 2 sin(0.5x) defined in

[V¼ 0, 2p]. The minimum and maximum of f in the range of the arguments between 0 and 2p

is equal to 0 and 2, respectively; see also Figure 4.1. The maximal value of f is reached at

x� ¼ p. The membership function of the solution to the optimization problem is computed

using (4.1) to be AðxÞ ¼ sinð0:5xÞ, Figure 4.1.
Linearization, its quality, and description of quality falls under the same banner as the

optimization problem. When linearizing a function around some given point, a quality of such
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linearization can be represented in a form of some fuzzy set. Its membership function attains

one for all these points where the linearization error is equal to zero (in particular, this holds at

the point around which the linearization is carried out). The following example illustrates

this idea.

EXAMPLE 4.2

We are interested in the linearization of the function y ¼ gðxÞ ¼ expð�xÞ around x0 ¼ 1 and

assessing the quality of this linearization in the range [�1, 7]. The linearization formula reads

as y� y0 ¼ g0ðx0Þðx� x0Þwhere y0 ¼ gðx0Þ and g0ðx0Þ is the derivative of gðxÞ at x0. Given the
form of the function, g0ðxÞ ¼ � expð�xÞ, the linearized version of the function reads

as exp(�1)(2 � x). Next let us define the quality of this linearization by taking the absolute

value of the difference between the original function and its linearization,

f ðxÞ ¼ jgðxÞ � expð�1Þð2� xÞj. As the fuzzy set A describes the quality of linearization, its

membership function has to take into consideration the expression

AðxÞ ¼ 1� f ðxÞ � fmin

fmax � fmin

ð4:2Þ

where fmax ¼ f ð7Þ ¼ 1:84 and fmin ¼ 0:0. When at some z, f ðzÞ ¼ fmin, this means that

AðzÞ ¼ 1, which in the sequel indicates that the linearization at this point is perfect; no

linearization error has been generated. The plot of the fuzzy set A is shown in Figure 4.2.

We note that the higher quality of approximation is achieved for the arguments higher that the

point at which the linearization has been completed.

0 2 4 6
0

1

2

2π0 x

f

A

Figure 4.1 Function f and the induced membership function A.

0 5
0

0.5

1

x

A

Figure 4.2 Fuzzy set A representing the quality of linearization of the function exp(�x) around the
point x0 ¼ 1.
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4.3 FUZZY SET AS A DESCRIPTOR OF THE NOTION
OF TYPICALITY

Fuzzy sets address an issue of gradual typicality of elements to a given concept. They

stress the fact that there are elements that fully satisfy the concept (are typical for it)

and there are various elements that are allowed only with partial membership

degrees. The form of the membership function is reflective of the semantics of the

concept. Its details could be captured by adjusting the parameters of the membership

function or choosing its form depending upon experimental data. For instance,

consider a fuzzy set of squares. Formally, a rectangle includes a square shape as

its special example when the sides are equal, a ¼ b, Figure 4.3. What if a ¼ bþ e,

where e is a very small positive number? Could this figure be sought as a square? It is

very likely so. Perhaps the membership value of the corresponding membership

function could be equal to 0.99. Our perception, which comes with some level of

tolerance to imprecision, does not allow us to tell apart this figure from the ideal

square, Figure 4.3.

Higher differences between a and b could result in lower values of the member-

ship function. The definition of the fuzzy set square could be formed in a number of

ways. Prior to the definition or even visualization of the membership function, it is

important to formulate a space over which it will be defined. There are several

intuitive alternatives worth considering:

(a) For each pair of values of the sides (a and b), collect an experimental

assessment of membership of the rectangle to the category of squares.

Here the membership function is defined over a Cartesian space of the

spaces of lengths of sides of the rectangle. While selecting a form of the

membership, we require that it assumes values at a ¼ b and is gradually

reduced when the arguments start getting more different.

(b) We can define an absolute distance between a and b, ja� bj and form a

fuzzy set over this space X; X ¼ fxjx ¼ ja� bjg; X 	 Rþ. The semantic

constraints translate into the condition of Að0Þ ¼ 1. For higher values of x

we may consider monotonically decreasing values of A.

(c) We can envision ratios of a and b x ¼ a=b and construct a fuzzy set over the
space of Rþ such that X ¼ fxjx ¼ a=bg. Here we require that Að1Þ ¼ 1. We

also anticipate lower values of membership grades when moving to the left

a

b

|a–b|

membership  

1

Figure 4.3 Perception of geometry of squares and its quantification in the form of membership

function of the concept of fuzzy square.

4.3 Fuzzy Set as a Descriptor of the Notion of Typicality 71



and to the right from x ¼ 1. Note that the membership function could be

asymmetric, so we allow for different membership values for the same

length of the sides, say a ¼ 6 and b ¼ 5, and a ¼ 6 and b ¼ 5 (the effect

could be quite apparent due to the visual effects when perceiving geometric

phenomena). The previous model of X as outlined in (b) cannot capture this

effect.

Once the form of the membership function has been defined, it could be further

adjusted by modifying the values of its parameters on the basis of some experimental

findings. They come in the form of ordered triples or pairs, say ða; b; mÞ; ða=b; mÞ
or ðja� bj;mÞ depending on the previously accepted definition of the universe of

discourse. The membership values m are those available from the expert offering an

assessment of the likeness of the corresponding geometric figure.

4.4 MEMBERSHIP FUNCTIONS IN THE VISUALIZATION
OF PREFERENCES OF SOLUTIONS

A simple electric circuit shown in Figure 4.4 helps us illustrate the underlying idea.

Consider the problem of optimization of power maximization on the external

resistance in the circuit.

The voltage source E is characterized by some internal resistance equal to r. The

external resistance R is the one on which we want to maximize power dissipation. By

straightforward calculations we compute the power dissipated on R to be given in the

form

P ¼ i2R ¼ E

Rþ r

	 
2

R ð4:3Þ

The maximization of Pwith respect to R is determined by zeroing the derivative of P,
@P
@R ¼ 0, which leads to the optimal value of the resistance Ropt. Through simple

derivations we obtain Ropt ¼ r. It becomes evident that while the condition R ¼ r

produces the maximum of P, this solution is not technically feasible as there is a

substantial level of power dissipation on the internal resistance. If we plot the

relationship of P versus R (Fig. 4.5), and treat it as a membership function of R

(which requires a simple normalization of P by dividing it by the maximal value

obtained for R ¼ r), we note that the shape of this relationship is highly asymmetric:

E

R

r

+
− 

Figure 4.4 A simple electric circuit and the problem of maximization of power dissipation on the

external resistance R.
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When increasing the value of resistance over the optimal value (Ropt), the member-

ship function changes quite smoothly and the reduction of the membership grades is

quite limited.

On the contrary, when moving toward lower values of R such thatR < Ropt, the

reduction in the membership grades is quite substantial. We can say that the member-

ship function of the optimal resistance offers a highly visible and very much intuitive

quantification of the notion of optimality. The asymmetric shape of the resulting

fuzzy set delivers some guidance in the selection of possible suboptimal solution

while the membership degree serves as an indicator of the suitability (degree of

optimality) of the individual value of R.

4.5 NONLINEAR TRANSFORMATION OF FUZZY SETS

In many problems, we encounter a family of fuzzy sets defined in the same space. The

family of fuzzy sets fA1; A2; . . . ; Acg is referred to as referential fuzzy sets. To

form a family of semantically meaningful descriptors of the variable in hand, we

usually require that these fuzzy sets satisfy the requirements of unimodality, limited

overlap, and coverage. Technically, all of these features are reflective of our intention

to provide this family of fuzzy sets with some semantics. These fuzzy sets could be

sought as generic descriptors (say, small, medium, high, etc.) being described by

some typical membership functions. For instance, those could be uniformly distrib-

uted triangular or Gaussian fuzzy sets with some standard level of overlap between

the successive terms (descriptors).

As mentioned, fuzzy sets are usually subject to some calibration depending upon

the character of the problem in hand. We may use the same terms of small, medium,

and large in various contexts yet their detailed meaning (viz. membership degrees)

has to be adjusted. For the given family of the referential fuzzy sets, their calibration

could be accomplished by taking the spaceX ¼ ½a; b� over which they are originally
defined and transforming it into itself, that is, ½a; b� through some nondecreasing

monotonic and continuous function Fðx; pÞ where p is a vector of some adjustable

parameters bringing the required flexibility of the mapping. The nonlinearity of the

mapping is such that some regions ofX are contracted and some of them are stretched

5
0

0.5

1

R
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em
b

er
s
h

ip
Figure 4.5 Membership function of the optimal power dissipation on external resistance R; the

maximal value is achieved for R ¼ 1 (the internal resistance r is equal to 1).
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(expanded) and in this manner capture the required local context of the problem. This

affects the membership functions of the referential fuzzy sets fA1; A2; . . . :; Acg
whose membership functions are expressed now as Aifðx; pÞ. The construction of the
mapping F is optimized taking into account some experimental data concerning

membership grades given at some points of X. More specifically, the experimental

data come in the form of the input–output pairs:

x1���mð1Þ;m2ð1Þ; . . . ;mcð1Þ
x2���m1ð2Þ;m2ð2Þ; . . . ;mcð2Þ
. . . :

xN���m1ðNÞ;m2ðNÞ; . . . ;mcðNÞ

ð4:4Þ

where the kth input–output pair consists of xk that denotes some point in X whereas

m1ðkÞ;m2ðkÞ; . . . ;mcðkÞ are the numeric values of the corresponding membership

degrees. The objective is to construct a nonlinear mapping, that is, optimizing it with

respect to the available parameters p. More formally, we could translate the problem

into the minimization of the following sum of squared errors:

X

c

i¼1
ðAiðFðx1; pÞ � mið1ÞÞ2 þ

X

c

i¼1
ðAiðFðX2; pÞ � mið2ÞÞ2 þ   

þ
X

c

i¼1
ðAiðFðXN ; pÞ � miðNÞÞ2 ð4:5Þ

One of the feasible mapping comes in the form of a piecewise linear function shown

in Figure 4.6. Here the vector of the adjustable parameters p involves a collection of

the split points r1; r2; . . . ; rL and the associated differences D1; D2; . . . ; DL; hence

p ¼ ½r1; r2; . . . ; rL; D1; D2; . . . ; DL�. The regions of expansion or compression are

used to affect the referential membership functions and adjust their values given the

experimental data.

r1 r2 r3 x

y

D3

D2

D1

Figure 4.6 A piecewise linear transformation functionF; a linear mapping not affecting the universe

of discourse and not exhibiting any impact on the referential fuzzy sets is also shown. The proposed

piecewise linear mapping is fully invertible.
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EXAMPLE 4.3

We consider some examples of nonlinear transformations of Gaussian fuzzy sets through the

piecewise linear transformations (here L ¼ 3) shown in Figure 4.7.

Note a fact that some fuzzy sets become more specific while the others are made more

general and expanded over some regions of the universe of discourse. This transformation

leads to the membership functions illustrated in Figure 4.8.

Considering the same nonlinear mapping as before, two triangular fuzzy sets are converted

into fuzzy sets described by piecewise membership functions as shown in Figure 4.9.

0 5 10
0

5

10

Figure 4.7 An example of the piecewise linear transformation.
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Figure 4.8 Examples of original membership functions (a) and the resulting fuzzy sets (b) after the

piecewise linear transformation.
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Figure 4.9 Two triangular fuzzy sets along with their piecewise linear transformation.
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Some other examples of the transformation of fuzzy sets through the piecewise mapping are

included in Figure 4.10.

4.6 VERTICAL AND HORIZONTAL SCHEMES
OF MEMBERSHIP ESTIMATION

The vertical and horizontal modes of membership estimation are two standard

approaches used in the determination of fuzzy sets. They reflect distinct ways of

looking at fuzzy sets whose membership functions at some finite number of points

are quantified by experts. In the horizontal approach we identify a collection of

elements in the universe of discourse X and request that an expert answers the

question

Does x belong to concept A?

The answers are expected to come in a binary (yes–no) format. The concept A

defined in X could be any linguistic notion, say high speed, low temperature, and so

on. Given n experts whose answers for a given point of X form a mix of yes–no

replies, we count the number of ‘‘yes’’ answers and compute the ratio of the positive

answers (p) versus the total number of replies (n), that is, p/n. This ratio (likelihood)

is treated as a membership degree of the concept at the given point of the universe of

discourse. When all experts accept that the element belongs to the concept, then

its membership degree is equal to 1. Higher disagreement between the experts

(quite divided opinions) results in lower membership degrees. The concept A defined

in X requires collecting results for some other elements of X and determining the

corresponding ratios as outlined in Figure 4.11.

If replies follow some, for example, binomial distribution, then we could

determine a confidence interval of the individual membership grade. The standard

deviation of the estimate of the positive answers associated with the point x, denoted

here by s, is given in the form

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞ
n

r

ð4:6Þ
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Figure 4.10 The piecewise linear mapping (a) and the transformed Gaussian fuzzy sets (b).
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The associated confidence interval that describes a range of membership values is

then determined as

½p� s; pþ s� ð4:7Þ
In essence, when the confidence intervals are taken into consideration, the member-

ship estimates become intervals of possible membership values, and this leads to the

concept of so-called interval-valued fuzzy sets. By assessing the width of the

estimates, we could control the execution of the experiment: when the ranges are

too long, one could re-design the experiment and monitor closely the consistency of

the responses collected in the experiment.

EXAMPLE 4.4

Let us consider responses of 10 experts who came up with the following assessment of

the concept high interest rate (%) with the number of ‘‘yes’’ responses collected as

follows:

Following these responses, the membership function and its confidence values s producing

confidence intervals are given below.

The advantage of the method comes with its simplicity as the technique relies explicitly

upon a direct counting of responses. The concept is also intuitively appealing. The probabil-

istic nature of the replies helps build confidence intervals that are essential to the assessment of

the specificity of the membership quantification. A certain drawback is related with to the local

character of the construct: As the estimates of the membership function are completed

p/n
A(x)

X

Figure 4.11 A horizontal method of the estimation of the membership function. Observe a series of

estimates determined for selected elements of X. Note also that the elements of X need not be evenly

distributed.

x (%) 2 3 5 8 10

no. of ‘‘yes’’ replies 0 2 4 7 10

x (%) 2 3 5 8 10

A(x) (high interest rate) 0.0 0.2 0.4 0.7 1.0

s 0.0 0.126 0.155 0.144 0.0
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separately for each element of the universe of discourse, they could exhibit a lack of continuity

when moving from certain point to its neighbor. This concern is particularly valid in the case

where X is a subset of real numbers.

The vertical mode of membership estimation is concerned with the estimation of the

membership function by focusing on the determination of the successive a-cuts. The experi-
ment focuses on the unit interval of membership grades. The experts involved in the experi-

ment are asked the questions of the form

what are the elements of X which belong to fuzzy set A at degree not lower

than a?

where a is a certain level (threshold) of membership grades in [0,1]. The essence of the

method is illustrated in Figure 4.12. Note that the satisfaction of the inclusion constraint is

obvious: we envision that for higher values of a, the expert is going to provide more

limited subsets of X; the vertical approach leads to the fuzzy set by combining the

estimates of the corresponding a-cuts. Given the nature of this method, we are referring

to the collection of random sets as these estimates appear in the successive stages of the

estimation process.

The elements are identified by the expert as they form the corresponding a-cuts of A. By

repeating the process for several selected values of a, we end up with thea-cuts and using them
we reconstruct the fuzzy set. The simplicity of the method is its genuine advantage.

Like in the horizontal method of membership estimation, a possible lack of continuity is a

certain disadvantage one has to be aware of. Here the selection of suitable levels of a needs to

be carefully investigated. Similarly, an order at which different levels of a are used in the

experiment could impact the estimate of the membership function.

4.7 SAATY’S PRIORITY METHOD OF PAIRWISE
MEMBERSHIP FUNCTION ESTIMATION

The priority method introduced by Saaty (1980,1986) forms another interesting

alternative used to estimate the membership function. There are several interesting

extensions of this method (Buckley et al., 2001; Kulak and Kahraman, 2005; van

Laarhoven and Pedrycz, 1983; Mikhailov and Tesvctinov, 2004; Pendharkar, 2003).

To explain the essence of the method, let us consider a collection of elements

x1; x2; . . . ; xn (those could be, for instance, some alternatives whose allocation to

a certain fuzzy set is sought) for which membership grades Aðx1Þ; Aðx2Þ; . . . ; AðxnÞ

a1

ap

X

A(x)

Figure 4.12 Avertical approach of membership estimation through the reconstruction of a fuzzy set

through its estimated a-cuts.
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are given. Let us organize them into a so-called reciprocal matrix of the following

form:

R ¼ ½rij� ¼

Aðx1Þ
Aðx1Þ

Aðx1Þ
Aðx2Þ

. . .
Aðx1Þ
AðxnÞ

Aðx2Þ
Aðx1Þ

Aðx2Þ
Aðx2Þ

. . .
Aðx2Þ
AðxnÞ

. . . . . .

AðxnÞ
Aðx1Þ

AðxnÞ
Aðx2Þ

. . .
AðxnÞ
AðxnÞ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼

1
Aðx1Þ
Aðx2Þ

. . .
Aðx1Þ
AðxnÞ

Aðx2Þ
Aðx1Þ

1 . . .
Aðx2Þ
AðxnÞ. . .

AðxnÞ
Aðx1Þ

AðxmÞ
Aðx2Þ

. . . 1

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

ð4:8Þ

Noticeably, the diagonal values of R are equal to 1. The entries that are symme-

trically positioned with respect to the diagonal satisfy the condition of reciprocality,

that is, rij ¼ 1=rji. Furthermore an important transitivity property holds, that is,

rikrkj ¼ rij, for all indexes i, j, and k. This property holds because of the way in

which the matrix has been constructed. By plugging in the ratios one gets

rikrkn ¼ AðxiÞ
AðxkÞ

AðxkÞ
AðxjÞ ¼

AðxiÞ
AðxjÞ ¼ rij. Let us now multiply the matrix by the vector of the

membership gradesA ¼ ½Aðx1ÞAðx2Þ . . .AðxnÞ�T . For the ith row of R (which is the ith

entry of the resulting vector of results) we obtain

½RA�i ¼
AðxiÞ
Aðx1Þ

AðxiÞ
Aðx2Þ

. . .
AðxiÞ
AðxnÞ

� 

Aðx1Þ
Aðx2Þ
  

AðxnÞ

2

6

6

4

3

7

7

5

ð4:9Þ

where i ¼ 1; 2; . . . ; n. Thus the ith element of the vector is equal to nAðxiÞ. Overall
once completing the calculations for all i, this leads us to the expression RA ¼ nA. In

other words, we conclude that A is the eigenvector of R associated with the largest

eigenvalue of R that is equal to n. In the above scenario, we have assumed that the

membership values AðxiÞ are given and then showed what form of results could they

lead to. In practice the membership grades are not given and have to be looked for.

The starting point of the estimation process are entries of the reciprocal matrix that

are obtained through collecting results of pairwise evaluations offered by an expert,

designer, or user (depending on the character of the task in hand). Prior to making any

assessment, the expert is providedwith a finite scalewith values spread in between 1 and

7. Some other alternatives of the scales such as those involving 5 or 9 levels could be

sought as well. If xi is strongly preferred to xj when being considered in the context of

the fuzzy set whosemembership function wewould like to estimate, then this judgment

is expressed by assigning high values of the available scale, say 6 or 7. If we still sense

that xi is preferred to xj yet the strength of this preference is lower in comparison with

the previous case, then this is quantified using some intermediate values of the scale, say

3 or 4. If no difference is sensed, the values close to 1 are the preferred choice, say 2 or 1.

The value of 1 indicates that xi and xj are equally preferred. On the contrary, if xj is

preferred to xi, the corresponding entry assumes values below one. Given the reciprocal

character of the assessment, once the preference of xi to xj has been quantified, the

inverse of this number is plugged into the entry of the matrix that is located at the (j,i)th

coordinate. As indicated earlier, the elements on the main diagonal are equal to 1. Next

the maximal eigenvalue is computed along with its corresponding eigenvector. The
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normalized version of the eigenvector is then the membership function of the fuzzy set

we considered when doing all pairwise assessments of the elements of its universe of

discourse. The pairwise evaluations are far more convenient and manageable in

comparison to any effort we make when assigning membership grades to all elements

of the universe in a single step. Practically, the pairwise comparison helps the expert

focus only on two elements once at a time thus reducing uncertainty and hesitation

while leading to the higher level of consistency. The assessments are not free of bias

and could exhibit some inconsistent evaluations. In particular, we cannot expect that

the transitivity requirement could be fully satisfied. Fortunately, the lack of consis-

tency could be quantified and monitored. The largest eigenvalue computed for R is

always greater than the dimensionality of the reciprocal matrix (recall that in

reciprocal matrices the elements positioned symmetrically along the main diagonal

are inverse of each other), lmax > n where the equality lmax ¼ n occurs only if the

results are fully consistent. The ratio

n ¼ ðlmax � nÞ=ðn� 1Þ ð4:10Þ
can be regarded as an index of inconsistency of the data; the higher its value, the less

consistent are the collected experimental results. This expression can be sought as the

indicator of the quality of the pairwise assessments provided by the expert. If the

value of n is too high exceeding a certain superimposed threshold, the experiment

may need to be repeated. Typically, if n is less than 0.1, the assessment is sought to be

consistent whereas higher values of n call for a reexamination of the experimental

data and a rerun of the experiment. To quantify how much the experimental data

deviate from the transitivity requirement, we calculate the absolute differences

between the corresponding experimentally obtained entries of the reciprocal matrix,

namely rik and rijrjk. The sum expressed in the form

Vði;kÞ ¼
X

n

j¼1
jrijrjk � rikj ð4:11Þ

serves as a useful indicator of the lack of transitivity of the experimental data for the

given pair of elements (i, k). If required, we may repeat the experiment if the above

sum takes higher values. The overall sum
Pn

i;k Vði; kÞ becomes then a global

evaluation of the lack of transitivity of the experimental assessment.

EXAMPLE 4.5

Let us estimate the membership function of the concept hot temperature for the space of

temperatures consisting of 10, 20, 30, 30, 45�C. The scale in which the pairs of these elements

are evaluated consists of 5 levels (say, 1, 2,. . ., 5). The experimental results of the pairwise

comparison are collected in the reciprocal matrix R,

R ¼
1 1=2 1=4 1=5
2 1 1=3 1=4
4 3 1 1=3
5 4 3 1

2

6

6

4

3

7

7

5
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Calculating the maximal eigenvalue, we obtain lmax ¼ 4:114, which is slightly higher than the
dimension ðn ¼ 4Þ of the reciprocal matrix. The corresponding eigenvector is equal to [0.122,

0.195, 0.438, 0.869], which after normalization gives rise to the membership function of hot

temperature to be equal to [0.14, 0.22, 0.50, 1.00]. The value of the inconsistency index n is

equal to ð4:114� 4Þ=3 ¼ 0:038 and is far lower than the threshold of 0.1.

EXAMPLE 4.6

Now let us consider some modified version of the previously discussed reciprocal matrix with

the following entries:
1 1=2 1=4 1=5
2 1 1=3 4

4 3 1 1=3
5 1=4 3 1

2

6

6

4

3

7

7

5

Now the maximal eigenvalue is far higher than the dimensionality of the problem,

lmax ¼ 5:426. In this case given the high value of the inconsistency index,

n ¼ ð5:426� 4Þ=3 ¼ 0:475, there is no point to compute the corresponding eigenvector. To

fix the problemwe could compute the lack of transitivity for the triples of indexes (i, j, k) and in

this way highlight these assessments that tend to be highly inconsistent. These are the

candidates whose evaluation has to be revised.

4.8 FUZZY SETS AS GRANULAR REPRESENTATIVES
OF NUMERIC DATA

In general, a fuzzy set is reflective of numeric data that are put together in some

context. Using its membership function we attempt to embrace them in a concise

manner. The development of the fuzzy set is supported by the following experiment-

driven and intuitively appealing rationale:

(a) First, we expect that fuzzy set (Bortokn and Pedrycz, 2002; Pedrycz and

Vukovich, 2002) A reflects (or matches) the available experimental data to

the highest extent, and

(b) Second, the fuzzy set is kept specific enough so that it comes with a well-

defined semantics.

These two requirements point to the multiobjective nature of the construct: we want

to maximize the coverage of experimental data (as articulated by (a)) and minimize

the spread of the fuzzy set (as captured by (b)). These two requirements give rise to a

certain optimization problem. Furthermore, which is quite legitimate, we assume that

the fuzzy set to be constructed has a unimodal membership function or its maximal

membership grades occupy a contiguous region in the universe of discourse in which

this fuzzy set has been defined. This helps us build a membership function separately

for its rising and declining sections. The core of the fuzzy set is determined first.

Next, assuming the simplest scenario when using the linear type of membership

functions, the essence of the optimization problem boils down to the rotation of the

linear section of the membership function around the upper point of the core of A; for
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illustration refer to Figure 4.13. The point of rotation of the linear segment of this

membership function is marked by an empty circle. By rotating this segment, we

intend to maximize (a) and minimize (b).

Before moving on with the determination of the membership function, we

concentrate on the location of its numeric representative. Typically, one could

view an average of the experimental data x1; x2; . . . ; xn to be its sound representa-

tive. Although its usage is quite common in practice, a better representative of the

numeric data is the median value. There is a reason behind this choice. The median is

a robust statistic meaning that it allows for a high level of tolerance to potential noise

existing in the data. Its important ability is to ignore outliers. Given that the fuzzy set

is sought to be a granular and ‘‘stable’’ representation of the numeric data, our

interest is in the robust development not being affected by noise. Undoubtedly, the

use of the median is a good starting point. Let us recall that the median is an order

statistic and is formed on a basis of an ordered set of numeric values. In the case of

the odd number of data in the data set, the point located in the middle of this

ordered sequence is the median. When we encounter an even number of data in

the granulation window, instead of picking up an average of the two points located in

the middle, we consider these two points to form a core of the fuzzy set. Thus

depending upon the number of data points, we either end up with triangular or

trapezoidal membership function.

Having fixed the modal value of A (which could be a single numeric value,m or a

certain interval [m, n]), the optimization of the spreads of the linear portions of the

membership functions are carried out separately for their increasing and decreasing

portions. We consider the increasing part of the membership function (the decreasing

part is handled in an analogous manner). Referring to Figure 4.13, the two require-

ments (transformed into the corresponding multiobjective optimization problem)

guiding the design of the fuzzy set are as outlined as follows:

(a) Maximize the experimental evidence of the fuzzy set; this implies that we

tend to ‘‘cover’’ as many numeric data as possible, that is, the coverage has

to be made as high as possible. Graphically, in the optimization of this

x

max Σ A(xk)

min Supp(A)

Data

a

Figure 4.13 Optimization of the linear increasing section of the membership function of A; the

positions of the membership function originating from the realization of the two conflicting criteria are

highlighted.
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requirement, we rotate the linear segment up (clockwise) as illustrated in

Figure 4.13. Formally, the sum of the membership grades AðxkÞ,
P

k AðxkÞ,
where A is the linear membership function to be optimized and xk is located

to the left to the modal value has to be maximized

(b) Simultaneously, we would like to make the fuzzy set as specific as possible

so that is comes with some well-defined semantics. This requirement is met

by making the support of A as small as possible, that is, minajm� aj
To accommodate the two conflicting requirements, we combine (a) and (b) in the

form of the ratio that is maximized with respect to the unknown parameter of the

linear section of the membership function

max
a

P

k

AðxkÞ

jm� aj ð4:12Þ

The linearly decreasing portion of the membership function is optimized in the same

manner. The overall optimization returns the parameters of the fuzzy number in the

form of the lower and upper bound (a and b, respectively) and its support (m or

[m,n]). We can write down such fuzzy numbers as A(a, m, n, b). We exclude a trivial

solution of a ¼ m in which case the fuzzy set collapses to a single numeric entity.

As an illustration, let us consider a scenario where experimental numeric data

are governed by some uniform probability density function defined over the range [0,

b], b > 0, that is, pðxÞ ¼ 1=b over the [0, b] and 0 otherwise. The linear membership

function of A is the one of the form AðxÞ ¼ maxð0; 1�x=aÞ. The modal value of A is

equal to zero. The optimization criterion (4.12) now reads as

VðaÞ ¼
Ð a

0
AðxÞpðxÞdx

a
¼ 1

ab

ð

a

0

1� x

a

� �

dx ¼ 1

ab
b� b2

2a

	 


¼ 2a� b

2a2
ð4:13Þ

The plot of V regarded as a function of the optimized slope of A is shown in

Figure 4.14; here the values of b were varied to visualize an effect of this parameter

on the behavior of V.

1 2 3 
2

1

0

0.7

V

b= 0.8  1.0    1.5 

Figure 4.14 Plots of V versus a for selected values of b.
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The optimal value of a results from the relationship @V=@a ¼ 0, and this leads to the

equality a ¼ b. The form of the relationship V ¼ VðaÞ is highly asymmetric;

although the values of a higher than the optimal value (aopt) leads to a very slow

degradation of the performance (V changes slowly), the rapid changes in Vare noted

for the values of a that are lower than the optimal value.

EXAMPLE 4.7

We show the details of how the data-driven triangular fuzzy set is being formed. The dataset

under discussion consists of the following numeric data:

f�2:00 0:80 0:90 1:00 1:30 1:70 2:10 2:60 3:30g

The values of the performance index obtained during the optimization of the left and right part

slope of the triangular membership function and viewed as a function of the intercept are

shown in Figure 4.15. The performance index shows a clear maximum for both the linear parts

of the membership function. The final result coming in the form of the triangular fuzzy set

(fuzzy number) is uniquely described by its bounds and the modal value; altogether described

as the triangular fuzzy set A(x, 0.51, 1.30, 2.96). This shows us how a sound compromise has

been reached between the spread of the fuzzy set that helps us assure a solid coverage of the

data while retaining its high specificity (limited spread). The result is quite appealing as the

fuzzy set formed in this way nicely captures the core part of the numeric data.

EXAMPLE 4.8

Consider now another data set. It comes with a far higher dispersion (some points are sitting at

the tails of the entire distribution):

f1:1 2:5 2:6 2:9 4:3 4:6 5:1 6:0 6:2 6:4 8:1 8:3 8:5 8:6 9:9 12:0g

The plots of the optimized performance index V are included in Figure 4.16. The optimized

fuzzy set comes in the form of the trapezoidal membership function A (x, 0.61, 6.10, 6.20,

6.61). The location of several data points that are quite remote from the modal values makes

–0.5

0

0.5

1

1.5

2

V

a
–0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
V

b

0 1 2 3 4 5 6
–6 –4 –2 0 2

Figure 4.15 The values of the performance index Voptimized for the linear sections of the

membership function; in both cases we note a clearly visible maximum occurring at both sides of the

modal value of the fuzzy set that determine the location of the bounds of the membership function

(a ¼ 0:51 and b ¼ 2:96).
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substantial changes to the form of the membership function in which the left-hand side slope is

pushed toward higher values of the arguments.

So far we have discussed the linear type of membership functions (viz. their linearly

increasing or decreasing sections), however, any monotonically increasing or decreasing func-

tions could be sought. In particular, a polynomial (monomial, to be more precise) type of

relationships, say xp with p being a positive integer could be of interest. The values of p impact

the shape and more importantly, the spread of the resulting fuzzy set.

EXAMPLE 4.8

Let us consider a geometrical figure that resembles a fuzzy circle; see Figure 4.17. The

coordinates of the central point are given as (x0, y0). Let us represent the figure as a fuzzy circle,

that is, a circle whose radius is a fuzzy set (fuzzy number).

The membership of the fuzzy radius is determined on the basis of numeric values of the radii

obtained for several successive discrete values of the angle fi, thus giving rise to the values

r1; r2; . . . ; rn. Next the determination of the fuzzy set of radius (fuzzy circle) is realized

following the optimization scheme governed by (4.12).

In a similar way, we can define a fuzzy set of distance between a certain geometrical figure

and a point. Although there are a number of definitions that attempt to capture the essence of

the concept (say, a Hausdorff distance), they return a single numeric quantity. Consider a

situation displayed in Figure 4.18.
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–0.2

0

0.2 

0.4 

0.6 

0.8 

1

1.2 

1.4 

6 8 10 12 14 16

Figure 4.16 Performance index V computed separately for the linearly increasing and decreasing

portions of the optimized fuzzy set.

φi

ri

Figure 4.17 Example of figure to be represented as fuzzy circles.
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In the computations of the distance we note that the concept of such distance is quite

complex and describing it with the use of a single numeric quantity may not be fully reflective

of the underlying concept. Given this, we proceed as follows. First we choose a sample of

points that are located within the figure. Note that even though the object (geometrical figure)

has clearly delineated boundaries (there is no uncertainty as to their position), the fuzzy set of

distance is reflective of the complexity and nonuniqueness of the definition itself. Given the

collection of numeric distances determined in this manner, say fd1; d2; . . . ; dNg, we form a

fuzzy set of distance by the maximization of (4.12). The character of the membership function,

say piecewise linear, has to be specified in advance before starting the optimization procedure.

Another generalization of this problem comes with the computing of distance between two

figures; see Figure 4.18 (b). Although the Hausdorff distance dðA; BÞ defined in the form

dHðA;BÞ ¼ maxfsupx2A½miny2Bdðx;yÞ�; supy2B½minx2Adðx;yÞ�g

becomes available, its descriptive power could create some limitations. Instead, we may

proceed as in the previous calculations of distance between a figure and a point: We sample

the two figures producing a collection of points inside and then compute distances between

pairs of dðxi; yj), where xi A and yj B and then use them to form a fuzzy set of distance.

4.9 FROM NUMERIC DATA TO FUZZY SETS

Fuzzy sets can be formed on a basis of numeric data through their clustering

(groupings). The groups of data give rise to membership functions that convey a

more global abstract view of the available data. In this regard Fuzzy C-Means (FCM,

{di}

d

DΩ

(a)

{d(x, y)}

B

A

(b)

Figure 4.18 Computing a fuzzy set of distance between a point and some geometric figure V; note a

sample of points located within the bounds of the figure and induced fuzzy set (a), and determining

distance between two planar figures A and B (b).
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in brief) is one of the commonly used mechanisms of fuzzy clustering (Bezdek, 1981;

Pedrycz and Reformat, 2006).

Let us review its formulation, develop the algorithm and highlight the main

properties of the fuzzy clusters. Given a collection of n-dimensional data set

fxkg; k ¼ 1; 2; . . . ;N, the task of determining its structure—a collection of c

clusters, is expressed as a minimization of the following objective function (perfor-

mance index) Q being regarded as a sum of the squared distances:

Q ¼
X

c

i¼1

X

N

k¼1
umik k xk � vi k2

Here vi’ s are n-dimensional prototypes of the clusters, i ¼ 1; 2; ::; c and U ¼ ½uik�
stands for a partition matrix expressing a way of allocation of the data to the

corresponding clusters; uik is the membership degree of data xk in the ith cluster.

The distance between the data nk and prototype vi is denoted by k:k. The fuzzification
coefficientm (>1.0) expresses the impact of the membership grades on the individual

clusters.

A partition matrix satisfies two important properties:

0 <
X

N

k¼1
uik < N; i ¼ 1; 2; . . . ; c ð4:14aÞ

X

c

i¼1
uik ¼ 1; k ¼ 1; 2; . . . ;N ð4:14bÞ

Let us denote by U a family of matrices satisfying (a) and (b). The first requirement

states that each cluster has to be nonempty and different from the entire set. The

second requirement states that the sum of the membership grades should be

confined to 1.

The minimization of Q completed with respect to U2U and the prototypes

vi of V ¼ fv1; v2; . . . ; vcg of the clusters. More explicitly, we write it down as

follows:

minQ with respect toU 2 U; v1; v2; . . . ; vc 2 Rn

From the optimization standpoint, there are two individual optimization tasks to be

carried out separately for the partition matrix and the prototypes. The first one

concerns the minimization with respect to the constraints given the requirement of

the form (4.14b) that holds for each data point Xk. The use of Lagrange multipliers

converts the problem into its constraint-free version. The augmented objective

function formulated for each data point, k ¼ 1; 2; . . . ; N, reads as

V ¼
X

c

i¼1
umik d2ik þ l

X

c

i¼1
uik � 1

 !

ð4:15Þ

4.9 From Numeric Data to Fuzzy Sets 87



where

d2ik ¼k xk � vi k2. Proceeding with the necessary conditions for the minimum of V

for k ¼ 1; 2; . . .N, one has

@V

@ust
¼ 0

@V

@l
¼ 0 ð4:16Þ

s ¼ 1; 2; . . . ; c; t ¼ 1; 2; . . . ;N:Now we calculate the derivative of Vwith respect to

the elements of the partition matrix in the following way:

@V

@ust
¼ mum�1st d2st þ l ð4:17Þ

From (4.17) we calculate ust to be equal to

ust ¼ � l

m

	 
 1
m�1 2

dm�1st

ð4:18Þ

Given the normalization condition
P

c

j¼1
ujt ¼ 1 and plugging it into (4.18) one has

� l

m

	 
 1
m�1 X

c

j¼1
d

2
m�1
jt ¼ 1 ð4:19Þ

we compute

) � l

m

	 
 1
m�1
¼ 1
P

c

j¼1
d

2
m�1
jt

ð4:20Þ

Inserting this expression into (4.18), we obtain the successive entries of the partition

matrix

ust ¼
1

P

c

j¼1

d2st
d2jt

 ! 1
m�1

ð4:21Þ

The optimization of the prototypes vi is carried out assuming that the Euclidean

distance between the data and the prototypes is k xk � vi k2¼
Pc

j¼1ðxkj � vijÞ2. The
objective function reads now as follows:

Q ¼
X

c

i¼1

X

N

k¼1
umik

X

n

j¼1
ðxkj � vijÞ2

and its gradient with respect to vi;rvi Q made equal to zero yields the system of

linear equations

X

N

k¼1
umikðxkt � vstÞ ¼ 0 ð4:22Þ

s ¼ 1; 2; ::; c; t ¼ 1; 2; . . . ; n
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Thus

vst ¼

P

N

k¼1
umikxkt

P

N

k¼1
umik

ð4:23Þ

Overall, the FCM clustering is completed through a sequence of iterations where we

start from some random allocation of data ( a certain randomly initialized partition

matrix) and carry out the following updates by adjusting the values of the partition

matrix and the prototypes. These steps are summarized next.

procedure FCM-CLUSTERING (x) returns prototypes and partition matrix

input: data x ¼ fx1; x2; . . . ; xkg
local: fuzzification parameter: m

threshold: e

norm: kk
INITIALIZE-PARTITION-MATRIX

t 0

repeat

for i ¼ 1 : c do

viðtÞ  

P

N

k¼1
umikðtÞxk

P

N

k¼1
umikðtÞ

ðcompute prototypesÞ

for i ¼ 1 : c do

for k ¼ 1 : N do

update partition matrix

uikðt þ 1Þ ¼ 1

P

c

j¼1

k xk � viðtÞ k
k xk � vjðtÞ k

	 
2=ðm�1Þ ðupdate partitionÞ matrix

t t þ 1

until k Uðt þ 1Þ � UðtÞ k� e

return U, V

Iteration is repeated until a certain termination criterion has been satisfied.

Typically, the termination condition is quantified by looking at the changes in the

membership values of the successive partition matrices. Denote by U(t) and

Uðt þ 1Þ the two partition matrices produced in two consecutive iterations of the

algorithm. If the distance k Uðt þ 1Þ � UðtÞ k is les than a small predefined thresh-

old e, then we terminate the algorithm. Typically, one considers the Tchebyschev

distance between the partition matrices meaning that the termination criterion

reads as follows:

maxi;kjuikðt þ 1Þ � uikðtÞj � e ð4:24Þ

4.9 From Numeric Data to Fuzzy Sets 89



The key components of the FCM and a quantification of their impact on the form of

the produced results are summarized in Table 4.1.

The fuzzification coefficient exhibits a direct impact on the geometry of fuzzy

sets generated by the algorithm. Typically, the value of m is assumed to be equal

to 2.0. Lower values of m (which are closer to 1) yield membership functions that

start resembling characteristic functions of sets; most of the membership values

become localized around 1 or 0. The increase of the fuzzification coefficient

(m ¼ 3; 4, etc.) produces ‘‘spiky’’ membership functions with the membership

grades equal to 1 at the prototypes and a fast decline of the values when moving

away from the prototypes. Several illustrative examples of the membership

functions are included in Figure 4.19. In addition to the varying shape of the

membership functions, observe that the requirement put on the sum of member-

ship grades imposed on the fuzzy sets yields some rippling effect: The member-

ship functions are not unimodal, but may exhibit some ripples whose intensity

depends upon the distribution of the prototypes and the values of the fuzzification

coefficient.

The membership functions offer an interesting feature of evaluating the extent to

which a certain data point is shared between different clusters and in this sense

Table 4.1 The Main Features of the Fuzzy c-means (FCM) Clustering Algorithm.

Feature of the FCM algorithm Representation and optimization aspects

Number of clusters (c) Structure in the data set and the number of fuzzy

sets estimated by the method; the increase in the

number of clusters produces lower values of the

objective function, however, given the semantics

of fuzzy sets one should maintain this number

quite low (5–9 information granules).

Objective function Q Develops the structure aimed at the minimization

of Q; iterative process supports the determination

of the local minimum of Q.

Distance function k  k Reflects (or imposes) a geometry of the clusters

one is looking for; essential design parameter

affecting the shape of the membership functions.

Fuzzification coefficient (m) Implies a certain shape of membership functions

present in the partition matrix; essential design

parameter. Low values of m (being close to 1.0)

induce characteristic function. The values higher

than 2.0 yield spiky membership functions.

Termination criterion Distance between partition matrices in two

successive iterations; the algorithm terminated

once the distance below some assumed positive

threshold (e), that is, k Uðtþ 1Þ � UðtÞ k e.
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become difficult to allocate to a single cluster (fuzzy set). Let us introduce the

following index that serves as a certain separation measure:

wðu1; u2; . . . ; ucÞ ¼ 1� cc
Y

c

i¼1
ui ð4:25Þ

where u1; u2; . . . ; uc are the membership degrees for some data point. If only one

of membership degrees, say ui ¼ 1, and the remaining are equal to zero, then the

separation index attains its maximum equal to 1. On the other extreme, when the data

point is shared by all clusters to the same degree equal to 1/c, then the value of the

index drops down to zero. This means that there is no separation between the clusters

as reported for this specific point.

For instance, if c ¼ 2, the above expression relates directly to the entropy of

fuzzy sets (Chapter 3. We have wðuÞ ¼ 1�4uð1�uÞ, that is, wðuÞ ¼ 1�HðuÞ.
Although the number of clusters is typically limited to a few information

granules, we can easily proceed with successive refinements of fuzzy sets. This

1 2 3
0

0.5

1

0.5 x 3.5 0.5 x 3.5

0.5 x 3.5

1 2 3
0

0.5

1

(a) (b)

1 2 3
0

0.5

1

(c)

Figure 4.19 Examples of membership functions of fuzzy sets; the prototypes are equal to 1, 3.5, and 5

while the fuzzification coefficient assumes values of 1.2 (a), 2.0 (b), and 3.5 (c). The intensity of the

rippling effect is affected by the values of m and increases with the higher values of m.
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can be done by splitting fuzzy clusters of the highest heterogeneity (Pedrycz and

Reformat, 2006). Let us assume that we have already constructed c fuzzy clusters.

Each of them can be characterized by the performance index

Vi ¼
X

N

k¼1
umik k xk � vi k2 ð4:26Þ

i ¼ 1; 2; . . . ; c. The higher the value of Vi, the more heterogeneous the ith cluster.

The one with the highest value of Vi, that is, the one for which we have

i0 ¼ arg; maxiVi is refined by being split into two clusters. Denote the set of data

associated with the i0th cluster by Xði0Þ,

Xði0Þ ¼ fxk 2 X k uiok ¼ maxiuikg ð4:27Þ

We cluster the elements in Xði0Þ by forming two clusters that leads to two more

specific (detailed) fuzzy sets. This gives rise to a hierarchical structure of the family

of fuzzy sets as illustrated in Figure 4.20. The relevance of this construct in the setting

of fuzzy sets is that it emphasizes the essence of forming a hierarchy of fuzzy sets

rather than working with a single level structure of a large number of components

whose semantics could not be retained.

The process of further refinements is realized in the same manner by picking

up the cluster of the highest heterogeneity and its split into two consecutive

clusters.

It is worth emphasizing that the FCM algorithm is a highly representative

method of membership estimation that profoundly dwells on the use of experimental

data. In contrast to some other techniques presented so far that are also data-driven,

FCM can easily cope with multivariable experimental data.

1

2

3

Figure 4.20 Successive refinements of fuzzy sets through fuzzy clustering applied to the clusters of

the highest heterogeneity. The numbers indicate the order of the splits.
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4.10 FUZZY EQUALIZATION

The underlying principle of this approach is based on an observation that any fuzzy

set has to some extent be reflective of the existing numeric evidence. In other words,

we anticipate that it has to be substantially supported by the existing numeric data.

Although we have emphasized this aspect when dealing with the method outlined in

Section 8, the concept to be discussed here is concerned with a family of fuzzy sets.

(Pedrycz, 2001) The problem of fuzzy equalization can be outlined as follows:

Given is a finite collection of numeric data fx1; x2; . . . ; xNg; xi 2 R. We consider

that they are arranged in an nondecreasing order, that is, x1 � x2 �    � xN .

Construct a family (partition) of triangular fuzzy sets A1; A2; . . . ; Ac with an overlap

of ½ between neighboring fuzzy sets; refer to Figure 4.21 such that each of them

comes with the same experimental evidence. We require that the following system of

equalities is satisfied:

X

N

k¼1
A1ðxkÞ ¼

N

2ðc� 1Þ
X

N

k¼1
A2ðxkÞ ¼

N

ðc� 1Þ
. . . :

X

N

k¼1
Ac�1ðxkÞ ¼

N

ðc� 1Þ
X

N

k¼1
AcðxkÞ ¼

N

2ðc� 1Þ ð4:28Þ

In other words, we require that the s-count computed for each fuzzy set is made the

same. For the first and the last fuzzy set (A1 and Ac) we require that that this s- count
is ½ of the one required for all remaining fuzzy sets. The essence of this construct is

illustrated in Figure 4.21.

We can propose the following procedure to build the fuzzy sets

A1; A2; . . . ; Ac�1 satisfying (4.28); the simplicity of the algorithm does not assure

that the same numeric requirement holds for Ac. We elaborate on this in more detail

A1
A2 A3

Ac

a1 a2 a3 ac–1 ac

Figure 4.21 A collection of triangular fuzzy sets with equal experimental support provided by

numeric data.
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later on. The equalization is concerned with the determination of the modal values of

the fuzzy sets.We start withA1 andmove to the right by choosing a suitable value of a2
so that the sum of membership grades

PN
k¼1k A1ðxkÞ is equal to N=2ðc� 1Þ. The

determination of the value of a2 could be completed through a stepwise increment of

its value. For instance, we start with a2 ¼ a1 þ e with e > 0 being a small positive

step, calculate the corresponding sum of the membership values, and if the condition

of enough experimental evidence has not been met, we progress toward higher values

of a2 by moving with the assumed increment e.

The modal value of A1 is equal to the minimal value encountered in the data set,

that is, a1 ¼ x1. We assume here that the boundaries x1 and xN are not outliers;

otherwise they have to be dropped and the construct should be based upon the other

extreme points in the dataset. The experimental evidence of A2 is made equal to N
ðc�1Þ

by a proper choice of the upper bound of its membership function, namely a3. Note

that as the value of a2 has been already selected, this implies the following level of the

experimental evidence accumulated so far:
X

xk2½a1;a2�
A2ðxkÞ ¼

X

xk2½a1;a2�
ð1� A21) ðxkÞÞ ¼

X

xk2½a1;a2�

�
X

xk2½a1;a2�
A2ðxkÞ ¼ N2 �

N

2ðc� 1Þ ¼ N
0

2 ð4:29Þ

where N2 is the number of data points in [a1; a2].
Given this, we require that the value of a3 is chosen so that the following equality

holds:
X

xk2½a2;a3�
A2ðxkÞ þ N 02 ¼

N

c� 1
ð4:30Þ

Note that depending upon the distribution of numeric data the resulting fuzzy set A2

could be highly asymmetric.

To determine the parameters of the successive fuzzy sets, we repeat the same

procedure moving toward higher values of xk and determining the values of

a3; a4; . . . One notes that the last fuzzy set Ac does not come with the required level

of experimental evidence as we do not have any control over the sum of the

corresponding membership grades. To alleviate this shortcoming, one may consider

a replacement of the algorithm (whose advantage resides with its evident simplicity)

by the minimization of the performance index Vover the vector of the modal values

a ¼ ½a2; a3 . . . ac�1�

V ¼
X

N

k¼1
A1ðxkÞ �

N

2ðc� 1Þ

" #2

þ
X

N

k¼1
A2ðxkÞ �

N

ðc� 1Þ

" #2

þ   

þ
X

N

k¼1
Ac�1 �

N

ðc� 1Þ

" #2

þ
X

N

k¼1
AcðxkÞ �

N

2ðc� 1Þ

" #2

that is,

min a V
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4.11 LINGUISTIC APPROXIMATION

Inmany cases we are providedwith a finite family of fuzzy setsA1; A2; . . . ; Ac (whose

membership functions could have been determined earlier) using which we would like

to represent a certain fuzzy sets B. Quite often these fuzzy sets are referred to as a

vocabulary of information granules. Furthermore we have at our disposal a finite

collection of so-called linguistic modifiers (hedges) t1; t2; . . . ; tp. Let us recall that
we encounter two general categories of the modifiers realizing operations of concen-

tration and dilution. Their semantics relates to the linguistic adjectives of the form very

(concentration) and more or less (dilution). Given the semantics of Ai’s and the

available linguistic modifiers, the objective of the representation scheme is to capture

the essence of B. Given the nature of the objects and the ensuing processing being used

herewe refer to this process as a linguistic approximation. There are several scenarios of

the realization of the linguistic approximation. The scheme shown in Figure 4.22

comprises two phases: first we find the best match between B and Ai’s (where the

quality of matching is expressed in terms of some distance or similarity measure).

As the next step we refine the construct by applying one of the linguistic

modifiers. The result of the linguistic approximation comes in the form B � tiðAjÞ
with the indexes i and j determined through the optimization of the matching

mechanism.

4.12 DESIGN GUIDELINES FOR THE CONSTRUCTION
OF FUZZY SETS

The considerations presented above give rise to a number of general guidelines

supporting the development of fuzzy sets.

(a) Highly visible and well-defined semantics of information granules. No

matter what the determination technique is, one has to become cognizant

of the semantics of the resulting fuzzy sets. Fuzzy sets are interpretable

information granules of a well-defined meaning and this aspect needs to be

fully captured. Given this, the number of information granules has to be kept

quite small with their number being restricted to 7� 2 fuzzy sets.

B

{Aj}

τj

Figure 4.22 The process of linguistic approximation of B in terms of the elements of the vocabulary

and the collection of the linguistic modifiers.
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(b) There are several fundamental views of fuzzy sets and depending upon them,

we could consider the use of various estimation techniques (e.g., by accept-

ing the horizontal or the vertical view of fuzzy sets and adopting a pertinent

technique).

(c) Fuzzy sets are context-sensitive constructs and as such require careful

calibration. This feature of fuzzy sets should be treated as their genuine

advantage. The semantics of fuzzy sets can be adjusted through shifting

fuzzy sets or/and adjusting their membership functions. The nonlinear

transformation we introduced here helps complete an effective adjust-

ment of the membership functions making use of some ‘‘standard’’

membership functions. The calibration mechanisms being used in the

design of the membership function are reflective of human-centricity of

fuzzy sets.

(d) We have delineated between the two major categories of approaches

supporting the design of membership functions, that is, data-driven and

expert (user)-based. They are very different in the sense of the origin of

the supporting evidence. Fuzzy clustering is a fundamental mechanism

of the development of fuzzy sets. It is important in the sense that the

method is equally suitable for one-dimensional and multivariable cases.

The expert or simply user-based methods of membership estimation are

important in the sense they offer some systematic and coherent mechan-

isms of elicitation of membership grades. With regard to consistency of

the elicited membership grades, the pairwise estimation technique is of

particular interest by providing well-quantifiable mechanisms of the

assessment of the consistency of the produced membership grades.

The estimation procedures underline some need of further development

of higher type of constructs such as fuzzy sets of type-2 or higher and

fuzzy sets of higher order that may be ultimately associated with

constructs such as type-2 fuzzy sets or interval valued fuzzy sets (this

particular construct is visible when dealing with the horizontal method

of membership estimation that comes with the associated confidence

intervals).

(e) The user-driven membership estimation uses the statistics of data yet it is

done in an implicit manner. The granular term—fuzzy sets come into

existence once there is some experimental evidence behind them (otherwise

there is no point forming such fuzzy sets).

(f) The development of fuzzy sets can be carried out in an stepwise manner.

For instance, a certain fuzzy set can be further refined, if required in

the problem in hand. This could lead to several more specific fuzzy

sets that are associated with the fuzzy set formed at the higher level.

Being aware of the complexity of the granular descriptors, we should

resist temptation of forming an excessive number of fuzzy sets at a

single level as such fuzzy sets could be easily lacking any sound

interpretation.
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4.13 CONCLUSIONS

We have discussed various approaches and algorithmic aspects of the design of fuzzy

sets. The estimation of membership functions is a multifaceted problem and the

choice of a suitable method relies on the choice of the available experimental data

and domain knowledge. For the user-driven approaches, it is essential to evaluate and

flag the consistency of the results. Although some of the methods (the pairwise

comparison) come with this essential feature, the results produced by the others have

to be carefully inspected.

EXERCISES AND PROBLEMS

1. In the horizontal mode of construction of a fuzzy set of safe speed on a highway, the yes-no

evaluations provided by the panel of 9 experts are the following:

x 20 50 70 80 90 100 110 120 130 140 150 160

No of yes

responses 0 1 1 2 6 8 8 5 5 4 3 2

Determine the membership function and assess its quality by computing the correspond-

ing confidence intervals. Interpret the results and identify the points of the universe of

discourse that may require more attention.

2. In the vertical mode of membership function estimation, we are provided with the

following experimental data:

a 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Range of X [�2,13] [�1,12] [0, 11] [1, 10] [2,9] [3,8] [4, 7] [5, 6]

Plot the estimated membership function and suggest its analytical expression.

3. In the calculations of the distance between a point and a certain geometric figure (as

discussed in Section 4.8), we assumed that the boundaries of the figure is well defined.

How could you proceed with a more general case when the boundaries are not clearly

defined, namely, the figure itself is defined by some membership function (Fig. 4.23). In

other words, the figure is fully characterized by some membership function RðxÞ where x

Figure 4.23 Forming a fuzzy set of distance between a geometric figure with fuzzy boundaries and a

point.
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is a vector of coordinates of x. IfRðxÞ ¼ 1, the point fully belongs to the figurewhile lower

values of R(x) indicate that x is closer to the boundary of R.

4. Construct a fuzzy set describing a distance between the point of (5, 5) from a circle

x2 þ y2 ¼ 4.

5. We maximize a function f ðxÞ ¼ ðx� 6Þ4 in the range of [3, 10]. Suggest a membership

function describing a degree of membership of the optimal solution that minimizes f ðxÞ.
What conclusion could you derive based on the obtained form of the membership

function?

6. The results of pairwise comparisons of 4 objects being realized in the scale of 1–5 are

given in the following matrix form:

1 5 2 4

1=5 1 3 1=3
1=2 1=3 1 1=5
1=4 3 5 1

2

6

6

4

3

7

7

5

What is the consistency of the findings? Evaluate the effect of the lack of transitivity.

Determine the membership function of the corresponding fuzzy set.

7. In the method of pairwise comparisons, we use different scales involving various levels of

evaluation, typically ranging from 5 to 9. What impact could the number of these levels

have on the produced consistency of the results? Could you offer any guidelines as how to

achieve high consistency? What would be an associated tradeoff one should take into

consideration here?

8. Construct a fuzzy set of large numbers for the universe of discourse of integer numbers

ranging from 1 to 10. It has been found that the experimental results of the pairwise

comparison could be described in the form

rðx; yÞ ¼ x� y if x > y

1 if x ¼ 1

�

(for x < y we consider the reciprocal of the above expression).

9. In the FCM algorithm, the shape of the resulting membership function depends upon the

value of the fuzzification coefficient (m). How does the mean value of the membership

function relate to the values of m. Run the FCM on the one-dimensional data set

f1:3 1:9 2:0 5:5 4:9 5:3 4:5 �1:3 0:0 0:3 0:8 5:1 2:5 2:4 2:1 1:7g
considering c ¼ 3 clusters. Next plot the relationship between the average of all member-

ship grades and the associated fuzzification coefficient. For which values ofm the average

of membership grades differ from 0.33 for less than d? Consider several values of d, say
0.2, 0.1, and 0.05. What could you tell about the impact of m on the resulting average?

10. Consider a family of car makes, say C1; C2; . . . ; Cn. We are interested in forming fuzzy

sets of economy, comfort, and safety, say Aeconomy; Acomfort; and Asafety. Use a method of a

pairwise comparison to build the corresponding fuzzy sets. Next using the method of

pairwise comparison, evaluate the car makes with respect to the overall quality (which

involves economy, comfort, and safety). Given the already constructed fuzzy sets of the

individual attributes and the overall quality Aoverall, what relationship could you establish

between them?
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11. The method of membership estimation shown in Section 4.8 is concerned with one-

dimensional data. How could you construct a fuzzy set over multidimensional data?

Consider using one-dimensional constructs first.

12. Consider a fuzzy set of a safe speed on an average highway; refer to Figure 4.24.

How could this membership be affected when redefining this concept in the follow-

ing settings of (a) autobahn (note that on these German highways there is no speed

limit) and (b) a snowy country road. Elaborate on the impact of various weather

conditions on the corresponding membership function. From the standpoint of the

elicitation of the membership function, how could you transform the original

membership function to address the needs of the specific context in which it is

planned to be used?

HISTORICAL NOTES

The issue of membership elicitation has been an area of active research and numerous discussions almost

since the inception of fuzzy sets. One may refer to very early studies reported by Dishkant (1981), Dombi

(1990), Saaty (1986), and Turksen (1991). The horizontal and vertical views on the membership estimation

appeared quite early yet their usage should be carefully planned to avoid potential inconsistencies in the

estimates of the membership grades. The pairwise method of membership estimation (Saaty, 1980) has

delivered an important feature of higher consistency of the results produced within the framework of this

scheme. The properties of the families of fuzzy sets with triangular membership functions were investi-

gated by Pedrycz (1994). The advantage of the data-driven approach relies on a direct calibration of the

membership functions by the existing experimental data. Its visibility in the design of fuzzy sets started to

grow in importance along with themore intensive use of fuzzy clustering in modeling and control. The idea

of context-based adjustment of fuzzy sets was introduced and discussed by Pedrycz, Gudwin, and Gomide

(1997).
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Chapter 5

Operations and Aggregations

of Fuzzy Sets

Similarly as in set theory, we operate with fuzzy sets to obtain new fuzzy sets.

The operations must possess properties to match intuition, to comply with the

semantics of the intended operation, and to be flexible to fit application

requirements. This chapter covers set operations beginning with early fuzzy set

operations and continuing with their generalization, interpretations, formal

requirements, and realizations. We emphasize complements, triangular norms and

conorms as unifying, general constructs of the complement, intersection, and

union operations. Combinations of fuzzy sets to provide aggregations are also

essential when operating with fuzzy sets. Analysis of fundamental properties and

characteristics of operations with fuzzy sets are discussed thoroughly.

5.1 STANDARD OPERATIONS ON SETS AND FUZZY
SETS

It is instructive to start with the familiar operations of intersection, union, and

complement encountered in set theory. For instance, consider two sets

A ¼ fx 2 Rj1 � x � 3g and B ¼ fx 2 Rj2 � x � 4g, both being closed intervals

in the real line. Their intersection is a set A \ B ¼ fx 2 Rj2 � x � 3g. Figure 5.1

illustrates the intersection operation represented in terms of the characteristic func-

tions of A and B. Looking at the values of the characteristic function of A \ B that

results when comparing the individual values of AðxÞ and BðxÞ at each x 2 R, we note

that these are taken as the minimum between the values of AðxÞ and BðxÞ.
In general, given the characteristic functions of A and B, the characteristic

function of their intersection A \ B is computed in the following form:

ðA \ BÞðxÞ ¼ min ½AðxÞ;BðxÞ� 8 x 2 X ð5:1Þ
where ðA \ BÞðxÞ denotes the characteristic function of the intersection A \ B.

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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We consider the union of sets A and B and express its characteristic function in terms

of the respective characteristic functions of A and B. For example, if A and B are the

same intervals as presented before, then A [ B ¼ fx 2 Rj1 � x � 4g. We note that

the value of the characteristic function of the union is taken as the maximum of

corresponding values of the characteristic functions AðxÞ and BðxÞ at each point of

the universe, see Figure 5.2.

Therefore, given the characteristic functions of A and B, we determine the

characteristic function of the union as

ðA [ BÞðxÞ ¼ max ½AðxÞ;BðxÞ� 8 x 2 X ð5:2Þ
where ðA [ BÞðxÞ denotes the characteristic function of the intersection A [ B.

Likewise, as Figure 5.3 suggests, the complement A of set A, expressed in terms

of its characteristic function, is the one-complement of the characteristic function of

1

R

1

R

1

(A ∪ B)(x)

R

A(x) B(x)

1 2 3 4 

A B

1 2 3 4 1 2 3 4 0 0 0 

A ∪ BA B

Figure 5.1 Intersection of sets represented in terms of their characteristic functions.

1

R

1

R

1
A ∪ B

R

A B

1 2 3 4 

A B

1 2 3 4 1 2 3 4 0 0 0

A(x) B(x) (A ∪ B)(x)

Figure 5.2 Union of two sets expressed in terms of their characteristic functions.

1

R

1 A

R

A

1 2 3 4 1 2 3 4 00

Figure 5.3 Complement of a set in terms of its characteristic function.
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A. For instance, if A ¼ fx 2 Rj1 � x � 3g, which is the same interval as discussed

before, then A ¼ fx 2 Rj4 < x < 1g, Figure 5.3.
In general, the characteristic function of the complement of a set A is given in the

form

AðxÞ ¼ 1� AðxÞ 8 x 2 X ð5:3Þ
One may anticipate that since sets are particular instances of fuzzy sets, the opera-

tions of intersection, union, and complement as previously defined should equally

extend to fuzzy sets. Indeed, when we use membership functions in expressions

(5.1)–(5.3), these formulas serve as definitions of intersection, union, and comple-

ment of fuzzy sets. An illustration of these operations is included in Figure 5.4.

Standard set and fuzzy set operations fulfill the basic properties as summarized

in Table 5.1.

Looking at Figures 5.3 and 5.4, however, we note that the laws of noncontradic-

tion and excluded middle are satisfied by sets but not by fuzzy sets when using the

operations shown in Table 5.2. Particularly worth noting is a violation of the

noncontradiction law once it shows the issue of fuzziness from the point of view

of the coexistence of a class and its complement, an issue we have already discussed

in Chapter 2. This coexistence is impossible in set theory and a contradiction in

conventional logic. Interestingly, if we consider a particular subnormal fuzzy set A

1   

X   

1   

X

1   

X

A B

1   2   3   4   

A

1   2   3   4 1   2   3   4   0   0   0   

B A

A ∩ B
A ∪ B

A

Figure 5.4 Operations on fuzzy sets realized with the use of min, max, and complement functions.

Table 5.1 Basic Properties of Set and Fuzzy Set Operations.

1. Commutativity A [ B ¼ B [ A

A \ B ¼ B \ A

2. Associativity A [ ðB [ CÞ ¼ ðA [ BÞ [ C
A \ ðB \ CÞ ¼ ðA \ BÞ \ C

3. Distributivity A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ
A \ ðB [ CÞ ¼ ðA \ BÞ [ ðA \ CÞ

4. Idempotency A [ A ¼ A

A \ A ¼ A

5. Boundary conditions A [ f ¼ A andA [ X ¼ X

A \ f ¼ f andA \ X ¼ A

6. Involution A ¼ A

7. Transitivity if A 	 B and B 	 C, then A 	 C
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whose membership function is constant and equal to 0.5 for all elements of the

universe, then using (5.1)–(5.3) we note that A ¼ A [ A ¼ A \ A ¼ A, a situation in

which there is no way to distinguish the fuzzy set from its complement and any fuzzy

set that results from standard operations with them. The value 0.5 is a crossover point

representing a balance between membership and nonmembership at which we attain

the highest level of fuzziness. We may visualize this fact geometrically as follows.

Let us consider a simple case in whichX ¼ fx1; x2g. Thus, the power set P(X) of
X is PðXÞ ¼ ff; fx1g; fx2g; fx1; x2gg; jPðXÞj ¼ 22 ¼ 4, and as shown in Figure 5.5,

the elements of P(X) lie at the corners of the unity square, the unit square is the set of

all fuzzy sets of X denoted by F(X). In the figure we recognize the complement of a

fuzzy set A as well as its intersection and union with A itself. A complement of any set

in F(X) is always symmetric to A along a diagonal. We note that A ¼ ð0:5; 0:5Þ is
located at the center of the square, a point at which

A ¼ A [ A ¼ A \ A ¼ A ð5:4Þ

This is a particular feature of the standard operations; they allow full coexistence of a

sets and its complement.

The crossover point value of 0.5 between membership and nonmembership is

where fuzziness is highest because a fuzzy set and its complement are indiscernible.

In fact, as we shall see next, there exists a general class of operators that are qualified

to act as intersection, union, and complement of fuzzy sets. Although for sets the

general operators produce the same result as the standard operators, this is not the

case with fuzzy sets. Therefore, (5.4) does not hold for any choice of intersection,

union, and complement operators.

Table 5.2 Noncontradiction and Excluded Middle for

Standard Operations.

Sets Fuzzy sets

8. Noncontradiction A \ A ¼ f A \ A 6¼ f

9. Excluded middle A [ A ¼ X A [ A 6¼ X

x1

x2

f {x1}

{x2}
{x1, x2}

A

x1

x2

f {x1}

{x2}
{x1, x2}

AA ∩

AA ∪

A
AA =

F(X) F(X)

1

X

A(x)

x1 x2

0.5

Figure 5.5 Geometric view of the standard operations with fuzzy sets.
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5.2 GENERIC REQUIREMENTS FOR OPERATIONS
ON FUZZY SETS

Operations on fuzzy sets concern manipulation of their membership functions.

Therefore, they are domain dependent, and different contexts may require their

different realizations. For instance, since operations provide ways to combine

information, they can be performed differently in image processing, control, and

diagnostic systems, for example. When contemplating the realization of operations

of intersection and union of fuzzy sets, we should require a satisfaction of the

following intuitively appealing properties:

(a) commutativity,

(b) associativity,

(c) monotonicity, and

(d) identity.

The last requirement of identity takes on a different form depending on the operation.

More specifically, in the case of intersection, we anticipate that an intersection of any

fuzzy set with the universe of discourse X should return this fuzzy set. For the union

operations, the identity implies that the union of any fuzzy set and an empty fuzy set

returns the fuzzy set.

Thus, any binary operator ½0; 1� � ½0; 1� ! ½0; 1� that satisfies the collection of

the requirements outlined above can be regarded as a potential candidate to realize

the intersection or union of fuzzy sets. Note also that identity acts as boundary

conditions meaning that when confining to sets, the above stated operations return the

same results as encountered in set theory. In general, idempotency is not required;

however, the realizations of union and intersection could be idempotent as happens

for the operations of minimum and maximum where (minða; aÞ ¼ a and

maxða; aÞ ¼ a).

5.3 TRIANGULAR NORMS

In the theory of fuzzy sets, triangular norms offer a general class of operators of

intersection and union. For instance, t-norms generalize intersection of fuzzy sets.

Given a t-norm, a dual operator called a t-conorm (or s-norm) can be derived using

the relationship x s y ¼ 1� ð1� xÞ t ð1� yÞ; 8 x; y 2 ½0; 1�, the De Morgan law

(Schweizer and Sklar, 1983), but t-conorm can also be described by an independent

axiomatic definition (Klement et al., 2000). Triangular conorms provide generic

models for the union of fuzzy sets.

5.3.1 Defining t-Norms

A triangular norm, t-norm for brief, is a binary operation t : ½0; 1� � ½0; 1� ! ½0; 1�
that satisfies the following properties:
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1. Commutativity: a t b ¼ b t a

2. Associativity: a t ðb t cÞ ¼ ða t bÞ t c
3. Monotonicity: if b � c, then a t b � a t c

4. Boundary conditions: a t 1 ¼ a

a t 0 ¼ 0

where a; b; c 2 ½0; 1�.
Let us elaborate on the meaning of these requirements vis-à-vis the use of t-norms as

models of operators of intersection of fuzzy sets. There is a one-to-one correspon-

dence between the general requirements outlined in the previous section and the

properties of t-norms. The first three reflect the general character of set operations.

Boundary conditions stress the fact all t-norms attain the same values at boundaries

of the unit square ½0; 1� � ½0; 1�. Thus, for sets, any t-norm produces the same result

that coincides with the one one could have expected in set theory when dealing with

intersection of sets, that is, A \ X ¼ A;A \ ? ¼ ? . Some commonly encountered

examples of t-norms include the following operations:

1. Minimum: a tm b ¼ minða; bÞ ¼ a ^ b

2. Product: a tp b ¼ ab

3. Lukasiewicz: a tl b ¼ max ðaþ b� 1; 0Þ

4. Drastic product: a td b ¼
a if b ¼ 1

b if a ¼ 1

0 otherwise

8

<

:

The plots of the operations of minimum(tm), product (tp), Lukasiewicz (tl), and

drastic product (td) operators are shown in Figure 5.6 together with a corresponding

example of their application to triangular fuzzy sets on the closed interval

½0; 8�;A ¼ ðx; 1; 3; 6Þ and B ¼ ðx; 2:5; 5; 7Þ. Triangular norms produce distinct

results and to know how they behave helps to choose operators for specific applica-

tions. For instance, minimum, product, and Lukasiewicz are continuous whereas

the drastic product is not. Minimum is idempotent whereas the remaining t-norms are

not. In contrart, when we choose the drastic product, A \ A ¼ f, and therefore

this realization of the intersection of fuzzy sets recovers the noncontradiction

property.

In general, t-norms cannot be linearly ordered. One can demonstrate that the min

(tm) t-norm is the largest t-norm, whereas the drastic product is the smallest one. They

form the lower and upper bounds of the t-norms in the following sense:

a td b � a t b � a tm b ¼ min ða; bÞ ð5:5Þ
In many applications, continuity of operations on fuzzy sets is a highly desirable

feature. We do not have too much confidence in operations if they produce substan-

tially different results if the values (membership grades) of arguments change

slightly. On the contrary, one should emphasize the importance of continuity: we

anticipate that small changes in the membership degrees of fuzzy sets A and B
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Figure 5.6 Examples of t-norms used in the realization of intersection of fuzzy sets A and B: (a) min,

(b) product, (c) Lukasiewicz, and (d) drastic product.
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produce small changes in the membership grades of the resulting intersection A \ B.

This is the case in many system modeling, optimization, control, decision-making,

and data analysis applications. Under such circumstances, the use of a drastic product

could be ruled out.

Since t-norms are monotonic and commutative, they are monotonic in both

arguments:

a1 t b1 � a2 t b2 whenever a1 � a2 and b1 � b2

Hence, a t-norm is continuous if and only if it is continuous in each argument

(Klement et al., 2000).

We say that a t-norm is Archimedean if it is continuous and 8 a 2
ð0; 1Þ; ða t aÞ < a. Furthermore, we say that an Archimedean t-norm is strict if it is

strictly monotonic on ð0; 1Þ � ð0; 1Þ. For instance, the product and Lukasiewicz

t-norms are Archimedean whereas the minimum and the drastic product are not.

Since t-norms are associative, without any misunderstanding we may use the

notation a2 ¼ a t a; a2 t a ¼ a3; . . . :; an�1t a ¼ an. A t-norm is nilpotent if an ¼ 0 and

a 6¼ 1, where n is a positive integer, eventually depending on the value of a. For

example, the Lukasiewicz t-norm is a nilpotent t-norm.

A general and detailed exposure to the subject of triangular norms and conorms,

especially their characterization and properties, is given in Klement et al. (2000) and

Jenei (2002, 2004).

5.3.2 Constructors of t-Norms

Often, various applications require different t-norms to attain domain context

demands, and methods to construct t-norms are of utmost importance. There are

three basic ways of forming new t-norms:

� construction of new t-norms on the basis of some given t-norms using

monotonic transformations;

� the use of addition and multiplication of real numbers together with functions

of one variable, called additive and multiplicative generators, respectively;

and

� construction of new t-norms from a family of given t-norms based on a

concept of a so-called ordinal sum.

Let us discuss these techniques in detail.

Monotonic Function Transformation

If t is a t-norm and h : ½0; 1� ! ½0; 1� is strictly increasing bijection, then the operator

thða; bÞ ¼ h�1ðtðhðaÞ; hðbÞÞÞ ð5:6Þ
is a t-norm. Let us recall that a bijection (bijective function) is a function that is both

injective (i.e., a one-to-onemapping ) and surjective (a function that maps the domain

of the function onto the range of the function).
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Essentially, this method rescales the original values of membership degrees by

regarding the function h as a scaling transformation. Constructor (5.6) preserves

continuity, the Archimedean property, and strictness. Figure 5.7 illustrates the case

when we choose hðxÞ ¼ x2 and apply this transformation to several t-norms, such as

Figure 5.7 Monotonic transformations of selected t-norms: (a) min, (b) product, (c) Lukasiewicz, and

(d) drastic product.
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tm, tp, tl, and td. As we see, tm and tp remain the same. Recall that tm is continuous and

tp Archimedean. In the last two examples, we see an effect of rescaling over the

original t-norms tl and td.

Additive and Multiplicative Generators

An additive generator of a t-norm is a continuous and strictly decreasing function

from [0,1] onto Rþ¼ ½0;/Þ with f ð1Þ ¼ 0, f : ½0; 1� ! ½0;/Þ. Given an additive

generator, we can construct any Archimedean t-norm as follows:

a tf b ¼ f�1ðf ðaÞ þ f ðbÞÞ ð5:7Þ

And, conversely, any Archimedean t-norm comes with its additive generator. The

t-norm is strict if and only if f ð0Þ ¼/ and nilpotent if and only if f ð0Þ </. Figure 5.8
illustrates the idea of additive generators.

For example, the product abð¼ a tp bÞ is an example of a strict Archimedean

t-norm. Its additive generator is obtained by solving the following functional

equation (recall that in functional equations, the unknown is just a function)

ab ¼ f�1ðf ðaÞ þ f ðbÞÞ:
We can verify that the function f ðxÞ ¼ � logðxÞ solves the functional equation. To

demonstrate this note that

f ðaÞ þ f ðbÞ ¼ � logðaÞ � logðbÞ ¼ �ðlogðaÞ þ logðbÞÞ ¼ � log ab

Therefore, f�1ðuÞ ¼ e�u and hence f�1ðf ðaÞ þ f ðbÞÞ ¼ elog ab ¼ ab. Actually, in this

case any function f ðxÞ ¼ �c logðcxÞ, with constant c > 0, is also an additive

generator. In general, we can note that additive generators are unique up to a positive

constant.

A multiplicative generator of a t-norm is a continuous and strictly increasing

function mapping [0,1] onto [0,1] with gð1Þ ¼ 1; g : ½0; 1� ! ½0; 1�. Given a multi-

plicative generator we can construct an Archimedean t-norm as follows:

a t b ¼ g�1ðgðaÞgðbÞÞ ð5:8Þ

R+   

f(b)

a b

f(a)

f(a) + f(b)

a t b 

f(x)

x1

Figure 5.8 Additive generators of t-norms.
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and, conversely, any Archimedean t-norm has a multiplicative generator. Figure 5.9

illustrates the idea of multiplicative generators. For instance, one can show that the t-

norm realized as product has a multiplicative generator in the form gðxÞ ¼ x2.

It is interesting to note that if we let gðxÞ ¼ e�f ðxÞ, then additive and multi-

plicative generators (5.7) and (5.8) produce the same t-norms, as it can be verified, for

example, with the generators of the product t-norm.

Ordinal Sums

Ordinal sum deals with a construction of new t-norms with the use of a family of

given t-norms. Ordinal sum joins arbitrary, appropriately transformed t-norms along

the diagonal of the unit square and takes the minimum otherwise.

Let I ¼ f½ak;bk�; k 2 Kg be a nonempty, countable family of pairwise disjoint

open subintervals of [0,1], and let t ¼ ftk; k 2 Kg be a family of the corresponding t-

norms. The ordinal sum of summands hak;bk; tki; k 2 K, denoted by

to ¼ ðhak;bk; tki; k 2 KÞ, is the function to : ½0; 1� � ½0; 1� ! ½0; 1� defined by

toða; b; I; tÞ ¼ ak þ ðbk � akÞtk
a� ak

bk � ak

;
b� ak

bk � ak

	 


; if a; b 2 ½ak;bk�
minða; bÞ; otherwise

8

<

:

ð5:9Þ

It can be shown that to is a t-norm (Klement et al., 2000). Moreover, any continuous t-

norm can be constructed as an ordinal sum of Archimedean t-norms (Jenei 2002).

Several methods to construct left-continuous triangular norms are provided in Jenei,

(2004).

Ordinal sum is a construct that accounts for the local properties of intersection

operators. As such, ordinal sums offer a substantial level of modeling flexibility by

capturing local properties of intersection of fuzzy sets depending upon the ranges of

membership grades to be combined. For instance, if we choose tp and tl, the ordinal

sum to¼ (h0.2, 0.4, tpi, h0.5, 0.7, tli) reads as follows (Fig. 5.10):

toða; bÞ ¼
0:2þ 5ða� 0:2Þðb� 0:2Þ; ifða; bÞ 2 ½0:2; 0:4�2

0:5þmaxðaþ b� 1:2; 0g; ifða; bÞ 2 ½0:5; 0:7�2

minða; bÞ; otherwise

8

>

<

>

:

g(b)

a b

g(a)

g(a)g(b)

a t b x1

1

Figure 5.9. Multiplicative generators of t-norms.
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5.4 TRIANGULAR CONORMS

Triangular conorms are functions s : ½0; 1� � ½0; 1� ! ½0; 1� that serve as generic

realizations of the union operator on fuzzy sets. Similarly as triangular norms,

conorms provide the highly desirable modeling flexibility needed to construct fuzzy

models.

5.4.1 Defining t-Conorms

Triangular conorms can be viewed as dual operators to the t-norms and as such,

explicitly defined with the use of De Morgan laws. We may characterize them in a

fully independent manner by providing the following definition.

A triangular conorm (s-norm) is a binary operation s : ½0; 1� � ½0; 1� ! ½0; 1� that
satisfies the following requirements:

1. Commutativity: a s b ¼ b s a

2. Associativity: a s ðb s cÞ ¼ ða s bÞsc
3. Monotonicity: if b � c, then a s b � a s c

4. Boundary conditions: a s 0 ¼ a

a s1 ¼ 1
where a; b; c 2 ½0; 1�

One can show that s : ½0; 1� � ½0; 1� ! ½0; 1� is a t-conorm if and only if there exists a

t-norm (dual t-norm) such that 8a; b 2 ½0; 1� we have

a s b ¼ 1� ð1� aÞ t ð1� bÞ ð5:10Þ

For the corresponding dual t-norm we have

a t b ¼ 1� ð1� aÞ s ð1� bÞ ð5:11Þ

Figure 5.10 Ordinal sum constructed with the use of two t-norms (a) 3D plot, and (b) contour plot.
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The duality expressed by (5.10) and (5.11) can be viewed as an alternative definition

of t-conorms. This duality allows us to deduce the properties of t-conorms on the

basis of the analogous properties of t-norms. Notice that after rewriting (5.10) and

(5.11), we obtain

ð1� aÞ t ð1� bÞ ¼ 1� a s b

ð1� aÞ s ð1� bÞ ¼ 1� a t b

These two relationships can be expressed symbolically as

A \ B ¼ A [ B

A [ B ¼ A \ B

that are nothing but the De Morgan laws.

The boundary conditions mean that all t-conorms behave similarly at the

boundary of the unit square ½0; 1� � ½0; 1�. Thus, for sets, any t-conorm returns the

same result as encountered in set theory.

A list of commonly used t-conorms includes the following:

Maximum: a sm b ¼ max ða; bÞ ¼ a _ b

Probabilistic sum: a sp b ¼ aþ b� ab

Lukasiewicz: a sl b ¼ min ðaþ b; 1Þ

Drastic sum: a sd b ¼
a; if b ¼ 0

b; if a ¼ 0

1; otherwise

8

<

:

The characteristics of the maximum(sm), probabilistic sum (sp), Lukasiewicz (sl), and

drastic sum (sd) operators are shown in Figure 5.11. We have included the union of

two triangular fuzzy sets defined in ½0; 8�;A ¼ ðx; 1; 3; 6Þ and B ¼ ðx; 2:5; 5; 7Þ.
As visible in Figure 5.11, maximum, probabilistic sum, and Lukasiewicz t-

conorm are continuous whereas the drastic sum is not. Maximum is idempotent

whereas any other t-conorms are not. On the contrary, when we choose the drastic

sum, the properties A [ A ¼ X and the excluded middle are satisfied.

As in the case of t-norms, t-conorms cannot be linearly ordered, but as Figure

5.11 suggests, the max (sm) t-conorn is the smallest, in the sense that it is a lower

bound for all t-conorms, whereas the drastic sum is the upper bound t-conorms:

maxða; bÞ ¼ a sm b � a s b � a sd b ð5:12Þ

As the drastic sum illustrates, t-conorms need not be continuous. Since t-conorms are

monotonic and commutative, they are monotonic in both arguments, that is,

a1 s b1 � a2 s b2 whenever a1 � a2 and b1 � b2

Therefore, t-conorm is continuous if and only if it is continuous in each argument

(Klement et al., 2000).
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Figure 5.11 Examples of t-conorms as unions of fuzzy sets: (a) max, (b) probabilistic sum, (c)

Lukasiewicz, and (d) drastic sum.
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A t-conorm is Archimedean if it is continuous and 8 a 2 ð0; 1Þ; ða s aÞ > a. An

Archimedean t-conorm is strict if it is strictly monotonic on ð0; 1Þ � ð0; 1Þ. For
instance, the probabilistic sum and Lukasiewicz t-conorms are Archimedean

whereas the maximum and the drastic sum are not.

Since t-conorms are associative we may denote a2 ¼ a s a; a2s a ¼ a3; . . . :;
an�1s a ¼ an. A t-conorm is nilpotent if an ¼ 1 and a 6¼ 1, where n is a positive

integer, eventually depending on a. A t-conorm is nilpotent if it is dual of a nilpotent

t-norm. For example, the Lukasiewicz t-norm is a nilpotent t-conorm.

5.4.2 Constructors of t-Conorms

The construction of t-conorms proceeds in a similar way as discussed for t-norms.

Again, three main categories of development methods are available. As before, given

their importance, we focus on continuous t-conorms. For details, refer to Nguyen and

Walker (1999), Klement et al. (2000), Jenei (2002, 2004).

Monotonic Function Transformation

If s is a t-conorm and h : ½0; 1� ! ½0; 1� is strictly increasing bijection, then the

operator

shða; bÞ ¼ h�1ðsðhðaÞ; hðbÞÞÞ ð5:13Þ
is a t-conorm.

The method rescales the original membership values using h as a scaling

transformation. Constructor (5.13) preserves continuity, the Archimedean property,

and strictness. Figure 5.12 illustrates the case when hðxÞ ¼ x2 and we use sm, sp, sl,

and sd. As we note, sm remains the same. Also, sm is continuous whereas sp is

Archimedean. The last three examples visualize the scaling effect over the original

s-norms sp, sl, and sd.

Additive and Multiplicative Generators

An additive generator of a given t-conorm is a continuous and strictly increasing

mapping [0,1] ontoRþ¼ ½0;/Þwith f ð0Þ ¼ 0; f : ½0; 1� ! ½0;/Þ. Given an additive
generator, we can construct any Archimedean t-conorm as follows:

a sf b ¼ f�1ðf ðaÞ þ f ðbÞÞÞ ð5:14Þ

Conversely, any Archimedean t-conorm comes with its additive generator. The

t-conorm is nilpotent if and only if f ð1Þ </. Figure 5.13 illustrates the idea of

additive generators.

For example, the probabilistic sum aþ b� ab ¼ a s b is an example of a strict

Archimedean t-conorm. Its additive generator is obtained by solving the following

functional equation:

aþ b� ab ¼ f�1½f ð1Þ ^ f ðaÞ þ f ðbÞ�
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One can verify that the function f ðxÞ ¼ � logð1� xÞ is a solution to this functional

equation. In fact, we have

f ðaÞ þ f ðbÞ ¼ � logð1� aÞ � logð1� bÞ ¼ �ðlogð1� aÞ þ logð1� bÞÞ
¼ � logð1� aÞð1� bÞ

Figure 5.12 Examples of monotonic transformation of t-conorms; hðxÞ ¼ x2: (a) max,

(b) probabilistic sum, (c) Lukasiewicz, and (d) drastic sum.
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Therefore, f�1ðuÞ ¼ 1� e�u and hence f�1ðf ðaÞ þ f ðbÞÞ ¼ 1� elogð1�aÞð1�bÞÞ

¼ 1� ð1� aÞð1� bÞ ¼ aþ b� ab. As before, the additive generators are unique

up to some positive constant.

A multiplicative generator of a t-conorm is a continuous and strictly decreasing

mapping [0,1] onto [0,1] with gð0Þ ¼ 1; g : ½0; 1� ! ½0; 1�. Given a multiplicative

generator, we can construct an Archimedean t-norm in the following way:

a t b ¼ g�1ðgðaÞgðbÞÞ ð5:15Þ
And, conversely, any Archimedean t-conorm has a multiplicative generator. The

t-conorm is nilpotent if and only if gð1Þ > 0 and is strict if gð1Þ ¼ 0 (Nguyen and

Walker, 1999). Figure 5.14 illustrates the idea of multiplicative generators. For

instance, tone can show that the probabilistic sum has gðxÞ ¼ 1� x as a multi-

plicative generator.

Also, if we let gðxÞ ¼ e�f ðxÞ, then additive and multiplicative generators (5.14)

and (5.15) produce the same t-conorms, as it can be verified, for example, with the

generators of the probabilistic sum.

Ordinal Sums

An ordinal sum involves a construction of new t-conorms on the basis of a family of

some given t-conorms. The construct is analogous to the one presented before for

t-norms. The only difference is that the regions outside the main diagonal along

R+   

f(b)

a b

f(a)

f(a) + f(b)

a s b 

f(x)

x1

Figure 5.13 Additive generator of t-conorms.

a s b 

g(b)

a b

g(a)

g(a)g(b)

g(x)

x1

1

Figure 5.14 An example of multiplicative generators of some t-conorm.

5.4 Triangular Conorms 117



which different t-conorms are located, we use the maximum operation instead of the

minimum operator used in the ordinal sum of t-norms.

Let I ¼ f½ak;bk�; k 2 Kg be a nonempty, countable family of pairwise disjoint

open subintervals of [0,1], and let s ¼ fsk; k 2 Kg be a family of the corresponding t-

conorms. Then the ordinal sum of summands hak;bk; ski; k 2 K, denoted

so ¼ ðhak;bk; ski; k 2 KÞ, is the function so : ½0; 1� � ½0; 1� ! ½0; 1� defined by

soða; b; I; sÞ ¼ ak þ ðbk � akÞsk
a� ak

bk � ak

;
b� ak

bk � ak

	 


; if a; b 2 ½ak;bk�
maxða; bÞ; otherwise

8

<

:

ð5:16Þ
It can be shown that so is a t-conorm (Klement et al., 2000). Moreover, any

continuous t-conorm can be constructed as an ordinal sum of Archimedean

t-conorms.

For instance, if we choose sp and sl, the ordinal sum so ¼ ðh0:2; 0:4; spi;
h0:5; 0:7; sliÞ is as follows:

soða; bÞ ¼
0:2þ ða� 0:2Þ þ ðb� 0:2Þ � 5ða� 0:2Þðb� 0:2Þ; if ða; bÞ 2 ½0:2; 0:4�2
0:5þ 0:2minð5ða� 0:2Þ þ 5ðb� 0:2Þ; 1g; if ða; bÞ 2 ½0:5; 0:7�2
maxða; bÞ; otherwise

8

<

:

The plots of the ordinal sum are shown in Figure 5.15.

5.5 TRIANGULAR NORMS AS A GENERAL CATEGORY
OF LOGICAL OPERATORS

Fuzzy propositions involve combination of given linguistic statements (or their

symbolic representations) such as in

1. temperature is low and humidity is mild and

2. velocity is high or noise level is low.

Figure 5.15 Ordinal sum using t-conorms: (a) 3D plot and (b) contour plot.
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The distinctive feature of these propositions is the use of logical operations^ (and),_
(or) to combine linguistic statements into propositions. For instance, in the first

example we have a conjunction (and, ^ ) of linguistic statements whereas in the

second there is a disjunction (or, _) of the statements. Given the truth values of each

statement, the question is how to determine the truth value of the composite state-

ment or, equivalently, the truth value of the proposition.

Let us denote by truthðPÞ ¼ p 2 ½0; 1�, the truth value of proposition P. The

value of p equal to 0 means that the proposition is false. The value of p equal to 1

states that P is true. Intermediate values p 2 ð0; 1Þ indicate partial truth of the

proposition. To compute the truth value of composite propositions coming in the

form of P ^ Q;P _ Q given the truth values p and q of its components, we have to

come up with operations that transforms truth values p and q into the corresponding

truth values p ^ q and p _ q. To make these operations meaningful, we require that

they satisfy some basic requirements. For instance, we require that p ^ q and q ^ p

(similarly, p _ q and q _ p ) produce the same truth values. Likewise, we require that

the truth value of (p ^ q) ^r is the same as the following combination p ^ ðq ^ rÞ. In
other words, the conjunction and disjunction operations are to be commutative and

associative. Also, it seems natural that when the truth values of an individual

statement increase, the truth values of their combinations also increase. This brings

the requirement of monotonicity. Moreover, if P is absolutely false, p ¼ 0, then

P ^ Q should also be false no matter what the truth value of Q is. Furthermore, the

truth value of P _ Q should coincide with the truth value ofQ. On the contrary, if P is

absolutely true, p ¼ 1, then the truth value of P ^ Q should coincide with the truth

value ofQ, while P _ Q should also be true. As we have already discussed, triangular

norm and conorm are the general families of logic connectives that comply with these

requirements. Triangular norms provide a general category of logical connectives in

the sense that t-norms are used to model conjunction operators while t-conorms serve

as models of disjunctions.

Let L ¼ fP;Q; . . .g be a set of single (atomic) statements P, Q,.. and truth:

L! ½0; 1� a function that assigns truth values p; q; . . . 2 ½0; 1� to each element of L.

Then we have

truthðP andQÞ � truth ðP ^ QÞ ! p ^ q ¼ p t q

truth ðP orQÞ � truth ðP _ QÞ ! p _ q ¼ p s q

Table 5.3 includes examples of truth values for P;Q;P ^ Q, and P _ Q, when we

selected the min and product t-norms, and the max and probabilistic sum t-conorms,

respectively. For p; q 2 f0; 1g, the results coincide with the classic interpretation of

conjunction and disjunction for any choice of the triangular norm and conorm. The

differences are present when p; q 2 ð0; 1Þ.
A point worth noting here concerns the interpretation of set operations in terms

of logical connectives. By being supported by the isomorphism between set theory

and propositional two-valued logic, the intersection and union can be identified with

conjunction and disjunction, respectively. This can also be realized with triangular

norms viewed as general conjunctive and disjunctive connectives within the
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framework of multivalued logic (Klir and Yuan, 1995). Triangular norms also play a

key role in different fuzzy logics (Klement and Navara, 1999).

Given a continuous t-norm t, let us define the following w operator:

aw b ¼ sup fc 2 ½0; 1�ja t c � bg; for all a; b 2 ½0; 1�
This operation can be interpreted as an implication induced by some t-norm,

aw b ¼ a) b

and therefore it is, like implication, an inclusion relation. The operator w generalizes

the classic implication. As Table 5.4 shows, the two-valued implication arises as a

special case of the w operator in case when a; b 2 f0; 1g.
Note that a w bða) bÞ, returns 1 whenever a � b. If we interpret these two truth

values as membership degrees, we conclude that a w bmodels a multivalued inclusion

relationship (viz. values of a higher than b produce lower values of the result).

5.6 AGGREGATION OPERATIONS

Several fuzzy sets can be combined together (aggregated) thus leading to a single

fuzzy set forming the result of such an aggregation operation. For instance, when

we compute intersection and union of fuzzy sets, the result is a fuzzy set whose

membership function captures information conveyed by the original fuzzy sets. This

fact suggests a general view of aggregation of fuzzy sets as certain transformations

performed on their membership functions. In general, we encounter a wealth of

aggregation operations (Dubois and Prade, 1985; Bouchon-Meunier, 1998; Calvo

et al., 2002; Dubois and Prade, 2004).

Table 5.3 Triangular Norms as Generalized Logical Connectives.

p q min(p, q) max( p, q) pq pþ q� pq

1 1 1 1 1 1

1 0 0 1 0 1

0 1 0 1 0 1

0 0 0 0 0 0

0.2 0.5 0.2 0.5 0.1 0.6

0.5 0.8 0.5 0.8 0.4 0.9

0.8 0.7 0.7 0.8 0.56 0.94

Table 5.4 w Operator in Case of Boolean Values of Its

Arguments.

a b a) b aw b

0 0 1 1

0 1 1 1

1 0 0 0

1 1 1 1
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Formally, an aggregation operation is a n-ary function g : ½0; 1�n ! ½0; 1� satis-
fying the following requirements:

1. Monotonicity gðx1;x2; . . . ;xnÞ � gðy1;y2; . . . ;ynÞ if xi > yi

2. Boundary conditions gð0; 0; . . . ::; 0Þ ¼ 0

gð1; 1; . . . ::; 1Þ ¼ 1

An element e 2 ½0; 1� is called a neutral element of the aggregation operation g, and

an element l 2 ½0; 1� is called an annihilator (absorbing element) of the aggregation

operation g if for each i ¼ 1; 2; . . . ; n; n � 2 and for all x1; x2; . . . ;
xi�1; xiþ1 . . . :; xn 2 ½0; 1� we have

1. gðx1; x2; . . . ; xi�1; e; xiþ1 . . . :; xnÞ ¼ gðx1; x2; . . . ; xi�1; xiþ1 . . . :; xnÞ
2. gðx1; x2; . . . ; xi�1; l; xiþ1 . . . :; xnÞ ¼ l

Since triangular norms and conorms are monotonic, associative, and satisfy the

boundary conditions, they provide a wide class of associative aggregation operations

whose neutral elements are equal to 1 and 0, respectively. We are, however, not

restricted to those as the only available alternatives.

5.6.1 Averaging Operations

In addition to monotonicity and the satisfaction of the boundary conditions, aver-

aging operations are idempotent and commutative. They can be described in terms of

the generalized mean (Dyckhoff and Pedrycz, 1984)

gðx1; x2; . . . ; xnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1
ðxiÞpp

s

; p 2 R; p 6¼ 0:

Interestingly, generalized mean subsumes some well-known cases of averages such

as

p ¼ 1 gðx1; x2; . . . ; xnÞ ¼
1

n

X

n

i¼1
xi arithmetic mean

p! 0 gðx1; x2; . . . ; xnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

Y

n

i¼1
xi

n

s

geometric mean

p ¼ �1 gðx1; x2; . . . ; xnÞ ¼
n

P

n

i¼1
1=xi

harmonic mean

p! � / gðx1; x2; . . . ; xnÞ ¼ minðx1; x2; . . . ; xnÞ minimum

p!/ gðx1; x2; . . . ; xnÞ ¼ maxðx1; x2; . . . ; xnÞ maximum
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The following containment relationship holds:

minðx1; x2; . . . ; xnÞ � gðx1; x2; . . . ; xnÞ � maxðx1; x2; . . . ; xnÞ ð5:17Þ
Therefore, generalized means range over the values not being covered by triangular

norms and conorms. An illustration of the arithmetic, geometric, and harmonic

means is presented in Figure 5.16.

0 1 2 3 4 5 7 8
0

0.2

0.4

0.6

0.8

1

1.2

x

A B

(a)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

x

A B

(b)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

x

A B

(c)

Figure 5.16 Examples of (a) arithmetic, (b) geometric, and (c) harmonic mean for two arguments.
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5.6.2 Ordered Weighted Averaging Operations

Ordered weighted averaging (OWA) is a weighted sum whose arguments are ordered

(Yager, 1988). Let w ¼ ½w1;w2; . . .wn�;wi 2 ½0; 1�, be weights such that

X

n

i¼1
wi ¼ 1

Let a sequence of membership values fAðxiÞg be ordered as follows:

Aðx1Þ � Aðx2Þ � . . . � AðxnÞ

Then, a family of OWA(A, w) is defined as

OWAðA;wÞ ¼
X

n

i¼1
wiAðxiÞ ð5:18Þ

By choosing certain forms of w, we can show that OWA includes several special

cases of aggregation operators studied before:

1. if w ¼ ½1; 0; . . . ; 0�, then OWA(A;wÞ ¼ minðAðx1Þ;Aðx2Þ; . . . :;AðxnÞÞ
2. if w ¼ ½0; 0; . . . ; 1�, then OWA(A;wÞ ¼ maxðAðx1Þ;Aðx2Þ; . . . :;AðxnÞÞ
3. if w ¼ ½1=n; ; 1=n�, then OWAðA;wÞ ¼ 1

n

P

n

i¼1
AðxiÞ, which is the arithmetic

mean

It is easy to show that OWA is a continuous, symmetric, and idempotent operator.

