

Xiaodong Liu
Edinburgh Napier University, UK

Yang Li
British Telecom, UK

Advanced Design
Approaches to Emerging
Software Systems:
Principles, Methodologies
and Tools

Advanced design approaches to emerging software systems : principles,
methodologies, and tools / Xiaodong Liu and Yang Li, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: “This book provides relevant theoretical frameworks and the latest
empirical research findings in the area, clarifying the present chaotic and
confusing literature of the current state of the art and knowledge in the
areas of the design and engineering of the many emerging software systems”--
Provided by publisher.
 ISBN 978-1-60960-735-7 (hardcover) -- ISBN 978-1-60960-736-4 (ebook) -- ISBN
978-1-60960-737-1 (print & perpetual access) 1. Systems software. 2.
Application software--Development. 3. Computer networks--Design and
construction. I. Liu, Xiaodong, 1966 Oct. 8- II. Li, Yang, 1973-
 QA76.76.S95A38 2012
 004.6--dc23
 2011021481

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Michael Killian
Production Editor: Sean Woznicki
Typesetters: Natalie Pronio, Jennifer Romanchak, Milan Vracarich, Jr.
Print Coordinator: Jamie Snavely
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2012 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or
companies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

 Library of Congress Cataloging-in-Publication Data

Editorial Advisory Board
José Barata, Universidade Nova de Lisboa, Portugal
Jian Chen, Tsinghua University, China
Shu-Ching Chen, Florida International University, USA
Katsaros Dimitrios, University of Thessaly, Greece
Joshua Huang, Shenzhen Institute of Advanced Technology, China
Sandeep Karamongikar, Infosys Technologies, India
Xiaodong Liu, Edinburgh Napier University, UK
Claus Pahl, Dublin City University, Ireland
Jeremy Ruston, BT & OSMOSOFT, UK
Michiaki Tatsubori, IBM Research, Japan
Li Yang, British Telecom, UK
Liping Zhao, Manchester University, UK
Chen Zhong, Peking University, China
Frank Zhu, University of Alabama in Huntsville, USA

List of Reviewers
José Barata, Universidade Nova de Lisboa, Portugal
Shu-Ching Chen, Florida International University, USA
Jian Chen, Tsinghua University, China
Katsaros Dimitrios, University of Thessaly, Greece
Joshua Huang, Shenzhen Institute of Advanced Technology, China
Sandeep Karamongikar, Infosys Technologies, India
Yang Li, British Telecom, UK
Xiaodong Liu, Edinburgh Napier University, UK
Claus Pahl, Dublin City University, Ireland
Jeremy Ruston, BT & OSMOSOFT, UK
Michiaki Tatsubori, IBM Research – Tokyo, Japan
Liping Zhao, Manchester University, UK
Frank Zhu, University of Alabama in Huntsville, USA

Table of Contents

Preface ..xii

Section 1
Service-Based System

Chapter 1
Service Elicitation Method Using Applied Qualitative Research Procedures .. 1

Ville Alkkiomäki, Lappeenranta University of Technology, Finland
Kari Smolander, Lappeenranta University of Technology, Finland

Chapter 2
The Design Principles and Practices of Interoperable Smart Spaces ... 18

Eila Ovaska, VTT Technical Research Centre of Finland, Finland
Tullio Salmon Cinotti, Università di Bologna, Italy
Alessandra Toninelli, INRIA, France

Chapter 3
Principle for Engineering Service Based System by Swirl Computing .. 48

Shigeki Sugiyama, University of Gifu, Japan
Lowry Burgess, Carnegie Mellon University, USA

Chapter 4
A Service Component Model and Implementation for Institutional Repositories 61

Yong Zhang, Tsinghua University, China
Quansong Deng, Tsinghua University, China
Chunxiao Xing, Tsinghua University, China
Yigang Sun, National Library of China, China
Michael Whitney, University of North Carolina Charlotte, USA

Section 2
Pervasive Services and Internet of Things

Chapter 5
Service Discovery Architecture and Protocol Design for Pervasive Computing 83

Feng Zhu, University of Alabama in Huntsville, USA
Wei Zhu, Intergraph Co, USA
Matt W. Mutka, Michigan State University, USA
Lionel M. Ni, Hong Kong University of Science and Technology, China

Chapter 6
A Software Engineering Framework for Context-Aware Service-Based Processes in Pervasive
Environments .. 102

Zakwan Jaroucheh, Edinburgh Napier University, UK
Xiaodong Liu, Edinburgh Napier University, UK
Sally Smith, Edinburgh Napier University, UK

Chapter 7
High Level Definition of Event-Based Applications for Pervasive Systems 128

Steffen Ortmann, IHP Microelectronics, Germany
Michael Maaser, IHP Microelectronics, Germany
Peter Langendoerfer, IHP Microelectronics, Germany

Chapter 8
A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile
Convergence Systems ... 173

Jaemin Park, Convergence WIBRO BU, KT (Korea Telecom), Republic of Korea

Chapter 9
Community Computing: Multi-Agent Based Computing Paradigm for
Cooperative Pervasive System .. 195

Youna Jung, University of Pittsburgh, USA
Minsoo Kim, University of Pittsburgh, USA

Section 3
Clouds and Services

Chapter 10
How to Choose the Right Cloud ... 219

Stamatia Bibi, Aristotle University of Thessaloniki, Greece
Dimitrios Katsaros, University of Thessaly, Greece
Panayiotis Bozanis, University of Thessaly, Greece

Chapter 11
Cloud as a Computer ... 241

Vishnu S. Pendyala, Santa Clara University, USA
JoAnne Holliday, Santa Clara University, USA

Chapter 12
Principles, Methodology and Tools for Engineering Cloud Computing Systems 250

Luis M. Vaquero, Telefónica Investigación y Desarrollo, Spain
Luis Rodero-Merino, INRIA, France
Juan Cáceres, Telefónica Investigación y Desarrollo, Spain
Clovis Chapman, University College London, UK
Maik Lindner, SAP Research, UK
Fermín Galán, Telefónica Investigación y Desarrollo, Spain

Chapter 13
QoS-Oriented Service Computing: Bringing SOA into Cloud Environment 274

Xiaoyu Yang, University of Southampton, UK

Compilation of References ... 297

About the Contributors .. 312

Index ... 319

Preface ..xii

Section 1
Service-Based System

Chapter 1
Service Elicitation Method Using Applied Qualitative Research Procedures .. 1

Ville Alkkiomäki, Lappeenranta University of Technology, Finland
Kari Smolander, Lappeenranta University of Technology, Finland

This chapter introduces QSE, the Qualitative Service Elicitation method. It applies qualitative research
procedures in service elicitation. Service engineering practice lacks lightweight methods to identify
service candidates in projects with tight schedules. QSE provides a systematic method to analyze require-
ment material in service-oriented systems development with a feasible effort. QSE uses the procedures
of the grounded theory research method to elicit service candidates from business process descriptions
and business use case descriptions. Chapter one describes the method with examples and a case study.

Chapter 2
The Design Principles and Practices of Interoperable Smart Spaces ... 18

Eila Ovaska, VTT Technical Research Centre of Finland, Finland
Tullio Salmon Cinotti, Università di Bologna, Italy
Alessandra Toninelli, INRIA, France

Smart spaces provide information about physical environments, shared with inherently dynamic appli-
cations. This chapter introduces a novel development approach with its focus on two key properties of
smart space applications: the ability to interoperate and behave in a situation-sensitive manner. Sixteen
principles are defined in order to guide the development of an interoperability platform for smart spaces
and on how to create applications on top of it.

Chapter 3
Principle for Engineering Service Based System by Swirl Computing .. 48

Shigeki Sugiyama, University of Gifu, Japan
Lowry Burgess, Carnegie Mellon University, USA

Detailed Table of Contents

When we look at the living creatures in the world, most of them have the communication methods in
order to recognize within same species each other for protection, getting food, being multiplied, or see-
ing the world, etc. And they mostly use the five senses as the basic mechanisms for the communication
among them in a quite natural way with a seamless manner without any difficult manipulation. These
five senses in those behaviour look like being swirled around their bodies.

Chapter 4
A Service Component Model and Implementation for Institutional Repositories 61

Yong Zhang, Tsinghua University, China
Quansong Deng, Tsinghua University, China
Chunxiao Xing, Tsinghua University, China
Yigang Sun, National Library of China, China
Michael Whitney, University of North Carolina Charlotte, USA

With the boom of digital resources, there are urgent requirements to set up and manage Institutional
Repositories (IRs) for companies and/or organizations. Cloud computing opens a new paradigm to build
IRs by providing diverse services. The authors of chapter four apply cloud services in the building of
IRs and present a new model, which is based on digital object model and Service Component Architec-
ture, and consists of five service components, namely ID, metadata, content, log, and annotation service
component.

Section 2
Pervasive Services and Internet of Things

Chapter 5
Service Discovery Architecture and Protocol Design for Pervasive Computing 83

Feng Zhu, University of Alabama in Huntsville, USA
Wei Zhu, Intergraph Co, USA
Matt W. Mutka, Michigan State University, USA
Lionel M. Ni, Hong Kong University of Science and Technology, China

Service discovery is an essential task in pervasive computing environments. Simple and efficient ser-
vice discovery enables heterogeneous and pervasive computing devices and services to be easier to use.
In this chapter, we discuss the key issues and solutions for service discovery architecture and protocol
design for pervasive computing environments.

Chapter 6
A Software Engineering Framework for Context-Aware Service-Based Processes in Pervasive
Environments .. 102

Zakwan Jaroucheh, Edinburgh Napier University, UK
Xiaodong Liu, Edinburgh Napier University, UK
Sally Smith, Edinburgh Napier University, UK

The separation of concerns is a promising approach in the design of the context-aware adaptive processes
(CAAPs) where the core logic is designed and implemented separately from the context handling and
adaptation logics. In this respect, this chapter presents a conceptual framework for developing CAAPs
and software infrastructure for efficient context management that together address the known software
engineering challenges and facilitate the design and implementation tasks associated with such context-
aware applications.

Chapter 7
High Level Definition of Event-Based Applications for Pervasive Systems 128

Steffen Ortmann, IHP Microelectronics, Germany
Michael Maaser, IHP Microelectronics, Germany
Peter Langendoerfer, IHP Microelectronics, Germany

Automatic event configuration is accomplished by using a flexible Event Specification Language (ESL)
and Event Decision Trees (EDTs) for distributed detection and determination of real world phenomena.
EDTs autonomously adapt to heterogeneous availability of sensing capabilities by pruning and subscrip-
tion to other nodes for missing information. We present one of numerous simulated scenarios proving
the robustness and energy efficiency with regard to the required network communications. From these,
we learned how to deduce appropriate bounds for configuration of collaboration region and leasing time
by asking for expected properties of the phenomena to be detected.

Chapter 8
A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile
Convergence Systems ... 173

Jaemin Park, Convergence WIBRO BU, KT (Korea Telecom), Republic of Korea

This chapter presents the fundamental and security characteristics of UICC and current practices of
UICC-based security services (e.g. banking, stock, network authentication, etc.) in pervasive FMC
systems. Moreover, the author of this chapter proposes a novel UICC-based service security framework
(USF), which implements the essential security functionalities used for FMC services, to provide the
integrated security infrastructure and secure FMC services.

Chapter 9
Community Computing: Multi-Agent Based Computing Paradigm for
Cooperative Pervasive System .. 195

Youna Jung, University of Pittsburgh, USA
Minsoo Kim, University of Pittsburgh, USA

In this chapter, the authors’ contribution is to organize previous work related to cooperation and then
clearly present the position of community computing in comparison. In addition, they refine the proposed
two models including all their intermediate models in the development process, such as CCM (Com-
munity Computing Model), CIM-PI (Platform Independent Community Computing Implementation
Model), and CIM-PS (Platform Specific Community Computing Implementation Model).

Section 3
Clouds and Services

Chapter 10
How to Choose the Right Cloud ... 219

Stamatia Bibi, Aristotle University of Thessaloniki, Greece
Dimitrios Katsaros, University of Thessaly, Greece
Panayiotis Bozanis, University of Thessaly, Greece

This chapter presents a study of the basic parameters for estimating the potential infrastructure and software
costs deriving from building and deploying applications on cloud and on-premise assets. Estimated user
demand and desired quality attributes related to an application are also addressed in this chapter as they
are aspects of the decision problem that also influence the choice between cloud and in-house solutions.

Chapter 11
Cloud as a Computer ... 241

Vishnu S. Pendyala, Santa Clara University, USA
JoAnne Holliday, Santa Clara University, USA

This chapter explores the various aspects of Cloud Computing and makes predictions as to the future
directions for research in this area. Some of the issues facing the paradigm shift that Cloud Computing
represents are discussed and possible solutions presented.

Chapter 12
Principles, Methodology and Tools for Engineering Cloud Computing Systems 250

Luis M. Vaquero, Telefónica Investigación y Desarrollo, Spain
Luis Rodero-Merino, INRIA, France
Juan Cáceres, Telefónica Investigación y Desarrollo, Spain
Clovis Chapman, University College London, UK
Maik Lindner, SAP Research, UK
Fermín Galán, Telefónica Investigación y Desarrollo, Spain

Cloud computing has emerged as a paradigm to provide every networked resource as a service. The
Cloud has also introduced a new way to control cloud services (mainly due to the illusion of infinite
resources and its on-demand and pay-per-use nature). Here, we present this lifecycle and highlight re-
cent research initiatives that serve as a support for appropriately engineering Cloud systems during the
different stages of its lifecycle.

Chapter 13
QoS-Oriented Service Computing: Bringing SOA into Cloud Environment 274

Xiaoyu Yang, University of Southampton, UK

The idea of cloud computing aligns with new dimension emerging in service-oriented infrastructure where
service provider does not own physical infrastructure but instead outsources to dedicated infrastructure

providers. Cloud computing has now become a new computing paradigm as it can provide scalable IT
infrastructure, QoS-assured services, and customizable computing environment.

Compilation of References ... 297

About the Contributors .. 312

Index ... 319

xii

Preface

Recently, the rapid and fundamental advances in computing technologies have been driving the role and
scope of software systems to a new level. A number of new types of software systems are emerging,
among which service based systems, cloud computing, pervasive computing, and Internet of Things are
eminent examples. For these systems, availability of sound software engineering principles, methodol-
ogy and tool support is mission-critical. However, traditional software engineering approaches are not
fully appropriate for their development and evolution. The limitations of traditional methods in the
context of these emerging software systems have led to many advances of software engineering as a
specialist discipline, but research and development in this context is still immature and many open issues
remain. There is an urgent need for research community and industry practitioners to develop compre-
hensive engineering principles, methodologies, and tool support for the entire software development
lifecycle of these emerging software systems.

Service-Oriented Computing is a computing paradigm that exploits both web services and Service-
Oriented Architecture (SOA) as fundamental elements for developing software systems. This paradigm
changes the way software systems are designed, architected, delivered and consumed. The service-oriented
paradigm is emerging as a new way to engineer systems that are composed of and exposed as services
for use through standardized protocols.

Cloud Computing is rapidly emerging as the new computing paradigm of the coming decade. The
idea of virtualizing not just hardware but software resources as well has attracted the attention of aca-
demicians as well as the industry. Cloud computing not only offers a viable solution to the problem of
addressing scalability and availability concerns for large-scale applications but also displays the promise
of sharing resources to reduce cost of ownership. The concept has evolved over the years starting from
data centers to present day infrastructure virtualization.

Pervasive and ubiquitous computing are recently emerging paradigms that allow computer sciences
and telecommunication techniques to converge towards ambient intelligence. Here we will focus on
software engineering as a complete and rational production process. We are interested in theoretical
foundations, methodologies, new programming paradigms, solid architectures and middleware, new
technical solutions for the development of user interfaces, and new modalities of interaction.

The “Internet of Things” (IoT) has added a new dimension to the world of information and commu-
nication technologies: next to any-place connectivity for anyone, we will have connectivity to anything.
“Things” are potentially all objects we encounter in our everyday lives. The IoT connects “Things” and
devices to large databases and networks. “Things” carry embedded intelligence, using for example RFID
(Radio Frequency IDentification) as identification system and sensor technologies to detect changes in
their physical status and environment. Future success of the IoT depends not only on technical innova-

 xiii

tions in the underlying hardware (wireless sensors, nanotechnology, low power devices, RFIDs), but
also on appropriate software methodologies, technologies, and tools in fields such as operating systems,
middleware, and ubiquitous and pervasive computing technology.

This book of research aims to be the first book that systematically collects the above new approaches
and resultant tools. The book will promote the acceptance and foster further developments of these new
approaches and tools; it will meanwhile speed up the process of commercialization, i.e., pushing the
approaches and tool to industry and market.

The book is helpful to clarify the present chaotic literature of the current state of art and knowledge
in the areas of the design and engineering of those emerging software systems. The book will facilitate
the exchange and evolution of the above software engineering advances among multiple disciplines,
research, industry, and user communities. The book will systematically expand the knowledge of the read-
ers with novel approaches and tools on the engineering of the four types of emerging software systems,
their best application practice and future trends. It will trigger further ideas on research, development,
and commercialization.

The book targets a spectrum of readers, including researchers, practitioners, educators and students
and even part of the end users in software engineering, computing, networks and distributed systems,
and information systems.

Xiaodong Liu
Edinburgh Napier University, UK

Yang Li
British Telecom, UK

Section 1
Service-Based System

1

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1

DOI: 10.4018/978-1-60960-735-7.ch001

INTRODUCTION

For enterprises, the promise of service-oriented
computing is to rapidly create low-cost applica-
tions out of reusable and loosely coupled services
(Cherbakov, Galambos, Harishankar, Kalyana,
& Rackham, 2005). This promise is tempting,
as the radical business process redesign projects
are risky and expensive (Jarvenpaa & Stoddard,

1998; Sarker & Lee, 1999). Service-oriented com-
puting can provide a way to make great changes
in smaller portions by componentizing both the
business and the IT and by incrementally build-
ing on top of existing assets (Bieberstein, Bose,
Fiammante, Jones, & Shah, 2006; Cherbakov
et al., 2005). Transforming an enterprise into a
service-oriented one is a complex task and the role
of IT is no longer supportive, but has often a key
role in the change. Alignment between the busi-
ness and IT is the key towards a service-oriented

Ville Alkkiomäki
Lappeenranta University of Technology, Finland

Kari Smolander
Lappeenranta University of Technology, Finland

Service Elicitation Method
Using Applied Qualitative

Research Procedures

ABSTRACT

This chapter introduces QSE, the Qualitative Service Elicitation method. It applies qualitative research
procedures in service elicitation. Service engineering practice lacks lightweight methods to identify
service candidates in projects with tight schedules. QSE provides a systematic method to analyze require-
ment material in service-oriented systems development with a feasible effort. QSE uses the procedures
of the grounded theory research method to elicit service candidates from business process descriptions
and business use case descriptions. The chapter describes the method with examples and a case study.

2

Service Elicitation Method Using Applied Qualitative Research Procedures

enterprise, and the implementation of the services
should be prioritized to support the incremental
transformation of the enterprise. (Bieberstein et
al., 2006; Cherbakov et al., 2005)

In this chapter, we propose Qualitative Service
Elicitation, QSE, a new systematic method to be
used in service elicitation. QSE provides practical
means to prioritize and identify reusable service
candidates in an enterprise context. The method
is presented with an example of how to apply it
in a sample project. The method is also tested in a
real world project, and a case study of the project
is provided.

THE CHALLENGE OF
SERVICE ELICITATION

The service oriented approach differs funda-
mentally from the conventional development
paradigms in the key concept of dynamically
accessible services. The scope and performance
of services are under constant development to
support an increasing number of consumers.
Components and objects do not provide this
kind of run-time flexibility. Likewise, traditional
requirement engineering practices do not support
service composition nor do they encourage the
identification of reusable services. (Papazoglou,
Traverso, Dustdar, Leymann, & Kramer, 2006;
Van Nuffel, 2007; Zimmermann, Schlimm, Waller,
& Pestel, 2005)

Papazoglou et al. (2006) have listed the main
challenges of the service-oriented engineering do-
main in their research roadmap. Novel approaches
are required in service engineering to address the
current challenges and to provide sound methods
that allow enterprises to design and deploy services
more efficiently while adapting to the changes
matching the rate and pace of the business.

The QSE approach addresses some of the
challenges identified by Papazoglou et al. (2006).
For example, QSE supports the refinement of

service compositions and links the compositions
to service candidates identified in the projects.
Similarly, QSE provides practical means to build
an enterprise level service catalogue, which can be
used in gap analysis. Additionally, the catalogue
provides a ground for refining the right granularity
of the services. The method itself does not provide
automation in the analysis, but provides systematic
procedures for the analysis, thus helping to reduce
human errors. To enable systematic analysis, we
have taken ingredients from research methodol-
ogy. We believe service elicitation by nature much
resembles qualitative research.

The identification of services has been studied
for some time and various methods already exist,
but they focus on specific areas and the elicitation
of specific types of services. A survey by Ramol-
lari et al. (2007) lists ten different methods with
varying coverage of the SOA project life cycle.
Arsanjani (2005) classifies the SOA approaches
into six categories: business process driven, tool-
based MDA, wrap legacy, componentized legacy,
data driven and message driven approaches.

The existing approaches can be used to elicit
certain types of services, but fail to provide a
generic solution. SOMA combines features also
from other disciplines, but it can be seen more
as a collection of methods than a single method
(Arsanjani et al., 2008). QSE borrows elements
suitable for top-down analysis from several of the
approaches above. QSE is a top-down analysis
method, which starts from business process de-
scriptions and digs down to the essentials of the
service candidates with the help of business use
cases. Elements from the existing process driven,
data driven and message driven methods have
been included in QSE.

QSE is meant only to analyze business pro-
cesses, not to design them. Completely different
approaches, such as The MIT Process Handbook
(Walker, 2006), are needed for designing business
processes.

3

Service Elicitation Method Using Applied Qualitative Research Procedures

Process Driven Services

Process driven SOA is a popular approach, and
business processes can be seen as an ideal source
for reusable services (Papazoglou et al., 2006;
Van Nuffel, 2007). Various methods have been
proposed to map and align services with business
processes, but the field is somewhat dispersed
with various engineering approaches and a vast
number of different business process and workflow
modeling languages.

The survey conducted by Papazoglou et al.
(2004) identified two basic classes for complex
web services: programmatic and interactive web
services. Programmatic services encapsulate
atomic business logic functionality to be used by
other applications to build new applications. In-
teractive services include the logic for interacting
with a user through the presentation service of a
web application. The logic can contain the multi-
step behavior of an interactive business process.

Patterns can be used to identify services in
generic problem areas as long as they fit into the
pre-defined scenarios. Different levels of patterns
have been proposed in the area. For example
Endrei at al. (2004) propose business patterns to
be used to identify services in common business
scenarios, while Zdyn et al. (2007) use more
primitive software patterns to build processes out
of building blocks.

SOMA (service-oriented modeling and archi-
tecture) is a software development method for
SOA-based solutions containing a set of methods
to support all phases of the SOA development (A.
Arsanjani et al., 2008). SOMA provides several
complementary methods to identify flows by
analyzing business goals, business processes, as
well as existing IT assets. However, details of the
method have not been published.

Lo et al. (2008) propose a reference catalogue
approach, which consists of two parts: a set of
reference business models and a set of business
service patterns. The needed business services

are cataloged and used to identify services to be
implemented.

There are also several methods using ele-
ments from product line engineering to manage
the service specifications and production of new
service variants based on analyzed needs. In these
approaches, the services are seen as reusable ap-
plication elements, which can be used to build
new applications. (Adam & Doerr, 2008; Moon,
Hong, & Yeom, 2008)

Overall, the methods above try to identify
common process elements within the enterprise,
some utilizing also familiar patterns from other
enterprises to support the work.

Data Driven Services

The basic idea behind the data driven SOA or
“Information as a Service” (IaaS) approach (Dan,
Johnson, & Arsanjani, 2007) is to decouple the
data and the business logic allowing systems to
share the same data and data access logic. This ap-
proach has gained a great deal of interest lately, and
also the market for IaaS tools is growing rapidly.
Forrester predicts the market to exceed Enterprise
Information Integration (EII), Enterprise Applica-
tion Integration (EAI) and replication markets in
size in the future (Forrester, 2008).

A survey by Papazgolou et al. (2004) lists three
types of informational services: content services,
information aggregation services and third-party
information syndication services.

SOMA also provides several complementary
methods to analyze information, a method called
“domain decomposition” being the most interest-
ing from our point of view (Arsanjani et al., 2008).
In this method, the enterprise is first partitioned
into functional areas, and then, business entities
are identified within the areas. Different variations
of the business entities are identified to ensure the
reusability of the service design.

Data warehousing is another approach where
data is gathered across the enterprise into a cen-
tralized database from where it can be read for

4

Service Elicitation Method Using Applied Qualitative Research Procedures

business intelligent purposes. Having a unified
view to the enterprise data can be very beneficial
for the enterprise, and virtually all large enterprises
are using this technique (Watson, Goodhue, &
Wixom, 2002). For reporting needs, it is sufficient
to have read-only access to the master data, making
it possible to use a replica of the data instead of
providing full master data functionalities (Walker).

Messaging Based Approach
and Business-to-Business
Communication

The message-driven approach to SOA focuses
on the messages being transmitted between the
systems (Arsanjani, 2005). This approach is well
supported by many current BPM platforms, as
they rely on messaging technologies to facilitate
interactions between organizations running poten-
tially heterogeneous systems (Sadiq, Orlowska,
& Sadiq, 2005).

The message-based approach is popular in
Business-to-Business (B2B) communication,
where several standardization organizations are
developing domain specific message standards.
B2B communication consists of public and private
processes and the connections between these two.
Public processes can utilize B2B standards, which
consist not only of the message format, but also of
the process of how these messages can be used in
inter-enterprise communication. (Bussler, 2001)

True B2B collaboration requires more so-
phisticated logic than a simple request-response
approach provided by web services, and B2B
communication is often based on a business agree-
ment between the parties. Models for B2B com-
munication typically require specified sequences
of peer-to-peer message exchanges between the
parties following stateful and long lasting busi-
ness protocol used to orchestrate the underlying
business process. These protocols define the
messages as well as the behavior of the parties
without revealing their internal implementation.
(Bussler, 2001; Papazoglou & Dubray, 2004).

Messaging can also be used to implement
private processes within an enterprise (Bussler,
2001; Sadiq et al., 2005). Services and web service
technology can also be used to provide access to
the existing messaging infrastructure by replacing
the messaging adapters with web service wrap-
pers (Harikumar, Lee, Hae Sool, Haeng-Kon, &
Byeongdo, 2005).

QSE ANALYSIS

QSE is based on two principles. Firstly, it uses
procedures from qualitative research to concep-
tualize and to categorize the service candidates.
Secondly, it uses known characteristics of reusable
services and the Zachman Framework (1987) as
core categories for the analysis.

The grounded theory was originally introduced
by Glaser and Strauss in 1967 and is now widely
used in qualitative research (Robson, 2002; Strauss
& Corbin, 1998). Grounded theory has been pro-
posed to be used in the requirement engineering
practice in earlier studies (Galal & Paul, 1999).
The use of predefined core categories is against the
principles of the original grounded theory, but is
necessary to reuse the knowledge of known char-
acteristics of enterprises and services. Therefore,
QSE relies on the assumption that the enterprise
fits into the Zachman Framework (1987) and that
the reusable services in the enterprise have similar
characteristics as identified in earlier research.

The QSE analysis consists of three phases:

• Conceptual analysis of the business pro-
cess descriptions

• Conceptual analysis of the project business
use cases

• Identification and prioritization of the ser-
vice candidates using the outcomes of the
analyses

5

Service Elicitation Method Using Applied Qualitative Research Procedures

Core Categories

The Zachman Framework is used as a basis to
discover all of the important aspects of an en-
terprise. John Zachman (1987) developed the
framework in the 1980’s and it “represents the
logical structure for identifying and organizing
the descriptive representations that are important
in the management of the enterprises and to the
development of systems”.

The columns defined in the Zachman Frame-
work (1987) act as core categories in QSE analysis.
Relevant elements from the service elicitation
point of view should fall into these categories.
The core categories are further divided into
sub-categories based on the service candidate
type characteristics derived from the existing
approaches discussed above. The predefined
categories are merged in Figure 1, and the service
candidate types and characteristics used are listed
in Table 1.

QSE Process Phases

Development projects implement services, and the
identification of the services is often based on the
analysis for that particular project only. This does
not enforce that the services created are reusable
in following projects. To provide a wider context
for the service candidates, QSE analysis (Figure
2) starts with a conceptual analysis of the business
process descriptions, creating a skeleton for the
service categories of the enterprise.

In the next phase, this skeleton is comple-
mented with details from the project material
describing the use cases being implemented in
the actual project.

In the final phase, the service candidates are
prioritized based on how often similar needs were
identified at the business process level and how
likely they are to be re-used later. Both conceptual
analysis phases are conducted by applying the
basic procedures of the grounded theory (Strauss
& Corbin, 1998) to elicit the basic concepts of

Figure 1. Core categories for an enterprise in service elicitation

6

Service Elicitation Method Using Applied Qualitative Research Procedures

an enterprise and to link them together at the
conceptual level.

Conceptual Analysis Phases

Conceptual analysis uses the three coding phases
of grounded analysis: open, axial and selective
coding (Strauss & Corbin, 1998). Open coding is
used to find the codes and their categories from
the business data. During the axial coding, the
identified categories are refined, differentiated

and categories related to others are organized
into sub-categories. Finally, the relations of the
categories interesting from the service elicitation
point of view are refined in the selective coding
phase. Several iterations may be required to pro-
cess the data and the phases should not be seen
as distinguishable, but rather as different ways of
handling the data than in grounded theory (Flick,
1998; Robson, 2002).

The purpose of the conceptual analysis is to
find the essential business elements (categories)

Table 1. Service candidate types

Service candidate type Characteristics

Data driven services
Both the information as a service and data warehousing approaches use centralized data models and data stores to provide access to en-
terprise information. The key issues are identifying the right information to be published through the service interface and the granularity
of the services.

1) Content services (RW) Provides programmatic access to simple information content. (Papazoglou & Dubray, 2004)

2) Reporting content services
(RO)

Provides read-only access to the replica of enterprise data. (Walker)
Like content services, but the data is used only for reporting purposes and no real-time access to the
data is needed. Can be merged into type 1 services if the same data is needed elsewhere in an operative
manner.

3) Information aggregation
services

Provides seamless aggregation of several information sources. (Papazoglou & Dubray, 2004)
This is a variant of the service types 1 and 2, providing information using several simple content ser-
vices as a source.

4) Non-electronic master data. Information stored solely on paper or in other non-electronic forms. This category was identified during
the case study.
(These can be transformed into content service candidates if the business processes are further devel-
oped.)

Process driven services
Process driven methods try to identify common process elements within the enterprise, some utilizing also general patterns from other
enterprises. The key aspect of finding reusable services is the shared logic needed in several places within the enterprise.

5) Programmatic services Programmatic services encapsulate atomic business logic functionality to build new applications. A
service is an atomic and independent part of logic within the process, which returns a concrete result.
(Papazoglou & Dubray, 2004)

6) Interactive services Interactive services include stateful logic for interacting with a user through the presentation layer of
an application. It can contain the multi-step behavior of an interactive business process. (Papazoglou &
Dubray, 2004)

Message based communication
Includes the logic needed in business conversations to bind public and private processes and messages together. This logic can be
wrapped behind a service. (Bussler, 2001; Harikumar et al., 2005)

7) Third-party information
syndication

Information sources and services provided by an external party. (Papazoglou & Dubray, 2004)

8) Business-to-business com-
munication services

The logic needed in complex electronic business-to-business conversations. Often based on a contract
between the enterprises. The service can contain stateful communication logic with the business partner,
possibly following a standard such as ebXML or RosettaNet. (Papazoglou & Dubray, 2004)
Additionally, the service can act as a translator transforming the source data format to the target data
format. (Harikumar et al., 2005)

7

Service Elicitation Method Using Applied Qualitative Research Procedures

of the enterprise; especially the ones falling under
the “Data”, “Function” and “People” core catego-
ries. The categories under the core categories are
identified and abstracted independently from each
other, allowing the elements in each column to
develop and saturate separately. The actual service
candidates are identified from the codes under
the numbered categories, and their granularity is
dependent of the relations to other categories. For
example, service candidates accessing data (con-
tent services) are identified from the codes under
the “Function” core category, but their granularity
is determined from their relations to the categories
in the “Data” core category. In this case, also the
level in hierarchy is important; if the relation is
made to a category with sub-categories, the service
candidate is an information aggregation service
candidate instead of a content service candidate.

During the open coding, the raw data is divided
into discrete parts and interpreted into codes or
labels describing the parts of the data (Robson,
2002). This division depends on the raw mate-
rial; parts can be parts of drawings in process
descriptions, words or sentences in business use
case descriptions, and so on. Each part is given a

label or code describing for what the part stands.
See Table 3 for an example.

To help thinking of the codes during the open
coding, the seven questions of the Zachman
Framework (1987) can be used repeatedly during
the analysis as a catalyst (See Table 2). Codes can
be seen as labels or names defining for what the
part in question stands. The wording used in the
material being analyzed can be used sometimes,
but often the analyst needs to invent a descriptive
name for a code. Categories are concepts, which
can be used to group several codes together. For
example both “toothbrush” and “toothpaste” can
be grouped under the “dental care products”
category, which can be seen as a sub-category for
the “product” category.

Additional notes should be written down for
each identified code to help divide the codes into
categories. The questions in the note column of
Table 2 are derived from the characteristics of the
sub-categories defined in Table 1.

The purpose of the axial coding is to link to-
gether the findings of the open coding (Robson,
2002). In this phase, the codes are grouped into
categories containing similar codes and categories

Figure 2. Phases of the Qualitative Service Elicitation (QSE) method

8

Service Elicitation Method Using Applied Qualitative Research Procedures

into sub-categories. If different wording has been
used for the same phenomenon during the open
coding phase, then these codes should be merged,
as well. Additionally any relationships between
codes under the same categories should be identi-
fied. The questions in this phase are, for example:

• Are there any codes which mean the same
thing and could be merged?

• Are there similar codes which could be
grouped under a common category?

• Can any categories be seen as an aggregate
of two or more categories?

In the last phase, selective coding is performed
on the data identified in the previous phases. In
this phase, the identified categories and codes are
sorted into core categories based on the Zachman
Framework and the sub-categories based on Table
1. The hierarchy of the categories is presented in
Figure 1.

The use of partly pre-defined categories as a
priori categories is against the inductive nature of
the grounded theory research methodology. How-
ever, the recurring analysis of similar data, such as

in service elicitation, will probably benefit from
a set of pre-defined categories. The pre-defined
categories and their characteristics are needed to
identify the service types known to be potentially
reusable. Additional categories and sub-categories
can be created inductively, if needed.

The actual service candidates are identified
after the use case analysis and are generated from
the codes under the “Function” core category with
their relations to the codes and categories in the
“Data” and “People” core categories.

Service candidate types 1, 2, 3 and 7 (Table 1)
are identified from the codes under the “Access
information” categories. The granularity of the
candidate is determined with the relation to the
codes and categories in the “Data” core category.
The abstraction level is the one identified from the
business process analysis, if available. Codes in
the “Access non-electronic data” category can be
transformed into content services if the business
process itself is revised, as well.

Service candidate types 5 and 8 are identified
from the codes under equivalent categories. If
these codes have relations to other core categories,
then these relations can be used to determine the

Table 2. Analysis core categories and catalyst questions for open coding

Zachman column Core question Detailed questions

Data What? • Is the data accessed for reporting purposes only? (Are related services type 1 or 2?)
• Is the data aggregation of other data? Is the data actually a category containing other catego-
ries or codes? (Related services are type 3)
• Is the data available only in non-electronic form? (Type 4)
• Is the data received directly or indirectly from any external source? (Related services are type
7)

Function How? • Is any data being accessed, processed, validated, generated or searched? How and which
data? (Details for types 1, 2, 3, 7)
• Is there a logic, which is atomic, independent and resulting in a concrete result? (Type 5)
• Is stateful interaction needed between human beings and the IT system? (Type 6)
• Is there any stateful communication with external parties? (Type 8)
• Is data format transformation needed in communication? (Type 8)

Network Where? (No detailed questions as none of the eight identified service types had any specific characteristics
related to where the service is used.)

People Who? • Who is using the system and with what kind of channel or device? (Reusability of type 6 services)

Time When? (No detailed questions as none of the eight identified service types had any specific characteristics
related to when the service is used.)

Motivation Why? • Why is the data processed in non-electronic form? (Is there need for type 1 or 2 services?)

9

Service Elicitation Method Using Applied Qualitative Research Procedures

correct granularity. For example data transforma-
tion logic services should use the granularity of
the data category, such as the service candidates
under the “Access information” category.

Interaction logic candidates (Type 6) are
identified from the codes under the equivalent
category. These codes should have relations to
the “People” core category, which can help to
estimate the reusability. If the same interaction
logic is needed with several different actors or
the actors are using different channels to access
the same logic, then these services are more likely
to be reusable.

Candidate Identification and
Prioritization Phase

The scope of a service can vary from a simple re-
quest to a complex system that can access and com-
bine information from other sources. Enterprises
can use simple services to accomplish a specific
business task, while several smaller services can
be combined to support more complex processes.
The services should represent functionality that
is meaningful from the business perspective.
(Papazoglou & Dubray, 2004)

After the analysis, the codes from the analy-
sis of the use cases are transformed into service

Table 3. Example business use case

Order Entry for ADSL Product
(Relevant code sources marked with superscript)

Identified Codes

Goal and Triggers:
The goal of the use case is to get the customer and payment data checked and up-
dated1, verify the availability of the product in the delivery address2 and to enter the
sales order3 to the IT system according to the customer’s wishes4.
The use case is triggered when a customer calls the contact center and wishes to order
an ADSL product.

Why: flawless customer data1, order validation2,
order entry3 customer need clarification4,

Actors:
Contact center agent (user)

Who: Contact center agent

Basic Course of Events:
The user opens the system using a web browser1 and selects the ADSL purchase
function from the main menu.
The user asks for the installation address2 from the customer3 and enters the address
into the system.
The system checks the possibility to install4, 5 the ADSL line6 in the given address and
returns a list of possible speeds and add-ons7,5.
The user selects the ADSL add-ons one by one based on the customer’s wishes and
the system guides this selection by removing all incompatible add-ons after each
addition8.
The system shows the price9,10 after the add-ons have been entered.
If the customer agrees on the price, the customer is identified and the system user
searches for existing customer data from the system with the customer name11,12.
The user verifies the validity of the customer’s social security number (SSN), phone
number and billing address11. If the customer data is not found, the user adds a new
customer into system with the data13 queried from the customer.
The system checks the validity of the given SSN14 and stores the customer data15.
The system conducts a credit check16 for the customer using an external credit check
agency17.
The system shows if the credit check fails. In this case, all data is stored15, but no
ADSL order18 is created. Instead, the customer is asked to come to the store and
provide a collateral deposit19.
If the credit check succeeds, the system creates an ADSL order18, 20 and creates a
related service order21for a subcontractor22.
The system returns to the main menu and informs the user of a successful sales order
creation.

Who: Contact center agent with browser1,
customer3

What: installation address2, availability4,
product6, product configuration7, product price9,
customer basic information11, customer credit
standing16, sales order18, collateral deposit19,
service order21

How: Get available product configurations with
address5, Guide configuration of ADSL product8,
get product configuration price10, search for
customer by name12, create customer13, validate
customer SSN14, update customer data15, get
customer credit standing17 (external), create sales
order20, create service order22 (external)
Other codes: Communication with the customer,
main menu

10

Service Elicitation Method Using Applied Qualitative Research Procedures

candidates. All of the codes under the “Function”
core categories are service candidates and are
given a descriptive name using the categories they
represent and to which they are related.

With the help of the business process analysis,
the service candidates can be prioritized based
on how often they are mentioned in the business
process descriptions. In our case study, we simply
sorted the services into two classes: local and
global service candidates. A service candidate is
global if it belongs to any category identified from
more than one business process and should be thus
reusable in other projects, as well. Otherwise, the
candidate is local and is not likely to be reused
in other projects.

EXAMPLE

As an example, we use an imaginary “Order-to-
Cash” composite business process and a project
implementing an IT system to support the “Or-
der Entry” business process in a contact center.
The “Order Entry” process is merely one stage
within the “Order-to-Cash” composite process,
and thus, the use case analysis of the project will
cover only this stage. However, the scope of the
business process analysis can cover the whole

“Order-to-Cash” process, giving a more extensive
view to the enterprise and providing a conceptual
skeleton of the categories to be enhanced with the
use case analysis.

The analysis of a typical “Order-to-Cash”
composite business process reveals concepts such
as customer, product, sales order, service order,
field service, installed base, pricing, payment,
billing account and so on. The example “Order-
to-Cash” composite business process is outlined
in Figure 3 and one of the processes is detailed in
Figure 4. In our example, the conceptual analy-
sis of the business processes produce the codes
listed in Figure 3. Sources of the codes identified
from the “Order Entry” process are underlined in
Figure 4. The conceptual analysis of all business
process descriptions provides the skeleton of the
categories as presented in Figure 5 (The number
of occurrences is provided in the brackets).

An example product in this project could be,
for example, an ADSL connection, and thus, the
business use case “Order Entry for ADSL Product”
would be implemented in the project. The details
of the example use case are presented in Table 3
with identified codes and categories. The codes
and categories identified from the use case
analysis are appended to the hierarchy as pre-

Figure 3. Order to Cash composite business process

11

Service Elicitation Method Using Applied Qualitative Research Procedures

sented in Figure 6. These additions are in bold
font.

The service candidates are underlined in Fig-
ure 6. In this analysis, most of the identified
service candidates have relationships with a con-

cept identified from more than one business
process, and therefore, they would be classified
as “global” and reusable in other projects, as well.
The only exception is “Get customer credit stand-
ing”, which have a relationship with “Credit

Figure 4. A detailed Order to Cash composite business process

Figure 5. The category hierarchy after conceptual analysis

12

Service Elicitation Method Using Applied Qualitative Research Procedures

check” concept identified only from “Order entry”
business process.

CASE STUDY

As a proof of the concept, a set of real world
business process descriptions and a set of busi-
ness use case descriptions from a large IT project
were analyzed using QSE.

The implementation of this case project was
outsourced to an external partner with a fixed price
contract and thus the completeness of the require-
ments was essential. The scope of the contract was
based on a requirements specification, use cases
and a solution architecture. The implementation

phase was estimated to last about two years with
more than 15 man-years of labor. The goal of the
project was to replace an old custom-made legacy
application with a more modular one.

The case project core team on the customer
side included a program manager, a chief architect
and a few persons with a mixed role of a require-
ment engineer and a sub-project manager. The
key persons of the case project were all experts
with sufficient knowledge of the business domain.
The core team was complemented with several
temporal advisors especially for security, technol-
ogy and legal issues.

The goal of the case study was to test how well
QSE would uncover the service candidates in a
real project and to compare the produced service

Figure 6. The category hierarchy appended with categories and codes from the use case analysis

13

Service Elicitation Method Using Applied Qualitative Research Procedures

catalogue against the actual solution architecture
made in the project with traditional methods by
the experts. From the project point of view, this
review acted as an additional verification for the
solution architecture, and for the research, this
comparison gave an opportunity to validate the
outcome against similar analysis made by the
experts.

The planned changes to the actual business
processes were minor in the case project, as the
main driver was technical renewal. Respectively,
the needed interfaces and connections to the
external systems were carefully identified by the
project, as the existing solution provided a good
basis for the project design. Similarly, the business
process and use case descriptions were more or
less up-to-date and solid, providing a good basis
for QSE analysis.

A total of 47 business process descriptions were
analyzed covering the main operative processes
of one business line. The analyzed project scope
included 16 business level use cases and the use
case analysis resulted in 17 global and 14 local
service candidates as shown in Figure 7. These
service candidates were modeled using the Integra-
tion Use Case method (Alkkiomäki & Smolander,
2007), catalogued and compared to the solution
architecture created by the project.

The comparison showed that QSE analysis
was able to reveal all the services identified by
the project with traditional methods. The scope
and grouping of the service candidates were dif-
ferent compared to the project, but it was possible
to map each elicited service candidate to the
project design. On the other hand, the work made
by the project was thorough and thus QSE analy-

Figure 7. Top level categories of the case project (actual category names disguised)

14

Service Elicitation Method Using Applied Qualitative Research Procedures

sis did not uncover any completely new services
compared to the project findings.

Additionally, the feasibility of the prioritization
model was evaluated by comparing how well the
categorization matched with assumed reusability
of each service candidate. Service candidates were
assumed to be reusable only if the key project
personnel were able to name either a system or
another active project where the service could
be used as well. As a result, 12 out of 17 global
service candidates were seen reusable in other
projects as well and further analysis showed that
the scope of the case project itself included a new
operative system to support all four processes from
where the remaining five global service candidates
were identified. Similarly only one out of 14 local
service candidates was estimated to be reusable
outside the project scope.

In this case study, QSE was able to provide a
service catalogue comparable with the one made by
experts with traditional means. Also the concept of
estimating the reusability of services based on their
occurrences in the process descriptions seemed
to be promising in the case project. As a result,
QSE seems to provide a promising way of doing
service elicitation in early phases of the project,
at least when used with high quality raw material.

FUTURE RESEARCH DIRECTIONS

The strength of QSE is its generic nature; it can be
expanded with new service types with character-
istics identified in other projects, it is technology
neutral and the analyzed source material can be
virtually in any human readable format. It would
be also beneficial, if the laborious service engi-
neering work could be done by less experienced
analysts by following well-defined procedures.
One of our future research directions will be to
test how easily junior requirement engineers can
adopt QSE.

Similarly to grounded theory, QSE depends
purely on the material being analyzed. Thus,

faulty or incomplete source material will produce
a faulty and incomplete analysis. In real life, the
business process descriptions rarely cover all of
the processes and should not be used as the only
source for service engineering. A good practice
is to utilize several complementary service iden-
tification techniques. However, intensive use of
business process descriptions may motivate busi-
ness stakeholders to prepare the descriptions with
more enthusiasm.

Various different tools are available to au-
tomate some parts of the service modeling and
implementation tasks, but the most difficult part
remains manual. The elicitation of the business
needs and componentization of the business itself
is not something one can really fully automate.
However, there are tools supporting qualitative
research and grounded theory methodology in
general and these tools can be very helpful for
QSE practitioners as well.

CONCLUSION

In this chapter, we have introduced QSE, a method
for Qualitative Service Elicitation that applies the
qualitative research approach to service elicita-
tion. The use of QSE in service-oriented systems
development allows more consistent quality of
analysis and enforces developers to concentrate
on reusability aspects of services.

Based on the experiences from the case
study, it is feasible to use QSE as a systematic
and practical method for service elicitation with
results comparable to similar analysis carried out
by experts with traditional methods. The use of
business process level concepts and vocabulary
in the service candidates made it easy for require-
ment engineers to putting uses in place of usages
for the service candidates outside the case project
context. Also the idea of prioritization of services
based on how often the related concepts appear in
the business processes seemed to be promising,
although it should be enhanced to take the rela-

15

Service Elicitation Method Using Applied Qualitative Research Procedures

tionships between categories better into account.
Prioritization can help identifying the services with
potential reusability outside of the project scope,
giving the project a possibility to check the other
business processes for potential new requirements
for the services being implemented.

After all, even when the pace of change is
getting faster in business, the basic concepts of
business don’t change quite as quickly allowing
definition of somewhat stable service interfaces
defining also boundaries between organizations.
QSE provides means to design stable boundar-
ies providing loose coupling between different
parts of the enterprise, thus allowing these parts
to be developed more or less independently. As
a result, the additional agility can make a differ-
ence nowadays.

REFERENCES

Adam, S., & Doerr, J. (2008). The role of service
abstraction and service variability and its impact
on requirement engineering for service-oriented
systems. Annual IEEE International Computer
Software and Applications Conference.

Alkkiomäki, V., & Smolander, K. (2007). Inte-
gration use cases – An applied UML technique
for modeling functional requirements in service
oriented architecture. Paper presented at the Re-
quirements Engineering: Foundation for Software
Quality, 13th International Working Conference,
REFSQ 2007, Trondheim, Norway.

Arsanjani, A. (2005). Toward a pattern language
for service-oriented architecture and integration,
part 1: Build a service eco-system. Retrieved
January 19, 2010, from http://www.ibm.com/
developerworks/webservices/library/ws-soa-soi/

Arsanjani, A., Ghosh, S., Allam, A., Abdollah,
T., Ganapathy, S., & Holley, K. (2008). SOMA:
A method for developing service-oriented solu-
tions. IBM Systems Journal, 47(3), 377–396.
doi:10.1147/sj.473.0377

Bieberstein, N., Bose, S., Fiammante, M., Jones,
K., & Shah, R. (2006). Service-oriented archi-
tecture compass: Business value, planning and
enterprise roadmap. Upper Saddle River, NJ:
IBM Press.

Bussler, C. (2001). The role of B2B protocols in
inter-enterprise process execution. In Proceed-
ings of the Second International Conference on
Technologies for E-Services (pp. 16-29). Berlin
/ Heidelberg, Germany: Springer.

Cherbakov, L., Galambos, G., Harishankar, R.,
Kalyana, S., & Rackham, G. (2005). Impact of
service orientation at the business level. IBM
Systems Journal, 44(4), 653–668. doi:10.1147/
sj.444.0653

Dan, A., Johnson, R., & Arsanjani, A. (2007). In-
formation as a service: Modeling and realization.
Paper presented at the International Workshop on
Systems Development in SOA Environments,
Washington, DC.

Endrei, M., Ang, J., Arsanjani, A., Chua, S.,
Comte, P., & Krogdahl, P. (2004). Patterns:
Service-oriented architecture and Web services.
IBM Press.

Flick, U. (1998). An introduction to qualitative
research. London, UK: Sage.

Galal, G. H., & Paul, R. J. (1999). A qualitative
scenario approach to managing evolving require-
ments. Requirements Engineering, 4(2), 92–102.
doi:10.1007/s007660050016

16

Service Elicitation Method Using Applied Qualitative Research Procedures

Harikumar, A. K., Lee, R., Hae Sool, Y., Haeng-
Kon, K., & Byeongdo, K. (2005). A model for
application integration using Web services. Paper
presented at the Computer and Information Sci-
ence, 2005. Fourth Annual ACIS International
Conference.

Jarvenpaa, S. L., & Stoddard, D. B. (1998). Busi-
ness process redesign: Radical and evolutionary
change. Journal of Business Research, 41(1),
15–27. doi:10.1016/S0148-2963(97)00008-8

Lo, A., & Yu, E. (2008). From business models
to service-oriented design: A reference catalog
approach. In Proceedings of the 26th International
Conference on Conceptual Modeling - ER 2007
(Vol. 4801, pp. 87-101). Berlin / Heidelberg,
Germany: Springer.

Moon, M., Hong, M., & Yeom, K. (2008). Two-
level variability analysis for business process with
reusability and extensibility. 32nd Annual IEEE
International Computer Software and Applica-
tions, COMPSAC ‘08. Turku, Finland.

Noel Yuhanna, M. G. (2008). The Forrester wave:
Information-as-a-service Q1 2008. Retrieved Feb-
ruary 16, 2010, from http://www.forrester.com/rb/
Research/wave%26trade%3B_information-as-a-
service%2C_q1_2008/q/id/43199/t/2

Papazoglou, M. P., & Dubray, J.-J. (2004). A
survey of Web service technologies. Retrieved
February 16, 2010, from http://eprints.biblio.
unitn.it/archive/00000586/

Papazoglou, M. P., Traverso, P., Dustdar, S.,
Leymann, F., & Kramer, B. J. (2006). Service-
oriented computing: A research roadmap. In F.
Cubera, B. J. Krämer & M. P. Papazoglou (Eds.),
Service oriented computing (SOC) (vol. 05462).
Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI).

Ramollari, E., Dranidis, D., & Simons, A. J. H.
(2007). A survey of service oriented development
methodologies. Paper presented at the 2nd Euro-
pean Young Researchers Workshop on Service
Oriented Computing, Leicester, UK.

Robson, C. (2002). Real world research (2nd ed.).
Oxford, UK: Blackwell Publishing.

Sadiq, S., Orlowska, M., & Sadiq, W. (2005).
The role of messaging in collaborative business
processes. Paper presented at the IRMA Interna-
tional Conference, San Diego, USA.

Sarker, S., & Lee, A. S. (1999). IT-enabled orga-
nizational transformation: A case study of BPR
failure at TELECO. The Journal of Strategic
Information Systems, 8(1), 83–103. doi:10.1016/
S0963-8687(99)00015-3

Strauss, A. L., & Corbin, J. M. (1998). Basics of
qualitative research: Techniques and procedures
for developing grounded theory (2nd ed.). Thou-
sand Oaks, CA: Sage Publications Inc.

Van Nuffel, D. (2007). Towards a service-oriented
methodology: Business-driven guidelines for ser-
vice identification. In On the Move to Meaningful
Internet Systems 2007: OTM 2007 Workshops
(pp. 294-303).

Walker, D. M. (2006). White paper - Overview archi-
tecture for enterprise data warehouses. Retrieved
February 16, 2010, from http://www.datamgmt.
com/index.php?module=documents&JAS_Docu-
mentManager_op=downloadFile&JAS_File_
id=29

Watson, H. J., Goodhue, D. L., & Wixom, B. H.
(2002). The benefits of data warehousing: Why
some organizations realize exceptional payoffs.
Information & Management, 39(6), 491–502.
doi:10.1016/S0378-7206(01)00120-3

Zachman, J. A. (1987). A framework for Informa-
tion Systems architecture. IBM Systems Journal,
26(3), 276–292. doi:10.1147/sj.263.0276

17

Service Elicitation Method Using Applied Qualitative Research Procedures

Zdun, U., Hentrich, C., & Dustdar, S. (2007).
Modeling process-driven and service-oriented
architectures using patterns and pattern primitives.
[TWEB]. ACM Transactions on the Web, 1(3), 14.
doi:10.1145/1281480.1281484

Zimmermann, O., Schlimm, N., Waller, G., &
Pestel, M. (2005). Analysis and design techniques
for service-oriented development and integration.
Paper presented at the INFORMATIK 2005 - In-
formatik LIVE! Bonn.

18

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2

INTRODUCTION

Everyday life can be enriched by services that
exploit pervasive computing environments, which
are embedded into our surroundings. These com-
puting environments rely heavily on sensors and

sensor networks that produce a large amount of
data to be analyzed and reacted to by users or/
and devices (Hadim & Mohamed 2006). Since
the number of these devices is increasing, the
amount of information to be processed by people
and devices is also rising. In order to handle the

Eila Ovaska
VTT Technical Research Centre of Finland, Finland

Tullio Salmon Cinotti
Università di Bologna, Italy

Alessandra Toninelli1

INRIA, France

The Design Principles and
Practices of Interoperable

Smart Spaces

ABSTRACT

Smart spaces provide information about physical environments, shared with inherently dynamic appli-
cations. This chapter introduces a novel development approach with its focus on two key properties of
smart space applications: the ability to interoperate and behave in a situation-sensitive manner. Sixteen
principles are defined in order to guide the development of an interoperability platform for smart spaces
and on how to create applications on top of it. The interoperability platform deals with information and
is agnostic with respect to ontologies, programming languages, service frameworks, and communication
technologies. The interoperability platform also supports extensibility, evolvability and context based
adaptation, which allows new applications to be added and to behave in a situation based manner. Agile
application development is based on scenario specifications, implemented by the means of the ontology
and model driven development. The approach has been applied to the development of smart personal
spaces, smart indoor spaces, and smart city applications.

DOI: 10.4018/978-1-60960-735-7.ch002

19

The Design Principles and Practices of Interoperable Smart Spaces

information overload, the environments are to be
made to be smart.

The motivations for smart environments are
quite well understood: to increase the visibility of
opportunities, to support context understanding
and ultimately to provide the correct informa-
tion when and where it is required, even if not
explicitly requested, with its content and format
optimally adapted to the user situation and profile
(Weiser 1993). Although smart spaces have been
an interest of researchers and industrial profes-
sionals for years, there is hardly any easy working
smart environment in practice. The main obstacle
is the lack of the interoperability of devices and
systems that provide the execution environment
for ambient applications. Although the interoper-
ability could be achieved at the device level by
handling communication, connectivity and data
with a set of standard protocols, selected for use
in a situation based manner by using, e.g., the
reflection pattern (Buschmann et al. 1996), there
are still obstacles to handling the interoperability
with higher system architecture levels, the service
and information levels. Service interoperability
concentrates on unambiguously describing service
semantics, so that services can be searched and
they can interact with each other (Kantarovitch
& Niemelä 2008). Enhanced functionality is
achieved through service discovery, matchmak-
ing and the merged functionality of a selected
set of services. Moreover, services enriched with
semantic information on context and resources
could provide the service that is the most suitable
for the user’s preferences and the situation at hand
(Soylu et al. 2009). These enrichments however
have costs; they make service centric systems
more complex and error prone, and increase the
need of computing resources.

Recently, two promising approaches for
context-awareness have been proposed; a spatial
application programming model (Meier, et al
2008) and an approach that is based on Model
and Ontology Driven Development (Soylu et al.
2009). The spatial application programming model

uses a small set of predefined types for composing
information and context. The approach has some
similarity with ours, but it relies on a specific
programming model, not a model driven develop-
ment approach that embodies a generic ontology
used for information sharing. Soylu et al. (2009)
link the model driven development with ontology
engineering and aim to assist context-awareness
in all phases of the application development life
cycle, i.e. at design time and run-time. Their special
focus is on the context-awareness of the digital
world, where the use of abstract models is easier
and efficient. However, the approach introduced
is at a conceptual level and still requires long and
short term research. Our goal, on the contrary, is
to adopt the semantic web technologies to physi-
cal spaces and to make the existing entities of our
environments both smart and adaptive.

Our approach facilitates interoperability at the
information level and lets devices and systems use
existing solutions for describing, managing and
executing services to facilitate the functionality
which is required from a smart space (Sofia 2010).
Thus, ambience is based on information which is
provided by sensors embedded into environments
and existing services, running on heterogeneous
devices and systems, for free use in smart space
applications, which also share the semantics of
information. Thus, smart space interoperability
is based on information sharing and the adapta-
tion to existing (legacy) devices and systems.
We exploit ontology orientation to represent the
semantics of information. This information is
shared and mapped onto a graph that uses a triple
(two nodes – subject and object - connected by a
predicate) as an information elementary element.
Native information from the legacy devices and
services is captured by agents that translate it
into the specified information format of the smart
spaces. Thus, a legacy device may be controlled by
the interoperability platform through an enhanced
legacy application, which is able to access and
subscribe to the smart space.

20

The Design Principles and Practices of Interoperable Smart Spaces

The objective of this chapter is to provide a
practical way to develop intelligent applications
for physical spaces, by exploiting existing hard-
ware and software technologies and enhancing
them for an integration environment. The aim is
to encourage smart space managers to enhance
spaces with added value services, by exploiting
the information which is freely available in these
spaces. So, the main goal is thus not to only support
the integration of legacy systems and devices, but
persuade smart space managers to innovate new
services which are based on shared information.
To this end, we elaborate the existing technolo-
gies that provide advances to transform to smart
environments. Thereafter, we introduce our way
of developing smart spaces and their intelligent
applications. The approach has already provided
positive signs of an improved and shared under-
standing, especially in terms of interoperability,
adaptivity and advanced user experiences.

RELATED WORK AND
BACKGROUND

This section first introduces the motivations and
characteristics of smart spaces from four view-
points: history, business, application fields and
technology. Thereafter, the current research works
concerned with interoperability, context-aware-
ness and design methodologies are discussed.

Smart Spaces

Smart spaces are a milestone along the history of
computer science, as they mark the convergence
of two previously separate domains: Internet and
Context-aware computing (Figure 1).

• Context-aware computing provides do-
main-specific assistance, optimized to the
user situation.

Figure 1. Comparing the models of Context-aware computing (top left), Internet (top right) and Smart
Space

21

The Design Principles and Practices of Interoperable Smart Spaces

• The Internet provides multi-domain assis-
tance, disregarding the user situation.

• Interoperable smart spaces provide multi-
domain assistance, optimized to the user
situation.

Context-aware computing is the proposed
solution to deal with the overload of information,
particularly when mobile. It intends to provide an
answer to the need of getting the best possible
content/service in the most suitable format with
respect to the activity in which the user is cur-
rently engaged. Its principle is shown in Figure
1 (top left): users perceive their dynamically
changing environment and situation with their
senses. Devices sense the same through sensors
and associated reasoning. Therefore, the user and
the device share their perception of the environ-
ment, so that services can adapt to the situation,
while the interaction and content exchange runs
smoothly and is contextualized. The key ques-
tions are: How feasible and expensive is it to
provide such context-awareness, and how feasible
and expensive is it to build and maintain a set
of contextualized data (and services) with their
management system?

In fact, two of the greatest challenges, the
same that were originally faced by context-aware
applications, are the cost-effectiveness and the
time-to-market. Applications are domain or/and
application specific, as any application requires a
different view of the environment. The collection
of information from the environment is a difficult
and expensive task, mainly due to the diversity
of the technology used and to the uncertainty
inherent in the sensing systems. Therefore, the
development and deployment time is likely to be
very long and the costs high. Thus, the collected
information needs to be shared to become viable,
but this is difficult as, with reference to Figure 1
top left, there are as many environments as there
are applications.

On the one hand, the Internet is a flat ocean
of shared, uncommitted and machine readable

information, which is available to all users. No
domain specific infrastructures, no niche market,
no cost and time-to-market problems, thanks to the
Internet technologies. The Internet is, however,
largely unaware of the situation, location and en-
vironmental conditions of its users, and therefore,
it can not filter out the information which is to be
provided, based on the situation. On the other hand,
due to its universal market size, it can afford huge
investments and its technologies are progressing
very fast. In this respect, the greatest challenge
faced by the Internet in recent years was turning
information representation from being machine
readable to machine understandable (Berners-Lee
et al. 2001), and the semantic web technologies
went a long way in this direction (Lassila 2007).
Bringing together the interoperability and the
information centric, universal and multi-domain
approach, enabled by the semantic web with the
dynamicity, adaptability, and usability of context-
aware applications, was the next step which smart
spaces enabled.

Smart spaces (Sofia 2010) lead to an extremely
simple and general approach to turn the informa-
tion which is originated from the environment into
a shared commodity. A smart space is a digital
entity where the relevant real-world information
(i.e. information about the environment and the
objects therein located) is stored in an interoper-
able, machine understandable format, kept up
to date and made available to unanticipated and
authorized situation dependent applications.
Therefore, the smart spaces may be considered to
be the ultimate convergence between the Internet
and context-aware computing. The beauty of smart
spaces is their simplicity, their inherent being
agnostics with respect to the information stored
and their interoperability. The interoperability is
based on a shared knowledge model, and govern-
ing the life cycle of this model is currently one
of the most interesting and relevant challenges in
the smart space research.

The vision behind smart spaces is that if all of
the information about the surrounding environ-

22

The Design Principles and Practices of Interoperable Smart Spaces

ment is easily available, the variety of applications
that can benefit is only limited by the imagination.
The information can be collected by sensors which
are embedded in devices and systems hidden in
the environment, and the smart space technol-
ogy may support their interoperability, as well as
the abstraction of semantically rich information
from the data collected from the environment.
Emerging mobile devices already benefit through
the addition of sensors to their set of traditional
conventional resources. Sensors, such as cameras,
compasses, gyroscopes, accelerometers, GPS,
RF based devices and many others may provide
inputs to the smart spaces. The smart spaces only
take care of information interoperability, whilst
connectivity, smart space and service discovery
are orthogonal issues. Furthermore, as shown in
Figure 1 (bottom), smart spaces envisage a clear
separation between the data and applications. A
solution introduced in (Lassila 2007) implements
this concept with ontologies using the Resource
Description Framework (RDF) mapped onto a
common data model represented as a graph. An
ontology is a shared knowledge standard or a
knowledge model defining primitive concepts,
relations, rules and their instances, which comprise
topic knowledge (Zhou 2005). Ontology can be
used for capturing, structuring, and enlarging
explicit and tacit topic knowledge across people,
organizations, and computer and software systems
(Edgington et al. 2004). In smart spaces, ontolo-
gies can be used to describe the semantics of a
space and the semantics of applications, services,
data and the context where they are used. The
standard set of Semantic Web languages (mainly,
RDF and OWL) provided by the World Wide Web
Consortium, represents the most widely adopted
solution to implement ontologies.

A platform which is hosting a smart space may
be very simple, as it may just require a service
consisting of a repository for storing and manag-
ing graphs and a path query language for graphs
with reasoning capabilities, where the reasoning
role is to extract (deduct) information from the

graph, which is not explicitly stated (Lassila
2008). This service is the core component of the
interoperability platform considered in this chapter
for our discussion on smart space design and it
goes a long way in the direction of making smart
space programming an easy task.

The Interoperability of Smart Spaces

From a technical viewpoint, interoperability is a
property of computational units that makes them
able to inter-operate. For smart spaces that rely
on legacy systems and devices and their ability to
work together to achieve a common goal, interop-
erability is a prerequisite that has to be fulfilled.
That is only possible if the interacting units use
the same interaction model at every abstraction
level. Due to its objective, this interaction model
is called an interoperability model.

The interoperability models proposed in lit-
erature are diverse; the levels of abstraction are
different, and they differ in the methods applied to
and the technical solutions used for achieving the
interoperability. When comparing the maturity of
five interoperability models, the following most
significant potential, concerns and barriers were
identified (Guédria et al. 2008):

• The use of standards creates potential
(openness) and is addressed in every in-
teroperability model. Thus, the use of stan-
dards provides advantages for open smart
spaces.

• Data and service interoperability are the
concerns of smart spaces. Data interop-
erability is addressed in LISI (Levels
of Information System Interoperability)
(C4ISR Interoperability Working Group
1998) and LCIM (Levels of Conceptual
Interoperability Model) (Tolk & Muguira
2003). Only LISI concerns service
interoperability.

• Conceptual and technological barriers
were identified in two (LISI and LCIM)

23

The Design Principles and Practices of Interoperable Smart Spaces

of the five analysed interoperability mod-
els. Conceptual barriers were related to
the syntactic and/or semantic differences
of exchanged information. Technological
barriers were related to the incompatibility
of information technologies.

To summarize, none of the five interoperability
models as such are suitable for our purposes. The
interoperability models LISI and LCIM – the only
ones that focus on data and/or service interoper-
ability - have conceptual and technical barriers
that hinder their adoption for the development
of smart spaces.

The Connection, Communication, Consolida-
tion, Collaboration Interoperability Framework
(C4IF) (Peristeras & Tarabanis, 2006) exploits
the concepts of language theories, such as the
language form, syntax, meaning and the use of
symbols and interpretations. C4IF separates the
interoperability levels based on the communica-
tion type, focus and substance. The C4IF model
is compared to the LCIM model in Table 1. As
it can be seen, although the definitions of these
interoperability models are different, they have
many similarities in terms of focus, substance
and communication type. When systems need
to be integrated, the focus is on the network
and connectivity. Thereafter, interoperability is
considered on the levels of the data, the meaning
of the data, the context and the meaning of the
context. Modeling and implementation are the
means for achieving interoperability on these
levels, whereas abstraction and modeling are the
means of handling interoperability on the level
of behavior.

The main difference between the C4IF and
LCIM models derives from their origins. C4IF,
which has its origin in language theories, makes
it easy to understand the four levels of interoper-
ability. Thus, it is a valuable vehicle for commu-
nication. LCIM originates from intelligent sys-
tems, and it provides a more comprehensive
understanding of the various aspects of data and

how to manage them. In summary, the strength
of C4IF is in its simplicity and mappings to exist-
ing technologies. LCIM lacks concrete examples
of existing common technologies that can be used
for realizing the interoperability levels. The three
upper levels (conceptual, dynamic and prag-
matic) do not have a particular clear separation
of concerns, nor proposals how to address them
in the designs of interoperability. However, these
two models were selected as they have the largest
coverage on interoperability and they, together,
provide all of the views of interoperability that
smart spaces have to deal with.

Our design approach addresses the following
types of interoperability, explained further in the
next section:

• The meaning of data; an ability of the in-
teroperability platform to understand data
based on schemas derived from ontology;
information is used as an object of integra-
tion; the usage of data is separated from the
data.

• Context; an ability of the interoperability
platform to understand a shared context
specification.

• The meaning of context changes; an ability
of the interoperability platform to under-
stand context changes.

• Behavior; an ability of smart space ap-
plications to understand their scopes of
the shared meaning of behaviors/actions
which are required in a smart space in a
situation at hand.

Context Awareness in Smart Spaces

The open issues of smart spaces relate to the
need to i) minimize information communication/
processing overheads and ii) adapt the behavior
of smart applications to changing conditions in
their operational environment. Since informa-
tion overheads have an impact on performance,
smart applications should avoid exchanging and

24

The Design Principles and Practices of Interoperable Smart Spaces

reasoning about information that is potentially
useless for them. Moreover, as smart environ-
ments are envisioned to be open, heterogeneous,
and variable, it is crucial to ensure that the smart
applications behave adaptively and efficiently in
several deployment settings and runtime condi-
tions. To enforce high-level adaptation strategies,
it is also crucial to provide effective support for
the monitoring of useful information, such as user
movements, device status, resource availability
and the Quality of Service, which will trigger
application adaptations. Filtering and adaptation
strategies should be expressed at a high level of

abstraction by cleanly separating the application
management from the application logic. This
separation of concerns allows the complexity of
application developments for pervasive environ-
ments to be reduced and enables rapid application
prototyping, run-time configuration, and mainte-
nance (Toninelli et al. 2009).

Context awareness represents an effective
means to improve the scalability of smart spaces
through the means of filtering and adaptation. The
context-aware adaptation of applications basically
requires the following three building blocks:

Table 1. A comparison of the C4IF and LCIM interoperability models

Focus C4IF (Peristeras & Tarabanis 2006) Enhanced LCIM (Tolk et al. 2006; 2008)

Behaviour Collaboration interoperability focuses on the abil-
ity of actions/behaviors to act together, and uses a
process as an object of integration. Technologies:
Service ontologies, SOAs, Web Services, Semantic
Web Service technologies.

Conceptual interoperability focuses on abstraction and
modelling; it is targeted to the complete the shared
understanding of the data model concepts, not only the
concepts of a domain, but also those concepts which
are not included in the data model. Thus, conceptual
interoperability narrows the scope of the data model
so that it is meaningful for its user(s) – the application
agent(s). Technologies: Platform independent models,
domain specific architectural frameworks.

Change of context No separation of the context data from other data. Dynamic interoperability deals with changes in the
context data, the meanings of these changes and the
inter-modal and intra-modal transformations that these
changes require in a system. Technologies: Enhanced
Meta-Object Facility, agent mediated decision support.

Context Pragmatic interoperability deals with the context data
specified as the internal state of the system and the
specification of the particular system process that will
employ the data. Technologies: Web Ontology language
(OWL), Unified Modeling Language (UML), Model
Driven Architecture (MDA).

The meaning of data Consolidation interoperability focuses on the ability
to understand data, uses information as an object
of integration, and is out of usage. Technologies:
Thesaurus, taxonomies, common vocabularies, RDF,
Schemas, ontologies, Semantic Web technologies.

Semantic interoperability deals with the meaning of
exchanged data to the data users, i.e. the meaning is
shared. Technologies: eXtensible Markup Language
(XML), namespaces, schemas.

Data Communication interoperability provides the abil-
ity to exchange data, uses information as an object
for integration, and is out of context. Technologies:
Data formats, dictionary, Structural Query Language
(SQL).

Syntactic interoperability defines the correct forms and
the correct order of the exchanged data. Technologies:
Simple Object Access Protocol (SOAP), XML tagging.

Network
Connectivity

Connection interoperability provides the ability to
exchange signals, uses a channel as an object of in-
tegration, and is out of content. Technologies: cable,
infrared, Bluetooth.

Technical interoperability provides a technical connec-
tion to exchange digital signals, but the participating
systems have to make an agreement on how to interpret
these signals. TCP/IP, as an example technology.

25

The Design Principles and Practices of Interoperable Smart Spaces

• a conceptual context representation model
at a high level of abstraction, whose vis-
ibility could be properly propagated up to
applications;

• a set of middleware services to effectively
manage the context;

• appropriate specification models and ser-
vices to define/enforce the context-de-
pendent adaptation strategies for smart
applications.

In the following, we will focus on models for
representing the context and enforcing context-
aware adaptation strategies, while leaving context
management issues out of the scope of this section.

CONTEXT MODELS

Context has many definitions in literature. Dey
& Abowd (1999) define context as follows:
‘Context is any information that can be used to
characterize the situation of an entity. An entity is
a person, place, or object that is considered to be
relevant to the interaction between the user and
the application, including the user and applica-
tions themselves.’ Understanding of the context
information has heavily improved over the last ten
years. Recently published journal articles indicate
that knowledge on the specification, modeling
and usage of context information might be mature
enough for the realization of context aware smart
space applications. Typically, context information
has three dimensions; the physical, computational
and user context (Bettini et al. 2009). In order to
assist achieving interoperability on the levels that
concern the context data and change of context
(see Table 1), the context specification shall
(Preuveneers & Berbers, 2008) i) have a com-
prehensive domain coverage and terminology; ii)
be expressive and without semantic ambiguity;
iii) be processed without complexity; and iv) be
evolvable. The three types of context modeling
and reasoning approaches analyzed in (Bettini et

al. 2009) are an object-role based model, a spatial
model and an ontology based model. The object-
role based approach supports various stages of
the software engineering process. Its weakness is
a ‘flat’ information model, i.e. all of the context
types are represented as atomic facts. The spatial
context models are well suited for context-aware
applications that are mainly location-based, like
many mobile applications. The main consideration
of the spatial context model is the choice of the
underlying location model. Relational location
models are easier to build up than geographic
location models as they provide a simple means
to map data and Global Positioning Systems
(GPS) data. The drawback is the effort that the
special context model takes to gather and keep
the location data of the context information up
to date. As an example of spatial context models,
the spatial application programming model, intro-
duced in (Meier, et al 2008), uses a small set of
predefined types for composing information and
context. The spatial programming model supports
a topographical approach for modelling a space,
i.e. the context of actors (e.g. sensors, devices,
systems and users) is modelled as a geometric
shape which is based on a sequence of coordinates.
This enables actors to independently define and
use potentially overlapping spatial context in a
consistent manner, when the relationships between
spatial objects are defined implicitly, i.e. as the
positions of the spatial objects shape within the
coordinate system. Moreover, the programming
model defines a set of types for modelling data,
i.e. the various roles that spatial objects and their
context information may have within a space. In
addition, the programming model supports context
along the dimension of time, defined by a set of
attributes. The approach is similar to ours, but
relies on a specific programming model and not
a common ontology of shared information.

26

The Design Principles and Practices of Interoperable Smart Spaces

Semantic-Based Context Modeling

Compared to other approaches, ontological models
for context and context-aware adaptation strate-
gies provide a clear advantage, both in the terms
of heterogeneity and the interoperability of data,
context and context changes. However, there is
very little support for modeling temporal aspects
in ontologies, and reasoning with ontologies based
on Description Logics (e.g., OWL-DL) may pose
serious performance issues. Semantic technolo-
gies have been applied to support the context-
awareness in several emerging smart spaces and
pervasive computing platforms, including (Chen
et al. 2004, Wang et al. 2004) and many others.
Most systems exploit semantic techniques to
represent and reason context and adapt service/
application behavior accordingly. Ontologies
have also been developed for describing QoS,
but a lack of completeness is common to all of
the approaches; only one or a few qualities are
considered, and the vocabulary or/and metrics
are missing. Moreover, making tradeoffs between
quality attributes and managing QoS at run-time
are not supported. Concerning the contextual
characteristics of services, several ontologies
have been designed, some of which are more
elaborate and others more succinct, depending on
their scope. Most of the approaches address the
vocabularies of pervasive computing. Typically,
they include a set of vocabularies for describing
people, agents, and places, as well as a set of
properties and relationships that are associated
with these basic concepts. However, rather little
emphasis has been placed on temporal contextual
information. Moreover, no attempts have been
made to align the service and context ontologies.

Given the best variety of existing context
ontologies, the following challenge is how to pro-
vide a suitable definition of the context for smart
spaces. A major obstacle is that the set of context
ontologies that have been proposed for pervasive
computing environments has not been standard-
ized nor widely accepted and systematically used.

The common approach is that SOUPA (Chen et
al. 2005) is used as a starting point extended for
the needs of the application field. Our first step
towards a holistic view of context awareness in
smart spaces has been introduced in (Toninelli et
al. 2009; Pantsar-Syväniemi et al. 2010) by map-
ping the dimensions of context to the levels of the
context defined in (Bettini et al. 2009). To avoid
“yet another” definition of context based on the
kind of information that it conveys, our approach
is to shift the focus from the content to the purpose
of the context. Instead of trying to describe all of
the possible types of context data that might be
of interest to the smart applications, we assume
that any piece of data might be the context for
a given application (and possibly not for other
applications). Context is strongly application-
specific: the same piece of information cannot be
defined a priori as “the context” unless this notion
refers to a specific smart application at a specific
time. Thus, defining the context in smart spaces
is more about how, why, and by whom the smart
space-related information is used, rather than about
what the information describes. Given that, we
propose that “A context defines the limit of the
information usage of a smart space application”.
The notion of “information usage” is intended to
be as comprehensive as possible, and includes
the retrieval, access, understanding, processing,
production, and sharing of information by smart
applications.

As a consequence of this approach, the context
interoperability finally boils down to data interop-
erability, since the context itself is represented
as information in the smart space. Therefore,
the same semantic representation of data that
ensures interoperability at the information level
also supports the meaningful exchange of context
across smart applications. This approach helps to
understand how the context data is to be dealt with
within the physical context, in order to achieve
pragmatic interoperability (see Table 1). After
that, the context data is enhanced with additional
context data at the second level that is responsible

27

The Design Principles and Practices of Interoperable Smart Spaces

for digital context management. This digital con-
text data forms the basis for the dynamic behavior
of smart spaces (i.e. dynamic interoperability,
see Table 1); context monitoring, reasoning and
adaptation are actors that make decisions based
on enhanced context data. These actors work for
a specific application or a group of applications,
defined as a scope of the application context (i.e.
collaboration interoperability in Table 1).

Context-Aware Adaptation

Depending on where and when an adaptation is
implemented, context-aware adaptation can be
achieved by the means of various software engi-
neering techniques. At design time, the software
adaptation relies on the use of metadata. At run-
time, computational reflection and aspect-oriented
programming serve well to structure and dynami-
cally drive the adaptation process (Issarny et al.
2007). Design time adaptation exploits metadata
for representing both context information (pro-
files) and the choices in application behavior at
a high-level of abstraction (policies). Metadata
specification exploits declarative languages to
accommodate the users of various expertises, to
simplify metadata reuse and modification, and
to facilitate the analysis of potential conflicts
and inconsistencies. Metadata runtime support
is responsible for metadata distribution/updates
and for adaptation policy activation/deactivation/
enforcement, independently of application logic.
In addition to the adoption of metadata, alternative
approaches have been proposed for representing
context and providing context-aware adaptation:
reflective middleware and middleware based on
dynamic aspect-oriented programming (AOP)
paradigm. Reflection and AOP represent possible
solutions to the issue of adapting application
behavior based on context. While reflection is a
programming principle that enhances software ob-
jects with the ability to inspect their own qualifying
properties, AOP is a set of software engineering
techniques, which allows the modeling of the

middleware structure at a high level of abstraction,
based on the assumption that the engineering of
some ”aspects” of a system cannot be hard-coded
into the application logic at design time.

As proposed by Kapitsaki et al. (2009), AOP
is an example of language-based approaches to
context-aware application engineering (as op-
posed to model-driven approaches). Language
based approaches, such as AOP and context-
aware AOP, follow the separation of concerns:
applications are developed with no explicit notion
of the context, while the context is handled as a
first-class entity of the programming language
and separate constructs are used to inject context-
related behavior into the adaptable skeleton. With
respect to the simple AOP, context-aware AOP
proceeds one step further: not only do the aspects
define context-aware adaptation, but their run
time execution is also driven by the context, i.e.,
a particular aspect may or may not be executed
depending on the current context. Another ap-
proach to context-aware application engineering
is the model-driven paradigm, discussed in the
following section.

The Design Methodologies
of Smart Spaces

Due to the fact that UML is the most widely
accepted modeling language, model-driven
approaches for smart space designs have also
emerged. Typically, these approaches introduce a
meta-model which is enriched with context related
artifacts, in order to support context-aware service
engineering. For example, the context-aware per-
vasive service creation framework (Achilleos et al.
2009) includes several artifacts that support smart
space development; a context ontology, a context
modeling language (i.e. a context metamodel) and
a tool environment that assists in context-aware
service creation. The tool environment supports i)
context model definition and validation, ii) context
model-to-model transformation and iii) context
model-to-code generation. The transformation

28

The Design Principles and Practices of Interoperable Smart Spaces

provides a mapping from the context metamodel
to the target metamodel. The approach tackles the
structural and static parts of smart space service
creation, i.e. context categories, context sources,
temporal constraints and contextual situation.
However, the dynamic aspects of context-aware
services are not supported. The ontology and the
model driven development approach (Soylu et al.
2009) exploit the model abstractions of MDA and
the commonly used modeling languages UML
and OWL. The approach enhances the software
engineering process with computing independent
domain ontology for modeling platform inde-
pendent applications and a context ontology for
reasoning. The integrated process model of the
approach is however very abstract and does not
increase understanding about how the context
ontology is to be specified, represented, and pro-
cessed at design time and run time, and how the
context ontology is to be transformed for the use
of various architectural elements, i.e. applications,
services and data, in run-time reasoning.

As stated above, the ontologies for defining
quality attributes are rare and incomplete. In
(Ovaska et al. 2010), the ontology orientation
is used for defining quality attribute ontologies,
especially for the defining of their metrics. On
the one hand, the quality and model driven design
methodology which is introduced exploits the on-
tology oriented design for specifying, representing
and managing quality attribute specific knowledge
by ontologies. On the other hand, architectural
knowledge is specified, represented and managed
as styles and patterns. Both of the types of models
can evolve separately. The mapping is made by a
tool chain that supports each development phase
of the model and quality driven service engineer-
ing. Recently, the interest on using ontologies for
describing and managing quality attributes has
increased due to the growing awareness of the
importance of quality characteristics in service
oriented systems. Moreover, the quality aspects
need to be managed not only at design time but also
at run time. In (Kassab et al. 2009), an ontology for

non-functional requirements has been introduced
with three views; an intramodel dependency view
for describing the relations between the software
entities, an intermodal dependency view for de-
scribing the structure of interdependent entities,
and a measurement view for defining measurable
requirements. These views are required for manag-
ing quality properties at run-time; the intermodal
view defines what the quality property is and how
to put it into realization, the intramodel dependen-
cies are used for reasoning purposes; and metrics
are used not only for defining quality goals, but
also for measuring how these goals are achieved.

Agile Smart Space
Development and Evolution

Despite the enriched set of software and service
technologies and development methodologies
which were introduced in the previous section,
there are still some challenges and issues that the
developers of smart spaces are encountering. To
facilitate the agile development of smart spaces, we
propose a novel methodology called Agile Smart
Space Development and Evolution (ASSDE). To
provide agility, ASSDE exploits some of the main
properties of SCRUM (Scrum 2009):

1. It breaks the work down into manageable
chunks, called scenarios, which can be imple-
mented in a few weeks. Scenarios embody
user centered design, which is another stone
base of ASSDE.

2. It enables the project team to proceed sys-
tematically, even when a complete and stable
design cannot be defined.

3. It allows large globally distributed teams to
work like small teams by dividing work into
pieces, proceeding in parallel but synchroniz-
ing continuously, stabilizing in increments,
and continuously finding improvements
through refinements and extensions.

29

The Design Principles and Practices of Interoperable Smart Spaces

As depicted in Figure 2, ASSDE includes
three main phases: Smart Space Initiation, Smart
Space Development, and Smart Space Operation
and Evolution. The Smart Space Initiation phase
provides a backlog of smart space applications,
described as scenarios. In the Smart Space Devel-
opment phase, these scenarios are broken down
into sprint(s) that describe an agent or a set of
agents needed for an application. The application
development exploits a set of predefined ontolo-
gies. In the Smart Space Operation phase, the smart
space application (SSA) is tested which provides
feedback to the earlier phases. The interoperability
platform (IOP) is the key reusable component, on
top of which applications are developed. These
applications embody the ability to understand and
process the defined scope of ontologies through
the means of agents.

The phases of the ASSDE methodology are
used as a framework for structuring this section
into three phases. In each phase, first, the chal-
lenges and issues related to the phase are discussed

and explained. Second, concrete solutions which
implement ASSDE are presented and exemplified
based on our actual experience within Sofia (So-
fia 2010). Third, open issues are briefly summa-
rized for further discussions in the following
section.

PHASE I: SMART SPACE INITIATION

Challenges and Issues

The challenges and issues of the smart space ini-
tiation phase relate to the specification of what a
smart space is, why it is needed, what it should
provide and how the space should be established.
The challenges and issues include the following
things:

• Business viewpoint: Can/must a smart
space be profitable? What are the value
creation model and the stakeholders’ busi-

Figure 2. Agile Smart Space Development and Evolution

30

The Design Principles and Practices of Interoperable Smart Spaces

ness models? How to estimate the business
impact, markets and acceptability of the
smart space? How to make a contract be-
tween the owners, providers and consum-
ers of a smart space?

• Technical viewpoint: What is the availabil-
ity and maturity of the hardware and soft-
ware needed for realizing smart spaces?
What is the availability of the information
needed for the smart space? What access
and service technologies are available and
applicable? How do these access and ser-
vice technologies provide interoperability?
What kind of interoperability is to be sup-
ported and how?

• Organizational viewpoint: What are the
roles of the stakeholders in the smart
space initiation? What are their rights and
liabilities?

Issues related to the smart space initiation
phase concern: What interoperability levels must
be supported and by which technologies? How
to deal with the separation of concerns? What
common technologies are applied? What space
specific technologies are to be developed? Which
domains and cross-domains are to be supported?
What are the issues related to the interoperability
level(s) to be supported, the legacy technologies
to be adapted, and how is flexible and evolvable
interoperability to be achieved?

Solutions and Recommendations

ASSDE deals with the above issues from the
business and technical view point, by defining
a set of analyses to be made before starting the
smart space establishment. The organizational
viewpoint is handled with a shared set of ontolo-
gies; i.e. we assume that technical, organizational
and domain boundaries can be crossed by using
shared ‘standard’ knowledge that is accepted by
a set of industry sectors/fields as a foundation of

cross-domain ontology, i.e. the core ontology of
smart spaces.

The smart space initiation phase of ASSDE
includes the following activities:

• The Scoping of the Smart Space. This ac-
tivity results in a set of smart space features
that scopes the boundaries of the space.
For example, a space may be intended for
use in public buildings, but not in private
houses. Public buildings are open to all
citizens and non-citizens. Public buildings
provide infrastructural services that need
to be protected for potential intrusions.
Moreover, the unauthorized use of a pub-
lic building may pose a serious political/
economical threat. Thus, the smart space is
scoped from several viewpoints: the own-
ers, users, provided services, importance,
quality aspects, and risks.

• Eliciting Smart Space Scenarios. This
activity starts with a brainstorming session
followed by team work for describing each
scenario according to the template defined
for that purpose. After each scenario has
been described in detail, the scenario de-
scriptions are presented to the group that
participated in the initial brainstorming
session. It is also checked that the identi-
fied scenarios cover the scope of the smart
space. In so far as no new comment or idea
has arisen, the scenario descriptions are la-
beled as completed and ready for impact
analysis. Each scenario description defines
the intent, stakeholders, the shared infor-
mation and the actors involved in provid-
ing or/and consuming the information.

• Impact Analysis. The outcome of this
activity is a report that explains the add-
ed value which is provided by the smart
space, the stakeholders’ interests and the
expected market penetration enabled by
the smart space and by the implementation
of the associated scenario(s). The impact

31

The Design Principles and Practices of Interoperable Smart Spaces

analysis is made regularly; it is carried out
the first time before making the decision on
the smart space development. The analy-
sis is started from the bottom up; starting
from a single scenario and ending up with
the whole smart space. If a smart space is
expected to be profitable or not, depends
on the purpose of the space. For example,
personal spaces provide added value and
experience for their users, and therefore,
profitability is not a relevant question in
that case. In smart cities that provide in-
formation services for a variety of users,
profitability is a key issue to be assessed
and calculated. In the later phases, impact
analysis is performed after each promo-
tion. Early promotions are used for esti-
mating the acceptability of a smart space.
Promotions are made for device develop-
ers, software developers, application de-
velopers at the national and international
levels and for the joint European consor-
tiums that work in different application
fields or related technology areas. The re-
sults of these promotions are analyzed and
used for estimating business impacts and
market penetration. So far, these analyses
are made case by case without any sys-
tematic approach, and thus, these analysis
results do not provide any further under-
standing about the maturity of smart space
ecosystems in general. Moreover, contract
development is still at an immature level.

• Risk Analysis. Risk analysis covers the
risks in business and technical issues.
Business risks are related to the objective
of the space, the role of the company in
the space development and the partners
involved in its development. Moreover,
a return of investment is to be calculated
considering the investments to be made
for technology development, adaptation,
skills development and the timeframe re-
quired for their development. The return

on investments is calculated so that it
provides information for decision makers
enabling them to estimate short term and
long term requirements, limitations, and
profits. Business and technical risks are
represented as the costs and time required
to pay them back.

• Assets Analysis. Concurrently to the risk
analysis, the value of existing assets is
analyzed in order to estimate what could
be reused, such as, what assets need to be
adapted and what kinds of new assets are
to be developed. The focus of the assets
analysis is on the functionality, quality,
constraints and potential of existing assets
in the context of the new smart space under
consideration. Software assets may include
architectural styles, middleware technolo-
gies, tools, languages and source code.
Hardware assets might include devices,
sensors, motes, networks, etc.

• Prioritization and Selection. This is the
last activity of the smart space initiation
phase. It results in a smart space applica-
tions backlog. This backlog consists of a
set of prioritized scenarios, describing the
smart space applications that are seen to
have the highest potential, business impact
and market penetration in a reasonable
time frame. Prioritization defines in which
order the scenarios are to be implemented
and used for promoting the space.

In summary, the above mentioned smart space
initiation activities tackle all of the technical
challenges and issues, but there is lack of meth-
ods and supporting tools for analyzing business
challenges and issues. Moreover, it is obvious that
smart spaces will embody a rich set of roles for
stakeholders that are not known yet. Therefore,
there are still challenges and issues not solved: the
roles of stakeholders in SS initiation and operation
& evolution; and the rights and liabilities of the
stakeholders representing those roles.

32

The Design Principles and Practices of Interoperable Smart Spaces

PHASE II: SMART SPACE
DEVELOPMENT

Challenges and Issues

Smart spaces are fusions of different software,
service and computer technologies. Therefore,
there are several challenges and issues that re-
late to the underlying platform that provides the
means for interoperation, i.e. an interoperability
platform, IOP. The other part of the challenges
and issues are related to the development of smart
space applications that are executed on top of the
IOP. The following challenges and issues were
identified and explored:

• How to define the requirements for IOP?
• How to specify the main features of IOP

architecture?
• How to apply model driven development

to the IOP development?
• How to guarantee the interoperability of

applications?
• How to design reusable building blocks

and use them in SSA development?
• How to make sure that IOP is used cor-

rectly and effectively?
• How to guarantee that an SS provides the

expected quality level?

Solutions and Recommendations

The development of IOP and SSAs is progressing
concurrently. However, for the sake of clarity, the
activities for specifying, designing and implement-
ing IOP will be introduced first. Thereafter, we
will explain how SSAs are developed on top of
it. Thus, the understanding of IOP is a necessity
in order to understand our model and ontology
driven approach. In particular, based on the chal-
lenges and issues discussed above, this section will
cover the following aspects: IOP development,
ontology development, smart space application
development and the evaluation of smart spaces.

IOP DEVELOPMENT

IOP Requirements

When the development of the IOP began, there
was no full understanding of the interoperability
models introduced in section 2. Thus, we studied
the existing interoperability models and came to
the conclusion of three interoperability levels;
device level, service level and information level.
The device level focuses on the connectivity,
network and data as introduced in Table 1. The
service level deals with the data, context, and the
change of context (see Table 1). The information
level is responsible for handling the meaning of
data. Thus, the information level interoperability
has a strong similarity with the consolidation
interoperability of C4IF and the semantic interop-
erability of LCIM. The key point, and strength
of our definition, is that we are only focusing
on information interoperability and its realiza-
tion in practice. We do not expect that all of the
devices are fully interoperable on the device and
service levels. The aim is that the device/system
manufacturers and providers use their existing
technologies and enhance their products with
information interoperability in order to share a set
of information with other device manufacturers
and smart space owners/providers.