Varying the values of the weights wi results in aggregation values located in-between

between min and max,

minðAðx1Þ;Aðx2Þ; . . . ;AðxnÞÞ � OWAðA;wÞ � maxðAðx1Þ;Aðx2Þ; . . . ;AðxnÞÞ
OWA behaves as a compensatory operator, similar to the generalized mean.

Figure 5.17 illustrates the OWA operator. An illustration of the characteristics of

the OWA is included in Figure 5.17.

5.6.3 Uninorms and Nullnorms

Triangular norms provide one of the possible ways to aggregate membership grades.

By definition, the identity elements are 1 (t-norms) and 0 (t-conorm). When used in

the aggregation operations, these elements do not affect the result of aggregation

(i.e., at1 ¼ a and at aso ¼ a). It can be shown that triangular norms are monotonic

when dealing with the number of its arguments (Yager, 1993; Fodor et al., 1997), that

is,

a1 t a2 t . . . ::t an � a1 t a2 t . . . ::t an t anþ1

a1 sa2 s . . . ::s an � a1 s a2s . . . ::s an s anþ1
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that means that increasing the number of elements in the t-norm aggregation

does not increase the result of the aggregation. Expanding the number of

arguments in the t-conorm aggregation does not decrease the result of this

aggregation.

Uninorms unify and generalize triangular norms by allowing the identity

element to be any number in the unit interval, that is, e 2 ð0; 1Þ. In this sense,

uninorms become t-norms when e ¼ 1 and t-conorms when e ¼ 0. They exhibit

some intermediate characteristics for all remaining values of e. Therefore, uninorms

share the same properties as triangular norms with the exception of the identity

(Yager and Rybalov, 1996).
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Figure 5.17 Characteristics of OWA operator for selected combinations of the values of the weight

vector w: (a) w1 ¼ 0:8;w2 ¼ 0:2, and (b) w1 ¼ 0:2;w2 ¼ 0:8.
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More formally, a uninorm is a binary operation u : ½0; 1� � ½0; 1� ! ½0; 1� that
satisfies the following requirements:

1. Commutativity: a u b ¼ b u a

2. Associativity: a u ðb u cÞ ¼ ða u bÞ u c
3. Monotonicity: if b � c, then a u b � a u c

4. Identity: a u e ¼ a; 8 a 2 ½0; 1�

where a; b; c 2 ½0; 1�.
In Fodor et al. (1997) and Klement et al. (2000), presented were a number of

interesting results on uninorms.

1. Let u be a uninorm with neutral element e 2 ð0; 1Þ and

tu; su : ½0; 1� � ½0; 1� ! ½0; 1� be functions such that 8 a; b 2 ½0; 1�,

a tu b ¼
ðeaÞuðebÞ

e
ð5:19Þ

a su b ¼
ðeþ ð1� eÞaÞuðeþ ð1� eÞbÞ � e

1� e
ð5:20Þ

Thus, tu and su are t-norm and t-conorm, respectively.

2. If a � e � b or a � e � b, then minða; bÞ � a u b � maxða; bÞ.
This result shows that on the squares ½0; e� � ½e; 1� and ½e; 1� � ½0; e�, unin-
orms act as a compensatory aggregators similar to generalized means, see

(5.17). Uninorms behave as t-norms in the square ½0; e� � ½0; e� and as

t-conorms in ½e; 1� � ½e; 1�.
3. For any uninorm u with e 2 ð0; 1Þ, we have

a uw b � a u b � a us b

where uw and us are the weakest and strongest uninorm, respectively.

a uw b ¼

0; if 0 � a; b � e

maxða; bÞ; if e � a; b � 1

minða; bÞ; otherwise

8

>

>

<

>

>

:

a us b ¼

minða; bÞ; if 0 � a; b � e

1; if e � a; b � 1

maxða; bÞ; otherwise

8

>

>

<

>

>

:
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4. Conjunctive uc and disjuntive ud forms of uninorms can be obtained in terms

of triangular norms as follows:

(a) If (0 u 1Þ ¼ 0, then

a uc b ¼
e

a

e

� �

t
b

e

	 


; if 0 � a; b � e

eþ ð1� eÞ a� e

1� e

� �

s
b� e

1� e

	 


; if e � a; b � 1

minða; bÞ; otherwise

8

>

>

>

>

<

>

>

>

>

:

(b) If ð0 u 1Þ ¼ 1, then

a ud b ¼
e

a

e

� �

t
b

e

	 


; if 0 � a; b � e

eþ ð1� eÞ a� e

1� e

� �

s
b� e

1� e

	 


; if e � a; b � 1

maxða; bÞ; otherwise

8

>

>

>

>

<

>

>

>

>

:

where t is a t-norm and s is a t-conorm. Figure 5.18 depicts several examples of

conjunctive and disjunctive uninorms with e ¼ 0:5 when using the product and

probabilistic sum.

Figure 5.18 Examples of conjunctive and disjunctive uninorms; see detailed description in the text.
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5. A uninorm is Archimedian if it is almost continuous (i.e., continuous on

½0; 1� � ½0; 1� except for {(0,1), (1,0)}) and satisfies

(a) a u a < a for 0 < a < e and

(b) a u a > a for e < a < 1.

It can be shown (Fodor et al., 1997) that a uninorm is Archimedian if and only

if the underlying triangular norms in (5.19) and (5.20) are Archimedian.

6. Let f be a strictly increasing continuous function f : ½0; 1� ! ð� /;þ /Þ
with f ðeÞ ¼ 0. Then there exists an almost continuous uninorm uf such that

auf b ¼ f�1ðf ðaÞ þ f ðbÞÞ
Moreover, if gðxÞ ¼ ef ðxÞ, then there exists an almost continuous uninorm ug
such that

a ug b ¼ g�1ðgðaÞgðbÞÞ
Functions f and g are called the additive and multiplicative generators of

uninorm uf and ug, respectively.

7. Finally, pseudo-continuous uninorms on [0,1], the ones which are contin-

uous in [0,1] except in the set fða; bÞja ¼ e or b ¼ eg, can be expressed in

terms of conjunctive and disjunctive ordinal sums (Fodor et al. 1997) using

Archimedian triangular norms as follows.

Let i ¼ f½ak;bk�; k 2 Kg and be a nonempty, countable family of pairwise disjoint

open subintervals of ½0; 1�; i1 ¼ f½ak;bk½2 ijbk � eg, i2 ¼ f½ak;bk� 2 ijak � eg; t ¼
ftk; k 2 Kg, and s ¼ fsk; k 2 Kg a family of corresponding t-norms and t-conorms.

The conjunctive ordinal sum of summands hak;bk; tk; ski, k 2 K, denoted

uco ¼ ðhak;bk; tk; ski; k 2 KÞ, is the function uco : ½0; 1� � ½0; 1� ! ½0; 1� defined by

ucoða; b; i; t; sÞ ¼

ak þ ðbk � akÞtk
a� ak

bk � ak

;
b� ak

bk � ak

	 


; if a; b 2 ½ak; bk� 2 i1

ak þ ðbk � akÞsk
a� ak

bk � ak

;
b� ak

bk � ak

	 


; if a; b 2 ½ak; bk� 2 i2

maxða; bÞ; if a; b =2 ½ak; bk� and a; b � e

minða; bÞ; otherwise

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Similarly, the conjunctive ordinal sum of summands hak;bk; tk; ski; k 2 K, denoted

udo ¼ ðhak;bk; tk; ski; k 2 KÞ, is the function udo : ½0; 1� � ½0; 1� ! ½0; 1� defined in

the following manner:

udoða; b; i; t; sÞ ¼

ak þ ðbk � akÞtk
a� ak

bk � ak

;
b� ak

bk � ak

	 


; if a; b 2 ½ak; bkÞ 2 i1

ak þ ðbk � akÞsk
a� ak

bk � ak

;
b� ak

bk � ak

	 


; if a; b 2 ½ak; bkÞ 2 i2

minða; bÞ; if a; b =2 ½ak; bkÞ and a; b � e

maxða; bÞ; otherwise

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:
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As Figure 5.18 suggests, there is no uninorm that is continuous (Klement et al., 2000)

on the whole unit square.

Nullnorms (Calvo et al., 2001) are another way of generalization of triangular

norms. Similarly as it was in the case of uninorms, in nullnorms we relax an

assumption about the values of the identity element e 2 ð0; 1Þ. They become t-norms

when e ¼ 0, and t-conorms when e ¼ 1.

Formally, a nullnorm is a binary operation v : ½0; 1� � ½0; 1� ! ½0; 1� that satisfies
the following requirements:

1. Commutativity: a v b ¼ b v a

2. Associativity: a vðb v cÞ ¼ ða v bÞv c
3. Monotonicity: if b � c, then a v b � a v c

4. Absorbing element ða v eÞ ¼ e; 8 a 2 ½0; 1�
5. Boundary conditions: a v 0 ¼ a; 8 a 2 ½0; e� and a v 1 ¼ a; 8 a 2 ½e; 1�

where a; b; c 2 ½0; 1�.
We can express nullnorms with its absorbing element (annihilator) e in terms of

some t-norm and t-conorm

a tv b ¼
ðeþ ð1� eÞaÞvðeþ ð1� eÞbÞ � e

1� e

a sv b ¼
ðeaÞvðebÞ

e

Thus, as Figure 5.19 illustrates, nullnorms behave as t-conorms in ½0; e� � ½0; e�,
exhibit t-norms characteristics in ½e; 1� � ½e; 1�, and assume a constant value e in the

rest of the unit square.

5.6.4 Symmetric Sums

Symmetric sums provide yet another alternative to aggregate membership values.

Figure 5.19 3D and contour plots of nullnorm ðe ¼ 0:5, t-conorm: maximum., t-norm: minimum).
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They are n-ary functions such that, in addition to fulfilling boundary conditions and

monotonicitiy, they are continuous, commutative, and auto-dual. We say that a

symmetric sum ss is auto-dual if, for all ai 2 ½0; 1�, we have

ssða1; a2; . . . ; anÞ ¼ 1� ssð1� a1; 1� a2; . . . ; 1� anÞ
It can be shown (Dubois and Prade, 1980) that any symmetric sum can be represented

in the form

ssða1; a2; . . . ; anÞ ¼ 1þ f ð1� a1; 1� a2; . . . ; 1� anÞ
f ða1; a2; . . . anÞ

� �1

where f is the generator, namely any increasing continuous function with

f ð0; 0; . . . ; 0Þ ¼ 0. Figure 5.20 shows an example of the symmetric sum ssða; bÞ
when choosing f ða; bÞ ¼ a2 þ b2 and triangular fuzzy sets, respectively.

5.6.5 Compensatory Operations

Set-theoretic operations or their corresponding logic operations may not fit well

experimental data (Greco and Rocha, 1984). For instance, minimum has been shown

not to model well intersection (and) and conjunction (or), whereas product appeared

to be very conservative (Zimmermann and Zysno, 1980). Quite often, experimental

results may suggest considering a sort of intermediate style of aggregation of fuzzy

sets in which we consider combination of and and or type of combination of

membership grades. For instance, introducing a compensation factor g 2 ½0; 1�
indicating a ‘‘position’’ of the actual operator somewhere in between some t-norm

and t-conorm, we may consider the following compensatory operations:

a� b ¼ ða t bÞ1�gða s bÞg compensatory product

a b ¼ ð1� gÞða t bÞ þ gða s bÞ compensatory sum
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Figure 5.20 Plots of the symmetric sum.
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where a; b 2 ½0; 1�. For instance, Figure 5.21 shows the compensation effect of such

compensatory operators when choosing g ¼ 0:5 and implementing the t-norm and t-

conorm as the minimum and maximum operator, respectively.

5.7 FUZZY MEASURE AND INTEGRAL

Fuzzy measure and the related concept of a fuzzy integral give rise to another class of

aggregation operators. Fuzzy measure provides a way to handle a type of uncertainty

that results from information insufficiency and is substantially different from fuzzi-

ness being viewed as lack of sharp boundaries (see the historical notes of Chapter 2).

To stress the essence of the concept, in our investigations we focus on a finite case. A;

detailed treatment of the subject can be found in Wang and Klir (1992).

Given a finite universe X and a nonempty family V of subsets of X, a fuzzy

measure is a set function g : V! ½0; 1� that satisfies
1. gðfÞ ¼ 0 and gðXÞ ¼ 1; boundary conditions.

2. If A 	 B, then gðAÞ � gðBÞ; monotonicity:

Fuzzy measures come with an interesting interpretation in the context of sensor

fusion and system diagnostics. For instance, consider an autonomous vehicle

Figure 5.21 Plots of characteristics of compensatory operations: (a) compensatory product and

(b) compensatory sum.
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operating in an unknown environment. To safely navigate in such an environment,

the vehicle needs a suite of sensors to detect obstacles, identify surface of terrain, and

collect other information for navigational purposes. When viewed collectively,

sensors provide evidence that help make suitable decisions as to path planning and

current navigation. Sensor information is rarely precise, and some uncertainty

always remains. A way to handle uncertainty is to assign a value (confidence

measure) to each possible set of sensor readings. Within this setting, the fundamental

conditions of fuzzy measures come with a straightforward interpretation. If there are

no readings of sensors available, our confidence to make decision is zero, that is,

gðfÞ ¼ 0. If the readings of all sensors are available, then gðXÞ ¼ 1. The mono-

tonicity property is also quite appealing: the more sensors become available to us, the

higher the confidence about the state of the environment.

Although the definition of the fuzzy measure presented above is conceptually

sound, it is not fully operational. For instance, it does not tell us how to compute

fuzzy measures for two disjoint sets whose fuzzy measures gðAÞ and gðBÞ have been
provided. A way to alleviate this shortcoming is a l-fuzzy measure (Sugeno, 1974)

gl. We will be also using a shorthand notation g if this does not produce any

misunderstanding. Given two disjoint sets A and B;A \ B ¼ f, the fuzzy measure

of their union, gðA [ BÞ is computed as follows:

gðA [ BÞ ¼ gðAÞ þ gðBÞ þ lgðAÞgðBÞ; l > �1 ð5:21Þ

The parameter l present in the above expression is used to quantify interaction

between the sets that are combined. Some particular cases are worth distinguishing.

1. If l ¼ 0, then gðA [ BÞ ¼ gðAÞ þ gðBÞ. Here the fuzzy measure reduces to an

additive measure.

2. If l > 0, then gðA [ BÞ � gðAÞ þ gðBÞ. The fuzzy measure is super-additive

and quantifies a synergy between A and B. In more descriptive way, we say

that an evidence associated with the union of two sources of information

(A and B) is greater than the sum of the evidences of the individual sources

when being treated separately.

3. If l< 0, then gðA [ BÞ � gðAÞ þ gðBÞ. The fuzzy measure becomes

sub-additive We say that the two sources of evidence are in competition

or are redundant, resulting in the union of evidences being less than the

sum of the individual evidences.

In general, the determination of l is obtained by considering the boundary condition

of the fuzzy measure, that is, gðXÞ ¼ 1; see Pedrycz and Gomide (1998) for a

detailed discussion.

Now, let (X, V) be a measurable space, that is, a pair consisting of X and V, a

s-algebra of X. Recall that s-algebra is concerned with a family of subsets of X

that is closed under countable union and complement, that is, if A and B are

members of the family, then their union and complement are also members of the

family.
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Let h : X! ½0; 1� be aV-measurable function. The fuzzy integral of h computed

with respect to the fuzzy measure g over A is expressed as

ð

A

hðxÞ � gðÞ ¼ sup
a2½0;1�

fmin½a; gðA \ HaÞ�g ð5:22Þ

where Ha denotes a subset of X for which hðxÞ assumes values no lower than a,
Ha ¼ fxjhðxÞ � ag. In this sense, regarding h as some fuzzy set (membership

function), Ha is it’s a-cut.
In the context of the autonomous navigation, if g describes the relevance of the

individual sources of information (sensors) collected so far and h denotes the results

the sensors have reported, then the fuzzy integral can be interpreted as a nonlinear

aggregation of the readings of the sensors. In particular, if A ¼ X then we are

concerned with integration of h with respect to the fuzzy measure.

The computing of fuzzy integral is significantly simplified when we consider

finite universe X ¼ fx1; x2; . . . ; xng, the one that is of interest here. Let us also

assume that the following sequence of inequalities hold:

hðx1Þ � hðx2Þ � . . . hðxnÞ

Notice that this assumption does not limit the generality of the construct since its

satiafaction requires a straight rearrangement of the elements of xi so that the above

inequalities are satisfied.

Let us now define the following sequence of nested sets.

A1 ¼ fx1g;A2 ¼ fx1; x2g . . . :Ap ¼ fx1; x2; . . . ; xpg; . . . :;An ¼ fx1; x2; . . . ; xng ¼ X:

In virtue of the monotonicity property of the fuzzy measure, we have

gðA1Þ � . . . � gðApÞ � . . . � gðAnÞ ¼ 1

The calculations of the fuzzy integral described by (5.22) is realized through the

standard max-min composition applied to the two sequences of membership values,

that is, fhðxiÞg and fgðAiÞg:
ð

hðxÞ � gðÞ ¼ max
i¼1;...;n

fmin½hðxiÞ; gðAiÞ�g ð5:23Þ

As a continuation of the example, let us consider five sensors of the autonomous

vehicle, that is, X ¼ fx1; x2; . . . ; x5g. The quality of information generated by each

sensor is expressed by the values of the fuzzy measure specified for each xi; gðfxigÞ.
The current readings of the sensors are hðx1Þ ¼ 0:1; hðx2Þ ¼ 0:4; hðx3Þ ¼ 0:3; hðx4Þ
¼ 0:7; and hðx5Þ ¼ 0:05. After the rearrangement of these values, we get

fhðxiÞg ¼ f0:7; 0:4; 0:3; 0:1; 0:05g. Given the values of gðfxigÞ, the fuzzy measures

computed over the corresponding nested sets Ai produce the values

gðA1Þ ¼ 0:210; gðA2Þ ¼ 0:492; gðA3Þ ¼ 0:520; gðA4Þ¼ 0:833, and gðA5Þ ¼ 1. For
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the details of this computing, refer to Exercise 9 at the end of this chapter. Inserting

the corresponding values of gðAiÞ and hðxiÞ into (5.23), we obtain

minðhðx1Þ; gðA1ÞÞ ¼ 0:21,

minðhðx2Þ; gðA2ÞÞ ¼ 0:40,

minðhðx3Þ; gðA3ÞÞ ¼ 0:30,

minðhðx4Þ; gðA4ÞÞ ¼ 0:10,

minðhðx5Þ; gðA5ÞÞ ¼ 0:05.

Hence, the maximum taken over the partial results is equal to

max f0:21; 0:4; 0:3; 0:1; 0:05g ¼ 0:40, see also Figure 5.22.

We can envision some possible generalizations of the generic definition of the

fuzzy integral (5.23). The one that is quite straightforward concerns a replacement of

the min operation by any t-norm:
ð

hðxÞ � gðÞ ¼ max
i¼1;:::;n

fhðxiÞtgðAiÞg ð5:24Þ

The Choquet integral (1953) is another concept that closely relates to the fuzzy

measure. It is defined as follows:

ðChÞ
ð

f � g ¼
X

n

i¼1
fhðxiÞ � hðxiþ1Þ�gðAiÞ; hðxnþ1Þ ¼ 0 ð5:25Þ

For instance, using the same values of the fuzzy measure and the same function h to

be integrated as used in the previous example, we obtain

ðChÞ
ð

f � g ¼ ð0:7� 0:4Þ0:21Þ þ ð0:4� 0:3Þ0:492þ ð0:3� 0:1Þ0:520

þð0:1� 0:005Þ0:833þ ð0:05� 0Þ1:0 ¼ 0:3079
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Figure 5.22 Computing the fuzzy integral.
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In contrast with the Sugeno fuzzy integral (5.23), the Choquet integral (5.25) is more

intuitive and coincides with our standard understanding of usual notion of integral.

Primary applications of fuzzy measures and integrals include computer vision,

prediction, assessment of human reliability, and multi-attribute decision-making. An

overview of aggregation operators emphasizing application-related issues are given

in Torra (2005).

5.8 NEGATIONS

Contrary to the set-theoretic (logic) operations discussed so far, negations are unary

(single-argument) operations whose purpose is to generalize the standard notion of

complement, that is, in the sense of ’’one-complement.’’ In general, negations are

functions N : ½0; 1� ! ½0; 1� that satisfy the following conditions:

1. Monotonicity: N is nonincreasing

2. Boundary conditions: Nð0Þ ¼ 1 and Nð1Þ ¼ 0.

Further conditions may be required; the ones deemed essential are continuity and

involution.

3. Continuity: N is a continuous function.

4. Involution: NðNðxÞÞ ¼ x; 8 x 2 ½0; 1�.
An example of a negation operation is the threshold function with a 2 ½0; 1�

NðxÞ ¼ 1; if x < a

0; if x � a

�

It is monotonic, satisfies the boundary conditions but is not involutive. Further

examples include

NðxÞ ¼
1 if x ¼ 0

0 if x > 0

(

NðxÞ ¼ 1� x

1þ lx
; l 2 ð�1;1Þ; Sugeno

NðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xw
w
p

; w 2 ð0;1Þ; Yager

The last two examples are involutive. For l ¼ 0 andw ¼ 1, they become the standard

complement function, NðxÞ ¼ 1� x, Figure 5.22.

A formal system of logic operations formed by triangular norms and negations

(t; s;N) involves a t-norm and a t-conorm dual with respect toN, that is, the triangular

norms are such that 8 x; y 2 ½0; 1�;

x s y ¼ NðNðxÞ t NðyÞÞ
x t y ¼ NðNðxÞ s NðyÞ:

Examples of (t; s;N) systems include
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1. x t y ¼ min ðx; yÞ

x s y ¼ maxðx; yÞ
NðxÞ ¼ 1� x:

2. x t y ¼ max 0;
xþ y� 1þ lxy

1þ l

	 


x sy ¼ minð1; xþ y� 1þ lxyÞ

NðxÞ ¼ 1� x

1þ lx
:

5.9 CONCLUSIONS

Operations involving membership values are behind operations involving fuzzy sets.

These include standard intersection, union, and complement and their generalization

via triangular norms and negations. The concepts of ordinal sum, uninorm, and

nullnorm put triangular norms within a fairly general framework to operate with

fuzzy sets. Besides set operations, triangular norms also provide a mechanism for

information fusion when interpreted as aggregation operators. In this sense, general-

ized means and ordered weight average extend aggregation operations once they

cover values between the lower and upper bounds identified by triangular norms.

Fuzzy measures and integrals give a distinct treatment for aggregation.These

operations have been introduced and discussed to provide a sense of their potential

and flexibility in applications.

HISTORICAL NOTES

Triangular norms, as introduced by Menger (1942), are constructs originally devel-

oped in the setting of probabilistic metric spaces with the purpose to generalize the

triangle inequality (if lengths of a triangle sides are x; y, and z, then x � yþ z). Their
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Figure 5.22 Examples of negations: Sugeno and Yager.
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role in fuzzy sets is profound as they help address a semantic diversity of logic

operators in fuzzy sets. While the lattice (minimum and maximum) operators were

introduced at the time of inception of fuzzy sets, it became clear that those are only

one possibility of realization of union and intersection of fuzzy sets. There have been

several experimental studies reported by Zimmermann and Zysno (1980) that con-

firmed a need for various aggregation operations.

Uninorms appeared as a generalization of a class of aggregation operators called

monotonic identity commutative aggregation (MICA) operators introduced by Yager

(1994a) where it was shown that triangular norms are particular instances of MICA.

Yager (1994b) also suggested an approach for weighted min and max aggregation,

median aggregation and developed a procedure to carry out aggregation on ordinal

scales(Kelman and Yoga, 1995).

EXERCISES AND PROBLEMS

1. Consider two fuzzy sets with triangular membership functions Aðx; 1; 2; 3Þ and Bðx; 2; 3; 4Þ.
(a) Find their intersection and union, and express analytically the resulting membership

functions.

(b) Find the complements of A and B and compute their intersection and union with the

original fuzzy sets using the Lukasiewicz triangular norms.

2. Show that the drastic product and drastic sum satisfy the law of excludedmiddle and the law

of contradiction. Are they related via De Morgan law?

3. Show that a function s : ½0; 1� � ½0; 1� ! ½0; 1� is a t-conorm if and only if there exists a t-

norm t such that for all a; b 2 ½0; 1�; a s b ¼ 1� ð1� aÞt tð1� bÞ.
4. Assume that f : ½0; 1� ! ½0; 1� is a one-to-one and onto increasing function. Define

a t b ¼ f�1ðf ðaÞf ðbÞÞ. Show that t is an Archimedean t-norm.

5. Consider a uninorm up with identity element ep 2 ½0; 1� and define

aud b ¼ 1� ð1� aÞupð1� bÞ. Show that ud is a uninorm with identity ed ¼ 1� ep.

6. Let u be a uninorm with identity element e. Show that

(a) if anþ1 < e, then a1 u a2 u::uan � a1 ua2 u::u an uanþ1.

(b) if anþ1 > e, then a1 u a2 u::u an � a1 ua2 u::u an u anþ1.

7. Show that De Morgan laws are satisfied for the standard intersection and union when using

the following negation operators.

ðaÞ NðxÞ ¼ 1� x

1þ lx
; l 2 ð�1;1Þ:

ðbÞ NðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� xw
w
p

; w 2 ð0;1Þ:

8. Showwhether the functionNðxÞ ¼ 1
2
f1þ sin½ð2xþ 1Þp=2�g qualifies as a negation. Justify

your answer.

9. The fuzzy measure, g, can be expressed in the following form

gð [
i2I
fxigÞ ¼

1

l
P
i2I
ð1þ lgiÞ � 1

� 
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for given values of the fuzzy measure for the individual elements of the universe of

discourse, that is, gi ¼ gðfxigÞ.

(a) Discuss how to determine the value of the parameter of the measure (l).

(b) For the values g1 ¼ 0:7, g2 ¼ 0:05, g3 ¼ 0:6, and g4 ¼ 0:12, determine the values of

the fuzzy measure over fx1; x4g, fx2; x3; x4g.
(c) Compute the fuzzy integral over X considering that hðx1Þ ¼ 0:85, hðx2Þ ¼ 0:72,

hðx3Þ ¼ 0:30, and hðx4Þ ¼ 0:07.
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Chapter 6

Fuzzy Relations

Relations represent and quantify associations between objects. They provide a

vehicle to describe interactions and dependencies between variables, components,

modules, and so on. Fuzzy relations generalize the concept of relations in the

same manner as fuzzy sets generalize the fundamental idea of sets. Fuzzy

relations are instrumental in problems of information retrieval, pattern

classification, control, and decision-making. Here, we introduce the idea of fuzzy

relations, present some illustrative examples, discuss the main properties of fuzzy

relations, and provide with some interpretation. Subsequently we look at some

ideas of relational calculus and its algorithms.

6.1 THE CONCEPT OF RELATIONS

Before proceeding with fuzzy relations, we provide a few introductory lines about

relations. Relations capture the associations between objects. For instance, consider

the space of documents X and a space of keywords Y that these documents contain.

Now form a Cartesian product of X and Y, that is, X� Y. Recall that the Cartesian

product of X and Y, denoted as X� Y, is the set of all pairs (x,y) such that x 2 X and

y 2 Y. We define a relation R as the set of pairs of documents and keywords,

R ¼ fðdi;wjÞjdi 2 X and wj 2 Yg. In terms of the characteristic function we express

this as follows: Rðdi;wjÞ ¼ 1 if keyword wj is in document di, and Rðdi;wjÞ ¼ 0

otherwise.

More generally, a relation R defined over the Cartesian product of X and Y is a

collection of selected pairs ðx; yÞ where x 2 X and y 2 Y. Equivalently, it is a

mapping:

R : X� Y! f0; 1g
The characteristic function of R is such that if Rðx; yÞ ¼ 1, then we say that the two

elements x and y are related. If Rðx; yÞ ¼ 0, we say that these two elements (x and y)

are unrelated. For example, suppose that X ¼ Y ¼ f2; 4; 6; 8g. The relation ‘‘equal

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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to’’ formed over X� X is the set of pairs R ¼ fðx; yÞ 2 X� Xjx ¼ yg ¼
fð2; 2Þ; ð4; 4Þ; ð6; 6Þ; ð8; 8Þg; refer to Figure 6.1(a). Its characteristic function is

equal to

Rðx; yÞ ¼ 1; if x ¼ y

0; otherwise

�

The plot of this characteristic function is included in Figure 6.1(b).

Depending on the nature of the universe, being either finite or infinite, relations

can be represented in a tabular or matrix form, or analytically. For instance, the set

X ¼ f2; 4; 6; 8g is finite and the relation ‘‘equal to’’ in X� X has a representation in

the ð4� 4Þ matrix:

R ¼
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6

6

4

3

7

7

5

In general, if X and Y are finite, say Card(X)¼ n and Card(Y)¼m, then R is an

ðn� mÞmatrix R ¼ ½rij�with the entries rij being equal to 1 if and only if ðxi; yjÞ 2 R.

Elementary geometry provides examples of relations on infinite universes such as

R� R ¼ R2. In these cases, characteristic functions can, in general, be expressed

analytically:

Rðx; yÞ ¼
1; if jxj � 1 and jyj � 1

0; otherwise

�

square

Rðx; yÞ ¼ 1; if x2 þ y2 ¼ r2

0; otherwise

�

circle

Relations subsume functions but not vice versa; all functions are relations, but not all

relations are functions. For instance, the relation ‘‘equal to’’ shown above is a

function, but the relations ‘‘square’’ and ‘‘circle’’ are not. A relation is a function

0 2 4 6 8
0

2

4

6

8

x

y
(a) Relation "equal to"

0
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0
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8
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1

x

(b) Characteristic function of "equal to"

y

Figure 6.1 Relation ‘‘equal to’’ and its characteristic function.
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if and only if for every x in X there is only a single element y 2 Y such that

Rðx; yÞ ¼ 1. Therefore, functions are directional constructs, clearly implying some

certain direction, for example, from X to Y, say

f : X! Y

If the mapping f is a function, there is no guarantee that the mapping f�1 : Y! X is

also a function, except in some case when f�1 exists. In contrast, relations are

direction free as there is no specific direction identified. Being more descriptive,

they can be accessed from any direction. This makes a significant conceptual and

computational difference.

When a space under discussion involves n universes as its coordinate, an n-ary

relation is any subset of the Cartesian product of these universes:

R : X1 � X2 �    � Xn ! f0; 1g
If X1;X2 . . . ::Xn are finite and CardðX1Þ ¼ n1 . . . : CardðXnÞ ¼ np, then R can be

written as a ðn1 � . . .� npÞ matrix R ¼ ½rij::k� with rij::k ¼ 1 if and only if

ðxi; xj; . . . ; xkÞ 2 R.

6.2 FUZZY RELATIONS

Fuzzy relations generalize the concept of relations by admitting the notion of partial

association between elements of universes. Given two universes X and Y, a fuzzy

relation R is any fuzzy subset of the Cartesian product of X and Y (Zadeh, 1971).

Equivalently, a fuzzy relation on X� Y is a mapping:

R : X� Y! ½0; 1�
The membership function of R for some pair ðx; yÞ;Rðx; yÞ ¼ 1, denotes that the two

elements x and y are fully related. On the other hand, Rðx; yÞ ¼ 0 means that these

elements are unrelated while the values in-between, 0 < Rðx; yÞ < 1, underline a

partial association. For instance, if dfs, dnf, dns, dgf are documents whose subjects

concern mainly fuzzy systems, neural fuzzy systems, neural systems, and genetic

fuzzy systems, with keywords wf, wn, and wg, respectively, then a relation R on

D�W;D ¼ fdfs; dnf ; dns; dgfg, and W ¼ fwf ;wn;wgg, can assume the matrix form

with the following entries:

R ¼
1 0 0:6
0:8 1 0

0 1 0

0:8 0 1

2

6

6

4

3

7

7

5

Since the universes are discrete, R can be represented as a ð4� 3Þ matrix (four

documents and three keywords) and entries, for example, Rðdfs;wfÞ ¼ 1 means that

the document content dfs is fully compatible with the keyword wf, whereas

Rðdfs;wnÞ ¼ 0 and Rðdfs;wgÞ ¼ 0:6 indicates that dfs does not mention neural

systems, but does have genetic systems as part of its content, refer to
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Figure 6.2(a). As with relations, when X and Y are finite with Card(X)¼ n and

Card(Y)¼m, then R can be arranged into a certain (n� m) matrix R ¼ ½rij�, with
rij 2 ½0; 1� being the corresponding degrees of association between xi and yj.

Fuzzy relations defined on some continuous spaces such as R2, say ‘‘much

smaller than,’’ ‘‘approximately equal,’’ and ‘‘similar’’ could, for instance, be char-

acterized by the following membership functions:

Rmðx; yÞ ¼
1� expð�jy� xjÞ; if x � y

0; otherwise

�

x much smaller than y

Reðx; yÞ ¼ exp
�jx� yj

a

� �

;a > 0 x approximately equal to y

Rsðx; yÞ ¼
exp½�ðx� yÞ=b�; if jx� yj � 5

0; if jx� yj � 5

�

; b > 0 x and y similar

Figure 6.2(b) displays the membership function of the relation ‘‘x approximately

equal to y’’ on X¼Y¼ [0,4] assuming that a ¼ 1.

6.3 PROPERTIES OF THE FUZZY RELATIONS

6.3.1 Domain and Codomain of Fuzzy Relations

The domain, domR, of a fuzzy relation R defined in X� Y is a fuzzy set whose

membership function is equal to

domRðxÞ ¼ sup
y2Y

Rðx; yÞ

while its codomain, codR, is a fuzzy set whose membership function is given as

codRðyÞ ¼ sup
x2X

Rðx; yÞ

Considering finite universes of discourse, domain and codomain can be viewed as the

height of the rows and columns of the fuzzy relation matrix (Zadeh, 1971).

Figure 6.2 Membership functions of the relation R (a) and ‘‘x approximately equal to y’’ (b).
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6.3.2 Representation of Fuzzy Relations

Similar to the case of fuzzy sets, fuzzy relations can be represented by their a-cuts,

that is,

R ¼
[

a2½0;1�
aRa

or, in terms of the membership function Rðx; yÞ of R

Rðx; yÞ ¼ sup
a2½0;1�

fmin½a;Rðx; yÞ�g

6.3.3 Equality of Fuzzy Relations

We say that two fuzzy relations P and Q defined in the same Cartesian product of

spaces X� Y are equal if and only if their membership functions are identical, that

is,

Pðx; yÞ ¼ Qðx; yÞ 8 ðx; yÞ 2 X� Y

6.3.4 Inclusion of Fuzzy Relations

A fuzzy relation P is included in Q, denoted by P � Q, if and only if

Pðx; yÞ � Qðx; yÞ 8 ðx; yÞ 2 X� Y

Similarly, as it was presented in the case of relations, given n-fold Cartesian product

of these universes, we define the fuzzy relation in the form

R : X1 � X2 �    � Xn ! ½0; 1�

If the spacesX1;X2; . . . ;Xn are finite with CardðX1Þ ¼ n1 . . .CardðXnÞ ¼ nn, then R

can be expressed as an n-fold ðn1 �    � npÞ matrix R ¼ ½rij::k� with rij::k 2 ½0; 1�
being the degree of association assigned to the n-tuple ðxi; xj; . . . ; xkÞ 2 X1 � X2�
   � Xn. If X1;X2; . . . ;Xn are infinite, then the membership function of R is

a certain function of many variables. The concepts of equality and inclusion of

fuzzy relations could be easily extended for relations defined in multidimensional

spaces.

6.4 OPERATIONS ON FUZZY RELATIONS

The basic operations on fuzzy relations, say union, intersection, and complement,

conceptually follow the corresponding operations on fuzzy sets once fuzzy relations

are fuzzy sets formed on multidimensional spaces. For illustrative purposes the
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definitions of union, intersection, and complement below involve two-argument

fuzzy relations. Without any loss of generality, we can focus on binary fuzzy

relations P, Q, R defined in X� Y. As in the case of fuzzy sets, all definitions are

defined pointwise.

6.4.1 Union of Fuzzy Relations

The union R of two fuzzy relations P and Q defined in X� Y, R ¼ P [ Q, is defined

with the use of the following membership function:

Rðx; yÞ ¼ Pðx; yÞ s Qðx; yÞ 8 ðx; yÞ 2 X� Y

recall that s stands for some t-conorm.

6.4.2 Intersection of Fuzzy Relations

The intersection R of fuzzy relationsP andQ defined inX� Y, R ¼ P \ Q, is defined

in the following form:

Rðx; yÞ ¼ Pðx; yÞtQðx; yÞ 8 ðx; yÞ 2 X� Y

where t is a t-norm.

6.4.3 Complement of Fuzzy Relations

The complement R of the fuzzy relation R is defined by the membership function

Rðx; yÞ ¼ 1� Rðx; yÞ 8 ðx; yÞ 2 X� Y

6.4.4 Transpose of Fuzzy Relations

Given a fuzzy relation R, its transpose, denoted by RT, is a fuzzy relation on Y� X

such that the following relationship holds:

RTðy; xÞ ¼ Pðx; yÞ 8 ðx; yÞ 2 X� Y

If R is a relation defined in some finite space, then RT is the transpose of the

corresponding ðn� mÞ matrix representation of R. Therefore, the form of RT is an

ðm� nÞ matrix whose columns are now the rows of R.

The following properties are direct consequences of the definitions provided

above:

ðRTÞT ¼ R

ðRÞT ¼ ðRTÞ
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6.5 CARTESIAN PRODUCT, PROJECTIONS,
AND CYLINDRICAL EXTENSION OF FUZZY SETS

A mechanism to construct fuzzy relations is through the use of the concept of

Cartesian product extended to fuzzy sets. The concept closely follows the one

adopted for sets once they involve the pairs of points of the underlying universes,

added with a membership degree.

6.5.1 Cartesian Product

Given fuzzy sets A1;A2; . . . ;An defined in universes X1;X2; . . . ;Xn, respectively,

their Cartesian product A1 � A2 �    � An is a fuzzy relation R on

X1 � X2 �    � Xn with the following membership function:

Rðx1;x2; . . . ;xnÞ¼minfA1ðx1Þ;A2ðx2Þ; . . . ;AnðxnÞg 8 x1 2X1; 8 x2 2X2; . . . ;8 xn 2Xn

In general, we can generalize the concept of this Cartesian product by using some

t-norms.

Rðx1; x2; . . . ; xnÞ ¼ A1ðx1Þ t A2ðx2Þ t . . . t AnðxnÞ 8 x1 2 X1;8 x2 2 X2; . . . ;8 xn 2 Xn

6.5.2 Projection of Fuzzy Relations

In contrast to the concept of the Cartesian product, the idea of projection is to construct

fuzzy relations on some subspaces of the original relation. Projection reduces the

dimensionality of the original space over which the original fuzzy relation is defined.

Given R being a fuzzy relation defined in X1 � X2 �    � Xn, its projection on

X ¼ Xi � Xj �    � Xk, where I ¼ fi; j; . . . ; kg is a subsequence of the set of

indexes N ¼ f1; 2; . . . ; ng, is a fuzzy relation RX with the membership function

(Zadeh, 1975a,b).

RXðxi; xj; . . . ; xkÞ ¼ Pr ojXRðx1; x2; . . . ; xnÞ ¼ sup
xt ; xu;...; xv

Rðx1; x2; . . . ; xnÞ

where J ¼ ft; u; . . . ; vg is a subsequence of N such that I [ J ¼ N and I \ J ¼ ? . In

other words, J is the complement of I with respect to N. Notice that the above

expression is computed for all values of ðx1; x2; . . . ; xnÞ 2 Xi � Xj �    � Xk.

For instance, Figure 6.3 shows the projections RX and RY of a Gaussian, binary

fuzzy relation R defined in X� Y with X ¼ ½0; 8� and Y ¼ ½0; 10�, whose member-

ship function is equal to Rðx; yÞ ¼ expf�a½ðx� 4Þ2 þ ðy� 5Þ2�g. In this case the

projections are formed as

RXðxÞ ¼ Pr ojXRðx; yÞ ¼ sup
y

Rðx; yÞ

RYðyÞ ¼ Pr ojYRðx; yÞ ¼ sup
x

Rðx; yÞ
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To find projections of the fuzzy relations defined in some finite spaces, the maximum

operation replaces the sup operation occurring in the definition provided above. For

example, for the fuzzy relation R : X� Y! ½0; 1� with X ¼ f1; 2; 3g and

Y ¼ f1; 2; 3; 4; 5g,

Rðx; yÞ ¼
1:0 0:6 0:8 0:5 0:2
0:6 0:8 1:0 0:2 0:9
0:8 0:6 0:8 0:3 0:9

2

4

3

5

The three elements of the projection RX are taken as the maximum computed for each

of the three rows of R.

RX¼½maxð1;0;0:6;0:8;0:5;0:2Þ;maxð0:6;0:8;1:0;0:2;0:9Þ;maxð0:8;0:6;0:8;0:3;0:9Þ�
¼½1:0; 1:0; 0:9�

Similarly, the five elements of RY are taken as the maximum among the entries of the

five columns of R. Figure 6.4 shows R and its projections RX and RY .

RY ¼ ½1:0; 0:8; 1:0; 0:5; 0:9�
Note that domain and codomain of the fuzzy relation are examples of its projections.

6.5.3 Cylindrical Extension

The cylindrical extension increases the number of coordinates of the Cartesian

product over which the fuzzy relation is formed and of the set on which it

Figure 6.3 Fuzzy relation R along with its projections on X and Y.
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operates by expanding a fuzzy set into a binary relation, a two-dimensional

relation into three-dimensional counterpart, and so forth. In this sense, cylindrical

extension is an operation that is complementary to the projection operation

(Zadeh, 1975a,b).

The cylindrical extension on X� Y of a fuzzy setA of X is a fuzzy relation cylA

whose membership function is equal to

cylAðx; yÞ ¼ AðxÞ; 8 x 2 X; 8 y 2 Y

If the fuzzy relation is viewed as a two-dimensional matrix, the operation of

cylindrical extension forms identical columns indexed by the successive values of

y 2 Y. The main intent of cylindrical extensions is to achieve compatibility of spaces

over which fuzzy sets and fuzzy relations are formed. For instance, let A be a fuzzy

set ofX and R a fuzzy relation onX� Y, Figure 6.5(a) and (b), respectively. Suppose

we attempt to compute union and intersection of A and R. Because the universes over

which A and R are defined are different, we cannot carry out any set-based operations

on A and R. The cylindrical extension of A, denoted by cylA, Figure 6.5(c) provides

the compatibility required. Then the operations such as (cylA) [ R and (cylA) \ R

make sense, see Figure 6.5(d) and (e).

The concept of cylindrical extension can be easily generalized to multidimen-

sional cases.
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Figure 6.4 Fuzzy relation R and its projections on X and Y.
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Figure 6.5 Cylindrical extension of a fuzzy set.
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6.6 RECONSTRUCTION OF FUZZY RELATIONS

Projections do not retain complete information conveyed by the original fuzzy

relation. This means that in general one can not faithfully reconstruct a relation

from its projections. In other words, projections ProjXR and ProjYR of some fuzzy

relation R do not necessarily lead to the original fuzzy relation R. In general, the

reconstruction of a relation via the Cartesian product of its projections is a relation

that includes the original relation, that is,

ProjXR� ProjYR � R

If, however, in the above relationship the equality holds, then we call the relation R to

be noninteractive. Figure 6.6 shows an example of a noninteractive fuzzy relation Rm

defined in X� Y. Clearly, the Cartesian product of its projections ProjXRm and

ProjYRm recover the original relation, see Figure 6.6(b) and (e).

Figure 6.7 shows an example of an interactive fuzzy relation Rp. In this case, the

Cartesian product of the projections ProjXRp and ProjYRp does not recover the

original relation as Figure 6.7(b) and (e) demonstrates; we have ProjXRp�
ProjYRp 
 Rp.

Figure 6.6 Reconstruction of noninteractive fuzzy relation Rm.
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Fuzzy relations certainly are an efficient mechanism that is used to define,

construct, and handle multidimensional fuzzy sets. Among the n-dimensional rela-

tions, binary relations are of particular interest especially when they involve a

Cartesian product of X. Notice that, when talking about fuzzy relations, the notion

of binary relations concerns the universes of discourse in which the fuzzy relations

are defined, rather than the membership values they assume.

6.7 BINARY FUZZY RELATIONS

A binary fuzzy relation R on X� X is defined as follows:

R : X� X! ½0; 1�
There are several important features of binary fuzzy relations.

(a) Reflexivity: Rðx; xÞ ¼ 1 8 x 2 X, refer to Figure 6.8(a). When X is finite,

R � I where I is an identity matrix, Iðx; yÞ ¼ 1 if x ¼ y and Iðx; yÞ ¼ 0

otherwise. Reflexivity can be relaxed by admitting a concept of the so-called

e-reflexivity, e 2 ½0; 1�. This means Rðx; xÞ � e. When Rðx; xÞ ¼ 0 the fuzzy

relation is irreflexive. A fuzzy relation is locally reflexive if, for any

ðx; yÞ 2 X, maxfRðx; yÞ;Rðy; xÞg � Rðx; xÞ.
(b) Symmetry: Rðx; yÞ ¼ Rðy; xÞ 8 ðx; yÞ 2 X � X, refer to Figure 6.8(b). For

finite X, the matrix representing R has entries distributed symmetrically

along the main diagonal. Clearly, if R is symmetric, then RT ¼ R.

0 5 10
0
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20

x

y

(e) Contours of the Cartesian Produtc of ProjxRm and ProjyRm

Figure 6.6 (Continued)
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Figure 6.7 Reconstruction of interactive fuzzy relation Rp.
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(c)Transitivity: sup
z2X
fRðx; zÞtRðz; yÞg � Rðx; yÞ8x; y; z 2 X. In particular, if this

relationship holds for t ¼ min, then the relation is called sup-min transi-

tive. Looking at the levels of associations Rðx; zÞ and Rðz; yÞ occurring
between x, and z, and z and y, the property of transitivity reflects the

maximal strength among all possible links arranged in series (such as

(Rðx; zÞ and Rðz; yÞ)) that does not exceed the strength of the direct link

Rðx; zÞ, refer to Figure 6.8(c).

6.7.1 Transitive Closure

Given a binary fuzzy relation in a finite universe X, there exists a unique fuzzy

relation R
$
onX, called transitive closure of R, which contains R and itself is included

in any transitive fuzzy relation on X that contains R (De Baets and Meyer, 2003).

Therefore, if R is defined on a finite universe of cardinality n, the transitive closure is

given by

transðRÞ ¼ R
$ ¼ R [ R2 [    [ Rn

where, by definition,

R2 ¼ R � R   Rp ¼ R � Rp�1

R � Rðx; yÞ ¼ max
z
fRðx; zÞtRðz; yÞg

Notice that R � R can be computed similarly as encountered in matrix algebra by

replacing the ordinary multiplication by some t-norm and the sum by the max

operations. In other words, if r2ij ¼ ½R2�ij ¼ ½R � R�ij, then

r2ij ¼ maxkðriktrkjÞ

If R is reflexive, then

I � R � R2 �    � Rn�1 ¼ Rn

x x

y

R(x,z) R(z,y)

x

R(x,y)

y

z

z˝

z´

(a) (b) (c) 

Figure 6.8 Main characteristics of binary fuzzy relations; see the details in the text.
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The transitive closure of the fuzzy relation R can be found by computing the

successive k max-t products of R until Rk ¼ Rk�1. A procedure whose complexity

is O(n3log2n) in time and O(n2) in space (Naessens et al., 2002) is as follows:

procedure TRANSITIVE-CLOSURE-Z (R) returns transitive fuzzy relation

static: fuzzy relation R ¼ ½rij�

for i ¼ 1 . . . do

R
$  R [ ðR � RÞ

if R
$ ¼ R then return R

$

R R
$

An algorithm that computes the transitive closure of a fuzzy relation in O(n3) in time

and O(n2) in space was suggested in (Kandel and Yelowitz, 1974). This algorithm

is a modification of the Floyd–Warshall algorithm originally developed to solve

all-to-all shortest path problem (Rardin, 1998). The Floyd–Warshall procedure to

compute the transitive closure of an ðn� nÞ fuzzy relation R ¼ ½rij� is as follows:

procedure TRANSITIVE-CLOSURE-W (R) returns transitive fuzzy relation

static: fuzzy relation R ¼ ½rij�

for i ¼ 1 : n do

for j ¼ 1 : n do

for k ¼ 1 : n do

r
$

jk  maxðrjk; rjit rikÞ
return R

$

Alternative algorithms with similar complexity are given in (Naessens et al., 2002).

Binary fuzzy relations on universes with large cardinality are often represented by

sparse matrices. In these circumstances more effective algorithms to compute

transitive closures can be obtained exploring appropriate representations for sparse

matrices. Procedures with time complexity averaging nlog4n have been developed

for sparse relations (Wallace et al., 2006).

6.7.2 Equivalence and Similarity Relations

Equivalence relations are relations that are reflexive, symmetric, and transitive.

Suppose that one of the arguments of Rðx; yÞ, x for example, has been fixed. Thus,

all elements related to x constitute a set called an equivalence class of R with respect

to x, denoted by

Ax ¼ fy 2 YjRðx; yÞ ¼ 1g

The family of all equivalence classes of R, denoted by X/R, is a partition of X. In

other words,X/R is a family of pairwise disjoint nonempty subsets ofXwhose union

isX. Equivalence relations can be viewed as a generalization of the equality relations
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in the sense that members of an equivalence class can be considered equivalent to

each other under the relation R.

Similarity relations are fuzzy relations that are reflexive, symmetric, and tran-

sitive. Like any fuzzy relation, a similarity relation can be represented by a nested

family of its a-cuts, Ra. Each a-cut constitutes an equivalence relation and forms a

partition of X. Therefore, each similarity relation is associated with a set PðRÞ of
partitions of X:

PðRÞ ¼ fX=Raja 2 ½0; 1�g
Partitions are nested in the sense that, if a > b, then the partition X/Ra is finer than

the partitionX/Rb. For example, consider the relation defined onX¼ {a, b, c, d, e} in

the following way:

R ¼

1:0 0:8 0 0 0

0:8 1:0 0 0 0

0 0 1:0 0:9 0:5
0 0 0:9 1:0 0:5
0 0 0:5 0:5 1:0

2

6

6

6

6

4

3

7

7

7

7

5

One can verify that R is a symmetric matrix, has a values of 1 at its main diagonal, and

is max-min transitive. Therefore, R is a similarity relation. The levels of refinement of

the similarity relation R can be represented in the form of partition tree in which each

node corresponds to a fuzzy relation on X whose degrees of association between the

elements are greater than or equal to the threshold value a. For instance, we have the

following fuzzy relations for a¼ 0.5, 0.8, and 0.9, respectively:

R0:5 ¼

1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

2

6

6

6

6

4

3

7

7

7

7

5

;R0:8 ¼

1 1 0 0 0

1 1 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

;R0:9 ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 0 0 1

2

6

6

6

6

4

3

7

7

7

7

5

Notice that R ¼ [a2LaRa where [ ¼ max and L ¼ f0:5; 0:8; 0:9; 1:0g is the level

set of R. Also, notice that the greater the value of a, the finer the classes are, as

Figure 6.9 shows.

c,d,e   a,b

a,b c,d  e   

a   b c,d   e   

a   b   c d   e   

α = 0.8     

α  = 0.9 

 α = 1.0

α  = 0.5 

Figure 6.9 Partition tree induced by binary fuzzy relation R.
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6.7.3 Compatibility and Proximity Relations

Compatibility relations are reflexive and symmetric relations. Associated with any

compatibility relation are sets called compatibility classes. A compatibility class is a

subset A of a universe X such that Rðx; yÞ ¼ 1 for all x; y 2 A.

Proximity relations are reflexive and symmetric fuzzy relations. Let A be a

subset of a universe X. Thus, A is a e-proximity class of R if Rðx; yÞ � e for all

ðx; yÞ 2 A. For instance, the relation R on X ¼ f1; 2; 3; 4; 5g

R ¼

1:0 0:7 0 0 0:6
0:7 1:0 0:6 0 0

0 0:6 1:0 0:7 0:4
0 0 0:7 1:0 0:5
0:6 0 0:4 0:5 1:0

2

6

6

6

6

4

3

7

7

7

7

5

has the unity in its main diagonal and is symmetric. Therefore, R is a proximity

relation. Compatibility classes and a-compatibility classes do not necessarily induce

partitions of X (Klir and Yuan, 1995).

Proximity is an important concept in pattern recognition being used in contexts

such as visual images as under these circumstances human subjectivity leads to some

useful information that could be represented in the form of proximity relations (Yang

and Shih, 2001).

6.8 CONCLUSIONS

Fuzzy relations generalize the concept of fuzzy sets to multidimensional universes

and introduce the notion of association degrees between the elements of some

universe of discourse. Fuzzy relations are subject to the same type of set operations

as we studied for fuzzy sets. However, additional operations can be performed to

either lower dimensions via projections or increase dimensions via cylindrical

extension and Cartesian products. Operations with fuzzy relations are important to

process fuzzy models constructed via fuzzy relations.

Relations are associations and remain at the very basis of most methodological

approaches of science and engineering. As fuzzy relations are more general con-

structs than functions, they allow dependencies between several variables to be

captured without necessarily committing to any particular directional association

of the variables being involved.

EXERCISES AND PROBLEMS

1. Let Ra ¼ fðx; yÞ 2 X� YjRðx; yÞ � ag be the a-cut of the fuzzy relation R. Show that any

fuzzy relation R: X� Y! ½0; 1� can be represented in the following form:

R ¼ [a2ð0;1�aRa
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where [ denotes standard union operation, and aRa is a subnormal fuzzy relation whose

membership function is a if ðx; yÞ 2 Ra and zero otherwise.

2. How can the algorithm to compute the transitive closure of a fuzzy relation be used to verify

if a fuzzy relation is transitive or not? Use your answer to verify that the fuzzy relation R in

Section 6.6 is actually max-min transitive.

3. Show that if R is a similarity relation, then each of its a-cut Ra is an equivalence relation.

4. Verify that the transitive closure of a fuzzy proximity relation is a similarity relation.

5. A tolerance relation R inX� Y is a reflexive and symmetric ordinary relation. Show that if

R is a proximity relation, then for any 0 < a � 1, Ra is a tolerance relation.

HISTORICAL NOTES

The notions of fuzzy relation, similarity relation, ordering relation and transitivity, and the basic theory of

fuzzy relation were introduced in Zadeh (1971). The ideas of projection and cylindrical extension appeared

in Zadeh (1975a,b).

Abstract, natural interpretations of fuzzy sets, fuzzy relations, and fuzzy mappings have been

discussed by Shinoda (2002, 2003). By natural the author meant an interpretation in a Heyting value

model for intuitionistic set theory.

The characterization of the main classes of fuzzy relations using fuzzy modal operations has been

presented by Radzikowska and Kerre (2005). Fuzzy modal operators are binary fuzzy relations that

transform a fuzzy set to another one.
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Chapter 7

Transformations of Fuzzy Sets

Transformations of elements (points) through functions are omnipresent. An

immediate generalization of such point transformations involves set transformations

between spaces. Mappings of fuzzy sets between universes constitute another

generalization of mapping sets between spaces. Thus, point transformations can be

expanded to cover transformations involving fuzzy sets. Transformations of this

nature can be realized using either functions or relations. In both cases these

transformations constitute an essential component of various pursuits including

system modeling and control applications, pattern recognition and information

retrieval, just to name a few representative areas. This chapter introduces two

important mechanisms to transform fuzzy sets, namely, the extension principle and

the calculus of fuzzy relations. We elaborate on their essential properties, present

algorithmic aspects, and discuss various interpretations of the resulting constructs.

7.1 THE EXTENSION PRINCIPLE

The extension principle is a fundamental construct that enables extensions of point

operations to operations involving sets and fuzzy sets. Intuitively, the idea is as

follows: Given a function (mapping) from some domainX to codomain (range)Y, the

extension principle offers a mechanism to transform a fuzzy set defined inX to some

fuzzy set defined in Y.

Let f: X! Y be a function. Given any x 2 X, y ¼ f ðxÞ denotes the image of x

under f, namely, the point transformation of x under f, refer to Figure 7.1. This is the

straightforward idea that the customary notion of any function conveys. Pointwise

transformations can be extended to handle transformations of sets.

LetP(X) andP(Y) be the power sets ofX andYandA 2 PðXÞ a set. The image of

A under f can be determined by realizing point transformations y ¼ f ðxÞ for all x 2 A.

In this sense, the image of A under f is the set B that arises in the following form:

B ¼ f ðAÞ ¼ fy 2 Yjy ¼ f ðxÞ; 8 x 2 Ag

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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Since A and B are sets, they can be expressed in terms of their characteristic functions

as follows:

BðyÞ ¼ sup
xjy¼f ðxÞ

AðxÞ

as displayed in Figure 7.2. Notice that this mechanism provides a way to extend the

notion of functions regarded as point transformations to the notion of set functions.

Once viewed in terms of characteristic functions, it becomes natural to extend this

notion to fuzzy sets as follows:

Let F(X) and F(Y) denote the families of all fuzzy sets defined in X and Y,

respectively and f: X! Y be a function. Function f induces a mapping

f: FðXÞ ! FðYÞ such that if A is a fuzzy set in X, then its image under f is a fuzzy

set B ¼ f ðAÞ whose membership function is expressed as (Zadeh, 1975)

BðyÞ ¼ sup
x=y¼f ðxÞ

AðxÞ ð7:1Þ

Figure 7.3 illustrates the extension principle in the case where A is a triangular fuzzy

set with membership function A ¼ Aðx; 3; 5; 8Þ and the function f of the form

f ðxÞ ¼ �0:2ðx� 5Þ2 þ 5; if 0 � x � 5

0:2ðx� 5Þ2 þ 5; if 5 < x � 10

�

If A ¼ fAðx1Þ=x1;Aðx2Þ=x2; . . . ;AðxnÞ=xng is a fuzzy set inX ¼ fx1; x2; . . . ; xng and
y ¼ f ðxÞ with y 2 Y ¼ fy1; y2; . . . ; ymg; that is, the universes X and Y are finite, then
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Figure 7.1 An example of function f along with its point transformation.
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Figure 7.2 Set transformation.
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Figure 7.3 An illustration of the extension principle; a nonlinear transformation of the triangular

fuzzy number is shown.
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the extension principle becomes

BðyiÞ ¼ max
xj=yi¼f ðxjÞ

AðxjÞ ð7:2Þ

The sup and max operations in (7.1) and (7.2) are needed when function f is a many-

to-one mapping. In this case, there exist several points x (say, xi and xj) for which

y ¼ f ðxiÞ ¼ f ðxjÞ and the membership grade assigned to y is the greatest among the

corresponding membership values AðxiÞ and AðxjÞ.
Figure 7.4 illustrates the case where y ¼ f ðxÞ ¼ x2, a two-to-one mapping, and A

is a triangular fuzzy set with membership function A ¼ Aðx;�2; 2; 3Þ.
For finite universes, consider X ¼ f�3;�2;�1; 0; 1; 2; 3g and y ¼ f ðxÞ ¼ x2.

Given the fuzzy set A ¼ f0=� 3; 0:1=� 2; 0:3=� 1; 1=0; 0:2=1; 0=2; 0=3g defined
in X, the image B ¼ f ðAÞ is a fuzzy set in Y ¼ fyjy ¼ x2g ¼ f0; 1; 4; 9g whose

membership function is B ¼ f1=0;maxð0:2; 0:3Þ=1;maxð0; 0:1Þ=4; 0=9g ¼
f1=0; 0:3=1; 0:1=4; 0=9g as shown in Figure 7.5.

The extension principle generalizes to functions of many variables as follows:

Let Xi, i ¼ 1; . . . ; n and Y be universes and X ¼ X1 � X2 �    � Xn. Consider

fuzzy sets Ai on Xi; i ¼ 1;    n, and a function y ¼ f ðxÞ with x ¼ ½x1; x2; . . . ; xn� a
point ofX. Fuzzy sets A1;A2; . . . ;An can be transformed through f to give a fuzzy set

B ¼ f ðA1;A2; . . . ;AnÞ in Y with the membership function

BðyÞ ¼ sup
xjy¼f ðxÞ

fmin½A1ðx1Þ;A2ðx2Þ; . . . ;AnðxnÞ�g ð7:3Þ

In (7.3), the min operation is a choice within the family of triangular norms and any

t-normcanbe adoptedbecause each component xi occurs concurrently inx.Asdiscussed

in Chapter 5, t-norms capture the idea of conjunction or coincidence, of elements.
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Figure 7.4 Extension principle applied to the case of many-to-one mapping.
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Transformations of fuzzy sets through the extension principle produce fuzzy sets

that satisfy certain properties. The most important are as follows (Klir and Yuan,

1995; Nguyen and Walker, 1999): Let f : X! Y be an arbitrary function and

consider fuzzy sets Ai;Ai 2 FðXÞ and Bi, Bi 2 FðYÞ;Bi ¼ f ðAiÞ; i ¼ 1; 2; . . . ; n.

1. Bi ¼ ? if and only if Ai ¼ ?

2. A1 � A2 ) B1 � B2

3. f ð
Sn

i¼1 AiÞ ¼
Sn

i¼1 Bi

4. f ð
Tn

i¼1 AiÞ �
Tn

i¼1 Bi

If A 2 FðXÞ and B 2 FðYÞ, with B ¼ f ðAÞ, and if Aa;A
þ
a ;Ba;B

þ
a are their corre-

sponding a-cuts and strong a-cuts, respectively, then we obtain

5. Ba � f ðAaÞ
6. Bþa ¼ f ðAþa Þ

7.2 COMPOSITIONS OF FUZZY RELATIONS

The extension principle is a fundamental concept of fuzzy set theory as it offers a

general vehicle to extend theoretical and applied notions as well as procedures to the

cases involving fuzzy sets. In many cases transformations used in practice may not be
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Figure 7.5 Extension principle applied in the case of a certain many-to-one mapping and finite

universes.
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functions. Instead we may envision that the relationships between elements are

captured in terms of relations or fuzzy relations. In these circumstances transforma-

tions are completed through their compositions.

Fuzzy relations can be composed with the use of different set theoretic opera-

tions, and triangular norms, in particular. Different families of composition operators

arise that depend upon the choice of some specific t-norms and t-conorms. Two most

important compositions come in the form of a sup-t composition and an inf-s

composition, respectively.

7.2.1 Sup-t Composition

The sup-t composition of fuzzy relationsG : X� Z! ½0; 1� andW:Z� Y! ½0; 1�
is a fuzzy relation R : X� Y! ½0; 1� whose membership function Rðx; yÞ is

given as

Rðx; yÞ ¼ sup
z2Z
fGðx; zÞtWðz; yÞg; 8 x 2 X and 8 y 2 Y ð7:4Þ

The sup-t composition of G and W is denoted symbolically by R ¼ G �W.

For instance, let the membership function of relation G describing the concept

‘‘close to’’ be expressed as

Gðx; zÞ ¼ exp½�ðx� zÞ2�

Likewise, the fuzzy relation W of the same semantics (close to) as G is defined as

Wðz; yÞ ¼ exp½�ðz� yÞ2�

Let us now compute the composition of G and W, R ¼ G �W with the use of the

algebraic product (t-norm). Using (7.4) we obtain

Rðx; yÞ ¼ sup
z2Z
fe�ðx�zÞ2e�ðz�yÞ2g ¼ max

z2Z
fe�ðx�zÞ2e�ðz�yÞ2g; 8 x 2 X and 8 y 2 Y

Since the Gaussian function is continuous and unimodal, we replace the supremum

by the max operation and the membership function of R is found computing the value

of z that maximizes the product of the membership functions of G and W, namely,

z ¼ ðxþ yÞ=2. Therefore,

Rðx; yÞ ¼ exp½�ðx� yÞ2=2�

Interestingly, R may also be interpreted as a relation with semantics ‘‘x close to y.’’

This intuitively agrees with the idea that composition of values close to each other

should result in the values that are also close. Figure 7.6 illustrates the fuzzy

relations G and R. Notice that the shape of the membership function of R is
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identical with the one of G. They are different with respect to the values of the

spread. In essence, the composition of W and G results in the fuzzy relation of

increased spread value.

The sup-min composition is another particular example of the family of sup-t

compositions (Zadeh, 1965) being widely used in practice

Rðx; yÞ ¼ sup
z2Z
fGðx; zÞ ^Wðz; yÞg; 8 x 2 X and 8 y 2 Y ð7:5Þ

Contrary to the sup-product composition, sup-min composition is not very

amenable for analytical developments. Often detailed mathematical analysis

of the resulting expressions involving sup-min composition becomes less

transparent.

The composition of fuzzy relations defined in finite universes is easily completed

by considering their matrix representations. In this case, the sup-t composition

becomes the max-t composition, and its computation follows the rules as the usual

matrix calculation except that the algebraic product is replaced by the t-norm and the

algebraic sum by the max operation. Let G and W be represented by ðn� pÞ and
ðp� mÞ matrices, respectively. The steps below form the procedure to compute the

ðn� mÞ relational matrix R ¼ G �W .

procedure SUP-T-COMPOSITION (G,W) returns composition of fuzzy relations

static: fuzzy relations: G ¼ ½gik�;W ¼ ½wkj�
0nm : n� m matrix with all entries equal to zero

t: a t-norm

R ¼ 0nm
for i ¼ 1 : n do

for j ¼ 1 : m do

for k ¼ 1 : p do

tope gik t wkj

rij  maxðrij; topeÞ
return R

Figure 7.6 Sup-product composition of fuzzy relations ‘‘close to’’.
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EXAMPLE 7.1

Let us consider fuzzy relations G and W given as the following ð3� 4Þ and ð4� 2Þ
matrices:

G ¼
1:0 0:6 0:5 0:5
0:6 0:8 1:0 0:2
0:8 0:3 0:4 0:3

2

4

3

5 W ¼
0:6 0:1
0:5 0:7
0:7 0:8
0:3 0:6

2

6

6

4

3

7

7

5

Using (7.5), the max–min composition R ¼ G �W ;R ¼ ½rij� with min (^) t-norm gives rise to

the expression

r11 ¼ maxð1:0 ^ 0:6; 0:6 ^ 0:5; 0:5 ^ 0:7; 0:5 ^ 0:3Þ ¼ maxð0:6; 0:5; 0:5; 0:3Þ ¼ 0:6

r21 ¼ maxð0:6 ^ 0:6; 0:8 ^ 0:5; 1:0 ^ 0:7; 0:2 ^ 0:3Þ ¼ maxð0:6; 0:5; 0:7; 0:2Þ ¼ 0:7

. . .

r32 ¼ maxð0:1 ^ 0:8; 0:3 ^ 0:7; 0:4 ^ 0:8; 0:3 ^ 0:6Þ ¼ maxð0:1; 0:3; 0:4; 0:3Þ ¼ 0:4

R ¼
0:6 0:6

0:7 0:8

0:6 0:4

2

6

4

3

7

5

Likewise, the max-product composition of G and W is computed using the algebraic product

(t-norm) produces

r11 ¼ maxð1:0  0:6; 0:6  0:5; 0:5  0:7; 0:5  0:3Þ ¼ maxð0:6; 0:3; 0:35; 0:15Þ ¼ 0:60

r21 ¼ maxð0:6  0:6; 0:8  0:5; 1:0  0:7; 0:2  0:3Þ ¼ maxð0:36; 0:4; 0:7; 0:06Þ ¼ 0:70

. . .

r32 ¼ maxð0:1  0:8; 0:3  0:7; 0:4  0:8; 0:3  0:6Þ ¼ maxð0:08; 0:21; 0:32; 0:18Þ ¼ 0:32

R ¼
0:60 0:42

0:70 0:80

0:48 0:32

2

6

4

3

7

5

The sup-t composition exhibits a number of interesting properties. Let P,Q and S, and

R be fuzzy relations defined in X� Y, Y� Z, and Z�W, respectively. Here the [
and \ are the standard operations of union and intersection:

1. associativity P � ðQ � RÞ ¼ ðP � QÞ � R
2. distributivity over union P � ðQ [ RÞ ¼ ðP � QÞ [ ðP � RÞ
3. weak distributivity over intersection P � ðQ \ RÞ � ðP � QÞ \ ðP � RÞ
4. monotonicity if Q � S then P � Q � P � S

It is worth analyzing several particular instances of the sup-t composition to sub-

stantiate its semantics and reveal links between fundamental constructs of fuzzy

computing and composition of fuzzy relations. In what follows, RyðxÞ denotes the
unary fuzzy relation indexed by y, namely, a slice of the fuzzy relation Rðx; yÞ in
X� Y whose location is specified by the value assumed by the second variable (y).
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1. Let A be a fuzzy set in X. The sup-t composition of A and Ry is a unary fuzzy

set B in Y whose membership function value at y is equal to

BðyÞ ¼ sup
x2X
½AðxÞtRyðxÞ�

becomes the possibility measure of fuzzy set A determined with respect to

fuzzy set Ry, a measure that quantifies the extent to which A and Ry overlap.

2. The supremum operation implements the existential quantifier 9 (there exists),
while the t-norm is viewed as some and connective. Then, in this case BðyÞ is a
truth value of the statement AðxÞ and RyðxÞ:

BðyÞ ¼ truthð9xj AðxÞ and RyðxÞÞ
3. The sup-t composition can be regarded as a special version of the projection

operation focused or directed by the fuzzy set A. In particular, if A is the entire

universe X, then the sup-t composition reduces to the projection operator,

namely

BðyÞ ¼ sup
x2X
½XðxÞtRðx; yÞ� ¼ sup

x2X
½1tRðx; yÞ� ¼ sup

x2X
Rðx; yÞ�Þ

7.2.2 Inf-s Composition

The inf-s composition of fuzzy relationsG : X� Z! ½0; 1� andW : Z� Y! ½0; 1�
is a fuzzy relation R : X� Y! ½0; 1�, whose membership function Rðx; yÞ is com-

puted as

Rðx; yÞ ¼ inf
z2Z
fGðx; zÞsWðz; yÞg; 8 x 2 X and 8 y 2 Y ð7:6Þ

The inf-s composition of G andW is denoted symbolically by R ¼ G �W. Opposing

the sup-t composition, inf-s composition is not common in practice and is analyti-

cally more complex. For fuzzy relations on finite universes, they can be computed

using their matrix representations. In this case inf-s becomes the min-s composition,

and its computation follows the rules as the usual matrix calculation except that the

algebraic product is replaced by the s-norm and the algebraic sum by the min

operation. IfG andW are represented by ðn� pÞ and ðp� mÞmatrices, the computa-

tional steps to compute the ðn� mÞ relational matrix R ¼ G �W are

procedure INF-S-COMPOSITION ðG;WÞ returns composition of fuzzy relations

static: fuzzy relations: G ¼ ½gik�;W ¼ ½wkj�
1nm : n� m matrix with all entries equal to unity

s: a s-norm

R ¼ 1nm
for i ¼ 1 : n do

for j ¼ 1 : m do

for k ¼ 1 : p do

sope gik s wkj

rij  minðrij; sopeÞ
return R
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EXAMPLE 7.2

Let G and W be as shown below.

G ¼
1:0 0:6 0:5 0:5
0:6 0:8 1:0 0:2
0:8 0:3 0:4 0:3

2

4

3

5 W ¼
0:6 0:1
0:5 0:7
0:7 0:8
0:3 0:6

2

6

6

4

3

7

7

5

Performing the inf-s composition of G andW with the aid of the probabilistic sum (t-conorm),

we obtain:

r11 ¼minð1:0þ 0:6� 0:6;0:6þ 0:5� 0:6  0:5;0:5þ 0:7� 0:5  0:7;0:5þ 0:3� 0:5  0:3Þ
¼minð1:0;0:8;0:85;0:65Þ ¼ 0:65

r21 ¼minð0:6þ 0:6� 0:6  0:6;0:8þ 0:5� 0:8  0:5;1:0þ 0:7� 0:7;0:2þ 0:3� 0:2  0:3Þ
¼minð0:84;0:9;1:0;0:44Þ ¼ 0:44

. . .

r32 ¼minð0:8þ 0:1� 0:8  0:1;0:3þ 0:7� 0:3  0:7;0:4þ 0:8� 0:4  0:8;0:3þ 0:6� 0:3  0:6Þ
¼minð0:82;0:79;0:88;0:72Þ ¼ 0:72

R¼
0:65 0:80

0:44 0:64

0:51 0:72

2

6

4

3

7

5

EXAMPLE 7.3

Considering the discrete version of the fuzzy relations Gðx; zÞ ¼ exp½�ðx� zÞ2� and

Wðz; yÞ ¼ exp½�ðz� yÞ2� computed for x; y; z 2 ½0; 4� in steps of size d ¼ 0:1, G, and W

have the same matrix ð41� 41Þ representation. The membership function of G and the

resulting inf-probalistic sum composition Rðx; yÞ of G and W are shown in Figure 7.7(a) and

(b), respectively.

Figure 7.7 Inf-probabilistic sum composition of fuzzy relations ‘‘close to.’’
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The following are the basic properties of the inf-s composition. Let P, Q and S, and R be fuzzy

relations on X� Y, Y� Z, and Z�W, and consider [ and \ as standard union and

intersection, respectively.

1. associativity P � ðQ � RÞ ¼ ðP � QÞ � R
2. weak distributivity over union P � ðQ [ RÞ � ðP � QÞ [ ðP � RÞ
3. distributivity over intersection P � ðQ \ RÞ ¼ ðP � QÞ \ ðP � RÞ
4. monotonicity if Q � S then P � Q � P � S

Particular instances of the inf-s composition reveal links between its semantics and

constructs of fuzzy computing. As before, RyðxÞ denotes the unary fuzzy relation

indexed by y, namely, the fuzzy relation Rðx; yÞ on X� Y, when the second variable is

kept fixed.

1. Let A be a fuzzy set onX. The inf-s composition of A and Ry is a unary fuzzy set B on Y

whose membership function value at y is

BðyÞ ¼ inf
x2X
½AðxÞs RyðxÞ� ¼ inf

x2X
½RyðxÞsAðxÞ� ¼ inf

x2X
½RyðxÞsAðxÞ�

the necessity measure of fuzzy set A with respect to fuzzy set Ry, a measure that

quantifies the degree with which the complement of A, A, is included in Ry.

2. The infimum implements the universal quantifier 8 (for all) while the s-norm is viewed

as the or connective. Thus, in this case BðyÞ is a truth value of the statement AðxÞ or
RyðxÞ:

BðyÞ ¼ truthð8 xjAðxÞ or RyðxÞÞ

7.2.3 Inf-w Composition

Given a continuous t-norm t, let a w b ¼ fc 2 ½0; 1�j a t c � bg for all a; b 2 ½0; 1�.
As discussed in Chapter 5, this operation may be interpreted as an implication

induced by some t-norm. In this sense, this w operator models an operation of

inclusion.

The inf-w composition of fuzzy relations G : X� Z! ½0; 1� and

W : Z� Y! ½0; 1� is a fuzzy relation R : X� Y! ½0; 1� whose membership func-

tion Rðx; yÞ is

Rðx; yÞ ¼ inf
z2Z
fGðx; zÞwWðz; yÞg; 8 x 2 X and 8 y 2 Y ð7:7Þ

The inf-w composition of G and W is denoted symbolically by R ¼ GwW. Similarly

as in the previous cases, composition of fuzzy relations on finite universes can be

computed using their matrix representations, and in this way the inf-w composition

becomes the min-w one. The computational steps follow the usual rules for matrix

product calculation except that the algebraic product is replaced by the w operation

and the algebraic sum by the min operation.
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EXAMPLE 7.4

If G and W are ð3� 4Þ and ð4� 2Þ matrices

G ¼
1:0 0:6 0:5 0:5
0:6 0:8 1:0 0:2
0:8 0:3 0:4 0:3

2

4

3

5 W ¼
0:6 0:1
0:5 0:7
0:7 0:8
0:3 0:6

2

6

6

4

3

7

7

5

then performing the inf-w composition of G andW and using the bounded difference (t-norm),

a t b ¼ maxð0; aþ b� 1Þ we get aw b ¼ minð1; 1� aþ bÞ, which is the Lukasiewicz impli-

cation. Therefore,

r11 ¼ minð1:0 w 0:6; 0:6w 0:5; 0:5w 0:7; 0:5w 0:3Þ ¼ minð0:6; 0:9; 1:0; 0:8Þ ¼ 0:6

r21 ¼ minð0:6 w 0:6; 0:8w 0:5; 1:0w 0:7; 0:2w 0:3Þ ¼ minð1:0; 0:7; 0:7; 1:0Þ ¼ 0:7

. . .

r32 ¼ minð0:8 w 0:1; 0:3w 0:7; 0:4w 0:8; 0:3w 0:6Þ ¼ minð0:3; 1:0; 1:0; 1:0Þ ¼ 0:3

R ¼
0:6 0:10

0:7 0:50

0:8 0:3

2

6

4

3

7

5

If P, Q and S, and R are fuzzy relations on X� Y, Y� Z, and Z�W, [ is the

standard union, and \ is the standard intersection, then the basic properties of the inf-
w composition are

1. associativity Pw ðQ wRÞ ¼ ðP � QÞwR
2. weak distributivity over union Pw ðQ [ RÞ � ðPwQÞ [ ðPwRÞ
3. distributivity over intersection Pw ðQ \ RÞ ¼ ðPwQÞ \ ðPwRÞ
4. monotonicity if Q � S then PwQ � Pw S

Again, if RyðxÞ denotes the unary fuzzy relation indexed by y, then the inf-w

composition, because of the implication models inclusion, becomes

BðyÞ ¼ inf
x2X
½AðxÞwRyðxÞ� ¼ inf

x2X
½AðxÞ ) RyðxÞ� ¼ inf

x2X
½AðxÞ 	 RyðxÞ�

which is a minimal (pessimistic) degree of inclusion of AðxÞ in the respective slice of
fuzzy relation Ry. In this case the inf-w composition denotes a truth value of the

statement A is included in Ry and BðyÞ ¼ 8 xðAðxÞ ) RyðxÞÞ.

7.3 FUZZY RELATIONAL EQUATIONS

Fuzzy relational equations are closely associated with the notion of composition of

fuzzy relations. One can view a fuzzy relation R in X� Y as a model of a fuzzy

system whose input is a fuzzy setU onX and output is a fuzzy set VonY, as shown in

Figure 7.8. Fuzzy sets are unary relations. The fuzzy relation R describes the

dependencies (relationships) between system input and output.

Consider the simplest fuzzy relational model of the form

V ¼ U � R
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where the operator denote by � is either a sup-t or inf-s composition discussed in

Section 2. Clearly, given an inputU and a fuzzy relation R, the outputV is found using

the definitions of the operator. Two fundamental problems arise:

1. Given U and V, determine R

2. Given V and R, determine U

The first is referred to as an estimation problem once it is concerned with determina-

tion of the parameters of the relational model. The second is an inverse problem once

it aims at computing the input, given an output and the relation between input and

output.

Consider, for instance, an information retrieval system. In information retrie-

val systems a set of index terms X ¼ fx1; x2; . . . ; xng and a set of relevant docu-

ments Y ¼ fy1; y2; . . . ; ymg can be associated through a ðn� mÞ fuzzy relational

matrix R ¼ ½rij�whose membership value rij specifies the relevance degree of index

term xi of document yj. If R is known, then given an input query U on X its

corresponding output V contains the membership values attached to the documents

in Y that reflects the query U through its composition with the relational matrix R.

In this direct case, the membership values of V rank the documents consistent with

query U. Given samples of queries and outputs, the estimation problem concerns

the construction of the relational matrix that represents their association. There-

fore, the estimation problem is fundamental to the design tools and implementation

mechanisms of fuzzy information retrieval systems (Pereira et al., 2006). The

inverse problem in an information retrieval system assumes an interesting inter-

pretation in this context: We are to determine a query that produces a given set of

ranked documents.

In image compression and reconstruction, binary fuzzy relation matrices

encode images by normalizing the intensity range of gray-scale pixels. Image

compression requires composition of the image with reference fuzzy sets to

produce a lower dimensional representation of the image. Reconstruction of the

original image requires solution of the inverse problem involving the compressed

image and the respective reference fuzzy sets (Nobuhara et al., 2002; Hirota and

Pedrycz, 2002).

In what follows, the focus is on composition of fuzzy relations on finite universes

because this is the most important instance of composition of fuzzy relations in

practice. The emphasis is on the sup-t form because this is the one that has been most

extensively studied.

U V R

Figure 7.8 Single-input–single-output fuzzy system.
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7.3.1 Solutions to the Estimation Problem

7.3.1.1 Single-Input–Single-Output Fuzzy Relational Equations

Initially, let U : X! ½0; 1� and V : Y! ½0; 1� be unary fuzzy relations, or equiva-

lently, fuzzy sets on finite universes X ¼ fx1; x2; . . . ; xng and Yf¼ y1; y2; . . . ; ymg
represented by a ð1� nÞ vector ½ui� and by a ð1� mÞ vector ½vj�, respectively. Let
R : X� Y! ½0; 1� be a fuzzy relation represented by the ðn� mÞ fuzzy relational

matrix R ¼ ½rij�.
To address the solution of the estimation problem, denote by Se the family of

fuzzy relations R that satisfies

V ¼ U � R ð7:8Þ

namely, Se ¼ fR 2 FðXÞ � FðYÞjV ¼ U � Rg. Consider the operator w : ½0; 1� !
½0; 1� such that

aw b ¼ supfc 2 ½0; 1�j a t c � bg ð7:9Þ

PROPOSITION

If Se 6¼ f, then the unique maximal solution R̂ of the sup-t relational equation

V ¼ U � R is

R̂ ¼ UTwV ð7:10Þ

R̂ is maximal in the sense that if R is an element of Se, then R � R̂.

PROOF

Notice that UTwðU � RÞ ¼ UTw V ¼ R̂ 
 R and, since the sup-t composition is

monotonic, U � R̂ 
 U � R ¼ V . Moreover, U � ðUTw VÞ 	 V means that

U � R̂ 	 V . Thus,

1. U � R̂ 
 V

2. U � R̂ 	 V

and from (1) and (2), V ¼ U � R̂. Also, if R̂ is not unique, then there exists a

maximal solution R̂0 such that V ¼ U � R̂0 and R̂ � R̂0. But, since R̂ is a maximal

solution, R̂0 � R̂. Therefore R̂0 ¼ R̂; in other words, the maximal solution is unique.

The procedure to solve the estimation problem is summarized next.

procedure ESTIMATE-SOLUTION ðU;VÞ returns fuzzy relation

static: fuzzy unary relations U ¼ ½ui�;V ¼ ½vj�
t: a t-norm

define w operator

for i ¼ 1 : n do

for j ¼ 1 : m do

rij  uiwvj
return R
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EXAMPLE 7.5

Consider two fuzzy sets

U ¼ ½0:8; 0:5; 0:3� and V ¼ ½0:4; 0:2; 0:0; 0:7�

and specify the t-norm t¼min. Then, using (7.9) we have

awb ¼ 1 if a � b

b if a > b

�

and from (7.10)

R̂ ¼
0:8
0:5
0:3

2

4

3

5w½ 0:4 0:2 0:0 0:7 � ¼
0:8w 0:4 0:8w 0:2 0:8 w 0:0 0:8 w 0:7
0:5w 0:4 0:5w 0:2 0:5 w 0:0 0:5 w 0:7
0:3w 0:4 0:3w 0:2 0:3 w 0:0 0:3 w 0:7

2

4

3

5

Therefore,

R̂ ¼
0:4 0:2 0:0 0:7
0:4 0:2 0:0 1:0
1:0 0:2 0:0 1:0

2

4

3

5 ð7:11Þ

One can verify that the fuzzy relations

R̂1 ¼
0:4 0:2 0:0 0:7
0:0 0:0 0:0 0:5
0:3 0:0 0:0 0:5

2

4

3

5 and R̂2 ¼
0:0 0:2 0:0 0:7
0:4 0:0 0:0 0:2
0:6 0:2 0:0 1:0

2

4

3

5

are also elements of Se, and clearly R̂1 � R̂ and R̂2 � R̂. However, R̂1 and R̂2 are not

comparable and cannot be ordered linearly by the inclusion relation. In general, the family

of solutions can be viewed as shown in Figure 7.9: It clearly involves a unique maximal

solution and several incomparable minimal solutions.

Existence of and procedures to compute minimal solutions for general sup-t compositions

still remain a challenge. Most of the current work concentrates on max–min relational

equations for which the existence and procedures of some solution methods have already

Figure 7.9 A structure of solutions to the estimation problem with sup-t composition.
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been established (Higashi and Klir, 1984). Computational procedures to compute the maximal

and all minimal solutions of max–min (Chen andWang, 2002), andmax–min andmax-product

fuzzy relational equations have been developed (Luoh et al., 2003). In particular, Chen and

Wang (2002) state that the problem of constructing all minimal solutions of max–min fuzzy

relational equations is NP-hard. Thus, no polynomial time algorithm is likely to exist.

7.3.2 Fuzzy Relational System

The estimation problem can be extended to cover a set of relational equations that are

collectively termed a fuzzy relational system. Let Uk and Vk denote fuzzy sets in

finite universes X and Y, respectively

Vk ¼ Uk � R; k ¼ 1; 2; . . . ;N ð7:12Þ
The problem is to estimate R such that the system of fuzzy relational equation (7.12)

is satisfied. The solution can be inferred assuming that there exists a maximal

solution R̂k for each of the kth relational equation and that the fuzzy relational

system has a solution, namely

Ske ¼ fR 2 FðXÞ � FðYÞjVk ¼ Uk � Rg 6¼ f

SNe ¼
\

N

k¼1
Ske 6¼ f

The maximal solution R̂ of the system of equations is then computed intersecting the

N maximal solutions R̂k, k ¼ 1; 2; . . . ;N

R̂ ¼
\

N

k¼1
R̂k

R̂k ¼ UT
k wVk ð7:13Þ

7.3.3 Relation-Relation Fuzzy Equations

Next, consider the instance in which U : Z� X! ½0; 1� and V : Z� Y! ½0; 1� are
fuzzy relations on finite universes X ¼ fx1; x2; . . . ; xng, Z ¼ fz1; z2; . . . ; zpg,
Y ¼ fy1; y2; . . . ; ymg, represented by ðp� nÞ and ðp� mÞ fuzzy relational matrices

½uki� and ½vkj�, respectively. Let R ¼ ½rij� be the ðn� mÞ fuzzy relational matrix asso-

ciated with a fuzzy relation R : X� Y! ½0; 1�. The fuzzy relational matrix becomes

V ¼ U � R ð7:8Þ

Denoting byUk the kth row ofU and likewise by Vk the kth row of V, k ¼ 1; 2; . . . ; p,
and Rj the jth column of R; j ¼ 1; . . . ;m (7.8) can be rewritten as follows:

V1

V2

..

.

Vp

2

6

6

4

3

7

7

5

¼

U1

U2

..

.

Up

2

6

6

4

3

7

7

5

� R1 R2    Rm
� �

¼
U1 � R1 U1 � R2    U1 � Rm

U2 � R1 U2 � R2    U2 � Rm

           
Up � R1 Up � R2    Up � Rm

2

6

6

4

3

7

7

5
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Therefore,

V1 ¼ ½U1 � R1 U1 � R2    U1 � Rm� ¼ U1 � R

V2 ¼ ½U2 � R1 U2 � R2    U2Rm� ¼ U2 � R

..

.

Vp ¼ ½Up � R1 Up � R2    UpRm� ¼ Up � R ð7:14Þ

This means that (7.8) can be partitioned into a collection of equations of the form

(7.12), and each of these equations can be solved independently. Thus the problem of

solving (7.8) reduces to the fuzzy relational system (7.14) and, using (7.13)

R̂ ¼
\

p

k¼1
R̂k

R̂k ¼ Uk � R

7.3.4 Multi-Input, Single-Output Fuzzy Relational
Equations

A natural extension of single-input–single-output systems of Figure 7.8 involves

multi-input–single-output systems, and multivariable fuzzy relational equations as

suggested in Figure 7.10 (Pedrycz and Gomide, 1998).

In this case, the inputs and outputs are fuzzy sets Ui 2 FðXiÞ; i ¼ 1;
. . . ; p;V 2 FðYÞ, and relation R 2 FðX1 � X2�;    � Xp � YÞ, with all universes

being finite. Then

V ¼ U1 � U2 �    � Up � R ð7:15Þ
Expressing (7.15) in terms of the membership functions of the fuzzy sets, we derive,

V ¼ sup
x2X
½U1ðx1ÞtU2ðx2Þt    tUpðxpÞt Rðx1; x2;    ; xp; yÞ�

where x ¼ ½x1; x2; . . . ; xp� and X ¼ X1 � X2 �    � Xp. The estimation problem is

as follows: given U1, U2; . . . ;Up and V, estimate R. Defining U as

U ¼ U1 t U2 t . . . tUp, (7.15) reduces to the form

V ¼ U � R
In the sequel, its solution is computed using (7.10).

U1

RU2

Up

V

Figure 7.10 Multi-input fuzzy system.
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7.3.5 Solution of the Estimation Problem for Equations
with Inf-s Composition

To summarize the solution procedure for the estimation problem involving inf-s

composition in finite universes, let us denote by Sse a family of fuzzy relations R that

satisfy the relationship

V ¼ U � R ð7:16Þ
namely, Sse ¼ fR 2 FðXÞ � FðYÞjV ¼ U � Rg

Consider the following operator from [0,1] to [0,1], b: [0,1] ! [0,1]

a b b ¼ inffc 2 ½0; 1�ja s c � bg ð7:17Þ

PROPOSITION

If Sse 6¼ f, then the unique minimal solution R̂ of the inf-s relational equation

V ¼ U � R is

R̂ ¼ UTbV ð7:18Þ
The proof of the proposition is analogous to the one produced in the case of the

equations with the sup-t composition.

Similarly as in the case of sup-t composition, R̂ is minimal in the sense that, if R

is an element of Sse, then R̂ � R. The proof is completed in a similar way as presented

before.

When solving inf-s fuzzy relational equations, we consider dual operations to

those encountered when dealing with the sup-t case. For instance, in the case of a

system of fuzzy relational equations involving Uk and Vk, fuzzy sets on finite

universes X and Y, respectively, such that

Vk ¼ Uk � R; k ¼ 1; 2; . . . ;N

the standard intersection of the analogous solution of the sup-t composition is

replaced by standard union in the solution as follows:

R̂ ¼
[

N

k¼1
R̂k

where R̂k ¼ UT
k bVk

EXAMPLE 7.6

Let us consider two fuzzy sets

U ¼ ½0:7; 0:5; 0:3� and V ¼ ½0:4; 0:5; 1:0; 0:6�

and specify the t-conorm as the maximum. Thus (7.17) gives rise to the expression

abb ¼ b if a � b

0 if a > b

�
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Making use of (7.18) we obtain

R̂ ¼
0:7
0:5
0:3

2

4

3

5b½0:4 0:5 1:0 0:6� ¼
0:7b 0:4 0:7 b 0:5 0:7b 1:0 0:7b 0:6
0:5b 0:4 0:5 b 0:5 0:5b 1:0 0:5b 0:6
0:3b 0:4 0:3 b 0:5 0:3b 1:0 0:3b 0:6

2

4

3

5

Therefore,

R̂ ¼
0:0 0:0 1:0 0:0
0:0 0:5 1:0 0:6
0:4 0:5 1:0 0:6

2

4

3

5

7.3.6 Solution of the Inverse Problem

7.3.6.1 Single-Input–Single-Output Fuzzy Relational Equations

To proceed the solution of the inverse problem, denote by Si the family of fuzzy

relations U that, given V and R, satisfies

V ¼ U � R
namely,

Si ¼ fU 2 FðXÞjV ¼ U � Rg:
Consider the operator u such that each element ui of U ¼ VuS, assuming S is an

ðm� nÞ fuzzy relational matrix, that is

ui ¼ vj u sji ¼ min ðvjwsji; j ¼ 1; . . . ;mÞ; i ¼ 1; . . . ; n ð7:19Þ

PROPOSITION

If Si 6¼ f, then the unique maximal solution Û of the sup-t relational equation

V ¼ U � R is given in the form

Û ¼ VuRT ð7:20Þ
PROOF

First, note that ðV u RTÞ � R ¼ Û � R 	 V . Moreover, U 	 ðU � RÞuRT and since the

sup-t composition is monotonic V ¼ U � R 	 Û � R, which means that Û � R 
 V .

Thus

1. Û � R 	 V

2. Û � R 
 V

and from (1) and (2), V ¼ Û � R. Similarly as in the estimation problem, Û is

maximal in the sense that, if U is any element of Si, then U � Û. Thus if Û is not

unique, there exists a Û0 such that V ¼ Û0 � R and Û � Û0. But, since Û also is

maximal Û0 � Û, which means that the maximal solution is unique. The steps to

solve the inverse problem are summarized below, where M is a large number.
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procedure INVERSE-SOLUTION (R,V) returns fuzzy unary relation

static: fuzzy relations: R ¼ ½rij�;V ¼ ½vj�
M: large number

t: a t-norm

define: w operator

for i ¼ 1 : n do

u M

for j ¼ 1 : m do

u minðu; vj w rjiÞ
ui  u

return U

EXAMPLE 7.7

Consider the fuzzy relation in (7.11) and fuzzy set V ¼ ½0:4; 0:2; 0:0; 0:7�, the same output of

the previous example. Assume the t-norm t¼min. Then, from (7.9) we get

a w b ¼ 1 if a � b

b if a > b

�

and from (7.19) and (7.20) we obtain

Û ¼ ð0:4 0:2 0:0 0:7Þu

0:4 0:4 1:0

0:2 0:2 0:2

0:0 0:0 0:0

0:7 1:0 1:0

2

6

6

6

4

3

7

7

7

5

¼min ð0:4 0:2 0:0 0:7Þw

0:4 0:4 1:0

0:2 0:2 0:2

0:0 0:0 0:0

0:7 1:0 1:0

2

6

6

6

4

3

7

7

7

5

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

¼
minð0:4w0:4;0:2w0:2;0:0w0:0;0:7w0:7Þ
minð0:4w0:4;0:2w0:2;0:0w0:0;1:0w0:7Þ
minð1:0w0:4;0:2w0:2;0:0w0:0;1:0w0:7Þ

0

B

@

1

C

A

T

therefore,

Û ¼ ½1:0; 0:7; 0:4�

Many other fuzzy sets also are solutions of this inverse problem. For instance, as it can be

easily checked, Û1 ¼ ½1; 0; 0� and Û2 ¼ ½0; 0:7; 0� are solutions, but both Û1 and Û2 are

included in Û.

7.3.7 Relation—Relation Fuzzy Equations

If U : Z� X! ½0; 1� and V : Z� Y! ½0; 1� are fuzzy relations on finite universes

X ¼ fx1; x2; . . . ; xng, Z ¼ fz1; z2; . . . ; zpg, and Y ¼ fy1; y2; . . . ; ymg, represented by
ðp� nÞ and ðp� mÞ fuzzy relational matrices ½uki� and ½vkj�, respectively, and

R ¼ ½rij� is the ðn� mÞ fuzzy relational matrix associated with a fuzzy relation R:

X� Y! ½0; 1�, then the fuzzy relation becomes

V ¼ U � R
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Similarly as before, denote by Uk the kth row of U and by Vk the kth row of V,

k ¼ 1; 2; . . . ; p. Let Rj be the jth column of R, j ¼ 1; . . . ;m. Equation V ¼ U � R can

be rewritten as follows:

V1

V2

..

.

Vp

2

6

6

4

3

7

7

5

¼

U1

U2

..

.

Up

2

6

6

4

3

7

7

5

� ½R1 R2    Rm � ¼
U1 � R1 U1 � R2    U1 � Rm

U2 � R1 U2 � R2    U2 � Rm

           
Up � R1 Up � R2    Up � Rm

2

6

6

4

3

7

7

5

Therefore,

V1 ¼ bU1 � R1 U1 � R2    U1 � Rmc ¼ U1 � R
V2 ¼ ½U2 � R1 U2 � R2    U2Rm� ¼ U2 � R
..
.

Vp ¼ ½Up � R1 Up � R2    UpRm� ¼ Up � R ð7:21Þ

Again, this means that V ¼ U � R can be partitioned into a set of independent

equations. Thus solving V ¼ U � R reduces to the fuzzy relational system (7.21)

and, using (7.20)

Ûi ¼ V iuRT ; i ¼ 1; 2; . . . ; p

7.3.8 Multi-Input, Single-Output Fuzzy Relational
Equations

The case of multi-input–single-output fuzzy systems and the corresponding multi-

variable fuzzy relational equations involve inputs and outputs, the fuzzy sets

Ui 2 FðXiÞ; i ¼ 1; . . . ; p and V 2 FðYÞ, respectively, and the relation

R 2 FðX1 � X2 �    � Xp � YÞ. As before, here all universes are finite. Thus, the
fuzzy multivariable system is governed by

V ¼ U1 � U2 �    � Up � R ð7:22Þ
which can be expressed in terms of its membership function as follows:

VðyÞ ¼ sup
x2X
½U1ðx1Þt U2ðx2Þt    t UpðxpÞt Rðx1; x2;    ; xp; yÞ�

where

x ¼ ðx1; x2; . . . ; xpÞ; X ¼ X1 � X2 � . . .� Xp; and y 2 Y

For multivariable fuzzy systems the inverse problem can be formulated in many

distinct forms. For instance, the problem can be solved with respect to a single

variable. This implies different individual versions of the inverse problem. There-

fore, given U1;U2; . . . ;Ui�1;Uiþ1; . . . ;Up, V, and R, the question is to determine Ui.

The solution of this problem comes in the form of the maximal fuzzy set

Ûi ¼ VuRT
i

Ri ¼ U1 � U2 �    � Ui�1 � Uiþ1 �    � Up � R
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Another formulation of the inverse problem involves an ensemble of fuzzy sets. Let

UI , I ¼ fi; j; . . . ; kg denote a fuzzy relation composed by the Cartesian product of

some fuzzy sets computed with the same t-norm as in the original fuzzy relational

equation

UI ¼ Ui � Uj �    � Uk

Let J ¼ ft; u; . . . ; vg be the collection of the remaining indices of f1; 2; . . . ; pg, that
is, J is such that I [ J ¼ f1; 2; . . . ; pg and I \ J ¼ ? . Rewriting (7.22) to distinguish

the ensemble of fuzzy sets UI

V ¼ UI � UJ � R ¼ UI � RI

where RI ¼ UJ � R. Then, from (7.20)

ÛI ¼ V uRT
I

Explicit computations of the fuzzy relation UI may require its decomposability if ÛI

is decomposable, meaning that the following holds

ÛI ¼ Ûi � Ûj �    � Ûk

In other words, we have

ÛIðxi; xj;    ; xkÞ ¼ ÛiðxiÞtÛjðxjÞt    tÛkðxkÞ ð7:23Þ
If (7.23) is not satisfied, the only result comes in the form of the fuzzy relation ÛI .

7.3.9 Solvability Conditions for Maximal Solutions

The methodology developed so far is valid assuming that Se or Si are nonempty, so

that solutions for the equations do exist. Although this may not always be the case, it

is worth to look at conditions that guarantee the solvability of the fuzzy relational

equations. In general these conditions are not obvious or easy to find, but in some

circumstances nonempty solution sets exist under quite mild conditions.

For the estimation problem the condition is simple,

hgtðUÞ � hgtðVÞ
In particular, if U is normal, then one is guaranteed to find a fuzzy relation

satisfying V ¼ U � R (Pedrycz and Gomide, 1998). The general solvability con-

ditions for the system of equations are more demanding and cannot be stated

explicitly, but often it requires normal and pairwise disjoint input fuzzy sets

(Chung and Lee, 1998).

For the particular case of V ¼ U � R;V 2 FðYÞ and U 2 FðXÞ, X and Y finite,

viewed as max–min composition, if

max
i

rij < vj
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for some j ¼ 1; 2; . . . ;m, then the inverse problem has no solution, otherwise it is

only a necessary condition for the existence of a solution (Klir and Yuan, 1995). In

general. Concise and practically relevant solvability conditions for the inverse

problem are difficult to obtain (Gottwald, 1984).

Properties of the solution set of single-input, single-output of min–max relation

equations from the viewpoint of attainability have been studied for finite and infinite

universes (Imai et al., 2002). Attainability concerns the existence of a subset of the

output universe for which, given a solution for the inverse problem, the relational

equation remains satisfied.

If the system is not solvable, then the only approach is to look for approximate

solutions (Chung and Lee, 1998; Pedrycz and Gomide, 1998; Chen andWang, 2006).

7.4 ASSOCIATIVE MEMORIES

Associative systems are entities whose input–output behavior is governed by a

memory constructed by the association of sample patterns. Association may take

one of the two fundamental forms, that is, autoassociation or heteroassociation.

Autoassociation requires that a set of input patterns, represented by vectors, be

encoded and stored by the system. Subsequently, the system is presented by a

description of an original pattern stored in it, and the task is to retrieve that particular

pattern using a certain recall process. Therefore, in autoassociation, a pattern vector

is associated with itself. Accordingly, the input and output spaces have the same

dimensionality. Contrary to autoassociation, in heteroassociation a set of input

patterns are paired with another set of output patterns and stored as such pairs of

items. When the system receives an input pattern, the task is to produce the

corresponding output pattern using the association encoded in memory. The input

and output spaces may have different dimensions. Often, in both cases a stored vector

may be recalled from memory by applying a partial or noisy version of the input

originally associated with the desired output vector.

7.4.1 Sup-t Fuzzy Associative Memories

Consider a pair of fuzzy patterns symbolized by a ð1� nÞ vector ui ¼ ½ui� and by a

ð1� mÞ vector vi ¼ ½vj�, representing fuzzy sets U and V in universes

X ¼ fx1; x2; . . . ; xng and Y ¼ fy1; y2; . . . ; ymg, respectively. The solution of the

estimation problem (7.10), repeated below, suggests that there exists a fuzzy relation

R ¼ ½rij� in X� Y

R̂ ¼ UTw V

w : ½0; 1� ! ½0; 1�; a w b ¼ sup fc 2 ½0; 1�j a t c � bg

that satisfies the fuzzy relational (7.8), namely

V ¼ U � R
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Therefore, given a t-norm t, (7.10) define a w-encoding mechanism to store an

association between fuzzy patterns U and V in a fuzzy associative memory (FAM)

represented by the binary fuzzy relation R. Subsequently, when the fuzzy system is

presented by a description of the original pattern U, it retrieves the particular

pattern V using a recall process viewed as the sup-t composition (7.8) of U and R.

Similarly, if Uk and Vk; k ¼ 1; 2; . . . ;N denote fuzzy sets on finite universes X

and Y, respectively, they can be encoded in the fuzzy relation R̂

R̂ ¼
\

N

k¼1
R̂k

R̂k ¼ UT
k wVk

Given some pattern Uk, the recall process assumes the form of the composition

Vk ¼ Uk � R
Despite the aforementioned features, the FAM storage and recall depend on how the

fuzzy setsU1,U2; . . . ;UN and V1, V2; . . . ;VN overlap in their respective universes. If

the input fuzzy sets Uk form a fuzzy partition and overlap at the level of ½

(semioverlap) , that is, they satisfy the conditions

hgtðUk \ Uk�1Þ ¼ 0:5 and
X

N

k¼1
UkðxÞ ¼ 1; 8 x 2 X

where Uk and Uk�1 are adjacent normal fuzzy sets, then the following proposition

holds.

PROPOSITION

If the fuzzy patterns Uk are semioverlapped, then the pairwise encoding of Uk and

Vk; k ¼ 1; 2; . . . ;N, using

R̂ ¼
\

N

k¼1
R̂k; R̂k ¼ UT

k wVk

produces perfect recall realized as

Vk ¼ Uk � R
The proof of the proposition above is a retranslation of the one developed by Chung

and Lee (1997; 1998) for the systems of fuzzy relational equations.

When semioverlapping does not hold, perfect recall can be achieved when each

pair of patterns Uk and Vk are replaced by their respective sharpened versionsU
0
k and

V 0k of the following form

U0kðxÞ ¼
UkðxÞ; if UkðxÞ � g

0; otherwise

�

where

g ¼ max
8k
fmaxUiðxÞg
i 6¼ k

x 2 fxjUiðxÞ ¼ 1g
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Similarly, we introduce a sharpened version of Vk, that is V
0
k. Encoding and recall

processes are carried out as follows

R̂ ¼
\

N

k¼1
R̂k; R̂k ¼ U0Tk wV 0k

and

Vk ¼ Uk � R

Thus, the output of the sharpened approach can be exactly the same as the original

ones (Chung and Lee, 1998).

It is worth noting that associative memories are bidirectional in the sense that,

given an output pattern V, the corresponding input pattern U can be found from the

solution of the inverse problem (7.20), namely

Uk ¼ Vk u RT

7.4.2 Inf-s Fuzzy Associative Memories

Similarly as sup-t associative memories, their duals, inf-s associative memories, are

developed under the framework of inf-s relational equations. Thus, if Uk and

Vk; k ¼ 1; 2; . . . ;N, are fuzzy patterns on finite universes X and Y, respectively,

encoding and recall are completed as follows:

encoding R̂ ¼
[

N

k¼1
R̂k where R̂k ¼ UT

k bVk:

recall Vk ¼ Uk � R; Uk ¼ VkbR
T ; k ¼ 1; 2; . . . ;N

Clearly, when Uk and Vk; k ¼ 1; 2; . . . ;N are distinct fuzzy patterns R̂ is a hetero-

association, and when Uk ¼ Vk; k ¼ 1; 2; . . . ;N, R̂ is an autoassociation (Valle et al.,

2004) (Sussner et al., 2006).

7.5 FUZZY NUMBERS AND FUZZY ARITHMETIC

7.5.1 Algebraic Operations on Fuzzy Numbers

In Chapter 3, it was noted that a membership function A: X! ½0; 1� is upper

semicontinuous if the set fx 2 XjAðxÞ � ag is closed, that is, the a-cuts are closed
intervals and, therefore, convex sets. If the universe X is the set R of real numbers

and membership function is normal, AðxÞ ¼ 1 8 x 2 ½b; c�, then AðxÞ is a model of a

fuzzy interval, with monotone increasing function fA : ½a; bÞ ! ½0; 1�, monotone

7.5 Fuzzy Numbers and Fuzzy Arithmetic 181



decreasing function gA : ðc; d� ! ½0; 1�, and null otherwise. Fuzzy intervals AðxÞ
have the following canonical form:

AðxÞ ¼
fAðxÞ; if x 2 ½a; bÞ
1; if x 2 ½b; c�

gAðxÞ; if x 2 ðc; d�
0; otherwise

8

>

>

<

>

>

:

where a � b � c � d; see Figure 7.11(a).

When b ¼ c and AðxÞ ¼ 1 for exactly one element of X, the fuzzy quantity is

called a fuzzy number; see Figure 7.11(b).

In general, the functions fA and gA are semicontinuous from the right and left,

respectively. From the pragmatic point of view, fuzzy intervals and numbers are

mappings from the real line R to the unit interval that satisfy a series of properties

such as normality, unimodality, continuity, and boundness of support. As Figure 7.12

suggests, fuzzy intervals and numbers model our intuitive notion of approximate

intervals and approximate numbers.

1

A(x)

R
a b c d0

1

A(x)

R
a m b0

(a)   (b) 

fA

gA

fA

gA

Figure 7.11 Canonical form of a fuzzy interval (a) and fuzzy number (b).

1   1   

2.5 2.5   

1   1   

2.2   

2.2   3.0   

3.0   2.52.2 3.0 

Real number 
2.5   

Fuzzy number 
about 2.5

Real interval 
[2.2, 3.0]   

Fuzzy interval 
around [2.2, 3.0]

R R

R R

Figure 7.12 Real and fuzzy numbers and intervals.
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7.5.2 Computing with Fuzzy Numbers

Before we move on to operations on fuzzy numbers, let us introduce a few examples

that motivate their use.

Consider that you traveled for 2 h at a speed of about 110 km/h. What was the

distance you traveled? The speed is described in the form of some fuzzy set S

whose membership function is given.

The next example is a more general version of the above problem.

You traveled at a speed of about 110 km/h for about 3 h. What was the distance

traveled? We assume that both the speed and time of travel are described by

fuzzy sets.

In a certain manufacturing process, there are five operations completed in series.

Given the nature of the manufacturing activities, the duration of each of them

can be characterized by fuzzy sets T1; T2; . . . ; T5. What is the time of

realization of this process?

Basically, there exist two fundamental methods to carry out algebraic operations on

fuzzy numbers. The first method is based on interval arithmetic and a-cuts, while the
second one employs the extension principle. The fundamentals of these two methods

are discussed next.

7.5.3 Interval Arithmetic and a-Cuts

The first approach to compute with fuzzy numbers exhibits its roots in the framework

of interval analysis (Moore, 1979), a branch of mathematics developed to deal with

the calculus of tolerances. In this framework, the interest is in intervals of real

numbers, ½a; b�; a; b 2 R, such as [4, 6], ½�1:5; 3:2� and so forth. The formulas

developed to perform the basic arithmetic operations, namely, addition, subtraction,

multiplication, and division are as follows (assuming that c; d 6¼ 0 for the division

operation):

1. addition: ½a; b� þ ½c; d� ¼ ½aþ c; bþ d�
2. subtraction: ½a; b� � ½c; d� ¼ ½a� d; b� c�
3. multiplication: ½a; b�:½c; d� ¼ ½minðac; ad; bc; bdÞ;maxðac; ad; bc; bdÞ�

4. division: ½a; b�=½c; d� ¼ min
a

c
;
a

d
;
b

c
;
b

d

	 


;max
a

c
;
a

d
;
b

c
;
b

d

	 
� 

Now, let A and B be two fuzzy numbers and let � be any of the four basic arithmetic

operations. Thus, for any a 2 ð0; 1� the fuzzy set A � B is computed using the a-cuts
Aa and Ba of A and B, respectively,

ðA � BÞa ¼ Aa � Ba

7.5 Fuzzy Numbers and Fuzzy Arithmetic 183



Recall that, by definition, the a-cuts Aa and Ba are closed intervals, and therefore the

formulas of interval operations can be applied for each value of a. When � is /

(division operation), we must require that 0 62 Ba; and 8 a 2 ð0; 1�.
After the interval operation is performed for a-cuts, the representation theorem

(Chapter 9) leads to the well-known relationship

A � B ¼
[

a2½0;1�
ðA � BÞa

In terms of the membership functions, we obtain

ðA � BÞðxÞ ¼ sup
a2½0;1�

½aðA � BÞaðxÞ� ¼ sup
a2½0;1�

½ðA � BÞfaðxÞ�

where ðA � BÞfaðxÞ ¼ aðA � BÞaðxÞ.
Therefore, the interval arithmetic-a-cut method to perform fuzzy arithmetic is a

generalization of interval arithmetic.

EXAMPLE 7.8

If A and B are two triangular fuzzy numbers, denoted as Aðx; a;m; bÞ and Bðx; c; n; dÞ, then
their a-cuts are determined as

Aa ¼ ½ðm� aÞaþ a; ðm� bÞaþ b�
Ba ¼ ½ðn� cÞaþ c; ðn� dÞaþ d�

Now let A ¼ Aðx; 1; 2; 3Þ and B ¼ Bðx; 2; 3; 5Þ. Then, the corresponding a-cuts are equal to

Aa ¼ ½aþ 1;�aþ 3�
Ba ¼ ½aþ 2;�2aþ 5�

Therefore,

ðAþ BÞa ¼ ½2aþ 3;�3aþ 8�
ðA� BÞa ¼ ½3a� 4;�2aþ 1�
ðABÞa ¼ ½ðaþ 1Þðaþ 2Þ; ð�aþ 3Þð�2aþ 5Þ�
ðA=BÞa ¼ ½ðaþ 1Þ=ð�2aþ 5Þ; ð�aþ 3Þðaþ 2Þ�

B

A

	 


a

¼ ½ðaþ 2Þ=ð�aþ 3Þ; ð�2aþ 5Þ=ðaþ 1Þ�

Figure 7.13 shows the resulting fuzzy numbers Aþ B, A� B, AB and B/A, respectively.

The extension of the interval arithmetic and the use of a-cuts and the representation of fuzzy
sets means that each fuzzy number can be regarded as a family of nested a-cuts. Subsequently,

these a-cuts are used to reconstruct the resulting fuzzy number. In essence, the use of a-cuts is
a sort of a brute-force method of computing with fuzzy numbers. However, a-cuts are

becoming important to develop parametric representation of fuzzy numbers to control their

shapes and associated approximation error (Stefanini et al., 2006).
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7.5.4 Fuzzy Arithmetic and the Extension Principle

The second method of computing with fuzzy numbers dwells on the extension

principle to extend standard operations on real numbers to fuzzy numbers. Here

the fuzzy set A � B on R is defined using (7.7)

ðA � BÞðzÞ ¼ sup
z¼x�y

min½AðxÞ;BðyÞ�; 8 z 2 R ð7:25Þ

In general, if t is a t-norm and �: R2 ! R is an operation on the real line, then

operations on fuzzy numbers become

ðA � BÞðzÞ ¼ sup
z¼x�y
½AðxÞtBðyÞ�; 8 z 2 R

Figure 7.14 illustrates the addition ðAþ BÞ of triangular fuzzy numbers A and B using

the minimum t-norm tm ðAþBÞ and the drastic product td ðAþBÞ t-norm, respectively.
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Figure 7.13 Algebraic operations on triangular fuzzy numbers.
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Clearly, different choices of t-norms produce different results. In general, if t1 � t2 in

the sense that a t1 b � a t2 b, 8a; b 2 ½0; 1�, then

sup
z¼x�y
½AðxÞtdBðyÞ� � sup

z¼x�y
½AðxÞtBðyÞ� � sup

z¼x�y
½AðxÞtmBðyÞ� 8 z 2 R

therefore,
tdðA � BÞ;� tðA � BÞðzÞ � tmðA � BÞ; 8 z 2 R

In the special case of the largest t-norm which is minimum, tm, the one we will

concentrate on the remaining of part this section, property 6 of Section 7.1 suggests a

fundamental result as a basis to compute with fuzzy numbers under the framework of

the extension principle.

PROPOSITION

For any fuzzy numbers A and B and a continuous monotone binary operation � on R,
the following equality holds for all a-cuts with a 2 ½0; 1�:

ðA � BÞa ¼ Aa � Ba

The proof of this proposition is given in (Nguyen and Walker, 1999). There are

important consequences of the proposition.

1. Since Aa and Ba are closed and bounded for all a, ðA � BÞa also is closed and

bounded;

1 1

3.0

1 1

2.0 4.0 

A

0 1.5 2.5 4.01.0

B

4.0 7.01.0

A+B

tm

A+B

td

6.0

x x

x x

Figure 7.14 Algebraic operations: the use of the extension principle with different triangular norms.
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2. Because A and B are fuzzy numbers, they are normal and therefore A � B is

also normal.

These two observations clearly demonstrate that the extension principle produces a

transformation that is a fuzzy number and, therefore, is a sound mechanism to

perform algebraic operations with fuzzy numbers.

3. Computation of A � B can be done by combining the increasing and decreas-

ing parts of the membership functions of A and B.

Figure 7.15 provides a graphical visualization of the above statement.

The results above can be generalized to broader classes and choices of t-norms

and operations with fuzzy quantities (Di Nola et al., 1985; Mares, 1997; De Baets,

2000; Klement et al., 2000). Moreover, approximation schemes were developed in

the framework of interpolation of a fuzzy function (Perfilieva, 2004). In what follows

we detail the basic operations with triangular fuzzy numbers because they are, by far,

the most commonly used ones in practice. Moreover, the analysis focusing this class

of fuzzy numbers reveals the most visible properties of fuzzy arithmetic.

7.5.5 Computing with Triangular Fuzzy Numbers

Consider two triangular fuzzy numbers A(x, a, m, b) and B(x, c, n, d). More

specifically,A and B are described by the following piecewise membership functions:

AðxÞ ¼

x� a

m� a
if x 2 ½a;mÞ

b� x

b� m
if x 2 ½m; b�

0 otherwise

8

>

>

>

>

<

>

>

>

>

:

BðxÞ ¼

x� c

n� c
if x 2 ½c; nÞ

d � x

d � n
if x 2 ½n; d�

0 otherwise

8

>

>

>

>

<

>

>

>

>

:

1

A B A∗ B

x y z = x∗ y

1

A B A∗ B

x y z = x ∗ y

(a)

(b)

Figure 7.15 Combining increasing and decreasing parts of the membership functions of the fuzzy

numbers A and B.

7.5 Fuzzy Numbers and Fuzzy Arithmetic 187



Let us recall that the modal values m and n identify a dominant, typical value, while

the lower and upper bounds, a or c and b or d, reflect the spread of the number. To

simplify computing, for the time being we consider fuzzy numbers with positive

lower bounds a, c > 0.

7.5.5.1 Addition

The extension principle (7.25) applied to A and B to compute C ¼ Aþ B yields

CðzÞ ¼ sup
z¼xþy

min½AðxÞ;BðyÞ�; 8 z 2 R

The resulting fuzzy number is normal, that is, CðzÞ ¼ 1 for z ¼ mþ n. Computations

of the spreads of C can be done, according to statement 3 mentioned in Section 7.5.4,

by treating the increasing and decreasing parts of the membership functions of A and B

separately.

Consider first that z < mþ n. In this situation, the calculation involves the increas-

ing parts of the membership function of A and B. According to statement 3 and

Figure 7.15(a), there exist values x and y such that x < m and y < n for which we have

AðxÞ ¼ BðyÞ ¼ a;a 2 ½0; 1�
Based on this we derive

x� a

m� a
¼ a

along with

y� c

n� c
¼ a

for x 2 ½a;m� and y 2 ½c; n�. Expressing x and y as functions of a we get

x ¼ ðm� aÞaþ a

y ¼ ðn� cÞaþ c

which are the same as the lower bounds of the intervals we get using interval analysis,

as they should be. Replacing the values of x and y in z ¼ xþ y we have

z ¼ xþ y ¼ ðm� aÞaþ aþ ðn� cÞaþ c

that is,

a ¼ z� ðaþ cÞ
ðmþ nÞ � ðaþ cÞ ð7:26Þ

Notice that z has, as expected, the same lower bound of the corresponding interval

associated with the a-cut we use with interval analysis.

Proceeding similarly for the decreasing portions of the membership functions

we obtain

b� x

b� m
¼ a
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along with

d � y

d � n
¼ a

for x 2 ½m; b� and y 2 ½n; d�. Again, expressing x and y as functions of a we get

x ¼ ðm� bÞ aþ b

y ¼ ðn� dÞ aþ d

Furthermore, replacing the values of x and y in z ¼ xþ y we have

z ¼ xþ y ¼ ðm� bÞ aþ bþ ðn� dÞ aþ d

that is

a ¼ ðbþ dÞ � z

ðbþ dÞ � ðmþ nÞ ð7:27Þ

As expected, z has the same upper bound as the corresponding interval associated

with the a-cut we use with interval analysis.

Finally, from (7.26) and (7.27) we obtain the membership function of

C ¼ Aþ B:

CðxÞ ¼

z� ðaþ cÞ
ðmþ nÞ � ðaþ cÞ; if z < mþ n

1; if z ¼ mþ n

ðbþ dÞ � z

ðbþ dÞ � ðmþ nÞ; if z > mþ n

8

>

>

>

>

>

<

>

>

>

>

>

:

Interestingly, C is also a triangular fuzzy number, as shown in Figure 7.13(a). To

emphasize this fact, we use a concise notation

C ¼ Cðx; aþ c;mþ n; bþ dÞ
Whenever several triangular fuzzy numbers are added, the result also is a triangular

fuzzy number. In general, however, shape preserving does not hold for any shape of

the fuzzy number and t-norm adopted in the extension principle.

7.5.5.2 Multiplication

As with the addition, we look first at the increasing parts of the membership functions

from which we get

x ¼ ðm� aÞ aþ a

y ¼ ðn� cÞ aþ c

The product z of x and y becomes

z ¼ xy ¼ ½ðm� aÞ aþ a�½ðn� cÞ aþ c�
z ¼ ðm� aÞðn� cÞ a2 þ ðm� aÞ acþ aðn� cÞ aþ ac ¼ f1ðaÞ
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If ac � z � mn, then the membership function of the fuzzy number D ¼ AB is an

inverse of the function f1ðaÞ, namely

DðzÞ ¼ f�11 ðzÞ

Similarly, consider the decreasing parts of the fuzzy numbers A and B

x ¼ ðm� bÞ aþ b

y ¼ ðn� dÞ aþ d

z ¼ xy ¼ ½ðm� bÞ aþ b�½ðn� dÞ aþ d�
z ¼ ðm� bÞðn� dÞ a2 þ ðm� bÞ ad þ bðn� dÞ aþ bd ¼ f2ðaÞ

As before, for any mn � z � bd we have

DðzÞ ¼ f�12 ðzÞ
Notice that in this case the fuzzy number D is does not have a triangular membership

function, which means that multiplication of triangular fuzzy numbers does not

preserve the original shape. Instead, multiplication of piecewise linear membership

functions produces a quadratic form of the resulting fuzzy number. Figure 7.13(c)

shows an example of the multiplication.

7.5.5.3 Division

Like multiplication, for the increasing parts of the membership functions

x ¼ ðm� aÞ aþ a

y ¼ ðn� cÞ aþ c

we compute the division z ¼ x=y which after replacing x and y

z ¼ x

y
¼ ðm� aÞaþ a

ðn� cÞaþ c
¼ g1ðaÞ

so that, for a=c � z � m=n, the fuzzy number E ¼ A=B has the following member-

ship function:

EðzÞ ¼ g�11 ðaÞ
Analogously, for the decreasing parts of the membership functions

x ¼ ðm� bÞaþ b

y ¼ ðn� dÞaþ d

and we obtain

z ¼ x

y
¼ ðm� bÞaþ b

ðn� dÞaþ d
¼ g2ðaÞ

190 Chapter 7 Transformations of Fuzzy Sets



Thus, for m=n � z � b=d, the membership function of E ¼ A=B is

EðzÞ ¼ g�12 ðaÞ

Clearly, the membership function of E is a rational function. Hence, division,

like multiplication, does not preserve shape of the triangular membership

functions.

7.6 CONCLUSIONS

Transformation of fuzzy sets in the form of the extension principle and composition

generalizes similar transformations that can be performed with sets. They play an

important role to provide further transformations through fuzzy relational equations,

associative memories, and algebraic operations with fuzzy numbers. Fuzzy relations

and associativememories are important to model, design, and develop applications in

many areas, inter alia, information search and image processing systems, fuzzy

modeling and control, to name a few.

Fuzzy numbers are convex and normal fuzzy sets on the set of real numbers.

Operations with fuzzy numbers can be developed with the help of extension prin-

ciple. In particular, standard fuzzy arithmetic can be approached choosing the min

t-norm. Several other choices are possible, but practice has shown that standard fuzzy

arithmetic is still one of the highest applicability.

EXERCISES AND PROBLEMS

1. Consider X ¼ f1; 2; 3; 4g and the fuzzy set A ¼ f0:1=1; 0:2=2; 0:7=3; 1:0=4g defined in

this universe. Also, let Y ¼ f1; 2; 3; 4; 5; 6g. Given is a function f: X! Y such that

y ¼ f ðxÞ ¼ xþ 2. Show that B ¼ f ðAÞ ¼ f0:1=3; 0:2=4; 0:7=5; 1:0=6g.
2. Determine the a-cuts of the fuzzy set Awhose membership function is equal to

AðxÞ ¼ 2x� x2 if 0 � x � 1

0 otherwise

�

Let f ðxÞ ¼ 2x� x2. Compute the image of the a-cuts of the fuzzy set A under f. Sketch the

transformations of the a-cuts graphically.

3. If A and B are fuzzy sets ofX andY, respectively, show that A � B ¼ A � Bwhere the t-norm

and t-conorm of � and � are dual, that is, x s y ¼ 1� ð1� xÞ t ð1� yÞ; x; y 2 ½0; 1�.
4. Perform the max-t and min-s compositions of the fuzzy relations G and W shown below

using different t-norms and t-conorms. Compare the obtained results.

G ¼
0:5 1:0 0:7 0:9
0:4 1:0 0:2 0:1
0:6 0:9 1:0 0:4

2

4

3

5 W ¼
0:9 0:3 0:1 0:7 0:6 1:0
0:1 0:1 0:9 1:0 1:0 0:4
0:0 0:3 0:6 0:9 1:0 0:0
1:0 0:0 0:0 0:0 1:0 1:0

2

6

6

4

3

7

7

5
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5. Let Uk and Vk; k ¼ 1, 2 denote fuzzy sets defined in finite universes X and Y

U1 ¼ ½1:0; 0:4; 0:5; 0:8; 0:0� V1 ¼ ½0:5; 0:7; 0:3; 0:1�
U2 ¼ ½0:1; 0:9; 1:0; 0:2; 0:0� V2 ¼ ½1:0; 0:3; 0:1; 0:0�

Solve the system of fuzzy relational equations with respect to R. Once solved, use this

relation to verify if, for each Uk, Vk is a solution for the respective inverse problem.

6. Consider the ðm� nÞ fuzzy relation W ¼ ½wij� such that wij ¼ min
k¼1;...;N

ðxkj ) xki Þ, where
ðx) yÞ ¼ supfc 2 ½0; 1�; x t c � yg. Show thatW is sup-t idempotent, namelyW ¼ W �W.

7. Develop, analytically, the membership function of the fuzzy number F that is the subtrac-

tion of fuzzy numbers A and B, namely, F ¼ A� B.

8. Consider fuzzy numbers A and B whose membership functions are given in the form

AðxÞ ¼
e�ðx�mÞ

2=k; a � x � b

0; otherwise

(

BðxÞ ¼

0; if x � a
x� a

m� a
; if x 2 ða;m�

b� x

b� m
; if x 2 ½m; bÞ

0; if x � b

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

Show that their a-cuts are given in the form

Aa ¼
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

ak

	 


s

;m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ln
1

ak

	 


s" #

if a � e
� �ða�mÞ2

k

� �

½a; b� if f a < e
� �ða�mÞ2

k

� �

8

>

>

>

<

>

>

>

:

and

Ba ¼ ½ðm� aÞaþ a; ðm� bÞaþ b�; 8 a 2 ½0; 1�

Sketch the membership functions of fuzzy sets of the addition, subtraction, multiplication,

and division of A and B.

9. Are the parabolic fuzzy numbers A, B, C. . . whose membership functions come in the form

Pðx;m; aÞ ¼
1� x� m

a

� �2

; if x 2 ½m� a;mþ a�

0; otherwise

8

<

:

closed under addition operation? Justify your answer.

HISTORICAL NOTES

The principle of extension has its roots in (Zadeh, 1965). According to Zadeh (1975), the extension

principle is implicit in 1965. The notions of fuzzy relation and composition of fuzzy relations were

introduced by Zadeh (1965).
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Fuzzy relational equations emerged in the 1970s as a result of the work of Sanchez (1976). Sanchez

also addressed the solvability issue of the equations with sup-min and inf-max composition operators.

Interestingly, fuzzy relational equations can be regarded as a generalization of well-known Boolean

equations (Rudeanu, 1974). Zadeh and Desoer (1963) first stressed the correspondence between relations

and general system theory.

The composition of intuitionistic fuzzy relations is a concept introduced by Deschrijver and Kerre

(2003). Here intuitionistic fuzzy relations are intuitionistic fuzzy sets formed in a Cartesian product of

some universes.

The problem of solvability and unique solvability of fuzzy equations in the framework of max–min

fuzzy algebra is addressed in Gavalec (2001). Max–min fuzzy equations form an alternative approach to

address fuzzy equations whose nature differs from the fuzzy relational equations derived from composi-

tions of fuzzy relations.

Research on fuzzy associative memory models originated in early 1990s with the work of Kosko

(1992, 1997). The approach uses correlation-min and correlation-product encoding and max–min and

max-product composition recall. Despite successful applications, these models of associative memories

suffer from a relatively low storage capacity.

Different forms of fuzzy arithmetic, than the one addressed in this chapter, have been proposed using

parametric form of fuzzy numbers through location index numbers and two nondecreasing left continuous

functions (Ma et al., 1999).
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Chapter 8

Generalizations and

Extensions of Fuzzy Sets

In this chapter, we expand and generalize the notion of fuzzy sets. We also put their

development in the framework of granular computing and show linkages of fuzzy sets

with rough sets. The essential developments of fuzzy sets occur along the line of their

generalizations into more abstract constructs usually referred to as higher order fuzzy

sets, in particular fuzzy sets of second order. Various implementation and conceptual

issues arising around numeric values of membership functions give rise to a collection

of concepts of granular membership grades. In the simplest scenario they give rise to

an idea of interval-valued fuzzy sets. More refined versions of the construct produce

type-2 fuzzy sets and fuzzy sets of higher type. Fuzzy sets and probabilistic constructs

are orthogonal concepts. We clarify the origin of this orthogonality and discuss

various formal approaches that lead to hybrid constructs of fuzzy probabilities. We

also cover the ideas of rough sets and show how the formalism of these information

granules can be combined with the ideas of fuzzy sets leading to the hybrids in the

form of rough fuzzy and fuzzy rough sets.

8.1 FUZZY SETS OF HIGHER ORDER

In Chapter 1 (Section 1.3.2), we have shown that there is a distinction between

explicit and implicit manifestations of fuzzy sets. This observation triggers further

conceptual investigations and leads to the concept of fuzzy sets of higher order. Let us

recall that a fuzzy set is defined in a certain universe of discourse X so that for each

element of it we come up with the corresponding membership degree, which is

interpreted as a degree of compatibility of this specific element with the concept

conveyed by the fuzzy set under discussion. The essence of a fuzzy of second order is

that it is defined over a collection of some other generic fuzzy sets. As an illustration,

let us consider a concept of a comfortable temperature that we define over a finite

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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collection of some generic fuzzy sets, say about 10�C, warm, hot, cold, about
20�C,. . . and so on. We could easily come to a quick conclusion that the term

comfortable sounds more ‘‘descriptive’’ and hence semantically more advanced in

comparison to the generic terms using which we describe it. An illustration of this

second order fuzzy set is shown in Figure 8.1. To make a clear distinction, fuzzy sets

studied so far could be referred to as fuzzy sets of the first order.

Using the membership degrees as shown in Figure 8.1, we can write down the

membership of comfortable temperature in the vector form as [0.7, 0.1, 0.9, 0.8, 0.3]. It

is understood that the corresponding entries of this vector pertain to the generic fuzzy

sets we started with when forming the fuzzy set. Figure 8.2 graphically emphasizes the

difference between fuzzy sets (which in this context could be referred to as fuzzy sets

of the first order) and fuzzy sets of order 2. For the order 2 fuzzy set, we can use the

notation A ¼ ½l1; l2; l3� given that the reference fuzzy sets are B1, B2, and B3.

Fuzzy sets of order 2 could be also formed on a Cartesian product of some

families of generic fuzzy sets. Consider, for instance, a concept of a preferred car. To

everybody this term could mean something else, yet all of us agree that the concept

itself is quite complex and definitely multifaceted. We easily include several aspects

such as economy, reliability, depreciation, acceleration, and others. For each of these

aspects, we might have a finite family of fuzzy sets, say when talking about economy,

we may use descriptors such as about 10 1
100

km (or expressed in mpg), high fuel

Figure 8.1 An example of second order fuzzy set of comfortable temperature defined over a collection

of generic fuzzy sets (graphically displayed as small clouds); shown are also corresponding membership

degrees.

A

X

A

Reference
fuzzy sets

B 1 B 2

B 3

l1

l2

l3

Figure 8.2 Contrasting fuzzy sets of (a) order 1 and (b) order 2. Note a role of reference fuzzy sets

played in the development of order 2 fuzzy sets.
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consumption, about 30 mpg, and so on. For the given families of generic fuzzy sets in

the vocabulary of generic descriptors, we combine them in a hierarchical manner as

illustrated in Figure 8.3.

In a similar way, we can propose fuzzy sets of higher order, say third order or

higher. They are formed in a recursive manner. Although conceptually appealing and

straightforward, its applicability could become an open issue. One may not venture in

allocating more effort into their design unless there is a legitimate reason behind the

further usage of fuzzy sets of higher order.

Nothing prevents us from building fuzzy sets of second order on a family of

generic terms that are not only fuzzy sets. Onemight consider a family of information

granules such as sets over which a certain fuzzy set is being formed.

8.2 ROUGH FUZZY SETS AND FUZZY ROUGH SETS

Rough sets are information granules that arise in description of concepts using a finite

vocabulary of existing concepts (information granules). As highlighted in Chapter 1,

rough sets arise when describing information granules (and sets, in particular) using

elements of some limited vocabulary. This description is usually imprecise. Intui-

tively, such description may lead to some approximations, called lower and upper

bounds. These approximations lead us to the concept of rough sets introduced by

Pawlak (1982, 1991); refer also to Skowron (1989) and Polkowski and Skowron

(1998). Interesting generalizations, conceptual insights, and algorithmic investiga-

tions are offered in a series of papers authored by Pawlak and Skowron (2007a, b, c).

To explain the concept of rough sets and show what they are to offer in terms of

representing information granules, we use an illustrative example. Consider a

description of environmental conditions expressed in terms of temperature and

pressure. For each of these factors, we fix several ranges of possible values where

each of such ranges comes with some interpretation such as ‘‘values below,’’ ‘‘values

in-between,’’ ‘‘values above,’’ and so on. By admitting such selected ranges in both

Preferred car 

Good economy

Good About 7l/ 100 km 

About 22 mpg  

Low depreciation 

About

2000

$/year 

Significant

High reliability 

About 3  

repairs/year

Over 5 

repairs/year

Far less than a 

month 

without repair 

Figure 8.3 Fuzzy set of order 2 of preferred cars; note a number of descriptors quantified in terms of

fuzzy sets and contributing directly to its formation.
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variables, we construct a grid of concepts formed in the Cartesian product of the

spaces of temperature and pressure, refer to Figure 8.4. Being more descriptive, this

grid forms a vocabulary of generic terms (information granules) using which we

would like to describe all new information granules. As illustrated in Figure 8.4,

there is a finite family of those, say A1, A2,. . . , A12.

Now let us consider that the environmental conditions monitored over some time

have resulted in some values of temperature and pressure ranging in-between some

lower and upper bound as illustrated in Figure 8.4. Denote this result as X. It becomes

obvious that when describing it in the terms of the information granules of the

vocabulary, we end up with a collection of elements that are fully included in X. They

form a lower bound of description of X when being completed in presence of the

given vocabulary. Likewise, we may identify elements of the vocabulary that have a

nonempty overlap with X and in this sense constitute an upper bound of the

description of the given environmental conditions. Along with the vocabulary, the

description forms a certain rough set. More formally, we describe an upper bound by

enumerating elements of Ais that have a nonzero overlap with X, that is,

Xþ ¼ fAijAi \ X 6¼ ?g ð8:1Þ

Temperature

P
re

s
s
u

re

XA1

A3

A9

A12

A6, A7

(a)

Temperature

P
re

s
s
u
re

X

Lower
bound

Temperature

P
re

s
s
u

re Upper
bound

X

(b)

Figure 8.4 A collection of generic information granules forming the vocabulary and their use in the

problem description. Environmental conditions X result in some interval of possible values (a). In the

sequel, this gives rise to the concept of a rough set with the roughness of the description being captured

by the lower and upper bounds (approximations) as illustrated in (b).
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More specifically, in Figure 8.4 we Xþ ¼ fA2;A3;A4;A6;A7;A8;A10;A11;A12g.
The lower bound of X involves all Ai such that they are fully included within X),

namely

X� ¼ fAijAi 	 Xg ð8:2Þ
Here X� ¼ fA7g. As succinctly visualized in Figure 8.4, we are concerned with a

description of a given concept X realized in the language of a certain collection (vocabu-

lary) of rather generic and simple terms A1;A2; . . . ;Ac. The lower and upper boundaries

(approximation) are reflective of the resulting imprecision caused by the conceptual

incompatibilities between the concept itself and the existing vocabulary, see Figure 8.5.

It is interesting to note that the vocabulary used in the above construct could

comprise information granules being expressed in terms of any other formalism, say

fuzzy sets. Quite often, we can encounter constructs like rough fuzzy sets and fuzzy

rough sets in which both fuzzy sets and rough sets are put together.

These constructs rely on the interaction between fuzzy sets and sets being used

in the construct. Let us consider a finite collection of sets fAig and use them to

describe some fuzzy set X. In this scheme, we arrive at the concept of a certain fuzzy

rough set, refer to Figure 8.6. The upper bound of this fuzzy rough set is computed as

in the previous case (8.1), yet given the membership function of X, the detailed

calculations return membership degrees rather than 0–1 values. Given the binary

character of Ais, the above expression for the upper bound reads in the form

XþðAiÞ ¼ supx½minðAiðxÞ;XðxÞÞ� ¼ supx2SuppðAiÞXðxÞ ð8:3Þ

X

{A1, A2,…,Ac}

R
o
u
g

h
 s

et

Figure 8.5 Rough set as a result of describing X in terms of some fixed vocabulary fA1;A2; . . . ;Acg;
the lower and upper bounds are results of the description.

Figure 8.6 The development of the fuzzy rough set.
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The lower bound of the resulting fuzzy rough set is taken in the form

X�ðAiÞ ¼ infx½maxð1� XðxÞ;AiðxÞÞ� ð8:4Þ

EXAMPLE 8.1

Let us consider a universe of discourse X ¼ ½�3; 3� and a collection of intervals regarded as

basic descriptors, see Figure 8.7.

The fuzzy set Awith a triangular membership function distributed between �2 and 2 gives
rise to some rough set with the lower and upper approximation of the form

Xþ ¼ ½0; 0:5; 1; 1; 0:5; 0�;X� ¼ ½0; 0; 0; 0; 0; 0�.
We can also consider another combination of information granules in which fAig is a

family of fuzzy sets and X is a set, see Figure 8.8. This leads us to the concept of rough fuzzy

sets.

Alternatively, we can envision a situation in which both fAig and X are fuzzy sets. The

result comes with the lower and upper bound whose computing follows the formulas presented

above.

8.3 INTERVAL-VALUED FUZZY SETS

When defining or estimating membership functions or membership degrees, one may

argue that characterizing membership degrees as single numeric values could be

counterproductive and even somewhat counterintuitive given the nature of fuzzy sets

themselves. Some remedy could be sought along the line of capturing the semantics of

fuzzy sets through intervals of possible membership grades rather than single numeric

entities (for instance, Sambuc, 1975; Wagenknecht and Hartmann, 1988; Pedrycz,

–3 –2 –1                 0                1                2                3

Figure 8.7 Family of generic descriptors, fuzzy set, and its representation in the form of some rough

set.

X

Ai

Figure 8.8 The concept of a rough fuzzy set.

200 Chapter 8 Generalizations and Extensions of Fuzzy Sets



1990; Gau and Buehrer, 1993, Gehrke et al. 1996). This gives rise to the concept of so-

called interval-valued fuzzy sets. Formally, an interval-valued fuzzy set A is defined by

twomappings fromX to the unit intervalA ¼ ðA�;AþÞ, whereA� andAþ are the lower
and upper bound of membership grades, A�ðxÞ AþðxÞ for all x 2 X, where

A�ðxÞ � AþðxÞ. The bounds are used to capture an effect of a lack of uniqueness of

numeric membership—not knowing the detailed numeric values we admit bounds of

possible membership grades. Hence, the name of the interval-valued fuzzy sets is very

much descriptive of the essence of the construct. The broader the range of

themembership values, the less specificwe are aboutmembership degree of the element

to the information granule. An illustration of the interval-valued fuzzy set is included in

Figure 8.9. We already built interval-valued fuzzy sets when constructing membership

functions using a horizontal approach and accepting confidence intervals produced by

the statistical assessment of the results produced by a group of experts.

In particular, when A�ðxÞ ¼ AþðxÞ, we end up with a ‘‘standard’’ fuzzy set. The
operations on interval-valued fuzzy sets are defined by considering separately the

lower and upper bounds describing ranges of membership degrees. Given two

interval-valued fuzzy sets A ¼ ðA�;AþÞ and B ¼ ðB�;BþÞ, their union, intersection,
and complement are introduced as follows:

union ðA [ BÞðxÞ ¼ ððminðAþðxÞ;BþðxÞÞ;maxðA�ðxÞ;B�ðxÞÞÞ
intersection ðA \ BÞx ¼ ððmaxðAþðxÞ;BþðxÞÞ;minðA�ðxÞ;B�ðxÞÞÞ
complement AðxÞ ¼ ðA�ðxÞ;AþðxÞÞ ð8:5Þ

8.4 TYPE-2 FUZZY SETS

Type-2 fuzzy sets form an intuitively appealing generalization of interval-valued

fuzzy sets. Instead of the intervals of numeric values of membership degrees, we

allow for the characterization of membership by fuzzy sets themselves. Consider a

certain element of the universe of discourse, say x. The membership of x to A is

captured by a certain fuzzy set formed over the unit interval. This construct gen-

eralizes the fundamental idea of a fuzzy set and helps us relieve from the restriction

x

A +

A –

1

Figure 8.9 An illustration of an interval-valued fuzzy set; note that the lower and upper bound of

possible membership grades could differ quite sunbstantially across the universe of discourse.
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of having single numeric values describing a given fuzzy set (Mendel, 2001; Mendel

and John, 2002). An example of type-2 fuzzy set is illustrated in Figure 8.10.

With regard to these forms of generalizations of fuzzy sets, there are two

important facets that should be taken into consideration. First, there should be a

clear motivation and a straightforward need to develop and use them. Second, it is

imperative that there is sound membership determination procedure in place using

which we can construct the pertinent fuzzy set.

To elaborate on these two issues, let us discuss a situation in which we deal with

several databases populated by data coming from different regions of the same

country. Using them we build a fuzzy set describing a concept of high income where

the descriptor high is modeled as a certain fuzzy set. Given the experimental

evidence, the estimation method described in Pedrycz (1990) could be a viable

alternative to pursue. By being induced by some locally available data, the concept

could exhibit some level of variability, yet we may anticipate that all membership

functions might be quite similar as being reflective of some general commonalities.

Given that the individual estimated membership functions are trapezoidal (or trian-

gular), we can consider two alternatives to come up with some aggregation of the

individual fuzzy sets, see Figure 8.11.

Xxi xj xk

Figure 8.10 An illustration of type-2 fuzzy set; for each element of X there is a corresponding fuzzy

set of membership grades.

Figure 8.11 A scheme of aggregation of fuzzy sets induced by P datasets.
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To fix the notation, let for P databases, the corresponding estimated trapezoidal

membership functions are denoted by A1ðx; a1;m1; n1; b1Þ;A2ðx; a2;m2; n2; b2Þ;
. . . ;APðx; aP;mP; nP; bPÞ, respectively. The first aggregation alternative leads to the

emergence of an interval-valued fuzzy set AðxÞ. Its membership function assumes

interval values where for each x the interval of possible values of the membership

grades is given in the form [mini Aiðx; ai;mi; ni; biÞ;maxi Aiðx; ai;mi; ni; biÞ].
It is worth noting that both the upper and lower bounds associated with the

intervals formed in this way do not form any longer triangular or trapezoidal

membership functions.

EXAMPLE 8.2

Let us consider four triangular fuzzy sets A1(x, 2, 5, 9), A2(x, 1, 7, 11), A3(x, 1.5, 8, 10), and

A4(x, 0, 7, 10). The resulting membership function of the interval-valued fuzzy set A is

illustrated in Figure 8.12. One should note that A is not necessarily either a triangular or a

trapezoidal fuzzy set as we may encounter a substantial level of diversity among fuzzy sets.

The form of the interval-valued fuzzy set may be advantageous in further computing,

yet the estimation process could be very conservative leading to very broad ranges of

membership grades (which is particularly visible when dealing with different data

and fuzzy sets induced on their basis).

(b)Being aware of the drawbacks of the conservative way in which the membership

function of the interval-valued fuzzy set has been estimated, we may refine the

estimation process, and instead relying on the minimal and maximal membership

grades, take advantage of the statistical characteristics of the collection of the

membership grades. This implies that for each x we collect the membership grades

and apply to them the estimation procedure as described in Section 4.6 and 4.7 of

Chapter 4. Subsequently, this leads to the triangular or trapezoidal membership
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Figure 8.12 Interval-valued fuzzy set resulting from the aggregation of triangular fuzzy sets.
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functions defined in [0,1]. In essence, in this waywe have constructed a certain type-2

fuzzy set.

There are also a substantial number of developments and augmentations of a generic

concept of fuzzy sets that come under different names. Some of them somewhat relate to

interval-valued fuzzy sets. One of them is the concept proposed by Atanassov (1998, 2000).

The crux of this construct is the following. Let us consider an information granule A defined

over some space X and expressed as a pair of mappings from X to [0,1], that is,

ðAþ;A�Þ AþðxÞ denotes a degree of membership of x to A, whereas A�ðxÞ stands for a

degree of nonmembership of x to A�. Furthermore, we require that for any x 2 X; Aþ and

A� satisfy the relationship

AþðxÞ þ A�ðxÞ � 1 ð8:6Þ

meaning that there exists a ‘‘gap’’ between a strength of membership (which is a sort of some

‘‘positive’’ assessment) and a strength of nonmembership (which could be viewed as a type of

‘‘negative’’ assessment). The basic logic operations for (A�;Aþ) and (B�;Bþ) are defined in

the form given before in (8.5); note that the result is again a pair of degrees of membership and

nonmembership).

8.5 SHADOWED SETS AS A THREE-VALUED LOGIC
CHARACTERIZATION OF FUZZY SETS

Fuzzy sets offer a wealth of detailed numeric information conveyed by their detailed

numeric membership grades (membership functions). This very detailed conceptua-

lization of information granules can clearly act as a two-edge sword. On the one

hand, we may enjoy a very detailed quantification of elements to a given concept

(fuzzy set). On the other hand, those membership grades could be somewhat over-

whelming and introduce some burden when it comes to a general interpretation. It is

also worth noting that numeric processing of membership grades comes sometimes

with quite substantial computing overhead. To alleviate these problems, we introduce

a certain category of information granules called shadowed sets. Shadowed sets are

information granules induced by fuzzy sets so that they capture the essence of fuzzy

sets while at the same time reducing the numeric burden because of their limited

three-valued characterization of shadowed sets. This nonnumeric character of sha-

dowed sets is also of particular interest when dealing with their interpretation

abilities. Given the characteristics of shadowed sets, we may view them as a certain

symbolic representation of fuzzy sets.

8.5.1 Defining Shadowed Sets

Formally speaking, a shadowed set A defined in some space X is a set-valued

mapping coming in the following form (Pedrycz, 1998, 1999)

A : X! f0; ½0; 1�; 1g ð8:7Þ
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The co-domain of A consists of three components, that is, 0, 1, and the unit interval

[0,1]. They can be treated as degrees of membership of elements to A. These three

quantification levels come with an apparent interpretation. All elements for which

AðxÞ assume 1 are called a core of the shadowed set—they embrace all elements that

are fully compatible with the concept conveyed by A. The elements of X for which

AðxÞ attains zero are excluded from A. The elements ofX for which we have assigned

the unit interval are completely uncertain—we are not at a position to allocate any

numeric membership grade. Therefore, we allow the usage of the unit interval, which

reflects uncertainty, meaning that any numeric value could be permitted here. In

essence, such element could be excluded (we pick up the lowest possible value from

the unit interval), exhibit partial membership (any number within the range from 0

and 1), or could be fully allocated to A. Given this extreme level of uncertainty

(nothing is known and all values are allowed), we call these elements shadows and

hence the name of the shadowed set. An illustration of the underlying concept of a

shadowed set is included in Figure 8.13.

One can view this mapping (shadowed set) as an example of a three-valued logic

as encountered in the classic model introduced by Lukasiewicz. Having this in mind,

we can think of shadowed sets as a symbolic representation of numeric fuzzy sets.

Obviously, the elements of co-domain of A could be labeled using symbols (say,

certain, shadow, excluded; or a, b, c and alike) endowed with some well-defined

semantics.

The operations on shadowed Table 8.1 sets are isomorphic with those encoun-

tered in the three-valued logic.

These logic operations are conceptually convincing; we observe an effect of

preservation of uncertainty. In the case of the or operation, we note that combining a

single numeric value of exclusion (0) with the shadow, we arrive at the shadow (as

nothing specific could be stated about the result of this logic aggregation). Similar

effect occurs for the and operator when being applied to the shadow and the logic

value of 1.

The simplicity of shadowed sets becomes their advantage. Dealing with three

logic values simplifies not only the interpretation but it is also advantageous in all

computing, especially when such calculations are contrasted with the calculations

completed for fuzzy sets involving detailed numeric membership grades. Let us note

that logic operators that are typically realized by means of some t-norms and

A
[0,1] [0,1] 

X

Figure 8.13 An example of a shadowed set A; note shadows formed around the core of the construct.
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t-conorms require computing of the numeric values of the membership grades. In

contrast, those realized on shadowed sets are based on comparison operations and

therefore are far less demanding.

Although shadowed sets could be sought as new and standalone constructs, our

objective is to treat them as information granules induced by some fuzzy sets. The

bottom line of our approach is straightforward—considering fuzzy sets (or fuzzy

relations) as the point of departure and acknowledging computing overhead

associated with them, we regard shadowed sets as constructs that capture the essence

of fuzzy sets while help reducing the overall computing effort and simplifying

ensuing interpretation. In the next section, we concentrate on the development of

shadowed sets for given fuzzy sets.

8.5.2 The Development of Shadowed Sets

Accepting the point of view that shadowed sets are algorithmically implied (induced)

by some fuzzy sets, we are interested in the transformation mechanisms translating

fuzzy sets into the corresponding shadowed sets. The underlying concept is the one of

uncertainty condensation or ‘‘localization.’’ While in fuzzy sets we encounter inter-

mediate membership grades located in between 0 and 1 and distributed practically

across the entire space, in shadowed sets we ‘‘localize’’ the uncertainty effect by

building constrained and fairly compact shadows. By doing so we could remove

(or better to say, redistribute) uncertainty from the rest of the universe of discourse by

bringing the corresponding low and high membership grades to zero and one and

Table 8.1 Logic Operations (and, or, and Complement)

on Shadowed Sets; Here a Shadow is Denoted by

Sð¼ ½0; 1�Þ.

Intersection

A\B 0 S 1

0 0 0 0

S 0 S S

1 0 S 1

Union

A\B 0 S 1

0 0 S 1

S S S 1

1 1 1 1

Complement

A

0 1

S S

1 0
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then compensating these changes by allowing for the emergence of uncertainty

regions. This transformation could lead to a certain optimization process in which

we complete a total balance of uncertainty.

To illustrate this optimization, let us start with a continuous, symmetric,

unimodal, and normal membership function A. In this case we can split the problem

into two tasks by considering separately the increasing and decreasing portion of the

membership function, Figure 8.14.

For the increasing portion of the membership function, we reduce low

membership grades to zero, elevate high membership grades to one, and compensate

these changes (which in essence lead to an elimination of partial membership grades)

by allowing for a region of the shadowwhere there are no specificmembership values

assigned, but we admit the entire unit interval as feasible membership grades.

Computationally, we form the following balance of uncertainty preservation that

could be symbolically expressed as

Reduction of membership þ elevation of membership ¼ Shadow ð8:8Þ
Again referring to Figure 8.14, once given the membership grades below a and above

1� a:; :a 2 ð0; 1
2
Þ, we express the components of the above relationship in the form

(we assume that all integrals do exist)

Reduction of membership (low membership grades are reduced to zero)

ð

x:AðxÞ�a

AðxÞdx ð8:9Þ

Elevation of membership (high membership grades elevated to 1)

ð

x:AðxÞ�1�a

ð1� AðxÞÞdx ð8:10Þ

Shadow

ð

x:a<AðxÞ<1�a

dx ð8:11Þ

a 

1–a

x

Membership

Figure 8.14 The concept of a shadowed set induced by some fuzzy set; note the range of membership

grades (located between a and 1� a) generating a shadow.
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The minimization of the absolute difference

VðaÞ ¼
ð

x:AðxÞ�a

AðxÞdxþ
ð

x:AðxÞ�1�a

ð1� AðxÞÞdx�
ð

x:a<AðxÞ<1�a

dx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð8:12Þ

completed with respect to a is given in the form of the following optimization

problem

aopt ¼ arg minaVðaÞ ð8:13Þ
where a 2 ð0; 1

2
Þ. For instance, when dealing with triangular membership function

(and it appears that the result does not require the symmetry requirement), the

optimal value of a is equal to
ffiffiffi

2
p
� 1 � 0:4142 (Pedrycz, 1999). For the parabolic

membership functions, the optimization leads to the value of a equal to

0.405.

For the Gaussian membership function, AðxÞ ¼ expð�x2=s2Þ, we get the

optimal value of a resulting from the relationship (the calculations here concerns

the decreasing part of the membership function defined over [0;1 )

VðaÞ ¼
ð

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnð1�aÞ
p

0

ð1� AðxÞÞdxþ
ð

1

s
ffiffiffiffiffiffiffiffiffiffi

�lnðaÞ
p

AðxÞdx�
ð

s
ffiffiffiffiffiffiffiffiffiffi

�lnðaÞ
p

s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�lnð1�aÞ
p

dx

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

ð8:14Þ

Then the optimal value of a is equal to 0.3947, and it does not depend upon the spread

s. The plot of V, Figure 8.15, reveals that V exhibits a global minimum.

Let us move on to the most general case in which we do not impose any

assumptions as to the form of the membership function. We consider discrete

membership values u1; u2; . . . uN . Denote the minimal and maximal value in this

set by umin and umax, respectively. The overall reduction of lower membership grades

is expressed in the form of the following sum
P

k2V uk where V ¼ fkjuk � ag. The
elevation of higher membership grades to one leads to the expression

P

k2Fð1� ukÞ
with V ¼ fkjuk � umax � ag. For the shadows we consider the cardinality of the set

0.2 0.4
0

5

10

a 

V

Figure 8.15 Performance index V treated as a function of a (s ¼ 4).
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V ¼ fkjuk 2 ða; umax � aÞg. Then the above conditions translate into the following

optimization problem

VðaÞ ¼
X

k2V
uk þ

X

k2F
ð1� ukÞ � CardðVÞ

�

�

�

�

�

�

�

�

�

�

Minimize VðaÞ with respect to a

ð8:15Þ
where the range of feasible values of a is given as [umin;

uminþumax

2
].

Once optimized, the resulting shadowed set can be treated as a concise descrip-

tor of the corresponding fuzzy set. For the original fuzzy set A, we denote by Core (A)

and Shadow(A), respectively, the core and shadow of the shadowed set induced by A.

The above design process could be generalized in such a way that we introduce a

continuous and increasing functional gðuÞ : ½0; 1� ! ½0; 1� that helps quantify

the original values of the membership grades when taken into consideration in

the balance captured by (8.8). When reducing membership grades we use the

expression
ð

x:AðxÞ�a

gðAðxÞÞdx ð8:16Þ

while the elevation of membership is guided by the form
ð

x:AðxÞ�1�a

ð1� gðAðxÞÞÞdx ð8:17Þ

The typical form of the functional would be a polynomial gðuÞ ¼ up; p > 0.

The shadowed sets are instrumental in fuzzy cluster analysis, especially results

produced there. Consider a data set shown in Figure 8.16. The standard FCM run for

c ¼ 2 clusters returned the partition matrix whose membership grades are then

transformed into the shadowed set.
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Figure 8.16 Two-dimensional synthetic data set.
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The prototypes are equal to v1 ¼ ½5:51; 2:48�, v2 ¼ ½1:05; 4:71� and reflect the

structure of the data set. The membership function of one cluster (fuzzy relation) is

visualized in Figure 8.17.

The optimization of the threshold level (a) inducing the shadowed set is

completed through a simple enumeration; following the graph in Figure 8.18, we

obtain a ¼ 0:4322. This in turn highlights several patterns to be treated as potential

candidates for further thorough analysis.

When we complete clustering with c ¼ 12 (which is substantially higher than in

the first case), the results become quite different, see Figure 8.19. First, the optimal

value of a becomes equal to 0.3636. As illustrated in Figure 8.20, the overlap

between the clusters has been also reduced quite visibly.

0

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1

1 2500 α

Figure 8.17 Membership grades of one of the clusters developed by the clustering algorithm.
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8.6 PROBABILITY AND FUZZY SETS

Fuzzy sets and probability are different realizations of the fundamental concept of

information granules. Given this similarity, they address different facets of informa-

tion granularity. There exist significant conceptual differences and algorithmic

aspects. Let us emphasize the most visible one.

Fuzzy sets are information granules whose existence and a form of boundaries

are a result of perception of some phenomena whose comprehension is inherently

reflective of the very nature of these concepts and an intension of the observer. Put it

briefly, the same experimental evidence can be viewed at from different standpoints
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Figure 8.19 V viewed as a function of a for c ¼ 12 clusters.
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Figure 8.20 Distribution of membership grades of one of the clusters developed by the clustering

algorithm.
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articulated by some fuzzy sets. In this sense, the same data could lead to a fairly

diversified manifestation. In

In probability, we capture the distribution of data and transform them into some

form of probability density function, probability function, and alike. When dealing

with probabilistic information granules, we evidently and directly rely upon the

experimental data by capturing their distribution in terms of some probability density

function. In spite of possible differences between various techniques used in prob-

ability density estimation, it is anticipated that all of the methods will lead to similar

results, see Figure 8.21.

The distinction between fuzzy sets and probability can be made even more

striking by recalling that fuzzy sets capture the effect of uncertainty associated

with perception whereas probability deals with the facet of uncertainty that deals

with occurrence or nonoccurrence of some phenomenon. In other words, fuzzy

sets and probability theory are orthogonal. Fuzzy sets form a certain view at the

concepts and admit that they are inherently elements with partial membership.

This has nothing to do with an outcome of experiment. In probability we aim at

quantifying opinions about occurrence (chances of occurrence) of some events.

Say, we toss a coin. Before this experiment, we cannot say what is going to

happen. However, once the experiment has been done, we know the outcome. The

uncertainty associated with it has vanished. Instead of expressing our judgment in

the language of probability theory, we now know whether the event has occurred

or not.

There is a certain point to be made clear: Although fuzzy sets do not directly rely

on experimental numeric data and do not capture their characteristics in an explicit

manner, they may do so in some loosely defined implicit manner. In other words,

when forming a membership function, one might incorporate some experimental

evidence andmake it being included in the formation of the fuzzy set in some implicit

manner. We have witnessed this effect in several methods of membership function

determination we discussed in Chapter 4. In particular, this concerns fuzzy equal-

ization and fuzzy clustering.

Figure 8.21 Data and their different perception articulated by fuzzy sets and probabilities.

212 Chapter 8 Generalizations and Extensions of Fuzzy Sets



8.7 PROBABILITY OF FUZZY EVENTS

By identifying the orthogonality of the concepts of fuzzy sets and probability, we can

conveniently describe situations in which both of them come together, and it

becomes beneficial to consider both of them. Before we move to the formalization

of the problems and discuss algorithmic underpinnings, let us offer some illustrative

examples.

� What is the probability of low temperature tomorrow?

� What is the probability of high inflation in a short term?

� What is the probability of small steady state error in control of pressure of steam

boiler?

In all of these statements, we are concerned about quantifying probability of fuzzy

events. These events could be simple (such as the one in the first or the third one) or

composite (as the one encountered in the second example)

Denote the underlying probability density function (pdf) defined in X by pðxÞ.
The probability of the fuzzy event (Zadeh, 1968, 1975) A defined in the same spaceX

is defined as the following integral
Ð

X
AðxÞdPðxÞ ¼

Ð

X
AðxÞpðxÞdx (by default we

assume that this integral does exist). A careful inspection of the above expression

indicates that this integral is nothing but an expected value of the membership

function EðAÞ,

EðAÞ ¼
ð

X

AðxÞpðxÞdx ð8:18Þ

Along the same line, we can introduce variance of A (and its standard deviation) as

well as higher order moments of the fuzzy event:

� variance E2ðAÞ ¼
Ð

X

½AðxÞ � EðAÞ�2pðxÞdx
and standard deviation sðAÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffi

E2ðAÞ
p

� higher order moments
Ð

X

½AðxÞ � EðAÞ�rpðxÞdx, where r > 2

EXAMPLE 8.3

We are interested in the determination of the probability of the fuzzy event in the first example

assuming that the distribution of temperatures in this particular season of the year can be

described by means of a normal density function with the mean value of 5 and a standard

deviation equal to 1, while the concept of low temperature comes with the piecewise linear

membership function AðxÞ shown in Figure 8.22. Furthermore, let us find the standard

deviation of the fuzzy event.

The integral (8.18) makes sense; however, there is no analytical solution to it, and we need

to resort ourselves to numerical integration. The resulting probability of the fuzzy event A is

equal to 0.294. The standard deviation of the fuzzy event sðAÞ is then equal to 3:46� 10�3.
Noticeably, it is substantially lower in comparison with the probability of the fuzzy event.
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In a similar manner we can deal with situations where we encounter computing of

probabilities of combinations of fuzzy events A and B such as P(A and B), P(A or B), or in

general P(f(A,B)) where f denotes some logic aggregation of A and B.

Referring to the orthogonality of fuzzy sets and probability, we might be interested in fuzzy

sets that are made meaningful in terms of their underlying semantics as well as existing

experimental evidence. The semantics issue could be handled by requesting that the energy

measure of fuzziness of the fuzzy set does not exceed a certain acceptable level (we want the

fuzzy set to be specific enough). The experimental evidence should be above some threshold

level, which says that the fuzzy set comes with sufficient data behind it. In other words, we

request that the expected value EðAÞ should exceed the predefined level. Given these two

requirements, we can form a feasible region in which such fuzzy sets should be positioned; see

Figure 8.23. It includes all fuzzy sets such that their energy measure of fuzziness is less than

some threshold l and the probability of the event is not less than m:
Another interesting category of expressions deals with situations in which we encounter

linguistically quantified statements. For instance, we commonly use common terms such as low

probability, high probability, probability of about 70% (that is 0.7), and so on. Given their

character, all these probabilities can be referred to as linguistic probabilities (Zadeh, 1975).

They are fuzzy sets defined in the unit interval and come with an intuitively appealing

membership functions as illustrated in Figure 8.24.

Probability

Energy(A)

m

l

Acceptable
region

Figure 8.23 The feasible region of fuzzy sets satisfying the requirements of semantic validity and

experimental evidence (shaded region); the corresponding threshold levels are denoted by l and m,

respectively.

10 0 10 20
0

0.5

1

10 0 10 20
0

0.2

0.4

2010− x

Figure 8.22 Fuzzy event of low temperature and the probability density function of temperatures

during the season of the year.
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As an illustration of processing realized in the presence of linguistic probabilities as shown

above, let us compute the expected value of the expression (Zadeh, 1975)

Z ¼
X

n

i¼1
aiPi ð8:19Þ

where ai 2 R. Recall that the expression
Pn

i¼1 ai pi is nothing but an expected value of the

random variable assuming values ai with probabilities pi. Here as Pi are fuzzy sets, the

expected value Z is a fuzzy set as well.

The solution to (8.19) is obtained by applying the extension principle. We have

ZðzÞ ¼ sup ½minðP1ðp1Þ;P2ðp2Þ; . . . ;PnðpnÞÞ�

subject to z ¼
X

n

i¼1
aipi and

X

n

i¼1
pi ¼ 1 ð8:20Þ

The second unity constraint is here to assure that we adhere to the probabilistic nature of the

constraints (the probabilities must sum up to 1).

A simple example concerns the following expression

Z ¼ a1 likelyþ a2 unlikely

where likely and unlikely are linguistic probabilities that satisfy the antonym relationship

meaning that likelyðpÞ ¼ unlikelyð1� pÞ, p 2 ½0; 1� a1 and a2 are weights in [0,1]. In light of

the fuzzy probabilities, the result becomes a fuzzy set. Then we obtain

ZðzÞ ¼ likely
z� a2

a1 � a2

	 


EXAMPLE 8.4

Assuming the membership function of likely to be in the form likely ðuÞ ¼ u, the resulting

fuzzy set of expected values Z is illustrated in Figure 8.25; here we considered several

combinations of values of a1 and a2. For the modified form of the membership function

likelyðuÞ ¼ u2, the corresponding plots of Z are included as well.

0                                          1    Probability

1  Membership 

Figure 8.24 Examples of linguistic probabilities of low, medium, and high probability.
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8.8 CONCLUSIONS

Fuzzy sets can be generalized in many quite different ways depending upon the

specificity of the problem in which they are being used. We have distinguished

between two main categories of generalized constructs.

(a) Generalization at the level of membership grades: Here we generalize from

numeric values by moving toward intervals, fuzzy sets defined in the unit

interval, probability density functions, and so on.

(b) Generalization at the level of the universe of discourse: The generalization

activities are geared toward the construction of more suitable (generalized)

universes of discourse. The typical constructs are fuzzy sets of higher order.

This feature becomes quite evident given the fact that in second order fuzzy

sets, these are defined in elements being fuzzy sets.

(c) Generalization through hybridization: In this way we construct fuzzy sets by

expressing them in the language of some other formalisms of information

granulation. For instance, we encounter hybrids of fuzzy sets and rough sets

(including fuzzy rough sets, rough fuzzy sets).

Since the very inception of fuzzy sets, there were a great deal of discussion as to this

concept and probability theory. It is quite commonly accepted today that probability

and fuzzy sets are orthogonal concepts that are not in any competition (that may lead

to the position ‘‘either-or’’). On the contrary, they could augment each other as

clearly manifested through the constructs such as fuzzy probabilities (probability of

fuzzy events), linguistic probabilities, and alike.

Let us emphasize that while the generalizations of the generic concept of fuzzy

set can be realized in different ways, one should always exercise some prudence by

making sure that the two fundamental questions are satisfactorily addressed, namely,

(a) is there a genuine need to expand the generic concept or a careful reformulation of

the problem could be equally good? and (b) by proposing the generalization, have
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(a)
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Figure 8.25 Fuzzy sets Z for selected combinations of values of a1 and a2: (a) likelyðuÞ ¼ u, and (b)

likelyðuÞ ¼ u2.
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we developed a sound and technically viable estimation procedure that helps us

effectively compute the details of the generalized construct, say fuzzy sets of higher

type or higher order? If there are no clear answers to these questions, we would be

better off to resist temptation of moving toward more generalized constructs. They

might occur to be less effective than one has originally anticipated.

EXERCISES AND PROBLEMS

1. Given are matrices of pairwise comparison R1, R2, R3, and R4 provided by four experts and

concerning preferences expressed within a finite set of alternatives X ¼ fx1; x2; . . . ; x4g.
On their basis, determine fuzzy sets and construct a single interval-valued fuzzy set and

fuzzy set of type-2.

R1 ¼

1 9 3 4

1=9 1 5 4

1=3 1=5 1 7

1=4 1=4 1=7 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

R2 ¼

1 9 3 3

1=8 1 7 6

1=3 1=7 1 7

1=3 1=6 1=7 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

R3 ¼

1 2 6 7

1=2 1 5 4

1=6 1=5 1 7

1=7 1=4 1=7 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

R2 ¼

1 9 3 6

1=9 1 5 2

1=3 1=5 1 8

1=6 1=2 1=8 1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

2. An error distribution of a given sensor can be modeled by a Gaussian density function

pðxÞ ¼ 1

s
ffiffiffiffiffiffi

2p
p exp � x2

2s2

	 


where s ¼ 2. The reading of the sensor is modeled by a triangular fuzzy number with

spread equal to 0.5. What is the expected value of the reading of this sensor?

3. What should be a spread of the Gaussian membership function of the fuzzy set A so that its

expected value is not lower than positive threshold value l. Assume that the pdf in this

problem is uniform and distributed symmetrically around the modal value of the member-

ship function

4. Suggest two or three concepts that could be modeled using order-2 fuzzy sets.

5. We are concerned with an extension of a set (interval) A into a fuzzy set B in a way that the

probabilistic evidence of such fuzzy set is equal to the one coming with the set. Refer to

Figure 8.26. A is symmetrically distributed around zero.

Assuming that B is defined by a trapezoidal membership function, elaborate on its

construction. Next, determine the membership function of B for the following cases:

(a) Uniform pdf where b > a

(b) Gaussian pdf with the zero mean value and a standard deviation s equal to 3.
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6. Determine a shadowed set for the fuzzy set described by the cosine-based membership

function

AðxÞ ¼ cosðgxÞ; if x 2 � p

2g
;
p

2g

� 

0; otherwise

8

<

:

How does the size (length) the shadow depend upon the values of g?

7. Consider a finite family of fuzzy sets fAijg; i; j ¼ �2;�1; 0; 1; 2 defined in the Cartesian

product of real numbers R2 with the membership functions

Aijðx; yÞ ¼ expð�ðx� iÞ2 þ ðy� jÞ2Þ

Given X ¼ ½�1; 1� � ½�1; 1�, describe it in terms of the elements of the family fAijg.

HISTORICAL NOTES

Various extensions and generalizations of fuzzy sets have been reported in the literature. Although they

follow the main taxonomy, there is a genuine diversity of approaches (Goguen, 1967; Atanassov, 1986,

1999; Mendel, 2001, 2002; Pawlak and Skowron, 2007; Pedrycz, 1999, 2005). An interesting alternative

(in the form of so-called balanced fuzzy sets) that addresses an issue of ‘‘inhibitory’’ aspects of member-

ship degrees was presented by Homenda (2006). Probability and fuzzy sets were studied by Zadeh (1968,

2002).
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Chapter 9

Interoperability Aspects of

Fuzzy Sets

In this chapter, we introduce an important notion of interoperability with the use of

fuzzy sets. Here we formulate and solve various problems dealing with fuzzy sets

and other environments of granular computing. We also study interoperability

involving fuzzy sets and numeric data that are treated as a special (boundary) case

of the environment of granular computing. The fundamental ideas of encoding and

decoding (referred commonly in fuzzy sets as fuzzification and defuzzification) are

investigated in detail. The linkages between fuzzy sets and sets are revealed and

discussed. In this regard a construct of a-cuts plays a pivotal role. We discuss the

mechanisms of communication realized both in scalar and multivariable cases.

Next, we present shadowed sets and show how they could be viewed as a

conceptual and computational vehicle facilitating interpretation of results conveyed

by fuzzy sets.

9.1 FUZZY SET AND ITS FAMILY OF a-CUTS

Fuzzy sets offer an important conceptual and operational feature of information

granules by endowing their formal models by gradual degrees of membership. We

are interested in exploring relationships between fuzzy sets and sets. Although sets

comewith the binary (yes-no) model of membership, it would be worth investigating

whether they are indeed some special cases of fuzzy sets and if so, in what sense a set

could be treated as a suitable approximation of some given fuzzy set. This could shed

light on some related processing aspects. To gain a detailed insight into this matter,

we discuss a concept of an a-cut and a family of a-cuts and show that they relate to

fuzzy sets in an intuitive and transparent way.

For a given fuzzy set A expressed in some spaceX, let us define the following set

(Negoita and Ralescu, 1987; Wierman, 1997)

Aa ¼ fx 2 XjAðxÞ � ag ð9:1Þ

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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where a 2 ½0; 1�. Recall from Section 3.1.5 that Aa is referred to as an a-cut or a-level

set. Because of the weak inequality, we sometimes refer to the result as a weak a-cut.

In contrast, when considering the expression fx 2 XjAðxÞ > ag we refer to it as a

strong a-cut. Its semantics of a-cuts is as follows: an a-cut of A embraces all

elements of the fuzzy set whose degrees of belongingness (membership) to this

fuzzy set are at least equal to a. In this sense, by selecting a sufficiently high value of

a, we identify (tag) elements of A that belongs to it to a significant extent, and thus

they could be sought as those highly representative of the concept conveyed by A.

Those elements of X exhibiting lower values of the membership grades are sup-

pressed, so this allows us to selectively focus on the elements with the highest

degrees of membership while dropping the others.

For a-cuts Aa the following properties hold

ðaÞ A0 ¼ X

ðbÞ If a � b then Aa � Ab ð9:2Þ

The first property shows that if we allow for the zero value of a, then all elements ofX

are included in this a-cut (0-cut, to be more specific). The second property underlines

the monotonic character of the construct: higher values of the threshold imply that

more elements are accepted in the resulting a-cuts. In other words, we may say that

the level sets (a-cuts) Aa form a nested family of sets indexed by some parameter (a).

If we consider the limit value of a, that is, a ¼ 1, the corresponding a-cut is

nonempty if and only if A is a normal fuzzy set.

It is also worth remembering that a-cuts, in contrast to fuzzy sets, are sets. We

showed how for some given fuzzy set, its a-cut could be formed. An interesting

question arises as to the construction that could be realized when moving into the

opposite direction. Could we ‘‘reconstruct’’ a fuzzy set on the basis of an infinite

family of sets? The answer to this problem is offered in what is known as the

representation theorem for fuzzy sets (Negoita and Ralescu, 1987).

REPRESENTATION THEOREM

Let fAaga 2 ½0; 1� be a family of sets defined inX such that they satisfy the following

properties:

(a) A0 ¼ X.

(b) If a � b then Aa � Ab.

(c) For the sequence of threshold values a1 � a2 � . . . such that lim an ¼ awe

have Aa ¼ \
1

n¼1
Aan

.

Then there exists a unique fuzzy set B defined in X such that Ba ¼ Aa for each

a 2 ½0; 1�.

In other words, the representation theorem states that any fuzzy set A can be

uniquely represented by an infinite family of its a-cuts. The following reconstruction
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expression shows how the corresponding a-cuts contribute to the formation of the

corresponding fuzzy set

A ¼
[

a>0

aAa ð9:3Þ

that is,

AðxÞ ¼ supa2ð0;1�½aAaðxÞ� ð9:4Þ

where Aa denotes the corresponding a-cut.

The essence of this construct is that any fuzzy set can be uniquely represented by

the corresponding family of sets. The illustration of the concept of the a-cut and a

way in which the representation of the corresponding fuzzy set becomes realized is

shown in Figure 9.1.

x

a

1

x

a1
1

a1

a2  

a3  

x

a2
1

x

a3
1

A

(a)

x

a 

1

a1 

a2

a3

A

reconstructed fuzzy set  

(b)

Figure 9.1 Fuzzy set A, examples of some of its a-cuts (a) and a representation of A through the

corresponding family of sets (a-cuts) (b).
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More descriptively, we may say that fuzzy sets can be reconstructed by a family

of sets. Apparently, we need a family of sets (intervals, in particular) to capture the

essence of a single fuzzy set. The reconstruction scheme illustrated in Figure 9.1 is

self-explanatory in this regard. In more descriptive terms, we may look at the

expression offered by (9.3) as a way of decomposing A into a series of layers

(indexed sets) being calibrated by the values of the associated levels of a.

For the finite universe of discourse, dim ðXÞ ¼ n, we encounter a finite number

of membership grades and subsequently a finite number of a-cuts. This finite family

of a-cuts is then sufficient to fully ‘‘represent’’ or reconstruct the original fuzzy set.

EXAMPLE 9.1

To illustrate the essence of a-cuts and the ensuing reconstruction, let us consider a fuzzy set

with a finite number of membership grades, A¼ [0.8, 1.0, 0.2, 0.5, 0.1, 0.0, 0.0, 0.7]. The

corresponding a-cuts of A are equal to

a ¼ 1:0 A1:0 ¼ ½0; 1; 0; 0; 0; 0; 0; 0�
a ¼ 0:8 A0:8 ¼ ½1; 1; 0; 0; 0; 0; 0; 0�
a ¼ 0:7 A0:7 ¼ ½1; 1; 0; 0; 0; 0; 0; 1�
a ¼ 0:5 A0:5 ¼ ½1; 1; 0; 1; 0; 0; 0; 1�
a ¼ 0:2 A0:2 ¼ ½1; 1; 1; 1; 0; 0; 0; 1�
a ¼ 0:1 A0:1 ¼ ½1; 1; 1; 1; 1; 0; 0; 1�

We clearly see the layered character of the consecutive a-cuts indexed by the sequence of the

increasing values of a. Because of the finite number of membership grades, the reconstruction

realized in terms of (9.4) returns the original fuzzy set (which is possible given the finite space

over which the original fuzzy set has been defined)

AðxÞ ¼ max ð1:0A1:0ðxÞ; 0:8A0:8ðxÞ; 0:7A0:7ðxÞ; 0:5A0:5ðxÞ; 0:2A0:2ðxÞ; 0:1A0:1ðxÞÞ

EXAMPLE 9.2

Let us consider a triangular fuzzy set defined inR. Its reconstruction by a finite family of a-cuts

brings some reconstruction error as the result computed by means of (9.3)–(9.4) gives rise to

the stepwise character of the reconstructed fuzzy set with the resulting membership function

showing a series of jumps see Figure 9.2. The quality of the reconstruction depends upon the

number of the assumed levels of a and their distribution in the unit interval (we do not require

that they need to be uniformly distributed in [0,1]).

The usefulness of a-cuts can be articulated in several ways. First, a-cuts could be

treated as a mechanism supporting a concise interpretation of results conveyed by

fuzzy sets. Let A be a fuzzy set of possible solutions (alternatives) to be considered in

some decision-making problem. Here we typically encounter a finite universe of

discourse where each element represents a certain alternative, and the fuzzy set

defined here offers its degree of preference. In this case, the use of a-cuts helps flag

and eliminate the weakest alternatives (those described by the lowest membership

degrees) and concentrate on the subset of the most promising ones. Obviously, this
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selection is implied by the assumed value of the threshold—here the choice of a

suitable level of a still remains an open problem. Too low a value of a will leave us

with a large number of alternatives, and thus not really leading us to any improve-

ment over the use of the original fuzzy set. Choosing quite high values of a will

remove most of the alternatives. However the monotonicity property (9.2) does not

offer any constructive guidance as to the selection of the most suitable level of a.

Another alternative worth considering is to formulate a problem of representation of

the fuzzy set as a certain optimization task. We require that a set approximation B of

the fuzzy set A (which is in essence some of its a-cut) is such that it minimizes the

error expressed as

Q ¼
ð

x =2Aa

AðxÞdxþ
ð

x2Aa

ð1� AðxÞÞdx ð9:5Þ

where the value of the threshold a (level of the a-cut) is chosen in such a way that it

minimizes the value of Q. In the above integral, we account for two components of

the error obtained in this manner. The first one results from the reduction of the

membership grades down to zero. The second component quantifies the error that

appears because of the elevation of higher membership grades to 1. The optimal

value of a, say a
opt, is the result of the optimization

aopt ¼ argmina QðaÞ ð9:6Þ

A

a   

x

Membership

(a)

A

a 

x

Membership 

(b)

Figure 9.2 A triangular fuzzy set (number) with uniformly distributed values of a-cuts (a) and

the resulting reconstruction of this fuzzy set (b). A stairwise character of the ‘‘reconstructed’’ fuzzy

set is visible.
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Nevertheless, in any case of the representation (approximation) of fuzzy sets by sets

some prudence is required and eventually a trial-and-error process needs to be put in

place. Even if we consider the optimization problem, one should become aware of a

conceptual shortcoming coming with the fact that the intermediate membership

grades are transformed into 0 or 1 without any provisions that are indicative of the

suppression of these values being realized. We will return to this matter a bit later

when dealing with shadowed sets where it will be shown how these constructs could

help alleviate this problem.

EXAMPLE 9.3

Let us consider a triangular fuzzy set with the membership function AðxÞ ¼ maxð1� x=b; 0Þ
defined for positive values of x where b is a cutoff point. The optimal a-cut (set representa-

tion) of this fuzzy set is guided by the minimization of (9.5), which in this case reads as

Q ¼
ð

b

bð1�aÞ

1� x

b

� �

dxþ
ð

bð1�aÞ

0

1� 1þ x

b

� �

dx

After integration, we obtain Q to be a quadratic function of a

Q ¼ b� bð1� aÞ þ bð1� aÞ2 � b=2

The minimum ofQ, @Q=@a¼ 0, yields an intuitively appealing result of the optimal value of a

equal to 1
2
.

Second, a-cuts are useful constructs when solving various optimization pro-

blems using techniques of interval analysis. Given the long history of interval

computing coming along with significant intellectual investments in effective and

numerous algorithms of dealing with intervals and interval data, it could be quite

tempting to consider those techniques and investigate their potential usefulness in the

context of fuzzy sets (as we have already indicated, computing with fuzzy sets not

only occurs at a high level of abstraction but also carries some significant price tag).

Given this, detailed inquires into the use of already available techniques of interval

mathematics could be helpful. a-cuts transform fuzzy sets into intervals, and thus

generate the format of data required in interval analysis. The way of proceeding with

fuzzy optimization would be to represent fuzzy data (fuzzy sets) by their families of

a-cuts (by choosing some values of a), for each specific a-cut solves the problem

using some existing techniques of interval analysis and records the corresponding

solution that typically comes in the form of some numeric interval. Repeating the

optimization process for consecutive (say, increasing) values of a, we end up with a

family of solutions—intervals indexed the respective values of a. The organization of

the computing processes is visualized in Figure 9.3.

The aggregation of the results, namely intervals being indexed by the values of

a, may lead to a fuzzy set of solution being an approximation of the exact solution

that could have been obtained when dealing with some technique focused on

handling fuzzy sets themselves. Obviously, the result of processing using interval
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methods realized for any specific value of a is an interval, yet it remains to be

checked whether the sequence of intervals indexed by the corresponding values of a

is indeed a realization of a certain fuzzy set. Here the representation theorem

becomes useful.

9.2 FUZZY SETS AND THEIR INTERFACING
WITH THE EXTERNAL WORLD

Fuzzy set-based models and processes interact with the external world. As we

stressed several times, fuzzy sets are abstract constructs that do not exist

in our external world as physical entities, but are very much reflective of a way we

perceive the world, build its appropriate operational models, and process information

at some desired level of abstraction (granularity) that offers the most suitable level of

conceptualization. In this sense, any communication and possible interoperability

with the external worlds require some well-developed mechanisms of interaction or

interfacing. This brings us to the general form of the architecture outlined in Figure

9.4. This figure offers a general schematic view of the interfacing process. The inputs

represent information generated by the external word. These could be sensor read-

ings, visual information (provided by camera), audio signals, and so on. The results

of decoding are the outputs in the form of some decision variables, control signals,

classification results, and alike.

As visualized in Figure 9.4, two important processes come into play. The first

concerns encoding—a phase in which any input information is translated into the

format acceptable (comprehensible) at the level of processing of fuzzy sets. The

phase of decoding focuses on processes of transforming a result available at the

level of fuzzy sets into the format acceptable to the external world. In the

terminology and tradition of fuzzy sets (especially in such areas as fuzzy con-

trollers) we typically allude to the terms of fuzzification (encoding) and defuzzi-

fication (decoding). Although being very much descriptive of what is being

Fuzzy

set 

a-cut

Fuzzy

set 
a-cut

a-cut

Interval

analysis 

Interval

analysis 

Interval

analysis 

Figure 9.3 Computing and optimization of problems involving fuzzy sets that are represented

as families of subproblems indexed by the values of a and handled by techniques of interval analysis.

226 Chapter 9 Interoperability Aspects of Fuzzy Sets



realized here, these two terms do not fully capture the technical facet of the

processing occurring in such framework.

Before moving on to a detailed discussion about the character of encoding and

decoding, one could revisit the general scheme outlined in Figure 9.4 in the context of

digital processing that profoundly dominates all our computing pursuits. Here we

follow the same general scheme as outlined in Figure 9.5 (with the same interpreta-

tion of inputs and outputs of the system).

The computing core concerns digital processing. The external world is

inherently analog. The interfacing processes come under the well-known terms of

analog-to-digital conversion (encoding) and digital-to-analog conversion (decoding).

Fuzzy set-based

processing 

Interfacing 
E

n
co

d
er

re
d

oc
e

D

Figure 9.4 Processing at the level of fuzzy sets and mechanisms of interfacing with the external

world forming an auxiliary layer of encoding and decoding processes.

Digital

processing  

A/D

D/A

Figure 9.5 Digital processing: interfacing with analog world. Two functional blocks of conversion

of analog and digital data (A/D–analog-to-digital; D/A-digital to analog) are shown.
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The conceptualization of computing occurs at the level of intervals as opposed to fuzzy

sets.

In the detailed discussion, we focus on the external world that generates numeric

data and accepts numeric results. This somewhat limits the scope of our discussion,

but concentrates on the main and the most commonly encountered developments. In

computing fuzzy sets and interfacing problems, we encounter families of fuzzy sets.

Typically we are not dealing with a single fuzzy set but a collection of fuzzy sets.

Here we use the notation {A1;A2; . . . ;Ac} to indicate that there are families of fuzzy

sets involved in the corresponding processing. Furthermore such families often meet

some additional requirements such as coverage of the space (meaning that the

membership function of their union is nonzero over the entire space), level of

overlap, and alike. Being more strict, one may also require that A0is form a fuzzy

partition. In what follows, we discuss the algorithmic aspects of the encoding and

decoding schemes.

9.2.1 Encoding Mechanisms

In the encoding phase, we accept any numeric input information from the external

world and transform it into a format acceptable to the processing carried out within

the framework of the formalism of fuzzy sets. Consider an input interface consisting

of c fuzzy sets. The numeric input x 2 R is represented in terms of A0i s thus giving
rise to a c-dimensional vector located in the unit hypercube [0,1]c. These are the

values of the possibility measure of x computed with respect to the corresponding

fuzzy sets of the interface, ½A1ðxÞ; A2ðxÞ; . . . ;AcðxÞ�.
We can look at the encoding process as a certain nonlinear normalization that

converts any real number into its normalized version, usually with the values

confined to the unit interval. Here each fuzzy set contributes to this nonlinear

normalization: when we compute the membership degree of Ai, we carry out some

normalization to the unit interval whereas the nonlinear character is induced by the

nonlinear character of the membership function.

Interestingly, a linear normalization that is governed by the expression

ðx� aÞ=ðb� aÞ with a and b denoting the lower and upper bound of the range is

the one implied by the linear membership function of the form shown in Figure 9.6.

a                                               b          x  

1

A(x)

Figure 9.6 Example of a linear normalization implemented by a linearly increasing membership

function.
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9.2.2 Decoding Mechanisms

The decoding process is complementary to the one realized through the encoding.

Given are some fuzzy sets, and our goal is to develop its numeric representative. This

transformation is referred to as a decoding mechanism.

There are two main directions that are pursued:

(a) Decoding completed on a basis of a single fuzzy set; this avenue seems to be

more vigorously discussed with various techniques being developed here.

(b) Decoding realized on a basis of a certain finite family of fuzzy sets and levels

of their activation.

One has to be fully aware that the way the decoding could be realized is by no means

unique. This is not surprising at all as membership functions are just continuous

functions with infinite number of membership values or when dealing with finite

spaces vectors of grades of membership, say ½0; 1�n. Associating a single numeric

value with the vector of numbers cannot be done in a unique manner. Consider a

certain fuzzy set with its membership function BðxÞ. Denote the transformation of B

into some numeric representative by x̂ ¼ DðBÞ. The most commonly encountered

methods include the following (Runkler and Glesner, 1993; Wierman, 1997):

Mean ofMaxima. We determine the arguments ofX for which this membership

function achieves its maximal values. Denote them by ~x1 þ ~x2 þ    þ ~xp. The

result of the decoding is taken as the average of these values, that is,

x̂ ¼ ~x1 þ ~x2 þ    þ ~xp

p
ð9:7Þ

If we encounter only a single maximum of B, then this method points at it (which is a

highly intuitive choice). There are several possible variations of this technique, such

as the first of maxima and the last of the maxima in which we select a particular

modal value of the membership function.

Centre of Area. We find a position of x̂ such that it results in the equal areas

below the membership function positioned on the left and on the right from this

representative. In other words we have

ð̂

x

�1

BðxÞdx ¼
ð

1

x̂

BðxÞdx ð9:8Þ

(we assume that the membership function can be integrated).

Centre of Gravity. Here the result of decoding is obtained as follows:

x̂ ¼

Ð

X

BðxÞx dx
Ð

X

BðxÞ dx
ð9:9Þ

(we assume that the above integrals do exist).
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One of the commonly encountered variations of these methods relies on the use

of some threshold level applied to the membership grades of B. Simply, we remove

from the considerations all membership grades that are below some threshold

b 2 ½0; 1�. The rationale being that low membership grades should not significantly

impact the decoding results. Given that the centre of gravity formula reads now as

x̂ ¼

Ð

x2X:BðxÞ�b
BðxÞx dx
Ð

x2X:BðxÞ�b
BðxÞdx

ð9:10Þ

We have used the notation showing explicitly the threshold to underline the depen-

dence of the result on the specific value of b. Further generalizations of the decoding

are also possible. For instance, one could introduce the following two-parameter

decoding scheme

x̂ ¼

Ð

x2X:BðxÞ�b
BgðxÞx dx
Ð

x2X:BðxÞ�b
BgðxÞdx

We emphasize the parametric character of the decoding by using the notation of the

form x̂ðb; gÞ. Here the positive parameter g serves as a nonlinear transformation of the

original membership function. By doing that, we introduce another level of flexibility

to the decoding. Interestingly, when g > 1, we encounter the concentration effect. The

positive values of g and lower than 1 yield a dilution of the membership function.

Some of these decoding schemes are governed by the underlying optimization

problem. Consider, for instance, the centre of gravity. This scheme becomes a direct

result of the minimization of the following performance index:

V ¼
ð

X

BðxÞ½x� x̂�2dx ð9:11Þ

that is, min Vðx̂Þ. By taking the derivative of V with respect to x̂ one has

@V

@x̂
¼ 0 and 2

ð

X

BðxÞ½x� x̂�dx ¼ 0

which leads to the decoding scheme described by (9.9).

Given the large number of decoding alternatives, it could be helpful to establish

some systematic criteria that we can accept and any decoding scheme could satisfy.

The example of some axiomatic frameworks has been offered by Runkler and Glesner

(1993). The authors proposed a series of requirements that are organized into several

groups, namely (a) basic constraints in which issues of specific forms of membership

functions (constant and singletons) and monotonicity, (b) graphically motivated

requirements including symmetry, translation, scaling, offset, (c) constraints motivated

by the use of logic operations and linguistic modifiers (dilation and concentration), and

(d) requirements specific to some application domains are discussed.
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9.3 ENCODING AND DECODING AS AN OPTIMIZATION
PROBLEM OF VECTOR QUANTIZATION

It is of interest and of straightforward practical relevance to consider the mechanisms

of encoding and decoding as two dependent and interrelated processes. This allows

us to adhere to some well-known principles and algorithms available in data

compression as well as come up with some sound optimization criteria. Furthermore,

by casting the discussion in this context, we will be able to contrast the features of

decoding implemented in fuzzy sets with the properties of decoding realized in terms

of sets. Following the general scheme (Fig. 9.7) here we are concerned both with a

scalar and multivariable (vector) case.

The key objective is to simultaneously optimize the processes of encoding and

decoding, in particular their underlying parameters so that that the result of decoding

is made as close as possible to the original numeric entity that has been originally

used at the encoding end of the process. In the ideal situation, the encoding–decoding

scheme should result in the relationship x ¼x̂ to be satisfied for any x in a multi-

dimensional input space forming a subset of Rn. If this equality does not hold, we

encounter a decoding error where x̂ becomes a distorted version of x.

It is educational to start with a scalar (one-dimensional) case of quantization as it

sheds light on the role of fuzzy sets in the overall optimization process. This is also

quite enlightening given the fact that the scalar case with the use of sets is extremely

well discussed in the literature, so a thorough comparative analysis could be offered.

9.3.1 Fuzzy Scalar Quantization

The results in the case of interval-driven quantization (in which the codebook is taken

as a collection of intervals) is well reported in the literature, cf. Gersho and Gray

(1992), Gray (1984), Linde et al. (1988), Lloyd (1982), Patane and Russo (2001), Yair

et al. (1992), Campobello et al., 2005; Chang et al., 2005; Cho et al., 1994; Kämpke,

2003; Lin and Yu, 2003; Kim et al., 1998; Laskaris and Fotopoulos, 2004; Liu and

Lin, 2002; Moller et al., 1998; Pan et al., 2005; Pregenzer et al., 1996; Sinkkonen and

Kaski, 2002; Tsekouras, 2005; Yen and Young, 2004 including a quantization

(decoding) error for a uniform distribution of intervals and a distribution of intervals

given that the underlying probability density becomes available. Although the

ENCODER DECODER
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(multidimensional)
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Figure 9.7 Encoding and decoding of numeric data through information granules—fuzzy sets.
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quantization error could be minimized, the method is in essence a failure (coming

with a nonzero quantization error). In contrast, a codebook formed by fuzzy sets can

lead to a zero error of the quantization. In this context, we show a surprisingly simple

yet powerful result whose essence could be summarized as follows: a codebook

formed of fuzzy triangular fuzzy sets (fuzzy numbers) with an overlap of ½ between

two neighboring elements (Fig. 9.8) leads to the lossless compression scheme. The

essence of the scheme can be formulated in the form of the following proposition.

PROPOSITION

Let us assume the following:

(a) the fuzzy sets of the codebook fAig; i ¼ 1; 2; . . . ; c form a fuzzy partition,
P

c

i¼1
AiðxÞ ¼ 1, and for each x in X at least one element of the codebook is

‘‘activated’’, that is, AiðxÞ > 0

(b) for eachxonly twoneighboringelementsof the codebookare ‘‘activated’’, that is,

A1ðxÞ ¼ 0; . . . ;Ai�1ðxÞ ¼ 0;AiðxÞ > 0;Aiþ1ðxÞ > 0;Aiþ2ðxÞ ¼ . . . ¼ AcðxÞ ¼ 0

(c) the decoding is realized as a weighted sum of the activation levels and the

prototypes of the fuzzy sets vi, namely x̂ ¼P
c

i¼1
AiðxÞvi

Then the elements of the codebook described by piecewise linear membership

functions

AiðxÞ ¼

x� vi�1
vi � vi�1

; if x 2 ½vi�1; vi�

x� viþ1
vi � viþ1

; if x 2 ½vi; viþ1�

8

>

>

<

>

>

:

ð9:12Þ

lead to the zero decoding error (lossless compression) meaning that x̂ ¼ x.

PROOF

Consider any element x lying in the interval ½vi; viþ1�. In virtue of (a) and (b) we can
rewrite the decoding formula as follows:

x̂ ¼ AiðxÞvi þ ð1� AiðxÞÞviþ1

A1 A2 Ai Ai+1

vi+1vi
x

1/2

Figure 9.8 An example of the codebook composed of triangular fuzzy sets with an overlap of 1
2

between each two neighboring elements of the codebook.
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We request a lossless compression meaning that x̂ ¼ x. In other words,

x ¼ AiðxÞvi þ ð1� AiðxÞÞviþ1 ð9:13Þ
Then let us write down AiðxÞ (which describes the right-hand side of the membership

function of Ai spread in-between vi and viþ1 by rearranging the terms in (9.13). This

leads to the expression

AiðxÞðvi � viþ1Þ ¼ x� viþ1

and
AiðxÞ ¼

x� viþ1
vi � viþ1

ð9:14Þ

that reveals the piecewise linear character of the membership function of Ai. In the

same fashion, we can deal with the left-hand side of the membership function ofAi by

considering the interval ½vi�1; vi�. In this case we can demonstrate that for all x in

½vi�1; vi� the membership comes in the form AiðxÞ ¼ x�vi�1
vi�vi�1 that completes the proof.