The IOP requirements were distilled from the
scenarios defined for three smart spaces; personal
spaces, smart indoor spaces and smart cities. In
total, 56 scenarios with several sub-scenarios were
analyzed and transformed to IOP requirements,
classified into two categories; quality requirements
and functional requirements. Quality requirements
were related to the execution qualities: informa-
tion security, availability, performance, reliability,
adaptability, and usability; or evolution qualities
like integrability and extensibility. The functional
requirements of IOP concerned communication
styles, evolvability, dynamic, proactive and con-
text-awareness and heterogeneity of smart spaces.
The requirements were defined on a tabular form

33

The Design Principles and Practices of Interoperable Smart Spaces

with the following attributes: a significance for
architecture/application/space and relations to the
interoperability levels, related scenarios, existing
enablers and required enablers.

Next, the specified requirements were carefully
analyzed and prioritized. For ranking purposes,
we used the same criteria as when ranking the
scenarios: i) the maximum business impact, and
ii) the fast and low-risk realization criteria. As a
conclusion, the IOP requirements of high priority
(16 quality requirements and 12 functional/non-
functional requirements) were used as architec-
tural drivers that guide the definition of the IOP
principles to be followed while architecting the
IOP. Evaluation criteria were also defined for IOP
instances, based on these two sets of requirements.

IOP Principles

Prior to defining the IOP principles, several work-
shops were carried out in order to get a consensus
on the focus of the IOP. As a conclusion of these
discussions, the partners involved in the smart
space development agreed on the main objective
of IOP: to provide an infrastructure that assists
users with added-value interoperable information
about objects existing in the environment of the
user. Therefore, the IOP reference model is to be
defined at a high abstraction level and be simple
and agnostic with respect to i) the use-cases, ii)
information and iii) the physical environment
(including legacy equipments). These were ex-
pected to enable the level of extensibility required
to support multi-domain and cross-domain ap-
plications. Thus, IOP combines the information
interoperability solution with existing service
and physical level interoperability solutions. The
interoperability is based on the common ontology
models of information that may originate from
heterogeneous legacy and embedded devices
spread in the environment or may be produced
by the aggregators of IOP information. IOP may
be active and trigger external entities to react to
relevant and selected environmental changes. Such

features should be met at a high quality level.
Among the “qualities” considered to be relevant
to assess the value of the IOP, the following items
should be primarily addressed:

• business generated by the IOP based smart
environments,

• the easiness to develop applications on top
of IOP,

• models that describe interaction among us-
ers, their environment and their history

• the security and dependability of IOP
based applications

• IOP performance, energy efficiency and
scalability.

We claim that an IOP with significantly high
scores on the above properties may originate a
new market for applications that can interoperate
independently from their business/vendor/manu-
facturer origin. This can introduce a radical change
to the traditional application scenario, which is
based on fixed business boundaries. The expected
applications may be cross-domain, may adapt to
the user situation, may spontaneously start when
required and have the potential for significant
market penetration and socio-economic impact. In
order to define the architectural style of the IOP,
sixteen principles were distilled, starting from the
above vision, and summarized in Table 2.

IOP Enforcement

The IOP herewith is considered to be a simple, por-
table and open source implementation. It is called
Smart-M32 and it takes the principles seriously. It
consists of an interoperability component hosting
the shared information space, seen as a service and
accessed through a semantic protocol by engines
interpreting the shared information space through
an ontology; the shared information store is called
SIB (Semantic Information Broker), the agents
are named Knowledge Processors (KPs) and the
semantic protocol, i.e. the interface between the

34

The Design Principles and Practices of Interoperable Smart Spaces

SIB and the KPs, is called Smart Space Access
Protocol (SSAP). IOP can be taken into use either
through standard TCP/IP sockets or by integrat-
ing it with some middleware technologies that

support service oriented architecture. Examples
of these kinds of middleware technologies are
OSGi, NoTA, and Web Services. OSGi combines
component and service oriented architecture appli-

Table 2. The architectural style of IOP

IOP principle Definition

Shared information The IOP manages a shared information search domain called Smart Space (SS), accessible and understood by all
the authorized applications. Information is about the objects existing in the environment or about the environment
itself. The information is represented in a uniform and use-case independent way. Information interoperability
and semantics are based on common ontologies that model information.

Simplicity The IOP deals with information. The IOP information level is use-case agnostic.

Service An SS is a service, offered by a service platform and intended for the sharing of interoperable SS information.
Each application may interface to one or more SSs through a Smart Space Application Protocol. Use case specific
functions may be performed at the service level before joining the SS.

Agnostics The IOP is agnostic with respect to the adopted ontology, application programming language, service platform
exposing the SS, communication layer and hosting device/system.

Extensibility The IOP does not provide a-priori defined functionalities to manipulate information, in addition to inserting
and removing the information for sharing. IOP functionality may be extended with domain ontologies and with
information manipulation services. If these services become commonly usable, they are called “IOP extensions”.

Evolvability The IOP should support the addition of new applications. This principle envisages that the IOP provides the
means to implement software that adapts to changes in SS without changing code. For example, if relevant sen-
sor information is added to the SS, the SSA should benefit from it without changing any part of the application.

Context Context management is an IOP extension, according to the extensibility principle. IOP should enable the aggrega-
tion of interoperable information into a higher level of context information, for the benefit of application usability
and IOP performance. As the information returned by the IOP depends on the query and available information,
the ontology is to define context semantics. Context may be managed and used both at the information level and
service level.

Notification Applications may subscribe to be alerted upon a context-change.

Usability User interaction management may become an IOP extension, according to the extensibility principle. The user
interaction model and the usability of SSAs should benefit from the context-dependence principle. The ontology
defines the semantics of interaction events. The interaction between the users, their environment and SSA may
be managed both at the information and service level,

Security and trust Security, privacy and trust management is an IOP extension, handled both at the service level and information
level. Appropriate ontologies define whether the IOP is required to respect privacy, enforce authentication and
access control policies at finer granularity than SS itself, or if the shared information integrity, confidentiality
and trust need to be provided.

Business model The development tools and engineering phases of SSAs should be consistent with the IOP business models and
mapped to the value chain(s) of the smart space stakeholders.

Legacy Legacy devices and systems access and exchange information with the SS through a simple use-case independent
protocol. Such exchanged information is modeled by Domain Ontologies. Legacy devices may provide informa-
tion to the SS and subscribe to information from it.

Scalability The IOP should scale with respect to the number of the users, devices, and resources available on each device,
the amount of information stored in the SS, and the number of SSs.

Performance Performance monitoring is an IOP extension. Performance of IOP realizations and SSAs should be evaluated at
the development time and be measurable at run time. The criteria for run time performance monitoring should
be defined through performance metrics ontology.

Reliability Availability The reliability and availability of every IOP instance and of SSAs should be evaluated at development time and
be measurable at run time.

Productivity SSA development tools should support easy and fast agents and the application development with software reuse.

35

The Design Principles and Practices of Interoperable Smart Spaces

cable for client-server solutions, commonly used
in indoor spaces. For example, Smart-M3-OSGi
integration was applied to the smart maintenance
of public buildings demonstrator (Manzaroli
2010). NoTA is a novel service architecture for
networked embedded systems applied to a personal
space demonstrator (Luukkala 2010). IOP based
on Smart-M3 and Web Services are applied to a
smart city pilot, still under development.

ONTOLOGY DEVELOPMENT

Smart space applications are based on three
“abilities” that make them ‘smart’: i) an ability to
understand the situation where the application is
used and by whom, ii) an ability to interpret the
semantics of shared information, and iii) an ability
to tolerate uncertainty at development time and
at run time. In particular, the first and the third
point embody the concept of context-awareness,
while the second relates to information interop-
erability. In this section, we will focus on the
semantic modeling of data to achieve information
interoperability. Thereafter, we will discuss how to
develop context-aware smart space applications.

Several interoperability issues are raised by
the heterogeneity of devices and software which
are already in place in physical environments. To
reduce development and deployment costs and to
maximize the reuse of existing applications, our
methodology tackles those interoperability chal-
lenges at the information level via the adoption
of proper semantic technologies. The primary
idea is to provide smart applications with highly
interoperable and shared information spaces that
maintain sensed data and information on currently
available resources and services. The content of
shared spaces is openly understandable and largely
re-usable thanks to the exploitation of lightweight
semantic technologies, first of all, Resource De-
scription Framework3 (RDF)-based ontologies to
describe simple relationships between represented
entities. The data model of RDF is generic and

well suited to modeling real-world phenomena,
including entities, events, interactions and seman-
tic connections in smart environments. Whenever
greater expressivity is needed, simple RDF can be
supplemented with OWL4 constructs, constantly
keeping attention at avoiding an unnecessary
complexity in ontology definition. OWL provides
further modeling primitives to describe properties
and classes: among others, the relations between
the classes, cardinality, equality, richer typing of
properties and the characteristics of properties
(e.g. symmetry), and enumerated classes.

Given the wide spectrum of targeted smart
space applications, a crucial issue in ontology
development is how to develop a set of suitable
ontologies based on a common data model that
can be specialized to each application field. This
problem was not only a modeling issue, but also
had strong performance implications since the
loading of an oversized set of ontologies into a
SIB or having it processed by a KP would af-
fect both the efficiency and scalability of SSA.
Therefore, we adopted a three-layered approach
for the ontology development:

• a foundational ontology layer to provide
the base concepts and relations needed for
a real-world description model (e.g., the
concepts of an event or person);

• a core ontology to provide the concepts
and relations common to all SSAs (e.g.,
the concepts of a smart device or quality of
information);

• a set of domain ontologies, specific to
each application domain, to provide the
concepts and relations describing targeted
scenarios (e.g., the concepts of tempera-
ture and building in a home maintenance
scenario).

Each layer is built on top of the previous one;
in that way, the higher level exploits and extends
the lower one. The DOLCE ontology (DOLCE
2010) was selected for the foundational ontology

36

The Design Principles and Practices of Interoperable Smart Spaces

for its high level of abstraction and conciseness,
as well as the deepness of its ontological analysis,
which has been carried out by experts in the field.
For the core ontology, some parts of two domain
ontologies, SPICE Mobile Ontology (SPICE
2010) and CONON Ontology (Gu et al. 2004)
were selected. The selected parts are i) the core
concepts of SPICE and ii) the concepts and proper-
ties related to the quality of data from CONON.

Concurrently with the IOP principles, the
domain ontologies were specified, starting from
scenario analysis results and the information
produced and consumed by the actors involved in
the intended scenario. This information is crucial
for the understanding of the requirements of the
core and domain ontologies, although the previous
developed ontologies helped in making selections
and formulating the main concepts and properties
of these ontologies.

The application development tools, expected
to seamlessly integrate the ontology within the
applications, were also developed concurrently
with the core ontology. Moreover, several small
domain ontologies, e.g. a common ontology for
sensors were defined and applied in practice, in
spite of the need to be mapped to the sensor con-
cepts of the core ontology. This example depicts
the ontology evolution in practice: while the core
ontology evolves slowly, new ontologies emerge
all the time, so that the evolution of ontologies
needs to be tolerated and handled in one way or
another. One way is that device manufacturers
provide a mapping that maps the ontology that they
have used to the SS core ontology. This mapping is
taken into account during the application develop-
ment process, as illustrated in Figure 2. Another
way is that all of the application developers do
the mapping by themselves, or there is a service
in IOP that makes the mapping at run-time. The
last option requires an IOP maintainer, who has
special skills in ontology mapping algorithms and
their automatic execution. Naturally, the SS owner
is responsible for ontology evolution policies,

while the evolution enforcing is the responsibility
of the SS manager.

SMART SPACE APPLICATION
DEVELOPMENT

Supporting Context-Awareness

One driving force of smart spaces is their ability to
enable applications that adapt to the dynamically
changing situation of the smart environment. As
defined in section 2, a context defines the limit
of information understanding in a smart space.
Thus, the context is relevant for the agents (i.e.
KPs), applications and users. As KPs interact with
the SIB, they manage interoperable information.
The specific agent is exploited to provide context-
aware adaptation based on QoS requirements. For
instance, if a SSA finds out that a required quality
level is not met, it inserts data about the current
quality level into the SIB, which notifies the agent
responsible for quality-driven adaptation. At a
higher level of abstraction, it is possible to define
the user context by deriving it from the context
of agents which are interacting with that user in
ongoing application sessions. In this case, the
term “information usage” should be interpreted at
the granularity and abstraction level suitable for
SS end users, e.g., user profiles and preferences.
Context awareness enables filtering mechanisms
that enable scoping out of the “visibility” range
for those SS data that are not considered to be of
interest. We call such a visibility range the KP/
user scope. The scope can be defined to be the
output of the filtering process performed over the
SS. For example, if a KPI can understand ontology
A, but not ontologies B and C, its scope within
the smart space will not include the SIBs (or the
parts of them) whose data is expressed according
to B and C. Therefore, KPs may have different
visibility on the SS due to their current context.
The scope of an SSA derives from merging the

37

The Design Principles and Practices of Interoperable Smart Spaces

scopes of its composing KPs, and might possibly
coincide with the user scope.

According to the IOP principle on “Context”,
context is provided by an IOP extension consisting
of a set of cooperating KPs, which collectively
provide the appropriate functionalities. The IOP
itself already supports context storage, retrieval,
and distribution; context is available to any SSA
by querying information from SIBs. Therefore,
the context extension provides the following func-
tionalities: i) context specification, acquisition and
monitoring, including data collection from context
sources and ii) context pre-processing, aggrega-
tion, and/or reasoning, including context-based
filtering. Based on this IOP extension, applications
are able to make context-aware adaptations. For
instance, context pre-processing KPs access SIBs
to collect raw data and produce new information,
such as context history and higher level context, to
be inserted again in the SIBs. Similarly, context-
aware filtering KPs act as intermediate entities
between semantic repositories and application-
specific KPs by dynamically determining the
scope of an SSA. Moreover, the run-time quality
management provides dedicated KPs that are in
charge of specific quality attributes (e.g. security,
reliability, and energy efficiency). They are capa-
ble of a context-dependent monitoring, reasoning
and adaptation of SSAs, based on the measured
quality and available resources/services in the SS.
The implementation of context-aware features
via dedicated KPs has a number of advantages:

• It keeps SIB very lightweight, can be
implemented in a cost effective way and
is also usable for context-independent
applications.

• A simple and context-agnostic SIB clearly
separates the application logic from the fa-
cilities, thus increasing the interoperability
and reusability.

• Simple applications can be easily proto-
typed by working on a very simple refer-
ence model. This provides a real advantage

in the development of early demonstrators
that encourage SS developers using the
IOP and promotes its widespread exploi-
tation, e.g., via low-cost and simple SS
applications.

KP Development

When a KP is developed, the following rules should
be kept in mind: KPs should i) not compromise
the ontology consistency, ii) not violate any of
the IOP principles, iii) address a single goal (a
separation of concerns) and iv) be designed to be
as reusable as possible. KP development is also
strongly influenced by the adoption of RDF as a
resource description solution. Developing KPs at
the RDF graph level is similar to programming in
the assembly language: it requires highly specific
skills and the productivity is low due to the level
of details that needs to be considered at the pro-
gramming time. Therefore, KP developers need
a more effective development approach that rises
the level of abstraction, hides the graph level or/
and the code level, and also enables KP develop-
ment by non-programmers. Therefore, we offer
three ways to develop KPs: i) “triple-based KP
implementation”, ii) “triple-blind KP implementa-
tion” and iii) “model based implementation”. The
main difference between these three approaches
is the visibility level of the knowledge base and
the KP code.

With triple-based implementation, KPs access
the SS through language dependent APIs called
KPIs (Knowledge Processor Interfaces) which
hide the protocol to access the smart space (i.e.
the SSAP) and support basic graph manipula-
tion functions, including insert, remove, update,
graph traversal queries and subscribes; a single
query may be matched to a sequence of steps in
the graph. KPI libraries exist for Java, ANSI-C,
C# and Python. The “triple-based” approach was
adopted in the development of the early proof-of-
concept applications. Since the direct manipulation
of RDF triples is required, this approach became

38

The Design Principles and Practices of Interoperable Smart Spaces

less manageable while the ontology size and the
application logic complexity increased.

With the triple-blind implementation, KPs
access the SS through methods offered by the
ontology dependent convenience libraries gen-
erated off-line by an ontology processing tool.
Convenience libraries map ontology classes into
language classes, hiding the RDF graph from
the programmer. Built on top of the KPIs, a
convenience library is required for each program-
ming language. The “triple-blind” development
approach is expected to become the preferred
approach of KP programmers. However, this
approach requires the availability of SSA devel-
opment tools.

The model based approach supports the devel-
opment of entire SSAs, each consisting of a set of
KPs. This approach is suitable for end-users and
those developers that do not have a deep knowl-
edge of ontology manipulation. The model based
KP development relies on a graphical tool called
SmartModeller (Katasonov & Palviainen 2010),
which allows modeling of the KP logic by using
existing reusable building blocks stored in a KP
repository. Actions, which are not available, need
to be coded manually, and once tested, they can
be stored in the repository for further reuse. The
tool follows the metamodel that is consistent with
the IOP principles and exploits its own software
ontology for producing the logic part of the source
code for KPs. Currently, a code generator has
been implemented for Java and Python, but other
languages may be supported in the future. Gener-
ated KPs can also be tested by the SmartModeller.

In all of the KP development methods, the
repository of reusable KPs is considered to be
the main instrument to meet the IOP productiv-
ity principle. In order to properly manage such a
repository, the following incremental steps should
be taken: i) the definition of a KP taxonomy, ii)
the definition of a KP ontology, used not only at
development time but also at run time, and iii)
turning KPs into services, with the aim of making
these services discoverable at run time, by match-

ing the user context to the service ontology. In this
chapter, only the first step, i.e. the definition of a
KP taxonomy, is considered.

KP Taxonomy

The purpose of the KP taxonomy is to facilitate
a smooth growth of SSAs and to maximize KP
reuse by assisting the developer in searching for
an applicable KP from the KP repository and stor-
ing new ones therein. Different classifications of
KPs are possible, based on the adopted criteria. In
the following, we will present two classifications,
based on (i) the reusability level of KPs and (ii)
the role of KPs in the smart space.

With respect to their reusability level, the KPs
are classified into the following four classes:

1. Application specific or Domain specific
KPs that represent a specific domain (e.g.
personal space) or application area (e.g.,
health monitoring applications).

2. Adaptable KPs that can be adapted to in-
stantiate new domain specific KPs.

3. Common KPs that can be used as such or con-
figured by parameters for multiple domains.
The parameters could be set at design time
or at run time. Common KPs may become
integration elements between domains, used
in cross-domain applications.

4. Core KPs that impact the IOP architecture
at the service level, extending the initial
version of the IOP.

A KP usually originates as an application-
specific KP, later promoted through the entire
KP category-chain, through a generalization
process. At the time of writing, although several
KPs were still in their early stage of development,
they were expected to become building blocks
of IOP extensions, introduced as “Common” or
“Core” KPs. This is the case, for example, for all
the KPs that support context-awareness, dispatch
transport independent messages and manage

39

The Design Principles and Practices of Interoperable Smart Spaces

interaction devices, smart objects and seman-
tic connections in smart environments. Figure
3 represents a fragment of an Adaptable KP’s
taxonomy arranged as a tree. Some of the tree
leaves may be Application-Specific KPs, which
will be turned into “Adaptable KPs” as soon as
a new KP is implemented, starting from one of
them. For example, the flagged KPs in Figure 3
are the identified candidates of Common KPs.
As the number of KPs is expected to grow very
quickly, the KP taxonomy is becoming large and
needs tool support.

With respect to their role in the smart space,
five KP role classes were defined as follows:

• Adapter is any KP that interacts with the
SS and entities which are external to the
SS itself. Adapters are called legacy adapt-
ers if the external entity handled by the KP
already existed before the SS, e.g., sensors,

actuators, message dispatchers and wire-
less sensor networks.

• Aggregator is any KP that interacts with
one or more SS(s) and with no other en-
tity. Aggregators enrich SS with informa-
tion produced by processing information
originating from the SS itself. Reasoning
and prediction KPs are examples of
aggregators.

• Controller is any KP that dynamically up-
dates semantic connections in the SS. Any
KP that is involved in the digitalization of
the physical world is a potential controller
KP as it may need to update semantic con-
nections in real time.

• Filter is any KP that processes and fil-
ters data before storing it to the SS. It
may collect data from an external sys-
tem (Filter&Adapter) or process data
which is already stored in the SS (e.g.

Figure 3. A fragment of adaptable KPs taxonomy

40

The Design Principles and Practices of Interoperable Smart Spaces

the context filter/reasoner, classified as
“Filter”&“Aggregator”).

• Monitor is any KP which collects relevant
information for a pre-defined purpose.

The taxonomy tree, shown in Figure 3, rep-
resents our first attempt to define the roles of
KPs, starting from the core mission of the smart
spaces, which is making “information” in the
physical world available to smart applications.
The taxonomy includes examples of proof-of-
concept legacy adapters, aggregators, controllers
and filters, some of which were already available
as proof-of-concept prototypes.

Although the development of the KP taxonomy
is in its initiation phase, we are convinced of its
advantages in speeding up the development of
SSAs and guaranteeing a high quality of SSAs.
Obviously, there may be a great many classifica-
tions for KPs, and many properties and relations
between the KPs are hidden by the tree based tax-
onomy shown. Therefore, additional descriptions
(and tooling) are required when a KP ontology is
revised from this KP taxonomy. This is considered
to be a challenging and promising opportunity, as
a KP ontology would be extremely useful both at
design time and at run time for searching for the
most suitable KP.

THE INTEGRATION AND TESTING
OF SMART SPACE APPLICATIONS

When the KPs required for an SSA are identified
and defined, their implementation can be deployed
to the concurrent distributed teams, which proceed
according to the productivity principle, searching
first the repository for existing KPs to be reused.
The KP may be specified by using an appropriate
KP template (in a tabular form) or the SmartMod-
eller tool (Katasonov & Palviainen 2010). The KP
template was useful in the early phase when no
KPs had been implemented yet. The SmartMod-
eller assists in adopting ontology driven software

engineering that enhances model driven develop-
ment with the use of ontologies for sharing the
meanings of domain, tasks and software concepts
in the development of the ready-to-use building
blocks for speeding up the SSA integration and
testing with the help of a KP repository. Thus, an
efficient use of the SmartModeller expects actions
to be written and available in a repository.

All three SSA development approaches have
been applied in practice. The integration of KPs
can be made by hand through the SIB. Thereaf-
ter, testing is made by a running demonstrator
that realizes one or a set of scenarios. Later on,
the working functionalities can be used by the
SmartModeller that integrates the building blocks
(data from SIB and actions from the repository)
together in a new way, i.e. by mashing up a new
SSA. The SmartModeller is intended for the use
of end-users; the professionals are expected to
use the KP template or the convenience libraries.
We have evaluated the KP template by designing
and implementing a set of scenarios for different
kinds of smart spaces. The convenience libraries
are still under testing. The SmartModeller has been
tested in a laboratory setting by professionals and
improved based on the evaluation results. So far,
a set of end-users (not experienced with the IOP
nor SS development tools) have begun an exercise
with the SmartModeller. These evaluation results
will be used towards the further improvement of
the tool.

THE EVALUATION OF
SMART SPACES

In smart space evaluation, the ASSDE approach
focuses both on the instantiated IOP and the de-
veloped SSAs. As the SSA is intended to be used
in a smart environment, it cannot be evaluated
without the IOP. Thus, the evaluation is performed
as a combined effort of the IOP developers and
application developers. As IOP is already working
and the applications are made by end-users, the

41

The Design Principles and Practices of Interoperable Smart Spaces

evaluation and testing is the duty of the application
developers. However, the testing is to be made as
easy as possible if not automatic.

The evaluation criteria for IOP have been de-
rived from the IOP requirements. These criteria are
classified into two categories; i) criteria for func-
tional evaluation; and ii) criteria for design time
and run-time quality evaluation. The mandatory
functional criteria are listed in Table 3. Optional
functional criteria concern the IOP extensions,
which are not required in every IOP instance.

The quality criteria, defined in Table 4, con-
centrates on the capabilities that should be covered
by designs and implementations and should be
evaluated at development time and/or run time.
In smart spaces, these quality criteria are taken
into account in the designs of the interoperability
platform and the applications which are developed
on top of it. At design time, qualities can be
evaluated through simulation or by using the
quality attribute specific prediction methods as
described in (Ovaska et al. 2010). Simulation and
prediction are used only for some parts of smart
spaces, and not for evaluating the whole smart
space, since, due to the dynamics of an SS, it is

not possible to simulate all of the possible states.
Thus, the quality evaluation has two parts: i)
Simulation and prediction methods are applied to
a specific purpose and part of IOP, e.g. the per-
formance of SIB deployment, and ii) run-time
quality monitoring and visualization is used to
evaluate the fulfillment of the quality criteria at
run-time. As security, performance and depend-
ability are execution qualities, they are evaluated
from a running smart space. The metrics to be
used during the development time and at the
execution time are different, and therefore, vari-
ous measuring techniques are required. The cri-
teria for execution time evaluation are defined by
a set of ontologies, each of which focuses on one
specific quality attribute. So far, we have defined
a security metrics ontology. The development of
reliability and performance metrics ontologies
are under work. All of these require extensive
experimentation and validation before leveraging
them among the SSA developers.

Although a systematic evaluation of the defined
quality characteristics is still under development,
the following concurrent development activities
are ongoing: First, a design time evaluation

Table 3. Mandatory criteria for functional IOP evaluation

Principle Criteria

Shared information IOP provides the functionality required for information interoperability and service interoperability

Simplicity The service interoperability level provides constructs for handling the building blocks of the information interoper-
ability level

Agnostics IOP is agnostic to used software technologies including ontologies, programming languages service technologies,
and legacy.

Extensibility Space is extensible; information is extensible and knowledge interpretations are extensible. IOP supports run-time
information mash-up. A qualitative evaluation method is used for extensibility evaluation.

Notification A set of detection and notification mechanisms are provided for context sensing, activating specific functionality and
alarming for upcoming events, i.e. the reactive and proactive actions activated by changes, data or events should be
possible.

Security and Trust IOP produces information with relevant indicators of its source and the quality of its source.

Evolvability IOP provides an evolvable information sharing environment, i.e. devices and services can be changed without having
an effect on applications.

Context IOP provides a mechanism for searching and adapting information which is relevant for the requestor’s purposes, if
the information exists in SS and is available for the requestor.

42

The Design Principles and Practices of Interoperable Smart Spaces

method is developed in order to identify the
bottlenecks of smart spaces and to guarantee that
the IOP is scalable for a diversity of spaces; sec-
ond, intelligent monitoring and reasoning mech-
anisms are developed for querying and interpret-
ing measured quality attributes at run time. These
have both passed the early verification and valida-
tion phase in a laboratory setting and are now
under feasibility testing by a set of cross-domain
scenarios selected for the next evaluation step.

PHASE III: SMART SPACE
OPERATION AND EVOLUTION

Challenges and Issues

Although the smart spaces, developed for vari-
ous domains, are still in their initiation phases,
we can identify some challenges and issues that
have arisen or will arise when smart spaces are
in operation for a longer period of time. We cat-
egorize these things into two classes:

• Issues on how to gain an understanding
about the operation of the space: i) the dy-
namic nature of a smart space, i.e. what is
changing and how often, ii) how well the
smart space is working, and iii) how the
users experience the smart space.

• Challenges that arise from i) the variety of
the domains that the space is crossing, and
ii) the various timeframes of evolving do-
mains, ontologies and technologies used in
the smart space.

In order to tackle these issues and challenges,
a set of supporting facilities are to be provided.
First, the dynamisms of the space shall be illus-
trated to its stakeholders from different viewpoints.
The space owner is mostly interested in how the
space users experience the space. A service/in-
formation provider is interested in how well the
space is working and how many potential users
are visiting the space. Maintenance and smart
space developers would like to see how the space
behaves under normal and stress operations. Thus,
all of these issues should be tackled by the facili-

Table 4. Mandatory and optional criteria for IOP quality evaluation

Quality Mandatory criteria Optional criteria

Security The identity of users and devices has to be authenticated. There are
various authentication levels to be supported.

The separation of personal informa-
tion from other information is to be
supported.

Access to SS is controlled through appropriate countermeasures for us-
ers/devices/services. No access without authentication is provided.

The actions of users and devices are
to be accounted and available for non-
repudiability purposes.

Unauthorized access to smart spaces is prevented. The identification and ignoring of
harmful content are to be supported.

Information integrity is to be proved during transmissions between
information sources and sinks.

The security auditing mechanism of
IOP supports various security levels.

Performance and
Dependability

Records on available resources are to be kept. SS should be able to continue
its operation without losses of resources/failures produced by disasters.

Real-time notification and information
delivery.

Scalable: the number of resources, information providers and consumers
should scale up to the numbers that are compatible with application and
deployment scenarios.

Reliable information delivery.

The autonomic adaptation of a smart space. Various types of adaptation
are to be supported; resources, services, information, the quality of
information/services/resources.

43

The Design Principles and Practices of Interoperable Smart Spaces

ties that help the stakeholders gain the maximum
benefit of the space.

The main challenge of a cross-domain interop-
erability platform is how to solve the problems
which are encountered due to changes that will
happen in spatial and timing spaces. Due to this,
the smart space is only ‘smart’ if it is able to
handle these changes in a way that makes the
smart space attractive for its application providers
and end-users.

Solutions and Recommendations

In order to improve the understanding of the
stakeholders, i.e. application/information provid-
ers, smart space providers, maintenance providers
and the owners, we have developed and tested a
set of facilities, implemented as KPs and a tool
that is connected to the smart space for monitoring
data, events, quality, structure and the behavior
of the smart space according to the interests of
the respective stakeholders. The tool is able to
record and visualize what is happening in a space
and how perfectly it works. However, it doesn’t
record how individual space users behave, what
their interests are, and how they experience the
smart space. Although we don’t expect these kinds
of special KPs to bring any technical problems,
there is a privacy issue that has to be considered:
the recording of habits, desires and experienced
quality has to be made anonymously. So far, dem-
onstrators are used for validating the capabilities
of a smart space. However, field tests will also
be carried out when the cross-domain pilots are
refined and ready for the use of real end-users.

Ontology driven software engineering that
enhances the model driven engineering is one step
forward in seeking a comprehensive solution for
managing the evolution of cross-domain architec-
tures, due to the facts that i) abstraction helps the
understanding and sharing of knowledge among
developer teams; ii) aggregation by a means of
shared information makes it easy to develop partial
solutions and integrate them via a smart space; and

iii) the inherent dynamism of smart spaces makes
it possible to tolerate changes that happen all the
time in the spatial and timing dimensions. The
stack of the defined ontologies (i.e. foundational,
core, domain, application) helps in the separation
of concerns. Moreover, the separation of concerns
is also made while retrieving a view of the core
ontology for the specific purpose of an application
under development. In this case, the separation
of concerns is supported by the SmartModeller
tool. Aggregation is understood to be an activity
that retrieves information from a smart space,
enhances it and provides the results for the use
of the smart space entities. A set of mechanisms
have been defined and implemented for handling
the dynamism of smart spaces; the adaptable KPs
developed for monitoring, reasoning and adapting
quality, context and behavior of a smart space are
assets that facilitate the managing of the changes
in the spatial and timing spaces.

As a conclusion, although many of the support-
ing software services are still under development
and need to be validated in field tests, most of the
challenges and issues related to the operation and
maintenance of smart spaces have already been
identified or/and partly solved. However, it still
remains open how to collect feedback from smart
space end-users and how to communicate it back
to the smart space developers and owners.

FUTURE RESEARCH DIRECTIONS

The development of smart spaces has, at least, two
main trends: the focus of smart space development
is on i) combining the physical, digital and user
contexts in order to provide enriched experiences
for the smart space users; or/and ii) constructing
smart spaces that are able to self-monitor, self-
reason, self-configure, and self-organize their
capabilities and resources based on trade-offs anal-
ysis made at run-time. The ‘context-awareness’
trend aims at an increased added value of end user
applications. The ‘autonomic smart spaces’ trend

44

The Design Principles and Practices of Interoperable Smart Spaces

aims at a higher added value for all stakeholders
with decreased (development and) operation costs.
The origins and terminology of these trends are
different and, therefore, their fusion is a complex
task to be made in order to achieve viable solutions
for smart spaces and their applications.

Due to the dynamic nature of smart spaces,
it is crucial that the development methodology
supports the attaining of this dynamism at design
time and run time. This dynamism needs to be
supported by:

• Agile methods that have proved to embody
an ability to support dynamic work alloca-
tion among development teams and still
provide results of high quality.

• Ontology and model driven software engi-
neering methodology that helps in manag-
ing design knowledge on different abstrac-
tion levels, the separation of concerns, and
binding times. These three properties, i.e.
abstraction, separation and binding, are the
core elements of dynamic systems.

• Evolution support that requires new light-
weight solutions for ontology mapping,
ontology retrieval, model transformation
and reasoning, and learning algorithms
for adding intelligence into smart space
applications.

Therefore, the following research items require
an extensive attention within the smart space
communities:

• Specifying a minimal standard context
ontology that covers all the dimensions of
context and is applicable to all the types of
smart spaces.

• Encouraging the fusion of ontology ori-
entation and model driven engineering by
developing tool environments for the dif-
ferent stakeholders, i.e. owners, service
providers/consumers, developers, opera-

tion staff, and (end-user) application devel-
opers. These tools shall tolerate the evolu-
tion of smart spaces and software/service
engineering technologies.

• Providing viable techniques/methods for
collecting end-user experiences, analyzing
the collected information and representing
the analysis results in a convenient form
for all of the stakeholders in order to get
their future improvements incorporated
into the smart space evolution cycle.

CONCLUSION

The ASSDE approach exploits ontology orienta-
tion for realizing interoperability and context-
awareness in smart space application develop-
ment and evolution. The approach follows a set
of principles defined for the development of the
interoperability platform and the applications
executed on top of it. The key drivers of the ap-
proach are: i) interoperability provided on the
information level; ii) shared information repre-
sented in a uniform and application independent
way; iii) a flexible platform that can be used with
any programming language, service platform and
ontology; iv) a platform that can be enhanced with
new ontology and required functionality; and v) a
platform that provides adaptive services and sup-
ports context-aware applications. Besides these
technical drivers, there are also non-technical ones;
the smart space application engineering should
be consistent with the IOP business models and
it should be mapped to the value chain(s) of the
smart space stakeholders. This is to ensure that
the platform provides support for all of the stake-
holders involved in the smart space development.
Moreover, legacy devices and systems should be
able to exchange information through smart spaces
by using domain ontologies. This guarantees that
the legacy can be exploited in the initiation and
evolution of smart spaces. In practice, this feature

45

The Design Principles and Practices of Interoperable Smart Spaces

was tested several times when scenarios of the
personal space, indoor space and smart city were
implemented in order to test the idea behind the ap-
proach and the technical solutions developed, i.e.
the ontologies, platform and development tools.

REFERENCES

C4ISR Interoperability Working Group. (1998).
Levels of Information Systems interoperability
(LISI). Technical report, US Department of De-
fence, Washington, DC.

Achilleos, A., Yang, K., & Georgalas, N. (2010).
Context modelling and a context-aware framework
for pervasive service creation: A model-driven
approach. Pervasive and Mobile Computing, 6,
281–296. doi:10.1016/j.pmcj.2009.07.014

Berners-Lee, T., Hendler, J., & Lassila, O. (2001).
The Semantic Web. Scientific American, 284(5),
34–43. doi:10.1038/scientificamerican0501-34

Bettini, C., Brdiczka, O., Henricksen, K., Indul-
ska, J., Niclas, D., Ranganathan, A., & Riboni, D.
(2010). A survey of context modelling and reason-
ing techniques. Pervasive and Mobile Computing,
6, 161–180. doi:10.1016/j.pmcj.2009.06.002

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., & Stal, M. (1996). Pattern-oriented
software architecture: A system of patterns. West
Sussex, UK: John Wiley & Sons Ltd.

Chen, H., Finin, T., & Joshi, A. (2005). The SOUPA
ontology for pervasive computing. Whitestein
Series in Software Agent Technologies. Springer.

Chen, H., Finin, T., Joshi, A., Kagal, L., Perich,
F., & Chakraborty, D. (2004). Intelligent agents
meet the Semantic Web in smart spaces. IEEE
Internet Computing, 8(6), 69–79. doi:10.1109/
MIC.2004.66

Dey, A. K., & Abowd, G. D. (1999). Towards
a better understanding of context and context-
awareness. (Technical Report GIT-GVU-99-22),
Georgia Institute of Technology, College of
Computing.

DOLCE. (2010). Laboratory for applied ontol-
ogy. Retrieved March 8, 2010, from http://www.
loa-cnr.it/

Edgington, T., Choi, B., Henson, K., Raghu, T., &
Vinze, A. (2004). Adopting ontology to facilitate
knowledge sharing. Communications of the ACM,
47(11), 85–90. doi:10.1145/1029496.1029499

Franchi, A., Di Stefano, L., & Salmon Cinotti, T.
(2010). Mobile visual search using smart-M3. In
IEEE Symposium on Computers and Communica-
tions, (pp. 1065-1070).

Gu, T., Wang, X. H., Pung, H. K., & Zhang, D.
Q. (2004). An ontology-based context model
in intelligent environments. In Communication
Networks and Distributed Systems Modeling and
Simulation Conference, San Diego, CA, USA.

Guédria, W., Naudet, Y., & Chen, D. (2008).
Interoperability maturity models – Survey and
comparison. In R. Meersman, Z. Tari, & P. Her-
rero (Eds.), OTM 2008 Workshop, LNCS 5333,
(pp. 273-282), Berlin / Heidelberg, Germany
Springer-Verlag.

Hadim, S., & Mohamed, N. (2006). Middleware
for wireless sensor networks: A survey. In the
1st International Conference on Communication
System Software and Middleware, (pp. 1-7).

Issarny, V., Caporuscio, M., & Georgantas, N.
(2007). A perspective on the future of middleware-
based software engineering. In Future of Software
Engineering, (pp. 244-258).

46

The Design Principles and Practices of Interoperable Smart Spaces

Kantorovitch, J., & Niemelä, E. (2008). Service
description ontologies. In Khosrow-Pour, M.
(Ed.), Encyclopedia of Information Science and
Technology (2nd ed., Vol. VII, pp. 3445–3451).
Hershey, PA: Information Science Reference.
doi:10.4018/978-1-60566-026-4.ch547

Kapitsaki, G., Prezerakos, G., Tselikas, N., & Ve-
nieris, I. (2009). Context-aware service engineer-
ing: A survey. Journal of Systems and Software,
82, 1885–1297. doi:10.1016/j.jss.2009.02.026

Kassab, M., Ormandjieva, O., & Daneva, M.
(2009). An ontology based approach to non-
functional requirements conceptualization. In
the 4th International Conference on Software
Engineering Advances, (pp. 299- 307), IEEE
Computer Science.

Katasonov, A., & Palviainen, M. (2010). Towards
ontology-driven development of applications for
smart environments. In International Workshop on
the Web of Things, IEEE Intl. Conf. on Pervasive
Computing and Communications, (pp. 696-701).

Lassila, O. (2007). Programming Semantic Web
applications: A synthesis of knowledge representa-
tion and semi-structured data. PhD thesis, Helsinki
University of Technology, November, 2007.

Lassila, O. (2008). Semantic Web programming
using PIGLET – Programmer’s guide to the
PIGLET Semantic Web toolkit. Nokia Research
Center 2008.

Luukkala, V., Binnema, D.-J., Börzsei, M., Coron-
giu, A., & Hyttinen, P. (2010). Experiences in
implementing a cross-domain use case by combin-
ing semantic and service level platforms. In IEEE
Symposium on Computers and Communications,
(pp. 1071-1076).

Manzaroli, D., Roffia, L., Salmon Cinotti, T., Az-
zoni, P., Ovaska, E., Nannini, C., & Matarozzi, S.
(2010). Smart-M3 and OSGi: The interoperability
platform. In IEEE Symposium on Computers and
Communications, (pp. 1053-1058).

Meier, R., Harrington, A., Beckmann, K., & Cahill,
V. (2009). A framework for incremental con-
struction of real global smart space applications.
Pervasive and Mobile Computing, 5, 350–368.
doi:10.1016/j.pmcj.2008.11.001

Ovaska, E., Evesti, A., Henttonen, K., Palviainen,
M., & Aho, P. (2010). Knowledge based quality-
driven architecture design and evaluation. Infor-
mation and Software Technology, 52(6), 577–601.
doi:10.1016/j.infsof.2009.11.008

Pantsar-Syväniemi, S., Simula, K., & Ovaska,
E. (2010). Context-awareness in smart spaces.
In IEEE Symposium on Computers and Com-
munications, (pp. 1023-1028).

Peristeras, V., & Tarabanis, K. (2006). The connec-
tion, communication, consolidation, collaboration
interoperability framework (C4IF) for Information
Systems interoperability. IBIS – Interoperability
in Business Information Systems, 1(1), 61-72.

Preuveneers, D., & Berbers, Y. (2008). Inter-
net of things: A context-awareness perspec-
tive. In Yan, L. (Eds.), The Internet of things:
From RFID to the next generation pervasive
networked systems (pp. 287–307). CRC Press.
doi:10.1201/9781420052824.ch13

Scrum. (2009). What is Scrum? Retrieved March
8, 2010, from http://www.scrumalliance.org/
learn_about_scrum

Sofia.(2010). Smart objects for intelligent ap-
plications. Retrieved March 8, 2010, from http://
www.sofia-project.eu/

Soylu, A., De Causmaecker, P., & Desmet, P.
(2009). Context and adaptivity in pervasive
computing environments: Links with software
engineering and ontological engineering. Jour-
nal of Software, 4(9), 992–1013. doi:10.4304/
jsw.4.9.992-1013

SPICE. (2010). Spice mobile ontology. Retrieved
March 8, 2010, from http://ontology.ist-spice.org/
index.html

47

The Design Principles and Practices of Interoperable Smart Spaces

Tolk, A., Diallo, S. Y., Turnitsa, C. D., & Win-
ters, L. S. (2006). Composable M&S Web ser-
vices for netcentric applications. Journal for
Defense Modeling and Simulation, 3(1), 27–44.
doi:10.1177/875647930600300104

Tolk, A., & Muguira, J. A. (2003). The levels of
conceptual interoperability model. In Proceed-
ings of the Simulation Interoperability Workshop,
(p. 10).

Tolk, A., Turnitsa, C., & Diallo, S. (2008). Implied
ontological representation within the levels of
conceptual interoperability model. [IOP Press.].
Intelligent Decision Technologies, 2, 3–19.

Toninelli, A., Pantsar-Syväniemi, S., Bellavista, P.,
& Ovaska, E. (2009). Supporting context aware-
ness in smart environments: A scalable approach
to information interoperability. In International
Workshop on Middleware for Pervasive Mobile
and Embedded Computing, Article No: 5, ACM,
IFIP, USENIX.

Wang, X., Dong, J. S., Chin, C., Hettiarachchi,
R. S., & Dhang, Z. (2004). Semantic space: An
infrastructure for smart spaces. IEEE Pervasive
Computing / IEEE Computer Society [and]
IEEE Communications Society, 3(3), 32–39.
doi:10.1109/MPRV.2004.1321026

Weiser, M. (1993). Some computer science issues
in ubiquitous computing. Communications of the
ACM, 36(7), 75–85. doi:10.1145/159544.159617

Zhou, J. (2005). Knowledge dichotomy and seman-
tic knowledge management. In 1st IFIP WG 12.5
Working Conference on Industrial Applications
of Semantic Web, Jyväskylä, Finland.

KEY TERMS AND DEFINITIONS

Knowledge Processor (KP): An agent that
processes information and inserts/removes and/

or consumes content from SIB, according to
ontology.

Knowledge Processor Interface (KPI): A
set of functionality in smart objects that enables
the access and use of information semantics in
applications. KPI consists of SSAP, definitions
of information semantics and optional functions
related to information security, reliability, etc.

Semantic Information Broker (SIB): An
information world entity for storing, sharing and
governing the information of one smart space as
RDF triples.

Smart Environment: An entity of the physical
world that is dynamically scalable and extensible
to meet new use cases by applying a shared and
evolving understanding of information. At least
one smart space is associated to a smart environ-
ment with two or more knowledge processors.

Smart Object: A device applicable to interact
within a smart environment.

Smart Space: A named search extent of shared
information. A logical entity composed by a set
of SIBs.

Smart Space Access Protocol (SSAP): A
service level protocol used by KPs when access-
ing SIB.

Smart Space Application (SSA): A set of KPs
that uses one or more smart spaces as resources
to perform a desired functionality visible to an
end-user as an enhanced application.

ENDNOTES

1 Previously affiliated to and still collaborat-
ing with Alma Mater Studiorum, Univesità
di Bologna, Italy

2 http://sourceforge.net/projects/smart-m3/
3 http://www.w3.org/TR/rdf-concepts
4 http://www.w3.org/standards/techs/

owl#w3c_all

48

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3

Shigeki Sugiyama
University of Gifu, Japan

Lowry Burgess
Carnegie Mellon University, USA

Principle for Engineering
Service Based System
by Swirl Computing

ABSTRACT

When we look at the living creatures in the world, most of them have the communication methods in order
to recognize within same species each other for protection, getting food, being multiplied, or seeing the
world, et cetera. And they mostly use the five senses as the basic mechanisms for the communication
among them in a quite natural way with a seamless manner without any difficult manipulation. These
five senses in those behaviour look like being swirled around their bodies.

Today, we have “an external communication method among us beyond the five senses” by using
Information Technologies (IT); TV, telephone, cellular phone, laptop computer, the Internetworking,
software (SaaS, VPN, SAP, SOA, Cloud, etc.), etc. But they are costly and need cutting edged high skills
and technologies for the usages. And what is more, they are not yet intellectually and technologically
matured for the usages compared with the five senses.

Under these circumstances, if we have a system “swirled” around us (Burgess 2008) like the five senses
in a relation to networking for communications with other entities (a system, a facility, knowledge, data,
etc.) which will be neither necessary to be conscious about the related facilities nor the high level of
the technological manipulations, this environment will give us convenient services and also will give us
important knowledge of extended entities in many aspects.

So in this chapter, the main theme is to discuss and to introduce “The Principle for Engineering Based
Service System by Swirl Computing” in Service Science.

DOI: 10.4018/978-1-60960-735-7.ch003

49

Principle for Engineering Service Based System by Swirl Computing

INTRODUCTION

Pre-historically speaking, all that we were doing
was to eat fruits, nuts, insects, animals, buds, and
leaves that were naturally raised on the earth.
That is to say, these eras were nothing to do
with a creative knowledge for mankind (vague
in creativity). Historically speaking, we started
the civilization by the engineering (tooling) for
Hunting and Cultivation within a movable area,
and then by the engineering of Farming in a liv-
ing area (vicinity of mankind), and then by the
engineering of Motorization, and then now by the
engineering of the Information Technology with a
networking and communication at a place around
us (not necessarily to move). And then, we will
be facing to an engineering of “Knowledge of
Science with extended entities”, which is mostly
concerned with knowledge (brain itself).

So by considering the history of the engineer-
ing, we may say that the way of engineering
development in the history of the civilization is
coming from “vague” to “environment around a
movable area”, and then to “vicinity of mankind”,
and then onto “mankind itself”, and then into “the
center of mankind; knowledge (brain)”.

If we look at this phenomenon from another
aspect -physically speaking-, the direction of the
civilization is from the outside world into the
center of mankind. On the other hand -relatively
speaking, a mental matter involved in mankind is
expanding from “Ourselves” to “Every Dimension
in space of the world (Expansion of Ourselves)”.

In chronological order, we may have the fol-
lowing schematic expression about the trend of
the civilization contents in terms of engineering.

• Hunting and Collecting (Collection with
Simple Tools; Awakening of Culture)

• Farming (Creation with Technology)
• Motorizing (Creation of Artificial Power)
• Informing (Creation by Science)
• Knowing (Pure Creation of Knowledge

by Science)

During the eras of “Hunting and Collecting”
and “Farming”, an individual had little power
to do anything. And during the era of “Motor-
izing”, an individual was able to have relatively
big power for “Hunting and Collecting”, “Farm-
ing”, Production, and Transportation by using
an artificial power. Now, as we are at the age of
“Informing”, an individual is not individual any
more if one uses Information Technologies for
relations and connections with others. Because the
principal matter of “Informing” is intangible and
the entity itself of an intangible matter is invisible.
So it might be easier to handle it if we will have
a transparent facility by an ideal environment of
IT around us. So in this framework, we may be
able to be individually independent on our own
thoughts and activities in societies. Under this
situation, the way of life may depend on individual
“thoughts and activities”. What is more, we are
likely to think that we can do anything what we
want to without interruption by or about others.
On this stage, the most important thing to get is
“free and freely accessible atmosphere into any
environment surrounded us”.

But this environment is not always easy to
get even though we have some methods and the
facilities to access into surroundings in the world.
Because the present technologies and the theories
cannot assist us in an ideal manner (technologi-
cally less maturity). And also necessary facilities
of infrastructure are quite expensive and need time
for constructions. So it will not allow us easily to
accomplish these environments at the time when
we want to. In another words, if it is possible, it
will offer an ultimate service for us.

Here, it will mention about definitions of
“Service” and “Service Science” in engineering.

• “Service” is to benefit another or others
tangibly or intangibly by an activity or an
action.”

• “Service Science” is a method or a thought
for Service that is created or invented new-
ly by means of Science.

50

Principle for Engineering Service Based System by Swirl Computing

BACKGROUND

Generally speaking, we have now a system for
service in order to get a request done almost in
all categories in various aspects like book, food,
entertainment, sport, house, opportunity hunting,
travel, music, culture, study, education, training,
management, control, production, marketing,
transformation, etc. by means of IT facilities, a
networking, and a communication. As we know
well, we are able to appreciate those services
especially through the Internetworking and other
IT facilities. In the case of “book” matter, book
purchase, reading, searching, writing, publishing,
and book data storage can be done through the
Internetworking quite easily, for example. And
the same kind of services can be seen almost all
in other fields. And this direction for service will
be going further on in the future.

The mechanisms that are used for these ser-
vices are mainly realized by computer and the
Internetworking with data storage, data retrieval,
and processing techniques. So the numbers of
the key technological mechanisms that are used
are not many, which mean that the complexity of
these services is not deep and wide in terms of the
technologies and the methods. Of course, if we
think about a security of these services, the issues
are a bit different and complicated.

If these services are described by an abstract
expression, these matters will be provided by sim-
ply “Demand or Search” through “the Processes”
as shown in Table 1 (Sugiyama 2008).

Systematically speaking, this kind of system
can be made by using a tree structure of system
that will be able to offer a demanded (requiring)

matter by step-by-step method. The reason for
this is that an active new change in system is
not considered in this situation. That is to say, a
new factor in the system does not come up for
an available use. If it does, another new system
should be made for this purpose. And so we can
say that these processes are rigid and static, so
that only the matters related with the processes are
retrieving data and reuse them for getting output.

Here we will see the service systems more in
detail that have been explained in the above by
giving some examples. And also some subjects
that are existed in the systems will be mentioned
briefly too.

1. Business Plan Service System: This Service
offers a business plan for users as it is desired
in a required field, and this Service may give
a necessary advice at each process if it is
necessary. But the contents of business plans
cannot be changed instantly and easily.

2. Market Research Service System with
GPS: This Service offers a market research
in a target category and for a targeted purpose
by using GPS, for example. But the basic
analysis and synthesis methods cannot be
changed easily.

3. Engineering Training/Education Service
System: This Service offers training and edu-
cation in terms of business category as they
are required by using the Internetworking
or database. But those method and contents
cannot be improved quickly at the moment
when they are required (Larson 2009).

4. Sales Service System: This Service offers
DM by DTP and Email Service as it is wanted

Demand and Search → Processing; Database, Matter, etc. → Output; Thing, Information, Data, etc.

(Requiring) (Search, Retrieve, Production, etc.) (Thing, Goods, Plan, Management, Data,
Information, Knowledge, etc.)

Table 1.

51

Principle for Engineering Service Based System by Swirl Computing

with a quick service by using the Data. But
the method cannot be changed quickly and
instantly.

5. Necessary Information Retrieval Service
System: This Service offers necessary infor-
mation by customer’s involvement of making
the database, for example. But if some kind
of new processes are required, the system
structure must be improved as well, which
is not easy matter to do.

6. Strategy Planning Service System: This
Service offers a support for making a busi-
ness strategy plan by using database. But if
the strategy is needed to change, it might
be suggested to make a new system accord-
ing to a new strategy. Because it should be
studied from the first stage about the strategy
and then it needs to reconstruct the whole
system again. And so it needs lots of time
and money again.

7. Publishing and Information Service
System: This Service offers any service in
Publishing and Information by IT. But if
other functions are required to add into the
system, it cannot be done easily and instantly.

8. Production Service by CAD/CAM system:
This Service offers a total production sup-
port from design to production. But it is very
difficult to change the system even though
it is quickly required because the system
should be made from the first stage in the
system flow with new processing methods
and data (Sugiyama et al. 2007).

9. E-Learning Service System: This Service
offers a learning opportunity for any one at
any place and any time (Larson 2009). But
it needs time to change the system when it
is required.

10. Home Security Service System: This
Service offers a present situation of Home by
sight, which mean whether or not “TV is on
?”, “Air condition is off ?”, “Nobody there
?”, or “is there anybody ?”, etc. But if the

system is required to add another function,
it must need time and more money. etc.

As shown in the above, we have lots of service
systems by using this basic “Demand and Search”
method. The above Service Systems will be also
described schematically as shown in Figure 1.

At this point, we have to make clear that these
Service Systems will offer necessary processes
and outputs with step-by-step manipulations when
they are required under the conditions that “Com-
puter Systems with IT and Communication Tech-
nologies” are available in an ideal manner.

MAIN FOCUS OF THE CHAPTER

Principle for Engineering Service
Based System by Swirl Computing

We firstly think about the development of Informa-
tion and Communication Technology (ICT). After
the internetworking and the related technologies
have been come up to our daily life originally from
the initiators’ institutes in US, and then from major
universities in US, and then from major universi-
ties in the world, and then from the major institutes
of related companies in the world, we are able to
enjoy communicating with anyone and anything
at any time in the world once when we have the
necessary systems and the facilities. And after
having passed these times, they have been able
to be applied to various categories of fields, like

Figure 1. Conventional System Image

52

Principle for Engineering Service Based System by Swirl Computing

entertainment, selling goods, education, medicine,
welfare, stock market, commercial, etc. And then
we come to the present moment for the usages.

But it is afraid to say that we cannot still forget
about manipulations of the necessary matters in
ICT at any instance. In another words, it is now
possible to have a ubiquitous atmosphere of com-
munications anywhere in the world only if there
are the necessary facilities equipped with around
vicinity of us and only if we have the skills of the
necessary manipulations of the facilities that are
equipped with.

In order to get rid of the above difficulties
for usages, here will study a principle of “Swirl
Computing”.

The Swirl Computing consists of three cat-
egories, the first is “Principle”, and the second is
“Swirl Oriented Architecture: (SOA)”, and then
the third is “System Structure by Mathematical
Expression”.

Principle

This section discusses on two environments
which are important for establishing the Swirl
Computing.

As it is mentioned in the above section, it is
possible for us to have a complete ubiquitous
atmosphere if we have time and money with ICT
skills and manipulations. But it is usually hard to
accomplish it for each requirement at the instance
that is required when we are apart from Laptop
at an office or in a laboratory, for example. What
is more, the most difficult part to accomplish is
to make a desired computer system change to
the required environment which will suit with
for establishing our purpose at every moment
when it is required (Lifton et al. 2002). Because
we have to use different data, strategy, plan, and
scheme, etc. when we have a problem or a different
requirement (target) at each time or at each place,
for example. So it is very important to have the
following environment.

A. Flexible Computer Environment (FCE):
Flexible Computer Environment (FCE) has a
mechanism that a system, a plan, a scheme,
a strategy, a function, data, an analysis, a
method, etc. can be transformed into the
desired forms by using the idea of “Grid”.

And also, it can be said that we can do one
more thing if we have our hands free or if we
have an additional hand. The same thing can be
said when we think about the Swirl Computing
(Burgess 2008). That is to say, we can do one more
thing if a manipulation of the computer system
environment by the third hand (just by thinking
about, for example) will be able to be done. So it is
very important to have the following environment.

B. Swirl Manipulation Environment (SME):
Swirl Manipulation Environment (SME)
has a mechanism that “thinking” can be
transformed into a kind of activity (of a
behavior) for manipulations of system. So
SME will behave just like the third hand.

Here talks about the principle by considering
the above two important environments.

Principle of Swirl Computing

“The principle of the Swirl Computing” is “a
mechanism that is able to communicate with
another at any place at any time within Flexible
Computer Environment (FCE) and Swirl Manipu-
lation Environment (SME) without burden of the
usages, which will seamlessly and naturally offer
a required service”.

By using this principle, for example, we can
get necessary information and connection with
people at a meeting without difficulty and time-
consuming manipulation of ICT facilities. And
also, wherever we go with kids, for example, we
would be able to get important information of the
atmosphere at the place where we want to go. At
home, for example, we would be able to get a

53

Principle for Engineering Service Based System by Swirl Computing

necessary assistance through the Swirl Comput-
ing even for people who are not experts in ICT
technologies and facilities.

So, this idea is just like “a complete transpar-
ency” through an environment in order to get com-
municated with anyone or with anything or with
any matter that is tangible or intangible which will
be far away or near to or at a virtual space. This
should be done without bothering any facilities
near or on a body or without difficult manipula-
tions of those. And these things should be done
smoothly and naturally without any knowledge.

This way of doing with these methods will
be simply illustrated schematically in Figure 2.

Swirl Oriented Architecture: SOA

This section studies and introduces “Swirl Ori-
ented Architecture”.

In the Swirl Computing, just like the five senses
of the living creatures in this world, it is important
to be able to communicate with others (including
man-made entities) without any difficult activities
on computer. For doing this, firstly, detection or
a sensing of human what he/she wants to do is
very important matter (“Swirl Manipulation En-

vironment: SME”), and then extracting requests
of human through a sensor is also very important
matter. And then, through the extracted data by
being desired, the Swirl Computing will do com-
puting for the service by giving the information,
or by opening the communication channel, or by
controlling the facility of system in the laboratory,
or by watching, or by managing, etc. These activi-
ties will be done by choosing the most appropriate
and suited system from the knowledge of database
that is stored in the system (Sugiyama 2008). And
when it is necessary to change the environment
of the present system that is chosen for usage,
“Flexible Computer Environment: FCE” will be
used for making the necessary changes.

So the Swirl Oriented Architecture (SOA)
will have “Flexibility” in system by adding the
mechanisms (the environments of SME and FCE),
which will make a system useful and applicable
to any requirement.

If the Swirl Computing with Swirl Oriented
Architecture (SOA) is simply described by us-
ing an abstract expression, this will be done by
“SME” through “Swirl Computing with FCE” as
shown in Table 2.

Anywhere in Search
with SME

→ Take System with FCE → Swirl Computing → Output

(By thinking about) (Take Plan, Data, etc.) (Everything swirled)

Table 2.

Figure 2. Principle of the Swirl Computing

54

Principle for Engineering Service Based System by Swirl Computing

And also this service system is schematically
described as shown in Figure 3.

The differences between the conventional
service system and the swirl computing are the
followings.

1. In the conventional systems, the systems
offer necessary information within limita-
tions in forms, methods, and networking.
On the other hand, the Swirl Computing
will give the simplest use of the system in
the atmosphere (computer, system, etc.) as
“Service” in the flexible manner.

2. In the conventional systems, information
in need will be offered by the technical
manipulation. On the other hand, the Swirl
Computing will give the necessary informa-
tion with the simplest method as “Service”
with SME.

3. In the conventional systems, lots of human
interaction will be necessary for getting the
desired information. On the other hand, the
Swirl Computing will give the necessary
environment for getting a necessary and
important information, etc. as “Service”
with FCE.

Here will touch upon the general functions of
the Swirl Computing and will show some system
functions concerned with including the categories:
“SERVICE”, “MAKE CHANGE”, “KNOWL-
EDGE”, and “INTEGRATION”. Through this
stream, we may understand the processes that
will be taken for getting Service.

General Function 1: “SERVICE”
 [Everything in Service Science]
 /Enter into the system from here.
 [System in Service Oriented Architecture]
 /Look into the system whether or not there
is the one that just wanted.
 [Desired in First, and Proper Offering Next]
 /If there is the one that just suits to the
requirement, then go and get into the system.
And go to the General Function 3.
 /If there is not the one that just suits to the
requirement, then go into the General Function
2.

General Function 2: “MAKE CHANGE”
 [Simple and Easy for Customer to Use]
 /Go into the system to find the most ap-
propriate one in order to make the necessary
changes of the system.
 [Required Atmosphere]

Figure 3. Schematic View of Swirl Oriented Architecture

55

Principle for Engineering Service Based System by Swirl Computing

 /There are some methods to make the nec-
essary changes in order to suit the requirement.

General Function 3: “KNOWLEDGE”
 [ANALYSYS and SYNTHESIS]
 /Knowledge Base, AI, Statistics, SWOT,
TRIZ, Transformation, etc. will be used for the
necessary changes of the system that is used
now.

General Function 4: “INTEGRATION”
 [Swirl Computing]
 /It may be said that this method of system
is a kind of Cloud for accomplishing a targeted
purpose. But it is not true to say that the Swirl
Computing is the whole Cloud. So the Swirl
Computing can be understood as “Directional
Cloud”, that is to say, the usages are limited
within a filed for accomplishments of the pur-
poses. And this will work under Cloud Comput-
ing.
 [Cloud Computing]
 /Not only for desired things done, but also
there might be other usages in the Internetwork-
ing. In this sense, the Cloud Computing is the
top of all hierarchically, which may consist of
many kinds of Swirl Computing.

The Functions mentioned above can be per-
formed under the idea of “Grid to Mediator” opera-
tion, which is not a direct processing method but it
is a stage processing method as described below.

1. “SERVICE”; (Grid 1)
 ◦ The first stage is “Grid” in “SERVICE

for MAKE CHANGE”;
 ◦ The content is explained more in

detail. We can require any thing as
Service to the system with SME by
choosing a necessary term in a re-
lated category. And we will get the
most appropriate Information, or
System, or Plan, or Production, or
Matter, etc. (Sugiyama et al. 2007.

Sugiyama 2008). And we will see
the content of it whether it is the one
that is just wanted or not. If it is so, it
will be used for getting the required
matter. If it is not, there needs some
amendments and changes for Data,
Function, Scheme, Management, etc.
as described in the following second
stage.

2. “MAKE CHANGE”; (Grid 2)
 ◦ The second stage is “Grid” in “MAKE

CHANGE for KNOWLEDGE”;
 ◦ If the system that was chosen in

“Service” is appropriate enough to
offer the desired thing, the system is
to use as it is. But if the system cho-
sen is not appropriate enough, then
the system environment should be
changed as it should be. And in this
way, the system will choose the nec-
essary functions, data, and etc. in or-
der to transform them into the appro-
priate forms and data for the system.

3. “KNOWLEDGE”; (Grid 3)
 ◦ The third stage is “Grid”

in “KNOWLEDGE for
INTEGRATION”;

 ◦ At this stage, we have the necessary
matters that should be transformed,
so each matter is going to be trans-
formed to an appropriate form by us-
ing the mediator of Grid. This media-
tor will be a function, or an analysis
method, or a theory, or a thought, or
just data. So at this stage, all the mat-
ters that are needed to be transformed
will be changed into the desired forms
for the system (Sugiyama 2009). And
those transformed matters will be
prepared for the integration into the
system at the next stage.

4. “INTEGRATION”; (Grid 4)
 ◦ The fourth stage is “Grid” in

“INTEGRATION for OUTPUT”;

56

Principle for Engineering Service Based System by Swirl Computing

 ◦ The fourth stage is to integrate all
changes into “Swirl Computing”
or is to make the system accessible
to “Cloud Computing” (Sugiyama
2010).

The “Grid” is discussed further on. “Grid” is
a method to change “Data”, “Method”, “Target”,
“Knowledge”, etc. into new required forms of them
which will suit for a newly required environment. A
method to change (mediator) will be like “SWOT”,
“Data Analysis”, “Histogram Analysis”, “ABC
Analysis”, “Segment Analysis”, “Distribution
Analysis”, “Ranking Analysis”, “RFM Analysis”,
“TRIZ”, “Game Theory”, “Three Sigma Analy-
sis”, “Knowledge”, “Transformation”, “Market
Research”, “Management”, etc.

Functionally speaking, “Grid” consists of three
categories about attributes as described below.

1. Category 1; {OLD; Old Data, System, Plan,
Function, etc.}

2. Category 2; {TRANSFRM; Function,
Method, Technique, Analysis, Theory, etc.}

3. Category 3; {UPDATED; New Data,
System, Plan, Function, etc.}

So in short, “Grid with Mediator” works as “a
method” or “a function” or “a mechanism” or “a
technique” or “an index” or “data change” or “a
thought” or “theory” which are able to change a
target matter to the required form through the three
categories of the processes; Category 1, Category
2, and Category 3.

And these processes will be able to be done just
by a simple manipulation with SME and FCE.

The above explanation about SOA in terms
of “Grid with Mediator” will be simply shown
schematically in Figure 4.

Mathematical Expression

This section studies on mathematical expressions
of the Swirl Computing.

As the “demand and requirement” are consid-
ered as “Service”, so the general expression of
“demand and search (requirement)” is expressed
by “Service”. And “Service” is offered by the
method of “Swirl Computing; Swirl”, and so it is
defined as [AISE].

So we have the following expression.

[Demand and Requirement] = [Service]
= Swirl (Demand and Requirement)
= Swirl (Demand and Requirement: [AISE])

As it has been mentioned, “the Swirl Comput-
ing” consists of three categories. The first one is
“Knowledge Base” for established systems, like
“CAD/CAM”, “process control”, “production
control”, “company management”, “plans and
schemes”, “DM”, “market research”, “target con-
trol”, etc. And the second one is “Make Change”,
like “data transformation”, “process change in
plan”, “target change in market”, etc. The third
one is “Update Knowledge base”. That is to say,
[AISE] consists of three parts including itself.
The first part is the static part ([SAISE]) like

Figure 4. Grid for Interchange in Processes

57

Principle for Engineering Service Based System by Swirl Computing

“Knowledge Base or Business Plan or etc.”, and
the second part is the dynamic part ([DAISE]) like
“Data Transformation or Knowledge Transforma-
tion, etc.”, the third part is [AISE] itself.

So, we have the following equation.

[AISE] = [SAISE] + [DAISE] (1)

[SAISE] consists of [Isaise] and [Gsaise], and
[DAISE] consists of [Idaise] and [Gdaise]. And
those are expressed as shown below.

[SAISE] = [Isaise] [Gsaise] (2)

[DAISE] = [Idaise] [Gdaise] (3)

[Isaise] consists of [System] with [Function]
and [Data]. And each content is rewritten by
[Ssaise], [Fsaise], and [Dsaise]. So we have the
following equations.

[Isaise] = [System] + [Function] + [Data] =
[Ssaise] + [Fsaise] + [Dsaise] (4)

[Gsaise] is {the Grid of the static}. And it
consists of {Change in the elements of [Fsaise]
and [Dsaise]}. So we have the following equation.

[Gsaise] = {Grid of the static; Changes in the
elements of [Fsaise] and [Dsaise]} (5)

[Idaise] consists of [Function], [Connection],
and [Data]. And each content is rewritten by
[Fdaise], [Cdaise], and [Ddaise]. So we have the
following equations.

[Idaise] = [Function] + [Connection] + [Data]=
[Fdaise] + [Cdaise] + [Ddaise] (6)

[Gdaise] is {the Grid of the dynamics}. And
it consists of {Transformation in the contents of
[Fdaise], [Cdaise], and [Ddaise]}. So we have the
following equation.

[Gdaise] = {Grid of the dynamics;
Transformation in the contents of [Fsaise],
[Cdaise], and [Ddaise]} (7)

And as for [Ssaise], [Fsaise], [Dsaise], [Fda-
ise], [Cdaise], and [Ddaise], each one may have
each own functions and elements. And when a
[System] is defined, all the [Ssaise], [Fsaise],
[Dsaise], [Fdaise], [Cdaise], and [Ddaise] may be
decided relationally as shown below.

[Ssaise] = [Ssaise; Xss, Yss, Zss] (8)

[Fsaise] = [Fsaise; Xsf, Ysf, Zsf] (9)

[Dsaise] = [Dsaise; Xsd, Ysd, Zsd] (10)

[Fdaise] = [Fdaise; Xdf, Ydf, Zdf] (11)

[Cdaise] = [Cdaise; Xdc, Ydc, Zdc] (12)

[Ddaise] = [Ddaise; Xdd, Ydd, Zdd] (13)

By using the equations in the above, it has
been shown that it is possible to express the Swirl
Computing mathematically. Of course, these are
the generally expressed forms, that is to say, the
all elements should be dependent on each system
by system in each case and that those elements
should be optimized in someway when those are
decided.

Swirl Sensor

There are many kinds of sensors (ex. BMI and
BCI) for interfacing between human and computer
in order to offer a direct communication by using
Micro Intelligent sensors (Santhanam et al. 2006).

There are some ideas about to use “human”
as a sensor itself for communication with others.
It will be possible to realize this idea because we
may have emissions of an electro-magnetic wave
out of our body when we (will) move some part
of our body or when we are thinking about. Those

58

Principle for Engineering Service Based System by Swirl Computing

movements and thinking will be closely related
with our actions by body and brain. And there
should be some relations among those actions
and the brain. So that -theoretically speaking-, it
should be possible to understand the meanings
of those actions by sensing the electro-magnetic
emissions out of our body.

Now it is possible to sense an electro-magnetic
emission from muscles’ movement when they
(will) move. And they can be used for empower-
ing muscles’ movements more, for example. For
another application, it is used for a robot control
in a simple way by sensing a brain’s activity with
a head mount electro-magnetic sensor.

In terms of a brain activity sensor, it is still
hard to sense activities especially at the parts deep
inside brain, which might be related with fingers’
movements, for example. And also, we now have
to have those sensors stuck on for covering a
brain when we want to sense, which will lose our
freedom in actions.

We have now Nano-Tesla (NT) electro-
magnetic sensor but this will not be able to give
a clear image of human electro-magnetic wave
change. So we need further fine sensor, which
is Pico-Tesla (PT) electro-magnetic wave sensor
in order to sense all of our body from the surface
to inside. In the mean time, we can say that we
can put the PT electro-magnetic wave sensor on
glasses or on buttons of the clothes that will detect
the PT electro-magnetic wave differences about
our body and brain. This kind of sensor will be
positioned at important places, like glasses and
hat (for sensing sides and top of brain), sleeves
(for sensing hands), buttons (for sensing a heart,
etc.), and trouser (for sensing legs) in order to
sense key positions of human behaviours. That is
to say, this kind of sensor will be used for detect-
ing our behaviour or thinking (SME).

Through this mechanism (SME), we can access
into a cellular phone in pocket or to an available
access point which is able to go further into the
Internetworking that is stationary or in movement
of a satellite. Once this atmosphere will have been

established, we can enjoy the Swirl Computing
just thinking about a matter what we want to do.

FUTURE RESEARCH DIRECTIONS

It has been shown that the Swirl Computing will
be able to be realized by the ideas of [Principle],
[SOA], [Mathematical Expression], and [Swirl
Sensor] which will give free and seamless at-
mosphere for communication and retrieving
knowledge just like thinking about a matter, but
there are still some subjects that will be waiting
for being improved and solved.

So, this section will touch upon each subject
for future research direction.

1. SOA will be realized by using various
technologies of today. But SME is not yet
available in a market. However, there are
slightly similar ones for simple manipula-
tion purposes like robot movement for toys,
home electronic facility control, and cursor
control of computer. Of course, it would be
possible to realize it technologically by using
fMRI, for example. But it is not the one that
we want to use. Because it is too expensive
to buy and is too big to carry. We need the
SME that will not be even recognized by us,
which means that it should be very small
and light. It might be possible to make it
physically by using the present technologies
except the signals processing method. The
difficulties are existed in using many sensors
for detecting of many places of the targeted
parts. So the positions of the sensors will be
the issues and also the signals processing
method (ex. multi-modal processing) will
be the issues too. And one more important
subject is concerned with costless.

2. Mathematical Expression has been given
generally, but it should be more exact in
descriptions and it needs to correspond with
a real world. However, these are not the

59

Principle for Engineering Service Based System by Swirl Computing

major problem at all, because those would
be decided when a real usage is on the view.
The most difficult and important problem is
to find expression about an accessing point
system mechanisms and the environment. If
the access point (person) has an established
connecting point in the Internetworking, it
should be all right. But if not, the access
point will be a cellular phone brought by
personally. In this case, the system mecha-
nism will be clear but the environment that
is to know will be very difficult to see and
understand.

3. Swirl Sensor has a subject to study and a mat-
ter to improve in mechanism and processing.
It should detect PT electro-magnetic wave
change (Aichi Steel Corporation 2009). So
that it might be necessary to know whether
it needs to study a brand new method for
detection, or it would be just a matter of am-
plification mechanism. And there are many
parts for detection and so the PT electro-
magnetic waves may have lots of noise in
the environment. And also the positions for
the sensor would be another subject to study.
So noise exclusion and an extraction of each
differentiate wave for a particular targeted
point are the issues to study too.

CONCLUSION

We will be in the era which will make anything
possible individually. This could happen because
of the development of ICT and the Internetworking
technology. But when we talk about the usability
of the technologies, the methods, and the theories,
those are far from easiness technologically and
monetary. So through this chapter, the concept
and the mechanisms of “The Engineering Service
Based System by Swirl Computing” in Service
Science have been discussed and studied in order
to resolve some of the problems facing. And some

of the issues related with the Swirl Computing are
mentioned too for further discussions and studies.

As the conclusion, the following results
have been given about a principle, a method, a
mechanism, and a system in terms of “the Swirl
Computing”.

1. The idea of “Service and Service Science”
has been introduced by looking at the brand
new idea of “The Swirl Computing”.

2. The whole structure and mechanisms of the
Swirl Computing is explained by introduc-
ing the ideas of SOA and the mathematical
expressions.

3. It is shown that the ideas of SME and FCE
are the main environments and mechanisms
of the Swirl Computing. And also the idea
of “Grid” has been introduced in order to
update Old data, function, mechanism,
thought, system, etc. into new ones.

4. A method of free, seamless, and ubiquitous
communication method by using the idea of
“the Swirl Computing” has been introduced.

5. For implementing the Swirl Computing,
the following functions are introduced;
“Principle”, “Swirl Oriented Architecture:
(SOA)”, “System Structure by Mathematical
Expression”, and “Grid”.

6. It will be shown that the Swirl Computing
will give us seamlessly and naturally con-
venient services in order to get knowledge
from extended entities without bothering
complicated manipulations and reconstruc-
tion of system.

7. It will be shown that the possibility of sixth
sense; “the Swirl Computing”, may be
introduced.

8. Some of the issues related with SOA, the
mathematical expressions, and the swirl
sensors are introduced too for further discus-
sions and studies.

60

Principle for Engineering Service Based System by Swirl Computing

REFERENCES

Aichi Steel Corporation. (2009). MI sensor. In
The general catalogue.

Burgess, L. (2008). Swirl. Notes on Swirl. CMU.

Larson, R. (2009). Education: Our most important
service sector. The Service Science, 1(4), i–iii.

Lifton, J., Seetharam, D., Broxton, M., & Paradiso,
J. (2002). Pushpin computing system overview:
A platform for distributed, embedded, ubiquitous
sensor networks. London, UK: Springer-Verlag.

Santhanam, G., Ryu, S., Yu, B., Afshar, A., & She-
noy, K. (2006). A high-performance brain–com-
puter interface. Nature, 442(13). doi:.doi:10.1038/
nature04968

Sugiyama, S. (2008). Fundamental behaviour in
communication method. In Proceedings of IEEE/
INFORMS International Conference on Service
Operations and Logistics, and Informatics. Bei-
jing, China.

Sugiyama, S. (2008). Ubiquitous framework
in service science. In Proceedings of The 2008
Logic and Science of Service (The New Wealth
and Wellbeing of Nations), Hawaii, US.

Sugiyama, S. (2009). Feature extraction in system.
In Proceedings of INFORMS International Con-
ference on Service Science. Hong Kong, China.

Sugiyama, S. (2010). Business plan oriented
service in service science. In Proceedings of
INFORMS Service Science Conference. Taipei,
Taiwan.

Sugiyama, S., & Tharumarajah, A. (2007).
Fundamental behavior of holonic system. The
International Journal of Services Operations and
Informatics, 2(4). INDERSCIENCE.

KEY TERMS AND DEFINITIONS

AISE: Absorbing Incarnation System Entity;
{Basic Data, Knowledge, System, Processing,
Production, Management, etc.}. This is shown
by using the examples in the “BACK GROUND”
section of this chapter.

Cdaise: Connection for DAISE.
DAISE: Dynamic AISE.
Ddaise: Data for DAISE.
Dsaise: Data for SAISE.
Fdaise: Function for DAISE. X, Y, Z: any

functions, any elements, any attributes.
SAISE: Static AISE.
Fsaise: Function for SAISE.
Gdaise: Grid for DAISE.
Gsaise: Grid for SAISE.
Idaise: Input for DAISE.
Isaise: Input for SAISE.
Ssaise: System for SAISE.

61

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4

DOI: 10.4018/978-1-60960-735-7.ch004

Yong Zhang
Tsinghua University, China

Quansong Deng
Tsinghua University, China

Chunxiao Xing
Tsinghua University, China

Yigang Sun
National Library of China, China

Michael Whitney
University of North Carolina Charlotte, USA

A Service Component Model
and Implementation for

Institutional Repositories

ABSTRACT

With the boom of digital resources, there are urgent requirements to set up and manage Institutional
Repositories (IRs) for companies and/or organizations. Cloud computing opens a new paradigm to
build IRs by providing diverse services. We apply cloud services in the building of IRs and present a
new model, which is based on digital object model and service component architecture, and consists of
five service components, namely ID, metadata, content, log, and annotation service component. The five
components are implemented by five corresponding clouds. These clouds provide two kinds of services:
Web service and mashup service. We develop a framework and a code generation tool to generate an
IR that can be used to manage the digital resources by invoking the five cloud services. Our approach
is applied to the digital library on the history of water conservancy in China of Tsinghua University
Library to demonstrate its feasibility.

62

A Service Component Model and Implementation for Institutional Repositories

1. INTRODUCTION

As institutions and organizations strive to meet
the needs of a technologically savvy society, they
are confronted with the problem of managing a
massive amount of digital resources. If they are
to meet societal needs, they must incorporate a
digital resource management system that is capable
of affording individuals an opportunity to access
their digital resources in a readily available and
useful manner. In response, many have started to
use an Institutional Repository (IR) which is an
online system for digitally collecting, preserv-
ing, and disseminating intellectual output (Smith
2002) (Institutional Repository 2010). Although
IR originates from academic fields, more and
more organizations are setting up their own IRs
that extend the original academic elements such
as institutionally defined, scholarly content, cu-
mulative and perpetual, interoperability and open
access (Johnson 2002).

Meanwhile, Cloud Computing has been boom-
ing for several years. It is an extension of Grid
Computing which emphasizes the on-demand
usage of computing powers. In comparison, Cloud
Computing focuses on higher-level services or
well-designed services. More so, Clouds are
defined as a large pool of easily usable and ac-
cessible virtualized resources (such as hardware,
development platforms and/or services) (Vaquero
et al. 2009). These resources can be dynamically
configured to adapt to variable load (scale), lead-
ing to optimum resource utilization. This pool of
resources is typically utilized on a pay-per-use
model in which guarantees are offered by the
Infrastructure Provider by means of customized
SLAs.

Overall, Cloud Computing has three advan-
tages that can help us manage digital resources.
First of all, it is a pay-per-use utility model that
decreases the cost of setting up, operating and
upgrading an Institutional Repository. Secondly,
it is scalable to deal with the massive digital re-
sources that are continuously growing. Thirdly,

it provides flexible services to be integrated with
existing applications.

In addition, there exist many legacy digital
resource management systems that require inte-
gration with the emerging systems. The current
software usually provides Web Services to be in-
voked from the old systems. However, to integrate
these Web Services, it is necessary to modify the
codes and re-compile which can be very cumber-
some. So as to improve upon this practice, we
offer Mashup services as a means to support this
integration. This is because Mashup Service can
be integrated at a higher level, which reduces the
workload to some extent. It serves as a straight-
forward way to create new Web applications by
combining existing Web resources utilizing data
and Web APIs (Benslimane et al. 2008).

The software that we have developed is the
Digital Resource Management System Version 2.0
(DRMS2.0), which is an upgrade of the DRMS1.0
which was a stand-alone system that provided the
management of digital resources from ingestion,
storage, index to services. For DRMS2.0, we de-
sign it as a middleware between application layer
and network layer, which includes five clouds, a
digital resource management container and an as-
sistant tool. The five clouds provide three kinds of
services: SaaS, Mashup Services and Web services.
The SaaS services include management of digital
object identifiers and digital content. Mashup ser-
vice consists of Web APIs to be integrated in the
user interface of a Web application. Web services
provide the programmable interface to operate the
digital resources. The digital resource management
container called MenuFrame provides the Web
interfaces, role-user management, privilege man-
agement, and supports central authentication. The
assistant tool helps the user create an Institutional
Repository for the customized digital resources,
or just an empty framework for common use. The
five clouds themselves are also created by this tool.

In traditional digital resource management
systems, the content of the digital resource is
normally static after it is ingested. But from our

63

A Service Component Model and Implementation for Institutional Repositories

point of view, we regard that the value of a digital
resource to not only be decided by the author,
but also enhanced by its users. For example, on
Flickr.com, a picture is annotated with social tags
which are relevant keywords associated with or
assigned to a piece of information (e.g., a Web
page), describing the item and enabling keyword-
based classification (Chirita et al. 2007). The
tags are more precise to describe the content of
the photo and provide an up-to-date taxonomy
(Hunter et al. 2008) (Marlow et al. 2006). While
emergent semantics of social tagging are used to
help evaluate similarity measures (Markines et
al. 2009), we emphasize the participation of users
and support them by importing social annotations
such as tags, scores and comments.

Our overall goal is to both enrich the value of
the digital resources with user-generated-content
and also help users find required digital resources.
To achieve the second target, we have to find what
they want, this is, the users’ interests. The interests
of the users can be expressed in two ways: explicit
and implicit expressions. The explicit expressions
are provided by the users (i.e., keywords list)
while the implicit expressions are the records of
the users’ actions such as click-streams, and pre-
viously used resources. In addition, annotations
help discover the users’ interests by calculating
the similarities between digital resources and
between users (Sen et al. 2009) (Aurnhammer et
al. 2006) (Song et al. 2008).

This paper is organized into eight sections.
The second section discusses the related work.
A Digital Resource Service Component model is
depicted in section 3. Section 4 describes the archi-
tecture supporting DRSC model. The design and
implementation of the clouds are given in section
5. In section 6, the tool and process of building an
IR are described in details. And section 7 comes
the system requirements and installation. The
last sections are the future work and conclusion.

2. RELATED WORKS

There are many well-known platforms and pro-
grams available to help institutions build their own
repositories, such as DSpace1, Fedora Commons2
and EPrints3 to name a few. However, they have to
maintain the whole systems on the basis of these
platforms and programs which is not what we call
cloud services. To the best of our knowledge, there
are only two Institutional Repository projects try-
ing to bring in the advantages that cloud services
provide: Fedorazon4 and DuraCloud5.

Fedorazon is an out-of-the-box version of the
Fedora Commons repository software that comes
preconfigured for installation in the Cloud. It
regards that a Cloud Repository is Fedora Com-
mons Repository plus Amazon Web Services
(i.e., Fedora + Amazon = Fedoarzon). The Aim
of project Fedorazon is to enhance the content
of repositories throughout the UK’s HE and FE
sector by providing solutions for the scalability of
repositories as they grow in size and complexity.
As a rapid innovation project, it looks to remove
the “hardware” barriers involved in launching and
maintaining a repository. It accomplishes this by
enabling the use of Fedora Commons repository
software on-top-of Amazon’s virtual servers (EC2
& S3). By pre-configuring these servers, any HE/
FE institution can “rent” Amazon server space and
launch their own secure Fedora repository without
having to pre-configure a local server within their
institution. In short, institutions can launch their
repository service on the same day they decide to
have one, and without hiring a “hardware” expert.

To pursue a common mission, Fedora Com-
mons and the DSpace Foundation merged into
DuraSpace. DuraSpace is committed to serving
the creators and stewards of scholarly, scientific,
and cultural heritage by providing technologies
and services that help to ensure that digital content
is accessible over the long term. Accordingly, the
DuraSpace technology portfolio inherently ad-
dresses the issue of durability of digital content.
DuraCloud is a hosted service and open technol-

64

A Service Component Model and Implementation for Institutional Repositories

ogy developed by DuraSpace that makes it easy
for organizations and end users to use cloud
services. DuraCloud leverages existing cloud
infrastructure to enable durability and access to
digital content. DuraCloud particularly focuses
on providing preservation support services and
access services for academic libraries, academic
research centers, and other cultural heritage orga-
nizations. The service builds on the pure storage
from expert storage providers by overlaying the
access functionality and preservation support tools
that are essential to ensuring long-term access and
durability. DuraCloud offers cloud storage across
multiple commercial and non-commercial provid-
ers, as well as compute services that are keys to
unlocking the value of digital content stored in the
cloud. DuraCloud provides services that enable
digital preservation, data access, transformation,
and data sharing. Customers are offered “elastic
capacity” coupled with a “pay as you go” ap-
proach. DuraCloud is appropriate for individuals,
single institutions, or for multiple organizations
that want to use cross-institutional infrastructure.
DuraCloud has been in a pilot phase since the
beginning of fall 2009 and will be released as a
service of the DuraSpace not-for-profit organiza-
tion in the fall of 2010.

Through the surveying of the two aforemen-
tioned projects, we are able to compare our work
(A service component model and implementation
for institutional repositories) with theirs. In actu-
ality, the two projects share some commonality
with our work: all try to bring in the advantages
that cloud services provide such as flexibility,
scalability, elasticity and a pay-per-use model that
are inherent in cloud. Nevertheless, these three
works have different emphases.

With regard to Fedorazon, its objectives are
fairly clear. It is a preconfigured instance of Fe-
dora repository installed on rentable servers from
Amazon so as to host the computing stack (EC2)
and the storage components (S3). In this case, In
Fedorazon, cloud means virtual server services
as provided by Amazon. As for DuraCloud, their

idea is more similar to ours than Fedorazon’s.
DuraCloud is a mediator between institutional or
end-user applications and a variety of 3rd party
cloud services. The purpose of the service is to
provide a trusted intermediary that offers dif-
ferent levels of service aimed at making digital
content durable and usable (DuraCloud Overview
2009). In this case, in DuraCloud, cloud menas
not only Amazon but also other 3rd party cloud
storage and computing services, yet DuraCloud
still needs to store some information needed to
mediate storage and retrieval of content with 3rd
party storage providers. In comparison, our work
(A service component model and implementation
for institutional repositories) lies on more cloud
services than the envisioned DuraCloud project
(as it begins at fall of 2009 and still in its process)
because the middleware we designed does not
have to locally store the content of one resource,
and it even does not need to store its metadata
and other extra information. By doing so, it will
bring convenience to an institution while they set
up their own repository.

Next, we’ll describe the digital resource service
component model we designed in detail, which
targets to support cloud services easily and enhance
the efficiency of managing digital resources.

3. SERVICE COMPONENT MODEL
OF DIGITAL RESOURCES

To manage a digital resources effectively, it is
necessary to define a model to identify the related
information and categorize the functions. Fedora
regards that a digital object is composed of: identi-
fier, object properties, data-streams that represents
MIME-typed content items and disseminators
that associate external services with the object for
the purpose of providing extensible views of the
object or of its data stream content (Lagoze et al.
2006). There are three kinds of digital objects in
Fedora: data objects, Behavior Definition Objects,
and Behavior Mechanism Object (Smith 2002).

65

A Service Component Model and Implementation for Institutional Repositories

In comparison, DSpace emphasizes more on
the organization structure of an institution. The
way data is organized in DSpace is intended to
reflect the structure of the organization using the
DSpace system. Each DSpace site is divided into
communities, which can be further divided into
sub-communities reflecting the typical university
structure of college, department, research center,
or laboratory. Communities contain collections,
which are groupings of related content. A collec-
tion may appear in more than one community.
Each collection is composed of items, which are
the basic archival elements of the archive. Each
item is owned by one collection. Items are further
subdivided into named bundles of bit streams.

Unfortunately, these two models cannot be
directly used in Clouds. Therefore, we designed
our model (DRSC model) with the concept of
supporting Cloud Computing Services. The
combination of Cloud Computing and SCA can
give the applications maximum flexibility. If the
cloud services are implemented using SCA, it is
easy to hide the affect on the applications when
change occurs. Based on SCA, we design the
DRSC model to represent the properties, services
and references of a digital resource.

As for the DRSC model, it is an extension of
the traditional digital object model. For a normal
Institutional Repository, an object identifier can
be generated as an auto-incremental number or
some other pre-defined number. For the digital
identifiers in clouds, they should have the unique-

ness property whenever and wherever they are
generated. Appropriately, we choose a Universally
Unique Identifier (UUID) as the identifier because
a UUID is 128 bits long, and can guarantee unique-
ness across space and time. UUID is originally
used in the Apollo Network Computing System
and later in the Open Software Foundation’s (OSF)
Distributed Computing Environment (DCE), and
then in Microsoft Windows platforms.

As shown in Figure 1, an SCA component
consists of services, references and properties.
The component provides services to other com-
ponents, which are defined in terms of a business
interface. It references to services provided by
other components, which are also defined in terms
of a business interface. The properties configure
the component behavior.

The service component is recognized through
its services by outside. We define a DRSC object
as the composition of five atomic services (Figure
2): ID, Metadata, Content, Log and Annotation
which will be explained in the following sections.

3.1. Five Atomic Components

3.1.1. Identifier (ID) Component

This is a component with properties of a unique
identifier, registration information and the pointers
to other services for the same digital resource and
is generated as a UUID. The registration informa-
tion includes agency, registration date/time and

Figure 1. SCA component

66

A Service Component Model and Implementation for Institutional Repositories

approver. It may include Dublin Core metadata
that can be used to support simple queries. The
pointers refer to the locations of metadata com-
ponents, content components, log components
and annotation components. In addition, the re-
lationship between the ID component and other
component is 1:N. Also, the services provided
include registration, search and locating.

3.1.2. Metadata Component

This component not only includes the information
of the DRSC object itself, but also the relation-
ships with other DRSC objects. Its private prop-
erties include the general Dublin Core metadata
and other specific metadata. The relationships
with other digital object are expressed as binary
tuples such as (ID2, parent) that means the current
DRSC object is the parent of the DRSC objet with
ID2. Metadata component may also include the
redundant information such as the location of the
DRSC content component. There are two service
groups: data manipulation and data access.

3.1.3. Content Component

This is a component with the properties of mul-
tiple versions of resource content. The properties
of separate version include creation date, format,
and creator/modifier. The services include the
upload and the download services of the resource
content. For the upload process, if it is a new re-
source, a component is created; but for an existing
resource, the version and other information such
as the modification have to be stored separately
to keep the whole history of the digital resource.
This component supports the whole lifecycle of
the content of a DRSC object.

3.1.4. Log Component

This is a component with the properties of operator,
operation type, operation text and operation result.
There are two kinds of logs: one is the access log
that doesn’t change the metadata and content of
the DRSC object and the other records the opera-
tions that modify the metadata or content of the
DRSC object. Access log is a record of the access

Figure 2. DRSC object

67

A Service Component Model and Implementation for Institutional Repositories

history that can be used to analyze the patterns
and preference of the users. Operation log is used
to track the modification of the DRSC objects for
auditing and recovering. There are two kinds of
services provided: log recording service and log
analysis service.