Interestingly enough, triangular fuzzy sets have been commonly used in the

development of various fuzzy set constructs as discussed (models, controllers,

classifiers, etc.), yet the lossless character of such codebooks is not generally known,

perhaps with very few exceptions, cf. Pedrycz (1994, 2001). The above proposition

does not make any assumption on the distribution of fuzzy sets, just only imposing a

requirement of the 0.5 overlap that need to be met between the elements of the

codebook. The results reported in Pedrycz (2001) underline that although fuzzy sets

and probability are two orthogonal concepts, one could expect that each fuzzy set

comes with some experimental evidence meaning that its probability is sufficiently

high. This rationale was introduced and discussed in Pedrycz (2001), and in the

sequel it has resulted in an algorithmic realization of the so-called equalization of

fuzzy sets of the codebook. The individual fuzzy sets are distributed across the space

in such a way that their probability EðAiÞ ¼
Ð

X

AðxÞpðxÞdx is made equal to 1/c, where

pðxÞ denotes a probability density function (pdf) of the underlying experimental

evidence. If the pdf is quite low in some regions of universe of discourse, to

compensate for that and produce the required value of the integral, the corresponding

fuzzy set has to be ‘‘spread’’ more across the space. It is worth noting that if the data

are governed by the uniform pfd, then the fuzzy sets of the codebook are uniformly

distributed across the universe of discourse.

Unfortunately the lossless property of this fuzzy quantization does not hold to

the multivariable case. However, the successful performance of the codebook of

fuzzy sets has prompted our interest into the investigations of the fuzzy vector

quantization.

As already emphasized (see Chapter 4), fuzzy clusters are multidimensional

information granules that reflect upon the experimental data and lead to their

conceptual compression. In general, we could regard the encoding–decoding pro-

blem as an optimization of the clustering mechanisms guided by a minimization of

some assumed performance index that quantifies a departure (distance) of x̂ from the

original numeric entry processed by the encoder (x), that is k x�x̂ kwith k  k being
a distance function. The formulation of the problem captures the essence of the
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numeric-granular–numeric transformation as being encountered along the overall

encoding–decoding processing path.

The underlying architectures of these two phases of encoding and decoding have

to be specified before moving forward with any further detailed analysis and possible

design guidelines. As already stressed, to focus now on the discussion, we confine

ourselves to the standard version of the FCM.

9.3.2 Forming theMechanisms of the Fuzzy Quantization:
Beyond aWinner-Takes-All Scheme

The crux of our considerations dwells upon the following conjecture. Although the

set-based codebook inherently forms a decoding scheme that decodes the result using

a single element of the codebook (which in essence becomes a manifestation of the

well-known concept of the winner-takes-all strategy), here we are interested in the

exploitation of the nonzero degrees of membership of several elements (fuzzy sets) of

the codebook while representing the input datum.

In other words, rather than using a single prototype as a sole representative of a

collection of neighboring data, our opinion is that by involving several prototypes at

different degrees of activation (weights) could be beneficial to the ensuing decoding.

In the spirit of abandoning the winner-takes-all principle, let us start with a collection

of weights uiðxÞ; i ¼ 1; 2; . . . ; c. Adhering to the vector notation, we denote

uðxÞ ¼ ½u1ðxÞ; u2ðxÞ; . . . ; ucðxÞ� to be a vector of membership grades. These weights

(membership degrees) express an extent to which the corresponding datum x is

encoded in the language of the given prototypes (elements of the codebook) should

be involved in the decoding (decompression) scheme. We require that these member-

ship degrees are positioned in-between 0 and 1 and sum up to 1.Thus at the encoding

end of the overall scheme, we represent each vector x by c� 1 values of uiðxÞ. The
decoding is then based upon a suitable aggregation of the degrees of membership and

the prototypes. Denote this operation by x̂¼ DðuðxÞ; v1; v2; . . . ; vcÞ where x̂ denotes
the result of the decoding. On the contrary, the formation of the membership degrees

(encoding) can be succinctly described in the form of the encoding mapping

Eðx; v1; v2; . . . ; vcÞ:
The overall development process is split into two fundamental phases, namely:

(a) Local activities confined to the individual datum x that involve (i) encoding

each xk leading to the vector of the membership degrees ðuÞ, (ii) decoding
being realized in terms of the membership degrees.

(b) Global activities concerning the formation of the codebook in which case we

take all data into consideration, thus bringing the design to the global level.

The overall process described above will be referred to as fuzzy vector quantization

(FVQ, for brief) (Karayiannis and Pai, 1995; Wu and Yang, 2003). Let us note that

the ‘‘winner-takes-all’’ strategy is a cornerstone of the vector quantization (VQ). To

contrast the underlying computing in the VQ and FVQ schemes, we portray the

essential computational facets in Figure 9.9. As becomes apparent in Figure 9.9,
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the decoding relies only on a single prototype whose index ði0Þ becomes available at

the decoding scheme.

In what follows, we discuss the algorithmic details of the optimization of the

FVQ. They lead to some constrained and constraint-free optimization.

9.3.3 Coding and Decoding with the Use
of Fuzzy Codebooks

We focus on the detailed formulas realizing the coding and decoding schemes. Let us

emphasize that both coding and decoding emerge as solutions to the well-defined

optimization problems. At this point we assume that the codebook—denoted here as

fv1; v2; . . . ; vcg has been already formed with the use of the FCM clustering

(Bezdek, 1981).

9.3.3.1 Encoding Mechanism

Away of encoding (representing) the original datum x is done through the collection

of the degrees of activation of the elements of the codebook. We require that the

membership degrees are confined to the unit interval and sum up to 1. Let us

determine their values by minimizing the following performance index:

Q1ðxÞ ¼
X

c

i¼1
umi kx� vik2 ð9:15Þ

subject to the following constraints already stated above, that is,

uiðxÞ 2 ½0; 1�;
X

c

i¼1
uiðxÞ ¼ 1 ð9:16Þ
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Figure 9.9 VQ and FVQ—a view contrasting the essence of the process and showing the key

elements of the ensuing encoding and decoding.
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The distance function is denoted by k . k. The fuzzification coefficient ðm;m > 1Þ,
standing in the above expression is used to adjust the level of contribution of the

impact of the prototypes on the result of the encoding. The collection of c weights

fuiðxÞg is then used to encode the input datum x. These membership degrees along

with the corresponding prototypes are afterward used in the decoding scheme.

The minimization of (9.15)-(9.16) follows the standard way of transforming the

problem to unconstrained optimization using Lagrangre multipliers. Once solved,

the resulting weights (membership degrees) read as

uiðxÞ ¼
1

P kx� vik
kx� vjk

	 
 2
m�1

ð9:17Þ

9.3.3.2 The Decoding Mechanism of Fuzzy Quantization

The decoding is concerned with the ‘‘reconstruction’’ of x, denoted here by x̂. It is

based on some aggregation of the elements of the codebook and the associated

membership grades uðxÞ. The proposed way of forming x̂ is through the minimiza-

tion of the following expression:

Q2ð̂xÞ ¼
X

c

i¼1
umi k x̂� vik2 ð9:18Þ

Given the Euclidean distance, the problem of unconstrained optimization leads to a

straightforward solution expressed as a combination of the prototypes weighted by

the membership degrees that

x̂ ¼

P

c

i¼1
umi vi

P

c

i¼1
umi

ð9:19Þ

Note that again all prototypes contribute to the decoding process that stands in a

sharp contrast with the winner-takes-all decoding scheme encountered in the VQ

where x̂ ¼ vl where l stands for the index of the prototype identified during the

decoding phase. The quality of the reconstruction depends on a number of essential

parameters, including the size of the codebook as well as the value of the fuzzifica-

tion coefficient. The impact of this particular parameters is illustrated in Figure 9.10

in which we quantify the distribution of the decoding error by showing values of the

Hamming distance between x and x̂. Evidently, what could have been anticipated, all

xs situated in a close vicinity of the prototypes exhibit low values of the decoding

error. Low values of m that position FVQ close to its set-based counterpart show

significant jumps of the error resulting from the abrupt switching in-between the

prototypes used in the decoding process. For the higher value of the fuzzification
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coefficient, say m ¼ 2:0, the jumps are significantly reduced. Further reduction is

achieved with the larger values of m; see Figure 9.10 (c).

In the regions that are quite remote from the location of the prototypes, the error

increases quite quickly. For instance, this effect is quite visible for the values of x

close to ð4:0 4:0Þ.
In the following illustrative example, we quantify the decoding error in the one-

dimensional case where the data come as a mixture of two Gaussian pdf’s of the form

pðxÞ ¼ 0:3Nð2; sÞ þ 0:7Nð4; sÞ with some standard deviation s. The prototypes are

equal to the mean values of the two components of the mixture of the pdf densities,

which are 2 and 4. The error of the decoding is then expressed as the integral

eðxÞ ¼
Ð

4

2

ðx� x̂Þ2pðxÞdx. We consider several scenarios by varying the values of

the fuzzification coefficient and changing the standard deviation of the data. For the

VQ, the decoding error shown as a function of s is illustrated in Figure 9.11; we

consider this to be a reference point. The FVQ comes with the lower values of the

error as illustrated in Figure 9.12.

Figure 9.10 Plots of the decoding error expressed in the form of the Hamming distance between x

and x̂ (3D and contour plots) for selected values of the fuzzification coefficient: (a) m ¼ 1:2

(b) m ¼ 2:0, (c) m ¼ 3:5.

1 2 3
0

0.05

0.1

0.15

Figure 9.11 Decoding error of the VQ versus s.
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9.4 DECODING OF A FUZZY SET THROUGH A FAMILY
OF FUZZY SETS

Nowwe further expand the investigations along the line of encoding and decoding by

considering here the granular data represented in the form of fuzzy sets. The use of

fuzzy sets in place of numeric data used so far makes a substantial difference in

comparison with the encoding and decoding schemes discussed so far (Hirota and

Pedrycz, 1999; Nobuhara et al., 2000). The representation of a certain fuzzy sets in

terms of some fixed and predefined family of fuzzy sets becomes central to all further

encoding and decoding pursuits.

9.4.1 Possibility and Necessity Measures
in the Encoding of Fuzzy Data

As before, we consider here a finite codebook consisting of c fuzzy sets or fuzzy

relations (in multivariable case) A1;A2; . . . ;Ac. Now the input datum is a fuzzy set (or

fuzzy relation) denoted here by X. As the underlying constructs are described by

membership functions, capturing the level of matching or coincidence between X and

Ai cannot be realized in a unique manner. A viable alternative is to consider

possibility and necessity measures. We will be concerned with the probing X by

the corresponding elements—fuzzy sets of the codebook.

Let us briefly recall that the possibility measure, PossðAi;XÞ, describes a level of
overlap between the two fuzzy sets. The necessity measure, NecðAi;XÞ captures a
level of inclusion of Ai in X. The corresponding formulas read as

PossðAi;XÞ ¼ supx2X½XðxÞtAiðxÞ� ð9:20Þ
NecðAi;XÞ ¼ infx2X½ð1� AiðxÞÞsXðxÞ� ð9:21Þ

The plot visualizing the computations of the possibility and necessity measures is

shown in Figure 9.13. Let us recall that the possibilitymeasure reflects the intersection

2 4
0

0.05

0.1

0.15

s

  

Figure 9.12 Decoding error of the FVQ versus s for selected values (1.1, 2.0, and 5.0) of the

fuzzification coefficient; results for the VQ (dotted line) are also shown.
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between Ai and X and then takes an optimistic aggregation of the intersection

operation by picking up the highest values among the intersection grades of X and

Ai that are taken over all elements of the universe of discourse X. The necessity

measure expresses a pessimistic degree of inclusion of Ai in X. The elements of the

codebook operate as a collection of ‘‘probes’’ that probe the input X and build its some

internal representation by the

EXAMPLE 9.4

Given are two fuzzy sets X ¼ ½0:0; 0:2; 0:8; 1:0; 0:9; 0:5; 0:1; 0:0� and

Ai ¼ ½0:6; 0:5; 0:4; 0:5; 0:6; 0:9; 1:0; 1:0�. The values of the possibility and necessity

measures become then equal to

PossðAi;XÞ ¼ maxð0:0; 0:2; 0:4; 0:5; 0:6; 0:5; 0:1; 0:0Þ ¼ 0:6

NecðAi;XÞ ¼ minð0:4; 0:5; 0:8; 1:0; 0:9; 0:5; 0:1; 0:0Þ ¼ 0:0

Now let us consider Ai to be in the following form: Ai ¼ ½0 0 0 0 1 1 1 0� so it is a set-based

probe of X. The computed values of the possibility and necessity measures are equal to

PossðAi;XÞ ¼ 0:9, NecðAi;XÞ ¼ 0:1. If Ai is made even more specific and reduced to a single

numeric value (singleton) with the membership function of the form Ai ¼ ½0 1 0 . . . 0 0�, then
we obtain PossðAi;XÞ ¼ NecðAi;XÞ ¼ 0:2.

In general, it becomes apparent that the possibility and necessity measures may not be

equal (and usually are not; the differences between the values are implied by the granu-

larity of Ai). If the granularity of the probe increases, the values of these two measures are

getting closer to each other. In the limit (as also illustrated in the example shown above)

when the probe Ai is a singleton, we end up with the same values of the possibility and

necessity.

Considering now the finite family of fuzzy sets of the codebook, we compute the

possibility and necessity measures with respect to X for each of them, thus ending up with

its 2c-tuple representation

li ¼ PossðAi;XÞ;mi ¼ NecðAi;XÞ ð9:22Þ

X

x

Ai

Ai

Poss(X,Ai)

Nec(X,Ai)

X

x
(a)      (b)

Figure 9.13 Computing of the possibility (a) and necessity (b) measures treated as a vehicle

of encoding X with the aid of Ai.
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which is a manifestation of X in the ‘‘language’’ of the codebook. As a matter of fact, (9.22) is

the result of the encoding of X. In parallel to the scheme shown in Figure 9.9, the functional

presentation of the encoding–decoding architecture involving granular inputs is presented in

Figure 9.14. Note the format of the encoding information to be used by the decoder.

9.4.2 The Design of the Decoder of Fuzzy Data

The decoding of X is inherently related to A0is and might be regarded as an outcome of

reconstruction guided by the values of ðli;miÞ; i ¼ 1; 2; . . . ; c. From the conceptual

standpoint, we can view the decoding as a sort of inverse problem to the encoding

task. As X is a fuzzy set itself, the decoder has to produce a fuzzy set, ideally equal to

X. This however, does require more attention and a careful analysis of the problem.

We proceed in a stepwise manner and start with a single element of the codebook (to

come up with a concise notation, let us drop the index of the element of the codebook

and simply denote it by A) for which the values of encoding of l and m are known.

The problem reads as follows: given A, l, and m, decode X. One can look at (9.20)

and (9.21) and treat them as equations with respect to X. There is no unique solution

to neither the first nor the second one. There are, however, extreme solutions that are

unique to the problem in hand. For the possibility part of the encoder/decoder, we

encounter the maximal solution. Its construction is supported by the theory of fuzzy

relational equations (as a matter of fact, (9.20) as a sup-t composition of X and A). In

light of the fundamental results available in the theory, the membership function of

this maximal fuzzy set (mapping) induced by the A reads as

X̂ðxÞ ¼ AðxÞwl ¼ 1; if AðxÞ � l

l; otherwise

�

ð9:23Þ

The above formula applies for t-norm realized as a minimum operator. In general,

(9.23) reads in the form

X̂ðxÞ ¼ AðxÞwl ¼ sup½c 2 ½0; 1�jct AðxÞ � l� ð9:24Þ

{A1, A2,…, Ac}

X

l1, l2, …, l c

m1, m2, …, mc

Encoder 

{A1, A2,…, Ac}

Decoder 

X^, X ~

Figure 9.14 A schematic view of the encoding–decoding processes in presence of fuzzy input

datum X. The results of decoding come in the form of the interval–valued fuzzy set. For details refer

to the text.
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When using the entire family of A0is (that leads to the intersection of X̂
0
isÞ we

obtain

X̂ ¼ \
c

i¼1
X̂i ð9:25Þ

From the theoretical point of view that arise in the setting of fuzzy relational

equations, we note that we are dealing here with a system of equations

li ¼ PossðX;AiÞ; i ¼ 1; 2; . . . ; c to be solved with respect to X for li and Ai

provided.

The theory of fuzzy relational equations plays the same dominant role in the case

of the necessity computations. It is worth noting that we are faced with the so-called

dual fuzzy relational equations. Here the minimal solution to (9.21) for A and mi

given reads in the form

~XðxÞ ¼ ð1� AðxÞÞbm ¼ m; if 1� AðxÞ < m

0; otherwise

�

ð9:26Þ

Again the above formula applies to the maximum realization of the s-norm. The

general formula takes on the form

~XðxÞ ¼ ð1� AiðxÞÞbm ¼ inffc 2 ½0; 1�jcsð1� AðxÞÞ � mg ð9:27Þ
Because of the minimal solution, the collection of the probes Ai leads us to the partial

results that are afterward combined through the union of a partial solution

~X ¼ [c
i¼1

~Xi ð9:28Þ

In conclusion, (9.25) and (9.28) become the granular representation of the input

datum (X) arising in the context of the collection of the elements of the codebook.

The following containment relationship holds

~X � X � X̂ ð9:29Þ
As a simple yet highly illustrative example, consider a collection of sets (intervals)

regarded as the elements of the codebook; refer to Figure 9.15. A single infor-

mation granule produces a result shown in Figure 9.16(a), which in fact constructs

Membership 

x

X
Ai

1.0

Figure 9.15 Input datum X with a collection of superimposed sets (intervals) Ai.
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membership values equal to 1 over any argument not belonging to Ai. The aggrega-

tion of all partial results gives more specific outcome; see again Figure 9.16(b).

Interestingly, the reconstructed (decoded) fuzzy set exhibits a stepwise type of

membership function where the height of the individual jumps and their distribution

across the space depends on the distribution of the elements of the codebook A0is. The
same effect that concerns the lower bound of X is present in Figure 9.17. When

combined together, the result is a type-2 fuzzy set (or an interval-valued fuzzy set, to

be more precise), Figure 9.18. It is worth noting that by changing the position of the

cutoff points (intervals), we end up with different granular mappings. Eventually the

mapping can be subject to some optimization in which we develop the collection of

A0is in such a way that the granular mapping is as specific as possible (so that the

bounds are made tight).

9.5 TAXONOMY OF DATA IN STRUCTURE
DESCRIPTION WITH SHADOWED SETS

The three-valued evaluation offered by shadowed sets (Chapter 8) is helpful in the

interpretation of results of fuzzy clustering. In what follows, wewill be referring to Ai

as a shadowed set (which in essence does not lead to any misunderstanding as it has

been induced by the corresponding fuzzy sets). We introduce the following sets of

patterns based on their allocation to the components of the shadowed sets of the

clusters (Pedrycz, 2005).

Membership  

x

X

Ai
1.0

(a)

Membership 

x

X
1.0

(b)

Figure 9.16 Computing of the upper bound of X (solid staircase line) with the use of a single set (A)

(a) and the family of sets fAig (b).
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1.0

(a)
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x

X
1.0

(b)

Figure 9.17 The mechanism of decoding realized with the use of the necessity measure.

Membership  

x

x

X
1.0  

(a)

Membership 

X
1.0

(b)

Figure 9.18 Decoding of X: upper and lower bounds of the decoding (a) and interval-valued

realization of the decoding presented in the output space (b).
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9.5.1 Core Data Structure

Those are the patterns that belong to a core of at least one or more shadowed sets

Core data structure ¼ fxj9i x 2 CoreðAiÞg ð9:30Þ
The core is composed of the data points that form the backbone of the structure

revealed through the clustering mechanisms. They clearly belong to a single cluster

or could be shared between several clusters (in such case they overlap).

9.5.2 Shadowed Data Structure

This structure is formed by patterns that do not belong to the core of any of the

shadowed sets, but fall within the shadow of one or more shadowed sets. Formally,

we write this down in the following form:

Shadowed data structure ¼ fxj9i x 2 Shadow ðAiÞ and 8ix =2CoreðAiÞg ð9:31Þ
Noticeably, this structure embraces patterns that raise some hesitation as to their

possible interpretation. The pattern falling within this region requires more attention

as to its possible membership and final quantification

9.5.3 Uncertain Data Structure

The patterns belonging to this structure are those that are left out from all shadows

meaning that

Uncertain data structure ¼ fxj8i x =2 ShadowðAiÞ and 8i x =2CoreðAiÞg ð9:32Þ
This structure consists of patterns that could be practically regarded as peripheral to

the clusters revealed in the data set. It is likely that most of them could be the outliers

or highly atypical data points quite distinct from the primary structure (which is the

core and shadowed structure) that require more attention. In this sense we have

formed amechanism attracting attention to those patterns that may potentially trigger

some action.

The illustration of these three concepts describing the data structure is included

in Figure 9.19. It is worth noting that such data categorization forms an obvious

hierarchy of structures revealed by the clustering procedure. We start with the core

data structure (which is the most central to the structure description), move down to

the shadowed structure, and finally flag the uncertain structure.

We illustrate the performance of the development of the shadowed sets by

presenting a two-dimensional synthetic data set (which could be supported by a

detailed visualization). The objective function-based clustering used here is the well-

known FCM we studied earlier. The data set consisting of 15 patterns is presented in

Figure 9.20. There is some structure in this dataset, yet the number of well-delineated

clusters is not evident.

The experiment was carried out for m ¼ 2 while varying the number of clusters

in-between 2 and 4. The successive results are shown in terms of the prototypes,
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ranges of membership grades forming the shadows, and the number of patterns

falling under various categories of data structures being formed.

c ¼ 2

v1 ¼ ½1:32; 1:79�; v2 ¼ ½2:71; 4:19�
Shadows [0.42, 0.61] [0.38, 0.57]

Here the ranges of the membership grades of both clusters are quite similar and all

elements fall within the core of the clusters.

c ¼ 3

v1 ¼ ½1:69; 3:83�; v2 ¼ ½3:56; 4:21�; v3 ¼ ½1:31; 1:54�
shadows [0.32, 0.45] [0.25, 0.74] [0.29, 0.68]

Shadowed

structure 

Uncertain

structure 

Core

structure 

Core

structure  

Uncertain

structure 

Shadowed

structure 

Figure 9.19 Interpretation of data structure revealed in the clustering process along with the hierarchy

of concepts describing the data.
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Figure 9.20 Two-dimensional synthetic data set.
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As more detailed structure has been revealed, the clusters are more diversified

with respect to the membership ranges forming the shadows. One pattern has been

categorized as the element of the shadowed structure, which is reflective of the

increasing specificity of the description of the data. Here, the plots of the Cores

and Shadows of the shadowed sets for c ¼ 3 are included in the series of figures

( Fig. 9.21).

Figure 9.21 Structure representation of data for c ¼ 3 clusters: (a) cores of the clusters and original

fuzzy clusters and associated shadows of the induced shadowed sets (b)–(d).
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It helps visualize the location of the shadows vis-à-vis the experimental data and

raise awareness as to their role.

c ¼ 4

v1 ¼ ½1:93; 4:61�; v2 ¼ ½3:65; 4:25�; v3 ¼ ½1:10; 1:29�; v4 ¼ ½1:55; 2:38�
shadows [0.22, 0.72] [0.18, 0.79] [0.38, 0.62] [0.33, 0.43]

The more detailed description of the structure (which comes with more clusters)

positions more patterns in the shadowed structure, which is quite understood.

Figure 9.21 (Continued )
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9.6 CONCLUSIONS

The concept of interoperability between fuzzy sets and other types of granular informa-

tion including numeric data is fundamental to fuzzy modeling and any other interaction

including mechanisms of user feedback. We formulated the two key issues of encoding

and decoding and showed that a way in which their mechanisms are realized become of

paramount relevance to the effectiveness of the processing carried out at the level of

fuzzy sets. Along this line, we showed that the interoperability between fuzzy sets and

numeric data (being treated as a boundary case of information granules) comes with the

specific fuzzification and defuzzification scheme whose suitability could be assessed

through the use of the reconstruction criterion. Interestingly, fuzzy sets come with an

important feature of lossless reconstruction if selected properly. Here the commonly

encountered family of triangular fuzzy sets with an overlap of 1=2 between successive
elements of this family offers the zero value of the decoding error. The linkages between

fuzzy sets and sets through the construct of a-cuts are helpful for representation

purposes. They also show how the well-established techniques of interval mathematics

could be found useful in solving optimization problems involving fuzzy sets. We

introduced the concept of shadowed sets and demonstrated how it could be viewed

as a conceptual and computational vehicle aimed at the interpretation of fuzzy sets.

EXERCISES AND PROBLEMS

1. Express the concepts of support and core in terms of a-cuts and strong a-cuts.

2. Given is a fuzzy set B¼ [0.3, 0.9, 1.0, 1.0, 0.5]. What would be its best set-based

approximation?

3. We have learned that the triangular fuzzy sets with two neighboring fuzzy sets with an

overlap of 1
2
guarantee a zero decoding error irrespective of the number of the fuzzy sets

being used. Given this, we could think of using only two fuzzy sets. Is this a wise choice?

Why yes? Why not? Offer a detailed explanation.

4. Plot a decoding (reconstruction) error resulting from the use of intervals instead of fuzzy

sets. This error is also known as a quantization error.

5. Given a Gaussian fuzzy set, AðxÞ ¼ expð�x2=10Þ, find its a-cut. How does its length

depend upon the values of a? Draw the corresponding graph of length¼ length (a). By the

length we mean the length of the resulting interval of the a–cute.

6. You are provided with a unimodal fuzzy set A. If you are allowed to use only two levels of

a-cuts (say b and g) how would you choose their values?

7. For the nonsymmetrical fuzzy set described by the parabolic membership function with its

modal value positioned at zero

AðxÞ ¼
1� x

a

� �2

; if x 2 ½0; a�

1� x

b

� �2

; if x 2 ½�b; 0�
0; otherwise

8

>

>

>

<

>

>

>

:

determine the corresponding shadowed set.

248 Chapter 9 Interoperability Aspects of Fuzzy Sets



8. Derive the expression for the reconstruction error if we consider a collection of Gaussian

functions AiðxÞ ¼ expð�ðx� miÞ2=2Þ; i ¼ 1; 2; . . . ; c that are uniformly distributed

across the space X ¼ ½�10; 10�. How does the total reconstruction error depend upon

the number c of fuzzy sets being used? Plot this relationship. Could you offer any practical

insight into the choice of the number of these fuzzy sets?

9. Given is the fuzzy set shown in Figure 9.22.

Find its numeric representative using the following methods: (a) center of gravity, (b)

mean of maxima, (c) center of area approach. Compare the results; what conclusions could

you derive? Are the findings intuitive? Justify your judgment.

10. Derive the encoding and decoding formulas (9.17) and (9.19).

11. Consider the encoding-decoding scheme in the presence of fuzzy input data when the

codebook is formed by triangular fuzzy sets with an overlap of 1/2 between the neighbor-

ing fuzzy sets.

12. In fuzzy decision-making we are usually provided with a fuzzy set of decision and need to

choose several or a single alternative. Describe in detail and contrast several paths you

could follow here. What are their advantages? What difficulties could you encounter? To

illustrate your considerations, use two fuzzy sets defined in the decision space, which are

B¼ [0.1, 0.4, 0.5, 0.8, 0.9, 1.0, 1.0, 0.3, 0.1, 0.0, 0.0] and C¼ [1.0, 0.5, 0.2, 0.1, 0.1, 0.1,

0.0, 0.0, 0.0, 0.0, 0.0].

HISTORICAL NOTES

Almost since the very inception of fuzzy sets, it was a strong interest in the characterization of fuzzy sets in

the language of sets; a-cuts and representation theorem are essential to these investigations (Negoita and

Ralescu, 1987). The concepts of fuzzification and defuzzification arose in the context of various studies on

fuzzy controllers and found their own research niche in fuzzy sets. Given the evident practicality of the

problem itself, it is not surprising that we see a suite of various decoding (defuzzification) algorithms.

There have been some formal requirements formulated (as those offered by Runkler and Glenser, 1993). In

general one should become alerted that there is no unique and universal defuzzification scheme (as each of

them focuses on a specific form of transformation). Given the very nature of the problem, therewill not be a

unique method in the future. Any selection of the defuzzification algorithm needs to be guided by the

computational constraints (which we encounter in any problem), character of anticipated interaction, and

allowed level of information losses. The mechanism of fuzzification is far more obvious in the case of

numeric data, however, various alternatives exist when dealing with granular data. The possibility-

necessity encoding is one among viable alternatives.

The linkages with the issues of quantization and decoding as encountered in information (signal,

image) compression (for such problems we have a genuine abundance of literature with some classic

0 a/2 a x

1

Figure 9.22 Fuzzy set to be represented by a single numeric quantity.
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readings such as Gersho and Gray (1992); Lloyd (1982); Linde et al. (1988)) have not been vividly

investigated in fuzzy sets. Some studies along this linewere reported in Pedrycz (2001) and Pedrycz and de

Oliveira (1996).

Shadowed sets formed as constructs induced by fuzzy sets were introduced and studied by Pedrycz

(1998, 1999); refer also to for further results and applications (Cattaneo andCiucci, 2001;Gürkanet al., 2001).
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Chapter 10

Fuzzy Modeling: Principles

and Methodology

This chapter offers an in-depth discussion on the principles of fuzzy modeling

(Bezdek, 1993; Kacprzyk, 1983, 1997; Pedrycz, 1996; Zadeh, 1973, 2005), their

design objectives, including accuracy, interpretability, stability, an overall design

process, and related verification and validation mechanisms. We also present some

general categories of the fuzzy models, and for each of them elaborate on the

satisfaction of the already identified design objectives.

10.1 THE ARCHITECTURAL BLUEPRINT
OF FUZZY MODELS

In general, fuzzy models operate at a level of information granules—fuzzy sets,

and in this way they constitute highly abstract and flexible constructs (Pedrycz

and Vukovich, 2001). Given the environment of physical variables describing

the surrounding world and an abstract view of the system under modeling, a very

general view of the architecture of the fuzzy model can be portrayed, as presented in

Figure 10.1 (Pedrycz, 1996; Pedrycz and Gomide, 1998; Oh and Pedrycz, 2005;

Pedrycz and Reformat, 2005).

We clearly distinguish between three functional components of the model where

each of them comes with well-defined objectives. The input interface builds a

collection of modalities (fuzzy sets and fuzzy relations) that are required to link

the fuzzy model and its processing core with the external world. This processing core

realizes all computing being carried out at the level of fuzzy sets (membership

functions) already used in the interfaces. The output interface converts the results of

granular (fuzzy) processing into the format acceptable by the modeling environment.

In particular, this transformation may involve numeric values that are the represen-

tatives of the fuzzy sets produced by the processing core. The interfaces could be

present in different categories of the models, yet they may show up to a significant

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
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extent. Their presence and relevance of the pertinent functionality depends upon the

architecture of the specific fuzzy model and the way in which the model is utilized.

The interfaces are also essential when the models are developed on the basis of

available numeric experimental evidence as well as some prior knowledge provided

by designers and experts.

For instance, for rule-based topology of the model that is based upon fuzzy sets

in input and output variables we require well-developed interfaces. The generic

models in this category are formulated as follows:

if X1 is A and X2 is B and . . . then Y isC ð10:1Þ
where X1, X2, . . . are input variables and Y is the output variable, whereas A, B, C, . . .

are the fuzzy sets defined in the corresponding spaces (universe). Any logic proces-

sing carried out by the rule-based inference mechanism requires that any input is

transformed, that is, expressed in terms of fuzzy sets and the results of reasoning is

offered in its numeric format (at which stage we require that the result is produced

through the transformation of the fuzzy set of conclusion).

The rule-based models endowed with local models forming their consequents

(conclusion parts), commonly referred to as fuzzy functional or Takagi–Sugeno

fuzzy models (Takagi and Sugeno, 1985; Chen and Linkens, 2004; Babuska,

1998), are governed by the formula

if X1 is Ai and X2 is Bi and . . . then y is fiðx; aiÞ ð10:2Þ
where fiðx; aiÞ denotes a multivariable local model, x ¼ ½x1; x2; . . . ; xn�T is the vector
of base variables of X1;X2; . . . ;Xn and ai is a vector of parameters ai ¼
½ai1; ai2; . . . ; ain�T . In particular, one can envision a linear form of the model in which

fi becomes a linear function of its parameters, namely fiðx; aiÞ ¼ aTi x. Depending

upon the specificity of the problem and the structure of available data, these regres-

sion models could be made nonlinear. Given the character dictated by the problem at

Data

Interface Interface

Processing
Domain

knowledge

Fuzzy model

Decision,
control signal, class 
assignment…

Figure 10.1 A general view at the underlying architecture of fuzzy models along with its three

fundamental functional modules.
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hand, we may be concerned with polynomial regression models (say, quadratic,

cubic, etc.), trigonometric, and so on. The region of operation (viz. the area where the

rule is relevant) of the rule is determined by the form and the location of the fuzzy sets

located in the input space, which then occur in this particular rule; see Figure 10.2.

In this case the output interface is not required as the output of the model is

numeric. Furthermore, we still have to use a well-defined input interface as its

components (fuzzy sets) form condition parts of the rules. Any input has to be

transformed and communicated to the inference procedure making use of the fuzzy

sets of the interface. Rule-basedmodels are central architectures of fuzzymodels.We

will devote a separate chapter to cover the fundamentals and algorithmic develop-

ments of fuzzy rule-based computing.

10.2 KEY PHASES OF THE DEVELOPMENT AND USE
OF FUZZY MODELS

There are several fundamental schemes that support the design and the use of fuzzy

models. Referring to Figure 10.3, we encounter four essential modes of their usage:

(a) The use of numeric data and generation of results in the numeric form is

shown in Figure 10.3(a). This mode reflects a large spectrum of modeling

scenarios we typically encounter in systemmodeling. Numeric data available

in the problem are transformed through the interfaces and used to construct

the processing core of the model. Once developed, the model is then used in a

numeric fashion: It accepts numeric entries and produces numeric values of

the corresponding output. From the perspective of the external ‘‘numeric’’

world, the fuzzy model manifests itself as a multivariable nonlinear input–

output mapping. Later on, we discuss the nonlinear character of the mapping

in the context of rule-based systems. It will be demonstrated how the form of

the mapping depends directly upon the number of the rules, membership

f1

f3

y
x1

x2

{Ai}

{Bi}

Figure 10.2 A schematic view of the two-input (x1 and x2) Takagi-Sugeno model with local

regression models; the connections of the output unit realize processing through the local model fi.
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functions of fuzzy sets used there, inference scheme, and other design

parameters. Owing to the number of design parameters, rule-based systems

bring in a substantial level of modeling flexibility, and this becomes highly

advantageous to the design of fuzzy models.

(b) The use of numeric data and the presentation of results in a granular format

(through some fuzzy sets) is shown in Figure 10.3 (b). This mode makes the

model highly user-centric. The result of modeling comes as a collection of

elements with the corresponding degrees of membership, and in this way it

becomes more informative and comprehensive than a single numeric quan-

tity. The user/decision-maker is provided with preferences (membership

degrees) associated with a collection of possible outcomes.

(c) The use of granular data as inputs and the presentation of fuzzy sets as

outcomes of the models is shown in Figure 10.3(c). This scenario is typical

for granular modeling in which instead of numeric data we encounter a

collection of linguistic observations such as expert’s judgments, readings

coming from unreliable sensors, outcomes of sensors summarized over

some time horizons, and so on. The results presented in the form of fuzzy

sets are beneficial for the interpretation purposes and support the user-

centric facet of fuzzy modeling.

Data

Interface Interface

Processing

Fuzzy model 

action or  
decision Data 

Interface 

Processing

Fuzzy mdel 

User

(a) (b) 

Interface 

Processing

Fuzzy model 

Interface

Processing

Fuzzy model 

Interface 

(c) (d) 

Figure 10.3 Four fundamental modes of the use of fuzzy models; note a role of input and output

interfaces played in each of them. See the details in the text.
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(d) The use of fuzzy sets as inputs of the model and a generation of numeric

outputs of modeling is shown in Figure 10.3(d). Here we rely on expert

opinions as well as granular data forming aggregates of detailed numeric

data. The results of the fuzzy model are then conveyed (through the inter-

face) to the numeric environment in the form of the corresponding numeric

output values. Although this becomes feasible, we should be cognizant that

the nature of the numeric output is not fully reflective of the character of the

granular input.

10.3 MAIN CATEGORIES OF FUZZY MODELS:
AN OVERVIEW

The landscape of fuzzy models is highly diversified. There are several categories of

models where each class of the constructs comes with interesting topologies, func-

tional characteristics, learning capabilities, and the mechanisms of knowledge

representation. In what follows, we offer a general glimpse at some of the architec-

tures that are most visible and commonly envisioned in the area of fuzzy modeling.

10.3.1 Tabular Fuzzy Models

Tabular fuzzy models are formed as some tables of relationships between the

variables of the system granulated by some fuzzy sets (Fig. 10.4). For instance,

given two input variables with fuzzy sets A1, A2, A3, B1 – B5 and the output fuzzy sets

C1, C2, and C3, the relationships are articulated by filling in the entries of the table;

for each combination of the inputs quantified by fuzzy sets, say Ai and Bj, we

associate the corresponding fuzzy set Ck formed in the output space.

The tabular models produce a fairly compact suite of transparent relationships

represented at the level of information granules. In the case ofmany input variables, we

end up with multidimensional tables (relations). The evident advantage of the tabular

fuzzy models resides with their evident readability. The shortcoming comes with the

lack of existence of the direct mapping mechanisms. This means that we do not have

any machinery of transforming input (either numeric or granular) into the respective

output. Furthermore, the readability of the model could be substantially hampered

when dealing with the growing number of variables we consider in this model.

A1

A2

A3

  B1     B2        B3      B4       B5

C3

C1

Figure 10.4 An illustrative example of the two-input tabular fuzzy model (fuzzy decision table).
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10.3.2 Rule-Based Systems

Rule-based systems are highly modular and easily expandable fuzzy models com-

posed of a family of conditional ‘‘if – then’’ statements (rules) where fuzzy sets occur

in their conditions and conclusions. The standard format of the rule with many inputs

(conditions) comes in the form

if condition1 isAand condition2 is B and . . . and conditionn isW then conclusion isZ

ð10:3Þ
where A, B, . . .W, Z are fuzzy sets defined in the corresponding input and output

spaces. The conditions of the if part are generically called rule autecedent whereas

conclusions, (decisions) of the then part is called rule.

Themodels support the principle of locality and the distributed nature ofmodeling

as each rule can be interpreted as an individual local descriptor of the data (problem)

that is invoked by the fuzzy sets defined in the space of conditions (inputs). The local

nature of the rule is directly expressed through the support of the corresponding fuzzy

sets standing in its condition part. The level of generality of the rule depends upon

many aspects that could be easily adjusted making use of the available design

components associated with the rules. In particular, we could consider fuzzy sets of

condition and conclusion whose granularity could be adjusted so that we could easily

capture the specificity of the problem. By making the fuzzy sets in the condition part

very specific (that is being of high granularity), we come up with the rule that is very

limited and confined to some small region in the input space. When the granularity of

fuzzy sets in the condition part is decreased, the generality of the rule increases. In this

way the rule could be applied to more situations. To emphasize a broad spectrum of

possibilities emerging in this way refer to Figure 10.5, which underlines the very nature

of the cases discussed above.

Figure 10.5 Examples of rules and their characterization with respect to the level of granularity of

condition and conclusion parts.
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While the rules represented in (10.3) form a single level structure (the rules

are built at the same level), there are also hierarchical architectures composed

of several levels of knowledge representation where there are collections of

rules formed at a few very distinct levels of granularity (generality); refer to

Figure 10.6. The level of generality of the rules is directly implied by the

information granules forming the input and output interfaces. As we have already

emphasized, given the importance of rule-based systems, we cover their design in

a separate chapter.

10.3.3 Fuzzy Relational Models and Associative
Memories

Fuzzy relational models and associative memories are examples of constructs whose

computing dwells upon logic processing of information granules. The spirit of the

Rules:
if A1  and   B1   then C1

if A2  and   B2   then C2

if A3  and   B3   then C3

(a)

(b)

Rules:
if A31  and  B21 then C31

if A32  and  B22 then C32

if A33  and  B23 then C33

A1

A2

A3

B1

B2

B3

A1

A2

A3
C1

C2

C3

C1

C2

C3

B1

B2

B3

Rules:
if A1  and   B1   then C1

if A2  and   B2   then C2

if A3  and   B3   then C3

Figure 10.6 Examples of rule-based systems: (a) single-level architecture with all rules expressed at

the same level of generality, (b) rules formed at several levels of granularity (specificity) of fuzzy sets

standing in the condition parts of the rules. Ai and Bj stand for fuzzy sets forming the condition parts of

the rules.
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underlying architectures is that the mapping between input and output information

granules is realized in the form of some relational transformation (Fig. 10.7). The

mapping itself comes in the form of a certain composition operator (say, max–min or

being more general, s-t composition). The same development scheme applies to

fuzzy associative memories. The quality of recall carried out in the presence of

incomplete or distorted (noisy) inputs is regarded as one of the leading indicators

describing the performance of the memories. Given the input and associated output

items—fuzzy sets A1, A2, . . . , Ac and B1, B2, . . . , Bc, respectively, we construct a

fuzzy memory (relation) storing all pairs of items by or-wise aggregating the

Cartesian products of the input–output pairs, R ¼ [Nk¼1ðAk � BkÞ. Next any input

item A leads to the recall of the corresponding output B through some relational

operator (say, max–min composition), V ¼ U � R.
In fuzzy relational equations (that constitute an operational framework of

associative memories) we encounter a wealth of architectures that is driven by the

variety of composition operators. Although the sup-t (max–min) composition is

commonly used, there are also other alternatives available; some of them are

presented in Figure 10.8. The selection of the composition operation (hence the

form of the equation) depends upon the problem at hand as each composition

operator comes with its own well-defined semantics (with the underlying logic

U V

R

Figure 10.7 A schematic view of the relational models and associative memories.

t-norms  

Sup-min composition  

Ordinal sum

t-conorms  

Nullnorms  

Uninorms  

Implications  

Supremum (max)  

Infimum (min)  

Min-uninorm composition  

Sup-t composition  

Inf-s composition  

max–min composition 

Figure 10.8 A general taxonomy of fuzzy relational equations (modeling structures) presented with

respect to the combination of composition operators used in their realization.
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underpinnings and interpretation abilities). From the algorithmic standpoint, let us

note that some of the composition operators lead to fuzzy relational equations for

which we could derive analytical solutions. In other more advanced cases, one has to

proceed with some numeric optimization and develop pertinent learning schemes.

10.3.4 Fuzzy Decision Trees

Fuzzy decision trees are generalizations of well-known and commonly used decision

trees (Apolloni et al., 1998; Chang and Pavlidis, 1977; Janikow, 1998; Pedrycz and

Sosnowski, 2001; Qin and Lawry, 2005). In essence, a decision tree is a directed

acyclic graph (DAG) whose nodes are marked by the attributes (input variables of the

model) and links are associated with the discrete (finite) values of the attributes

associated with the corresponding nodes (Fig. 10.9). The terminal nodes concern the

values of the output variable (which depending upon the nature of the problem could

assume discrete or continuous values).

By traversing the tree starting from the root node, we arrive at one of its final

nodes. In decision tree only one terminal node can be reached as the values of the

inputs uniquely determine the path one traverses through the tree. In contrast, in

fuzzy decision trees several paths could be traversed in parallel. When moving down

a certain path, several alternative edges originating from a given node are explored

where each of them comes with the degree of matching of the current data (more

specifically the value of the attribute that is associated with the node) and the fuzzy

sets representing the values of the attribute coming with each node. The reachability

of the node is computed by aggregating the degrees of matching along the path that

has been traversed to reach it. Typically, we use here some t-norm as we adhere to the

and-like aggregation of the activation levels reported along the edges of the tree

visited so far. In this way, several terminal nodes are reached and each of them comes

with its own value of the reachability index computed by an and aggregation (using

some t-norm) of the activation (matching) degrees between the data and the values of

the attributes represented as fuzzy sets. The pertinent details are illustrated in Figure

10.9 (c).

10.3.5 Fuzzy Neural Networks

Fuzzy neural networks are fuzzy set-driven models composed with the aid of some

logic processing units—fuzzy neurons (cf. Pedrycz and Gomide, 1998; Pedrycz,

2004; Ciaramella et al., 2006). These neurons realize a suite of generic logic

operators (such as and, or, inclusion, dominance, similarity, difference, etc.). Each

neuron comes with a collection of the connections (weights). These weights bring a

highly required flexibility to the processing units that could be exploited during the

learning of the network. From the perspective of the topology of the network, we can

envision several well-delineated layers of the processing units; see Figure 10.10.

There are some interesting linkages between the fuzzy neural networks and the

relational structures (fuzzy relational equations) we have discussed earlier. Both of
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them rely on the same pool of composition operators (logic mappings); however,

when it comes to the networks, those are typically multilayer architectures.

10.3.6 Network of Fuzzy Processing Units

The essence of these modeling architectures is to allow for a higher level of

autonomy and flexibility. In contrast to the fuzzy neural networks, there is no layered

A={a1, a2, a3}

B={b1, b2} C={c1, c2, c3, c4}

a3, c1

(a)

A={A 1, A2, A 3}

B={B1, B2} C={C1, C2, C3, C4}

m 1 m 2 m 3 m 4 m 5 m 6      reachability 

(b)

(c)

A={A 1, A 2, A 3}
x

C={C1, C2, C3, C4}

                                m  =A1(x) t C2(y)               reachability  

y

Figure 10.9 An example of the decision tree (a) and the fuzzy decision tree (b); in this case one can

reach several terminal nodes at different levels of reachability (mi). The level of reachability is

determined by aggregating activation levels along the path leading to the terminal node (c).
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structure. Rather than that, we allow for loosely connected processing units that can

operate individually and communicate with the others. Furthermore, when dealing

with dynamic systems, the network has to exhibit some recurrent links.

One of the interesting and representative architectures in this category are

fuzzy cognitive maps (Kosko, 1986, 1992; Papageorgiou and Groumpos, 2005;

Papageorgiou et al., 2006, Carvalho and Torne, 2007). These maps, being the

generalization of the binary concepts introduced by Axelrod (1976) represent con-

cepts and show linkages between them. A collection of basic concepts is represented

as nodes of the graph that are interrelated through a web of links (edges of the graph).

The links could be excitatory (so the increase of intensity of one concept triggers the

increased level of manifestation of the related one) or inhibitory (in which case we

see an opposite effect: the increase of intensity of one concept triggers the decline of

intensity of the other one). Traditionally, the connections (links) assume numeric

values from �1 to 1. An example of the fuzzy cognitive map is shown in Figure

10.11.

The detailed computing realized at the level of the individual node is governed

by the expression xj ¼ f ð
Pn

j¼1
j 6¼i

wjixjÞ, where xj denotes a resulting level of activity

(intensity) at the node of interest and xi is the intensity level associated with the ith

node. The connections (linkages) between the two nodes are denoted by wij. The

(a)

(b)

and or

and orref

Figure 10.10 Examples of architectures of fuzzy neural networks: generalized (multivalued) logic

functions realized in terms of and and or neurons (a), and the network with an auxiliary referential layer

consisting of referential neurons (b).
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nonlinear mapping f is typically a monotonically increasing function, say a sigmoid

one, f ðuÞ ¼ 1=ð1þ expð�uÞÞ. A node could be equipped with its own dynamics

(internal feedback loop), and in this case we consider a nonzero link wjj for this

particular node. Given this, we arrive at a recurrent expression of the form

xi ¼ f ð
Pn

j¼1 wjixjÞ. The interfaces of this fuzzy model is not shown explicitly;

however, we should have in mind that the inputs to the nodes are the inputs from

the modeled world that were subject to a certain transformation realized through

some fuzzy sets defined in the corresponding variables or the Cartesian products of

these variables.

The structure of the network offers a great deal of flexibility and is far less rigid

than the fuzzy neural networks where typically the nodes (neurons) are organized

into some layers. The individual nodes of the fuzzy cognitive maps could be realized

as some logic expressions and implemented as and or or neurons. The connections

could assume values in [0,1], and the inhibitory effect can be realized by taking the

complement of the activation level of the node linked to the one under consideration.

An example of the logic-based fuzzy cognitive map is presented in Figure 10.12.

In all these categories of fuzzy models, we can envision a hierarchy of the

structures that could be formed at each level of the hierarchy (Cordón et al., 2003).

We start from the highest, the most general level and expand it by moving down to

A

B

C

D

+

–

+

–

–

–

Figure 10.11 An example of a fuzzy cognitive map composed of four concepts (A, B, C, and D).

The sign of the corresponding connection identifies the effect of inhibition (�) or excitation (þ)
between the concepts (nodes). For instance, A excites C.

A

B

C

D
E

and

or

Figure 10.12 An example of a fuzzy cognitive map whose nodes are realized as logic expressions

(and and or neurons). The inhibitory effect is realized by taking the complement of the activation level of

the interacting node (here indicated symbolically by a small dot).
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capture more details. In general, we can envision a truly hierarchical structure shown

in Figure 10.13.

Amore specific and detailed visualization of the hierarchy of the model is shown

in Figure 10.14 where we are concerned with fuzzy cognitive maps. Here, a certain

concept present at the higher level and represented as one of the nodes of the map

unfolds into several subconcepts present at the lower level. With the computing
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Figure 10.13 A general concept of hierarchy in fuzzy modeling; depending upon a certain level of

specificity, various sources of data could be accommodated and processed, and afterward the results

communicated to the modeling environment.
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D

D1

D3
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OR

Figure 10.14 An example of a hierarchy of fuzzy cognitive maps; a certain concept at the higher

level of generality is constructed as a logic or-type of aggregation of the more detailed ones used in the
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occurring at the lower level, more detailed level produces some level of activation of

the more detailed nodes (sub-concepts), and these levels aggregated or-wise are then

used in computing realized at the higher level of generality.

10.4 VERIFICATION AND VALIDATION
OF FUZZY MODELS

The processes of verification and validation (referred to as V&V) are concerned with

the fundamental issues of the development of the model and assessment of its

usefulness. Following the standard terminology (which is well-established in many

disciplines, such as, e.g., software engineering), verification is concerned with the

analysis of the underlying processes of constructing the fuzzy model. Are the design

principles guiding the systematic way the model is built fully adhered to? In other

words, rephrasing the concept in the setting of software engineering, we are focused

on the following question, ‘‘Are we building the product right?’’ Validation, on the

other hand, is concerned with ensuring that the model (product) meets the require-

ments of the customer. Here we concentrate on the question, ‘‘Are we building the

right product?’’ Put it differently: Is the resulting model in compliance with the

expectations (requirements) of the users or groups of users of the model?

Let us elaborate on the verification and validation in more detail.

10.4.1 Verification of Fuzzy Models

Fuzzy models and fuzzy modeling are the pursuits that in spite of their specific

requirements are still adhere to by the fundamentals of system modeling. In this

sense, they also have to follow the same principles of model verification. There are

several fundamental guidelines in this respect. Let us highlight the essence of them.

(a) An iterative process of constructing a model in which we successively

develop a structure of the model and estimate its parameters. There are

well-established estimation procedures that come with a suite of optimiza-

tion algorithms. It is quite rare that the model is completely built through a

single pass through these two main phases.

(b) Thorough assessment of accuracy of the developed model. The underlying

practice is that one should avoid any bias in the assessment of this quality,

especially by developing a false impression about the high accuracy of the

model. To avoid this and gain a significant level of objective evaluation, we

split the data into training and testing data. While the model is constructed,

we use the training data.

(c) Generalization capabilities of the resulting model. Although the accuracy is

evaluated for the experimental data being used to construct the model, the

accuracy obtained quantified in this way could lead to highly and optimis-

tically biased evaluation. The assessment of the performance of the model

on the testing data helps to eliminate this shortcoming.
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(d) The lowest possible complexity of the model. This is usually referred to as

an Occam’s razor principle. The principle states that among several models

of a very similar accuracy, we always prefer a model that is the simplest. The

concept of simplicity requires some clarification as the concept itself is not

straightforward as one might have envisioned. If you consider a collection of

polynomial models, linear models are obviously simpler than those invol-

ving second or higher order polynomials. On the other hand, the notion of

complexity could also carry a subjective component. For instance, it could

significantly depend on the preferences of designers and users of the model.

In a certain environment where neurocomputing is dominant, models of

neural networks are far more acceptable and, therefore, perceived as being

simpler than polynomial models. One should stress, however, that this type

of assessment comes with a substantial level of subjectivity.

(e) High level of design autonomy of the model. Given that usually we encounter

a significant number of design alternatives as to the architecture of the

model, various parameters one can choose from to construct the detailed

topology of the model, it is highly desirable to endow the development

environment of the model with a significant level of design autonomy, that is

exploit suitable optimization techniques that offer a variety of capabilities

aimed at the structural development of the model. In this regard, evolu-

tionary techniques of optimization play a pivotal role. Their dominant

features such as population-based search, minimal level of guidance (a

suitable fitness function is just a suitable mechanism guiding optimization

efforts), collaborative search efforts (through some mechanisms of commu-

nication between the individual solutions) are of particular interest in this

setting. The design of fuzzy models in the presence of the number of

objectives is an example of multiobjective optimization in which the objec-

tives are highly conflicting. The set of efficient solutions, called nondomi-

nated Pareto optimal, is formed by all elements in the solution space for

which there is no further improvement without degradation in other design

objectives. Hence, the machinery of genetic optimization becomes a highly

viable and promising alternative.

When constructing fuzzy models, we also adhere to the same principles (viz.

iterative development and successive refinements, accuracy assessment through

training and testing sets, and striving for the lowest possible complexity of the

construct). When it comes to the evaluation of accuracy of the fuzzy models, it is

worth stressing that given the topology of these models in which the interface

module constitutes an integral part (Pedrycz and Valente de Oliveira, 1996;

Bortolan and Pedrycz, 2002; Mencar et al., 2006), there are two levels at which

the accuracy of the models can be expressed. We may refer to them as internal and

external levels of accuracy characterization. Their essence is schematically visua-

lized in Figure 10.15. At the external (viz. numeric) level of accuracy quantifica-

tion, we compute the distance between the numeric data and the numeric output of

the model resulting from the transformation realized by the interface of the model.
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In other words, the performance index expressing the (external) accuracy of the

model reads in the form

Q ¼
X

N

k¼1
k yk � targetk k2 ð10:4Þ

where the summation is carried out over the numeric data available in the training,

validation, or testing set. The form of the specific distance function (Euclidean,

Hamming, Tchebyschev, or more generally, Minkowski distance) could be selected

when dealing with the detailed quantification of the proposed performance index.

At the internal level of assessment of the quality of the fuzzy model, we

transform the output data through the output interface so now they become vectors

in the ½0; 1�m hypercube and calculate distance at the internal level by dealing with

two vectors with the [0,1] entries. As before, the calculations may involve training,

validation, or testing data. More specifically, we have

Q ¼
X

N

k¼1
k uk � tk k2 ð10:5Þ

refer also to Figure 10.15 (b). These two ways of quantifying the accuracy are

conceptually different, and there is no equivalence between them unless their granular

Processing

Interface Interface 

target kyk

Minimized

error

xk

(a) 

Processing

Interface Interface 

tk

uk

Minimized 

error

xk target k

(b) 

Figure 10.15 Two fundamental ways of expressing the accuracy of fuzzy models: (a) at the numeric

level of experimental data and results of mapping through the interface, and (b) at the internal level of

processing after the transformation through the interfaces.
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to numeric interface does not produce any additional error.We have already elaborated

on this issue in Chapter 9 when dealing with the matter of interoperability. Quite often

the interface itself could introduce an additional error. In other words, we may have a

zero error at the level of granular information, however oncewe transform these results

through the interface they become associated with the nonzero error. The performance

index in the form shown above (3)–(4) is computed at either the numeric or the granular

level. In the first case, refer to Figure 10.15 (a), it concerns the real numbers. At the

level of information granules, the distances are determined at the level of the elements

located in the unit hypercubes ½0; 1�m; see Figure 10.15 (b).

10.4.2 Training, Validation, and Testing Data in the
Development of Fuzzy Models

When assessing the quality of the fuzzy models in terms of accuracy, stability, and

transparency, it is important to quantify these features in an environment in which we

could gain a high confidence as to the produced findings. Having overly optimistic

evaluations is not advisable. Likewise, producing some pessimistic bias is not helpful

as well. In order to strive for high reliability of the evaluation process of the model,

one should release results of assessment based on the prudent use of available data.

Here we follow the general guidelines and evaluation procedures encountered in

systemmodeling (and these guidelines hold in spite of the diversity of the models and

their underlying fundamentals).

Split of Data into Training and Testing Subsets To avoid any potential

bias, the available data are split randomly into two disjoint subsets of training and

testing data (with the split of 60–40% where 60% is used in the training set). The

model is built using the training data. Next its performance is evaluated on the testing

data. As this data set has not been used in the development of the model, we avoid any

potential bias in its evaluation.

10 Fold Cross-Validation Although the use of the training and testing data helps

gain some objectivity in the assessment, there still could be some variability in the

evaluation, which could be the result of the random split. To reduce this effect, we

randomly split the data into training–testing subsets, evaluate the performance of the

model, and repeat the split and evaluation 10 times, in each case producing a random

split of the data. In this sense, the obtained results could help reduce variability. Both

the mean value of the performance and the related standard deviation are reported.

When preparing the data, the split is typically carried out at the level of 90–10%.

Leave-One-Out Evaluation Strategy This strategy is of particular relevance

when dealing with small data sets in which case the 60–40% split is not justifiable.

Consider, for instance, 20 data points (which could be quite typical when dealing

with data coming from some software projects; we do not have hundreds of those). In

this case, the use of the approaches presented above could be quite unstable—as a
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matter of fact the number of data points is quite low, say 12 data for the training

purposes; hence, the development of the fuzzy model could be affected by the

reduced size of the data. In this case we consider a leave-one-out strategy. Here

we use all but one data point in the training data, construct the model, and evaluate its

performance on the one left out from the training data. The process is repeated for all

data points starting from the first one left out, building the model and testing it on the

single data point. Thus forN data, this strategy produces results of performance on all

points being left out. Then average and standard deviation of the results could serve

as a sound assessment of the quality of the fuzzy model.

So far, we have indicated that the available data set is split into its training and

testing part. Quite often we also use a so-called validation set. The role of the validation

set is to guide the development of the model with respect to its structural optimization.

For instance, consider that we are at a position to adjust the number of fuzzy sets defined

for individual variables. It is quite anticipated that when we start increasing the number

of fuzzy sets, the accuracy of themodel on the training set is going to become better. It is

very likely that the tendency on the testing set is going to be quite different. The question

as to the ‘‘optimal’’ number of fuzzy sets cannot be answered on the basis of the training

data. The testing set is supposed not to be used at all in the construction of the model. To

solve the problem, in addition to the training data set, we set aside a portion of the

data—validation set, which is used to validate the model constructed on the basis of the

training data. The development process proceeds as follows: We construct a model

(estimate its parameters, in particular) on the basis of the training set. When it comes to

the structural development (say, the number of fuzzy sets and alike) where there is a

strong monotonic tendency, we have to resort to the validation set: choose the value of

the structural parameter (say, the number of nodes, processing units, fuzzy sets, etc.),

optimize the model on the training set and check its performance on the validation set,

and select the value for which we get the best results on the validation set.

10.4.3 Validation of Fuzzy Models

As already indicated, validation is focused on the issues related to the question, ‘‘Are

we building the right system?’’ In essence, the term of validation is inherently

multifaceted. It embraces several important aspects, in particular transparency and

stability of the model. Let us discuss them in more detail.

Transparency of the Model The interpretation of transparency or ‘‘readability’’

of the model is directly associated with the form of the fuzzy model (Casillas et al.

2003; Paiva and Dourado, 2004). The essence of this feature of the model is associated

with the ability to easily comprehend the model, namely pick up the key relationships

captured by it. There is also a substantial level of flexibility in the formalization of the

concept of transparency. For instance, consider a rule-based model that is composed of

a series of rules ‘‘if condition1 and condition2 and . . . . and conditionn then conclu-

sion’’ where the conditions and conclusions are quantified in terms of some fuzzy sets.

The transparency of the model can be quantified by counting the number of rules and
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taking into consideration the complexity of each rule. This complexity can be

expressed by counting the number of the conditions standing in the rule. The larger

the number of the rules and the longer they are, they lower the readability (transpar-

ency) of the model. When dealing with network type of fuzzy models such as, for

example fuzzy cognitive maps, the immediate criterion wemay take into consideration

is the number of nodes or the number of connections between them (or alternatively the

density of connections, which is determined by counting the number of connections

and dividing them by the number of nodes). The higher these values, the more difficult

it becomes to ‘‘read’’ the model and interpret it in a meaningful manner. The

transparency of the model is also essential when dealing with an ability to accom-

modate any prior domain knowledge that is available in any problem solving. The

existing components of such domain knowledge are highly instrumental in the devel-

opment of the models. For instance, one could easily reduce learning effort going

toward the estimation of the parameters of the model (say, a fuzzy neural network)

once the learning starts from a certain promising point in the usually huge search space.

Stability of the Model The substantial value of fuzzy models comes with their

stability. We always prefer a model that is ‘‘stable’’ so it does not change over some

minor variations of the environment, and experimental data in particular. Practically,

if we take some subsets of training data, we anticipate that the resulting fuzzy model

does not radically change and retains its conceptual core, say a subset of rules that are

essential descriptors of the phenomenon or the process of interest. Some minor

variations of other less essential rules cannot be avoided and are less detrimental to

the overall stability of the model. There could also be some changes in the numeric

values of the parameters of the model, yet their limited changes could be secondary to

the stability of the model. The aspect of the model’s stability is somewhat associated

with the transparency we have considered so far: Once provided with the model, we

expect that it concentrates on these aspects of reality that repeats all the time in spite

of the variations of the environment. By the same token we intend to avoid some

highly variable components of the model as not contributing to the essence of the

underlying phenomenon. Intuitively, one could conclude that the stability is inher-

ently associated with the level of granularity we establish for the description. This is

not surprising at all: the higher the generality, the higher the stability of the model.

It should be stressed that these fundamental features of the fuzzy models could

be in competition. High accuracy could reduce readability. High transparency could

come at the cost of reduced accuracy. Always a sound compromise should be strived

for. A suitable choice depends upon the relationships between these characteristics.

Some examples are illustrated in Figure 10.16. Reaching a compromise should

position us at a point where abrupt changes are avoided.

10.5 CONCLUSIONS

We have discussed the paradigm of fuzzy modeling and identified the main features

of this modeling environment. While a number of fundamental requirements we
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encounter in general systemmodeling are pertinent here, we also have new aspects to

fully deal with, which come because of the processing of granular information

realized in such models. In particular, the three module topology of the fuzzy models

with clearly delineated interfaces is definitely worth noting here. There are also

several essential modes of use of fuzzy models, which definitely address the point of

human-centricity that fuzzy modeling brings into the picture. The review of the main

architectural categories of the fuzzy models is beneficial in asserting their capabil-

ities as far the concepts of interpretability, stability, and accuracy are concerned.

This chapter provides a general overview and focuses on the methodological

issues. The detailed discussion on the main categories of the models such as fuzzy

rule-based systems and fuzzy neural networks will be studied in detail in the

consecutive chapters.

EXERCISES AND PROBLEMS

1. Suggest a fuzzy model of decision-making concerning a purchase of a car. In particular,

consider the following components that are essential to the model:

(a) variables and their possible granulation realized in the form of some fuzzy sets

(b) optimization criteria that could be viewed meaningful in the problem formulation

(c) type of the fuzzy model; justify your choice

2. Transform the following decision tree into a collection of rules.

The information granules of the attributes are given in the form of fuzzy sets or intervals as

illustrated above. What would be the result (class membership) for the input x ¼ 1:5 and

y ¼ 2:0?

3. Offer a representation of the following problem in the form of a suitable fuzzy cognitive

map.

Consider a process of weed control through spraying. The herbicides increase the

mortality of weeds. Both the crop and weed depend upon the nutrients and water in

the soil. There is also another component in the process that is herbivore. The growth of

herbivore population depends on the amount of weed eaten; also each individual has a

natural rate of mortality.

Accuracy

Interpretability 

Figure 10.16 Examples of relationships between interpretability and accuracy of fuzzy models; the

character of these dependencies are specific to the type of fuzzy model under consideration.
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Justify the choice of the structure. Identify the pertinent variables describing the system and

run the map for several iterations. Start with a single concept being fully activated; consider

that the others are equal to zero.

4. The experimental data for a single-input–single-output relationship are shown below.

What form of rules and how many would you suggest in each case; justify your choice.

x

A1

A 2

A 3

B1 B2

C1 C2 D1
D2

y z w

Class-1      Class-2         Class-3

x
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      1                  4            6
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                        10
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                           4
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      3                  7
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x

y

x

y
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5. Is there any relationship between the 10-fold cross-validation strategy and the leave-one-

out strategy?

6. Pick up a manual of any appliance, electronic device, cellular phone and alike. Could you

develop a fuzzy model on its basis (say, a collection of fuzzy rules).

7. The output of the fuzzy model produces the membership functions shown below.

How could these fuzzy sets help you interpret the result produced by the fuzzy model?

Assume that the output y can assume values in the range ½a; b�

8. Give several reasons why we should not go for too many fuzzy sets defined in the system’s

variables.

HISTORICAL NOTES

In system modeling we are commonly after simplicity of the resulting constructs. Here the concept of the

Occam’s razor principle fully applies. This principle states that the explanation of any phenomenon

(system) should be realized in the simplest possible way using a few assumptions (i.e., entities should not

be multiplied beyond necessity).

The 14th-century English logician and Franciscan friar William of Ockham.(1295–1349) is attrib-

uted to law of parsimony (simplicity or succinctness) in scientific theories. Occam’s razor states that the

explanation of any phenomenon should make as few assumptions as possible.

The principle of incompatibility lucidly formulated by Zadeh (1973) underlines the fundamental

conflict between numeric accuracy and overall meaningfulness of the models.

As the complexity of a system increases, our ability to make precise and yet significant

statements about its behavior diminishes until a threshold is reached beyond which

precision and significance (or relevance) become almost mutually exclusive

characteristics

Fuzzy modeling is an example of granular modeling, namely, modeling that is inherently associated

with information granules. In this regard, it is instructive to refer to qualitative modeling (Kuipers,

a                                                  b a                                                  b a                                                  b 
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1986; Forbus, 1984, 1993). Qualitative modeling is based predominantly on symbols. Very often these

symbols do not come with any numeric characterization, so when dealing with the terms such as low,

medium, high used there, one has to view them as some entities for which there is some simple calculus

of algebraic manipulation. Note, however, that the concepts are symbolic and do not carry any numeric

quantification (such as the one being formed through membership functions). The relevance of

qualitative modeling was also stressed by Puccia and Levins in their book published in 1985 (Puccia

and Levins, 1985).

The methodology, algorithms, and applications of fuzzy modeling have been vigorously pursued since

the inception of fuzzy sets. Most of the models were those of a rule-based format. Owing to this architecture,

the models supported their high readability. Starting from the collections of associations between fuzzy sets

in input and output space, the rule-based models started to become very much dominated by the rules with

local regression models (as originally introduced by Takagi and Sugeno in 1985). With the renaissance of

neurofuzzy systems where neural networks came in a variety of synergistic constructs with fuzzy sets, the

accuracy of fuzzy models started to dominate the development agenda. For some period of time, the issues of

transparency and readability as well as simplicity of the fuzzy models were not predominantly visible. Only

recently (Casillas et al., 2003), they have started growing in importance.
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Chapter 11

Rule-Based Fuzzy Models

Rule-based models play a central role in fuzzy modeling. Fuzzy rules capture

relationships among fuzzy variables and provide a mechanism to link linguistic

descriptions of systems with their computational realizations. Fuzzy rules can be

formalized via collections of fuzzy relations. As such, they naturally provide a way to

construct models of systems involving domain knowledge, experience, and

experimental data. Interpreting fuzzy rules as fuzzy relations allows the use of

relational calculus to process information and carry out efficient computing with fuzzy

rules in numerous applications. This chapter addresses the concepts of fuzzy rule-based

systems and architectures, discusses their structural representations and interpretations,

and offers procedures to carry out rule-based computing. Design issues, adaptation,

and parametric optimization mechanisms are addressed as well.

11.1 FUZZY RULES AS A VEHICLE OF KNOWLEDGE
REPRESENTATION

In their generic format, rules forming a core of rule-based systems come in the form

of conditional statements.

If input variable isA then output variable isB ð11:1Þ
where A and B standing in the ‘‘If’’ and ‘‘then’’ parts of the rules are descriptors of

some pieces of knowledge about the domain (problem to be represented). The rule

itself expresses a certain relationship between these input and output variables

(descriptors). For instance, the rule ‘‘if the temperature is high then the electricity

demand is high’’ captures a piece of domain knowledge that is essential to some

specific planning activities exercised by an electric company. Notably, the rule of this

character is quite qualitative yet at the same time highly expressive. We are perhaps

not so much concerned about the detailed numeric quantification of the descriptors

standing in the rules; however, we appreciate the fact that the rule presents some

interesting and transparent relationship pertinent to the problem. We may note that

both the ‘‘If’’ and ‘‘then’’ parts are formed as information granules—conceptual

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
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entities that are semantically sound abstractions. The operational context within

which information granules are formalized and used afterward could be established

by considering one among the available formal frameworks, say sets, fuzzy sets,

rough sets, and others.

In practical cases, the domain knowledge is typically structured into a family of c

rules with each of them assuming the format

If input variable isAi then output isBi ð11:2Þ

i ¼ 1; 2; . . . ; c where Ai and Bi are information granules. The rules articulate a

collection of meaningful relationships existing among the variables of the problem.

Wemay envision more complex rules whose left-hand sides may include several

conditions. Such rules read as

If input variable1 isA and input variable2 isB and . . . and input variablen isW

then output isZ ð11:3Þ

with the multidimensional input space formed as a Cartesian product of the input

variables. Note that the individual conditions are aggregated together by the and

connective. From the system modeling standpoint, rules give rise to a highly

parallel, modular form of a granular model; an expansion of the model

usually requires an addition of some new rules while the existing ones are left intact.

11.2 GENERAL CATEGORIES OF FUZZY RULES
AND THEIR SEMANTICS

Typically, multi-input multi-output fuzzy rules come in the following form:

If X1 isA1 and X2 isA2 and . . . and Xn isAn

then Y1 isB1 and Y2 isB2 and . . . and Ym isBm

where Xi and Yj are viewed as variables whose values are fuzzy sets Ai and Bj such as

for example, high, medium, and low, defined in the corresponding spaces Xi and Yj,

i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ;m. The left-hand side of the rule is referred to as

antecedent and the right-hand side is known as consequent. In the simplest case,

n ¼ m ¼ 1. Quite commonly we encounter a case in which n ¼ 2 and m ¼ 1.

Although the rule can be easily generalized to higher values of n andm, it is sufficient

to discuss the computing details of the inference scheme. In this two-input single-

output case, the rules assume the following format:

If X isA and Y isB then Z isC

which could be treated as the generic one.

Rules may come in different formats depending upon the nature of the problem

and a character of domain knowledge being available. For instance, rules could be

uncertain, gradual, relational, and others.
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11.2.1 Certainty-Qualified Rules

Instead of allocating full confidence in the validity of the rules, we allow to treat them

as being satisfied (valid) at some level of confidence. The degree of uncertainty leads

to certainty-qualified expressions of the following form:

If X isAand Y isB then Z isCwith certaintym

where m 2 ½0; 1� denotes the degree of certainty of this rule. If m ¼ 1, we say that the

rule is certain.

11.2.2 Gradual Rules

Rules may also involve gradual relationships between objects, properties, or con-

cepts. For example, the rule

themore X isA; themore Y isB

expresses a relationship between changes in Y triggered by the changes in X. In these

rules, rather than expressing some association between antecedents and consequents,

we capture the tendency between the information granules; hence the term of

graduality occurring in the condition and conclusion part. For instance, the rules

of the form

the higher the values of condition; the higher the values of conclusion ð11:4Þ
or

the lower the values of condition; the higher the values of conclusion ð11:5Þ
represent the knowledge about the relationships between the changes of the condition

and conclusion. For instance, the graduality occurs in the rule ‘‘the higher the income,

the higher the taxes’’ or ‘‘typically the higher the horsepower, the higher the fuel

consumption.’’ Gradual rules are frequently encountered in commonsense reasoning.

11.2.3 Functional Fuzzy Rules

In this category of rules the consequent comes in the form of some function of the

input variables whose scope is narrowed down (focused) to the condition part of the

rule, that is,

If x isAi; then y ¼ fiðx; aiÞ ð11:6Þ
The function fi itself could be linear or nonlinear and applies only to

the inputs x 2 Rn. Being more descriptive, we may say that the scope of

this function is confined to the support of the information granule represented by Ai.

Let us highlight two general and essential observations that hold in spite of the

significant diversity of the formats of the rules themselves and their ensuing applica-

tions. First, the rules give rise to highly modular architectures and such an
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organization becomes crucial to the efficient realization of the mechanisms of model

formation, reasoning, and future maintenance and update. Second, rules are always

formulated in the language of information granules; hence they constitute an abstract

reflection of the problem or problem solving.

In rule-based models, rules could be used in a mixed-mode format. This means

that the collection of rules can include a combination of rules in which both

conditions and conclusions are represented in the form of fuzzy sets as well as rules.

This could be a reflection of the character of the available data. For instance, we

could have data of different levels of distribution, and this may easily lead to different

ways of system modeling.

In general, fuzzy rules can be classified into two broad categories: categorical

rules and dispositional rules. Categorical rules are statements with no quantification.

They do not contain any fuzzy quantifiers, fuzzy probabilities, or alike. Dispositional

expressions are rules with fuzzy quantifiers or probabilities. We say that they may be

preponderantly, but not necessarily always, true (Zadeh, 1989). Dispositional rules

will not be considered here, but details can be found in Pedrycz and Gomide (1998).

11.3 SYNTAX OF FUZZY RULES

A syntax of fuzzy rules can be summarized with the use of the BNF (Backus-Nauer

Form) notation, which offers a higher level of formalism and rigor. An example of the

syntax of the rules is shown below:

hif then rulei ::¼ ifhantecedentithenhconsequentifhcertaintyig
hgradual rulei ::¼ hwordihantecedentihwordi hconsequenti

hwordi ::¼ hmoreifhlessig
hantecedenti ::¼ hexpressioni
hconsequenti ::¼ hexpressioni
hexpressioni ::¼ hdisjunctionifandhdisjunctionig
hdisjunctioni ::¼ hvariableiforhvariableig
hvariablei ::¼ hattributei is hvaluei
hcertaintyi ::¼ hnoneifcertaintym 2 ½0; 1�g

Fuzzy rules can be regarded as fuzzy relations constructed with the values of the

fuzzy variables, and the fuzzy sets of rule antecedent and consequent. The member-

ship functions of the fuzzy relations depend on the operators chosen to combine the

fuzzy sets. In turn, the choice of the logic operators depends on the meaning of the

rules and the inference procedure under consideration.

The construction of computable (operational) representations of rule-based

systems involves the following steps:

1. specification of the fuzzy variables to be used in the rule;

2. association of the fuzzy variables with the use of fuzzy sets;
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3. computational formalization of each rule by means of the corresponding

fuzzy relation and development of aggregation mechanisms determining a

way in which individual rules are put together (Dubois and Prade, 1996).

11.4 BASIC FUNCTIONAL MODULES: RULE BASE,
DATABASE, AND INFERENCE SCHEME

A general architecture of a rule-based fuzzy model is shown in Figure 11.1. It is

composed of five generic modules: the input interface, rule base, database, fuzzy

inference, and output interface.

The input interface accepts inputs X defined in universe X and converts the

inputs into the format of some propositions that the fuzzy inference can use to

activate and process the fuzzy rules. In general, the input X is a fuzzy set on X, but in

certain application domains such as signal processing, system control, forecasting,

and diagnosis, it could be a single numeric entity. In other words, X is a single-

element set (singleton).

The rule base is composed of a set of fuzzy ‘‘if–then’’ rules describing an input–

output relationship being perceived at the level of information granules.

The database stores the values of the parameters of the rule-based model. These

parameters concern values of the scaling factors, detailed definitions of the universes

of the input and output variables, and details of the membership functions (including

their types and corresponding parameters). The values of these parameters are highly

problem dependent.

The fuzzy inference module processes the inputs using the rule base and

exploiting the mechanisms of fuzzy inference and approximate reasoning. Because

the inputs and rules are fuzzy expressions, fuzzy inference transforms the inputs

using fuzzy rules as a means to develop the outputs. Quite commonly, these

transformations are treated compositions of fuzzy sets and fuzzy relations.

The output interface translates the result of fuzzy inference into a suitable format

required by the application environment. Typically, the result of approximate reason-

ing is a certain fuzzy set. In some categories of applications, say, in control

engineering, we require a single numeric value of control. In this case, the result
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Figure 11.1 General architecture of fuzzy rule-based models outlining main modules of the system.
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of reasoning has to be transformed (decoded) into a number. The decoding mechan-

ism involved here is commonly referred to as defuzzification.

11.4.1 Input Interface

The generic component used to represent inputs are expressions of the following

form:

(attribute) of (input) is (value)

sometimes referred to as triples hattribute, object, valuei. For instance, the proposition

the temperature of the motor is high

states that the object under discussion is motor whose attribute (variable) is tem-

perature, which is high. The basic information units are atomic expressions whose

canonical form is

p : X isA ð11:7Þ
where X is a linguistic variable representing the pair attribute (input) and A is its

value, a fuzzy set on an universeX. For instance, the proposition shown above can be

written down as

temperature (motor) is high

where temperature (motor) is the variable X and high is its value quantified in the

form of the corresponding fuzzy set. Therefore, variables in fuzzy expressions are

viewed as linguistic variables whose linguistic values are fuzzy sets. Fuzzy sets

provide a computable representation of a proposition as illustrated in Figure 11.2.

Multiple fuzzy inputs can be handled analogously through forming an atomic

fuzzy expression for each input and then using conjunctions or disjunctions to form the

compound expression. The aggregations into the corresponding conjunctions and

disjunctions are realized with the use of t-norms and t-conorms, respectively. We have

p : X1 isA1 and X2 isA2 and . . . and Xn isAn conjunctive canonical form ð11:8Þ

q : X1 isA1 or X2 isA2 or . . . or Xn isAn disjunctive canonical form ð11:9Þ

where Ai is a fuzzy set defined in Xi, and Xi stands for linguistic variables,

i ¼ 1; 2; . . . ; n.

1.0
Low HighMedium

x

Figure 11.2 Representation of fuzzy proposition X is high.
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The compound proposition induces fuzzy relations P and Q on

X1 � X2 �    � Xn whose membership functions are given as

Pðx1; x2; . . . ; xnÞ ¼ A1ðx1ÞtA2ðx2Þt . . . tAnðxnÞ ¼ T
n

i¼1
AiðxiÞ ð11:10Þ

Qðx1; x2; . . . ; xnÞ ¼ A1ðx1ÞsA2ðx2Þs . . . sAnðxnÞ ¼ S
n

i¼1
AiðxiÞ ð11:11Þ

Figure 11.3 illustrates the case with n ¼ 2 when using triangular membership

functions A1ðx; 4; 5; 6Þ and A2ðy; 8; 10; 12Þ, and the algebraic product t-norm

(p ¼ ab) to build P, and the probabilistic sum (q ¼ aþ b� ab) to form Q,

Pðx; yÞ ¼ AðxÞ  BðyÞ; 8 ðx; yÞ 2 X� Y

Qðx; yÞ ¼ ½AðxÞ þ BðyÞ � AðxÞ  BðyÞ�; 8 ðx; yÞ 2 X� Y

The compound expressions (11.8) and (11.9) can be rewritten, using (11.10) and

(11.11), as follows:

p : ðX1;X2; . . . ;XnÞ isP
q : ðX1;X2; . . . ;XnÞ isQ

Figure 11.3 Fuzzy relations associated with propositions (a) (X, Y) is P and (c) is (X,Y) is Q t-norm:

product, t-conorm: probabilistic sum.
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Analogously, introducing a compound variable X ¼ ðX1;X2; . . . ;XnÞ and recalling

the multivariable nature of the membership functions of fuzzy relations P and Q,

expressions (11.8) and (11.9) take on the form equivalent to (11.7)

p : X isP ð11:12Þ
q : X isQ ð11:13Þ

11.4.2 Rule Base

Intuitively, expressions coming in the form of the rule ‘‘If X is A then Y is B’’ describe

some relationship between fuzzy variables X and Y. The semantics of this dependency

is formalized in terms of some fuzzy relation R. Here the membership function R(x,y)

represents the degree to which a pair ðx; yÞ 2 X� Y is compatible with the relation

zbetween the variables X and Y involved in the rule. Because A and B are fuzzy sets on

X and Y, the relation R onX�Y can be determined by an relational assignment of the

form

Rðx; yÞ ¼ f ðAðxÞ;BðyÞÞ 8 ðx; yÞ 2 X� Y

where f : ½0; 1�2 ! ½0; 1�:
In general, the fuzzy relation capturing the relationship between A and B can fall

under one of the three general categories such as

1. fuzzy conjunction

2. fuzzy disjunction

3. fuzzy implication

Fuzzy conjunction and implication are the twomodels being encountered most often.

Fuzzy conjunction, denoted here by ft, and fuzzy disjunction, fs, may be viewed as

two dual generalizations of the realization of some sort of Cartesian product of the

fuzzy sets via triangular norms and conorms. On the other hand, fuzzy implications,

denoted by fi, are generalizations of implications encountered in multiple-valued

logic.

Let us briefly discuss these three realizations.

11.4.2.1 Fuzzy Conjunction

A fuzzy conjunction ft : ½0; 1�2 ! ½0; 1� is treated as a function such that

ftðAðxÞ;BðyÞÞ ¼ AðxÞtBðyÞ; 8 ðx; yÞ 2 X� Y ð11:14Þ

In other words, the fuzzy rule formed in this way is a fuzzy relation Rt that induces a

constraint on the joint variable (X; Y) and comes in the form (X; Y) isRt. For example,

consider the following rule:

If X is A then Y is B:
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If we choose the minimum operation, then the membership function fc of the

corresponding fuzzy relation, denoted by Rc, is the fuzzy Cartesian product, namely,

Rcðx; yÞ ¼ fcðAðxÞ;BðyÞÞ ¼ min½AðxÞ;BðyÞ�; 8 ðx; yÞ 2 X� Y (Mamdani)

Typically, in the context of rule-based computing, we refer to this construct as a

Mamdani relation, or Mamdani, for short. Figure 11.4(a) shows the function fc and

Figure 11.4(c) an example of the relation Rc in the case when A and B are triangular

fuzzy sets.

Similarly, if we consider the realization of t-norm by means of the algebraic

product, then the membership function fp of the respective fuzzy relation Rp reads as

Rpðx; yÞ ¼ fpðAðxÞ;BðyÞÞ ¼ AðxÞ  BðyÞ; 8 ðx; yÞ 2 X� Y (Larsen)

The plot of this fuzzy relation is included in Figure 11.4(b) and (d), respectively.

The certainty-qualified rules coming in the form

If X is A then Y is B with certaintym

give rise to the conjunctive type of representation fe : ½0; 1�2 ! ½0; 1� such that

(Yager, 1984)

feðAðxÞ;BðyÞÞ ¼ ðftðAðxÞ;BðyÞÞtmÞ þ ð1� mÞ; 8 ðx; yÞ 2 X� Y

Figure 11.4 Fuzzy rule ‘‘If X is A then Y is B’’ interpreted as conjunction: the functions (a) fc and (b)

fp, and examples of the relations (c) Rc and (d) Rp induced by fc and fp, whereas A and B are triangular

fuzzy sets A(x, 4, 5, 6) and B(x, 4, 5, 6).
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In other words, the certainty-qualified rule is interpreted as a fuzzy relation Re scaled

by the certainty factor m, that is,

Reðx; yÞ ¼ ðftðAðxÞ;BðyÞÞtmÞ þ ð1� mÞ; 8 ðx; yÞ 2 X� Y

If m ¼ 1, then such certainty-qualified fuzzy rule becomes a conjunction as shown in

Figure 11.4. Otherwise, the membership function becomes scaled down by the value

of the certainty factor. Figure 11.5 shows an example of the rule.

11.4.2.2 Fuzzy Disjunction

A fuzzy disjunction is a function fs : ½0; 1�2 ! ½0; 1� such that

fsðAðxÞ;BðyÞÞ ¼ AðxÞsBðyÞ; 8 ðx; yÞ 2 X� Y ð11:15Þ
This fuzzy rule can also be viewed as a fuzzy relation Rs that induces a constraint on

the joint variable (X; Y) in the form (X; Y) is Rs. For instance, considering the same

rule as before

If X isA then Y isB

Figure 11.5 Fuzzy rule ‘‘If X is A then Y is B’’ with certainty factor: (a) with minimum fc and (b)

algebraic product fc conjunctions, considering the algebraic (c) product and (d) minimum t-norm,

respectively, to handle the certainty factor m ¼ 0:8 and triangular fuzzy sets.
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and selecting the maximum as the realization of the t-conorm, the relational assign-

ment leads to the fuzzy relation Rm of the following form:

Rmðx; yÞ ¼ fmðAðxÞ;BðyÞÞ ¼ max½AðxÞ;BðyÞ�; 8 ðx; yÞ 2 X� Y

An illustration of this fuzzy relation is shown in Figure 11.6.

Given the Lukasiewicz t-conorm, we obtain

R‘ðx; yÞ ¼ f‘ðAðxÞ;BðyÞÞ ¼ min½1;AðxÞ þ BðyÞ�; 8 ðx; yÞ 2 X� Y

See Figure 11.6.

11.4.2.3 Fuzzy Implication

A fuzzy implication is a function fi : ½0; 1�2 ! ½0; 1� with the following properties:

1. Bðy1Þ � Bðy2Þ ) fiðAðxÞ;Bðy1ÞÞ � fiðAðxÞ;Bðy2ÞÞ monotonicity

Figure 11.6 Fuzzy rule ‘‘If X is A then Y is B’’ interpreted as disjunction: function fm as (a) max and

(b) Lukasiewicz t-conorm and an example of the relations Rm induced by fm when A and B are triangular

fuzzy sets Aðx; 4; 5; 6Þ and Bðx; 4; 5; 6Þ using (c) max and (d) Lukasiewicz, respectively.

286 Chapter 11 Rule-Based Fuzzy Models



2. fið0;BðyÞÞ ¼ 1 dominance of falsity

3. fið1;BðyÞÞ ¼ BðyÞ neutrality of truth

In addition to the list shown above, two properties are usually added:

4. Aðx1Þ � Aðx2Þ ) fiðAðx1Þ;BðyÞÞ � fiðAðx2Þ;BðyÞÞ monotonicity

5. fiðAðx1Þ; fiðAðx2Þ;BðyÞÞ ¼ fiðAðx2Þ; fiðAðx1Þ;BðyÞÞ exchange

Further properties that can also be considered (Klir and Yuan, 1995) are as

follows:

6. fiðAðxÞ;AðxÞÞ ¼ 1 identity

7. fiðAðxÞ;BðyÞÞ ¼ 1 if and only if AðxÞ � BðyÞ boundary condition

8. fiðAðxÞ;BðyÞÞ ¼ fiðBðyÞ;AðxÞÞ contraposition

9. fi is a continuous function continuity

There are a number of possible realizations of implication operators. Several of the

commonly encountered models are summarized in Table 11.1. The corresponding

plots of the implications are contained in Figure 11.7.

Figure 11.7(a) provides a graphical visualization of the Lukasiewicz implication

f‘ and (c) provides an example of the relation R‘ generated by f‘ when A and B are

triangular fuzzy sets Aðx; 4; 5; 6Þ and Bðx; 4; 5; 6Þ.
Figure 11.7(b) illustrates the Klir–Yuan implication fk and (d) illustrates the

relation Rk generated by fk when A and B are triangular fuzzy sets Aðx; 4; 5; 6Þ and
Bðx; 4; 5; 6Þ.

Table 11.1 Examples of Implications.

Name Definition Comment

Lukasiewicz f‘ðAðxÞ;BðyÞÞ ¼ min½1; 1� AðxÞ þ BðyÞ�

Pseudo-Lukasiewicz flðAðxÞ;BðyÞÞ ¼ min 1;
1� AðxÞ þ ðlþ 1ÞBðyÞ

1þ lAðxÞ

� 

l > �1

Pseudo-Lukasiewicz fwðAðxÞ;BðyÞÞ ¼ min½1; ð1� AðxÞw þ BðyÞwÞ1=w� w > 0

Gaines faðAðxÞ;BðyÞÞ ¼
1; if AðxÞ � BðyÞ
0; otherwise

�

Gödel fgðAðxÞ;BðyÞÞ ¼ 1; if AðxÞ � BðyÞ
BðyÞ; otherwise

�

Goguen feðAðxÞ;BðyÞÞ ¼
1; if AðxÞ � BðyÞ

BðyÞ
AðxÞ; otherwise

8

<

:

Kleene fbðAðxÞ;BðyÞÞ ¼ max½1� AðxÞ;BðyÞ�
Reichenbach frðAðxÞ;BðyÞÞ ¼ 1� AðxÞ þ AðxÞBðyÞ
Zadeh fzðAðxÞ;BðyÞÞ ¼ max½1� AðxÞ;minðAðxÞ;BðyÞÞ�
Klir–Yuan fkðAðxÞ;BðyÞÞ ¼ 1� AðxÞ þ AðxÞ2BðyÞ
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It is worth noting that fuzzy implications can be arranged into two main

categories, namely, s-implications and r-implications. The class of s-implications

arises from the formalism of classical logic when an implication is defined in terms of

negation and disjunction, that is,

p) q � p _ q

In this category, the implications possesses properties (1)–(5) of fuzzy implications.

Formally, an s-implication is defined in the following way:

fisðAðxÞ;BðyÞÞ ¼ AðxÞ _ BðyÞ; 8 ðx; yÞ 2 X� Y

The Lukasiewicz, Kleeme, and Reichenbach implications are typical examples of

s-implications.

The class of r-implications originates from the formalism of intuitionistic logic

and is formed by taking a residuation of a continuous t-norm. Formally, an

r-implication reads as follows:

firðAðxÞ;BðyÞÞ ¼ sup½c 2 ½0; 1�jAðxÞtc � BðyÞ�; 8 ðx; yÞ 2 X� Y

One can verify that for these implications, the list of properties (11.1)–(11.7) holds.

Typical examples of implications coming from this category include Lukasiewicz,

Gödel, and Goguen implications.

Figure 11.7 Fuzzy rule ‘‘If X is A then Y is B’’ interpreted as implication.
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Gradual rules of the form

themore X is A; themore Y isB

or rules having a similar format that appear when ‘‘less’’ is substituted for one or

more occurrence of more are examples of rules closely related with implications.

Given fuzzy sets A and B, a gradual rule ‘‘the more X is A the more Y is B’’ translates

into the following constraint (Dubois and Prade, 1996, 1992):

BðyÞ � AðxÞ; 8 x 2 X and 8 y 2 Y ð11:16Þ

which defines a relation Rd between the variables x and y. The constraint expresses

the idea conveyed by the linguistic form of the rule: Whenever the degree

of membership of x in A increases, the degree of membership of y in B also

increases. The constraint (11.16) associates to each value of x 2 X a subset

BRd
¼ fy 2 YjBðyÞ � AðxÞg of values of y viewed as possible when x is given, refer

to Figure 11.8.

For instance, we can define the fuzzy relation Rd using the Gaines implication fa,

that is, Rd ¼ fa and

Rdðx; yÞ ¼ 1; if BðyÞ � AðxÞ
0; otherwise

�

A(x)

1.01.0

x y  

B(y)

BRd

Figure 11.8 Constraint associated with a gradual rule.

Figure 11.9 Gradual rule ‘‘the more X is A the more Y is B’’ as (a) Gaines implication and (b) Gaines

implication when A and B are triangular fuzzy sets Aðx; 3; 5; 7Þ and Bðy; 3; 5; 7Þ.
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The relation is illustrated in Figure 11.9. Other choices of implications can be made,

including Gödel (fg) and Goguen (fe).

11.4.3 Main Types of Rule Bases

A rule base is a collection of ‘‘If–then’’ rules encoding a description of how inputs of

the system are transformed to produce the corresponding outputs. A fundamental

question is about a way in which two or more rules of a rule base are to be combined

and how the rule base itself has to be interpreted. There are several alternative ways

of proceeding with the aggregation of the rules.

11.4.3.1 Fuzzy Graphs

This is the most common and frequently used interpretation and considers a fuzzy

rule of the form ‘‘If X is A then Y is B’’ as a single information granule. In this setting,

let us emphasize that fuzzy granules are generalizations of points and can be treated

as fuzzy points. To underline this effect, recall that a point P in X�Y is the set

P ¼ fðx; yÞjx 2 A; y 2 Bg, that is, P is the Cartesian product of the degenerated, one-

element sets A ¼ fxg and B ¼ fyg (Fig. 11.10).
If now A is an interval onX and B an interval onY, then an information granuleG

on X� Y comes as the set G ¼ fðx; yÞjx 2 A; y 2 Bg. Figure 11.11 shows an

example of granule G where A ¼ fx 2 R; 3 � x � 6g and B ¼ fy 2 R; 4 � x � 6g.
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Figure 11.10 A point P in X�Y as a Cartesian product of two degenerated sets A and B.
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Figure 11.11 An information granule G in X�Y for A and B represented as two numeric intervals.
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Figure 11.12 A fuzzy granule R in X�Y coming as the Cartesian product of two triangular fuzzy

sets A and B.
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In the sequel, a fuzzy granule, alternatively, fuzzy point, R is the fuzzy set

R ¼ AtB, where A and B are normal, convex fuzzy sets inX andY, respectively. If the

t-norm is the minimum, then the fuzzy granule is the Cartesian product of A and B.

See Figure 11.12 for an illustrative example.

For a rule base formed by a collection of fuzzy rules

If X isAi then Y isBi

where i ¼ 1; . . . ;N; these N fuzzy rules correspond to N fuzzy granules as illustrated

in Figure 11.13. Here N ¼ 5 while the fuzzy sets are described by triangular fuzzy

sets Ai and Bi. The t-norm is implemented as the minimum operation. Each rule is

implemented as a fuzzy granule (the Cartesian product of triangular fuzzy sets Ai and

Bi), namely, Ri ¼ Ai � Bi, or in terms of the following membership function:

Riðx; yÞ ¼ min½AiðxÞ;BiðyÞ�; 8 x 2 X and 8 y 2 Y

The rule base is interpreted as a fuzzy graph, that is, an approximate description

of the relationship between X and Y. As a whole, it results in a union of the fuzzy

rules. This underlines an observation that the rule base becomes a fuzzy graph in

the same manner as the set f ¼ fðx; yÞ; y ¼ f ðxÞ; x 2 X; y 2 Yg is the graph of the
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Figure 11.13 Rule base as a set of fuzzy granules.
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function f and can be viewed as the union of degenerated sets (singletons) (x; y) in
X� Y such that y ¼ f ðxÞ, refer to Figure 11.14(a). As an immediate general-

ization of this concept, a fuzzy graph R of a functional dependency f : X! Y

between the fuzzy variables X and Y is defined (Zadeh, 1994) as an approximate,

granular representation of f:

R ¼
[

N

i¼1
Ri ¼

[

N

i¼1
ðAi � BiÞ

Figure 11.14 (b) shows an example of such a granular approximation of a function

shown in (a), whose fuzzy graph is composed by the union of N ¼ 8 fuzzy granules,

each of which is defined by the Cartesian product of the triangular fuzzy sets.

Overall, a collection of rules ‘‘If X is Ai then Y is Bi’’ can be aggregated to form a

fuzzy rule base using operations such as fuzzy unions, or fuzzy disjunctions of the

fuzzy granules (fuzzy relations Ri ) associated with each rule. The result of the

aggregation of Ris, where i ¼ 1; . . . ;N, is a global fuzzy relation R.

R ¼ R1 or R2 or . . .RN

Given the fuzzy disjunction (which is realized by any t-conorms), we rewrite the

above expression for the fuzzy graph as follows:

Rðx; yÞ ¼ S
N

i¼1
½AiðxÞtBiðyÞ�; 8 ðx; yÞ 2 X� Y

Figure 11.14 illustrates the underlying concept of the granular representation of

input–output relationships. Furthermore, Figure 11.15 shows some typical examples

of fuzzy rule bases of N ¼ 5 fuzzy rules with triangular membership functions in

their antecedents and consequents.

11.4.3.2 Fuzzy Implication Rule Bases

In contrast to fuzzy graphs, which use conjunction as a form of knowledge accumu-

lation, the implication-based models of fuzzy rules and fuzzy rule bases view rules as
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Figure 11.14 Graph of a function f as its granular approximation R.
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a constraint that restricts a set of possible solutions. In this case, rule combination is

an aggregation acting as a refinement mechanism to enhance the precision via

completing a conjunction of the individual rules.

As before, consider the rules of the form

If X isAi then Y isBi;with i ¼ 1; 2; . . . ;N

where now each rule is represented as some fuzzy relation Ri whose membership

function is constructed using a fuzzy implication. For instance, Figure 11.16 shows

an example of triangular fuzzy sets in rule antecedent and consequent where we use

the Lukasiewicz implication to construct Ri, that is, Riðx; yÞ ¼ f‘ðAiðxÞ;BiðyÞÞ.
The result of aggregating the relations Ri; i ¼ 1; ::;N, rules is a overall fuzzy

relation R

R ¼ R1 and R2 and . . .RN

Figure 11.15 Rule base and the resulting fuzzy graphs: (a) and (b) use the minimum t-norm while (c)

and (d) the algebraic product t-norm. (a), (b), (c), and (d) use the maximum t-conorm as a or.
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in which the aggregation is carried out in the form of some conjunction and therefore

implemented trough some t-norm,

Rðx; yÞ ¼ T
N

i¼1
½ fiðAiðxÞ;BiðyÞ�; 8 ðx; yÞ 2 X� Y

Figures 11.17 and 11.18 illustrate typical examples of fuzzy rule bases composed by

N ¼ 5 fuzzy rules with triangular membership functions in their antecedents and

consequents. Figures 11.17 and 11.18(a,b) adopt the minimum t-norm aggregation

while Figures 11.17 and 11.18(c,d) use the Lukasiewicz t-norm aggregation.
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Figure 11.16 A fuzzy rule formed with the use of Lukasiewicz implication.

Figure 11.17 A fuzzy rule base resulting from the use of the Lukasiewicz implication.
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Figure 11.17 (Continued)

Figure 11.18 A fuzzy rule base as Zadeh implication.
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Figure 11.17 illustrates the Lukasiewicz implication rule base and Figure 11.18 shows

the Zadeh implication rule base. As both the figures clearly indicate, the choice of the

implication and aggregation operations leads to quite distinct form of relationships.

The diversity available in this manner becomes essential when designing and devel-

oping applications in areas such as system diagnosis, control, and pattern recognition.

Notice that in Figure 11.17(a,b) the overall fuzzy relation R is R ¼
T

5

i¼1
Ri. It uses

the Lukasiewicz implication and the minimum t-norm aggregation. Thus, the mem-

bership function of R is

Rðx; yÞ ¼ maxf0;
X

5

i¼1
min½1; 1� AiðxÞ þ BiðyÞ� � 4g; 8ðx; yÞ 2 X� Y

If aggregation is performed using the Lukasiewicz t-norm instead of minimum

t-norm (Fig. 11.17(c,d)), the membership of R becomes

Rðx; yÞ ¼ maxf0;
X

5

i¼1
min½1; 1� AiðxÞ þ BiðyÞ� � 4g; 8ðx; yÞ 2 X� Y

Similarly, as illustrated in Figure 11.18, the membership functions of fuzzy relation R

using the case of Zadeh implication and the minimum and Lukasiewicz t-norms as

aggregations are, respectively,

Rðx; yÞ ¼ minfmax½1� AðxÞ;minðAiðxÞ;BiðyÞÞ�; i ¼ 1; 2;    ; 5g; 8 ðx; yÞ 2 X� Y

and

Rðx; yÞ ¼ maxf0;
X

5

i¼1
max½1� AiðxÞ;minðAiðxÞ;BiðyÞÞ� � 4g; 8 ðx; yÞ 2 X� Y

11.4.4 Data Base

The database contains definitions of the universes, description of scaling functions of

the input and output variables, granulation of the universes, and membership func-

tions of the fuzzy sets assigned to each linguistic value of linguistic variables, that is,

the term sets. Granulation of the input and output universes determines how many

terms should exist in a term set. This is equivalent to definition the primary fuzzy sets.

There are two basic schemes to granulate a given universe X. The first explores

the view of fuzzy expressions as granular constructs in the form of fuzzy points, refer

to Figure 11.19(a). The second one assumes granules uniquely specified along

(a) (b)

X X

Figure 11.19 Examples of granulation of input and output universes.
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different regions of the universe, refer to Figure 11.19 (b). These schemes are based

on an assumption that the input variables are independent, which is useful and

pragmatic in many practical situations. If this assumption does not hold due to the

presence of correlated variables, then partitions incorporating the interactions must be

pursued such as product space clustering (Setnes, 1998) and relational antecedents

(Gaweda and Zurada, 2003).

There are basically two mechanisms to construct membership functions,

namely, expert knowledge and learning from experimental data (we discuss these

approaches later in Section 11.7).

11.4.5 Fuzzy Inference

The fundamental concept that supports fuzzy inference concerns a way of carrying

out composition of fuzzy sets and fuzzy relations. A way of completing this

composition is commonly referred to as a compositional rule of inference. In a

nutshell, it is about a generalization of a well-known mapping problem: Given a

function y ¼ f ðxÞ and a certain value of its argument, say x ¼ a, determine the

corresponding value of y, that is, y ¼ f ðaÞð¼bÞ. Schematically, we can describe

the situation as follows:

x ¼ a

y ¼ f ðxÞ
y ¼ b

as illustrated in Figure 11.20(a). The procedure to find the value of y comprises the

following steps:

1. Draw a vertical line ac in the Cartesian product of space X� Y, such that

x ¼ a. Formally this construct is the same as the cylindrical extension ac of a

set that is a single point x with base a.

2. Find the intersection point I between the cylindrical extension ac and the

graph of the function. Notice that both, the graph of the function and the

cylindrical extension, are subsets of the same universe, that is, X� Y.
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Figure 11.20 Computing function values with operations on sets.
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3. Draw a horizontal line crossing I. Formally, this is the same as to project the

intersection I, which comes as the corresponding point in Y.

Now, if instead of a single point we consider set A 	 X, for example, an interval

A ¼ ½a; b�, the steps 1–3 can be repeated for each point x 2 ½a; b�. By assembling

the results, we form a set B ¼ f ðAÞ ¼ ff ðxÞ; x 2 Ag as depicted in Figure 11.20(b).

Here Ac is the cylindrical extension of A, and I is a set being the intersection of the

graph of f and Ac.

Moving one step further, given that x is now A and instead of a function with

graph f, we have a relation R 	 X� Y, we can compute the set B 	 Y following the

same procedure as before. Figure 11.21 illustrates the underlying concept. As we

soon realize, B is the result of the composition of Awith the relation R.

In the most general case, we treat A as a fuzzy set in X and view R to be a fuzzy

relation onX�Y. The problem of determining the fuzzy set B inY can be expressed

in the form

x isA

ðx; yÞ isR
y isB

Now the set operations are replaced by their fuzzy set counterparts. Thus, if

cylindrical extension, intersection, and projection are understood as constructs of

fuzzy sets, fuzzy inference follows the same sequence of steps as in the previous

cases, refer to Figure 11.21(b).

Fuzzy set B is determined by projecting I ¼ Ac \ R onto Y:

B ¼ ProjYðAc \ RÞ
Because intersection is realized by some t-norm while projection uses the supremum

operation, the membership function of B reads as

BðyÞ ¼ sup
x2X
fAcðx; yÞtRðx; yÞg
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Figure 11.21 Composition of sets with relations.

11.4 Basic Functional Modules: Rule Base, Database, and Inference Scheme 299



and recalling that, by definition, Acðx; yÞ ¼ AðxÞ we get

BðyÞ ¼ sup
x2X
fAðxÞtRðx; yÞg

Summarizing, fuzzy set B results from the sup-t composition of fuzzy set A and fuzzy

relation R

B ¼ A � R

The general scheme of fuzzy inference becomes

X isA

ðX; YÞ isR
Y isA � R

The procedure of fuzzy inference is summarized as follows:

procedure FUZZY-INFERENCE (A;R) returns a fuzzy set

input: fuzzy relation: R

fuzzy set: A

local: ðx; yÞ: elements of X and Y

t: t-norm

for all x and y do

Acðx; yÞ  AðxÞ
for all x and y do

Iðx; yÞ  Acðx; yÞtRðx; yÞ
BðyÞ  supxIðx; yÞ

return B

Figure 11.22 illustrates successive steps to perform fuzzy inference using the sup–

min composition. The fuzzy relation R has a Gaussian membership function slices

with unity dispersion and modal values positioned along the function

y ¼ f ðxÞ ¼ k

x
þ c ð11:17Þ

where k ¼ 15 and c ¼ 2. The input is a triangular fuzzy set Aðx; 3; 4; 5Þ. The fuzzy
relation R is the same as the one whose contour plot is given in Figure 11.21(b).

The fuzzy inference of Figure 11.21 is the compositional rule of inference

introduced by Zadeh (1975, 1988). The fuzzy inference procedure is general and

can naturally handle the case in which the fuzzy rule base is a set of parallel rules,

each of which is a granule. This is the case when the fuzzy rule base is a granular

approximation of a function. For instance, Figure 11.23 shows an example of a rule
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base composed by eight fuzzy if–then rules viewed as the Cartesian product of

triangular fuzzy sets whose contour is the same as in Figure 11.14(b). The fuzzy

graph of Figure 11.14(b) is a granular approximation of the function depicted in

Figure 11.14(a), which is the same as in (11.17), except that k ¼ 12 and c ¼ 1. Notice

that, looking at the modal value of the input fuzzy set Aðx; 3; 4; 5Þ, the corresponding

Figure 11.22 Main phases of fuzzy compositional inference.
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inferred fuzzy set B achieves its highest membership value at y � 4. Observe that Ac

intersects with R3, R4, and R5 (from up down in Fig. 11.23(b); also see Fig. 11.14)

only and, because of this fact, we say that rules R3, R4, and R5 are active and that the

remaining rules are inactive. Here active and inactive means which rules of the rule

base contribute to produce an output for a given input.

In addition to the compositional realization of fuzzy inference, there are more

abstract, yet formal and more general treatment of fuzzy if–then rules through logical

manipulation, namely, multiple-valued first-order logic, perception-based deduction,

and logical structures derived from fuzzy-type theory (Novak and Lehmke, 2006).

11.5 TYPES OF RULE-BASED SYSTEMS
AND ARCHITECTURES

Fuzzy rule-based computing is prompted by rule semantics and the compositional

rule of inference. The previous section provided the general framework to design and

develop fuzzy rule-based models. However, computations can be greatly simplified if

Figure 11.23 Fuzzy inference with a rule base as a fuzzy graph.
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certain assumptions concerning rule base form, rule semantics, rules aggregation

operator, and the t-norm operator of the compositional rule of inference are made.

From the system modeling standpoint, we shall emphasize parallel rules once

they produce systems that are highly modular forms of granular models; an expan-

sion or contraction of the model usually requires addition or subtraction of rules

while the remaining rules are left intact or adapted to the context, with no need to

modify fuzzy inference. This modular character also has high impact on evolving and

adaptive fuzzy models and systems.

Looking at the conceptual point of view, we highlight granular, fuzzy graph

representation of fuzzy rule-based models because they intuitively provide gran-

ular approximations of functions. Most fuzzy system design issues concern the

development of appropriate decision functions. Models of physical systems are

functions, and fuzzy control strategies are functions, as are many forms of

classifiers and diagnostic systems.

From the practical viewpoint, we identify threemajor classes of fuzzy rule-based

system architectures depending on if the fuzzy rules involve fuzzy sets in both

antecedent and consequent, but with a rule combination strategy that involves either

the union or the sum of the contributions of the active rules. Rules may also have

fuzzy sets in the antecedent, but functions of the antecedent base variables in the

consequent instead of fuzzy sets. Rules may also involve gradual relationships

among antecedent and consequent variables. Thus, we identify three main classes

of models: linguistic, functional, and gradual models.

11.5.1 Linguistic Fuzzy Models

A fuzzy rule-based system is a system whose rule base is made up of a set of fuzzy

rules of the form

Ri : If X1 isAi and Y isBi then Z isCi i ¼ 1; 2; . . . ;N

where X; Y , and Z are linguistic variables with base variables x, y, and z, and Ai, Bi,

and Ci are fuzzy sets on X, Y, and Z. This is the most prevalent form of linguistic

fuzzy model because it linguistically describes, conceptually speaking, behavior, and

formally speaking, approximation of functions. However, the operation of the model

depends on design choices, namely, the t-norm to aggregate the atomic expressions

of rule antecedents X is Ai and Y is Bi, the choice of the fuzzy conjunction to express

the meaning of the ‘‘If–then’’ relation between the aggregated antecedent and the

consequent, and the s-norm used to aggregate the rules into a global rule base. There

are several options, but often rule antecedent aggregation is done via minimum or

algebraic product t-norms, ‘‘If–then rules’’ defined as Cartesian products using either

the minimum or the algebraic product t-norms, and the maximum s-norm to perform

aggregation of rules. The most frequent compositions are the sup–min and sup–

product composition. In what follows, we develop one of the most important

linguistic models, the one in which rule antecedent aggregation and meaning is
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taken as the min t-norm and inference via sup–min composition. The general

inference pattern is

P: X is A and Y is Ba input expression

R1: if X is A1 and Y is B1 then Z is C1

R2: if X is A2 and Y is B2 then Z is C2

Ri: if X is Ai and Y is Bi then Z is Ci rule base

RN: if X is AN and Y is BN then Z is CN

Z: Z is C inferred expression

The purpose is to determine the fuzzy set C of the inferred expression ‘‘Z isC,’’ given

an input expression and the fuzzy rule base. Therefore, the task is to determine the

fuzzy set C, namely, the membership function of C, given the input and fuzzy rule

base.

11.5.1.1 Min-Max Models

This type of fuzzy rule-based models assumes the following pattern:

P : Pðx; yÞ ¼ minfAðxÞ;BðyÞg
Ri : Riðx; y; zÞ ¼ minfAiðxÞ;BiðyÞ;CiðzÞg; i ¼ 1; . . . ;N

Z : C ¼ P �
[

N

i¼1
Ri ð11:17Þ

In terms of the corresponding membership function, the fuzzy setC is, using standard

union

CðzÞ ¼ sup
x;y
fmin½Pðx; yÞ;maxðRiðx; y; zÞ; i ¼ 1; ::;N�g ð11:18Þ

Let us adopt, for short, the alternative notation _ for max and ^ for min operation.

Thus, because the max and min operations are mutually distributive, (11.17) can be

rewritten as

CðzÞ ¼ sup
x;y
fðPðx; yÞ ^ ½R1ðx; y; zÞ _    _ RNðx; y; zÞ�g

¼ sup
x;y
f½Pðx; yÞ ^ R1ðx; y; zÞ� _    _ ½Pðx; yÞ ^ RNðx; y; zÞ�g

¼ maxfsup
x;y
½Pðx; yÞ ^ R1ðx; y; zÞ�;    ; sup

x;y
½Pðx; yÞ ^ RNðx; y; zÞ�g

ð11:19Þ

If we assume

C
0

iðzÞ ¼ sup
x;y
½Pðx; yÞ ^ Riðx; y; zÞ� ð11:20Þ

that is, C
0
i ¼ P � Ri, then (11.19) can be expressed symbolically by

CðzÞ ¼
[

N

i¼1
ðP � RiÞ ¼

[

N

i¼1
C
0

i ð11:21Þ
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and, from (11.17) and (11.21) we have

CðzÞ ¼ P �
[

N

i¼1
Ri ¼

[

N

i¼1
ðP � RiÞ ¼

[

N

i¼1
C
0

i ð11:22Þ

Equality (11.22) shows that the sup–min composition and standard union commute.

Computationally this means that instead of combining all the rules using the max

aggregation operator and next produce a corresponding relation R and proceed with

fuzzy inference via sup–min composition, we can first infer the individual fuzzy

set due to each rule using sup–min composition and finally produce the desired

result combining the individual fuzzy sets via standard union, the max aggregation.

This shows that rules can be processed in parallel and if done in hardware, the

processing time does not depend upon the number of rules being used in the rule-

based model.

It is important to stress that (11.22) holds not only for sup–min composition and

max aggregation but also for sup–product composition and, in general case, for any

sup-t composition with a continuous t-norm as long as the max aggregation is used.

In the case of sup–min composition, because

sup
x;y
½Pðx; yÞ ^ Riðx; y; zÞ� ¼ sup

x;y
½AðxÞ ^ BðyÞ ^ AiðxÞ ^ BiðyÞ ^ CiðzÞ� ð11:23Þ

we have

sup
x;y
½Pðx; yÞ ^ Riðx; y; zÞ� ¼ sup

x;y
½ðAðxÞ ^ AiðxÞÞ ^ ðBðyÞ ^ BiðyÞÞ ^ CiðzÞ�

and because the supremum is taken with respect to x and y, we can write

sup
x;y
½Pðx; yÞ ^ Riðx; y; zÞ� ¼ sup

x

½AðxÞ ^ AiðxÞ� ^ sup
y

½ðBðyÞ ^ BiðyÞ� ^ CiðzÞ

which means that

sup
x

½AðxÞ ^ AiðxÞ� ^ sup
y

½ðBðyÞ ^ BiðyÞ� ^ CiðzÞ ¼ PossðA;AiÞ ^ PossðB;BiÞ ^ CiðzÞ

If we assume that Poss(A;AiÞ ¼ mi and Poss(B;BiÞ ¼ ni, then (11.23) becomes

sup
x;y
½AðxÞ ^ BðyÞ ^ Riðx; y; zÞ� ¼ mi ^ ni ^ CiðzÞ ð11:24Þ
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Figure 11.24 Min–max fuzzy model processing.
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and replacing the corresponding terms in (11.19) by (11.24) we get

CðzÞ ¼ maxf½m1 ^ n1 ^ C1ðzÞ�; ½m2 ^ n2 ^ C2ðzÞ�;    ; ½mN ^ nN ^ CNðzÞ�g
ð11:25Þ

The value li ¼ ðmi ^ niÞ is called the degree of activation or firing level of rule Ri. As

(11.25) indicates, if li ¼ 0, then rule Ri does not contribute to infer fuzzy set C

because its corresponding portion li ^ Ci ¼ 0. Figure 11.24 illustrates (11.25) con-

sidering two rules, Ri and Rj.

The developments made so far suggest that linguistic fuzzy models whose

rule base are composed by parallel rules are intrinsically modular and can be

implemented by a four-layer architecture depicted in Figure 11.25. At the first level,

we perform pattern matching computing the possibility measure of the input A and B

determined with respect to Ai and Bi. In the sequel, the degree of activation is

computed and next the membership functions of the consequent of the active rules

are clipped. In the last step, the partial results of inference are aggregated by the

standard union operation to produce the fuzzy set C.

For finite universes, the systematization of the processing steps is as follows:

procedure MIN–MAX-MODEL (A,B) returns a fuzzy set

local: fuzzy sets: Ai, Bi, Ci, i ¼ 1; ::;N
activation degrees: li

Initialization C ¼ ?

for i ¼ 1 : N do

mi ¼ max ðminðA;AiÞÞ
ni ¼ max(min (B;Bi))

li ¼ min(mi; ni)
if li 6¼ 0 then C

0
i ¼ minðli;Ci) and C ¼ maxðC;C0iÞ

return C

Poss l 1 Min

Max

A1,B1 C1

Poss l i Min

A i,Bi Ci

Poss l N Min

AN,BN CN

C
(A,B)

Ci
¢

CN
¢

C1
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Figure 11.25 Min–max fuzzy linguistic model.
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Let us analyze some essential properties of processing of the inference scheme

(11.18)–(11.25).

(a) Boundary conditions: If A ¼ B ¼ ? , then the result of inference is also an

empty fuzzy set, C ¼ ? . If A ¼ X and B ¼ Y (which models a situation of

unknown—We know nothing about the input), then the result is a fuzzy set

being a union of all Cis;C ¼ [
N

i¼1
Ci. This reflects the fact that we ‘‘activate’’

all rules and the result could be any Ci, and in this sense their union is quite

reflective of this effect of nonspecificity of the input datum.

(b) Recall properties: Consider that A ¼ Ai and B ¼ Bi. In virtue of the max–

min composition (11.25) we rewrite this expression as

CðzÞ ¼ maxi¼1;2;...;N ½minðli;CiðzÞÞ� ¼ maxfmaxj 6¼iðminðlj;CjðuÞÞ;CiðzÞ�
¼ maxðmiðuÞ;CiðzÞÞ � CiðzÞ

by distinguishing between the membership function which comes from the

ith rule and the membership function which comes from all other fuzzy

sets. Because there is an overlap between fuzzy sets of conditions in the indi-

vidual rules, the possibility values assume nonzero values and this contributes

to an effect of crosstalk in which the results of inference subsumes the origi-

nal fuzzy set Ci;C 
 Ci.

When inputs A ¼ xo and B ¼ yo are points, or equivalently, sets with member-

ship functions

AðxÞ ¼ 1; if x ¼ xo
0; otherwise

�

and BðxÞ ¼ 1; if y ¼ yo
0; otherwise

�

then the computation of the possibility measures in the first step becomemuch simpler

because in this casemi ¼ AiðxoÞ and ni ¼ BiðxoÞ. Systemswith numeric inputs usually

require numeric outputs. In this case the output interface must provide a point of the

universe representative of the fuzzy set inferred. Linguistic fuzzymodels with numeric

input and output defuzzification produce in general, nonlinear input–output mappings.
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Figure 11.26 Input–output mapping of a fuzzy min–max model.
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Away to find the representative point is to use centroid defuzzification

z ¼
Ð

Z
zCðzÞdz

Ð

Z
CðzÞdz ð11:26Þ

An alternative and somewhat simplified way is to take a weighted average of the

modal values of the fuzzy sets of the rule consequents. Let vi be the modal value of

Ci. The numeric value z produced by an input x0 is determined as

z ¼

P

N

i¼1
ðmi ^ niÞvi

P

N

i¼1
ðmi ^ niÞ

ð11:27Þ

where mi ¼ Aiðx0Þ and ni ¼ Biðx0Þ. Figure 11.26 shows a simple two-input and

single-output example. The membership functions and respective universes of the

input and output variables are also depicted. It may be convenient to express the rule

base in a table form to quickly visualize the meaning associated with each rule and to

summarize the rule base itself. The table format also helps communication and

design verification of fuzzy rule-based models. In the example the rule base is shown

in Table 11.2

The main steps of the min-max are as follows:

Step 1: Antecedent matching: For each rule, compute the degree of

matching between each atomic expression of the rule antecedent

and the corresponding atomic expression of the input.

Step 2: Antecedent aggregation: For each rule, compute the rule activa-

tion degree by conjunctively or disjunctively operating on the

corresponding degrees of matching depending on whether the

atomic expressions of the rule antecedent are conjunctively or

disjunctively related, respectively.

Step 3: Rule result derivation: For each rule, compute the corresponding

inferred value based on its antecedent aggregation and the rule

semantics chosen.

Step 4: Rule aggregation: Compute the inferred value from the complete

set of rules by aggregating the result of the inferred values derived

from individual rules.

As we shall see next, the general steps summarized above suggest different forms of

fuzzy rule-based models, depending on the choices made when selecting triangular

norms and rule semantics. However, we must note that, although compositional rule

Table 11.2 Example of Fuzzy Rule Base.

Y X A1 A2

B1 C1

B2 C2
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of inference with maximum rule aggregation clearly is an instance of the general

approach, many fuzzy rule-based models constructed upon the four steps do not

necessarily derive from the compositional rule of inference and, because of this, they

are named scaled inference (Driankov et al., 1993) to differentiate from composi-

tional inference. Formally, scaled inference models can be viewed as a generalization

of the concept of production systems as modular knowledge processing structures

(Russell and Norvig, 2003) because their semantics essentially is procedural in

nature (Lucas and Gaag, 1991).

11.5.1.2 Min–Sum Models

Min–sum fuzzy models infer contribution of each fuzzy rule in the same way as

(11.20), repeated below

C
0

iðzÞ ¼ sup
x;y
½Pðx; yÞ ^ Riðx; y; zÞ� ¼ sup

x;y
½AðxÞ ^ BðyÞ ^ AiðxÞ ^ BiðyÞ ^ CiðzÞ�

However, different from the usual requirement of using fuzzy aggregation operation

such as the max s-norm, rules are aggregated using the sum of the inferred member-

ship functions and, strictly speaking, they do not follow the composition rule of

inference. In min-sum models, the consequent fuzzy sets that inputs activate are

added

CðzÞ ¼
X

N

i¼1
C
0

i ð11:28Þ

as shown in Figure 11.27. These type of models are called fuzzy additive systems

(Kosko, 1992). Because the sum in (11.28) may not add up to 1 we can, in principle,

normalize the sum of consequent fuzzy sets without affecting the structure of the

additive model while keeping the model closer to composition. Strictly speaking,

fuzzy additive rule-based systems use scaled inference. When input is numeric and

output is also required to be numeric, normalization is not necessary if the centroid

defuzzification (11.26) is used because the information in the inferred membership

function C resides largely in the relative values of the membership degrees.

In general, additive fuzzy models encode and process parallel rules and the

inferred fuzzy set C can be the weighted sum of the contribution of each individual

rule C
0
i; i ¼ 1; ::;N, that is,

CðzÞ ¼
X

N

i¼1
wiC

0

i ð11:29Þ

A i A j B i B jA B

mi

mj

ni

nj

C i C j
11 1

nj

mi
Ci

¢ Cj
¢

yx  z 

∑ Ci
¢

Figure 11.27 Fuzzy additive model processing.
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where weights wi reflect the relevance of the rule Ri. In additive fuzzy models we

may change the values of weights wi, and this ability contributes to the flexibility

of these models. An illustration of the underlying architecture of the model is

shown in Figure 11.28.

If the inputs are numeric, that is, A ¼ fx0g and B ¼ fy0g , then mi ¼ Aiðx0Þ and
ni ¼ Biðx0Þ and (11.29) reads as follows:

CðzÞ ¼
X

N

i¼1
wiðli ^ CiÞ

where li ¼ minðmi; niÞ. Figure 11.29 depicts the input–output function of the same

fuzzy rule base in Table 11.1 with centroid defuzzification. We notice in

Figure 11.29(b) that additive models produce smoother input–output characteris-

tics (surfaces) than max–min models.

Poss l 1 Min

∑ 

A1,B1 C1

Poss l i Min

Ai,Bi Ci

Poss l N Min

AN,BN CN

C
(A,B)

wi

w1

wN

CN¢

C1¢

Ci¢

Figure 11.28 Architecture of additive fuzzy models.
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Figure 11.29 Input–output mapping of an additive fuzzy model.
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Notice that the systematization of the processing steps of additive models

follows the same scheme as min–max models, except the aggregation step in which

the sum replaces the max operation that turns additive fuzzy models into a form of

scaled fuzzy inference.

11.5.1.3 Product–Sum Models

As discussed above, a broad family of fuzzy rule-based models can be developed if

we use scaled inference with different t-norms to aggregate the fuzzy sets of rule

antecedents, different rule semantics, and algebraic sum or distinct s-norms to

aggregate the fuzzy sets inferred by each fuzzy rule. In what follows, we give

examples of fuzzy rule-based models originating from scaled inference. We

emphasize models that have been shown to be useful in practice (Mizumoto,

1994). For illustration purposes, we consider numeric inputs and centroid output

defuzzification (11.26).

1. Product-probabilistic sum

C
0

iðzÞ ¼ miniCiðzÞ

CðzÞ ¼ Sp
N

i¼1
C
0

iðzÞ

where the s-norm is the probabilistic sum, namely, aspb ¼ aþ b� ab; a;
b 2 ½0; 1�.

2. Bounded product-bounded sum

C
0

iðzÞ ¼ mi � ni � CiðzÞ

CðzÞ ¼ �
N

i¼1
C
0

iðzÞ

where � is a t-norm, and � is its dual s-norm, such as the bounded product

(Lukasiewicz t-norm) a� b ¼ maxf0; aþ b� 1g and the bounded sum

(Lukasiewicz s-norm) a� b ¼ minf1; xþ yg; a; b 2 ½0; 1�.
3. Product- sum

C
0

iðzÞ ¼ miniCiðzÞ

CðzÞ ¼
X

N

i¼1
C
0

iðzÞ

Figure 11.30 shows the input–output behavior of the fuzzy rule-based models

addressed above.

Except for the bounded product-bounded sum model, the product-probabilistic

sum and product-sum show smooth and similar behavior as fuzzy additive models,

but both are distinct from the min–max model.

11.5 Types of Rule-Based Systems and Architectures 311



11.5.2 Functional (Local) Fuzzy Models

Fuzzy functional models have rule bases composed by fuzzy rules whose consequent

are functions of the antecedent variables (Takagi and Sugeno, 1985). The rules have

the form

Ri : if X isAi and Y isBi then z ¼ fiðx; yÞ; i ¼ 1; 2; . . . ;N

where X and Y are linguistic variables with values Ai and Bi, and fuzzy sets on

X and Y with base variables x and y, respectively. Function fiðx; yÞ is any function of
the antecedent variables that appropriately describes the model output in the region

specified by the fuzzy Cartesian product of the antecedent fuzzy sets. Typical

examples are polynomials and in this case, the order of the polynomial names the

model. For example, when the consequent is a real number, the consequent function

is a zero-order polynomial and the functional model is a zero-order functional model.

In this particular case, the functional model becomes the same as a linguistic model

because the consequent is a real number. If the consequent function is a linear or

quadratic polynomial, then we have first- or second-order functional models,

Figure 11.30 Input–output function of product sum fuzzy models.
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respectively. Because inputs and outputs of functional models are numeric, inference

proceeds computing the activation degree of each rule and aggregating the fuzzy rule

outputs using a weighted sum approach.

More specifically, assuming numeric inputs x and y, the degree of activation of

rule Ri is computed as follows:

liðx; yÞ ¼ AiðxÞtBiðyÞ
Next, the output z of the model is found as

z ¼

P

N

i¼1
liðx; yÞfiðx; yÞ

P

N

i¼1
liðx; yÞ

ð11:30Þ

Introducing an abbreviated notation

wiðx; yÞ ¼
liðx; yÞ
P

N

i¼1
liðx; yÞ

ð11:31Þ

we rewrite (11.30) in the form of a linear combination of functions of the local

models fi; i ¼ 1; ::;N

z ¼
X

N

i¼1
wiðx; yÞfiðx; yÞ ð11:32Þ

For example, consider a single input–single output, first-order functional model

whose rules are, assuming X ¼ ½0; 3� and Z ¼ ½0; 3�,

R1: If X isA1 then z ¼ x

R2: If X isA2 then z ¼ �xþ 3

0 0.5 1 1.5 2 2.5 3
0

0.2 

0.4 

0.6 

0.8 

1

1.2 

x

A
i

A2A1

(a) Antecedent fuzzy sets

0 0.5 1 1.5 2 2.5 3
0

0.5 

1

1.5 

2

2.5 

3

f1f2

x

y

(b) Consequent functions

Figure 11.31 Rules of the functional fuzzy model.
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and triangular membership functions as Figure 11.31 shows. In this case,

l1ðxÞ ¼ A1ðxÞ and l2ðxÞ ¼ 0 for x 2 ð0; 1� while l2ðxÞ ¼ A2ðxÞ and l1ðxÞ ¼ 0 for

x 2 ½2; 3Þ. Thus, the corresponding output is (note that A1ðxÞ þ A2ðxÞ ¼ 1; 8 x e ½0; 3�)

z ¼
x; if x 2 ð0; 1�
A1ðxÞxþ A2ðxÞð�xþ 3Þ; if x 2 ½1; 2�
�xþ 3; if x 2 ½2; 3Þ

8

<

:

0 0.5 1 1.5 2 2.5 3
0

0.2 

0.4 

0.6 

0.8 

1

1.2 

1.4 

1.6 

1.8 

2

x

y

Figure 11.32 Output of the functional fuzzy model.
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314 Chapter 11 Rule-Based Fuzzy Models



Looking at Figure 11.31, we note that the output is the same as f1 for x 2 ð0; 1�
and the same as f2 for x 2 ½2; 3Þ. In the middle interval x 2 ½1; 2�, the output is a sum
of the product linear functions, which results in a quadratic function, as Figure 11.32

shows.

The overall architecture of functional fuzzy models is given in Figure 11.33.

There is an input part that transforms inputs (x; y) into normalized activation levelswi

via t-norms and division operations with the membership degrees AiðxÞ and BiðyÞ
using (11.31), which in turn weight the regression functions to form the consequents

of the rules. Finally, the results are combined adding the weighted consequents using

(11.32). Fuzzy functional models do not derive from the compositional rule of

inference, but can be regarded as an instance of scaled inference.

The input–output characteristics of functional fuzzy rule-based models are

affected by the form of the membership functions and of the form of the local models

fi located in the consequent part of the rules. Generally speaking, the input–output

mapping results from a nonlinear combination of functions. An exception is the case

of single input–single output zero-order models with properly chosen values and with

membership functions forming linear complementary partition of the antecedent
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Figure 11.34 Examples of functional fuzzy models.
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universe, that is, membership degrees adding up to unity for any value of the input

variable.

Figure 11.34 illustrates several choices of antecedent membership functions and

consequent functions. In Figure 11.34(a) membership functions are Gaussians and

the corresponding consequent functions are f1 ¼ � sinð2xÞ, f2 ¼ 0:5x, and

f3 ¼ sinð3xÞ.
In Figure 11.34(c), membership functions are the same as in (a) but the

corresponding consequent functions are f1 ¼ �1; f2 ¼ x; f3 ¼ 1, and f3 ¼ sinð3xÞ.
The rule-based systems can be generalized in many ways by admitting different

forms of the conclusion part. It could form a family of differential equations:

Ri: If X isAi and Y isBi then _x ¼ fiðx; yÞ; i ¼ 1; 2; . . . ;N

The conclusion parts could be realized in the form of local neural networks,

NNiðx; y;wiÞ
Ri: If X isAi and Y isBi then z ¼ NNiðx; y;wiÞ; i ¼ 1; 2; . . . ;N

11.5.3 Gradual Fuzzy Models

Gradual fuzzy models assume rule bases composed by parallel gradual rules, which

are parallel fuzzy rules of the form ‘‘If X is Ai then Z is Ci’’ understood as

Ri: Themore X isAi themore Z isCi; i ¼ 1; 2; . . . ;N

In this section we emphasize the simplest instance of pointwise inputs. In this case,

inference with gradual rule bases works as follows. Let a1 ¼ A1ðxÞ and a2 ¼ A2ðxÞ
be the compatibility degrees of input x with antecedent fuzzy sets A1 and A2,

respectively. The semantics of the rule, formally given, for instance, by the Gaines

implication

Riðx; zÞ ¼
1; if CiðzÞ � AiðxÞ
0; otherwise

�

means that the inferred fuzzy set should lie in the intersection of the corresponding

consequent a-cuts

C ¼
\

N

i¼1
ðC0iÞai ¼

\

N

i¼1
Cai

x z

A1 A2

a 2

a 1

C1 C 2
1 1

a 1

a 2

C1
¢ ¢ C2

Figure 11.35 Gradual fuzzy model processing.
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where Cai ¼ ðC
0
iÞai . The inferred set C is between the core of fuzzy sets Cj and Ck

activated by the input x as Figure 11.35 illustrates when N ¼ 2. Details of more

general cases are covered in Dubois and Prade (1992).

The input–output characteristic of gradual fuzzy models is depicted in

Figure 11.36 choosing triangular fuzzy antecedent and consequent fuzzy sets on

X ¼ Z ¼ ½0; 4� and point inputs. We notice from Figures 11.35 and 11.36 that,

because the individual inferred sets lie between the cores of the consequent fuzzy

sets of active rules, an interpolation effect is obtained up to a bracketing error, which

can, theoretically, be made very small by sufficiently increasing the number of rules

(Dubois et al., 1994).

The architecture of gradual fuzzy models using bains implication is shown in

Figure 11.37. The input part transforms inputs x into compatibility levels ai via

possibility measures and the corresponding ai cuts of the consequent fuzzy sets Cai

are found. Recall that, because Cai
are a-cuts, they are sets. Finally, the results are

combined using intersection as the min operator. Different choices of fuzzy implica-

tions induce different architectures.
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11.6 APPROXIMATION PROPERTIES OF FUZZY
RULE-BASED MODELS

One of the most important properties regarding fuzzy rule-based models concerns

their approximation capabilities. Fuzzy rule-based systems can uniformly appro-

ximate continuous functions to any degree of accuracy on closed and bounded sets.

Fuzzy systems in which rules are viewed as the product fuzzy conjunction,

antecedent expressions with Gaussian membership functions aggregated with the

product t-norm, Gaussian consequent membership functions, processed with sup–

min composition, and rules aggregation via ordinary sum, pointwise inputs and

centroid defuzzification are universal approximators (Wang and Mendel, 1992).

Fuzzy additive systems also have the same approximation capabilities (Kosko,

1992). Fuzzy rule-based models with arbitrary t-norms as conjunctions and trian-

gular or trapezoidal membership functions, R-implications or conjunctions with

centroid defuzzification are universal approximators as well (Castro, 1995; Castro

and Delgado, 1996). Fuzzy functions represented by fuzzy relations have also been

shown to be approximate data (Perfilieva, 2004).

Using suitable granulation of one-dimensional antecedent and consequent uni-

verses, gradual models provide the same approximation mechanism as do functional

fuzzy models. More generally, any single input–single output system can be approxi-

mated by a set of gradual rules when using appropriate granulation. (Dubois et al.,

1994).

Another important issue concerns rule-based interpolation especially when

sparse rule bases developed from data emerge (Koczy and Hirota, 1993). A sparse

rule base is a rule base composed by only a subset of all possible rules. For instance,

for a system with two input variables, the first with three and the second with four

fuzzy values, a total of twelve rules could assemble a full rule base. A rule base with

fewer rules, say six rules, would be a sparse rule base. Techniques have been

developed for multidimensional spaces (Wong et al., 2005) as a form of interpolative

reasoning. Methods of interpolative reasoning are particularly useful to reduce

complexity of fuzzy models and to make inference in sparse systems possible. An

approach involving scale and move transformations is addressed in Huang and Shen

(2006). This variation handles interpolation of multiple antecedents with simple

computations and guarantees uniqueness, normality, and convexity of the interpolat-

ing fuzzy sets.

11.7 DEVELOPMENT OF RULE-BASED SYSTEMS

By their virtue, fuzzy rule-based systems rely on the computing of information

granules. Information granules are in the center of the development of the individual

rules. There are two fundamental ways of constructing rule-based models, namely,

(a) expert-based and (b) data-driven. Furthermore, there are a number of hybrid

approaches that could be positioned somewhere in-between. Each of them exhibits

several advantages but is not free of shortcomings. Next we address several repre-

sentative cases.
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11.7.1 Expert-Based Development

The idea is that knowledge can be provided by domain experts. They are individuals

who can quantify knowledge about the basic concepts and variables essential to the

problem and link them in the form of some rules. Knowledge-based approach has

some advantages: knowledge becomes readily available and fuzzy sets are helpful in

the quantification process. Rules reflect existing knowledge and thus could be readily

quantified. We may enumerate a number of examples in which knowledge comes in

the form of a collection of rules. The development time of the rules could be quite

short, assuming that we are concerned with a small size of the problem requiring a

handful of conditional statements.

This type of handcrafted style development of the rule-based system has been

used from the beginning of fuzzy modeling. At that time, we dealt with small rule

bases involving small number of rules and having one–three input variables. The

typical example in this category comes in the form of fuzzy controllers. A fuzzy

controller is a rule-based system that captures the essence of the control strategy as

being described by a human operator controlling the process. For instance, one could

achieve an effective control by monitoring the values of error and change error and

making adjustments to control actions on the basis of these findings. The error is

expressed by comparing the current output of the system under control with the given

reference. Interestingly, the same type of knowledge is utilized in the classic and

commonly used control architecture of the so-called PD controllers. The control

rules of the fuzzy controller assume the format

Ri: If Error isAi and Change of Error isBi then Control isCi

where all fuzzy sets standing there are defined in the corresponding universes of

discourse (i.e., change of error, and control being regarded as the output of the

controller). An example of the control rules is shown in Table 11.3. These rules are

highly intuitive and one could easily articulate them after giving some thought to the

way in which we affect the process so that we reach the required reference.

Table 11.3 An Example Rule Base of a Fuzzy Controller: NB—negative big, NM–

negative medium, NS—negative small, Z—zero, PS—positive small, PM—positive

medium, PB—positive big.

Change of error Error NM NS ZE PS PM

NB PM NB NB NB NM

NM PM NB NS NM NM

NS PM NS Z NS NM

Z PM NS Z NS NM

PS PM PS Z NS NM

PM PM PM PS PM NM

PB PM PM PM PM NM
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There are several shortcomings that come with this type of the development of

the model. Some of them could be detrimental and might manifest quite evidently

once we move toward larger rule bases. Let us highlight some of the difficulties and

point at possible ways on how to alleviate them:

(a) The rules are highly prescriptive because they reflect the existing domain

knowledge. This means that under some circumstances, the construct has to

be calibrated to address the specificity of the problem. For instance, the rules

could be quite general, yet the fuzzy sets standing in the rules might need

calibration so that their semantics fully captures the specificity of the

problem. In Chapter 4 we identified some methods that are helpful in

addressing this problem. Simply, the generic fuzzy sets are adjusted through

a nonlinear mapping of the original spaces.

(b) The rules aremore difficult to developwhen dealingwith high-dimensionality

problems. First, the number of rules grows very fast (recall that a complete

rule base has N ¼ pn rules, assuming rules with n input variables each of

them with p linguistic values). Second, the quality of the rules could

deteriorate quite quickly. In order to alleviate these difficulties, one has to

establish some well-developed mechanisms of quality assurance. Measures

of completeness and consistency of the rules (see Section 11.9) could be

very helpful in this regard as they quantify the quality of each rule and also

identify the components of the rule base that are of the lowest quality (say, a

rule of the lowest consistency index). One could easily identify some

‘‘gaps’’ in the rule base that might be detrimental when using the system.

Unfortunately, in the generic version of the fuzzy rule-based system the

curse of dimensionality is present and definitely contributes to the devel-

opment difficulties and furthers implementation issues. The scalability of

the construct is thus highly questionable. There have been a number of

alternatives exercised along this line; the one most commonly encountered

concerns the so-called hierarchical structures of rule-based systems.

11.7.2 Data-Driven Development

This approach is guided by the use of data. The resulting design captures the main

structure existing in the data themselves. As the information granules are predomi-

nant components of all rule-based systems, fuzzy clustering plays an essential role

here. The results of transforming numeric data into fuzzy sets are in direct usage in

the buildup of the rule-based system.

Let us discuss the pertinent details. Consider the data set in the form of the finite

set of input–output pairs ðxk; ykÞ; k ¼ 1; 2; . . . ;M, where xk ¼ ½x1k; x2k; . . . ; xnk�. We

combine them into an (nþ 1)-dimensional vector zk ¼ ½xk; yk� and cluster them with

the use of the FCM (or any other fuzzy clustering technique), which leads to the

collection of N clusters, that is, cluster centers, or prototypes, v1,v2,. . .,vN, and the

partition matrix U ¼ ½uik�; i ¼ 1; 2; ::;N in the product space X� Y. Figure 11.38
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Figure 11.38 Clustering data in the product space with the use of the FCM.
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shows an example where we identify four clusters in the data set. Therefore, we have

four rules. The membership functions of the fuzzy clusters obtained by the FCM

algorithm are also shown. They correspond to the membership functions of the fuzzy

relations associated with each fuzzy rule Ri; i ¼ 1; ::; 4 induced by the clusters.

We may also project the prototypes on the output space Y by considering their

last coordinates. Denote them by v1½y�; v2½y�; . . . ; vN ½y�. They give rise to the member-

ship functions that are associated with the way in which we run the FCM. Denote

them by C1;C2; . . . ;CN. Similarly, project the prototypes on the input space X and

denote them by v1[x], v2[x], . . . , vN[x]. Building membership functions around them

is easy. Denote the resulting fuzzy sets by A1;A2; . . . ;AN. In this way we arrive at the

collection of rules of the form

Ri: If X isAi then Y isCi; i ¼ 1; 2; ::;N

with the fuzzy sets constructed through fuzzy clustering. Because variables can be

correlated, projections usually cause loss of information. However, fuzzy clusters are

ultimately reflective of the existing numeric data and thus contribute to the increasing

rapport of the rule-based system with the available experimental evidence. Further-

more, as they process all variables at the same time, they help reduce the number of

rules. It should be emphasized that the condition parts of the rules are defined over the

Cartesian product of all input variables.
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x2

(b)(a)

x
(c)
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Figure 11.39 Projection of prototypes on the corresponding coordinates of the input space.
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One may further expand the rules by explicitly expressing the fuzzy sets in the

Cartesian product of the input spaces.We project the coordinates of the prototypes on

the respective universe of discourse. Figure 11.39 gives an example with n ¼ 2 and

N ¼ 4. Shown are various distributions of the projections: (a) well-delineated

clusters in each space, (b) substantial overlap between some prototypes observed

for the projection on X1, and (c) all prototypes projected on X2 are almost indis-

tinguishable. We next form the corresponding fuzzy sets in each of them.

In this way we arrive at the same format of the rules as discussed earlier. The

projection scheme brings another insight into the nature of the data (and resulting

rules). As illustrated in Figure 11.39, we can envision a situation where the

projected prototypes are visibly well distributed. There might be cases, as illu-

strated in Figure 11.39(b), in which some projections are almost the same. This

suggests that we may consider collapsing of the fuzzy sets as they are semantically

the same. Figure 11.39(c) shows another example where with the collapse of all

prototypes we may consider dropping the corresponding variable from the rules.

Through this postprocessing of the clustering results in which some fuzzy sets

could be combined, the resulting rules may involve different number of fuzzy sets.

Similarly, we may expect a situation of dimensionality reduction in which some

variables could be dropped (eliminated) from the rules.

In virtue of the fuzzy clustering completed in the way described above, there is

no distinction made between the input and output variables. There is an advantage

associated with that as we clearly see associations between the fuzzy sets standing in

the condition and conclusion parts of the rules. There could be a certain drawback

given the fact that the contribution of the output variable could be easily eliminated

or even removed from the cluster. Putting it simply, when dealing with n variables,

the computations of the distance in the (nþ 1)-dimensional space is almost exclu-

sively driven by the values of the distance produced by the first n coordinates of it.

The role of the output variables in the clustering process has been practically

marginalized. To avoid this effect, we may consider clustering carried out indepen-

dently in the output and input spaces. In other words, we apply the clustering to the

data sets fykg and fxkg. Then the clusters independently formed in these spaces are

used to build the rules, yet to do so one has to establish a correspondence between the

clusters built in the input and output spaces. We may also envision more specialized

clustering such as context-based clustering, C-FCM (these generalizations will be

studied in the framework of the so-called granular models). Clustering can also be

combined with gradient-based parameter tuning to derive self-generation and sim-

plification of rule bases (Chen and Likens, 2004).

Summarizing the expert-based and data-driven development of rule-based sys-

tems we observe that these two approaches are very much complementary. Their

advantages and shortcomings complement each other. In practice, there are a number

of ways in which both approaches are used in some hybrid manner. Typically, one

might develop a skeleton of the system based on the available domain knowledge

being a part of the human expertise that is, in the sequel, refined and augmented by

the data-driven techniques. In this way we retain some transparency of the construct

and add flexibility provided by the use of the data-driven development techniques.
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11.8 PARAMETER ESTIMATION PROCEDURE
FOR FUNCTIONAL RULE-BASED SYSTEMS

In this section we assume that each local model of fuzzy functional rules is a

linear function aTi x; i ¼ 1; 2; . . . ;N, where ai ¼ ½a1; a2; . . . ; an�T and xk ¼ ½x1k;
x2k; . . . ; xnk�T. For estimation purposes given is a finite set of input–output data

(x1; y1), (x2; y2Þ; . . . :; ðxM ; yMÞ. Let us recall that the output ŷ of the functional fuzzy
model for any xk is given as a weighted sum

ŷk ¼
X

N

i¼1
wikf iðxk;aiÞ ð11:33Þ

with the weights wik expressed in the form wik ¼ liðxkÞ=½
PN

i¼1 liðxkÞ�. Note that we
have introduced a new index to underline the fact that the weights depend on the kth

input xk. The output of the model is

ŷk ¼
X

N

i¼1
zTikai ð11:34Þ

Let us use the following vector notation to collect all parameters of the models

a ¼
a1
a2
:::
aN

2

6

6

4

3

7

7

5

which leads to the expression for the model being expressed in the form of some

scalar product

ŷk ¼ ½zT1kzT2k . . . zTNk�
a1
a2
:::
aN

2

6

6

4

3

7

7

5

where zik ¼ wikxk. The collection of M input–output data is organized in the

following matrix format:

y ¼

y1

y2

. . .

yM

2

6

6

6

6

4

3

7

7

7

7

5

Z ¼

zT11 zT21 . . . zTN1

zT12 zT22 . . . zTN2

:: . . . . . . . . .

zT1M zT2M . . . zNM

2

6

6

6

6

4

3

7

7

7

7

5

Ideally, we would expect that the output of the model should follow the experimental

data, that is, we require that y ¼ Za where a should result as a solution to the system

of M linear equations. Given that M is typically higher than the number of the

parameters of the rule-based system, there is no unique solution to the above system

of linear equations and we have to reformulate the problem as a certain optimization
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task. Instead of solving the equations, we can minimize the distance k.k between y

and Za, that is, solve the optimization problem

MinaJGðaÞ ¼k y� Za k2 ð11:35Þ
Assuming the Euclidean norm as the distance between y and Za, that is,

k y� Za k2¼ ðy� ZaÞTðy� ZaÞ ð11:36Þ
the solution to the above problem is well-known and is expressed with the use of the

pseudoinverse of Z,

aopt ¼ Z#y ð11:37Þ
where Z# ¼ ðZTZÞ�1ZT

In case of the polynomial local models, the same estimation procedure applies;

however, the input space has to be expanded given the fact that we encounter a

number of high-order components of the original variables. The model is linear in

terms of its parameters.

A computationally more effective way to compute aopt is to put the matrix Z into

its singular value decomposition form (Golub and Van Loan, 1989), that is,

Z ¼ P
P

QT ð11:38Þ

where P and Q are orthogonal matrices, P ¼ ½p1; p2; . . . ; pM� is an ðM �M) and

Q ¼ ½q1; q2; . . . ; qnN � is an (nN � nN) matrix, and
P

is the (M � nN) matrix whose

diagonal elements s1 � s2 �    � snN are the singular values of Z. Substituting

(11.38) in (11.37) we get

aopt ¼
X

s

i¼1

pTi y

si

qi global estimation ð11:39Þ

where s is the number of nonzero singular values of
P

. Expression (11.35) defines a

global estimation scheme in the sense that the parameters of the model are estimated

using the entire data set.

Alternatively, local estimation computes the parameters of the model through

the solution of the following minimization problem:

MinaJLðaÞ ¼
X

N

i¼1
k y� Ziai k2 ¼

X

N

i¼1
ðy� ZiaiÞTðy� ZiaiÞ ð11:40Þ

where Zi is the ith (M � n) submatrix of Z of the form

Zi ¼

zTi1

zTi2

..

.

zTiM

2

6

6

6

6

6

4

3

7

7

7

7

7

5

ð11:41Þ
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Similar to the previous case, we find the singular value decomposition of Xi

Zi ¼ Pi

P

i

QT
i

and compute the smallest Euclidian norm solution as

a
iopt ¼

X

si

l¼1

pTl y

sl

ql; i ¼ 1; 2;    ;N local estimation ð11:42Þ

where si is the number of nonzero singular values of
P

i and pl and ql are the l-th

column of Pi and Qi, respectively. Although global estimation of functional fuzzy

models provides approximation with arbitrary accuracy, it does not always guar-

antee the model to behave well locally and often results in lower interpretability.

On the contrary, local models help interpretability and keep models behaving

locally well. In terms of computational demand, local estimation is superior to

global estimating and this is an important issue when developing complex models.

In terms of approximation error, global estimation is favorable with respect to bias

error (Nelles, 2001), and whenever good quality data is available, global estima-

tion may be preferable. An alternative is to combine both approaches to achieve an

acceptable trade-off between computational demand and model accuracy and

interpretability. One mechanism is to formulate the objective function of the

optimization problem as a convex combination of the functions JG (35) and JL
(40) as suggested in Yen et al. (1998). In this way the optimization problem reads

as follows:

MinaaJLðaÞ þ ð1� aÞJGðaÞ

where a2[0,1]. Notice that a ¼ 0 favors global estimation while a ¼ 1 favors local

estimation. By choosing intermediate values, the designer can adapt the character-

istics of the model to the application requirements.

Precision and interpretability are discussed in Setnes et al. (1998) and Casillas

et al. ( 2003).

11.9 DESIGN ISSUES OF RULE-BASED
SYSTEMS—CONSISTENCY, COMPLETENESS,
AND THE CURSE OF DIMENSIONALITY

The rule-based systems exhibit a clear logic structure. The quality of the rules can be

expressed by taking into account the two main characteristics of completeness and

consistency of the rules. We elaborate on them in detail. The evaluation of the rules

can be completed on the basis of the available experimental data, refer to

Figure 11.40. These data set come as a collection of input–output pairs, say

ðxk; ykÞ; k ¼ 1; 2; . . . ;N, whose corresponding components are defined in the input

and the output spaces.
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11.9.1 Completeness of Rules

The completeness of the rules with one antecedent is expressed by the following

condition:

maxi¼1;2;...;nAiðxkÞ > 0 for all k ¼ 1; 2; . . . ;N ð11:43Þ
In other words, we require that all data points xk are represented through some of the

fuzzy sets standing in the conditions of the rules. More descriptively, this require-

ment states that the input space has to be completely ‘‘covered’’ by the fuzzy sets

being used in the conditions of the rules. Putting it more succinctly: We anticipate

that for each point of the input space, at least one rule becomes invoked (fired) to a

nonzero degree. In this way, the rule-based model does not exhibit any ‘‘holes’’ and

one could infer conclusion for any input. Sometimes the requirement of complete-

ness could be made stricter by requesting that

maxi¼1;2;...;nAiðxÞ �d ð11:44Þ

where d is a certain predefined threshold level, say d ¼ 0:2. This requirement could

guard us against situations where there are very small positive values of membership

grades, thus (11.43) is satisfied, yet such membership grades are practically mean-

ingless, so there is no underlying semantics. This situation could easily occur when

dealing with Gaussian membership functions with infinite support.

11.9.2 Consistency of Rules

The consistency of the rules concerns some rules that could be in conflict, meaning

that very similar (or the same conditions) could result in completely different

conclusions. Such a qualitative and intuitive observation can be rephrased by

investigating the following four cases that we may encounter when analyzing two

rules:

Conditions and conclusions Similar conclusions Different conclusions

Similar conditions Rules are redundant Rules are in conflict

Different conditions Different rules; Different rules

could be eventually merge

Completeness 
Consistency
Accuracy 

….

Rules 

Data

Figure 11.40 Evaluation of the quality of rules with the use of experimental numeric data.
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Only in one of these cases, there is an evident conflict and hence it should be signaled.

A certain consistency index can be developed to describe conflict. To capture the

nature of the consistency index that should be reflective of the findings presented in

the table above, we consider here an implication operation g! h. This operation

exhibits the desired properties as it assumes low values only if the truth values of ‘‘g’’

are high and the values of h are low. In all other cases the implication returns high

truth values. Given this, the formal definition of the consistency index of two rules,

It X is Ai then Y is Bi

It X is Aj then Y is Bj

denoted by cons(i; j), given experimental data is defined as follows:

consði; jÞ ¼
X

N

k¼1
fjBiðykÞ � BjðykÞj ) jAiðxkÞ � AjðxkÞjg ð11:45Þ

where) is an implication induced by some t-norm. Alternatively, we can define the

consistency as follows

consði; jÞ ¼
X

N

k¼1
fPossðAiðxkÞ;AjðxkÞ ) PossðBiðykÞ;BjðykÞg

Recall that formally we have a) b ¼ supfc 2 ½0; 1�jatc � bg where a; b 2 ½0; 1�.
Computing an average of the consistency of the ith rule with respect to all other rules

( j ¼ 1; 2; . . . ; i� 1; iþ 1; . . . ;N), we can talk about an overall consistency of this

rule to be equal to

consðiÞ ¼ 1

N

X

N

j¼1
consði; jÞ ð11:46Þ

Through the computations of the consistency index of the consecutive rules of the

model, we can order them in a linear fashion as illustrated in Figure 11.41.

In Figure 11.41, note the emerging sets of rules of different consistency: (a) a

uniform spread of the rules with respect to their level of consistency and (b) a subset

of rules of low consistency (high conflict rules).

This linear arrangement of the rules with respect to their consistency is essential

for several reasons. We gain an important insight into the quality of each rule and

isolate the rules that require further attention. For instance, when there are only a few

.0                                                    1.0            Consistency  
(a) 

0.0                                                    1.0            Consistency  
(b)

High conflict rules 

Figure 11.41 A linear order imposed on the rules trough consistency analysis.
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rules whose consistency is low (as illustrated in Fig. 11.41(b)), one can revisit their

structure as far as the fuzzy sets of condition and conclusion are concerned and

suggest some improvements. Let us discuss some alternatives that are worth con-

sidering in this setting. By a direct inspection we collect the ‘‘weakest’’ rules,

namely, those of the lowest consistency level. As we encounter very different

conclusions while have identical or very similar condition parts of these rules, it

could well be possible that some input variable was omitted. This omission could be a

result of error in the process of knowledge acquisition. For instance, it could well be

possible that some variable (which seemed so evident that no attention was paid to its

inclusion) has been overlooked. In this case the problem of low consistency can be

alleviated by expanding the space of input variables by adding the missing variable

along with some of its fuzzy sets. Referring to the consistency index (11.45),

augment the rule by some additional condition so that it reads as

Ri: If X isAi and Z isCi then Y isBi

whereCi is a certain fuzzy set defined over the auxiliary input space Z. Now consider

the rules with the expanded condition part

Ri: If X isAi and Z isCi then Y isBi

Rj: If X isAj and Z isCj then Y isBj

ð11:47Þ

If Ci and Cj are different enough, that is, the expression jAiðxkÞtCiðzÞ � AjðxkÞtCjðzÞj
assumes lower values than the one originally computed, jAiðxkÞ � AjðxkÞj, then the

implication computed as

jBiðykÞ � BjðykÞj ) jAiðxkÞtCiðzÞ � AjðxkÞtCjðzÞj ð11:48Þ

may produce higher values than the one for the case studied before. Note that we do

not have experimental data for the additional space (Z), hence we have not used any

specific entry by simply indicating some value in Z, that is, ‘‘z.’’ To be more formal

and avoid this nonuniqueness, the consistency measure is redefined in this case by

integrating over the additional input space. We arrive at the expression

fjBiðykÞ � BjðykÞj )
X

N

k¼1

ð

Z

jAiðxkÞtCiðzÞ � AjðxkÞtCjðzÞjg ð11:49Þ

It becomes obvious that if Ci and Cj are completely disjoint (which makes the

extended conditions ‘‘Ai andCi’’ and ‘‘Aj andCj’’ fully disjoint), then the consistency

of the rules expanded in this way becomes equal to 1 as the distance between the

condition parts of the rules is equal to zero. As we might have a number of rules with

some low consistency, it may not be feasible to introduce highly disjoint individual

fuzzy sets in a new space. Any augmentation of the rules requires a careful

investigation of the existing ones. The proposed approach does help quantify a

conflict and assess the quality of the rules resulting from the resolution of the conflict

but cannot define fuzzy sets (membership functions) that need to be added to alleviate

the existing shortcoming. Similarly, the proposed approach cannot offer any advice
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as to the formation of the augmented space. It could involve a single variable (Z) with

a number of pertinent fuzzy sets or a Cartesian product of several new variables

(Z�W�U) with a lower number of fuzzy sets defined in each of them.

Further discussions and an algorithm to check coherence and redundancy of

fuzzy rule bases with implication and rule combination via intersection can be found

in Dubois et al. (1997).

11.10 THE CURSE OF DIMENSIONALITY
IN RULE-BASED SYSTEMS

The rules capture domain knowledge in an explicit manner. They are transparent

structures conveying knowledge about the system they describe. Unfortunately, this

transparency does come with a highly detrimental effect known as a curse of

dimensionality. When the number of input variables increases, the number of rules

increases exponentially. Consider that for each variable we encounter p fuzzy sets.

For n input variables, the number of different rules is pn. Obviously, some rules might

not be relevant (as not being descriptive of the problem at hand), yet potentially we

are faced with an exponential growth of the rule base. The scalability of the rule base

becomes a serious issue if one moves beyond four–five variables each being quanti-

fied in terms of a few fuzzy sets. Considering the generic format of the rules, the

problem cannot be avoided. One mechanism to avoid the use of large number of rules

is to use dynamic rule bases (Chen and Saif, 2005). Instead of being fixed, dynamic

rule bases allow rules to vary with inputs in a piecewise manner.

11.11 DEVELOPMENT SCHEME OF FUZZY
RULE-BASED MODELS

We can establish a general view at the development of rule-based systems in the form

of a spiral scheme as illustrated in Figure 11.42. As discussed in this chapter, there

Accuracy 
Stability 

Interpretability  

Knowledge
representation 

Figure 11.42 A spiral view at the development of rule-based models as shown in a multidimensional

space of fundamental characteristics of the models.
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are several fundamental qualities that are inherent to rule-based constructs; they form

coordinates of the multidimensional space in which assessment is being made. Over

time, wewitness an ongoing evolution of the rule-based architecture that is illustrated

by an unfolding spiral that illustrates the progress supported by new mechanisms of

knowledge representation, new learning (development) capabilities, and quality

assessment of the resulting rules.

11.12 CONCLUSIONS

In this chapter, the notions of fuzzy expressions, fuzzy rules, and fuzzy rule-based

systems have been introduced as a vehicle for knowledge representation and proces-

sing. Several classes of fuzzy rule-based models were emphasized together with the

associated inference procedures and architectures. Fuzzy rule-based models design

issues such as rule-based development, consistency, transparency, and approximation

capabilities have been summarized because they provide the foundations upon which

fuzzy models are build up and they provide a sound approach for granular models

development and applications.

EXERCISES AND PROBLEMS

1. Consider the function y ¼ f ðxÞ ¼ 2x2 þ 2 for x 2 [0,4]. Develop a rule-based model to

approximate f ðxÞ in this interval. Assume that f ðxÞ is to be approximated through fuzzy

graphs. Experiment with different t-norms.

2. Assume a fuzzy rule of the form ‘‘If X is A then Y is B’’ and suppose that inputs are points

x 2 X ¼ ½0; 4� whereas A and B are triangular fuzzy sets Aðx; 1; 2; 3Þ and Bðy; 2; 3; 4Þ.
Using the compositional rule of inference, determine the inferred fuzzy set B0 assuming

that the rule is interpreted as the implication Rðx; yÞ ¼ 1�min½AðxÞ; 1� BðyÞ�. Plot the
inferred fuzzy set of conclusion.

3. Repeat the previous problem when interpreting the rule as an implication of the form

Rðx; yÞ ¼ max½1� AðxÞ;BðyÞ�.
4. Repeat Problem 3 and determine the inferred fuzzy set B0 considering the Zadeh implica-

tion, that is, Rðx; yÞ ¼ min½1; 1� AðxÞ þ BðyÞ�.
5. Assume now a fuzzy rule of the form ‘‘If X is A then Y is B’’ and suppose that inputs

are also points x 2 X ¼ ½0; 4� and A and B triangular fuzzy sets Aðx; 1; 2; 3Þ and

Bðy; 2; 3; 4Þ. Using the compositional rule of inference, determine the inferred fuzzy

set B0 assuming that the rule is interpreted first as the min conjunction Rðx; yÞ ¼
min½AðxÞ;BðyÞ� and next as the algebraic product Rðx; yÞ ¼ AðxÞ BðyÞ, illustrating the

results graphically.

6. Compare the inferred fuzzy sets of conclusion produced in the previous problems in terms

of the resulting fuzzy set of conclusion (say, shape, support, convexity, and normality).

Discuss the boundary cases in which the input is empty set and an entire universe of

discourse. Offer a comparative analysis of the results. Are they intuitively appealing?

Justify your answer.
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7. Show that fuzzy min-max linguistic models whose consequent fuzzy sets are degenerate

sets (singletons) are equivalent to zero-order functional fuzzy models.

8. Assume you are given the function below. Develop the simplest fuzzy linguistic rule-based

system that can exactly approximate the function f (i.e., with no approximation error).

1 2 3 4

2

1

3

4

x

y

f

9. Suppose that in a gradual rule of the form

themore X isA; the less Y isB

where the consequent the less Y is B is understood as the standard complement of B. In this

case, what is the constraint that the membership functions of A and B should satisfy to

retain semantics compatible with the linguistic description of the rule?

10. Consider the problem of approximating the function y ¼ f ðxÞ ¼ x2 using a functional

rule-based model. Assume that the membership functions shown below were chosen to

granulate the input universe.

0 x1 2–1–2

A1
A2

1

Given the following two rules

R1: if X isA1 then y ¼ axþ b

R2: if X isA2 then y ¼ cxþ d

determine the values for parameters a, b, c, and d such that the rule-based model

approximates the function f exactly for x 2 ½�2; 2�.

HISTORICAL NOTES

In 1943 the mathematician Emil Post (see Fischler and Firscein, 1987) proposed the ‘‘If–then’’ rule-based

system that demonstrates how strings of symbols could be converted into other symbols. In the 1960s,

Newell and Simon embedded the generality of the ‘‘If–then’’ rule-based representation in data-driven

control structures of production systems used in Artificial Intelligence (Newell, 1973).
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The basic idea of linguistic fuzzy rule-based models was suggested by Zadeh (1973) and imple-

mented for the first time byMamdani and Assilian (1975) in the form of so-called fuzzy controllers. Procyk

and Mamdani (1979) constructed the first fuzzy rule-based learning method and demonstrated its use in

fuzzy adaptive process control.

Fuzzy interpolation was introduced by Koczy and Hirota (1993) in the context of linguistic fuzzy

models. Later, Bouchon-Meunier et al. (2000) developed an interpolative method using the concept of

graduality.

Rules come with some level of readability where their interpretability comes with strong motivation

and experimental evidence. Since the 1960s there has been research aimed at understanding what type of

rules tend to be easily apprehended by humans. The most interesting finding was that conjunctive types of

rules are more easily comprehended than disjunctive rules (Bruner et al., 1960; Feldman, 2006)
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Chapter 12

From Logic Expressions

to Fuzzy Logic Networks

Neural networks and neurocomputing constitute one of the fundamental pillars

of Computational Intelligence. They bring a wealth of learning abilities to

intelligent systems that can be realized both in supervised and unsupervised

modes. These modalities are critical to the functioning of any intelligent system

whose plasticity and adaptability to ongoing changes are crucial to any successful

implementation. Fuzzy sets, as presented so far, come with a variety of schemes of

knowledge representation and processing of information granules being

formalized as fuzzy sets. They bring a variety of computing structures that are

both transparent and semantically meaningful. Fuzzy sets and neurocomputing are

highly complementary when it comes to their strengths. In this sense, they nicely

supplement each other.

Having this in mind, our objective is to develop a logic-based mode of neuro-

computing in which learning comes hand in hand with the transparency of the

resulting structure. The logic facet of the introduced types of neurons is essential

for the delivery of the significant interpretation abilities. Once developed, the

‘‘content’’ of the network can be downloaded in the form of some logic expressions.

12.1 INTRODUCTION

Neural networks (Golden, 1996; Jang et al., 1997; Kosko, 1991; Mitra and Pal, 1994,

1995; Pal and Mitra, 1999) are regarded to be a synonym of nonlinear and highly

plastic (adaptive) systems equipped with significant learning capabilities. The uni-

versal approximation theorem coming with neural networks is highly appealing at

least from the theoretical point of view. This means that any continuous functions can

be approximated to any desired accuracy by a certain neural network assuming that

we are given enough neurons organized in a certain multiplayer topology. The basic

processing unit (neuron) realizes a certain nonlinear processing. The multitude of
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learning paradigms is impressive. We have a number of fundamental learning

schemes of supervised learning including such mechanisms as perceptron learning

and backpropagation. In unsupervised learning mode we often refer to self-

organizing maps (Kohonen maps) as a typical neural architecture. Learning itself

may pertain to the optimization of the parameters of the network or it can deal with

the structural optimization of the network where its topology (configuration)

becomes affected. Parametric learning engages various gradient-based techniques.

Structural optimization (for which we cannot compute any gradient) requires other

optimization tools, and here we usually confine ourselves to evolutionary optimi-

zation (Michalewicz, 1996) with this category including genetic algorithms,

genetic programming, evolutionary programming, and alike. Some other biologi-

cally inspired methods including ant colonies and particle swarm optimization

provide another optimization platform.

Owing to the highly distributed character of processing realized by neural

networks and a lack of underlying semantics of processing carried out at the level

of each individual neuron, we end up with a ‘‘black-box’’ character of computing. In

essence, once the network has been designed (trained), we do not have any mechan-

ism using which we can examine the character of the produced mapping and

investigate it vis-à-vis the data in hand. This may hamper its future usage because

of the lack of comprehension of the structure resulting through the optimization

(learning) process. The black-box character of the network does not increase our

confidence in the generalization abilities of the network.

This lack of interpretability imposes an important quest as to the future devel-

opments of the networks. In this regard, it would be highly desirable to design

transparent neural networks. There are several evident benefits behind them. First,

we can easily interpret the result of learning and produce the corresponding highly

compact description of data. Second, the learning of such networks could be facili-

tated to a significant extent. In many cases this becomes a necessary condition of

acceptance of the model. Usually, in solving any problem we usually have some prior

domain knowledge. One can take advantage of it by ‘‘downloading’’ such knowledge

hints onto the given structure of the network. This could set up a highly promising

starting point for further weight adjustments carried out through some well-known

schemes of supervised or unsupervised learning. In order to take advantage of this

preliminary knowledge one has to be at a position to do this downloading in an

efficient manner. This, however, requires the transparency of the network itself so that

we know how to affect its structure or set up initial values of the connections. It is

worth to emphasize in this context that when using the standard learning schemes we

usually assume random values of the connections and start from this configuration

(which might be quite inefficient resulting in slow and inefficient learning). The

transparency of the network available in this case becomes a genuine asset.

The category of fuzzy neurons (or fuzzy logic neurons) discussed in this chapter

addresses these burning issues of transparency of neural networks. We build a

network with the aid of conceptually simple and logically appealing nodes (neurons)

that complete generic and and or logic operations. By equipping the neurons with a

set of connections, we furnish them with the badly required plasticity; the values of
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the connections could be easily adjusted by some standard gradient-based learning

schemes. Likewise the resulting network could be transformed into a collection of

conditional logic statements (rules), thus resulting in the certain rule-based system.

We start with the introduction of the main categories of the fuzzy neurons,

elaborate on their main properties, move on to the architectures of networks com-

posed of such neurons, and discuss various facets of interpretation of the networks.

12.2 MAIN CATEGORIES OF FUZZY NEURONS

The logical aspect of neurocomputing we intend to realize requires that the proces-

sing elements be endowed with the clearly delineated logic structure. We discuss

several types of aggregative and referential neurons. Each of them comes with a

clearly defined semantics of its underlying logic expression and is equipped with

significant parametric flexibility necessary to facilitate substantial learning abilities.

12.2.1 Aggregative Neurons

Formally, these neurons realize a logic mapping from [0,1]n to [0,1]. Twomain classes

of the processing units exist in this category (Pedrycz, 1991a, 1991b; Pedrycz and

Rocha, 1993; Pedrycz et al., 1995;Hirota and Pedrycz, 1994;Hirota and Pedrycz, 1999

Ciaramella et al., 2005; 2006; Nobuhara et al., 2005; 2006)

or neuron: realizes an and logic aggregation of inputs x ¼ ½x1; x2; . . . ; xn� with
the corresponding connections (weights) w ¼ ½w1 w2 . . .wn� and then summarizes

the partial results in an or-wise manner (hence the name of the neuron). The concise

notation underlines this flow of computing, y ¼ OR(x;w) while the realization of the

logic operations gives rise to the expression (commonly referring to it as an s-t

combination or s-t aggregation)

y ¼ S
n

i¼1
ðxitwiÞ ð12:1Þ

Bearing in mind the interpretation of the logic connectives (t-norms and t-conorms),

the OR neuron realizes the following logic expression being viewed as an underlying

logic description of the processing of the input signals.

ðx1 and w1Þ or ðx2 and w2Þ or . . . or ðxn and wnÞ ð12:2Þ
Apparently the inputs are logically ‘‘weighted’’ by the values of the connections

before producing the final result. In other words we can treat y as a truth value of the

above statement where the truth values of the inputs are affected by the correspond-

ing weights. Noticeably, lower values of wi discount the impact of the corresponding

inputs; higher values of the connections (especially those being positioned close to 1)

do not affect the original truth values of the inputs resulting in the logic formula. In

limit, if all connections wi, i ¼ 1; 2; . . . ; n are set to 1 then the neuron produces a

plain or-combination of the inputs, y ¼ x1 or x2 or . . . or xn. The values of the

connections set to zero eliminate the corresponding inputs. Computationally, the or
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neuron exhibits nonlinear characteristics (which are inherently implied by the use of

the t- and t-conorms (which are evidently nonlinear mappings). The plots of the

characteristics of the OR neuron shown in Figure 12.1 shows this effect (note that the

characteristics are affected by the use of some triangular norms). The connections of

the neuron contribute to its adaptive character; the changes in their values form the

crux of the parametric learning.

Figure 12.1 Characteristics of the OR neuron for selected pairs of t- and t-conorms. In all cases the

corresponding connections are set to 0.l and 0.7 with an intent to visualize their effects on the input–output

characteristics of the neuron: (a) product and probabilistic sum, (b) Lukasiewicz and and or connectives (b).
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and neuron:the neurons in the category, denoted by y ¼ ANDðx;wÞwith x andw
being defined as in case of the OR neuron, are governed by the expression

y ¼ T
n

i¼1
ðxiswiÞ ð12:3Þ

Here the or and and connectives are used in a reversed order: first the inputs are

combined with the use of the t-conorm and the partial results produced in this way are

aggregated and-wise. Higher values of the connections reduce impact of the corre-

sponding inputs. In limitwi ¼ 1 eliminates the relevance of xi. With allwi set to 0, the

output of the AND neuron is just an and aggregation of the inputs

y ¼ x1 and x2 and . . . and xn ð12:4Þ

The characteristics of the AND neuron are shown in Figure 12.2; note the influence

of the connections and the specific realization of the triangular norms on the mapping

completed by the neuron.

Let us conclude that the neurons are highly nonlinear processing units whose

nonlinear mapping depends upon the specific realizations of the logic connectives.

They also comewith potential plasticity whose usage becomes critical when learning

the networks including such neurons.

At this point, it is worth contrasting these two categories of logic neurons with

‘‘standard’’ neurons we encounter in neurocomputing. The typical construct there

comes in the form of the weighted sum of the inputs x1, x2, . . ., xn with the

corresponding connections (weights) w1, w2, . . ., wn being followed by a nonlinear

(usually monotonically increasing) function that reads as follows:

y ¼ gðwTxþ tÞ ¼ g
X

n

i¼1
wixi þ t

 !

ð12:5Þ

where w is a vector of connections, t is a constant term (bias), and g denotes some

monotonically nondecreasing nonlinear mapping. The other less commonly encoun-

tered neuron is the so-called p-neuron. Although there could be some variations as to

the parametric details of this construct, we can envision the following realization of

the neuron

y ¼ g
Y

jxi � tijwi

 !

ð12:6Þ

where t ¼ ½t1; t2 . . . tn� denotes a vector of translations whereas wð> 0Þ denotes a

vector of all connections. The plots of the sample characteristics of the two types of

the neurons (12.5)–(12.6) are included in Figure 12.3.

As before, the nonlinear function is denoted by g. Although some superficial and

quite loose analogy between these processing units and logic neurons could be

derived, one has to be cognizant of the fact that these neurons do not come with

any underlying logic fabric and hence cannot be easily and immediately interpreted.

Let us make two observations about the architectural and functional facets of the

logic neurons we have introduced so far.
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12.2.1.1 Incorporation of the Bias Term (Bias)

in the Fuzzy Logic Neurons

In an analogy to the standard constructs of a generic neuron as presented above, we

could also consider a bias term, denoted by w0 2 ½0; 1� that enters the processing

formula of the fuzzy neuron in the following manner:

for the or neuron

y ¼ S
n

i¼1
ðxitwiÞsw0 ð12:7Þ

Figure 12.2 Characteristics of AND neurons for selected pairs of t- and t-conorms. In all cases the

connections are set to 0.l and 0.7 with an intent to visualize their effects on the characteristics of the

neuron: (a) product and probabilistic sum (b) Lukasiewicz logic connectives.
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for the and neuron

y ¼ T
n

i¼1
ðxiswiÞtw0 ð12:8Þ

We can offer some useful interpretation of the bias by treating it as some nonzero

initial truth value associated with the logic expression of the neuron. For the or

neuron it means that the output does not reach values lower than the assumed

threshold. For the and neuron equipped with some bias, we conclude that its output

cannot exceed the value assumed by the bias. The question whether the bias is

essential in the construct of the logic neurons cannot be fully answered in advance.

Instead, we may include it into the structure of the neuron and carry out learning.

Once its value has been obtained, its relevance could be established considering

the specific value it has been produced during the learning. It may well be that the

optimized value of the bias is close to zero for the OR neuron or close to one in the

case of the and neuron, which indicates that it could be eliminated without exhibiting

any substantial impact on the performance of the neuron.

12.2.1.2 Dealing with Inhibitory Character of Input Information

Owing to the monotonicity of the t-norms and t-conorms, the computing realized by

the neurons exhibits an excitatory character. This means that higher values of the

inputs (xi) contribute to the increase in the values of the output of the neuron. The

inhibitory nature of computing realized by ‘‘standard’’ neurons by using negative

values of the connections or the inputs is not available here as the truth values

(membership grades) in fuzzy sets are confined to the unit interval. The inhibitory

nature of processing can be accomplished by considering the complement of the

original input, ¼ 1� xi. Hence when the values of xi increase, the associated values

Figure 12.3 Characteristics of the neurons: (a) additive with t ¼ 0:2, w1 ¼ 1:0, w2 ¼ 2:0 and (b)

multiplicative where w1 ¼ 0:5, w2 ¼ 2:0, t1 ¼ 1:0, t2 ¼ 0:7. In both cases the nonlinear function is a

sigmoid function, gðuÞ ¼ 1=ð1þ expð�uÞÞ.
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of the complement decrease and subsequently in this configuration we could effec-

tively treat such an input as having an inhibitory nature.

12.2.2 Referential (Reference) Neurons

The essence of referential computing deals with processing logic predicates. The two-

argument (or generally multivariable) predicates such as similar, included in, and

dominates (Pedrycz and Rocha, 1993) are essential components of any logic descrip-

tion of a system. In general, the truth value of the predicate is a degree of satisfaction

of the expression Pðx; aÞ where a is a certain reference value (reference point).

Depending upon the meaning of the predicate ðPÞ, the expression Pðx; aÞ reads as
‘‘x is similar to a’’, ‘‘x is included in a’’, ‘‘x dominates a’’, and so on. In case of many

variables, the compound predicate comes in the form Pðx1; x2; . . . ; xn; a1; a2; . . . ; anÞ
or more concisely Pðx; aÞ where x and a are vectors in the n-dimensional unit

hypercube. We envision the following realization of Pðx; aÞ:
Pðx; aÞ ¼ Pðx1; a1Þ and Pðx2; a2Þ and . . . and Pðxn; anÞ ð12:9Þ

meaning that the satisfaction of the multivariable predicate relies on the satisfaction

realized for each variable separately. As the variables could come with different

levels of relevance as to the overall satisfaction of the predicates, we represent this

effect by some weights (connections) w1, w2, . . ., wn so that (12.9) can be expressed

in the following form:

Pðx; a;wÞ ¼ ½Pðx1; a1Þ or w1� and ½Pðx2; a2Þ or w2� and . . . and

½Pðxn; anÞ or wn� ð12:10Þ

Taking another look at the above expression and using a notation zi ¼ Pðxi; aiÞ, it
corresponds to a certain AND neuron y ¼ ANDðz;wÞ with the vector of inputs z

being the result of the referential computations done for the logic predicate. Then the

general notation to be used reads as REF(x;w, a). In the notation below, we explicitly

articulate the role of the connections

y ¼ T
n

i¼1
ðREFðxi; aiÞswiÞ ð12:11Þ

In essence, as visualized in Figure 12.4, we may conclude that the reference neuron is

realized as a two-stage construct where first we determine the truth values of the

predicate (with a being treated as a reference point) and then treat these results as the

inputs to the AND neuron.

So far we have used the general term of predicate-based computing not confining

ourselves to any specific nature of the predicate itself. Among a number of available

possibilities of such predicates, we discuss the three of them, which tend to occupy an

important place in logic processing. Those are inclusion, dominance and match

(similarity) predicates. As the names stipulate, the predicates return truth values of

satisfaction of the relationship of inclusion, dominance and similarity of a certain

argument xwith respect to the given reference a. The essence of all these calculations
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is in the determination of the given truth values, and this is done in the carefully

developed logic framework so that the operations retain their semantics and inter-

pretability. What makes our discussion coherent is the fact that the proposed opera-

tions originate from triangular norms. The inclusion operation, as discussed earlier,

denoted by 	 is modeled by an implication ), which is induced by a certain left

continuous t-norm (Pedrycz and Gomide; 1998)

a) b ¼ supfc 2 ½0; 1�jatc � bg; a; b 2 ½0; 1� ð12:12Þ

For instance, for the product the inclusion takes on the form a) b ¼ minð1; b=aÞ.
The intuitive form of this predicate is self-evident: the statement ‘‘x is included in a’’

and modeled as INCLðx; aÞ ¼ x) a comes with the truth value equal to 1 if x is less

or equal to a (which in other words means that x is included in a) and produces lower

truth values once x starts exceeding the truth values of a. Higher values of x (those

above the values of the reference point a) start generating lower truth values of the

predicate. The dominance predicate acts in a dual manner when compared with the

predicate of inclusion. It returns 1 once x dominates a (so that its values exceeds a)

and values below 1 for x lower than the given threshold. The formal model can be

realized as DOMðx; aÞ ¼ a) x. With regard to the reference neuron, the notation is

equivalent to the one being used in the previous case, which is DOM(x;w, a) with the

same meaning of a and w.

The similarity (match) operation is an aggregate of these two, SIMðx; aÞ ¼
INCLðx; aÞ t DOMðx; aÞ, which is appealing from the intuitive standpoint: we say

that x is similar to a if x is included in a and x dominates a. Noticeably, if x ¼ a the

predicate returns 1; if xmoves apart from ‘‘a’’ the truth value of the predicate becomes

reduced. The resulting similarity neuron is denoted by SIM(x; w, a) and reads as

y ¼ T
n

i¼1
ðSIMðxi; aiÞswiÞ ð12:13Þ

The reference operations form an interesting generalization of the threshold opera-

tions. Consider that we are viewing x as a temporal signal (which changes over

time) whose behavior needs to be monitored with respect to some bounds (a and b).

x1

xn

a1

an

AND

REF

Figure 12.4 A schematic view of computing realized by a reference neuron involving two processing

phases (referential computing and aggregation).
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If the signal does not exceed some predefined threshold a then the acceptance signal

should go off. Likewise we require another acceptance mechanism that indicates a

situation where the signal does not go below another threshold value of b. In the case

of fuzzy predicates, the level of acceptance assumes values in the unit interval rather

than being a Boolean variable. Furthermore the strength of acceptance reflects how

much the signal adheres to the assumed thresholds. An example illustrating this

behavior is shown in Figure 12.5. In this particular case, the values of a and b are set

up to 0.6 and 0.5, respectively.

The plots of the referential neurons with two input variables are shown in

Figures 12.6 and 12.7 (axis labels missing in most of them); here we have included

two realizations of the t-norms to illustrate their effects on the nonlinear character-

istics of the processing units.

It is worth noting that by moving the reference point to the origin or the 1-vertex

of the unit hypercube (with all its coordinates being set up to 1), the referential

neuron starts resembling the aggregative neuron. In particular, we have

0 2 4
0

0.5

1

(a)

0 2 4
0

0.5

1

(b)

Figure 12.5 Temporal signal xðtÞ and its acceptance signals (levels of the signals—thick lines)

formed with respect to its lower and upper threshold (a) and (b). The complements of the acceptance

values are then treated as warning signals.

Figure 12.6 Characteristics of the reference neurons for the product (t-norm) and probabilistic sum

(t-conorm). In all cases the connections are set to 0.l and 0.7 with an intent to visualize the effect of the

weights on the relationships produced by the neuron. The point of reference is set to (0.5, 0.5): inclusion

neuron (a), dominance neuron (b), and similarity neuron (c).
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for a¼ 1¼ [ 1 1 1 . . . 1] the inclusion neuron reduces to the AND neuron

for a¼ 0¼ [ 0 0 0 . . . 0] the dominance neuron reduces to the AND neuron

One can draw a loose analogy between some types of the referential neurons and the

two categories of processing units encountered in neurocomputing. The analogy is

based upon the local versus global character of processing realized therein. Percep-

trons come with the global character of processing. Radial basis functions realize a

local character of processing as focused on receptive fields. In the same vein, the

inclusion and dominance neurons are after the global nature of processing whereas

the similarity neuron carries more confined and local processing.

12.3 UNINORM-BASED FUZZY NEURONS

The neurons proposed so far dwell on the use of triangular norms and conorms. Some

other logic operators such as uninorms could be investigated. Those when applied to

the constructs of fuzzy neurons give rise to the construct we can refer to as unin-

eurons. More specifically, we exploit the use of uninorms by combining individual

input xi with some connection wi giving rise to the expression u(xi; wi, gi) with gi
being the neutral point of this uninorm.

12.3.1 Main Classes of Unineurons

Let us introduce two fundamental categories of logic neurons that will be referred to

as and unineurons and or unineurons, and_U and or_U, for short. In case it does not

produce any confusion, we also refer to them as and and or neurons. The underlying

logical character of processing is schematically captured in Figure 12.8. There are x

and g in the y axis and w and g in x axis).

Let us consider two important alternatives.

Figure 12.7 Characteristics of the reference neurons for the Lukasiewicz t-norm and t-conorm (which

are a t b ¼ maxð0; aþ b� 1Þ and a s b ¼ minð1; aþ bÞ). In all cases the connections are set to 0.l and
0.7 with an intent to visualize the effect of the weights. The point of reference is set to (0.5, 0.5):

inclusion neuron (a), and dominance neuron (b), similarity neuron (c).
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12.3.1.1 and Unineurons

The and unineuron considers a collection of inputs x ¼ ½x1; x2; . . . ; xn� and processes

them in the following way:

y ¼ AND Uðx;w; gÞ ð12:14Þ
where

y ¼ T
n

i¼1
ðuðxi;wi; giÞ ð12:15Þ

The name of this class of unineurons, AND_U, is implied by the and type of

aggregation of the individual inputs.

12.3.1.2 or Unineurons

The processing realized by this processing unit

y ¼ OR Uðx;w; gÞ ð12:16Þ
concerns an or-type of aggregation of the partial results produced by the uninorm

combination of the corresponding inputs. Proceeding with the individual inputs of

the neuron, we rewrite (12.16) as follows:

y ¼ S
n

i¼1
ðuðxi; wi; giÞ ð12:17Þ

Each unineuron is endowed with a collection of the parameters (w and g) whose role

is important for learning the networks involving these processing units.

The ‘‘standard’’ or and and neurons that we have introduced in the earlier

sections, are subsumed by the unineurons in the sense that for some selected values

x i x i

w , g i i w , g i iy
and

wi
wi

gi

gi gi

gi

x

t

smax  

max  

y

or

x

t

smin 

min 

Figure 12.8 A schematic view of the logic processing completed by unineurons: (a) and unineuron

(neuron) and (b) or unineuron (neuron). Note the corresponding realizations of the uninorms.
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of the neutral points (elements) we end up with the previous constructs. Indeed, by

choosing (12.16) all entries of g to be equal to 1, g¼ [1 1 . . .1] we obtain the

following expression y ¼ Sni¼1ðuðxi; wi; 1Þ¼ Sni¼1tðxi; wiÞ. The same holds when

using the zero vector of the neutral points g in the and U neuron, g¼ 0. In view

of the original expression (12.15), we now obtain y ¼ Tn
i¼1ðuðxi; wi; 0Þ ¼

Tn
i¼1sðxi; wiÞ that becomes a ‘‘standard’’ and neuron.

12.3.2 Properties and Characteristics of the Unineurons

Given the functionality of the underlying logic operators used in the development of

the logic neurons, they come with interesting functional properties that could be

beneficial when designing networks formed on their basis. We highlight the two

important aspects of the unineurons that become instrumental in the development of

the network architectures.

12.3.2.1 Input–output Characteristics of the Unineurons

The characteristics of the individual neurons are inherently nonlinear where the form

of the nonlinearity depends upon specific t-norms and co-norms involved. To

illustrate this, we show some pertinent plots in the case of n ¼ 2; see Figures 12.9

and 12.10.

The nonlinear character of input–output dependencies shows up very clearly.

The connections and neutral points impact the resulting characteristics of the neurons

in a direct manner. Any changes of their values affect the relationships in a visible

way. The plasticity that comes with the adjustable values of w and g are essential to

the learning capabilities of the logic neurons.

In the interpretation of the neurons, we start with the realization of the uninorm

that guides the processing of the level of the individual inputs. For the and neuron, let

us consider the expression uðx;w; gÞ. Once the learning has been completed, we end

up with the optimized and fixed values of the connection (w) and the neutral point (g)

(see notation Chapter 5). We distinguish between the two cases; refer also to

Figure 12.11.

Figure 12.9 Input–output characteristics of and unineurons: t-norm: product, t-conorm: probabilistic

sum; (a) w¼ [0.05 0.30] g¼ [0.50 0.45] (b) w¼ [0.05 0.50] g¼ [0.1 0.8] (c) w¼ [0.8 0.60] g¼ [0.5 0.5].
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(1) w � g. This corresponds to the situation where smaller values of x (those

lower than g) are suppressed by being combined by some t-norm with the

connection, xtw � x. The values that are higher than the neutral point are

combined by the max operation maxðx;wÞ that returns the original value of
the input.

(2) For the values of w > g, we encounter a different situation. When x < g the

max operation becomes activated, and this yields maxðx;wÞ ¼ w. For the

values of x exceeding the neutral point, computing involves the expression

sðx;wÞ � x.

The same effect of a fairly different processing occurs when dealing with the or

neuron (see Fig. 12.12). If w � g then the suppression of the input x takes place: if

x < g we obtain the expression tðx;wÞ < x. On the contrary, minðx;wÞ ¼ w < x for

x � g.

Figure 12.10 Input–output characteristics of OR unineurons: t-norm and t-conorm: Lukasiewicz

connectives, (a) w¼ [0.8 0.5] g¼ [0.30 0.05] (b) w¼ [0.2 0.6] g¼ [0.5 0.4] (c) w¼ [0.6 0.8]

g¼ [0.4 0.1].
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0 0.5 1 
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s-conorm  
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Figure 12.11 Processing at the level of the individual inputs of the and neuron; note two cases of

the values of w considered with respect to the neutral point. t-norm and t-conorm: product and

probabilistic sum.
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It is also worth noting that when g tends to 0, the computing at the level of the

synapse (input) reduces to the model we know in the ‘‘standard’’ logic neurons.

12.3.2.2 The Coverage Property of the Unineuron-based Mappings

When looking at the operation realized at the level of the individual inputs, it is

interesting to note that the expression uðxi;wi; giÞ produces result that could be either
lower or higher than xi depending upon the values of the parameters. This stands in a

sharp contrast with the construct used in previous and and or neurons where we can

only assure one of the following relationships: xitwi < xi and xiswi > xi regardless of

the values of the connection wi. In this sense, the uninorm offers a genuine advantage

over the previously used and and or neurons (which are the t- norms and conorms).

We will take full advantage of this when learning about the networks built with the

use of and unineurons and or unineurons. To emphasize the fact that the mapping in

of the ‘‘onto’’ character, we plot the expression by treating xi to be fixed and

partitioning the regions of (wi, gi) into two subregions depending upon the satisfac-

tion of the inequality uðxi;wi; giÞ > xi. We note that there are some regions of the

values assumed by the two parameters that make this relationship to be satisfactory;

refer to Figures 12.13 and 12.14.

Subsequently, we could easily determine the regions of satisfaction of the

predicate by solving the corresponding inequalities.

12.4 ARCHITECTURES OF LOGIC NETWORKS

The logic neurons (aggregative and referential) can serve as building blocks of

more comprehensive and functionally appealing architectures. The diversity of the

topologies one can construct with the aid of the proposed neurons is surprisingly

high. This architectural multiplicity is important from the application point of view

t-norm 

s-conorm 

Min 

w

x

g

Min 

a

a

b

b

0 0.5 1
0

0.5

1

10 x

Figure 12.12 Processing at the level of the individual inputs of the and neuron; note two cases of the

values of w considered with respect to the neutral point. t-norm and t-conorm: minimum and maximum.
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as we can fully reflect the nature of the problem in a flexible manner. It is essential to

capture the problem in a logic format and then set up the logic skeleton—conceptual

blueprint (by forming the and finally refine it parametrically through a thorough

optimization of the connections). Throughout the development process we are

positioned quite comfortably by monitoring the optimization of the network as

well as interpreting its meaning (the issue that will be discussed later on).

Figure 12.13 Plots of the Boolean predicate Pðwi; giÞ ¼ f1; if ðwi; giÞ > xi and 0, otherwise}

uninorm described by (1) xi ¼ 0:2 where (a) t-norm and conorm: product and probabilistic sum, (b) mini-

mum and maximum.

Figure 12.14 Plot of the Boolean predicate Pðwi; giÞ ¼ f1; ifðwi; giÞ > xi and 0, otherwise} uninorm

described by (2) and xi ¼ 0:4 where (a) t-norm and conorm: product and probabilistic sum, (b)

minimum and maximum.
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12.4.1 Logic Processor in the Processing of Fuzzy Logic
Functions: A Canonical Realization

The typical logic network that is at the center of logic processing originates from the

two-valued logic and comes in the form of the famous Shannon theorem of decom-

position of Boolean functions. Let us recall that any Boolean function

f0; 1gn ! f0; 1g can be represented as a logic sum of its corresponding miniterms

or a logic product of maxterms. By a minterm of n logic variables x1; x2; . . . ; xn we
mean a logic product involving all these variables either in direct or complemented

form. Having ‘‘n’’ variables we end up with 2n minterms starting from the one

involving all complemented variables and ending up at the logic product with all

direct variables. Likewise by a maxterm we mean a logic sum of all variables or their

complements. Now in virtue of the decomposition theorem, we note that the first

representation scheme involves a two-layer network where the first layer consists of

and gates whose outputs are combined in a single or gate. The converse topology

occurs for the second decomposition mode: there is a single layer of or gates

followed by a single and gate aggregating or-wise all partial results.

The proposed network (referred here as a logic processor) generalizes this

concept as shown in Figure 12.15. The or–and mode of the logic processor comes

with the two types of aggregative neurons being swapped between the layers. Here

the first (hidden) layer is composed of the or neuron and is followed by the output

realized by means of the and neuron.

The logic neurons generalize digital gates. The design of the network (viz. any

fuzzy function) is realized through learning. If we confine ourselves to f0; 1g values,
the network’s learning becomes an alternative to a standard digital design, especially

a minimization of logic functions. The logic processor translates into a compound

logic statement (we skip the connections of the neurons to underline the underlying

logic content of the statement)

if (input1 and . . . and inputj) or (inputd and . . . and inputf) then output

The logic processor’s topology (and underlying interpretation) is standard. Two

LPs can vary in terms of the number of and neurons and their connections, but the

format of the resulting logic expression is quite uniform (as a sum of generalized

minterms).

and
neurons 

or
neuron 

Figure 12.15 A topology of the logic processor in its and–or mode.
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EXAMPLE 12.1

Consider a simple fuzzy neural network network in which the hidden layer includes two and

neurons whose outputs are combined through a single or neuron located in the output layer.

The connections of the first and neuron are equal to 0.3 and 0.7. For the second and neuron we

have the values of the connections equal to 0.8 and 0.2. The connections of the or neuron are

equal to 0.5 and 0.7, respectively. The input–output characteristics of the network are

illustrated in Figure 12.16; to demonstrate the flexibility of the architecture, we included

several combinations of the connections as well as used alternative realizations of the

triangular norms and conorms.

Figure 12.16 Plots of the characteristics of the fuzzy neural network: output of the two and neurons

and the output of the network (from left to right) for different realizations of the logic operators: (a) min

and max, (b) product and probabilistic sum, and (c) Lukasiewicz logic operators.
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The resulting networks exhibit a significant diversity in terms of the resulting nonlinear

dependencies. More importantly, we note that by choosing certain logic connectives (triangular

norms) and adjusting the values of the connections, we could substantially affect the behavior

(input-output characteristics) of the corresponding network. This plasticity becomes an important

feature that plays a paramount role in the overall learning process.

12.4.2 Fuzzy Neural Networks with Feedback Loops

The architectures of fuzzy neural networks discussed so far are concerned with some

static mappings between unit hypercubes, ½0; 1�n ! ½0; 1�m. The dynamics of systems

modeled in a logicmanner can be captured by introducing some feedback loops into the

structures. Some examples of the networks with the feedback loops are illustrated in

Figure 17. They are based on the logic processor we have already studied. In the first

case, the feedback loop is built between the output layer and the inputs of the and

neurons, Figure 17(a). The form of the feedback (which could be either positive—

excitatory or negative—inhibitory) is realized by taking the original signal (thus

forming an excitatory loop—higher values of input ‘‘excite’’ the corresponding neuron)

or its complement (in which casewe end upwith the inhibitory effect—higher values of

the signal suppress theoutput of the correspondingneuron).The strengthof the feedback

loop ismodeled by the numeric of the connection. To visualize the effect of inhibition or

excitation, we use the dot notation as illustrated in Figure 17(b). The small dot

corresponds to the complement of the original variable. Another example of the feed-

back loops shown in Figure 17(c) embraces both layers of the neurons of the network.

The semantics of such networks is straightforward. Any prior knowledge is

essential in forming a structure of the network itself. The problem can be directly

mapped onto the network. As an illustration, let us consider a concise example.