3.1.5. Annotation Component

This is a component with properties of score,
tags, comments and usage-status. As discussed
in section 1, the annotation information is dif-
ferent from the metadata in several ways. The
first difference is that metadata is given by the
experts, but annotations are given by users who
might not have the expertise knowledge. Sec-
ondly, metadata is chosen from a controlled word
list, while annotation is freely given as the user
wishes. Thirdly, the quality of metadata can be
guaranteed while the qualities of the annotation
vary a lot. However, the advantage of annotations
is that they are evolving with time so that they
can reflect the current understanding of the DRSC
object, while the metadata is normally fixed after
it is created. There is much research on how to
create a dynamic taxonomy from tags, if you’re
interested, see (Hunter et al. 2008) (Marlow et al.
2006) for example.

The scores can be used to calculate the qual-
ity of a DRSC object, and help the ranking of the
search results. Comments are free text description
of the user’s opinion or notes, which can be pro-
cessed by text mining or combined with tags by
extracting the keywords from them. Usage-status
is optional according to the content type of the
DRSC object, which helps the users to manage
their learning or studying processes. Usage-status
can also be used to help the calculation of the
tightness between user and resource. These an-
notations can also be used in collaborative filter-
ing for recommendation. We use a tuple with six
elements to represent the annotations for a DRSC
object given by a user: <user, resource, score, tags,
comments, usage-status>. From the annotations,

we can calculate the similarities between the users
or between the resources.

3.2. The Composition
of a DRSC Object

The above five components constitute one DRSC
object as shown in Figure 2. Importantly, these
service components do not need to exist in one
computer, but rather be distributed over the Inter-
net. However, the behavior of a DRSC object is
configured by its properties, such as the links to the
corresponding components. To add, SCA supports
multiple interfaces through one implementation,
which results in the flexibility to the applications
of a DRSC object. What this means is that the
component applications can be implemented in
different languages, such as Java, C++and COBOL
etc. according to the corresponding specifications
that can be downloaded from OSOA’s web site
(SCA Specification 2009).

The four components: Metadata, Content, An-
notation and Log are all based on the ID compo-
nent. The ID component consists of the pointers
to the other four components. When the stored
information of one resource in the four components
changes, they will notify ID component to update
the registration. The high flexibility of a DRSC
object is that it can be automatically integrated
with different transportation protocols such as Web
Service, MQ, HTML, REST and so on.

This service component model of digital re-
sources has the advantages as follows: it simplifies
the development, composition and distribution
process in assembling a solution of digital re-
source management; it improves the portability,
reusability and flexibility in managing the digital
resources; and it also reliefs the burden of the
organizations by hiding the details of the backside
technology from them.

For one kind of digital resource, there are two
steps to create a DRSC object for it. The first step
is to refine and classify its properties and functions
into the five components and the second step is

68

A Service Component Model and Implementation for Institutional Repositories

to create a management system. In the first step,
the metadata is to be extracted from the digital re-
source first and foremost (this includes the Dublin
Core metadata and other specific metadata). As
for the content, there are some extra information
added such as the format type, file size, created
date, version etc. Besides the original format,
one has to know the kinds of format that can be
supported in the future. When the required format
is confirmed, the original resource is converted
into that format. The format conversion function
can be added to the content component manu-
ally if an automatic conversion module does not
exist. The annotation to a digital resource may
not be corresponding to a record in the Metadata
component. The relationships between them are
shown in Figure 3. The relationships between ID
component and other four components are 1:N.
And the relationship between Metadata component
and Content component is 1:N. However, at some
time, to improve the efficiency of the applications,
the content can be retrieved directly without ac-
cessing the ID component.

After analyzing the properties and functions
of a digital resource, the next step is to create a
management system for it. There are several
methods for the administrator to create the system.
One method is to create it through the use of our
assistant tool that can generate the source code
and distribution package, given the analysis of
the digital resource from the above sections. Once
complete, it is possible to set up a standalone
system to manage the digital resources as described
in section 6.

A second method to create a management sys-
tem is to use the atomic components available on
the Internet. Again,our assistant tool can also help
users generate the corresponding source code and
distribution packages. within comparison to the
first method, the set-up and operation cost of the
second method is much less. The administrator
only needs to install a small system without any
locally stored data.

The third method is to create the digital
resource component directly on the Web. The
administrator inputs the specific information

Figure 3. Relationships between the components

69

A Service Component Model and Implementation for Institutional Repositories

of the digital resource. Once complete, a SaaS
interface is provided for the user to manage the
digital resources. In all, these three methods are
from local installation to remote service, from
complex to easy (Figure 4).

After a DRSC object is created, there are two
kinds of user groups: end users and developers.
If end users only need the basic functions of add,
delete, update and search, they can use the Web
interfaces provided. However, it is typical that
end users require more functions and/or different
user interfaces. If this is the case, the developers
can utilize the programmable interfaces provided
by the DRSC object to build new functions and
user interfaces. Furthermore, not only can the
DRSC object be used in a new digital resource
management system, but it can also be invoked
from the existing software systems to support the
new digital resource.

As apparent, the second and third methods to
create a DRSC object utilize web resources. Ob-
viously, this causes a security concern in relation
to the distribution of the DRSC object. However,
while the security problem is not solved by the
components themselves, it is resolved through
appropriate management at the system level and
the data level that will be explained in Section 5.

To continue, the assistant tool is implemented
in Java. However, the DRSC model is only a

specification that is an application of SCA in the
digital resource management field. Importantly,
other programming languages and tools can also
be used to create the components.

In this section, we present a digital resource
service component model which is different from
the traditional digital objects. This model is based
on SCA specifications. A DRSC object is com-
posed of five atomic components: ID, Metadata,
Content, Log and Annotation. The composition
of a DRSC object is flexible by adopting different
Internet transportation protocols. The processes
to analyze and create a DRSC object are given.
We also discuss the usage of a DRSC object. In
the next section, we will focus on the system
architecture.

4. ARCHITECTURE SUPPORTING
DIGITAL RESOURCE SERVICE

Our architecture includes the function modules,
the invoke relationships, and the transportation
methods of messages. The architecture describes
how an IR manages digital resources based on
DRSC model (Figure 5).

To further describe Figure 5, an institutional
repository is composed of five layers (Network
Infrastructure Layer, Cloud Layer, ESB Layer

Figure 4. Comparison of the three methods of DRSC object creation

70

A Service Component Model and Implementation for Institutional Repositories

based on SCA, Logic Layer and Application
Layer) which are based on the five clouds. The
two supportive columns in Figure 5 are Standards/
Specification and Security, Testing and Mainte-
nance.

The fundamental layer needed for a successful
institutional repository is the Network Infrastruc-
ture Layer. This is because all of the methods
discussed above must rely on a stable and fast
network. Otherwise, it is impossible to build an
Institutional Repository in the cloud environment.

Above the Network Infrastructure layer, there
is the cloud layer which consist of the five clouds

that correspond to the five DRSC components.
The CDOI (Chinese Data Object Identifier
System) implements the ID service component
by providing the basic Add, Delete, Update and
Search functions and further functions such as
Registration, Locating, Value-added and Agency
Management services. The Metadata service com-
ponent is running in WMMS (WeST Matadata
Management System) that stores the metadata in
XML database. The content of a digital resource
is managed by WFMS (Web File Management
System) and the Annotations and Logs are sepa-
rately maintained by TAGSYS (TAG SYStem) and

Figure 5. The IR architecture based on DRSC model

71

A Service Component Model and Implementation for Institutional Repositories

ULAS (User Log Analysis System). Not only can
these five clouds be installed on one web server,
but also distributed on separate cross-boundaries
web servers. The interfaces (invoking addresses)
used for the services of the components in these
systems are configured in the configuration file
of the Institutional Repository. The configurable
interfaces make it easy to upgrade and deal with
failure circumstances. We provide two kinds of
interfaces here: Web Service interface and Mashup
Service interface. Because our implementation is
based on ESB (Enterprise Service Bus), which is
a message broker supporting many transportation
protocols, we can get more interfaces by modify-
ing the definitions of the endpoints. If there is an
interface that is not included in the ESB package,
the framework is provided so as to implement one.

The ESB layer, which connects the clouds with
the logic layer, plays a critical role in the Insti-
tutional Repository. This layer is a virtual layer,
as it exists on the servers of the five clouds. The
most important advantage of ESB is to provide
many interfaces with different transportation
protocols. There are many ESB implementations,
such as Mule, ServiceMix, JBoss ESB and other
commercial software. In our implementation, we
choose Mule, which is an open-source lightweight
enterprise service bus and integration platform
that allows one to easily connect applications
together. It can be embedded into other applica-
tions easily such as Spring, Tomcat, and so on. For
our work, we embeded mule in the Tomcat server
and invoked Spring functions. It also provides
JUnit test packages that make the development
of services more testable so as to guarantee the
quality of the code.

The ESB layer connects the clouds with the
logic layers through two kinds of services: Web
Service and Mashup Service. Web services today
are frequently utilized as Application Program-
ming Interfaces (API) or web APIs that can be
accessed over a network, such as the Internet, and
executed on a remote system hosting the requested
services. A Mashup is a web page or application

that combines data or functionality from two or
more external sources to create a new service. Our
five clouds provide these two kinds of services to
build an Institutional Repository. These services
can be classified into two groups: management
services and access services. The services these
two groups provide compose the DRSC services.

The logic layer deals with the business logic
of the digital resources management. Through the
code automatic generation tool named Template
(as described later) the program with the basic
business logic is generated. Our framework pro-
vides the support to the central authentication
of applications, which is implemented by using
the LDAP server ApacheDS and CAS (a single
sign-on protocol for the web). By using a central
authentication, the Institutional repository can be
integrated into the current applications without
the need to replicate user information over sev-
eral databases. Furthermore, the logic layer also
supports a workflow that is very useful to set up
the specific business logic within the institution.
The workflow function is provided by integrating
OSWorkflow into the logic layer. By modifying
the configuration file, the application can support
different business logics without modifying the
source code. In addition, the user registration
process in the logic layer is implemented by us-
ing OSWorkflow, which consists of two steps: (1)
User can freely register through the submission
of personal information; (2) the administrator
can view the list of the new registers, verify the
registration, then approve or reject the registration.
If needed, this process can also be hardcoded, but
in doing so, it will lose flexibility.

The application layer provides the user in-
terface to the end users. It receives the requests
from the users, calls the logic layer to accomplish
corresponding functions, then renders the re-
turned results. There are two kinds of interfaces:
an interface for the normal user and an interface
for the administrator. The general user interface
requires a high quality UI experience while a plain
interface is more acceptable for the administra-

72

A Service Component Model and Implementation for Institutional Repositories

tor interface. With this in mind, our framework
can provide the basic administration interface to
manage the digital resources including add, delete,
update and search functions. Other administration
functions and interfaces have to be customized to
be implemented.

Ajax (shorthand for asynchronous JavaScript
and XML) is a group of interrelated web develop-
ment techniques used on the client-side to create
interactive web applications. With Ajax, web
applications can retrieve data from the server
asynchronously in the background without inter-
fering with the display and behavior of the existing
page. In our framework, we import two common
libraries to support Ajax: Prototype and JQuery.

In this architecture, standards are very impor-
tant for the interoperability. In consideration, we
follow the OSOA standards during the building
and maintenance of our DRSC model. Based on
these standards, we provide the specification of
digital resources, which are used to describe the
atomic service components and the composition
rules. For each service component, we give out the
specification of the properties, service interfaces
and references. From these standards and speci-
fications, the DRSC model can be implemented
in different languages and environments and still
easily communicate with each other.

Besides the support of standards and specifica-
tions, we also consider the security, testing and
maintenance in the architecture. Our framework
provides two kinds of security methods: role-based
authentication and encryption-based content secu-
rity. In the system, users are assigned one or more
predefined roles. These roles then determine the
user’s privileges, the information they can view
and access, and items they are able to change.
We provide an interface for the administrator to
define different roles. To enable the authentication,
we add a filter so as to invoke the Struts actions.
Therefore, every request is checked according to
the privilege list. On the web pages, fine-grained
access control is applied for the display of the page
content. In addition, we also afford administrators

with the ability to drag and drop privileges from
one role in order to create a new role.

Users may worry about the security of the
content host server because if the host server is
attacked, the content on the server may be accessed
by some unauthorized person. The encryption-
based method solves this problem by encrypting
the content as it is uploaded to the clouds. Even
if the attacker obtains the content, they should not
be able to decrypt the content. After the content is
downloaded from the server, using the key stored
locally, the content is decrypted automatically.
For specific content, one can choose whether to
encrypt it or not. Currently, we only support the
encryption using Winzipaes from Apache.

In order to build and deploy the application, we
use Apache Ant. Apache Ant is a software tool used
to automate the software build processes. More
so, it uses XML to describe the build process and
its dependencies. Ant also includes a task JUnit,
which is a simple, open source framework to write
and run repeatable tests. Therefore, the framework
supports test-driven programming. Based on JU-
nit, Mule ESB extends JUnit test case in order to
test the services without embedding them into a
J2EE container. This set of automatic testing tools
support a smoking test that can keep the software
usable and qualified for release.

After the release of an Institutional Reposi-
tory, we continue to maintain it by correcting
coding errors, improving the performance and
extending the functions of the software. We have
a specification of maintenance which defines the
detailed processes, such as how to release the
patches, and how to add a new function. Releasing
an Institutional Repository is only the first step
of its lifecycle, as the continuous support is very
important. We investigated how to set up a wiki
to help maintenance.

After the institutional repository runs, there
may be a large amount of legacy data that needs
to be imported into the new system. Thusly, we
provide a tool that generates the code needed to
import the legacy data into the new system from

73

A Service Component Model and Implementation for Institutional Repositories

a text file. The format of the text file corresponds
to the properties of the five atomic DRSC com-
ponents. The data in the text file is imported to
the clouds by invoking the web services of the
DRSC object.

In short, this architecture provides users with
the flexibility needed to build an institutional re-
pository. Users can set up the component services
on local servers or just use available cloud services
on the Internet. That is the advantage of the SCA
model: you can call a service through different
protocols. The clouds are the key components to
build an institutional repository. Of course, the
availability and quality of the cloud services will
affect the application very much. We will introduce
the architecture and functions of them below.

5. DESIGN AND IMPLEMENTATION
OF THE CLOUDS

The Clouds can be distributed across the Internet
and provide the functions of accessing and ma-
nipulating the data. Similar to the architecture of
the Institutional Repositories built on the clouds,

the structures of the clouds themselves are also
based on SCA. As shown in Figure 6, there are
seven layers: network infrastructure layer, data
layer (including Relational Database - RDB, XML
database and file sets), data access layer, logic
layer, ESB layer based on SCA, event response
layer and user interface layer.

To further describe Figure 6, the network in-
frastructure layer provides the basic communica-
tions. There are three kinds of data storage
mechanisms. The first is the relational database
which is used to store the common and fixed
structured information such as login name, pass-
word and Dublin Core metadata, as the change
of the RDB structure will bring too much modi-
fication for the application. The second storage
mechanism is the XML database which is used
to store the changeable data such as the specific
metadata of a digital resource that are semi-
structured, as the schema of an XML file is easy
to be extended. The third storage mechanism is
the file set which is used to store unstructured
data such as image, audio and video resources.

In the design of a DRSC object, these three
kinds of data have to be clearly classified. For

Figure 6. The architecture of cloud supporting DRSC model

74

A Service Component Model and Implementation for Institutional Repositories

some special data, we combine these two methods
of RDB and XML. For example, we classify the
user’s properties into four sets: common data such
as login name and password, admin data such
as ID card number, user data such as email and
gender, and system data such as statistical data.
As for the admin data, user data and system data,
in order to keep the extensibility, we use the XML
format to store them.

In the data access layer, there exist three inter-
faces: one for relational database, one for XML
database and one for file set. For the relational
database, we use Spring to configure the database
connection pool. There are two kinds of database
access methods provided. The first is to use
JDBC to connect the database and SQL to query
the data. The second method is to use Hibernate
to package the database. The second interface is
Hibernate which makes it seem as if a database
contains plain Java objects. For the XML data-
base, we use XQuery that is a language from the
W3C designed to query and format XML data.
And for the file set, we use SOAP/http to upload
and download files.

Above the data access layer is the logic layer.
In this layer, we implement the business logic of
the cloud functions using different data from the
data layer through corresponding access methods
provided by the data access layer. Above the logic
layer is the ESB layer which is based on SCA.
By using ESB, the business logics of the cloud
functions can be implemented in different inter-
faces. The detail functions of each cloud will be
introduced in the later sections.

The event response layer is between the user
interface layer and the ESB layer. We provide
two basic interfaces to interact with the users in
the user interface layer: one is the common Web
interface which is used while the cloud is running
as a standalone system, and the other is Web service
interface which is used while the cloud is running
as a remote service on the Internet. When the
user sends a request to our cloud through the user
interface, the event response layer is invoked. In

this layer, we create filters that perform privilege
verification inside different actions as defined
in Struts. After verification, this layer invokes
different functions through ESB and responds
accordingly as different results are returned. For
each of the clouds, we give out the specifications
for them. The security, testing and maintenance
column in the figure is similar to the techniques
discussed in the previous section.

For each of the clouds, we use our framework
to develop them, which will be described in sec-
tion 6. The framework can provide the basic au-
thentication, menu and frameset-based interface.

5.1. CDOI

The Digital Object Identifier (DOI) System is
for identifying content objects in the digital en-
vironment, just like DNS for domain names. DOI
names are assigned to any entity for use on digital
networks. They are used to provide up-to-date
information, including where they can be found
on the Internet. Information about a digital object
may change over time, including where to find it,
but its DOI name will not change. However, there
exist several problems of using DOI:

• Naming rule: the length of DOI name is of
variable length and can reach 128 bytes,
which is not efficient for computer system
to store and process.

• Name generation: it requires human inter-
vention, which is impossible to deal with
considering the massive user-generated
content based on Web2.0.

• Integration: DOI cannot support the inte-
gration of the digital resources distributed
on different repositories because these re-
positories may have the same digital ob-
ject identifier for different resources. For
example, they probably use the internal
ID such as an auto-incremental number to
name a digital resource, which may cause
the problem of ID conflict.

75

A Service Component Model and Implementation for Institutional Repositories

To solve these problems, we have selected
UUID as the unique ID in the CDOI cloud. In
CDOI, we adopt two UUIDs to replace the DOI
name. The first UUID is the organization/person
identifier name; the second UUID is the internal
identifier name. The overall length of a CDOI name
is 64 bytes. The advantages of using UUID are:
UUID can be generated automatically by many
programs while guaranteeing the uniqueness; the
length of the CDOI name is fixed, which is good
for storage and index; it is easy to be automatically
processed, which can be used to name the massive
user-generated content from Web2.0 applications;
and it is easy to be distributed on many servers,
which provides CDOI with high scalability.

The services that this cloud provided are
register, delete, update an ID, and resolve ID to
the real location of the resource or the metadata
of the resource. Besides the direct services, we
also provide the service of agency management.

5.2. WMMS

WMMS is used to manage the metadata of the
digital resources. The properties of it can be
classified into two parts: the basic part and the
extension part. The basic part includes the basic
metadata of the digital resource, for which we
use Dublin Core set to present it. However, for a
digital resource, there are many different properties
belonging to the extension part and it is difficult
to maintain these properties in a fixed column
relational database. As for a digital resource, its
properties may change as it evolves. In regards
to data storage, we chose BerkleyDB which is a
high performance open source XML database. It
is implemented in C/C++, we use JNI to call it
and XPath/XQurey to query the database.

The services it provides are creating a new
XML document (similar to a table in RDB), query-
ing on the documents, and deleting a document.
Each document is included in a single file. For
a new type of digital resource, we use a file to
store the data. In regards to the size of the single

file, BerkelyDB can support up to 4TB. As for the
query on multiple documents, BerkelyDB provides
functions to open them all for complex query.

The schema of a digital resource can be gener-
ated from the tool automatically. Once complete,
the database can verify the data formats according
to this schema file. To speed up the query, the
indexes are built. We plan to support dynamic
index creation according to the statistical analysis
of the query history at the next stage.

Because CDOI and WMMS both include the
Dublin Core information, there exist the possibility
for data inconsistencies to occur. We solve this
problem by providing a special mark in WMMS
called “cdoiReference” that points to the ID entry
in CDOI.

For the query result, we provide two formats
to return to the user: one is XML, and the other
is JSON which uses two-dimensional array to
package the whole result. This was chosen be-
cause JSON decreases the size of the result, thus
increases the efficiency of transportation.

5.3. WFMS

Generally, every website provides its own upload-
ing and downloading modules so that users can
share resources. However, the resources uploaded
to websites’ servers are often lack of unified and
professional management. What’s more, when
the amount of users using the uploading and
downloading modules increases, it will bring a
high pressure on the website’s server in terms of
bandwidth. WFMS is used to solve these problems.
It provides a unified interface for multiple web-
sites to upload, download and manage resources
professionally, and decreases the developing costs
and bandwidth pressure as well.

As a service container, WFMS provides two
kinds of services. One is to use WFMS as a SaaS
service. Users can apply for Web storage and use
it on the Internet directly. The other is to utilize it
in the applications which can be used in two ways.
One is to use it as a Web Service provider, from

76

A Service Component Model and Implementation for Institutional Repositories

this interface, the program can call the services
provided to upload and download digital resources.
The other way is to use it as a Mashup service. The
application can embed it in the web page directly
and manage the digital content.

In this cloud, we use UUID as the identifier of
a file. Because of the uniqueness, the application
program can generate the UUID itself without
creating a duplication problem. UUID makes the
application of the Mashup service to upload file
asynchronously. That is, the application can save
the digital resource immediately without waiting
for the resource ID returned from WFMS. There-
fore, the performance of the application can be
improved. The uniqueness of UUID also enables
the distributed deployment of WFMS servers,
which will be implemented at the next stage.

Although the digital contents are in the format
of files, for the security reason, these files cannot
be accessed directly. Rather, the files must be
downloaded for which there are two methods..
One is to include the whole file in the response
of the request. The other is to copy the file into
a temporary directory with a random name and
provide a link. In conjunction, there is a routine
to clean the temporary files periodically. Overall,
the first method is appropriate for the seldomy
downloaded files that consume a lot of memory.
The second method is appropriate for parallel
download processes, which can decrease the
workload a lot.

5.4. ULAS

The logs are very important to track the users’
behaviors and system changes. There are several
disadvantages to keep the logs locally. Writing the
logs to local disk requires file IOs, which will de-
crease the performance of the system significantly.
Secondly, if the local disk is crashed, the logs may
be corrupted at the same time. Therefore, it will
bring difficulties to re-construct the system data.

We use ActiveMQ to transfer the logs to the
ULAS cloud. Because ActiveMQ can keep the

logs locally, and send them to ULAS when the
system is in low workload, the performance of the
system can be improved. By keeping the logs on
the remote server, concern for the security of the
data might be relieved. In addition, keeping the
logs on several ULAS clouds is also supported.

Corresponding to the Log Component in sec-
tion 3.1.4, there are two kinds of logs supported
in the ULAS. ULAS can analyze the two kinds
of logs and present the results in a chart. Addi-
tionally, ULAS supply the service of adding logs
through ActiveMQ. It also provides SaaS service.
Therefore, a user can also upload log files to the
system, and then ULAS can help analyze the log
files and give visualized charts.

5.5. TAGSYS

As the common information retrieval technol-
ogy cannot meet the requirement of queries with
different backgrounds and intents, personalized
services appear to provide different services to
different users. Personalization can improve the
service quality and access efficiency, thus to pull
more visitors. More so, a personalized annotation
system is used to collect annotations of a user,
predicate users’ preferences and recommend
resources according to users’ current preferences
and taste (Sen et al. 2009).

TAGSYS is a personalized resource annota-
tion, management and recommendation system
based on tags, score, comments and usage status.
It provides the support to the process of resource
utilization. In the traditional digital resource man-
agement systems, the value of a digital resource
will not change. With the help of TAGSYS, the
users’ feedback can enrich the semantics of the
digital resources and help with other users’ learn-
ing processes. The dynamic generation of tags
can help to generate the up-to-date taxonomy. By
analyzing the annotations of the users, TAGSYS
can recommend related digital resource to users.

The services provided by TAGSYS include the
management of annotations and recommendation

77

A Service Component Model and Implementation for Institutional Repositories

of resources. TAGSYS provides the interfaces for
other systems to store their annotation information,
and recommends resources based on the annota-
tions or other information such as the tags from
Wikipedia. For example, a user can annotate the
resource when he visits applications integrated
with TAGSYS services. These systems are loosely
coupled with TAGSYS, and only need to provide
a data structure including system id, user id and
resource id. Then they can get the services of
feedback and recommendation from TAGSYS,
such as finding similar users.

In this section, we introduce the five atomic
clouds supporting an Institutional Repository. In
the next section, we will introduce our tools to help
with the building of an Institutional Repository.

6. TOOL AND PROCESS
OF BUILDING AN IR

We provide a tool called Template to help the
creation of an Institutional Repository. It is based
on our SCA framework named MenuFrame, and
the current version is 6.0 (shorthand as Menu6).
This framework consists of the following modules:
role management, user management, central-
authentication, workflow, component library
and user interface. The target of the framework
is to decrease the effort of setting up an applica-
tion. Developers can focus on their own specific
requirements without spending too much time on
routinely tedious work. This framework supplies
the application with two kinds of interfaces: GUI
interface and service interface. The GUI interface
is a frameset based Web pages. The customization
of menus and privileges is provided. The service
interface can be set up easily because Mule ESB
is embedded.

Based on this framework, we provide two
methods to create new applications. The first
method is to create a common Web-based ap-
plication. The application is generated with role,
user, menu and privilege management. Users can

configure the frameset based user interface, and
add new functions as required. The document
of how to add a new function is provided. The
construction of a common web application is
done by using ant script. In the build file, users
can configure the basic information of the ap-
plication such as application name, description,
running port, database user name and password
etc. After the application is created, a simple ant
command can run it.

The most valuable function of Template is
that it supports the creation of an Institutional
Repository based on the DRSC model.

As depicted in figure 7, the process to create
an Institutional Repository includes three com-
ponents: digital resource descriptions, Menu6
framework and a set of template files. The digital
resource descriptions include the metadata, the
functions, and the constraints. The descriptions
are defined in an XML file. Template receives
the descriptions and uses ant to invoke Free-
maker templates to create the related Java files,
JSP files and configuration files such as Struts,
Spring and Hibernate configuration files, which
are in the Menu6 framework. The generated IR
core is built and running on Tomcat. It calls the
services provided by the five clouds. It also has
a Web interface contained in Menu6 framework
and provides the functions of adding, deleting,
updating and querying. If you want to extend the
functions of the basic Institutional Repository,
you can follow our instructions similar to the
first method.

During the process, the key step is to give out
the descriptions of the digital resources. Writing
XML files by hand often brings some unexpected
errors, thus we provide an interface to input the
metadata and other information. For the moment,
we only provide the function to generate the codes
for one kind of digital resource. If there is more
than one kind of digital resource, the codes have
to be generated separately, and merged together
manually. In the future, we will support multiple
kinds of digital resources. And we will provide

78

A Service Component Model and Implementation for Institutional Repositories

SaaS service to allow users to input the metadata
and generate a Web application for them auto-
matically to manage these kinds of digital re-
sources.

This tool has already been used in the Digital
Library on the History of Water Conservancy
in China of Tsinghua University Library, which
is used to manage the books, images and some
other digital resources of water conservancy. We
only generate the codes for basic management,
because the front-end interfaces are too various,
which is difficult to create templates for. For the
digital library, it requires a customized interface.
Tsinghua University Library provides the Web
interfaces in HTML format; and we integrate them
into the digital library.

7. REQUIREMENTS AND
INSTALLATION

In order to function, the clouds and assistant tool
in DRMS2.0 require Java Server Tomcat, MySQL
database, BerkelyDB and Mule ESB. The program
is deployed with an Apache Ant Script that runs
cross-platforms to simplify the process of instal-
lation. DRMS2.0 can be easily configured and
put into production very fast. This characteristic

is crucial because the system will be most useful
at institutions with relatively weak technical sup-
port and urgent requirements. Finally, DRMS2.0
is free of charge under an academic and research
use license and the technical details of installation
are handled easily.

8. CONCLUSION AND
FUTURE WORK

This paper presents a new middleware based on
cloud services to set up an Institutional Repository.
Clouds are defined to be a large pool of easily us-
able and accessible virtualized resources. These
resources can be dynamically re-configured to
adjust to a variable load, allowing also for optimum
resource utilization. It is not economic to set up
an Institutional Repository for an organization
itself. Based on SCA, we designed a model for
managing digital resources named DRSC model,
which regards a digital resource as a composite of
five atomic service components, i.e. ID, metadata,
content, annotation and log service component.
These components provide two kinds of services:
Web service and Mashup service. In order to sup-
port the DRSC model, we design and implement
five corresponding atomic clouds. These clouds

Figure 7. Process to create an Institutional Repository

79

A Service Component Model and Implementation for Institutional Repositories

are implemented by using ESB, which support
different transportation protocols. The applica-
tions can invoke these services directly. Among
these clouds, TAGSYS supports the involvement
of users so that it can help the users find required
digital resources. We also provide an assistant tool
to help users set up a new Institutional Repository.
Based on the description of one kind of digital
resource, a basic Institution Repository can be
created fast and easily. We use the Digital Library
on the History of Water Conservancy in China
of Tsinghua University Library as an example to
demonstrate the feasibility of our approach.

However, there are also many works to be done
to enrich the functions and improve the perfor-
mance of our clouds. The first job we need to do
is the version control and provenance management
of digital resources. The second is to improve the
Template tool: we plan to develop Web interface
for the creation of an Institutional Repository for
multiple kinds of digital resources, and we also
plan to provide a SaaS way that allows Web us-
ers to manage their own digital resources more
conveniently. We believe that the digital resource
management systems built on Cloud Services
will become the next generation Institutional
Repositories.

REFERENCES

Aurnhammer, M., Hanappe, P., & Steels, L. (2006).
Integrating collaborative tagging and emergent
semantics for image retrieval. WWW Collabora-
tive Web Tagging Workshop, 2006.

Benslimane, D., Dustdar, S., & Sheth, A. P. (2008).
Services mashups: The new generation of Web
applications. IEEE Internet Computing, 12(5),
13–15. doi:10.1109/MIC.2008.110

Chirita, P., Costache, S., Handschuh, S., & Nejdl,
W. (2007). PTAG: Large scale automatic genera-
tion of personalized annotation TAGs for the Web.
WWW 2007.

DuraSpace Organization. (2009). DuraCloud
overview 2009.

Hunter, J., Khan, I., & Gerber, A. (2008). Harvana:
Harvesting community tags to enrich collection
metadata. Joint Conference on Digital Libraries
2008, (pp. 147-156).

Johnson, R. K. (2002, November). Institutional
repositories: Partnering with faculty to enhance
scholarly communication. D-Lib Magazine, 8(11).

Lagoze, C., Payette, S., Shin, E., & Wilper, C.
(2006). Fedora: An architecture for complex ob-
jects and their relationships. International Journal
on Digital Libraries, 6(2), 124–138. doi:10.1007/
s00799-005-0130-3

Markines, B., Cattuto, C., Menczer, F., Benz,
D., Hotho, A., & Stumme, G. (2009). Evaluat-
ing similarity measures for emergent seman-
tics of social tagging. WWW, 2009, 641–650.
doi:10.1145/1526709.1526796

Marlow, C., Naaman, M., Boyd, D., & Davis,
M. (2006). HT06, tagging paper, taxonomy,
Flickr, academic article, ToRead. Proceedings
of the Seventeenth Conference on Hypertext and
Hypermedia, 2006, (pp. 31-40).

SCA. (2009). Specification, final version 1.0.
Retrieved from http://www.osoa.org/display/
Main/Service+Component+Architecture+Spec
ifications

Sen, S., Vig, J., & Riedl, J. (2009). Tagommenders:
Connecting users to items through tags. WWW,
2009, 671–680. doi:10.1145/1526709.1526800

Smith, M. (2002). DSpace: An institutional reposi-
tory from the MIT libraries and Hewlett Packard
laboratories. ECDL, 2002, 213–226.

Song, Y., Zhuang, Z. M., Li, H. J., Zhao, Q. K.,
Li, J., Lee, W., & Giles, C. L. (2008). Real-time
automatic tag recommendation. SIGIR, 2008,
515–522. doi:10.1145/1390334.1390423

80

A Service Component Model and Implementation for Institutional Repositories

Vaquero, L. M., Rodero-Merino, L., Caceres,
J., & Lindner, M. (2009). A break in the clouds:
Towards a cloud definition. ACM SIGCOMM
Computer Communication Review, 39(1), 50–55.
doi:10.1145/1496091.1496100

Wikipedia. (2010). Institutional repository.
Retrieved from http://en.wikipedia.org/wiki/
Institutional_repository

ADDITIONAL READING

ACM. (2009). Cloud Computing: An Overview.
[Distributed Computing, DEPARTMENT: CTO
roundtable distributed computing.]. Queue, 7(5),
2009.

Alkhatib, G. I. (2005). Web Service Standards
Road Map. IEEE Proceedings of the International
Conference on Next Generation Web services
Practices (NWeSP’05), 2005:4-5.

Arms, W. Y. (1995). Key Concepts in the Archi-
tecture of the Digital Library. D-Lib Magazine,
(July): 1995.

Bamman D. & Crane G. (2008). Building a dy-
namic lexicon from a digital library. JCDL 2008.

Beyer D., Chakrabarti A., & Henzinger T. A.
(2005). Web service interfaces. WWW 2005.

Buchanan G., Bainbridge D., Don K. J., & Witten
I. H. (2005). A new framework for building digital
library collections. JCDL 2005.

IBM Corp. Connecting enterprise applications to
websphere enterprise service bus. IBM Corp. PO
Box 10659 Riverton, NJ USA.

Ferris, C., & Farrell, J. (2003). What are Web
Service? Communications of the ACM, 46(6), 31.
doi:10.1145/777313.777335

Halvey M. & Keane M. T. (2007). An Assessment
of Tag Presentation Techniques. WWW 2007.

Hazelhurst, S. (2008). Scientific computing us-
ing virtual high-performance computing: a case
study using the Amazon Elastic Computing Cloud.
Proceedings of the 2008 annual research confer-
ence of the South African Institute of Computer
Scientists and Information Technologists on IT
research in developing countries: riding the wave
of technology, pp.94-103, 2008.

Khoo M. (2006). Evaluating the national science
digital library. JCDL 2006.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sand-
holm, T. (2009). What’s inside the Cloud? An
architectural map of the Cloud landscape. Pro-
ceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing.

Meinl, T., & Blau, B. (2009). Web ser-
vice derivatives. WWW, 2009, 271–280.
doi:10.1145/1526709.1526746

Moreno-Vozmediano, R., Montero, R. S., &
Llorente, I. M. (2009). Elastic management of
cluster-based services in the cloud. International
Conference on Autonomic Computing Proceed-
ings of the 1st workshop on Automated control
for datacenters and clouds Barcelona, Spain
SESSION: Across environments Pages 19-24.

Murray, P. (2009). Enterprise grade cloud comput-
ing. European Conference on Computer Systems
Proceedings of the Third Workshop on Depend-
able Distributed Data Management Nuremberg,
Germany Pages 1-1.

Qi, N. Z., Kudo, M., Myllymaki, J., & Pirahesh,
H. (2005). A function-based access control model
for XML databases. CIKM, 2005, 115–122.

Roşu, M. (2007). A-SOAP: Adaptive SOAP
Message Processing and Compression. IEEE
International Conference on Web Services (ICWS
2007), 200-207.

Schilit B. N. & Kolak O. (2008). Exploring a
digital library through key ideas. JCDL 2008.

81

A Service Component Model and Implementation for Institutional Repositories

Sefton, P., & Dickinson, D. (2010). An Archi-
tecture for a Distributed Digital Library. JCDL,
2010, 389.

Sen, S., Lam, S. K. T., Rashid, A. M., Cosley, D.,
Frankowski, D., & Osterhouse, J. (2006). Tagging,
communities, vocabulary, evolution. CSCW, 2006,
181–190. doi:10.1145/1180875.1180904

Sigurbjornsson, B., & Zwol, R. V. (2008).
Flickr tag recommendation based on col-
lective knowledge. WWW, 2008, 327–336.
doi:10.1145/1367497.1367542

Weingroff M. & Bhushman S. (2005). Tools for
managing collaboration, communication, and
website content development in a distributed
digital library community. JCDL 2005.

Xu Y. & Papakonstantinou Y. (2005). Efficient
keyword search for smallest LCAs in XML da-
tabases. SigMod 2005.

Xu, Z. C., Fu, Y., Mao, J. C., & Su, D. F. (2006).
Towards the semantic web: Collaborative tag
suggestions. WWW Collaborative Web Tagging
Workshop, 2006, p8.

Zhou, D., Bian, J., Zheng, S. Y., Zha, H. Y., &
Giles, C. L. (2008). Exploring social annotations
for information retrieval. WWW, 2008, 715–724.
doi:10.1145/1367497.1367594

KEY TERMS AND DEFINITIONS

Cloud Computing: Internet-based computing,
whereby shared resources, software, and informa-
tion are provided to computers and other devices
on demand, like the electricity grid.

DOI: Digital Object Identifier, A character
string used to uniquely identify an electronic
document or other object.

Fedora: A modular architecture built on the
principle that interoperability and extensibility is
best achieved by the integration of data, interfaces,
and mechanisms (i.e., executable programs) as
clearly defined modules.

Institutional Repositories: An online locus
for collecting, preserving, and disseminating, in
digital form, the intellectual output of an institu-
tion, particularly a research institution.

Mashup: In Web development, a mashup is a
Web page or application that uses and combines
data, presentation or functionality from two or
more sources to create new services.

Middleware: Computer software that con-
nects software components or some people and
their applications.

SCA: Service Component Architecture, a set of
specifications which describe a model for building
applications and systems using a Service-Oriented
Architecture.

Web Service: Application programming
interface (API) or Web API that is accessed via
Hypertext Transfer Protocol (HTTP) and executed
on a remote system hosting the requested service.

ENDNOTES

1 http://www.dspace.org
2 http://www.fedora-commons.org
3 http://www.eprints.org
4 http://www.ukoln.ac.uk/repositories/di-

girep/index/Fedorazon
5 http://duraspace.org

Section 2
Pervasive Services and Internet

of Things

83

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5

DOI: 10.4018/978-1-60960-735-7.ch005

Feng Zhu
University of Alabama in Huntsville, USA

Wei Zhu
Intergraph Co, USA

Matt W. Mutka
Michigan State University, USA

Lionel M. Ni
Hong Kong University of Science and Technology, China

Service Discovery Architecture
and Protocol Design for

Pervasive Computing

ABSTRACT

Service discovery is an essential task in pervasive computing environments. Simple and efficient service
discovery enables heterogeneous and pervasive computing devices and services to be easier to use. In
this chapter, we discuss the key issues and solutions for service discovery architecture and protocol
design for pervasive computing environments. Service design addresses the static and dynamic prop-
erties of services. Directory design focuses on scalability, topology, and infrastructure issues. Service
integration uses services as building blocks to achieve complex services. Cross-layer design optimizes
the performance of the protocols for ad hoc and sensor networks by integrating service discovery pro-
cesses into lower layers of the network protocols. Security and privacy design protects the information,
communication, devices, and services. We also point out the future research issues.

84

Service Discovery Architecture and Protocol Design for Pervasive Computing

INTRODUCTION

In pervasive computing environments, people are
surrounded by a variety of computing devices.
Those devices communicate with each other and
provide network services and information without
people’s active attention (Weiser, 1991). Presently,
PCs, smartphones, MP3 players, and laptops sur-
round us. In the near future, additional networked
computers, ranging from sensors, RFID tags to
extremely dynamic and heterogeneous devices
will provide a variety of services. It becomes
overwhelming to manage these devices, configure
different kinds of applications, and dynamically
find the available computing services in such
pervasive computing environments.

Service discovery protocols enable comput-
ers to be easier to use. They facilitate interaction
between computers, with an aim to approach zero
administration overhead and therefore free users
from tedious and redundant administrative and
configuration work. Therefore, service discovery
research is critical to the success of pervasive
computing (Kindberg & Fox, 2002).

The objective of this chapter is to discuss
the key design issues and solutions for service
discovery protocols in pervasive computing
environments. In the last 15 years, many service
discovery protocols were designed by industry,
academia, and international standards develop-
ment organizations. The protocols emphasize on
aspects of the service discovery. We analyze the
design of the major components, their interactions,
service selection, performance optimization, and
security and privacy issues.

BACKGROUND

Before we present representative service discovery
protocols, we describe three general models. The
models focus on the functionalities of comput-
ing devices or software in the service discovery

processes and the basic steps that each device or
software component is taken.

Service Discovery Models

There are three service discovery models. A trivial
service discovery model is one in which a client
(computing device) knows a service (network ser-
vice) in advance, or the client has already cached
the service’s information, so that the client does
a local lookup before contacting the service. The
second model is the client-service model as shown
in Figure 1 (a). The model performs best in simple
environments such as home environments. Clients
inquire about all services. If a service matches the
client’s enquiry, it replies back. Then, the client
communicates with and accesses the service. To
support thousands of computing services, such
as the services in public environments, we may
optionally use directories to store all the service
information. This third model is call client-service-
directory model. A client queries a directory for
service information and then contacts services. We
discuss the different perspectives of the clients,
services, and directories.

Client View

In most cases, a client is a program that runs on
behalf of a user and interacts with the user. It
usually takes the following steps.

• A client queries directories for services. A
client either browses services or looks for
a specific service.

• Alternatively, without going through direc-
tories, a client directly queries all the ser-
vices. All the services that meet the query
requirement reply back to the client.

• Then the client program or the user selects
a service to use.

• Finally, the client uses the service.

85

Service Discovery Architecture and Protocol Design for Pervasive Computing

With service discovery software installed, the
client does not need to configure service settings.
If a device driver is needed to access a service,
the driver will be installed just-in-time before
the service accesses. Therefore, users will be
released from the burden of installing software
on all client devices.

Service View

A service has a name, a list of attributes, and user
privileges. For instance, a printer says it provides
printing service and it is able to provide color
printing at 720 by 720 dpi. It might only allow
people in the marketing department to use it. When
the device needs to use other services, the device
becomes a client. Services work as follows.

• A service announces its information to cli-
ents or directories. For example, every ten
minutes a temperature sensor announces
its information to let clients or directories
know its existence.

• Alternatively, a service answers directory
solicitation or client queries.

• A service authenticates and authorizes the
user when a client asks for service.

• Finally, the client is granted service access
and uses the service through the service’s
interface.

Directory View

With directories available, a client queries twice,
the first time asking directories and the second time
contacting the service(s). Without directories, a
client looks for services directly.

• On hearing a service announcement, direc-
tories first check privileges of the service;
and then service information will be updat-
ed or recorded in the directories.

• Alternatively, directories may ask what
services are available instead of waiting
for the service to be announced.

• When receiving a query from a client, di-
rectories authenticate, authorize, and reply
to the client.

Service Discovery Protocols

Research activities in service discovery have been
very active in academia, industry and international
standards development organizations. Here, we
list a few representative protocols in each of the
communities.

Academia. IBM Research’s DEAPspace
(Nidd, 2001) is a service discovery protocol for
single-hop ad hoc environments. Each node that
runs the DEAPspace algorithm caches service
information. Then, it broadcasts on the wireless
channel the cached service information and its

Figure 1. Interactions among the components in service discovery models. (a) Interactions in the client-
service model. (b) Interactions in the client-service-directory model

86

Service Discovery Architecture and Protocol Design for Pervasive Computing

own service information to one-hop neighbors. All
nodes acquire their knowledge from other nodes,
and thus service lookup is done by searching local
cache. Intentional Naming System (INS) (Adjie-
Winoto, Schwartz, Balakrishnan, & Lilley, 1999)
from MIT is a new naming system to name and
discover different services. The innovative char-
acteristic of INS is late binding, which enables
service and service location mapping just before
the service access. A following project, INS/Twine
(Balazinska, Balakrishnan, & Karger, 2002),
hashes and stores service attributes in mesh struc-
ture directories. It uses peer-to-peer technology to
look up services. Peer-to-peer technology allows
INS/Twine to be able to scale up to millions of
services. But on the other hand, service lookups
may have to go through several directories and
thus have additional latency. Researchers at UC
Berkeley proposed SSDS (Czerwinski, Zhao,
Hodes, Joseph, & Katz, 1999). SSDS focuses more
on security and scalability issues. Privacy and
security are enabled by public key and symmetric
key encryption. Different hierarchical directory
structures are considered to support scalability.

Industry. Sun Microsystems’ Jini is based on
Java technology (Sun Microsystems, 2001). Java
technology makes Jini platform independent of
the underlying operating systems and hardware,
but all the clients, services, and directories need
Java runtime environments directly or indirectly.
Microsoft Corporation ships operating systems
with UPnP (Miller, Nixon, Tai, & Wood, 2001).
UPnP targets unmanaged networking environ-
ments, such as home environments. UPnP uses
XML format to store service information and
communicate among services and clients. Thus,
UPnP is platform and programming language inde-
pendent and device-oriented. Rendezvous at Apple
Computer’s is a DNS-based service discovery
protocol (Cheshire, 2002). The ubiquity of DNS
servers might facilitate the Zero Configuration
networking (Zeroconf) prototocol to be adopted
(Apple Computer Inc, 2003).

Organizations. Bluetooth, from the Bluetooth
Special Interest Group (SIG), is now widely used.
It allows nearby devices to discover and commu-
nicate with each other at low power consumption
(Bluetooth SIG, 2001). Salutation protocol, pro-
posed by the Salutation Consortium (Salutation
Consortium, 1999), is an open source protocol.
Salutation protocol implements two interfaces,
one of which is designed to be independent to the
transport layer, so that it can be used on various
transport protocols. Service Location Protocol
(SLP) is posted by IETF in enterprise environ-
ments (Guttman, Perkins, Veizades, & Day, 1999).
SLP defines a way to locate a service, but it leaves
the interaction between clients and services after
service discovery to the application developers.

AN ANALYSIS OF ARCHITECTURE
AND PROTOCOL DESIGNS

Much active service discovery research has been
occurring as we discussed in the last section.
Targeted at different environments, these service
discovery protocols have different design criteria
and choices.

Issues, Controversies, Problems

Service discovery protocols provide desired func-
tionalities, yet they face great challenges. First,
unlike traditional network services, the services
and devices are highly dynamic. New devices and
services may be added without users’ knowledge.
Sensors, services, network connections may not
be available all the time. Second, the pervasive
computing environments are extremely heteroge-
neous. Different types of operating systems, net-
work topologies, network protocols and devices,
owned and administrated by different people or
organizations.

Most service discovery protocols are designed
as application layer protocols. Thus, many hetero-
geneous issues are handled by underlying network

87

Service Discovery Architecture and Protocol Design for Pervasive Computing

protocols and become transparent to the service
discovery protocols. Our discussion first focuses
on design issues and solutions at the application
layer protocols. Towards the end of the chapter,
we discuss a set of service discovery protocols
that choose to use cross-layer design to integrate
service discovery protocol with lower network
layers for performance reasons. Cross-layer design
violates the network design principle and trades
clean design for performance improvements.

Often, software functionality is the first prior-
ity, whereas security and privacy are the second
priority. Such software design and development
practice is the case for service discovery protocols.
Once devices run service discovery protocols
and communicate over wireless networks, they
may easily be found and accessed by any other
devices without the devices owners’ knowledge.
For instance, a person may walk by a house and
discover and control devices in the house. Secu-
rity and privacy remain to be a serious challenge.

Figure 2 shows the main components for the
service discovery architecture and protocol design.
The following sections analyze various design
choices made by service discovery protocols and
point out remaining issues.

Service Designs

We describe a service as some computing resource
used by users, user programs, or other services.
For example, printing services, location based
information, and wireless network connections
are services.

Service Naming. A service has a name. Sup-
pose Bob uses a printer. Printing is the name of
the service. Nevertheless, the problem is when
Bob looks for a printing service, a printer calls
itself a print service. Then Bob is unable to find
the printer. Most protocols solve this problem by
defining a service naming standard, which avoids
the naming conflict (Kindberg & Fox, 2002).
Bluetooth maps service names to 128-bit numbers.

Defining services in SLP should follow a service
template (Guttman, Perkins, & Kempf, 1999).

It is likely that many service discovery proto-
cols co-exist. When a mobile client moves from
one service discovery domain to another service
discovery domain, the mobile client needs to un-
derstand different service protocols and use differ-
ent vocabularies, for example saying print service
at one time and printing service at another time.

The other problem is how to support new
services. Although it is easy to add a new service
name to a service protocol standard, it is difficult
for users and client programs to know it automati-
cally. Very likely, users need to browse for service
names and then learn the new terms.

Service Attributes. A service usually has
many attributes. To avoid conflicts, service at-
tributes also have standard naming conventions
as service names. A client’s request is matched
against services’ attributes. When a client supplies
more precise query requirements, fewer services
will be selected. As a result, less network traffic
is generated and fewer services are involved. If
a query is too strict, no services may be matched
and then the client needs to query again with fewer
constraints. In addition to search functionality,
most service discovery protocols provide wild
card searches, which let clients examine all the
available services.

Service Invocation. After discovering the
service, a client invokes the service through a
service interface. Some protocols such as the
Bluetooth Service Discovery Protocol leave the
service interface for applications to define. Some
protocols base on Remote Procedure Call (PRC).
Salutation is such an example. Some protocols use
downloadable code. For example, Jini uses down-
loadable Java code. Other service protocols only
transfer data. UPnP achieves service invocation
based on eXtensible Markup Language (XML),
Simple Object Access Protocol (SOAP), and
Hyper Text Transform Protocol (HTTP).

Service invocations in Jini and UPnP need
TCP/IP protocols, HTTP servers, or Java Virtual

88

Service Discovery Architecture and Protocol Design for Pervasive Computing

Figure 2. Main components and classification of service discovery architecture and protocol design.
Rectangles show the main architecture and design components. Rounded rectangles show the classifica-
tions of the component design

89

Service Discovery Architecture and Protocol Design for Pervasive Computing

Machines (JVMs), which may not suitable for
very resource limited devices. Special design con-
siderations are needed for those wireless devices
that have limited network bandwidth and power.

Service Status Inquiry. A client may be inter-
ested in services’ events or status changes. One way
of knowing about them is by polling the service.
Another way, known as service event notification,
is by registering with the service and the service
will notify clients who have shown interest. Most
protocols implement service event notifications.
If events are generated very frequently or a ser-
vice status changes very fast, it is better to use
service polling.

It is even better to have agents do event filtering
and aggregation. Jini provides several such meth-
ods. Services send events to agents and let agents
make sure all the events are delivered to clients;
an agent may act as a sink for events, which will
be filtered, aggregated, and then sent to clients;
or an agent may also resemble a mailbox to filter
events over time. Although clients and services
benefit from event filtering and aggregation, some
resources (computers in networks) need to provide
the functions and handle the events.

Directory Designs

Directories cache service information and answer
clients’ lookup requests. Thus, the overhead of
handling unrelated requests for services and the
communication between clients and unrelated
services are removed. More importantly, this fa-
cilitates large-scale service discovery. Directory
architectures, service information cache strate-
gies, and hierarchies are different depending on
the environments.

Centralized vs. Distributed Directories.
A centralized directory stores all the services’
information in a central location. The directory
is likely to be a bottleneck and the single point of
failure, which causes the whole system’s failure.
In large service discovery domains, it is inefficient
to go through a centralized directory all the time.

Many service discovery protocols use distrib-
uted directories, which store services’ information
within their own domains. Service information is
distributed among directories. A directory failure
only affects part of the system. With less infor-
mation in each directory, service lookup within a
directory is more efficient. On the other hand, a
service lookup may go through several directories.
In contrast, a service lookup in a centralized direc-
tory only goes to one directory with less network
communication overhead and latency.

Storage of Service Information. For each
service, the service information may be a single
copy, multiple copies, or fully replicated in di-
rectories. Many protocols have a single copy of
services in its domain. A directory failure will
affect the domain for which it is responsible. In
Jini and SLP service discovery environments,
multiple directories may coexist. Therefore, mul-
tiple copies of service information may exist. It
is more reliable with multiple copies of service
information in several directories, but the greater
the number of directories, the greater the overhead.
INS implements fully replicated copies within a
sub domain. The advantage of fully replicated
directories is that a service search only goes to
the directory to which a client is attached. Mul-
tiple copies or fully replicated copies of service
information should be consistent in directories.
Otherwise, querying different directories may
result in different service information and may
cause problems.

Directory Structure. In a flat directory
structure, directories maintain peer-to-peer rela-
tionships and are equally important. In one type
of flat directory structure, directories connect to
each other and exchange information. In INS, for
instance, directories have a mesh structure and
exchange information with other directories, so
that all service information is available locally
and the service search is very efficient. These
information exchanges generate much commu-
nication traffic, and therefore it is not scalable.
INS/Twine based on peer-to-peer technology is

90

Service Discovery Architecture and Protocol Design for Pervasive Computing

much more scalable because service information
is not replicated.

While in a hierarchical directory structure,
directories have parent and child relationships.
Domain Name System (DNS) is an example of a
hierarchical directory structure. Searching through
the directory hierarchy is necessary. For example,
a service discovery protocol is based on widely
available DNS servers to do service discovery
(Cheshire, 2002). Many other service discovery
protocols also use tree-like hierarchical structures
to provide scalable solutions. Nevertheless, it is
difficult to make directories both scalable and
efficient.

Service State in Directories. Most service
discovery protocols choose to use soft states. In a
service announcement, the life span of the service
is specified. Before the service expires, it should
announce itself again to renew the service. Or,
the service will not be valid after the life span.
In the mean time, expired service entries will be
wiped off from the directories periodically. In
case a service is down, that service will not be
available after its lifespan and clients will not use
it. Therefore, directories are free from monitor-
ing service states. Soft state service management
mechanism greatly simplifies the system design.
On the other hand, regular service announcements
require more network bandwidth, and put extra
load on the directories.

On the contrary, directories may maintain
service status as hard state. In this case, the di-
rectories keep the service status until it is told to
change the service status information. Using hard
state directories, few service announcements and
housekeeping jobs are required. But the disad-
vantage is the difficulty to guarantee all service
information is up to date in hard state directories.
Services may go down without notifying direc-
tories or out of date service status results from
network communication error.

Directory Hierarchies. A single hierarchy
directory has a tree structure, while a multiple

hierarchy structure could be a forest or many
trees sharing a set of leaf directories. Multiple
hierarchies index service information on different
keys. Like a database index, service information
search based on a key may greatly speed up the
search. Extra computing resources are obvious
overhead for multiple hierarchy directories.

Service Announcement and Lookup

Service announcement and lookup are the key
parts of service discovery protocols. Query and
announcement are the two basic mechanisms for
clients, services, and directories to exchange infor-
mation. Four different communication techniques
are used in service discovery protocols: unicast,
anycast, multicast, and broadcast. Based on the
OSI reference model, these four communication
techniques may be at the data link layer (media
access control sub-layer), at the network layer, or
at the application layer.

Query vs. Announcement. The two methods
for clients to learn which services are available are
query and announcement, also known as active
and passive or pull and push. As announcements
go to all the clients or directories, interested clients
or directories do not need to ask separately for the
same service. Nevertheless, clients or directories
have to handle all the announcements, regardless of
whether they are interested. When asking actively,
a client or a directory will receive an immediate
response. While listening to service announce-
ments, a client or a directory may wait up to the
interval of service announcement.

Unicast. Unicast is widely used in many ser-
vice discovery protocols. When a client knows
a directory’s network address in advance, it will
send a unicast message to the directory. If a client
knows a service provider’s address, it will contact
the service provider directly. Furthermore, if a
service’s address is known to a directory or vice
versa, service announcements and queries between
a directory and a service are also using unicast.

91

Service Discovery Architecture and Protocol Design for Pervasive Computing

Anycast. A set of similar services all may
meet a client’s request. The service request sent
to one of the set of services is known as anycast.
For instance, INS uses overlay network anycast,
so its anycast is at the application layer. In INS, a
client’s request goes to a directory. After searching
that directory, INS routes the request to a service
based on the application-defined service weight.
Thus, a client request goes to a service with the
best service weight.

Multicast. The drawback of unicast is that
the network address needs to be configured or
known ahead of time. On the contrary, in many
situations, the addresses are unknown. A solution
is that clients, service, and directories use mul-
ticast addresses for announcements and queries.
For example, SLP uses TCP/IP network layer
multicast addresses. It is simpler for mobile clients
and will be automatically compatible when new
services or directories are added later, because
global multicast addresses are used. Nevertheless,
there are very limited globally multicast addresses
at the network layer. Moreover, multicast is not
allowed on some routers even though the routers
have multicast capabilities. Using multicast also
introduces more communication overhead com-
pared to unicast, since more nodes are involved
in the communication.

Broadcast. Sometimes broadcast is used in
service discovery protocols. For example, Blue-
tooth Service Discovery Protocol uses broadcast
to find other services. In Bluetooth, as other com-
munication techniques are based on broadcast,
it is simpler to use broadcast directly. Another
example is that Salutation can utilize broadcast if
underlying protocols support broadcast. Regard-
less, data link layer broadcast is usually limited
to its subnet.

Using unicast usually saves much communi-
cation traffic; using anycast simplifies client side
processing; using multicast saves administrative
overhead; and using broadcast is sometimes more
efficient.

Service Selection

While many similar services are available to a
client, which service should the client use? It is
challenging to find services for users efficiently
and accurately.

User vs. Protocol Selection. Service discovery
protocols may select services for a user. In INS,
for example, the protocol decides which service
a client should use. For most service discovery
protocols, client programs or users choose from a
matched list of services. The advantage of protocol
selection is that it simplifies client programs or
little user involvement is needed. On the other
hand, protocol selection may not select the proper
service that a user wants. Predefined selection
criteria may not apply to all cases. Alternatively,
too much user involvement causes inconvenience.
It may be tedious for a user to examine many
services and compare them. A balance between
protocol selection and user selection is preferred.

Service Matching. Some service discovery
protocols match one of the services for a client. In
Matchmaking, a classified advertisement match-
making framework, client requests are matched to
services and one of the matched services is selected
for a user (Raman, Livny, & Solomon, 1998). In
INS, the service discovery protocol matches the
best service based on application defined metrics.
Most protocols match all the services and let the
user choose.

Context-awareness. Context information is
useful in selecting services. For example, when
Bob drives on the highway, his cell phone uses a
Bluetooth connection to find his earphone. While
he wants to access his email, his cell phone uses
a 3G connection. In the above two scenarios, se-
lections of the connections for the cell phone are
based on context information. Either intelligence
should be built in his cell phone or user involve-
ment is necessary for better service discoveries. So
far, only a few projects use location information
as a kind of context information to help service
selection.

92

Service Discovery Architecture and Protocol Design for Pervasive Computing

Scope-awareness. To support a large amount of
services, defining and grouping services in scopes
facilitates service search. Location-awareness is
a key feature in pervasive computing (Weiser,
1991) and location information is helpful in many
service discovery cases. Location information may
be integrated with service discovery protocols.
For example, a project at MIT (Chakraborty,
2000) integrates Cricket into INS to provide
location dependent service discovery. Another
example is Jini, in which location information
is an optional attribute for services. Moreover,
administrative domains are another kind of scope,
which is supported by many protocols. Often, in
enterprise environments, services are arranged
in administrative domains. These geographical
location information and administrative domain
information may be set as attributes of services.

Much research has proposed locating objects
in a wide area. Some of them use a single direc-
tory hierarchy, and others use multiple directory
hierarchies. No matter if there is a single hierarchy
or multiple hierarchies, the difficult problem is
to express the service information at different
levels of the hierarchies. First, what services
need to be listed in upper level directories? Sec-
ond, what service information to store in lower
level directories and what service information to
store in higher level directories? To avoid being
a bottleneck, upper level hierarchy directories
should be concise. Filtering and aggregating ser-
vice information is necessary when building the
upper level hierarchies. Third, updating service
information in the upper level hierarchies may
overwhelm the directories, when many services
update information at the same time. Service status
changes and mobile services moving all cause
the directories to be busy updating. In SSDS,
service information in non-leaf level directories
is created by using Bloom filters to achieve high
compression ratio. Nevertheless, the directories
need to be built again and again over time, since
the algorithm is not able to remove stale services.
Another example of locating mobile objects in a

wide area is Globe (Steen, Hauck, Homburg, &
Tanenbaum, 1998).

QoS-awareness. Providing users with better
services and balancing services usage are nice
features for service discovery protocols. For
better service matching, service requests may be
directed to less loaded services or better resource
price ratio services.

Service attributes are defined to match client
requests more precisely. Nevertheless, most pro-
tocols only support static attributes. Sometimes,
dynamic information about the current status
of a service should be taken into consideration,
for instance the current load of a service. Much
more communication traffic may be generated
and directories may be more busy handling an-
nouncements. To reduce the directory’s update
and network overhead, services may wait for
clients to query.

At the service side, sharing the loads and bal-
ancing them on different services is also preferred.
Few protocols define application metrics-based
load balancing. A good example is INS. Applica-
tions define their metrics and service lookups are
based on the metrics.

Cross-Layer Optimization

Most service discovery protocols are designed as
application layer protocols. These protocols enable
clients and services that run on different hardware,
software platforms, and network protocols stacks
to interoperate with each other. Nevertheless,
these protocols may not be efficient for dynamic
and resource constrained environments such as
ad hoc networks. An active service discovery
research area is to explore the cross-layer design
to optimize the performance of service discovery
protocols and adopt design approaches used in
wireless sensor networks and ad hoc networks.

Topology based. Ad hoc or sensor networks
may form three types of topologies: flat networks,
backbone based networks and cluster based net-
works. In flat works, all nodes perform the same

93

Service Discovery Architecture and Protocol Design for Pervasive Computing

role. DEAPspace targets at one hop ad hoc network
(Nidd, 2001). Nodes take turns to broadcast their
service information together with the information
about other services that they have learned from
the broadcast messages. To disseminate service
advertisements beyond a simple hop and to re-
duce the overhead of flooding the networks, a
mechanism, called Service*, selectively chooses
some neighbors as brokers to forward the service
information (Nedos, Singh, & Clarke, 2005). If a
backbone is established in a wireless sensor net-
work or an ad hoc network, service information
and requests may be distributed and forwarded
to the backbone nodes. Thus, the service infor-
mation is accessible to all nodes and a node can
search the whole network for services(Kozat &
Tassiulas, 2004). In cluster based networks, nodes
that form clusters may exchange their service
information within a cluster as in Allia (Ratsimor,
Chakraborty, Joshi, & Finin, 2002)and let cluster
heads store and forward service information as
in Service Ring (Klein, Konig-Ries, & Obreiter,
2003). Cluster heads (known as Service Access
Points in Service Ring,) further form other level
of hierarchy to exchange information among the
cluster heads.

Integration into routing protocols. Service
discovery protocols may be tightly integrated
with routing protocols. Instead of sending service
discovery messages separately, the messages
may be embedded into routing protocols such as
DSR or AODV (Garcia-Macias & Torres, 2005;
Varshavsky, Reid, & Lara, 2005). Simulations
results have shown that integrated service dis-
covery protocols always outperform application
layer service discovery protocols in ad hoc net-
works (Varshavsky, et al., 2005). It is especially
beneficial when it is necessary to rediscover or
reselect services.

Security and Privacy

We discuss security in the following aspects: user
authentication, authorization, confidentiality,

integrity, non-repudiation, availability, and user
privacy for service discovery protocols. Although
there is much research related to service discov-
ery, a few protocols have security and privacy
functionalities.

User Authentication and Service Authoriza-
tion. Protecting services from unauthorized use is
essential. For example, one does not want a home
theater service to be accessible by anyone. The
problem is that it is difficult for each service even
in home environments to maintain its users and an
access control list (Ellison, 2002). Authentication
and authorization in home environments may as
complex as enterprise environments. As users
interact with many different service providers
in various environments, they may have many
credentials to interact with the service providers.
Authentication becomes more tedious and less
usable. PrudentExposure encodes all credential
information of a user into a network packet and
discovers the appropriate credential information
for authentication and authorization purposes
(Zhu, Mutka, & Ni, 2006). The credential informa-
tion exchanged between a client and a service is
in a code word format, such that only legitimate
service providers recognize the code words. The
approach is limited to the case the users and
service providers know each other and share
secrets. Splendor project targets public environ-
ments, where users and service providers may
not be familiar with each other (Zhu, Mutka, &
Ni, 2003). Users/clients, services, and directories
exchange their public key certificates to verify
their identities. Authentication is less feasible in
ad hoc environments unless other methods such
as side channels are used for clients and services
to verify each other (Zhu, Mutka, & Ni, 2005). It
is even worse for some devices with very limited
processing and communication capability to do
authentication and authorization.

Confidentiality and Integrity. Confidentiality
and integrity in service discovery are primarily
communication security. Communication between
service discovery components needs to be safe.

94

Service Discovery Architecture and Protocol Design for Pervasive Computing

Malicious users may listen to communication
channels or even actively attack systems. These
requirements are translated to use of message en-
cryption and message authentication code. Several
service discovery protocols including SSDS and
PrudentExposure use cryptographic approaches
to encrypt and digitally sign the discovery mes-
sages, announcements, and other communication
messages (Czerwinski, et al., 1999; Zhu, et al.,
2003, 2005).

Availability, Non-repudiation, and User
Privacy. Services and directories may be targets
of attackers. Making services and directories
available against attack is similar to other network
applications. We are not aware of any existing
service discovery protocols that explicitly address
the availability issues.

User privacy is always a concern. We want
to use services easily but keep our information
private. A progressive and secure service discov-
ery protocol exposes users’ query information
and service providers’ service information over
multiple rounds (Zhu, Zhu, Mutka, & Ni, 2007).
In each round, several bits of the information in
an encrypted form are exchanged. If the client
and the service provider find the matches in the
request and reply, they continue interacting with
each other. Otherwise, the interaction is stopped
and not further information is exchanged. The
approach is also limited to users and service pro-
viders who are familiar with each other.

Deploying security in service discovery proto-
cols means more administrative overhead. Proper
permissions need to be set for services and users.
With thousands of services and hundreds of users
in an enterprise, groups or roles need to be created
and privileges need to be assigned. In dynamic
environments, daily administrative tasks may be
overwhelming. Even if service discovery protocols
try to make service usage easier, overwhelming
security administrative tasks may offset some
advantages.

Service Integration

Services provide different functionalities. Taking
services as building blocks, service integration can
build complex and very powerful services. Service
integration is also known as service composition.

Simple Service Integration vs. Complex
Service Integration. Simple service integration
chains services together. One service’s output is
another service’s input. Ninja Paths is an example
of simple service integration (Gribble et al., 2001).
To get a composite service, a path is created. Along
that path, services are dynamically selected and
connected.

Complex service integration may provide
more complicated services. Two complex service
integration methods are discussed in (Mennie &
Pagurek, 2000). One way is to create a service in-
terface to interact with multiple services. Another
way is to compose services and build a stand-alone
service. Those integrated services may be used as
service components to build other services.

Static vs. Dynamic Service Integration.
Static service integration integrates services before
a client uses the services. If one of the services
fails, service integration needs to start over again.
Dynamic service integration may replace failed
services or add in more services if necessary with-
out starting over the service integration processes.
Dynamic service integration is more difficult to
implement than static service integration since
every service component of the dynamic service
is being monitored and should be replaced im-
mediately in case of failure.

Fault Tolerance and Failure Recovery. In
dynamic and distributed environments, fault toler-
ance and failure recovery for service integration
are two difficult issues. In the Ninja Architecture,
services are monitored and paths are dynamically
changed to guarantee optimal services (Gribble, et
al., 2001). Another example is a service integra-
tion architecture based on software hot-swapping
technology proposed by Mennie and Pagurek
(Mennie & Pagurek, 2000). Dabrowski, et al.

95

Service Discovery Architecture and Protocol Design for Pervasive Computing

modeled and analyzed different failure recovery
strategies in (Dabrowski, Mills, & Elder, 2002).
Jini and UPnP were the two protocols that they
tested. Performance responsiveness, effectiveness
and efficiency were explored in that work.

FUTURE RESEARCH DIRECTIONS

Dynamic, heterogeneous, secure, and private
properties remain the major challenges for service
discovery protocols in pervasive computing envi-
ronments. Although there are many service discov-
ery protocols proposed, no protocol addresses all
the issues and empowers users to access network
services and information without administrative
overhead. The main research issues need the ef-
forts from academia, industry, and international
standards development organizations.

• First, secure and private service discovery
in unfamiliar environments is perhaps the
most challenging issue. In addition, perva-
sive computing environments may not be
easily separated by network firewalls as tra-
ditional enterprise or home environments.

• Second, it is unlikely that a single proto-
col will outperform all other protocols in
heterogeneous computing environments.
Different network topologies, protocol
stacks, hardware, and other constraints
pose the crucial challenges. Researchers
need to explore appropriate approaches to
balance specific and high performance so-
lutions and general solutions.

• Third, interoperability among different
service discovery protocols is important.
Without it, users will not be able to dis-
cover and access all available services.
Moreover, additional strategies and algo-
rithms are needed to select the proper ser-
vice discovery protocols for different com-
puting environments.

CONCLUSION

Service discovery is a critical component for
pervasive computing environments. We discussed
the elements of service discovery protocols and
their design issues. Classifications of the service
discovery protocols were given. Different protocol
designs were compared. Much research is still
needed to empower users to easily access network
information and services with desired feature in the
dynamic and heterogeneous pervasive computing
environments.

REFERENCES

Adjie-Winoto, W., Schwartz, E., Balakrishnan,
H., & Lilley, J. (1999, December). The design and
implementation of an intentional naming system.
Paper presented at the 17th ACM Symposium
on Operating Systems Principles (SOSP ’99),
Kiawah Island, SC.

Apple Computer Inc. (2003). Rendezvous website
Retrieved May, 2003, from http://developer.apple.
com/ macosx/rendezvous/

Balazinska, M., Balakrishnan, H., & Karger,
D. (2002, August). INS/Twine: A scalable peer-
to-peer architecture for intentional resource
discovery. Paper presented at the Pervasive 2002
- International Conference on Pervasive Comput-
ing, Zurich, Switzerland.

Bluetooth, S. I. G. (2001). Specification of the
Bluetooth system -- Core (version 1.1). Retrieved
from http://www.bluetooth.org/docs /Bluetooth_
V11_Core_22Feb01.pdf

Chakraborty, A. (2000). A distributed architecture
for mobile, location-dependent applications. Mas-
ter’s thesis, Massachusetts Institute of Technology,
Cambridge, MA.

Cheshire, S. (2002). Discovering named instances
of abstract services using DNS: Apple Computer.

96

Service Discovery Architecture and Protocol Design for Pervasive Computing

Czerwinski, S., Zhao, B. Y., Hodes, T., Joseph,
A., & Katz, R. (1999). An architecture for a se-
cure service discovery service. Paper presented
at the Fifth Annual International Conference on
Mobile Computing and Networks (MobiCom
‘99), Seattle, WA.

Dabrowski, C., Mills, K., & Elder, J. (2002, July
2002). Understanding consistency maintenance
in service discovery architectures during com-
munication failure. Paper presented at the 4th
International Workshop on Active Middleware
Services, Edinburgh, UK.

Ellison, C. (2002). Home network security. Intel
Technology Journal, 6(4), 37–48.

Garcia-Macias, J. A., & Torres, D. A. (2005). Ser-
vice discovery in mobile ad-hoc networks: Better
at the network layer? Paper presented at the 2005
International Conference on Parallel Processing
Workshops (ICPPW’05).

Gribble, S. D., Welsh, M., Behren, R. v., Brewer,
E. A., Culler, D., Borisov, N., et al. (2001). The
ninja architecture for robust Internet-scale systems
and services. IEEE Computer Networks, 35(4).

Guttman, E., Perkins, C., & Kempf, J. (1999).
Service templates and service: Schemes: Sun
Microsystems.

Guttman, E., Perkins, C., Veizades, J., & Day,
M. (1999). Service location protocol, version 2.

Kindberg, T., & Fox, A. (2002). System software
for ubiquitous computing. IEEE Pervasive Com-
puting / IEEE Computer Society [and] IEEE Com-
munications Society, (January-March): 70–81.
doi:10.1109/MPRV.2002.993146

Klein, M., Konig-Ries, B., & Obreiter, P. (2003).
Service rings – A semantic overlay for service
discovery in ad hoc networks. Paper presented
at the 14th International Workshop on Database
and Expert Systems Applications (DEXA’03).

Kozat, U. C., & Tassiulas, L. (2004). Service
discovery in mobile ad hoc networks: An overall
perspective on architectural choices and network
layer support issues. Ad Hoc Networks, 2(1),
23–44. doi:10.1016/S1570-8705(03)00044-1

Mennie, D., & Pagurek, B. (2000, June 12, 2000).
An architecture to support dynamic composition
of service components. Paper presented at the 5th
International Workshop on Component-Oriented
Programming, WCOP 2000, Cannes, France.

Miller, B. A., Nixon, T., Tai, C., & Wood, M. D.
(2001). Home networking with universal plug and
play. IEEE Communications Magazine, (Decem-
ber): 104–109. doi:10.1109/35.968819

Nedos, A., Singh, K., & Clarke, S. (2005). Ser-
vice*: Distributed service advertisement for multi-
service, multi-hop MANET environments. Paper
presented at the 7th IFIP International Conference
on Mobile and Wirelss Communication Networks
Marrakech, Morocco.

Nidd, M. (2001). Service discovery in DEAPspace.
IEEE Personal Communications, (August), 39-45.

Raman, R., Livny, M., & Solomon, M. (1998,
July 28-31). Matchmaking: Distributed resource
management for high throughput computing. Pa-
per presented at the Seventh IEEE International
Symposium on High Performance Distributed
Computing, Chicago, IL.

Ratsimor, O., Chakraborty, D., Joshi, A., & Finin,
T. (2002). Allia: Alliance-based service discovery
for ad-hoc environments. Paper presented at the
2nd International Workshop on Mobile Commerce
Atlanta, Georgia, USA.

Salutation Consortium. (1999). Salutation archi-
tecture specification (Version 2.0c).

97

Service Discovery Architecture and Protocol Design for Pervasive Computing

Steen, M. v., Hauck, F. J., Homburg, P., & Tanen-
baum, A. S. (1998). Locating objects in wide-area
systems. IEEE Communications Magazine, (Janu-
ary): 104–109. doi:10.1109/35.649334

Sun Microsystems. (2001). Jini™ technology
core platform specification (version 1.2). Sun
Microsystem. Retrieved from http://wwws.sun.
com/ software/jini/specs/

Varshavsky, A., Reid, B., & Lara, E. d. (2005).
A cross-layer approach to service discovery and
selection in MANETs. Paper presented at the 2nd
International Conference on Mobile Ad-Hoc and
Sensor Systems (MASS), Washington, DC.

Weiser, M. (1991). The computer for the 21st
century. Scientific American, 265(3), 66–75.
doi:10.1038/scientificamerican0991-94

Zhu, F., Mutka, M., & Ni, L. (2003, March 23-26,
2003). Splendor: A secure, private, and location-
aware service discovery protocol supporting
mobile services. Paper presented at the 1st IEEE
Annual Conference on Pervasive Computing and
Communications, Fort Worth, Texas.

Zhu, F., Mutka, M., & Ni, L. (2005). Facilitating
secure ad hoc service discovery in public environ-
ments. Journal of Systems and Software, 76(1),
45–54. doi:10.1016/j.jss.2004.07.014

Zhu, F., Mutka, M., & Ni, L. (2006). A private,
secure and user-centric information exposure
model for service discovery protocols. IEEE
Transactions on Mobile Computing, 5(4), 418–
429. doi:10.1109/TMC.2006.1599409

Zhu, F., Zhu, W., Mutka, M., & Ni, L. (2007). Pri-
vate and secure service discovery via progressive
and probabilistic exposure. IEEE Transactions
on Parallel and Distributed Systems, 18(11),
1565–1577. doi:10.1109/TPDS.2007.1075

ADDITIONAL READING

Adjie-Winoto, W. (2000). A Self-Configuring
Resolver Architecture for Resource Discovery
and Routing in Device Networks. Engineering
in Electrical Engineering and Computer Sci-
ence. Cambridge, MA: Massachusetts Institute
of Technology.

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H.,
& Lilley, J. (1999). The design and implementation
of an intentional naming system. Paper presented
at the 17th ACM Symposium on Operating Sys-
tems Principles (SOSP ’99), Kiawah Island, SC.

Avancha, S., Joshi, A., et al. (2002). “Enhanced
Service Discovery in Bluetooth.” IEEE Computer
35(Issue 6): 96-99.Apple Computer Inc. (2003).
Rendezvous Web Site Retrieved May, 2003, from
http://developer.apple.com/ macosx/rendezvous/

Balazinska, M., Balakrishnan, H., & Karger, D.
(2002). INS/Twine: A Scalable Peer-to-Peer Archi-
tecture for Intentional Resource Discovery. Paper
presented at the Pervasive 2002 - International
Conference on Pervasive Computing, Zurich,
Switzerland.

Bettstetter, C., & Renner, C. (2000). A Comparison
of Service Discovery Protocols and Implemen-
tation of the Service Location Protocol. Proc.
6th EUNICE Open European Summer School:
Innovative Internet Applications (EUNICE’00),
Twente, Netherlands.

Bluetooth, S. I. G. (2001). Specification of the
Bluetooth System -- Core (Version 1.1 ed.).
Retrieved from http://www.bluetooth.org/ docs/
Bluetooth_V11 _Core_22Feb01.pdf.

Bluetooth SIG (2004). Specification of the Blue-
tooth System.

98

Service Discovery Architecture and Protocol Design for Pervasive Computing

Castro, P., Greenstein, B., et al. (2001). Locat-
ing Application Data Across Service Discovery
Domains. ACM SIGMOBILE MOBICOM 2001,
7th Annual Int. Conf. Mobile Computing and
Networking, Rome, Italy

Chakraborty, D., & Joshi, A. (2006). Toward
Distributed Service Discovery in Pervasive
Computing Environments. IEEE Transactions on
Mobile Computing, 5(2), 97–112. doi:10.1109/
TMC.2006.26

Chakraborty, D., Perich, F., et al. (2001). DReggie:
Semantic Service Discovery for M-Commerce
Applications. Workshop on Reliable and Secure
Applications in Mobile Environment, 20th Sym-
posium on Reliable Distributed Systems, New
Orleans, USA.

Chen, H., Chakraborty, D., et al. (2000). Ser-
vice Discovery in the Future Electronic Market.
Proceedings of the Knowledge Based Electronic
Markets AAAI 2000, Austin, TX.

Chen, H., A. Joshi, et al. (2001). “Dynamic Ser-
vice Discovery for Mobile Computing: Intelligent
Agents Meet Jini in the Aether.” Baltzer Science
Journal on Cluster Computing 4(Issue 4).

Cheshire, S. (2002). Discovering Named Instances
of Abstract Services using DNS: Apple Computer.

Cheshire, S., & Krochmal, M. (2004). DNS-Based
ServiceDiscovery. Apple Computer.

Czerwinski, S., Zhao, B. Y., Hodes, T., Joseph,
A., & Katz, R. (1999). An Architecture for a Se-
cure Service Discovery Service. Paper presented
at the Fifth Annual International Conference on
Mobile Computing and Networks (MobiCom
‘99), Seattle, WA.

Dabrowski, C., & Mills, K. (2001). Analyzing
Properties and Behavior of Service Discovery
Protocols using an Architecture-based Approach.
Working Conference on Complex and Dynamic
Systems Architecture.

Dabrowski, C., Mills, K., & Elder, J. (2002). Un-
derstanding Consistency Maintenance in Service
Discovery Architectures during Communication
Failure. Paper presented at the Proceedings of the
4th International Workshop on Active Middleware
Services, Edinburgh, UK.

Dipanjan Chakraborty, A. J. Yelena Yesha, Tim
Finin (2002). GSD: A Novel Group-based Service
Discovery Protocol for MANETS. 4th IEEE Con-
ference on Mobile and Wireless Communications
Networks.

Friday, A., & Davies, N. (2001). Supporting
Service Discovery, Querying and Interaction in
Ubiquitous Computing Environments. Second
ACM international workshop on Data engineering
for wireless and mobile access 2001. California,
United States: Santa Barbara.

Garcia-Macias, J. A., & Torres, D. A. (2005).
Service Discovery in Mobile Ad-Hoc Networks:
Better at the Network Layer? Paper presented at
the 2005 International Conference on Parallel
Processing Workshops (ICPPW’05).

Goland, Y. Y., Cai, T., et al. (1999). Simple Service
Discovery Protocol 1.0, Microsoft Co. http://www.
upnp.org/download /draft_cai_ssdp_v1_03.txt.

Gribble, S. D., Welsh, M., Behren, R. v., Brewer,
E. A., Culler, D., Borisov, N., et al. (2001). The
Ninja Architecture for Robust Internet-Scale
Systems and Services. IEEE Computer Networks,
35(Issue 4).

Guttman, E., Perkins, C., & Kempf, J. (1999).
Service Templates and Service: Schemes: Sun
Microsystems.

Guttman, E., Perkins, C., Veizades, J., & Day,
M. (1999). Service Location Protocol, Version 2.

Helal, S. (2002). Standards for Service Discov-
ery and Delivery. IEEE Pervasive Computing
/ IEEE Computer Society [and] IEEE Commu-
nications Society, 1(3), 95–100. doi:10.1109/
MPRV.2002.1037728

99

Service Discovery Architecture and Protocol Design for Pervasive Computing

Helal, S., Desai, N., et al. (2003). Konark – A
Service Discovery and Delivery Protocol for Ad-
Hoc Networks. third IEEE Conference on Wireless
Communication Networks WCNC, New Orleans.

Hodes, T., & Czerwinski, S. (2002). An Archi-
tecture for Secure Wide-Area Service Discovery.
ACM Wireless Networks Journal, 8(Issue 2/3),
213–230. doi:10.1023/A:1013772027164

Kagal, L., & Korolev, V. (2001). A Highly Adapt-
able Infrastructure for Service Discovery and
Management in Ubiquitous Computing. Dept.
of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County.

Klein, M., Konig-Ries, B., & Obreiter, P. (2003).
Service Rings – A Semantic Overlay for Service
Discovery in Ad hoc Networks. Paper presented
at the 14th International Workshop on Database
and Expert Systems Applications (DEXA’03).

Kozat, U. C., & Tassiulas, L. (2003). Network
Layer Support for Service Discovery in Mobile
Ad Hoc Networks. 22nd Annual Joint Conference
of the IEEE Computer and Communications San
Francisco.

Kozat, U. C., & Tassiulas, L. (2004). Service
discovery in mobile ad hoc networks: an overall
perspective on architectural choices and network
layer support issues. Ad Hoc Networks, 2(1),
23–44. doi:10.1016/S1570-8705(03)00044-1

Lee, C., & Helal, S. (2002). Protocols for Service
Discovery in Dynamic and Mobile Networks.
International Journal of Computer Research,
11(1), 1–12.

Lee, C., & Helal, S. (2002). A Multi-tier Ubiquitous
Service Discovery Protocol for Mobile Clients.
Gainesville: University of Florida.

MacBeth, A. (2001). An Autoconfiguring Server-
based Service Discovery System. Department of
Computer Science & Engineering, University of
Washington.

McGrath, R. E. (2000). Discovery and Its Dis-
contents: Discovery Protocols for Ubiquitous
Computing. Urbana, Champaign: National Center
for Supercomputing Applications, University of
Illinois.

Mennie, D., & Pagurek, B. (2000, June 12, 2000).
An Architecture to Support Dynamic Composition
of Service Components. Paper presented at the 5th
International Workshop on Component-Oriented
Programming, WCOP 2000, Cannes, France.

Miller, B. (1999). Mapping Salutation Architecture
APIs to Bluetooth Service Discovery Layer, Blue-
tooth SIG. http://www.salutation.org/ whitepaper/
BtoothMapping.PDF.

Miller, B. A., Nixon, T., Tai, C., & Wood, M. D.
(2001). Home Networking with Universal Plug
and PIay. IEEE Communications Magazine,
(December): 104–109. doi:10.1109/35.968819

Nedos, A., Singh, K., & Clarke, S. (2005). Ser-
vice*: Distributed Service Advertisement for
Multi-Service, Multi-Hop MANET Environ-
ments. Paper presented at the 7th IFIP International
Conference on Mobile and Wirelss Communica-
tion Networks Marrakech, Morocco.

Nidd, M. (2000). Timeliness of Service Dis-
covery in DEAPspace. Proceedings of the 2000
International Workshops on Parallel Processing
(ICPP’00 - Workshops).

Nidd, M. (2001). Service Discovery in DEAP-
space. IEEE Personal Communications(August),
39-45.

Preuß, S. (2002). JESA Service Discovery Protocol
Effcient Service Discovery in Ad-Hoc Networks.
Second International IFIP-TC6 Networking Con-
ference: Networking 2002, Pisa, Italy, Springer-
Verlag.

100

Service Discovery Architecture and Protocol Design for Pervasive Computing

Preuß, S. and C. H. Cap (2000). Overview of
Spontaneous Networking - Evolving Concepts
and Technologies. Rostocker Informatik-Berichte,
Fachbereich Informatik der Universit{\”a}t Ros-
tock. 24: 113-123.

Ratsimor, O., Chakraborty, D., Joshi, A., & Finin,
T. (2002). Allia: alliance-based service discovery
for ad-hoc environments. Paper presented at the
Proceedings of the 2nd international workshop on
Mobile commerce Atlanta, Georgia, USA.

Ratsimor, O., Korolev, V., et al. (2001). Agents-
2Go: An Infrastructure for Location-Dependent
Service Discovery in The Mobile Electronic
Commerce Environment. First ACM Mobile
Commerce Workshop, Rome.

Richard, G. G. III. (2000). Service Advertisement
and Discovery: Enabling Universal Device Coop-
eration. IEEE Internet Computing, (September-
October): 18–26. doi:10.1109/4236.877482

Salutation Consortium. (1999). Salutation Archi-
tecture Specification (Version 2.0c ed.).

Sun Microsystems. (2001). Jini™Technology
Core Platform Specification (Version 1.2 ed.):
Sun Microsystem. Retrieved from http://wwws.
sun.com/ software/jini/specs/.

Varshavsky, A., Reid, B., & Lara, E. d. (2005). A
Cross-Layer Approach to Service Discovery and
Selection in MANETs. Paper presented at the 2nd
International Conference on Mobile Ad-Hoc and
Sensor Systems (MASS), Washington, DC.

Ververidis, C., & Polyzos, G. (2008). Service
Discovery for Mobile Ad Hoc Networks: a
Survey of Issues and Techniques. IEEE Com-
munications Surveys, 10(3), 30–45. doi:10.1109/
COMST.2008.4625803

Zhu, F., Mutka, M., et al. (2004). PrudentExposure:
A Private and User-centric Service Discovery
Protocol. 2nd IEEE Annual Conference on Perva-
sive Computing and Communications, Orlando,
Florida, IEEE Computer Society Press.

Zhu, F., & Mutka, M. (2005). Service Discovery
in Pervasive Computing Environments. IEEE
Pervasive Computing / IEEE Computer Society
[and] IEEE Communications Society, 4(4), 81–90.
doi:10.1109/MPRV.2005.87

Zhu, F., Mutka, M., & Ni, L. (2003, March 23-26,
2003). Splendor: A Secure, Private, and Location-
aware Service Discovery Protocol Supporting
Mobile Services. Paper presented at the 1st IEEE
Annual Conference on Pervasive Computing and
Communications, Fort Worth, Texas.

Zhu, F., Mutka, M., & Ni, L. (2005). Facilitating
secure ad hoc service discovery in public environ-
ments. Journal of Systems and Software, 76(1),
45–54. doi:10.1016/j.jss.2004.07.014

Zhu, F., Mutka, M., & Ni, L. (2006). A Private,
Secure and User-centric Information Exposure
Model for Service Discovery Protocols. IEEE
Transactions on Mobile Computing, 5(4), 418–
429. doi:10.1109/TMC.2006.1599409

Zhu, F., Zhu, W., et al. (2005). Expose or Not? A
Progressive Exposure Approach for Service Dis-
covery in Pervasive Computing Environments. 3rd
IEEE Annual Conference on Pervasive Comput-
ing and Communications, Kauai island, Hawaii.

Zhu, F., Zhu, W., Mutka, M., & Ni, L. (2007). Pri-
vate and Secure Service Discovery via Progressive
and Probabilistic Exposure. IEEE Transactions
on Parallel and Distributed Systems, 18(11),
1565–1577. doi:10.1109/TPDS.2007.1075

KEY TERMS AND DEFINITIONS

Application Layer Service Discovery: Usu-
ally, service discovery protocols are implemented
at the application layer. Thus, they are independent
of the underlying media, lower layer network
protocols, and operating systems.

Cross-Layer Optimization: Cross-layer op-
timization is sometimes used in service discovery

101

Service Discovery Architecture and Protocol Design for Pervasive Computing

protocols for wireless ad hoc networks. The service
discovery mechanisms are integrated with routing
protocols to reduce the overhead.

Service Announcement: Service announce-
ment is a basic mechanism for services to inform
clients, peer services, and directories their up to
date information. Services usually have life spans
and will be invalid after the life span. Services
use the service announcements to notify interested
parties that they are available.

Service Attribute: Service attributes are the
properties of services. For example, printing speed,
resolution, and paper sizes are the attributes of a
printer. Unlike the traditional services that are
identified by their names, IP addresses, and port
numbers, service attributes are used to identify
services in service discovery protocols.

Service Discovery: Service discovery is a
type of network protocols. The protocols reduce
the administrative overhead and automate con-
figuration and setup to use service. Via a set of
service discovery mechanisms, clients and services
exchange service information, properly configure,
and install necessary drivers before service usage.

Service Integration: Service integration
enables complex services that are built from in-
dividual services. Often, a service’s output is used
as the input of another service. Service integration
is also known as service composition.

Service Lookup: Service lookup mechanisms
facilitate the matching from a client’s request to
an existing service or services.

102

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

INTRODUCTION

Context-awareness refers to the capability of an
application or a service being aware of its physi-
cal environment or situation (e.g. context) and
to respond proactively and intelligently based on

this awareness (Baldauf et al. 2007). It is widely
acknowledged that, compared to desktop applica-
tions, pervasive environments introduce a new
wave of software engineering challenges.

Firstly, in such highly dynamic environments
the ultimate objective is to amplify human activi-

Zakwan Jaroucheh
Edinburgh Napier University, UK

Xiaodong Liu
Edinburgh Napier University, UK

Sally Smith
Edinburgh Napier University, UK

A Software Engineering
Framework for Context-Aware

Service-Based Processes in
Pervasive Environments

ABSTRACT

Context-awareness is considered to be the cornerstone technique for developing pervasive computing ap-
plications that are flexible, adaptable, and capable of acting autonomously on behalf of the user. However,
context-awareness introduces various software engineering challenges. The separation of concerns is
a promising approach in the design of the context-aware adaptive processes (CAAPs) where the core
logic is designed and implemented separately from the context handling and adaptation logics. In this
respect, this chapter presents a conceptual framework for developing CAAPs and software infrastructure
for efficient context management that together address the known software engineering challenges and
facilitate the design and implementation tasks associated with such context-aware applications.

DOI: 10.4018/978-1-60960-735-7.ch006

103

A Software Engineering Framework for Context-Aware Service-Based Processes

ties and demanding minimal attention from the
user. Context-aware applications aims to meet
these objectives or requirements by adapting to a
subset of the current context considered relevant
to the task at hand such as the user location,
time, and user activity. In this chapter we focus
on developing context-aware service-based pro-
cesses applications. In addition, we define the
context-aware process adaptation as the action that
modifies the process in a way that causes process
behavior to evolve according to the evolution of
business and users’ requirements, and the context
considered relevant to that process. To this end,
process modeling must be flexible enough to deal
with constant changes – both at the business level
(e.g. evolving business rules) and the technical
level (e.g. contextual information and platform
upgrades). The flexibility could be provided or
addressed by incorporating variabilities into a
system (Koning et al. 2009). Therefore, the notion
of an evolution fragment and evolution primitive
that capture the process variability in a logical
way are introduced.

Secondly, in order to have the transition of the
context-aware applications out of the laboratory
to the marketplace, there is a need for a software
engineering framework that simplifies the design
and implementation of context-aware software.
To this end, the approach proposed in this chapter
could apply an adaptation to processes modeled
or developed without any adaptation possibility in
mind and independently of specific usage contexts.
In addition, it supports the viewpoint of context-
aware adaptation as a crosscutting concern with
respect to the core “business logic” of the process.
In this way, the design of the process core can be
decoupled from the design of the adaptation logic
which significantly eases the process design and
rapid prototyping.