EXAMPLE 12.2

We are concerned with two variables (factors) x and y assuming values in the unit interval. The

variables are associated with the two nodes of the network. The nodes interact and because of

this, they change the values of the variables (x and y) associated with them. The value of x in the

current time instant (k) depends upon its previous value, that is, xðk � 1Þ, and the value yðkÞ
present in the second node. The strength of these relationships is expressed by the values of the

corresponding connections. The ensuing logic expression of this node reads as

xðkÞ ¼ andðw; ½xðk � 1Þyðk � 1Þ�Þ ð12:18Þ

where w stands for the two-argument vector of the connections of the and neuron. The

functioning of the second node is captured by the following logic statement

the value of y in the current time instant ðkÞ depends upon its ‘‘history’’

in the two previous steps (yðk � 1Þ and yðk � 2Þ) and is inhibited by

the value produced by the second node xðk � 1Þ.

This expression translates into the and neuron governed by the expression

yðkÞ ¼ And ðv; ½yðk � 1Þyðk � 2Þxðk � 1Þ�Þ ð12:19Þ
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where xðk � 1Þ ¼ 1� xðk � 1Þ. The three-element vector of the connections is denoted by v. By

putting these two nodes (neurons) together (Fig. 12.18), we form a fuzzy neural network with

feedback. The numeric values of the vectors of the connections w and v are typically adjusted

during the learning process assuming that we are provided with some experimental data.

12.5 THE DEVELOPMENT MECHANISMS
OF THE FUZZY NEURAL NETWORKS

The learning of fuzzy neural networks is concerned with two fundamental develop-

ment facets, which are structural learning and parametric learning. Typically, we start

and

neurons  

or

neuron  

z
w

z

1

w

and  

z
w

z

1

w

and

(b)(a)

and
neurons 

or 
neuron 

(c)

Figure 12.17 Fuzzy neural networks with feedback loops: (a) feedback between output and input

layer, (b) notation used in describing excitatory and inhibitory feedback mechanisms along with the

underlying computing; t-norm: product, and (c) feedback loop between output layer and the input layer

as well as itself.
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with the structural mode of learning within which we develop a topology (architecture)

of the network and select specific t- norms and t-conorms. For instance, in the network

realizing a generalized logicmapping, (Fig. 12.15) the structure of the network is set up

by selecting the type of the network (or–and or and–or) and then choosing a number of

and (or) neurons in the hidden layer. For the networks involving referential neurons,

we encounter a far higher level of flexibility, and in a number of cases the use of the

prior knowledge would help immensely in setting up the architecture of the network.

Once the topology has been fully defined, we concentrate on parametric learning by

adjusting the numeric values of the connections of the neurons.

12.5.1 The Key Design Phases

The development of the network is usually carried out in an iterative fashion:We start

with a certain topology of the network, optimize it, and assess its performance. If not

acceptable, the network has to be revised, for example, by expanding its structure (in

which case we add more neurons or include more layers) and adjusting the connec-

tions. This iterative process is repeated until the formulated objectives have beenmet.

An overall general view of the development process illustrated in Figure 12.19

highlights its key phases along with the use of data and prior knowledge.

The typical objectives one encounters in the development of fuzzy neural net-

works deal with their accuracy, interpretability, and stability. When dealing with the

accuracy, it is quantified in terms of some performance index expressing a distance

between the output of the network and the corresponding experimental data. When it

comes to the network interpretability, we are concerned about the size of the network

(say, the number of neurons and connections) leading to a concise description of the

x y

and and

Figure 12.18 A two-node fuzzy neural network with feedback loops.

Structure  
(topology) 

Domain  
knowledge  

Data  

Parameters  
(connections) 

Validation

Accuracy  
interpretability

stability  

Figure 12.19 An iterative development process of fuzzy neural networks.
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data. In this setting, smaller sizes of the networks are preferred. Ultimately, any fuzzy

neural network could be easily translated into a collection of rules. Thus more

compact form of the network results in the smaller set of rules that are more readable

(interpretable). Finally, the stability of the network is associated with the underlying

collection of the rules where we would like to see the key relationships revealed by

the network to remain stable.

There are several fundamental tools being used in the structural and parametric

optimization of the networks. At the structural end, we emphasize the role being

played by the techniques of global optimization such as evolutionary methods

(genetic algorithms, genetic programming, and evolutionary strategies) and other

biologically inspired techniques including particle swarm optimization (PSO), ant

colonies, and others. Although these could be also used for parametric optimization,

here numerous variants of gradient-based techniques are worth considering.

In the forthcoming discussion, we show that the transparency of the logic

neurons plays a pivotal role in the design of the network as we can exploit the two

important sources of available knowledge, which is a collection of hints, general

observations as to the nature of the underlying logic mapping.

12.5.2 Gradient-based Learning Schemes
for the Networks

This mode of supervised learning relies on a collection of some experimental data

being available about the process or phenomenon we are interested in modeling with

the use of the network. Let us assume, which is a standard learning scenario, that

the data are organized into a family of input-output pairs fxðkÞ; targetðkÞg;
k ¼ 1; 2; . . . ;N, where the successive inputs xðkÞ and outputs (targetðkÞ) are ele-

ments of the unit hypercubes ½0; 1�n and ½0; 1�m, respectively. The learning is guided

by the values of some performance index Q whose values have to be minimized by

adjusting the values of the connections. These adjustments are typically completed

through some iterative process in which the updates of the connections are governed

by the gradient-based scheme that could be schematically described in the form

Connectionðiterþ 1Þ ¼ connectionðiterÞ � arconnectionðiterÞQ ð12:20Þ

where a is a positive learning rate and rconnectionðiterÞQ stands for the gradient of Q

determined with respect to the connections. Successive iterations are denoted here by

‘‘iter’’ and ‘‘iterþ1.’’ The above notation is very general in the sense that the term

connection comes as a concatenation of all the connections existing in the networks.

It is also meant that the resulting values of the connections are retained in the unit

interval that could be easily accomplished by clipping the results to 0 or 1 of the

updates if at any iteration they locate themselves outside the required range. We can

express this constraint in an explicit way by rewriting (12.20) as follows:

hconnectionðiterÞ � arconnectionðiterÞQi where h:i denotes the truncation operation

such as h:ai ¼ 1; if a > 1:0; 0; if a < 0; and a, otherwise. The iterations
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governed by (12.18) start with some randomly initialized values of the connections.

This helps us avoid any potential bias in the learning as through this type of

initialization no particular preference or bias are expressed.

Following this global view of the optimization expressed by (12.18), we next

move on with its details. At this step we have to specify the architecture of the

network and identify the form of t-norms and t-conorms being used here. Let us

develop a detailed learning scheme for the network shown in Figure 12.17 that

implements a fuzzy function with ‘‘n’’ inputs and a single output, which is a mapping

from ½0; 1�n to [0, 1]. The learning is carried out in the supervised mode with the

input–output data fðxðkÞ; targetðkÞg, k ¼ 1; 2; . . . ;N. The performance index Q is

expressed as a sum of squared errors

Q ¼
X

N

k¼1
ðyðkÞ � targetðkÞÞ2 ð12:21Þ

where yðkÞ is the output of the network, yðkÞ ¼ NNðxðkÞÞ corresponding to the input
xðkÞ. The detailed computing of the derivatives could be easily traced when adhering

to the notation presented in Figure 12.20.

Let us consider an on-line mode of learning meaning that the updates of the

connections are made after the presentation of each pair of input–output data. Given

this, we could simplify the notation by dropping the index of the data in the training

set and simply considering the pair in the form (x, target). For the connections of the

or neuron in the output layer we have the following expression for the derivative

taken with respect to the connections of this neuron.

@Q

@wi

¼ ðy� targetÞ @y
@wi

ð12:22Þ

@y

@wi

¼ @

@wi

S
h

j¼1
ðwjtzjÞ

	 


¼ @

@wi

AisðwitziÞ
� �

ð12:23Þ
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xj
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vij

Target  

Figure 12.20 Computing the gradient of Q for the connections of the fuzzy neural network- notational

details.
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where

Ai ¼ S
h

j¼1
j6¼i

ðwjtzjÞ ð12:24Þ

In the sequel, we compute the derivative for the connections of the and neurons; see

again Figure 12.18 for the pertinent notation. Here we obtain

@Q

@vij
¼ ðy� targetÞ @y

@vij
ð12:25Þ

@y

@vij
¼ @y

@zi

@zi
@vij

ð12:26Þ

In the sequel one derives

@y

@zi
¼ @

@zi
S
h

j¼1
ðwjtzjÞ

	 


¼ @

@wi

AisðwitziÞ
� �

ð12:27Þ

@zi
@vij
¼ @

@vij
T
n

l¼1
ðvilszlÞ

	 


¼ @

@vij
BijtðvijszjÞ
h i

ð12:28Þ

with

Bij ¼ T
n

l¼1
l6¼i

ðvilszlÞ ð12:29Þ

At this point, further computing of the gradient becomes possible once we have

specified the corresponding t- norm and t-conorm. Thus, as an illustration, let us

confine ourselves to the product (t-norm) and probabilistic sum (t-conorm). The

above formulas read as follows:

@

@wi

½AisðwitziÞ� ¼
@

@wi

ðAi þ wizi � AiwiziÞ ¼ zið1� AiÞ ð12:30Þ

@zi
@vij
¼ @

@vij
BijtðvijszjÞ
h i

¼ @

@vij
Bijðvij þ zj�vijzjÞ
h i

¼ Bijð1� zjÞ ð12:31Þ

An interesting case arises when dealing with the minimum and maximum operators.

Their derivatives can be formulated in the form

minðx;wÞ ¼
w; if x � w

x; if x > w

(

ð12:32Þ

@minðx;wÞ
@w

¼
1; if x � w

0; if x > w

(

ð12:33Þ

In this way we have addressed a contentious issue of the lack of differentiability of

these two functions (formally, the left- and right-hand side derivatives are different).

The far more serious problem is completely different and relates to regions of

arguments ðwÞ for which the derivative attains zero. These regions could easily

lead to a complete stalling of the learning algorithm when the overall gradient
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becomes equal to zero and subsequently no further move in the space of connections

is possible. To avoid this effect, we redefine the derivative by admitting intermediate

values between 0 and 1 that represent a truth value of the satisfaction of the predicate

‘‘included in.’’ Let us consider the following expression:

@minðx;wÞ
@w

¼k w 	 x k¼ w) x ð12:34Þ

where the term k w 	 x k denotes the degree of inclusion of w in x, which can be

quantified with the use of some multivalued implication; refer to the previous

discussion. Similarly, we can generalize the derivative of the maximum operation

@maxðx;wÞ
@w

¼k x 	 w k¼ x) w ð12:35Þ

In this sense, we have arrived at the continuous (generalized) version of the derivative

of the minimum andmaximum by showing how truth values could be efficiently used

here.

Considering the Lukasiewicz logic connectives, their derivatives are computed

as follows:

@maxð0; xþ w� 1Þ
@w

¼
0; if wþ x� 1 � 0

1; otherwise

(

ð12:36Þ

@minð1; xþ wÞ
@w

¼
0; if wþ x � 0

1; otherwise

(

ð12:37Þ

and afterward used in the updates of the values of the connections (12.20) and (12.24).

When carrying out parametric learning, there are two general development

modes worth discussing

(a) Successive expansions. In this development mode, we start with a small,

compact network composed of a minimal number of neurons and succes-

sively increase its size (say, by expanding the layer of the and neurons when

dealing with the architecture illustrated in Fig. 12.15) if the minimized

performance index does not meet the predefined value Q*. If the condition

Q < Q� is not met, increase the size of the network.

(b) Successive reduction. Herewe startwith anetworkof a large size, carry out its

learning, and then by inspecting thevalues of the optimized connections, and if

possiblewe complete its reduction. The essence of this developmentmode is to

admit the use of the excessively large architecture with an intent of its further

pruning. The details of the pruning procedure are concerned with the elimina-

tion of the ‘‘weakest’’ connections (where the strength of the connection is

expressed by means of some well-defined criteria).

The advantage of the successive reduction is that the network after pruning may

require further learning, but no further reduction of the architecture may be required

afterward. As we are concerned with the (excessively) large size of the network to

start with, the learning could be more demanding in terms of the learning time
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(number of iterations of the learning algorithm). On the contrary, though the learning

effort required in successive expansions of the networks is lower (as we are con-

cerned with the far smaller topology), yet we may go through a series of expansions

of the networks that are very likely as it is not known in advance how large the

network should be.

Note that the networks that are not interpretable cannot take advantage of the

prior domain knowledge as we do not have any effective mechanism to ‘‘download’’

these knowledge hints onto the structure of the network. To avoid any bias in the

learning process that might have occurred under these circumstances, the learning is

started from a random configuration of the values of the connections of the network.

This start point of the learning does not offer any possible advantages. Even if the

prior domain knowledge were available, it cannot be effectively used in the learning

process that has to be started from scratch.

12.6 INTERPRETATION OF THE FUZZY
NEURAL NETWORKS

Each logic neuron comes with well-defined semantics that is directly associated with

the underlying logic. or neurons realize a weighted or combination of their inputs.

The higher the values of the connection, the more essential becomes the correspond-

ing inputs. For the and neuron the converse relationship holds: lower values of the

connections imply higher relevance of the corresponding inputs.

While these two arrangements are taken into consideration, we can generate a

series of rules generated from the network. We start with the highest value of the or

connection and then translate the corresponding and neuron into the and combination

of the inputs. Again the respective inputs are organized according to their relevance

proceeding with the lowest value of the corresponding connection.

EXAMPLE 12.3

Let us consider the fuzzy neural network shown in Figure 12.21. The rules can be immediately

enumerated from this structure. In addition, we can order them by listing the most dominant

rules first. This ordering refers to the relevance of the rules and the importance of each

condition standing there. We start from the output (or) node and enumerate the inputs in the

order implied by the values of the connections of the neuron. We get

if z2j0:9

or

z1j04

then y

where the subscripts (0.9 and 0.4, respectively) denote the confidence level we associate with

the corresponding inputs of the neuron.

Next we expand the terms z1 and z2 using the original inputs x1 and x2; in this case we

report the inputs in the increasing order of the connections starting from the lowest one. Recall

that the connections of the and neuron realize a masking effect; the higher the value of the
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connection, the stronger themasking effect. In particular, if the connection is equal to 1, we can

drop the associated input as it has been completely masked (eliminated).

Following this interpretation guideline, we translate the network into the following rules:

if ½x2j0:7�0:9
or

½x2j0:1 and x1j0:3�0:4
then y

Note that the numbers associated with the individual rules and their conditions serve as

annotations (quantifications) of the corresponding components.

Although the above guidelines are useful in a systematic enumeration of the rules residing

within the network (and owing to the logical underpinnings of its architecture), the interpreta-

tion of larger networks still may require more attention and substantially higher effort. It would

be beneficial to eliminate the most irrelevant (insignificant) segments of the network before

proceeding with the enumeration of the rules. Let us introduce two schemes supporting a

methodical reduction of the network. In the first one, we retain the most significant connec-

tions. In the second method, we convert the connections of the networks into their Boolean

(two-valued) counterparts.

12.6.1 Retention of the Most Significant Connections

In light of the comments about the relevance of the connections, depending on the

type of the neuron, we reduce the weakest connections to 0 or 1. This is done by

introducing some threshold mappings with the values of thresholds (l and m,

respectively) coming from the unit interval. For the or neuron, we consider the

following reduction of the connections fl : ½0; 1� ! ½l; 1� [ f0g such that

flðwÞ ¼
w; if w � l

0; if w < l

�

ð12:38Þ

Hence any connection whose value is lower than some predefined threshold l

becomes reduced to zero (therefore the corresponding input gets fully eliminated)

whereas the remaining connections are left intact.

and or
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Figure 12.21 An example fuzzy neural network.
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For the and neuron, the transformation cm : ½0; 1� ! ½0;m� [ f1g reads as

cmðwÞ ¼
1; if w > m

w; if w � m

�

ð12:39Þ

The connections with values greater thanm are eliminated bymaking them equal to 1.

12.6.2 Conversion of the Fuzzy Network
to the Boolean Version

The connections are converted into the Boolean values. We use some threshold

values l and m. For the or neuron, if the connections whose values are not lower than

the threshold are elevated to 1, the remaining ones are reduced to 0. For the and

neuron, the binarization of the connections is realized as follows: if the connection is

higher than the threshold, it is made equal to 1, otherwise we make it equal to 0

meaning that the corresponding input is fully relevant. More formally, the transfor-

mations read as follows:

or neuron

wl : ½0; 1� ! f0; 1g

wlðwÞ ¼
1; if w � l

0; if w < l

�

ð12:40Þ

and neuron

cm : ½0; 1� ! f0; 1g

cmðwÞ ¼
1; if w > m

0; if w � m

�

ð12:41Þ

The choice of the threshold values implies a certain number of connections being

reduced. Higher values of l and lower values of m give rise to more compact form of

the resulting network. Although being more readable and interpretable, the modified

networks come with the lower approximation capabilities. Consider the data D

(denoting a training or testing data set) being originally used in the development of

the network. The performance index of the reduced network is typically worse than the

originally developed network. The increase in the values of the performance index can

be sought as a sound indicator guiding a process of forming a sound balance between

the improvement in the transparency (achieved reduction) and accuracy deterioration.

For the referential neurons y ¼ REFðx;w; aÞ the pruning mechanisms may be

applied to the and neuron combining the partial results of referential computing as

well as the points of reference. Considering that we are concerned with the and

neurons performing the aggregation, the connections higher than the assumed

threshold are practically eliminated from the computing. Apparently we have

ðw~isxiÞtA � 1t ¼ A, where A denotes the result of computing realized by the neuron

for the rest of its inputs. The reference point ai requires different treatment depending
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upon the type of the specific referential operation. For the inclusion operation,

INCLðx; aiÞ we can admit the threshold operation to come in the form

INCL�ðx; aiÞ ¼
INCLðx; aiÞ; if ai � m

1� x; if ai > m

�

ð12:42Þ

with m being some fixed threshold value. In other words, we consider that

INCLðx; aiÞ is approximated by the complement of x (where this approximation is

implied by the interpretational feasibility rather than being dictated by any formal

optimization problem), INCLðx; aiÞ � 1� x. For the dominance neuron we have the

expression for the respective binary version of DOM, DOM�

DOM�ðx; aiÞ ¼
DOMðx; aiÞ; if ai � m

x; if ai > m

�

ð12:43Þ

The connection set up to 1 is deemed essential. If we accept a single threshold level of

0.5 and apply this consistently to all the connections of the network and set up the

threshold 0.1 for the inclusion neuron, the statement

y ¼ ½x1 included in 0:6� or 0:2 and ½x2 included in 0:9� or 0:7

translates into a concise (yet approximate) version assuming the form of the follow-

ing logic expression:

y ¼ x1 included in 0:6

The choice of the threshold value could be a subject of a separate optimization phase,

but we can also admit some arbitrary values especially if we are focused on the

interpretation issues.

EXAMPLE 12.4

Considering the network shown in Figure 12.21, we can analyze and quantify the tradeoff

between the accuracy of the network and its pruned version in which a number of the

connections have been eliminated. As we are not provided with the original data and the

network is very small, we can use the following integral V expressing an absolute difference

between the output of the original network (NN) and its reduced version (rNN) that is regarded

as a function of l and m:

Vðl;mÞ ¼
ð

1

0

ð

1

0

jNNðxÞ � rNNðxÞjdx ð12:44Þ

The changes of V exhibit a finite number of changes that is understood as we have a finite

number of connections so the changes in V occur only when the threshold values impact the

modifications of the weights. Based on the reported values of V, we can adjust the values of the

thresholds. Another way of presenting the tradeoffs between accuracy and transparency is

given in the form of the l�m graph where each point in the graph comes with the values of V

and the number of the eliminated connections. When counting the number of such connec-

tions, we should become aware that the reduction of a certain connection of the or neuron

triggers the reduction of all connections of the associated and neurons.
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The computing of the number of connections of the network being eliminated from

the architecture requires attention. Observe that once a certain connection of the neuron at

the layer close to the output has been eliminated, this implies that effectively the connec-

tions of the neurons located in the layers close to the input and therefore affected by the

removal of the neuron under discussion. The essence of this way of counting is outlined in

Figure 12.22.

We may offer another view of the structural reduction of the network (Fig. 12.23). Let us

consider a system of coordinates of the modified (increased) performance index and the

number of the eliminated connections. The points shown in the graph are associated with

the different configurations of the networks and help visualize the main trend in the interpret-

ability of the network.

Figure 12.22 Counting an effective reduction in the number of connections of the fuzzy neural

network resulting from the elimination of the connections of the neurons and its rippling effect. The

eliminated connections are marked in light color.

m 

l

Performance of 
reduced network, 
number of eliminated 
nodes,
and connections

Figure 12.23 A global view of the structural reduction of the network and the associated performance

of the reduced network. Each point in the graph corresponds to a certain configuration of the network

produced for some specific values of l and m.
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12.7 FROM FUZZY LOGIC NETWORKS TO BOOLEAN
FUNCTIONS AND THEIR MINIMIZATION THROUGH
LEARNING

and and or neurons generalize (subsume) and and or logic gates encountered in the

realization of digital systems. This observation offers an interesting way of building

digital circuits through learning the corresponding fuzzy network and its further

refinement. The Boolean input-output pairs fðxðkÞ; targetðkÞÞg; k ¼ 1; 2; . . . ;N
where xðkÞ 2 f0; 1gn, targetðkÞ 2 f0; 1g are used for training the fuzzy neural net-

work composed of a single layer of and neurons with a layer of or neurons located in

the output layer. As the logic functions also involve the complements of the original

variables, we include those as the inputs of the fuzzy neural network (Fig. 12.24). The

learning uses all Boolean data being available. The choice of the number of and

neuron is realized experimentally by accepting one of the development strategies

(viz. successive expansions or reduction).

Once the connections have been reduced to their Boolean versions, we end up

with the network representing a reduced (simplified) version of the Boolean function.

The simplification of the Boolean function (which is typically done with the use of

techniques such as Karnaugh maps, K-maps, and algebraic transformation) is

completed here through learning, and this offers an attractive alternative to the

existing methods.

So far we have discussed a single-output logic mapping from ½0; 1�n to [0,1];

these could be easily extended to the multivariable Boolean functions, that is,

½0; 1�n ! ½0; 1�m.

and or 

y

x1

x2

xn

x1

x2

xn

Figure 12.24 The fuzzy logic network used in the learning of the Boolean function; note

complemented inputs (denoted by an overbar symbol) entering the network leading to 2n inputs.
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12.8 INTERFACING THE FUZZY NEURAL NETWORK

Trying to link this logic architecture to the experimental data where the variables are

undoubtedly associated with the nature of the problem, we have to consider a certain

conceptual interface between the physical system and the logic-driven model of the

fuzzy neural network. The main development guidelines we discussed in the context

of fuzzy modeling are fully applicable here. For each of the continuous variables in

the problem, both input and output ones, we define a finite collection of semantically

meaningful information granules—fuzzy sets. The discrete variables assuming a

finite number of discrete values are coded using the one-out-n coding scheme. For the

continuous output variable we consider using a finite family of fuzzy sets with

triangular membership functions. The reason behind their use here comes from their

capabilities of lossless reconstruction.

By transforming the original experimental data through the interfaces con-

structed for the input and output space, we arrive at the vectors of inputs and outputs

that can be treated as elements in the unit hypercube and the fuzzy logic network is

aimed at the approximation of logic-based relationships. At this stage of the de-

velopment of the network we are provided with the pairs of the elements located in

the input [0,1]n and output [0,1]m hypercubes, that is, xðkÞ and yðkÞ (Fig. 12.25).
Given the topology of the fuzzy neural network, each and neuron produces a

generalized Cartesian product of the fuzzy sets of the interfaces. In the sequel, these

regions in the multidimensional space are combined or-wise (with the additional

calibration provided by the connections of the or neuron). An illustration of this

geometry of the rules in the case of two input variables (x and z) is shown in

orand 
A1, A 2 ,…, Ac

x

z

B1, B 2 ,…, Bm

C1, C 2 ,…,Cr

D1, D 2

Figure 12.25 An overall architecture visualizing the logic core (fuzzy neural network) and the

interfaces composed of families of fuzzy sets formed for the input and output variables.
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Figure 12.26. Here we have 6 and 3 fuzzy sets defined in the corresponding variables.

By a straightforward inspection, we can read the following collection of the rules:

If (A4 and B2) or (A2 and B1) or (A1 and B3) then C

12.9 INTERPRETATION ASPECTS—A REFINEMENT
OF INDUCED RULE-BASED SYSTEM

The fuzzy neural network with the inputs and outputs being associated with the

collections of fuzzy sets directly translates into a collection of rules. As an illustra-

tion, let us consider the following example.

EXAMPLE 12.5

The network portrayed in Figure 12.27 has two inputs (x and z) for which we have defined three

and two fuzzy sets (denoted here by A1, A2, A3 and B1 and B2, respectively). There is one fuzzy

set defined in the output space. Considering the connections of the network, we can incorporate

them into the enumeration of the rules

The rules are ordered with respect to their relevance implied by the connections of the OR

neuron

If ½A1j0:1 and B1j0:4�j1:0
or

½A2j0:05 and B2j0:5�j0:9
or

½A3j0:1 and B1j0:2j0:6
then C

x

z

or

and

B1 B2 B3

A1

A2

A3

A4

A5

A6

Figure 12.26 The geometry of the rules supported by the fuzzy neural network.
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Furthermore the values of the connections of the and neuron impact the original fuzzy sets

standing in the interface. The expression governing the processing of the and neuron, that is,

AðxÞswi, can be interpreted by ‘‘absorbing’’ this connection wi into a new membership

function. Denote this modified fuzzy set by A�,

A�ðxÞ ¼ xiswi ¼ AðxÞswi ð12:45Þ

refer also to Figure 12.28.

Given the nature of the t-conorm, A� is less specific than the original fuzzy set occurring

in the rule. In this setting the connections come with an interesting interpretation: their higher

values make the membership function of the associated fuzzy set closer to 1. In the limit case

when the connection is equal to 1, the associated fuzzy set becomes ‘‘masked’’ (eliminated)

and thus the overall rule gains higher generality. Practically, in this way the condition of the

rule has been dropped. Hence by carrying out the same absorption process for each condition in

the rule (where the intensity of the modification, viz. masking) we arrive at the network whose

connections have been eliminated. The plots of the modified fuzzy sets for selected values of

the connection are included in Figure 12.29.

In general, given the underlying topology of the network, the rules induced by the fuzzy

neural network can be organized in the following way.

If Ai and Bj and Cl and . . . Zk then Ws

or

. . .

with the corresponding quantification of the individual conditions (say, Ai,Cl, etc. ) of the rules

and their conclusions ðWsÞ.

A

x

x i =A(x)

wi

and

Figure 12.28 Transformation of fuzzy set A of interface through the connection wi and leading to the

modified fuzzy set A�.

x

z

A1   A 2   A 3

B1   B 2

and

or  C

1.0  

0.9

0.6

0.1  

0.4

0.05

0.5  

0.1

0.2

Figure 12.27 An example of fuzzy neural network equipped with the input and output interfaces.
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Considering the geometry of the rules implied by the topology of the network, we note that the

condition of each rule involves only a single fuzzy set defined in the corresponding input. In

some cases it would be convenient to have rules whose conditions are formed by forming a

union of some fuzzy sets, say Ai and Aiþ1, and so on. In the fuzzy neural networks studied so

far, there are no particular provisions supporting this format of the rules. To enhance the

functionality of the network along this line, we introduce some additional or neurons

associated with each input variable as illustrated in Figure 12.30.

These additional or neurons deliver an option of forming a union of several information

granules at the condition level and thus offer an increased generality of the corresponding rule.

0 5 10 
0

0.5 

1

i

wi =0.7  

w  =0.3  
i

wi =0.7  

w  =0.3  

0 5 10
0

0.5 

1

Figure 12.29 An example of the Gaussian fuzzy set (being the original fuzzy set of the interface) and

its logic combination (generalization) completed with the aid of the connection wi with two selected

values of 0.3 and 0.7: (a) t-conorm specified as the probabilistic sum, (b) t-conorm specified as the

Lukasiewicz or connective.

or and 
A1, A 2 ,… Ac

x

z

B1, B 2 ,… Bm

C1, C 2 ,…Cr

D1, D 2

or 

Figure 12.30 An augmented architecture of the fuzzy neural network with additional or neurons used

to express potential generalization effect present in the input space.
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Subsequently, the geometry of the rules generated by the network fully reflects this phenom-

enon. In this example (Fig. 12.31), the rules captured by the network read in the form

If ðA4 and ðB1 or B2ÞÞ or ðA2 and B1Þ or ðA1 and B3Þ then C

where C denotes the corresponding fuzzy set of conclusion associated with the output of the or

neuron.

x

z

A1   A 2   A 3  A 4  A 5   A 6

B1   B 2   B 3

and 

or C

or

and 

and 

(a)

(b)

x

z

B1                      B2          B3

A1

A2

A3

A4

A5

A6

and

or 

Figure 12.31 An example of the augmented fuzzy neural network (a) and the geometry of the

underlying rules supported by it (b).
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12.10 RECONCILIATION OF PERCEPTION OF
INFORMATION GRANULES AND GRANULAR MAPPINGS

The same information granule—fuzzy set can be perceived inmany different ways and

cast in fairly different contexts. To model this phenomenon of diversified perception,

we may associate with the information granule confidence coefficients (confidence

factors). One of the possible ways of modeling the perception effect uses the logic-

oriented transformation of the membership function of the original fuzzy set. A

mechanism of reconciliation of perception of fuzzy sets can be directly modeled

with the use of logic neurons. In this framework, we can capture the logic nature of the

problem and benefit from the parametric flexibility residing with the neurons.

When dealing with adaptive environment as presented in Angelov (2004), one

may view adjustable membership functions as an integral component of flexible

environment in which fuzzy sets can be tuned according to the changing require-

ments or nonstationary environment. The same concept—fuzzy set can be perceived

in many different ways thus leads to the development of several specific membership

functions of the same fuzzy set. For instance, the concept of high inflation treated as a

fuzzy set and coming with its underlying membership function can be perceived by

different human observers quite differently and subsequently may produce several

and sometimes quite different fuzzy sets. The corresponding membership functions

could be then viewed as some modified or distorted versions of the original member-

ship function. Our objective is to reconcile these various perception views by forming

some common view of the concept resulting in the form of some fuzzy set. In a

nutshell, this leads to the formation of some optimal fuzzy set that takes into

consideration the variety of the perceptions. The reconciliation of the perceptions

is formed through the formation of a certain optimization problem involving the

individual fuzzy sets. The reconciliation of various perceptions could also concern

fuzzy mappings. More specifically, some relationships between two spaces can be

described by a family of fuzzy relations representing a way in which they are being

perceived by various observers. The reconciliation of these relationships produces an

optimal fuzzy relation being reflective of some essential commonalities of the

existing relationships. This optimal relation becomes then a result of solution to

the pertinent optimization problem.

12.10.1 Reconciliation of Perception
of Information Granule

Given is a certain fuzzy set A defined in some space (universe)X. It is perceived from

different standpoints where each of these perceptions is quantified by c human

observers. With this regard, the observers provide some numeric confidence levels

z1, z2, . . . , zc where zi 2 ½0; 1�. These specific confidence levels are translated into a

form of some fuzzy set in which A becomes effectively perceived by these observers.

Let us introduce the complements of zi, wi ¼ 1� zi. The conjecture is that our

perception transforms A into a less specific construct where a lack of confidence

translates into the reduced level of specificity of A. This leads to the disjunctive model
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of perception in which the perceived information granule A comes with the member-

ship function of the form AiðxÞ ¼ AðxÞswi, where s denotes a certain t-conorm (s-

norm). This model exhibits several interesting properties. As mentioned, the perceived

granule cannot gain in its specificity, but rather depending upon the confidence may

exhibit some reduction of detail (lack of specificity). If the confidence about A is high,

say zi ¼ 1, then wi ¼ 0 and AiðxÞ ¼ AðxÞ, so the original fuzzy set is left unaffected.

On the opposite end, if zi ¼ 0 then wi ¼ 1 and subsequently AiðxÞ ¼ 1. This new

membership function demonstrates that the perceived information granule A is mod-

eled as ‘‘unknown’’ (being effectively the entire universe of discourse). In other words,

the complete lack of confidence transforms A into the information granule that

does not bear any specific meaning. The way of perceiving A from different

standpoints (quantified by different values of the confidence values) is illustrated

in Figure 12.32.

Given a family of fuzzy sets Ai, we are interested in reconciling the variety of the

perception standpoints and on this basis construct a certain general (reconciled)

viewpoint of A, say A� whose membership function is expressed in the form

A�ðxÞ ¼ AðxÞsw ð12:46Þ
where the weight w 2 ½0; 1� is reflective of the reconciliation process. By adjusting

the values of w we can effectively capture the contributing components of the

process. Graphically, we can envision the overall process described above as illu-

strated in Figure 12.32.

12.10.2 The Optimization Process

The above reconciliation can be transformed into the following optimization pro-

blem in which we are looking for the most suitable realization of perception so that

all the individual views are taken into consideration. We introduce the following

Figure 12.32 Reconciliation of perception of information granule A; note a collection of perceived

information granules Ai resulting from A by being affected by the associated levels of confidence ziðwiÞ.
The result of the reconciliation comes through the optimization of the confidence level z (z, where

z ¼ 1� w). The result of this process is expressed as Asw.

372 Chapter 12 From Logic Expressions to Fuzzy Logic Networks



performance index:

Q ¼
X

c

i¼1

ð

X

½AðxÞswi � AðxÞsw�2dx ð12:47Þ

The minimization of Q is carried out with respect to the values of ‘‘w’’; MinwQ. The

necessary condition of the minimum is set as dQ=dw ¼ 0. Proceeding with the

detailed computing, we obtain

@

@w

X

c

i¼1

ð

X

½AðxÞswi � AðxÞsw�2dx ¼ �2
X

c

i¼1

ð

X

½AðxÞswi � AðxÞsw� @ðAðxÞswÞ
@w

dx ¼ 0

ð12:48Þ
Denote by Fðx;wÞ the derivative standing in the above expression, that is,

Fðx;wÞ ¼ dAðxÞsw=dw. Then we have

X

c

i¼1

ð

X

½AðxÞswi � AðxÞsw�Fðx;wÞdx ¼ 0 ð12:49Þ

and

X

c

i¼1

ð

X

½AðxÞswi ¼
X

c

i¼1

ð

X

ðAðxÞswÞFðx;wÞdx ð12:50Þ

Further calculations are possible once we have accepted a certain form of the

t-conorm. For instance, let the specific t-conorm under investigation can be realized

as a probabilistic sum (that is, a s b ¼ aþ b� ab). This implies that the above

expression for Fðx;wÞ reads as

Fðx;wÞ ¼ @AðxÞsw
@w

¼ @

@w
ðAðxÞ þ w� AðxÞwÞ ¼ 1� AðxÞ ð12:51Þ

In the sequel we obtain

X

c

i¼1

ð

X

½AðxÞswi ¼
X

c

i¼1

ð

X

AðxÞð1� AðxÞÞdxþ w
X

c

i¼1

ð

X

ð1� AðxÞÞ2dx ð12:52Þ

Let us rewrite the above expression by rearranging and grouping the terms and setting

up its value to zero. We obtain

ð

X

ð1� AðxÞÞ2
X

c

i¼1
ðwi � wÞdx ¼ 0 ð12:53Þ

As the function under the integral is nonnegative, to make the value of (12.53) equal

to zero, we require that the term
Pc

i¼1 ðwi � wÞ vanishes. Interestingly enough,

this happens when w is an average of the individual weights, namely

w ¼ 1=c
Pc

i¼1 wi.
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12.10.3 An Application of the Perception Mechanism
to Fuzzy Rule-based Systems

In a nutshell, fuzzy rule-based systems can be represented as a network of logic

relationships (dependencies) between fuzzy sets existing in some input and output

spaces. These fuzzy sets form the corresponding conditions and conclusions of the

rules. As an illustration, let us consider the rule of the form

If (input1 is A1 and input2 is B1) or (input1 is A2 and input2 is B2) or

(input1 is A3 and input2 is B3) then conclusion is D ð12:54Þ
Such rule is directly mapped onto a network of and and or computing nodes.

Furthermore the nodes are equipped with some weights (connections) whose role

is to calibrate the impact of the individual fuzzy sets standing in the rules and thus

affecting the results of the rule-based computing. The network used to realize the

above part of the rule-based system is illustrated in Figure 12.33.

Alluding to the realization of the network illustrated in Figure 12.33 composed

of a collection of the fuzzy neurons with some specific numeric values of the

connections, we can write down the following detailed and numerically quantified

‘‘if–then’’ compound expression:

If

f½ðA1 or 0:7Þ and ðB1 or 0:3Þ� and 0:9g
or

f½ðA2 or 0:2Þ and ðB2 or 0:5Þ� and 0:7g
or

f½ðA3 or 0:1Þ and ðB3 or 0:2Þ� and 1:0g

then D

Each input fuzzy set (A1, B1, . . .) is ‘‘perceived’’ by the corresponding and nodes

through their weights (connections). There is an obvious analogy between the

problem we formulated above and the formal description of the network formed

by the logic neurons.

By repeating the same reconciliation process for all input fuzzy sets, we arrive at

the a collection of optimized weights w½1�;w½2�;w½3� (wherew½1� comes as a solution

of the optimization task in which A1 is involved, etc.) (Figure 12.34). They serve as a

direct mechanism of establishing importance of the input information granule: the

one of the lowest value of w½ii� points at the most relevant input ðiiÞ.

12.10.4 Reconciliation of Granular Mappings

So far we discussed a way of reconciliation of perception of the same fuzzy set

viewed at different standpoints. The problem under consideration is concerned with

the reconciliation of the relational mappings. The problem is formulated as follows:

given are relational mappings (fuzzy relations) R1, R2, . . ., Rc from space X to Y.
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More specifically, for given A in X, the result of mapping comes in the form A � R1,

A � R2; . . . ;A � Rc where � is a certain composition operator (in particular, it could be

the one such as the sup–min, sup-t, inf-s, inf–min, and alike). Given the finite spaces

X and Y, the expression A � R1 can be represented as a collection of or neurons with

inputs being the corresponding elements of X.

A1

A2

A3

D

B1

B2

B3

and 

or A1

A2

A3

D

B1

B2

B3

and 

or

w21  

w22 

w23 

Figure 12.34 Reconciliation of impact of the input on individual and nodes through the optimization

of the corresponding connections.

Figure 12.33 A logic network realizing the rule presented by (12.8); note that the and and or nodes

are endowed with some numeric connections.
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Determine R such that it forms a reconciliation of the individual fuzzy relations.

The reconciliation involves a certain fuzzy set inX, denote it by A, or may deal with a

family of fuzzy sets inX, say A1, A2,. . ., AN . Formally speaking, we are looking for R

defined inX� Y such that it results from aminimization of the following expression:

Q ¼
X

c

i¼1
k A � Ri � A � R k2 ð12:55Þ

for given A in X or

Q ¼
X

N

l¼1

X

c

k¼1
k Al � Rk � Al � R k2 ð12:56Þ

for a family of Al’s. k : k denotes a distance function (in particular, it could come as

the Euclidean one). The essence of the reconciliation process for (12.56) is visualized

in Figure 12.35. The optimization problem presented in the form (12.11) can be

also regarded as the reconciliation of relational models (being expressed by fuzzy

relations R1;R2; . . . ;Rc) being completed in the context of some granular probes

(fuzzy sets)

We may relate the above problem to the issue of designing a unified fuzzy model

completed on the basis of a collection of given fuzzy models. The underlying concept

is illustrated in Figure 12.36. Given is a finite number of distributed data sets

D1;D2; . . . ;Dc, and each of them is used to construct a certain fuzzy relational

model R1;R2; . . . ;Rc. Each fuzzy relation is formed on the basis of the individual

data and because Di’s differ from each other it is very likely that though there are

Figure 12.35 Reconciliation of the relational mappings from X to Y. The result of this process is a

certain fuzzy relation R (a). Alternatively one can view this problem as an optimization of the multi-

output network composed of fuzzy or neurons (b).
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some commonalities, the resulting models might differ from each other. At the

reconciliation phase we are provided with only the fuzzy relations (the data sets

could not be shared because of issues of privacy and confidentiality or there could

be some technical constraints aswell). The role of granular probes fAig is to invoke the
models and then construct the fuzzy relation R on a basis of the responses of the

individual models. The minimization of (12.56) produces the fuzzy relation R.

There is an interesting interpretation of this reconciliation process for some class

of fuzzy models. Let X and Y denote a space of symptoms and diagnosis, respec-

tively. The same fuzzy set of symptoms A leads to different interpretations (diag-

noses) depending upon the fuzzy relations R1;R2; . . . ;Rc. modeling the relational

mappings expressed by different experts. The reconciliation is concerned with the

development of the fuzzy relation that expresses the relationships between the

symptoms and diagnosis.

The minimization of (12.55) and (12.56) can be realized for given once we have

agreed upon the form of the composition operator. Similarly the optimization of the

fuzzy relation depends upon the fuzzy set(s) available in X.

In what follows, we consider finite spaces X and Y, X ¼ fx1; x2; . . . ; xng,
Y ¼ fy1; y2; . . . ; ymg. These cases make sense from a practical standpoint as quite

often the spaces of symptoms and diagnoses are of finite dimensionality. Then the

fuzzy sets and fuzzy relations can be represented as in vector and matrix form.

Considering the general case (12.10), accepting a certain s-t composition of A and R,

that is, Sni¼1ðAðxiÞtRðxi; yjÞÞ and adopting a Euclidean distance k : k, we rewrite the
performance index in the following format:

Q ¼
X

N

l¼1

X

c

k¼1
k Al � Rk � Al � R k2

¼
X

N

l¼1

X

c

k¼1

X

m

j¼1
ð S

n

i¼1
ðAlðxiÞtRkðxi; yjÞÞ � S

n

i¼1
ðAlðxiÞtRðxi; yjÞÞÞ

2 ð12:57Þ

R1

D1

R2

D2

Rc

Dc

R
{A i}

Figure 12.36 Reconciliation of fuzzy models: an origin of the concept and its realization with the use

of granular probes fAig.
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The minimization of Q is done through a gradient-based optimization of R, that is, a

series of iterations (updates) of the values of R done in successive iterations (i.e., iter

and iter+1) that come in the form

Rðiterþ 1Þ ¼ RðiterÞ � arRQ ð12:58Þ
where a is a positive learning rate and denotes a gradient ofQ computed with respect

to the fuzzy relation. Proceeding with the details, we carry out computations for all

elements of the fuzzy relation that leads us to the expression

Rðxs; ytÞðiterþ 1Þ ¼ Rðxs; ytÞðiterÞ � a
@Q

@Rðxs; ytÞðiterÞ
ð12:59Þ

s ¼ 1; 2; . . . ; n; t ¼ 1; 2; . . . ;m.
The realization of the learning scheme can be completed once the triangular

norm and co-norm have been specified. In what follows, we consider the product and

probabilistic sum. Then the derivative in (12.59) can be expressed as follows:

@Q

@Rðxs; ytÞ
¼
X

N

l¼1

X

m

j¼1
ð S

n

i¼1
ðAlðxiÞtRkðxi; yjÞÞ � S

n

i¼1
ðAlðxiÞtRðxi; yjÞÞ ð12:60Þ

The derivative in the above expression can be written down in more detailed form

@

@Rðxs; ytÞ
ðBl;s;t þ AlðxsÞRðxs; ytÞ � Bl;s;tAlðxsÞRðxs; ytÞÞ

where

Bl;s;t ¼ S
n

i¼1
i 6¼s

ðAlðxiÞtRðxi; yjÞ ð12:61Þ

Finally we obtain

@

@Rðxs; ytÞ
ðBl;s;t þ AlðxsÞRðxs; ytÞ � Bl;s;tAlðxsÞRðxs; ytÞÞ ¼ AlðxsÞð1� Bl;s;tÞ

ð12:62Þ

12.11 CONCLUSIONS

Neurocomputing combined with underlying logic fabric builds a unique architecture

of fuzzy neurocomputing. We showed that fuzzy neurons with clearly defined

semantics give rise to transparent models (Casillas et al., 2003; Dickerson and

Lan, 1995; Setnes et al., 1998) whose interpretation results in a certain logical

characterization of experimental data. The parametric flexibility coming with the

connections of the neurons support all necessary learning abilities. The introduced

topologies of the networks lead to the logic–based approximation of data. The unique

aggregation of learning and transparency becomes of paramount relevance to the

user-centricity of the resulting constructs.
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EXERCISES AND PROBLEMS

1. For the fuzzy neural network with feedback shown below.

and
or

x(k)  y(k)  

The expressions describing this network are as follows:

xðk þ 1Þ ¼ andð½xðkÞyðkÞ�;wÞ
yðk þ 1Þ ¼ orð½yðkÞxðkÞ�; vÞ

The values of the connections are w ¼ ½0:30:1� and v ¼ ½0:90:8�. Start with xð0Þ ¼ 0:3 and
yð0Þ ¼ 0:9. Show the values of xðkÞ and yðkÞ in 10 successive discrete time moments.

2. Show that and and or neurons subsume digital and and or gates as their special cases.

3. Consider an implication operator induced by Lukasiewicz and connective, that is,

minð1; aþ b� 1Þ. Show that the similarity measure realized with its use realizes a

Hamming distance.

4. Discuss how you could model the tolerance relationship, tolðx; a; bÞ, which returns 1 if x is
located in–between a and b, a < b and becomes a monotonically decreasing function for

the arguments below ‘‘a’’ and above ‘‘b.’’ In your construct use the predicates of inclusion

and dominance combined with the use of some t-norm. Next use this predicate in the

development of a tolerance neuron.

5. With the use of the tolerance neuron constructed in the previous problem, show how

you would model the region of the unit square illustrated in the figure below. The

shadowed region comes with the value of 1 whereas the values assumed outside this region

are equal to 0.

a                       b          c 

d

e

f
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6. Given is the following fuzzy neural network:

x1
or-1

and

0.1  

0.3

0.6

or-2 

or-3 

x2

x3

The connections of the or neurons (ordered from x1 to x3) are the following:

or-1 : ½0:11:00:7�; or-2 : ½0:90:70:1�; or-3 : ½0:80:70:9�:

Proceed with its reduction by eliminating the weakest connections. Develop a relationship

between the number of eliminated connections and the reduced performance. To express

performance, consider combinations of input data uniformly distributed in each input at a

step of 0.2.

7. Consider a network composed of 4 sensors providing data about the status of a system. The

readings of the sensor are located in the unit interval. Propose a warning system that

evaluates an overall status of the network (expressed in the unit interval) given the following

constraints existing there:

(a) variable x1 should not exceed threshold ‘‘a’’

(b) variable x2 should not fall below threshold ‘‘b’’

(c) variable x3 should be similar to the setpoint ‘‘c’’

(d) variable x4 should not exceed threshold ‘‘d.’’

The above variables are measured by sensors 1–4. The variables themselves contribute to

the overall evaluation of the status of the network to a different extent. The contributions are

quantified by running a pairwise comparison leading to the following reciprocal matrix:

1 7 5 2

1=7 1 4 3

1=5 1=4 1 2

1=2 1=3 1=2 1

2

6

6

4

3

7

7

5

The more evident is the violation of the constraints, the higher is the value of the output of

the warning system.

8. A two-input fuzzy multiplexer (2–to–1 FMUX) forms a generalization of the well-known

functional units used in digital systems is described by the following expression:

y ¼ FMUXðx; c0; c1Þ ¼ ðc0 t xÞs ðc1 t xÞ
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where ‘‘x’’ serves as a switching variable and c0 and c1 are two input variables. See also the

figure below

2-to-1
FMUX 

x

y

c0

c1

(a) Discuss how FMUX functions; in particular, assume the values of the switching

variable to be equal to 0 and 1

(b) Plot the input-output characteristics of the FMUX treating the output (y) as a function

of ‘‘x’’ and ‘‘c0’’; take c1 ¼ 1� c0.

(c) How would you realize switching of four inputs? discuss the use of 2-to-1 FMUXs.

9. Rule-based systems can be represented in the form of a fuzzy neural tree. There are two

commonly encountered structures shown below. Interpret them by discussing what type of

rules they represent and how the learning in these structures becomes reflected in the

calibration of the rules.

or

and

or

and 

or 

HISTORICAL NOTES

Fuzzy neural networks constitute a general category of logically oriented processing units with the

research on this subject originated in Pedrycz (1991a,b, 1993, 2004), Pedrycz and Lam (1995), Pedrycz

and Reformat (2005). With regard to the framework of logic processing, one could refer to an interesting

note made by J. von Neumann (1958)

. . . we have seen how this leads to a lower level of arithmetical precision but to a

higher level of logical reliability: a deterioration in arithmetic has been traded for an

improvement in logic. . .
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While the neurofuzzy processing realized in terms of fuzzy neural computing provides a wealth of

architectures and learning schemes and helps implement a variety of fuzzy rule-based systems, it could also

brings some insight into the development of digital systems through learning. Fuzzy neural networks can

be also sought as a direct generalization of the fuzzy relational structures (fuzzy relational equations). In

particular, fuzzy relational equations with the s–t composition are examples of or neurons whereas the dual

fuzzy relational equations (governed by the t-s composition) give rise to and neurons.
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Chapter 13

Fuzzy Systems and

Computational Intelligence

Fuzzy systems are encountered in numerous areas of applications. They have a long

history of development with a diversity of conceptual and algorithmic

enhancements. Fuzzy rules, for instance, viewed as a generic mechanism of granular

knowledge representation, are positioned in the center of knowledge-based systems.

Knowledge representation (including aspects of dealing with granular information)

and knowledge processing in general constitute the agenda of fuzzy systems. Neural

networks and neurocomputing support quite a different paradigm of information

processing that stresses aspects of effective supervised and unsupervised learning,

distributed processing, and inherent plasticity of the underlying architectures of

neural networks. The agenda of evolutionary computing is aimed at the effective

utilization of biologically inspired optimization. The massive parallelism and

population-based stochastic search techniques are at the heart of evolutionary

systems. Even such a brief characterization of fuzzy systems, neurocomputing, and

evolutionary systems helps us not only acknowledge the fundamental differences

between these technologies but also appreciate possibilities associated with the

development of hybrid systems that take advantage of the unified use of all of them.

In this chapter, we discuss the main features of generic models of neurocomputing

and evolutionary, biologically inspired systems. Subsequently, we elaborate on

various design schemes of their hybrid architectures that give rise to a broad

category of neural fuzzy networks and genetic fuzzy systems. Neural fuzzy

networks offer an environment in which we seamlessly combine significant learning

capabilities of neural networks with the mechanisms of approximate reasoning and

logic, and transparent processing inherent to fuzzy systems. Genetic fuzzy systems

deliver a powerful tool to develop and design fuzzy and neural fuzzy systems using

some prior knowledge and experimental data. Various architectures, learning

algorithms, and examples are discussed along with their applications in function

approximation, classification, and dynamic system modeling.

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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13.1 COMPUTATIONAL INTELLIGENCE

Computational intelligence (CI) is a field of intelligent information processing

related with different branches of computer science and engineering. The core of

CI embraces fuzzy systems, neural networks, and evolutionary computation. The

ultimate agenda of CI deals with various ways in which these technologies are

brought together to constitute some form of hybrid architectures, refer to Figure 13.1.

Appendices B and C provide a concise overview of the fundamentals of neural

networks and biologically inspired computing.

Growing as a stand-alone field in itself, CI nowadays contains evolving systems

(Angelov, 2002) and swarm intelligence (Eberhart et al., 2001; Dorigo and Stutzle,

2004), immune systems (Castro and Timmis, 2002), and other forms of natural (viz.

biologically inclined) computation. A key issue in CI is adaptation of behavior as a

strategy to handle changing environments and deal with unforeseen situations. CI

exhibits interesting links with machine intelligence (Mitchell, 1997), statistical

learning (Tibshirani, et al., 2001) and intelligent data analysis and data mining

(Berthold and Hand, 2006 Dunham, 2003), pattern recognition (Bishop, 2006) and

classification (Duda et al., 2001), control systems (Dorf and Bishop, 2004) and

operations research (Hillier and Lieberman, 2005). The name Computational Intelli-

gence has been around in the literature since the 1990s.

At that time, the term Computational Intelligence was coined by Bezdek (1992,

1994). In his view, CI concerns data processing systems that come with capabilities

of pattern recognition and adaptive properties, are fault tolerance, and whose

performance approximates human performance in human time processing scale

with no use of knowledge in the sense as being considered in the realm of Artificial

Intelligence (Bezdek, 1994). Later on, CI was seen as a comprehensive framework to

Fuzzy set 
theory

Neural
networks

Evolutionary 
systems 

Neural
fuzzy 

systems 

Genetic
fuzzy 

systems

Neural
evolutionary

systems

Computational Intelligence 

Evolving
systems

Swarm 
intelligence

Immune 
systems

Figure 13.1 The paradigm of CI.
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design and analyze intelligent systems with a focus on all fundamentals of autonomy,

learning, and reasoning (Duch, 2007). The idea is to consider computing systems that

are able to learn and deal with new situations using reasoning, generalization,

association, abstraction, and discovery capabilities (Eberhart et al., 1996). In dealing

with this grand challenge, CI underlines the need for a full synergy between

neurocomputing, fuzzy sets (or granular computing, in general), and biologically

inspired optimization in the development of intelligent systems (Pedrycz, 1997).

Thus, it is not surprising to see a wealth of hybrid systems constructed within the

realm of CI. The names neurofuzzy systems, genetic fuzzy systems, and evolutionary

neurocomputing are commonly encountered constructs of CI.

In this quest for the construction of intelligent systems, CI shows some con-

jecture points with Artificial Intelligence agent systems (Russell and Norvig, 2003),

control systems, and operations research, as in all these endeavors the constructed

computationally intelligent architectures have to deal with effective processes of

prediction and decision making. CI is largely human-centered because it relies on

humans to be built and humans benefit from computationally intelligent systems to

safely achieve goals and solutions. In long range, CI and other forms of artificial and

synthetic intelligence aim to develop intelligent systems with comparable human

performance from the point of view of collaboration between humans and machines

in problem solving and information processing. Affronimation to human perfor-

mance should be achieved by intelligent systems when performing tasks in which

machines replace humans, for example, in hazardous environments. To pave the path

toward intelligent systems, CI may benefit from contributions coming from systems

science, cognitive sciences, and computational semiotics to improve performance

when processing signals, perceptions, and meaning. Figure 13.2 offers some sum-

marization with this regard.

Computational 
intelligence 

Machine 
learning 

Artificial
intelligence 

Intelligent systems 

Systems 
science

Operations 
research 

Control
theory 

Cognitive 
sciences 

Data analysis 
recognition 

leaning 

Figure 13.2 Intelligent systems as a collaborative framework of human- and machine-oriented areas.
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13.2 RECURRENT NEUROFUZZY SYSTEMS

A class of neural network architectures that has been receiving a great deal of

attention during the past years concerns recurrent neural networks. Such networks

can be classified as globally or partially recurrent, depending on the feedback

connections existing in their architectures. Feedback connections allow to endow

the network with memory capabilities, which are essential in processing spatiotem-

poral information (Haykin, 1998; Santos and Von Zuben, 1999).

Recurrent neural networks perform well in a wide range of applications such as

dynamic system modeling, adaptive control, processing of temporal signals, fore-

casting, and speech recognition. However, a thorough analysis and synthesis of such

neural networks becomes a complex task. In particular, in their supervised learning,

the process of weight (connection) adjustment is far more demanding when com-

pared with learning algorithms encountered in static (viz. feedforward) networks.

Usually gradient learning for recurrent network algorithms is complex and slow (Lee

and Teng, 2000; Mandic and Chambers, 2001).

Neural fuzzy networks have emerged as hybrid constructs bringing together the

advantages of fuzzy sets, stressing their evident transparency and abilities of proces-

sing granular information and benefits of neurocomputing reflected in the plasticity

and learning capabilities of the resulting constructs. A major limitation of most fuzzy

neural networks comes with their restricted applicability to modeling dynamic

mappings. As indicated, this drawback could be attributed to either prevalent

feedforward topologies of such networks or a lack of efficient learning procedures

for developing feedback connectivity. Recurrent neural fuzzy systems attempt to

alleviate these problems (Nürnberger et al., 2001).

In what follows, we discuss recurrent hybrid neural fuzzy networks and present

their development with the use of supervised learning. The network structure has a

recurrent layer that implicitly performs fuzzy inference followed by an aggregation

neural network. The required dynamics of the underlying system—temporal

relations—are captured by forming a global feedback in the hidden layer nodes.

This modification equips the network with a memory mechanism and hence expands

the ability of the neural fuzzy network to store temporal representations. The neural

fuzzy network comes as a generalization of the recurrent neural fuzzy structure

presented by Ballini et al. (2001) and derived from its feedforward counterpart

(Caminhas et al., 1999). The recurrent neural fuzzy network uses aggregative logic

neurons of the type and and classical neural network with nonlinear neurons as an

adaptive aggregation layer.

13.2.1 Recurrent Neural Fuzzy Network Model

The neural network exhibits a multilayer architecture as illustrated in Figure 13.3.

There is a feedback loop realized within the and neurons located at the second layer

of the architecture (Ballini et al., 2001; Hell et al., 2007).
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Let us now discuss the functionality of the fuzzy inference system realized by

the input and hidden layer. The input layer consists of neurons whose activation

functions are membership functions of fuzzy sets that form the input space partition.

For each component xiðtÞ of an n-dimensional input vector xðtÞ ¼
½x1ðtÞ; x2ðtÞ; . . . ; xnðtÞ� there are Ni fuzzy sets A

ki
i , ki ¼ 1; . . . ;Ni, whose membership

functions are the activation functions of the corresponding input layer neurons. t

denotes discrete time instances, that is, t ¼ 1, 2,... The outputs of the first layer are the

membership degrees of the associated input variables, that is, aji ¼ A
ki
i ðxiÞ;

i ¼ 1; 2; . . . ; n, and j ¼ 1; 2; . . . ;M, the number of neurons located in the second

layer of the network. The second layer is constructed with the use of fuzzy neuron of

and type, where the output of the neuron z : ½0; 1�n ! ½0; 1� is a generalized and logic
expression of its inputs, with each input calibrated by means of the corresponding

connection (weight). In contrast to the standard realization of the and neuron, the one

here, see Figure 13.4, comes with a feedback loop.
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Figure 13.3 An architecture of the recurrent neural fuzzy network.
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Figure 13.4 Recurrent and fuzzy neuron.
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In general, in the structure shown in Figure 13.3, we assume the most general case

in which there is a global feedback loop between all fuzzy neurons of the second

layer. Neural networks with partial feedback and with no recurrent connections are

particular instances. The and neurons operate on inputs aji weighted by wji, and on

feedback connections weighted by rj1; j ¼ 1; . . . ;M. The activation functioncand is, in

general, a nonlinear mapping, but here we assume it to be the identity function

candðuÞ ¼ u. If we assume ajnþ l ¼ z�1zj where z�1 is the delay operator and

wjnþ l ¼ rjl; j ¼ 1; . . . ;M then the net structure encodes represent a set of ‘‘If–then’’

rules R ¼ fRj; j ¼ 1; . . . ;Mg of the following form:

Rj: If x1 is A
k1
1 or wj1 . . . and xi is A

k1
i or wji . . . and xn is A

kn
1 or wjn then z is zj with

certainty vkj
where zj ¼ wj1saj1 . . .wjisajisajp ¼ T

p

i¼1
ðwji sajiÞ, p ¼ M þ n, and s denote some

t-conorm.

The output layer contains m nonlinear neurons shown in Figure 13.5.

Here, the output yk of the k-th neuron, k ¼ 1; . . . ;m, is a nonlinear function of its
inputs zj weighted by vkj; j ¼ 1; . . . ;m. We assume that the nonlinear activation

function c of neurons is monotonically increasing. The third-layer neurons perform

a form of nonlinear aggregation function with weights found through learning. The

neural fuzzy network dynamics works as follows:

1. Ni is the number of fuzzy sets that granulate the ith input;

2. The j indexes the and neurons; from the net structure, j is determined from

indices ki as follows:

j ¼ kn þ
X

M

i¼2
ðkðn� iþ 1Þ � 1Þ

Y

i�1

r¼1
Nðnþ1�rÞ

 !

3. x1; . . . xi; . . . ; xn are the inputs of the network; x ¼ ½x1; . . . ; xi; . . . ; xn�;
4. aji ¼ A

ki
i ðxiÞ is the membership degree of xi in A

ki
i , whose output is an input of

the jth neuron in the second layer;

5. wji is the connection weight between the ith input and the jth and neuron;

6. zj is the output of the jth and neuron determined by

zj ¼ T
nþM

i¼1
ðwji sajiÞ

7. vkj is the weight for the jth input of the kth output neuron, and rjl is the

feedback connection of the lth input of the jth neuron;

∑ 

z1

zj

zM

vk j 

vkM

vk1

y
uk yk

Figure 13.5 Neurons of the output layer.
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8. yk is the output of the kth neuron of the output layer:

yk ¼ cðukÞ ¼ c
X

M

j¼1
vkjzj

 !

where c: R! ½0; 1� is a nonlinear monotonically increasing function such as

cðuÞ ¼ 1=ð1þ expð�uÞÞn

13.2.2 Learning Algorithm

The learning of the neural fuzzy network involves three phases. The first phase uses a

clustering procedure based on a modification of the vector quantization approach to

granulate the input universes. The second phase constructs the network connections

and sets initial values for the weights randomly within [0,1]. In the third phase, we

uses gradient descent and associative reinforcement learning to update weights using

learning data. Overall, the learning scheme of the recurrent neural fuzzy network is

supervised and can be summarized as follows:

procedure NET-LEARNING (x, y) returns a network

input : data x, y

local : fuzzy sets

t,s: triangular norms

e: threshold

GENERATE-MEMBERSHIP-FUNCTIONS

INITIALIZE-NETWORK-WEIGHTS

until stop criteria � e do

choose an input output pair x and y of the data set

ACTIVE-AND-NEURONS

ENCODING

UPDATE-WEIGHTS

return a network

Typically, the procedure stops when either a specified performance level is reached or

a maximum number of iterations has been exceeded. The steps of the learning

procedure are shown in detail.

1. Generation of membership functions

The simplest way to construct membership functions is to assume triangular func-

tions with universes [ximin, ximax], i ¼ 1; . . . ; n, which overlap with the neighboring

fuzzy sets at the level of 0.5. However, uniform partitions may not be adequate if data

are concentrated in certain regions of the feature space. In these cases non-uniform

partitions, see Figure 13.6, are more suitable.

One of the possible mechanisms of partitioning the input space is to cluster the

training data and treat the resulting centers of the clusters as the modal values of the
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membership functions. Here we adopt a certain variation of vector quantization

suggested in Caminhas et al. (1999). The essence of this modification is as follows.

Clustering is done using a neural network structure whose weights are cluster centers

cir. Initially, the number of output units of the clustering neural network N0
i gives an

estimation of the number of fuzzy sets that assembles the partition of universe of the

ith coordinate (variable). In general, N0
i is overestimated and updated via learning.

Neurons that rarely win, as quantified by a performance index, are removed. The

algorithm is as follows:

procedure GENERATE-MEMBERSHIP-FUNCTIONS (x) returns membership

functions

input : learning data x

local : learning rate: a

thresholds: e, d > 0

initialization: weights cir:

ci1 ¼ ximin

cir ¼ ciðr�1Þ þ Di; for r ¼ 2; 3; . . . ;N0
i

Di ¼
ximax � ximin

N0
i � 1

set performance index idiðrÞ ¼ 0, for r ¼ 1; 2; . . . ;N0
i .

set membership functions to form a uniform partition

until jcijðk þ 1Þ � cijðkÞj � e; 8j do
input xi and update the winning neuron weights as follows:

ciLðk þ 1Þ ¼ ciLðkÞ þ aðkÞ½xi � ciLðkÞ�
L is the winner neuron index L ¼ argfminrjxi � cirjg
Decrease the step size aðkÞ
Update the performance index of the winner neuron IdiðLÞ ¼ IdiðLÞ þ 1

prune all neurons for which Idi � d.

Let Nnei be the number of neurons removed for the ith dimension.

Set the number of fuzzy sets of the ith dimension partition as

Ni ¼ N0
i � Nnei

c i1 c i2 c i3 c iNi –1 c iN x i

1

Figure 13.6 Nonuniform partition with triangular membership functions.
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Set

Ar
i ðxiÞ ¼

aeirðxi � cirÞ þ 1; ifcir�1 � xi � cir

adirðxi � cirÞ þ 1; if air < xpi � airþ 1

0; otherwise

:

8

>

>

<

>

>

:

aeir ¼
1

cir � cir�1
;adir ¼

1

cir � cirþ1
; i ¼ 1; . . . ; n and r ¼ 1; . . . ;Ni:

return cir

2. Neural fuzzy network weights initialization

The first and second layer of the network are fully connected. Weights wji, vkj and rjl,

for i ¼ 1; . . . ; n; j; l ¼ 1; . . . ;M and k ¼ 1 . . . ;m are initialized to some random

values in [0,1]. The detailes are presented below.

procedure INITIALIZE-NETWORKS-WEIGHTS returns weights.

input: none

local: weights

t,s: triangular norms

for i ¼ 1:n do

for j ¼ 1:M do

l j

for k ¼ 1:m do

wjk  randomð½0; 1�Þ
vkj  randomð½0; 1�Þ
rjl  randomð½0; 1�Þ

return wjk; vjk; rjl

3. Determination of active and neurons

By construction, for each input there are at most two nonzero membership degrees for

each of its dimension, see Figure 13.6. The corresponding membership functions of

the input space partition define the active and neurons. They are identified as follows:

Given the input x ¼ ½x1; . . . ; xi; . . . ; xn�, letK1 ¼ ðk11; . . . ; k1i ; . . . ; k1nÞ be a vector
whose components are the indices of the first membership function of each dimen-

sion i for which the membership degree is different from zero. Let

K2 ¼ ðk21; . . . ; k2i . . . ; k2nÞ be a vector whose entries are defined as follows:

k2i ¼ k1i þ 1; if A
k1
i

i 6¼ 1

k1i ; otherwise

(

The number of active and neurons is given as Na, where Na ¼ 2Pa � 2n, and Pa is the

number of elements such that k1i 6¼ k2i ; i ¼ 1; . . . ; n. Notice that among the M and

neurons of the second layer, only 2Pa � M;Pa � n are active. Also, because only Na

and neurons are active each time an input is presented, the network processing time
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becomes independent of the number of fuzzy sets in the input space partition. The

process of identifying active neurons is summarized as follows:

procedure ACTIVE-AND-NEURONS (input partition, x) returns active neurons

input: input data x

input partition

for each dimension of input partition do

compute K1 ¼ ðk11; . . . ; k1i ; . . . ; k1nÞ
compute K2 ¼ ðk21; . . . ; k2i ; . . . ; k2nÞ

return indices of active neurons

4. Encoding (fuzzification)

This step is straightforward once we note that only membership degrees of active fuzzy

sets for which indices inK1 are computed. If k1i 6¼ k2i , thenA
k2
i

i ðxiÞ is immediately found,

given thatA
k2
i

i ðxiÞ ¼ 1� A
k1
i

i ðxiÞ. Therefore, only 2nmembership degrees are computed.

5. Weight Updating

Weight updating is done in supervised mode and is based on gradient optimization

and associative reinforcement learning (Barto and Jordan, 1987). Gradient learning is

used to adjust the weights of the output-layer neurons and associative reinforcement

learning to adjust the weights of the neurons in the second layer. The first step is to

compute the network output for an input x. This corresponds to the encoding of the

input and the successive forward computation of the outputs of the remaining neuron

layers. Next, a supervised learning process is used to minimize an error measure

between the network output and the desired output over the set of the learning input–

output pairs, that is, to minimize

e ¼ 1

2

X

m

k¼1
ðyk � ŷkÞ2

where ŷk is the value of the output unit k and yk is the desired value for the

corresponding input vector x. Therefore, using a gradient-descendent method, if vkj
is the weight connecting the second-layer neuron j to the output-layer neuron k, then

Dvkj ¼ hkðyk � ŷkÞc0ðukÞzj
If cðuÞ ¼ 1=ð1þ expð�uÞÞ then c0ðukÞ ¼ cðukÞð1� cðukÞÞ is the derivative of the
activation functions evaluated at uk ¼

PM
j¼ 0 ðvkjzjÞ and hk is the learning rate. If

cðukÞ ¼ uk; then c0uk ¼ 1. The weights of the and neurons are updated using a

reinforcement signal sent to all and units. The updates of the connections of the

neuron depends on the values of the reinforcement signal.

Here, we adopt a reinforcement signal d ¼ 1� e, which is similar to the one

suggested in Barto and Jordan (1987). Large values of d correspond to the better

match occurring between the values of the current output of the network and the

desired output. To update the weights of the and logic neurons, an update rule based

on a reward and punishment scheme (Ballini et al., 2001) is utilized:

392 Chapter 13 Fuzzy Systems and Computational Intelligence



Dwji ¼ da1½1� wji� � ð1� dÞa2wji

Drjj ¼ da3½1� rjj� � ð1� dÞa4rjj

0 < a1 � a2 < 1 and 0 < a3 � a4 < 1

where a1; a2;a3 and a4 are learning rates, j ¼ 1; . . . ;M and i ¼ 1; . . . ; n.

procedure UPDATE-WEIGHTS (x,y) returns weights

input : input / output data (x,y)

local : learning rates: hk;a1;a2;a3;a4

threshold: e

until e � e; 8j do
input x and compute network outputs

compute error e

update output layer weights

vkj  vkj þ hkðyk � ŷkÞc0ðukÞzj
update T-neuron weights

wji  wji þ da1½1� wji� � ð1� dÞa2wji

rjj  rjj þ da3½1� rjj� � ð1� dÞa4rjj

return wij, rjj

EXAMPLE 13.1

We show the performance of the recurrent neurofuzzy network (NFN) for a set of data generated

by an NH3 laser, a chaotic time series whose behavior has characteristics similar to the

integration of Lorenz equation, see Figure 13.7. NH3 time series data have been used to

demonstrate the performance of several forecasting models (Weigend and Gershenfeld,

1992). To test the predication capabilities of the model, the first 1000 samples are used as a

testing set. Our task is to predict the next 100 steps.

Figure 13.7 NH3 laser time series data.
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The neural fuzzy network has two inputs, xðtÞ and xðt � 1Þ, one output xðt þ 1Þ, and uses

five fuzzy sets to partition the input space, that is, N1 ¼ N2 ¼ 5. Therefore, the network comes

with 25 and fuzzy neurons located in the second layer, one neuron in the output layer,

altogether having at most 675 connections. The t-norm and t-conorm are the algebraic product

and the probabilistic sum, respectively. The learning rates were set up to be a1 ¼ a3 ¼ 0:01
and a2 ¼ a4 ¼ 0:001. The learning process took 5000 iterations to converge. The prediction

results are shown in Figure 13.8. To provide some comparative view of the performance of this

network, it was contrasted with a feedforward neural network (FIR) with two hidden layers and

tapped delay lines that

according to Weigend and Gershenfeld (1992), the one that performed best. The neural

network uses 12 neurons in each layer and tapped delay synapses of the order 25, 5, and 5. A

backpropagation-like learning procedure adjusts 1080 connections. The normalized squared

error (NSE) criterion is adopted for comparison, namely,

NSE ¼ 1

s2N

X

N

i¼1
ðyi � ŷiÞ2

where yi is the ith actual value, ŷi is the forecasted value, and s2 is the variance computed for

the prediction stepsN ¼ 100. The obtained results are presented in Table 13.1 and Figure 13.8.

13.3 GENETIC FUZZY SYSTEMS

Now we consider a coevolutionary genetic approach to the development of fuzzy

functional models. The approach views species as distinct populations of individuals

who represent distinct fuzzy constituents of the fuzzy models organized into four

Figure 13.8 NH3 laser time series with 100 step ahead prediction.

Table 13.1 NSE for the NH3 Laser Time Series.

Model One step ahead 100 steps ahead

FIR 0.0230 0.0551

NFN 0.0139 0.0306
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hierarchical levels. Individuals at each hierarchical level encode membership func-

tions, rules, rule bases, and fuzzy systems. Individuals are evaluated using a fitness-

sharing mechanism. Constraints are observed and particular targets are defined

throughout the hierarchical levels, with the purpose of promoting the occurrence

of valid individuals and inducing rule compactness, rule base consistency, and

partition set visibility. The performance of the approach is evaluated via an example

of function approximation with noisy data and a nonlinearly separable classification

problem.

In many applications, the information required to develop fuzzy knowledge

bases may not be easily available and humans may be unable to extract all relevant

knowledge from large amount of numerical data. In these circumstances, computa-

tional procedures must be used to extract knowledge and encode it in fuzzy rule bases

of fuzzy rule-based models. In fuzzy rule-based modeling, it is essential to trade-off

accuracy and interpretability (Setmer et al., 1998). Accuracy is important when

developing models for dynamic systems. Interpretability is important to assure basic

model characteristics such as consistency, compactness, and visibility. Compactness

can be characterized by the number of fuzzy rules in the rule base. Consistency

requires the absence of conflicting rules such as rules with the same antecedents, but

with different consequents. Visibility is closely related with the granulation of

universes and is distinguished by partitions with no gaps and full overlapping

(Delgado et al., 2003).

Genetic fuzzy systems (GFS) constitute a powerful approach to the design of

fuzzymodels. In essence, they are fuzzy systems augmented by learningmechanisms

based on genetic algorithms (Cordon et al., 2001). Typically, GFS approaches use

evolutionary techniques to adjust the most essential components of fuzzy models

such as membership functions, fuzzy rules, and a structure of rule bases. Membership

functions, rule base structure and type and number of rules, rule antecedent aggrega-

tion, rule aggregation and operators using fuzzy inference procedures affect perfor-

mance of fuzzy models. Algorithms that simultaneously learn structure and

parameters of fuzzy models from data become a key component in GFS.

Evaluation of complete solutions in isolation is one of the features of traditional

evolutionary approaches. Because interactions between population members are not

handled, there is no evolutionary pressure for co-adaptation and this is inadequate to

develop complex models (Potter and De Jong, 2000). In these cases, it is more

appropriate to coevolve individuals of different populations, hierarchically struc-

tured into levels that represent partial solutions to the problem. The hierarchical

structure may be such that individuals of different populations keep collaborative

relationships and individual fitness depending on the fitness of individuals of the

other populations.

Here a coevolutionary approach to design fuzzy functional models is described

(Delgado et al., 2004). A parsimonious functional fuzzy model emerges from a

hierarchical and collaborative coevolutionary process. Populations of four hierarch-

ical levels are partial fuzzy models. Individuals of level I encode membership

functions, individuals of level II encode fuzzy rules, level III individuals encode

rule bases, and individuals of level IVencode fuzzy systems. Fitness of an individual
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at one level depends on the fitness of individuals at higher hierarchical levels. The

approach uses a least square method to compute the parameters of the rule conse-

quents. Constraints are included to guarantee that an individual is valid. The purpose

here is to evolve compact and consistent rule bases and visible partitions of the

universes. Nonlinear parametric functions of the fuzzy rule consequents assure

accuracy using a set optimal set of parameters, and a pruning procedure avoid

redundancy and overfitting.

Assume a fuzzy functional model composed ofm fuzzy rules Rj; j ¼ 1; . . . ;m, of
the form

Rj : If x1 is A
j
1 and    and xn is Aj

n then y ¼ gjðwj; xÞ
where x ¼ ½x1; x2; . . . ; xn� is an n-dimensional input vector and wj ¼ ½wj1;wj2; . . . ;
wjq� is a q-dimensional vector of parameters. Here we adopt nonlinear functions of the

form

gjðwj;xÞ¼wj0þwj1x1þþwjnxnþwjðnþ1Þx1x1þþwjð2nÞx1xnþþwjðq�1Þxnxn

ð13:1Þ
where q ¼ ½nðn� 1Þ=2þ 2nþ 1�. The task of the coevolutionary algorithm is to

evolve rules and rule base from granulation of the universes and membership

function parameters, the linguistic terms that compose the fuzzy rule antecedents,

the choice of the t-norm to act as the and operator. Rule consequent parameters can

be computed using either global or local least squares procedure. For the details

about the use of global and local least squares see Section 11.8 or Hoffmann and

Nelles (2000) and Delgado et al., (2001a).

13.4 COEVOLUTIONARY HIERARCHICAL GENETIC
FUZZY SYSTEM

Coevolutionary approaches can be broadly classified as competitive- or collaborative-

species models. In competitive approaches, two different species interact, the

hosts and parasites. Hosts estimate their fitness and parasites evaluate the perfor-

mance of the hosts. Competition between species means that the success of hosts

implies failure of the parasites (Rosin and Belew, 1997). The motivation behind the

host–parasite approach rests on the idea of a coevolutionary arms race: It is expected

that each specie becomes increasingly efficient at exploiting the weaknesses of the

other. Alternative to competition, individuals of the species can be rewarded based on

how well they collaborate with representatives from the other species (Potter and

De Jong, 2000).

The coevolutionary approach addressed in this section considers four hierarchi-

cally organized populations. Populations of different hierarchical levels represent

different species. The parameters of fuzzy functional models can be evolved through

collaborative relations involving individuals from different species. The basic coe-

volutionary genetic fuzzy system model is shown in Figure 13.9.
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In principle, any evolutionary algorithm can implement the model, but here we

adopt genetic algorithm. The fitness of lower level individuals depends on the fitness of

higher level individuals. This is because higher level individuals are constructed from

lower level individuals. Individuals of one level collaborate by means of structural

interdependencies to instantiate individuals at the other levels (Delgado et al., 2002) .

Individuals of the four populations represent the four distinct species and encode

different parameters. The hierarchical structure considers universe granulation and

the corresponding membership functions, called partition sets for short, are at the first

hierarchical level. Rules are the individuals of the second level, sets of rules are the

individuals of the third level, and fuzzy functional models with their semantics and

inference assemble the population of the fourth level. The coding scheme uses real

and integer encoding, as shown in Figure 13.10(b). The species coevolve via repeated

application of evolutionary operators as summarized in the following procedure:

procedure CO-EVOLVE-GFS (x, f) returns a functional fuzzy model

input : data x

fitness function f

local : crossover, mutation rates k, m

population: set of individuals

individual: chromosome

GA

Population of

fuzzy systems

(level IV)

GA

Population of

rule bases

(level III)

GA

Population of

partition sets

(level I)

GA

Application

domain

Collaborative relations Collaborative relations

Collaborative relationsCollaborative relations

Fitness

Fitness

Fitness

Fitness Individual (s)

Individual (s)

Individual (s)

Individual (s)

Population of

individual rules

(level II)

Figure 13.9 Coevolutionary GFS model.
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t: triangular norms

max: maximun number of generations

Generation¼ 1

for level¼ 1:4

INITIALIZE (population, level)

if generation � max return functional fuzzy model

else

for each individual of level IV population

run LEAST-SQUARES (x,w) for each rule consequent

for level¼ 1:4

COMPUTE-FITNESS (population, level)

for level¼ 1:4

SELECTION (population, level)

CROSSOVER (population, level, k)

MUTATION (population, level, m)

generation generationþ 1

return best individual

The initialization procedure randomly generates different population for each hier-

archical level. The next step involves parameter optimization of the consequents of

each fuzzy system of level IV using a least squares procedure such as the ones

detailed in Section 11.8 of Chapter 11. Fitness calculation of level IV evaluates the

performance of each fuzzy model for the intended application. The details will be

given shortly below.

The use of the evolutionary selection, crossover, and mutation operators follows

a predefined order, from level IV to level I. Selection is applied first. Selection uses a

tournament technique to select 80% of the individuals, and the most distant from the

best strategy to chose the remaining 20% to keep diversity. The selection process is

elitist. The next evolutionary step uses one-point crossover operator, and the cross-

over point is randomly chosen. Mutation operates real and integer-encoded para-

meters. Integer encoding adopts fitness-proportional mutation, that is, alleles with

low fitness have higher probabilities of being chosen for mutation. The new value is

chosen among all feasible values. Real encoding uses uniform mutation. Computa-

tional experiments have indicated that one-point crossover with uniform mutation

perform better results when compared with alternative schemes as suggested in the

literature (Michalewicz, 1999).

13.5 HIERARCHICAL COLLABORATIVE RELATIONS

Hierarchical collaboration emerges from the interdependencies among individuals of

the different species. Figure 13.10(a) overviews the hierarchical collaborative rela-

tions and (b) shows the interdependencies involved in the coevolutionary process.

A partition set of level I individual encodes the membership functions that

granulate the universes of the variables involved. These individuals are encoded

using real-valued chromosomes. Each member of the population of fuzzy rules of
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level II represents a fuzzy functional rule. This population accepts different combi-

nations of membership functions as identified by their indexes, that is, the order in the

partition set. Individuals of the population of set of rules of level III are formed by the

indexes that identify the individual rules that assemble the set. The length of the

chromosome determines the maximum number of fuzzy rule, and the null index may

appear several times to represent the absence of rules. Each individual of level IV

represents a fuzzy system. At this level, each chromosome encodes a specific set of

rules (allele at 8) and a partition set (allele at 9), with a subset of operators to define

rule semantics and processing (alleles at places 1–7). For fuzzy functional models,

alleles at places 4–7 one not relevant here, once their purpose is to treat linguistic

fuzzy models.

Figure 13.10 Hierarchical collaboration between (a) species and (b) individuals.
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As an example, suppose that, after coevolution, the parameters of specific

individuals (at levels IV–I) are as shown in Figure 13.10(b). Thus, the kth fuzzy

system shown in level IV is composed by the 30th set of fuzzy rules of level III and

the 4th partition set of level I. In the example, each fuzzy rule of the 30th rule base

aggregates rule antecedent propositions using the following t-norm:

atb ¼ ab

pt þ ð1� ptÞðaþ b� abÞ ð13:2Þ

with pt ¼ 1:1 (both the t-norm and the value of p obtained by coevolution). To

illustrate the hierarchical collaboration, notice that in Figure 13.10 the 15th fuzzy

rule, which is part of the kth fuzzy system, is as follows:

If x1is ‘‘2’’ t x2 is ‘‘1’’ then y ¼ gðw15; xÞ
where the linguistic terms labeled here as ‘‘2’’ and ‘‘1’’ are defined (for the kth fuzzy

system) by the 4th chromosome of level I population. The nonlinear rule consequent

function g(w15,x) is as shown in (13.1) with q ¼ 2.

Constraints must be observed to guarantee that only valid individuals are

generated for all species. At the partition level, two criteria must be fulfilled by

the set of membership functions to guarantee transparency universes partition.

The first, g-completeness, avoid, partition with gaps whereas the second, a-

overlapping, limit, overlapping of membership functions of the partition sets. Evolu-

tion selects shape and location of membership functions, but the minimum (g) and

the maximum (a) overlapping should always be satisfied. Membership functions are

shifted accordingly if they do not satisfy completeness and overlapping criteria. At

the second level, crossover and mutation are applied to produce different combina-

tions of linguistic terms in each fuzzy rule. At the rule-base level, crossover and

mutation modify the integer indexes associated with the individual rules. New values

are chosen in the index set f0; 1; . . . ; SIIg, where SII is the number of individuals of the

level II population. Crossover produces combinations of two parent individuals at the

fuzzy system level. Mutation replaces the integer allele selected by one among all all

possibilities. Uniform mutation modifies alleles at sites encoding the parameter pt of

the t-norm shown in (13.3).

13.5.1 Fitness Evaluation

Figure 13.11 summarizes the fitness evaluation mechanism adopted by the coevolu-

tionary approach. Fitness evaluation of each individual of the four hierarchical

population levels is as follows:

1. Fuzzy system—level IV: fitFSi is based on the performance of the fuzzy

models;

2. Rule base—level III: fitRBk¼max (fitFSb,. . .,fitFSd ) where b,..,d are the fuzzy

systems defined by the kth rule base;

3. Individual rule—level II: fitIRj¼mean (fitRBm,. . ..,fitRBp) where m,..,p are

rule bases containing the jth individual rule.
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4. Partition set—level I: fitPSr¼max(fitIRx,. . .,fitIRz ) where x,..,z are fuzzy

systems with the rth partition set.

Fitness evaluation uses relationships among hierarchically organized species. At

level IV, fitness is evaluated decoding chromosomes to get the corresponding fuzzy

models and their performance when solving the target application. Fitness of levels

III and I depend on the performance of the fuzzy models in which they appear, and

the best fuzzy model defines the fitness value for its rule base and partition set. This is

because if a rule base or partition set is part of models with high fitness, their fitness

should decrease because of the participation of the same individuals in lower fitness

fuzzy models. In the case of individual fuzzy rules, because interaction among them

is high, rarely an individual rule influences in isolation the performance of the fuzzy

model as a whole. Therefore, the mean of the fitness of the pertinent rule bases makes

more sense. A rule is judged measuring how well it cooperates with other rules to

compose a fuzzy model at a higher level.

13.5.2 Pruning Algorithm

From Section 11.8 of Chapter 11, the optimal values of parameters w of a fuzzy

functional model derived from the least squares optimization is given by

wopt ¼ Z#y

where Z# ¼ ðZTZÞ�1ZT and y is a vector corresponding to M training data pairs

ðxp; ypÞ; p ¼ 1; ::;M. The assumption that matrix Z is of full rank and that

M � nðn� 1Þ
2

þ 2nþ 1

Fitness Computation

(fuzzy systems)

Fitness

Fitness

Fitness

Fitness

Individual(s)

Individual(s)

Individual(s)

Individual(s)

Fitness computation

(Individual rules)

Fitness computation

(Rule bases)

Fitness computation

(Partition sets)

Application domain

Figure 13.11 Evaluation of fitness in hierarchical collaborative evolution.
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are necessary and sufficient conditions to get wopt in closed form. The full-rank

condition can always be satisfied because whenever the rank of Z is not full, we can

proceed eliminating the linearly dependent (LD) columns of Z until we get a full-rank

matrix. An algorithm to eliminate the LD columns of Zwhen it is poorly conditioned

is as follows (Delgado et al., 2001b). Let the value of the condition number of Z be

1. RCOND(Z) based on the RCOND LINPACK reciprocal condition estimator;

2. an estimate for the reciprocal of the condition of Z in1-norm;

3. near one if Z is well conditioned, and near zero if Z is poorly conditioned.

The algorithm below improves the reciprocal condition number of matrix Z elim-

inating the columns of Z that contribute most to reduce RCOND(Z). The main steps

are as follows:

procedure MATRIX-COND-LS (Z) returns a conditioned matrix

input: data matrix Z

local: threshold

eliminate null columns of Z

set null columns status to 0

set status of the remaining columns to 0.5

let Z1 ¼ ZðrÞ, where r are the columns of Z with status > 0

if RCOND(ZT
1 Z1) � threshold do

set Z2 ¼ ½Ci�;Ci is the ith column of Z with status¼ 0.5 and biggest Euclidean

norm

k ¼ i

while RCOND(ZT
1 Z1) � threshold do

set status ½Ck� ¼ 1,

let Z3 ¼ ½Z2Cj�, Cj is the jth column of Z with status¼ 0.5 and highest

RCOND(ZT
3 Z3),

k ¼ j,

set Z2 ¼ Z3,

let Zf ¼ ZðrÞ, where r are the columns of Z with status¼ 1

return Zf

Because Zf is a full-rank matrix, the reduced parameter vector w
opt
f is found using

w
opt
f ¼ Z

#
f y

where Z#
f ¼ ðZT

f Zf Þ
�1
ZT
f

EXAMPLE 13.2

First a function approximation problem with noisy learning data is considered. The functional

fuzzy model evolved by the coevolutionary procedure is compared with an artificial neural

fuzzy inference system (ANFIS) trained with least squares and gradient methods (Jang, 1993).

In function approximation problem, we emphasize approximation accuracy and degree of
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overfitting. Flexible models with nonlinear consequents are capable of adapting well and they

may incorporate peculiarities due to random variations (Berthold and Hand, 2006). The

coevolutionary approach deals with overfitting incorporating pruning steps and redundancy

control. The task here is to approximate the function

F1 : �! R;F1ðx1; x2Þ ¼ f1ðx1; x2Þ þ Nðm; sÞ;� ¼ ½0; 1�2

f1ðx1; x2Þ ¼ 1:9ð1:35þ expðx1Þ sin½13ðx1 � 0:6Þ2 expð�x2Þ sinð7x2Þ�
where Nðm; sÞ is a Gaussian distribution with mean m ¼ 0 and standard deviation s ¼ 0:3.
Figure 13.12 depicts the original function f1ðx1; x2Þ and training data obtained by equally

sampling 255 points from � and computing F1.

Models were evolved after 1000 generations with population sizes of 100 individuals for

level IV, 80 individuals for level III, and 20 individuals for level I. Initially, the granularity of

the partition set is [3, 3], that is, three fuzzy sets granulate the universes of x1 and x2. Each

individual, namely, rule base of level III, contains at most nine fuzzy rules. The effective

number of fuzzy rules of level III can change during evolution because mutation or crossover

may exclude or reintroduce a rule in the rule base. The fitness of the fuzzy models was

computed as the inverse of the root mean squared error (RMSE) using learning data set.

Selection uses the tournament for reproduction and elitist selection. Crossover and mutation

are performed with rates k ¼ 0:3 and m ¼ 0:1 for levels I, III, and IV. In the example, the

population of individual rules (level II) contains all possible combinations of the linguistic

terms, and no evolution is necessary at this level. Table 13.2 presents the results for the best

fuzzy system evolved by the coevolutionary approach (maximun number of gener-

ations¼ 1000). The solution produced by ANFIS after 1000 training epochs is also shown.

For comparison purposes, ANFIS uses the same granulation, namely [3, 3].

Experiments have been done using ANFIS with the same membership functions as the ones

adopted by the coevolutionary GFS (CoevolGFS) approach, that is, triangular, trapezoidal, and

Gaussian. The best performance was achieved using Gaussian membership functions. Both

Figure 13.12 Original function and noisy training data.

Table 13.2 RME Errors for Function Approximation.

Approach Training RME Test RME Number of rules

CoevolGFS 0.25 0.13 8

ANFIS 0.32 0.21 9
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ANFIS and CoevolGFS were tested using 2500 equally spaced samples of �. As Table 13.2

indicates, the CoevolGFS approach achieves the best compromise between accuracy, mea-

sured by the generalization capability, and compactness, measured by the number of fuzzy

rules. Figure 13.13 shows training and testing errors for the best fuzzy model evolved by

coevolution (full line) and learned by ANFIS (dotted line). In Figure 13.13 cycles mean

generations for the coevolutionary approach and epochs for ANFIS.

Figure 13.13 emphasizes the benefits of coevolution associated with the use of nonlinear

consequent functions. As it can be noted, the results of the coevolutionary approach after first

generation are better than the ones obtained by ANFIS trained with 1000 epochs. The reason is

that, whereas coevolution uses nonlinear adjustable rule consequents, ANFIS uses linear

consequent functions. Figure 13.14 illustrates the generalization capabilities of the model

evolved by coevolGFS and ANFIS. The coevolutionary process g-complete and

a-overlapped partitions are shown in Figure 13.15a. They are more visible when compared

with the overlapping results obtained by ANFIS, Figure 13.15.b.

EXAMPLE 13.3

This second example concerns a classification of intertwined spirals because it is a challenging

classification benchmark that has originated from the field of neural networks. (Juillé and

Figure 13.13 Training and testing errors.

Figure 13.14 Approximation of f1 by CoevolGFS and ANFIS.
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Pollack, 1996). We assume that data are the coordinates of the two spirals. The spirals coil

around the origin and around each another as depicted in Figure 13.16. Here, the task is to

develop a functional fuzzy rule-based system to associate any (x1; x2) coordinate with the

proper spiral. The coordinates are labeled to denote which spiral the coordinates refer. Training

data is a triple (x1; x2;C), whereC ¼ þ1 for one spiral andC ¼ �1 for the other. Two sets with
97 points each were generated. Fuzzy models were evolved using a training data composed of

194 points, 97 for each spiral. Denoting fuzzy system output for input xp by f ðxpÞ, the following
assignment can be made:

Cl1 ! roundðf ðxpÞ ¼ þ1
Cl2 ! roundðf ðxpÞ ¼ �1

roundðaÞ ¼
intðaÞ � 1; if ða� intðaÞ � �0:5
intðaÞ; if �0:5 < a� intaðaÞ < 0:5

intðaÞ þ 1; if a� intðaÞ � 0:5

8

>

<

>

:

As a consequence, if the output is in the range [�1:5;�0:5] then class is Class 1, otherwise, if
the output is in the range [0:5; 1:5] then class is Class 2. If the output is out of these two ranges,
then the class is unknown.

Figure 13.15 Partitions developed by (a) CoevolGFS and (b)ANFIS.

Figure 13.16 Classification performance of CoevolGFS and ANFIS.
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The number of individuals chosen are 20, 80, and 100 for the partition set, rule base, and

fuzzy system levels, respectively. Selection for reproduction uses tournament and elitism.

Crossover and mutation rates are k ¼ 0:3 and m ¼ 0:1, respectively. Initial partition sets

assume at the most three linguistic terms for each variable, equally spaced in the range [6,

6], for x1, and [�6:5, 6.5] for x2. The size of each chromosome of the rule-base level is fixed as

four, which means four fuzzy rules at the most in each rule base. Figure 13.17 shows the

amount of classification errors for best individual (solid line) and for the average of the

population (dotted line) during evolution. The best individual misclassified 45 points in the

first generation and correctly classified all points after 529 generations.

Table 13.3 summarizes the classification performance of the best individual evolved by the

coevolGFS and developed by ANFIS with granularity [3, 3]. Similar to the previous example,

different membership functions have been experimented, with the Gaussians being the most

efficient.

Figure 13.16 illustrates the classification performance of coevolGFS and ANFIS. Three

regions are shown to illustrate the generalization capabilities of the fuzzy models. The regions

are constructed using 10,000 uniformly distributed testing data points in

� ¼ ½�6; 6� � ½�6:5; 6:5�. Gray areas are data classified as class 1 ðf ðxpÞ 2 ð�1:5;�0:5�Þ,
white region corresponds to data classified as class 2 ðf ðxpÞ 2 ½0:5; 1:5Þ, and black areas

correspond to data classified as unknown.

The best fuzzy rule-based system evolved appears in generation 529 and is as follows:

R1: If x1is low and x2 is low then y¼�0:31þ1:6x1�0:26x2þ0:34x21þ0:17x22�0:1x1x2

R2: If x1is medium and x2 is low then y¼ 15:3�1:3x1þ7:7x2�0:05x21þ0:84x22�0:46x1x2

R3: If x1 is medium and x2 is high then y¼�17:2�2:2x1þ7:6x2�0:08x21�0:78x22þ0:45x1x2

R2: If x1is high and x2 is high then y¼ 1:14þ2:0x1þ1:24x2�0:25x21�0:28x22�0:34x1x2

Figure 13.17 Classification error during evolution.

Table 13.3 Classification Performance for Intertwined Spirals.

Approach Cycles Misclassification Number of rules

CoevolGFS 529 0 4

ANFIS 1000 18 9
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Antecedent aggregation (and operator) is a t-norm with pt ¼ 9:96. Linguistic terms low,

medium, and high have the membership functions shown in Figure 13.18.

13.6 EVOLVING FUZZY SYSTEMS

As thoroughly discussed in Chapter 11, fuzzy rule-based models are an effective

mechanism to combine behaviors that can be individually modeled. To develop fuzzy

models means to find a proper structure, namely, the rule base, membership func-

tions, linguistic labels, and parameters. As indicated in the previous section, GFS is a

powerful tool to design fuzzy systems when data are available. GFS evolve solutions

and help designers to select critical structural elements of fuzzy models. As a design

tool, GFS runs off-line and interacts with designers to complement information

acquired from data with expert knowledge.

Learning models online requires continuous data acquisition and processing.

New data may either reinforce and confirm the current knowledge, or indicate

changes and revision of the current model. For instance, in nonstationary environ-

ments, operating conditions modify, fault occurs, parameters of a process change,

and models must be revised to match the current conditions. In these cases, different

evolution methods must be devised to give an answer to a key question: How to

update the current model structure using the newest data samples? The evolving

mechanism must ensure greater generality of the structural changes to improve the

ability of fuzzy rule-based models to describe a number of data samples from the

moment of their operation. The mechanism used to modify the rule base must

consider replacement of less-informative rules by more informative ones in an online

and gradual manner. Evolving fuzzy systems aim at developing more flexible

adaptive systems than conventional adaptive system mechanisms mostly based on

linearity and fixed structures. Evolving systems target nonstationary processes and

embody online learning methods and algorithms that evolve individual fuzzy sys-

tems that inherit and gradually change to guarantee life-long learning and self-

organization of the system structure (Angelov et al., 2006). The purpose of evolving

fuzzy systems is to act online and complement GFS in the sense that models designed

offline by GFS can be further adapted to unknown and unpredictable environments

using online learning methods and algorithms.

Figure 13.18 Linguistic terms and corresponding membership functions.
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This section presents an evolving participatory learning (ePL) approach to

construct evolving fuzzy rule-based models. The approach combines the concept

of participatory learning (Yager, 1990) and the evolving fuzzy modeling approach

(Angelov, 2002; Angelov and Filev, 2004). Participatory learning (PL) naturally

induces unsupervised dynamic fuzzy clustering algorithms (Silva et al., 2005) and

provides an effective mechanism to construct evolving algorithms. Here the focus

is on functional fuzzy models, but similar approach can be used to develop

linguistic fuzzy models as well. In the ePL approach, fuzzy model structure

identification means estimation of modal values and dispersion of the Gaussian

membership functions associated with the linguistic variables that appear in the

antecedents of the fuzzy rules, through participatory learning clustering. The

original evolving Takagi–Sugeno (eTS) approach of (Angelov, 2002) uses infor-

mation potential clustering. After modal values and dispersion (antecedent para-

meters) are found, both eTS and ePL use the least squares method to find the

parameters of the functions that appear in the consequents of the functional fuzzy

rules.