Thirdly, to ease the development of such appli-
cations it is necessary to decouple the application
from context acquisition and representation, and

at the same time provide universal models and
mechanisms to manage context. Thus, generic
and dynamically manageable context models are
of interest since they can be reused by different
applications and ease context sharing between
systems (Chen et al. 2004). Therefore, in this
chapter, we present a context management infra-
structure based on a flexible product line based
context model which significantly enhances
reusability of context information by providing
context variability constructs to satisfy different
application needs.

The rest of the chapter is organized as fol-
lows: In “Context Management Framework,” the
context management infrastructure is described.
It this section the conceptual model for context
management is introduced as well as the ratio-
nale behind it; then we describe how to model
the context information considering the applica-
tion requirement perspective. For this purpose
we leverage ideas from software product line
techniques. In “A Model-Driven Framework
for Managing Context-Aware Adaptive Service-
Based Processes,” a MDD-based (Model-Driven
Development) framework called Apto (Latin word
for Adapt) is introduced. We show how to capture
the variability in the service-based process in a
logical form by introducing the notion of context
fragments and context primitives. The proposed
approach contributes to a solution to automati-
cally generating a customized process based on
the context. Another feature is that Apto supplies
a set of automated tools for generating and de-
ploying executable process definitions e.g. WS-
BPEL (OASIS, 2007) which in turn significantly
reduces the development cost. In “Case Study,”
we illustrate the proposed frameworks by giving
a simple example of Conference Event Advisor
process. The related work and concluding remarks
ends the chapter.

104

A Software Engineering Framework for Context-Aware Service-Based Processes

CONTEXT MANAGEMENT
FRAMEWORK

Context-Aware Systems

Context-aware applications are those that con-
sider the current situation of their users in order
to provide services and information tailored to
their needs. An important topic when dealing
with context-aware systems is how to model,
manage, and manipulate the context information.
To ease context representation, context sharing
and semantic interoperability between hetero-
geneous systems, a formal and generic context
model is needed (Gu et al. 2005). In this work,
we are interested in developing a context-aware
application development methodology (Software
Engineering perspective); and in particular we
are focusing on context modeling (Knowledge
Engineering perspective).

In the literature, there are many definitions
for context. Definitions given by earlier works
agree on the key idea that contexts describe situ-
ations. For example (Dey 2001) confirmed this
by defining context as: “Any information that can
be used to characterize the situation of an entity.
An entity is a person, a place, or a physical or
computational object that is considered relevant to
the interaction between a user and an application,
including the user and application themselves.”
This work is based on two other definitions of
context. The first states that in using open-ended
phrases such “any information” and “character-
ize” the context becomes so broad that it covers
everything (Winograd 2001). Winograd indicated
also that “something is context because of the way
it is used in interpretation, not due to its inherent
properties. The voltage on the power lines is a
context if there is some action by the user and/or
computer whose interpretation is dependent on
it, but otherwise is just part of the environment.”
In this work, we adopt his definition of context:
“context depends on the interpretation of the op-
erations involved on an entity at a particular time

and space rather than the inherent characteristics
of the entity itself.”

The second indicates that “context is always
related to a focus and that, at a given focus, the
context is the aggregation of three types of knowl-
edge: Contextual Knowledge (CK), External
Knowledge (EK) and Proceduralized Context
(PC)” (Viera et al. 2008). They argue that context
should always be considered related to a focus,
which is a step in a task execution, in a problem
solving or in a decision making process. Moreover,
the context evolves dynamically according to the
focus, which enables a context-aware system to
separate relevant from not relevant knowledge in
order to determine the context.

Figure 1 illustrates the proposed working defi-
nition of the context (Jaroucheh et al. Feb 2010).
The term context primitive (for short, we will refer
to it as CP) refers to a piece of contextual knowl-
edge such as entity, entity attribute, relationship
between two entities, their constraints, or inference
rules –used to define context situations and infer
new knowledge– that can be used to define the
context. We consider that the context knowledge
is composed of a set of small pieces. Given a
focus, a relevant subset of these pieces, namely
context primitives, will be used to generate the
current context. Thus, the generated context is in
alignment with the requirement of current task.

The Variability in Context
Information

Several middlewares and ontology-based models
for describing context information have been
developed in order to support context-aware
applications. However, the context variability,
which refers to the possibility to infer or inter-
pret different context information from different
perspectives, has been neglected in the existing
context modeling approaches.

In order of the context management infra-
structure to serve different types of applications,
it should provide context-specific programming

105

A Software Engineering Framework for Context-Aware Service-Based Processes

abstraction or constructs that model the context
variability. Indeed, different context knowledge
could be extracted from the context repository by
focusing on different views of the context informa-
tion. For example, in the smart meeting room, a
seat may be equipped with light and temperature
sensors to reason about its occupation. The seat
could be either free or occupied. Two occupation
variants may be identified: occupied by object and
occupied by a person. These variants represent
two facets to the same fact. Another example
of context variability is the context information
classification. For instance, the room temperature
could be classified as low, moderate and high ac-
cording to some specified temperature ranges; but
these ranges could be different if the room type
is a sitting room or a sauna. To the author’s best
knowledge, the existing approaches do not provide
application developers with software constructs
through which a view-based customization of the
context knowledge could be expressed.

As one of the successful research directions
in software engineering, software product line
research could contribute to the context modeling.

Commonality and variability management tech-
niques from software product line can be applied to
handle context variabilities for customization and
adaptation (See “Context as a Dynamic Product
Line”). Therefore, in this chapter we explore the
synergy between feature modeling and context
modeling. On the other hand, feature modeling is
a key concept in product line engineering. Thus,
the feature model of the system context will be
considered as a composition of segmented context
features models; each of which models a part of
the whole context. Based on the context feature
model, specific context −member of a product
line− can be constructed by composing features
from context information.

In this section we focus on dealing with con-
text variability from the application requirement
perspective. The proposed approach does not
model the context information itself by using
feature model as the feature models are less pow-
erful than ontologies, and are more appropriate
for expressing a subset of what ontologies can
express (Czarnecki et al. 2006). Instead, the aim
is to represent the context information from the

Figure 1. The proposed context working definition

106

A Software Engineering Framework for Context-Aware Service-Based Processes

requirement perspective. The rationale behind
this approach is as follows.

Firstly, in terms of modeling philosophy, in
ontology modeling a concept is described by add-
ing its details and implicitly defining in a bottom-
up fashion the scope of the concept through the
details. Whereas, in feature modeling, a concept
is described by first setting its scope and hierar-
chically adding its details in a top-down fashion
(Czarnecki et al. 2006). This feature is quite
interesting as it allows the context modeler to
devise, in a top-down fashion, generic and reus-
able context features which can be shared among
all applications that need to use this context. The
relationships between context features express
the context variability from the application point
of view.

Secondly, according to the context working
definition previously presented in “Context-Aware
Systems,” we consider that the context knowledge
is composed of a set of small contextual knowledge
pieces namely context primitives which include
context entities, attributes, associations, and rules.
Each context feature corresponds to a specific
set of context primitives. The focus is a concept
representing the point of view the application is
interested in looking at the current context. Each
focus corresponds to a specific set of context
features. Given a focus, a relevant subset of these
pieces will be used to generate a per-application
customized contextual knowledge. Obviously,
considering only the relevant context primitives
will improve the reasoning performance and
reduce response time which is a vital issue in a
pervasive environment.

Thirdly, as developers usually do not have full
understanding of the context internal semantic,
“promoting” the context information using the
feature model will enable the contextual knowl-
edge visibility from different views in a top-down
fashion. Another advantage is that these context
features might be shared between applications
which significantly enhances the reusability of

context information and reduces application
complexity.

The Conceptual Meta-Model
for Context Management

We import the concepts of features from FODA
(Feature Oriented Domain Analysis) (Kang et al.
1990). FODA appeals to us because features are
essential abstractions that both context consumer
and provider understand. Thus, the main concept
in the feature description language FODA is the
feature itself. Here a feature is a set of context
primitives that is relevant to some stakeholder
from a specific “focus” point of view. Figure 2
depicts the proposed conceptual metamodel. The
concepts of the conceptual metamodel were identi-
fied and grouped into two different sections: the
context related concepts (white), and the context
features concepts (shaded).

The main construct for representing context
knowledge is the ContextPrimitive which repre-
sents the base context constructs (primitives)
mentioned above: entity classes, entity attributes,
entity associations, and rules. Two types of rules
could be identified: (i) Consistency rules provide
a mechanism for context consistency by specify-
ing conditions that must be held in the context
information. For example, a consistency rule could
specify that if the person is cooking, she must be
in the kitchen. (ii) Inference rules used to gener-
ate new context information after reasoning on
the existing one. For example, an inference rule
could conclude that a person is sleeping if the
light is off and the time is night. Further modeling
constructs are axioms that add additional facts
about the entities and attributes. These are: spe-
cialization and equivalence relationships that may
be specified between two entity classes, two at-
tribute classes, or two association classes.

107

A Software Engineering Framework for Context-Aware Service-Based Processes

Context as a Dynamic Product Line

According to (Northrop 2002), a software product
line (SPL) is a set of software-intensive systems
sharing a common, managed set of features that
satisfy specific needs of a particular market or mis-
sion, and that are developed from a common set of
core assets in a prescribed way. Feature modeling
is a domain modeling technique, which has gener-
ated a lot of interest in the software product line
(SPL) community. Modeling product family as a
hierarchy of features their similarities, differences
and relationships among them, feature models
can be used for modeling common and variable
requirements of products in a SPL, scoping SPLs,
and product configuration and derivation.

Commonly there are five types of relations
possible in a feature model (Wang et al. 2007) (See
Table 1). Additional constraints between features
may exist that describe how features interact with
each other e.g. requires and excludes constraints.

In order to identify which of the context in-
formation is eligible for being modeled as a

feature, we have adopted a simplified criteria
composed of the three steps shown below, fol-
lowed by the correspondent modeling decisions:

• Identify the context information required
by the application adaptation e.g. user lo-
cation. This should be represented by a ge-
neric feature in the feature model.

• Identify the context model transforma-
tions or interpretations of the currently
available context information in order to
be shared by all application instances e.g.
room-, floor-, and building-resolution user
location information. These interpretations
should be represented by different feature
variants.

• Regrouping the different identified context
features into a logical hierarchy of features
in a top-down manner that could be reused
by different applications.

The context feature model will be published in
a public registry. When an application developer

Figure 2. The conceptual meta-model

108

A Software Engineering Framework for Context-Aware Service-Based Processes

needs to use context information, s/he reads the
XML file representing the context features the
context manager is able to deliver to understand the
context semantics. Then s/he is able to configure
the feature model and use the context manage-
ment infrastructure services to get the necessary
context information.

On the other hand, ontologies are a very
promising instrument for modeling contextual
information due to their high and formal expres-
siveness and the possibilities for applying ontology
reasoning techniques. Thus, we focus on context
management employing ontologies as the under-
lying technology. Several successful efforts have
been developed in order to support context-aware
applications through ontology-based middlewares
and models for describing context information.
Common to most of the existing approaches the
usage of ontologies (e.g. using OWL) to describe
the concepts and properties defining context in-
formation in the relevant domain: context types
correspond to classes defined in the ontology.
RDF is implicitly used as the common, standard
language to express classes and individuals (i.e.
context types and their instances). Obviously the
reasoning capabilities of the ontology are of cru-

cial importance to context-aware applications for
context knowledge representation and reasoning.

Although a feature model can represent context
commonalities and variabilities in a very concise
taxonomic form, features in a feature model are
merely symbols. Mapping features to the context
ontology gives them semantics. In the follow-
ing section we describe the proposed approach
of mapping the feature model to the ontology
context model.

Annotated Context Model

An overview of the proposed approach is shown
in Figure 3. A context model family is represented
by the context feature model and the ontology-
based context model (OCM). The elements of
OCM namely the context primitives may be
annotated using existence conditions (ECs) and
meta-statements (MSs). These annotations are
defined in terms of features and feature attributes
from the feature model, and can be evaluated with
respect to a feature configuration. An EC attached
to a context primitive indicates whether the primi-
tive should exist in or should be removed from a
context product. MS is mainly used to modify or

Table 1. Feature Type Relations

109

A Software Engineering Framework for Context-Aware Service-Based Processes

compute the attributes of context model element.
This is important for managing context variants as
we will see in the case study in “A Model-Driven
Framework for Managing Context-Aware Adap-
tive Service-Based Processes.”

An instance of a context model family, which
we call context product (CP), can be specified by
creating a feature configuration based on the
context feature model. Based on the feature con-
figuration, the corresponding context product is
generated automatically. The generation process,
which is model-to-model transformation, involves
evaluating the ECs and MSs with respect to the
feature configuration, removing context primitives
whose ECs evaluate to false and, possibly doing
additional processing such as removing related
context primitives.

Obviously, a particularly interesting form of
ECs is a Boolean expression over a set of variables
each of which corresponds to a feature from the
feature model. Given a feature configuration, the

value of a feature variable is true if and only if
the corresponding feature is included in the feature
configuration. In our prototype implementation
we use either Boolean expressions in Disjunctive
Normal Form (DNF), or more general XPath
expressions which can access feature attributes
and use other XPath operations, as long as the
XPath expression evaluates to a Boolean value.
The EC is represented by one or more stereotypes.
For example, the stereotype «!f1&&f2||f3» in
DNF denotes the Boolean expression f f f

1 2 3
. +() .

Once created, the stereotype is available for an-
notating context primitives.

On the other hand, the ECs should be inter-
preted with respect to the OCM containment
hierarchy. In other words, if a context primitive
container is removed all the contained context
primitives are removed. For example, if entity x
is a sub-entity of the entity y, removing y requires
removing x as well.

Figure 3. Overview of the proposed approach

110

A Software Engineering Framework for Context-Aware Service-Based Processes

Implicit Existence Condition (IEC)

Context primitives that are not explicitly an-
notated will have implicit EC. The IEC for a
context primitive can be provided based on the
existence conditions of other context primitives
and on the syntax and semantics of the OCM.
For example, according to the ontology syntax,
an object property requires a class at each of its
ends. Thus, a reasonable choice of IEC for an
object property would be the conjunction of the
ECs of both classes. This way, removing any of the
classes will also lead to the removal of the object
property. IECs reduce the necessary annotation
effort of the user.

Table 2 shows our choice of IECs for the
context primitives. An IEC for a given primitive
is assumed based on its type.

Context Information Generation

A context information generation process involves
computing MSs and ECs, and removing elements
whose ECs are false. The complete context prod-
uct instantiation algorithm can be summarized
as follows:

• Evaluation of MSs and explicit ECs:
The evaluation is done while traversing

the OCM containment hierarchy in depth-
first order. Children of context primitives
whose ECs evaluate to false are not visited
because they will be removed.

• Removal Analysis: Removal analysis in-
volves computing IECs. The IECs can be
computed in a single additional pass after
evaluating explicit ECs. In addition, in
this step all the individuals and statements
whose subjects are included in the ele-
ments to be removed are also marked to be
removed. For example, if the Room entity
is known to be removed, all its individu-
als and all triples whose subject is of type
Room should be marked to be removed.

• Primitive Removal: In this step, primi-
tives whose ECs are false are removed.

• Applying Reasoning: In order to interpret
the remaining context information from the
perspective specified by the context feature
configuration, it is necessary to apply the
corresponding remaining rules. The result
of the reasoner will be the context product.

In the implemented prototype we use rule-
based inference reasoners. Different rule-based
systems provide different logical inference support
for context reasoning. To reason about ontologies,
a description logic reasoner, namely Pellet is ap-

Table 2. IEC for different context primitives

111

A Software Engineering Framework for Context-Aware Service-Based Processes

plied. We use the Semantic Web Rule Language
(SWRL) on top of OWL for interpreting context
using domain specific rules and producing new
facts. However, the approach could be extended
to use other reasoner types.

Discussion

The proposed approach can be seen from two
perspectives: (i) identifying context features and
giving them semantics by mapping context feature
models to OCM; and (ii) using feature models to
provide a representation of variability in context
models. This has several advantages.

Firstly, from the context modeler usability
perspective, the proposed approach is intuitive; it
allows her to think about the context information
from different perspectives and use the feature
model available tools. Indeed, it is possible to think
about the context information from different point
of views and design different feature models. For
example, the context modeler may choose to split
the context feature model into more than one sub
feature models each of which may be designed to
look at the context from a different view point.

Secondly, context feature model allows the
context modeler to devise context-specific fea-
tures that can be shared among all applications
that need to use this context. Moreover, retrieving
context information using general-purpose query
mechanisms remains possible by devising a special
context feature. Thirdly, unlike the reasoning on a
one monolithic context information, the proposed
approach gives the possibility to provide the con-
text information on arbitrary levels of abstraction
thanks to the arbitrary composition of context
primitives e.g. inference rules. Fourthly, the use of
context-specific features may improve the overall
performance of the system, since it might decrease
the number of network interactions between an
application and the context provider.

A MODEL-DRIVEN FRAMEWORK
FOR MANAGING CONTEXT-
AWARE ADAPTIVE SERVICE-
BASED PROCESSES

Many different solutions have been proposed
by researchers to the problem of context-aware
adaptation during process development and provi-
sion. Indeed, process design and modeling must
be flexible enough to deal with constant changes.
The flexibility could be provided or addressed by
incorporating variabilities into a system (Koning
et al. 2009). Most of the approaches tackle process
adaptation on the process instance or definition
level by explicitly specifying some form of varia-
tion points. To date, a variety of different adapta-
tion approaches have been proposed for capturing
variabilities (e.g. Mietzner and Leymann 2008).
Common to all these approaches is that they cap-
ture the process variant as a monolithic structure
containing variation points to differentiate between
process family members. By making appropriate
choices to resolve the variation points, either at
design time or at runtime, a single process vari-
ant could be constructed. The problem is that, for
example, each task in the process is modeled as a
variation point in and of itself, each governed by
its own clause to determine inclusion or exclusion.
This is in contradiction with how the developer
or architect logically views the process variant
i.e. in terms of the features that determine the
difference between process variants in each usage
context. Moreover, managing and understanding
the process variants becomes more difficult when
the number of variabilities and their relationships
increase.

Motivated by these problems and directives
in mind, we propose an MDD-based framework
called Apto that introduces the evolution fragment
and evolution primitive constructs to capture the
variability in a more logical and independent form.

112

A Software Engineering Framework for Context-Aware Service-Based Processes

A Conceptual Model for
Context-Aware Adaptation

Apto adopts MDD methodology whose primary
objectives are: portability, interoperability and
reusability. The proposed conceptual model is
structured in four main sections that address,
respectively, the modeling of the service-based
process, context, evolution, and linkage between
evolution and context models (see Figure 4).

Basic Process Model

In Apto we denote the original process as a basic
process. This can be either an existing process
model or a newly created one. The basic process
could be defined for the most frequently executed
variant of a process family, but this is not a require-
ment. We use a UML process definition model. For
illustration purposes, Figure 4 depicts some of the
main meta-classes representing the key elements
of BPEL process model, and their relationships.

Context Model

As in previous work (Jaroucheh et al. Feb 2010)
the main construct for representing context knowl-

edge is the ContextPrimitive which represents
the base context constructs (primitives): entity
classes, entity attributes and entities associations.

• Entity class: represents a group of entities
(e.g. users, places, devices, etc) sharing
some properties.

• Attribute class: represents an entity’s at-
tributes e.g. preference, position, tempera-
ture, etc.

• Association class: represents a relation-
ship between one entity and either another
entity or an attribute.

Further optional modeling constructs are addi-
tional facts about the entities and attributes. These
are: specialization and equivalence relationships
that may be specified between two entity classes,
two attribute classes, or two association classes.
In addition, we introduce the context-dependent
constraint concept which allows us to specify
conditions that must hold to introduce some kind
of context-aware adaptation by specifying the
evolution fragments that should be applied to the
process as described in the next sections.

Figure 4. The conceptual model for context-aware adaptation

113

A Software Engineering Framework for Context-Aware Service-Based Processes

Evolution Model

The adaptation in a process usually involves add-
ing, dropping and replacing tasks in the process. In
this respect, and in order to achieve deep change
ability, we propose to add for each class X in the
BPEL metamodel three classes: AddedX, Delet-
edX, and ChangedX describing the difference
between the basic process model and the respective
variant model (See Figure 5). Other change types
can be mapped to variations and combinations of
these ones. For instance, moving an activity is
achieved by dropping the activity and inserting
it at a later position of the process.

The evolution metamodel (Figure 4) consists
of an EvolutionStrategy class that contains one
or more EvolutionFragments. The EvolutionFrag-
ment in turn consolidates related Evolution
Primitives (a set of elements of type Change-
ableElement) into a single conceptual variation.
Our approach promotes evolution fragments (EFs)
to be first-class entities consisting of closely-re-
lated additions, deletions and changes performed
on the basic process model.

The evolution metamodel could be automati-
cally generated from the BPEL model. One pos-
sible approach is presented in a previous work

(Jaroucheh et al. July 2010). Figure 4 shows only
one example of the three generated classes from
the Flow class (AddedFlow, DeletedFlow and
ChangedFlow).

Linkage Model

Because in the MDD world everything should
be a model, the mapping between the context
constraints and the EFs will be represented by
the linkage model. This mapping will be used as
information for driving the model transformation.
Moreover, the linkage model is used to repre-
sent the dependencies between the EFs which
we prefer to keep it separate from the evolution
model itself. Dependencies are used to describe
relations between EFs in order to constrain their
use. The relations supported in Apto are as follows:
dependency (Require), compatibility (Exclude),
execution order constraint (Follow), and hierarchy
(SubSet). Require arises when elements introduced
by one EF depends on elements introduced by
another. The Exclude relationship dictates which
EFs are incompatible with each another, based
on conceptual design knowledge of the architect.
SubSet denotes composition relationship which
means that when choosing the child EF the par-

Figure 5. Generating evolution metamodel

114

A Software Engineering Framework for Context-Aware Service-Based Processes

ent EF must be applied first. As one EF might
insert an activity whose attributes are changed by
a second one, the execution order of these EFs
becomes crucial. Therefore, the Follow relation-
ship enables the order in which EFs are applied
to the basic process to be specified.

Apto Architecture

The selection of a process variant in a particular
context should be done automatically. Therefore
the process context in which this selection takes
place has to be considered. To this end, the basic
process model, the defined EFs, the context and the
linkage models are used to configure the models
of the different variants. A single process variant
is created by applying a number of EFs and their
related evolution primitives to the basic process.

As a proof-of-concept we implemented a
Java application prototype for the process variant
generation. The Eclipse Modeling Framework
(EMF) was used to model the aforementioned
models. Having specified these models, the Apto
framework is able to deliver CAAP on a basis of
user request as follows (See Figure 6). The user

request for the process service is intercepted by
the Process Proxy service which in turn trig-
gers the Context Analysis module. The Context
Analysis module evaluates all context constraints
of the context model. Using the constraints ele-
ments evaluated to “true” and the linkage model
we are able to determine the relevant EFs and
the order in which they should be applied to the
basic process model. We consider that the context
model is acquired from the context-management
infrastructure described in “Context Management
Framework.”

These relevant EFs are used by the Model
Composer module which supports context-aware
process configuration; i.e., it allows for the con-
figuration of a process variant by applying only
those EFs relevant in the process context. The
result is the CAAP Model. This model is auto-
matically transformed, using a set of transforma-
tion rules, to generate the executable specification
of the target platform. At this time, the proxy
service creates a new virtual end point which will
be bound to the resulting deployed process. Then
it invokes the service deployment of the corre-
sponding execution engine to deploy the gener-

Figure 6. Apto architecture

115

A Software Engineering Framework for Context-Aware Service-Based Processes

ated process. The client request is then transferred
to the new end point; and the client will be pro-
vided with a personalized process that takes into
account her context and preferences. In Apto, we
use the model-to-code transformation that takes
as input the CAAP model and generates code in
an executable language (e.g. BPEL). For more
details the reader is referred to a previous paper
(Jaroucheh et al. July 2010).

Finally, run-time support for context-aware
adaptive processes, as well as for related tasks
such as management of context, is provided by a
software infrastructure. Figure 7 shows an over-
view of the architecture of this infrastructure we
have developed as proof-of-concept.

CASE STUDY

In order to demonstrate the concepts and mod-
eling capabilities of the proposed frameworks,

this section describes a case study of different
applications supporting a conference event. The
key feature of the approach is the ability to sup-
port variable ontology reasoning in a distributed
dynamic environment. This means that properties
about a particular person, place and activity can
be described by distributed heterogeneous context
sources, and the contexts of these individual enti-
ties can be dynamically inferred through classifi-
cation. In addition, different applications register
their interest in the context information they need
by specifying the relevant context features i.e.
by configuring the context feature model. Given
the relevant context information the proposed
framework will be able to generate an application
process in response to the change of the context
information.

In pervasive computing environments e.g.
conference campus, sensors are often used to
detect the presence of people in rooms and build-
ings. For example, Bluetooth sensors can detect

Figure 7. Overview of the frameworks architecture

116

A Software Engineering Framework for Context-Aware Service-Based Processes

the proximity presence of the Bluetooth-enabled
personal devices and conclude the presence of
the device owners. We use some concepts of the
SO4PC ontology (Man et al. 2005) for expressing
context information associated with persons, time,
and spaces; and another ontology for describing
the research related concepts. Figure 8 shows a
snippet of the classes and properties used in the
ontology.

Figure 9 (a) shows an example of a context
feature model that represents different features
that could be shared among different applications.
For example, if the Location feature has been
selected, then two mutually-exclusive options are
available; either as a room resolution; or as a

building resolution. In either case, different con-
cepts, properties, attributes and rules should be
considered. In a similar manner, the Role feature
regroups two features: the static role (e.g. a Re-
viewer, OrganisingCommitteeMember, etc) or the
current role played during the conference (e.g.
Presenter, SessionChair, etc). Figure 9 (b) shows
one possible context feature configuration.

Each feature may have several attributes. For
example, in Figure 10 that shows a part of the
feature model configuration XML file, the Hav-
ingJournalPublications feature has two attributes:
value which indicates the selection of the feature
or not, and minimumJournalRank. This feature
allows the retrieval of researchers who have been

Figure 8. A snippet of the used ontology

117

A Software Engineering Framework for Context-Aware Service-Based Processes

published in journals whose rank is superior to
the attribute minimumJournalRank value. As
previously mentioned, in order to link the context
feature model to the context primitives, we use
stereotypes to annotate ontology elements as well
as the SWRL rules. Figure 11 shows a snippet of
the XML files containing the available stereotypes
to use for annotation. Each stereotype expression
is expressed, as described above, in terms of the
features’ values of the context feature model.

Figure 12 shows a sample of the annotated
ontology elements. We use the Label property to
specify the correspondent stereotypes of each
element. On the other hand, as mentioned above,
MSs can be expressed using XPath. As an ex-
ample, the MS represented in Figure 13, uses the
SPQRL Update expression to update the datatype
property minimumJournalRank of the entity
FMConfiguration by a value retrieved from the
variable $minimumJournalRankVariable whose
value is determined by the XPath expression of

Figure 9. Example of context feature model

118

A Software Engineering Framework for Context-Aware Service-Based Processes

Figure 10. Feature model configuration

Figure 11. Example of available stereotypes

119

A Software Engineering Framework for Context-Aware Service-Based Processes

the variable minimumJournalRankVariable in
Figure 14.

Figure 15 shows a sample set of annotated
SWRL rules. For example, Rule1 is used to reason
about the paper presentations that are currently
taking place. To determine if the researcher is an
expert we have two options: by choosing the

HavingAwards or HavingJournalPublications
features. The Rule4 corresponds to the former
option. The Rule2 and Rule3 correspond to the
latter option and are used to determine if the re-
searcher has been published in journals having a
specified minimum rank and minimum influence
index respectively. Rule5, Rule6 and Rule7 are

Figure 12. Example of annotated ontology

Figure 13. Example of meta-statement

120

A Software Engineering Framework for Context-Aware Service-Based Processes

among the rules used to reason about the person
location in building resolution. The stereotype of
the rule is specified by the stereotype element.

Figure 16 shows an example of the retrieved
context information after sending the feature
model configuration (of Figure 9 (b)) to the imple-
mented middleware prototype.

On the other hand, and from the application
perspective we can imagine different scenarios
of using different subset of the available context
information by different applications according
to their needs. For instance, different applications
could be imagined to serve the conference at-
tendees. We introduce a simple case study,
namely, the Event Advisor application. This ap-

Figure 14. Example of meta-statement variable

Figure 15. Example of annotated SWRL rules

121

A Software Engineering Framework for Context-Aware Service-Based Processes

plication provides the conference attendee (the
user) with a personalized suggestion for a confer-
ence event (e.g. paper, workshop, or poster pre-
sentation, etc) according to the user preferences
and context. We consider a generic service ap-
plication that users can access through a wireless
connection using their own portable devices. The
application displays a GUI through which users
may use the application services for displaying
information about conference events.

Figure 17 depicts a part of the static structure
of this application. This application could be en-
hanced by automatically filling in the ClientType
parameter, using for this purpose information
provided by the context infrastructure. Being a
research-oriented customer means that she is not
interested in getting suggestions for the industrial
demos. Therefore there is a need to change the
process structure so that the activity that invokes
the IndustrialDemo is deleted.

Figure 18 shows a simple example of the
context model that contains two entities: Alice
and Bob. The association elements assign the
attributes to the entities so that Alice has an at-
tribute ClientType whose value is ResearchOri-
ented whereas Bob’s ClientType is IndustrialO-
riented. The context constraint named
UserIsResearchOriented is an example of the
constraints having parameterized expression. It
contains a variable named $UserName whose
value is extracted either from the customer request
information or from any other data source. In
either case the above-mentioned proxy service is
responsible for assigning the variable value.

Figure 19 shows a sample of the evolution
fragments ef1 that regroups different evolution
primitives that should be applied when the cus-
tomer type is research oriented. The linkage
model (Figure 20) contains one link element that
links between the context constraint named Use-

Figure 16. The retrieved context information

122

A Software Engineering Framework for Context-Aware Service-Based Processes

rIsResearchOriented and the CF named cf1. Fi-
nally, the developed prototype will generate the
customized process which contains only the sug-
gestions for paper and poster presentation events.

RELATED WORK

(Henricksen and Indulska 2004) presented
conceptual models and a supporting software
infrastructure capable of facilitating a variety
of software engineering tasks involved in the
development of context-aware software. The aim
is to simplify the design and implementation of

context-aware software by introducing context
modeling approaches that describe context at two
different levels of granularity, a preference abstrac-
tion, and a pair of complementary programming
models, namely trigger and branching models. In
addition, they developed the situation abstraction
as a way to define high-level contexts in terms of
the fact abstraction of CML. These situations can
be combined to enable complex situations to be
easily formed incrementally by the programmer.
However, in the proposed approach, and thanks
to the inherent power of software product line
in modeling the context variability, the context
features are more expressive; also the programmer

Figure 17. Event advisor process

123

A Software Engineering Framework for Context-Aware Service-Based Processes

Figure 18. The context model

Figure 19. The evolution model

Figure 20. The linkage model

124

A Software Engineering Framework for Context-Aware Service-Based Processes

is alleviated from defining the context features as
it is the role of the context modeler to define the
context feature model that could serve as much
applications as possible. In addition, unlike their
approach, using the proposed context modeling
approach we can describe context at arbitrary
different levels of granularity which is necessary
to serve different applications’ needs.

Similar to our work, (Sheng et al. 2009) pre-
sented ContextServ, a platform for simplifying
the development of context-aware Web services,
which adopts model-driven development where
context-aware Web services are specified using
ContextUML, a UML based modeling language.
ContextServ offers a set of automated tools for
generating and deploying executable implementa-
tions of context-aware Web services. However,
Apto approach takes a step further. Typically, ac-
cording the separation of concern principle, the
application developer has to focus on the core ap-
plication business logic and then define separately
the customization and business rules, and weave
them to the core application. Apto separates the
system modeling into four separate models; and
it is able to generate according to the acquired
context information the customized version of the
process. Moreover, context-aware Web services
should continue to work even in the absence of
context information. Unlike their approach which
is tightly dependent on context, Apto adopt the
basic process logic idea which will be generated
in absence of context.

(Grassi and Sindico 2007) presented a model-
driven and aspect-oriented approach to deal with
context-aware adaptation in the design process
of an application. Similar to our approach, they
consider the adaptation as a crosscutting concern
with respect to the core application logic; and
their approach facilitates the plugging of different
adaptation strategies within the same basic applica-
tion, tailoring it for different contexts. However,
as they leverage the idea of aspect weaving, their
approach may not be flexible enough to accom-
modate the deletion or changing of application

tasks; which means that the approach could only
be used to accommodate adding different tasks
according to different contexts.

(Muller et al. 2004) propose “AgentWork”, an
interesting approach for workflow adaptation to
customize the hospital cancer treatment workflow
to suit each patient’s medical profile by adding and
deleting tasks in the running workflow instance
according to the predefined extended ECA rules.
The adaptation in this approach provides dynamic
and automatic workflow adaptations and suggests
and implements a predictive adaptation strategy.
Apto, on the other hand, takes another approach
so that adaptation can be applied to processes
modeled and developed without an adaptation
possibility in mind and independently of specific
usage contexts.

VxBPEL (Koning et al 2009) is an adaptation
language that is able to capture variability in pro-
cesses developed in the BPEL language. VxBPEL
provides the possibility to capture variation points,
variants and realization relations between these
variation points. Defining this variability informa-
tion allows capture of a family of processes within
one process definition and switching between
these family members at run-time. Unlike Apto,
VxBPEL works on the code level and the variants
are mixed with the process business logic which
may add complexity to the process developer
task. Further, unlike the generative approach of
Apto, VxBPEL is specific to the BPEL language.

Another interesting work that is similar to
our work is the Provop approach (Reichert et
al. 2009), which provides a flexible solution for
managing process variants following an opera-
tional approach to configure the process variant
out of a basic process. This is achieved by apply-
ing a set of well-defined change operations to it.
However, Apto deviates from Provop in that it
uses the MDD approach and defines the evolu-
tion fragments as evolution model elements not
as change operations.

125

A Software Engineering Framework for Context-Aware Service-Based Processes

FUTURE RESEARCH DIRECTIONS

Future work includes extending the proposed
context management framework to the distributed
context management architecture. Therefore, for
the purpose of interoperability, we need a formal
common semantics for context feature models
managed by different context servers.

In addition, in order to achieve the possibility
of making deep changes we intend in our future
work to extend the Apto idea to regroup different
process views’ models. Indeed, as the number of
services or processes involved in a process grows,
the complexity of developing and maintaining
these processes also increases. One of the suc-
cessful approaches to managing this complexity is
to represent the process by different architectural
views. Examples of these views are collaboration
view, information view, orchestration view etc.
The idea is to give the developer the possibility
of applying the necessary evolution fragments in
each view and then the automated tool verifies the
integrity of the changes and generates the adapted
process variant artifacts accordingly. This involves
tackling the correct combination of evolution
fragments when creating a variant. Sophisticated
techniques are needed to prevent errors (e.g.,
deadlocks) or other consistency problems.

CONCLUSION

Change is the only constant in the software/service
development world due to the evolution in business
or user context and requirements. Therefore, there
is a need to customize processes by generating a
process variant that corresponds to the change
in the business and user requirements. We have
presented an approach for supporting context-
aware applications based on a flexible product line
based context model. The proposed approach to
model the context information allows the context
modeler to specify the context information in a
high-level and logical way that regroups context

variabilities; and provides application developers
with context-specific programming constructs to
express their needs from context information. The
result is a more intuitive way to represent context
and improve overall systems performance.

On the other hand, we have described the Apto
model-driven approach for managing and gener-
ating process variants. One of the advantages of
using MDD is that the context management and
adaptation logic are included in models rather than
directly implemented in code. Based on logically-
viewed well-defined evolution fragments and evo-
lution primitive constructs; on the ability to group
evolution fragments in reusable components; and
on the ability to regroup these components in a con-
strained way, necessary adjustments of the basic
process can be correctly and easily realized when
creating or configuring a process variant. We have
adopted the viewpoint that this kind of adaptation
can often be considered as a crosscutting concern
with respect to the core application logic. Hence,
one of our main goals has been the decoupling of
the design and implementation of the adaptation
logic from the design and implementation of the
main process logic. Finally, Apto allows for the
dynamic configuration of process variants based
on the given process context.

REFERENCES

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007).
A survey on context-aware systems. International
Journal Ad Hoc and Ubiquitous Computing, 2(4).

Chen, H., Finin, T., & Joshi, A. (2004). An ontology
for context-aware pervasive computing environ-
ments. The Knowledge Engineering Review, 18(3),
197–207. doi:10.1017/S0269888904000025

Czarnecki, K., Hwan, C., & Kalleberg, K. T.
(2006). Feature models are views on ontologies.
In Proceedings of the 10th International on Soft-
ware Product Line Conference (vol. 1). IEEE
Computer Society.

126

A Software Engineering Framework for Context-Aware Service-Based Processes

Dey, A. K. (2001). Understanding and using con-
text. Personal and Ubiquitous Computing, 5(1),
4–7. doi:10.1007/s007790170019

Grassi, V., & Sindico, A. (2007). Towards model
driven design of service-based context-aware ap-
plications. International Workshop on Engineering
of Software Services for Pervasive Environments
in conjunction with the 6th ESEC/FSE joint
meeting - ESSPE ‘07, (pp. 69-74). New York,
NY: ACM Press.

Gu, T., Pung, H., & Zhang, D. Q. (2005). A
service-oriented middleware for building context-
aware services. Journal of Network and Com-
puter Applications, 28(1), 1–18. doi:10.1016/j.
jnca.2004.06.002

Henricksen, K., & Indulska, J. (2004). A soft-
ware engineering framework for context-aware
pervasive computing. In S. Das & M. Kumar,
Proceedings of the Second Annual Conference on
Pervasive Computing and Communications (pp.
77-86). Los Alamitos, CA: The IEEE Computer
Society.

Jaroucheh, Z., Liu, X., & Smith, S. (February
2010). CANDEL: Product line based dynamic
context management for pervasive applications.
In International Conference on Complex, Intel-
ligent and Software Intensive Systems (ARES/
CISIS 2010) (pp. 209-216). Krakow, Poland: IEEE
Computer Society.

Jaroucheh, Z., Liu, X., & Smith, S. (July 2010).
Apto: A MDD-based generic framework for
context-aware deeply adaptive service-based
processes. In 8th IEEE International Conference
on Web Services (ICWS2010). Florida: IEEE
Computer Society.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peter-
son, A. (1990). Feature-oriented domain analysis
(FODA) feasibility study. Pittsburgh, PA: Carnegie
Mellon University Software Engineering Institute.

Koning, M., Sun, C., Sinnema, M., & Avgeriou,
P. (2009). VxBPEL: Supporting variability for
Web services in BPEL. Information and Soft-
ware Technology, 51(2), 258–269. doi:10.1016/j.
infsof.2007.12.002

Man, J., Yang, A., & Sun, X. (2005). Shared
ontology for pervasive computing. Lecture
Notes in Computer Science, 3818, 64–78.
doi:10.1007/11596370_7

Mietzner, R., & Leymann, F. (2008). Generation
of BPEL customization processes for SaaS appli-
cations from variability descriptors. 2008 IEEE
International Conference on Services Computing,
(pp. 359-366).

Muller, R., Greiner, U., & Rahm, E. (2004). AW:
A workflow system supporting rule-based work-
flow adaptation. Data & Knowledge Engineering,
51(2), 223–256. doi:10.1016/j.datak.2004.03.010

Northrop, L. (2002). SEI’s software product line
tenets. IEEE Software, 19(4), 32–40. doi:10.1109/
MS.2002.1020285

Reichert, M., Rechtenbach, S., Hallerbach, A., &
Bauer, T. (2009). Extending a business process
modeling tool with process configuration facili-
ties: The Provop Demonstrator. In BPM’09 Dem-
onstration Track, Business Process Management
Conference (vol. 1). Ulm, Germany.

Sheng, Q. Z., Pohlenz, S., Yu, J., Wong, H. S.,
Ngu, A. H., Maamar, Z., et al. (2009). ContextServ:
A platform for rapid and flexible development
of context-aware Web services. 2009 IEEE 31st
International Conference on Software Engineer-
ing (pp. 619-622).

Viera, V., Brézillon, P., Salgado, A. C., & Te-
desco, P. (2008). A context-oriented model for
domain-independent context management. Re-
vue d’Intelligence Artificielle, 22(5), 609–627.
doi:10.3166/ria.22.609-627

127

A Software Engineering Framework for Context-Aware Service-Based Processes

Wang, H. H., Li, Y. F., Sun, J., Zhang, H., & Pan,
J. (2007). Verifying feature models using OWL.
In Web Semantics: Science, Services and Agents
on the World Wide Web, 5(5), 117-129.

Winograd, T. (2001). Architectures for context.
Human-Computer Interaction, 16(2), 401–419.
doi:10.1207/S15327051HCI16234_18

128

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7

Steffen Ortmann
IHP Microelectronics, Germany

Michael Maaser
IHP Microelectronics, Germany

Peter Langendoerfer
IHP Microelectronics, Germany

High Level Definition of
Event-Based Applications

for Pervasive Systems

ABSTRACT

Within pervasive intelligent environments, Wireless Sensor Networks (WSNs) will surround and serve
us at any place and any time. A proper usability is considered essential for WSNs supporting real life
applications. With this chapter, we aim at ease of use for specifying new applications that have to au-
tonomously cope with expected and unexpected heterogeneity, sudden failures, and energy efficiency.
Starting with general design criteria for applications in WSNs, we created a user-centric design flow for
pervasive applications. The design flow provides very high abstraction and user guidance to refrain the
user from implementation-, deployment- and hardware-details including heterogeneity of the available
sensor nodes. Automatic event configuration is accomplished by using a flexible Event Specification
Language (ESL) and Event Decision Trees (EDTs) for distributed detection and determination of real
world phenomena. EDTs autonomously adapt to heterogeneous availability of sensing capabilities by
pruning and subscription to other nodes for missing information. We present one of numerous simulated
scenarios proving the robustness and energy efficiency with regard to the required network communi-
cations. From these, we learned how to deduce appropriate bounds for configuration of collaboration
region and leasing time by asking for expected properties of the phenomena to be detected.

DOI: 10.4018/978-1-60960-735-7.ch007

129

High Level Definition of Event-Based Applications for Pervasive Systems

INTRODUCTION

Pervasive computing significantly increases
the human-computer interaction as well as the
environment-computer interaction and enables
a direct interplay between the real world and the
information technology. The vision of pervasive
intelligent environments surrounding and serving
us at any place and any time will become reality
in the near future. Computing devices will be
embedded in everyday objects allowing informa-
tion technology to fade into the background and
become nearly invisible to their users. Wireless
Sensor Networks (WSNs) are one of the first real
world examples enabling pervasive computing.
Envisioned to be distributed like “Smart Dust”,
these networks support a broad range of applica-
tions and may become the perfect service and
surveillance tool. Based on their capability to
identify physical phenomena, sensor networks
can be applied for environmental and structural
control, context-awareness for personal services,
military applications or pervasive healthcare, to
mention a few (Mainwaring, Culler, Polastre,
Szewczyk, & Anderson, 2002; Werner-Allen,
Johnson, Ruiz, Lees, & Welsh, 2005; Akyildiz, Su,
Sankarasubramaniam, & Cayirci, 2002; Aboelaze
& Aloul, 2005). To summarize, ambient assist-
ing technology based on WSNs will amazingly
increase our quality of life.

Despite of the emerging advantages and poten-
tial applications, there are still a lot of challenges
and problems to solve before WSNs can be used
as consumer technology. WSNs are expected to be
deployed with high density in large areas where
hundreds or thousands of nodes are used. Due to
the pervasiveness of envisioned systems, those are
caught in a crossfire of external and internal influ-
ences. Sudden changes in operational conditions,
varying deployment and hazardous environments
adversely affect the reliability of applications. The
configuration of a pervasive system is yet hard for

experts, which usually customize WSNs manually
to application and deployment requirements. It is
an obvious fact that most approaches for WSNs
hardly consider or even disregard the configuration
complexity of a WSN. However, a proper usability
is considered essential for WSNs supporting real
life applications. Making the programming and
deployment of a WSN accessible for non-experts
could become the most important issue in order
to gain broad consumer acceptance of WSNs.

Pervasive systems are expected to consist
of various devices providing different capabili-
ties, hardware and software. Approaches aiming
at ease of use for specifying new applications
have to autonomously cope with expected and
unexpected heterogeneity, fault tolerance and
energy efficiency. Provision of means that enable
non-professional users to make use of the WSN
is required to make them widely accepted. These
users are usually short on experience of program-
ming languages and sensor networks. They cannot
be asked for applying programming languages or
data-base abstractions for WSN configuration.
These users require a straightforward method
for task definition and sensor node configura-
tion without the need to know about hard- or
software or node deployment of the WSN under
configuration. Further, the algorithms used for
configuration of the sensor nodes must be robust
enough to autonomously overcome sudden failures
during runtime, such as unavailability of sensing
features or of collaborating nodes. Nevertheless,
all necessary internal configuration and adapta-
tion processes have to be completely hidden from
the user.

This chapter introduces general design criteria
for application design in WSNs. Based on these
design criteria, this chapter motivates a signifi-
cant change from a WSN-centric to user-centric
design flow of pervasive applications. Instead of
customizing applications to the conditions of the
deployed WSN, which is the WSN-centric design,

130

High Level Definition of Event-Based Applications for Pervasive Systems

the design flow of application programming is here
tailored to user needs. In such a user-centric design
flow, the user only needs to describe the physical
phenomenon to be sensed without regard to WSN
properties. The major goal is to allow users to
define applications by a generally valid descrip-
tion of the “things” to be sensed (phenomenon),
as it is exemplified in Figure 1. All further steps
required for configuration and adaption of these
applications to a certain WSN remain fully trans-
parent to the user. The sensor nodes autonomously
configure to a generally defined task description
given by the user. Therefore the user can specify
a physical phenomenon via a GUI by defining the
required sensing features, the spatial and temporal
resolution and the actions to be triggered. Based
on that, an event specification generator expresses
a description of the phenomenon to be detected in
an intuitive XML-dialect. This event specification
is automatically adapted to the requirements of the
target platform. Finally, a minimized deployable
event specification is disseminated within the
sensor network. The sensor nodes autonomously
configure to the received event specification.

BACKGROUND

Traditional sensor network applications report all
sensor readings to a global sink either continuously
or if certain conditions are met. Sinks are usually
special nodes that provide more resources and
make the final decision about sensed phenomena
based on received readings. Such data gathering
applications exchange extensive amounts of data,
cause much traffic and consume much energy.
Hence, they reduce lifetime, throughput and re-
sponsiveness of the network. Thus, only certain
changes in sensor readings, called events, shall
be transmitted. Events provide a suitable abstrac-
tion of real world phenomena, whose physical
properties can be measured by sensors (Romer
& Mattern, 2004). Events typically describe a
number of measurement related constraints, e.g.,
thresholds of sensor readings. Sensors fire an event
if current measurements indicate the exceedance
of these thresholds. Fired events usually trigger
further actions, such as the activation of alarms or
the recording of detailed data for further analysis.

Figure 1. User-centric application design allows abstraction of the task definition process from WSN-
related properties and internal configuration processes. The user merely specifies the phenomenon to
be sensed, which is then autonomously configured to the desired target sensor platform.

131

High Level Definition of Event-Based Applications for Pervasive Systems

There are primitive and complex events.
Primitive events describe the exceedance of one
configured threshold by a single sensed value.
Many applications demand detection of simultane-
ous occurrence of several primitive events. This
is particularly true if identification of complex
real-world phenomena is required. A combination
of several primitive events is a complex event. For
example, the occurrence of an event fire should be
denoted as a combination of the primitive events

(temperature > 50°C) AND (smoke > 1.1%)

instead of using the primitive events only. Com-
plex events based on different sensing capabilities
indicating the same phenomenon, here temperature
and smoke, gain a higher false alarm immunity and
enhance the reliability of event detection (Shih,
Wang, Yang, & Chang, 2006).

An ease of use for event configuration in a WSN
by non-professional users requires provision of
two major configuration means, i.e., a high level
abstraction for description of events to be detected
and a robust method for autonomous configuration
and detection of defined events. The following
introduces and compares available approaches
for such configuration means.

High Abstraction for Sensor
Network Configuration

Available higher abstractions for sensor network
programming and configuration mainly base upon
programming languages or database-like query-
ing. In case of WSN, configuration is perceived
as setting of detection parameters, e.g., thresholds,
and linking of those. A configuration allows con-
cluding whether actual sensor readings match the
defined settings or not. One of the most famous
approaches using database abstractions for col-
lection and fusion of sensor readings is TinyDB
(Madden, Franklin, Hellerstein, & Hong, 2005).
TinyDB extends SQL to support in-network data
queries on sensor nodes using the operating system

TinyOS (Levis, Madden, Gay, Polastre, Szewczyk,
Whitehouse, Woo, Hill, Welsh, Brewer, & Culler,
2005). Very similar to that is the COUGAR project
(Yao & Gehrke, 2002), which also supports data
queries in a SQL-like dialect. Both approaches
provide a good abstraction layer to specify data
collection in database-query style but still work
on the node level and hence, require detailed
knowledge about the WSN to be configured.
Based on TinyDB, the Tiny Application Sensor
Kit (TASK) (Buonadonna, Gay, Hellerstein, Hong,
& Madden, 2005) is most closely related to the
aims of this chapter. It is a kit for configuring
low data rate environmental monitoring applica-
tions while remaining “self-explanatory, easy to
configure and easy to maintain”. In addition to
TinyDB, TASK provides a complete application
background from field tools over gateways and
internet connectivity up to support of external
tools for proper sensor data preparation and
network monitoring. Further, it supports inferior
power management and considers fault tolerant
performance in case of node crashes.

All approaches reduce the configuration com-
plexity to a certain amount by transparent high
programming abstraction. Among the available
high-level abstractions TASK is a valuable step
towards a user-centric method for WSN configura-
tion. It provides users with a lot of tools on top of
improving event detection only. However, all ap-
proaches are still unsuitable for non-professional
deployment of WSNs. Besides the unfeasibility
of letting non-professional users apply database
abstractions, these approaches carry some WSN-
related drawbacks along. They make use of a
centralized topology with at least one coordinating
node continuously collecting and evaluating raw
sensor readings. Hence, these approaches trans-
port huge amounts of data, consume much energy
and reduce the responsiveness and throughput of
the network. Further, analyzing collected data at
central nodes inherently creates a Single Point of
Failure (SPoF).

132

High Level Definition of Event-Based Applications for Pervasive Systems

High-level programming languages are of
prominent use for definition of WSN applica-
tions. There exist a couple of projects trying
to adapt widely used high-level programming
languages like Java (Simon, Cifuentes, Cleal,
Daniels, & White, 2006; Brouwers, Corke, &
Langendoen, 2008) to sensor nodes. Of course,
this enables a rapid development of new WSN
applications by professionals but consequently
requires programming skills in distributed system
design. The macro programming language STOP
(Wada, Boonma, & Suzuki, 2007) is a scripting
language explicitly designed for data collection
in WSNs. It allows to create data queries from a
global viewpoint without considering details of
single nodes. Based on migrating agents, which
collect required data according to a given script,
STOP provides a more comfortable data collec-
tion. Nevertheless, the usage of general languages
requires a complex run-time environment and
Virtual Machines (VMs) on every node. Further,
VMs are usually adapted to certain sensor platform
only and do not support application design across
several platforms.

Finally, these approaches still require to make
use of scripting or programming languages, which
is not feasible for non-scientific deployment. A
straightforward sensor configuration providing a
proper usability of WSNs for non-scientific de-
ployment is still missing. A configuration concept
that aims at ease of use for sensor configuration
must be tailored to the user and self-configure to
defined tasks. Thus, the user only needs to describe
the phenomenon to be sensed without taking care
of WSN properties and deployment conditions.

Autonomous Collaborative
Event Detection

An ease of use for WSN configuration starts with
a straightforward definition process but must also
provide reliable and robust execution of defined
tasks during runtime. Robust application is al-
ready a challenge for homogeneous systems, but

gets even harder if heterogeneous systems using
miscellaneous sensor nodes need to be configured
to the same task. Hence, sensor nodes may not
provide all sensing capabilities needed for local
detection of the phenomenon to be sensed. In that
case, sensor nodes must collaborate and share
their sensing capabilities to continue with event
detection. For reliable application it is a necessity
to enable sensor nodes to autonomously deal with
different conditions as being expected in pervasive
systems, i.e., heterogeneous distributed sensing
capabilities, missing resources, node mobil-
ity, varying network topology, failed sensors or
sensing units etc. The following discusses some
previously presented mechanisms of collaborative
event detection.

Vu et al. (Vu, Beyah, & Li, 2007) introduced
a composite event detection scheme for sensor
networks composed of different nodes with vary-
ing sensing capabilities. They split complex event
detection among different nodes into sets of so
called atomic events, which are similar to primi-
tive events (threshold values). Atomic events are
merged by special gateway nodes to determine
final results. The gateway nodes however build
SPoFs. This approach provides configurable levels
of fault tolerance by selecting an appropriate k
for k-watching sets of sensors while considering
the energy consumption and the event notifica-
tion time but requires an expensive setup phase.
Phani Kumar et al. (Phani Kumar, Reddy V, &
Janakiram, 2005) present a similar collaboration
scheme. They create event-based trees for complex
events containing all assigned sensor nodes. These
nodes collaborate using a content-based publish/
subscribe communication model, where child
nodes publish readings of interest to parent nodes.
The root node of the event tree obtains all sensor
readings and decides about the monitored event.
Again, this root node is a SPoF and introduces
vulnerability to the system.

Krishnamachari et al. (Krishnamachari, &
Iyengar, 2003; Krishnamachari, & Iyengar,
2004) introduced a self-organizing algorithm that

133

High Level Definition of Event-Based Applications for Pervasive Systems

provides a distributed fault tolerant approach for
regional event extraction in sensor networks. All
nodes with readings of interest in a given vicinity,
i.e., the region of event, are formed into a cluster
where the node with the lowest id-number becomes
the cluster head. The cluster head collects all read-
ings and performs a majority decision. Since their
approach is based on binary event detection where
all nodes signal a “Yes” or “No” instead of send-
ing their measurements, the cluster head simply
counts all statements. If more than 50 percent of
the participating nodes state a positive event, the
cluster head forwards this event to the central
sink in the network. Beside performance issues,
they do not take care on energy resources because
large event regions produce much overhead for
communication.

Krasniewski et al. proposed TIBFIT (Kras-
niewski, Varadharajan, Rabeler, Bagchi, & Hu,
2005), a protocol able to cope with arbitrary data
faults and malicious nodes. It shall enable reliable
and fault tolerant data gathering by assigning trust
values to the sensor nodes. These values confirm
the plausibility of correct measurements or state
a lack of credibility for single nodes. The head
node of a cluster collects the readings and trust
values of all nodes and decides whether an event
has occurred or not. Due to the decision of the
head node, the trust values of all correct reporting
nodes increase whereas the other values decrease
respectively. To make sure the trust values are
correct, at least two shadow head nodes monitor
all activities and results of the decision process
in background and take corrective action if nec-
essary. TIBFIT achieves a good fault tolerant
performance even if more than 50 percent of the
sensor measurements are faulty, provided that the
initial monitoring phase is long enough to establish
the trust values. Additionally, this protocol is able
to cope with malicious nodes, which can only
temporary influence the decision process because
their confidence values decrease with every faulty
report. This is only true if the number of malicious
nodes is less than the number of correct reporting

nodes. Unfortunately, required overhead was not
measured or calculated. However, the algorithms
used for collecting and distributing sensor readings
and trust values allow assumption of an enormous
overhead, especially for the usage of shadow head
nodes. Hence, the efficiency of the provided fault
tolerant performance strongly depends on the ap-
plication it is used for.

Kamiya et al. (Kamiya, Mineno, Ishikawa,
Osano, & Mizuno, 2008) applied a P2P network
of sensor gateways to maintain event detection
across several heterogeneous sensor networks.
Each sensor gateway accesses and manages a
certain sensor network. To define event detec-
tion in one or more maintained sensor networks,
the sensor gateways provide an XML event de-
scription parser that splits complex events into
required atomic ones and registers these at the
corresponding sensor gateways. The underlying
sensor networks continuously report their raw
sensor readings to the gateway nodes, which fi-
nally evaluate the atomic and respective complex
events. Even here the sensor gateways constitute
a SPoF. Just like all other discussed approaches
relying on gateway or centralized nodes, this
is again very inefficient with regard to energy
consumption and network load. Due to the fact
that atomic events are not forwarded to the actu-
ally measuring sensor nodes for evaluation, all
sensor readings need to be sent to the gateway
nodes even in case of no event is triggered. By
that the energy consumption is far from optimal.
Nevertheless, autonomous management of sensor
networks based on an event description parser is
a promising approach to reduce the complexity of
node and network configuration. Unfortunately,
the XML descriptions used at the parser are not
presented making it impossible to draw conclu-
sions about their applicability.

The Context Dependent Event Detection
(CoDED) platform (Schwiderski-Grosche, 2008)
presents an architecture for context-dependent
event detection in sensor networks. In order to
save energy resources, events are monitored in

134

High Level Definition of Event-Based Applications for Pervasive Systems

certain monitoring context only. The context
description is defined by a propositional logic,
which evaluates to true as long as a specified
context is given. Combinations of primitive events
may form global complex events that may even
be distributed. Those are observed by a compos-
ite event detection engine. That engine seems to
adapt automatically to current network situations
but the general question of how composite events
are distributed and processed on several devices
is left open. Unfortunately, the author does not
provide implementation details.

Criteria for Reliable
Autonomous Execution of
Event-Based Applications

User-centric application design of course requires
a process of automatic WSN configuration to
support reliable applications in WSNs. In order
to enable an appropriate comparison of existing
approaches and to set the objectives of user-centric
application design, this section introduces design
criteria for development of reliable event-based
applications. A suitable approach for reliable event
detection in WSNs must consider the following
design criteria:

Robustness: Sensor nodes and its applications
must continue event detection even if the context
changes, sensors fail or nodes move. The sensor
nodes need to (re-)adapt their on-node as well as
in-network processing for automatic resource-
oriented event configuration. This regards both,
on-node adjustments in case of missing or failed
sensing facilities and adaptation of distributed
detection if connections to collaborating nodes
are interrupted due to failed or moved nodes.

Autonomy: In addition to the autonomous
nature of sensor nodes, every node in the network
must be enabled to perform all necessary tasks for
event detection. A fully decentralized approach
avoiding assignment of superior devices such as
super nodes (Cardei, Yang, & Wu, 2008), event
gateways (Vu, Beyah, & Li, 2007) or fusion centers

(Wang, Han, Varshney, & Chen, 2005) prevents
from having potential SPoFs.

Transparency: Dealing with heterogeneous
nodes and network structures, sudden changes in
the environment or failures during collaboration
etc., consequently requires continuous adaptation
and device configuration. These processes must
be hidden to remain fully transparent to the user.
Especially pervasive WSNs are expected to make
use of various sensors with similar or complemen-
tary capabilities. An automatic hard- and software
abstraction can cover such heterogeneity.

Energy efficiency: Small devices, like wireless
sensor nodes, usually are subject to strict energy
constraints, e.g., by battery packs providing lim-
ited power only. Transmission is the most power-
hungry operational mode of WSNs consuming
orders of magnitudes more energy than local
processing. Since collaboration simultaneously
requires communication between sensor nodes,
it significantly increases the energy consumption
and hence, decreases the maximum reachable
node lifetime. To cope with that, enhancing the
cost-efficiency of collaboration by reducing the
number of transmissions and the amount of ex-
changed data is of primary concern. In addition,
all parameters regarding sensing intervals, duty
and sleep cycles, adaptation rate etc., should ide-
ally be configurable to best customize the energy
consumption to application requirements.

Convenience: To gain a broad consumer ac-
ceptance of WSNs, it is required to provide means
that enable the non-professional users to make use
of a WSN. These non-professionals are usually
short on experience of programming languages
and sensor networks, Therefore a straightforward
method to define tasks and configure sensor
nodes without requiring knowledge about hard-
or software or node deployment is in demand.
Convenient design of WSN applications not only
requires the task definition part to provide a high
abstraction level. It additionally implies to support
fully automatic WSN configuration regarding the
aforementioned criteria.

135

High Level Definition of Event-Based Applications for Pervasive Systems

Assessment of Related Work

For comparison, presented event detection
schemes are evaluated against the introduced
criteria in Table 1. First of all, there exists no
approach that addresses and fulfils all criteria.
Krishnamachari and Krasniewski provide the
best robustness and even enable to autonomously
cope with malicious nodes but increase the
required overhead by at least a factor of three.
Because detection reliability is a prerequisite,
all approaches allow for adaptation to changing
conditions but usually focus on certain changes
only, e.g., faults, malicious nodes, unavailable
resources, environmental changes, connectivity
etc. Except for CoDED, which unfortunately was
not implemented so far, all approaches carelessly
neglect the autonomy required in a sensor network.
Fully distributed concepts not depending on spe-
cial nodes are in great demand, which by design
enables all nodes to fulfill every task required for
event detection in prevention of SPoFs.

To summarize, robustness and transparency
are best provided, whereas energy efficiency,
autonomy and convenience are marginally taken
into account or are even completely missing. There
exists no approach that associates all introduced
criteria. As shown in existing work, providing
high robustness is possible indeed but partially

results in a significantly increased stress of re-
sources. All approaches poorly perform with
particular regard to energy consumption and cost-
efficiency for collaboration. There is no doubt
that a robust application requires an overhead but
the efficiency of an application significantly de-
pends on a proper balance between the application
requirements and the implementation. Further,
most approaches shift final decisions to central-
ized nodes and are vulnerable if these nodes are
faulty or fail completely. The existence of backup
nodes, which can substitute the task of these
centralized nodes if necessary, enhances the ro-
bustness against node failures but significantly
increases the effort. However, only a fully decen-
tralized approach will provide a proper autonomy
for the sensor nodes.

It is quite obvious that fulfilling all criteria up
to a level of 100 percent is almost impossible but
existing approaches usually tackle only a subset
of those. The event detection concept presented
here is inspired by some ideas of the discussed
approaches and combines these in a new suit-
able event detection scheme tackling all design
criteria. This chapter introduces a novel concept
for autonomous sensor network configuration
considering all mentioned criteria. Based on the
description of the phenomenon to be recognized,
the respective event detection is autonomously

Table 1. Comparison of discussed event detection schemes in consideration of the introduced design
criteria. There exists no approach that addresses and fulfils all criteria. Best provided is robustness and
transparency, whereas energy efficiency, autonomy and convenience are marginally taken into account
or are even completely missing.

Robustness Autonomy Transparency Energy efficiency Convenience

Vu (+) (-) (0) (0) (?)

Phani Kumar (+) (-) (+) (--) (?)

Krishnamachari (+) (-) (+) (--) (-)

Krasniewski (++) (0) (0) (--) (?)

Kamiya (0) (--) (+) (--) (0)

Schwiderski (?) (+) (0) (-) (-)

Validation: (++) very good; (+) good; (0) regular; (-) bad; (--) very bad; (?) not mentioned

136

High Level Definition of Event-Based Applications for Pervasive Systems

configured and observed, even if it requires or-
ganizing collaboration between nodes to deliver
the results.

USER-CENTRIC DESIGN FLOW
OF PERVASIVE APPLICATIONS

A user-centric design flow decouples the processes
of task definition and respective WSN configura-
tion. Such design flow allows users to fully ab-
stract from WSN-related properties. It simplifies
the task definition process to a level that is even
suitable for non-professionals. Therefore, this
chapter introduces an intuitive XML-styled Event
Specification Language (ESL). ESL allows purely
defining the physical phenomenon to be sensed
without regard to any properties of the WSN used.
It features hardware independent description ele-
ments to define complex phenomena and enhances
these by tailor-made application constraints.
Hence, the user remains enabled to define task
for the WSN, but simultaneously the user does
not require programming skills or knowledge of
the actual WSN under configuration anymore. In
addition, the ESL, derived from XML, provides
ideal properties to be implemented and used by
Web services. This offers great potential to real-
ize remote configuration concepts for pervasive
technology via the Internet. To hide necessary
XML-styled descriptions from the user, an inter-
active Graphical User Interface (GUI) supports
the user in application design and automatically
generates the respective XML description of the
application.

Based on that XML description, a novel fully
decentralized mechanism to autonomously set up
distributed event detection, called Event Deci-
sion Tree (EDT), and a cost efficient means to
maintain such EDT, are presented. EDTs are ef-
ficiently constructed on every sensor node using
a tiny Generating Finite State Machine (GFSM)
requiring eight states only. The EDT is a software
construct reflecting the XML-tree structure of the

ESL-defined phenomenon description. By that,
it implements a sensor node configuration that
directly processes and evaluates sensor readings
from the sensors attached to the nodes. It further
enables every node to self-divide event queries
according to its own resources and self-adapt to
the assigned tasks. Simultaneously, the established
EDTs provide the interface for efficient col-
laboration using a lease-based publish/subscribe
approach.

To appropriately distinguish the abstractions
presented to and described by the user and the
hard- and software constructs, we name and define
the following entities.

A phenomenon is a physical condition that can
be measured by sensors. It is not required that a
single sensor can detect or measure that phenom-
enon on its own. This is an abstraction known
real life users.

An event is a software construct announcing a de-
tected phenomenon or that a sensor measurement
meets certain condition. The mere exceeding of a
threshold by the sensor reading is named a primi-
tive event. The combination of primitive events
by logical expressions is named a complex event.

An event specification is the description of the
phenomenon to be sensed including all applica-
tion constraints. It is defined in an XML dialect
namely the Event Specification Language (ESL).

A binary event specification is the compact rep-
resentation form of the user defined event speci-
fication. It is adjusted to hardware specifics and
sensing features of the sensor nodes in the WSN.
Binary event descriptions are disseminated in the
WSN for direct configuration of sensor nodes.

An Event Decision Tree (EDT) is the on-node
representation of the event specification.

137

High Level Definition of Event-Based Applications for Pervasive Systems

A collaboration region is the vicinity of each
node, in which neighboring nodes are permitted
to share their sensing features for collaborative
event detection. This collaboration region depends
on the expected expansion of the phenomenon and
the average distance of the deployed sensor nodes.

Design Flow

Before presenting technical details of every con-
figuration step, this section overviews the work-

flow of the WSN-configuration concept based
on ESL and EDTs. Figure 2 depicts a graphical
representation of this workflow. The uncoupled
task definition process allows the user to define
the “things-in-mind” to be sensed independently
from the WSN. Therein, the user merely describes a
phenomenon and adds some phenomenon-related
parameters such as identifiers and update rates.

Having finished the description process, the
user device automatically expresses these “things-
in-mind” in ESL, resulting in the event specifica-

Figure 2. Graphical representation of the user-centric workflow for WSN-configuration based on the
ESL and EDTs. The uncoupled task definition process allows the user to define the “things” to be sensed
independently from the WSN, which is automatically configured to each designed task.

138

High Level Definition of Event-Based Applications for Pervasive Systems

tion. The event specification is the machine-
processable form of the user’s description. It
contains the involved sensing features as well as
phenomenon related constraints concerning the
spatial and temporal expansion, detection intervals
and associated handlers that are triggered by upon
event. Here it shall be emphasized that an ap-
propriate event specification is sufficient for
successful configuration of the sensor network.
Every processing and transformation step based
on the event specification and its derivations is
automatically done by the event configuration
system.

It is quite obvious, that general event specifica-
tions cannot be uniformly transferred to different
sensor nodes of heterogeneous hardware. Hence,
event specifications are preprocessed before being
distributed in the sensor network. First, an XML
parser generates the respective tree representa-
tion. Various XML elements of that tree have
to be adapted to the targeted sensor system, i.e.,
conversion of values for sensing, renaming of
identifiers and functions etc. Finally, the adapted
tree is converted and compacted into a deployable
event specification of minimal size, called binary
event specification. Binary event specifications
are distributed in the sensor network for initial
event configuration as well as for updates and
deletions.

On the sensor nodes, the event configuration
environment processes every incoming binary
event specification to generate the respective event
representation as an EDT. According to the sens-
ing features and resources provided by the node,
the EDT is split into local and remote parts. Local
parts can be evaluated by the node itself, whereas
remote parts have to be requested from external
sources, e.g., from neighboring nodes. Thereby,
only those within the collaboration region are
regarded to provide these remote parts. After
further adaptations and configurations of event
related constraints, the final EDT is integrated to
the EDT processing unit. The EDT processing unit

• autonomously collects required sensor
readings,

• frequently evaluates the EDT with respect
to the configured detection interval,

• manages necessary collaboration with oth-
er nodes and

• triggers associated handlers in case of pos-
itive event evaluation.

The EDT processing unit is enabled to admin-
istrate and process several EDTs simultaneously,
too. This is a prerequisite to ensure proper flex-
ibility by allowing the sensor nodes to execute
several tasks concurrently. An integrated update
mechanism enables to replace binary event speci-
fications analogous to code update means. This
feature allows easy reconfiguration or recalibra-
tion of already deployed sensor networks.

The following sections provide insights into
all configuration steps in the user-centric design
by applying an illustrative example aiming at
detecting fires.

Convenient Hardware-
Independent Task Design

To increase the proliferation of WSNs, conve-
nience in creation of applications on WSNs is
highly demanded. It is considered that the deploy-
ment of sensor networks and its applications is
merely configuration rather than programming
and implementation. That is, details on sensor
network hardware or implementation issues,
especially those requiring programming skills,
should be kept away from the user. We consider
a scenario, in which the configuration assistant
knows, which sensors exist in the WSN. Also the
density or the amount of sensors or sensor nodes
per area is known. For designing and deploying
applications on a priori unknown sensor networks
discovery means are required. Given that the
assistant application knows the key data of the
WSN, it supports and guides the user through
the configuration of the WSN. The user may just

139

High Level Definition of Event-Based Applications for Pervasive Systems

start with an idea of the phenomenon that shall
be detected by the WSN. Obviously, the user has
to know the properties of the phenomenon to be
able to model it. This knowledge about properties
may be even very high level, e.g., “a fire is hot
and produces smoke”. An experts system or WSN
configuration assistant will be able to guide the
user with questions as simple as possible. Such
assistant is drafted in Figure 3. It will request the
properties of the phenomenon and based on that,
the boundaries of respective physical measure-
ments, which are typical for the phenomenon in
mind. Without knowing, the user already specified
primitive events. In case multiple measurements
jointly describe the phenomenon, mutually or alter-
natively, the user can be supported in combination
and arrangement of these measurements. It is easier
for users with no programming or mathematical
background to understand the semantics of words
like: together, mutually, alternatively or sequen-
tially, than to understand logical operations and
relations. Since the assistant uses those simpler
words in its questions, complex descriptions of
phenomena can be created by ingenuous users.
The intelligence to transform a together into an
AND or even a mutually into “this AND NOT
that, OR NOT this AND that” is embedded in
the assistant and concealed from the user. By just
these few questions the user is guided to formally
describe a phenomenon.

A complete event specification requires con-
straints that have to be defined by users as well.

Those constraints are, for instance, sampling in-
tervals and regions of collaboration. Also these
can be derived from the answers to more intuitive
questions, e.g., “After what time the phenomenon
has to be detected latest?” or “How long have
batteries to last?”. Without explicitly known to
the user, the EDT provides robustness through
collaboration of neighboring sensor nodes with
heterogeneous sensing capabilities. The distance
or relative area in which neighboring nodes shall
collaborate is a constraint that has to be set in the
event specification. As we learned from our
simulations and measurements, the appropriate
size of the collaboration region can be derived
from the expected expansion of the phenomenon
and the average distance of deployed sensor nodes.
The minimum size of the collaboration region
should be the mean distance between neighboring
sensor nodes, which is determined by the density
of the sensor network, and transmission technol-
ogy. The maximum size of the collaboration region
is the estimated size of the phenomenon. Both
constraints applied to these parameters result in
an appropriate region size. These parameters can
be queried from the user with simplified questions,
e.g., “What is the estimated diameter of the phe-
nomenon expected?” or “How large is the area in
which the WSN is deployed?” and “How many
sensor nodes the WSN consists of?”. Despite a
circular region will likely be sufficient for most
phenomena, different shapes can also be consid-
ered.

Figure 3. Guided derivation of machine processable event specification from vague human ideas.

140

High Level Definition of Event-Based Applications for Pervasive Systems

With getting answers to appropriate questions,
such experts system is able to derive a complete
event specification, describing a real world
phenomenon and detection constraints. While
the assistant produces the event specification in
the ESL, users do not have to get in contact with
programming languages. The output can then
be automatically processed and the user has not
further to be involved, compare Figure 2. Since a
number of phenomena are interesting to a number
of WSN users, the assistant may also provide the
user with phenomenon patterns to choose from.
Using such patterns, various WSN applications
may be deployed in a one-click manner. We also
consider that the assistant can be implemented
as an online tool, enabling it to learn phenomena
descriptions from the community and hence
evolve. Such wide use of an expert system will
also enable to refine and improve the questions
catalogue that is presented to users.

Automatic Generation of
Event Specifications

The first step in automatic WSN-configuration
is to convert the user-defined phenomenon and
its parameters created with the assistant into a
processable form. The ESL provides means to
easily combine several sensing capabilities and
respective primitive events to complex ones within
the <SENSORDATA> element. Primitive events
can be defined as the sensor reading matching an
exact value or through single-bounded intervals the
sensor reading falls into. This equality or the inter-
vals are described using the following relational
elements: <EQUAL>, <LESS>, <GREATER>,
<LESSOREQUAL>, <GREATEROREQUAL>.
The result of a relation is of Boolean type. Except
for the equality relation these elements are not
commutative and hence, require correct order
of assigned subelements. It is quite obvious that
(temperature < 10) is semantically different from
(10 < temperature), for example. Configuration
of primitive events is setting thresholds for cer-

tain sensor readings using relational elements.
Therefore, relational elements define respective
binary relations between two elements. These are
variables, constants and/or algebraic operations
defined on top of these.

A variable identifies a sensing capability and
is defined by the <VARIABLE> element. The
value of a variable is given at run-time by sensor
readings. In contrast to that, the <CONSTANT>
element defines a constant value, which is used
as threshold. Constants usually require to set an
additional measuring unit. The unit attribute al-
lows for assigning different units to constants,
e.g., time and distance units like seconds, minutes,
meters etc. In certain cases constants may not
require a unit, for example if a pure quantity is in
demand. Such a constant is specified without the
unit attribute. Conversion of specified constants
with respect to the hard- and software used on
the sensor nodes, e.g., converting seconds to
milliseconds if necessary, is task of the language
interpreter and is not of concern for the user. That
allows for a straightforward definition process, in
which the user practicably applies the units that
personally suit best.

Variables and constants apply numerical
values. To support a broad usability as well as to
enable conversion of values, the ESL enables to
define binary algebraic operations using variables,
constants or results of further algebraic operations
as parameters. Consequently, functions result
in numerical values. The ESL provides the fol-
lowing operations: <SUM>, <DIFFERENCE>,
<PRODUCT>, <QUOTIENT>, <MODULO>. Of
course, differences, quotients or modulo opera-
tions are also not commutative. Just as mentioned
at relational elements, here the order of applied
parameters is crucial, too.

By design, the ESL also allows to define rela-
tions between two sensor readings, constants or
algebraic operations of equal type. Since this is
feasible for variables and operations, e.g., for
comparing inside and outside temperature readings
of a building, its application is rather useless for

141

High Level Definition of Event-Based Applications for Pervasive Systems

two constants. The result of a relation between
two constants is of constant Boolean type, too.
In that case, the event specification is redesigned
and the Boolean result of such relation is directly
inserted instead.

To support definition of complex phenomena,
configured thresholds can be composed by logic
operations. Logic operations are also specified by
XML tags, namely: <AND>, <OR>, <NOT>. Sim-
ilar to relational elements, the elements <AND>
and <OR> define a respective logic operation
between two relational or two logic elements or a
mix of both. Since both operations are commuta-
tive, the order of the linked elements is irrelevant.
The <NOT> element specifies an unary operation
and can only be used on top of one relational or
logic element. As known from Boolean algebra, it
inverses the Boolean result of the underlying ele-
ment. Of course, it is also possible to link several
logic operations together. Logic elements further
allow to define 2-bounded intervals for certain
sensing capability by combining several primitive
events. For example, measuring a temperature
between 20 and 25 results in a combination of
two primitive events, exemplified in Listing 1.

To simplify matters only three logic elements
are available, but these are sufficient to define
every possible logic combination. Supporting
more language elements may slightly increase the

usability for end-users but even implies to imple-
ment more complex interpretation means on the
sensor nodes. This would require using more
processing and memory resources. For this reason
and to keep the language quite simple, the integra-
tion of further logic elements like NAND or NOR,
is omitted. This is vitally important for implement-
ing a language interpreter on sensor nodes, which
provide scarce resources only. Since the event
specification is created by support of a user as-
sistant, a respective mapping of the required
logical operation into the available logic elements
can be achieved automatically. Further, the com-
mutative algebraic and logic operations might
even have more than two operands. The expres-
siveness of XML even allows for specification of
such multi-nary operations. But with regard to
aspects of simplicity and minimization of the
binary event specification, we limit to binary
operations.

Definition of Hardware-
Independent Parameters

A complete event specification consists of three
mandatory and one optional element represented
by respective tags. As already introduced, the
<SENSORDATA> element defines the required
sensing capabilities for primitive or complex

Listing 1. Example specification of a phenomenon as complex event, which detects temperature between
20 and 25 centigrade.

<AND>

 <GREATER>

 <VARIABLE> temperature </VARIABLE>

 <CONSTANT unit=”centigrade”>20</CONSTANT>

 </GREATER>

 <LESS>

 <VARIABLE> temperature </VARIABLE>

 <CONSTANT unit=”centigrade”>25</CONSTANT>

 </LESS>

</AND>

142

High Level Definition of Event-Based Applications for Pervasive Systems

events. Having specified the phenomenon in ESL,
the event specification associates the phenomenon
with customizable application constraints. Con-
figurable execution intervals and appropriate event
handlers have to be assigned. Further, a region
defining the spatial expansion of the phenomenon
can be optionally defined. Each event specification
contains an <EXECUTION> element that states
the frequency of event detection or measurement
data gathering. Appropriate processes, which are
triggered upon positive event evaluation, are listed
in the <CONSEQUENCE> element. To improve
the event specification complexity, the optional
<DIMENSION> element enables to fine tune
the event observation behavior by defining the
expansion of the collaboration region. The col-
laboration region is configured around the node,
e.g., as a circle, ball, square, cube or number of
hops. It contains all devices, allowed to participate
in collaborative event detection.

For configuring several events simultaneously,
attributes are embedded in the <EVENT> element.
The id assigns a globally unique identifier to event
specifications. It enables to associate requests and
updates to a particular event specification. The
version number identifies different versions of the
same event specification. It reduces maintenance
and online reprogramming complexity. Incoming
event specifications with higher version numbers
substitute all older versions of the targeted event
specification, which are deleted to save memory.
For removal of event specifications from a net-
work, an empty event specification containing the
event identifier only is used. The priority attribute
optionally assigns a priority level to the event
specification to support multi-event evaluation.
Consider a sensor network gathering temperature
readings for climate control that is used in parallel
to detect forest fires. In such a setting the detec-
tion of forest fire would have the higher priority
because it is a safety-critical event. Currently, the
ESL provides three priority levels, which are high,
normal and low, whereas normal is the default
value if not explicitly specified.

To overcome the problems of varying context,
fluctuating environment and node mobility, sen-
sor networks must frequently self-adapt to the
current situation. Especially if nodes collaborate
with each other, these connections may suddenly
be disturbed or not available any longer. Preven-
tion of such changes is hard or even impossible.
To handle those situations, sensor nodes must
provide means to renew or establish collabora-
tion with other sensor nodes in their vicinity. This
again requires a processing and communication
overhead. To customize the adaptiveness and ef-
ficiency of the communication scheme used for
collaboration between neighboring nodes, the
lease and reliableMode attributes are specified.
The lease defines the frequency of adapting col-
laborative relations between neighboring nodes.
It specifies the time-lag between two adaptation
phases as a multiplier of the regular event detec-
tion frequency stated in <EXECUTION>. Short
lease intervals (small lease factor) provide a high
adaptation rate whereas long lease intervals can
significantly reduce the number of messages and
the energy consumption. For example, highly
fluctuating WSNs should apply short lease fac-
tors to cope with changing topology and moving
nodes. In contrast to that, WSNs with static de-
ployment may use long lease factors to reduce the
number of required collaboration messages. The
reliableMode attribute permits to choose between
a higher reliability in data exchange or reduced
energy consumption. It introduces retransmis-
sions on the application level in case of message
loss. Enabling the reliableMode instructs to ex-
plicitly acknowledge every data exchange that is
associated to a certain event. The reliable mode
consequently requires a communication overhead
but enhances the reliability of the application.
Thus, safety-critical events should make use of
the reliable mode, whereas simple data collect-
ing scenarios could omit the required overhead
in favor of less energy consumption. It is quite
obvious that configuration of both parameters
strongly depends on the application as well as

143

High Level Definition of Event-Based Applications for Pervasive Systems

the application context. Detailed descriptions and
configurations of these elements are presented in
later Sections introducing publish/subscribe and
leasing time.

Of course, proper adjustment of both param-
eters requires skills in distributed computing or
experience in WSN configuration. Hence, the user
assistant shall be able to customize these param-
eters automatically based on experience data or
available patterns. In addition, the assistant should
provide an expert mode, which allows users to
manually customize each parameter.

Addition of Execution Constraints
and Associated Handlers

Next, the temporal expansion of the phenomenon
is to be configured. Real-world phenomena are
usually subject to different temporal expansion,
which must be considered for event specifica-
tion as well. For example, the acoustic wave of
an explosion can only be detected within a few
milliseconds and hence, requires a short sensing
interval. The frequency of event evaluation and
coupled collaboration processes consequently
affects the energy consumption of the sensor
nodes. Energy consumption is an essential and
very critical issue when designing WSN-based
applications. Sensor nodes provide different
modes of operation that result in significantly
different amounts of energy consumption. Active
modes like data processing or data transmission
are draining the energy resources much more
than passive modes such as sleeping. Thus, ac-
tive periods must be kept as short as possible to
reduce energy consumption to a very minimum.
On the other hand, extensive passive periods may
reduce the accuracy and reliability of event detec-
tion. When a node may switch to a power saving
mode highly depends on the application running.
Therefore the ESL provides means that help to
adjust the update rates of sensor readings. Thus,
an event specification contains an <TIMEINTER-
VAL> element to configure application-oriented

execution constraints for each phenomenon. This
element defines the event evaluation frequency
as a time interval. Time intervals can be quanti-
fied by acceptable periods or exact time slots that
must be adhered to.

The <CONSEQUENCE> element is the last
mandatory component of an event specification. It
links procedures to the event specification, which
have to be executed upon phenomenon detection.
These procedures are called event handlers. Event
handlers are listed as <TRIGGERHANDLER>
elements, containing the name of the event
handler. Specifying several event handlers in a
single event specification is allowed and all of
them are executed in the sequence listed, when
the respective phenomenon occurs. Since event
handlers trigger available functions or processes
at the sensor nodes, those must also be adapted
by the language interpreter to the target platform
and the respective Operating System (OS). For
example, a general event handler such as sendalert
could be mapped to a respective interrupt routine
of the OS. This is automatically done by the event
configuration system.

Determining the Region of Event

Besides the temporal resolution of the event
detection, configuration of the expected spatial
expansion of the phenomenon is necessary.
Wireless sensor nodes can communicate up to
approximately 300 meters but many phenomena
usually appear only locally. For example in an
environmental surveillance scenario, temperature
changes usually appear widely, whereas the size
of an emerging fire is relatively small but has to
be detected as well. As we learned, a suitable col-
laboration region closely relates to the expected
spatial expansion of the phenomenon. Hence, the
ESL allows to describe this collaboration region.
If sensor nodes may jointly share their resources
for collaborative event detection, these nodes must
know whether they share a certain collaboration
region. The ESL configures this valid region within

144

High Level Definition of Event-Based Applications for Pervasive Systems

the <DIMENSION> element. The shape or topol-
ogy of the collaboration region can be specified
by one of the following elements: <CIRCLE>,
<SQUARE>, <BALL>, <CUBE>, <HOPS>.
According to their names, these elements enable
to define 2-dimensional collaboration regions,
i.e., <CIRCLE> and <SQUARE>, as well as
3-dimensional ones, i.e., <BALL> and <CUBE>.
Rather dedicated to the topology of the WSN is
the <HOPS> element defining the collaboration
region as number of hops in a multi-hop sensor
network. If the <DIMENSION> element is omit-
ted, the 1-hop neighborhood is taken as the default
collaboration region, which is determined by
sending range. Collaboration regions are virtually
spanned around each sensor node. Each sensor
node is the centre of a collaboration region and
can be part of other collaboration regions spanned
by neighboring nodes as well, see Figure 4.

An Example Event Specification for
Fire Detection Scenarios

Along the example of fire detection with a WSN
that is stressed throughout this chapter, we use
this section to exemplary introduce a complete
event description, illustrating ESL. Besides other
criteria, a fire can be detected by monitoring the
ambient temperature, the emission of smoke or
the existence of carbon monoxide. Traditional and
widely used fire detectors set off a fire alarm if
monitored smoke or carbon monoxide emissions
exceed a given threshold. Also changes in tem-
perature can be analyzed to indicate or even detect
a fire. In spite of using well-engineered sensing
devices these methods are still vulnerable to false
alarms, e.g., triggered by smoking, burnt food or
influences of various heat sources. Each detection
method is suitable to detect fires indeed, but proper
fusion of all systems enhances the reliability of
detection and decreases the false alarm probabil-

Figure 4. Example deployment of nodes with circular collaboration regions configured by radius r.
Whereas node 4 is isolated, node 1 shares its event region with node 2, node 2 may collaborate with 1
and 3 and 3 may evaluate events with node 2.

145

High Level Definition of Event-Based Applications for Pervasive Systems

ity at the same time. It further enables to detect
different kinds of fire that also reveal different
physical properties, e.g., flaming and smoldering
fires. Thus, a proper fire fighting system should
apply temperature, smoke and carbon monoxide
detectors simultaneously.

Listing 2 displays an event specification that
can be used in fire detection scenarios. To decide
about the existence of fire, each detection method
usually determines a fixed threshold. This example
proposes to apply 100 ppm (parts per million) as
the threshold for carbon monoxide, 1.1 percent

Listing 2. Example of an event specification for fire detection scenarios.

<EVENT id=”fire” version=”1” priority=”high” lease=”6”

 reliableMode=”yes”>

 <SENSORDATA>

 <OR>

 <GREATEROREQUAL>

 <VARIABLE> carbon monoxide </VARIABLE>

 <CONSTANT unit=”partsPerMillion”>100</CONSTANT>

 </GREATEROREQUAL>

 <AND>

 <GREATER>

 <VARIABLE> temperature </VARIABLE>

 <CONSTANT unit=”Kelvin”>353</CONSTANT>

 </GREATER>

 <GREATEROREQUAL>

 <VARIABLE> smoke </VARIABLE>

 <CONSTANT unit=”percentage”>1.1</CONSTANT>

 </GREATEROREQUAL>

 </AND>

 </OR>

 </SENSORDATA>

 <CONSEQUENCE>

 <TRIGGERHANDLER> sendalert </TRIGGERHANDLER>

 </CONSEQUENCE>

 <EXECUTION>

 <TIMEINTERVAL relation=”EqualTo”>

 <CONSTANT unit=”seconds”>10</CONSTANT>

 </TIMEINTERVAL>

 </EXECUTION>

 <DIMENSION>

 <BALL relation=”LessOrEqualTo”>

 <CONSTANT unit=”meters”>2.5</CONSTANT>

 </BALL>

 </DIMENSION>

</EVENT>

146

High Level Definition of Event-Based Applications for Pervasive Systems

as smoke limit and 353 Kelvin (80 centigrade)
as the ambient temperature limit. Whereas the
existence of carbon monoxide is a good stand-
alone indicator for fire, temperature and smoke
readings should be suitably combined to gain a
higher false alarm resistance. Therefore, smoke
and temperature thresholds are linked using a
logical AND and are combined with the carbon
monoxide threshold using a logical OR. Hence,
an event fire is detected if either the carbon
monoxide readings exceed 100 ppm OR both
smoke AND temperature readings exceed their
assigned thresholds. In case of having evaluated
the phenomenon fire to exist, the sensor node
triggers the sendalert event handler. A radius of
2.5 meters around the sensor nodes is assumed
a reasonable collaboration region for distributed
detection. Hence, the dimension element defines
that region as a ball specifying a maximum radius
of 2.5 meters.

Generation of Deployable Binary
Event Specifications

Event specifications provide flexible and easy-to-
use configuration means for using sensor networks
beyond the scope of research, even for non-experts
in the field such as medical employees adapting
them for customized patient monitoring. However,
XML is oversized for direct use on sensor nodes,
which are subject to strict energy and memory
constraints. To minimize the calculation effort on
the sensor nodes as well as to minimize the amount
of data to be transferred, event specifications are
pre-parsed to generate smaller versions before in-
network deployment. These compacted versions
are called binary event specifications. Binary event
specifications are applied for initial configuration
as well as for updates, i.e., reconfiguration or
deletion of configured event specifications. This
section presents implementation details and the
workflow of the event specification generator,
which is depicted in Figure 5.

The event specification generator creates
hardware-specific binary event specifications of
universally valid event specifications. It is obvi-
ous, that general event specifications cannot be
uniformly transferred to every sensor platform
due to different hardware and software properties.
To overcome these problems introduced by per-
vasiveness and heterogeneity, the event specifica-
tion generator adapts variables, thresholds, han-
dlers, phenomenon constraints etc. to the target
sensor platform regarding expected hardware,
sensing capabilities and the available OS. After-
wards, the elements in the adapted event specifi-
cation are substituted by symbols and compressed
into the final minimized binary event specifica-
tion, which can then be used for configuration.
All mentioned steps are fully-transparent to the
user and automatically done by the event speci-
fication generator. That allows to keep the event
definition process quite simple and intuitive by
decoupling it from the configuration process.

The ESL event specification generator is
written in Java to enable execution on different
devices and platforms providing a Java Virtual
Machine (JVM). In particular, we focus on mo-
bile devices like laptops or smartphones. This
provides the necessary mobility for envisioned
applications in pervasive technologies. The
integrated hardware abstraction layer interface
enables to implement the mentioned adaptation to
meet the requirements of target sensor platform.
More precisely, this interface provides a couple
of functions for harmonization of general ESL
elements. These functions process the elements
that need to be adapted to hard- and software spe-
cifics and return the customized variants. Hence,
each sensor platform only needs to provide a
suitable implementation of this interface to gain
compatibility to the introduced event configura-
tion system. That allows to easily create different
hardware-specific binary event specifications for
deployment on various platforms. To simplify
matters, the following presents the generation of
the binary event specification for the introduced

147

High Level Definition of Event-Based Applications for Pervasive Systems

exemplary fire detection scenario, while using
the simulator OMNeT++ with an upgrade for
WSNs as the target platform. The generation of
binary event specifications for other platforms
consequently follows the same scheme but may
of course require other customization.

Adaptation to Target Sensor Platform

Event specifications are first parsed into an in-
memory representation of the XML-tree. The
following describes the customization process
for meeting the requirements of the target sensor
platform. Therefore, the implementation of the
hardware abstraction layer interface is used. First,
constants and variables are adjusted. The names
of variables, which identify sensing capabilities,
are modified to internal identifiers as being used

on the sensor nodes. In the example scenario,
the variables carbon monoxide, temperature and
smoke are mapped into CO, T and S respectively.
Besides different identifiers, assigned constants
(thresholds) are converted into those matching
the target platform, e.g., equal sensing capabili-
ties may be measured by different sensors with
varying physical units. For example, temperature
values given in Kelvin are converted to centi-
grade or time data is converted from minutes to
milliseconds if necessary. In the given scenario,
the thresholds for temperature and smoke read-
ings need to be aligned. Since the temperature
readings in the simulations are measured in cen-
tigrade, the threshold of 353 Kelvin is converted
to 80 centigrade. Similar to that, the threshold
for smoke readings is changed from 1.1 percent
to 11 per mille. As another important gain of this

Figure 5. Architecture of the ESL event specification generator

148

High Level Definition of Event-Based Applications for Pervasive Systems

processing, it allows to omit the unit of a constant
for deployment, since this value has already been
scaled to the correct one and can be directly used
as threshold. Hence, it reduces the size of binary
event specifications and consequently saves en-
ergy required for transmission.