13.6.1 Functional Fuzzy Model

Functional fuzzy model identification considers a set of rule-based models with

fuzzy antecedents and functional consequents. Assuming linear functions at each

rule consequent, the models have the following structure:

Ri : If x is Ai then yi ¼ ai0 þ
X

n

j¼1
aijxj

where Ri is the ith rule, i ¼ 1; . . . ; c, and c is the number of fuzzy rules, Ai is an

n-dimensional vector of the antecedent fuzzy sets, aij are the parameters of the rule

consequents, x 2 ½0; 1�n, and yi is the output of the ith rule.

Therefore, the collection of the i ¼ 1; . . . ; c rules assembles a model as a

combination of local linear models. The contribution of each local linear model

to the overall output is proportional to the degree of activation of each rule. Here

we adopt Gaussian membership functions, that is, each element Ai
j; j ¼ 1; . . . ; n,

of Ai, is

Ai
jðxjÞ ¼ exp½�kijðxj � vijÞ2�

where kij is a positive constant that defines the zone of influence of the ith local model

and vij is the modal value. The dispersion of the Gaussian increases as kij decreases;

too small values lead to averaging and too large values to overfitting. Usually, values

in the range [0.3, 0.5] are recommended (Angelov and Filev, 2004). Themodal values

vij; i ¼ 1; . . . ; c; j ¼ 1; . . . ; n, are the cluster centers (focal points, and prototypes)

found using a clustering algorithm, each cluster defining a rule. Clearly, online

learning needs online clustering. Clustering can be performed in both input or

input–output data space.
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The output of the model is determined as the weighted average of individual rule

contributions:

y ¼
X

c

i¼1
wiyi

wiðxÞ ¼
liðxÞ
P

c

i¼1
liðxÞ

li ¼ Ai
1ðx1Þ tAi

2ðx2Þ t . . . t Ai
nðxnÞ

where li is the degree of activation of rule i and t is a t-norm. In practice, the product

t-norm is the one most commonly adopted.

13.6.2 Evolving Participatory Learning Algorithm

Similar to the eTS, the ePL algorithm starts after an initialization step to set initial

rule consequent parameters equal to zero, and rule base antecedent parameters whose

modal values are usually set at the first data point. Next, the algorithm starts its online

operation of reading the next data sample, running the clustering algorithm, modify-

ing or updating the rule base structure, and computing the degree of activation of the

rules and the model output. The following procedure summarizes the algorithm.

procedure EVOLVE-PARTICPATORY- LEARNING (x,y) returns an output

input : data x,y

local: antecedent parameters

consequent parameters

INITIALIZE-RULE-PARAMETERS

do forever

read x

PL-CLUSTERING

UPDATE-RULE-BASE

RUN-LEAST-SQUARES(x,y)

COMPUTE-RULE-ACTIVATION

COMPUTE-OUTPUT

return y

The main step in the ePL algorithm concerns the PL algorithm. Let vki 2 ½0; 1�
n
be the

ith, i ¼ 1; . . . ; ck, cluster center at the kth time step. The purpose of the participatory

mechanism is to learn the value of vki from a stream of data xk 2 ½0; 1�n. Given an

initial cluster structure, that is, a set of initial cluster centers, updates in ePL proceed

using a fuzzy compatibility index rki 2 ½0; 1� and an arousal index rki 2 ½0; 1�. While

rki measures how much a data point is compatible with the current cluster structure,

the arousal index rki acts as a critic to signal when the current cluster centers should be

revised in light of new information contained in the data.
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The PL clustering procedure may, in each step, create a new cluster or modify

the existing ones, depending on the level of the arousal index. If the arousal index is

greater than a threshold t 2 ½0; 1�, then a new cluster is formed. Otherwise the ith

cluster center is updated as follows:

vkþ1i ¼ vki þ Gk
i ðxk � vki Þ

where Gk
i ¼ arki , a 2 ½0; 1� is the learning rate, and

rki ¼ 1� k x
k � vki k
n

with k  k being a distance function. The cluster center to be updated is the one that is
the most compatible with xk. Formally, this means that cluster center i is such that

i ¼ argmax
p
frkpg

Similar to cluster centers, the arousal index rki is updated as follows:

rkþ1i ¼ rki þ bð1� rkþ1i � rki Þ
The value of b 2 ½0; 1� controls the rate of change of arousal: The closer b is to 1, the

faster the system can sense compatibility variations. The way in which ePL includes

the arousal mechanism is to incorporate the arousal index rki into the effective

learning rate Gk
i as follows:

Gk
i ¼ aðrki Þ

1�rk
i

When rki ¼ 0 we have Gk
i ¼ arki , which is the PL procedure with no arousal. Notice

that if the arousal index increases, the similarity measures have a reduced effect. The

arousal index is the complement of the confidence on the truth of the current belief

which, in ePL, is the rule base structure. The arousal mechanism checks the perfor-

mance of the system looking at compatibility of the current model with the observa-

tions. Learning is dynamic in the sense that rki can be viewed as a belief revision

strategy whose effective learning rate Gk
i ¼ aðrki Þ

1�rk
i depends on the compatibility

between new data, on the current cluster structure, and on model confidence.

Whenever a cluster center is updated or a new cluster added, the PL fuzzy

clustering algorithm verifies if there exist redundant clusters, because updating a

cluster center may push the center closer to another one and redundant cluster may be

formed. Therefore, a mechanism to exclude redundancy is needed to detect similar

outputs due to distinct rules. In PL clustering, a cluster center is declared redundant

whenever its similarity with any other center is greater than or equal to a threshold l.

If this is the case, either the original cluster center is maintained or it is replaced by

the average between the new data and the cluster center.

Similar to the compatibility index rki , the compatibility among cluster centers is

computed using

rkvi ¼ 1�
X

n

p¼1
jvki � vkpj
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Therefore, whenever rkvi � l, cluster i is declared redundant.

After clustering, the fuzzy rule based model is constructed using linear conse-

quent functions whose parameters are computed using the local weighted least

squares algorithm to obtain locally meaningful models. In off-line applications,

model parameters ai ¼ ðai0; ai1; . . . ; ainÞT ; i ¼ 1; . . . ; c, are computed to minimize

the objective function

JL ¼
X

c

i¼1
ðy� XTaiÞTWiðy� XTaiÞ ð13:3Þ

where X 2 Rdðnþ1Þ is a matrix formed by vectors ðxkeÞ
T ¼ ð1; ðxkÞTÞ, y is a vector

formed by yk; k ¼ 1; . . . ; d;Wi is a diagonal matrix whose elements are wk
i ¼ wiðxkÞ,

and d is the number of training data. The parameters that minimize the objective

function (13.3) are given by (Yen et al., 1998):

ai ¼ ðXTWiXÞ�1XTWiy; i ¼ 1; . . . ; c ð13:4Þ
In online applications, parameters aki must be updated, after a new data xk is

presented at each time step k, using the recursive weighted least squares procedure.

In this case, parameters aki that minimize (13.3) are computed as follows (see, for

instance, Angelov and Filev, 2004):

aki ¼ ak�1i þ qki x
k�1
e wk�1

i ½yk � ðak�1i Þ
T
xk�1e �

qki ¼ qk�1i � wk�1
i qk�1i xk�1e ðxk�1e Þ

T
qk�1i

1þ wk�1
i ðxk�1e Þ

T
qk�1i xk�1e

a0i ¼ 0 and q0i ¼ uI, where u is a large number and I is the ðnþ 1Þ � ðnþ 1Þ identity
matrix, and i ¼ 1; . . . ; c. Notice that parameters are computed for each rule. The

parameters of a newly added rule are determined as weighted average of the

parameters of the remaining rules, that is,

akcþ1 ¼
X

c

i¼1
wk
i a

k�1
i

and parameters of rules Ri are left intact, a
k
i ¼ ak�1i ; i ¼ 1; . . . ; c. Parameter qkcþ1 of

the new rule is initialized at qkcþ1 ¼ sI and that of the remaining rules inherited at

qki ¼ qk�1i ; i ¼ 1; . . . ; c.
The details of the ePL algorithm steps are given below. The Section 14.8 of

Chapter 14 provides a complete description of the PL clustering algorithm.

1. Read new data xk

2. Compute compatibility rki

3. Compute arousal index rki

4. If rki � t 8f1; . . . ; ckg
xk is a new cluster center; set ckþ1 ¼ ck þ 1

else compute vkþ1i ¼ vki þ Gk
i ðxk � vki Þ
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5. Compute rkvi
if rkvi � l then exclude vki ; set c

kþ1 ¼ ck � 1

6. Update rule base structure and rules parameters

7. Compute normalized rule activation degrees wk
i

8. Compute output using y ¼
P

c

i¼1
wiyi

EXAMPLE 13.4

The ePL algorithm is used to forecast average weekly inflows for a large hydroelectric plant.

Hydrologic data cover the period of 1931–2000 (Lima et al., 2006). Streamflow forecast is

important to plan the operation of water resources systems. One of the major difficulties is the

nonstationary nature of streamflow series due to wet and dry periods of the year. The average

and standard deviation of each week in the period 1931–2000 are shown in Figure 13.19, where

we clearly note seasonality and higher variability of streamflow during wet periods.

The number of model inputs was chosen using the partial autocorrelation function, see

Figure 13.20, that suggests three inputs, respectively, xt�3; xt�2; xt�1 to forecast yt ¼ xt. The

dotted lines of Figure 13.20 are the two-standard error of the estimated partial autocorrelation.

The period from 1991 to 2000 was selected to test the ePL algorithm. This period corresponds

to 520 weeks. Data are normalized to fit the unit interval [0, 1] as follows:

xk ¼ zk �min

max�min

where xk is the normalized data value, and min and max denote the minimum and maximum

values of the hydrologic data zk; k ¼ 1; . . . ;N.

Figure 13.19 Weekly average and standard deviation (m3/s).
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The forecasting performance was evaluated using four error criteria: root mean square error

(RMSE), mean absolute error (MAD), mean relative error (MRE), and maximum relative error

(REmax):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

P

X

P

k¼1
ðxk � xkdÞ

2

v

u

u

t

MAD ¼ 1

P

X

P

k¼1
jxk � xkdj

MRE ¼ 100

P

X

P

k¼1

jxk � xkdj
xkd

REmax ¼ 100max
jxk � xkd

xkd

	 


where P ¼ 520 is the number of weeks in the forecasting period, yk ¼ xk is the model output,

and xkd is the actual streamflow value at instant k. Another important evaluation criteria is the

correlation coefficient r,

r ¼

P

P

k¼1
ðxkd � xdÞðxk � xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

P

k¼1
ðxkd � xdÞ2

P

P

k¼1
ðxk � xÞ2

s

Figure 13.20 Estimated partial autocorrelation function and standard error limits.
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where xd is the mean valued of the actual streamflow values and x is the mean value of the

forecasted streamflow values. Correlation coefficient measures how well the forecasts

correlate with the actual values. A value of the correlation coefficient closer to 1 indicates

higher quality of forecasting.

The ePL algorithm uses the first 28 weeks to initialize the rule base structure. The initializa-

tion is done offline. The next phase is done online. During this phase, the number of fuzzy rules

and their antecedents and consequents may change depending on the nature of data. The PL

clustering procedure starts with two fuzzy rules using the 28 weeks of initialization period.

Table 13.4 summarizes the forecasting performance of the ePL and eTS models for the 520-

week testing period and the number of rules evolved.

Figure 13.21 shows the actual inflows and inflows forecasted by ePL and eTS models.

Table 13.4 Forecasting Performance of Evolving Fuzzy

Models.

Models

Error ePL eTS

RMSE (m3/s) 378.71 545.28

MAD (%) 240.55 356.85

MRE (%) 12.54 18.42

REmax (%) 75.51 111.22

r 0.95 0.89

Number of rules 2 2

Figure 13.21 Actual (dotted) and forecasted (solid line) streamflow values.
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13.7 CONCLUSIONS

Fuzzy sets and systems are an important constituent of CI because they provide the basis

by which imprecision and approximate reasoning can efficiently be handled using

computational models. Neural networks are powerful function approximators and

clustering devices in which learning procedures provide the key for development.

Genetic algorithms are effective stochastic search mechanisms that provide the flexi-

bility required to design complex systems. Because genetic algorithms do not need

smoothness to work, they provide an important tool to parameters for which no explicit

analytical representation is possible. For instance, it is still a challenge to choose optimal

triangular norms using conventional optimization techniques. Hybridizations of fuzzy

systems with neural, genetic, and evolving systems explore the benefits and often help

to overcome many limitations of each of them. They also augment the area of CI and

effectively contribute to solve challenging application problems.

EXERCISES AND PROBLEMS

1. Consider fuzzy and and or neurons with inputs xi 2 ½0; 1�, i ¼ 1; . . . ; n, whose output yand
and yor are computed as follows:

yand ¼ ðw1sx1Þtðw2sx2Þt . . . tðwnsxnÞ ¼ T
n

i¼1
ðwisxiÞ

yor ¼ ðw1tx1Þsðw2tx2Þs . . . :sðwntxnÞ ¼ S
n

i¼1
ðwitxiÞ

where t and s are t-norm and t-conorm. Assume that n ¼ 2 and compute the outputs of the

fuzzy neurons for weights wi 2 f0; 1g and t ¼ min and s ¼ max.

Figure 13.21 (Continued ).
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2. Consider fuzzy and and or neurons with inputs xi 2 ½0; 1� and weights

wi 2 ½0; 1�; i ¼ 1; . . . ; n, whose outputs yand and yor are given in the previous problem. Plot

the input–output function of both types of neurons choosing different t-norms and s-norms.

3. Let us consider a two-input, single-output two-layer fuzzy neural network depicted below.

Choose a t-norm, a s-norm, and weights wij and vk to solve the exclusive-or classification

problems. Use network structures with and neurons in the second layer and or neuron in the

output layer, and vice versa, that is, or neurons in the second layer and and neuron in the

output layer.

x1

x2

y

v1

v2

w11

w12

w21

w22

4. Repeat problem 2 for the neural fuzzy network of problem 3.

5. Consider a linguistic fuzzy rule-based system in which membership functions are triangular

and restricted to provide strong partitions of the input and output universes. This means that

the center of one membership function serves as the left base point of the next, and one

membership function is constrained to have its center at the lower boundary of the input

universe. In this case, only (n� 1) membership function centers need to be specified, where

n is the maximum number of fuzzy sets that assemble a partition of a universe. Suggest a

binary encoding scheme to evolve a rule-based model in which we must simultaneously

determine partitions and fuzzy rules. Assume that rule semantics and remaining parameters

of the fuzzy inference are known.

6. The PL clustering algorithm determines cluster centers using an updating equation that

looks similar to error correction learning schemes. Assume that the learning rate is fixed and

that no arousal mechanism is used. Show that, in this case, the PL updating equation is a

form of least squares error-minimization procedure.

7. Suggest alternative mechanisms to update parameters aki and q
k
i in evolving fuzzy systems

algorithms for the case in which a new rule is added and the case when existing rules are

merged.

HISTORICAL NOTES

Inspiration of natural information processing systems dates back to 1855 when H. Spencer associated

neural networks with intelligence through strengths of connections between internal states of neurons

(Walker, 1992).

The event marking the birth of the field of CI is often credited to the IEEE World Congress on

Computational Intelligence held in Orlando, Florida, 1994 (Craenen and Eiben, 2006). Conferences on

fuzzy systems, neural networks, and evolutionary computation were held concurrently during the event.

The use of genetic algorithms as a tool to design and develop fuzzy rule-based systems was suggested

by Carr, Pham, Karaboga, Thrift, and Valenzuela-Rendón. A comprehensive review of the area with a

wealth of bibliographic references and outlining future developments in the area of GFS was published in

the form of the special issue of Fuzzy Sets and Systems, in 2004 (vol. 141).

Evolving fuzzy systems in the sense of gradual development of rule-based fuzzy systems structure

and their parameters have their roots in the work of Fritzke done in the context of neural networks in 1990.

Angelov brought this paradigm to the area of fuzzy systems (Angelov and Zhou, 2006).
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Chapter 14

Granular Models and

Human-Centric Computing

Human-centric systems and human-centric computing are concerned with a

functionality that makes systems highly responsive to the needs of human users. We

fully acknowledge a fact that there could be a genuine diversity of requirements and

preferences that might well vary from user to user. How could we build systems that

are capable of accommodating such needs and offering in this way a high level of

user-friendliness? There are numerous interesting scenarios one can envision in

which human centricity plays a vital role. For instance, in system modeling, a user

may wish to model the reality based on a unique modeling perspective. In this sense

the data being available for modeling purposes are to be looked at and used in the

construction of the model within a suitable context established by the user. In

information retrieval and information organization (no matter whether we are

concerned with audio, visual, or hypermedia information), the same collection of

objects could be structured and looked at from different standpoints depending upon

the preferences of the individual user. In this case, an ultimate functionality of

human-centric systems is to achieve an effective realization of relevance feedback

provided by the user.

In this chapter, we are concerned with a category of fuzzy modeling that directly

explores the underlying ideas of fuzzy clustering and leads to the concept of granular

models. The essence of these models is to describe associations between information

granules, namely, fuzzy sets formed both in the input and output spaces. The context

within which such relationships are being formed is established by the system

developer. Information granules are built using specialized, conditional (context-

driven) fuzzy clustering. This emphasizes the human-centric character of such

models: it is the designer who assumes an active role in the process of forming

information granules and casting all modeling pursuits in a right framework. Owing

to the straightforward design process, granular models become particularly useful in

rapid system prototyping.

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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Fuzzy clustering has established itself as one of the methodological and

algorithmic pillars of information granulation. As we have noted in the previous

chapters, the algorithms of fuzzy clustering convert masses of numeric data into

semantically meaningful information granules. The human centricity brings here a

customized view at the structure of data that comes in the form of some knowledge

hints offering guidance to the processes of revealing this structure. Here we look

thoroughly at the two mechanisms such as clustering with partial supervision and

proximity-based fuzzy clustering. We demonstrate how they realize the mechanisms

of relevance feedback. Next, we study an interesting mechanism of participatory

learning (PL) in fuzzy clustering.

14.1 THE CLUSTER-BASED REPRESENTATION
OF THE INPUT –OUTPUT MAPPINGS

Fuzzy clusters (Pedrycz and Vasilakos, 1999; Pedrycz, 2005) establish a sound basis

for constructing fuzzy models. By forming fuzzy clusters in input and output spaces,

we span the fuzzy model on a collection of prototypes. More descriptively, these

prototypes are regarded as a structural skeleton or a design blueprint of the model.

Once the prototypes have been formed, there are several ways of developing the

detailed expressions governing the detailed relationships of the model. The one

commonly encountered in the literature takes the prototypes formed in the output

space, that is, z1; z2; . . . ; zc 2 R and combines them linearly by using the membership

grades of the corresponding degrees of membership of the fuzzy clusters in the input

space. Consider some given input x. Denote the corresponding grades of membership

produced by the prototypes v1; v2; . . ., and vc located in the input space by

u1ðxÞ; u2ðxÞ; . . . ; ucðxÞ. The output reads as follows:

y ¼
X

c

i¼1
ziuiðxÞ ð14:1Þ

The value of uiðxÞ being the degree at which x is compatible with the ith cluster in the

input space is computed in a similar way as encountered in the FCM algorithm,

(Bezolek and Pal, 1992) that is,

uiðxÞ ¼
1

P

c

j¼1

kx� vik
kx� vjk

	 
2=ðm�1Þ ð14:2Þ

where m is a fuzzification factor (fuzzification coefficient). The reader familiar with

radial basis function (RBF) neural networks (Karyannis and Mi, 1997; Ridella et al.,

1998; Rovetta and Zunino, 2000; Joo et al., 2002; Duda andHart, 1973; Gath andGeva,

1989; Hecht Nielsen, 1990; Kim and Park, 1997; Park et al., 2002) can easily recognize

that a structure of (14.1) closely resembles the architecture of RBF neural networks.

There are some striking differences. First, the receptive fields provided by (14.2) are

automatically constructed without any need for their further adjustments (which is

usually not the case in standard RBFs). Second, the form of the RBF is far more flexible

than the commonly encountered RBFs such as, for example, Gaussian functions.
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It is instructive to visualize the characteristics of the model, which realizes some

nonlinear mapping from the input to output space. The character of this nonlinearity

depends upon the distribution of the prototypes. It can be easily affected by the values

of the fuzzification factor m. Figure 14.1 illustrates input–output characteristics for

the fixed values of the prototypes and varying values of the fuzzification factor. The

commonly chosen value of m equal to 2.0 is also included. Undoubtedly, this design

parameter exhibits a significant impact on the character of nonlinearity being

developed. The values of m close to 1 produce a stepwise character of the mapping;

we observe significant jumps located at the points where we switch between the

individual clusters in input space. In this manner the impact coming from each rule is

very clearly delineated. The typical value of the fuzzification coefficient set up to 2.0

yields a gradual transition between the rules, and this shows up through smooth

nonlinearities of the input–output relationships of the model. The increase in the

values of m, as shown in Figure 14.1, yields quite spiky characteristics: we quickly

reach some modal values when moving close to the prototypes in the input space

whereas in the remaining cases the characteristics switch between them in a rela-

tively abrupt manner positioning close to the averages of the modes.

Figure 14.2 illustrates the characteristics of the model in case of different values

of the prototypes. Again it becomes apparent that by moving the prototypes we are

able to adjust the nonlinear mapping of the model to the existing experimental data.

It is helpful to contrast this fuzzy model with the RBF network equipped with

Gaussian receptive fields that is governed by the expression

y ¼

P

c

i¼1
ziGðx; vi; sÞ

P

c

i¼1
Gðx; vi; sÞ

ð14:3Þ
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Figure 14.1 Nonlinear input–output characteristics of the cluster-based model. Prototypes

are fixed ðv1 ¼ �1; v2 ¼ 2:5; v3 ¼ 6:1; z1 ¼ 6; z2 ¼ �4; z3 ¼ 2Þ, whereas the fuzzification
coefficient (m) assumes several selected values ranging from 1.2 to 4.0.
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whereGðx;m; sÞ denotes a certain Gaussian function (receptive field) characterized
by its modal value (m) and spread (s). Note that in (14.3) we usually require some

normalization as the sum of these receptive fields may not always generate the

value equal to 1. As shown in Figure 14.3, there is also no guarantee that for the

prototypes the model coincides with the prototypes defined in the output space.

This effect can be attributed to the smoothing effect of the Gaussian receptive

fields. This stands in sharp contrast to the nonlinear relationship formed by the

fuzzy partition.

0 2 4 6 0 2 4 6

–5 –5
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x

y

0
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y

Figure 14.2 Nonlinear input–output characteristics of the cluster-based model. The prototypes in the

input space vary; the distribution of the prototypes in the output space is equal to

z1 ¼ 6; z2 ¼ �4; z3 ¼ 8; m ¼ 2.
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Figure 14.3 Nonlinear input–output characteristics of RBF network; the changes in the spread values

of the receptive fields show somewhat a similar effect to the one produced by the fuzzification factor.

The remaining parameters of the model are fixed and equal to z1 ¼ 6; z2 ¼ �4; z3 ¼ 8; v1 ¼ 1; v2 ¼
5:2; v3 ¼ 5:1.
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14.2 CONTEXT-BASED CLUSTERING IN THE
DEVELOPMENT OF GRANULAR MODELS

Clustering plays a crucial role in granular modeling. First, it helps convert numeric

data into information granules without or with some hints of available domain

knowledge. The produced information granules form a backbone or a blueprint of

the model. Although the model could be further refined, it is predominantly aimed at

capturing the most essential, numerically dominant features of data by relying on its

summarization. The more clusters we intend to capture, the more detailed the

resulting blueprint becomes. It is important to note that clustering helps manage

dimensionality problem that is usually a critical issue in rule-based modeling. As

being naturally based on Cartesian products of input variables rather than individual

variables, they offer a substantial level of dimensionality reduction. Let us remind

that in any rule-based system, the number of input variables plays a pivotal role when

it comes to the dimensionality of the resulting rule base. A complete rule base

consists of pn where p is the number of information granules in each input variable

and n denotes the total number of the input variables. Even in case of a fairly modest

dimensionality of the problem, (say, n ¼ 10) and very few information granules

defined for each variable (say, p ¼ 4), we end up with a significant number of rules,

that is, 410 ¼ 1049� 106. By keeping the same number of variables and using eight

granular terms (information granules), we observe a tremendous increase in the size

of the rule base; here we end up with 2:825� 108 different rules that amounts to

substantial increase. There is no doubt that such rule bases are not practical. The

effect of this combinatorial explosion is clearly visible, refer to Figure 14.4.

There are several ways of handling the dimensionality problem. An immediate

one is to acknowledge that we do not need a complete rule base because there are

various combinations of conditions that never occur in practice and are not supported

by any experimental evidence. Although this sounds very straightforward, it is not

that easy to gain sufficient confidence as to the nature of such unnecessary rules. The

5 10
1
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100

1×104

1×103

2

n

y

4

610

Figure 14.4 Number of rules treated as a function of input variables; the dependency is illustrated for

several values of p. Observe a logarithmic scale of the y coordinate.
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second more feasible approach would be to treat all variables at the same time by

applying fuzzy clustering. The number of clusters is far smaller than the number of

rules involving individual variables.

In what follows, we discuss various modes of incorporating clustering results

into the blueprint of the fuzzy model. It is very important to understand the

implications of the use of the clustering technique in forming information granules

especially in the setting of the models. The most critical observation concerns a

distinction between relational aspects of clustering and directional features of

models. By their nature, unless properly endowed, clustering looks at multivariable

data as relational constructs, so the final product of cluster analysis results in a

collection of clusters as concise descriptors of data where each variable is treated in

the same manner irrespectively where it is positioned as a modeling entity. Typical

clustering algorithms do not distinguish between input and output variables. This

stands in sharp contrast with what we observe in system modeling. The role of the

variable is critical as most practical models are directional constructs, namely, they

represent a certain mapping from independent to dependent variables. The distinc-

tion between these two categories of variables does require some modifications to the

clustering algorithm to accommodate this requirement. To focus our attention, let us

consider a many input–many output (MIMO) model involving input and output

variables x and y, respectively, that is, y¼ f(x). The experimental data come in the

format of ordered tuples fðxk; targetkÞg; k ¼ 1; 2; . . . , N. If we are to ignore the

directionality aspect, the immediate approach to clustering the data would be to

concatenate the vectors in the input and output space so that zk ¼ ½xk targetk� and
carry our clustering in such augmented feature space. By doing that we have

concentrated on the relational aspects of data and the possible mapping component

that is of interest and has been completely ignored. To alleviate the problem, we may

like to emphasize a role of the output variables by assigning to them higher values of

weights. In essence, we emphasize that the clustering needs to pay more attention to

the differences (and similarities) occurring in the output spaces (i.e., vectors target1,

target2, . . ., targetn). This issue was raised in the past and resulted in a so-called

directional fuzzy clustering, D-fuzzy clustering, for short (Hirota and Pedrycz,

1995). An easy realization of the concept would be to admit that the distance function

has to be computed differently depending upon the coordinates of z by using a certain

(a)        (b) 

Figure 14.5 Examples of fuzzy sets of context reflecting a certain focus of the intended model:

(a) low-speed traffic, (b) high-speed traffic.
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positive weight factor g. For instance, the Euclidean distance between zk and zl
would read as k xk � xl k2 þg k targetk � targetl k2 where g > 0. The higher the

value of g, the more the attention focused on the distance between the output

variables. As usually the dimensionality of the input space is far higher than the

output one, the value of g needs to be properly selected to reach a suitable balance.

Even though the approach might look sound, the choice of the weight factor becomes

a matter of intensive experimentation.

Conditional clustering (Pedrycz, 1998) is naturally geared toward dealing with

direction-sensitive (direction-aware) clustering. The context variable(s) are those

being the output variables used in the modeling problem. Defining contexts over

these variables become an independent task. Once the contexts have been formed, the

ensuing clustering is induced (or directed) by the provided fuzzy set (relation) of

context. Let us link this construct to rule-based modeling. In context-based cluster-

ing, the role of the conclusion is assumed by the context fuzzy set. The clusters

formed in the input space form the conditions of the rule. Being more specific, the

rule is of the form

If x is A1 or A2 or . . . or Ac; then y is B

where B is a context fuzzy set and A1;A2; . . . ;Ac are fuzzy sets (clusters) formed in

the input space.

Given the context, we focus the pursuits of fuzzy clustering on the pertinent

portion of data in the input space and reveal a conditional structure there. By

changing the context we continue search by focusing on some other parts of the

data. In essence, the result produced in this manner becomes a web of information

granules developed conditionally upon the assumed collection of the contexts.

Hence, the directional aspects of the model we want to develop on the basis of the

information granules become evident. The design of contexts is quite intuitive. First,

these are fuzzy sets whose semantics is well defined. We may use terms such as low,

medium, and large output. Second, we can choose fuzzy sets of context so that they

reflect the nature of the problem and our perception of it. For instance, if for some

reason we are interested in modeling a phenomenon of a slow traffic on a highway,

wewould define a number of fuzzy sets of context focused on low values of speed. To

model highway traffic with focus on high speed, we would be inclined to locate a

number of fuzzy sets at the high end of the output space. The customization of the

model by identifying its major focus is thus feasible through setting the clustering

activities in a suitable context.

We can move on with some further refinements of context fuzzy sets and, if

required, introduce a larger number of granular categories. Their relevance could be

assessed with regard to the underlying experiment (Pedrycz, 1998). To assure full

coverage of the output space, it is advisable that fuzzy sets of context form a fuzzy

partition. Obviously, we can carry out clustering of data in the output space and arrive

at some membership functions being generated in a fully automated fashion. This

option is particularly attractive in case of many output variables to be treated together

where the manual definition of the context fuzzy relations could be too tedious or

even impractical.
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In what follows, we briefly recall the essence of conditional (context-based)

clustering and elaborate on the algorithmic facet of the optimization process. This

clustering, which is a variant of the FCM, is realized for individual contexts, W1,

W2; . . . ;Wp. Let us consider a certain fixed context (fuzzy set)Wj described by some

membership function (the choice of its membership will be discussed later on). For

the sake of convenience, we consider here a single output variable. A certain data

point (targetk) located in the output space is then associated with the corresponding

membership value ofWj, wjk ¼ Wj(targetk). Let us introduce a family of the partition

matrices induced by the jth context and denote it by UðWjÞ

UðW jÞ ¼ uik 2 ½0; 1�j
X

c

i¼1
uik ¼ wjk 8 k; and 0 <

X

N

k¼1
uik < N 8 i

( )

ð14:4Þ

where wjk denotes a membership value of the kth data point to the jth context (fuzzy

set). The objective function guiding clustering is defined as the following weighted

sum of distances:

Q ¼
X

c

i¼1

X

N

k¼1
umikkxk � vik2 ð14:5Þ

The minimization ofQ is realized with respect to the prototypes v1, v2, . . ., vc and the

partition matrix U 2 UðWjÞ. The optimization is realized iteratively by updating the

partition matrix and the prototypes in a consecutive manner (Pedrycz, 1996). More

specifically, the partition matrix are computed as follows:

uik ¼
wjk

X

c

j¼1

kxk � vi k
kxk � vj k

	 
 2
m�1

i ¼ 1; 2; . . . ; c; k ¼ 1; 2; . . . ;N ð14:6Þ

Let us emphasize here that the values of uik pertain here to the partition matrix

induced by the jth context. The prototypes vi, i ¼ 1; 2; . . . ; c are calculated in the

Input space

T1 T2 T3 Context

fuzzy sets 

Context

fuzzy sets 

Input space 

(a)           (b)  

Figure 14.6 (a) A blueprint of a granular model induced by some predefined fuzzy sets or relations of

context defined in the input space; and (b) a detailed view at the model in case of three contexts and two

clusters per context.
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well-known form of the weighted average

vi ¼

P

N

k¼1
umikxk

P

N

k¼1
umik

ð14:7Þ

We iterate (14.6) and (14.7) until some predefined termination criterion has been

satisfied.

The blueprint of the model, Figure 14.6, has to be further formalized to explicitly

capture the mapping between the information granules. This leads us to a detailed

architecture of an inherently granular network whose outputs are information gran-

ules. The concept of a granular or granular neuron becomes an interesting construct

worth exploring in this setting.

14.3 GRANULAR NEURON AS A GENERIC PROCESSING
ELEMENT IN GRANULAR NETWORKS

As the name suggests, by the granular neuron we mean a neuron with granular

connection. More precisely, we consider the transformation of many numeric inputs

u1, u2; . . . ; uc (confined to the unit interval) of the form

Y ¼ Nðu1; u2; . . . ; uc;W1;W2; . . . ;WcÞ ¼
X

�
ðW i � uiÞ ð14:8Þ

with W1, W2; . . . ;Wc denoting granular weights (connections), see Figure 14.7. The

symbols of generalized (granular) addition and multiplication (i.e., �;�) are used

here to emphasize a granular character of the arguments being used in this aggrega-

tion. When dealing with interval-valued connections, Wi ¼ ½wi�; wiþ�, the opera-

tions of their multiplication by some positive real input ui produce the results in the

form of the following interval:

Wi � ui ¼ ½wi�ui; wiþui� ð14:9Þ

u1

u2

uc

Σ 

W1

Y

Wc

Figure 14.7 Computational model of a granular neuron; note a granular character of the connections

and ensuing output Y.
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When adding such intervals being produced at the level of each input of the neuron,

we obtain

Y ¼
X

n

i¼1
wi�ui;

X

n

i¼1
wiþui

" #

ð14:10Þ

For the connections represented as fuzzy sets, the result of their multiplication by a

positive scalar ui is realized through the use of the extension principle

ðW i � uiÞðyÞ ¼ supw:y¼wui ½W iðwÞ� ¼ W iðy=uiÞ ð14:11Þ

Next, the extension principle is used to complete additions of fuzzy numbers being

the partial results of this processing. Denote by Zi the fuzzy number Zi ¼ W i � ui.

We obtain

Y ¼ Z1 � Z2 �    � Zn ð14:12Þ
that is,

YðyÞ ¼ sup fminðZ1ðy1Þ; Z2ðy2Þ; . . . ; ZnðynÞÞg
s:t: y ¼ y1 þ y2 þ    þ yn ð14:13Þ

Depending on a specific realization, these connections can be realized as intervals,

fuzzy sets, shadowed sets, rough sets, and so on. In spite of the evident diversity of the

formalisms of granular computing under consideration, the output Y is also a granular

construct, Figure 14.7.

EXAMPLE 14.1

Consider the granular neuron with two inputs u1 ¼ a and u2 ¼ 1� a as shown in Figure 14.8.

Assume the granular weights represented as intervals and being equal to W1 ¼ ½0:3; 3� and

Figure 14.8 The interval output of the granular neuron in case of interval connections.
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W2 ¼ ½1:4; 7�, respectively. The output of the neuron is an interval; as a changes from 0 to 1, it

moves along the y axis.

In case of fuzzy sets used to implement the connections, we end up with more complicated

formulas for the resulting output. They simplify quite profoundly if we confine ourselves to

triangular fuzzy sets (fuzzy numbers) of the connections. Following the calculus of fuzzy

numbers, we note that the multiplication ofWi by a positive constant scales the fuzzy number

yet retains the piecewise character of the membership function. Furthermore, the summation

operation does not affect the triangular shapes of the membership function, so at the end the

final result can be again described in the following format:

Y ¼ h
X

c

i¼1
aiui;

X

c

i¼1
miui;

X

c

i¼1
biuii ð14:14Þ

where each connection Wi is fully characterized by the triple of real numbers (parameters)

Wi ¼ hai; mi; bii. Heremi denotes a modal value of the connection whereas ai and bi stand for

the lower and upper bound of the triangular number describing this fuzzy set of the connection.

The plot of the output of the neuron for u1 and u2 defined as above is included in Figure 14.9.

The granular neuron exhibits several interesting properties that generalize the characteristics

of (numeric) neurons. Adding a nonlinearity component (g) to the linear aggregation does not

change the essence of computing; in case of monotonically increasing relationship ðgðYÞÞ, we
end up with a transformation of the original output interval or fuzzy set (in this case we have to

follow the calculations using the well-known extension principle).

14.4 ARCHITECTURE OF GRANULAR MODELS BASED
ON CONDITIONAL FUZZY CLUSTERING

The conditional fuzzy clustering has provided us with a backbone of the granular

model (Pedrycz and Vasilakos, 1999). Following the principle of conditional

Figure 14.9 The output of the granular neuron in case of connections as triangular fuzzy numbers:

(a)W1 ¼ h0:3; 0:5; 3:0i,W2 ¼ h1:4; 1:5; 7:0i and (b)W1 ¼ h0:3; 2:0; 3:0i,W2 ¼ h1:4; 5:0; 7:0i.
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clustering, we end up with a general topology of the model shown in Figure 14.10. It

reflects a way in which the information granules are put together following the way

the information granules have been formed.

The computations of the output fuzzy sets are completed in two successive steps:

(a) aggregation of activation levels (membership grades) of all clusters associated

with a given context and (b) linear combination of the activation levels with the

parameters of the context fuzzy sets. In case of triangular membership functions of

the context fuzzy sets, the calculations follow the scheme described by (14.8).

The development of the granular model comprises of two main phases, that is,

1. forming fuzzy sets of context, and

2. conditional clustering for the already available collection of contexts.

These two processing phases are tied together: once contexts have been provided, the

clustering uses this information in the directed development of the structure in the

input space.

The granular models come with several important features:

� In essence, the granular model is nothing but a web of associations between

information granules that have been constructed.

� The model is inherently granular; even for a numeric input, the model returns

some information granule, in particular some triangular fuzzy set (fuzzy

number).

� The model is built following a design scheme of rapid prototyping. Once the

information granules have been defined in the output space and constructed in

the input space, no further design effort is required. Simply, we organize them

in the topology as presented in Figure 14.10.

Σ 

Σ 

Σ  

Σ 

Context-based 

clusters  

Y

Contexts  

x

Figure 14.10 The overall architecture of the granular models. Context are shown as rectangular

connections of the output V neurons.
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Noticeably, by changing the granularity of the contexts as well as their distribu-

tion across the output space, we can control the size of the fuzzy set of the output and

adjust the specificity of the overall modeling process. The adjustments of the contexts

could be helpful in further enhancements of granular models.

14.5 REFINEMENTS OF GRANULAR MODELS

The granular model can be augmented by several features with the intension of

improving its functionality and accuracy. The first modification is straightforward

and concerns a bias component of the granular neuron. The second one focuses on an

iterative scheme of optimization of the fuzzy sets of context.

14.5.1 Bias of Granular Neurons

So far, the web of the connections between the contexts and their induced clusters

was very much reflective of how the clustering has been realized. Although the

network can be assembled without any further computing effort, it becomes useful to

look into its further refinement. In particular, wewould look whether the model is not

biased by a systematic error and if so, make somemodifications to the topology of the

granular model to alleviate this shortcoming. A numeric manifestation of the

granular model can be viewed in the form of the modal value of the output fuzzy

set of the granular model, see Figure 14.11. Denote it by yk considering that the fuzzy

set itself is given as YðxkÞ. If the mean of the error being computed as

targetk � yk k ¼ 1; 2; . . . ;N is nonzero, we are faced with a systematic error. Its

elimination can be realized by involving a bias term as illustrated in Figure 14.11.

This bias augments the summation node at the output layer of the network.

The bias is calculated in a straightforward manner.

w0 ¼ �
1

N

X

N

k¼1
ðtargetk � ykÞ ð14:15Þ

In terms of granular computing, the bias is just a numeric singleton that could be

written down as a degenerated fuzzy number (singleton) of the form

W0 ¼ ðw0;w0;w0Þ.

Σ >= < +− y,y,yY

+ yk

targetk

− y + y

>< ,,

W1

+ − + W2

Wp

W0

Figure 14.11 Inclusion of the bias term in the granular model.
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Subsequently, the resulting granular output Y reads in the form

1. the lower bound
P

p

t¼1
ztwt� þ w0

2. modal value
P

p

t¼1
ztwt þ w0

3. the upper bound
P

p

t¼1
ztwtþ þ w0

14.5.2 Refinement of the Contexts

The conditional FCM has produced the prototypes or, equivalently, clusters in the

input space. Using them we generate inputs to the granular neuron. The connections

of the neuron are the fuzzy sets of context. In essence, the parameters of the network

are downloaded from the phase of fuzzy clustering. This constitutes an essence of

rapid prototyping.

There is however some room for improvement if one might involve in further

optimization activities. The refinement may be necessary because of the fact that

each conditional FCM is realized for some specific context, and these developments

tasks are independent. As a consequence of putting all pieces together, the prototypes

may need some shifting. Furthermore, the contexts themselves may require refine-

ment and refocus. Note also that the result of the granular model is an information

granule (interval, fuzzy set, fuzzy relation, etc.), and this has to be compared with a

numeric datum yk. Again, for illustrative purposes we have to confine ourselves

to a single output granular model. Thus, the optimization has to take this into

account. As we are concerned with numeric and granular entities, there could be

several ways of assessing the quality of the granular model and its further refinement,

see Figure 14.12.

T

Context

optimization

Conditional 

clustering

Figure 14.12 An optimization scheme of the granular model.
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We put forward two optimization problems in which the minimization (and

maximization) is carried out with respect to the parameters (modal values) of the

fuzzy sets of context. The maximization of the average agreement of the granular

output of the model with available numeric data is a straightforward one. Let us

consider that Y is a granular output of the granular model produced for input xk,

YðxkÞ. As it is described by the membership function defined in the output space, we

compute the membership degree at the value targetk, that is, YðxkÞ (targetk).

max
P

1

N

X

N

k¼1
YðxkÞðtargetkÞ ð14:16Þ

As mentioned earlier, the maximization of (14.16) is completed with respect to the

parameters of the context fuzzy sets where these parameters are collectively denoted

by P.

Alternatively, we can consider a minimization of the average spread of the

granular output of the network obtained for the corresponding inputs

min
P

1

N

X

N

k¼1
ðbk � akÞ ð14:17Þ

where ak and bk are the lower and upper bounds of the triangular fuzzy number

produced for xk. In both cases the optimization can be confined to the portion of the

network requiring the refinement of the context fuzzy sets. Furthermore, we can

make the optimization more manageable by assuming that the successive contexts

overlap at the level of 1
2
. Given this condition, the optimization concentrates on the

modal values of the triangular fuzzy sets of context. Once these values have been

adjusted, the conditional FCM is repeated and the iteration loop of optimization is

repeated.

14.6 INCREMENTAL GRANULAR MODELS

We can take another, less commonly adopted principle of fuzzy modeling whose

essence could be succinctly captured as follows:

Adopting a construct of a linear regression as a first-principle global model, refine it

through a series of local fuzzy rules that capture remaining and more localized

nonlinearities of the system.

More schematically, we could articulate the essence of the resulting fuzzy model by

stressing the existence of the two essential modeling structures that are combined

together using the following symbolic relationship:

fuzzy model ¼ linear regression and local granular models:

By endorsing this principle, we emphasize the tendency that in system modeling we

always proceed with the simplest possible model (Occam’s principle), assess its

performance, and afterward complete a series of necessary refinements. The local
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granular models handling the residual part of the model are conveniently captured

through some rules.

Let us proceed with some illustrative examples, shown in Figure 14.13, that

help underline and exemplify the above development principle. In the first case,

Figure 14.13 (a), the data are predominantly governed by a linear relationship

whereas there is only a certain cluster of points that are fairly dispersed within

some region. In the second one, (b), the linearity is visible, yet there are two localized

clusters of data that contribute to the local nonlinear character of the relationship. In

(c) there is a nonlinear function, yet it exhibits quite dominant regions of linearity.

This is quite noticeable when completing a linear approximation; the linear regres-

sion exhibits a pretty good match with a clear exception of the two very much

compact regions.Within such regions, one could accommodate two rules that capture

the experimental relationships present there. The nonlinearity and the character of

data vary from case to case. In the first two examples, we note that the data are quite

dispersed, and the regions of departure from the otherwise linear relationship could

be modeled in terms of some rules. In the third one, the data are very concentrated

and with no scattering, yet the nonlinear nature of the relationship is predominantly

visible.

14.6.1 The Principle of Incremental Fuzzy Model and Its
Design and Architecture

The fundamental scheme of the construction of the incremental granular model is

covered as illustrated in Figure 14.14. There are two essential phases: the develop-

ment of the linear regression being followed by the construction of the local granular

(a)
(b)

(c)

Figure 14.13 Examples of nonlinear relationships and their modeling through a combination of linear

models of global character and a collection of local rule-based models.
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rule-based constructs that attempt to eliminate errors (residuals) produced by the

regression part of the model.

Before proceeding with the architectural details, it is instructive to start with

some required notation. The experimental data under discussion are the pairs of the

n-dimensional inputs and scalar inputs. They come in the following form

fxk; targetkg k ¼ 1; 2; . . . ;N, where xk 2 Rn and targetk 2 R. The first-principle

linear regression model comes in the standard form of zk ¼ Lðx; bÞ ¼ aTxk þ a0
where the values of the coefficients of the regression plane, denoted here by a0 and a,

namely b ¼ ½a a0�T, are determined through the standard least-square error method

as encountered in any statistics textbooks. The enhancement of the model at which

the granular part comes into the play is based on the transformed data

fxk; ekg; k ¼ 1; 2; . . . ;N where the residual part manifests through the expression

ek ¼ targetk � zk that denotes the error of the linear model. In the sequel, those data

pairs are used to develop the incremental and granular rule-based part of the model.

Given the character of the data, this rule-based augmentation of the model associates

input data with the error produced by the linear regression model in the form of the

rules if input then error. The rules and the information granules are constructed by

means of the context-based clustering.

Let us recall the main design phases of the model; refer also to Figure 14.15

showing how the two functional modules operate.

Initial setup of the modeling environment: Decide upon the granularity of

information to be used in the development of the model, namely, the number of

contexts and the number of clusters formed for each context. Similarly, decide upon

the parameters of the context-based clustering, especially the value of the fuzzifica-

tion coefficient. The choice of the (weighted) Euclidean distance is a typical choice in

the clustering activities.

1. Design of a linear regression in the input–output space, z ¼ Lðx; bÞ with b

denoting a vector of the regression hyperplane of the linear model,

b ¼ ½a a0�T . On the basis of the original data set a collection of input-error

pairs is formed, ðxk; ekÞ where ek ¼ targetk-Lðxk; aÞ.
2. Construction of the collection of contexts fuzzy sets in the space of error of

the regression model E1, E2; . . . ;Ep. The distribution of these fuzzy sets is

optimized through the use of fuzzy equalization whereas the fuzzy sets are

characterized by triangular membership functions with a 0.5 overlap between

{xk, targetk}

Data Linear regression 

Residuals 

Granular model 

Incremental

granular

model {xk, ek}

Figure 14.14 A general flow of the development of the incremental granular models.
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neighboring fuzzy sets (recall that such arrangement of fuzzy sets leads to a

zero decoding error).

3. Context-based FCM completed in the input space and induced by the indi-

vidual fuzzy sets of context. For p contexts and c clusters for each

context, obtained are c� p clusters.

4. Summation of the activation levels of the clusters is induced by the corre-

sponding contexts and their overall aggregation through weighting by fuzzy

sets (triangular fuzzy numbers) of the context leading to the triangular fuzzy

number of output, E ¼ Fðx; E1; E2; . . . ;EpÞ where F denotes the overall

transformation realized by the incremental granular model. Furthermore,

note that we eliminated eventual systematic shift of the results by adding

a numeric bias term. These two functional modules are illustrated in

Figure 14.15.

5. The granular result of the incremental model is then combined with the output

of the linear part; the result is a shifted triangular number Y, Y ¼ z� E.

EXAMPLE 14.2

One-dimensional spiky function, spiky(x), used in this experiment is a linear relationship

augmented by two Gaussian functions described by their modal values m and spreads s,

GðxÞ ¼ exp
�ðx� cÞ2

2s2

 !

ð14:18Þ

Linear
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Σ
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Σ

Σ
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clustering Fuzzy numbers

(granular information

processed)  

Figure 14.15 The overall flow of processing realized in the design of the incremental granular model.

Note a flow of numeric and granular computing.
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This leads to the overall expression of the function to be in the form

spikyðxÞ ¼ maxðx;GðxÞÞ; if 0 � x � 1

minðx;� GðxÞ þ 2Þ; if 1 < x � 2

�

ð14:19Þ

with c ¼ 0:5 and s ¼ 0:1, refer to Figure 14.16. Each training and test data set consists of 100
pairs of input–output data.

As could have been anticipated, the linear regression is suitable for some quite large regions

of the input variable but becomes quite insufficient in the regions where these two spikes are

positioned. As a result of these evident departure from the linear dependency, the linear

regression produces a high approximation error of 0:154� 0:014 and 0:160� 0:008 for the

training and testing set, respectively. The augmented granular modification of the model was

realized by experimenting with the two essential parameters controlling the granularity of the

construct in the input and output space, that is, p and c. The corresponding results are

summarized in Tables 14.1 and 14.2. All of them are reported for the optimal values of the
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Figure 14.16 Example spiky function used in the experiment.

Table 14.1 RMSE Values (Mean and Standard Deviation)—Training Data.

No. of contexts (p)

3 4 5 6

No. of clusters 2 0:148� 0:013 0:142� 0:018 0:136� 0:005 0:106� 0:006
per context 3 0:141� 0:012 0:131� 0:008 0:106� 0:008 0:087� 0:006
(c) 4 0:143� 0:006 0:124� 0:007 0:095� 0:007 0:078� 0:005

5 0:131� 0:012 0:111� 0:007 0:077� 0:008 0:073� 0:006
6 0:126� 0:011 0:105� 0:005 0:072� 0:007 0:061� 0:007
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fuzzification coefficient as listed in Table 14.3, namely, its values for which the root mean

squared error (RMSE) attained its minimum,

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

k¼1
ðyk � targetkÞ2

v

u

u

t

where yk is the modal value of Y produced for input xk. The numeric range of this coefficient

used in the experiments is between 1.5 and 4.0 with the incremental step of 0.1. The increase in

the specificity of the granular constructs (either in the output space—via the number of

contexts and the input space when increasing the number of the clusters) leads to the reduction

of the RMSE values. The number of clusters for a fixed number of contexts exhibits a less

significant effect on the reduction of the performance index in comparison to the case when

increasing the number of the contexts. Figure 14.17 shows the variation of the RMSE values

caused by the values of the fuzzification factor for these four cases. Here the optimal values of

the parameters are such for which the testing error becomes minimal. As shown there, the

values of the optimal fuzzification coefficient depend on the number of context and cluster, but

there is a quite apparent tendency: the increase in the values of ‘‘p’’ and ‘‘m’’ implies lower

values of the fuzzification coefficient. This means that the preferred shape of the membership

functions becomes more spiky.

As Figure 14.17 illustrates, the increase in the number of the contexts and clusters leads

to higher optimal values of the fuzzification factor. The optimal results along with the

Table 14.2 RMSE Values (Mean and Standard Deviation)—Testing Data.

No. of contexts (p)

3 4 5 6

No. of clusters per 2 0:142� 0:016 0:139� 0:028 0:139� 0:012 0:114� 0:007
context 3 0:131� 0:007 0:125� 0:017 0:115� 0:009 0:096� 0:009
(c) 4 0:129� 0:014 0:126� 0:014 0:101� 0:009 0:085� 0:012

5 0:123� 0:005 0:119� 0:016 0:097� 0:008 0:082� 0:010
6 0:119� 0:016 0:114� 0:015 0:082� 0:011 0:069� 0:007

Table 14.3 Optimal Values of the Fuzzification Coefficient for Selected Number of

Contexts and Clusters.

No. of contexts (p)

3 4 5 6

No. of clusters 2 3.5 4.0 3.8 3.1

per context 3 3.2 3.9 3.5 3.1

(c) 4 3.0 2.7 2.6 2.6

5 3.1 2.8 2.2 2.4

6 3.0 2.5 2.2 2.0
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visualization of the prototypes when c ¼ 5 and p ¼ 5 are displayed in Figure 14.18 (this is one

of the ten runs). The plot shows the modal values as well as the lower and upper bounds of the

resulting fuzzy number produced by the incremental model. Here we have used the optimal

value of the fuzzification factor (with the value being equal to 2.2).

14.7 HUMAN-CENTRIC FUZZY CLUSTERING

Typically, fuzzy clustering is carried out on a basis of numeric data. Algorithms such

as, for example, FCM produce a local minimum of the given objective function that

leads to the formation of a collection of information granules. If there is an input from

a human that is taken into consideration as a part of the clustering activities, these

pursuits become human-centric. In turn, such clustering produces information gran-

ules that are reflective of the human-driven customization. In parallel to the name

human-centric fuzzy clustering, we also use the term knowledge-based fuzzy clus-

tering (Pedrycz, 2005). The crux of these clustering activities relies on a seamless

incorporation of auxiliary knowledge about the data structure and problem at hand

that is taken into consideration when running the clustering algorithm. In this
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Figure 14.17 Performance index (RMSE) versus values of the fuzzification coefficient for some

selected combinations of p and m: (a) p ¼ c ¼ 6, (b) p ¼ c ¼ 5, (c) p ¼ c ¼ 4, and (d) p ¼ c ¼ 3, solid

line: training data, dotted line: testing data.
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manner, we can effectively navigate the clustering activities and impact the geometry

of the resulting clusters. In Figure 14.19 we contrast human-centric clustering with

the (data-driven) clustering by pointing at the role of knowledge tidbits.

There are several fundamental ways the knowledge tidbits could be incorporated

into the generic clustering technique. Here we elaborate on the two well-motivated

approaches. The first concerns clustering with partial supervision whereas in the

second one we deal with proximity type of knowledge tidbits.

14.7.1 Fuzzy Clustering with Partial Supervision

Partially supervised fuzzy clustering is concerned with a subset of patterns (data)

whose labels have been provided. A mixture of labeled and unlabeled patterns could

be easily encountered in many practical situations.
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Figure 14.18 Modeling results for c ¼ 5 and p ¼ 5 ðm ¼ 2:2Þ; a distribution is also shown of the
prototypes in the input space. Note that most of them are located around the spikes that is quite

legitimate as they tend to capture the nonlinearities existing in these regions.

Figure 14.19 The principle of fuzzy clustering versus human-centric fuzzy clustering.
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As an example, consider a huge data set of handwritten characters (say, digits

extracted from various handwritten postal codes). We want to build a classifier for

these characters. The structure of the character sets (groups of digits) revealed

through clustering becomes definitely helpful in the design of the classifier. The

characters are not labeled; hence, the unsupervised mode of learning is an obvious

alternative. Let us now consider that we are provided with some knowledge-based

hints about a small subset of labeled digits. In this subset, the characters are labeled

by an expert. Practically, with hundreds of thousands of handwritten characters, only

a small fraction of them could be effectively labeled. A class assignment process

comes with some extra cost and time. Given these constraints, a subset itself could

consist of highly ‘‘challenging’’ characters, namely, those that are quite difficult to

decipher, so a human intervention in such cases becomes highly desirable. When

coming with class labels provided by the expert, such characters can play an

important role in enhancing the clustering process. More descriptively, the role of

the labeled patterns would be to serve as ‘‘anchor’’ points when launching clustering:

we expect that the structure discovered in the data will conform to the class member-

ship of the reference (labeled) patterns. As this example illustrates, we are provided

with a mixture of labeled and unlabeled data. It is always worth analyzing how much

labeling is useful and really helpful in the ensuing clustering.

Another scenario in which partial supervision could play an important role

originates at the conceptual end. Consider that the patterns have been labeled, so

on surface we can view that they imply the use of full supervision and call for the

standard mechanisms of supervision of classifier design. However, the labeling

process could have been very unreliable, and therefore our confidence in the already

assigned labels could be relatively low. Then we resort to the clustering mode and

accept only a small fraction of patterns that we deem to be labeled quite reliably. The

design scenarios similar to those presented above could occur quite often. We need to

remember that labeling is a time consuming process, and labeling comes with extra

cost. The clustering, on the contrary, could be far more effective. There is a spectrum

of learning spread between ‘‘pure’’ models of unsupervised and supervised learning,

and this could be schematically visualized in Figure 14.20. Here the underlying

criterion discriminating between various cases concerns a mixture of labeled and

unlabeled patterns. In the two extreme situations, we end up with 100% of patterns

falling in one of the two modes. Note that in general there is no dichotomy of

supervised and unsupervised learning.

0 100%% of labeled patterns 

Unsupervised

learning 

Supervised

learning 

Partial

supervision

Figure 14.20 A schematic visualization of (infinite) possibilities of partial supervision quantified by

the fraction of labeled patterns.
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The effect of partial supervision involves a subset of labeled patterns, which

come with their class membership. To achieve an efficient use of such knowledge

tidbits, we include them as a part of an objective function. During its optimization,

we anticipate that the structure to be discovered conforms to the membership grades

already conveyed by these selected patterns. We consider an additive form of the

objective function (Pedrycz, 1985; Pedrycz and Waletzky, 1997a, b).

Q ¼
X

c

i¼1

X

N

k¼1
u2ikd

2
ik þ a

X

c

i¼1

X

N

k¼1
ðuik � f ikbkÞ2d2ik ð14:20Þ

The first term of (14.20) is aimed at the discovery of the structure in data and is the

same as used in the generic version of the FCM algorithm. The second term

(weighted by the positive weight factor a) captures an effect of partial supervision.

Its interpretation becomes clear once we identify the two essential data structures

containing information about the labeled data.

1. The vector of labels, denoted by b ¼ ðb1; b2; . . . ; bNÞT : Each pattern xk
comes with a Boolean indicator function. We assign bk equal to 1 if the

pattern has been already labeled as a part of the available knowledge tidbits.

Otherwise we consider the value of bk equal to zero.

2. The partition matrix F ¼ ½fik�, i ¼ 1, 2; . . . ; c; k ¼ 1; 2; . . .N that contains

membership grades assigned to the selected patterns (already identified by the

nonzero values of b): If bk ¼ 1 then the corresponding column shows the

provided membership grades. If bk ¼ 0 then the entries of the corresponding

kth column of F do not matter; technically we could set up all of them to zero.

Let bk ¼ 1. The optimization of the membership grades uik is aimed at

making them close to uik.

The nonnegative weight factor (a) helps set up a suitable balance between the

supervised and unsupervised mode of learning. Apparently when a ¼ 0, then we

end up with the standard FCM. Likewise, if there are no labeled patterns (b¼ 0), then

the objective function reads as

Q ¼ ð1þ aÞ
X

c

i¼1

X

N

k¼1
u2ikd

2
ik ð14:21Þ

and becomes nothing but a scaled version of the standard objective function guiding

the FCM optimization process. If the values of a increase significantly, we start

discounting any structural aspect of optimization (where properly developed clusters

tend to minimize the objective function) and rely primarily on the information

contained in the labels of the patterns. Subsequently, any departure from the values

inFwould be heavily penalized by significantly increasing the values of the objective

function. The choice of a suitable value of the weight factor a could be made by

considering a ratio of the data that have been labeled (M) versus all data (N). To

achieve a sound balance, we consider the values of a to be proportional to the ratio

N/M.
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One could also consider a slightly modified version of the objective function

Q ¼
X

c

i¼1

X

N

k¼1
u2ikd

2
ik þ a

X

c

i¼1

X

N

k¼1
ðuik � f ikÞ2bkd2ik ð14:22Þ

where the labeling vector b shows up in a slightly different format. For bk ¼ 1, we

involve the differences between uik and fik and they are minimized.

For some variations on the issue of partial supervision, the reader is referred to

the work by Bensaid et al. (1989), Kersten (1996), Timm et al. (2002), Abonyi and

Szeifert (2003), Coppi and D’Urso (2003), Liu and Huang (2003).

14.7.2 The Development of the Human-Centric Clusters

As usual, the optimization of the objective function (14.22) is completed with respect

to the partition matrix and prototypes of the clusters. The first part of the problem is a

constraint-based minimization. To minimize it, we consider Langrage multipliers to

accommodate the constraints imposed on the membership grades. Hence, the aug-

mented objective function arises in the form

V ¼
X

c

i¼1
u2ikd

2
ik þ a

X

c

i¼1
ðuik � fikbkÞ2dik � lð

X

c

i¼1
uik � 1Þ ð14:23Þ

To compute the gradient of V with respect to the partition matrix U, we note that

choosing the value of the fuzzification factor equal to 2 would be quite helpful. By

doing that we avoid solving a high-order polynomial equation with respect to the

entries of the partition matrix.

By solving the optimization problem, the resulting entries of the partition matrix

U assume the form

uik ¼
1

1þ a

1þ a 1� bk
P

c

i¼1
f ik

	 


P

c

j¼1

dik

djk

	 
2
þ afikbk

2

6

6

6

6

4

3

7

7

7

7

5

ð14:24Þ

Moving on to the computations of the prototypes, the necessary condition for the

minimum of Q with respect to the prototypes vi comes in the form

@Q=@vst ¼ 0; s ¼ 1; 2; . . . ; c; t ¼ 1; 2; . . . ; n. Calculating the respective partial

derivatives one derives

@Q

@vst
¼ @

@vst

"

X

c

i¼1

X

N

k¼1
u2ik

X

n

j¼1
ðxkj � vijÞ2 þ a

X

c

i¼1

X

N

k¼1
ðuik � fikbkÞ2

X

n

j¼1
ðxkj � vijÞ2

¼ @

@vst
½
X

c

i¼1

X

N

k¼1
½u2ik þ ðuik � fikbkÞ2�

X

n

j¼1
ðxkj � vijÞ2

#

ð14:25Þ
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Let us introduce the following shorthand notation:

cik ¼ u2ik þ ðuik � f ikbkÞ2 ð14:26Þ

This leads to the optimality condition of the form

@Q

@vst
¼ 2

X

N

k¼1
cskðxkt � vstÞ ¼ 0 ð14:27Þ

and finally we derive

vs ¼

P

N

k¼1
cskxk

P

N

k¼1
csk

ð14:28Þ

EXAMPLE 14.3

For illustrative purposes, we consider a small synthetic two-dimensional data as shown in

Figure 14.21.

The partial supervision comes with the classification results of several patterns—their labels

are shown in Figure 14.22 as well. Those are two patterns with the membership grades [0.5 0.5]

and [0.0 1.0]. These hints suggest to consider two clusters, c ¼ 2.

The clustering was completed for several increasing values of a, and this development gives

a detailed view of the impact the classification hints exhibit on the revealed structure of the

patterns. This is shown in two different ways, which is by visualizing the entries of the partition

matrices (Fig. 14.22). We note that by changing a the discovered structure tend to conform to

the available classification constraints. For reference, we have shown the results for a ¼ 0 so

that no supervision effect is taken into consideration.
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(0.0, 1.0)
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Figure 14.21 A two-dimensional synthetic data set; visualized are the knowledge tidbits (hints)-

labeled patterns that are used to guide the clustering process.
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Figure 14.22 Membership grades of patterns for selected values of a: (a) a ¼ 0:0 (no supervision),

(b) a ¼ 0:5, (c) a ¼ 3:0, and (d) a ¼ 5:0. Small arrows point at the three labeled patterns.
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14.7.3 Proximity-Based Fuzzy Clustering

Proximity tidbits provide another interesting mechanism of knowledge-based gui-

dance available in fuzzy clustering. In contrast to the mechanism of partial super-

vision discussed in the previous section, we are provided with evaluations of

proximity between selected pairs of data. If two data points are close to each other,

we quantify this by assigning to them a high value of proximity. On the contrary, if

the patterns are very different, this becomes reflected by low proximity values being

close to zero. This form of knowledge hints is quite intuitive. In contrast to the

previous knowledge tidbits, we do not require to specify the number of classes

(clusters). For instance, when dealing with a collection of digital photographs, we

want to organize; it is quite easy to quantify proximity between some pairs of them.

On the contrary, as we do not know the number of classes or clusters in advance, it

would be highly impractical to estimate a vector of membership grades as its

dimensionality has not been specified.

Let us quantify the concept of proximity between two objects (patterns). For-

mally, given two patterns a and b, their proximity, denoted by prox(a, b), is a

mapping from the pairs of data (patterns) to the unit interval such that it satisfies

the following two conditions:

1. prox (a, b)¼ prox (b, a) symmetry

2. prox (a, a)¼ 1 reflexivity

The notion of proximity is the most generic one that relies on a minimal set of

requirements. What we have to impose is straightforward: a exhibits the highest

proximity when compared to itself. It is also intuitive that the proximity relation is

symmetric. In this sense, we can envision that in any experimental setting, these two

properties can be easily realized. Given a collection of patterns, the proximity results

obtained for all possible pairs of patterns are usually arranged in a matrix form known

as a proximity relation P.

It is worth mentioning that the concept of similarity is more demanding from a

formal standpoint as it requests some sort of transitivity (say, max–min transitivity,

etc.). In practice, experimental results (that come as a consequence of some compar-

ison between pairs of objects) do not guarantee a satisfaction of transitivity.

Fuzzy partitions produced by the FCM algorithm are directly linked with the

proximity relation in the following way. Given the fuzzy partition U, a well-known

transformation (Bezdek, 1981; Pedrycz, 2005) to its proximity counterpart is gov-

erned by the expression

p̂½k1; k2� ¼
X

c

i¼1
minðuik1 ; uik2Þ ð14:27Þ

where k1 and k2 indicate the corresponding patterns (data) xk1 ;xk2 . The proximity

matrix P̂ ¼ ½p̂½k1; k2��, k1, k2 ¼ 1; 2; . . . ;N, organizes proximity values for all pairs of

data. As this matrix is symmetric, it is enough to compute and save only its upper part

located above the main diagonal. Owing to the well-known properties of the partition
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matrix, we observe that for k1 ¼ k2 we end up with the value of p̂½k1; k2� equal to 1.

Evidently, p̂½k1; k1� ¼
Pc

i¼1 minðuik1 ; uik1Þ ¼
Pc

i¼1 uik1 ¼ 1. The satisfaction of the

symmetry property of p̂½k1; k2� becomes self-evident.

The algorithm accepting the proximity hints consists of two main phases that are

realized in interleaved manner. The overall computing process is summarized below.

procedure P-FCM-CLUSTERING (X) returns cluster centers and partition matrix

input: data set X ¼ fxk; k ¼ 1; . . . ;Ng
local: fuzzification coefficient: m

thresholds: d, e

INITIALIZE-PARTITION-MATRIX

repeat until distance two successive partition matrices � d

run FCM

repeat until values of V over successive iterations � e

minimize V

compute uik
compute vs

return cluster centers and partition matrix

Owing to the first phase, we consider the data driven optimization realized by

the FCM. The second phase concerns an accommodation of the proximity-based

hints and involves some gradient-oriented updating of the partition matrix. All

optimization activities will be referred to as proximity-based FCM, or P-FCM,

for brief.

Thefirst phase of the P-FCMis straightforward and follows thewell known scheme

of the FCM optimization. The inner part, however, deserves detailed discussion.

Given: Specify number of clusters, fuzzification coefficient, distance function

and initiate a partition matrix (generally it is started from a collection of random

entries), and termination condition (small positive constant e).

The accommodation of the proximity requirements (knowledge tidbits) has to

be completed with the use of a suitable performance index V. As stated in the

problem formulation, we are provided with pairs of patterns and their associated

levels of proximity. Denote them by p½k1; k2�. Furthermore, we introduce an indi-

cator function b½k1; k2� that assumes 1 if the value of proximity has been provided

for this specific pair of data. Otherwise the value of this indicator function is set up

to zero.

Turning on to the optimization problem, we require that the values of proximity

induced by the partition matrix U determined by the FCM (the first phase of the

algorithm) are made as close as possible to the given values of proximity by adjusting

the values of the partition matrix. Bearing this in mind, the performance index can be

formulated as the following sum:

V ¼
X

N

k1¼1

X

N

k2¼1
ðp̂½k1; k2� � p½k1; k2�Þ

2
b½k1; k2�d½k1; k2� ð14:28Þ
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The notation p̂½k1; k2� is used to describe the corresponding proximity level induced

by the partition matrix. Introducing these induced proximity values we obtain

V ¼
X

N

k1¼1

X

N

k2¼1
ð
X

c

i¼1
ðminðuik1 ; uik2Þ � p½k1; k2�Þ

2
b½k1; k2�d½k1; k2� ð14:29Þ

The optimization of V with respect to the partition matrix does not lend itself to a

closed-form expression and requires some iterative optimization.We resort ourselves

to the gradient-based minimization that leads to the expression

ustðiterþ 1Þ ¼ ustðiterÞ � a
@V

@ustðiterÞ

� 

0;1

ð14:30Þ

s ¼ 1, 2; . . . ; c, t ¼ 1; 2; . . . ;N where [ ]0,1 indicates that the results of adjustment of

the membership grades are clipped to the unit interval; a stands for a positive

learning rate. Successive iterations are denoted as ‘‘iter’’ and ‘‘iterþ 1.’’

The detailed computations of the above derivative are straightforward. Taking

the derivative of V with respect to ust, s ¼ 1, 2; . . . ; c, t ¼ 1; 2; . . . ;N, one obtains

@V

@ustðiterÞ
¼
X

N

k1¼1

X

N

k2¼1

@

@ust
ð
X

c

i¼1
minðuik1 ; uik2Þ � p½k1; k2�Þ

2

¼ 2
X

N

k1¼1

X

N

k2¼1

X

c

i¼1
minðuik1 ; uik2Þ � p½k1; k2�Þ

@

@ust

X

c

i¼1
minðuik1 ; uik2Þ

ð14:31Þ

The inner derivative assumes binary values depending on the satisfaction of the

conditions

@

@ust

X

c

i¼1
minðuik; uikÞ ¼

1 if t ¼ k1 and usk1 � usk1 � usk2
1 if t ¼ k2 and usk2 � usk2 � usk2
0; otherwise

8

<

:

ð14:32Þ

Making this notation more concise, we can treat the above derivative as a binary

(Boolean) predicate, denoting it by f½s; t; k1; k2�, and plug it into (14.31). This

produces the following expression:

@V

@ustðiterÞ
¼ 2

X

N

k1¼1

X

N

k2¼1

X

c

i¼1
ðminðuik1 ; uik2Þ � p½k1; k2�w½s; t; k1; k2� ð14:33Þ

The organization of the computing of the P-FCM scheme is illustrated in

Figure 14.23. The two interleaving phases (FCM and the proximity-based optimiza-

tion) are clearly identified. The results of the FCM optimization (which is guided by a

set of its own parameters) are passed on the gradient-based procedure of the
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proximity-based optimization. The results obtained there are normalized (to meet the

requirements of the partition matrix) and then made available to the next phase of the

FCM optimization. For each iteration of the FCM, we encounter a series of iterations

of the gradient-based optimization.

14.7.4 Interaction Aspects of Sources of Information
in the P-FCM

The P-FCM clustering environment brings into picture an important and fundamental

issue of collaboration and/or competition between different sources of information

and an algorithmic manifestation of such interaction. In the discussed framework, we

are inherently faced with two diverse source of data/knowledge. FCM aims at

‘‘discovering’’ the structure in the data by minimizing a certain objective function

and in its pursuits relies exclusively on the available data. The gradient-based

learning concentrates on the proximity hints (thus relying on human-oriented gui-

dance), and this is the point where the interaction with the data starts to unveil. The

strength of this interaction is guided by the intensity of the gradient-based learning.

More specifically, for higher values of the learning rate, we put more confidence in

the hints and allow them to affect the already developed structure (partition matrix) to

a high extent. It may be that the collaboration may convert into competition when the

two mechanisms start interacting more vigorously and these two sources of informa-

tion are fully consistent (which is difficult to quantify in a formal way). The existence

of the competition starts manifesting through substantial oscillations during the

minimization of V; to avoid them we need to loosen the interaction and lower

the value of the learning rate (a).

The P-FCM exhibits some resemblance with the well-known and interesting

trend of fuzzy relational clustering, cf. Hathaway et al. (1989, 1996) and Hathaway

and Bezdek (1994). Instead of individual patterns, in this mode of clustering, we

consider relational objects that are new objects describing properties of pairs of the

Min V
(gradient-based optimization) 

Proximity

hints 

FCM 

Data 

U

Figure 14.23 P-FCM: a general flow of optimization activities.
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original data. More specifically, these objects are organized in a single matrix

R ¼ ½rkl�, k, l ¼ 1; 2; . . . ;N where rkl denotes a degree of similarity, resemblance,

or more generally dependency (or association) between two patterns (k and l). We

assume that this type of referential information about patterns is available to the

clustering purposes, and the algorithms are developed along this line. The impor-

tance of the relational character data is motivated by the lack of interpretation of

single patterns, whereas their pairwise comparison (leading to the relational patterns)

makes perfect sense. Computationally, the number of relational patterns is substan-

tially higher than the original data (N vs.NðN � 1Þ=2). The computational advantage

can arise with regard to the dimensionality of the space; the original patterns may be

located in a highly dimensional space (n), whereas the relational data could often be

one-dimensional.

In the P-FCM, we have a number of differences when comparing with the

relational clustering:

(a) As already underlined, the relational clustering operates in the homogeneous

space of relational objects. The P-FCM augments FCM by adding an extra

optimization scheme, so it still operates on patterns (rather than on their

relational counterpart).

(b) P-FCM attempts to reconcile two sources of information (structural and

domain hints); this mechanism is not available to the relational clustering.

(c) Computationally, P-FCM does not affect the size of the original dataset; we

can be provided with a different number of hints (being a certain percentage

of the dataset). Relational clustering increases the size of the dataset while

operating in a low-dimensional space.

(d) P-FCM dwells on the core part of the FCM optimization scheme by

augmenting it by an additional gradient-based optimization phase; in con-

trast, the relational clustering requires substantial revisions to the generic

FCM method (which sometimes leads to optimization pitfalls and is still

under further improvements).

14.8 PARTICIPATORY LEARNING IN FUZZY CLUSTERING

Here we consider an augmentation of clustering based on a concept of participatory

learning (PL) (Yager, 1990). In essence, PL assumes that learning and beliefs about a

system depend on what the learning agent knows about the system itself. The current

knowledge about the system is part of the learning process itself and influences in a

way in which new observations are used for learning purposes. This feature of

learning is very important in learning tasks such as fuzzy clustering. An essential

characteristic of PL is data impact in causing revision of a cluster structure depending

on its compatibility with the current cluster structure.

Formally, let v 2 ½0; 1�n be a variable that encodes a prototype, a cluster center.
The aim is to learn the values of this vector. Without any loss of generality, we

assume that knowledge about the values of this vector comes in through a sequence of
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data xk 2 ½0; 1�n. In other words, xk is used as a vehicle to learn about v. We say that

the learning process is participatory if the contribution of each data xk to the learning

process depends upon its acceptance by the current estimate of v as being a valid

observation. Implicit to this idea is that, to be useful and to contribute to the learning

of v, observations xk must somehow be compatible with the current estimates of v.

Let vk be the estimate of v after k observations of the data stream fxkg. To be

appropriate for learning purposes, in PL we assume that xk should be close to vk.

Intuitively, PL updates vk if information received through data xk agrees, in some

sense, with vk. A mechanism to updated v is a smoothing procedure governed by the

following expression

vkþ1 ¼ vk þ arkðxk � vkÞ ð14:34Þ

where k ¼ 1; . . . ;N, and N is the number of observations, whereas vkþ1 is the new
cluster center (belief ); vk 2 ½0; 1�n is the current cluster center; xk 2 ½0; 1�n the

current observation or data input; a 2 ½0; 1� the learning rate; and rk 2 ½0; 1� denotes
a compatibility degree (compatibility index) determined for xk and vk, given by

rk ¼ FðS1k; S2k; . . . ; SnkÞ

where in general Sjk is a similarity measure,

Sjk ¼ Gjkðvjk; xjkÞ

Sjk 2 ½0; 1�, j ¼ 1; . . . ; n, and F an aggregation operator. Sjk ¼ 1 indicates full simi-

larity and Sjk ¼ 0 means no similarity. Gjk maps pairs ðvjk; xjkÞ into a similarity

degree and this frees the values vjk and xjk, j ¼ 1; . . . ; n, k ¼ 1; . . . ;N, from being in

the unit interval. Moreover,Gjk allows that two vectors vk and xk have Sjk ¼ 1 even if

they are not exactly equal. This formulation also allows for different perceptions of

similarity for different components of the vectors, that is, for different j’s. A possible

formulation of the compatibility index could come in the form

rk ¼ 1� 1

n

X

n

j¼1
djk ð14:35Þ

where djk ¼ jxjk � vjkj is the Hamming distance between xjk and the current value

vjk. More generally, we can express the compatibility index to be in the following

form

rk ¼ 1� dk ð14:36Þ

where dk is a certain distance function, dk ¼kxk � vkk.
One important issue ignored so far concerns a situation in which a stream of

conflicting data is provided during a certain period of time. In this case, the system

perceives a sequence of low values of rk because of the incompatibility reported

between belief and data. Although in the short-term low values of rk cause aversion

to learning, actually, they should act to turn the system more receptive to learning
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because it may be the case that the current cluster structure is wrong or is changing.

There is a need of a type of arousal mechanism to monitor the compatibility of

current cluster structure with observations. One alternative, shown in Figure 14.24, is

to use an arousal index to influence the learning process. The higher the arousal rate,

the less confident is the system with the current cluster structure, and conflicting

observations become important to update the cluster structure.

Oneway to update the arousal index ak 2 ½0; 1� can be described in the following
form:

akþ1 ¼ ak þ bðð1� rkþ1Þ � akÞ ð14:37Þ

The value of b 2 ½0; 1� controls the rate of change of arousal. The closer the values of
b to 1, the faster the system senses compatibility variations. The arousal index can be

viewed as the complement of the confidence in the cluster structure currently held.

Away of the PL procedure to appropriately consider the arousal mechanism is to

incorporate the arousal index in the basic procedure as follows:

vkþ1 ¼ vk þ aðrkÞ1�akðxk � vkÞ ð14:38Þ

The update formula of the arousal index introduces a self-control mechanism in the

PL algorithm. Although rk expresses how much the system changes its credibility in

its own beliefs, the arousal index ak acts as a critic to remind when current belief

should be modified in front of new evidences. A detailed analysis of PL principles is

found in (Yager, 1990). The details of the PL algorithm for unsupervised fuzzy

clustering are given next.

First, notice that the compatibility rik gives the compatibility degree between the

cluster center vi and data xk. The same interpretation can be developed for the arousal

index aik as it measures the incompatibility between vi and data xk. More precisely,

the arousal index gives an evaluation on how far data xk, k ¼ 1; . . . ;N, are from

current cluster centers vi, i ¼ 1; . . . ; c. The set of cluster centers is a manifestation of

the current cluster structure, the clustering algorithm found after processing a data

stream fxk; k ¼ 1; . . . ;Ng (Silva et al., 2005).

Beliefs
Learning

process

Arousal

mechanism

Data

r a

Figure 14.24 PL with arousal.
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To partition data set X into clusters, the PL fuzzy clustering algorithm requires

an extra threshold t. Its purpose is to advise if a new data should be declared

incompatible with the current cluster structure. This happens when a new cluster

has been found or when existing clusters merge into one. In these cases, the cluster

structure must be revised to accommodate new knowledge. More specifically, in

terms of clustering this means that if a new data xk is far enough from all cluster

centers, then there is enough evidence to form a new cluster. The simplest alternative,

the one adopted here, is to choose xk as the new cluster center.

There are several ways to compute the values of rik depending upon a selection

of a distance. One of the obvious alternatives would be the Hamming distance as used

in (14.35). The other commonly encountered alternative is the Euclidean distance.

More generally, we may consider the Mahalanobis distance (Gustafson and Kessel,

1992) where

dik ¼ ðxk � viÞTðdetðFiÞ
1=N

F�1i Þðxk � viÞ ð14:39Þ

where Fi is the covariance matrix associated with the ith cluster,

Fi ¼

P

N

k¼1
umikðxk � viÞðxk � viÞT

P

N

k¼1
umik

ð14:40Þ

As the Euclidean distance limits the geometry of clusters to some spherical shapes,

the use of Mahalanobis and similar scatter measures is advisable when computing

rik. The partition matrix is computed in a standard way, that is,

uki ¼
1

P

c

i¼1
ðdik=djkÞ2=m�1

ð14:41Þ

The participatory fuzzy clustering algorithm can be summarized as follows.

Given values for a, b, and t, two random points of X are chosen as cluster centers,

represented here by V 0, a set whose elements are the initial cluster centers v01 and v
0
2.

Next, the compatibility index rik and arousal index aik are computed. If for all vi the

arousal index of xk is greater than threshold t, then xk forms a center of a new cluster.

Otherwise, the cluster center that is the closest to xk (viz., the highest compatibility

index) is updated.

Whenever a cluster center has been updated or a new cluster has been added, it is

necessary to check if redundant clusters are being formed. This is because when a

cluster is updated, its center may be moved closer to another cluster center and

redundant cluster may be formed. Therefore, we require a mechanism to exclude

redundant cluster centers. A simple mechanism is to exclude a center whenever
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the compatibility degree between cluster centers, computed using the Euclidean

distance, is greater than a threshold l whose value typically is l ¼ 0:95t. Summing

up, cluster center i is excluded whenever its compatibility lvi with any another center

is less than or equal to l, that is, whenever the compatibility between two prototypes

is high enough. The idea to compute lvi is, similar to the one supported by the arousal

index, namely, to set

lvi ¼ bð1� rviÞ
Given the finite number of data (N), the algorithm stops when either the maximum

number of iterations lmax has been reached or there is no significant variation of the

cluster centers from an iteration to the next, that is, when kDVk� e, where e is a small

positive real number. Since the cluster centers are updated whenever data points are

input, as soon as the algorithm stops, the fuzzy partition matrix U must be updated

considering the cluster centers produced in the last iteration. The detailed steps of the

algorithm are outlined as follows.

procedure OFFLINE-PARTICIPATORY (X) returns cluster centers and partition

matrix

input: data set: X¼ fxk; k ¼ 1; . . . ;Ng
local: cluster membership parameter: m

threshold: t

learning rates: a, b

parameters: e, lmax

V¼ INITIALIZE-CLUSTER-CENTERS(X)

l¼ l

until stop¼ TRUE do

for k ¼ 1 : N

CLUSTER-LEARNINGðxk;VÞ
if k DV k� e and l � lmax then update U, set stop¼ TRUE

else l ¼ lþ 1

return V

The procedure cluster-learning is the one that needed the online version of the

algorithm:

procedure ONLINE-PARTICIPATORY (x) returns cluster centers and partition

matrix

input: data x

local: cluster membership parameter: m

threshold: t

learning rates: a, b

parameters: e, lmax

V¼ INITIALIZE-CLUSTER-CENTERS(x)

do forever

CLUSTER-LEARNING(x, V)
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procedure CLUSTER-LEARNING(x) returns cluster centers and partition matrix

input: xk ¼ x

for i ¼ i : c

compute dik
compute rik
compute aik

if aik � t for all i ¼ 1; . . . ; c
then update vs, s ¼ argmaxifrikg, compute U

else create new cluster center

for i ¼ i : c

for j ¼ ðiþ 1Þ : c
compute rvi
compute lvi

if lvi � 0:95t
then eliminate vi and update U

return U, V

EXAMPLE 14.4

Several clustering examples are addressed here to show the behavior of offline PL fuzzy

clustering alternative fuzzy clustering algorithms such as Gustafson – Kessel, GK, (Gustafson

and Kessel, 1992) and the modified fuzzy k-means MFKM (Gath et al., 1997). We recall that

the GK is as a generalization of the fuzzy c-means in which theMahalanobis distance is used in

objective function. GK is particularly effective to find spherical, ellipsoidal, and convex

clusters. The MFKM uses a data induced metric with the Dijkstra shortest path procedure in

a graph-based representation. The outstanding feature of the MFKM is its ability to find

nonconvex clusters. The GK and MFKM are supervised clustering algorithms.

(a) Consider the classic Iris data and the results are depicted in Figure 14.25. Both PL

and GK algorithms capture the correct cluster structure. PL performs closely to GK

because it adopts Mahalanobis distance as GK does, but MFKM fail to find appro-

priate clusters.

(b) This example was suggested by Gustafson and Kessel (1992). Here clusters are

difficult to discern, specially in the regions where they intersect or are close to each

other. Despite the complex structure of the clusters, PL and GK successfully group

the data whereas MFKM failed to do not.

(c) The intertwined spiral, Figure 14.27, is a classic and difficult problem to be solved by

partition-based fuzzy clustering algorithms. In this case both GK and PL fail, but

MFKM succeeds in finding the proper cluster.

Overall, PL clustering performs as well as any partition-based clustering algorithm

and suffers from similar inconveniences. Computational complexity of the PL clustering

depends on the choice of the distance measure to compute the compatibility degree rik.

Contrary to GK and MFKM, the PL algorithm runs in unsupervised mode. The number of

cluster it chooses, however, depends on the choice of the value of the threshold t. In general,

when running in offline mode, if the number of clusters remains constant after a few iterations,

the algorithm finds a cluster structure that mirrors the one existing in the data set. When there is
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Figure 14.25 Iris data and resulting clusters (a) GK, (b) MFKM, (c) PL, and (d) Cluster centers are

marked with ‘‘.’’.

Figure 14.26 Original data and clusters (a) GK, (b) MFKM, (c) PL, and (d) Cluster centers are

marked with ‘‘.’’.
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oscillation of the number of clusters, experience shows that slight adjustment of the threshold

produce cluster structures that closely represent the one found in data set.

14.9 CONCLUSIONS

Fuzzy clustering and granular modeling are rooted in the fundamental concept of

information granules regarded as semantically meaningful conceptual entities that

are crucial to the overall framework of user-centric modeling. The user is at position

to cast modeling activities in a particular way that becomes a direct reflection of the

main purpose of the given modeling problem. For instance, in data mining the user is

ultimately interested in revealing relationships that could be of potential interest

given the problem under consideration.

The algorithmic diversity of fuzzy clustering is particularly well suited to

address the key objectives of granular modeling. Fuzzy clusters fully reflect the

character of the data. The search for the structure is ultimately affected by some

specific well-articulated modeling needs of the user. We have demonstrated that

fuzzy sets of context can play an important role in shaping up modeling activities and

help handle dimensionality issues decomposing the original problem into a series of

subproblems guided by specific contexts. By linking context fuzzy sets and the

Figure 14.27 Original data and clusters (a) GK, (b) MFKM, (c) PL, and (d) Cluster centers are

marked with ‘‘.’’.
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induced clusters, we directly form the modeling blueprint of the model. It is relevant

to note that granular models are expressed at a certain level of granularity. Instead of

single numeric results that are typical for numeric models, the user is provided with a

fuzzy set of result that can be communicated in some granular format, compatible

with the vocabulary of granular terms being originally exploited in the design of the

model, and presented visually in terms of membership functions.

EXERCISES AND PROBLEMS

1. Consider three prototypes in the two-dimensional input space, v1 ¼ ½1:5; �3:0�T ,
v2 ¼ ½0:0; �1:0�T , and v3 ¼ ½4:2; 0:5�T . The corresponding prototypes in the output

space are equal to �2, 5, and �3. Plot the input–output characteristics of the model

governed by ðxxÞ assuming three values of m equal to 1.05, 2.0, and 3.5.

2. Discuss computational complexity of the conditional FCM and contrast it with the one of

the FCM. How does it depend upon the number of contexts being used?

3. How could you decompose a certain fuzzy relation A defined in Rn into another fuzzy

relation B defined in Rn�1 and a fuzzy set F defined in R so that A ¼ B� F. Discuss a

general idea and offer algorithmic details.

4. Consider a mixed-mode two-input granular neuron in which the connections are described

as an interval ½�3; 4� and a triangular fuzzy set with the modal value of 1.5 and lower and

upper bounds equal to �1:0 and 2.0. Derive input–output characteristics of this neuron

assuming that the two inputs u1 and u2 are positive and sum up to 1.

5. In an n-input granular neuron with interval-valued connections ½wi�;wiþ�, the positive

inputs satisfy the relationship
P

n

i¼1
ui ¼ 1. Determine the values of inputs under which the

granularity of the output quantified as the following sum

Q ¼
X

n

i¼1
ðwiþ � wi�Þu2i

achieves its maximum. What happens to the solution if all connections are the same?

6. In the P-FCM algorithm, we use an indicator function that assumes binary values. What

suggestions could you offer if you were provided with a flexibility of using values in the

[0,1] interval.

7. Consider a situation when for the given data set D there are several collections of

proximity tidbits coming from various sources (e.g., experts). How could you modify

the objective function to accommodate this scenario?

8. A subset of data set D, that is, D0 was clustered into c clusters.

How could you use its results in clustering data set D into the same number of clusters.

What if the number of clusters to be determined in D is going to be different from c?

9. We are about to cluster data setD and were told that some other data generated by the same

phenomenon as forD have been already clustered. How could you take advantage of these

results in clustering D?

10. Suggest some examples in which you could consider proximity-based clustering as a

viable alternative. Identify problems in which you can view clustering with partial

supervision as a viable model of human-centric unsupervised learning.
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11. In conditional FCM developed so far, we have assumed the same number of clusters for

each context. Is this a viable assumption? How could you revisit it? Suggest a way in

which you could adjust (optimize) the number of clusters for each context fuzzy set.

12. Suggest a mechanism to incorporate context-based information in clustering algorithms

based on PL. Discuss its role in both offline and online system modeling.

13. Elaborate on procedures to learn context information in fuzzy rule-based models.

14. Develop a PL procedure to train neural granular networks arranged in a one or two-

dimensional array of neurons.

HISTORICAL NOTES

The role of fuzzy sets as a basis to analyze complex, human-centric systems was identifided by Zadeh

(1973) where he explicitly stressed that conventional quantitative techniques of system analysis could be

inherently inappropriate to cope with systems where a human factor becomes integral to its functioning.

The incompatibility principle developed by him underlines existence of important trade-offs between

accuracy of models and their descriptive power and interpretability (and transparency). In this setting, the

evolution of the fundamental concept of information granulation plays a pivotal role (Zadeh, 1973, 1979,

1997).

The notion of granular models promotes rapid prototyping in fuzzy modeling. Here, the specialized

version of fuzzy clustering, known as conditional or context-based clustering, brings a collection of

building blocks—information granules that are instantaneously put together in a form of a web of

connections. This class of fuzzy models promotes the conjecture that when dealing with information

granules, the results of modeling should be fully reflective of the granular character of the developed

construct (Pedrycz and Vasilakos, 1999; Pedrycz and Kwak, 2006).
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Chapter 15

Emerging Trends in Fuzzy

Systems

Fuzzy sets are essential to the development of applications in which complexity

plays an essential role. The role of the conceptual and algorithmic framework of

fuzzy sets is helpful in coping with the factor of complexity. In this chapter, we

discuss some selected areas in which fuzzy sets have already started playing a

vital role or their potential becomes tangible. Information retrieval systems have

been a part of the history of successful applications of fuzzy sets, but they still

pose considerable challenges especially when involving some mechanisms of

semantics that need to be considered to improve the quality of retrieval process.

On the opposite side of the spectrum of applications are positioned multiagent

systems and distributed information processing applications. Multiagent and

distributed systems recognize that software and other form of agent

implementation have limited capabilities. Nevertheless, through effective

interaction they are able to produce required solutions. Multiagent behavior

paraphrases, within larger grain framework, the natural multiagency faculty

existing in the human brain.

15.1 RELATIONAL ONTOLOGY IN INFORMATION
RETRIEVAL

Information search in large database systems is important for many activities.

Several systems have been developed to make information search more effective.

Information retrieval systems are predominantly based on keywords. This retrieval

may result in a large number of answers, requiring considerable effort from the user

to analyze and find relevant information. A great deal of effort has been devoted to

improve retrieval performance of information search systems by employing the

technology of Computational Intelligence (Pasi, 2002). Fuzzy set theory, in

particular, has been successfully employed in indexing, clustering techniques,

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.

461



recommendation systems, data mining, and distributed information retrieval

(Herrera-Viedma and Pasi, 2003).

Many fuzzy information systems use knowledge bases encoded in ontologies,

thesauri, and conceptual networks (Ogawa et al., 1991; Chen andWang, 1995; Horng

et al., 2001; Takagi and Kawase, 2001; Widyantoro and Yen, 2001). Here, we look at

models of information retrieval systems based on fuzzy relational ontologies whose

knowledge base is encoded in a form of the fuzzy relational ontology, a fuzzy relation

on the space of words and categories (Ricarte and Gomide, 2004; Pereira et al.,

2006).

15.1.1 Fuzzy Relational Ontological Model

The fuzzy relational ontological model uses two-layer ontology. The first layer of this

architecture contains category names whereas the second layer involves keywords

associated with the category names occurring at the first layer. Given the contents of a

document collection, a system designer selects category names and keywords and

forms their associations. Figure 15.1 presents an illustrative example of a fuzzy

relational ontology with two categories, c1 and c2, and three keywords, k1, k2, and k3.

The degree of association between category ci and keyword kj is quantified by

rij 2 ½0; 1�. This figure also shows how documents d1; d2, and d3 are connected

with the fuzzy relational ontology.

Overall, the fuzzy relational ontology is characterized by a fuzzy relation R

defined in the Cartesian product of keywords and categories, K� C, where

K ¼ fk1; k2; . . . ; ki; . . . ; kng and C ¼ fc1; c2; . . . ; cj; . . . ; cmg

R ¼

c1 c2    cm
k1
k2

..

.

kn

r11 r12    r1m
r21 r22    r2m

..

. ..
. . .

. ..
.

rn1 rn2    rnm

2

6

6

6

4

3

7

7

7

5

0.5
0.8 0.3 
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0.5 0.2 0.9 
0.8 

0.7 

0.2 0.9 0.6 

0.8 

0.3 

d3
d2d1

c1

d1 d2 d3

c2

k1 k 3k 2

Figure 15.1 An example of a fuzzy relational ontology.
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where m is the number of categories present at the first layer, n is the number

of keywords at the second layer, and rij denotes a degree of association between

ki and cj.

15.1.2 Information Retrieval Model and Structure

Formally, the information retrieval (IR)model is a quadruple hD;Q;V ;Fðqi; ddocÞiwhere
1. D is a set of document representation;

2. Q is a set of query representation;

3. V is a framework to represent document, queries, and their relationships;

4. Fðqi; ddocÞ is a function that associates a real number to document–query

pairs, the order (ranking) that reflects the document relevance with respect to

the user’s query (Baeza-Yates, and Ribeiro-Neto, 1999).

An information retrieval system consists of two functional components. The first one

is responsible for building a retrieval database from the set of documents. The second

component is responsible for providing access to the retrieval database to retrieve

relevant documents for the user. In the construction of the retrieval database, we

define a suitable model for document representation that involves extracting from

each document a set of its representative terms. The second functional component

starts with a user query, which is used by the system to access relevant information

from the retrieval database. This information is then returned to the user, preferably

ranked in the order of relevance.

The structure of an IR system constructed on the basis of the fuzzy relational

ontological model is illustrated in Figure 15.2.

Let us now briefly outline the underlying components.

15.1.3 Documents Representation

Let D denote a collection of documents, D ¼ fd1; d2; . . . ; ddoc; . . . ; dug; K the set of

keywords, K ¼ fk1; k2; . . . ; ki; . . . ; kng; and C the set of categories,

Database 

...

Ontology

Layer 1

Layer 2

Keywords 

User 

Database

...

...
Retrieved 

documents

...

Figure 15.2 Information retrieval system structure.
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C ¼ fc1; c2; . . . ; cj; . . . ; cmg. The characterization of documents is represented by

two matrices, Tk and Tc:

Tk ¼

k1 k2    kn

d1

d2

..

.

du

a11 a12    a1n

a21 a22    a2n

..

. ..
. . .

. ..
.

au1 au2    aun

2

6

6

6

6

4

3

7

7

7

7

5

ð15:1Þ

Tc ¼

c1 c2    cm

d1

d2

..

.

du

b11 b12    b1m

b21 b22    b2m

..

. ..
. . .

. ..
.

bu1 bu2    bum

2

6

6

6

6

4

3

7

7

7

7

5

ð15:2Þ

where adoc;i 2 ½0; 1� is the relevance degree between the ith document ddoc, and

keyword ðki;bdoc;jÞ 2 ½0; 1� is the relevance degree between the document ddoc and

the category cj, 1 � doc � u; 1 � i � n; 1 � j � m.

15.1.4 Query Representation

Let Q ¼ fki; cjg be the set of keywords and categories in a query, eventually linked

by operators and or or. A query Q is represented by two vectors,

x ¼ ½x1; x2; . . . ; xi; . . . ; xn�T , 1 � i � n and y ¼ ½y1; y2; . . . ; yj; . . . ; ym�T , 1 � j � m,

such that

xi ¼
1; if ki 2 Q

0; otherwise

�

yj ¼
1; if cj 2 Q

0; otherwise

�

15.1.5 Information Retrieval with Relational
Ontological Model

Let x be the vector of query keywords and let R be a fuzzy relational ontology. The

composition of x and R results in a fuzzy set Gc that associates categories with query

terms, that is,

Gc ¼ x � R ð15:3Þ
Similarly, if y is the vector of query categories, then the composition of R and y is the

fuzzy set Gk representing the association between keywords and query terms, namely,

Gk ¼ R � y ð15:4Þ
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where � denotes the max–min composition. In general, we could consider here any

max-t composition.

To simplify the exposition of the underlying concept, we assume queries to be in

the form of subqueries connected by the and (^) operator whose realization is

provided in terms of some t-norm. Each subquery is composed by a set of terms

ofK and C connected by the or (_) operator (with the underlying realization offered
by some t-norm). In what follows, we assume a specific form of t-norms and

t-conorms realized as the minimum and maximum operators. For example, referring

to Figure 15.1, we have C ¼ fc1; c2g and K ¼ fk1; k2; k3g and the query could

assume the following form:

Q ¼ ðk1 _ k2 _ c1Þ ^ ðk3 _ c2Þ

Let Fc ¼ ½fc1; fc2; . . . ; fcj; . . . ; fcm�T be a fuzzy set formed on the basis of Gc (15.3),

and Fk ¼ ½fk1; fk2; . . . ; fki; . . . ; fkn� be a fuzzy set formed using Gk (15.4) as follows:

fki ¼
gki; if gki > z1

0; otherwise

�

fcj ¼
gcj; if gcj > z1

0; otherwise

�

where gcj is the jth component of Gc, gki is the ith component of Gk, and z1 is a

threshold value confined to the unit interval and chosen by the system designer. The

composition of Fk with Tk is the fuzzy set VDK that gives the relevance degrees

between the collection documents and the keywords ki, that is,

VDK ¼ Tk � Fk ð15:5Þ
Similarly, the composition of Fc with Tc produces the fuzzy set VDC that gives the

relevance degree between the collection documents and categories cj,

VDC ¼ Tc � FT
c ð15:6Þ

where T stands for a transpose operation of the fuzzy relation.