Certainly, the constants used for event con-
straints must be adapted in the same way as well.
Here, the timers of the target platform demand to
provide time data in milliseconds. Consequently,
the time interval of ten seconds is replaced by
10000 milliseconds. Finally, the event handlers
must be adapted to the OS. The name of the event
handler is either changed to name a function avail-
able at the OS or to the number or identifier of an
interrupt routine that has to be called on positive
event evaluation. These adaptations are suitable
to fulfill the requirements of the applied simula-
tor. However, but most likely it is not enough to
remain fully compatible to the bulk of available
sensor platforms. A good overview of means
adapting software to different hardware, espe-
cially with respect to resource constraint devices
or embedded systems, can be found in (Beuche,
2004).Detailed customization requirements are
expected to emerge from experiences with real
deployments in future work.

Creation of Binary Event Specifications

After adaptation, all elements are successively
transformed into minimized descriptions before
being deployed as a binary event specification.
A binary event specification consecutively lists
all elements of the respective event specification.
Keeping a given order allows to describe these
elements by their content only. More precisely,
each binary event specification lists the event
header, followed by the sensor data element, the
event handlers, the execution constraint and finally
the dimension constraint in exactly that order.

In the shortened form, all parameters of the
event header are associated to one string. Whereas
lease and version numbers as well as the event

id are directly taken, the attributes priority and
reliableMode are represented by their first char-
acter only. For the given example, the compacted
event header fire.1h6y represents version 1 of
the event specification fire, which assigns a high
priority and a lease factor of 6 while enabling the
reliableMode (y). The alternating sequence of
numeric and character-based parameters allows
to omit delimiters.

The <SENSORDATA> element is converted to
a minimized prefix (or polish) notation of the re-
spective XML-subtree. The prefix notation places
operators to the left of their operands. Since the
arity of the ESL operators is fixed, which is here
one for the NOT and two for all other elements,
the result is a syntax without parentheses that can
still be parsed without ambiguity. Consecutively
listed variables and constants can in principle not
be distinguished. Variable names are allowed to
contain numbers. Hence, an implicit delimita-
tion from the following constant (numbers only)
cannot be achieved. Therefore, a constant that
follows a variable is additionally separated by
a comma. In contrast to that, the case of a vari-
able following a constant is implicitly identified
and allows omitting the comma, since variables
have to begin with an alphabetic character while
constants contain numbers only. To minimize
the final size of binary event specifications, the
tags of the ESL elements are represented by short
symbols, see Table 2. These symbols are assigned
via the hardware abstraction layer and may differ
depending on the target platform. Additionally
please note, usually the - or the Δ symbolize the
algebraic difference operation. Herein, the # is used
to symbolize the difference operation. Automatic
distinction of the - symbol when being used for
signed constants and differences as well unrea-
sonably increases the parsing complexity. The Δ
symbol is not used because it is not contained in
the standard ASCII character set and may be not
supported by each sensor platform. For the same
reason, the use of symbols ≤ and ≥ is deprecated.

149

High Level Definition of Event-Based Applications for Pervasive Systems

The character sequences <= and >= are used to
describe the respective relations.

As the next part, the event handlers are added
to the binary event specification, which are con-
secutively listed and separated by comma. Fi-
nally, the binary event specification is completed
by adding the remaining elements containing the
phenomenon constraints, which are the execution
element and the dimension element. Phenomenon
constraints consist of their short identifiers, fol-
lowed by the symbolized relation attribute and
one or two constants. These constraints are de-
scribed in infix notation and are evaluated on the
sensor nodes by string matching operations ac-
cording to the following regular expression:

[A-Za-z]+[<|>|=|<=|>=|<>]{1}[0-9]+([,]
{1}[0-9]+){0,1}

Binary event specifications are transmitted as
Byte-Streams to the sensor nodes whereby the base
elements are separated by colons. Adherence to
such strict layout reduces the size of binary event
specifications compared to the event specification
by an average factor greater than ten. For instance,
that downscales the size of the introduced event
specification for fire detection by a factor of 12

from 710 Bytes plus white-spaces down to 56 Bytes
provided as binary event specification. Figure 6
displays the respective binary event specification.

Deployment on Sensor Nodes as
Event Decision Tree (EDT)

This section presents how sensor nodes are au-
tonomously configured according to binary event
specifications. It describes the conversion of
binary event specifications into their processable
form as Event Decision Tree (EDT). The EDT
enables every node to self-divide configuration
queries according to its resources and to execute
the complete event evaluation process. Unlike in
other approaches, nodes are not only used as data
sources for sensing and distributing raw data. In
fact, every node can independently analyze and
process its sensor readings and come to a final
decision about the existence of a phenomenon.
The EDT is a fully distributed concept that does
not require special nodes for information-fusion
and final evaluation. This is considered mandatory
to prevent from SPoFs, which are naturally arising
if only one or a few nodes are enabled to execute
the complete detection and evaluation process.
Such concept significantly reduces the energy

Table 2. Conversion table containing event specification elements and respective binary event specifica-
tion elements. Unlisted elements of the event specification need not to be converted. These are implicitly
represented by the fixed-order structure of the binary event specification.

Event specification Binary event specification Event specification Binary event specification

<AND> & <PRODUCT> *

<OR> | <QUOTIENT> /

<NOT> ! <MODULO> %

<EQUAL> = <TIMEINTERVAL> I

<GREATER> > <CIRCLE> C

<LESS> < <SQUARE> S

<GREATEROREQUAL> >= <BALL> V

<LESSOREQUAL> <= <CUBE> K

<SUM> + <HOPS> H

<DIFFERENCE> #

150

High Level Definition of Event-Based Applications for Pervasive Systems

consumption in contrast to other approaches by
omitting the distribution of sensed data at each
detection interval.

Configuration and maintenance of EDTs is
performed by the EDT-engine on each sensor
node. This includes implementation features for
generating and evaluating EDTs as well for par-
titioning complex events into less complex ones
based on the sensing facilities of individual sen-
sor nodes. It further introduces efficient means to
detect nodes for collaboration, which may provide
missing information to evaluate the complete
EDT. Finally, simulation results of a prototype
implementation applied to a failure scenario un-
derline the robustness and the cost-efficiency of
the presented approach.

On the sensor nodes, the EDT-engine, which
is depicted in Figure 7, configures the sensor
node with respect to each received binary event
specification. First, the EDT generator processes
the sensor data element. As a result, it generates
the representation of the phenomenon to be sensed
as an EDT. Depending on the sensing features
and resources provided by the node, the EDT
adaptation splits this EDT into local and remote
parts. Local parts can be evaluated by the node
itself, whereas remote parts have to be requested
from external sources, e.g., from neighboring
nodes. The EDT adaptation further configures
application-related constraints as parameters of
the EDT, i.e., collaboration regions, handlers,
sensing intervals etc.

The EDT processing unit integrates the final
EDT and maintains compliance with all param-
eters of the configured EDTs. The EDT process-
ing unit consists of the EDT evaluation, an EDT
scheduler and a Handler box. The EDT sched-
uler autonomously schedules all EDTs with respect
to their configured evaluation intervals. This
schedule is currently implemented by timers as-
signed to each EDT. On timer wakeup, the respec-
tive EDT is enqueued into a queue that holds all
EDTs pending for execution. That guarantees
evaluation of all EDTs, even if several of them
are triggered simultaneously or with short lags.
This queue is in principle a First In-First Out
(FIFO) queue, but enqueued EDTs are secondary
sorted with respect to their assigned priority. The
priorities can be low, normal or high. EDTs with
a high priority are ranked first, of course. Simi-
larly the EDTs with a low priority are added to
the end of the queue. Future implementations are
supposed to use available schedulers of the un-
derlying OS, such as an integrated Earliest Dead-
line First (EDF) scheduler, to provide a more
precise and fair scheduling.

On dispatching an EDT into the EDT evaluation
for execution, the sensing devices are triggered to
deliver actual sensor readings required to decide
about the existence of the described phenomenon.
In case of a positive evaluation result, the Handler
box is called to execute the respectively associ-
ated handler methods. The EDT evaluation also
manages collaboration with other sensor nodes if
necessary. Details about collaboration are given

Figure 6. Binary event specification of the introduced fire detection example. It contains all information
necessary for configuring sensing devices according to the event specification. The numbers displayed
on top of the binary event specification represent the respective offset addresses in the byte stream.

151

High Level Definition of Event-Based Applications for Pervasive Systems

later in this section. Finally, the timer of the EDT
is set up to the next evaluation interval and the
EDT is returned to the EDT scheduler. In addition
to the configured evaluation interval, EDTs are
also triggered on demand by collaboration requests
from other devices. In that case, evaluation of the
EDT is executed as usual but consequently answers
the request, too. After finishing an unscheduled
evaluation, the corresponding timer is reset to a
full detection interval. On the one hand, that as-
sures a sufficient detection interval as required
by the event specification. On the other hand, it
simultaneously reduces the number of evaluation
processes to a certain minimum to save energy
resources.

Establishing Event Decision Tree

Binary event specifications are parsed at the sensor
nodes to generate evaluable event configurations
by establishing EDTs. These represent the phe-
nomenon based on the sensor data element of the
binary event specification. The EDT generator is

based on a tiny Generating Finite State Machine
(GFSM) with eight states. That enables to imple-
ment the EDT generator on almost every available
sensor platform. In the simulator the implementa-
tion of the GFSM required only 25 lines of C/C++
code. The EDT generator transforms the prefix
notation of the sensor data element into a congruent
representation as an EDT. Leaf nodes identifying
sensing capabilities or constant values according
to the specification of thresholds provide the basis
for EDTs. Leaf nodes are child nodes of relational
or algebraic elements. Algebraic nodes define al-
gebraic operations between its child nodes. On top
of leaf nodes or algebraic nodes, relational nodes
constitute the respective relation between its two
children. These minimal trees of three nodes are
primitive events. In complex events they become
respective subtrees.

Logic nodes, representing the logic combina-
tions of several primitive events, are generated
as parent nodes on top of relational elements. In
the fire detection example, the root node of the
EDT represents a Boolean OR-relation between

Figure 7. Detailed architecture of the EDT-engine

152

High Level Definition of Event-Based Applications for Pervasive Systems

the thresholds regarding the carbon monoxide
and the combination of smoke and temperature.
The equivalent EDT is depicted in Figure 8. For
further processing, the tree nodes are pre-order
numbered during their creation from the binary
event specification. That assures the same initial
tree labeling on every device in the network,
which is necessary for efficient exchange of event
information later.

An EDT evaluation procedure is either trig-
gered by internal EDT related timing constraints,
which are specified in the execution element, or
by collaboration requests from other devices. The
EDT is evaluated automatically in a bottom-up
manner starting from the leaf nodes in order to
determine a Boolean value at the root node, i.e.,
the final EDT evaluation result. All EDT nodes
representing sensing capabilities are assigned with
actual sensor readings. In the example, these are
the node CO for carbon monoxide numbered as
3, the node T for temperature numbered as 7 and
the node S for smoke readings numbered as 10.
Afterwards, the EDT is evaluated by execution

of the operations stated at the parent nodes with
the values of its children as operands. As a result,
Boolean values are assigned to relational and
logic nodes. If the value of the EDT root node
evaluates to true, i.e., the phenomenon was de-
tected, all specified event handlers are triggered
for further processing. A new EDT evaluation is
triggered when the next assigned evaluation in-
terval has elapsed.

Local Adaptation of EDTs by Pruning

Up to here, it was assumed that sensor nodes
possess all sensing capabilities to evaluate the
complete EDT itself. If that assumption cannot be
assured, local detection of phenomena becomes
impossible without collaboration with other sensor
nodes possessing the locally missed capabilities.
The EDT engine additionally enables sensor nodes
to evaluate the EDT even if they provide only a
subset or even no sensing capability. Such lack of
capabilities could either be intended by design or
due to failed sensing units. Hence, certain branches

Figure 8. Pre-order numbered EDT of the fire detection example

153

High Level Definition of Event-Based Applications for Pervasive Systems

or subtrees of the EDT cannot be evaluated by
the node itself. In that case, sensor nodes need to
collaborate to exchange information about sensor
readings or partial evaluation results.

The exchange of sensed raw data, which is done
by most approaches, is very inefficient from two
points of view. First, permanent exchange of sensor
readings leads to a huge number of transmissions
and hence, consumes much energy and reduces
network performance. Second, transmitting raw
sensor data requires to use rather large data pack-
ages, depending on the number of readings and
their accuracy, i.e., the size of each value usually
varies from two to four bytes. Since a conceptual
main goal is to remain very energy efficient, we
focus on minimizing the number of transmissions
and the amount of data to be exchanged. Instead of
exchanging raw sensor readings at each detection
interval, sensor readings are locally processed first
and only one bit is eventually submitted, which
is the Boolean value of a particular EDT node.
Other existing approaches that share information
in a comparable style state the complete detec-
tion result only, i.e., the Boolean value of the root
node. This concept focuses on efficiently sharing
information about both, complete and partial EDT
evaluation results.

In case of using EDT, the Boolean value of
only one particular EDT node has to be transferred.
Missing node values may be delivered by neigh-
boring nodes that share the specified collaboration
region. To prepare these data exchanges, every
sensor node has to determine which EDT node
information is missing at the local EDT. Therefore
the following algorithm prunes the established
EDT until it contains the minimum required EDT
for local event processing:

1. Mark each leave as pruned that represents
an unsupported sensing capability.

2. Search all nodes that possess at least one
marked child excluding the root node. Since
an EDT is a binary tree, every node possesses
at most two child nodes. Hence, either one

or both child nodes are marked as pruned
in that case.
a. Mark node as pruned, if

i. It represents an algebraic opera-
tion or

ii. The unmarked child represents a
constant or

iii. All child nodes are marked as
pruned.

3. Repeat step 2 until no new nodes are marked.
After that, all undecidable subtrees are
marked.

4. Prune all marked nodes except for the root
nodes of the marked subtrees.

5. Declare all left marked nodes as undecidable.

After pruning, the EDT may contain nodes,
which are marked as undecidable. Respective
Boolean node values must be obtained by other
nodes in the collaboration region. Let us assume
to use two different types of nodes (A and B) for
the introduced fire detection example. Nodes of
type A provide carbon monoxide and temperature
sensors, whereas type B nodes provide sensing
facilities for carbon monoxide and smoke. Hence,
the initial EDTs generated at these nodes must
be pruned with respect to the available sensing
capabilities.

Accordingly, type A nodes cut the branch
containing the smoke readings and type B nodes
respectively cut the branch containing the tem-
perature readings. That results in two different
EDTs at the sensing devices, each containing one
node marked as undecidable. Thus, type A nodes
require information about tree node number 9,
whereas type B nodes require information about
tree node number 6. Both resulting EDTs are dis-
played in Figure 9. At regular evaluation, the EDT
also checks the status of the sensing devices. If
sensing devices fail during application the sensor
node runs the pruning again to locally self-adapt
the EDT to the current situation. In addition,
sensing devices may fail transiently only. In that
case, the sensing device becomes available again

154

High Level Definition of Event-Based Applications for Pervasive Systems

and hence, the EDT can be reconstructed into its
original form by removing the undecidable mark-
ing from respective EDT nodes.

By pruning, the EDT may degenerate to a
minimal tree consisting of only the root node with
two undecidable children. Such an EDT enables
sensor nodes that possess no suitable sensing
capability for phenomena detection to serve as a
bridge. These nodes are of interest if they are
located between two or more nodes that possess
the required sensing capabilities but cannot com-
municate directly or do not share the same col-
laboration region. The only prerequisite is that
these nodes share the collaboration region with
the bridge node. Figure 10 displays example
deployments for both cases. Here sensor node 2
shares its collaboration region with the nodes 1
and 3 and hence, may perform the bridging func-
tionality for these nodes. In Figure 10 (a), the
nodes 1 and 3 do not share a collaboration region
due to their distance. In Figure 10 (b), these nodes

share their regions indeed but cannot communicate
directly due to an obstacle between them. In such
a scenario, all participating nodes deliver their
parts of EDT evaluation to the bridge node, which
is eventually enabled to decide about the occur-
rence of the observed phenomenon. After having
identified the undecidable parts for local detection
on each sensor node, those have to efficiently
share necessary information. A suitable collabora-
tion scheme maintaining this data exchange is
presented in the next section.

Collaborative Exchange of EDT-Node
Values by Publish/Subscribe

To save energy resources, wireless sensor nodes
should communicate if and only if it is absolutely
necessary. A suitable collaboration mechanism in
sensor networks must further self-adapt to chang-
ing network situations and consider application

Figure 9. Pruned EDTs for two different types of sensor nodes monitoring the introduced fire phenomenon.
Nodes of type A provide sensing facilities for carbon monoxide and temperature whereas nodes of type
B provide sensing facilities for carbon monoxide and smoke. Consequently, each type of node prunes
a certain part of the EDT that cannot be evaluated locally. Resulting undecidable nodes are labeled
with question mark. Hence, the Boolean values of these nodes must be obtained from other nodes in the
specified collaboration region.

155

High Level Definition of Event-Based Applications for Pervasive Systems

requirements. In particular, the following ques-
tions are of primary concern:

Is there a need to transmit some event information?

If yes, which node has to transmit what informa-
tion?

Is there really a sensor node that receives the data?

Additionally, the amount of exchanged data
ought to be kept as small as possible. This section
presents an adaptive and easy-to-scale mechanism
to efficiently share EDT evaluation results based
on a publish/subscribe approach. A comprehensive
comparison of other approaches using publish/
subscribe is given in (Heinzelman, W. B., Murphy,
A. L., Carvalho, H. S. & Perillo, M. A., 2004).

It is quite obvious that request-acknowledge-
ment-based (ACK) communication schemes can
be used for reliable collaboration. But they produce
a huge amount of traffic and are therefore inef-
ficient for sensor networks. In idealized scenarios,

the ACK-based data exchange requires at least two
transmissions per detection interval and node, i.e.,
one request and one acknowledgement message.
In usual application, such a request is spread as
broadcast and hence, several nodes may answer
to particular request. To simplify matters, this
possibility is ignored but would of course further
increase the required traffic for ACK-based data
exchange. Hence, here we only consider the
idealized-ACK data exchange requiring two mes-
sages per interval. The publish/subscribe approach
maintains the exchange of EDT node values and
reduces the traffic by submitting only changes
of node values to achieve longer time intervals
without any transmission. The focus is on reducing
the package payload for application data as well
as the number of transmissions. The simulation
results presented in a later section show that the
proposed publish/subscribe scheme outperforms
idealized ACK-based variants.

Since every bit to be transmitted is expensive
with regard to energy consumption, the amount
of exchanged data has to be minimized. EDTs ef-

Figure 10. Example deployments that may require node 2 to serve as a bridge for the nodes 1 and 3. In
(a) the nodes 1 and 3 do not share an event region due to their distance. In (b) these nodes share their
regions indeed, but cannot communicate directly due to an obstacle between them.

156

High Level Definition of Event-Based Applications for Pervasive Systems

ficiently share local evaluation results using a few
bytes only. In contrast to existing approaches that
need to share raw sensor data, which is usually
between two and four byte per value plus identi-
fier, here only the Boolean value of a certain EDT
node is of interest. Thus, a data transmission has
to contain only the event identifier, the number of
the respective EDT node and the current Boolean
value assigned to that node. Remember, pre-order
numbering the complete EDT before pruning as-
sures that each EDT node at each device in the
network possess the same numbering. This label-
ing scheme allows to efficiently describe the node
of interest and the assigned value with one byte
only. That byte consists of one bit representing
the Boolean value and seven bits representing the
number of the EDT node. Hence, 128 different
nodes in one EDT can be addressed. If an EDT
contains more than 128 nodes, an extra byte for
addressing is used. In addition, the event identi-
fier must be submitted given that a sensor node is
enabled to configure several EDTs concurrently. If
the event identifier is chosen to be a unique number
less than 256, e.g., this number may be generated
while preparing the binary event description,
all necessary information can be transmitted by
two bytes only. Hence, this scheme reduces the
required data payload for collaborative exchange
by at least 50 percent.

As mentioned, missing values of undecidable
EDT nodes must be obtained by suitable other
sources, e.g., neighboring nodes. Thus, the sensor
node broadcasts a data interest (subscription) into
the network to find suitable information suppli-
ers. If the binary event specification defined a
collaboration region, this subscription must also
contain the location of the subscribing sensor
node. On receiving a subscription, the sensor node
compares the location data to determine whether
both nodes share the collaboration region. Only if
that holds true or if the request contains no loca-
tion data, i.e., assuming the one-hop neighborhood
collaboration region, the received subscription is
of interest. The receiving sensor node searches its

own respective EDT to determine whether it can
provide the requested information. The requested
EDT node is marked with a toPublish flag and the
sensor node answers the request by providing the
current value of the requested EDT node. In all
other cases, the node discards the received sub-
scription without further processing. Subscriptions
can also consist of many concurrent data interests
in case of requiring information about several un-
decidable EDT nodes of one or more configured
EDTs. That significantly reduces processing and
communication effort required for packaging,
addressing, transmission etc.

On EDT evaluation, the current state of each
EDT node is determined. Results at nodes marked
with the toPublish flag are also important for
other devices in the network and hence, ought to
be published. To save resources these evaluation
results are not transmitted periodically. Only
first-time subscriptions and state changes require
transmission of the current node state. If a device
accepts a received subscription for the first time,
it answers with the current node state to provide
an initial value. Since a node state is of Boolean
type, only state changes must be submitted to up-
date the node state at the subscriber. If node states
change rarely, the number of required publications
is significantly reduced. Even in the worst case,
i.e., the node state changes at each evaluation,
this scheme requires the same overhead as usual
methods where values are transmitted repeatedly
at every evaluation period.

Using a publish/subscribe scheme is rather
simple if reliable communication architectures and
fixed network structures are provided, but WSNs
are subject to unpredictable behavior caused by
sudden changes in context, connectivity, working
mode etc. That especially holds true if mobility
of nodes is provided. To ensure a certain level of
robustness and efficiency, some fundamentals
have to be considered from respective points of
view of subscribers and publishers. How does
the subscribing node know, whether some other
node received the subscription, accepted it or is

157

High Level Definition of Event-Based Applications for Pervasive Systems

still providing publications? On the other side,
the publishing node requires to know whether
there is still a subscriber awaiting information
about EDT node values. These problems could
indeed be solved by using a simple ACK-scheme
for every transmission to inform the sender about
the success. Unfortunately, pure ACK-based com-
munication is inefficient for WSNs as mentioned.
Furthermore, publish/subscribe is designed to
achieve large periods without any transmission,
which is not possible with ACK-based schemes.

Leasing of Publication Time

Due to assumed conditions in WSNs, the publish/
subscribe scheme must adapt frequently to reach a
certain level of robustness in phenomenon detec-
tion. Certainly, the overhead needed for adaptation
must be kept as small as possible but still allow
for balancing the adaptiveness with respect to
the application. Accordingly, publications and
subscriptions should either be removable or be
valid for certain time periods only. The latter is
much more suitable for WSNs where unforeseen
changes leave no chance for appropriate responses
or un-subscriptions. Therefore, an adaptive lease
procedure limits the validity of publications and
subscriptions. It allows to subscribe a data inter-
est for a certain lease period only, after which
the publish/subscribe relation has to be renewed.
Such lease-based publish/subscribe requires
significantly less transmissions than ACK-based
variants and enables lease intervals assigned per
phenomenon. Usage of lease-based approaches is
also well known in other application areas, e.g.,
for labeling of references and objects in automatic
garbage collection or for allocation of resources
like the IP addresses from servers using the
Dynamic Host Configuration Protocol (DHCP).

A lease-based subscription specifies a certain
time interval determining the validity period
of subscriptions during which associated pub-
lications have to be sent. This lease period is
determined as the product of the phenomenon-

associated lease factor and the EDT evaluation
interval. Both factors are given by the binary
event specification. The lease factor enables fine-
tuned and customized lease intervals. It adapts the
lease period to the monitored phenomenon and
to expected conditions in the sensor network. For
example, sensor networks, which are subject to
permanently changing situations or node mobility,
require a high adaptiveness. Those should apply
short lease intervals. In contrast to that, sensor net-
works deployed at rather fixed network structures
could make use of larger lease intervals to save
energy and extend the overall network lifetime.
If the lease factor is chosen to be one, i.e., the
leasing time is one detection interval, this scheme
converges to ACK-based approaches.

On receiving a matching subscription, the node
determines the expiration date of the respective
publication. The expiration date is assigned to
the corresponding EDT node together with the
toPublish flag. After initially publishing the
current EDT node value, any further change is
published as long as this flag is set. Consequently,
the flag is automatically removed from the EDT
node when the expiration date is reached, i.e.,
the lease has expired. Similar to the toPublish
flag, the subscriber assigns an expiration date to
the requested undecidable EDT node. Even if no
publisher responds to the subscription, the node
sends no new subscription before this expiration
date has expired. That assures to renew the publish/
subscribe relations with respect to the configured
adaptation rate only. Other approaches usually
try to subscribe at each detection interval again,
which heavily drains the power resources.

To save more energy, new and renewed leases
are distinguished. The initial respond of the pub-
lisher for renewals can be saved, since it is not
necessary if no change has occurred. If earlier
agreed leases are to be renewed only, the publisher
does not respond with the initial node value but
extends the lease period and continues providing
state changes until the newly assigned expira-
tion date is reached. In addition, publisher and

158

High Level Definition of Event-Based Applications for Pervasive Systems

subscriber renew the lease period automatically
upon notification of a state change. When data
is published during a valid lease, the expiration
date of the toPublish flag is reset to the full lease
period. Similarly, the subscribing node renews
the expiration date of a current subscription when
receiving a respective publication.

Figure 11 displays sequence charts of both
lease extension cases as well as the ACK-based
scheme for comparison. In the ACK-based vari-
ant, displayed in (a), the subscriber requests
information at each detection interval, which is
accordingly responded by the publishing node.

In contrast to that, (b) and (c) illustrate the lease
allocation in case of no change (b) and change (c)
in EDT node values while applying a lease factor
of three. Both cases require to provide the current
node value by an initial publication of course. In
case of no change (b), the subscription is renewed
by the subscriber after the lease has expired. If
a change of the EDT node value occurs during a
valid lease (c), the lease period is automatically
extended on both sides via the publication mes-
sage. In such simple scenario, the lease-based
approach already saves more than 60 percent of
the messages.

Figure 11. Sequence of information exchange between a single subscriber and a single publisher dur-
ing four detection intervals in to in+3. (a) displays the performance of the ACK-based variant, which is
constant regardless of the existence of events. (b) and (c) illustrate the lease allocation applying a lease
factor of three, i.e., the subscription is valid for three evaluation intervals. In case of no change, see (b),
the subscription is renewed by the subscriber whereas a change of the EDT node value allows to extend
the lease on both sides via the publication message (c).

159

High Level Definition of Event-Based Applications for Pervasive Systems

Since a lease can be automatically extended
by publications without a respective acknowledge-
ment message from the subscriber, there is a risk
that the publisher side runs into a kind of infinite
loop. In other words, after publishing the initial
node value, the publisher may renew the lease
and the toPublish flag again and again, while the
subscriber disappeared in the meantime. To cope
with that, an exceptional termination condition
for publications was integrated. The publisher
counts the number of automatic lease renewals
and removes the toPublish flag, when the value
of the counter equals the given lease factor. Hence,
that exceptional condition forces the subscriber
to renew the subscription again if it still requires
information about the respective node value.
Consequently, each subscription resets the coun-
ter at the publisher.

It is obvious that this communication scheme
is well suited for low power applications such as
environmental or structural health monitoring.
Besides this high efficiency in power consumption,
another main goal of this chapter is robustness
of event detection, which consequently requires
a stable and reliable communication scheme.
Therefore the introduced approach can operate in a
reliable mode as well. The reliable mode combines
the advantages of the introduced publish/subscribe
scheme with the reliability benefits provided by
ACK-based communication. The reliable mode
introduces retransmissions on the application
level. Usually retransmissions in case of message
loss can be assumed to be part of the Medium Ac-
cess Control (MAC) layer. If retransmissions are
not provided by the MAC protocol or if the link
reliability of the underlying network is unknown,
the publish/subscribe scheme can provide a similar
feature on the application level.

The reliable mode is activated by setting
the reliableMode attribute in the <EVENT>
element of the event specification. The reliable
mode applies the introduced lease-based publish/
subscribe scheme, too, but enforces to explicitly
acknowledge every transmitted data packet. If

the ACK-message fails while the reliable mode
is enabled, the already renewed lease is removed
immediately. A publication in response to an
initial subscription is implicitly used as an ACK-
message. This introduces a little overhead indeed,
but still outperforms usual ACK-based variants.
Figure 12 illustrates the performance of the reli-
able mode when applied to the same scenario as
shown before in Figure 11. Similarly, it compares
the behavior of the ACK-based variant (a) to the
cases of no changes (b) and changes (c) of EDT
node values in the publish/subscribe approach.
Even here, the reliable mode still saves 50 percent
of the required messages.

Finally, the reliable mode can be applied to a
specific event specification and hence, allows
customizing the used communication scheme for
each configured EDT. In contrast to other ap-
proaches where the communication protocol is
identical for all configured tasks, the EDT engine
may execute both modes simultaneously depend-
ing on the configured EDTs. To summarize, it is
a simple fact that the lease-based publish/subscribe
provides a considerable benefit with respect to
the number of required transmissions, even if the
applied lease interval is rather short. This theory
has been proven by simulations, which are pre-
sented in the next sections.

Side Effects of Collaboration

In spite of presented benefits of collaborative event
detection, there exist some side effects that must
be considered separately. Collaboration obviously
includes distribution of partial evaluation results to
subscribing nodes to enable these to evaluate their
respective EDT. Certainly, that may essentially
affect the final evaluation results at these sensor
nodes. More precisely, the final EDT evaluation
result at subscribing nodes may highly or directly
depend on received (published) values. Hence,
several subscriber nodes may always generate
the same final evaluation result as their publisher.
This is not of concern for usual detection, since

160

High Level Definition of Event-Based Applications for Pervasive Systems

otherwise subscribing nodes may possibly not
have the ability to generate a final evaluation
result at all. In that case, local event detection
would depend on the results of the publishing
node in either way.

However, avoidance of fault propagation is
of utmost importance in distributed systems like
WSNs. In consequence of using the publish/sub-
scribe collaboration scheme published faulty val-
ues could possibly propagate through the network
from node to node. This happens when a value
of an EDT node, which was formerly obtained
through subscriptions, is published further. In the
worst case, faulty values could be distributed to

all nodes in the entire network. Hence, stable or
even reliable application becomes impossible.
A simple condition circumvents this problem.
The implementation of EDTs must not allow
EDT nodes to assign values by subscriptions
and to publish those values at the same time. In
the presented implementation this is guaranteed
by mutual exclusion of the undecidable and the
toPublish flags. This assures that faulty values
cannot propagate beyond the defined collabora-
tion region of the publishing node.

Another side effect occurs if a subscriber has
several publishers available at the same time.
These may deliver different Boolean values for the

Figure 12. Sequence of information exchange for the same scenario as shown before in Figure 11 while
applying the reliable mode for the lease-based publish/subscribe scheme in (b) and (c). (a) displays the
performance of the ACK-based variant for comparison. Even with an enabled reliable mode, the lease-
based approach requires 50 percent less messages.

161

High Level Definition of Event-Based Applications for Pervasive Systems

same EDT node within a certain detection interval.
Hence, the subscriber has to determine the correct
value of that EDT node, or more precisely, the value
that is most likely correct. To cope with that, the
sensor node counts all true and false values per
interval and finally decides on the majority. The
respective counters at each EDT node are reset
to zero after every evaluation run. In case of a tie
situation, the last received value is taken.

Data security is a side condition that has not
been considered so far but is an important issue
for distributed application. This chapter does
not focus on ensuring data security. But as it is
essential with respect to reliability, especially
when considering mission- and safety-critical
applications, some means providing data security
must at least be mentioned. Using wireless com-
munication increases the risk of malicious attacks
because the sensor network becomes accessible
from outside. Whereas dozens of various attacks
exist, the integrity of collaboration messages is of
particular interest. The integrity and confidential-
ity of exchanged information can be assured by
secure hashing and encryption techniques. These
means can additionally be used on top of the
presented event detection scheme, if necessary.
Many different encryption methods are already
available, but these quite differ in their strength and
energy consumption depending on the algorithm
and hardware used. Just as mentioned before,
the associated overhead associated to security
mechanisms is to be balanced between varying
application requirements, too.

Performance Evaluation
Methodology

To prove the concept, a prototype of the EDT
was implemented in the discrete event simulator
OMNeT++ (www.omnetpp.org) (Varga, 2002)
with an extension for simulation of WSNs called
Castalia (http://castalia.npc.nicta.com.au/) (Pham,
Pediaditakis, & Boulis, 2007). The introduced fire
detection scenario was applied to WSNs that are

subject to failures in sensing devices. Based on that,
application of the lease-based publish/subscribe
approach is compared to the ACK-based variant.
The simulation results are evaluated with regard
to the detection accuracy and cost-efficiency of
the introduced algorithms.

Application of Boolean event detection allows
to generate compact snapshots of the system state
containing the actual or respectively last detection
results of all nodes, which are either event or no
event respectively 1 or 0. As a start, the first run
simulated the correct behavior of the entire sensor
network without any failures while snapshots from
the system are frequently generated at every EDT
evaluation interval. These snapshots represent
the best case scenario and are used as the regular
reference. In the following, all results and evalu-
ations based on these snapshots are henceforth
called reference. Consequently, such snapshots
were taken in all other simulation runs at equal
simulation time, too. Finally, the snapshots of
equal simulation time are matched against the
reference to determine whether the sensor nodes in
the simulation runs gathered the correct detection
result or not. The simulation results are not only
compared to the reference scenario. Each failure
scenario was also executed without improvement
by collaboration to gather the usual local detection
results of the sensor nodes. In the following, these
runs are referred to as standard.

The simulation results are analyzed to deter-
mine the total detection accuracy and the number
of required messages. The total detection accuracy
states the number of correctly gathered positive and
negative evaluation results per interval. Hence, a
detection accuracy of 100% is given if all nodes
within the phenomenon notify an event (positive
result) while all other nodes do not register an event
(negative result). As mentioned, the collaboration
algorithms introduce a communication overhead
represented by the total number of sent overhead
messages. Additionally, the average number of
required messages per node and interval is de-

162

High Level Definition of Event-Based Applications for Pervasive Systems

termined to directly compare the communication
efficiency of all approaches.

Simulation Parameters and
Deployment Patterns

According to the introduced event specification
of the fire event, an EDT evaluation interval is
ten seconds. The simulations ran three simulated
hours, which is equivalent to 1080 EDT evaluation
intervals in the fire detection scenario. In the fol-
lowing, the simulation time is given in discrete time
steps, i.e., the EDT evaluation intervals. Finally,
the simulation parameters regarding the wireless
communication need to be identified. Wireless
communication is subject to many restrictions
resulting in an unreliable and sometimes nonde-
terministic performance. Many research projects
already studied the parameters of link reliability,
end to end delays, low power communication
etc. These issues are indeed important, but were
not considered in our simulations. These applied
ideal conditions at the MAC layer and the wire-
less channel to generate deterministic results for
comparison. Simulation results are taken from
ten different random uniform node deployments
using a field of 22.5×22.5 meters containing 100
wireless sensor nodes. The average results of all
simulation runs on each of the ten deployments are
determined. Each sensor node initially possesses
all required sensing facilities, i.e., carbon mon-
oxide, temperature and smoke detectors. Hence,
all sensors are initially enabled to locally evaluate
the complete EDT to gain local detection results.

For deterministic event generation, a simu-
lated phenomenon is specified, which causes
the actual sensor reading in a certain region. The
simulated fire phenomenon had a circular dimen-
sion specifying high sensor readings in its centre,
which decrease with the distance to the centre of
the phenomenon. In particular, this phenomenon
partitions the network into four areas. The region
of the fire producing the highest sensor readings is
defined as a circle around the centre point with a

radius of 1.5 meters. In this area all sensor readings
clearly exceed the defined thresholds. The area
with radius between 1.5 and 3 meters specifies the
immediate vicinity of the fire centre, where the
sensor readings slightly exceed the thresholds and
the phenomenon can still be recognized. The area
with radius from 3 to 6 meters defines the outer
expansion of the phenomenon. In this area the
sensor readings are slightly below the thresholds.
Finally, all nodes not located in one of these three
areas of the phenomenon generate “usual” sensor
readings that are clearly below the thresholds.

To trigger changes in sensor readings and node
evaluation results, the centre of the fire phenom-
enon deterministically moves within the network
boundaries at every minute or six EDT evaluation
intervals respectively. In comparison to the spatial
expansion covered by the entire sensor network the
size of the phenomenon is rather small. Most sensor
nodes will therefore generate negative evaluation
results per interval whereas only a few nodes may
possibly detect the phenomenon. This perfectly
fits to the fire detection scenario where upcoming
fires usually feature a small size. However, such
moving behavior does not correspond to a fire in
the real world. Nevertheless, the introduced fire
detection scenario is a well descriptive vehicle
to exemplify phenomenon definition and reliable
phenomenon detection within a mission-critical
context. The described phenomenon is used to
generate deterministic sensor readings and simu-
lation results. The case that sensor nodes may be
damaged or destroyed by such phenomenon is
also not considered in this scenario.

Failure Scenario: Permanently
Failing Sensing Capabilities

Low cost production, decreasing energy supply
and various environmental influences may not only
lead to errors of measurement in sensor readings.
These also cause sensing devices to fail transiently
or to get even permanently lost. In that case, usual
local event detection based on own sensor read-

163

High Level Definition of Event-Based Applications for Pervasive Systems

ings is limited or cannot further be provided. Of
course, this results in decreased detection accuracy.
Collaboration between sensor nodes exchanging
missing information is a proper means to keep
the functionality of the sensor network and its
configured applications alive. In the context of
EDTs, this requires to exchange values of EDT
nodes. This section analyses the performance of
event detection under random permanent failures
of sensing devices. Therefore, the results of the
standard detection are compared to the detection
results in application of ACK-based and lease-
based collaboration. Here the worst case failure
scenario is simulated. Each available sensing ca-
pability, i.e., the temperature, the carbon monoxide
and the smoke sensing devices, will eventually
fail on each sensor node during the simulation
run. Fortunately, such extreme failure scenario
is far away from real deployments. However, it
is necessary to test the collaboration schemes in
worst case scenarios.

In such failure scenario, the total detection ac-
curacy is the most important issue. Collaboration is
not designed to explicitly enhance the mere detec-
tion of phenomena. It is rather designed to improve
the robustness of the sensor network against failed
sensing devices in the sensor nodes and to keep
the applications running at all nodes. Therefore,
collaboration schemes perform independent of
the final detection results. A successive loss of all
sensing features of each node in the entire WSN
represents a complete operational breakdown for
the application running on the sensor nodes. In
the introduced fire detection scenario, the three
sensing devices measuring carbon monoxide,
temperature and smoke at each sensor node fail
within the 1080 simulated time intervals. To slow
down the decrease of detection performance in our
simulation no more than one sensing device at one
sensor node may fail per interval. The occurrence
of failures is pseudo-randomly distributed. Of
course, this requires to successively adapt (prune)
the local EDT at each node when a sensing capabil-
ity fails. It further triggers collaboration between

neighboring nodes to gather detection results for
substitution of locally missing information. When
all sensing devices at a node failed, this is not
equivalent to a crash. In that case, the respective
EDT degenerated to a tree evaluating the children
of the root node only. The sensor node then acts
as a bridge node.

Table 3 presents a brief summary of the
simulation results in case of permanently failing
sensing capabilities. Unfortunately, the simula-
tion environment was unable to finish the runs
applying ACK-based collaboration. Due to the
successively increasing number of necessary
collaboration messages the process executing
the ACK-based simulation has been killed by the
simulation environment. For the affected runs we
displayed the last known system state and marked
it with an * in the table. This yet indicates that
ACK-based collaboration becomes infeasible with
a growing number of failures.

First, the results of all approaches, i.e., until
the ACK-based simulation has been aborted, are
evaluated. Comparing the average of correct
detection results in the entire network, both col-
laboration schemes clearly improved the total
detection accuracy. The ACK-based scheme per-
formed slightly better than the lease-based one.
This result was expected due to the fact that the
ACK-based scheme always gathers the actual
detection results at each interval. In contrast to
that, the lease-based approach in average reflects
changes slower depending on the leasing time,
even if the lease is optimized to the expected
behavior of the phenomenon. According to the
simulated phenomenon, which moves every six
intervals, the lease factor was also set to six. The
lease-based publish/subscribe approach most
likely will not outperform the ACK-based variant
with regard to the detection accuracy. In fact, the
goal of the lease-based detection is to provide a
detection accuracy that closely meets the result
of the ACK-based scheme, but with a signifi-
cantly reduced message overhead.

164

High Level Definition of Event-Based Applications for Pervasive Systems

The total detection accuracies of both collabo-
ration approaches are compared to the standard
detection in Figure 13. In case that 50% of the local
detection results are lost in the standard detection,
the lease-based and the ACK-based scheme still
provide a detection accuracy of 82% and 85%
respectively. If 70% of detection results are lost in
the standard detection, i.e., only 30 nodes remain
functional, the collaboration schemes still generate
67% (lease-based) and 70% (ACK-based) correct
detection results. That is a temporarily detection
improvement of 225% compared to the standard
detection. The lease-based approach significantly
outperforms the ACK-based variant in comparison
of the number of collaboration messages, see the
diagram in Figure 14. It requires only about one
message within three detection intervals. The
ACK-based scheme sent about 7.5 messages per
node in average at each interval, which in total
differs from the lease-based scheme by a factor
of 20. This is obviously too much traffic to be
simulated. It further limits the applicability of
the ACK-based scheme with respect to the node
density of the network and the amount of data
that needs to be exchanged.

Only the lease-based approach and the standard
detection have completed their simulation runs.
The following compares the respective perfor-

mances. Again, the lease-based approach en-
hances the total detection accuracy in the network
by an average of 30% in the uniform random
deployment. It further detected 82% of all exist-
ing phenomena, which represents a gain of 39%
in comparison to the standard method. This sig-
nificant increase is achieved by requiring a col-
laboration overhead of only 0.35 messages per
node and interval. This is equivalent to the trans-
mission of 35 messages in the entire network
during one detection interval representing ten
seconds in lifetime. Even using the reliable mode
for lease-based collaboration, i.e., to explicitly
confirm each published value, increased the
overhead to 0.53 messages per interval only. The
reliable publishing does not influence the detec-
tion accuracy. It merely triggers explicit acknowl-
edgement messages for received publications.

An increasing number of unavailable sensing
devices continuously decreases the performance
of event detection of course. In contrast to the
standard detection, both introduced collaboration
schemes significantly extend the time of running
the detection with high detection accuracy. Even
if 50% of all sensor nodes cannot evaluate the
EDTs with own sensor readings, both collaboration
schemes still provide a total detection accuracy
of at least 84%. As expected, the ACK-based

Table 3. Comparison of applying lease-based publish/subscribe and ACK-based collaboration in case
of permanently failing sensing capabilities. The lease-based approach performs best and enhances the
standard detection by about 30%. Due to the successively increasing number of necessary collaboration
messages in the ACK-based scheme, the simulation process has been killed by the simulation environ-
ment. For the affected runs the last known system state is represented and marked with an *.

Total detection accuracy in %

Figure 13 Standard Lease = 6 ACK

Uniform random deployment * 63.970 82.917 85.619

Uniform random deployment 59.765 77.968 -

Average number of collaboration messages per node and interval

Figure 14 Lease = 6 (reliable) Lease = 6 ACK

Uniform random deployment* 0.537 0.357 7.360

Uniform random deployment 0.525 0.356 -

165

High Level Definition of Event-Based Applications for Pervasive Systems

scheme performed slightly better than the lease-
based scheme but required far more collaboration
messages to achieve such results. The number of
necessary messages differs by an average factor of
10 or higher. It is an unsolved question whether this
overhead will also cause real applications to fail
as it happened in the simulations. However, two
remarks need to be emphasized. First, this failure
scenario is (hopefully) rather unlikely to occur in
real deployments. Second, applications running
in such failure scenario possess a certain point
in time where the detection accuracy falls below
the required minimum in either way, regardless
of detection enhancement. A sensor network that
features too many failures should be renewed or
not be relied to.

Lessons Learnt from Simulations

Presented simulation results strongly indicate a
need for robust configuration means to enable
reliable application, especially with regard to

the cost-efficiency of these means. Compared to
the improved detection accuracy, the overhead
associated with collaboration is worth to be spent
in such scenario. Nevertheless, these methods
need to be fine-tuned to achieve a sufficient cost-
efficiency. The ESL provides means to customize
parameters like the region and the leasing time
for collaboration. The event detection concept
based on ESL and EDT significantly improved
available ACK-based collaboration with regard
to cost-efficiency by introducing lease-based
publish/subscribe. Of course, there are dozens
of possible test deployments to further stress and
analyze the performance of lease-based publish/
subscribe under different conditions regarding
varying phenomena, node density, node deploy-
ments, unreliable links etc. These are considered
to be future work.

Presented simulation results only announce
the advantages of autonomous configuration and
phenomenon detection concept based on EDTs.
We have simulated further failure scenarios at the

Figure 13. Comparison of detection results when applying lease-based and ACK-based collaboration
in case of permanently failing sensing capabilities. The lease-based approach enhances the detection
accuracy by more than 30%. The ACK-based scheme indicated similar or slightly better performance
but has been aborted by the simulation environment due the huge number messages required. Moreover,
even if only 50% of all nodes are able to generate local detection result in the standard scheme, both
collaboration schemes still provide a detection accuracy that is higher than 80%.

166

High Level Definition of Event-Based Applications for Pervasive Systems

introduced deployments considering transiently
failing devices and completely failing nodes, too.
From these simulations we learned fundamental
aspects about collaborative event detection. Col-
laboration can significantly enhance the robustness
of a sensor network. It keeps on running its applica-
tions with high detection accuracy even in case of
failed sensing devices. The presented ACK-based
collaboration scheme provides the best detection
accuracy since it refreshes the actual values of
EDT-nodes after each interval. But simultaneously
it requires a huge number of collaboration mes-
sages. It was shown that the cost-efficiency of the
lease-based approach is very high and reduces the
number of collaboration messages by a factor of
10 or higher. The lease-based publish/subscribe
collaboration scheme can be configured to such
extent that it is able to achieve detection accura-
cies that closely meet those of the ACK-based
scheme by choosing a proper leasing time. This
leasing time primarily depends on the expected
properties and behavior of the phenomenon to be

sensed. The leasing time ideally is less or equal
to the mean time of exposure to the monitored
phenomenon. In the simulations, this was a leas-
ing time of one minute (six intervals). In addition,
changes that influence the event detection have to
be considered, too. Such changes are caused by
failed sensing devices and crashed or moved sen-
sor nodes. By that, publisher nodes may disappear
or become unable to publish further EDT-node
values. Therefore, the estimated mean time to
failure has to be regarded, too. For configuration
of a proper leasing time, the user has to obey both
of the following restrictions:

1. The maximum leasing time is less or equal
to the mean time of exposure to the phenom-
enon to be sensed.

2. The maximum leasing time is less than the
mean time to failure.

Of course, the lower bound of a leasing time
is one EDT evaluation interval. In that case, the

Figure 14. Comparison of required messages in the entire network in application of lease-based and
ACK-based collaboration in case of permanently failing sensing capabilities. Despite the significantly
enhanced detection performance, the lease-based approach only requires to transmit 0.35 messages per
node and interval. Even using the reliable mode in lease-based collaboration, which does not influence
the detection results, requires to transmit only about one message in two intervals. In contrast to that,
the ACK-based approach required in average more than 7 messages per node and interval. This caused
the simulation runs to be aborted by the simulator. Please note, the diagram applied a logarithmic scale.

167

High Level Definition of Event-Based Applications for Pervasive Systems

lease-based publish/subscribe approach converges
to the ACK-based scheme. Finally, it is not clear
whether ACK-based collaboration is generally
executable on sensor networks with high node
densities and high failure rates. In that case, the
sensor network may be unable to manage the
amount of traffic associated to this collaboration
means. Even if this was possible, it significantly
stresses the already scarce energy resources and
reduces the throughput of the wireless network.

A sufficient performance further depends on
the size of the applied collaboration region, which
in turn highly depends on the density of nodes
and on the expected size of the phenomenon to be
sensed. A high density of nodes enables to down-
size the collaboration region to such extent that
a suitable average number of neighboring nodes
is still available. The customizable collaboration
region allows to fine-tune the collaboration process
to a certain extent but the degree of freedom in
this parameter is limited, too. If the collaboration
region is chosen too small the sensor nodes may
not share the respective collaboration regions
and hence, other nodes may not be available for
collaborative detection. In that case, the detec-
tion results converge down to those gathered by
the standard detection without collaboration but
require a message overhead for the subscriptions.
In the presented node deployment, a collaboration
region of 2.5 meters provided the best detection
accuracy. Further simulation results indicated a
proper average collaboration region to be smaller
than the expansion of the phenomenon. Aim-
ing at a proper ease of use for configuration of
collaboration by non-professional users, these
must be provided with restrictions indicating a
proper size of the collaboration region. The user
configuration assistant can help to ensure that the
following principles apply:

1. The minimum size of the collaboration region
is the mean distance between neighboring
sensor nodes, which is determined by the

density of the sensor network, and transmis-
sion technology.

2. The maximum size of the collaboration re-
gion is the estimated size of the phenomenon.

If one or both restrictions cannot be guaran-
teed, the application of collaboration should be
omitted for cost-efficiency. In those cases, there
would either be no other device in the collabora-
tion region (collaboration region is smaller than
minimum) or events are most possibly not notified
because of sharing EDT node values with sensor
nodes outside the phenomenon (collaboration
region is larger than maximum). To summarize,
customized collaboration offers proper means
for WSNs to enhance the robustness of detection
in event-based applications. However, the user
is responsible for fine-tuning the collaboration
region to achieve a sufficient performance. As
we have already discussed, a user configuration
assistant based on an experts system should be
able to determine a proper size of the collaboration
region automatically by asking simple questions
about the phenomenon.

FUTURE RESEARCH DIRECTIONS

Future work should primarily focus on alternating
test and improvement of convenient configura-
tion means by participation of non-scientific test
persons. WSNs should be designed to support
all people in the world, who are predominantly
not scientists. There is currently a lot of ongoing
work in this research direction trying to visualize
configuration properties for WSNs. The first step
for ease of use could be to enable configuration
of WSNs by graphical tools. Besides, means
have to be found to create a kind of feedback
system for announcement of WSNs, their fea-
tures and properties and for reporting success of
configuration. Configuration of a priori unknown
WSNs requires establishment of request-response
features to enable interactions between the sensor

168

High Level Definition of Event-Based Applications for Pervasive Systems

nodes and the configurations tools of users. Ini-
tially, the configuration tools require knowledge
about the features and properties of the WSN to
be configured. Therefore, the WSN should be
enabled to describe the features it provides. Based
on these feature descriptions, the configuration
tools can even determine which kind of applica-
tion or phenomenon could be executable at all.
After specifying the application according to
the features provided, the adapted application is
submitted to the WSN. Finally, the most critical
question is: “Is the submitted application working
properly?” Means that can give a feedback about
the reliability of configured applications could
become one of the most significant advances in
convenient sensor network design.

In view of automatic WSN configuration using
the ESL and respective EDTs, those should be ap-
plied in real world scenarios like Ambient Assisted
Living (AAL) or patient monitoring systems. This
also stresses the designed support for mobility in
this approach. The ESL allows to easily customize
and configure a Body Area Network (BAN) to the
needs of a patient, e.g., by configuring thresholds
for blood pressure or body temperature. Enabling
nurses or medical employees to easily configure
a BAN for patient monitoring will be a big step
towards an ease of use for WSN configuration. In
AAL applications, like smart homes, the user may
define personal interests as an event specification,
which can be used to configure the local ambient
sensor network around the user.

Some extensions of the ESL are possible and of
interest for further research. The ESL may support
other execution constraints to allow configura-
tion of resource-oriented execution intervals, for
example. This could be scaling of the EDT evalu-
ation interval due to drained energy resources. In
addition, the XML style of the ESL should allow
to provide configuration means for WSNs by the
use of web technologies and web services. This
may further automate the configuration process
and enable remote configuration via the Internet.
The concept of EDT has to be enhanced to en-

able self-configuration of new nodes by sharing
of EDTs during runtime. This may significantly
improve the maintenance of a sensor network by
allowing newly deployed nodes to populate with
the EDTs from their neighboring nodes without
having the binary event specification available.
This allows to easily rebuilding the sensor network
in areas where nodes have crashed or the node
density has to be increased.

Furthermore, the robustness and performance
of collaboration could also be extended. Sensor
nodes could dynamically resize the applied col-
laboration region with respect to the local node
density, the specified collaboration region and a
determined preferred number of available publish-
ers. For random distributions, the nodes in areas
with low density may use the maximum configured
collaboration region. In contrast to that, the nodes
in areas with a high density may apply smaller col-
laboration regions, which still provide a sufficient
number of potential publishers. The simulations
indicated that the lease-based publish/subscribe
approach may possibly hold EDT node values
even if the respective publisher has failed during
the leasing time. In the simulation scenarios, this
caused false positive notification of events. En-
abling neighboring nodes to recognize and signal
failed devices to subscribing sensor nodes may
possibly enhance the detection accuracy further.

CONCLUSION

The envisioned pervasiveness of WSNs faces two
major problems. These are high fault probability
and configuration complexity. First, an ease of
use for task definition and configuration of WSNs
is the key to make them widely accepted. Means
that provide a high abstraction of WSNs are in
demand. These must enable also non-professional
users, which are usually short on experience of
programming languages and sensor networks, to
make use of WSNs. Second, pervasive WSNs
consisting of large numbers of devices demand to

169

High Level Definition of Event-Based Applications for Pervasive Systems

use low cost sensor nodes with limited resources,
which feature a high fault probability. WSNs
are subject to sudden changes in operational
conditions, varying deployments and hazardous
environments that again increase the fault prob-
ability. Moreover, strict energy constraints on used
devices require fault tolerant methods to achieve
high cost-efficiency.

This chapter identified missing features for
convenient high-level application design for
WSN configuration. Therefore, we introduced a
user-centric design flow of pervasive applications.
It decouples the processes of application design
and WSN configuration. Application design is
advanced to a level that allows users to specify the
“things-in-mind to be sensed” without regarding
WSN properties. From our simulations we have
learned how to deduce technical details like the
collaboration region or the leasing time without
explicitly asking the user for. Finally, the user
is enabled to “configure” a WSN by answering
straightforward questions about the phenomenon
to be detected. Based on automatic generation of
event specifications using the ESL, the EDTs allow
to autonomously configure a WSN by submitting
very compact binary event specifications. Reliable
and robust execution of applications in pervasive
WSNs further requires to cope with expected and
unexpected heterogeneity and sudden failures.
Therefore, we introduced objectives for reliable
event-based applications in WSNs in terms of
design criteria. These are Robustness, Autonomy,
Transparency, Energy efficiency and Convenience.
Existing solutions mostly provide Robustness and
Transparency but disregard sufficient Energy ef-
ficiency, Autonomy and Convenience. It has further
been shown that existing solutions lack of means
to achieve an acceptable cost-efficiency.

Our introduced user-centric design and con-
figuration of reliable event-based applications in
WSNs can actually remedy these shortcomings.
It tackles all design criteria and features cost-
efficient robustness and a proper usability. So it
combines a flexible Event Specification Language

with a self-adapting event-based detection scheme.
The ESL provides ease of use for application pro-
gramming allowing the user to ignore low-level
details of the sensor network and to concentrate
on a high abstraction level. Namely this is the
phenomenon itself and its related constraints.
To cope with the fault probability in WSNs,
communication-efficient means for collaborative
detection have been introduced and proven to be
functional. In detail, the following contributions
are made:

High abstraction for user-centric application
design. The ESL hides low level details of WSNs
to focus on pure phenomenon definition, which
allows automatic configuration of event detection
in WSNs. The ESL enables to combine sensing
features defining the complex phenomena to be
sensed. Further, it enhances an event specifica-
tion by assignment of customized application
requirements regarding the spatial and temporal
expansion and parameters for collaboration.
Fine-tuning of the collaboration procedure by
determining a proper collaboration region and suit-
able time limits is supported by the ESL. Finally,
the event specification generator transparently
processes and adapts the user-defined “things to
be detected” to the target sensor platform and its
possible heterogeneity. Thereby, it generates de-
ployable versions of these “things”, called binary
event specifications.

The ESL addresses the following design
criteria: Transparency, Energy efficiency, Con-
venience.

A novel decentralized mechanism to au-
tonomously set up event-based detection and
in-network processing on sensor nodes, called
EDT. Binary event specifications are deployed
on the sensor nodes as EDTs, which are directly
generated on the nodes by a tiny GFSM requir-
ing eight states only. An EDT enables the sensor
nodes to partition event specifications according
to their own resources into local and remote parts
by pruning. Local parts can be evaluated by the
node itself, whereas values of remote parts must

170

High Level Definition of Event-Based Applications for Pervasive Systems

be requested from EDTs at other nodes. Sensor
nodes are enabled to maintain several EDTs at
the same time. Using EDTs, every node in the
network can execute the complete evaluation
process without a SPoF.

EDTs address the following design criteria: Ro-
bustness, Autonomy, Transparency, Convenience

Communication-efficient means to maintain
EDTs in case of missing or failing sensing devices.
The EDTs are enabled to continue event-based
detection with a high accuracy even in case of
missing resources or failed sensing devices. For
those cases, EDTs provide efficient collabora-
tive event detection between neighboring nodes
using a lease-based publish/subscribe approach.
Appropriate on-node processing of sensed data
allows to efficiently share values of EDT nodes
by a few bytes only. The simulations clearly an-
nounced that the communication-efficiency of the
lease-based approach is very high in contrast to the
ACK-based variant. By choosing a proper leasing
time, the lease-based approach closely meets the
detection results of ACK-based collaboration but
reduces the number of collaboration messages
by a factor of at least 10. As learnt from simula-
tions, the detection performance highly depends
on the chosen leasing time as well as on the size
of the collaboration region. Both parameters are
customized in the event specification. To ease the
configuration for non-professional users, the user
assistant limits these parameters with respect to the
configuration guidelines learnt from simulations.

The lease-based publish/subscribe approach
addresses the following design criteria: Robust-
ness, Autonomy, Transparency, Energy efficiency,
Convenience

To summarize, this chapter presented and
evaluated means that allow a user-centric design
flow for pervasive applications. Besides straight-
forward definition means, it provides a robust and
reliable concept for autonomous configuration
of event-based applications in WSNs. Criteria
for proper ease of use of application definition
were deduced from the simulation results. These

criteria support the configuration of an adequate
collaboration region and leasing time by defini-
tion of lower and upper bounds. We expect these
criteria to further ease the design of applications
based on pervasive WSNs.

REFERENCES

Aboelaze, M., & Aloul, F. (2005). Current and
future trends in sensor networks: A survey. In
Proceedings of the Second IFIP International
Conference on Wireless and Optical Communi-
cations Networks WOCN 2005, (pp. 551–555).

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y.,
& Cayirci, E. (2002). Wireless sensor networks:
A survey. Computer Networks, 38, 393–422.
doi:10.1016/S1389-1286(01)00302-4

Brouwers, N., Corke, P., & Langendoen, K. (2008).
Darjeeling, a Java compatible virtual machine for
microcontrollers. In Companion ’08: Proceed-
ings of the ACM/IFIP/USENIX Middleware ’08
Conference Companion, (pp. 18–23). New York,
NY: ACM.

Buonadonna, P., Gay, D., Hellerstein, J. M., Hong,
W., & Madden, S. (2005). Task: Sensor network in
a box. In Proceedings of European Workshop on
Sensor Networks, (pp. 133–144). Istanbul, Turkey.

Cardei, M., Yang, S., & Wu, J. (2008). Algorithms
for fault-tolerant topology in heterogeneous
wireless sensor networks. IEEE Transactions on
Parallel and Distributed Systems, 19(3).

Heinzelman, W. B., Murphy, A. L., Carvalho, H.
S., & Perillo, M. A. (2004). Middleware to support
sensor network applications. IEEE Network, 18,
6–14. doi:10.1109/MNET.2004.1265828

Kamiya, H., Mineno, H., Ishikawa, N., Osano, T.,
& Mizuno, T. (2008). Composite event detection
in heterogeneous sensor networks. IEEE/IPSJ
International Symposium on Applications and
the Internet, (pp. 413–416).

171

High Level Definition of Event-Based Applications for Pervasive Systems

Krasniewski, M., Varadharajan, P., Rabeler, B.,
Bagchi, S., & Hu, Y. (2005). Tibfit: Trust index
based fault tolerance for arbitrary data faults in sen-
sor networks. In Proceedings of the International
Conference on Dependable Systems and Networks
DSN, 2005, 672–681. doi:10.1109/DSN.2005.92

Krishnamachari, B., & Iyengar, S. (2004). Dis-
tributed Bayesian algorithms for fault-tolerant
event region detection in wireless sensor networks.
IEEE Transactions on Computers, 53(3), 241–250.
doi:10.1109/TC.2004.1261832

Krishnamachari, B., & Iyengar, S. S. (2003).
Efficient and fault-tolerant feature extraction in
sensor networks. In 2nd Workshop on Information
Processing in Sensor Networks, IPSN ’03, Palo
Alto, California.

Levis, P., Madden, S., Gay, D., Polastre, J., Szew-
czyk, R., & Whitehouse, K. … Culler, D. (2005).
Tinyos: An operating system for sensor networks.
In W. Weber, J. Rabaey & E. Aarts (Eds.), Ambient
intelligence. Springer-Verlag.

Madden, S. R., Franklin, M. J., Hellerstein, J.
M., & Hong, W. (2005). Tinydb: An acquisitional
query processing system for sensor networks.
ACM Transactions on Database Systems, 30(1),
122–173. doi:10.1145/1061318.1061322

Mainwaring, A., Culler, D., Polastre, J., Szewc-
zyk, R., & Anderson, J. (2002). Wireless sensor
networks for habitat monitoring. In WSNA ‘02:
Proceedings of the 1st ACM International Work-
shop on Wireless Sensor Networks and Applica-
tions (pp. 88-97). NY, USA.

Pham, H. N., Pediaditakis, D., & Boulis, A. (2007).
From simulation to real deployments in WSN and
back. In IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks,
WoWMoM 2007, (pp. 1 – 6).

Phani Kumar, A. V. U., Reddy, V. A. M., & Jana-
kiram, D. (2005). Distributed collaboration for
event detection in wireless sensor networks. In
MPAC ’05: Proceedings of the 3rd International
Workshop on Middleware for Pervasive and Ad-
Hoc Computing, (pp. 1–8). New York, NY: ACM.

Romer, K., & Mattern, F. (2004). Event-based
systems for detecting real-world states with sen-
sor networks: A critical analysis. In Proceedings
of 2004 Conference on Intelligent Sensors, Sen-
sor Networks and Information Processing, (pp.
389–395).

Schwiderski-Grosche, S. (2008). Context-depen-
dent event detection in sensor networks. In 2nd
Intl. Conf. on Distributed Event-Based Systems
(DEBS’08), Rome, Italy.

Shih, K.-P., Wang, S.-S., Yang, P.-H., & Chang,
C.-C. (2006). Collect: Collaborative event de-
tection and tracking in wireless heterogeneous
sensor networks. In Proceedings of the 11th IEEE
Symposium on Computers and Communications
ISCC ’06, (pp. 935–940).

Simon, D., Cifuentes, C., Cleal, D., Daniels, J., &
White, D. (2006). Java on the bare metal of wireless
sensor devices: The squawk java virtual machine.
In VEE ’06: Proceedings of the 2nd International
Conference on Virtual Execution Environments,
(pp. 78–88). New York, NY: ACM.

Varga, A. (2002). Omnet++. Software tools for
networking. IEEE Network Interactive, 16(4).

Vu, C., Beyah, R., & Li, Y. (2007). Composite event
detection in wireless sensor networks. In Proceed-
ings of IEEE International Performance, Comput-
ing, and Communications Conference IPCCC,
2007, 264–271. doi:10.1109/PCCC.2007.358903

Wada, H., Boonma, P., & Suzuki, J. (2007). A
spacetime oriented macroprogramming paradigm
for push-pull hybrid sensor networking. In Pro-
ceedings of the 16th International Conference on
Computer Communications and Networks ICCCN
2007, (pp. 868–875).

172

High Level Definition of Event-Based Applications for Pervasive Systems

Wang, T.-Y., Han, Y., Varshney, P., & Chen, P.-N.
(2005). Distributed fault-tolerant classification in
wireless sensor networks. IEEE Journal on Se-
lected Areas in Communications, 23(4), 724–734.
doi:10.1109/JSAC.2005.843541

Werner-Allen, G., Johnson, J., Ruiz, M., Lees,
J., & Welsh, M. (2005, 31 January-2 February).
Monitoring volcanic eruptions with a wireless
sensor network. In Proceedings of the Second
European Workshop on Wireless Sensor Networks
(pp. 108-120).

Yao, Y., & Gehrke, J. (2002). The cougar ap-
proach to in-network query processing in sen-
sor networks. SIGMOD Record, 31(3), 9–18.
doi:10.1145/601858.601861

ADDITIONAL READING

Avizienis, A., Laprie, J.-C., & Randell, B. (2000).
Fundamental concepts of dependability. In 3rd
IEEE Information Survivability Workshop (ISW-
2000).

Bahrepour, M., Meratnia, N., & Havinga, P. (2009).
Sensor fusion-based event detection in wireless
sensor networks. In Proceedings of the Third
International Workshop on Information Fusion
and Dissemination in Wireless Sensor Networks
(SensorFusion09), Toronto, Canada.

Beuche, D. (2004). Composition and Construc-
tion of Embedded Software Families. PhD thesis,
Otto-von-Guericke-Universit¨ at Magdeburg.

Bohn, J., Coroama, V., Langheinrich, M., Mat-
tern, F., & Rohs, M. (2004). Living in a world
of smart everyday objects – social, economic,
and ethical implications. Journal of Human
and Ecological Risk Assessment, 10, 763–786.
doi:10.1080/10807030490513793

Bonivento, A., Carloni, L. P., & Sangiovanni-
Vincentelli, A. (2006). Platform-based design of
wireless sensor networks for industrial applica-
tions. In DATE ’06: Proceedings of the conference
on Design, automation and test in Europe, pages
1103–1107, 3001 Leuven, Belgium, Belgium.
European Design and Automation Association.

Castro, M., & Liskov, B. (2002). Practical byz-
antine fault tolerance and proactive recovery.
[TOCS]. ACM Transactions on Computer Systems,
20(4), 398–461. doi:10.1145/571637.571640

Clouqueur, T., Saluja, K., & Ramanathan, P.
(2004). Fault tolerance in collaborative sensor
networks for target detection. IEEE Transactions
on Computers, 53(3), 320–333. doi:10.1109/
TC.2004.1261838

Haroun, I., Lambadaris, I., & Hafez, R. (2005).
Building wireless sensor networks. Microwave
& RF Magazine.

Kahn, J., Katz, R., & Pister, K. (2000). Emerging
challenges: Mobile networking for smart dust.
Journal of Communication and Networks, 2(3),
188–196.

Kahn, J. M., Katz, R. H., & Pister, K. S. J. (1999).
Next century challenges: Mobile networking for
”smart dust”. In International Conference on
Mobile Computing and Networking (MOBICOM),
pages 271–278.

Martincic, F., & Schwiebert, L. (2006). Distributed
event detection in sensor networks. In Proc. In-
ternational Conference on Systems and Networks
Communications ICSNC ’06.

Romer, K., & Mattern, F. (2004). The design
space of wireless sensor networks. IEEE Wire-
less Communications, 11(6), 54–61. doi:10.1109/
MWC.2004.1368897

Woodbridge, J., Nahapetian, A., Noshadi, H., &
Sarrafzadeh, M. (2010). Hip: Health integration
platform. In First IEEE PerCom Workshop on
Pervasive Healthcare, Mannheim, Germany.

173

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8

DOI: 10.4018/978-1-60960-735-7.ch008

INTRODUCTION

The FMC is a worldwide and clear trend in the
form of fixed and mobile telephony convergence.
The aim of the convergence between fixed and
mobile telephony is to provide both services with

a dual mode terminal. In this pervasive environ-
ment, the security should be considered as an
important factor since the security threats of fixed
and mobile networks and service infrastructures
can be happened simultaneously. Most FMC
services should necessitate personal sensitive

Jaemin Park
Convergence WIBRO BU, KT (Korea Telecom), Republic of Korea

A Methodology for UICC-
Based Security Services

in Pervasive Fixed Mobile
Convergence Systems

ABSTRACT

Nowadays, Fixed Mobile Convergence (FMC) is an emerging worldwide trend in the form of fixed and
mobile telephony convergence. In this pervasive environment, security should be considered to be a
more important factor than before because the security threats of heterogeneous infrastructures can
happen simultaneously. Thus, UICC, the ideal and secure medium embedded on the mobile terminals,
has been utilized to provide the security-sensitive services and the service security framework of the
mobile terminals.

This chapter presents the fundamental and security characteristics of UICC and current practices of
UICC-based security services (e.g. banking, stock, network authentication, etc.) in pervasive FMC
systems. Moreover, we propose a novel UICC-based service security framework (USF), which imple-
ments the essential security functionalities used for FMC services, to provide the integrated security
infrastructure and secure FMC services. The USF can be utilized to authenticate users, preserve privacy,
and protect network infrastructures and business models of telephony companies.

174

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

information like ID/Password, certificates, bank
accounts, credit card numbers, etc. Moreover, a
single terminal can be used among different kinds
of network and service infrastructures, which need
an individual security protocol. Therefore, the
integrated security infrastructure of the mobile
terminal should be mandatory.

The trend of openness in the FMC environment
can bring about more fatal security threats, for
examples, leakage of private information, phish-
ing, mobile viruses, etc. Accordingly, customers’
interests in the security have been increased drasti-
cally to preserve their privacies and information.
Telephony companies also would like to comply
with customers’ security requirements and protect
their network infrastructures and business models
against various threats.

Since the mobile terminals should be the end-
points of mobile services and storages of personal
information, the security of terminals must be
important for secure FMC services. However,
due to the inevitable constraints of the mobile
terminals such as lack of hardware-based crypto
processor, insecure memories, etc., fully secure
FMC services had seemed to be difficult.

Nowadays, UICC has been deemed to be the
only solution to address the security issues of the
mobile terminals due to the brilliant advances in
technologies of the smartcards. Moreover, UICC
is owned and controllable by mobile operators and
is therefore more flexible than mobile terminals
in providing security according to the security
requirements of services and can be inserted in any
terminal regardless of its base operating system.

In this chapter, we present methodologies for
UICC-based security service in pervasive FMC
systems. We briefly explain the fundamental and
security characteristics of UICC and present cur-
rent practices of UICC-based security services.
Then, UICC-based Service Security Framework
(USF) is proposed and its practices are explained.
Finally, we describe the future research direction
and conclude this chapter.

BACKGROUND

The UICC is the smartcard used in mobile termi-
nals in GSM and UMTS networks. The UICC can
guarantee the integrity and security of the personal
data such as the phone number, messages, contact
information (phonebook, e-mail, etc.) and so forth.
SIM and USIM applications acting as the user
authentication modules are stored in the UICC,
respectively for GSM and UMTS networks. When
the mobile terminals are starting to be activated,
SIM and USIM applications begin to operate the
authentication procedures with AuC (Authentica-
tion Center). For this, these applications and AuC
should share the secret key for user authentication.
These applications are the fundamental and most
important among other applications in the UICC.

Several applications for UICC value added
services can be stored in the memory such as
EEPROM, flash, etc. of the UICC. Most of these
applications can be pre- or post- loaded, installed
and instantiated based on the GlobalPlatform, the
UICC management platform for the issuers. These
applications are usually implemented on top of
the Java Card Platform, which provides the java
card runtime environment, java virtual machine
and APIs. The applications mostly facilitate the
APIs to invoke the methods supported by Java
Card Platform. The examples of these applications
can be transportation, banking, stock, credit card,
loyalty, etc. Most of these services are utilizing
the security characteristics of UICC and further
explained in the following chapters.

The applications installed on the UICC can be
further categorized as the applets and the servlets.
The applet is a simple Java card application without
UI and communicates with the off-card entities via
APDU ((Application Protocol Data Unit), which
is the communication unit defined in ISO/IEC
7816-4. For the clarity, we’d like to explain more
about the APDU. Two kinds of APDUs are existed:
command APDUs and the response APDUs. A
command APDU is sent by the off-card entity
to the UICC and should contain a 5-byte header

175

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

and from 0 to up to 255 bytes of data. A response
APDU is sent by the UICC to the off-card entity
after processing the specific task defined in the
command APDU and should contain a mandatory
2-byte status word and from 0 to up to 256 bytes
of data. The servlet is a web application which
provides not only the processing of the requested
operations but also the web-based UI which can be
shown in the web browser in the off-card entity.
The servlet on the UICC communicates with the
off-card entities via HTTP and in the same way
there are two kinds of HTTP:HTTP requests and
HTTP responses. Currently, most UICC-based
applications are developed as the form of applets.

In the view of hardware characteristics of
UICC, the current UICC card usually consists of
16 or 32 bit CPU, CCP (Crypto Co-Processor),
ROM, 5KB RAM, 256KB EEPROM and ISO
9600bps I/O circuits. This kind of UICC card had
been already commercialized and widely utilized
globally. These days, due to the brilliant enhance-
ment of IC technologies, the UICC performance is
evolving to the level of the mobile terminals. These
UICC cards support 32-bit CPU and enhanced
CCP to improve the cryptographic processing
capabilities. It also utilizes tens kilobytes of RAM,

hundreds kilobytes of NOR flash and megabytes
or gigabytes of NAND flash to enlarge the storage
capacities. Due to the enlargement of capacity of
UICC, the dimension of stored data in the UICC
also increases drastically. To exchanges the large
dimension of data, the high-speed interface such
as 1.0 MBps IC-USB between UICC card and the
phones is facilitated.

With a respect to the UICC-based security ser-
vice, three memories, EEPROM, NOR flash and
NAND flash should be carefully considered since
the softwares for security services such as applet
and servlet are installed in these areas. Therefore,
lack of those memories yields the incapability
of loading and installing more services. Figure
1 depicts the hardware architecture of two kinds
of UICC mentioned above.

UICC-based security services such as the
transport service, the debit card service, etc. usu-
ally require the contactless interface between the
off-card entities where the UICC is inserted and
the RF readers such as ATMs and so forth. For
these contactless use cases, the NFC (Near Field
Communication) technology is defined as the
global standard. The characteristics of this con-
tactless technology can be defined as the ETSI

Figure 1. The Hardware Architecture of UICCs

176

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

specifications and there also exist the test speci-
fication of this technology. Physically, only the
contact 6 of the UICC is used to communicate
with the NFC controller chip embedded in the
mobile terminals. The logical communication
protocols for the NFC technologies can be catego-
rized as the SWP (Single Wire Protocol) and the
HCI (Host Controller Interface). The SWP can
be the physical and the data link layer protocol,
which deal with the framing, the error manage-
ment and flow control. Furthermore, the SWP
supports the SHDLC (Simplified High Level Data
Link Control), which a simplified version of ISO’s
High-level Data Link Control (HDLC ISO/IEC
13239) specification responsible for the error-free
transmission of data between the UICC and the
NFC controller chip on the mobile terminal. The
HCI is a logical interface that enables contactless
applications hosted on the UICC and supports the
configuration where the one host is embedded in
the UICC which is connected to the NFC control-
ler chip. The HCI deals with the packet routing
and message communications required for the
NFC session initialization with the necessary
configurations, the NFC transaction and so forth.

Basic of UICC-Based
Security Services

We explain the basic concept to provide the UICC-
based security services.

Mostly, to provide the security services based
on the UICC, implementing the software such as
applet or servlet based on the APIs provided by
UICC platform (e.g. Java Card Platform, Global-
Platform, etc.) is mandatory as explained earlier.

Applet is a small application without UI (User
Interface) that performs some specific tasks based
on the UICC or a state machine which processes
only incoming command requests and responds
by sending data or response status words back to
the off-card entities via mobile terminal. Servlet
is a small web application that performs some
tasks and also displays the HTTP-based UI to

client (e.g. mobile terminals). The servlet can be
implemented only in the SCWS-supported UICC,
which means the small web server is embedded
in the UICC. Therefore, UICC operates as a web
server against to the mobile terminals which imple-
ment HTTP-based client such as web browser.

Comparing between applet and servlet, cur-
rently applet can be considered to be more secure
and proper for UICC-based security services since
the data communication between applet on UICC
and mobile terminal is based on APDU format
difficult to understand compared to the HTTP
(servlet) and secured by SCP (Secure Channel
Protocol) defined in GlobalPlatform, the standard
for secure card management. However, in the case
of servlet, it’s practically difficult to support the
HTTPS (HTTP over TLS/SSL) between servlet
on UICC and mobile terminal even though the
SCWS standard enforces to support it due to the
shortage of RAM of UICC (even enhanced UICC).

Moreover, the UICC-based security services
usually require the UICC to process some specific
cryptography operations and store the necessary
data securely, not to the UI. For these requirements,
servlets may not be essential for the UICC-based
security services.

Therefore, from now on, we only mentioned
about the applet for UICC-based security services.

By communicating with off-card entities such
as service servers or infra (such as ATM) via mobile
terminals, the applet installed on UICC performs
necessary operations for security services such as
calculating some cryptographic algorithm about
input parameters from outside of the UICC, stor-
ing the credential data, etc. The operation result
of applet can be inter-worked to the outside of
the UICC via mobile terminals. Figure 2 presents
the basic flow of UICC-based security services.

Basic of UICC Platforms

To implement the applets for UICC-based security
services, UICC should support the platforms which

177

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

let the applet developers utilize the functionalities
of UICCs, and manage the applets and UICCs.

The de-facto standard of UICC platforms are
Java Card Platform for providing the functional-
ities to the applets and GlobalPlatform for securely
managing the UICC and its installing applets.

Java Card Platform is a smart card operat-
ing system which includes Java Card Runtime
Environment, Java Card Virtual Machine and
APIs. This platform provides lots of useful APIs
required to develop the applet for UICC-based
security services such as cryptographic algorithms.
Furthermore, this platform supports the code and
context isolation for security as explained later.
This feature acting as firewall among applets can
prohibit applets from accessing the resources of
other applets, except for the case when the applet
implements the special interface named by SIO
(Shareable Interface Object). Currently, version
2.2.x is widely utilized and version 3.0, which
includes SCWS and other J2ME-level features, is
planning to be commercialized in the near future.

GlobalPlatform is a secure, dynamic card
and application management system that defines
card components, command sets, transaction se-
quences and interfaces that are hardware-neutral,
operating system neutral, vendor-neutral and
application independent. This platform provides
the method to manage the UICC and the installed
software such as applet and servlet. Speaking of
GlobalPlatform, SD (Security Domain) is a key
component. SDs act as the on-card representa-
tives of off-card authorities such as card issuer,

application providers, etc. ISD (Issuer Security
Domain), on-card representative of card issuer
(usually mobile operator in the case of UICC),
is defined and installed onto the UICC, which
can manage the SSDs (Supplementary Security
Domain), on-card representative of application
providers, with them actual UICC-based softwares
interact. SDs support security services such as key
handling, encryption, decryption, digital signature
generation and verification for the applications.
Each SD is established on behalf of a Card Issuer,
an Application Provider or a Controlling Author-
ity when these off-card entities require the use of
keys that are completely isolated from each other.

Then, we’ll briefly explain about the processes
of managing the UICC applications. First of all,
the systems of card issuer authenticate with the
card using the key for ISD and then try to install
the SSD for one specific application provider
with the pre-shared key for that SSD. The UICC
application developed by the application provider
will be installed by the systems of card issuer and
then the application and SSD are associated by
the extradition process. Then, application provider
utilizes the key for SSD to manage its own UICC
application. If the UICC application does not
necessitate the SSD for some business reasons,
the installation of SSD can be omitted.

Security Characteristics of UICC

Speaking of the security features, the UICC is the
ideal solution for the mobile services.

Figure 2. The Basic Flow of UICC-based Security Services

178

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

First, the UICC possesses the hardware-based
CCP, the special-purpose hardware built in the
UICC to provide various kinds of cryptographic
algorithms such as RSA, ECC, DH, AES, DES,
etc. Even though it’s tiny size, the performance
of CCP is fully fast enough for providing the se-
cure FMC services. We referred to the data sheet
of one IC chip vendor for the data of UICC. We
implemented the sample applet to measure the
performance of UICC for each cryptographic
algorithm. The Table 1 depicts the result of our
experiments. Each crypto algorithm is processed
against one basic block. In the case of RSA key
generation for 1024-bit and 2048-bit, experiments
are performed 100 times and the results of them
are averaged.

Second, the hardware of UICC supports the
resistance to various side channel attacks such as
timing attack, power monitoring attack (Simple
Power Analysis, Differential Power Analysis),
and so forth. Most of UICCs implement the tech-
nologies such as various sensors to detect the
trials of side channel attacks, internal clock and
variation of it to resist to the timing attack, etc.

Third, the UICC has the inherent features
of the secure memory. All entities such as OS,

serial interfaces, hardware-based firewall, etc.
in the UICC are engaged in strictly securing the
memory, the messages via the I/O circuits, etc.
Furthermore, the demanders request the vendors
to make their products be internationally certified
to the security of the hardware components, the
memory management unit (MMU), the secure
crypto libraries, etc. The most commonly used cer-
tification standard is the CC, this is abbreviated as
the Common Criteria for Information Technology
Security Evaluation. The most of UICC products
have been evaluated at more than EAL4+ level.

Fourth, most UICCs implement Java Card
Platform to provide the various services based on
itself. The basic principle of Java Card Platform
includes the context isolation and code isolation,
which means that the platform supports firewall
among all softwares installed upon UICC. Thus,
sharing the resource or information among applets
is impossible in the UICC except for the Shareable
Interface Object, specially defined in Java Card
Platform for sharing information among applets.
Any malicious applet or other softwares cannot
access the information of which legitimate applets.

Fifth, UICC supports the secure remote admin-
istration methods by GlobalPlatform for issuers

Table 1. Cryptographic Performance of UICC

Cryptographic Algorithm n-bit key (or block) Performance

RSA key generation 1024 2.5 s

RSA key generation 2048 15 s

SHA-1 / SHA256 / MD5 - 1 ms / 2 ms / 1 ms

AES encrypt / decrypt 256 8 ms / 8 ms

SEED encrypt / decrypt 128 3 ms / 4 ms

DES encrypt / decrypt 64 3 ms / 3 ms

3DES encrypt / decrypt 128 4 ms / 3 ms

3DES encrypt / decrypt 192 5 ms / 4 ms

RSA CRT sign / verify 1024 199 ms / 8 ms

RSA non-CRT sing / verify 1024 277 ms / 9 ms

RSA CRT sign / verify 2048 1110 ms / 21 ms

RSA non-CRT sign / verify 2048 1925 ms / 21 ms

179

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

such as mobile operators. The GlobalPlatform
defines the secure UICC management protocol
between UICC and off-card entity such as mobile
terminals, administration servers (SCMS – Smart
Card Management System), etc. Currently, Glo-
balPlatform defines four SCPs depending on the
applied security between UICC and the off-card
entity ; SCP ‘01’ (deprecated) – DES, SCP ‘02’
– 3DES, SCP ‘10’ – PKI and SCP ‘03’ – AES

Related Works

Now, we present some related works about UICC-
based security. Actually, there were lots of trials
conducted by smart card vendors to utilize smart
cards for security purposes. For example, DRM
agents on smart cards and on-card key genera-
tion for PKI were developed and evaluated as the
proof-of-concept; however, due to the resource-
constraints of the former smart cards, it looked
quite impossible to commercialize.

Yet, with improvement of hardware and soft-
ware technologies of the smart cards, these vendors
are now trying to make the trials be feasible. Tual,
Couchard and Sourgen (2005) mention about the
high-speed interface with devices and its possible
use cases such as SIM-based DRM and condi-
tional access in the field of the mobile pay TV or
home networks. Handschuh and Trichina (2007)
examine the security issues such as memory in-
teractions, secure card personalization techniques,
secure memory accesses of high-density cards,
which have hundreds of megabytes of non vola-
tile flash memory and high-speed interface (e.g.
USB and MMC) with devices and other enhanced
components. Trichina, Hyppönen and Hassinen
(2007), Badra and Urien (2004), and Zheng, He,
Wang and Tang (2005) introduce the security ap-
plications of the smart cards in the fields of DRM,
PKI and TLS/SSL.

Till now, there has been several works about
the security frameworks onto the mobile ter-

minals. ESTI has been working on the USSM
(UICC Security Service Module) as TS 102.266
since the release of stage 1 documents in 2006.
The basic concept of this work is based on the
GlobalPlatform to provide the security services
such as PKI operations, storing security keys, data
encryption/decryption, etc. to UICC applications
via APIs. This work is in the progress of stage 2
and currently presents only the conceptualized
architectures.

The mobile OS vendors usually implement
the security functionalities and make them as
APIs into their own products such as Android
(Google), Windows Mobile (Microsoft), Symbian
(Nokia), etc. These products usually provide only
the fundamental crypto algorithms and some
commonly used security protocols such as TLS/
SSL, PKCS series, etc. To satisfy all the security
requirements for the mobile operators, additional
implementation should be accompanied to provide
the secure services to the customers. Also, when
the customers change their phones, all security
implementations should be re-installed on their
new phones or can be impossible to be installed
again due to the differences in the type of OS,
the version, the supported crypto algorithms, etc.

These days, TPM (Trusted Platform Module)
has been introduced to enhance the security of
mobile terminals. TPM usually refers to the
name of specifications and the implementation
of these specifications. This technology usually
implements the primitive algorithms such as AES,
SHA-1, RSA, etc. and the storages for the security
keys. The TPM can be considered as the technology
for chip such as the computer motherboards, the
computer graphic boards, one component of the
mobile terminals, etc. Since TPM only implements
the fundamental crypto algorithms, additional
implementations also should be completed in the
upper layer of the mobile terminal such as the
platform or application layer. The same obstacles
to the mobile OS can be found in the case of TPM.

180

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

MAIN FOCUS OF THE CHAPTER

Issues, Controversies, Problems

As mentioned earlier, with the spread of pervasive
FMC environments, the importance of security to
provide the FMC services on mobile terminals is
considered to be a crucial factor to mobile opera-
tors, service providers, etc. However, due to the
inevitable constraints of mobile terminals, it’s
infeasible to meet all security requirements for
FMC services.

Nowadays, UICC had been deemed to be the
only solution to address the security issues of the
mobile terminals due to the brilliant advances in
technologies of the smartcards. Moreover, UICC
has lots of benefits compared to the mobile ter-
minals as discussed previously.

Currently, some security services are presented
based on UICC such as debit card service, stock
service, network authentication service, transport
service and so forth. We further extend the possible
practices of UICC in the field of secure pervasive
FMC services by proposing a novel service secu-
rity framework designed and developed for UICC.

We propose a novel approach to provide a
secure service infrastructure in the side of mo-
bile terminal, the UICC-based Service Security
Framework (USF). We designed the USF as the
core of personal security infrastructure for the
FMC environments to provide the integrated
personal security infrastructure and the security
of the FMC services. The USF can be utilized
to authenticate users, preserve the privacy and
personal information, and protect the network in-
frastructures and business models of the telephony
companies. The current version of USF supports
the security functionalities such as PKI, DRM,
TLS/SSL and Anti-Virus most likely utilized in
the FMC services.

Current Practices of UICC-
Based Security Services

In this section, we present the current practices
of UICC-based security services already com-
mercialized in the Republic of Korea.

Currently, UICC-based security services in-
clude the debit card service, credit card service,
stock service, transport service and so forth.
Most of these services utilize the UICC as the
secure storage of personal information such as
bank account number, stock account (ID/PW),
etc. and calculator of crypto algorithms about
stored data and incoming / outgoing data from
off-card entities. For these UICC-based security
services, the applets are developed using the Java
Card Platform, and installed and issued securely
by SCP defined in GlobalPlatform. UICC is also
utilized to provide the network authentication
service such as WiFi, WiBro and I-WLAN (Inter-
networking WLAN) by facilitating the USIM and
SIM applications for GSM and UMTS network
authentication. We will describe two UICC-base
security services in detail to explain more about
currently available services.

UICC-Based Debit Card Service

UICC-based debit card service is to make the mo-
bile terminal behave like debit card. The mobile
terminal which possesses the UICC where the
debit card applet is installed is operating as the
debit card. Thus, customer can touch the mobile
terminal on ATM via contactless interface such as
ISO/IEC 14443 Type A technology based on NFC
interface to deposit or withdraw the money from
user’s bank account. The information is protected
by PIN, which is entered by user when the service
is activated in the bank and transferring that to ATM
with encryption using the symmetric key, whose
master key is shared during the installation of the
applet and session key is generated on demand.

181

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

For this, applet implements the functionalities
to store the bank account number and PIN safely
and perform security protocol between ATM for
the safety of the information exchanges. Currently,
in the Republic of Korea, this service has been
commercialized since 2008. This service named
by “UbiTouch” provided by KFTC (KOREA
FINANCIAL TELECOMMUNICATIONS &
CLEARINGS INSTITUTE) can also support to
store the one hundred bank account information
of multiple banks. Figure 3 depicts the concep-
tualized flow of UICC-based debit card service.

The service scenario is as follows: First, the
user interacts with the ATM to enter the UICC-
based debit card service mode where RF reader
attached to the ATM can be activated. Then, the
user touches his/her own mobile terminal to the
RF reader of the ATM. The preferred bank account
number configured by the mobile terminal previ-
ously is transferred to the ATM with encryption.
The encrypted bank account number is recognized
by the banking system and the user can perform
the rest of his/her transactions such as deposit the
money, withdraw the money, etc. In the middle
of the transaction, there should be the user au-
thentication by entering the PIN on the ATM.

UICC-Based Stock Service

UICC-based stock service is to store the sensitive
user account information on the UICC securely.
The information is encrypted and access to that
information is protected by PIN, which is also
entered by user when the service is activated in the
stock office. When user wants to use the UICC-
based stock service, he (she) can launch the ap-
plication installed on the mobile terminals. Then,
the application tries to access the PIN-protected
stock account stored on the UICC by sending the
specific APDUs. The application needs to display
the input UI for acquiring the PIN from user. After
user inputs the PIN and it is matched with the
one stored in UICC, the stock account data can
be utilized by the application to authenticate the
user to the stock service servers and provide the
stock services. Figure 4 depicts the conceptualized
flow of UICC-based debit card service.

UICC-Based Network Authentication
Service

UICC-based network authentication service is
widely used in Republic of Korea, currently. The
mechanisms implemented in the USIM applica-

Figure 3. The Conceptualized flow of UICC-based Debit Card Service

182

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

tion for 3G network authentication are reused to
authenticate the users in the WiFi, WiBro and
I-WLAN environments. The method to authen-
ticate users using the USIM application is EAP-
AKA defined in RFC4187, the abbreviation for
Extensible Authentication Protocol Method for
UMTS Authentication and Key Agreement. That
is, the EAP-AKA is an Extensible Authentication
Protocol (EAP) mechanism for authentication
and session key distribution using the Universal
Mobile Telecommunications System (UMTS)
Subscriber Identity Module (USIM).

Then, we’d like to explain more detail about
EAP and AKA, separately.

EAP is a kind of an authentication framework
frequently used in the wireless networks and de-
fines message formats to provide for the transport
and usage of keying material and parameters
generated by EAP methods. It is defined in RFC
3748, which made RFC 2284 obsolete, and was
updated by RFC 5247.

AKA is a kind of a key agreement protocol,
which is a security protocol, used in 3G networks.
AKA is a challenge-response based mechanism
that uses symmetric cryptography. AKA utilizes
the MILENAGE algorithm supported by UICC,
whose core is based on the AES algorithm, the
pre-shared key K stored in the UICC, the 128-bit
key guaranteeing the uniqueness for each UICC
and OP (Operator Variant Algorithm Configuration
Field) stored in the UICC, the input parameter
used by operators to change the authentication
algorithms in an operator-specific manner, to

compute the necessary values inside the UICC
for user authentication.

With the features mentioned above, EAP-AKA
provides the network authentication service using
the secure UICC as follows: First, the Authentica-
tor, usually AAA (Authentication, Authorization
and Accounting) server, sends the EAP-Request /
Identity message to the mobile terminal (UICC).
Receiving this message, the mobile terminal
sends the EAP-Response / Identity message by
generating NAI (Network Access Identifier)
from the IMSI (International Mobile Subscriber
Identity) stored in the UICC or other values such
as pseudonym ID and fast re-authentication ID
when this mobile terminal had already finished the
EAP-AKA procedure before. Then, the Authen-
ticator retrieves the required security parameters
to process the AKA against the received identity
from the mobile terminal, and executes the AKA
algorithms to generate the RAND and the AUTN.
The Authenticator sends the EAP-Request /
AKA-Challenge with the parameters AT_RAND,
AT_AUTN and AT_MAC using the values from
the results of the AKA algorithms. The mobile
terminal (UICC) also executes the AKA algo-
rithms, verifies the received AUTN and MAC,
and then derives the RES and the session key. The
mobile terminal (UICC) sends the EAP-Response /
AKA-Challenge with the parameters AT_RES and
AT_MAC using the values from the results of the
AKA algorithms. The Authenticator then checks
whether the given RES and MAC is correct or not
and finally sends the EAP-Success or EAP-Failure

Figure 4. The Conceptualized flow of UICC-based Stock Service

183

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

depending on the result of the verification. If the
EAP-AKA procedures are successful, then the
Authenticator and the mobile terminal (UICC)
can communicate each other securely using the
session key generated by the EAP-AKA.

Currently, the UICC-based network authentica-
tion service using the EAP-AKA is commercial-
ized in the Republic of Korea for WiFi, WiBro
and I-WLAN.

UICC-Based Service
Security Framework

As explained earlier, the current UICCs are uti-
lized as simple information storages and calcula-
tors of crypto algorithms. However, the current
UICCs suffer from lack of memories utilized to
load and install the applets and don’t implement
the PKI security functionalities such as RSA key
generation, some digital signature algorithms and
so forth, which can be utilized to extend the UICC
usages even though those APIs are defined in the
Java Card Platform standards due to the lack of
memories.

Nowadays, the UICCs which include much
more memories and enhanced performance are
introduced to the world and ready to be com-
mercialized in the near future. We would like to
explain a novel methodology to provide a secure
service infrastructure in the mobile terminal, the
UICC-based Service Security Framework (USF)
based on these enhanced UICCs.

We designed the USF as the core of security
infrastructure for the FMC environments to pro-
vide the integrated security infrastructure and
the security of the FMC services. The USF can
be utilized to authenticate users, preserve pri-
vacy and personal information, and protect the
network infrastructures and business models of
the telephony companies. The current version of
USF supports the security functionalities such as
PKI, DRM, TLS/SSL and Anti-Virus most likely
utilized in the FMC services.

We present the architecture of the USF. The
overall architecture of the USF is depicted in Figure
5. The USF mainly consists of three components;
USF APIs, USF Engines and PAL (stands for
Platform Abstract Layer).

Figure 5. The Overall Architecture of UICC-based Service Security Framework (USF)

184

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

The USF is being developed and will be in-
stalled on top of the Java Card Platform (JCP).
The USF Engines are the core of the USF. Using
all JCP APIs, the USF Engines implement DRM,
PKI, Secure Communication (SC) and Anti-Virus
Engines. Each Engine is used for processing the
cryptographic operations such as asymmetric and
symmetric ciphers, hash functions, etc. and the
related operations like XML parsing, ASN.1
encoding/decoding, etc. required for performing
the client-side operations of the security protocols.
The current version of DRM, PKI and SC engines
supports OMA DRM 2.0 specifications, PKCS
series of RSA Laboratory and TLS v1.1, respec-
tively. The Anti-Virus Engine is under designing
to protect mobile platforms against known mali-
cious codes.

The PAL is utilized to make USF independent
of the base platforms. This layer implements in-
terfaces between USF and the base platform so
as not to change the USF Engines even though
the base platform is totally changed or updated.
The cryptographic algorithms and the wrapper
classes of primitives necessary for processing of
the USF Engines but not supported in the base
platform should be implemented in this layer. Due
to this feature, even thought the USF is currently
implemented on top of the JCP, it can be installed
on other Java-based mobile platforms by changing
the PAL accordingly.

The USF provides the developers with the
USF APIs to implement UICC applications us-
ing the USF Engines. All interfaces and classes
of the USF Engines are currently designed to be
accessible from the UICC applications via the
USF APIs. The mobile service applications usu-
ally can access the UICC via the interface APIs
supported by terminal OS. Then, these applica-
tions can access applets and servlets developed
based on the USF via these APIs for requests to
and responses from the USF.

The USF Engines, the core of USF, can be
accessible from mobile service applications via
applets or servlets which implement using USF

APIs. This external communication between UICC
and terminal can be achieved via interfaces, ISO
or USB interface and interface APIs supported by
terminal OS, respectively. The USF Engines are
interfacing only with the PAL for processing the
incoming requests from the UICC applications
internally. The interworking among USF Engines
can also happen in some cases. For instance, when
the RI (Right Issuer)’s certificate is verified for
DRM-based UICC applications, the DRM Engine
can interwork with the PKI Engine for PKI-related
operations. In the architecture of the USF Engines,
the PKI Engine is the base engine since all other
security operations of DRM and SC Engines need
to use the operations of the PKI Engine. However,
the Anti-Virus Engine may not be interworking
with other Engines.

For management of the USF, the interworking
with USF Management Infrastructures (UMI),
parts of FMC service infrastructures should be
implemented to update virus signatures and man-
age certificates and DRM ROs (Right Objects) as
depicted in Figure 6.

The USF Engines usually consist of a number
of functional handlers, modules and parsers for
the object oriented implementations and the ease
of the management.

The PKI Engine provides the functionalities
related to the certificates. The PKCS series
operations, the generation and verification of
the digital signatures, the management of the
certificates and other PKI-related operations can
be performed by this Engine. It mainly consists
of ASN.1 handler, X.509 handler, CMP handler,
OCSP handler and PKCS modules. By facilitat-
ing the handlers of ASN.1 and X.509, parsing of
the certificate is performed. The PKCS modules
are implemented to support the PKCS #1, #5, #8,
#10 and #12. The CMP and OCSP handlers are
related to processing of the protocols for com-
municating with the management servers. The
role of the PKI Engine for these two protocols is
to perform only the security-related operations.
Therefore, the CMP handler is implemented to

185

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

support the security operations for the certificate
management defined in to generate, revoke and
renew the digital certificates. The OCSP handler
deals with the security operations for processing
the OCSP messages.

The DRM Engine is implemented to process
the security and other related operations. It mainly
consists of XML parser, DCF (DRM Content
Format) handler, RO handler and ROAP (Right
Object Acquisition Protocol) handler. The XML
parser and RO handler are used to parse and handle
the RO, and DCF handler is used to encrypt and
decrypt the DCF contents using the operation result
of the RO handler. All other handlers are developed
confirming to the OMA DRM 2.0 specifications.

The SC Engine includes the TLS/SSL feature.
This engine provides the secure end-to-end com-
munications between the UICC-inserted mobile
terminals and the FMC service infrastructures.
As UICC has no communication, this Engine
only performs the cryptographic operations and
handling of the incoming/outgoing messages of
TLS/SSL.

The Anti-Virus Engine performs the scanning
and curing of malicious codes such as viruses,
Trojan horses, backdoors, etc. found in the files
stored in the mobile terminals and UICCs. It
mainly consists of the Depository of Signatures,
the Depository of Policy, the Scanning module
and the Curing module. Two modules are working
together to find the malicious codes by comparing
the contents of a file with a dictionary of virus
signatures stored in the Depository of Signatures
and to remove or heal them based on the Depository
of Policy. To sustain two up-to-date depositories is
an important factor for managing this Engine. For
this, OTA (Over-The-Air), remote administration
protocols in OMA SCWS (Smartcard Web Server)
and user’s action via the UI (User Interface) of the
terminal application can be utilized. This Engine
is currently in the step of designing.

The sensitive data for processing the operations
of the USF Engines such as the chain of certificates,
the private keys paired with certificates, the DRM
ROs, etc. should be stored securely in the secure
UICC memory for the strong security and the
enhanced performance of the USF. The security

Figure 6. Interworking among FMC terminal, USF-powered UICC and UMI

186

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

of UICC memory is internationally certified and
storing the sensitive data there can reduce the
number of external I/O processing between the
UICC and the terminal. The details of the secure
file system and the APIs for UICC applications
to access the UICC memory are beyond the scope
of this chapter.

Implementation

We discuss the implementation of the USF. The
USF was initially implemented as the library
package of JCP 2.2.2 using the Java Card Devel-
opment Kit 2.2.2 and tested on the PC emulation
environment using JCWDE. Currently, the USF is
installed on top of the JCP 3.0 and GlobalPlatform
2.2.1. Since not all required cryptographic APIs
are implemented in currently available UICCs, we
requested the vendors to support them.

The basic process to implement the library
package is to implement the source codes consist-
ing of several Java files and one build.xml file,
build them using Apache Ant, and install it into
the UICC.

We utilized the Eclipse IDE, SUN JDK 1.6.0,
Java Card 3.0 libraries and the UICC vendor-
specific tools for loading and installing USF into
the UICC. Java Card 3.0 libraries are the kind of
JAR file which contains all supported APIs defined
in JCP 3.0. By including it in the Eclipse IDE, we
can facilitate all the APIs supported by Java Card
3.0. After completing the USF implementation, we
utilized the Apache Ant to build the USF source
codes and build.xml file containing the invocation
of the vendor-specific tool to convert the USF Jar
files into the binary.

After this, we tried to install the USF binaries
into the UICC by the vendor-specific tool to
perform the authentication between the UICC
and the development environment based on the
GlobalPlatform. To install the software modules
into the UICC, this authentication should be
mandatory to manage the UICC securely. For
this, GlobalPlatform specification defines the

SCP for authentication and establishment of the
secure session between UICC and off-card entity.

The PAL is implemented to utilize the most
of APIs defined in JCP 3.0. Since JCP 3.0 sup-
ports String class, which is not supported in the
previous JCP, the PAL only needs to invoke it. To
support the parsing function, TLV package should
be provided by JCP. Since JCP 3.0 doesn’t sup-
port RC2, which is required for certificate-related
operations in Korea, the PAL should implement it.

For the PKI Engine, the performance of
KeyPair class, which takes the role of public
key pair generation, is the most important factor
since its functionality is mandatory to issue the
certificate. In the case of 1024-bit RSA key, about
2 seconds are required to generate the key pair.
However, in the case of 2048-bit, the required
seconds increase drastically to about 15 seconds.
In the near future, for strong security, RSA key
pair more than 1024-bit may be necessary. For
this, hardware and software technologies for RSA
key pair generation should be enhanced.

The high-speed interface such as IC-USB
between UICC and terminal might be necessary
for the USF depending on the applications. In the
case of processing the DRM-protected multimedia
files, the high-speed interface should be supported.
However, for the certificate-related operations,
the fundamental ISO interface may be enough
for processing.

For the interoperability among different FMC
service infrastructures, the DRM, PKI and SC
Engines of the USF follow the global and de-facto
standards. In the case of Anti-Virus Engine, all
kinds of malicious codes found in the heteroge-
neous terminals have been considered to be targets
to be scanned and cured since the USF-powered
UICC can be inserted into any mobile terminal
and communicate with any kind of network in-
frastructures.

The layered and object-oriented architectures
of the USF can make it more powerful and flex-
ible. According to the use cases of the USF and
the available memory capacity of the UICC, the

187

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

USF Engines can be installed alternatively except
for the PKI Engine, the base engine.

The USF can provide lots of benefits to the
telephony companies, the customers and the ap-
plication developers. The USF brings benefits
to the telephony companies by supporting the
integrated service security framework controlled
and managed by themselves, providing their cus-
tomers with the highly secure, efficient, durable
and high-quality FMC services, reducing the
time and cost for development and verification of
the security logics and developing new business
models and services in the FMC environments.
The customers can enjoy the secure FMC services,
ensure the security of personal information stored
and managed in the terminals and preserve their
own sensitive information and the security-related
features without re-downloading them after chang-
ing the terminals. Finally, the developers can
concentrate on developing the products without
the consideration of security features.

Recently, we are developing the PKI feature
of the USF for commercialization in 2011. We
are currently developing the cryptographic
token applets on the basis of the USF; instead
of implementing full features of the USF, the
PKI Engine and the part of the PAL for the PKI
Engine are now being implemented as the form
of the applet since the PKI feature is essential in
Republic of Korea for the smart phone banking,
stock and other finance services. To interface with
the smart phone, the PKCS #11 library (Crypto-
graphic Token Interface Standard) is also being
implemented for the Google Android platform.
The PKCS #11, the one of the PKCS series of
RSA Laboratory, specifies an API called Cryptoki
to devices which hold cryptographic information
and perform cryptographic functions. With these
implementation, the cryptographic token applet
and the PKCS #11 library, the public certificates
can be issued by the UICC and also be utilized for
any purpose which requires the certificates such
as banking, stock, user authentication and so forth.

Practices of USF in the
Pervasive FMC

We describe the possible practices using the USF
in the pervasive FMC environments.

Integrated Personal Authentication

All kinds of services usually start from the user
authentications, which also provide the function
of key agreement among participating entities.
The Secure Channel Protocols also require the
user authentications along with the key agree-
ments, for example, TLS/SSL, PSK-TLS, IPSec,
etc. Therefore, the user authentication is not only
the start of the services but also the crucial and
important factor of the security. Especially in the
pervasive FMC environments, the integrated and
strong user authentication should be inevitable
since lots of the security threats are found in the
fixed and mobile networks.

The USF can be facilitated as the integrated
personal authentication in the pervasive FMC en-
vironments, as shown in Figure 7, since it embarks
the PKI Engine. The mobile terminals loaded with
the USF-powered UICC can be securely authenti-
cated using the public or private certificates with
all kinds of service infrastructures of banking,
stock, payment, DRM, IPTV, VoIP, etc. The UICC
applications based on the PKI Engine (and SC
Engine in the case of the secure communications)
for each service infrastructure can be installed on
UICC to handle the user authentications.

Multimedia Contents Sharing

The customer, who pays for the multimedia
contents via the mobile terminal, usually wants
to access them in other devices such as personal
computers, IPTV set-top box, etc. In the pervasive
FMC environments, this kind of customer require-
ments can increase drastically. For this, somebody
can try to copy the downloaded contents to other

188

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

devices. Accordingly, the content provider may
be afraid of illegal distribution of their products.

The USF can be the solution to address above
issue since it supports the DRM Engine interwork-
ing with PKI Engine. Suppose that the customer
buys content of one movie via the mobile terminal.
When returning home or visiting friends’ places,
the customer may want to see this movie content
with family or friends via the IPTV. The movie con-
tent should be protected by the DRM and be played
by the mobile terminals where the USF-powered
UICC is inserted so that illegal distributions can
be blocked. If the customer would like to play that
content in other devices, the corresponding DRM
RO stored in UICC could be passed securely to
the server in charge of verifying the ownership of
the paid contents. For this secure communication,
the SC Engine can be involved. After completion
of the verification, the server will transfer same

content for IPTV with the combined RO to the
IPTV set-top box. Then, the set-top box plays the
movie content using the embedded DRM mod-
ule. The example of the USF-based multimedia
contents shared among heterogeneous devices is
shown in Figure 8. This figure shows two possible
scenarios of the USF-based multimedia contents
shared among FMC devices.

Anti-Virus Solution

In the pervasive FMC environments, the terminal
can be connected to various kinds of networks
simultaneously. This means that the possibility
that the terminal is infected by various malicious
codes can increase drastically.

The USF supports the Anti-Virus Engine as
shown in Figure 9, which scans and cures the
malicious codes. The viruses which infect the files

Figure 7. The USF-based Integrated Personal Authentication in the Pervasive FMC Environments

189

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

on the terminal itself can steal personal sensitive
information in the terminal memory, disable the
normal operations of the terminal and ruin the
networks by unlimited communication requests
such as SMS. The terminal can be the path for
the viruses to invade the network devices even
though they cannot attack the terminal. Therefore,
the target viruses should be ones that can attack
not only the information stored in the terminal but
also the network devices in the FMC networks.
Any file or any traffic can be transferred to the
USF-powered UICC for the scanning and curing.

Finance Solution for Smart Phone

In the pervasive FMC environments, any terminal
can be utilized as the device for finance services
such as banking, stock, and so forth. Especially,
the smart phone, which can be considered as the
small computer supporting lots of features, can

be utilized as the FMC terminal for the finance
services.

In Republic of Korea, the public certificates,
the authenticity of it can be guaranteed by the
government, should be utilized for the user
authentication, the digital signature for each fi-
nance transaction and so forth. According to the
guidelines for finance services of smart phones
from the public organization in Republic of
Korea, the smart phone should utilize the public
certificates for the purpose mentioned earlier. The
UICC supporting the USF can be utilized as the
secure storage of the public certificates and also
the cryptographic token for generating the digital
signature using the public certificate stored in the
UICC. Furthermore, the UICC can be facilitated
for issuing the public certificates by supporting
the RSA key generation and other required func-
tionalities such as CMP, etc. With the help of the
USF, the secure finance service environment for
the smart phones can be achieved.

Figure 8. The Example of the USF-based Multimedia Contents Sharing among FMC devices

190

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

FUTURE RESEARCH DIRECTIONS

The current practices presented in this chapter
require only the currently commercialized UICCs
since they require only the simple cryptographic
operations and small amount of memories. How-
ever, the USF necessitates the high-end UICC,
which implements lots of cutting-edge technolo-
gies and in the near future, maybe within the year
2010, this kind of the UICC which can support
the USF will be commercialized. Nevertheless,
the UICC should be more advanced to support all
functionalities of the USF fully; the DRM Engine
may require more enhanced UICCs with respect
to the hardware features such as the RAM for
streaming the DRM contents or playing the DRM

contents in the low latency, the crypto co-process
which supports more cryptographic algorithms for
enhanced and efficient encryption and decryption
and faster interface technology such as USB 2.0
Full Speed since more efficient DRM operations
in the UICC might need more faster interface
speed between the UICC and the mobile terminal.

Furthermore, the secure management system
for UICC-based security services should be
evolved further for completely secure UICC-based
security services. For secure UICC management,
the method to share the initial SSD key between
the UICC issuer and the partners securely, the
secure key management scheme for the SSD
and more secure SCP should be enhanced and
considered thoroughly.

Figure 9. The USF-based Anti-Virus Solution in the Pervasive FMC Environments

191

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

Therefore, the hardware technologies and
management system for UICC will have to un-
dergo significant evolutions in order to provide
the completely secure UICC-based services to
the customers. Key areas of interest include
developing the secure NAND flash embedded
on UICC, IC-USB or further enhanced interface
technologies between UICC and mobile terminal
and faster on-card public key generation (such as
2048-bit RSA key pairs, etc.), and designing and
developing the management systems for UICC
and UICC-based security services (such as key
management, remote admin for SCWS, etc.)

CONCLUSION

This chapter presents the basic and inherent se-
curity characteristics of the UICC and the current
practices for the UICC-based security services
such as banking (debit card software embedded
on the UICC), stock (customer account stored on
the UICC), network authentication (EAP-AKA
based user authentication for WiFi, WiBro and
I-WLAN) and so forth.

Moreover, we explained a novel and promising
methodology of the UICC-based service secu-
rity framework (USF) to provide the integrated
security infrastructure and the security services
in the pervasive FMC environments. The main
role of the USF is to perform the cryptographic
operations of the security protocols required for
the FMC services in the client-side. The USF can
support the DRM, PKI, SC and Anti-Virus func-
tions as defined in de-factor and global standards
for interoperability among different kinds of FMC
service infrastructures. Using this methodology,
the UICC-based HSM, the integrated personal
authentication, the multimedia contents sharing,
the anti-virus solution and the secure finance
services for the smart phones can be provided in
the pervasive FMC environments.

REFERENCES

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., &
Levkowetz, H. (Eds.). (2004). Extensible authen-
tication protocol (EAP) – RFC 3748. Retrieved
September 29, 2010, from http://www.ietf.org/
rfc/ rfc3748.txt

Aboba, B., Simon, D., & Eronen, P. (2008).
Extensible authentication protocol (EAP) key
management framework – RFC 5247. Retrieved
September 29, 2010, from http://www.ietf.org/
rfc/ rfc5247.txt

Adams, C., & Farrell, S. Kause., & Mononen, T.
(2005). Internet X.509 public key infrastructure
certificate management protocol (CMP) – RFC
4210. Retrieved March 29, 2010, from http://
www.ietf.org/ rfc/ rfc4210.txt

Arkko, J., & Haverinen, H. (2006). Extensible
authentication protocol method for 3rd generation
authentication and key agreement (EAP-AKA) –
RFC 4187. Retrieved September 29, 2010, from
http://www.ietf.org/ rfc/ rfc4187.txt

Badra, M., & Urien, P. (2004). Toward SSL inte-
gration in SIM smartcards (pp. 889–893). IEEE
WCNC.

Blunk, L., & Vollbrecht, J. (1998). PPP exten-
sible authentication protocol (EAP) – RFC 2284.
Retrieved September 29, 2010, from http://www.
ietf.org/ rfc/ rfc2284.txt

Dierks, T., & Rescorla, E. (2006). The transport
layer security (TLS) protocol v1.1 – RFC 4346.
Retrieved March 29, 2010, from http://www.ietf.
org/ rfc/ rfc4346.txt

ETSI. (2006). Smartcards UICC security service
module: Stage 1. (ETSI TS 102 266 V7.1.0).
Retrieved March 29, 2010, from http://pda.etsi.
org/ pda/ queryform.asp

192

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

GlobalPlatform. (2006). GlobalPlatform card
specification v2.2. Retrieved March 29, 2010,
from http://www.globalplatform.org/ specifica-
tionscard.asp

Handschuh, H., & Paillier, P. (1998). Smartcard
crypto co-processors for public key cryptography.
International Conference on Smart Card Research
and Applications (pp. 386-394). Springer-Verlag.

Handschuh, H., & Trichina, E. (2007). High density
smartcards: New security challenges and appli-
cations. Securing Electronic Business Processes:
Highlights of the Information Security Solutions
Europe/SECURE 2007 Conference (pp. 251-259).
Vieweg Wiesbaden.

Jaemin, P., Kyoungtae, K., & Minjeong, K. (2008).
The Aegis: UICC-based security framework. IEEE
FGCN, 2008, 264–269.

Jaemin, P., Yongki, M., & Minjeong, K. (2009).
UICC-based service security framework for
pervasive fixed mobile convergence. Journal of
Internet Technology, 10(5), 505–512.

Laboratories, R. S. A. (n.d.). Public key cryptog-
raphy standards (PKCS) series. Retrieved March
29, 2010, from http://www.rsa.com/ rsalabs/ node.
asp?id=2124

Microsystems, S. U. N. (2006). Java card platform
specification 2.2.2. Retrieved March, 2008, from
http://java.sun.com/ javacard/ specs.html

Microsystems, S. U. N. (2010). Java card platform
specification 3.01. Retrieved March 29, 2010, from
http://java.sun.com/ javacard/ 3.0.1/ specs.jsp

Myers, M., Ankney, R., Malpani, A., Galperin, S.,
& Adams, C. (1999). X.509 Internet public key
infrastructure online certificate status protocol
(OCSP) – RFC 2560. Retrieved March 29, 2010,
from http://www.ietf.org/ rfc/ rfc2560.txt

Open Mobile Alliance. (2008). OMA digital rights
management V2.1. Retrieved March 29, 2010,
from http://www.openmobilealliance.org/ Techni-
cal/ release_program/ drm_v2_1.aspx

Open Mobile Alliance. (2009). OMA smartcard
Web server V1.1. Retrieved March 29, 2010, from
http://www.openmobilealliance.org/ Technical/
release_program/ scws_v1_1.aspx

Patroklos, G. A., Raja, V., Hitesh, T., & Donal, O.
(2004). Performance analysis of cryptographic
protocols on handheld devices. 3rd IEEE Inter-
national Symposium on Network Computing and
Applications (pp. 169-174).

Rankl, W., & Effing, W. (2004). Smart card
handbook (3rd ed.). Wiley.

Trichina, E., Hyppönen, K., & Hassinen, M.
(2007). SIM-enabled open mobile payment system
based on nation-wide PKI. Securing Electronic
Processes: Highlights of the Information Security
Solutions Europe/SECURE 2007 Conference (pp.
355-366). Vieweg Wiesbaden.

Tual, J. P., Couchard, A., & Sourgen, L. (2005).
USB full speed enabled smartcards for consumer
electronics applications (pp. 230–236). IEEE
ISCE.

Yusuke, M., Patrick, S., Kris, T., & Ingrid, V.
(2004). Java cryptography on KVM and its per-
formance and security optimization using HW/
SW co-design techniques. International Confer-
ence on Compilers, Architectures and Synthesis
of Embedded System (pp. 303-311). ACM Press.

Zheng, Y., He, D., Wang, H., & Tang, X. (2005).
Secure DRM scheme for future mobile networks
based on trusted mobile platform (pp. 1164–1167).
IEEE WCNM.

193

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

KEY TERMS AND DEFINITIONS

Anti-Virus: It is usually a software which
is used to prevent, detect, and remove malware,
including computer and mobile terminal viruses,
worms, and trojan horses. Such programs may
also prevent and remove adware, spyware, and
other forms of malware.

API: It is an abbreviation of Application
Programming Interface, which is an interface
implemented by a software program that enables
it to interact with other software. Using API, the
caller such as software or program source can in-
voke the methods supported by the OS, platform,
framework and so forth. An API is implemented
by applications, libraries, and operating systems to
determine their vocabularies and calling conven-
tions, and is used to access their services.

DRM: It is an abbreviation of Digital rights
management, which is a generic term for access
control technologies that can be used by hardware
manufacturers, publishers, copyright holders and
individuals to limit the usage of digital contents
such as software, music, picture, wallpapers, etc.
and devices. The term is used to describe any
technology that inhibits uses of digital content not
desired or intended by the content provider. It can
also refer to restrictions associated with specific
instances of digital works or devices.

FMC: Fixed-Mobile Convergence is an
emerging trend in the form of fixed and mobile
telephony convergence. With sing phone, fixed
and mobile services can be provided such as Voice
Call Continuity.

GlobalPlatform: It is a secure, dynamic card
and application management platform. Card issuer
and application providers can manage their own
applications by using the security domain (SD).
SD is an on-card representative of off-card enti-
ties and provides necessary security services for
UICC applications.

I-WLAN: It is an abbreviation of Internet-
working WLAN, which enable users to use the
3GPP-based services via WLAN environment.

The fundamental concept of this technology is that
the mobile terminals that support I-WLAN first
access the WiFi network and then try to use the
tunneling based on the IKEv2 for IPSec ESP with
PDG (Packet Data Gateway), which is the gateway
to access the 3GPP-based service infrastructures.
After completion of the I-WLAN connection, the
mobile terminal can access the 3GPP-based service
via non 3GPP network (WiFi) and all exchange
data are protected using the IPSec ESP.

Java Card Platform: It is a smart card plat-
form that allows Java-based application (applet
or servlet) to be executed securely. This platform
usually consists of Java Card Runtime Environ-
ment, Java Card Virtual Machine and various APIs
which can be called by UICC-based applications.

NFC: It is an abbreviation of Near Field Com-
munication which is a short-range high frequency
wireless communication technology which en-
ables the exchange of data between devices over
about a 10 centimeter (around 4 inches) distance.
The technology is a simple extension of the ISO/
IEC 14443 proximity-card standard (proximity
card, RFID) that combines the interface of a
smartcard and a reader into a single device. An
NFC device can communicate with both existing
ISO/IEC 14443 smartcards and readers, as well as
with other NFC devices, and is thereby compatible
with existing contactless infrastructure already in
use for public transportation and payment. NFC
is primarily aimed at usage in mobile phones.

PKCS: It is an abbreviation of Public-Key
Cryptography standards devised and published
by RSA Security. These standards include RSA
asymmetric key algorithm and other related
technologies for PKI. PKCS #1 is the RSA Cryp-
tography Standard [RFC 3447] which defines
the mathematical properties and format of RSA
public and private keys (ASN.1-encoded in clear-
text), and the basic algorithms and encoding/
padding schemes for performing RSA encryp-
tion, decryption, and producing and verifying
signatures. PKCS #2 is withdrawn and PKCS #3
is the Diffie-Hellman Key Agreement Standard

194

A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems

which is a cryptographic protocol that allows two
parties that have no prior knowledge of each other
to jointly establish a shared secret key over an
insecure communications channel. PKCS #4 is
withdrawn and PKCS #5 is the Password-based
Encryption Standard [RFC 2898 and PBKDF2].
PKCS #6 is the Extended-Certificate Syntax
Standard Defines extensions to the old v1 X.509
certificate specification. PKCS #7 is the Crypto-
graphic Message Syntax Standard [RFC 2315]
which is used to sign and/or encrypt messages
under a PKI and also for certificate dissemination
(for instance as a response to a PKCS#10 message).
PKCS #8 is the Private-Key Information Syntax
Standard [RFC 5208] which is used to carry private
certificate keypairs (encrypted or unencrypted).
PKCS #9 is the Selected Attribute Types which
defines selected attribute types for use in PKCS
#6 extended certificates, PKCS #7 digitally signed
messages, PKCS #8 private-key information, and
PKCS #10 certificate-signing requests. PKCS
#10 is the Certification Request Standard [RFC
2986] which is the format of messages sent to a
certification authority to request certification of a
public key. PKCS #11 is the Cryptographic Token
Interface (Cryptoki) which is an API defining a
generic interface to cryptographic tokens. PKCS
#12 is the Personal Information Exchange Syntax
Standard which defines a file format commonly
used to store private keys with accompanying
public key certificates, protected with a password-
based symmetric key. PKCS #13 is the Elliptic
Curve Cryptography Standard and PKCS #14 is
the Pseudo-random Number Generation. PKCS
#15 is the Cryptographic Token Information
Format Standard which defines a standard al-
lowing users of cryptographic tokens to identify
themselves to applications, independent of the
application’s Cryptoki implementation (PKCS
#11) or other API.

PKI: It is an abbreviation of Public Key In-
frastructure, which is a set of hardware such as
servers, client devices like mobile terminals, PCs,
etc., software, people, policies and procedures re-
quired to issue, manage, distribute, use, store and
revoke the digital certificates. In cryptography, a
PKI is an arrangement that binds public keys such
as RSA, ECC, etc. with respective user identities
by means of a certificate authority (CA). The user
identity must be unique within each CA domain.
The binding is established through the registra-
tion and issuance process, which, depending on
the level of assurance the binding has, may be
carried out by software at a CA, or under human
supervision. The PKI role that assures this bind-
ing is called the Registration Authority (RA). For
each user, the user identity, the public key, their
binding, validity conditions and other attributes
are made unforgetable in public key certificates
issued by the CA.

TLS/SSL: Transport Layer Security (TLS)
and its predecessor, Secure Sockets Layer (SSL),
are cryptographic protocols that provide security
for communications over networks. TLS and SSL
encrypt the segments of network connections at
the Application Layer to ensure secure end-to-end
transit at the Transport Layer.

UICC: Universal Integrated Circuit Card is a
smartcard inserted into UMTS mobile phones for
user authentication to access UMTS networks and
an ideal medium for various UICC-based security
services with supporting of Java Card Platform
and GlobalPlatform.

USF: UICC-based Service Security Frame-
work is designed and developed for mobile op-
erators to provide UICC-based security services
such as PKI, DRM, TLS/SSL and Anti-Virus and
so forth. This framework supports lots of security
functionalities via API called by UICC-based ap-
plications such as applet and servlet.

195

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 9

DOI: 10.4018/978-1-60960-735-7.ch009

Youna Jung
University of Pittsburgh, USA

Minsoo Kim
University of Pittsburgh, USA

Community Computing:
Multi-Agent Based Computing Paradigm

for Cooperative Pervasive System

ABSTRACT

Many huge and complex pervasive services can be provided by employing cooperation among smart objects
like agents. To offer such services efficiently, community computing was proposed as a new computing
paradigm, in which pervasive services are provided through cooperation among agents (Jung, 2006). To
design a community computing system, we proposed two abstraction models distinguished by intelligence
level of community; the simple model (Jung, 2006) and the static community situation based model.
In addition, we introduced a development process based upon the Model-Driven Architecture (MDA)
approach for fast and convenient implementation of community computing systems. In this chapter, our
contribution is to organize previous work related to cooperation and then clearly present the position of
community computing in comparison. In addition, we refine the proposed two models including all their
intermediate models in the development process, such as CCM (Community Computing Model), CIM-PI
(Platform Independent Community Computing Implementation Model), and CIM-PS (Platform Specific
Community Computing Implementation Model). To help automatic transformation from CCM to source
codes, we improve a development toolkit called CDTK (Community Computing Development Toolkit).
By using CDTK, a community computing system can be implemented semi-systematically. Finally, to
verify the feasibility of community computing, we present implementation results of two scenarios by
using proposed two models and CDTK. Through the simulated results, we examine the possibility of
community computing.

196

Community Computing

INTRODUCTION

Since ubiquitous computing was articulated by
Mark Weiser in 1991 (Weiser, 1991), many re-
searchers have attempted to realize the potential
for diverse pervasive services. As we surveyed
existing research, we were able to find the unique
characteristics of pervasive computing. First of
all, a pervasive computing system is composed
of highly heterogeneous computing elements
(Weiser, 1991; Kindberg, 2002). As computing
elements have mobility and their status changes
frequently, the environment of a pervasive system
is dynamically changing. In such a dynamic envi-
ronment, predictable or unpredictable pervasive
services are dynamically requested. Among all
characteristics, what we concentrate on the most
is that many pervasive services can be provided by
cooperation among heterogeneous smart objects
rather than by the ability of a single smart object.
In order to design and develop a pervasive sys-
tem having all such characteristics, we surveyed
existing approaches, but they were not perfectly
adequate to do it.

In the PICO Project, community computing
was introduced as a framework for cooperation
among agents in a pervasive environment (Ku-
mar, 2003). However, in this approach, some
room was left to develop the pervasive systems
providing services by using cooperation among
intelligent devices. Most of all, there is no well-
defined formal model. The PICO Project and
Active Space Project have introduced a similar
view of pervasive services to our community
computing, but they provide no concrete model
to represent such pervasive systems. Accordingly,
to design cooperation among agents, PICO needs
an abstraction model to describe cooperation. In
order to find an appropriate model, we surveyed
quite a few models, especially focusing on multi-
agent models. It should be noted, however, that
there are some differences between multi-agent
approaches and our approach for cooperative
systems. Furthermore, detailed and strong con-

cern about cooperation is lacking. As the required
pervasive services are getting larger and more
complex, cooperation among pervasive objects
becomes increasingly important. Accordingly, it is
necessary to raise concern about cooperation in a
pervasive environment. For example, it can be the
cooperation-based service providing scheme, the
configuration of cooperative organizations, coop-
erative behaviors between pervasive objects, etc.

The ultimate objective of our work is to de-
sign and develop pervasive computing systems
efficiently which provide services by using coop-
eration among objects that already exist within a
given environment. Existing approaches, includ-
ing multi-agent approaches and other pervasive
system development approaches, are not adequate
for our purpose. Therefore, in this chapter, we
introduce community computing, a new ap-
proach to design and develop such a cooperative
pervasive computing system. In order to meet
our objective, we are employing the concept of
community. In community computing, community
is a high-level abstract concept for organizing,
managing, operating, and repairing groups of
computing elements in a pervasive environment.
Using the community concept, we are able to meet
all requirements of pervasive computing. First of
all, community computing can adapt to changes
in runtime by dynamic creation of a goal-driven
community and dynamic binding of the roles in
the community to actual objects. Secondly, com-
munity computing supports dynamic cooperation
among objects through dynamic decisions about
cooperative behavior and dynamic injection, a
cooperation process into member objects. Also,
we can guarantee proper separation of concerns
in community computing. In the community com-
puting models, group concerns are discriminated
from concerns about individual objects. Finally,
community computing supports the scalability of
services by merging of communities or the scal-
ability of systems by merging of societies. (See
section 3 for the definition of society).

197

Community Computing

In this chapter, we define community comput-
ing and a community computing system. To design
a community computing system, we introduce
community computing models: namely, the simple
community computing model and the static com-
munity situation based community computing
model and distinguish them according to their
intelligence level. In addition, as a means for sys-
tematic development, we present a development
process. As the proposed development process is
based on the MDA (Model-Driven Architecture)
(OMG, 2003) software development approach,
we also provide more detailed models that can
be derived from the most high-level abstraction
model. To verify all the community computing
models and their development processes, we
implement two systems based on CHILDCARE
and COEX-Mall scenarios.

This chapter is organized into 8 sections includ-
ing the present section. An outline of the contents
of the remaining sections is as follows. Section
2 introduces community computing generally.
For better understanding of community comput-
ing, we specify basic concepts of community
computing, especially focusing on community.
In addition, we describe the development steps
from the highest-level abstraction model to an
actual system. In section 3, we distinguish various
community computing models according to the
intelligence level required by problem domains
and then introduce the simple community comput-
ing model as a first step. As an improved model,
we also propose the static community situation
based model. In section 4, we introduce the com-
putational model for community computing, and
in section 5, we show the implementation results
of two small community computing systems: the
CHILDCARE system and COEX-Mall system.
In section 6, we provide some background and
related works. Finally, we conclude this chapter
by acknowledging contributions in section 7, and
we provide a few suggestions as to the direction
of future work in section 8.

COMMUNITY COMPUTING

Community computing is a computing paradigm
where pervasive services are provided by coop-
eration among existing agents. It focuses on how
to satisfy the requirements of a pervasive system
by cooperation among predefined agents, while
multi-agent based and distributed computing
approaches focus on what agents or distributed
systems are needed to meet the requirements.
In community computing, the requirements of
a community computing system are fulfilled by
communities. A community consists of members,
which cooperate with others in the community to
achieve their common goals. In this section, we
introduce basic terms of community computing.
Among those concepts, we concentrate on com-
munity, and here we introduce the levels of com-
munities and the life model of a community. For
better understanding, we give you the overview
of community computing shown in Figure 1.

Basic Terms of Community
Computing

Before we look into community computing in
detail, it is worthwhile to introduce the basic terms
of community computing. In this subsection, we
define the terms used in community computing
as follows:

1. Space: A space is a dynamically connected
and coordinated set of heterogeneous per-
vasive computing objects. Its boundary is
flexible and extensible due to the mobile
objects. A pervasive object, an agent in a
space, is able to represent various kinds of
software and hardware devices and human
users.

2. Community Computing System: It is a sort
of pervasive computing system providing
pervasive services through communities.

198

Community Computing

3. Society: It is a metaphor to abstract a com-
munity computing system and is constructed
by members and communities.

4. Community: It is a metaphor to abstract
a proactive organization that comprises
members cooperating with others to achieve
particular goals. A community has goals,
necessary roles, and information about
cooperation and role-member binding. A
community is able to have more than one
goal, and those goals are able to be issued
in parallel. To abstract communities, we
describe community types, and a community
instance is dynamically created according to
the associated community type in execution
time.

5. Role: It is a well-defined position in a com-
munity with an associated set of expected
behaviors (Ferber, 2003). A role represents
a particular capability necessary to achieve
a community’s goals. The capability of a
role is presented by attributes and actions
of the role.

6. Cooperation: It is a cooperative interaction
among members who take a particular role
in a community.

7. Member: It is a metaphor to abstract a
pervasive object belonging to a commu-
nity computing system. In our community
computing, the members are restricted to
agents having their own context, capability,
and intelligence. If necessary, a member
is able to play a role within a community.
Sometimes, it can take several roles in more
than one community simultaneously.

8. Role-member binding: In order to create
a community instance, we need to find the
most proper members for each role. This
process is called role-member binding.

Community

Community is the most essential concept in
community computing. To help understand the
community concept, we introduce the types of
community and the life cycle. The pervasive
services have different levels of difficulty. Some

Figure 1. The overview of community computing

199

Community Computing

services need to be dynamically provided accord-
ing to users’ requests, while others, such as public
security services, should be offered continuously.
Besides, some urgent services have to be executed
even though those services are unpredictable or not
prepared. According to the difference of services’
style, we distinguished levels of communities as
follows: static, dynamic, and evolving community.
According to the style of necessary services, we
can decide the level of a community to create.

1. Static community: It is the simplest com-
munity. In this community, all members and
their cooperation are predefined, so static
communities are used to provide permanent
services without replacing providers, such
as a community of temperature sensors or
a community of ambulances in a city.

2. Dynamic community: It dynamically
decides its members and their cooperation,
while its roles and goals are predefined like
static communities. For example, a dynamic
community which consists of nearby neigh-
bors, policemen, and image sensors, can be
used to help a community in finding a lost
child. To find the child effectively, the clos-
est member to the child should be selected
in execution time and then cooperate with
other members in the most efficient way
possible.

3. Evolving community: It is capable of be-
ing built on demand. When a goal arises,
the necessary roles and cooperation among
roles are designed dynamically at request
time and then operated. In urgent cases, an
evolving community’s services would be
useful, since the evolving community can
solve the emergent problems even though
a system does not prepare such services at
request time.

In our community computing, each community
has a life cycle from initiation to termination.
The community’s life cycle has three stages from

initiation to termination and one optional stage,
deactivation.

1. Initiation: If a member involved in a
society, called a society member, or com-
munity recognizes a community goal, it is
able to request an initiation of a community
instance from a society manager, an agent to
oversee a whole society, (See section about
computational models regarding society
managers and community managers.) The
society manager then creates a community
manager, and the community manager per-
forms member discovery based on members’
condition. The community manager is able to
decide the suitability of each member using
the member-role binding condition described
in the community type. After all members
are selected, the community manager makes
sure that all members are aware of their goal
and cooperation process. If all members
provide confirmation, an initiation stage is
complete.

2. Activation: Most communities are acti-
vated as soon as they are initiated, which
means that members start their cooperation
process to achieve the community’s goal.
In the case of a static community, once a
community is activated, it may be deacti-
vated rather than terminated, because static
communities typically need to exist all the
time. If the deactivated community instance
is reactivated, members restart or continue
their cooperation according to previously
established protocols.

3. Deactivation (optional): After a community
instance is created, sometimes it is required
that the cooperation process stops for a while.
In this situation, the community instance is
deactivated. When a community instance is
deactivated, its community manager stores
the information about an instance, including
community members and the status of the

200

Community Computing

cooperation. When the instance is reacti-
vated, the stored information is reused.

4. Termination: When the goal of a community
instance is achieved or the community fails
to achieve its goal, the instance is terminated.

MDA Based Development Process

In order to implement a community computing
system systematically, we propose a develop-
ment process based on the MDA (Model Driven
Architecture) approach. Prior to explaining the
development process in detail, it is worth to in-
troduce MDA.

In 2001, OMG, the Object Management Group,
proposed a software development approach en-
titled MDA (OMG, 2003). MDA is an approach
to system development that increases the power
of models in that area. It is model-driven because
it provides methods for using models to direct the
course of understanding, design, construction,
deployment, operation, maintenance and modifi-
cation. It attempts to establish the idea of separa-
tion of concern by separating the specification of
the operation of a system from the details of how
system uses its platform. To develop a software
system, MDA specifies three models on differ-
ent viewpoints: CIM, PIM, and PSM. A CIM, or
computation independent model, focuses on the
requirements and environments of a system. It is
independent of how a system is implemented, and
thus it does not specify detail of the structure of
systems. A CIM is used to build a PIM, which is
a platform independent model, and describes the
system but does not specify details of use of its
platform. A PIM is transformed into a PSM, which
is the platform specific model, and specifies how
that system makes use of the chosen platform.
In the final development step, working from the
PSM, the platform-specific source codes such as
interface definitions, application code, makefiles,
and configuration files are generated. Using the
MDA approach, developers are able to expect por-
tability, interoperability and reusability of models.

MDA proposes the process of building a high-
level abstraction model should start by obtaining
requirement analysis and then refining the model
until the model directly represents the final system.
In order to apply the MDA approach for developing
a community computing system, we need several
models that abstract a community computing
system from different viewpoints. To develop a
community computing system at first, a developer
forms a CCM (Community Computing Model),
the most high-level abstraction model. A CCM
describes a community computing system in view
of the community by showing how a community
computing system satisfies its requirements with
communities. The generated CCM is transformed
to a CIM-PI (Platform Independent Community
Computing Implementation Model). A CIM-PI
considers implementation of a system without
concern for specific platforms and describes a
community computing system in more detail using
the description of the member types. To describe
implementation based on a specific platform,
CIM-PI is converted to CIM-PS (Platform Specific
Community Computing Implementation Model),
which in turn specifies how a system is able to
run in a particular platform. Using the model
transformation process from a CCM to a CIM-PS,
some portions of the source code are automati-
cally generated, and then the remaining portions
are manually filled by developers. This process
makes development of community computing
fast and systematic. Furthermore, developers
are able to guarantee consistency throughout the
entire development process by using a coherent
metaphor, community.

COMMUNITY COMPUTING MODEL

The community computing model can be distin-
guished by the intelligence level of a community
as shown in Table 1. It is not necessary for ev-
ery community computing system to be highly
intelligent, as some problems can be solved by

201

Community Computing

a community computing system with low intel-
ligence. In this chapter, we present two community
computing models, the simple model and the static
community situation based model, but additional
models will be added in the future.

Simple Community Computing
Model

The simple community computing model is the
most static model and has no cooperation model.
This model can support only static communities,
and the cooperation processes of all communities
are predefined. According to the MDA approach,
each community computing model is represented
as a family of models which have different abstrac-
tion levels: CCM in the highest abstraction level,
CIM-PI in the intermediate level, and CIM-PS in
the lowest abstraction level. Let’s look into each
model in detail.

CCM. CCM is the highest abstraction model
of a community computing system. The objective
of a CCM simple community computing model is
to describe the requirements and boundaries of a
system. In order to achieve these objectives, this
model describes community types and a society

member. In the community type description, a
designer specifies its necessary roles, goals, and
cooperation protocols. The system’s boundary
is defined by all society members in a pervasive
environment.

CIM-PI. The objective of the CIM-PI simple
community computing model is to consider the
implementation with existing pervasive objects
in the space without the knowledge of specific
platforms. In this model, the detailed description
about community types and society is provided. In
the community type description, mapping relation-
ships of roles with member types and cooperative
interactions among roles are also represented. The
role-member mapping relationship defines which
member types can take a community role. In ad-
dition, the cooperative interactions between the
initiator role and the participant roles are described
in the protocol description; the description of the
protocol is based on Occam (Elizabeth, 1987).
We used Occam constructs such as SEQ, PAR,
ALT, IF and EXIT to represent communicative
actions. The communicative actions, a unit of
cooperation, should be matched with a member’s
own actions or primitive communication actions
such as SEND and RECEIVE. In a protocol de-

Table 1. The comparison between community computing models

Community Computing
Model Simple model Static community situ-

ation based model
Dynamic community
situation based model

Autonomous community
situation based model

Community Type Static Community Dynamic Community Dynamic Community Evolving Community

Role O O O O

Goal O O O O

Cooperation Model X
(Programmed)

Static community situa-
tion based Cooperation

Model

Dynamic Community
Situation based Coop-

eration Model

Autonomous Community
Situation based Coopera-

tion Model

Certainty of community
situations

Certainty of commu-
nity situations

Uncertainty of community
situations

Certainty of members’
tasks in a community

situation

Uncertainty of mem-
bers’ tasks in a com-

munity situation

Uncertainty of members’
tasks in a community

situation

Necessary
Tech. for Cooperation

Reasoning, Knowledge
engineering, etc.

Reasoning, Knowledge
engineering, Learning,

Planning, etc.

202

Community Computing

scription, available message types are confined to
those of FIPA (Foundation for Intelligent Physical
Agents) (FIPA, 2000). In the Society description,
object types in a physical space are modeled as
member types. In the member type description,
the hierarchy of member types is described us-
ing the extends keyword as well as attributes and
actions which a member type has. For example,
‘Streetlamp extends Electronic Appliance’ would
mean that the ‘Streetlamp’ member type is a child
type of the ‘Electronic Appliance’ member type,
and thus ‘Streetlamp’ type inherits all attributes
and actions from ‘Electronic Appliance’ type.

An example CIM-PI based on the CHILD-
CARE scenario (See Section 6: Implementation)
is shown in Table 2. The ‘Ghodam city’ society
has two communities, ‘Home’ and ‘Childcare’.
The ‘Childcare’ community consists of four roles:
‘Child,’ ‘Family,’ ‘Neighbor,’ and ‘Observer,’ and
has a goal named ‘take_a_child_home.’ If the goal,
‘take_a_child_home,’ is detected, then an instance
of ‘Childcare’ community is created by gathering
suitable members for each role. The candidate
member types who can take a role are presented
in the description of role-member type mapping.
For example, in the ‘Childcare’ community de-
scription, the ‘Observer’ role can be performed
by three member types: ‘Camcorder,’ ‘Camera,’
and ‘Streetlamp.’ Among agents who are involved
in those member types, we should choose proper
members by using the cast description. Look at the
‘Observer’ role of ‘Childcare’ community for an
instance. The members who will take the role of
‘Observer’ should satisfy two conditions as fol-
lows. Its monitoring service should be available,
and it should be close to a missing child. In the role
description, we are able to know the cardinality
constraint of each role also. For the ‘Observer’
role, we can assign one member at the minimum
and two members at the maximum.

CIM-PS. This model combines the simple
community computing model CIM-PI with the
details that specify how that system uses a par-
ticular platform. Actually, it is a bunch of source

codes for a particular platform. Its cooperation
portion can be derived from CIM-PI. In section
6, you can see the CHILDCARE community
computing system implemented using the simple
community computing model in the JADE plat-
form.

Model Transformation. For developing a
system, we perform model transformation from
a high-level abstraction model to a low-level ab-
straction model representing the final implemen-
tation. According to the proposed development
process, a model transformation process starts to
build a CCM and then refines it until we obtain the
source codes. The first step of the model transfor-
mation is that of turning a CCM into a CIM-PI. In
the next step, a CIM-PI is converted to a CIM-PS
using the specification of a particular platform. A
CIM-PS is a collection of source codes that can
realize members, communities, and a society. Fi-
nally, source codes are embedded into the existing
smart objects in a space. After deployment, the
coding objects become members in a community
computing system, building up a Space.

Static Community Situation Based
Community Computing Model

In a simple community computing model, co-
operation among members is considered as a
predefined procedure and described as a sort
of pseudo program. To describe cooperation, a
designer should decide which tasks of which
members should be executed. However, in the
case of a huge and complex cooperation model,
it is not easy for a designer to lay out a whole
cooperation procedure immediately. Besides,
a cooperation model is necessary to design the
cooperation intuitively among members in a com-
munity computing system. Therefore we propose
the static community situation based model as an
improved version. The major differences from the
simple model are as follows:

203

Community Computing

• Static community situation based model
has its own cooperation model, the static
community situation based cooperation
model.

• It also has security policies such as soci-
ety policy, community policy, and member
policy, so that it solves conflicts in a com-
munity computing system.

To find an appropriate cooperation model for
community computing, we surveyed existing
cooperation models. In a number of previous
works, cooperation is used, but in most cooperation
models, cooperation is described as a predefined
static program called a recipe, plan, or skill. The
ways to realize cooperation have been introduced,

but the way to design cooperation itself was not
discussed. Therefore, we arrived at a decision that
a new cooperation model is needed for intuitive
design of a community’s cooperation. Before we
describe our model in detail, please refer to the
related works introduced in section 6.

Static Community Situation
Based Cooperation Model

As a cooperation model for community comput-
ing, in this chapter, we propose the community
situation based cooperation model. The idea is that
cooperation is executed according to community
situations. To provide dynamic pervasive services,
context-awareness and/or situation-awareness are

Table 2. A CHILDCARE scenario based example of simple community computing model CIM-PI

Platform Independent Community Implementation Model{
 Community Home {
 Role Home_Stuff:1~100000 {
 Attribute: Address; Use;
 Cast: Use=residential; }
 Role Resident:1~20 {
 Attribute: Location;
 Address=home_stuff.address;
 Cast: Location=home_stuff.address;}
 Home_Stuff:Household_appliance; Resident:Human;
 Protocol announce_information_to_human_at_home {
 Communication of Initiator {
 SEND(MsgType=”inform”, ToWhom=Participant,
 InformedData); }
 Communication of Participant {
 IF(RECEIVE(MsgType=”inform”,FromWho=”Initiator”,
 informedData))
 Display_Info(InformedData);
 END IF } } }
 Community Childcare {
 Role Child:1 {
 Attribute: Safety_level={safe|warning|danger};
 Cast:Safety_level={warning|danger}; }
 Role Family:1~50 {
 Attribute: Relationship;
 Cast:Relationship={child.mother|child.father|child.sister|
 child.brother||child.grandmother|child.grandfather};
 Role Neighbor:1~20 {
 Attribute: Relationship;
 Cast: Relationship=child.neighbor; }
 Role Observer:1~2 {
 Attribute: Monitoring_Sevice={available|not_available};
 Location;
 Cast: Monitoring_Service=available;
 Location=child.location; }

 Child:Human,Smartbelt; Family:Human; Neighbor:Human;
 Observer:Camcorder,Camera,Streetlamp;
 Protocol take_a_child_home {
 communication of child {………………….. }}
Society: Ghodamcity {
 Member Society_Member {
 Attribute: Location=ghodamcity;City_Address=ghodam;
 Safety_level={safe|warning|danger};
 Action: Wait_for_Msg(MsgType=”inform”, FromWho,
 InformedData); }
 Member Animate_Object extends Society_Member {
 Attribute: Species=string; Genus=string; Family=string; }
 Member Human extends Animate_Object {
 Attribute: Sex={male|female}; Age=(0~150);
 Relationship=string; Job=string;
 Action:Choose_the_nearest_family(Location,
 NearestFamily), Take_to(Who, Where);
 Request_for_picture(RequestWho=Observer.id,Location,
 RequestedPicture);Choose_the_nearest_person(Location
 ,NearestPerson);Choose_response(Choice1,
 Choice2,Choice); }
 Member Inanimate_Object extends Society_Member {
 Attribute: Status=string; }
 Member Electronic_Appliance extends Inanimate_Object {
 Attribute: Electronic_Power=string; Weight=integer;
 Height=integer; Usage={home|industry|research}; }
 Member Home_Appliance extends Electronic_Appliance {
 Attribute: Usage=home;Assigned_Room={livingroom|
 kitchen|bedroom|bath|reading};
 Actions: Display_Info(InformedData); }
Member Streetlamp extends Electronic_Appliance {
 Attribute: Monitoring_Service={available|not_available};
 Lightening={yes|no};
 Actions: Send_picture(ToWhom, RequestedPicture);} } }

204

Community Computing

required as essential features of pervasive com-
puting systems (Dey, 2001; Strang, 2004; Yau,
2006). In our community computing systems, we
aim to guarantee dynamic community services
by employing the community situation based
cooperation model. In this cooperation model,
when a community’s situation changes, then tasks
assigned to community members are changed ac-
cordingly. Therefore, tasks of members are decided
depending on community situations. At this time,
the final situation of a community should be the
goal achievement situation or the community fail
situation. Since the proposed cooperation model
is based on the community situations, we define
the community situation first.

In order to utilize community situations, we
proposed the community situation model. In this
model, a community situation is determined by
situations of specific members. A member situation
is decided by the member’s contexts, which are
determined by the attribute values of the member.
In the present version of the community situation
model, a community situation is represented as a
logical association of attributes’ values. However,
the expression power of the community situa-
tion model can be improved, and the community
situation based cooperation model can also be
improved by following the advance in situation
model. Using the proposed community situation
model, we define the community situation based
cooperation model that assumes the certainty of
the community situation and the member’s task
in a certain community situation. Prior to defining

the static community situation based cooperation
model, let me introduce several assumptions of
this model:

1. Certainty of the community situations:
All community situations can be defined
clearly, and all members in a community
are aware of community situations.

2. Certainty of tasks of each member in a
given community situation: Members in a
community know their tasks to perform in
a certain community situation.

3. Ability of multiple task execution by a
member: In a community situation, each
member can perform more than one task in
sequential order.

4. Situation transition that is independent
of completion in a previous situation:
Although members’ tasks are not completely
finished in a previous community situation,
a community situation can be changed into
another situation.

5. Cooperation should be ended: Community
situations can be dynamically changed but
are capable of reaching a situation of com-
munity termination.

Based on these assumptions, cooperation is
defined as a set of cooperation blocks. A coopera-
tion block describes a piece of cooperation among
roles in a certain community situation with the
definition of a community situation and roles’
tasks. The BNF definition of this cooperation

Table 3. BNF definition of the static community situation based cooperation model

<Static_Community_Situation_based_Cooperation_Model>
 ::= Community <Community_Type_Name> { <Community_Goals_Description> }
<Community_Type_Name>::=<Identifier>
<Community_Goals_Description>::= Goals <Goal_Description>1+

<Goal_Description>::= <Goal_Name>(<Participant_Roles>) { <Community_Coopertion> }
<Goal_Name>::=<Identifier>, <Participant_Roles>::=<Role_Name>1+, <Role_Name>::=<Identifier>
<Community_Cooperation>::=<Cooperation_Block>1+

<Cooperation_Block>::=<Community_Situation_Name> => <Role_Task>1+

<Role_Task>::=<Role_Name> : { <Role_Action_Name> {(<Parameter>0+)}opt }1+;
<Community_Situation_Name>::=<Identifier>,<Role_Name>::=<Identifier>
<Role_Action_Name>::=<Identifier>, <Parameter>::=<String>

205

Community Computing

model is shown in Table 3. A goal of a community
is described by participant roles and cooperation
blocks. Each cooperation block presents the co-
operation among roles at a particular community
situation. For an example of the cooperation model,
see the cooperation part of the ‘Find_Person’
community in Table 4.

Conflict Resolution

When a member performs his own actions in a
community situation, conflicts can occur. In the
view of individual members, conflicts among a
member’s tasks can arise if the member is tak-
ing multiple community roles and necessary

Table 4. A COEX scenario example of static community situation based community computing model-
CIM-PS

Society COEX_Mall {
Community Type Description {
Community Patrol_COEX{…………………}
Community Find_Person{
 Role Patrol_Robot: 1 ~ 10 { …. }
 …………. }
Role-MemberType Mapping {
 Patrol_Robot:ARGUS; Guidian_of_Lost_Person:Human;
 Guide:Guide;Salesman:Human; }
Goals Find_a_lost_person(Patrol_Robot,Guidian_of_Lost_
 Person, Guide, Resident) {
 FIND_PERSON_REQUEST=>
 Patrol_Robot:Read_Personal_Profile(); Broadcast_Info
 (∀Patrol_Robot and ∀Guide and ∀Resident, “Find a
 person”, profile);
 FIND_PERSON=> Patrol_Robot:Find_Person(profile);
 Guide:Find_Person(profile); Salesman:
 Find_Person(profile);
 PERSON_FOUNDED=>
 Patrol_Robot and Guide and Salesman: Announce(
 ∀Patrol_Robot and ∀Guide and ∀Resident,
 “Person is founded”, location); Guide_To(founded
 person, information office);;
 PERSON_NOT_FOUNDED=>
 Patrol_Robot and Guide and Resident:
 Announce(“Person isn’t founded”, ∀Patrol_Robot);;
 Guide: Report_Police(“ lost person”, profile);;}
Community Situation {
 FIND_PERSON_REQUEST={
 Patrol_Robot.TAKE_REQUEST_FIND_PERSON};
 FIND_PERSON={Patrol_Robot.FIND_PERSON};
 PERSON_FOUNDED={Patrol_Robot.PERSON_FOUNDED
 OR Guide.PERSON_FOUNDED OR Resident.
 PERSON_FOUNDED};
 PERSON_NOT_FOUNDED={Patrol_Robot.PERSON_NOT
 FOUNDED AND Guide.PERSON NOT_FOUNDED
 AND Resident.PERSON_ NOT_FOUNDED };}
Community Creation {
By Member: ARGUS.TAKE_REQUEST_FIND_PERSON; }
Community Policy {
 Member Casting Policy {
 Patrol_Robot: distance-dependent; Salesman: distance-
 dependent; Guide: distance-dependent; }
 Sudden Secession of Member {
 Patrol _Robot: continue with a new;
 Salesman: continue with a new;
 Guidian_of_Lost_Person: initialize with a new;
 Guide: continue with a new; }

Action Conflicts List={ MEC(Report_Police(“lost person”,
profile),Find_Person(profile)); }}
Ontology Patrol_COEX_Ontology;} } }
Member Type Description { …
Member ARGUS extends Robot {
Attribute: MODEL=STRING;FIND_PERSON={YES|NO};
 TAKE_REQUEST_FIND_PERSON={YES|NO};
 PERSON_FOUNDED={YES|NO};
 Action: Area_Assign(COEX_Mall, Patrol_Robot); END_Pa-
trol();
 Patrol(COEX_Mall); Read_Personal_Profile();
 Broadcast_Info(∀Patrol_Robot and ∀Guide and ∀Resident,
 “Find a person”, profile); Find_Person(profile);
 Announce(∀Patrol_Robot and ∀Guide and ∀Resident,
 “Person is founded”, location); Guide_To(founded person,
 information office); Announce(“Person is not founded”,
 ∀Patrol_Robot);
 Member Situation {
 TAKE_REQUEST_FIND_PERSON:
 TAKE_REQUEST_FIND_PERSON=YES;
 FIND_PERSON:FIND_PERSON:
 FIND_PERSON:FIND_PERSON=YES;
 PERSON_FOUNDED:PERSON_FOUNDED:
 PERSON_FOUNDED:PERSON_FOUNDED=YES;}
 Member Configuration {
 Vision_Sonsor_v3; Samsung_Location_Sensor_v1;}
 Attribute Acquisition {
 TAKE_REQUEST_FIND_PERSON:Vision_Sonsor_v3;}
 Action Mapping {
 Area_Assign(COEX_Mall, Patrol_Robot):Set_patrol_
 range(location); Patrol(COEX_Mall):CyberCap(patrol);
 END_Patrol_Service():CyberCap(patrolstop);
 Read_Personal_Profile():Read_RFID(person_RFID);
 Broadcast_Info(∀Patrol_Robot and ∀Guide and
 ∀Resident, “Find a person”, profile): BroadCast
 (towhom, msg); Find_Person(profile):Search_Obj(Info);
 Announce(∀Patrol_Robot and ∀Guide and
 ∀Resident, “Person is founded”, location):Notify
 (towhom,msg);Guide_To(founded person, information
 office):GuideServie(who,where);Announce(“Person is
 not founded”, ∀Patrol_Robot):Notify(msg,towhom);}
 Member Policy {
 Exclusive Actions={
 (Patrol(COEX_Mall),END_Patrol_Service()); } } } …}
Society Policy {
Community Precedence { High_Priority: Find_Person;
Medium_Priority: Patrol_COEX,Sell_Product; Low_Priority:;}
Exclusive Community = { } } }

206

Community Computing

tasks to each community are conflicting, or if an
executed task in a previous community situation
is not finished but the member should perform a
conflicting task according to the changed situa-
tion. In the view of a community, an action of a
member can conflict with an action of others. No
matter which kind of cases, conflicts should be
resolved. To do this, we assumed that the tasks
of a member in a certain community situation are
executed sequentially by one thread, and thus we
do not need to worry about conflicts on a thread.
Conflicts arise when a member tries to execute
conflicting actions of his own or when members
try to execute conflicting actions simultaneously.
To handle such conflicts, we classified conflict-
ing actions into two types: mutually exclusive
conflict type and time dependent conflict type.
In the case of the mutually exclusive conflict
type, if a conflict occurs, then one action among
conflicting actions should be terminated. In case
of the time dependent conflict type, one action
among conflicting actions should be executed
first, with execution of another action to follow.
For handling conflicts in runtime, a community
manager and each member have an action conflicts
list about conflicts. In the list, the types of action
conflicts are represented. At this time, conflicts
between same actions can be included in the list.
For example, assume that a member performs
action a2 in community situation S1. After a few
seconds, the situation is changed to S2, although
a2 is not finished. After that, the situation would
be changed again to S3, and the member should
perform a2 again in situation S3. However, a2,
which was executed in the previous situation S1,
would still be operating.

Static Community Situation Based
Community Computing Model

Based on the static community situation based
cooperation model, we develop the static com-
munity situation based computing model. The
family of this model is as follows:

CCM. The major difference from simple
community computing model CCM is shown in
the cooperation description part. In the improved
CCM, cooperation of a community is represented
by community situations and descriptions about
each role’s tasks in a certain situation.

CIM-PI. Changes derived from the coopera-
tion model are reflected in every part of CIM-PI.
First of all, in the community type description,
mapping information between roles and member
types is added to represent which member types can
play which role. Secondly, a detailed description of
the cooperation is provided. In particular, tasks to
be executed by a member are shaped as a sequence
of members’ actions, and community situations
are also defined. Thirdly, conditions of community
creation are described. Specifically, there are two
ways to initiate a community instance: a member
requires an initiation to a society manager, or a
community manager requires an initiation as a
part of cooperation. Finally, community policies
are added to manage conflicts during the lifetime
of a community instance. In the present version,
there are three kinds of policies in the commu-
nity policy description: member casting policy,
member’s secession policy, and action conflict’s
list. The member casting policy represents a rule
about member selection such as distant dependent
casting or response-time dependent casting. In the
member secession policy, treatments for sudden
secession of members are specified. For example,
if a member disappears, then a cooperation pro-
cess can be initialized with a new member, the
cooperation can continue with a new member, or
the cooperation can be terminated. In the mem-
ber type description part, all member types are
described, and the hierarchy of member types is
also defined using extends keyword. In addition,
member situations are specified as a logical as-
sociation of attributes’ values. Finally, member
policies for each member are described. When a
member performs tasks to play one or more roles,
conflicts between tasks may happen. To resolve
such conflicts, we define an action conflict list

207

Community Computing

and represent it in member policy description. In
the society description, additional society policies
are described, and the precedence of communities
and exclusive communities are defined. When a
society manager takes more than one request for
community instantiation, these policies are used
to select requests to allow instantiations.

CIM-PS. In CIM-PS, the information about an
attribute acquisition, action mapping, and member
configuration is added. In the attribute acquisition
part, we describe which values of each attribute
are derived from where. The source of attribute
values can be a kind of sensor or member’s ac-
tions. In action mapping description, we describe
how to realize actions of members. In cases where
a system uses existing programmed objects, a
developer should make a connection between
actions in the model and programmed actions in
an existing object. On the other hand, in cases
where developers have to generate programs for
member objects, developers are able to use action
names in models to program a member. In the
member configuration part, components of each
member such as sensor drivers, operating systems,

and communication channels are described. An
example based on COEX scenario (See Section
6: Implementation) is shown in Table 4.

Model Transformation. As the model trans-
formation process of the simple model, we derive
source codes from CCM to develop a community
computing system. The specific transformation
process for the static community situation based
model is shown in Figure 2.

COMPUTATIONAL MODEL

To run a community computing system, we pro-
posed a computational model as shown in Figure
3. According to the computational model, when
a system starts to operate, only members exist
in a society.

At the beginning of a community computing
system, a society manager who manages the whole
community computing system is generated. The
society manager contains information about all
the member and community types and protocols
for society registration, community manager

Figure 2. Model transformation of the static community situation based community computing model

208

Community Computing

creation, and termination; every member should
be registered with a society manager. When a
member sets a particular goal, the society man-
ager then generates a community manager to
achieve the goal. A community manager has
conditions to cast members, cooperation descrip-
tions for achieving goals, and community policies.
During cooperation of a community, another
community can be generated as a part of the co-
operation. Such relationships between communi-
ties are described in the cooperation description.
After the community attains its goal, a commu-
nity manager announces the disorganization to
each member, and the society manager subse-
quently removes the community manager. Each
member has its own attributes, actions, and pro-
tocols for society registration.

IMPLEMENTATION

To develop a community computing system
conveniently and systematically, we implement

a development tool called CDTK (Community
Developing Tool-Kit). Using the CDTK, a devel-
oper can design a system as a CCM file and then
transform the CCM file to its CIM-PI file using
CDTK. At this time, the developer should fill the
particular portion of CIM-PI which CDTK cannot
generate automatically. Similarly, the CIM-PI file
can be transformed to CIM-PS. Finally, a CIM-PS
file can be converted to program codes by CDTK.
In the current version of CDTK, we choose the
JADE agent platform for prototypes. If we need
to implement using another platform, we can do
it by just adding a generation module or plug-in
on CDTK. Currently, the rate of automatic code
generation is around 60%. Our implemented
CDTK is shown in Figure 4. Using CDTK, we
developed two community computing systems
based on scenarios described above. It is not easy
to measure or verify a computing paradigm such
as community computing. Accordingly, we made
two cooperation scenarios, the CHILDCARE sce-
nario and the COEX-Mall scenario, which show
the necessity of immediate cooperation among

Figure 3. Computational model of a multi-agent based community computing system

209

Community Computing

individuals. Then we implement two community
computing systems based on those scenarios. By
the simulation results of two systems, we show
the feasibility and possibility of community
computing as an emerging computing paradigm
to provide urgent and complicated services by
using cooperation.

CHILDCARE. In the CHILDCARE sce-
nario, when a child goes out of home, a Smartbelt
located on the child requests for a community
instantiation to the society manager. Then, a com-
munity manager of the CHILDCARE community
is created and organizes agent members for per-
forming each role. For the safety of the child, the
CHILDCARE community informs the situation
of the child to the child’s family, and the child’s
mother searches for the nearest person who can
help the child to return home. Finally, when the
child arrives home, the goal of the CHILDCARE
community is achieved, and then the community

is disorganized. Simulation of the CHILDCARE
community computing system is shown in Figure
5(a).

COEX. To examine the proposed static com-
munity situation based community computing
model and the development process, we developed
the COEX community computing system to offer
PATROL and FIND_PERSON services at a COEX
shopping mall. This scenario aims to find a lost
child inside a huge building, COEX-Mall. When
a robot is on patrol as a member of a Patrol_COEX
community, the robot may be asked by a mother
to find her lost child. The robot generates a
TAKE_REQUEST_FIND_ PERSON member
situation and then requests a creation of Find_Per-
son community to a society manager (See Section
5: Computation Model for more information about
a society manager and a community manager.)
The society manager, who supervises the COEX-
Mall community computing system, creates a

Figure 4. CDTK (Community Developing Tool-Kit)

210

Community Computing

community manager for Find_Person commu-
nity, and the community manager then initiates a
Find_Person community by casting necessary
members. The robot taking the request sends the
profile of the lost child to all robots, guides, and
salesmen in the COEX-Mall. After robots receive
the profile, they begin to search for the child while
patrolling. At this time, each robot takes at least
two roles, Patrol_COEX community and Find_
Person community. Simulation of the COEX
community computing system is shown in Figure
5(b).

RELATED WORK

As mentioned above, our goal is to develop a
cooperative pervasive system. In order to find a
pathway and reach our goal, we surveyed existing
development approaches for pervasive systems
such as PICO or GAIA. There have been various
approaches applied toward pervasive system de-
velopment. Among those approaches, middleware
approaches are used in several projects such as
PICO and Active Space. Meanwhile, the multi-
agent based approaches are also frequently used in
several research projects such as Gaia, AALADIN

and BRAIN. However, most existing approaches
are not deeply concerned with cooperative work.
Those works mentioned cooperation but failed to
provide insight into the foundation of their models
or systems. Cooperation is an essential aspect to
achieve our goal, so we surveyed existing coop-
eration approaches such as CSCW (Computer-
Supported Cooperative Work) to fill the hole. In
this section, we briefly introduce each previous
work and declare our motivation.

Pervasive System
Development Approaches

First of all, we introduce two middleware based
approaches. Their objective is to offer an infra-
structure to manage resources, sense context
information, and assist in the development and
execution of pervasive applications. In this section,
we explore two major middleware approaches to
offer pervasive services: Gaia and PICO.

• Super Spaces (Al-Muhtadi, 2004): In the
Active Spaces Project (Roman, 2000), an
experimental middleware infrastructure,
called Gaia, was introduced to coordinate
pervasive software objects and hetero-

Figure 5. Simulation of CHILDCARE (a) and COEX (b) community computing system

211

Community Computing

geneous networked devices in a physi-
cal space. The major contribution was to
present active spaces as a programmable
environment instead of a collection of in-
dividual and disconnected heterogeneous
devices. In 2004, an extended version,
Super Space, was proposed to manage
and orchestrate groups of Active Spaces.
However, they did not suggest an abstrac-
tion model to conceptualize pervasive
objects constructing the space or coopera-
tive relationships between objects in their
space.

• PICO (Kumar, 2003; Sung, 2002):
PICO (Pervasive Information Community
Organization) is a middleware framework
for dynamically creating mission-oriented
communities of autonomous pervasive
software objects offering pervasive ser-
vices. In several agent cooperation models,
organization concepts have already been
introduced (Jennings, 2003; Wooldridge,
2002), but PICO has applied this concept
to pervasive domains. In this project, a
community was defined as a pervasive
object consisting of one or more agents
working towards a common goal. In addi-
tion, they introduce community computing
as a framework for collaboration among
agents. Their fundamental concept satis-
fies requirements of pervasive computing,
such as proactive real-time collaborations
for automated and continuous services pro-
vided in a heterogeneous environment.

As the middleware-based infrastructure works,
multi-agent based approaches are frequently used
to develop pervasive systems, because agents’
features such as flexible and autonomous problem
solving behavior and the richness of interactions
guarantee dynamic and intelligent services. Ex-
isting multi-agent approaches are interesting to
study the way to seek out necessary agents to
meet requirements of a pervasive system. When

requirements are given, they are concerned about
the way to design and implement necessary agents
to offer the required services. However, in the case
of a pervasive system intending to provide services
using existing agents, we can say that participant
agents are already defined. Accordingly, in such a
case, it is more important to consider how to meet
the system requirements by existing agents rather
than what agents are required. Furthermore, most
multi-agent based development approaches do not
deeply concentrate on cooperation. To achieve our
goal, however, cooperation is the most important
aspect, so we have to consider cooperation in
more detail than others have. In this section, we
briefly introduce previous works on multi-agent
based pervasive systems development.

• Gaia (Wooldridge, 2000; Jennings,
2003): It introduced a methodology for
analysis and design to develop a multi-
agent system. In Gaia, a multi-agent sys-
tem is regarded as a collection of compu-
tational organizations consisting of various
interacting roles and allows an analyst to
go systematically from requirement state-
ments to a design through a process of de-
veloping increasingly detailed models of
the system to be constructed.

• AALADIN (Ferber, 1998): It is a meta-
model of a multi-agent system based on
organizational concepts. It allows for de-
scribing any kind of organization using
only the core concepts of groups, agents,
and roles. In the extended version (Ferber,
2003), the model was improved into the
AGR model (Agent/Group/Role model).
In that model, the dynamic aspect was add-
ed by specifying the creation of a group,
the entering and exiting mechanism of an
agent within a group, and the role acquisi-
tion mechanism.

• BRAIN (Cabri, 2003): It is a framework
for supporting the different phases of the
development of interactions in multi-

212

Community Computing

agent systems by modeling the interac-
tions between agents based on the concept
of roles and describing such roles using
an XML-based notation, XRole. Authors
implemented Rolesystem as an interaction
infrastructure of BRAIN, but they did not
concern themselves with cooperation.

Cooperative System
Development Approaches

Cooperation has been a good way to solve a prob-
lem requiring diverse resource and capabilities
and to perform a highly resource-consuming and
time-consuming task (Wooldridge, 1999). The
pervasive service is one of the domains having
such problems, so cooperation has been used in
some research. However, meanings and/or style
of cooperation are slightly different between re-
search studies. In this section, we inspect existing
research studies and discriminate between them
in terms of cooperation.

• Team in Computer Supported
Cooperative Work (CSCW): The major
objective of CSCW is to develop group-
ware that effectively performs a common
task using information sharing among all
users (Wilson, 1991; Borghoff, 2000).
Typically, a group in CSCW is a small proj-
ect-oriented team, and a team is defined as
a set of predefined people. Members of a
team are human, and their works are tightly
coupled by sharing information about team
membership as well as information about
the skills and roles of the other members
(Johansen, 1998). In the group protocol
component, the ways in which team mem-
bers cooperate and communicate with each
other are described. Typical groupware of
CSCW are video conferencing systems
and joint document editing systems.

• Group in Multi-agent System: To pro-
vide services requiring complex interac-

tions, multi-agent systems are frequently
developed (Wooldridge, 2000). To coop-
erate with other agents, an organization is
constructed, and each role for performing
a cooperative protocol is dynamically as-
signed to a member agent. The coopera-
tion procedure is able to be predefined or
dynamically determined depending on the
agent’s intelligence, but it has not been se-
riously studied.

• Community in PICO: PICO is a middle-
ware framework for dynamically creat-
ing mission-oriented communities of per-
vasive objects. To describe structures of
cooperating organizations, it employed
the community concept. It is very similar
to our community computing, but PICO
leaves room for the life cycle of communi-
ty, member specification, the way to assign
software objects dynamically into actual
objects, and the cooperation method.

• Community Computing in Digital
Tokyo Project: The authors introduced
community computing in 1998 in order to
support the process of organizing diverse
and amorphous people who are willing to
share knowledge and experiences (Ishida,
1998). The objective of their work is to
make a city-scale supporting system to as-
sist a person’s everyday life. In the Digital
Tokyo project (Besselaar, 2002), a commu-
nity is a digitalized representation of real
human communities. All human members
in a community share their preferences and
knowledge and generate a consensus, and
the community computing supports those
processes.

• Community Computing in Microsoft:
In 2005, Microsoft introduced its vision of
community computing (Blau, 2005). It de-
fines community computing as an emerging
technological environment where devices
sharing computing capacities of others and
users’ identities are widespread. It insisted

213

Community Computing

that research about system engineering is
required to manage massive connections
among powerful devices in a community
computing environment (Microsoft, 2005).
Microsoft is systematically trying to sup-
port its community computing by devel-
oping various tools which enable people
to interact with one another for gathering
and exchanging services. In its research,
a community is a sort of group of devices
sharing one another’s information and ca-
pacity to generate communication between
people. It seems that it concentrates on sys-
tematic support to communities.

• Community Computing in this chapter:
To design and develop a cooperative multi-
agent system conveniently, we propose
community computing as a new computing
paradigm. Other research has not seriously
concentrated on cooperation, so it did not
provide a way to design and execute a co-
operative group, such as a community and
cooperation in that group, immediately.
Towards this goal, in our community com-
puting approach, we provide the abstrac-
tion models to design them intuitively and
develop a community computing system
quickly. Our community computing is
more useful especially when a number
of existing agents exist, and a developer
needs to design cooperation among those
agents and execute it immediately.

Existing Cooperation Models

To propose the static community situation based
cooperation model which was described in section
3.2.1, we surveyed existing cooperation models
for multi-agent systems. In this section, we briefly
introduce some works as follows:

• The cooperation model for ARCHON
(Brazier, 1997): In 1997, a refined for-
mal cooperation model for ARCHON

(Cockburn, 1996) was proposed. In this
model, cooperation is represented as a
recipe or a set of tasks. The generation of
this recipe is an iterative process requiring
interaction with other agents on their own
schedules related to other projects. When a
recipe is completed, it is sent to all partici-
pating agents, and the project commences.
Once committed, each participating agent
receives the final recipe and is committed
to the relevant time interval in the recipe.
The CM (Cooperation Management) is a
component that is responsible for all tasks,
commitments, and cooperation. Among the
sub-components of CM, the PPC (Prepare
Project Commitments) component decides
a preferred set A of activities with which
goal g can be accomplished and subse-
quently generates a dependency graph of
the activities using the critical path method
and domain knowledge. Using this depen-
dency graph, PPC determines the partici-
pant agents and then sends a list of agents
to the GMR (Generate and Modify project
Recipe). The goal of a component GMR
is to design a recipe R, where the recipe
R is interactively designed by generating
and sending the proposed recipe to agents
interested in participation. A recipe R con-
sists of a task A, willing participants ca-
pable of performing that task, a priority p,
and a deadline T for that task. The partici-
pants accept, adapt, or reject the proposed
recipe. In this model, however, the method
used to make an agent cooperate with other
members is specified, but how a recipe R it-
self is generated using a dependency-graph
of activities is not specified. In addition,
a means to describe cooperation among
agents is not represented in that model.

• AGDRSCOM (Hua, 2003): It is an agent
cooperation model in which member
agents are able to adjust their own coop-
erative tasks according to the changes of

214

Community Computing

environment and the feedback from other
members. In AGDRSCOM, the idea of
adaptive cooperation is introduced. In
adaptive cooperation, the function struc-
ture of a cooperative member agent has
skills, where a skill is represented with a
five-element tuple: Skill = <Activity, Pre-
Processing, Programming, Action-Set,
Post-Processing>. In this representation,
Activity is the basic action when a skill is
executed. Pre-Processing is the processing
of information required by a programming
task prior to execution. Programming can
be a rule set or state transfer figure and
is referred to when the skill is executed.
Action–Set is the possible action set, and
Post-Processing is a result or post-process-
ing of Programming. In this model, the
function structure of the adaptation of co-
operation was introduced, but the detailed
method of adaptation was not proposed. In
addition, cooperation was also represent-
ed as a programming element in the skill
description.

• Cooperation model of MAPFS (Perez,
2004): MAPFS (MultiAgent Parallel File
System) is a parallel file system integrated
with a multi-agent system responsible for
information retrieval. In the cooperation
model of MAPFS, cooperation is achieved
using shared plans, where plans contain
precise instructions or actions for achiev-
ing such objectives. Thus, a cooperation
process is also procedural and is described
by actions and instructions.

• IMCAC (Guo, 2006): In 2006, Guo pro-
posed hybrid cooperation using recipes,
policies, and advertisements and imple-
mented the idea of hybrid cooperation in
IMCAC (Infrastructure for Managing and
Controlling Agents’ Cooperation). In this
model, a policy is the obligations and re-
strictions that agents should meet, and ad-
vertisements are the records of interests of
other agents. A recipe represents the funda-

mental cooperation process and is statical-
ly established according to the scheduling
plan during the design of the application
system. A recipe is defined by possible
plans, plan steps, and sub-activities in
these plan steps.

CONCLUSION

Our ultimate goal is to design and develop the
multi-agent systems which provide complex and
dynamic ubiquitous services through coopera-
tion among existing agents. As mentioned above,
existing research is not suitable for our goal. In
this chapter, we therefore redefined community
computing as a new computing paradigm in which
services are provided by cooperation among given
smart objects. In order to make the meaning of
community computing concrete, we compared
our work with other related work, proposed an
overall concept, and defined terminology to help
with understanding. In order to actualize commu-
nity computing, we first proposed the community
computing models and a development process.
As an early version of the community computing
model, we proposed a simple community comput-
ing model where a community has the necessary
roles, goals, and code-like cooperation protocol.
However, this model has no cooperation model
and no conflict resolution scheme. Therefore, we
proposed an improved model, the static community
situation based community computing model.
In this model, we employed the static commu-
nity situation based cooperation model, which
is a limited model that assumes certainty of the
community situation and members’ cooperative
behavior. In addition, we also analyze conflicts
in community computing systems and propose
policies to resolve those conflicts. In order to
examine feasibility of our community computing
model and development process, we developed
two small systems and presented the simulation
results of several scenarios.

215

Community Computing

FUTURE RESEARCH DIRECTIONS

Despite our progress, our proposal suggests several
avenues for future work.

1. Improvement of the community situation
based cooperation model and situation
model: The present version of the coopera-
tion model is based on strict assumptions.
To apply it to broad application areas, we
need to develop more general models, or we
can consider several variations for particular
application domains.

2. Improvement of the proposed conflict
resolution scheme: In this paper, we simply
use a list which shows complicating actions
or the priority of communities. However, it
is not enough to prevent members’ critical
resources from unauthorized access or to pro-
tect members’ privacy. Therefore, we need to
be concerned about the security mechanism
for community computing systems in detail.

3. Various case studies: To convince others of
the effective value of community computing,
it will be helpful to present various feasible
case studies. The systems to protect people
from natural disasters or terrorist attacks
can be good examples. In addition, a system
of emergency medical treatment will be an
effective application domain.

REFERENCES

Al-Muhtadi, J., Chetan, S., Ranganathan, A., &
Campbell, R. H. (2004, March). Super spaces:
A middleware for large-scale pervasive comput-
ing environments. Paper presented at the IEEE
International Workshop on Pervasive Computing
and Communications (Perware ‘04), Orlando,
Florida, USA.

Besselaar, P., Tanabe, M., & Ishida, T. (2002). In-
troduction: Digital cities research and open issues.
[Springer-Verlag.]. Lecture Notes in Computer
Science, 2362, 1–9. doi:10.1007/3-540-45636-8_1

Blau, J. (2005). Microsoft: Community comput-
ing is on the way. InfoWorld Magazine. Retrieved
from http://www. infoworld.com/ article/ 05/ 11/
22/ HNcommunitycomputing _1.html

Borghoff, U. M., & Schlichter, J. H. (Eds.). (2000).
Computer-supported cooperative work: Introduc-
tion to distributed applications. Berlin/Heidelberg,
Germany & New York, NY: Springer-Verlag.

Brazier, F. M. T., Jonker, C. M., & Treur, J.
(1997). Formalization of a cooperation model
based on joint intentions. In Proceedings of the
Third International Workshop on Agent Theories,
Architectures and Languages (ATAL’96), Lecture
Notes in Artificial Intelligence 1193 (pp. 141-155).
Springer.

Cabri, G., Leonardi, L., & Zambonelli, F. (2003).
A framework for flexible role-based interac-
tions in multi-agent system. In Proceedings of
Conference on Cooperative Information Systems
(CoopIS) [Berlin, Germany: Springer.]. Lecture
Notes in Computer Science, 2888, 145–161.
doi:10.1007/978-3-540-39964-3_11

Cockburn, D., & Jennings, N. R. (Eds.). (1996).
ARCHON: A distributed artificial intelligence
system for industrial applications (pp. 319–344).
Wiley. Foundation of Distributed Artificial Intel-
ligence.

Dey, A. K. (2001). Understanding and using con-
text. Personal and Ubiquitous Computing -Special
Issue on Situated Interaction and Ubiquitous
Computing, 5(1), 4-7.

Elizabeth, M., & Hull, C. (1987). Occam - A
programming language for multiprocessor
systems. Computer Languages, 12(1), 27–37.
doi:10.1016/0096-0551(87)90010-5

216

Community Computing

Ferber, J., & Gutknecht, O. (1998). A meta-model
for the analysis and design of organization in
multi-agent systems. In Proceedings of 3rd In-
ternational Conference on Multi-agent Systems
(ICMAS’98), (pp. 128-135).

Ferber, J., Gutknecht, O., & Michel, F. (2003).
From agents to organizations: An organizational
view of multi-agent systems. In Proceedings
of AOSE 2003 [Springer Verlag.]. Lecture
Notes in Computer Science, 2935, 214–230.
doi:10.1007/978-3-540-24620-6_15

Guo, H., Gao, J., Zeng, Z., & Hu, B. (2006). Recipe,
policy and self-organizing: A hybrid collaboration
approach for agent-based cooperative design. In
Proceedings of the 10th International Confer-
ence on Computer Supported Cooperative Work
in Design (CSDWD 2006), (pp. 653-658). IEEE.

Hua, C., Gao, J., Su, J., & Chen, H. (2003). AG-
DRSCOM: A complicated dynamic real-time
strong cooperation system model. In Proceed-
ings of the Second International Conference on
Machine Learning and Cybernetics: Vol.1 (pp.
318-323). IEEE.

Ishida, T. (Ed.). (1998). Community computing
and support systems. Lecture Notes in Computer
Science (Vol. 1519). Springer.

Johansen, R., Charles, J., Mittman, R., & Saffo,
P. (Eds.). (1998). Groupware: Computer support
for business teams. New York, NY: Free Press.
London, UK: Collier Macmillan.

Jung, Y., Lee, J., & Kim, M. (2006, May).
Multi-agent based community computing system
development with the model driven architecture.
Paper presented at the Fifth International Joint
Conference on Autonomous Agents and Multia-
gent Systems, (pp. 1329-1331).

Kindberg, T., & Fox, A. (2002). System software
for ubiquitous computing. IEEE Pervasive Com-
puting / IEEE Computer Society [and] IEEE Com-
munications Society, 1(1), 70–81. doi:10.1109/
MPRV.2002.993146

Kumar, M., Shirazi, B., Das, S. K., Singhal, M.,
Sung, B., & Levine, D. (2003). Pervasive infor-
mation communities organization: A middleware
framework for pervasive computing. IEEE Perva-
sive Computing / IEEE Computer Society [and]
IEEE Communications Society, (July-September):
72–79. doi:10.1109/MPRV.2003.1228529

Microsoft. (2005). Community technologies
research group. Retrieved from http://research.
microsoft.com/ community/

Object Management Group. (2003). Technical
guide to model driven architecture: The MDA
guide v1.0.1. Retrieved from http://www.omg.
org / cgi-bin/ doc?omg/ 03-06-01

Perez, M. S., Sanchez, A., Robles, V., Pena, J.
M., & Abawajy, J. (2004). Cooperation model of
a multiagent parallel file system for clusters. In
Proceedings of IEEE International Symposium on
Cluster Computing and the Grid (pp. 595-601).
IEEE computer Society.

Román, M., Hess, C., Cerqueira, R., Campbell,
R. H., & Nahrstedt, K. (2002). Gaia: A middle-
ware infrastructure to enable active spaces. IEEE
Pervasive Computing / IEEE Computer Society
[and] IEEE Communications Society, 1, 74–83.
doi:10.1109/MPRV.2002.1158281

Strang, T., & Linnhoff-Popien, C. (2004). A
context modeling survey. In Proceedings of the
1st International Workshop on Advanced Con-
text Modeling, Reasoning and Management at
UbiComp2004.

Sung, B., Shirazi, B., & Kumar, M. (2002). Per-
vasive community organization. In Proceedings
Eurasia 2002, Tehran, November.

The Foundation of Intelligent Physical Agents
(FIPA) Standard. (2000). FIPA communicative
act library specification. Retrieved from http://
www.fipa.org/ specs/ fipa00037/

217

Community Computing

Weiser, M. (1991). The computer for the twenty-
first century. Scientific American, 265(3), 94–104.
doi:10.1038/scientificamerican0991-94

Wilson, P. (1991). Computer supported coopera-
tive work: An introduction. Oxford, UK: Intellect
Books.

Wooldridge, M. (2002). An introduction to mul-
tiagent systems. John Wiley & Sons.

Wooldridge, M., & Jennings, N. R. (1999). The
cooperative problem-solving process. Journal of
Logic Computation, 9(4), 563–592. doi:10.1093/
logcom/9.4.563

Wooldridge, M., & Jennings, N. R. (2000).
The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous
Agents and Multi-Agent Systems, 3, 285–312.
doi:10.1023/A:1010071910869

Yau, S. S., & Liu, J. (2006). Hierarchical situation
modeling and reasoning for pervasive computing.
In Proceedings of 3rd Workshop on Software
Technologies for Future Embedded and the Sec-
ond International Workshop on Collaborative
Computing, Integration, and Assurance (SEUS-
WCCIA’06), (pp. 5-10). IEEE Computer Society.

Zambonelli, F., Jennings, N. R., & Wooldredge,
M. (2003). Developing multiagent systems: The
Gaia methodology. ACM Transactions on Software
Engineering and Methodology, 12(3), 317–370.
doi:10.1145/958961.958963

Section 3
Clouds and Services

219

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 10

DOI: 10.4018/978-1-60960-735-7.ch010

INTRODUCTION

Cloud computing is a recent trend in IT that enables
the use of common business applications online us-
ing the providers’ software and hardware resources
and finally paying on-demand. This model opens
a new horizon of opportunity for enterprises as it
introduces new business models that allow custom-
ers to pay for the resources they effectively use
instead of making upfront investments. This fact
raises the question of whether such a technology

reduces IT costs and the situations under which
cost is actually a motive for migrating to cloud
computing technologies.

As cloud computing services are maturing, they
are becoming an attractive alternative to traditional
in-house or on premise development. The variable
costs calculated on scalable use of resources, the
support of enterprise growth through on demand
instant infrastructure provisioning and the shift of
maintenance, administration and monitoring op-
erations to third parties are among the compelling

Stamatia Bibi
Aristotle University of Thessaloniki, Greece

Dimitrios Katsaros
University of Thessaly, Greece

Panayiotis Bozanis
University of Thessaly, Greece

How to Choose the Right Cloud

ABSTRACT

Cloud computing is a recent trend in IT that moves computing and data away from desktop and portable
PCs into large data centers, and outsources the “applications” (hardware and software) as services
over the Internet. Cloud computing promises to increase the velocity with which applications are de-
ployed, increase innovation, and lower costs, all while increasing business agility. But, is the migration
to the Cloud the most profitable option for every business? This chapter presents a study of the basic
parameters for estimating the potential infrastructure and software costs deriving from building and
deploying applications on cloud and on-premise assets. Estimated user demand and desired quality at-
tributes related to an application are also addressed in this chapter as they are aspects of the decision
problem that also influence the choice between cloud and in-house solutions.