The documents are retrieved in decreasing order of relevance. This relevance

ordering is obtained by arranging according to the increasing values of the member-

ship degrees of

VD ¼ VDK [ VDC ð15:7Þ
to form the retrieval vector V.

In summary, the retrieval algorithm can be presented in the following format:

procedure INFORMATION-RETRIVAL (Q) returns documents

input: query Q

local: thresholds: z1; z2
fuzzy relations: Gc, Gk

set Q ¼ fki; cjg; 1 � i � n; 1 � j � m

split Q : Q1 ¼ fkig and Q2 ¼ fcjg
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construct queries vectors x and y

compute Gc ¼ ½gcj�
compute Gk ¼ ½gki�
select categories cj 2 Gc with gcj > z1
select keywords ki 2 Gk with gki > z1
find database documents related with the categories cj
find database documents related with the keywords ki
find database documents related with the categories presented in Q2

find database documents related with the keywords presented in Q1

if subqueries and connected then select the common documents

if subqueries or connected then select all documents

compute VDK

compute VDC

set VD ¼ VDK [ ðVDC

set V ¼ rank ordered VD according to increasing values

retrieval documents for which V component values are greater than or equal

to z2
return documents

EXAMPLE 15.1

Let us consider the model depicted in Figure 15.1 along with the following fuzzy relations:

R ¼
0:7 0:2
0:9 0:6
0:3 0:8

2

4

3

5 Tc ¼
0:5 0

0:8 0:3
0 0:7

2

4

3

5 Tk ¼
0 0:5 0

0:2 0 0:9
0 0:8 0

2

4

3

5

and let Q ¼ fk2 and c1g; z1 ¼ 0:65, and z2 ¼ 0:4. Following the steps of the procedure pre-

sented above, we obtain

Q1 ¼ fk3g and Q2 ¼ fc1g

Gc ¼ x � R ¼ ½ 0 0 1 � �
0:7 0:2

0:9 0:6

0:3 0:8

2

6

4

3

7

5
¼ ½ 0:3 0:8 �

The categories c1 and c2 are associated with user query at degrees of 0.3 and 0.8, respectively.

Gk ¼ R � y ¼
0:7 0:2
0:9 0:6
0:3 0:8

2

4

3

5 � 1

0

� 

¼
0:7
0:9
0:3

2

4

3

5

The keywords k1, k2, and k3 are associated with user query at the level of 0.7, 0.9, and 0.3,

respectively. The category with gcj > 0:65 is c2 only and keywords with gcj > 0:65 are k1
and k2. From Figure 15.1 we note that documents related with category c2 are d2 and d3
The documents related with the keywords k1 and k2 are d1, d2, and d3. From these documents,

the ones related with the category c1, the category present in Q2, is d2 and the documents
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related with the keyword k3, the keyword present in Q1, is d2 (see Fig. 15.1). Because query

terms are connected by the and operator, the common document between these sets of

documents is d2.

At the next step we compute the relevance degrees of documents d1, d2, and d3 with

respect to category c2, that is,

VDC ¼ TC � FC ¼
0:5 0

0:8 0:3
0 0:7

2

4

3

5 � 0

0:8

� 

¼
0

0:3
0:7

2

4

3

5

which means that documents d1, d2, and d3 are related with category c2 with degrees 0.0, 0.3,

and 0.8, respectively. Similarly, the relevance degrees of documents d1, d2, and d3 with respect

to keywords k1 and k2 can be computed as

VDK ¼ TK � FK ¼
0 0:5 0

0:2 0 0:9
0 0:8 0

2

4

3

5 �
0:7
0:9
0

2

4

3

5 ¼
0:5
0:2
0:8

2

4

3

5

meaning that documents d1, d2, and d3 are related with keywords k1 and k2 with degrees 0.5,

0.2, and 0.8, respectively. Now we can compute

VD ¼ VDK [ VDC ¼
0:5
0:3
0:8

2

4

3

5

and increasingly order the components of vector VD to obtain

V ¼
0:8
0:5
0:3

2

4

3

5

The retrieved documents are those for which the corresponding components of V satisfy

V � 0:4, namely, documents d1 and d3 in the example.

The performance of information retrieval systems is evaluated using recall (R) and

precision (P) being defined as follows:

R ¼ Number of relevant documents retrieved

Total number of relevant documents in database

P ¼ Number of relevant documents retrieved

Number of documents retrieved

The measure of recall quantifies howmany of the relevant documents have been retrieved. The

precision indicates the percentage of retrieved documents that are relevant. To evaluate

retrieval algorithms, a number of distinct queries are considered to calculate an average

precision at each recall level (Baeza-Yates and Ribeiro-Neto, 1999) as follows:

PðrÞ ¼
X

Nq

i¼1

PiðrÞ
Nq

ð15:8Þ

where PðrÞ is the average precision at the recall level r,Nq is the number of queries, and PiðrÞ is
the precision at recall level r for the ith query. In a similar way, we can determine the average
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recall. Detailed information on this evaluation procedure is found in Baeza-Yates and Ribeiro-

Neto (1999).

Here, for illustrative purposes, we consider a database containing 100 scientific papers

dealing with computational intelligence. Using this database, we extracted from the docu-

ments 61 words, 6 category names, and 55 keywords. These words form a part of the fuzzy

relational ontology. Figure 15.3 shows how the values of recall and precision change versus the

values of the relevance threshold value z2.

Figure 15.4 shows the values of recall and precision for five distinct composite queries namely,

Agent and Information Retrieval, Fuzzy Logic and Information Retrieval, Information Retrie-

val and Search Engine, Agent and Genetic Algorithm, and Genetic Algorithm and Hybrid

System with (a) z2 ¼ 0:2 and (b) z2 ¼ 0:75.

Figure 15.3 Threshold value versus recall and precision.

Figure 15.4 Precision versus recall for composite queries.
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15.2 MULTIAGENT FUZZY SYSTEMS

This section concentrates on multiagent fuzzy systems and emphasizes the use of

genetic fuzzy systems in the design of interaction strategies. Our focus is on auction

protocols because they are among the most important ones in many real-world

applications such as power markets, transportation systems, electronic markets,

and manufacturing control systems. For instance, in power markets, agents must

possess profitable bidding strategies to preserve system integrity and improve system

goals. A particularly useful way to model bidding strategies is realized through fuzzy

rule-based systems whose behavior is formed by using genetic algorithm. Evolution

of bidding strategies uncovers unforeseen agent behaviors and allows for a richer

analysis of auction mechanisms and their role as a multiagent interaction protocol.

15.2.1 Agents and Multiagents

Software agents are computer programs that perceive their environment, process

environment information, and run decision-making procedures to select actions and

execute them (Russell and Norvig, 2003). In most cases, the environment contains a

number of agents whose actions affect each other, see Figure 15.5. Interdependencies

arise because different agents may have different objectives and may operate in a

common environment in which resources and capabilities are limited. Therefore,

different types of interactions occur between agents. Cooperation is a form of

interaction in which agents work together to achieve a common objective. Competi-

tion admits self-interested agents to coexist and assumes that they can reach mutually

acceptable agreements through negotiation.

An important mechanism for exchanging resource and conducting negotiations

among multiple agents is a market. In competitive environments, software agents

behave as bounded rational individuals acting in their own self-interest. There are

two important issues that need to be addressed when designing multiagent systems

(Dash and Jennings, 2003). The first one concerns the specification of the protocols,

Sensor

Actuator

Percepts

Actions

Agenti

Environment

Agentk

Agent j

Agentq

Agentp

Figure 15.5 An architecture of a multiagent system.
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namely, the rules that govern the interactions. These protocols deal with issues such

as how the actions of the agents translate into outcomes and set a suite of feasible

actions available to the agents, and whether interaction is completed in a single step

or it requires multiple steps, or whether we deal with static or dynamic interactions.

The second design issue concerns the decision-making policy of the agents, that is,

the interaction strategies the agents adopt to play in an environment ruled by the

prevailing protocol. These decision-making policies are mappings from perception

history into actions, Figure 15.6.

In auction-based markets, auction is a form of resource allocation. The agents

submit bids and a center solves a problem to determine the allocation that maximizes

a reported demand, given agent bids. Sellers then receive their income based on

prices set by a pricing mechanism.

In what follows, we focus on electricity power markets as a vehicle to illustrate

the development of interaction strategies for fuzzy agent systems. Many power

markets worldwide use a form of auction mechanism to decide on power generation

dispatch and energy pricing. In particular, we highlight the development of an

economical agent, a power generation plant, to compete on an auction environment,

the power market. The objective of the agent is to decide how to bid to offer energy.

In other words, given an auction protocol, the agents must decide which bidding

strategy will result in their best payoff. We use genetic fuzzy systems to evolve

bidding strategies for agents. This approach is especially important in auction-based

markets because in practice most auctions deviate from ideal auction models for

which theoretical results exist (McAfee and McMillan, 1987).

15.2.2 Electricity Market

Many of the restructured power industries worldwide use auctions as a mechanism

of resource allocation and system coordination. A power supplier competing on a

power market must decide upon how much energy to offer and at what price. In a

perfectly competitive market, risk averse participants have an incentive to offer

energy at a price equivalent to their marginal costs (Green, 2000). However,

electricity markets are much more an oligopoly than a laissez-faire, with low or

no demand elasticity on the short term, barriers to entry, and physical constraints.

Agent

Environment 

Action

Perception  history

Figure 15.6 Interaction strategy of an agent.
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Thus, a power supplier may have an incentive to offer energy at a price other than its

running marginal costs and extract some surplus from such an imperfect market.

The behavior of generator bidding other than marginal costs in an effort to exploit

market imperfections is called strategic bidding. The most common strategy is to

maximize the expected profit, but other strategies may interest a supplier exercising

its market power such as competing for being a base-load generator (Visudhipan

and Ilic, 1999), increasing market share, and increasing profit margin (Monclar

and Quatrain, 2001). A detailed survey on strategic bidding is found in David and

Wen (2000).

15.2.2.1 Demand Characteristics

The load demand is supposed to be publicly known and the auction is an ex-ante

mechanism to allocate the power to be produced by each plant and to define the

hourly energy price. Figure 15.7 shows the hourly load profile for a 3-week period.

Load data from the first week will later be used by a genetic fuzzy rule-based system

to evolve the bidding agent. The remaining 2 weeks’ load data are used for testing

and performance analysis. Overall we have 7 days times 24 h producing 168 training

examples and 14 days times 24 h producing a total of 336 samples for testing.

15.2.2.2 Running Cost Function

A pool of thermal plants is chosen, and actual public plant data is considered.

Electrical constraints and geographical location have been neglected to simplify

the presentation. The fuel cost of producing power on coal, gas, and oil plants (GJ/h)

Figure 15.7 Hourly load profile.
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are modeled as a quadratic function of the active power generation (gjh) supplied by

plant j at hour h, (El-Hawary and Christensen, 1979).

FðgjhÞ ¼ aþ bgjh þ cg2jh ð15:9Þ

Nuclear plants assume linear cost functions. The supplier cost function Cjð:Þ is given
by FðgjhÞ multiplied by the fuel cost in $/GJ. Hence, we arrive at the following

quadratic cost function:

CjðgjhÞ ¼ aþ bgjh þ gg2jh ð15:10Þ

15.2.2.3 Uniform Price Auction

The pricing mechanism is a uniform price sealed bid auction for a day ahead market.

In each trading day the auctioneer performs the following functions:

1. Opens the auction;

2. Publishes the day ahead hourly load forecast;

3. Accepts bids from suppliers;

4. Stops receiving bids;

5. Applies the pricing algorithm (merit order);

6. Publishes the hourly price ph; h ¼ 1; . . . ; 24;

7. Informs each supplier about the power to be produced for 24 h;

8. Closes the auction.

The central auctioneer decides the hourly dispatch, choosing the plants to produce

and the corresponding price to minimize overall energy cost. Power demand Dh is

considered to be inelastic with price. Hence, the auctioneer must assure that for each

hour h, we have
PTh

j¼1 gjh ¼ Dh, where gjh is the power supplied by plant j and Th is

the number of suppliers. Thus, allocation would cost the market an amount of

DhphðDhÞ, and suppliers would profit an amount of

Pjh ¼ phgjh � CjðgjhÞ ð15:11Þ
Suppliers must internalize all costs to a simple bid, a pair ðqjh; pjhÞ of the quantity

offered (MW) and its price ($). The quantity qjh is less than or equal to the plant

capacity,Gj. Description of more complex bidding mechanisms is given in Contreras

et al. (2001).

We assume that conservative agents bid pairs ðGj;MCjðGjÞÞ, where MCjðGjÞ is
the marginal cost at capacity Gj

MCjðGjÞ ¼
@CjðgjhÞ
@gjh

�

�

�

�

gjh¼Gj

ð15:12Þ

Contrary to conservative agents, the intelligent agent is free to choose both bid price

and quantity. To simplify, only the load demand is taken into consideration to decide

the bid.
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15.2.2.4 Market Configuration

Table 15.1 shows data of the thermal plants, the agents that are part of the power

market. Plant name and type are indicated. The plant capacity Gj is given in MWand

the marginal cost at full capacity,MCjðGjÞ in $/MW, corresponds to the conservative

bid. The cost functions Cjð:Þ for each of the thermal plants are given by the last

column of Table 15.1, where gjh is denoted by g for short.

Given the capacity of plants and assuming that agents bid their marginal cost at

full capacity, the result is the conservative merit order that corresponds to the supply

curve shown in Figure 15.8.

15.2.3 Genetic Fuzzy System

A first step to design a genetic fuzzy rule-based system (GFRBS) is to decide which

components of the knowledge base will be optimized by the genetic algorithm

(Cordón et al., 2001; Cordón et al., 2004). The choice involves a setup of some

trade-off between granularity and search efficiency. Among all possible selections,

the following have been chosen for evolution: database granularity, that is, number of

linguistic terms; membership functions parameters; and rule base, namely, rule

Table 15.1 Thermal Plants Characteristics.

Plant Type Gj MCjðGjÞ Cjð:Þ

Angra 1 Nuclear 657 8.5 8:5g
Angra 2 Nuclear 1309 8.5 8.5g

P.Medici 3-4 Coal 320 32.95 865:3þ 28:914gþ 0:0063g2

P.Medici 1-2 Coal 126 33.33 343:34þ 28:53gþ 0:01905g2

TermoBahia Gas 171 34.38 580:54þ 30:985gþ 0:00992g2

TermoCeara Gas 153 34.72 505:29þ 30:558gþ 0:0136g2

Canoas Gas 450 37.54 1575:22þ 33:869gþ 0:00408g2

N. Fluminense Gas 426.6 37.63 1484:92þ 33:759gþ 0:00454g2

Araucaria Gas 441.6 37.70 1505:65þ 33:782gþ 0:00443g2

Tres Lagoas Gas 324 37.76 1115:29þ 33:595gþ 0:00643g2

Corumba Gas 79.2 38.03 278:97þ 33:256gþ 0:03016g2

Juiz de Fora Gas 103 38.73 323:68þ 33:088gþ 0:0274g2

Ibirite Gas 766.5 39.07 3632:08þ 31:966gþ 0:00463g2

TermoRio Gas 824.7 39.11 3904:05þ 31:912gþ 0:00436g2

Argentina I Gas 1018 41.04 4459:61þ 32:775gþ 0:00406g2

Argentina II Gas 1000 41.05 4379:82þ 32:774gþ 0:00414g2

J. Lacerda C Coal 363 52.64 1547:15þ 45:962gþ 0:00919g2

J. Lacerda B Coal 262 63.30 1407:65þ 56:198gþ 0:0136g2

J.Lacerda-A1-2 Coal 100 67.10 549:89þ 57:895gþ 0:04605g2

J.Lacerda-A3-4 Coal 132 67.35 728:6þ 57:65gþ 0:03674g2

Charquendas Coal 69.1 67.72 414:59þ 60:037gþ 0:05559g2

FAFEN Gas 57.6 74.78 417:18þ 66:857gþ 0:06879g2

Uruguaiana Gas 582 82.77 4306:82þ 76:729gþ 0:00519g2
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syntax and rule status. Rule status serves to indicate if a rule is active or inactive. An

active rule effectively belongs to the rule base and is used during fuzzy inference. An

inactive rule remains in the rule base genotype, but does not take part in fuzzy

inference. Evolve rule status as a means to obtain the number of rules that composes

the rule base. The approach adopted here evolves simultaneously the data and rule

bases (Walter and Gomide, 2006). Each individual of a population represents a

complete fuzzy rule-based system.

15.2.3.1 Chromosome Representation

Granularity. The granularity of the GFRBS, the number of linguistic terms

adopted, defines the component Cr1 of the chromosome and is encoded by a variable

length chain of integers (N;M; n;m), with n ¼ ðn1; . . . ; ni; . . . ; nNÞ and

m ¼ ðm1; . . . ;mj; . . . ;mMÞ. N is the number of antecedents, M the number of con-

sequents, ni the number of linguistic terms of the input variable i, andmj is the number

of terms of output variable j, with i ¼ 1; . . . ;N; j ¼ 1; . . . ;M.

The total number of linguistic terms is given by equation (15.13) where La is the

number of linguistic terms of the antecedents and Lc the number of linguistic terms of

the consequents.

L ¼ La þ Lc ¼
X

N

i¼1
niþ

X

M

j¼1
mj ð15:13Þ

Figure 15.8 Market supply function.
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Membership Functions Following the approach suggested in Glorennec (1996)

and Cordón et al. (2001), one considers the use of fuzzy partitions. The number of

fuzzy sets is kept the same and the change of only one parameter results in a new

fuzzy partition of the input or output universe. This approach allows global adjust-

ment of membership functions. Moreover, the fuzzy rule-based system evolved is

likely to be more transparent because it produces frames of cognition and therefore

these frames satisfy the requirements as identified in Chapter 3. Trapezoidal mem-

bership functions are used. Therefore, there is no need to evolve shapes of member-

ship functions. Because partitions are used, each linguistic input variable i requires

2ðni � 1Þ real numbers to define the partition of the corresponding universe. The

output variable j requires 2ðmj � 1Þ real numbers to define its universe partition.

These real numbers are encoded in the component Cr2 whose length is given in

(15.13). Because no normalization is performed, each value must lie within the

corresponding interval ½vXmin;v
X
max�.

Lmf ¼
X

N

i¼1
2ðni � 1Þ þ

X

M

j¼1
2ðmj � 1Þ ð15:14Þ

For instance, if N ¼ 1 and M ¼ 2, then Cr1 is (1; 2; ðn1Þ; ðm1;m2Þ). The parameters

of the membership functions encoded in Cr2 corresponding to this example Cr1
component are as follows:

ððrX1

1 ; 1X1

2 ; rX1

2 ; 1X1

2 ; . . . ; 1X1

k ; . . . ; 1X1
n1
Þ;

ðrY11 ; 1Y12 ; rY12 ; 1Y12 ; . . . ; 1Y1k ; . . . ; 1Y1m1
Þ;

ðrY21 ; 1Y22 ; rY22 ; 1Y22 ; . . . ; 1Y2k ; . . . ; 1Y2m2
ÞÞ

where lX1

k denotes the parameter on the left of the top of the kth trapezium associated

with the kth fuzzy set of variable X1, whereas rk is the parameter on the right of the

top. Figure 15.9 shows an example of a fuzzy partition when n1 ¼ 4. Note that in this

case lX1

1 ¼ v
X1

min and r
X1

4 ¼ vX1
max:

Figure 15.9 Example of a fuzzy partition with trapezoidal membership functions.
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Rule Base We assume that the fuzzy bidding strategy is described by the union of

a set of linguistic fuzzy rules,

R ¼
l¼1

[

k

Rk

Each rule is interpreted by a fuzzy conjunction of disjunctions. A rule has the

following format:

If Xi is ðAio or AipÞ and . . . then Yj is ðCjq or CjrÞ
where Aio and Aip are the fuzzy sets associated with the input variable Xi, and Cjq and

Cjr are the fuzzy sets associated with the output variable Yj, with o; p � ni and

q; r � mj. Each rule is encoded in a chain of bits of variable length L given by (15.13),

with one additional bit used to indicate an (in)active rule. If the antecedent of a rule

contains an entry like ‘‘Xi is Aij,’’ then the corresponding bit at position p ¼ jþ
P

i�1

k¼1
nk

is 1, otherwise it is 0. For instance, if N ¼ 3;M ¼ 1; n ¼ f5; 3; 5g;m ¼ f7g, then
La ¼ 13. Thus the chain representing the rules has length of (20þ 1) entries. A rule

such as

If X1 is ðA13 orA14Þ and X3 is ðA31Þ . . . then Y1 is ðC14 orC15Þ
is encoded by the sequence

ð1Þ 00110 000 10000) 0001100

where the first bit in parenthesis indicates that the rule is active.

Each rule base contains Lr rules, where Lr is randomly chosen in the interval, that is,

minðLa; LcÞ � Lr � La Lc ð15:15Þ
The number of rules, rule size, and the rules themselves define chromosome

component Cr3. Number of rules and rule size are encoded for convenience because

they could have been calculated from the rule base. Encoding the number of rules

make it readily accessible by the algorithm. Thus, component Cr3 is composed by

two integers and Lr chains of length ðLþ 1Þ, including the first bit indicating

(in)active rules.

Evolutionary Algorithm The algorithm to evolve fuzzy rule-based systems is

described as follows.

procedure GFRBS-ALGORITHM (X,Y, f ) returns a rule base

input: universes X,Y

fitness function: f

local: population: set of individuals

crossover rate, mutation rate

max: maximum number of generations

INITIALIZE (population, number individuals)

repeat

evaluate each individual using f
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select parents in population using relative fitness

apply crossover and mutation on parents

create new population

until number generations � max

return rule base

Below we offer details on the realization of the genetic operators such as selection,

crossover, and mutation.

15.2.3.2 Genetic Operators

Choosing appropriate genetic operators is important in GFRBS due to the specific

chromosome encoding structure that represents the knowledge base. Because there

are direct relationships among chromosome components, the genetic operators work

synchronously to keep genotype integrity. Selection mechanism uses the roulette

wheel with elitism, that is, the best individual of a population is always retained and

carried over to the next population.

15.2.3.3 Crossover

Two different crossover operators are used depending on whether the selected

parents have the same granularity. We say that two individuals with Cr1 given by

ðN;M; ðn1; . . . ; ni; . . . nNÞ; ðm1; . . . ;mj; . . . ;mMÞÞ
ðN;M; ðh1; . . . ; hi; . . . hNÞ; ðm1; . . . ;mj . . . ;mMÞÞ

have the same granularity, if ni ¼ hi; i ¼ 1; . . . ;N, and mj ¼ mj; j ¼ 1; . . . ;M.

When the granularity of parents is the same, a promising region in the search

space is found and could be exploited (Cordón et al., 2001). In this case, the

granularity of the database, the chromosome Cr1 component, is kept the same for

the offspring and the membership functions parameters (component Cr2) combined

using the max-min-arithmetic algorithm of Herrera et al. (1997).

The max-min-arithmetic algorithm produces, for each pair of chromosomes,

four offspring via pairwise combination of the minimum, maximum, and two linear

combinations of each element. The best two individuals among the offspring can be

added to the next generation (Cordón et al., 2001). Here all offsprings are added and

the algorithm proceeds with mutation. Population size is limited in the next genera-

tion selection.

When the parents have different granularity, a random crossover position

p; 1 � p � ðN þM � 1Þ, is chosen. Both granularity (component Cr1) and the

corresponding parameters of the membership functions (component Cr2) are recom-

bined. Two individuals whose component Cr1 are

ððn1; . . . ; ni; . . . ; nNÞ; ðm1; . . . ;mj; . . . ;mMÞÞ
ððh1; . . . ; hi; . . . ; hNÞ; ðm1; . . . ;mj; . . . ;mMÞÞ
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are crossed at a position p; p � N, the result are offspring

ððn1; . . . ; np�1; hp; . . . ; hNÞ; ðm1; . . . ;mj; . . . ;mMÞÞ
ððh1; . . . ; hp�1; np; . . . ; nNÞ; ðm1; . . . ;mj; . . . ;mMÞÞ

The result is similar for N < p � ðN þM � 1Þ.
Rule base crossover between individuals of different granularities is shown in

Figure 15.10. The length of each rule and the rule base size (number of rules) can be

different for the selected rule bases. A specific crossover operator, denoted by � in

Figure 15.10 is used. To realize a crossover of the rule bases, the same crossover

position p corresponding to the position where the granularities have been crossed is

kept. Rule antecedents of a rule are combined with rule consequents of other rule to

form new rules. The difference of size, area I of the offspring of Figure 15.10, is

completed. The corresponding portion of fuzzy rules from the mating individuals are

chosen randomly to complete the remaining part, and area II is discarded.

For example, assume two individuals with granularity (1,1,3,5) and (1,1,4,3) and

rule bases shown at the top of Figure 15.11 (A and I indicate an active or inactive

rules respectively).

Figure 15.10 Rule base crossover.

Figure 15.11 Example of crossover of rule bases.
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Crossover of these two individuals results in two offspring with granularity

(1,1,3,3) and (1,1,4,5) shown in Figure 15.11. The last rule of offspring (1,1,4,5) is a

recombination of the last rule I1011) 010 of the second parent with the second rule

I110) 00110 randomly chosen from its mate.

15.2.3.4 Mutation

Depending on the granularity of individuals, different mutation operators are used.

Granularity is an integer in the interval [3,9], and mutation produces a local variation

adding or subtracting 1 with equal probability. This mutation scheme is suggested in

Cordón et al. (2001). When the granularity of individuals increases, a new randomly

chosen pair of membership functions parameters is added to Cr2 and a set of

linguistic terms added to the rule base component Cr3. When the granularity

decreases, a pair of membership function parameters at a randomly chosen position

of Cr2 is deleted together with the set of corresponding bits of the linguistic terms at

the same position in the rule base.

Mutation of membership function parameters uses non-uniformmutation opera-

tor (Michalewicz, 1996) and rule bases mutated using the standard, bitwise reversing

operation. This means that if the entry of the chromosome is equal to 1, its value is

flipped to 0 and vice versa.

15.2.3.5 Fitness Evaluation

The fitness function is the profit obtained during auctions of the training period. To

avoid negative fitness, a constant whose value equals the total number of hours H

times fixed costs Cfixed is added to the function. When modeling the costs as in

expression (15.10), we have Cfixed ¼ a. For 1-week period H ¼ 168 and hence the

fitness fj is computed using the expression

fj ¼
X

168

h¼1
Pjh þ 168a

where Pjh is the profit computed using (15.11).

The evaluation of individuals (fitness function) in the population uses the

following procedure:

procedure fITNESS-EVALUATION (P, f) returns fitness values

input: population P

fitness function: f

for each individual in P do

decode individual

add individual in the market

run auctions for the training period

store individual fitness f

remove individual from the market

return fitness values
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EXAMPLE 15.2

We consider the case in which thermal plant Argentina II plays the role of an intelligent agent

whose strategy is evolved using the genetic fuzzy systems (Walter and Gomide, 2006). The

remaining power plants bid based on their marginal costs. The agent strategy uses demand as

input and bid price and quantity as outputs. Given the price, there is a quantity that maximizes

profit. If price is lower than b, then from (15.10) to (15.11) the quantity is 0. For prices greater

than ðbþ 2gGjÞ the quantity that maximizes profit is the plant capacity Gj. For prices ph such

that b < ph < bþ 2gGj the quantity that maximizes profit is

q� ¼ ph � b

2g
ð15:16Þ

Figure 15.12 shows the evolution of fitness considering a population of 36 individuals, with

probability of crossover (crossover rate) of 0.7 and probability of mutation (mutation rate) of

0.1. The granularity in this example ranges between 3 and 11. Evolution stops after a maximum

of 500 generations.

The membership functions and partitions of the input and output membership functions

evolved are depicted in Figure 15.13. Decoded values of outputs Y1 and Y2 are values that

multiply the marginal cost at full capacity and plant capacity to produce the bid price and

quantity, respectively. We adopt the interval [0, 2] as the universe of Y2, and hence whenever

the decoded (defuzzified) value of Y2 is greater than 1, the agent bids its maximum capacity.

The rule base evolved corresponds to the one whose active rules are as follows:

10010) 01010101 111011

11111) 01100000 110011

11011) 11100010 010110

00010) 01010101 011011

00011) 01011010 010111

01010) 11110110 011111

Figure 15.12 Values of the fitness function in successive generation of evolution.
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For instance, the first rule is decoded as

If X1 is (A11 or A14)

then Y1 is (C12 or C14 or C16 or C18)

and Y2 is (C21 or C22 or C23 or C25 or C26)

The best bidding strategy playing during the two test-week period results in a profit 36.7%

higher and produces 91.3%more energy than the conservative strategy. The plant is dispatched

for 306 h over the total of 336. The agent fuzzy rule-based strategy obtains higher payoff

combining two policies. First, when demand is low and price is below its marginal cost at full

capacity, the agent tries to be dispatched by bidding lower price and quantity that minimizes

losses. For example, during the first hour of the test period and a demand of 305.9 MW, the

agent bids (774.3, 23.77) in (MW, $/MW). This results in a loss of $2246 because energy price

is defined by Juiz de Fora plant as $38.73/MW. With this price, the quantity that minimizes

losses is, 719.3MW from (15.14). Hence the strategy is successful in choosing the best bidding

quantity. The conservative strategy for the same 1-h period would not let the plant be

dispatched and would incur a loss equivalent to its fixed costs, $4379.82. The overall system

energy price would, in this case, be slightly higher, $39.07. Second is to increase price when it

has the opportunity to be themarginal generator. For instance, looking at the 19h day of the first

testing day as an example, the agent plant produces 299.3 MWat $58.38/MWand the overall

Figure 15.13 Membership functions and partitions of the input and output universes.
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system price is defined by its bid. This results in a profit of $2912 against a production of 662.3

MW at $41.05/MW and a loss of $715 for conservative strategy. Minimizing losses for low

demand increases the total profit during the test period.

15.3 DISTRIBUTED FUZZY CONTROL

One of the major challenges of control theory is control of complex dynamic

systems. Complex systems are high-dimensional and uncertain and information

structures are constrained by the number of channels and a topology of the commu-

nication networks. Often, the system arises as an interconnection of several sub-

systems and both the communication structure and the subsystems themselves are

not precisely known. Computer controlled systems have distributed architectures and

are connected via communication networks. Controllers are local and run asynchro-

nously in the distributed architecture. Conventional centralized control systems often

are impractical to control complex systems, and decentralized control approaches

become a key requisite to handle system complexity (Palm, 2004).

During the last decade, sophisticated control strategies using fuzzy sets and

neural networks were used successfully in practice, usually to manage processes with

only a few inputs and output variables. These controllers work in a stand-alone mode

and only several decentralized approaches for large-scale systems have been recently

developed (Tong et al., 2004)

An approach to decentralized control based on multiagent systems and market-

based schemes have emerged recently (Voos, 1999). It uses principles of economy to

distribute and allocate resources. Market-based control approaches have the ability to

allocate resource efficiently in large-scale systems using simple algorithms that can

be decentralized. A distinguishing property of distributed, multiagent control sys-

tems comes with an ability to perform intelligently only by interaction in the sense

that all agents together show a behavior that no single agent would be able to

perform.

In this section, we examine the application of market-based control mechanism

as a vehicle to design distributed fuzzy control systems. A simple example consider-

ing a set of couple tank system is used to illustrate the approach.

15.3.1 Resource Allocation

Resource allocation problems can be formulated as an optimization problem of the

form

maxJðu1;u2; . . . ; unÞ

s:t:
X

n

i¼1
ui � r

ui � 0; i ¼ 1; . . . ; n

ð15:17Þ
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The type of resource u to allocate is limited by a total amount smaller than or equal

to r.

Economic systems can be viewed as composed by agents, a price system, and a

number of commodities. Commodity can be services and goods. Because commod-

ities are limited, each is associated with a price mechanism that forms a pricing

system. In general, agents are either producers or consumers. The aim of an agent in

an economy is to decide on the amount of his input or output for each commodity.

Producers choose their supply and consumers their demand. Producers aim at

maximizing profit and consumers to maximize utility. Market equilibrium requires

the sum of all demands to be equal to the sum of all supplies.

Let us assume an amount of ‘ types of resources to form a resource vector u 2 R‘

and a number of n consumer agents and m producer agents. Considering that the

consumer agents aim to maximize their utilities fiðuci Þ;uci 2 R‘ and that producer

agents aim to maximize their profits fjðupj Þ;u
p
j 2 R‘; under limited amount

of resources, optimal allocation requires solution of the following optimization

problem:

max
uc
i

fiðuci Þ consumer

max
u
p

j

fjðupj Þ producer

s:t:
X

n

i¼1
uci ¼

X

m

j¼1
u
p
j

uci ; u
p
j � 0; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m

ð15:18Þ

Optimization problem (15.18) is a distributed allocation problem and the objective

functions have to simultaneously be optimized. The set of all supplies and demands

define the state of an economy. An equilibrium with respect to a price system means

that no consumer can increase his utility without increasing his expending, and no

producer can increase his profit (MasColell et al., 1995).

15.3.2 Control Systems and Economy

Consider a set of n coupled dynamic systems of the form

xiðt þ 1Þ ¼ fiðxðtÞ; uðtÞ; tÞ
yiðtÞ ¼ giðxðtÞ; tÞ

ð15:19Þ

where xið0Þ ¼ xio; ui 2 R‘ is the input variable, xi 2 Rq is the state variable, and

yi 2 Rs is the output of the ith subsystem. To apply market mechanism to control

systems, the control problem must be translated into an economic optimization

problem such as the resource allocation problem (15.18) for which resource variables

have to be defined. In control systems, the input variables can be considered as the

resource variables to be distributed. Therefore, control variables must be limited. The
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general formulation of a control problem as a resource allocation problem in the case

of distributed systems can therefore be formulated as follows (Voos, 1999):

min
u

fiðju1j; . . . ; junðtÞj;xoÞ

s:t: xiðt þ 1Þ ¼ fiðxðtÞ; uðtÞ; tÞ
yiðtÞ ¼ giðxðtÞ; tÞ
X

n

i¼1
uiðtÞ ¼ R

juiðtÞj � 0

xið0Þ ¼ xio

i ¼ 1; . . . ; n

ð15:20Þ

The remaining problem is the transformation of the optimization problem (15.20), a

form of resource allocation problem, into a distributed optimization problem (15.18).

Therefore consumer and producer agents have to be defined together with the

corresponding utility and profit functions. These functions shall be chosen such

that their simultaneous optimization produces a solution that also solves (15.20). In

complex systems, a possible choice is to assign each subsystem with a consumer and

a producer agent. After the translation, the distributed allocation optimization

problem is solved using market-based mechanisms such as exchange and pricing

to find an equilibrium solution. Solution of optimal control problems using trans-

formations in economy optimization in the form of distributed resource allocation

problems is called market-based control (Clearwater, 1996). There are several

approaches to develop such principles (Voos, 1999; Voos and Litz, 1999, 2000).

A fuzzy set-base approach is introduced next.

15.3.3 Fuzzy Market-Based Control

We address a fuzzy distributed control approach based on market principles using a

coupled tank system example as suggested by Voos (1999). The control problem

deals with the regulation of water levels in a four tank coupled system shown in

Figure 15.14.

Each tank can be filled through a valve i. The tank level is denoted by hi. The

valve is an actuator whose output is a mass flow to tank i proportional to the valve

position ui. A pump with limited power is used to circulate water in the system.

Therefore, the mass flow can be viewed as limited resource. The reference operation

levels of each tank, the set points, are assembled in a single vector hs. We assume that

the desired operation point (uo, hs) of the tanks is known. The control task is to

regulate the levels at the operation point. Each of them is considered as a subsystem

associated with an agent, the controller. The input variable of each agent i is the

deviation DhiðtÞ of water level and the output variable is the valve position

uiðtÞ ¼ uio þ DuiðtÞ, the sum of the desired operation level of tank i and the control

action DuiðtÞ. Because tank set points are known, the agent only has to compute
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the control action DuiðtÞ. All agents are connected through a communication net-

work. The structure of the distributed, market-based control system is also shown in

Figure 15.14.

Because the volume of water that flows in the tank system is limited, the absolute

values jDuiðtÞj are considered as resource variables. Each agent can, at any time

instant, play the role of the consumer of the producer. A positive deviation DhiðtÞ
means that the tank needs more water to reach the required operation level. In this

situation, the associated agent behaves like a consumer that has to acquire a certain

quantity of water. This is the demand of consumer i at time instant t. When deviation

DhiðtÞ is negative, the tank contains too much water and the agent is considered as a

producer that wants to furnish water to the consumers. This is the supply of producer i

at time instant t.

Assuming n coupled tanks, the actual number of consumers at time instant t is q

and the number of producers is m, with n ¼ mþ q. The market-based mechanism

approach for distributed control is summarized in the procedure below.

procedureDISTRIBUTED-FUZZY-AUCTIONER (d; s) returns price
input : demand: d

supply: s

for each agent do

if demand agent then get demand

if consumer agent then get supply

compute equilibrium price

run auctions for the training period

Figure 15.14 Coupled tank system.

15.3 Distributed Fuzzy Control 485



store individual fitness f

remove individual from the market

return price

The procedure assumes that each consumer agent computes his demand while each

producer agent computes his supply. All values are sent to an auctioneer agent using

the communication network. The auctioneer can be any of the agents. Next, the

auctioneer computes an equilibrium price using the constraint that the sum of all

supplies has to be equal to the sum of all demands, that is,

rppðtÞ þ
X

m

j¼1
r
p
j ðtÞ ¼ rcpðtÞ þ

X

q

i¼1
rci ðtÞ ð15:21Þ

where rppðtÞ and rcpðtÞ are the supply and demand of the pump. The pump is modeled

as a permanent producer and consumer. The terms r
p
j ðtÞ and rci ðtÞ are the supply and

demand functions of the agents.

Agents compute their supply and demand functions using market knowledge

(Yager, 1998; Silva, 2004) in the form of fuzzy rules as follows. Let price be a linguistic

variable with values low (A1) and high (A2), and deviation be a linguistic variable

representing the absolute value of DhiðtÞ with values small (B1) and large (B2).

1. Consumer agent

If price is low and deviation is small then demand is gdo.

If price is low and deviation is large then demand is gdmax: ð15:22Þ
If price is high then demand is gdo.

where low and high defined by fuzzy sets A1 and A2 whose membership

functions are

A1ðpðtÞÞ ¼
� pðtÞ
Pmax

þ 1; if 0 � pðtÞ � Pmax

0; otherwise

8

<

:

A2ðpðtÞÞ ¼
pðtÞ
Pmax

þ 1; if 0 � pðtÞ � Pmax

0; otherwise

8

<

:

as shown in Figure 15.15.

Figure 15.15 Membership functions of A1 (low) and A2 (high).
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Similarly, the membership functions of fuzzy sets B1 and B2 for small and

large are

B1ðDhiðtÞÞ ¼
�DhiðtÞ

Hmax

þ 1; if 0 � DhiðtÞ � Hmax

0; otherwise

8

<

:

B2ðDhiðtÞÞ ¼
DhiðtÞ
Hmax

þ 1; if 0 � DhiðtÞ � Hmax

0; otherwise

8

<

:

as depicted in Figure 15.16.

The rules consequents are as follows:

gdoðpðtÞ;DhiðtÞÞ ¼ 0; 8 pðtÞ;DhiðtÞ
gdmaxðpðtÞ;DhiðtÞÞ ¼ rdmax; 8 pðtÞ;DhiðtÞ

Assuming the product t-norm in the rule consequent and noticing that rules in

(15.22) are functional fuzzy rules we obtain

rci ðtÞ ¼ ðkd1 � kd2pðtÞÞDhiðtÞ
kd1 ¼ ðrdmax=HmaxÞ and kd2 ¼ ðkd1=PmaxÞ

ð15:23Þ

Figure 15.17 shows the demand function assuming normalized universes.

2. Producer agent

If price is low then supply is gso.

If price is high and deviation is small then supply is gso: ð15:24Þ
If price is high and deviation is large then gsmax.

The consequents of the fuzzy rules are

gsoðpðtÞ;DhiðtÞÞ ¼ 0; 8 pðtÞ;DhiðtÞ
gs maxðpðtÞ;DhiðtÞÞ ¼ rs max; 8 pðtÞ;DhiðtÞ

Figure 15.16 Membership functions of B1 (small) and B2 (large).
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and from the functional fuzzy rules (15.24), for normalized universes, we get

the supply function

r
p
j ðtÞ ¼ kspðtÞjDhjðtÞj
ks ¼ ðrsmax=ðPmaxDHmaxÞÞ

ð15:25Þ

as depicted in Figure 15.18.

Assuming the pump as a permanent producer provides

rppðtÞ ¼ dpðtÞ ð15:26Þ
where d is a constant parameter. Likewise, when the pump behaves as a

permanent consumer it demands

rcpðtÞ ¼ a1 1� pðtÞ
a2

	 


ð15:27Þ

where a1 and a2 are constants.

From expressions (15.21), (15.23), and (15.25–15.27) we obtain the equili-

brium prices as follows:

pðtÞ ¼ a1 þ kd1
Pq

i¼1 DhiðtÞ
dþ ða1=a2Þ þ ks

Pm
j¼1 jDhjðtÞj þ kd2

Pq
i¼1 DhiðtÞ

Figure 15.17 Demand function of an agent as a consumer.
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Figure 15.18 Supply function of an agent as a producer.

Figure 15.19 Tank level trajectories.
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and from the respective demand and supply functions, the consumer and

producer agents compute their outputs as follows:

DuiðtÞ ¼ ðkd1 � kd2pðtÞÞDhiðtÞ
DujðtÞ ¼ kspðtÞDhjðtÞ

Figure 15.19 shows the trajectories of the tank levels assuming

hð0Þ ¼ ð15; 20; 25; 35Þ and choosing a1 ¼ 10;a2 ¼ 10; d ¼ 1; rsmax ¼ 1;
rdmax ¼ 500;Pmax ¼ 30, and Hmax ¼ 5.

The evolution of the resource prices is shown in Figure 15.20. Figures 15.19

and 15.20 show that the prices act as a coordination factor among multiagents

to induce equilibrium, namely, to achieve the respective tanks set points.

It is worth to note the modularity and simplicity of the control algorithms

obtained via market-based control principles, especially when economic

equilibrium notions are expressed using fuzzy rules.

15.4 CONCLUSIONS

Fuzzy sets and systems are important to develop complex systems due to their

ability to handle imprecision and linguistic knowledge and to add intelligence to

agents and applications. Conventional tools to analyze market models and equili-

brium pose substantial challenges to system modelers and developers when

imprecise and partially known systems must be handled. This is the case with

many complex systems in diverse areas such as energy, transportation, control,

information processing, and logistic systems. Together with the notion of agent

Figure 15.20 Evolution of resource prices.
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and multiagents as both software engineering and decision-making systems, fuzzy

set theory has a enormous potential to proceed to its next leap to develop large-

scale intelligent systems.tpb

EXERCISES AND PROBLEMS

1. Sketch a multiagent system architecture and its main interface and decision modules for a

distributed traffic control system.

2. Suggest an alternative to the crossover operator illustrated in Figure 15.10.

3. Using your knowledge of inference with functional fuzzy models, develop detailed steps to

derive expression (15.23).

4. Similar to Problem 3, develop detailed steps to arrive at expression (15.25).

5. Develop a mechanism to obtain granular models of demand and supply versus price, and

suggest a procedure to find the equilibrium point.

HISTORICAL NOTES

Multiagent systems have their origins in distributed artificial intelligence started in the 1970s. The current

notion of agent assumes that they operate and exist in some environment that typically is both computa-

tional and physical (viz. software and hardware in general). Software agents are specifically referred to as

computer programs (Weiss, 1999).

The use of economy principles in computer systems was suggested by Wellman (1995) as a

mechanism for resource allocation and distributed problem solving.
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Appendix A

MATHEMATICAL PREREQUISITES

Here we offer a very concise and focused review of the notation, basic notions, and

pertinent facts related to linear algebra (vectors and matrices), analysis, and optimi-

zation that relate directly to the computing with fuzzy sets. For an extended treatment

of the subject matter, the reader is referred to a wealth of specialized texts, some of

which are included in the list of references.

Vectors and Matrices

An n-dimensional vector x organizes a collection of numbers x1, x2,. . ., xn in the

following form:

x ¼
x1
x2
. . .

xn

2

6

6

4

3

7

7

5

The transpose of x, denoted by xT, is a row of elements, [x1; x2; . . . ; xn]
T. Vectors are

denoted by boldface letters such as a, b, x, y, and so on. A collection of all

n-dimensional vectors forms an n-dimensional Euclidean space denoted by Rn.

The sum of two vectors, x and y, is another vector, denoted by xþ y, whose ith

component is equal to xi þ yi. The product of a scalar a by a vector x denoted by ax
is obtained by multiplying each component of x by a, ax ¼ ½ax1; ax2; . . . ;axn�.

We say a collection of vectors x1, x2,. . .,xn in Rn is linearly independent if
Pn

i¼1 aix
i ¼ 0 implying that ai ¼ 0 for i ¼ 1; . . . ; n. A vector y in Rn is a linear

combination of the vectors x1, x2,. . .,xk in Rn if it can be expressed in the form

y ¼
Pk

i¼1 aix
i for some scalars ai, i ¼ 1; . . . ; k.

A collection of vectors x1, x2,. . .,xn in R
n form a basis of Rn if they are linearly

independent. In this case, we say that the basis spans Rn.

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
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The inner (scalar) product of two vectors x and y inRn denoted by xTy is a scalar

determined as xTy ¼
Pn

i¼1 xiyi. Two vectors are orthogonal if their inner product is

equal to zero.

The Euclidean norm of x in Rn, denoted by k x k, is defined by

k x k¼
ffiffiffiffiffiffiffiffi

xTy
p

¼ ð
Pn

i¼1 ðxiÞ
2Þ1=2.

A matrix is a rectangular array of numbers. An m� n matrix has m rows and n

columns. Matrices are denoted by capital letters, say R, A, P, and so on. The entry of

the matrix positioned in the ith row and the jth column is denoted by rij. We also use a

notation such as R ¼ ½rij� that explicitly identifies the corresponding entries of the

matrix. The jth column of R is denoted by rj.

Let R and S be twom� nmatrices. The sum of R and S, denoted by Rþ S, is the

matrix whose ijth entry is rij þ sij. The product of a matrix R by a scalar a is the

matrix whose ijth entry is arij. If R is a m� n matrix and S is a n� p matrix, then

he product RS is an m� p-dimensional matrix C whose ijth entry cij is equal to

cij ¼
X

n

k¼1
rikskj; for i ¼ 1; . . . ;m and j ¼ 1; . . . ; p

Let R be anm� nmatrix. The transpose RT of R is a n� mmatrix whose ijth entry is

equal to rji. We say that a square matrix R is symmetric if R ¼ RT . The determinant of

R, denoted det½R�, is defined iteratively as follows:

det½R� ¼ det½R� ¼
X

n

i¼1
ri1Ri1

where Ri1 is the i1-cofactor of R. The cofactor Ri1 of R is defined as (�1)iþ1 times the

determinant of the sub-matrix formed by deleting the ith row and the first column of

R. The determinant of a scalar is the scalar itself.

A square matrix R is nonsingular if there exists a matrix R�1, called the inverse

matrix, such that RR�1 ¼ I, where I is the identity matrix, whose entries on the main

diagonal are equal to 1 and all other entries are equal to zero. The inverse of a matrix,

when it does exist, is unique. A matrix has an inverse if and only if its determinant is

not zero.

Let R be a m� n matrix. The rank of R is the maximum number of linearly

independent rows or, equivalently, the maximum number of linearly independent

columns of R. If the rank of R is the minimum of fm; ng, then R is of full

rank.

If R is a m� n matrix, a scalar l and a nonzero vector x satisfying the equation

Rx ¼ lx are called, respectively, an eingenvalue and an eingenvector of R. To

compute eigenvalues of R, we must solve the equation det½R� lI� ¼ 0. If R is

symmetric, then its eingenvalues are real numbers. Eingenvalues of a symmetric

matrix associated with distinct eigenvalues are orthogonal.

Let R be a n� n symmetric matrix. We say that R is positive definite if the scalar

quantity xTRx > 0 for all nonzero x 2 Rn. R is positive semidefinite if xTRx � 0.

Likewise, R is negative definite if xTRx < 0 for all nonzero x 2 Rn Similarly, R is

negative semidefinite if xTRx � 0. AmatrixR is positive definite, positive semidefinite,
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negative definite, and negative semidefinite if and only if its eingevalues are positive,

nonnegative, negative, nonpositive, respectively.

A m� n matrix R is orthonormal if RRT ¼ Im, where Im is the m� m identity

matrix. This means that the columns rj of matrix R are mutually orthogonal vectors of

unit length, that is, rTj rj ¼ 1.

Let R be a m� n matrix, where m � n. Then R can be decomposed as

R ¼ UWVT , where U is a m� n orthonormal matrix and V is n� n orthonormal

matrix.W is a n� n diagonal matrix,W ¼ ½wij�,wij ¼ wi if i ¼ j, andwij ¼ 0 if i 6¼ j.

The diagonal elements wi, i ¼ 1; . . . ; n, are called the singular values. The singular

value decomposition always exists and is unique up to same permutations in columns

of U,W , and V , and linear combinations for columns of U and V with equal singular

values (Golub and Van Loan, 1989). Given the linear equation Rx ¼ b, the solution

xopt ¼ VŴUTb is least squares, namely, xopt ¼ argminx k Rx� b k2 where Ŵ is a

diagonal matrix whose elements are ŵi with

ŵi ¼
1

wi

; if wi > 0

0; if wi ¼ 0

(

Sets

In a very descriptive manner, we can view a set as a collection of objects (elements).

A set can be specified by listing its elements or by specifying the properties that such

elements must satisfy.

The set of all possible elements of concern in a particular context or application

is called an universe or, alternatively, universe of discourse, space, domain, and

space. Universes are denoted by boldface capital letters such as X, Y, and Z.

Let a and b be two real numbers. The closed interval ½a; b� denotes all real

numbers such that a � x � b. Real numbers satisfying a � x < b are represented by

½a; bÞ whereas those satisfying the relationship a < x � b are denoted by ða; b�. The
set of all real numbers satisfying a < x < b is represented by the open interval ða; bÞ.

Let A be a set of real numbers. Then the greatest lower bound, or infimum of A is

the largest possible scalar a such that a � x for each x 2 A. The infimum is denoted

by inffx : x 2 Ag or, alternatively, infðAÞ. The least upper bound, or the supremum of

A is the smallest possible scalar a such that a � x for each x 2 A. The supremum is

denoted by supfx : x 2 Ag or, alternatively, supðAÞ.
Given a point x 2 Rn and some e > 0, The set NeðxÞ ¼ fyj k y� x k� eg is

called an e-neighborhood of x.

A set A in Rn is compact if it is closed and bounded. The set A is closed if it is

equal to its closure. The closure of a set A of Rn is the set of all points that are

arbitrarily close to A.

A set A in Rn is said to be convex if for every x1 and x2 2 A and every real

number 0 � l � 1, the convex combination belongs to A, that is, the point

lx1 þ ð1� lÞx2 2 A.
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Functions

A real valued function f defined on a subset S of Rn associates with each point

x 2 S a real number f ( ). The notation f : S! Rmeans that the domain of f is S and

that the codomain (alternatively, the range) of f is a subset of R. If f is defined

everywhere on Rn, or if the domain is irrelevant, we use the notation f : Rn ! R. A

collection of real valued functions f1, f2; . . . ; fm can be viewed as a single vector

function f ¼ ½f1; f2; . . . ; fn�T .
A function f : S! R is continuous at x 2 S if, for any e > 0, if there exists a

d > 0 such that x 2 S and k x� x k< d imply that jf ðxÞ � f ðxÞj < e. Avector-valued

function is continuous at x if each of its components is continuous at x.

Let S be a nonempty set in Rn. A function f : S! R is upper semicontinuous at

x 2 S if for each e > 0 there is a d > 0 such that x 2 S and k x� x k< d imply that

f ðxÞ � f ðxÞ < e. Similarly, f : S! R is lower semicontinuous at x 2 S if for each

e > 0 there is a d > 0 such that x 2 S and k x� x k< d imply that f ðxÞ � f ðxÞ > �e.
A vector-valued function is upper or lower semicontinuous if each of its components

is upper or lower semicontinuous, respectively.

Let S be a nonempty set in Rn and assume that f : Rn ! R. If f is lower

semicontinuous, then it has a minimum over S. A point x� 2 S is a minimum of

f if f ðxÞ � f ðx�Þ for all x 2 S. Likewise, if f is upper semicontinuous, it has a

maximum over S, that is, there exists a x� 2 S such that f ðxÞ � f ðx�Þ for all x 2 S. If

x� is a minimum of f , then it is also a maximum of �f . Continuous functions are
both upper and lower semicontinuous. Therefore, they achieve both a minimum and a

maximum over any compact set.

A point x� 2 S is a local minimum over S if there is an e > 0 such that

f ðxÞ � f ðx�Þ for all x 2 S within a neighborhood of x�. If f ðxÞ > f ðx�Þ, then x� is
a strict local minimum. Similarly, x� 2 S is a local maximum over S if there is an

e > 0 such that f ðxÞ � f ðx�Þ for all x 2 S within a neighborhood of x�. If

f ðxÞ < f ðx�Þ, then x� is a strict local maximum.

Consider a nonempty open set S in Rn, x 2 S, and f : S! R. Then f is

differentiable at x if there exists a vector rf ðxÞ in Rn-called the gradient of f at x

and a function bðx; xÞ satisfying bðx; xÞ ! 0 as x! x such that, for all x 2 S,

f ðxÞ ¼ f ðxÞ þ rf ðxÞTðx� xÞþ k x� x k bðx; xÞ

The gradient is a n-dimensional vector consisting of partial derivatives of f taken

with respect to each component of the vector x, that is,

rf ðxÞ ¼ @f ðxÞ
@x1

;
@f ðxÞ
@x2

; . . . ;
@f ðxÞ
@xn

	 
T

A function f ðxÞ is smooth as it is continuous and differentiable at x; otherwise it is

nonsmooth.

A function f is twice differentiable at x if, in addition to the gradient

vector, there exists a n� n symmetric matrix HðxÞ, called the Hessian matrix
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of f at x, and a function bðx; xÞ satisfying bðx; xÞ ! 0 as x! x such that, for all

x 2 S,

f ðxÞ ¼ f ðxÞ þ rf ðxÞTðx� xÞ þ 1

2
ðx� xÞTHðxÞðx� xÞþ k x� x k bðx; xÞ

The Hessian matrix of f at x is defined as

HðxÞ ¼

@2f ðxÞ
@x21

   @2f ðxÞ
@x1@xn

..

. . .
. ..

.

@2f ðxÞ
@xn@x1

   @2f ðxÞ
@x2n

2

6

6

6

6

6

4

3

7

7

7

7

7

5

Let S be a nonempty convex set in Rn. The function f : S! R is convex if, for ach

x1, x2 2 S and l 2 ½0; 1� we have
f ðlx1 þ ð1� lÞx2Þ � lf ðx1Þ þ ð1� lÞ f ðx2Þ

The function is strictly convex if the inequality holds strictly. The function f is

quasiconvex if the following inequality is satisfied

f ðlx1 þ ð1� lÞx2Þ � maxff ðx1Þ; f ðx2Þg
The function is strictly quasiconvex if inequality holds strictly and f ðx1Þ 6¼ f ðx2Þ

and is strongly quasiconvex if strict inequality holds and x1 6¼ x2.

The notions of convex and quasiconvex extend to the concept of concavity when

we replace f by �f.

Nonlinear Optimization

Consider the problem of finding a minimum of a smooth function f : Rn ! R,

minx f ðxÞ
We assume that f is nonlinear. Linear optimization is covered in Bertsimas and

Tsitsiklis (1997). This optimization problem is called an unconstrained minimization

problem. A solution x* is a stationary point of f if rf ðx�Þ ¼ 0, where 0 is the zero

vector, that is, an-dimensional vectorwhosecomponents are all equal to zero.Stationary

points can beminimummaximum or saddle points. To investigatewhich one is the case

we need to look at second order information using the Hessian matrix at x*.

The Hessian matrix of a smooth function f is positive (negative) semi-definite

at every unconstrained local minimum (maximum). This is a necessary condition for

a local minimum (maximum). A stationary point is an unconstrained local minimum

(maximum) if the Hessian matrix is positive (negative) definite. This is a sufficient

condition for a local minimum (maximum). Every stationary point of a smooth

convex (concave) function is an unconstrained global minimum (maximum).

In practice, local minimum is found using gradient search algorithms. In the

simplest one, we follow a direction opposite to the gradient of f . The gradient of
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f at x, rf ðxÞ, points at the steepest behavior of the function in a neighborhood of x.

Therefore, if we look for the maximum, this is the right direction to follow. If our

objective is to find a minimum, then we should proceed along the steepest descent

direction, which is positioned at the opposite direction of the gradient, that is,

�rf ðxÞ. This search strategy translates into the following iterative optimization

algorithm.

procedure GRADIENT-SEARCH ( f) returns a solution

input: objective function: f

local: step size: a
tolerance: e

Choose x0

t 0

repeat

compute rf(xt)
xtþ1 xt � a rf(xt)
t t þ 1

until rf(xt) � e

return xt

The gradient procedure shown above finds local maximum if we update x in the

direction of rf ðxÞ instead of �rf ðxÞ. The step size a should be chosen carefully to

guarantee convergence of the algorithm. Too large values of a provoke divergence

whereas its values that are too small slow down convergence speed. Appropriate value

of a can be found by performing line search. In other words, find a value of a at each

iteration such that, given xt andrf ðxtÞ, it minimizes the expression f ðxt � arf ðxtÞÞ.
There are several variations of the basic gradient search algorithm. The under-

lying idea is to find more efficient search directions. Among them we note conjugate

directions (Bazaraa et al., 2006; Luenberger, 2003; Bertsekas, 1999) and quasi-

Newton methods such as the method of Broyden, Fletcher, Goldfarb, and Shanno—

BFGS (Rardin, 1998).

Suppose we are interested in finding a solution x* to the following optimization

problem:

minx f ðxÞ
s:t: hjðxÞ � 0; j ¼ 1; . . . ; p

with f and hj being two smooth functions. The term ‘‘s.t’’ abbreviates the

expression ‘‘subject to.’’

We can determine a minimum of f ðxÞ as follows: Given the set of constraints

expressed by functions hj(x), we form the Lagrangian function L(x,v)

Lðx; vÞ ¼ f ðxÞ þ
X

p

j¼1
vjhjðxÞ

where vj is a scalar called Lagrange multiplier. v ¼ ½v1; v2; . . . ; vp�T . Using the

Lagrangian we convert the constrained optimization problem into a unconstrained
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problem with variables x and v. From previous discussion, a solution x* comes as a

stationary point of Lðx; vÞ and must satisfy the following condition:

@Lðx; vÞ
@x

¼ @f ðxÞ
@x
þ
X

p

j¼1
vj
@hjðxÞ
@x

¼ 0

Equivalently we write this down as

rxLðx; vÞ ¼ rf ðxÞ þ vTrhðxÞ
where rhðxÞ is the Jacobian, a matrix whose jth column is the gradient of hj with

resptect to x, that is,

rhðxÞ ¼

@h1ðxÞ
@x1

   @hpðxÞ
@x1

..

. . .
. ..

.

@h1ðxÞ
@xn

   @hpðxÞ
@xn

2

6

6

6

6

4

3

7

7

7

7

5

The solution is obtained solving the resulting equations for x and v that leads to the

solutions denoted as x* and v*.

Consider now the more general problem of finding a minimum of a smooth

function f : Rn ! R. In contrast to the previous optimization problems, we require

that solutions x* must satisfy some constraint set F. Often, the constraint set is

specified in terms of functions giðxÞ, i ¼ 1; . . . ;m and hj(x), j ¼ 1; . . . ; pwhere gi, hj:
Rn ! R, and a open set S � Rn, that is, F ¼ fx 2 SjgiðxÞ � 0; i ¼ 1; . . . ;m and

hjðxÞ ¼ 0; j ¼ 1; . . . ; pg. We call this case a constrained optimization problem and

express it in the form

minx f ðxÞ
s:t: giðxÞ � 0; i ¼ 1; . . . ;m

hjðxÞ ¼ 0; j ¼ 1; . . . ; p

x 2 S

The necessary optimality conditions for constrained minimization problems are

given by the Karush-Kuhn-Tucker (KKT) theorem. This theorem states that if x*

is a local solution, then, under Kuhn-Tucker constraint qualification, there exists a

pair of vectors ðu; vÞ such that

rf ðx�Þ þ
X

m

i¼1
uirgiðx�Þ þ

X

p

j¼1
virhiðx�Þ ¼ 0

uigiðx�Þ ¼ 0; i ¼ 1; . . . ;m

ui � 0; i 2 I

where I ¼ fijgiðx�Þ ¼ 0g is called the set of active constraints. Under suitable

convexity conditions, the KKT conditions are also sufficient (Bazaraa et al., 2006).
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Similar conditions apply to the maximization problems once we recall that

max f ¼ min�f . The KKT conditions provide existence results only, however,

they do not suggest algorithms to find the constrained minimum. In practice, we

must rely on iterative gradient-like algorithms. These algorithms depend on the form

of the objective function ‘‘f ,’’ and constraints gi and hj. Detailed coverage of this

subject is given in Bazaraa et al. (2006) and Bertsekas (1999).
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Appendix B

NEUROCOMPUTING

Neurocomputing is a comprehensive computational paradigm inspired by mechan-

isms of neural sciences and brain functioning that is rooted in learning instead of

preprogrammed behavior. In this sense, neurocomputing becomes fundamentally

different from the paradigm of programmed, instruction-based models of optimiza-

tion. Artificial neural networks (neural networks, for short) exhibit some character-

istics of biological neural networks in the sense the constructed networks include

some components of distributed representation and processing as well as rely on

various schemes of learning during their construction. The generalization capabil-

ities of neural networks form one of their most outstanding features. The ability of the

neural networks to generalize, namely, develop solutions that are meaningful beyond

the scope of the learning data is commonly exploited in various applications.

From the architectural standpoint, a neural network consists of a collection of

simple nonlinear processing components called neurons, which are combined

together via a net of adjustable numeric connections. The development of a neural

network is realized through learning. This means to choose an appropriate network

structure and a learning procedure to achieve the goals of the application intended.

Neural networks have been successfully applied to a variety of problems in pattern

recognition, signal prediction, optimization, control, and image processing.

Here, we summarize the most essential architectural and development aspects of

neurocomputing.

Computational Model of Neurons

A typical mathematical model of a single neuron (Anthony and Barlet, 1999) comes

in the form of an n-input single-output nonlinear mapping (Fig. B1) described as

follows:

y ¼ f ð
X

n

i¼1
wixiÞ ðB1Þ

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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where x1, x2,. . ., xn are the inputs of the neuron and w1, w2,. . .,wn are the associated

adjustable connections (weights). The nonlinear nondecreasing mapping f brings a

component of nonlinear processing to the functioning of the neuron.

Positive values of weights correspond to excitatory synapses of the neuron

whereas negative weights model inhibitory synapses. The adjustable character of

the connections makes the neuron (and the neural network as a whole) highly plastic

and facilitates all learning faculties. Quite commonly, the neuron is equipped with a

bias meaning that we admit a constant input as a part of the topology of the neuron.

Expression (B1) is modified as reads y ¼ f ð
Pn

i¼1 wixi þ w0Þ. With the acceptance of

the vector notation, x ¼ ½x1; x2; . . . ; xn; 1�T and w ¼ ½w1 w2 . . . wn w0�T , we make

the description of the neuron more concise. Now the output of the neuron reads as

y ¼ f ðwTxÞ
The nonlinear activation function ðf Þ may assume different forms as shown in

Figure B2. The sigmoid and Gaussian activation functions are among the most

frequently used.

∑

x1

xi

xn

wi

wn

w1

f
u

y

Figure B1 A topology of a neuron; note a two-phase processing.

f

u

f

u

f

u

f

u

(a) (b) 

(c) (d) 

0 0

0 0 

Figure B2 Examples of activation functions: (a) threshold, (b) piecewise linear, (c) sigmoid, and (d)

Gaussian.
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Architectures of Neural Networks

Neural network structures are characterized by the connection patterns that link the

neurons arranged in layers. There are two generic topologies of neural networks,

namely feedforward and recurrent (feedback) networks. Feedforward neural net-

works can exhibit a single layer of neurons or could come as a multilayer structure.

An example of a two layer network is illustrated in Figure B3 whereas Figure B4

shows a three-layer network. In general, we may envision multilayer topologies, say,

an L-layer neural network.

In feedforward networks, input signals (inputs) are processed by the units of the

first layer whose outputs become inputs for the next layer and so on for the rest of the

network. Typically, the neurons of each layer have as their inputs the outputs coming

from the preceding layer only. Feedforward neural networks produce static nonlinear

input-output mappings. Intermediate layers between input nodes and output layer are

called hidden layers (as they are not affected directly by the input signals). We say

that the neural network is fully connected if every node in each layer is connected to

•

•

x1

xn

y1

ym

w11

wi1

wim

wnm

•
xi

yj

wij

Figure B3 Two-layer feedforward neural network.
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w11
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wnp
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xi
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v11

vpm

vj1

vjk

vjm

Figure B4 Three-layer feedforward neural network.
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every other node in the adjacent forward layer. If this does not hold, we refer to

partially connected neural network. The set of localized neurons partially connected

to a hidden layer neuron constitute the receptive field of the neuron.

Recurrent neural networks distinguish themselves from feedforward networks

by admitting feedback loops (Fig. B5). These networks may or may not have hidden

layers. Feedback can be local if there exist self-feedback loops only, namely, if the

outputs of neurons are fed back to its own input. Recurrent neural networks can

exhibit full or partial feedback, depending on how the feedback loops have been

structured.

Feedback loops has a profound impact on the input-output behavior of recurrent

neural networks and its learning capabilities. Feedback involves the use of q-delay

elements, denoted by z�q. These are units whose output at step t is the same as the

input at step t � q. For instance, unit delay element z�1 outputs at t the value of

its input at t � 1, that is, the input occurring at the previous time instant. The

overall neural network produces a nonlinear dynamic input–output behavior (owing

to the feedback loops and the nonlinear nature of processing of the neurons

themselves).

Neural Networks as Universal Approximators

Neural networks implicitly encode in its structure a function that maps inputs in

outputs. The sort of functions that can be encoded depends on the structure of the

network. Currently, there is no definite result that indicates which type of networks

describe corresponding classes of functions. However, existence results do exist.

They are summarized below.

As far as the representation capabilities of neural networks are concerned, they

are expressed in the form of a so-called theorem of universal approximation. This

theorem states that a feedforward network with a single hidden layer (where the

•

•
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xn
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w11

wi1

wim

wnp

•
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skk

Figure B5 Recurrent neural network.

Neurocomputing 505



neurons in this layer are equipped with sigmoid type of transfer function) and an

output layer composed of linear neurons (viz. with linear transfer functions) is a

universal approximator (Cybenko, 1989; Hornik et al., 1989). In other words, there

exists a neural network of such topology that can approximate any given bounded

continuous function Rn ! R to any arbitrarily small approximation error.

Awide class of continuous functions can be approximated by a weighted sum of

Gaussians or any bell-shaped functions, as those encountered in RBF neural net-

works (Baldi, 1991). More generally, any continuous function can be approximated

to arbitrary approximation accuracy by a feedforward neural network with two

hidden units of sigmoid type of neurons and a linear output layer. In fact, this result

also holds when neurons have nonpolynomial activation functions in single hidden

layer networks (Hornik, 1993; Leshno et al., 1993).

Fully connected recurrent neural networks can encode states of arbitrary con-

tinuous and discrete time dynamic systems with any required accuracy. Therefore,

recurrent neural networks approximate continuous trajectories in finite time intervals

(Jin et al., 1996).

The theorem about universal approximation of neural networks has to be put in a

certain context. It is definitely an important and fundamental finding because it

assures us about their representation capabilities (if the function satisfies some

continuity assumptions, we are confident that there is a neural network that approx-

imates it to any desired accuracy). This finding is a typical existence theorem because

it does not offer any constructive clue on how such a neural network could be

constructed. For an interesting discussion of linkages between theoretical results and

resulting algorithms refer to Scarselli and Tsoi (1998). Theoretical foundations on

approximation of functions completed in any metric space as well as algorithmic

issues are addressed in Courrieu (2005).

Learning Mechanisms in Neural Networks

There are three main learning strategies: (a) supervised, (b) unsupervised, and (c)

reinforcement learning. In supervised learning, the network is provided with a

training set, pairs of input and the corresponding output samples. Weights are

adjusted in such a way that we construct the network to produce outputs that are

as close as possible to the known outputs (targets) of the training set. Unsupervised

learning does not require any outputs associated with the corresponding input. The

objective of this learning is to reveal the underlying structure existing in the data

(e.g., correlations or associations between patterns in data leading to emergence of

their possible categories). Reinforcement learning concerns learning processes in

which the network receives only high-level guidance as the correctness of its

behavior (for instance, we offer a numeric assessment of performance of the network

over a collection of some temporal data rather than each data point individually).

Hybrid learning combines supervised and unsupervised learning; here a subset

of weights is updated using supervised learning, whereas the remaining ones are

formed through unsupervised learning.

506 Appendix B



Learning regarded as an optimization process exhibits two facets: parametric

and structural learning. Parametric learning concerns adjustments of the numeric

values of the connections. Structural learning involves an optimization of the

structure (topology) of the network.

Supervised Learning

Supervised learning use four basic types of learning rules: error-correction, stochas-

tic, correlation, and competitive learning. Here we briefly summarize the error-

correction rule, which is one of the most commonly used. Refer to Haykin (1998)

for a comprehensive discussion of the remaining rules.

In supervised learning, the network takes advantage of desired outputs (tar-

gets) for each input to correct (adjust) the values of weights. The underlying

principle of error correction rules is to use error signals, the differences between

the desired network outputs and actual outputs during the learning process, to

update connections weights, and to gradually reduce the approximation errors. The

most common learning algorithm in multilayer neural network uses a gradient

search technique to find the values of the network, connections so that the

error becomes minimized. Typically, this criterion (approximation error) is

expressed as a sum of squared errors. For instance, for the neural network depicted

in Figure B4 we have

Qðw; vÞ ¼
X

N

i¼1
Qiðw; vÞ

where

Qiðw; vÞ ¼
1

2

X

m

k¼1
ðykðxqÞ � dkðxqÞÞ2

where w ¼ ½w11; . . . ;wnp�T and v ¼ ½v11; . . . ; vpm�T collect the connections of the

network, x ¼ ½x1; x2, . . . ; xn�T is a vector of inputs, ykðxqÞ the kth output of the

network corresponding to the qth input xq, dkðxqÞ the kth desired network output for
this input, q ¼ 1; . . . ;N, and N is the number of training samples.

From now on, let us denote by wij the weight associated with a link connecting

the output of the ith neuron of a layer ‘ with an input of the jth neuron positioned in

the successive adjacent layer of the network, layer ‘þ 1. Let ai be the ith input and uj
denote the weighted sum of the inputs of unit j, namely

uj ¼
X

i

wijai ðB2Þ

Then from the output of neuron j of the next adjacent layer is yj ¼ aj with

aj ¼ f ðujÞ ¼ f ð
X

i

wijaiÞ
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as shown in Figure B6.

For instance, for the jth neuron of the second layer, we obtain ai ¼ xi,

i ¼ 1; . . . ; n. The error between the desired and actual output of neuron j of the

output layer is defined as follows

ej ¼ yj � dj ðB3Þ
Let f 0ðuÞ ¼ @f ðuÞ=@u denote the derivative of the activation function computed with

respect to its argument. The gradient search procedure to determine the connections

of the network that minimize the sum of squared errors is summarized as follows

(Hush and Horn, 1993).

procedure GRADIENT-SUPERVISED-LEARNING (S) returns a network

input: training data S ¼ fðxq; dðxqÞÞ; q ¼ 1; . . . ;Ng
local: network structure with L layers

tolerance: e

learning rate: a

aj
wijaii j

 + 1 

(a)

∑ 
aj

f
ujai wij

∑ f
ui

(b)

ith neuron jth neuron

Figure B6 General multilayer network (a) and detail of connection between the ith neuron of layer ‘

with the jth neuron of layer ‘þ 1.
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INITIALIZE-NETWORK-WEIGHTS

repeat

randomly order training data

for ‘ ¼ 2: L do

uj  Siwijai
aj  f ðujÞ

for each neuron j in the output layer L do

dj f 0ðujÞej
for l ¼ L� 1: 1 do

for each neuron i in layer ‘ do
di f 0ðuiÞSiwijdj

for each neuron j in layer ‘þ 1 do

wij  wij þ aaidj
until sum squared error � e

return weights wij

Approximations of the gradient supervised learning can be developed to handle

recurrent neural networks. An example is the real-time recurrent learning algo-

rithm (Williams and Zipser, 1989). This algorithm attempts to match the outputs

of the neurons in a processing layer with the desired values (target values) at

specific instants of time. Alternative approaches are addressed in Atiya and Parlos

(2000).

Radial Basis Function Neural Networks

Radial basis function (RBF) networks are feedforward neural structures that combine

a weighted collection of Gaussian kernels for function approximation and classifica-

tion. Typically, RBF are three layer networks with Gaussian activation functions in

the neurons of the second layer and linear neurons in the output layer. Linear neurons

are neurons with linear activation functions, namely, f ðuÞ ¼ u. Therefore they

compute their outputs as follows:

y ¼ u ¼
X

n

i¼1
wixi ¼ wTx

There are two phases of the learning process. First, unsupervised learning takes

place. Through clustering, we determine the number and modal values of the

Gaussian receptive fields. The number of these fields is the number of clusters to

be formed in the data set whereas the modal values of the Gaussians are the

prototypes (centers) of the clusters themselves. During the second phase, we deter-

mine the weights (connections) of the Gaussians using either a gradient or a least

squares algorithm (Haykin, 1998; Ellacott and Bose, 1996). The name radial basis

functions comes from the fact that the Gaussian functions are radially symmetric,

that is, each neuron produces an identical output for inputs that lie within the same

radius from the modal value of the Gaussian function.
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There are several items to consider when designing feedforward neural networks:

1. number of layers needed for an application

2. number of neurons per layer

3. generalization capability of the neural network

4. size of training data to achieve the desired generalization level

Despite current advances in learning theory (Müller et al., 2001; Morejon and

Principe, 2004), the applications of feedforward neural networks still require

careful experimentation and a prudent use of engineering judgment to make

them successful.

Unsupervised Learning

Unsupervised learning involves four basic categories of learning rules, namely, error-

correction, stochastic learning, correlation learning, and competitive learning. Here

we discuss only the scheme of competitive learning.

Competitive learning is a learning paradigm in which output neurons compete

among themselves for gaining activation. As a result, only a single output unit is

active at a given instant and weight update proceeds in its own and weights of

neighbor neurons. When the neighborhood involves only a single winning neuron,

the update formula is called winner-take-all rule. Competitive learning often clusters

input data in the sense that neighboring inputs activate neighboring outputs neurons.

Often it has a recurrent structure organized in one-dimensional array such as the one

illustrated in Figure B3(a) and called the learning vector quantizer. It is a two-

dimensional array of linear neurons (Fig. B7) called self-organized maps (Hassoun,

1995).

Let x ¼ ½x1; x2; . . . ; xn�T be a vector of inputs andwj ¼ ½w1j;w2j; . . . ;wnj�T be the
vector of weights associated with the jth neuron, j ¼ 1; . . . ;M. fxqg, q ¼ 1; . . . ;N
denotes a set of training data.

The competitive self-organizing learning algorithm is described in the following

way:

• • •
x1 xi xn

j

w1j wij wnj

Figure B7 Competitive self-organizing neural networks.
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procedureCOMPETITIVE_UNSUPERVISED_LEARNING (S) returns a network

input: training data S ¼ fxq; q ¼ 1; . . . ;Ng
local: network structure with M neurons

neighborhood of neuron j at step t : NjðtÞ
threshold: e

learning rate: a

INITIALIZE-NETWORK-WEIGHTS

INITIALIZE-NEIGHBORHOODS

t 1

repeat

randomly order training data

for q ¼ 1 : N

select j� such that j� ¼ arg minj k xq � wj k
if j 2 Nj�ðtÞ then wjðt þ 1Þ  wjðtÞ þ aðtÞðxðtÞ � wjðtÞÞ

else wjðt þ 1Þ  wjðtÞ
decrease aðtÞ
decrease Nj�ðtÞ
t t þ 1

until changes in weight values � e

return weights wj

Self-organizing maps (SOMs) are useful in the representation of multidimensional

data, probability density approximation, and data clustering and categorization. Design

components include such crucial parameters as the dimensionality of the array of

neurons, the number of neurons in each dimension, the form of the neighborhood

function, and the mechanisms implementing the decrease of the learning rate and

shrinkage of neighborhood.
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Appendix C

BIOLOGICALLY INSPIRED OPTIMIZATION

T#o fully benefit from the potential of fuzzy sets and information granules as well as

all constructs emerging there, there is a genuine need for effective mechanisms of

global optimization. It is equally important that such an optimization framework

comes with substantial capabilities of structural optimization of fuzzy systems. It is

highly advantageous to have systems whose structure could be seamlessly modified

to fully exploit the capabilities of the constructs of fuzzy sets. It would be highly

desirable to consider constructs whose scalability can be easily realized. Biologically

inspired optimization offers a wealth of optimization mechanisms that tend to fulfill

these essential needs. The underlying principles of these algorithms relate to the

biologically motivated schemes of system emergence, survival, and refinement.

Quite commonly, we refer to the suite of these techniques as Evolutionary Comput-

ing to directly emphasize the inspiring role of various mechanisms encountered in the

Nature that are also considered as pillars of the methodology and algorithms. The

most visible feature of most, if not all, such algorithms is that in their optimization

pursuits they rely on a collection of individuals that interact between themselves in

the synchronization of joint activities of finding solutions. They communicate

between themselves by exchanging their local findings. They are also influenced

by each other.

Evolutionary Optimization

Evolutionary optimization offers a comprehensive optimization environment in

which we encounter a stochastic search that mimics natural phenomena of genetic

inheritance and Darwinian strife for survival. The objective of evolutionary optimi-

zation is to find a maximum of a certain objective function f defined in some

search space E. Ideally, we are interested in the determination of a global maximum

of f.

Fuzzy Systems Engineering: Toward Human-Centric Computing, byWitold Pedrycz and Fernando Gomide
Copyright # 2007 John Wiley & Sons, Inc.
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A Population-Based Optimization Principle of Evolutionary

Computing

The crux of the evolutionary optimization process lies in the use of a finite population

of N individuals (represented as elements of the search space E) whose evolution in

the search space leads to an optimal solution. The population-based optimization is

an outstanding feature of the evolutionary optimization and is practically present in

all its variants we can encounter today. The population is initialized randomly (at the

beginning of the search process, say, t ¼ 0). For each individual we compute its

fitness value. This fitness is related to the maximized objective function. The higher

the value of the fitness, the more suitable is the corresponding individual as a

potential solution to the problem. The population of individuals in E undergoes a

series of generations in which we apply some evolutionary operators and through

them improve the fitness of the individuals. Those of the highest fitness become more

profoundly visible by increasing chances to survive and occur in the next generation.

In a very schematic and abstract way, a computing skeleton of evolutionary

optimization can be described as follows:

procedure EVOLUTIONARY-OPTIMIZATION ( f ) returns a solution

input: fitness function f

local: evolutionary operators rates

population: set of individuals

INITIALIZE (population)

evaluate population

repeat

select individuals for reproduction

apply evolutionary operators

evaluate offsprings

replace some old individuals by offsprings

until termination condition is true

return a best individual

Let us briefly elaborate on the main components of the evolutionary computing.

Evaluation concerns a determination of the fitness of individuals in the population.

The ones with high values of fitness have chances to survive and appear in the

consecutive populations (generations of the evolutionary optimization). The selec-

tion of individuals to generate offsprings is based on the values of the fitness function.

Depending on the selection criterion (which could be stochastic or deterministic),

some individuals could produce several copies of themselves (clones). The stopping

criterion may involve the number of generations (which could be set up in advance,

say 200 generations), which is perhaps the simplest alternative. One could also

involve the statistics of the fitness of the population; say, no significant changes in the

average values of fitness may trigger the termination of the optimization process.

There are two essential evolutionary operators whose role is to carry out the search

process in E and make sure that it secures its effectiveness. The operators are applied

to the current individuals. Typically, these operators are of stochastic nature, and their
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intensity depends on the assumed probabilities. There are two groups of operators.

Crossover (recombination) operators involve two or more individuals and give rise to

one or more offsprings. In most cases, the crossover operator concerns two parents

and leads to two offsprings. Formally, we can view such a crossover operator as a

mapping of the form E� E! E� E. The objective of crossover is to assure that the

optimization exploit new regions of the search space as the offsprings vary from the

parents. The mutation operator affects a single individual by randomly affecting one or

several elements of the vector: In essence, it forms a mapping from E to itself, E ! E.

The evolutionary optimization process is transparent: We start with some initial

population of individuals and evolve the population by using some evolutionary

operators. An illustration of evolutionary optimization is illustrated in Figure C1.

Observe that in successive populations, they start to be more ‘‘focused,’’

producing individuals (solutions) of higher fitness. Typically, an average fitness of

the population could fluctuate, however, on average; it exhibits higher values over the

course of evolution. The best individual (viz. the one with the highest fitness) is

retained from population to population, so we do not loose the best solution produced

so far. This retention of the best individual in the population is referred to as an elitist

strategy.

The Main Categories of Evolutionary Optimization

There are four major categories of evolutionary optimization. While they share the

underlying principles, they differ in terms of the representation issues and computa-

tional aspects.

Evolution strategies (ES) (Schwefel, 1995) are predominantly focused on para-

metric optimization. In essence, a population consists only of a single individual, that

is, a vector of real numbers. This individual undergoes a Gaussian mutation in which

we add a zero mean Gauusian variable of some standard deviation, Nð0; sÞ. The
fittest from the parent and the offspring becomes the next parent. The value of the

standard deviation is adjusted over the course of evolution. The main operator is

t = 0

Average fitness 

t = 1 t = P

E

Figure C1 A schematic view at evolutionary optimization; note a more focused population of

individuals over the course of evolution and the increase in fitness values of the individuals and average

fitness of the entire population.
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mutation. One can also encounter population-based versions of ES, known as

(mþ lÞ�ES in which m parents generate l offsprings.

Evolutionary programming (Fogel et al., 1966) originally focused on evolving

finite state machines was focused on the phenotype space. Similar to ES, there is no

initial selection and every individual generates one offspring. Mutation is the evolu-

tion operator. The best individuals among parents and offsprings become the parent

of the next generation.

Genetic Algorithms (GAs) (Holland, 1975; Goldberg, 1989; Michalewicz, 1996)

are one of the most visible branches of evolutionary optimization. In its standard

format, GAs exploit a binary genotype space {0,1}n. The phenotype could be

any space as long as its elements could be encoded into binary strings (bitstrings,

for short). The selection scheme is proportional selection, known as the roulette

wheel selection. A number of random choices is made in thewhole population, which

implies that the individuals are selected with probability that is proportional to its

fitness. The crossover operation replaces a segment of bits in the first parent by the

corresponding string of the second parent. The mutation concerns a random flipping

of the bits. In the replacement, offsprings replace all parents.

Genetic Programming (GP) (Kinnear, 1994; Koza, 1994) originated as a vehicle

to evolve computer programs, and algebraic and logic expressions, in particular.

The predominant structures in GP are trees. These are typically implemented in the

form of LISP expressions (S-expressions). This realization helped define crossover

operation as ‘‘swapping to subtrees between two S-expressions is still a valid

S-expression.’’

Knowledge Representation: from Phenotype to Genotype Space

A suitable problem representation in evolutionary optimization becomes a key issue

that predetermines success of the optimization process and implies quality of the

produced solution. Let us note that evolutionary optimization is carried out in

the genotype space E, which is a result of a transformation of the problem from

the original space, a so-called phenotype space P, realized with the use of some

encoding and decoding procedures; refer to Figure C2.

Problem 

Phenotype
space

Evolutionary 

optimization

Genotype
space

Encoding 

Decoding 

Figure C2 From phenotype space to genotype space: links between optimization problem and

its representation in evolutionary optimization.
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In a more descriptive way, we could view representation issues as being central

to the nature of the underlying optimization problem. Knowledge representation is a

truly multifaceted problem, and as such one has to proceed with prudence realizing

that the effectiveness of this scheme implies the quality of evolutionary solution.

In what follows, several examples of encoding and decoding serve as an

illustration of the diversity of possible ways of knowledge representation.

1. Binary encoding and decoding: Any parameter assuming real values can be

represented in the form of the corresponding binary number. This binary

coding is used quite commonly in GAs. The strings of bit are then subject to

evolutionary operations. The result is decoded into the corresponding deci-

mal equivalent. More formally, the genotype space, E ¼ f0; 1gm, hypercube
where m stands for the dimensionality of the space and depends on the

number of parameters encoded in this way and a resolution (number of

bits) used to complete the encoding.

2. Floating point (real) encoding and decoding: Here we represent values of

parameters of the system under optimization using real numbers. Typically, to

avoid occurrence of numbers in different ranges, all of them are scaled (e.g.,

linearly) to the unit intervals, so in effect the genotype space is a unit

hypercube, E ¼ ½0; 1�p with p denoting the number of parameters. The

resulting string of real numbers is retransformed into the original ranges of

the parameters.

3. Representation of structure of fuzzy logic network: Fuzzy logic network

exhibits a diversity of topologies. In particular, this variety becomes visible

in the development of networks involving referential neurons. Given four

types of referential neurons, that is, similarity, difference, inclusion, and

dominance, we can consider several ways of representation of the structure

in the genotype space: (a) one can view a binary encoding where we use two

bits with the following assignment: 00—similarity, 01—difference, 10—

inclusion, and 11—dominance, (b) alternatively, we can consider a real coding

and in this case, we can accept the decoding that takes into consideration

ranges of values in the unit interval, say, [0.00 – 0.25]—similarity, [0.25,

0.50]—difference, [0.50, 0.75)—inclusion, and [0.75, 1.00]—dominance. The

dimensionality of the genotype space depends on the number of the referential

neurons used in the network. An example of the binary encoding for the fuzzy

logic network with five referential neurons is illustrated in Figure C3.

4. Structure representation of subsets of variables: In many cases, in order to

reduce problem dimensionality, we might consider a problem of selecting a

subset of input variables. For instance, when dealing with hundreds of

variables, practically we can envision the use of a handful of them, say 10

or so, in the development of the fuzzy system (say, a rule-based system).

Given these 10 variables, we develop a network and assess its performance.

This performance index could be regarded as a suitable fitness function to be

used in evolutionary optimization. Let us also note that the practicality of a

Biologically Inspired Optimization 517



plain enumeration of combinations of such variables is out of question; say,

choosing 10 variables out of 200 variables leads to 200

10

	 


possible combina-

tions. Here the representation of the structure can be realized by forming 200-

dimensional strings of real numbers, that is, E ¼ ½0; 1�200. To decode the

result, we rank the entries of the vector and pick the first 10 entries of the

vector. For 100 variables and 10 variables to be selected, we end up with

1:731� 1013 possible alternatives.

An example of this representation of the genotype space is illustrated in

Figure C4. Note that the plain selection of the entries decoded with the use

of the intervals of the unit interval (say, [0–1/200]—variable #1, [1/200–

2/200)—variable #2, . . .) of the vector will not work as we could quite easily

encounter duplicates of the same variable. This could be particularly visible

in the case of the large number of variables.

00  11   00   10  01  

Genotype space 

11  11   01   10  01  

00  11   11   00  10  

Similarity 

Dominance 

Similarity 

Inclusion 

Difference 

Figure C3 Binary encoding of the fuzzy logic network.

0.55   0.80   0.03   0.96   0.67   0.34 

0.66  0.12   0.79   0.23   0.67   0.11 

4   2   6   1   3   5

Variables {4, 2} 

Genotype space 

Decoding

Figure C4 Variable selection through ranking the entries of the vectors of the genotype space E;

here the total number of variables under consideration is five and we are concerned about choosing two

variables.
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5. Tree representation of the genotype space: This form of knowledge repre-

sentation is commonly encountered in genetic programming. Trees such as

shown in Figure C5 are used to encode algebraic expressions. For instance,

the first tree in this figure (i.e., a) encodes the expression whereas the second

one reads as ða� bÞ þ ðc� 1:5Þ.
Depending on the representation of the genotype space, the evolutionary operators

come with different realizations. As an example, consider a mutation operator. In

the case of binary encoding and decoding, mutation is realized by a simple flipping of

the value of the specific entry of the vector of bits. In the real number encoding

and decoding, we may use the complement operator, namely, replacing a certain

value in [0,1] by its complement, say 1� v, with v being the original component of

the vector.

Some Practical Design and Implementation Guidelines

Evolutionary optimization offers a number of evident advantages over some other

categories of optimization mechanisms. They are general and their conceptual

transparency is definitely very much appealing. The population-based style of

optimization offers a possibility of a comprehensive exploration of the search

space and provides solid assurance of finding a global maximum of the problem.

To take full advantage of the potential of evolutionary optimization, one has to

exercise prudence in setting up the computing environment. This concerns a

number of crucial parameters of the algorithm that concern evolutionary operators,

size of population, and stopping criterion, to name the most essential ones.

Moreover, what is even more fundamental concerns a representation of the

problem in the genotype space. Here a designer has to exercise his/her ingenuity

and fully capture the essence of domain knowledge about the problem. There is no

direct solution to the decoding problem. We could come up with a number of

+

–

a b c 1.5 

×

Figure C5 Tree representation of the genotype space.
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alternatives. In many cases, it is not obvious up front what could work the best,

namely, lead to the fastest convergence of the algorithm to the global solution,

prevent from premature convergence, and help avoid forming an excessively huge

genotype space. The scalability aspect of coding has to be taken into consideration

as well. Several examples presented below help emphasize the importance of the

development of a suitable genotype space.

The use of evolutionary optimization in the development of fuzzy systems or

neurofuzzy systems can be exercised in many different ways. As we do not envision

any direct limitations, we should exercise some caution and make sure that we really

take full advantage of these optimization techniques while not being affected by their

limitations.

(a) Structural optimization of fuzzy systems provided by evolutionary

optimization is definitely more profitable than the use of evolutionary

methods for their parametric optimization. Unless there are clear recom-

mendations with this regard, we could be better-off considering gradient-

based methods or exercising particle swarm optimization rather than relying

on evolutionary optimization. Another alternative would be to envision a

hybrid approach in which we combine evolutionary optimization regarded

as a preliminary phase of optimization that becomes helpful in forming some

initial and promising solution and then refine it with the aid of gradient-

based learning.

(b) The choice of the genotype space is critical to the success of evolutionary

optimization; this, however, becomes a matter of a prudent and comprehen-

sive use of the existing domain knowledge. Once the specific genotype space

has been formed, we need to be cognizant of the nature and role of specific

evolutionary operators in the search process. It might not be clear how

efficient they could be in the optimization process.

(c) The choice of the fitness function must fully capture the nature of the

problem. While in evolutionary optimization we do not require that such

function be differentiable with respect to the optimized component (which is

a must in case of gradient-based techniques), it is imperative, though, that

the requirements of the optimization problem be reflected in the form of the

fitness function. In many cases, we encounter a multiobjective problem, and

a caution must be exercised so that all the objectives are carefully addressed.

In other words, a construction of the suitable fitness function is an essential

component of the evolutionary optimization.

One may note that reciprocally, the technology of fuzzy sets could be helpful in

structuring domain knowledge that could effectively be used in the organization of

evolutionary optimization. This could result in a series of rule (or metarules, to be

specific) that may pertain to the optimization. For instance, we could link the values

of the parameters of the evolutionary operators with the performance of the process.

For instance, ‘‘ if there is high variation of the values of the average fitness of the

population, a substantial reduction of mutation rate is advised.’’
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Particle Swarm Optimization

The biologically inspired optimization technique, Particle Swarm Optimization

(PSO), is an example of the modern search heuristics that belongs to the category

of so-called Swarm Intelligence methods (Eberhart and Shi, 2001; Kennedy and

Eberhat, 2001; Parsopoulos and Vrahatis, 2004). The underlying principle of PSO

deals with a population-based search in which individuals representing possible

solutions carry out collective search by exchanging their individual findings while

taking into consideration their own experience and evaluating their own perfor-

mance. In this sense, we encounter two fundamental aspects of the search strategy.

The one deals with a social facet of the search; according to this, individuals ignore

their own experience and adjust their behavior according to the successful beliefs of

individuals occurring in their neighborhood. The cognition aspect of the search

underlines the importance of the individual experience where the element of popula-

tion is focused on its own history of performance and makes adjustments accord-

ingly. In essence, PSO dwells its search by using a combination of these two

mechanisms. Some applications of PSO are presented in Abido (2002), Gaing

(2004), Ozcan and Mohan (1998), Robinson and Rahmat-Samii (2004), and Wang

et al. (2004).

The vectors of the variables (particles) positioned in the n-dimensional search

space are denoted by x1, x2, . . ., xN. In the search, there are N particles involved,

leading to the concept of a swarm. The performance of each particle is described by

some objective function referred to as a fitness (or objective) function.

The PSO is conceptually simple, easy to implement, and computationally

efficient. Unlike the other heuristic techniques, PSO has a flexible and well-balanced

mechanism to enhance the global and local exploration abilities. As in the case of

evolutionary optimization, the generic elements of the PSO technique involve

1. Performance (fitness): Each particle is characterized by some value of the

underlying performance (objective) index or fitness. This is a tangible indi-

cator stating howwell the particle is doing in the search process. The fitness is

reflective of the nature of the problem for which an optimal solution is being

looked for. Depending upon the nature of the problem at hand, the fitness

function can be either minimized or maximized.

2. Best particles: As a particle wonders through the search space, we compare its

fitness at the current position with the best fitness value it has ever attained so

far. This is done for each element in the swarm. The location of the ith particle

at which it has attained the best fitness is denoted by x_besti. Similarly, by

x_best we denote the best location attained among all the x_besti.

3. Velocity: The particle is moving in the search space with some velocity that

plays a pivotal role in the search process. Denote the velocity of the ith

particle by vi. From iteration to iteration, the velocity of the particle is

governed by the following expression:

vi ¼ wvi þ c1r1ðx besti � xiÞ þ c2r2ðx best � xiÞ
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or equivalently

vik ¼ wvik þ c1r1ðx bestik � xikÞ þ c2r2ðx bestk � xikÞ ðC1Þ

i ¼ 1; 2; . . . ;N; k ¼ 1; 2; . . . :; n, where r1 and r2 are two random values located in

[0 1], and c1 and c2 are positive constants, called the acceleration constants. They are

referred to as cognitive and social parameters, respectively. As the above expression

shows, c1 and c2 reflect on the weighting of the stochastic acceleration terms that pull

the ith particle toward x_besti and x_best positions, respectively. Low values allow

particles to roam far from the target regions before being tugged back. High values of

c1 and c2 result in abrupt movement toward, or past, target regions. Typically, the

values of these constants are kept close to 2.0. The inertia factor ‘‘w’’ is a control

parameter that is used to establish the impact of the previous velocity on the current

velocity. Hence, it influences the trade-off between the global and local exploration

abilities of the particles. For the initial phase of the search process, large values

enhancing the global exploration of the space are recommended. As the search

progresses, the values of ‘‘w’’ are gradually reduced to achieve better exploration

at the local level.

As the PSO is an iterative search strategy, we proceed with it until the point there

is no substantial improvement of the fitness or we have exhausted the number of

iterations allowed in this search.

Overall, the algorithm can be outlined as the following sequence of steps:

procedure PARTICLE-SWARM-OPTIMIZATION ( f ) returns best solution

input: objective function f

local: inertia weights

swarm: population of particles

Generate randomlyN particles, xi, and their velocities vi. Each particle in the

initial swarm (population) is evaluated using the given objective function.

For each particle, set x_besti¼ xi and search for the best value of the

objective function. Set the particle associatedwith as the global best, x_best.

repeat

adjust weight: the value of the inertia weight w. Typically, its values

decrease linearly over the time of search. We start with wmax ¼ 0:9 at the

beginning of the search and move down to wmin ¼ 0:4 at the end of the

iterative process,

wðiterþ 1Þ ¼ wmax �
wmax � wmin

itermax

iter ðC2Þ

where itermax denotes the maximum number of iterations of the search and

‘‘iter’’ stands for the current index of the iteration.

adjust velocity: Given the current values of x_best and x_besti, the

velocity of the ith particle is adjusted following (C1). If required, we
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clip the values making sure that they are positioned within the required

region.

adjust position: Based on the updated velocities, each particle changes its

position following the expression

xik ¼ vik þ xik ðC3Þ
Furthermore, we need to keep the particle within the boundaries of the

search space, meaning that the values of xik have be confined to it following

the expression xmin
k � xik � xmax

k , where the ith coordinate of the space

assumes the values in [xmin, xmax]

move particles: move the particles in the search space and evaluate their

fitness both in terms of x_besti and x_best.

until termination criterion is met.

return x_best
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