220

How to Choose the Right Cloud

benefits of the cloud. Still a quantitative analysis
of the relevant aspects of the potential IT problem
is required before making a decision on the ap-
propriate development and infrastructure model.

IT managers are recently faced with the
problem of making a selection between cloud
computing and on-premise development and
deployment. Cloud computing option is attrac-
tive, especially if the quality delivered and the
total cost is satisfying and the risks are reason-
able. The real question for many IT departments
is whether the cost of transition to an external
computing cloud will be low enough to benefit
from any medium-term savings (Armbrust et al.,
2008), (Cloud Computing Congress, 2010). In
order to be able to provide answers to the above
question, a formal cost analysis of cloud and
on-premise deployment should be performed in
order to compare thoroughly the two alternatives.

A thorough analysis of the estimated costs and
quality associated with the two alternatives will
help an IT manager define the pros and cons of each
solution. Such an analysis will point out which is
the right combination of cloud and premise based
assets and can indeed provide the optimal solu-
tion. As mentioned by Knight, (2009) the key is
not choosing between the two solutions but being
strategic about where to deploy various hardware
and software components of a total solution.

Although there is a lot of research dedicated
to cloud computing software engineering issues,
economics and cost estimation drivers for adopt-
ing such a technology are not systematically ad-
dressed. This chapter presents basic parameters
for estimating the potential benefits from Cloud
computing and provides an estimation framework
for determining if it is a technology that offers
a long term profitable solution to IT business
problems. Basic parameters for estimating the
potential costs deriving from building and deploy-
ing applications on cloud and on premise assets
are presented.

The assessment of cloud computing costs is
more evident compared to the assessment of on

premises development and deployment. The cost
of cloud computing services initially depends
on the usage of three types of delivery models;
namely, software-as-a-service, platform-as-a-
service and infrastructure-as-a-service. The usage
is counted and billed based on the committed
resources per hour or the number of users per
hour. As the cloud technology is relatively recent,
measurement standards are not yet fully defined
for each model. The usage metrics should be care-
fully selected in order to provision and receive
effective services (Dikaiakos et al., 2009). The
metrics that nowadays are frequently used are
bandwidth, CPU, memory and applications usage,
per hour. The target of this chapter is to discuss
and suggest appropriate metrics that is/will be
used for billing cloud computing services. These
metrics will also be used to estimate the cost of
an application moving or being developed over
the cloud. Other important parameters that should
be taken into account in order to evaluate cloud
computing adoption is the business domain and
objectives of the application considered, demand
behaviour in the particular field and technical
requirements (Klems et al., 2009). Of course this
estimation would help in order to approximately
predict the cost of cloud computing adoption, but
still one should be able to estimate the costs of
the alternative privately owned solution in order
to compare them and make a justifiable choice.

Estimating the cost of software development
and deployment based on on-premise assets is a
more complex procedure. On–premises applica-
tion development includes a variety of different
costs associated with IT infrastructure and soft-
ware development. Estimating in-house develop-
ment and deployment of software is a difficult
task, as there are different cost drivers related
to personnel, product, process, hardware and
operation expenses. Developing applications on
privately owned IT infrastructure comprise, apart
from software development and maintenance costs
which remain the same in both cases, a series of
cost drivers associated with physical attributes,

221

How to Choose the Right Cloud

performance factors and functional expenses
(McRitsie et.al., 2008). Physical attributes, that
may affect the in-source development, are related
to the operating environment such as facility re-
quirements, systems hardware and software costs
and end users equipment. Performance attributes
involve the technical non-functional requirements
of the application relevant to the required reli-
ability, transaction- rate, safety, accuracy. The
non-functional requirements have an impact on
the selected infrastructure. Finally the functional
expenses of the company may involve years of
operation, labor rates, size of the development
and support team and replacement and upgrade
policies.

These factors affect the total cost of an IT in-
vestment and may define the feasibility of a certain
application development and the potential benefits
of developing it in-sourcing or out-sourcing over
the cloud.

This chapter is an overview of possible billing
measures and metrics related to infrastructure and
software either they are deployed in the cloud or
in house. It is addressed to IT managers that face
the dilemma of selecting to deploy applications
on the cloud or on premise, to cloud providers
that want to effectively bill their provisions and
to Independent Service Vendors that want to offer
to potential customers both of the two alterna-
tives, clarifying long term benefits of each of the
two. Specifically, in the sequel we pursue three
main goals:

a. to analyze the different types of costs related
to adopting cloud technologies and in house
development. Our approach is based on the
discussion of general cost categories that
are taken into account by “cloud” providers
and the traditional cost drivers considered in
estimating in-source software and systems
applications;

b. to provide an analytic comparison example
for the deployment of a CRM system based
on current economic status. The analysis is

based using commercial data from software
development coming from the International
Standards Benchmarking Group (ISBSG,
2010) and from (Yankee, 2005) report.

c. to define quality attributes and levels of
demand behaviour that may affect the final
choice. User demand is an indicator of the
load of a system and the estimated traffic that
greatly affects infrastructure costs. Desired
quality attributes and the level these attri-
butes are incorporated into on premise and
on cloud solutions can also affect the final
decision.

The rest of the chapter is organized as follows:
The next Section provides an analysis of the
background and the related work. Section entitled
“Choose the right deployment model” describes
cloud computing and traditional software and
system costs and provides a three step procedure
that will assist IT managers to understand the
benefits of each solution. The two last sections
discuss future work and conclude the Chapter.

BACKGROUND

Τhere is fairly broad general interest on the benefits
and drawbacks of moving or deploying an applica-
tion to the cloud. Cost is recognized as an important
factor that may motivate the transitioning of IT
operations to cloud computing. Practitioners show
an increased interest on the costs related to cloud
computing however monetary cost- benefits are
not yet fully recorded, assessed and analyzed by
the scientific community.

Armbrust et. al. (2009) in their technical
report, include a chapter devoted to cloud com-
puting economics. Three issues are mentioned in
(Armbrust et al., 2009) that should participate in
cloud computing economic models. These issues
are related to long-term cost benefits, hardware
resource costs declines and resource utilization.
A host service in the cloud should offer benefits

222

How to Choose the Right Cloud

over the long term. This means that one has
to estimate the utilization over the cloud for a
significant period of time. In these estimations
the “pay as you go” billing system offered by
cloud computing providers is evaluated in terms
of elasticity measured in resource utilization. An
IT manager will predict daily average and peak
demand measured for example as the number of
servers required and then he will be able to com-
pare utility computing versus privately owned
infrastructure. Also hardware expenditures should
be taken into consideration into economic models.
Hardware resource costs decline at variable rates
a fact that may lead to unjustifiable expenditures
compared to actual resource usage. Cloud com-
puting can track changes to hardware costs and
pass them through the client more cost effectively.

Klems et al. (2009) propose a framework for
determining the benefits of cloud computing as an
alternative to privately owned IT infrastructure.
The model presented is based on the business
scenario and the comparison of costs between
the two alternatives. The business scenario is
defined by the business domain and objectives,
the demand behavior and the technical require-
ments. For example, the business domain defines
whether an application will be used at a Business
to Business level or Business to Client level, or
for internal use. The business goals will point out
particular benefits coming from web hosting in
the cloud such as short time to market, reduced
costs, and software licenses violations. Demand
behavior also is an important factor that affects
the performance of services and applications in
the Web according to Kleims (2009). Demand
behavior can be seasonal, temporary or caused
by batch processing jobs.

Related studies that discuss the cost of familiar
to cloud computing models like grid computing
are (Kondol et. al., 2009) and (Optitz et al., 2008).
Performance trade- offs and monetary costs of
cloud computing compared to desktop grids are

analyzed in (Kondol et. al., 2009). The above
comparison involves two relevant architectural
platforms, cloud computing and volunteer comput-
ing, that present similar principles. Performance
comparison is quantified in terms of execution,
platform construction, application deployment and
completion times. Cost comparison is performed
in terms of technical requirements such as project
resource usage. The costs of relevant aspects of
cloud computing such as grid computing is ad-
dressed also in (Optitz et al., 2008). The study
analyzes different types of costs and determines
the total costs of a resource provider. Relevant
cost for resource providers include hardware,
business premises, software, personnel and data
communication expenses.

Practitioners on the other hand seem to be bigot
supporters of utility computing. Miller (2009)
states that cloud computing is a type of web-based
computing that allows easy and constant access
to applications and data from all over the world
through an internet connection and facilitates
group collaboration. Though he mentions that
cloud computing is not suitable for any case, stress-
ing the advantages and disadvantages of cloud
computing. Regarding costs he refers that cloud
computing reduces hardware and software costs
and increases the productivity of the employees
as they have access to their files and applications
from home as well. Among the disadvantages of
cloud computing related to costs Miller (2009)
mentions that cloud computing requires fast and
instant internet connections. Also data confiden-
tiality in the cloud is a subject under examination
that may cause economic loss (McGowan, 2009).
Knight (2009) argues that the dilemma between
cloud computing and on-premise development
is wrong and should be substituted by the ques-
tion of which is the right combination of cloud
and premise based assets. The combination of
the two approaches can indeed exploit the best
of both worlds.

223

How to Choose the Right Cloud

CHOOSE THE RIGHT
DEPLOYMENT MODEL

In this Section our goal is to clarify which services
are offered by cloud computing and how they are
related to on-premise software and system costs.
We record and analyze thoroughly all relevant
costs related to cloud deployment and in-house
development and finally suggest a three step
decision model that will support the decision of
migrating or not to the clouds.

Cloud Utilities

The main purpose of Cloud Computing is to
provide a platform to develop, test, deploy and
maintain Web-scale applications and services. A
formal definition of cloud computing is not found
in literature but most resources refer to this term
for anything that involves the delivery of hosted
services over the Internet. These services are
broadly divided into three categories (Dikaiakos
et al., 2009), (Lenk et al., 2009): Software-as-
a-Service (SaaS), Platform-as-a-Service (PaaS)
and Infrastructure-as-a-Service (IaaS). Figure 1
depicts the services offered by the cloud.

A. Software as a Service

Software as a Service is a software distribution
and usage model that is available via a network to
the customers. Both horizontal and vertical market
software are offered by SaaS. Typical examples
of horizontal SaaS are subscription management
software, mail servers, search engines and office
suites. Examples of vertical SaaS are more spe-
cialized software such as Accounting software,
Management Information systems and Customer
Relationship Management systems.

SaaS software is leased through Service Level
Agreements (SLAs). An SLA (SLA definition,
2010) is a contractual service commitment. An
SLA is a document that describes the minimum
performance criteria a provider promises to meet
while delivering a service. It typically also sets
out the remedial action and any penalties that
will take effect if performance falls below the
promised standard. It is an essential component
of the legal contract between a service consumer
and the provider. SaaS investment is typically
limited to the subscription fee. This pricing model
provides a predictable investment that follows a
pay per usage billing scheme. Usually costs are
calculated considering user licenses, customiza-
tions costs and end user support and training costs

Figure 1. Cloud services

224

How to Choose the Right Cloud

(CRM Landmark, 2009). The last three types of
cost refer mostly to software for vertical needs.
All these costs are determined in SLAs that define
the pay-on-demand rates.

Defining the billing model of SaaS is a chal-
lenging task for potential customers, providers
and Independent Software Vendors. Many Inde-
pendent Software Vendors (ISVs) have developed
their SaaS solutions offered in parallel with the
corresponding commercial products. Among
the challenges ISVs are confronted is the re-
structuring of pricing models. In order to establish
attractive pay- as- you go subscription fees, the
understanding of the differences in cost between
software products and services is required. These
differences need also to be clearly presented to
candidate customers.

Major SaaS providers bid very low prices hop-
ing that perpetual licensing will lead to upfront
earnings. SaaS providers usually provide scalable
types of licensing based on the number of users
or on the number of applications accessible to the
user. One pricing model may not be appropriate
for all types of applications and software services.
For example, eCommerce or supply-chain SaaS
solutions could be priced based on the number
of transactions or volume of data transmitted.
Customer relationship management (CRM) or
Salesforce Automation (SFA) solutions can be
priced based on the number of accounts, prospects,
or bookings they support. Determining customers’
price-sensitivity when it comes to SaaS is espe-
cially difficult for providers who need to balance
their new solution pricing against existing product
pricing schedules. (Le Cayla, 2006).

SaaS providers are faced with the problem
of metering and billing their services in order to
establish competitive offers that will at first attract
potential customers, and offer long term benefits
to both of the two parties. A provider is faced with
the following three problems:

• Which usage data to collect and record?
• Based on which metrics to charge?

• Should process and ratings be flexible per
customer? Per contract?

Answering the first question we can say that
the relevant data collected so far by providers
generally falls into three categories, resource data,
transactional data and workflow data.

Resource data most of the times describe the
customers usage of the premises offered by the
provider. Relevant data that can be recorded is
the number of users, or connections to the ap-
plication that can be ‘per use’ or per ‘concurrent
use’. The number of registered users of a product
per month is an increasingly popular method of
pricing SaaS. SalesForce, (2010) is a major SaaS
provider that use among others this model for most
of its offerings. This billing model has different
prices for each level usage based on the number
of users. The payment per user is appropriate for
software that serves internal needs of the custom-
ers company. In that case the customer needs to
isolate and record the number of employees that
will actually utilize the SaaS software. The number
of registered users is a good indicator of the value
that a group derives from the product (Rothbart,
2009). Risks deriving from this method involve
possible user’s abandonment. The customer com-
pany needs to control, manage and remove users
that do not regularly use the software.

Another way of pricing resource usage is
based on per- user page view fees counted as the
number of users that access a page. This kind of
pricing model is mostly appropriate for products
that are destined for large external customer and
partner communities. In that case, the number of
users that access and browse a website is recorded
as the basis to charge customers. Theoretically
this metric is indicative of the number of users
that visit a website and actually may use or buy a
product, but still there is no guarantee that a high
page view presents the proportional benefits to
the SaaS customer and its clients. The page view
does not always reflect how much users are using
a product. The “concurrent use” on the other hand

225

How to Choose the Right Cloud

can be an alternative metric in the cases of SaaS
products that require concurrent user intensive
functions. Examples of such SaaS products may be
teleconferencing applications, discussion forums,
calendars, or even information portals. Concurrent
user is an industry standard term that refers to the
total number of people (as measured by network
connections), that are connected to a server or
online service at any one point in time. The term
“concurrent user” is analogous to “port” or “line”
with respect to a telephone branch exchange (Nef-
sis, 2010). In general, the pricing based on number
of users or user licences may be combined with
additional fees for extra bandwidth and storage.

Transactional data refer to the interaction
between a subscribed customer and the SaaS
provider and usually are one –time fees based
on the needs of the customer. For example, SaaS
Optics (2010) define several types of transac-
tion items within the subscription life cycle. In
essence, these transaction items are the events
that can occur with regard to a term agreement
over time. Such transactions may involve New
Subscription, Upgrade, Downgrade, Adjustment,
Renewal, Cancellation. New Subscription service
is a one time fee that can break down to license
and professional services fees. License costs
are related to the initial subscription to the SaaS
service. Professional services fees may include
consultancy, training, user support and several
other customer needs that may occur. Upgrade,
Downgrade or Adjustment are three services that
can be offered to a single customer subscription
that allow the customization of the application
to the customers needs. The fees charged are
based on the level, the costs and the time required
for the incorporated changes. Renewal charges
include the fees related to the continuation of
the services to the customer while cancellation
fees include penalties to the customer in case of
cancelling the contract based on the time period
of the notification.

Workflow data may involve usage metrics
involving process oriented activities. Such metrics
are relative to the specific SaaS application and
are forced by the business goals. For example an
E-commerce system may count the number of
sales or invoices send, an Advertising& Marketing
system may count the number of emails or forms
received. The usage of a document management
system is reflected by the number of documents
download or uploaded. Workflow metrics are
defined by the procedures and user tasks incor-
porated in the SaaS software and are indicators
of the level of successful usage of a system. A
high level of workflow metrics is associated with
relevant economic benefits of the SaaS customer.

We mentioned possible data and metrics that
can be used to bill SaaS based on the type of the
application and the customer’s needs. As with
any variation of products available to market
there should be differences in pricing taking into
consideration the basic marketing mix: the four P’s
of product, price, promotion, and place (Lovelock,
2007). Depending on the potential customer the
SaaS services might be different, the price might
be different, the hosted place and the product might
be different. Table 1 summarises the metrics that
are currently used by SaaS providers to charge
their services. Still the pricing models of SaaS are
in their infancy at a lot of research is devoted to
capturing the correct price model that will better
reflect the usage and value of SaaS.

B. Platform as a Service

Platform as a Service (PaaS) includes the deliv-
ery of operating systems and associated desktop
services over the Internet without download or
installation. PaaS is an outgrowth of Software
as a Service targeted to middleware distribution.
Platform as a service is a development platform
hosted to the cloud and accessed via a network.
The functionality that PaaS offers involves at
least the following: operating systems, developer

226

How to Choose the Right Cloud

studios that include all necessary tools to build a
web application, seamless deployment to hosted
runtime environment and management and moni-
toring tools. PaaS offers the potential for general
developers to build web applications without
having any tools installed in their own space.
PaaS applications are hosted to infrastructure of-
fered as a service by cloud computing providers.

Therefore, the costs of PaaS are connected to the
costs of Infrastructure as a Service and will be
analytically addressed in the next section.

C. Infrastructure as a Service

Infrastructure as a Service is a provision model
in which the customer outsources the equipment

Table 1. SaaS billing metrics

Type of
Metric

Metric Explanation Unit of measurement Charges and current SaaS
vendors

Resource metrics

Number of users Internal enterprise employees # of licences Based on ranges of # licences
www.salesforce.com
www.salesboom.com

Pay per user External community users,
potential customers

of page views per month Based on usage per search
http://www.ppcsaas.com/
(for a Search Engine SaaS is the
number of searches per month)

Pay per concurrent
user

Systems of high concurrence # of concurrent users per
month

Teleconferecing and knowledge
sharing systems
http://www.nefsis.com

Number of user +
additional bandwidth
and storage

Low prices for small number of
users because of additional band-
width and storage charging

of users + infrastructure
charges

Based on ranges of # number of
users + ranges of infrastructure
usage

Trasactional metrics

New Subscription Licence fees + Professional
services

Standard subscription fee,
training costs, consultancy
costs, user support costs

Subjective monetary costs by
SaaS provider

Upgrade Cost of upgrading current ap-
plication

Based on the level of
upgrade.
(time, infrastructure,
labour costs are counted)

Subjective monetary costs by
SaaS provider

Downgrade Cost of downgrading current
application

Based on the level of
degrade

Subjective monetary costs by
SaaS provider

Adjustment Cost of adjustment of current
application

Based on the level of
adjustment

Subjective monetary costs by
SaaS provider

Renewal Cost of renewing SaaS agree-
ment

Subjective monetary costs
by SaaS provider

Subjective monetary costs by
SaaS provider

Cancellation Penalty costs of cancelling a
SaaS SLA

Workflow metrics

Succesful business
scenarios that show
the benefit of the cus-
tomer using a SaaS

Invoices (proofs of sales),
Emails (proof of marketing and
advertisment)

business metric/ month Measure business successful
usage
http://www.verticalresponse.
com/
http://www.zoho.com/invoice/
index.html

227

How to Choose the Right Cloud

used to support operations, including storage,
hardware, servers and networking components. In
that case the provider is the owner of the hardware
equipment and all relevant resources and expenses
related to housing, constant operation and main-
tenance are his own responsibility. The client
typically pays on a per-use basis. Infrastructure
as a Service involves the physical storage space
and processing capabilities that enable the use of
SaaS and PaaS if wanted otherwise these services
are used autonomously by the customer. Virtu-
alization enables IaaS providers to offer almost
unlimited instances of servers to customers and
make cost-effective use of the hosting hardware.

IaaS can be exploited by enterprises that chase
quick time to market. The customer enterprise can
accelerate the development time required to build
new versions of applications or environments
without having to worry about ordering, waiting,
paying and configuring new hardware equipment.
The most popular use of IaaS is website hosting.
Website hosting is a convenient way for enterprises
to shift the relevant IT resources away from an
internal infrastructure whose primary purpose is
to run the business, not the website. In this case
the availability and the monitoring of the website
are in the concerns of the IaaS provider.

IaaS offers relatively simple infrastructure as
it includes basic hardware and operating services.
Customers select software servers with operating
systems that match their needs and then they load
up their own libraries, applications and data and
finally configure them themselves. This process
requires that the in-house personnel possess con-
siderable IT skills. In the case that the customer
enterprise personnel is relatively inexperienced
IaaS may not be enough to cover the needs of
the customer and can be combined with PaaS.
IaaS is then enriched with platform services such
as database management systems, web hosting
server software, batch processing software and
application development environments that are
installed in the relevant infrastructure. PaaS and
IaaS costs in that case are interrelated.

IaaS and PaaS are billed based on the services
delivered to the customer. The billing model is pro-
duced considering the level of usage of hardware,
application, storage and networking components.
Hardware and application components are usually
charged simultaneously. These costs most of the
times are calculated as on-demand instances per
hour. On-Demand instances refer to the number
of servers used. The prices differ according to
the operating systems and middleware applica-
tions loaded to the offered servers. The payment
is then processed based on per use instances that
are indicative of the compute capacity. Additional
metrics that can be used derive from the technical
attributes of the server such as the hard disk size
of the server, the cpu and the memory capacity.
The usage of the servers may also be charged
measured in bandwidth or as a daily percentage
usage, along with additional IP generation. Also
full back ups of cloud servers may be charged
separately. PaaS services that may be included in
the prices involve databases, web servers, applica-
tion development environments and servers and
video encoding and streaming software.

Storage services are billed based on the hard
disk demands, the data transfer and the requests.
Initially the data storage is measured in terabytes
committed in the hard disk. The price depends on
the level of hard disk usage. Data transfer involves
transferring the data into databases. Data transfer
may be charged autonomously, or is included in
data storage fees or may be for free based on the
regions of transfer. Data requests involve opera-
tions such as copy, get, put, list and other requests
regarding the data. Data requests involve inquiries
in the data set.

Networking services involves the possibility
of establishing a virtual private cloud (Amazon,
VPC) that will be the bridge between a company’s
existing IT infrastructure and the cloud. A private
cloud enables enterprises to connect their existing
infrastructure to a set of isolated cloud compute
resources via a Virtual Private Network (VPN)
connection, and to extend their existing manage-

228

How to Choose the Right Cloud

ment capabilities such as security services, fire-
walls, and intrusion detection systems to include
their cloud resources. The billing of such services
is based on the number of VPN connections per
hour and the data transferred.

The metrics used to bill IaaS and PaaS services
are presented in Table 2.

Traditional Software and Systems
Costs

This Section discusses the costs related to IT
infrastructure and software development for an
application based on on–premise assets. Com-
panies that possess their own IT department
have the dilemma of selecting between in-house

and hosted SaaS solutions will find very useful
to predict software development costs, as these
costs define all relevant on-going costs such as
maintenance, training, upgrades and also costs
related to infrastructure.

A. IT Infrastructure Costs

When estimating software development and
maintenance costs, IT infrastructure costs should
also be accounted. IT costs are non-negligible as
usually they stand up to 60% of Total Ownership
costs (Gray, 2003), (McRitsie, 2008). Unlike soft-
ware development estimation, IT estimation is a
simpler process as infrastructure and services are
more tangible. The cost drivers that influence IT

Table 2. IaaS and PaaS billing metrics

Type of Metric Metric Explanation Charges and current SaaS vendors

Hardware and application metrics

No Instances of
servers

Number of servers. The prices are based on the operating system and the software
installed on the server. The pricing models depend on the
provider and can be calculated based on the usage per hour or
per month.

CPU Level of CPU usage The CPU usage may is calculated in hours or cores.

Bandwidth Incoming, outgoing
bandwidth

The gigabytes transferred from and to the cloud measured in
gb/ per unit of time

RAM Megabytes, Gigabytes RAM memory committed measured in MB or GB /per unit of
time

Storage metrics

Data Storage Hard disk storage,
Terabytes

GB or TB/ per unit of time

Data transfer Amount of data
transferred in different
regions

GB or TB/ per unit of time

Data requests Copy, get, put, list Number of requests per month

Networking services

No of VPN connec-
tions

Virtual Private Net-
work that will bridge
the cloud to private
infrastructure

Number of VPN connections per hour

Monitoring opera-
tions

Monitor the cloud
computing resources,
statistics

A charge based on the number of instances monitored per hour

IP addresses Additional public IP
adresses

Number of IP addresses generated

229

How to Choose the Right Cloud

costs as mentioned in (McRitsie, 2008), (Optitz,
2008) and (TechAmerica, 2008) can be operational
attributes and business premises.

Operational attributes refer to hardware costs,
software and system license fees. Hardware costs
include new resources acquisition, replacement
and maintenance of existing resources. Hardware
acquisition costs depend on the infrastructure hard-
ware list (servers) and the end user hardware list
(laptops, CPU, printers). Hardware maintenance
costs usually are estimated using measures that
compute the Mean Time To Failure (MTTF) or
Mean Time Between Failures (MTBF). Software,
system and database license fees refer to opera-
tional software that will be installed in computer
systems necessary for the operation of the new
application. License costs are defined by the
number of inbound and outbound workstations
in which the new application will be installed.
The number of users usually affects cost mainly
through the number of software licenses needed
and recruitment and training costs.

Several performance factors are associated
with the non-functional requirements of an ap-
plication that apart from the need to incorporate
them in the software also rise the need for busi-

ness premises. The average transaction rate, the
storage needs, security issues and reliability fac-
tors require computational power and capacities.
Computational power in low level is related to
electricity costs. Other business premises that are
necessary for IT development and are associated
to total costs involve labor rates, outsourcing
agreements and operational locations. Labor rates
are related to the personnel expenses and training
procedures. Outsourcing agreements may include
hardware/software leasing or development. Dif-
ferent physical locations of the organization and
different access points to the application are as-
sociated to rental or leasing expenses. Tables 3
and 4 summarize in-house infrastructure costs.

B. Software Costs

Software development costs are divided into four
groups. Product, platform, process and person-
nel drivers are pointed out by literature (Boehm,
1981) as the most important aspects that determine
software costs. Tables 5 to 8 summarize in-house
software development cost drivers.

Product attributes related to a software project
include descriptive variables and size indicators.
The aggregation of variables of both categories
is indicative of the complexity of the new projects
and the expected difficulties that might rise. De-
scriptive variables provide information regarding
the development type of the project, the applica-
tion type (IT project type ERP, MIS, CRM or Web
applications, etc.) and the user type of the ap-
plication (professional, amateur, concurrent, ca-

Table 3. Operational Drivers

Drivers

Operational Drivers

New resources Servers, Laptops, PCs

Peripheral devices, CPU, memory

WAN/LAN equipment

Maintenance and
replacement costs CPU

Hard Disk

Power supply

CPU Cooler

License fees Application Software (office applica-
tions, mail)

System Software (Operating system)

Database (Licences for end users)

Table 4. Business Premises

Drivers

Business Premises

Personnel Expenses Labor Rates

Training expenses

Electricity costs Electricity consumption

Physical Locations Rental expenses

230

How to Choose the Right Cloud

sual. In order to estimate size attributes an initial
assessment of functional requirements is neces-
sary. From functional requirements we can provide
a size estimate measured in function points (Al-
brecht, 1979) or in Lines of Code (Boehm, 1981).
Accurate size estimation is a very important task
as it is considered to directly affect the amount
of effort required to complete a software project.

Non-functional requirements affect the values
of platform drivers and can oppose certain con-

straints or lead to conflicting interests. Examples
of non-functional requirements are software reli-
ability, database size, security issues, performance
standards, usability issues and transaction rates.
Other drivers that directly affect platform costs
are incremented memory needs, increased storage
facilities and maintenance of back up files. All
the above parameters capture platform complex-
ity of the software under development.

Process attributes refer to all project supple-
ments that may be used and enable the development
and delivery of quality software within cost and
time limitations. Among these characteristics the
use of CASE (Computer Aided Software Engineer-
ing), the utilization of methods, techniques and
standards are the main aspects that define the level
of support and observation of the development
procedure. Productive development teams usually
follow a well-defined and guided process. Proven
best practices, methodologies and the selection of
the appropriate lifecycle processes are aspects that
a development team should rely on to complete
a project. The success of a project, the time and
cost required for its completion depends on the
existence of a well-managed process.

Software costs are also dependant on person-
nel team attributes. Typical examples of this group

Table 6. Platform Drivers

Table Head
Drivers

Platform Drivers Metric

Technical attributes Distributed Databases 1-5 Scale that depicts the necessity of the attribute.

On-line Processing 1-5 Scale

Data communications 1-5 Scale

Back-ups 1-5 Scale

Memory constraints 1-5 Scale

Use of new or immature technologies 1-5 Scale

Non-functional requirements Reliability 1-5 Scale

Performance 1-5 Scale

Installation Ease 1-5 Scale

Usability 1-5 Scale

Security 1-5 Scale

Table 5. Product Drivers

Drivers

Product Drivers Metric

Type of project Application Type ERP, Telecommunica-
tions, Logistics, etc.

Business Type Medical, Public Sector,
Transports, Media, etc.

Development Type
New Development, Re-
development, Enhance-
ment

User type Level of usage Amateur, Professional,
Casual

Number of Users 1-50, 50-200, 200-1000,
>1000

Size Source Code Lines Lines of Code (LOC)

Function Points Number of Function
Points

231

How to Choose the Right Cloud

of cost drivers are the experience of the team, the
analysts’ capabilities, the familiarity with the
programming language and the application. Recent
studies also point out that cultural characteristics
also determine software costs. Well structured
teams that encourage communication allow
knowledge exchange and support reward mecha-
nisms are more productive compared to imper-
sonal teams. The capabilities of the personnel and
the motivation of the environment affect directly
the productivity of a development team thus the
total developments costs.

Estimating Cloud
Computing Migration

IT managers are faced with the problem of select-
ing how and where to develop and deploy their
applications. The requirements of an application
will determine the choice between cloud com-
puting and development on premises or even a
combination of both (Armbrust, 2008). Each of
the two different options presents advantages and
disadvantages on various fields. The business goals
and priorities of the application will determine
the level of usage of cloud or premise assets. IT
decision making often requires trading between

innovation and time-to-value advantages of cloud
computing against performance and compliance
advantages of development on-premise. For this
reason we propose a three step procedure that will
assist in decision making:

A. Assess software and infrastructure develop-
ment costs.

B. Define quality characteristics.
C. Estimate user demand.

The issue of deciding whether to develop and
deploy the applications in the cloud was also ad-
dressed in (Klems et al., 2009), but our three-step
process is somewhat more generic as it includes
detailed recording of relevant parameters.

A. Assess Software and
Infrastructure Development Costs

This procedure involves costs assessment of the
two alternative solutions. The previous sections
will be useful to keep in mind all the relevant
aspects of the problem. A five year total cost of
ownership projection will be useful to determine
long-term benefits of each solution.

Table 7. Process Drivers

Drivers

Process Drivers Metric

Use of Case Tools Versioning tools % of usage

Analysis & Design
Tools % of usage

Testing Tools % of usage

Management Process Use of lifecycle
models Yes or No

Managed develop-
ment Schedule 1-5 Scale

Methodologies Existance of best
practices 1-5 Scale

Software Reuse % of the total
LOC

Table 8. Personnel Drivers

Drivers

Personnel
Drivers Metric

Experience Analysts
cababilities 1-5 Scale

Programmers
experience 1-5 Scale

Familiarity with
the problem do-
main

1-5 Scale

Cultural issues Reward mecha-
nism 1-5 Scale

Collaboration 1-5 Scale

Cabable leader-
ship 1-5 Scale

232

How to Choose the Right Cloud

We will discuss the deployment of Customer
Relationship Management Systems; a common
business application that is becoming popular on
the cloud. We will focus on software development
costs of such an application.

Customer Relationship Management (CRM)
is an information industry term for methodolo-
gies, software, and Internet capabilities that help
an enterprise manage customer relationships in
an organized and efficient manner (Laudon &
Laudon, 2009). CRM functionality may include
product plans and offerings, customer notifica-
tions, design of special offers, e.t.c.

Development and cost data for CRM ap-
plications built in-house can be found in the
International Standards and Benchmarking Group
(ISBSG, 2010) data base. Based on data coming
from ISBSG, CRM systems on the average require
1867 total effort hours for completion. Keeping
in mind average US salaries (4141 US$), 1867
effort hours correspond to 233 workdays, 11,65
months and 48242$. Analyzing the projects that
include development data we can see that 56%
of the projects require development teams larger
than 9 people. All CRM projects developed in-
house followed a particular methodology while
only 33% of projects that presented values for
that field were supported by the use of CASE
tools. Cost and development data for CRM ap-
plications developed in-house are presented in
tables 9 and 10.

On the other hand CRM cloud applications
with Zoho (Zoho, 2010) and Salesforce (Sales-
force, 2010) leading providers charge based on
the number of users and the number of applica-

tions accessed. The prices range from 12$ per
month to 75$ per month, per user. Considering in
that case 5 potential users that will use a sublist
of the product features charged 50$ per month
the annual costs are calculated to be 3000$.

In both cases analyzed previously costs as-
sociated to software development and usage are
recorded. In order to calculate infrastructure,
maintenance and deployment costs we consider
certain assumptions made by the analysis pre-
sented in (Yankee, 2005). In Table 11 we present
a five year cost analysis including infrastructure
and software costs for in-house and hosted to the
cloud solution for a CRM application; the costs
presented are only indicative and they may vary
from case to case.

We make the following assumptions (These
assumptions and costs cannot be generalized in
all possible deployment models but still provide
an initial support to enterprises that want to cal-
culate relevant costs):

• The number of end users of the CRM ap-
plication is 10. This number was selected in
order to simulate real world situation for a
Small Medium Enterprise (SME). Keeping
in mind that each employee serves from 50
to 100 clients we consider that the guest
list of a SME is 500-1000 people.

• The functionalities of the CRM sup-
port Sales, Marketing and Relationship
management.

Table 9. Cost data statistics for on-premise CRM
applications

Cost data Average value

Effort (hours) 1867 h.

Size (function points) 181.5 fp

Cost (US $) 48242 $

Table 10. Development data statistics for on-
premise CRM applications

Development data Values and percentages

Development Team Size > 9 people. (56%)

Use of CASE tools Yes (33%)

Programming Languages C, C#, Cobol, Visual basic and
Oracle (65%)

Platform PCs (39%), clients and servers (15%).

Database Oracle (41,1%.

233

How to Choose the Right Cloud

• The price per user for the hosted solution is
calculated based on the Professional sup-
port offer of Salesforce 65$ per user per
month. (The prices of other providers pres-
ent slight differences that do not distort the
results).

• The number of in-house servers is consid-
ered to be three; data base server, appli-
cation server and web server. Three- tier
architecture is a popular model adopted
by many similar applications, therefore
selected in this study. In all of the servers
the appropriate middleware is installed and
the relevant costs should be considered.
Considering that the middleware can be
either open source software or commercial
solutions, the total infrastructure costs can
range from 9000$ (3000$ per server ma-

chine considering no costs for middleware)
to 70000$ when using commercial middle-
ware (for example Oracle database server
(47500$) and Windows (400$) or other
commercial products). An average price
considered in the analysis is 30000$.

• Application support and maintenance costs
in an on premise solution are calculated as
18% of the development costs. Professional
Services are calculated as 75% of the devel-
opment costs. For the next four years they
are calculated as 25% of the development
costs. Customization and integration costs
for the first year are calculated as 75% of
the development costs and for the next four
years they are calculated as 10% of the de-
velopment costs. The percentages used in

Table 11. 5 year cost analysis of hosted and on premise software deployment

Cost Category Cost driver Year 1 Year 2 Year 3 Year 4 Year 5

Hosted Infrastructure Costs included included included included included

Software Costs Number of Users 7800$ 7800$ 7800$ 7800$ 7800$

Professional
Services

5850$ 1950$ 1950$ 1950$ 1950$

Customization 5850$ 780$ 780$ 780$ 780$

TOTALS 19500$ 10530$ 10530$ 10530$ 10530$

On premise Infrastructure costs Hardware +
middleware

30000$ 1500$ 1500$ 1500$ 1500$

Network Infrastruc-
ture (including in-
ternet)

19000$ 19000$ 19000$ 19000$ 19000$

Power, Electricity 12000$ 12000$ 12000$ 12000$ 12000$

Floor Space 12000$ 12000$ 12000$ 12000$ 12000$

Software Costs Development costs 48242$ 0 0 0 0 $

Application support
and maintenance

8683$ 8683$ 8683$ 8683$ 8683$

Customization and
Integration

36182$ 4824$ 4824$ 4824$ 4824$

User Training 1500$ 750$ 750$ 750$ 750$

TOTALS 167607$ 58757$ 58757$ 58757$ 58757$

TCO Hosted 61620$

Tco
On premise

402635$

234

How to Choose the Right Cloud

the calculations are based on the analysis
of the Yankee Group(Yankee, 2006).

• Hardware costs for the second to the fifth
year are calculated as 5% of the costs of
the first year.

• Training costs varies based on the number
of users.

B. Define Quality Characteristics

Quality characteristics are closely associated to
business goals and most of the times are defined
as non-functional requirements. An initial assess-
ment involves the definition of non functional
requirements and their priority. Table 12 sum-
marizes quality attributes and which of the two
solutions best incorporates them.

Among the quality characteristics that are
incorporated in cloud computing is improved

performance. Computers in a cloud computing
system boot and run faster because they have
fewer programs and processes loaded into mem-
ory (Miller, 2009). Compatibility is another at-
tribute that is supported by cloud computing.
Documents created in a Web application can be
read and processed without any special installation
on the users PCs. Increased data reliability is also
ensured as cloud is considered the ultimate back-
up. Interoperability and availability are two
other quality characteristics of cloud computing.
Interoperability and availability allow user to have
access to the system any time, anywhere by any
computer or network.

On premise software advantages involve data
accessibility, ownership and safety. The biggest
advantage of on-premise software is that busi-
nesses have complete control over their critical
business data (MacGowan, 2006). This is also a

Table 12. Quality characteristics

Quality Attribute Cloud vs On premise?

Reliability Reliability is an indicator of the ability of system to perform its required functions. Cloud-based
providers are usually better equipped to recover from a failure. Most providers guarantee their uptime
and have built-in continuity systems to ensure continuity of the operations.

Availability Cloud solutions offer instant and universal access to the data and the applications of the customer
thorough an internet connection. On the other hand cloud computing is impossible if you can’t con-
nect to the Internet or you have low connection speed.

Flexibility & Customization Customization and integration are considered to be better addressed in on premise solutions. With
the software running on its premises, a business retains complete control over its entire hardware and
software environment, including the flexibility to select the peripherals and third-party applications
that best complement and support its processes (McGowan, 2006).

Data confidentiality The biggest advantage of on-premise software is that businesses have complete control over their
critical business data. This data is physically located on a business’s premises and does not require
the transmission and storage of data off-site. Owning the hardware and supporting systems provides
a business with maximum control.

Back ups Cloud-based solutions are generally considered to ensure a more secure backup of data and data
recovery as data stored in the cloud are replicated across multiple machines. Still there are arguments
in case of data loss in cloud you have no physical or local backup.

Interoperability The ultimate cloud computing advantage is device independence (McGowan,). Existing applications
and documents are visible even if local systems and devices alter.

Maintenance and upgrades Maintenance and upgrade is an intensive and time consuming task especially for web applications
where servers, storage, software, backup systems and network are in constant operation. In case of
hosted applications this burden is transferred to the provider and usually agreed upon SLAs.

Usability McGowan states that many web-based applications do not provide the same functionality and features
compared to their desktop-based brethren. Users that are tight with existing desktop applications might
find interesting the learning curve of the web based corresponding applications.

235

How to Choose the Right Cloud

main benefit for data intensive applications that
should support high volumes of transactions.
Other advantage of the on-premise software is
that it allows integration with existing software/
hardware resources. Customization is one more
quality characteristic of in–premise software.

CRM systems usually store, handle and process
sensitive private data of customers that should not
in any case leak to competitors. Therefore safety
is an important non functional requirement. Other
important features involve the back-up file storage,
and online any-time, any where immediate access
to the system. Usability is another important fea-
ture for such an application. A customer should be
able to navigate through different functionalities
and access the information he needs easily and
quickly. Prioritizing non functional requirements
is an indicator that will help managers take a deci-
sion regarding the development and deployment
of a system.

C. Estimate User Demand

Estimating the expected demand of the applica-
tion is also very important in order to assess costs.
Expected demand is associated with the number
of users. The number of users affects licensing
costs and hardware costs. Licensing costs are
considered for users that access the applications
and make changes of any kind. On the other hand,
for hardware as the number of users increases, the
hardware must also be improved or performance
becomes unacceptable. Centralized database
models present reasonable costs for 5-10 users,
but present exponential growth of costs as the
number of users increases. Distributed models
are a solution to such problems shifting costs to
PCs. Administration fees are also affected by the
number of users as normally one administrator is
considered every 5-10 users.

While estimating the number of users according
to (Klems et al., 2009), one should keep in mind
four types of demand.

• Expected Demand: Seasonal demand. This
type of demand is associated with consum-
ers’ interest in particular products only dur-
ing a specific period within the calendar
year. For example, Christmas ornaments
and snow ski equipment are subject to sea-
sonal demand.

• Expected demand: Temporary effect.
Expected temporary demand may be
caused due to offers, or low prices, or
clearance period.

• Expected Demand: Batch processing.
Batch processing demands involve compu-
tational intensive tasks that demand execu-
tion of a series of programs. Usually such
batch processing procedures may be cost,
time consuming or even unfeasible tasks
when in house resources are considered.

• Unexpected Demand: Temporal Effect.
The unexpected demand as mentioned by
Klems et al, (2009) is similar to Expected
temporary effect but the demand behavior
cannot be predicted at all or only in short
time in advance.

For the CRM system seasonal demand refers
to sales and retails periods that usually present
increased demand volume. In that case the number
of in-house users may increase as the sales are
increased. Temporary effect may refer to clear-
ance period or possible relocation that are seldom
events that may cause extra demands. Expected
demands: Batch processing may involve for the
CRM a period that massive advertisements are
shifted. Finally, unexpected demands for the CRM
may occur when a new product of the company
becomes very popular unexpectedly.

FUTURE WORK

Αs future work we aim to evaluate the proposed
model on real world applications deployment and
compare the three alternatives (cloud, on–premise,

236

How to Choose the Right Cloud

a combination of the two) based on data com-
ing from both in-house development and cloud
hosting. In particular for the hybrid of the two
worlds, we plan to elaborate on the cases where it
is more profitable and derive appropriate “rules-
of-thumb”, since we argue that this model will
be the one that will finally dominate the market.

In general, for companies it will be a big mind
change to give up the convenience and comfort of
local deployment, control, and operation to cloud
computing vendors but the advantages of cost
reduction, scalability, speed to market and high
powered computing will allow them to return to
their core business and differentiate themselves
from their competitors. For the cloud computing
vendor the key success factors will be to get the
variable pricing right, ensure sustainability of the
services provided, coordinate a smooth evolution
of the services and that the quality of the services
needs to be of a high value. Based on these, we
understand that a broad horizon of research topics
open up as described in the June 2009 issue of
ACM SIGACT News magazine.

CONCLUSION

In this chapter we have taken a first step towards
identifying all relevant costs of cloud computing
and on-premises infrastructure and software. We
proposed a three step decision model for evaluating
the two alternatives. Software development and
infrastructure costs, desired quality characteristics
of the application and expected number of users
are the main aspects that a software manager has
to consider. The final choice may be the deploy-
ment of an application on the cloud, on business
premises or by adopting a combination of the two
aforementioned alternatives.

A thorough analysis of the costs of cloud com-
puting solutions has been performed. All costs,
metrics and measurements related to Software as
a Service, Platform as a Service and Infrastructure
as a Service has been recorded in order to help

potential providers and ISVs bill and provision
their services and potential customers calculate
their expenses. SaaS costs do not only include the
subscription fee but the customization and other
professional services fees as well. The subscription
fee can be charged based on the number of users,
on number of page views or based on metrics
coming from business oriented goals. PaaS and
IaaS costs are related to the infrastructure and
middleware utilized. The level of data storage
and transfer, networking, server and middleware
utilization are some of the measurements used by
providers to charge a customer.

On premise costs on the other hand are split
into software development costs and infrastructure
costs. Software development costs are related to
product drivers, such as the type of the application,
the process maturity, ability of the development
team to follow standard procedures, platform
drivers, related to non functional requirements of
the applications and personnel capabilities drivers.
Companies possessing their own IT department
and have the dilemma of selecting between in-
house and hosted SaaS solutions will find very
useful to predict software development costs,
as these costs define all relevant on-going costs
such as maintenance, training, upgrades and also
costs related to infrastructure. Infrastructure costs
are split into operational costs such as hardware,
maintenance and networking and business prem-
ises costs such as personnel, physical locations
and electricity costs. Infrastructure costs are tan-
gible assets and can be estimated more accurately
compared to software costs.

The choice of selecting between in house
development and cloud deployment is a dilemma
that nowadays concerns an increasing number of
companies. Cloud computing is a term covering a
wide range of online services and seems an attrac-
tive proposition for small medium companies that
seek to exploit IT services at lower costs, instant
time to market and limited risk. As mentioned
the initial investment remains to relatively low
levels compared to on premise development, the

237

How to Choose the Right Cloud

total cost of ownership is reduced and mainte-
nance burden is shifted to providers. On the other
hand on premise supporters argue about security,
systems’ redundancy, functionality and data pri-
vacy as obstacles to cloud computing. Aspects
that can point out the way to IT deployment are
potential costs, user demand and desired quality
attributes. User demand is an indicator of the load
of a system and the estimated traffic that greatly
affects infrastructure costs. A thorough five year
cost analysis will enlighten potential long term
cost benefits of both solutions. Desired quality
attributes on the other hand and the level these
attributes are incorporated into on premise and on
cloud solutions can also affect the final decision.

Today, most organizations tend to adopt ex-
clusively one of the two solutions limiting the
possibilities that a combined solution can offer.
An hybrid approach can provide the best of both
worlds by allowing the customer organizations to
maximize the benefits of both a hosted delivery
model and those of the on-premise model. Such
a model may exploit just IaaS combined with on
premise software applications to avoid infrastruc-
ture costs. An alternative is to use SaaS on VPNs
to minimize potential data privacy risks. Or even a
company can use PaaS service to build each own
applications and deploy them using IaaS or private
infrastructure. Services offered by the cloud cover
a wide variety of IT needs. A potential customer
can find the optimal development and deployment
solution keeping in mind all relevant aspects of
his own specific IT problem and how these are
incorporated in the two models.

Closing, as future work we aim to evaluate
the proposed model on real world applications
deployment and compare the three alternatives
(cloud, on–premise, a combination of the two)
based on data coming from both in-house devel-
opment and cloud hosting. In particular for the
hybrid of the two worlds, we plan to elaborate on
the cases where it is more profitable and derive
appropriate “rules-of-thumb”, since we argue

that this model will be the one that will finally
dominate the market.

REFERENCES

Aggarwal, S. (2005). TCO of on-demand ap-
plications is significantly better for SMBs and
mid-market enterprises. Yankees Group report.
Retrieved March 10, 2010 from http://www.
intente.net/pdfs/ Yankee_On_Demand_vs_On
_Premises_TCO_1_.pdf?ID=13165

Albrecht, A. J. (1979). Measuring application
development productivity. Proceedings of the
Joint SHARE, GUIDE, and IBM Application
Development Symposium, (pp. 83–92). Monterey,
California, October 14–17, IBM Corporation.

Amazon Elastic Cloud. (2010). Amazon platform
as a service. Retrieved March 10, 2010, from
http://aws.amazon.com/ec2/

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D.,
Katz, R. H., Konwinski, A., et al. (2008, Febru-
ary). Above the clouds: A Berkeley view of cloud
computing. (Technical Report EECS-2009-28),
University of California at Berkeley.

Boehm, B. (1981). Software engineering econom-
ics. Englewood Cliffs, NJ: Prentice-Hall.

Cloud Computing Congress. (2010). Cloud com-
puting China. Retrieved March 10, 2010, from
http://www.cloudcomputingchina.org/

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis,
G., & Vakali, A. (2009). Cloud computing: Dis-
tributed Internet computing for IT and scientific
research. IEEE Internet Computing, 13(5), 10–13.
doi:10.1109/MIC.2009.103

Gray, J. (2003, March). Distributed computing
economics. (Technical Report MSR-TR-2003-24),
Microsoft Research.

238

How to Choose the Right Cloud

International Software Benchmarking Group.
(2010). ISBSG dataset release 10. Retrieved March
10, 2010, from http://www.isbsg.org

Klems, M., Nemis, J., & Tai, S. (2009). Do clouds
compute? A framework for estimating the value
of cloud computing. Lecture Notes in Business
Information Processing (pp. 110–123). Springer-
Verlag.

Knight, D. (2009). Why cloud vs. premise is the
wrong question. Retrieved March 10, 2010, from
http://blogs.cisco.com/collaboration /comments/
why_cloud_vs._premise _is_the_wrong_ques-
tion/

Kondol, D., Bahman, J., Malecot, P., Cappello, F.,
& Anderson, D. (2009). Cost-benefit analysis of
cloud computing versus desktop Grids. Proceed-
ings of the 18th International Heterogeneity in
Computing Workshop, May, 2009, Rome.

La Cayla. (2006). A white paper for independent
software vendors. Retrieved March 10 2010, from
http://www.opsource.net/

Landmark, C. R. M. (2009). SaaS total cost of
ownership. Retrieved March 10, 2010, from http://
www.crmlandmark.com/ saasTCO.htm

Laudon, K., & Laudon, J. (2009). Management
Information Systems. Pearson.

Lenk, A., Klems, M., Nimis, J., Tai, S., &
Sandholm, T. (2009). What’s inside the cloud?
An architectural map of the cloud landscape.
Proceedings of the International Conference on
Software Engineering (ICSE) Workshop on Soft-
ware Engineering Challenges of Cloud Computing
(CLOUD), (pp. 23-31).

Lovelock, C., & Wirtz, J. (2007). Services market-
ing: People, technology, strategy (6th ed.). New
Jersey, USA: Pearson International - Pearson/
Prentice Hall.

MacGowan, G. (2006). Helping small businesses
choose between on-demand and on-premise
software. Retrieved March 10, 2010, from http://
www.computerworld.com /s/article/9002362/
Helping_small _businesses_choose_between_
On_demand_and_On_ premise_software

McRitchie, K., & Accelar, S. (2008). A structured
framework for estimating IT projects and IT
support. Joint Annual Conference ISPA/SCEA
Society of Cost Estimating and Analysis.

Miller, M. (2009). Cloud computing pros and
cons for end users. Retrieved March 10, 2010,
from http://www.informit.com/articles/article.
aspx?p=1324280

Nefsis. (2010). Pricing model. Retrieved March
10, 2010, from http://www.nefsis.com/Pricing /
concurrent-user.html

Optitz, A., Konig, H., & Szamlewska, S. (2008).
What does Grid computing cost? Journal of Grid
Computing, 6(6), 385–397. doi:10.1007/s10723-
008-9098-8

Rothboard, J. (2009). Linking SaaS software pric-
ing to value. Retrieved March 10, 2010, from http://
www.readwriteweb.com/ enterprise/2009/01/
linking -saas-software-pricing-to-value.php

Saa, S. Optics. (2010). SaaS optics deep dive.
Retrieved March 10, 2010, from http://www.saa-
soptics.com/ saas_operations_operating_model/
saas_metrics_management_deep _dive/saas_met-
rics_management _deep_dive.html

Salesforce. (2010). CRM SaaS. Retrieved March
10, 2010, from http://www.salesforce.com/ plat-
form/platform-edition/

SLA definition. (2009). Definition of service level
agreement. Retrieved March 10 2010, from http://
looselycoupled.com/ glossary/SLA

TechAmerica. (2008). Chapter 12, software cost
estimating. Retrieved March 10, 2010, http://
www.techamerica.org/

239

How to Choose the Right Cloud

Zoho. (2010). CRM SaaS. Retrieved March 10,
2010, http://www.zoho.com/

ADDITIONAL READING

Barroso, L. A., & Holzle, U. (2009). The Data-
center as a Computer: An Introduction to the
Design of Warehouse-scale Machines. Synthesis
Lectures on Computer Architecture, Morgan &
Claypool Publishers.

Brantner, M., Florescu, D., Graf, D., Kossmann,
D., & Kraska, T. (2008). Building a database on
S3, Proceedings of the ACM SIGMOD Conference
on Management of Data, pp. 251-263.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg,
J., & Brandic, I. (2009). Cloud computing and
emerging IT platforms: Vision, hype, and reality
for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6), 599–616.
doi:10.1016/j.future.2008.12.001

Cohen, J. (2009). Graph twiddling in a MapReduce
world. IEEE Computational Science & Engineer-
ing, (July/August): 29–41.

Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008).
Cloud Computing and Grid Computing 360-De-
gree Compared, Proceedings of the IEEE Grid
Computing Environments Workshop (GCE).

Geng, L., Fu, D., Zhu, J., & Dasmalchi, G. (2009).
Cloud computing: IT as a service. IT Professional,
11(2), 10–13. doi:10.1109/MITP.2009.22

Grossman, R. L. (2009). The case for cloud com-
puting. IT Professional, 11(2), 23–27. doi:10.1109/
MITP.2009.40

Kandukuri, B. R., Paturi, V. R., & Rakshit, A.
(2009). Cloud security issues, Proceedings of
the IEEE International Conference on Services
Computing (SCC), pp. 517-520.

Kaufman, L. M. (2009). Data security in the world
of cloud computing, IEEE Security & Privacy (pp.
61–64). July/August.

Kaufman, L. M. (2009). Cloud computing and
the common man, IEEE Computer, August, pp.
106-108.

Keahey, K., Tsugana, M., Matsunaga, A., &
Fortes, J. A. B. (2009). Sky computing. IEEE
Internet Computing, 13(5), 14–22. doi:10.1109/
MIC.2009.94

Lasica, J. D. (2009). Identity in the Age of Cloud
Computing: The next-generation Internet’s impact
on business, governance and social interaction.
The ASPEN Institute.

Lin, J., & Dyer, C. (2010). Data-Intensive Text
Processing with MapReduce. Synthesis Lectures
on Human Language Technologies, Morgan &
Claypool Publishers.

Mather, T. Kumaraswamy, S. & Latif, S. (2009).
Cloud Security and Privacy: An Enterprise
Perspective on Risks and Compliance, O’Reilly
Media.

Miller, M. (2008), Cloud Computing: Web-Based
Applications That Change the Way You Work and
Collaborate Online, Que, 1st Edition, Ohlman,
B. & Eriksson, A. (2009). What networking of
information can do for cloud computing, Proceed-
ings of the 18th IEEE International Workshops
on Enabling Technologies: Infrastructures for
Collaborative Enterprises, pp. 78-83

Reese, G. (2009). Cloud Application Architec-
tures: Building Applications and Infrastructure
in the Cloud, O’Reily Media.

Rhoton, J. (2009). Cloud Computing Explained:
Implementation Handbook for Enterprises. Re-
cursive Press.

240

How to Choose the Right Cloud

Sotomayor, B., Montero, R. S., Llorente, I.
M., & Foster, I. (2009). Virtual infrastructure
management in private and hybrid clouds. IEEE
Internet Computing, 13(5), 14–22. doi:10.1109/
MIC.2009.119

Stonebraker, M., Abadi, D., DeWitt, D., Madden,
S., Paulson, E., Pavlo, A., & Rasin, A. (2010).
MapReduce and parallel DBMSs: Friends or
foes? Communications of the ACM, 53(1), 64–71.
doi:10.1145/1629175.1629197

Storage Networking Industry Association and
the Open Grid Forum (2009). Cloud Storage for
Cloud Computing.

Thomas, D. (2008). Next Generation IT – Comput-
ing In the Cloud: Life after Jurassic OO Middle-
ware. Journal of Object Technology, 7(1), 27–33.
doi:10.5381/jot.2008.7.1.c3

Varia, J. (2008).Cloud Architectures, Amazon
White Paper.

Voas, J., & Zhang, J. (2009). Cloud Computing:
New Wine or Just a New Bottle? IT Professional,
11(2), 15–17. doi:10.1109/MITP.2009.23

Zehua Zhang, Z., & Zhang, X. (2009). Realiza-
tion of open cloud computing federation based on
mobile agent [ICIS]. Proceedings of the IEEE In-
ternational Conference on Intelligent Computing
and Intelligent Systems, 3, 642–646. doi:10.1109/
ICICISYS.2009.5358085

Zhang, L.-J., & Zhou, Q. (2009). CCOA: Cloud
computing open architecture, Proceedings of the
IEEE Conference on Web Services (ICWS), pp.
607-616.

KEY TERMS AND DEFINITIONS

IaaS: Infrastructure as a Service is a provision
model in which the customer outsources the equip-
ment used to support operations, including storage,
hardware, servers and networking components.

Infrastructure Costs: Hardware, networking,
and physical location costs

PaaS: Platform as a Service (PaaS) includes
the delivery of operating systems and associated
desktop services over the Internet without down-
load or installation

SaaS: Software as a Service is a software
distribution and usage model that is available via
a network to the customers.

SLA: Service Level Agreements (SLA) is a
contractual service commitment.

Software Development Costs: Development
costs that are affected by the process, the product,
the platform the personnel

TCO: Total Cost of Ownership, direct and
indirect costs and benefits related to the purchase
of any IT component

241

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 11

DOI: 10.4018/978-1-60960-735-7.ch011

INTRODUCTION

Imagine a computer that can grow or shrink exactly
according to your needs, however huge or small
they may be; one that can take on any form that
you like it to take in terms of the Operating Sys-
tem, machine architectures and other needs; one
which can be accessed from virtually anywhere
there is network access. To top it all, you don’t
have to buy it – just pay for how much ever you
use. Sounds interesting already? Cloud computing
offers all this and much more.

Cloud computing essentially shifts capital
expenditure to operational expenses much like
we pay for utilities such as electricity and water.
Quite a few startups in the Silicon Valley have
setup their shops in the recent times without
any infrastructure costs, benefiting from Cloud
Computing, instead. The economies of scale that
the cloud model helps to leverage are explained
in this chapter. The business model that evolved
as a result of the paradigm shift in computing is
very appealing.

There are a number of technologies behind
the cloud landscape. The cloud on the Internet is
a gateway to a number of services such as Infra-
structure (IaaS), Software (SaaS), Platform (PaaS),

Vishnu S. Pendyala
Santa Clara University, USA

JoAnne Holliday
Santa Clara University, USA

Cloud as a Computer

ABSTRACT

The evolution of the cloud as a computer is a very significant milestone in this golden era of computing
that changed both the technology and the business model of computing. The cloud has the potential to
give access to all possible resources on the Internet using minimal hardware in hand, such as a mobile
device with Internet access. This chapter explores the various aspects of cloud computing and makes
predictions as to the future directions for research in this area. Some of the issues facing the paradigm
shift that cloud computing represents are discussed, and possible solutions presented.

242

Cloud as a Computer

Communications (CaaS) and more recently (Lenk
et al. 2009), Humans (HuaaS) and Personalization
(Guo et al. 2009). The last service, Personalization
is very important in the context of mobile users.
A classification of the technologies behind the
Everything as a Service (XaaS) paradigm helps
understand the cloud better. It is interesting to
explore the Cloud ecosystem and get insights into
the services that Cloud offers, understanding the
myriad technical terms used in the cloud parlance.
The literature cited at the end of this chapter has
abundant discussion on the tools and example of
the services offered.

Cloud computing works best assuming that
there are no significant constraints on the band-
width. However, bandwidth is expensive and could
be constrained, particularly since the distances
could be huge. Therefore, ideally, there may be
a need for writing applications that can adopt to
bandwidth and other constraints as applicable
in that context. Cloud computing often crosses
country boundaries, calling for a need to evaluate
and adapt to legal frameworks. Trust and privacy
become extremely important in such contexts.
In this chapter, we talk about these and other
difficulties that Cloud Computing brings with it,
explaining some of the challenges and discussing
any opportunities that they could be translated into.

The changes happening in the web world are
also helping the paradigm shift to Cloud Comput-
ing. To the user, the original web was read-only.
Web 2.0 made it read-write: WWW became World
Wide Wall, where anyone could write. Web 3.0
attempts to make it executable as well, making
it the ubiquitous computer. Now that this ubiqui-
tous computer is fully functional, what would be
the next avatar of the web? How does the cloud
landscape change with developments on the web
front? This chapter answers these questions by
pointing to future directions for research in this
area. The authors predict that the ubiquitous com-
puter will take the same route as the Von Neumann
machine and improve drastically in performance

and scalability, driven by certain key aspects such
as mobility and intelligence.

There is already a discussion on forming
virtual cloudlets (Satyanarayanan et al. 2009) to
address the issue of response times when using
expensive applications on the mobile devices
such as augmented reality. This chapter covers
these exploratory ideas and present the authors’
perspective on them.

BACKGROUND

We have been already using cloud computing
whenever we use free e-mail or for that matter
do a search on the Internet. Thanks to the levels
of transparency that cloud computing provides,
the user is unaware of the thousands of clusters
working behind the scene for her when an Inter-
net search is done. The same idea of thousands
of clusters doing the job transparently is now
borrowed into cloud computing. Solving tough
problems that involve large data and massive
computation has traditionally been a forte of major
business houses, such as Google. In fact, most of
the Cloud Computing techniques evolved from
the technologies used by Google (Chang 2010)
and others in this area. This is no longer true with
the advent of Cloud Computing. Even startups
can enter the fray with minimal investment. The
traditional datacenter with thousands of machine
clusters typical of the environment in these big
companies has transformed into the cloud, open
to wider access and use.

In a sense, Cloud Computing takes us back to
the days when users “rented” computing time on
Mainframes to get their jobs processed. Though
there is a distinction between “renting” comput-
ing time and “utility computing” that the Cloud
represents (Michael et al. 2009), for convenience,
we use the term “rent” to mean either. Computing
as a utility is not really new. What makes Cloud
Computing really interesting now is the all-
pervasive Internet and the networking bandwidth

243

Cloud as a Computer

that did not exist in the olden days. A cloud can
potentially include virtually everything that we can
access over the Internet – hardware and software
included. That is almost synonymous with infinite
computing. Include in the equation, the prolifera-
tion of the inexpensive mobile devices that can
access the Internet from virtually anywhere in the
world, and we have a ubiquitous, infinite capacity
cloud as a computer. Some authors (Durkee 2010)
consider cloud computing as timesharing reborn.
It is indeed true that cloud computing has similar
impact as timesharing in the 1980s.

Business Model

Cloud Computing is based on Cost Associativity
(Michael et al. 2009), which is the concept of pay-
ing the same price for ‘N’ units of computational
power for 1 hour or 1 unit of computational power
for ‘N’ hours. This allows the supply and demand
of computing resources to be elastic. Economists
will readily recognize what elasticity can do in
the market. Price elasticity is a very important
economic parameter of a product. The elasticity in
Cloud Computing refers to the fact that users can
vary their demand of the computing power and the
cloud providers oblige their demand accordingly.
Statistical multiplexing is used to handle the vary-
ing demands from clients, increasing throughput.

This commercially available elasticity of
resources, without paying a huge premium is
completely new to IT. Like other virtual computing
schemes such as virtual memory, the virtualiza-
tion in the cloud creates an illusion of unlimited
computing power to the clients connecting to it.
Virtualization can take the form of hardware or
software virtualization. Hardware virtualization
provides transparency with respect to the backend
configuration of machine resources and enables
plug-and-play mode of hardware resources. Soft-
ware virtualization, on the other hand, refers to
provisioning of software images of the needed
software configuration in terms of Operating
Systems and applications. Code can be assembled

and executed on these images. Clients can be rest
assured that their capacity needs are automatically
met, without budgeting for maximum capacity, as
is typically done with datacenters. They can still
pay for just what they used.

The greatest advantage of Cloud Computing is
that anyone who can afford for operating expenses
can jump start into a business by deploying their
applications in the cloud, without having to invest
in the capital intensive IT equipment. The Cloud
Computing business model changes Capital Ex-
pense (CapEx) into Operational Expense (OpEx).
Imagine businesses having to setup their own
power generators to operate, as they used to do
in early 1900s. Cloud Computing does the same
thing to IT as the Power Utility companies did
to electricity.

Cloud Ecosystem and Tools

Cloud Computing, as a technology is not com-
pletely new. It can be viewed as a descendant of
a host of other technologies like Client-Server
Computing, Software As A Service (SaaS), and
Virtualization. Though the technologies existed,
Cloud Computing is unique in bringing them all to-
gether. There are a number of XaaS (X as a Service)
terms in the cloud computing paradigm today, but
all stake holders agree that Cloud Computing can
be broadly divided into 3 layers or service models:
SaaS (Software as a Service), PaaS (Platform as
a Service), and IaaS (Infrastructure as a Service).
IaaS is the layer Saas provides ready-made ap-
plications to the end user that are developed and
run on PaaS or can use IaaS directly. There are
several other XaaS, as listed in the introduction,
but we shall eschew them for better clarity, as the
authors of (Michael et al. 2009) did.

The whole idea of XaaS is to harness the various
resources available in the cloud. These resources
can be raw hardware such as processors and stor-
age, software such as development tools, applica-
tion servers, and databases. Other resources can
be applications such as word processors and other

244

Cloud as a Computer

office productivity tools. The Cloud ecosystem
involves vendors, partners and end-users of the
Cloud Computing environment. Cloud partners
provide value additions to what the vendors have
to offer to the end-users. Some of the tools in
each of the XaaS areas are summarized in Table
1. More details about the specific tools and their
place in cloud computing can be obtained from
sources listed in the additional reading section at
the end of the chapter and from (Lenk et al. 2009).

The Cloud Computing ecosystem makes it
suitable for use from thin clients such as mobile
devices. As indicated in the section titled Future
Directions, towards the end of this chapter, Mobil-
ity is bound to be a key driving factor for Cloud
Computing. A good discussion of cloud comput-

ing for mobile users is given in (Kumar and Lu
2010). Energy savings, according to the analysis
alluded to in the article, depend on B (Bandwidth),
C (Cycles of Computation), and D (Data to be
transmitted). The Cloud Ecosystem helps with C
and D, assuming that most of the data is already
stored in the cloud and the mobile device only
needs to pass a pointer to it for the computation
to take place.

VIABILITY OF CLOUD
AS A COMPUTER

In this section, we talk about the issues contro-
versies, and problems facing Cloud Computing
and discuss possible solutions. The very enabling
factors for Cloud Computing can also become
limiting factors, as we shall see below.

Economic Viability of the
Business Model

It can be easily seen that buying computing power
by the hour is more expensive over a long run than
owning the same equipment for the same period
of time. Otherwise, Cloud Providers will go out
of business. What then, is the rationale behind
the utility computing that the cloud stands for?
Will the rationale suffice for the business model
to be viable in the long run? After all, utility
computing did exist a few decades ago, when
computing power of the mainframes was rented
by the hour. Affordable desktops and personal
computers changed it all. The trend changed from
centralized computing to distributed computing,
owing to the drastic and non-uniform advances
in technology. For instance, computer networking
grew at a much faster pace than other hardware
and software technologies until a few years ago.
This non-uniform growth of the computing areas
caused a shift in business models.

Though the trend is still for technologies to
shrink costs, the shrinkage continues to be non-

Table 1. Service Models and Sample Tools Offered
in Each Layer

SaaS PaaS IaaS

Google Docs,
WebEx, Sales-

force.com

Google App Engine,
Microsoft Azure,
Django, Coghead
(acquired by SAP)

Amazon EC2,
GoogleFS,

Google BigTable

Figure 1. Cloud Layers

245

Cloud as a Computer

uniform. Hardware costs are reducing faster than
computer networking costs. This can be seen as a
threat to Cloud Computing, which is based on the
premise that buyers cannot afford for the hardware
costs but are willing to connect to the rented data-
center to have their jobs done and get the results
over the network. While the electronic costs are
reducing, there is increasing focus on electrical
and energy costs. In this day of price pressures
and almost free resources on the internet, (Durkee
2010) presents an interesting argument as to why
cloud computing can never be free. However, there
are ways to meet the price pressures at least partly
as the next paragraph indicates.

Solutions and Recommendations

We are optimizing the utilization of resources and
using otherwise idle resources in cloud computing.
So, there is not doubt that the overall cost benefit
analysis will favor cloud computing. Still, energy
costs cannot be ignored. Modern technologies
are amazingly cheaper than the traditional ones.
Following the trend is the data networks versus
electrical networks tradeoff. It is much cheaper to
transmit data (photons) on fiber optic cables than
it is to transmit power currents (electrons) on cop-
per cables. It is therefore cost-effective to locate
the computing machinery at places where electric
power is cheaper and utilize WANs to harness the
computing power remotely. This trend is already
in affect with quite a few companies locating their
data centers in energy efficient locations. This is a
clear direction that cloud computing should take
in future as well.

Deployment Issues and
Standardization

Cloud Computing is ideally suited for large ap-
plications requiring large scale parallel process-
ing. However, virtualization that is a necessary
ingredient of Cloud Computing limits the amount
of parallelism (Michael et al. 2009) that the pro-

grammer can harness. Bugs cannot be easily tested
in local environments, so may have to be tested
and fixed in the cloud itself. There does not seem
to be enough support or tools for debugging and
development or even version control in the cloud.
Storage and representation of large amounts of
data is a significant problem. Currently, there are
only a few providers of the cloud infrastructure, so
discovery as a manual process is feasible. How-
ever, as the cloud providers grow in number and
services offered, discovery will become an issue.

As Richard Stallman of the free software
foundation fame feared (Michael et al. 2009),
there is a risk of the clients getting captivated
in the proprietary systems in the cloud, without
much recourse. This fear is not unfounded. Cus-
tomers participating in cloud computing can lose
in several ways (Durkee 2010), if they are not
careful. As of now, there do not seem to be many
attempts at standardizing the cloud environment
for portability. Not all applications yield to the
map-reduce framework that is typically used for
deploying applications in cloud. There is a need
to come-up with other techniques to deploy such
applications.

Solutions and Recommendations

Google’s Bigtable (Chang 2010) is a popular
solution to the problem of data storage and repre-
sentation. The solution is designed to easily scale
to thousands of machines handling petabytes of
data. Parallel programming constructs must be
made available to the programmers to allow mas-
sively parallel computing in the cloud. There is a
scope of research in this area. Development and
debugging environments should be provisioned
in the cloud.

Standardization of the APIs and the cloud
environment is key to portability, mobility, and
wider usage of the cloud computing paradigm.
Eucalyptus (Nurmi et al. 2009) is an attempt
towards standardization. But there is a lot that
needs to be done in this area. Standardization

246

Cloud as a Computer

could also help in discovery of the services. As
newer technologies such as semantic technologies
evolve, there is hope for using them to aid in the
discovery process.

FUTURE RESEARCH DIRECTIONS

There are a number of interesting developments
lately in the area of cloud computing, that provide
a peek into the future of this exciting technology.
There is talk about “Sky Computing” where mul-
tiple clouds work as one (Fortes 2010) to harness
applications and services spread across different
clouds. Users can then mix and match what the
various clouds have to offer them and use the
Virtual Cloud.

In the authors’ view, research drivers for the
cloud can be represented by the following research
vector tuple:

R = (M, I, A, R, T)

Where M = mobility, I = intelligence, A =
Architecture, R = Robustness and Security, and
T = Trust and Privacy

These aspects are further discussed below.

Mobility

Computation is increasingly becoming mobile
with the proliferation of the relatively inexpensive
and networked mobile devices. Mobile devices
will continue to be the only computing devices
accessible to populations in developing countries.
The global market for mobile devices is bound
to grow in leaps and bounds, as more and more
echelons of the global society get added to the
economic mainstream. The Ubiquitous Computer
that the cloud represents, needs to scale to this
need very quickly. Any paradigm shift in comput-
ing cannot afford to overlook mobility aspect to
be successful.

As the demand for computationally intensive
applications such as for providing augmented
reality, on-the-fly decision making, and learning
grows, there will be increasing demand on the
cloud to provide real-time, scalable compute re-
sources. Energy critical mobile devices will have
to depend on Cloud Computing (Kumar and Lu
2010) for machine cycles. Computation offloading
seems to be the way to go, to give mobile devices
access to applications that can revolutionize qual-
ity of life. Response time is extremely critical for
many such applications. There is already research
to address this issue. Virtual cloudlets (Satyana-
rayanan et al. 2009) and Ad hoc cloud computing
can be possible solutions to this issue.

Intelligence

There are multiple reasons for building intelligence
in the cloud. The very idea of elasticity in the
cloud requires Artificial Intelligence techniques
to control computation. Machine Learning is
needed to train the load balancing modules in
the cloud to predict and handle demand elasticity.
This is a crucial aspect to the elastic and dynamic
nature of cloud computing. Probabilistic graphic
models could possibly be applied to abstract load
balancing and used for effective prediction. This
will also improve resource utilization. Having a
quantitative model of the cloud is quite important
for the end customer (Durkee 2010), when signing
the contracts. Artificial Intelligence techniques
are expected to play a role in modeling the cloud
behavior.

Applications themselves will need to demon-
strate intelligence as the dependence on the web
for many high end needs increases. Web 3.0 has
already been a step in this direction. Combined
with mobility and intelligence, cloud computing
provides a promising platform for useful appli-
cations (Pendyala and Holliday 2010). Semantic
technologies already provide for reasoning and
deduction. This area needs to further consolidate
and cover increasing needs for intelligence, such

247

Cloud as a Computer

as reasoning, inferencing, and machine learning.
There are presently significant holes in this area.
Knowledge representation to facilitate efficient
reasoning is one of them. The current techniques
using triple stores seem simplistic for the needs
and need to evolve further. Natural Language Pro-
cessing, speech recognition and computer vision
applications can significantly improve the quality
of life. There is a need to construct frameworks
for easy and rapid development and deployment
of these applications in the cloud, just like there
are for business processes.

Architecture

Computer Architecture evolved extensively at
the rate given by Moore’s law. The Ubiquitous
Computer architecture that is in the cloud similarly
needs to evolve substantially to meet the above
demands. The concept of viewing the cloud as a
computer is still in its infancy and there does seem
to be plenty of scope for improving its architec-
ture, just like there was scope for improving the
early Von Neumann machine. Response time is a
key driver for developments in Cloud Computing
architecture. A radical idea would be to go a few
levels down to see if a “machine language” can
be evolved for faster computation in the cloud.
Another possibility is to see if there are better
caching mechanisms to speed-up computation in
the cloud. The idea here is that so far, systems in
a datacenter have evolved individually. There is
scope for viewing the datacenter itself as a single
computing resource and exploiting its architecture
to make improvements.

Robustness and Security

As the Ubiquitous Computer that the cloud rep-
resents grows in power and scale, there will be
increasing trends to misuse it or compromise its
security. As the criticality of applications deployed
in the cloud increases, the need for making the
infrastructure robust also increases. The problem

of fault tolerance has been sufficiently addressed
in the past, so the newer techniques can build-
up on them to scale-up to the cloud computing
level. Similarly, security assumes paramount
importance, as more and more applications and
data move to the cloud. Cisco Systems, Inc. has
unveiled a Collaboration Cloud architecture (Cisco
2010) where users are provided enterprise-level
security and privacy based on a private network
that can be used for scalable web-based collabo-
ration. Security and performance issues that are
typical of the Internet connectivity can be avoided
using this architecture. The current solutions seem
to be still inadequate to entirely secure the cloud,
particular for smaller players who cannot afford
a private network and there is plenty of scope for
research here too.

Trust and Privacy

Trust is a crucial aspect to the success of Cloud
Computing. Customers have to rely heavily on
the cloud providers for the safety and integrity of
their data and applications. As can be seen from
(Durkee 2010), there are ways in which trust can
be misused. This issue has to be probed further
and solutions, more far reaching than what is
described in (Durkee 2010) need to be arrived
at. Related issue is privacy. As cloud computing
potentially crosses international borders, privacy
becomes a paramount issue. There is scope for
techno-legal research in this area and the future
cannot ignore this aspect.

CONCLUSION

In this chapter, we provided enough introduction
and pointers to the area of cloud computing. There
is plenty of jargon, hype, and reality buzzing
around in the cloud computing arena. We tried
to clarify some of the confusion and present a
concrete picture of cloud computing aspects. A
google search for “why cloud computing will

248

Cloud as a Computer

fail” results in 51,400 hits. So, the threat to cloud
computing cannot be ignored. We attempted to
discuss the viability of cloud computing itself and
some solutions and recommendations. There are
several future directions that cloud computing can
take. We provided a description of key aspects of
cloud computing that the future will be focused on.

REFERENCES

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C.,
Wallach, D. A., & Burrows, M. … Gruber, R. E.
(2006). Bigtable: A distributed storage system
for structured data. In Proceedings of the 7th
USENIX Symposium on Operating Systems De-
sign and Implementation. Seattle, WA: USENIX
Association.

Cisco Systems, Inc. (2010). Cisco collaboration
cloud. Retrieved September 26, 2010 from http://
www.cisco.com/en/US/ prod/ps10352/ collabora-
tion_cloud.html

Department of Energy, US Government. (2010).
Report to congress on server and data center
energy efficiency. Retrieved April 25, 2010,
from http://www1.eere.energy.gov/ femp/pdfs/
epa_dc_report_congress.pdf

Durkee, D. (2010). Why cloud computing will
never be free. Communications of the ACM, 53(5),
62–69. doi:10.1145/1735223.1735242

Fortes, J. A. B. (2010). Sky computing: When
multiple clouds become one. Cluster, Cloud and
Grid Computing Conference (CCGrid) (pp. 4,
17-20). IEEE Computer Society.

Guo, H., Chen, J., Wu, W., & Wang, W. (2009).
Personalization as a service: The architecture and
a case study. In Proceedings of the First Interna-
tional Workshop on Cloud Data Management (pp.
1-8). Hong Kong, China: ACM.

Kumar, K., & Lu, Y. (2010). Cloud computing for
mobile users: Can offloading computation save
energy? IEEE Computer, 43(4), 51–56.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sand-
holm, T. (2009). What’s inside the cloud? An
architectural map of the cloud landscape. In Pro-
ceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing (pp.
23-31). Washington, DC: IEEE Computer Society.

Michael, A., et al. (2009). Above the clouds: A
Berkeley view of cloud computing. (Technical
Report No. UCB/EECS-2009-28). Retrieved on
April 25, 2010, from http://www.eecs.berkeley.
edu/ Pubs/TechRpts/2009/ EECS-2009-28.html

Nurmi, D., Wolski, R., Grzegorczyk, C., Ober-
telli, G., Soman, S., Youseff, L., & Zagorodnov,
D. (2009). The Eucalyptus open-source cloud-
computing system. In Cappello, F., Wang, C.-L.,
& Buyya, R. (Eds.), CCGRID. IEEE Computer
Society (pp. 124–131).

Pendyala, V., & Shim, S. (2009). Web as the ubiq-
uitous computer. IEEE Computer, 42(9), 90–92.

Pendyala, V. S., & Holliday, J. (2010). Perform-
ing intelligent mobile searches in the cloud using
semantic technologies. In Granular Computing
GrC (pp. 381–386). IEEE Computer Society.

Satyanarayanan, M., Bahl, P., Cáceres, R., & Da-
vies, N. (2009). The case for VM-based cloudlets
in mobile computing. IEEE Pervasive Comput-
ing / IEEE Computer Society [and] IEEE Com-
munications Society, 8(4), 14–23. doi:10.1109/
MPRV.2009.82

ADDITIONAL READING

AjayKumar. S., Nachiappan, C., Periyakaruppan,
K., Boominathan, P. (2009) “Enhancing portable
environment using cloud and grid,” pp.728-732,
2009 International Conference on Signal Process-
ing Systems.

249

Cloud as a Computer

Das, A., Reddy, R. Y., Wang, L., & Reddy, S.
(2009). Information intelligence in Cloud Com-
puting: how can Vijjana, a collaborative, self-
organizing, domain centric knowledge network
model help. In Proceedings of the 5th Annual
Workshop on Cyber Security and information
intelligence Research: Cyber Security and infor-
mation intelligence Challenges and Strategies.
Oak Ridge, Tennessee: ACM.

Kaufman, L. M. (2009). Data security in world
of cloud computing. IEEE Security and Privacy,
7(4), 61–64. doi:10.1109/MSP.2009.87

Li, X., Li, Y., Liu, T., Qiu, J., & Wang, F. (2009).
The method and tool of cost analysis for cloud
computing, In Proceedings of IEEE International
Conference on Cloud Computing, pp.93-100.

Lodi, G., Querzoni, L., Baldoni, R., Marchetti,
M., Colajanni, M., Bortnikov, V., et al. (2009).
Defending financial infrastructures through early
warning systems: the intelligence cloud approach.
In Proceedings of the 5th Annual Workshop on
Cyber Security and information intelligence
Research: Cyber Security and information intel-
ligence Challenges and Strategies. Oak Ridge,
Tennessee: ACM.

Mukherjee, K., & Sahoo, G. (2009). Mathematical
model of cloud computing framework using fuzzy
bee colony optimization technique, In Proceed-
ings of International Conference on Advances
in Computing, Control, & Telecommunication
Technologie. pp.664-668.

Napper, J., & Bientinesi, P. (2009). Can cloud
computing reach the top 500? In Proceedings of
the Combined Workshops on Unconventional High
Performance Computing Workshop Plus Memory
Access Workshop (pp 17-20). Ischia, Italy: ACM.

Pallis, G. (2010). Cloud Computing: The new fron-
tier of Internet computing. Internet Computing,
IEEE, 14(5), 70–73. doi:10.1109/MIC.2010.113

Pearson, S. (2009). Taking account of privacy
when designing Cloud Computing services. pp 44-
52. In Proceedings of ICSE Workshop on Software
Engineering Challenges of Cloud Computing.
Washington, DC: IEEE Computer Society.

Rimal, B. P., Choi, E., & Lumb, I. (2009). “A tax-
onomy and survey of cloud computing systems,”
pp.44-51, In Proceedings of Fifth International
Joint Conference on INC, IMS and IDC.

Sukhyun, S., Ryu, K. D., & Da Silva, D. (2009).
Blue eyes: Scalable and reliable system manage-
ment for cloud computing, In Proceedings of
IEEE International Symposium on Parallel &
Distributed Processing, pp.1-8.

US Government. (2010). Resources on en-
ergy efficiency in datacenters. Retrieved April
25, 2010 from http://search.nrel.gov/ query.
html?qt=datacenter

250

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 12

1. INTRODUCTION: CLOUD SYSTEM
PRINCIPLES AND IMPLICATIONS
FOR THE MARKET

Following a quite comprehensive and often cited
definition, Clouds can be described as follows:
“Clouds are a large pool of easily usable and ac-
cessible virtualized resources (such as hardware,
development platforms and/or services). These
resources can be dynamically reconfigured to

adjust to a variable load (scale), allowing also
for an optimum resource utilization. This pool of
resources is typically exploited by a pay-per-use
model in which guarantees are offered by the
Infrastructure Provider by means of customized
SLAs” (Vaquero et al. 2009).

Cloud Services can be divided into three major
areas. Within these areas each service should fulfill
the characteristics above. As many companies
bundle their offers and put their own description
behind them, the boundaries of provided services
are not always sharp. Nevertheless, a general un-

Luis M. Vaquero
Telefónica Investigación y Desarrollo, Spain

Luis Rodero-Merino
INRIA, France

Juan Cáceres
Telefónica Investigación y Desarrollo, Spain

Principles, Methodology
and Tools for Engineering
Cloud Computing Systems

ABSTRACT

Cloud computing has emerged as a paradigm to provide every networked resource as a service. The
Cloud has also introduced a new way to control cloud services (mainly due to the illusion of infinite
resources and its on-demand and pay-per-use nature). Here, we present this lifecycle and highlight
recent research initiatives that serve as a support for appropriately engineering Cloud systems during
the different stages of its lifecycle.

Clovis Chapman
University College London, UK

Maik Lindner
SAP Research, UK

Fermín Galán
Telefónica Investigación y Desarrollo, Spain

DOI: 10.4018/978-1-60960-735-7.ch012

251

Principles, Methodology and Tools for Engineering Cloud Computing Systems

derstanding in the community has been established
that these are the main areas of Cloud Computing
services/product that are offered on the market
(also see Figure 1):

• At its most basic level Infrastructure-as-a-
Service (IaaS) delivers resources like pre-
packaged sets of e.g. CPU and RAM.
Virtualized system images can be uploaded
to a cloud provider who provides place-
ment and execution of these images on
physical hardware within their data centers
or within a federated cloud infrastructure.

• Platform-as-a-Service (PaaS) delivers vir-
tualization and scaling of abstracted soft-
ware packages above the level of the op-
erating system. Packaged applications are
usually uploaded to a cloud platform, or
directly developed on the cloud platform
itself.

• Software-as-a-Service (SaaS) is perhaps
the most common of the ‘as-a-Service’
terms, and describes fully managed appli-
cations delivered as a service. Customers
do not need to upload server images or
software packages. Instead, they rent ac-

cess to the software which has been created
and is maintained by the cloud provider.

The approach described here represents a
lifecycle-based methodology that is illustrated
with relevant examples from significant and
most recent literature and research. A coherent
methodology, which could support companies to
embrace the Cloud, is still lacking. That has held
back progress both on provider and on consumer
side. The presented innovative approach, once ap-
plied, has the potential to create transparency for
the promising IT paradigm of Cloud Computing.
To strengthen the proposed approach we apply
principles, present a methodology and showcase
tools for engineering Cloud Computing systems.

While understanding the basic technical and
business features of this new computing paradigm
is essential, one has to see the complete picture
and understand the implications for the provision
of complex Cloud services including components
such as networks, machines, infrastructures and
software. Therefore, management of the com-
plexity of consuming Cloud services needs to
be understood as a supply chain. As an explicit
definition for the Cloud Supply Chain (C-SC),

Figure 1. Cloud Supply Chain

252

Principles, Methodology and Tools for Engineering Cloud Computing Systems

we propose the following definition: “A Cloud
Supply Chain is two or more parties linked by
the provision of Cloud Services, related informa-
tion and funds” (based on Tsay, A. et al. 1998;
Paulitsch, M. 2003).

On a strategic and operational level a Cloud
Supply Chain Management (C-SCM) has to be
established as part of companies’ IT organiza-
tions as part of a whole life-cycle concept. A
C-SCM represents the management of a network
of interconnected businesses in the Cloud Com-
puting area involved in the end-to-end provision
of product and service packages required by end
Cloud customers. In order to capture all these
aspects we define it as followed: “Cloud Supply
Chain Management (C-SCM) is the term used
to describe the management of the provision of
Cloud Services, information, and funds across the
entire supply chain, from hardware suppliers to
component to data center operators producers to
distribution channels, and ultimately to the end-
consumer”. Based on (Johnson, M. & Pyke, D.
1999) Cachon and Fisher show that supply chain
management is not only sharing of information that
leads to cost improvements in a supply chain. But
it is the management and restructuring of services,
information, and funds based on a life-cycle ap-
proach (Cloud Application life-cycle) (Cachon,
G. & Fisher, M. 2000) as shown in Figure 1. This
lifecycle could be regarded as the integration
and exposure of the available resources towards
delivery of a full solution to the end customer.
This supply-based lifecycle represents a meth-
odology for Cloud service management and is
highly coincident with typical software lifecycle
methodologies, but including some Cloud-specific
features (e.g. on-demand provisioning, elastic-
ity, etc.). Section 2 presents this lifecycle and its
related tools in detail.

A supply chain has to be classified according to
the product it supplies. Fisher classifies products
primarily on the basis of their demand patterns into

two categories: products are either primarily func-
tional or primarily innovative (Fisher, M. 1997).

Functional products satisfy basic needs that do
not change much over time, have predictable and
stable demand with low uncertainties and have
long life cycles (typically more than 2 years). Due
to their stability, functional products favor compe-
tition, which leads to low profit margins and, as a
consequence of their properties, to low inventory
costs, low product variety, low stockout costs, and
low obsolescence (Lee, H. 2002; Fisher, M. 1997).
Whereas innovative solutions are characterized
by additional reasons for a customer in addition
to basic needs that lead to purchase, unpredict-
able demand (that is high uncertainties, they are
difficult to forecast and variable in demand and
have short product lifecycles (typically 3 months
to 1 year) (Lee, H. 2002).

In general, the products coming out of emerging
(Information and Communication Technologies)
ICT are to be classified as innovative products, but
have certain characteristics of functional products
as well. Cloud Services should fulfill basic needs
of customers and favor competition due to their
reproducibility. But they also show characteristics
of innovative products as the demand is in general
unpredictable (on-demand business model) and
have due to adjustments to competitors and chang-
ing market requirements very short development
circles. So Cloud Services as a product need to be
classified as innovative, while they still feature
characteristics of functional products. This mixed
characterization is furthermore reflected when it
comes to the classification of efficient vs. respon-
sive Supply Chains. Whereas functional products
would preferably go into efficient Supply Chains,
the main aim of responsive Supply Chains fits the
categorization of innovative products.

In general a supply chain performs two types
of functions (Fisher, M. 1997):

• Physical function comprises the produc-
tion of the product out of raw material or

253

Principles, Methodology and Tools for Engineering Cloud Computing Systems

intermediate parts or components, and the
transportation of all components to the
right place.

• Market mediation function ensures that the
variety of products reaching the market-
place matches what customers want.

While for functional products the physical
function dominates, the market mediation function
is more important than the physical function for
innovative products. (Paulitsch, M. 2003) Here
again the mixed characteristics of the C-SC lead to
a high importance of the physical function, as this
is the core product of Cloud Services, but more so
the need for a strong market mediation function
arises from the modular design of these services.

The major aim of this chapter is to highlight the
relevant stages of service production lifecycle and
align them with some of the most relevant recent
approaches applied to Cloud environments. The
reader should note that the efforts here highlighted
are not unique and a detailed comparison is not
herein provided, although the referenced papers
immediately lead to most relevant systems and
provide readers with that comparison. Hereby,
the various stages a service runs through dur-
ing its lifetime have to be followed, monitored
and finally managed. The following section will
describe service lifecycle management in Cloud
environment and will give detailed technical ap-
proaches on this core management functionality.

2. SERVICE LIFECYCLE
MANAGEMENT IN CLOUD
ENVIRONMENTS1

This section will deal with all the different stages
a “cloudified” service goes through during its
lifecycle. All the subsections should provide
state of the art and challenges, showing current
principles, methodology and tools.

2.1 Service Development,
Deployment and Composition,
Testing and Maintenance

The Cloud is a powerful tool for application
developers. It frees them from the complexity of
infrastructure management (provision and scaling
of hardware resources and tools), and simplifies the
access to the services that the application requires.
These services can be provided out-of-the-box by
the Cloud platform itself, or accessed remotely
through well known interfaces and protocols.

Depending on the type of cloud, services have
a different lifecycle. As mentioned above, Clouds
are categorized in three groups. Thus, each service
can have a different lifecycle, and no support is
supplied by the cloud to enforce it. Likewise,
SaaS clouds do not implement the concept of
‘user service lifecycle’, but for a different reason:
users cannot run their own services on them, so
it makes not sense to define a lifecycle for them.
Thus, this section deals with services lifecycle in
PaaS platforms, as they do define the different
stages of users services, usually deployed as one
or more components running in the PaaS container.

In Figure 2, we show a schematic view of Plat-
form as a Service (PaaS) Clouds, which run the
software components (modules) of the deployed
services. A service can be composed by one or
several of these components. This Figure further
develops the PaaS elements shown in the “Cloud
stack” presented in (Lenk et al. 2009). Please keep
in mind that this Figure does not depict a standard
architecture of PaaS clouds. It only shows the
different ‘functional units’ that can be expected
in typical PaaS platforms. Such architecture is
strongly dependent on how the Cloud provider
decides to implement the container, framework
and functionalities (for control, monitoring, etc.)
supplied.

The core element of the PaaS platform is the
Container, which provides a runtime for the
software components (modules) of the service.
Also, the Cloud will offer Cloud Services that

254

Principles, Methodology and Tools for Engineering Cloud Computing Systems

provide useful functionalities for components;
and Lifecycle Control Utilities so service provid-
ers can handle their components lifecycle. Fi-
nally, developers can use a set of Utils, given by
the PaaS provider, to control and develop their
components. This section will discuss the nature
and state of the art of these elements.

2.1.1 Components Container

The Container must host the components deployed
by developers. The runtime environment must
implement several features. We will focus on the
support of a clear lifecycle and the provision of a
secure environment.

Support for Components Lifecycle. Once
deployed in the Container, a component will go
through several stages during its lifecycle. The
transition between states could be triggered by
external events or by the component itself. Pre-

vious component systems have already defined
their own lifecycles for the components they host.
Figure 2 shows the lifecycle of components in two
standard components system, J2EE (JSR244 2006)
Servlets and OSGi (OSGi 2009). OSGi defines
a more complete (although also more complex)
lifecycle that takes into account activities such as
the resolution of dependencies or the update of
the software bundle. The contrast between the two
technologies depicted in Figure 3 clearly exposes
the conflict that Cloud containers must address. On
the one hand, simplicity is an important goal for
developers, on the other hand a proper control of
components required to take into account different
circumstances during their lifecycle. In addition
to clearly defining the possible events that trigger
the transitions among states, the container must
have means to communicate to the components
about those events (e.g. through well defined
interfaces). Finally, the platform must allow ser-

Figure 2. Cloud Platform Elements

255

Principles, Methodology and Tools for Engineering Cloud Computing Systems

vice deployers to control the lifecycle through the
remote tools provided.

Security in Containers. Security (along with
availability) is probably the most important feature
that users expect from Clouds. The Container
must provide a safe environment to run, protect-
ing components from internal or external threats.
Security is a very complex aspect, and it must be
addressed with several measures at different parts
of the Cloud platform.

First, the Container must provide full isolation
(Herzog et al. 2005) of components from different
application providers. For better resource usage,
it is likely that the same container will host com-
ponents from several different developers. This
should be totally transparent to them, and no
component shall be able to interfere with other
components. This implies, for example, that the
Container shall not allow components to use re-
sources without restriction, to avoid potential star-
vation situations due to one or more (malicious or
not) components exhausting or locking resources.
Instead, the Container will have to implement fair
resource sharing policies. As a result, the Container
will need resource accounting mechanisms. Also,

the Container shall be able to withdraw access to
resources to those components that exceed their
quota (e.g. avoid memory exhaustion because
of memory leaks from faulty components. Apart
from resource control, the Container must also
impose strict restrictions so components will not
be able to interfere to other components or to the
platform itself. Depending on the base platform
used, this can be troublesome. For example, the
Java platform provides Class Loaders to control
what functionality some code can access to.
However, this is not the only way for malicious
users to attack some other components in the same
environment, the are other well known problems
such as the visibility of object references in static
classes, possibility for malicious tenants to block
other tenants through shared data structures (such
as queues) or static synchronized methods.

Besides implementing secure multitenancy,
the Container must block external attacks. It is
reasonable to assume that many (if not all) services
hosted in the Cloud will be accessed through Web
interfaces. Thus, Cloud providers must focus on
defensive mechanisms against Web-attacks. De-
nial of Service, Distributed DoS, SQL Injection,

Figure 3. Lifecycle in Different Containers

256

Principles, Methodology and Tools for Engineering Cloud Computing Systems

Cross-Site Scripting, Sybil and Buffer Overflow
are the most prominent and well known attacks.
Also, the Cloud administrators must follow
notification and alert bulletins that warn about
new security incidents and threats. Such infor-
mation is offered by several entities often called
Computer Emergency Response Team (CERT),
like for example the one from Carnegie Mellon
University. The Internet Storm Center, managed
by the World Wide Web Consortium, is another
source of useful information.

Finally, the Container can reinforce certain
security policies through Execution Monitoring
(EM), which is based on the usage of Reference
Monitors (RM) that check the execution of un-
trusted code and take corrective actions when
some policy is broken. Inline Reference Monitors
(IRM) are a type of RM injected in the code to be
monitored. Containers could use Aspect Oriented
Programing (AOP) techniques to transparently
weave IRMs with the users’ code to monitor it
(Yi et al. 2004).

2.1.2 Cloud Services

Besides providing a runtime for components, the
Cloud can supply several Cloud Services that
implement useful functionality for components.
Which functionality is provided, how to access it,
the guarantees included (SLAs)... must be clearly
specified, possibly in the form of service contracts.
Here we will comment some fundamental services
that we deem any Cloud platform should provide.

Persistence. Data storage services are needed
by almost any application (save maybe stateless
ones). Storage can be oriented to provide a simple
repository for (typically big) chunks of data, or to
make available a database system for the manage-
ment of structured data.

Structured data has typically being managed
through relational, SQL-compliant databases and
Cloud systems like Microsoft Azureus do provide
components with such solutions. However, Cloud
systems have promoted the usage of a different

type of database engines. These systems sacrifice
the complexity of the queries that can be run
by users (generally, joins are to be avoided) in
order to get a greater scalability and availability.
Google’s BigTable (Chang 2008), built on top of
the Google File System, is arguably the best well-
known technology and has raised considerable
interest. It powers the storage service of Google
App Engine (GAE) (GAE 2010), providing a
non-relational database (although with support
for strong transactions) for the Servlets running
there. Other systems are under development, such
as Apache HBase, Apache Cassandra, Project
Voldemort, etc. It is the decision of the Cloud
provider which degree of query complexity should
be implemented, taking into account the impact
on costs and scalability.

Access Control. This is provided by the Cloud
so components can know the identity of the call-
ers of their clients. This identity is handled by the
platform itself, which has its own user management
system. For example, GAE Servlets can identify
users by their Google account. It is Google who
takes care of the login process.

It is up to the platform, however, to provide
greater access control capabilities, for example
to assign roles to users and define mappings of
allowed actions/roles to be reinforced by the
system. Also, this could be combined with ac-
counting capabilities that allowed monitoring the
amount of resources demanded to attend each user
request. This kind of control granularity will be
more demanded as the complexity of the applica-
tions deployed grows.

Communication Protocols. Due to security
issues, it is likely that the Cloud platform will
ban components from directly handling network
connections. Instead, they will only be allowed
to communicate through the set of APIs available
in the Container. On the other hand, these APIs
can be used to provide an easy way to use a wide
range of protocols and communication models.
For example, a communication service could be
based on the deliverance of a distributed bus for

257

Principles, Methodology and Tools for Engineering Cloud Computing Systems

message passing among components. Depending
on the support of protocols for queue/message
architectures (JMS, AMQP) and for integration
with external entities (SOAP, REST) the same
APIs could be used to communicate with other
elements outside the platform. Beside message
bus systems, the platform could also bring the
possibility to use other protocols such as HTTP,
SMTP, etc. In some cases, the platform could
even allow components to use telephonic network
services to send SMS, establish communication
sessions with (or among) users through SIP, etc.

2.1.3 Lifecycle Control Utilities

These are quite standard utilities for developers to
control their components remotely. The specific
set of utilities will depend on the functionalities
to be provided to developers. However, we can
envision a minimum set of tools that platforms
should be made available:

Component State Control. The platform must
make available mechanisms so developers can
not only deploy and remove components from
the platform, but also to control transition about
states (depending on the components lifecycle
supported by the platform). For example, if the
platform implemented an OSGi-like lifecycle,
developers should be able to perform actions such
as stopping components or to update its software.

Component Monitoring. The service developer
or provider will need to be aware about the state
and events of the components that form the service.
Thus, the Cloud should made available differ-
ent monitoring functionalities: 1) reports about
platform-controlled metrics such as number of
requests, resources consumed, etc. 2) notification
and alarms, configured by the component adminis-
trator; 3) accounting (and possibly billing) info; 4)
mechanisms to notify application specific metric
values (subtasks processing times, for example)
from components through the Container and the
Monitoring system to the service provider.

Component Management. Some technologies,
such as Java Management Extensions, allow
developers to expose methods for the remote
management of components. The functionality
exposed and the parameters exposed will be service
dependent, and so programmed by components
developers. However, they should be made avail-
able only through the Cloud platform utilities.

The interfaces to use these utilities can differ,
for example they could be accessed only through a
web interface or they could be called also through
protocols such as CORBA, Web Services, etc.

2.1.4 Developer Utilities

Finally, the Cloud provider can make available for
developers different tools that enable the remote
management of components through the Lifecycle
Control Utilities. These tools can be Development
Utils, oriented for developers to deploy/update
service components, or Remote Control Utils for
service administrators to monitor and manage
those components. It is a requisite for these tools
to implement secure communication mechanisms
(SSH, PKI) to access the Cloud platform. Also,
these tools could be integrated with IDE tools
through the plugin mechanisms they usually
implement.

Testing Development Utils. Depending on the
Cloud platform capacities and characteristics, it
could be possible to offer a testing environment
that emulates the Cloud container and provides
“toy” implementations of the Cloud Services
(storage, etc.). Such environment is provided for
example by GAE, and it is undoubtedly a very
useful tool for developers. However it cannot
provide information about its performance under
high load situations, scalability, etc. Cloud plat-
forms should allow developers to define and run
high load tests on the platform itself with new
experimental versions of the software without
interfering with the actual service.

Versioning. Another functionality that should
be available for the Cloud platform to be a mature

258

Principles, Methodology and Tools for Engineering Cloud Computing Systems

environment is the possibility of storing different
versions of the components code, for example to
roll back to a previous version if some error is
detected after the last component update.

2.2 Service Definition

Having their service defined, providers are ready
to deploy their application service, i.e., a clear
specification of the requirements of this service
must be communicated to the underlying platform.
This includes overall requirements such as the
minimum hardware profile required by the differ-
ent service components, in terms of CPU, memory
and so on, alongside required application data such
as a virtual disk, ISO image, or application code
and libraries. This Section is unavoidably related
with Section 2.4, since service definition includes
mechanisms for controlling service scalability.

Most Cloud platforms, IaaS, PaaS, or SaaS,
will provide means for a client to define service
requirements and configuration data typically
in the form of a deployment descriptor. This
may be via a graphical user interface such as
Amazon’s Web Service Management console2,
or as a separate document with a clear specified
syntax, semantic and structure. Upon deployment
the provisioning framework binds the necessary
infrastructure capabilities declared in the graphi-
cal user interface or descriptor to the application,
in the form of hardware resources, such as CPU
cores or memory (which is the usual case in IaaS
clouds), or alternatively software dependencies
(usually for PaaS).

IaaS users will describe upon submission their
hardware and software requirements via a suitable
interface or descriptor. Amazon’s EC23 offers
a Xen (Barham et al. 2003) based proprietary
format called an Amazon Machine Image (AMI)
for cloud applications. Pre-configured or custom
built images can then be deployed on Amazon’s
cloud via their API or management interface, at
which time the user defines the preferred hardware
configuration in terms of CPU cores, memory

and storage, networking configuration, firewall,
security, etc. Other commercial services such as
GoGrid4, Flexiscale5 follow similar approaches to
deploy cloud applications on their infrastructure,
offering proprietary ways for packaging and con-
figuring the cloud applications.

Similarly, Windows Azure6, as a PaaS Cloud
framework and provider, relies for example on
service models. These enable services to be de-
scribed as distributed entities: clients can specify
the interfaces exposed by services, communication
end points and channels, roles, whether web for
front-end communication or worker for back-
ground processing, and various other configura-
tion data which must be provided when hosting a
service. In addition, similarly to IaaS platforms,
because each role will run its own virtual machine
instance, different hardware requirements may be
allocated at different costs.

However, as cloud based offerings become
increasingly popular, the complexity and scale
of services deployed in the cloud means that ad-
ditional degrees of flexibility and control over
the provisioning process must be provided to the
customer. Services may incorporate an increas-
ingly wide range of components, data or applica-
tion resources and dependencies and constraints
may exist between these resources that must be
clarified when deploying, migrating and resizing
services in a cloud.

Service provider will also wish to describe
how the service responds to load variations and
faults. In order to minimize over provisioning and
optimize the use of resources, there must exist
means of specifying the adjustment of service
capacity or configuration throughout the entire
service lifetime according to application state and
workload and communicating this information to
the infrastructure provider.

These concerns highlight the fact that service
definition cannot be solely focused on the initial
deployment of fixed size application instances.
There must exist an ability to for a client to describe
the overall service architecture of applications

259

Principles, Methodology and Tools for Engineering Cloud Computing Systems

hosted in clouds, the entire service lifecycle and
the behavioral aspects of the service during such
lifecycle, using a declarative language in the form
of a service definition manifest.

2.2.1 Requirements for a Cloud Based
Service Description Language

The requirements for a service definition language
for cloud computing can be broadly broken down
in a number of subsets described as follows. In
order to illustrate some of the requirements, we
will use a typical three tier web architecture to be
deployed on an IaaS or PaaS clouds via Amazon
EC2 or Azure. The application will consist of a
single database, web server and a load balancer.

1. Service Architecture: We are concerned here
with the overall structure of service deployed
on a cloud and any capacity or capability re-
quirements in terms of hardware or software
dependencies. This may include for example
the overall network topology and intercon-
nections among services, specific hardware
requirements of individual components
(e.g. CPU, memory, etc.), which may vary
according to the nature of the service.

2. Service Elasticity: When dealing with rapid
changes in service context and load (e.g.,
due to sudden pike in the number of service
users), timely adjustments may be necessary
to meet service level obligations that cannot
be met by human administrators. In such a
case, it may be necessary to automate the
process of requesting additional resources
or releasing existing resources to minimize
costs. In order to automate the scaling of
applications to meet variations in workload
the service provider must be able to describe
the conditions within which this scaling takes
place and the actions to follow should these
conditions hold true. Referring to the web
application example, it may be necessary to
increase the number of web servers available

to meet demand, though the load balancer
would continue to serve as a single point
of entry.

3. Relevant KPI Description: Providing sup-
port for elasticity requires the state of the
application to be exposed to the infrastructure
in the form of monitorizable performance
indicators. These KPIs (Key Performance
Indicators) may be infrastructure level indi-
cators such as current disk use, but applica-
tion level performance indicators may prove
necessary to maximize the optimization and
response. We can consider in our example
the number of simultaneous sessions that
our web application will handle as a basis
for scaling the application.

4. Constraint policies: The use of virtualiza-
tion technologies introduces a degree of
location transparency – users may not
know where their services are running and
loosely coupled services may be deployed
across multiple physical and administra-
tive domains. However, there may exist
cases where users are in fact concerned with
controlling the spread of their applications
for administrative or technical reasons: le-
galities may mean that some data may not
leave a particular country for example, or
a provider may simply wish to minimize
latency between components by ensuring
that certain service components remain co-
located. It must hence be possible to provide
clear constraint policies on the distribution
of services across sites. Constraints may also
exist regarding the portability of the appli-
cations deployed on the cloud. The overall
service may be tied to specific hardware
or hypervisor technologies for example,
and heterogeneous hosting environments
must cater for such limitations. In addition
we must also consider potential constraints
when migrating services, and provide means
of specifying the optimum conditions that
have to be met to minimize disruption.

260

Principles, Methodology and Tools for Engineering Cloud Computing Systems

5. Component Startup and Shutdown depen-
dencies: The inter-relationships between
components may require some components
to be made available before others and con-
figuration data may be dependent on specific
deployment instances. Similarly terminating
applications may require specific undeploy-
ment dependencies to be taken into account.
In our example we may wish to deploy the
database before the web server.

6. Component customization: The service
manifest or definition language should serve
as a template for provisioning instances of
particular components. Multiple instances
of web servers for example may be created
from a same basic template and virtual image
and may require instance specific configu-
ration data, such as dynamically allocated
IP addresses. The manifest language must
provide constructs to support the automatic
generation of instance specific values.

7. Security and access policies: The manifest
should provide means of specifying security
policies. We may consider authenticating the
actual submission of the description itself for
deployment but must also take into account
security requirements once the service has
been deployed, such as the use of particular
certificate files for using or managing the
application service.

8. Quality of service requirements: When
leasing third-party resources, failures of
these resources to meet a particular level
of performance may lead to financial losses
for the service provider. The service pro-
vider can mitigate these risks through the
establishment of Service Level Agreements
(SLA). SLAs specify acceptable thresholds
of performance and reliability as well as
penalties, most likely in the form of financial
compensation that will be incurred should the
quality of service fall below acceptability.
SLAs related to our example may deal with

access time, specific hardware provisioning,
or elasticity response time.

Finally, we must also consider the openness and
platform independent nature of the service defini-
tion language. If a service provider has prepared
his application for use on Amazon EC2, shifting
this to another provider such as GoGrid is not a
straightforward endeavor. In order to facilitate the
transition from one cloud provider to another, it is
desirable for the manifest language to be specified
in a standard way that is free of platform specific
concerns. This provides an opportunity for scaling
across multiple providers and generally avoids
vendor lock-in.

2.2.2 Adapting Standards for the
Cloud: The OVF Experience

We have examined a number of software architec-
ture description languages, standards and existing
commercial offerings in order to identify a suitable
language for the definition of application services
deployed on an open IaaS cloud. In particular we
describe here the Open Virtualization Format
(OVF), a DMTF standard backed by VMWare,
Citrix and many other IT vendors (DMTF, 2010).
We will cover here how the language can be
adapted and extended in order to support cloud
computing capabilities, focusing primarily on
elasticity and service level objectives description.

OVF allows multiple virtual machines to be
packaged as a single entity containing an OVF
descriptor, along with any resources which may
be referred to in the descriptor, such as virtual
disk, ISO images, etc., and finally X.509 certifi-
cate files to ensure integrity and authenticity. It
is the OVF descriptor that we will focus on here.
It is an XML document composed of three main
parts: a description of the files included in the
overall architecture (disks, ISO images, etc.),
meta-data for all virtual machines included, and
a description of the different virtual machine
systems. The description is structured into vari-

261

Principles, Methodology and Tools for Engineering Cloud Computing Systems

ous “Sections”, describing virtual disks, logical
networks and hardware resource requirements
of each virtual system. Virtual machines sharing
common descriptive elements can be grouped
in virtual system collections. Users may specify
a virtual machine booting sequence and the de-
ployment time configuration of virtual machine
instances is supported through the definition of a
communication protocol between host and guest
(the target virtual machine) via the use of crafted
CD/DVD images to be used as boot disks during
the start-up process. A simplified example of this
service definition language is shown in Figure 4.

There are a number of requirements however
that OVF in itself does not meet. In particular it
is focused solely on initial deployment of fixed

size services, and does not provide measures to
handle potential changes in requirements over the
lifetime of a service. It also does not handle po-
tential migration across hosts, nor issues related
to performance and service level quality. These
are crucial requirements in clouds and such lan-
guage abstractions must be introduced into the
standard.

We have proposed a number of extensions
to OVF to facilitate the deployment of OVF-
described resources in Clouds (Galan et al. 2009).
This includes attribute and section changes to in-
corporate support for service components dynamic
IDs in elastics arrays, IP dynamic addresses and
elasticity rules and bounds. We consider here two
particularly important extensions, automated scal-

Figure 4. OVF-based Cloud Service Specification Example (simplified)

262

Principles, Methodology and Tools for Engineering Cloud Computing Systems

ing based on application level state, and service
level objectives considerations.

Elasticity Specification

The automated scaling of service capacity to sup-
port potential variations in load and demand can
be implemented in numerous ways. Application
providers may implement such scaling at the ap-
plication level, relying on an exposed interface of
the cloud computing infrastructure to issue spe-
cific reconfiguration requests when appropriate.
Alternatively, they may have a desire to keep the
application design free of infrastructure specific
operations and opt instead to delegate such con-
cerns to the infrastructure itself. With a sufficient
level of transparency at the application level for
workload conditions to be identified, and through
the specification of clear rules associating these
conditions with specific actions to undertake, the
cloud can handle dynamic capacity adjustment on
behalf of the service provider.

It is the latter approach that we describe here.
By providing a syntax and framework for the
definition and support of elasticity rules, we can
ensure the dynamic management of a wide range
of services with little to no modification for ex-
ecution on a cloud. With regards to the syntax,
we can identify the two following subsets of the
language that would be required to describe such
elasticity: service providers must first be able to
describe the application state as a collection of
Key Performance Indicators (KPIs), and the means
via which they are obtained in the manifest. These
will then serve as a basis for the formulation of
the rules themselves.

Alongside the syntactic requirements, a suit-
able monitoring framework must exist. A service
provider is expected to expose parameters of
interest through local Monitoring Agents, re-
sponsible for gathering suitable application level
measurements and communicating these to the
service management infrastructure via suitable

Figure 5. Overview of an OVF processing engine plus additional machinery for service provision

263

Principles, Methodology and Tools for Engineering Cloud Computing Systems

communication channels. This is illustrated in
Figure 5.

In this example, the service manager is respon-
sible for parsing an OVF document and extracting
from it a set of appropriate scalability rules. All
virtual machines launched in the Cloud will
regularly output measurements of key perfor-
mance indicators via the use of probes intercon-
nected via an appropriate communication channel.
Such information is passed to a rule engine, which
will then trigger an appropriate management re-
sponse, such as the deployment of new instances.
In the example illustrated, the number of concur-
rent sessions handled by the load balancer is used
as a basis to deploy new instances of web servers.

With respect to the rule syntax itself, we adopt
a simple KPI based ratio system, illustrated in
Box 1 (based on the OVF example previously
shown in Figure 4).

In summary, we define a proportional relation-
ship between the average value of a collection of
KPI measurement obtained during a particular
time frame and the number of instances of a par-
ticular component that should be deployed. This
allows us for example to express that we should
deploy additional web servers should the average
number of sessions obtained during the last 10

minutes period (sampling with a frequency of 60
samples per period) is above 20 up to a maximum
of 5.

While more complex specifications based on
a rule-based syntax could be adopted, we found
that the majority of cases that were tackled could
be specified in this manner. As the KPI measure-
ments are forwarded to the infrastructure by the
application itself, the application level probes
can implement more complex operations on
performance indicators, such as aggregations of
multiple values before passing this information
to the infrastructure itself.

Service Level Objectives

While the potential of Cloud computing infrastruc-
tures is evidently great, there exists much risk in
service providers outsourcing hardware provision-
ing in this manner. Indeed, if the resources leased
fail, or do not meet the performance expectations
of the service provider, this may result in con-
siderable financial loss. In addition to the losses
incurred from the inability to provide the service
to the end-client, there may have also been costs
involved in porting the service or applications to
the leased infrastructure that cannot be recouped

Box 1.

<VirtualSystem ovf:id=”WebServer” xmlns:rsrvr=“http://schemas.telefonica.com/

claudia/ovf” rsrvr:min=”1” rsrvr:max=”5” rsrvr:initial=”1”>

…

<rsrvr:ElasticArraySection>

<Info>String</Info>

 <rsrvr:Rule>

 <rsrvr:KPIName>totalSessions</rsrvr:KPIName>

 <rsrvr:Window unit=”minute”>10</rsrvr:Window>

 <rsrvr:Frequency>60</rsrvr:Frequency>

 <rsrvr:Quota>20</rsrvr:Quota>

 </rsrvr:Rule>

</rsrvr:ElasticArraySection>

264

Principles, Methodology and Tools for Engineering Cloud Computing Systems

in such circumstances. These possibilities are
likely to inhibit the adoption of Cloud comput-
ing, and means of mitigating these risks though
clear contractual agreements between service and
infrastructure provider must exist. These agree-
ments should define the obligations of both parties
regarding the level of service to be provided and
the behavior deemed acceptable on both parts,
and enable financial compensation to be sought
should a party fail to meet these obligations.

We are primarily concerned here with agree-
ments between service provider and Cloud in-
frastructure provider regarding the performance
constraints of the physical resources allocated to
an overall application service. As such, the SLA
must define expected performance, reliability,
and the conditions within which these can be
guaranteed, in addition to the compensation to
pay when the agreed objectives are not matched.

Most Cloud providers will describe some form
of SLA. Amazon for example details a broad
commitment of 99.95% uptime for all service
instances and will provide some form of credit
should the performance not be met7. Users can
provide details by email regarding the observed
failures including date and time.

However, when dealing with large scale
services involving multiple components poten-
tially distributed between several locations and
administrative domains, such measures can be
found to be insufficient. The process of gathering
performance records and evaluating them against
expected detailed quality of service requirements
must be automated as much as possible. This re-
quires service level objectives to be specified in a
clear and unambiguous manner that can be evalu-
ated at run time against observed performance
measurements. In addition service providers may
have several concerns beyond projected uptime.
A failure to respond to elasticity requirements in
a timely manner may lead to an inability to meet
overall demand and generally the provider will
be concerned with performance level objectives
tied to application specific behavior, such as the

overall turn around time of individual service
requests involving multiple components.

Several standards and frameworks exist for the
definition, negotiation and monitoring of service
level agreements. Many of these are tied to specific
types of applications, but we may consider for
example the WS-Agreement specification as an
example of a highly extensible framework suited
for such a purpose (OGF, 2006).

Generally an SLA description will require
some form of service description, enabling us to
pinpoint the specific characteristics of the service
that the SLA is meant to protect, guarantee terms
in the form of specific service level objectives,
the conditions within which these apply and the
perceived business value of these objectives. In
addition, appropriate metrics used as a basis for
the formulation of the service level objectives will
have to be defined with respect to the application
domain, and a monitoring environment. It must be
possible to obtain and communicate the value of
key performance indicators specified in the SLA
via appropriate measurement probes.

An example of how SLAs may be monitored
and generally integrated within the rest of a Cloud
platform is illustrated in Figure 6. An SLA com-
pliance monitor is responsible for parsing a set
of guarantee terms and conditions from an SLA,
such as a WS-Agreement based document. This
can then evaluate dynamically compliance to
these rules by matching measurements obtained
from measurement probes at various levels of
the infrastructure to specific metrics specified
in the SLA. Conditional expressions can then be
evaluated against the collection of measurement
records obtained in specified time frames.

Identified violations can then be passed to
suited components, such as an SLA protection
engine, which would try to adjust allocations ac-
cordingly, or alternatively to a business informa-
tion manager which will enact some penalty in
the form of financial compensation or otherwise.
Such penalties would be described in the SLA.

265

Principles, Methodology and Tools for Engineering Cloud Computing Systems

2.3 Service Provisioning

After developing and defining the service, the
next stage will lead Cloud users to focus on the
way service provisioning is done in current IaaS/
PaaS/SaaS clouds and its APIs (relying on work
done in the previous section).

IaaS Clouds allow for service providers to
quickly arrange new computing infrastructure in
a pay-as-you-go way. This way, virtual hardware
resources can be dynamically provisioned accord-
ing to their services’ load. For instance, when the
number of incoming requests grows, new Virtual
Machines (VMs) need to be manually allocated

to avoid a possible service outage and greatly
decreasing the offered Quality of Service (QoS);
upon requests shrinks the allocated VMs would
then need to be released to avoid paying for un-
needed elements.

However, available IaaS interfaces are usually
too close to the infrastructure, forcing the SP to
manage manually the VMs assigned to support
the service. See for instance, the typically WSDL-
or REST-based: Amazon’s API, GoGrid’s API,
Sun’s Cloud API or VMware’s vCloud (Varia
2009, GoGrid 2010, Sun Cloud API, vCloud API
2010). The available APIs are way too low level
for the abstraction required by service providers.

Figure 6. Sample SLA management system for Cloud service provision

266

Principles, Methodology and Tools for Engineering Cloud Computing Systems

They are too close to the VM and, consequently,
the provisioning of a service must be done on a
VM per VM basis (i.e. defining and controlling
every machine). In conclusion, current IaaS do
not provide ways to describe services in a holis-
tic manner, as they do not offer the appropriate
abstraction level.

Due to this limitation, it is not possible to pro-
vision services in a single step (i.e. letting service
providers to focus on their business by allowing
for the treatment of services in a holistic manner).
As of today, service providers are still required
to deal with the burden of VM management.
Thus, they have to install, customize and man-
age VMs one by one. Moreover, they are forced
to do so for every Cloud infrastructure they want
their machines to run at. XEN images are barely
compatible with KVM ones or Amazon AMIs.
This further increases the nuisance, since service
providers need to deal with several provisioning
procedures and intricacies.

PaaS Clouds tried to provide a higher abstrac-
tion layer to quickly deliver a service to the Cloud,
by easing developers’ lives and reducing services
time to market (Vaquero et al. 2009; Chohan et
al. 2009). The most paradigmatic PaaS platform
available so far is Google’s App Engine (GAE
2010). GAE offers a complete development stack
that uses conventional technologies to build and
host Web applications. GAE claims to free Web
developers from system administration, which
is a step forward as compared to IaaS Clouds in
which developers still have to take care of some
administration-related tasks. The user has to keep
in mind that GAE is a Python or Java development
environment easing creation (e.g. by including
Persistence managers and other development fa-
cilities), packaging and porting of We applications
only. Extensions for other type of applications
are required that would imply having predefined
“computing environments” to ease other type
of applications development too. For instance,
JBoss-Cloud is an example of such efforts to
provide developers with all the advantages and

power provided by GAE to Web applications8.
JBoss-Cloud provides a pre-configured Cloud of
JBoss Application Servers and supporting tech-
nologies out-of-the-box. However, in order to fully
comply with the Cloud paradigm (Vaquero et al.
2009), JBoss-Cloud still misses more advanced
developing support (higher abstraction level to
help developers dealing with persistence, security,
etc. at a higher abstraction level) and smoother
integration with other systems (e.g. databases).
Similarly, Windows Azure platform9 offers an
environment Web or Web-service developers (its
supports SOAP, REST, XML, and PHP) to cre-
ate Cloud applications. Although Azure provides
relational database support for basing developed
services on it (SQLAzure), this still fails to deal
with very complex typical problems found when
scaling databases (table distribution, partition,
replication, redundancy, etc.)

In spite of these encouraging advances, today’s
PaaS Clouds do not alleviate the problem of service
provisioning for service providers. They are still
needed to define service components, packaging
them and/or engaging specialized personnel ca-
pable of porting legacy applications (or creating
new ones) into the Cloud.

Having the service up and running on the
Cloud (SaaS provisioning model) avoided appli-
cation providers’ need to provision (services are
already there). These players, aiming to expose
“on the Cloud” services for end users, thus benefit
from no administrative burden whatsoever. They
do not have to deal with VM provision (like in
IaaS Clouds), software development, packaging,
patching, maintenance nor security. However,
the SaaS paradigm is not new to the Cloud.
Service-orientation and Application Server Pro-
viders already tried to deliver this vision (Foster
et al. 2002; Erl 2005; Huhns and Singh, 2005).
Some common issues that arise from avoiding
on-demand provisioning have to do with service
publishing, discovery, updates, etc. In order for
these service-oriented systems to provide users
with the illusion of infinite resources, automated

267

Principles, Methodology and Tools for Engineering Cloud Computing Systems

scalability, etc. new elements are required to make
these tasks more transparent and automatic for
application providers.

Figure 7 shows a summary of the major features
with regard to provisioning that the different Cloud
layers expose. Every layer increases the offered
abstraction level; unfortunately, none of them
seems suitable enough for application providers
to focus on their business only.

2.4 Service Scalability

Provisioning the service is just part of the whole
picture. Controlling how the service (not just
VMs) can automatically be scaled is also a very
desirable feature to be asked for to current IaaS
Cloud providers (Rodero-Merino et al., 2010;
Cáceres et al., 2010). This section shows how
current methods and tools are limited for the task
of providing different degrees of scalability at the
service level.

Cloud computing is, partially, but importantly
about on-demand provision of resources (Cáceres

et al., 2010). Thus, mechanisms to allow resources
to grow or shrink in accordance with their utili-
zation are required. Scalability is a gigantic task
that needs to be tackled at the different abstrac-
tion levels provided by the Cloud paradigm (see
Figure 8).

At the IaaS level, Amazon provides higher
level services, such as Amazon’s Cloud Watch
and AutoScale (Varia, 2009) to automate the scal-
ing process of Amazon-deployed VMs. Similarly,
RightScale allows for VM replication according
to queues or user-defined hardware and process
load metrics (Rightscale 2010). However, scal-
ability can only be defined in terms of the variables
monitored in the server templates RightScale
provides. In other words, service-level metrics,
those really relevant for service providers, cannot
be employed. Other relevant example is Micro-
soft’s Azure, the number of instances for Azure
is specified in an XML configuration file which
has to be manually changed so that Azure’s the
fabric controller will automatically adjust the
number of running instances. These very same

Figure 7. Elements offered for provisioning different components at common Cloud layers. IaaS offer
VM provisioning interfaces; PaaS development interfaces for provisioning software bundles (often
Web-based, e.g. servlets); SaaS offer elementary service management interfaces (e.g. interfaces for
publishing, provisioning

268

Principles, Methodology and Tools for Engineering Cloud Computing Systems

limitations are present in similar systems offering
automatic scalability over Cloud platforms, such
as Scalr, WeoCeo (Scalr, 2009; WeoCeo, 2009),
etc.

The solutions above fail to provide automated
tools for handling the lifecycle of whole services
(rather than VM or service instances). To overcome
this limitation, a new abstraction layer has been
proposed that is closer to the lifecycle of services
and allows for their automatic deployment and
escalation depending on the service status (not
only on the infrastructure) (Rodero-Merino et al.,
2010). This approach was based on an expressive
language to let users define scaling rules as logi-
cal expression containing service-level metrics.
User customization degree of the rules scaling is
based on and application–level metrics are hard
to be delivered. Easy to use scalability rules im-
ply lack of expressiveness, while complex rules
put the abstraction level too low. A trade-off has
to be reached between high level scalability and
usability. Moreover, rule systems are more com-
prehensive than traditional control theory-based
approaches, but this can result on a painful debug-
ging process if rules fail to provide us with the
expected behavior or too many rules are included
in the system (Cáceres et al., 2010).

On-demand scalability is not simply accom-
plished by deploying applications embedded in
VMs in the Cloud. Very interesting rules of thumb
have been re-emphasized by PaaS platforms such

as Google’s App Engine10. These rules consider
minimizing paging through large datasets, avoid-
ing datastore contention, etc. Less traditional
mechanisms are also considered important for
avoiding placing the customer of thread man-
agement or garbage-collection. It is the Cloud
itself that should be in charge of providing such
capabilities for programmers as a service (à la
“networked libraries”, i.e. PaaS).

For instance, scientific applications often
require an accurate knowledge of the problem
at hand in order to design the most appropriate
parallelization strategy. The Cloud is an ideal envi-
ronment for parallelizable applications. However,
it is hard to write the code needed to do that with
most programming languages. Attempts such as
BOOM (Berkeley Orders Of Magnitude) project,
represent a step forward for applications to be eas-
ily split and run in a Cloud environment (Loo et
al., 2006). Other approaches consider application
domain specific knowledge to increase application
scalability by minimizing the changes need to be
done to the application’s code. This has been ap-
plied, for example, to online social networks by
getting advantage of the graph structure. Groups
are separated in different servers and the nodes
belonging to several groups are replicated in all
the group servers (Pujol et al., 2009). Current
procedures often demand programmers to recode
their applications. This platform-specific code
results in locking applications to a determined

Figure 8. Summary of the scaling capabilities offered by the different Cloud layers

269

Principles, Methodology and Tools for Engineering Cloud Computing Systems

Cloud infrastructure or platform. Some attempts
try to reduce this undesired code by hierarchically
structuring servers to achieve scalability without
significantly restructuring the program (Song et
al, 2009). Other common technique is based on
the usage of profiles. These profiles aim at captur-
ing experts’ knowledge for scaling applications
without binding to specific Cloud infrastructure
(Yang et al., 2009). Although some remarkable
attempts have been made that try to add automatic
scaling capabilities to service-based systems (see
(Poggi et al., 2009) for example), these are often
hard to develop, too dependent on the specific
application, and hardly generalizable to be offered
as a general-purposed service.

Being application domain or even application
specific, these attempts fall close to the need to
scale SaaS applications. Indeed, PaaS applica-
tions could be regarded as a special type of SaaS
devoted to support service development. However,
SaaS scaling is not just about having a scalable
underlying (virtual) hardware or programming
frameworks that help to increase application
scalability.

Not all the applications are equally suited for
the Cloud as a scalability-enabling environment.
Although the Cloud is especially interesting for
Web applications, transactional applications
cannot be so easily ported to the Cloud. Web ap-
plications are usually stateless so, services can
be migrated with minor effects on user-perceived
performance. Also, if new service replicas need
to be added (horizontal scaling), load balancers
can reroute requests to any available service at
any location. Transactional applications cannot
be ported to the Cloud straightforwardly. They
are inherently stateful and rollbacks and commits
prevent easy service migration or database replica-
tion. Database replication and sharing are usually
executed by expert administrators and is highly
dependent on the specific data model, making it
difficult for an automated scalability environment
such as the Cloud. New transactional-like SaaS
applications should rely on some basic program-

ming concepts that web applications have been
using to achieve high performance or high avail-
ability in large-scale deployments (Barroso and
Hölzle, 2009), not trying to emulate traditional
transactional architectures (Cáceres et al., 2010).

Summing up, although IaaS Clouds have
pushed scalability a step beyond by, defining
automatic scalability actions based on custom
service metrics is not fully supported (the degree
of integration with underlying monitoring systems
offered by most existent Cloud systems is to be
further developed). Elements to help to select
accurate utilization metrics are still to be defined
towards effective on-demand scaling are still
needed for public Clouds, in which it is difficult
to extract relevant metrics from unknown and
uncontrolled hypervisors or physical devices (e.g.
network probes are difficult to locate). However,
IaaS scalability is still too VM-level oriented, scal-
ing decisions are made and executed on the basis
of infrastructure metrics and the service provider
is supposed to deal with these tasks manually. Full
automation and application of scalability rules (or
load profile–based models) to control services in
a holistic manner are being produced on top of
IaaS Clouds.

These scaling automation capabilities lay close
to the aforementioned PaaS features. However,
there is more to service lifecycle management
than scaling the application horizontally (i.e.,
adding more VMs and load balancers). More
elements helping to support scalable application
design, development, parallelization, debugging,
versioning, updating, etc. are still very much
needed. SaaS application scalability is currently
supported by exploiting traditional programming
techniques to increase the scalability of services
by minimizing its resource consumption.

SaaS delivery models imply a series of “hid-
den” requirements for the different players:

• for IaaS Cloud providers: these players will
have to use underlying scalability mecha-
nisms (such as VM replication, migration,

270

Principles, Methodology and Tools for Engineering Cloud Computing Systems

etc.) so that the application providers or
PaaS Cloud providers get IaaS automated
scalability.

• for PaaS/SaaS Cloud providers: they will
be requested to provide mechanisms for
looking for, services, integrating services,
sale developed services (i.e. an actual mar-
ketplace for services to be searched, sold
and integrated) and mechanisms hiding the
effects of an underlying VM migration or
replication (e.g. buffers to queue requests
while the new replica is being launched).

3. CONCLUSION

Starting off from a common understanding of
Cloud Computing in the community, this paper
motivated the idea of looking at Cloud Computing
as a supply chain of not just a single provider, but
hardware and component suppliers, data center
operators and who provide the end-customer with
Cloud services. This Cloud provisioning was de-
fined as managing and coordinating the (partly)
bi-directional movement of services, information
and funds. For the defined supply chain the Cloud
services were presented as products which need to
be classified as innovative, and at the same time
functional in their nature. Based on the idea of a
Cloud supply chain the necessary management
along the whole supply chain was defined and
described. Followed by a technical deep dive it
a potential technical approach for the manage-
ment of user’ components on a Cloud platform
was illustrated.

For this, the paper depicted the main ele-
ments of a Cloud platform for third-party code
execution: a components container, a set of Cloud
services (such as persistence) and a set of utilities
to control the

lifecycle of users’ components. Regarding the
container, we focused on the two main features
to be considered, that were, 1) the support for the
complete lifecycle of components and 2) security.

In fact security had received special attention,
as it is arguably the most important feature in
any Cloud system. Thus, we discussed the main
threats that Cloud systems face due to both the
execution of potentially malicious code, and the
possibility of external attacks. When discussing
Cloud services we had chosen those that we deem
more important, as can be the most useful for
developers deploying their components on the
Cloud platform. These were persistence (service
to store structured or unstructured data), access
control (to govern on the developer’s behalf who
is performing a request on the component), and
communication protocols (to allow the commu-
nication with external entities). Finally, we com-
mented the utilities that Cloud platforms should
provide developers with to support the control
of the whole components lifecycle, including
development, monitoring and testing.

In order to control the overall provisioning
process of an application service by a Cloud, us-
ers must have means of describing their overall
application structure and the requirements of the
various components constituting the application.
These requirements will relate to hardware and
software needs at deployment time and at run-time,
describe how to respond to changes in demand
and the overall level of service that is expected
from the Cloud platform. There may also raise
additional concerns regarding the spread of the
application, dependencies between components
and run-time customization of component in-
stances. We hence provided an overview of these
requirements, identify the limitations of existing
deployment description languages and illustrate
how these may be incorporated into standards
such as that provided by OVF.

Every layer increases the offered abstraction
level, unfortunately, none of them seems suitable
enough for application providers to focus on their
business only. SaaS models, which may seem
simpler for service providers, imply a series of
tasks that call for further automation in order to
make the Cloud vision come true.

271

Principles, Methodology and Tools for Engineering Cloud Computing Systems

IaaS scalability is essentially based on de-
ploying new VMs and load balancing incoming
requests. Although the automation mechanisms are
still in their infancy a clear trend is observed in this
way. SaaS (PaaS can be considered as a subset of
SaaS services devoted to increase developing and
maintenance procedures productivity) scalability
currently relies on traditional programming meth-
ods to optimize resource usage without decreasing
performance. New techniques are clearly required
in order to optimize the scaling potential of all the
currently available Cloud layers.

SaaS delivery models imply a series of require-
ments for the different stakeholders in the Cloud.
PaaS and SaaS providers will rely on transparent
and automated IaaS scaling mechanisms to offer
their PaaS or SaaS features to programmers/service
providers or application providers, respectively.

4. REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S.,
Harris, T., Ho, A., et al. Wareld, A. (2003). Xen
and the art of virtualization. Proceedings of the 19th
ACM Symposium on Operating Systems Principles
SOSP ‘03 (pp. 164-177). New York, NY: ACM.

Barroso, L. A., & Hölzle, U. (2009). The datacen-
ter as a computer: An introduction to the design
of warehouse-scale machines: Synthesis lectures
on computer architecture. Morgan & Claypool
Publishers.

Cáceres, J., Vaquero, L. M., Rodero-Merino, L.,
Polo, A., & Hierro, J. (in press). Service scalabil-
ity over the cloud. In Fuhrt, B., & Escalante, A.
(Eds.), Handbook of cloud computing. Springer.

Cachon, G., & Fisher, M. (2000). Supply chain
inventory management and the value of shared
information. Management Science, 46(8), 1032–
1048. doi:10.1287/mnsc.46.8.1032.12029

Chang, F., Dean, J., Ghemawat, S., Hsies, W. C.,
Wallach, D. A., & Burrows, M. (2008). Bigtable:
A distributed storage system for structured data.
ACM Transactions on Computer Systems, 26(2),
1–26. doi:10.1145/1365815.1365816

Chohan, N., Bunch, C., Pang, S., Krintz, C.,
Mostafa, N., Soman, S., & Wolski, R. (2009).
AppScale design and implementation. Retrieved
from http://www.cs.ucsb.edu/ ~ckrintz/papers/
appscale2009-02TR.pdf

DMTF. (2010). Open virtualization format
specification. (Specification DSP0243 v1.1.0).
Distributed Management Task Force.

Erl, T. (2005). Service-oriented architecture: Con-
cepts, technology, and design. Prentice Hall PTR.

Fisher, M. (1997). What is the right supply chain
for your product? Harvard Business Review,
75(2), 105–116.

Foster, I., Kesselman, C., Nick, J. M., & Tuecke,
S. (2002). Grid services for distributed system
integration. Computer, 35(6), 37–46. doi:10.1109/
MC.2002.1009167

Galán, F., Sampaio, A., Rodero-Merino, L., Loy,
I., Gil, V., Vaquero, L. M., & Wusthoff, M. (2009).
Service specification in cloud environments based
on extensions to open standards. Fourth Interna-
tional Conference on COMmunication System
softWAre and middlewaRE (COMSWARE 2009),
Dublin, 2009.

GoGrid. (n.d.). Website. Retrieved from http://
www.gogrid.com

Google. (n.d.). Google’s app engine. Retrieved
from http://code.google.com/ appengine/

Herzog, A., & Shahmeri, N. (2005). Problems
running untrusted services as Java threads. IFIP
International Federation for Information Process-
ing (pp. 19–32). Springer.

272

Principles, Methodology and Tools for Engineering Cloud Computing Systems

Huhns, M. N., & Singh, M. P. (2005). Service-
oriented computing: Key concepts and prin-
ciples. IEEE Internet Computing, 6(4), 75–81.
doi:10.1109/MIC.2005.21

Johnson, M., & Pyke, D. (1999). Supply chain
management. Working Paper, The Tuck School
of Business, Dartmouth College.

JSR244. (2006). Java specification request 244:
Java platform, enterprise edition 5. Retrieved
from http://jcp.org/en/jsr/detail?id=244

Lee, H. (2002). Aligning supply chain strategies
with product uncertainties. California Manage-
ment Review, 44(3), 105–119.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sand-
holm, T. (2009). What’s inside the cloud? An
architectural map of the cloud landscape. Pro-
ceedings of the 2009 ICSE Workshop on Software
Engineering Challenges of Cloud Computing (pp.
1-5). IEEE Computer Society.

Loo, B. T., Condie, T., Garofalakis, M., Gay, D.
A., Hellerstein, J. M., & Maniatis, P. … Stoica,
I. (2006). Declarative networking: Language,
execution and optimization. ACM SIGMOD 2006,
(pp. 97–108).

OGF. (2006). Web services agreement specifica-
tion 2005/09. Retrieved from http://www.ogf.org/
Public_Comment_Docs/ Documents/Oct-2005/
WS-AgreementSpecification Draft050920.pdf

OSGi. (2009). OSGi service platform core
specification, v4. Retrieved from http://osgi.org/
Release4/HomePage

Paulitsch, M. (2003). Dynamic coordination of
supply chains. PhD. Vienna University of Eco-
nomics and Business Administration.

Poggi, N., Moreno, T., Berral, J. L., Gavaldà, R., &
Torres, J. (2009). Self-adaptive utility-based Web
session management. Computer Networks, 53(10),
1712–1721. doi:10.1016/j.comnet.2008.08.022

Pujol, J. M., Siganos, G., Erramilli, V., & Rodrí-
guez, P. (2009). Scaling online social networks
without pains. NetDB 2009. 5th International
Workshop on Networking Meets Databases, co-
located with SOSP 2009. Retrieved from http://
www.rightscale.com

Rodero-Merino, L., Vaquero, L. M., Gil, V., Ga-
lán, F., Fontán, J., Montero, R. S., & Llorente,
I. M. (in press). From infrastructure delivery to
service management in clouds. [In Press]. Future
Generation Computer Systems.

Scalr. (n.d.). Website. Retrieved from http://www.
scalr.net

Song, S., Ryu, K. D., & Da Silva, D. (2009). Blue
eyes: Scalable and reliable system management
for cloud computing IPDPS. IEEE International
Symposium on Parallel & Distributed Process-
ing, (pp. 1-8).

Sun Cloud. (2009). API. Retrieved from http://
kenai.com/projects/ suncloudapis/pages/Home

Tsay, A., Agrawal, N., & Nahmias, S. (1998).
Modeling supply chain contracts: A review. In
Tayur, S., Ganeshan, R., & Magazine, M. (Eds.),
Quantitative models for supply chain management
(pp. 299–336). Boston, MA: Kluwer Academic
Publishers.

Vaquero, L. M., Rodero-Merino, L., Cáce-
res, J., & Lindner, M. A. (2009). Break in the
clouds: Towards a cloud definition. ACM Com-
puter Communication Reviews, 39(1), 50–55.
doi:10.1145/1496091.1496100

Varia, J. (2008). Amazon white paper on cloud
architectures. Retrieved from http://aws.typepad.
com/aws/ 2008/07/white-paper-on.html

vCloud. (2009). API programming guide. VM-
WARE Inc.

WeoCeo. (2009). Website. Retrieved from http://
weoceo.weogeo.com

273

Principles, Methodology and Tools for Engineering Cloud Computing Systems

Yang, J., Qiu, J., & Li, Y. (2009). A profile-based
approach to just-in-time scalability for cloud
applications. IEEE International Conference on
Cloud Computing, (pp. 9-16).

Yi, G. S., Deng, Y., Yu, H., He, X., Beznosov, K.,
& Cooper, K. (2004). Applying aspect-orientation
in designing security systems: A case study. Inter-
national Conference of Software Engineering and
Knowledge Engineering (SEKE), (pp. 360-365).

ENDNOTES

1 This chapter will use several terms that
given its ambiguity deserve some initial
consideration: service provider: entity that
places a given service in the cloud. The
service may consist on several services or
a single one offered or not to the end user.
application provider: special type of service

provider that either uses owned services or
“packages” services offered in the Cloud
to deliver a final application for end users.
cloud provider: stakeholder offering some
type of service in the Cloud.

2 http://aws.amazon.com/console/
3 http://aws.amazon.com/ec2/
4 http://www.gogrid.com/
5 http://www.flexiant.com/products/flexis-

cale/
6 http://www.microsoft.com/windowsazure/

windowsazure/
7 http://aws.amazon.com/ec2-sla/
8 See http://oddthesis.org/theses/jboss-cloud

or http://java.dzone.com/articles/introduc-
tion-jboss-cloud

9 http://www.microsoft.com/windowsazure/
products/

10 http://code.google.com/appengine/articles/
scaling/overview.html

274

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 13

INTRODUCTION

Service computing is a multi-discipline domain
that covers the science and technology of bridg-
ing the gap between Business Services and IT
Services (Zhang et al., 2007). It aims to enable

IT services and computing technology to carry
out business services more efficiently and effec-
tively. The supporting technology suite includes
Web services and service-oriented architecture
(SOA), and business process integration and
management, etc. Although service computing

Xiaoyu Yang
University of Southampton, UK

QoS-Oriented Service
Computing:

Bringing SOA Into Cloud Environment

ABSTRACT

The idea of cloud computing aligns with new dimension emerging in service-oriented infrastructure where
service provider does not own physical infrastructure but instead outsources to dedicated infrastructure
providers. Cloud computing has now become a new computing paradigm as it can provide scalable IT
infrastructure, QoS-assured services, and customizable computing environment. However, it still remains
a challenging task to provide QoS assured services to serve customers with minimized cost, while also
to guarantee the maximization of the business objectives (e.g. margin profit) to service provider and
infrastructure provider within certain constraints. In order to address these issues, this chapter proposes
a QoS-oriented service computing methodology, and discusses associated topics including service level
agreement and associated reference architecture, green service, service metering and metrics, service
monitoring, and on-demand resource provisioning. In the case study, we demonstrate how we employ
QoS-oriented service computing in a multi-server, multi-user on-line game to facilitate the on-demand
resource provisioning to maintain quality of service and quality of experience.

DOI: 10.4018/978-1-60960-735-7.ch013

275

QoS-Oriented Service Computing

is business-oriented, it has also been proved to
be an effective approach that can be employed in
e-Science to develop modern cyberinfrastructure
to facilitate the scientific research and discovery.

More recently, the emergence of Cloud com-
puting has brought new dimensions of applying
IT and computing technologies to businesses
and scientific research, which results in a new
computing paradigm, where service provider
dose not have to own any physical infrastructure
but instead outsource to dedicated infrastructure
providers. This computing paradigm can provide
a scalable IT infrastructure, QoS-assured services
and customizable computing environment. How-
ever, the current service computing technologies
can not always meet the requirements of this
computing paradigm, and there are several issues
arose: (i) QoS-assured service delivery: while re-
lationship between customer and service provider
is inherently a “Customer – Service Provider”
relationship, the service provider and infrastruc-
ture provider have also established a “Customer
- Service Provider” relationship. As in this model
the service provider faces both customer side
and infrastructure provider side, the guarantee
of the delivery of QoS-assured service becomes
increasingly critical. (ii) Green service. How to
provide QoS assured service to serve customers
with minimized resource consumption cost and
meet customer’s satisfaction, while also to guar-
antee the maximization of the business objectives
(e.g. margin profit) to service provider and infra-
structure provider within certain constraints. (iii)
Service discovery: One service can have several
service providers with different service prices.
Even the same service provider can provide a
service with different Service Level Objectives
(SLO) which incurs different cost. How custom-
ers can find appropriate services they want. (iv)
Service metering, which plays a fundamental role
in service computing as QoS-assured service and
green service all require metered services to be
delivered. This involves creating a generic metric
model which can be used in different service occa-

sions. (v) On-demand resource provisioning. How
to elastically provision resources on-demand?

Currently, service computing / service engi-
neering mainly concerns about the service mod-
eling, creation, deployment and service quality
assessment during its lifecycle, known as Method-
ology of Service Engineering (MSE). For example,
the discipline of service engineering, which was
first proposed in the mid 90’s in Germany and
Israel (Bullinger, 2003; Mandelbaum, 1998),
is concerned with the systematic development
of services using suitable models, methods and
tools. Service engineering promotes an integrated
service by adopting technological methods and
employing existing engineering know-how to
maximize efficiency (Tomiyama, 2001; Bullinger
et al., 2003). Product service co-design and service
modeling claim that traditional engineering meth-
ods and tools in applied science can be borrowed
for service design and development (Ganz et al.,
2004). Service CAD argues that computer-based
tools can be used to design services, just as CAD
can be used to facilitate the design of products and
simulation of their behaviors under various cir-
cumstances (Tomiyama, 2003). The driver for the
emergence of New Service Development (NSD)
is that the product development paradigm fails
to address the unique characteristics inherent in
services, such as customers as a participant in the
service process, intangibility, and heterogeneity
of customer demand (Fitzsimmons et al., 2000).
Life cycle oriented service design (Aurich et al.,
2004) argued that Life Cycle Engineering (LCE)
(Jeswiet, 2003) can be adopted for the design of
service.

However, these static service computing tech-
nologies mainly concern the modeling, creation
and deployment of separate services. They can
not well resolve issues occurring at the stage of
service discovery, service outsourcing, and service
usage. In order to address these issues in service
computing, we proposed “QoS-oriented Service
Computing” to accommodate needs for service
computing in the context of Cloud environment.

276

QoS-Oriented Service Computing

In this chapter, we will discuss the following
topics for QoS-oriented Service Computing, which
includes Service Level Agreement (SLA), green
service, service metering, service monitoring,
QoS assured service, and on-demand resource
provisioning. In a case study, we discuss how
we employ QoS-oriented service computing in a
multi-server, multi-user on-line game to facilitate
the on-demand resource provisioning to guarantee
the QoS-assured services.

BACKGROUND OF
SERVICE COMPUTING AND
CLOUD COMPUTING

This section reviews literatures related to service
computing and Cloud computing. Especially,
we provide a survey on relevant standards and
specification languages which can be employed
in presenting the SLA. We identified appropriate
standards for SLA representation. The survey
has also resulted in the formulation of reference
architecture for SLA life cycle management.

Service-Oriented Architecture

A Service-Oriented Architecture (SOA) contains
a collection of services which can communi-
cate with each other. The communication can
involve either data exchange or it could involve
more services managing a specific activity. In
this context, a service is a function that is well
defined, self-contained, and does not depend on
the context or state of other services. SOAs offer
a variety of advantages over traditional distributed
computing systems and for this reason they tend
to replace the platforms upon which the business
services are offered to the clients. They provide
location independence for services, which means
that services can run anywhere. The searching and
connection to other service can be dynamic and
follow a loosely coupled approach, which can thus
enable the formulation of general purpose service

provision infrastructures interoperable with a
broad set of technologies and business process.
Other advantages of using SOAs include their abil-
ity to build composite applications by integrating
Web services via workflow, which can automate
the whole process without direct human interac-
tion or control. SOA can also facilitate enabling
a scalable infrastructure to meet the requirements
of on-demand resource provisioning.

Standards and Specification
Languages for SLA Representation

Web service has now been widely used in e-Sci-
ence, service-oriented infrastructure, and various
computing paradigms (e.g. Cloud computing, Grid
computing, service computing), hence ensuring
Quality of Service (QoS) is becoming increasingly
important. Service Level Agreement (SLA) can
be employed to serve as a bilateral contract that
exists between a customer and a service provider
to specify the user requirements, quality of ser-
vice, responsibilities and obligations (http://www.
gridipedia.eu). SLA can contain numerous service
performance metrics with corresponding Service
Level Objectives (SLO). It describes quality of ser-
vice and other commitments by a service provider
in exchange for financial commitments based on
an agreed schedule of prices and payments (http://
www.gria.org/about-gria/a-business-perspective).

It is critical that the electronic SLA can be
presented in a certain specification language and
this language should be extensible and standard-
based, so that the SLA provisioning and man-
agement system can deal with SLA in a flexible
manner. Although there were some articles (e.g.
Dobson, 2004; Seidel et al., 2007) that reviewed
the associated specification languages for QoS
and SLA, the discussed specification languages
are either out of data, or not complete.

The SLA life cycle typically includes asso-
ciated service provider discovery, negotiation,
conformance monitoring, enforcement, and
end-of-life invoicing, etc. The SLA life cycle

277

QoS-Oriented Service Computing

management requires a comprehensive SLA
manager to provide a set of key functionalities
such as negotiation of QoS terms, acquisition
of usage data/QoS measurement, conformance
check, and billing. Therefore it is essential to have
a high level SLA reference architecture which can
provide guidelines for SLA application / service
development. Although various SLA managers
have been developed in many research projects
and industry applications, the generic SLA manger
reference architecture with identified key compo-
nents remains unclear.

Relevant SLA specification languages to be
reviewed include: (i) QoS Markup Language
(QML), (ii) Hierarchical QoS Markup Language
(HQML), (iii) Web Service Level Agreement
(WSLA), (iv) SLAng, (v) Web Service Manage-
ment Language (WSML), (vi) Web Service Of-
fering Language (WSOL), (vii) W3C WS-Policy
(WSP), (viii) WS-Agreement, (ix) WSDM, and
(x) WS-management.

QoS Markup Language

QoS Markup Language (QML) (Svend, 1998)
was developed in 1998 by HP laboratory. It aims
to define multi-category QoS specification for
components in distributed object systems. QML
is now out-of-date. It is mainly used for QoS
terms specification and not appropriate for SLA
specification.

HQML

The Hierarchical QoS Markup Language (HQML)
(Gu et al., 2002) developed by University of Illinois
in 2002, is an XML based language to enhance
the distributed multimedia application over Web
with QoS capabilities. HQML schema is simple.
But it is more like a specification language for
QoS management rather than a specification
language for SLA. It is not closely tied up to the
use of Web service. The proposed XML schema

(using xml DTD) mixes the QoS metrics and price
terms together.

Web Service Level Agreement (WSLA)

The Web Service Level Agreement (WSLA)
(Ludwig, 2003) is a specification language for
service level agreement. It was proposed by IBM
and version 1.0 was released in 2003. In WSLA,
the structure of SLA can include: (i) Parties, (ii)
Service definition, and (iii) Obligations (Ludwig,
2003).

• “Parties” define parties involved in the
management of Web service such as cus-
tomer, service provider, third parties, etc.

• “Service definition” describes: (i) defini-
tion of the service, (ii) SLA parameters, and
(iii) the way SLA parameters are measured
and computed. In service definition, a term
service object is used to describe what Web
service operations an SLA relates to.

• “Obligations” defines the service level
that is guaranteed with respect to the SLA
parameters, and promises to perform ac-
tions under particular conditions. It pro-
vides two kinds of guarantees: (i) Service
Level Objective (SLO), and (ii) Action
Guarantees. SLO expresses a commitment
to maintain a particular state of the service
in a given period, while Action Guarantees
expresses a commitment to perform partic-
ular activity if a given precondition is met.

WSLA 1.0 is fully documented and publicly
available. It has been widely used. WSLA 1.0
specification clearly defines the structure of SLA;
especially it distinguishes the SLA parameter and
metrics. It provides a framework for specifying and
monitoring SLA for Web services. WSLA is also
extensible. All these make WSLA promising as a
QoS/SLA specification language. The identified
problem is that the v1.0 was released in 2003, and
it has not been officially supported since then.

278

QoS-Oriented Service Computing

SLAng: A Language for Defining
Service Level Agreement

SLAng is SLA language developed by University
of College London (UCL) under the TAPAS proj-
ect (http://tapas.sourceforge.net/) (2002-2005).
SLAng defines six different types of SLA, which
are divided into Vertical SLAs and Horizontal
SLAs (Lamanna et al., 2003). SLAng does not
clearly describe the structure of SLA. The clas-
sification of vertical SLAs and horizontal SLAs
is easy to confuse people. The TAPAS project
finished in 2005, and the further development of
SLAng cannot be guaranteed.

Web Service Management Language

Web Service Management Language (WSML)
(Sahai et al., 2001) was developed in 2001 by HP
Laboratories. It can be regarded as an extension
of QoS Modeling Language (QML) (Svend et al.,
1998) by allowing the definition of SLO, validity
period and mathematical operation of measured
data, etc. which were not supported in QML.
However, WSML does not enable specification
of management third parties. Further, WSML
does not define the language for expressions to
be evaluated. It is assumed that expressions will
be written in some other mathematical languages,
such as MathML. This means that the infrastructure
for WSML constraints evaluation needs to support
these mathematical languages.

Web Service Offering Language

Web Service Offering Language (WSOL) (Tosic
et al., 2003) claims to be a language for the formal
specification of various constraints, management
statements, and classes of service for Web services.
It was developed in 2003 by Carleton University,
Canada. The motivation of development of WSOL
is that the WSDL cannot support specification
of various constraints, management statements,
classes of service, SLAs and other contracts. The

development of WSOL has made much refer-
ence to WSLA and WSML discussed previously.
One of the distinct features of WSOL is that it
has defined external ontologies of QoS metrics
and measurement units for the specification of
QoS constraints. In the current implementation
of WSOL, it is assumed that ontology of QoS
metrics is a collection of names with information
about appropriate data types and measurement
units. Similarly, ontology of measurement units
is a simple collection of names without any ad-
ditional information.

Authors of WSOL have identified the draw-
backs of WSDL and proposed such a solution
attempting to address them. However, WSOL is
not widely used and accepted. The W3C (http://
www.w3.org/) recommended WS-Policy now
becomes a standard to address these needs.

WS-Policy

WS-Policy is a W3C recommendation since Sep-
tember 2007. WS-Policy is a standard to describe
the properties that characterize a Web service
(http://www.w3.org/TR/ws-policy-primer/). By
means of this specification, the functional descrip-
tion of a service can be tied to a set of assertions
that describe how the Web service should work in
terms of aspects like security, transactionability,
and reliable messaging. WS-Policy document
is in charge of composing assertions to identify
how a Web service should work. These assertions
can be used to express both functional aspects
(e.g. constraints on exchanged data), and non-
functional aspects (e.g. security, transactionability,
and message reliability). WS-Policy language is
an extensible language by design. The Policy,
ExactlyOne, All and wsp:PolicyReference ele-
ments are extensible.

Although WS-Policy is recommended by
W3C, it actually provides no advantage for QoS
specification, other than it is a standard way of
associating QoS-like descriptions with service
(Dobson, 2004; Chaari et al., 2008). Also WS-

279

QoS-Oriented Service Computing

Policy does not support capabilities of negotiation,
monitoring agreement compliance at runtime
which SLA management needs. But WS-Policy is
an extensible language and as one of W3C SOA
standard stack, it has potential to be used for SLA
representation.

WS-Agreement

WS-Agreements proposed by OGF (http://www.
ogf.org/) is a popular standard to be aggregated
into Web service architecture to support the man-
agement of non-functional requirements in Web
service (Garcia et al., 2006). It is a protocol for
establishing an agreement on the usage of services
between a service provider and a consumer (http://
www.ogf.org/documents/GFD.107.pdf).

WS-Agreement has more expressive power
to describe service level objectives, which state
the requirements and capabilities of each party on
the availability of resources and service qualities.
It has been widely used in Grid communities.
Seidel et al. (Seidel et al. 2007) identified many
research projects which employ WS-Agreement
for SLA representation for resource management
and scheduling.

Web Service Distributed Management

The Web Services Distributed Management
(WSDM) (http://www.oasis-open.org/commit-
tees/tc_home.php?wg_abbrev=wsdm) standard
published by OASIS (http://www.oasis-open.org/
home/index.php) defines the methods, structure,
and specification of a system for managing net-
work resources (e.g. printers, routers, servers and
services) and for managing Web service. WSDM
contains two parts: (i) Management Using Web
services (MUWS) and (ii) Management of Web
services (MOWS) (http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsdm).

However, as the aim of WSDM is about man-
agement using Web service and management of
Web service, rather than focus on defining ca-

pabilities and requirements of service providers
and customers. The support of defining metrics
and measurement is limited. A domain-specific
model or domain ontology needs to be defined
when using WSDM in SLA. WSDM provides
an event model which could be used for SLA
monitoring, but it does not provide support for
SLA negotiation.

Web Service Management
(WS-Management)

Web Service for Management (WS-Management)
(http://www.dmtf.org/standards/wsman), another
SOA management protocol, is a specification for
managing devices, computers, Web services and
applications using Web service. It was proposed
by Distributed Management Task Force (DMTF)
(http://www.dmtf.org/home) and published in
2004 with support from IT companies such as
AMD, Dell, Intel, Microsoft and Sun. DMTF
is a standards organization that develops and
maintains standards for systems management of
IT environments in enterprises and the Internet.

WS-Management has some overlapping area
with MUWS of WSDM but has addition on access-
ing resources. WS-Management can be regarded
as sort of implementation of management model
namely “Common Information Model” proposed
by DMTF. Similar to WSDM, WS-Management
aims at management of services, devices and ap-
plications, hence has same disadvantage as WSDM
does. WS-management is not strong enough to be
used in SLA. For example, it does not provide a
negotiation model for SLA, not appropriate for
defining agreement between customer and service
provider.

Survey Findings

Research findings from the survey are summarised
as follows:

1. The survey shows that WS-Agreement and
WS-Policy can be two candidate standards to be

280

QoS-Oriented Service Computing

employed for SLA presentation. Especially, the
WS-Agreement is widely used in many Grid com-
puting projects. WS-Agreement not only provides
a specification language for representing SLA,
but also provides protocol for SLA negotiation
and monitoring.

2. While there are many research projects which
involve employing SLA for service and resource
management, a comprehensive reference archi-
tecture which identifies key SLA components and
illustrates how these components are engineered
and interacted to provide a generic overview of
SLA application / service has not been investigated
in great depth. GRIA SLA Management Service
(http://www.gria.org/) is usable, but the high level
SLA architecture is still not quite clear. Web Ser-
vice Level Agreement (WSLA) provides an SLA
framework. It defines how basic metrics should
be measured and how they are aggregated into
composite metrics and SLA parameters. It also
provides expression of the operations for monitor-
ing and managing the service. However, WSLA
was developed to provide an SLA specification
language rather than SLA life cycle management.
Although SLA has been used in many research
projects, these projects are mainly concerned with
one or two functional aspects of SLA (i.e. resource
management and scheduling, negotiation) and do
not provide a high-level view of the SLA manager.

3. It is recommended to incorporate domain
ontology into the SLA to present semantic-rich
policies and requirements. Semantics-enriched
policies can facilitate more accurate SLA life
cycle management than the syntactic approaches.
Therefore, apart from the key SLA manager
requirements identified in the survey, another
requirement of the SLA manager is that it should
be ‘semantic-aware’.

Cloud Computing

Cloud computing has become a new computing
paradigm as it can offer a scalable IT infrastruc-
ture, QoS-assured services and customizable

computing environment. Cloud computing can
be illustrated from the following aspects:

SPI model - Cloud computing originates from
the concept “Hardware as a Service” (HaaS),
“Software as a Service” (SaaS). Cloud now ad-
vances from SaaS to “Platform as a Service” (PaaS)
and “Infrastructure as a Service” (IaaS), known as
SPI model. In Cloud computing, customers can
avoid capital expenditure on hardware and soft-
ware by renting the usage from service provider
of third parties, rather than owning the physical
infrastructure by themselves. The hardware and
software are rendered to customers as IT services.

Scalability / elasticity - Klems and Gaw claim
that automatic scale of infrastructure for load
balancing is a key element in Cloud comput-
ing (Geelan, 2008). The delivered services can
elastically / dynamically grow its capacity on an
as-needed basis so that the quality of service can
be guaranteed. “On-demand services are all Cloud
computing based” (de HAAf, 2008).

“Pay-per-use” / “Pay-as-you-go” / “Utility
computing” - There is also a vision that Cloud
computing is more like a business revolution,
rather than a technology evolution. Business
model, or we call “pay-per-use”, “pay-as-you-
go”, and ‘utility computing’ is another feature of
Cloud computing (Kaplan and Cohen in Geelan,
2008; Watson et al., 2008; Buyya et al., 2009). The
usage of the resource will be metered and service
customers will pay bill to service provider for the
actual resource usage.

Data centre - Another view of Cloud is that it
is a powerful computer and the data centre is the
basic unit of the infrastructure (McFedries, 2008).
Data centre can offer huge amount of computing
power and data storage. The capacity of the data
centre can dynamically when handling a task.
According to (Vaquero et al., 2009), this is associ-
ated with the concept “massive data scalability”
proposed by (Hand, 2007).

Virtualisation - Cloud computing can also be
regarded as a “virtualised hardware and software”
(Gourlay and Sheynkman in Geelan, 2008). This

281

QoS-Oriented Service Computing

perspective emphases the use of virtualisation
technology in the Cloud computing. Virtualization
technologies multiplex hardware and have made
the flexible and scalable provision of resource as
hardware and software on demand easier. Virtual
machine techniques, such as VMware (http://www.
vmware.com/) and Xen (http://www.xen.org/),
offer virtualized IT-infrastructures on demand.
Virtual network advances, such as VPN (Virtual
Private Network), support users with a customized
network environment to access Cloud resources.

Cloud service or Cloud Computing? – Apart
from the above perspectives about the Cloud
computing, we think it would be more accurate
to call it “Cloud service”, rather than using the
term “Cloud computing”, as eventually everything
delivered by Cloud is presented as a Web service,
e.g. storage service, computing service.

Currently many research and development
work relating to Cloud computing focus on
single provider Cloud within an administrative
domain. This single provider Cloud has inherently
problems of scalability and interoperability. For
example, the single provider may not be able to
provide infinite scalability. Also, this can result in
an inability to scale through business partnerships
across Clouds providers. Customer has to lock to
a single Cloud vendor and no flexibility to choose
Cloud vendors. More recently, “federated Cloud
computing” is emerging. There is no global defini-
tion for federated Cloud computing but the aim
of the federated Cloud computing is to federate
disparate data centers, including those owned by
separate organizations to enable a seemingly infi-
nite service computing utility (Rochwerger et al.,
2009). So far there is not much effort in research
and development of federated Cloud computing.
An EU FP7 funded project RESEVIOR (http://
www.reservoir-fp7.eu/) is currently investigat-
ing this and proposed a RESEVIOR model and
architecture for open federated Cloud computing
(Rochwerger et al., 2009). In this RESEVOIR
model the entity of “service providers” and “infra-
structure providers” are clearly differentiated. The

“service providers” understand customer needs
and offer associated services to address customer
needs. But “service providers” do not own any
computational resources by themselves; instead,
they rent resources from “infrastructure provid-
ers” for service applications. The computational
resources of each infrastructure provider (called
“site” in RESEVOIR model) are partitioned by a
virtualization layer into several Virtual Execution
Environments (VEE). The federation of sites forms
a RESEVOIR Cloud, where a service application
will be deployed. The service application can be
regarded as consisting of a set of software com-
ponents working together to achieve a goal. Each
component of such service applications executes
in a certain VEE. These VEEs can be placed on
the same or different VEE Hosts within the site, or
even on different sites. The EU-funded Edutain@
Grid project (http://www.edutaingrid.eu/) has also
proposed a federated Cloud computing model with
associated business infrastructure for real-time
online interactive applications, where multiple
independent infrastructure providers can cooperate
seamlessly to provide scalable IT infrastructure
and QoS-assured services. The distinct feature
of Edutain federation Cloud computing model is
that it lies in the concept of “code mobility”. More
about Edutain federated Cloud computing model
can be found in the section “Case Study: QoS-
oriented Service Computing in Edutain@Grid”.

QOS-ORIENTED SERVICE
COMPUITNG

The SPI model of Cloud computing determines that
service is a fundamental construction unit. How-
ever, the traditional service computing usually
focuses on the functional aspects of a service such
as service modeling, service composition, etc. In
order to accommodate the need for bringing SOA
in Cloud computing, we proposed QoS-oriented
service computing which aims to address the fol-
lowing major issues: (i) Service Level Agreement

282

QoS-Oriented Service Computing

(SLA) and associated reference architecture, (ii)
green service, (iii) service metering and metrics,
(iv) service monitoring, (v) service QoS assur-
ance, and (vi) on-demand resource provisioning.

Service Level Agreement and
Reference Architecture

Service Level Agreement (SLA) can be employed
to serve as a bilateral contract that exists between
a customer and a service provider to specify the
user requirements, quality of service, responsibili-
ties and obligations. SLA can contain numerous
service performance metrics with corresponding
Service Level Objectives (SLO). It describes
quality of service and other commitments by a
service provider in exchange for financial com-
mitments based on an agreed schedule of prices
and payments. A high-level and generic SLA
reference architecture has been proposed based
on the key requirements identified, as shown in
Figure 1. One of the innovative features of the
proposed reference architecture is the incorpora-
tion of domain ontology to allow the SLA manager
semantic aware. The SLA manager contains the
following key functional component modules,
and each module is briefly discussed as follows:

Service Marketplace

Service marketplace provides a store for service
providers to publish their services with price.
Customer can search services not only by func-
tionality but also QoS requirements. The service
market place will return a list of EPRs of match-
ing services with price. The returned list can be
ranked by QoS requirements or price. The service
marketplace can be implemented using standard-
based technologies such as UDDI, ebXML, etc.

Negotiator

The negotiator component is responsible for SLA
negotiation based on the SLA template. Once

customer/broker finds the appropriate service
provider from Service Marketplace through SLA
template, customer/broker makes a proposal to
the service provider by modifying service level
requirement terms. The service provider will
then check the resources to make sure whether
service level requirements can be guaranteed, and
will accept or /reject the proposal. Once the SLA
proposal is agreed by both parties, it becomes an
SLA instance.

MetaScheduler

MetaScheduler can be used for resource metas-
cheduling or resource access control. It involves
the consideration of the current status of all
available suitable computational resources and
selecting the resource that is most suitable for
the simulation in question. It accepts the agreed
SLA instance as one of input, and returns a list
of End Reference Points (ERP) of resources or
returns none ERP. A list of ERPs returned or no
ERP returned can be regarded as a kind of access
control mechanism. For example, in the case that
each job to be submitted has an SLA constraints,
the metascheduler can return an ordered list of
available computing resources on which the job
can be carried out respecting SLA’s constraints.

Runtime Monitor

It collects the resource usage information to moni-
tor associated parameters related to service level
objectives. This component usually interacts with
a service-side / resource-side resource usage or
QoS measurement component that is responsible
for the acquisition of resource usage data and QoS
measurement data. The monitoring protocol can
be polling protocol, publish/subscribe, call-back,
etc. Runtime Monitor contains the following
functional sub-modules:

• Term Interpreter: mapping of high level
application-specific business objectives

283

QoS-Oriented Service Computing

Figure 1. Generic SLA Reference Architecture. The reference architecture also depicts a working model of
how various components interact through the associated workflow. The workflow starts with 0(a) where
service/resource provider provides service/resources, and ends at 11 where a bill is sent to the customer

Figure 2. Service Marketplace where service providers can publish their services with prices. Customer
can search the service by both functionality and QoS requirements

284

QoS-Oriented Service Computing

into low-level infrastructural parameters
(such as CPU, bandwidth, memory usage)
that can be quantitatively measured (usual-
ly supported by OS probes). This mapping
happens on the basis of (i) SLA template
instance, (ii) domain-specific schemas, or
(iii) domain-specific ontology.

• Violation Evaluator: (i) Analyze the gath-
ered data and send notification message
to the Enforcement Engine when threat
thresholds are reached. The Enforcement
Engine will then take some recovery ac-
tions so that values can return to normal
execution level (ii) Although the alert
thresholds are defined in SLA, an interface
allowing on-the-fly modification of the
alarm thresholds should be supported, and
(iii) should allow graphical visualization of
the metrics.

• Report generator: Generate usage report
periodically.

Enforcement Engine

The Enforcement Engine component module
aims to ensure that terms defined in SLA can be
guaranteed. It contains the following sub-modules:

• Notifier: Will send notification message to
service provider or customer when viola-
tion event happens.

• Rule Engine: Based on the feature of the
event, the Rule Engine will (i) retrieve
relevant policy from the Policy Store, (ii)
get parameters from SLA instance, or (iii)
domain knowledge from the ontology, to-
gether to decide the recovery actions or
rescheduling.

• Trigger: Responsible for taking recovery
actions or rescheduling instructed by the
Rule Engine. For example, to get a new
service deployed, or get a new session
created.

Invoice Manager

The Invoice Manager works out the bill which
includes usage charging, penalty charging, etc.
The calculation will reference to SLA instance or
domain-specific ontology.

Policy Store

Stores the domain polices which will be used to
decide the recovery actions or rescheduling. It
usually works with the Rule Engine.

SLA Template

The SLA template describes the bi-partite con-
tract between service provider and customer. The
contract content should be provided by service
provider and typically should have: (i) Contract Id:
Uniquely identify a contract. (ii) Context: Various
metadata about the context, e.g. contact duration,
consumer name, service provider name, etc. (iii)
Service Description Terms (SDT): Define the
functionality this contact promises to deliver. It is
domain specific. (iv) Service Properties: Define
measurable and exposed properties related to a
service. The properties are used to describe the
service level objectives. (v) Guarantee Terms: Pro-
vide assurance on the service quality or resource
availability offered by a service provider, and
(vi) Business Terms: Usage charging or penalty.
The survey has shown that WS-Agreement is an
appropriate standard for the representation of the
SLA template.

SLA Instance

Once terms and agreement of SLA have been
agreed by both service provider and service
consumer after negotiation, the SLA becomes
an SLA instance. It serves as a signed contract
between both parties.

285

QoS-Oriented Service Computing

Domain Ontology

It defines domain-specific knowledge so that the
SLA manager can have a semantic understanding
of a specific domain. This should be provided by
service provider and usually works with SLA.

Green Service

Invoking a service involves the consumption
of resources and may incur cost. Sustainable
development advocates reduction of resource
consumption, while delivering better and more
widely available goods and services. Hence de-
livering “green service” has become increasingly
important. Recent concerns regarding global
climate change and the energy crisis have led to
renewed interest in Green Computing. In order to
address the issue, one of the aims of this proposed
QoS-oriented service computing methodology is
to investigate how we employ a variety of tech-
niques and tools to model the performance of
applications over a service-oriented infrastructure
for the trade-off among QoS guarantees, cost, and
margin profit to stakeholders in the value chain
involving service customer, service provider and
infrastructure provider.

The resource consumption of running an
application can be subject to several factors: (i)
application workload feature, (ii) user interac-
tion, (iii) network features, and (vi) mean time
to failure. We can use optimization technology
to find a resource with associated configuration
that can guarantee service’s behavior within the
constraints and can maximize an objective func-
tion. In EU-funded IRMOS project (http://www.
irmosproject.eu/), the input parameters for the
optimization function have been indentified as
follows (Mitchell et al., 2009):

• Customer Requirements: The customer
requirements will be recorded in the SLA.
This will include key QoS performance
indicators such as application / service

completion time, mean time to failure,
mean time for recovery (tolerated annoy-
ance), application availability and associ-
ated cost. In some circumstances, the cor-
responding SLA values might differ from
values initially requested by the customer
because they may not reach.

• Customer Obligations: The customer need
commit to certain behavior in order to re-
ceive the required QoS at a given cost. For
example, the customer may simply be re-
quired to provide input data by a certain
time or may need to agree more complex
profiling such as using an application ac-
cording to certain usage time distribution
(mean usage rate for given time interval),
workload volume distribution, workload
complexity distribution. The customer
obligations will ultimately be recorded as
SLA terms. The process of deriving these
constraints can be quite complex and will
involve detailed knowledge to the custom-
er behavior.

• Application and Resource Profiles:
Application and resource profiles define a
set of parameters for applications and re-
sources that impact the key performance
indicators. The technical characteristics
of resource can include: specifications of
CPU, volatile storage, persistent storage,
operating system, system libraries; but
could also include scores of the platform
against a set of benchmark tests.

Application performance indicator predica-
tions can be carried out using a set of models
describing aspects of the user, the resource and the
application behavior, which are then combined to
determine the behavior of the service as a whole.
For example, in IRMOS project, it has identified
that each service can have the following models
(Addis et al., 2009):

286

QoS-Oriented Service Computing

• User Behavior Modeling: estimates cus-
tomer behavior for a given service specifi-
cally dealing with interactivity and human
aspects such the impact of attention, deci-
sion making and situational awareness. It
should be noted that customer behavior
(e.g. Kevin tends to submit large jobs and
takes many short brakes!) is often the criti-
cal factor in accurately estimating resource
requirements.

• Resource Behavior Modeling: estimates
resource reliability probabilities including
both in-house and third party resources ob-
tained from infrastructure providers. These
models use resource knowledge derived
from both QoS reports from infrastructure
providers and local Quality of Experience
(QoE) measurements. The Application
Provider may use QoE measurements to
validate the QoS reported to it by the infra-
structure provider.

• Un-interrupted Fault-free Application
Behavior Modeling: estimates completion
time probability from given customer re-
quirements and obligations. A combination
of techniques are used to determine com-
pletion time probabilities such as artificial
neural networks, benchmarking, curve
fitting, lookup tables, and discrete values
based on actual knowledge

• Interactive Application Performance
Estimation: estimates the key application
performance indicators by combining in-
formation about the normal (uncorrupted)
behavior of the application with informa-
tion about exceptional circumstances that
might occur, i.e. different failure probabili-
ties and times for recovery. Finite State
Automata (FSA) models are used to deter-
mine an applications reaction to both input
and resourcing events.

Metric and Service Metering

Service metering is increasingly becoming an
important issue as QoS-assured service, service
monitoring and on-demand resource provision-
ing all depend on it. In order to meter the service
usage, metrics must be defined to measure the
service usage. The SLA manager should be able
to retrieve usage information from functional
services (e.g. job services), records the usage and
optionally constrains and/or bills for the usage.
Different functional services will need to report
usage of different measurable quantities. For
example, a job service will report usage of CPU
but a data service will report usage of disc space.
These measurable quantities, known as “metrics”
are represented by URIs.

GRIA middleware (v5.3.1) (http://www.gria.
org/) has a simple while practical service metering
and monitoring component. The GRIA middle-
ware provides a Service-Oriented Infrastructure
(SOI) designed to support B2B collaborations
through service provision across organisational
boundaries in a secure, interoperable and flexible
manner. In GRIA, the use of metrics is recorded
in terms of “instantaneous” measurements and
“cumulative” usage. The cumulative usage is the
integration of the instantaneous measurements
over time. For some metrics, data-transfer for
example, the instantaneous measurement is best
regarded as a rate (bytes per second) and the
cumulative usage has no time dimension (bytes).
For other metrics, such as CPU, the instantaneous
measurement is just the quantity in use at the time
(e.g. 3 CPUs) and it is the cumulative usage that
has the time dimension, e.g. 180 CPU.seconds
(Boniface et al., 2006). The GRIA SLA service
can convert between the two, as shown in (http://
www.gria.org/), e.g.:

• If a job runs on 1 CPU for 5 minutes then
the SLA service will be notified that the
instantaneous measurement of CPU usage
went to 1 at the start and then to 0 five min-

287

QoS-Oriented Service Computing

utes later. The SLA service can infer that
300 CPU.seconds of CPU time have been
used (1*5*60 = 300 CPU.seconds).

• If a service reported that it had used 120
units of a resource in a 1 minute period, the
SLA service would infer that the average
instantaneous measurement (rate of usage)
had been 2 units/s.

Service Monitoring

Service monitoring involves providing the SLA
manager with a document containing usage reports
from each activity supported by the service. In
principle, this can be an asynchronous message
from the application service to the SLA manager.
The GRIA middleware (v5.3.1) proposed to use the
WS-BaseNotification specification (http://docs.
oasis-open.org/wsn/wsn-ws_base_notification-
1.3-spec-os.pdf) for implementing the service
monitoring (http://www.gria.org/about-gria/
relationship-to-standards. Access date: 22 Sept.,
2010). It suggested that the full implementation
would involve a lot of software development;
hence we could let the SLA manager poll for usage
information, using one specific WS-BaseNotifi-
cation method. The agile software development
approach can then be employed to extend the
implementation of the support of push and bro-
kered messaging iteratively and incrementally. Ap-
plication services should support this by providing
the message retrieval (GetMessages) request and

response defined by the PullPoint interface in the
WS-BaseNotification specification. The response
to this request contains zero or more notification
messages as defined by WS-BaseNotification, as
shown in Figure 3.

Each NotificationMessage element should
contain a usage report message from a single
activity, and should give the activity’s EPR as the
ProducerReference. A single GetMessages re-
sponse can contain several NotificationMessage
elements, which mean the application service can
generate messages from an activity at times of its
choosing, and cache them until a GetMessages
request is received. But the WS-BaseNotification
requires that the producer should only send a
message once to the recipient, so the application
service will need keep track of which messages
have been delivered. The notification message
format is also defined by WS-BaseNotification,
as shown in Figure 3.

QoS-Assured Service

Once the service is monitored, we can analyze
the acquired QoS measurement data to guaran-
tee the quality of the service. This involves the
issue of capacity management, which concerns
with resources being able to adapt themselves to
meet the live requirements of service processes
to ensure that the whole service provisioning will
remain within performance compliance. This
means the execution of trend analysis on historical

Figure 3. WS-Notification Specification Fragment

288

QoS-Oriented Service Computing

monitoring data could predict the likely breach
of contract in future. For example, if QoS data is
showing a trend that the service is overloading
(which might be due to growing data set sizes, or
increasing numbers of concurrent users, or other
factors) then at some point the service will no
longer meet the criteria specified within the SLA.
In order to ensure the compliance with agreed QoS
constraints, the capacity management is charged to
ensure that additional capacity is added in advance
(additional CPUs, more memory, new database
indexing) so that the trend lines are reset and the
service will remain within the specified perfor-
mance range. In other words, if the provisioning
resource can not guarantee the QoS of a service,
the resource should automatically scale. More
will be discussed in next section “On-demand
Resource Provisioning”.

On-Demand Resource Provisioning

On-demand resource provisioning is one of key
features of Cloud scalability. When the pro-
visioning resource (as a service) cannot meet
customer’s quality of experience, the resource
should automatically grow its capacity to meet the
defined QoS requirements. This capacity growth
is transparent to the users.

There are several approaches to address these
needs. In this chapter we only introduce two EU
funded research projects, namely Edutain@Grid
project and IRMOS project, showing how they
address the “capacity on demand” issues. The
Edutain@Grid project (http://www.edutaingrid.
eu/) has investigated the open federated Cloud
computing initiative for on-demand resource
provisioning. Edutain@Grid aims to develop a
scalable QoS-enabled business Grid environment
for multi-user Real-time Online Interactive Ap-
plications (ROIA) (Fahringer et al., 2007). ROIA
application (e.g. on-line game) is characterized by
the high rate of interaction between users, requiring
very fast updates of information being passed from
one computer to another (Fahringer et al., 2007). As

large numbers of users may participate in a single
instance, and are typically able to join or leave at
any time. Thus ROIA application has extremely
dynamic distributed workloads, making it dif-
ficult to host them efficiently (Ploß et al., 2009).
In this project, we developed a service-oriented
infrastructure with enhanced security features to
support a business model where multiple indepen-
dent hosters can cooperate seamlessly to provide
QoS assured ROIA service to customers, hence
maximize the benefits.

In EU-funded IRMOS project (http://www.
irmosproject.eu/), it introduced an Intelligent Ser-
vice Oriented Network Infrastructure (INSONI)
to address the on-demand resource provisioning
(http://www.it-tude.com/isoni_whitepaper.html.
Access date: 22 Sept., 2010). The ISONI is an
infrastructure, consisting of a network of resources
(e.g. CPU, storage, networking and software) man-
aged and controlled by an ISONI middleware that
allows resource sharing among multiple services.
The general idea is to provide a service-oriented
infrastructure for SOA components and services.
A service is usually composed of several smaller
and simpler services known as Service Compo-
nents (SC). For SCs orchestrated into a complete
service, a virtual machine will be provisioned,
although it will still be possible to place several
SCs in one virtual machine. ISONI ensures to
provide the best resources for these SCs to be
executed whatever these SCs are. Links between
SCs will be provided as needed. There are three
tasks involved in the ISONI. (i) To completely
separate the management of all hardware resources
distributed in a network from that of deployed
services and their associated service components.
Thus the actual status and distribution of resources
are hidden from the service developer’s view. (ii)
To deploy and instantiate service on the ISONI.
The ISONI will be able to accomplish this task
automatically and autonomously, which is the main
goal of the ISONI development. (iii) To monitor
running services and their resource usage. This

289

QoS-Oriented Service Computing

monitoring data will be available to the external,
e.g. via web service interfaces.

The ISONI should be able to automatically
deploy and instantiate the service. In order to
facilitate this, ISONI introduces an abstract de-
scription of all the execution environment require-
ments of the service, including the description
of the interconnections and their individual QoS
demands, namely, Virtual Service Network (VSN).
This VSN description needs to be delivered by
the service developer. Each VSN maps to one or
more Virtual Machine Unit (VMU). The VSN
description is transferred to the ISONI with the
request to instantiate the service. The ISONI then:

• Automatically and autonomously maps the
highly abstracted resource request in form
of the VSN description onto the network of
real resources

• Deploys the components in tailored execu-
tion environments on suitable resources

• Interconnects them while observing QoS
requirements

CASE STUDY: QOS-ORIENTED
SERVICE COMPUITNG
IN EDUTAIN@GRID

This case study demonstrates how QoS-oriented
service computing is employed in Edutain@
Grid project to facilitate the on-demand resource
provisioning.

Edutain@Grid: Cloud
Computing Vision

When the Edutain project was sponsored there
was no term called “Cloud computing”. But the
Edutain project inherently encompasses many
concepts/ideas that Cloud computing is promoting
(e.g. HaaS/SaaS, utility computing, on-demand
resource provisioning), and many of which have
been implemented and demonstrated for ROIA.

Currently ROIA-alike applications (e.g. on-line
game) are hosted statically, which is independent
from the actual user demand. This static hosting
strategy can lead to significant over consumption
of resources on average (and hence increased
costs), yet may be unable to match peak demand
on occasion, leading to customer dissatisfaction.
On the other hand, Grid-based hosting has the
potential to tackle these problems by allowing
resources to be provisioned on-demand to match
the dynamically changing user loads.

In order to accommodate these needs, the
Edutain business model (as shown in Figure 4)
introduces a concept, namely ROIA Coordinator
to help realize the on-demand resource provision-
ing for ROIA application from the scalability
and performance perspective. Coordinator can
be regarded as an organization that plays a role
of ROIA application service provider (e.g. online
game). However, the Coordinator itself does not
have any physical infrastructure for running ROIA,
instead it outsources the ROIA hosting services
to Hoster, which is an organization that dedicates
to host core, usually computationally intensive
processes that support a ROIA running environ-
ment. The Hoster plays a role of infrastructure
provider. The Coordinator provides an integrated
user frontend (e.g. portal) to make ROIA instances
accessible to consumers. In order to get access
to the ROIA instance, a customer need open an
account with Coordinator to obtain a Security
Assertions Markup Language (SAML) token,
and then use this SAML token to get connection
details of associated ROIA instances.

In this Coordinator-Hoster business model for
ROIA applications, the ROIA hosting platform
and ROIA application are delivered by Hosters
as services to the Coordinator. The Coordinator
has an account and a bipartite Service Level
Agreement (SLA) with Hoster. The Hoster pro-
vides metered services to the Coordinator. When
the hosting service finishes, the Hoster sends the
bill to the Coordinator for the resource usage. This

290

QoS-Oriented Service Computing

business model encompasses the concept of ‘HaaS’
and ‘SaaS’ which Cloud computing is promoting.

Load Balance: On-Demand
Resource Provisioning

One of key benefits of introducing the Coordina-
tor in Edutain business model is to facilitate the
load balancing. A ROIA local session runs on a
Hoster machine, and there are one or more zones
that are attached to the local session. When a cus-
tomer connects to a ROIA instance, the customer
actually joins a particular zone. Coordinator can
monitor the load of ROIA session running on a
Hoster machine by periodically receiving the QoS
measurement report. If the Coordinator predicts
that one ROIA local session will become overload,
a zone within that overloaded session will be
migrated to an idle session. This zone migration
process will occur transparently so that the ROIA
application user will not feel that their connections
have been migrated to another session.

The “zone migration” mechanism results in the
ROIA process load has partially moved to another
ROIA session. This actually means the capac-
ity of running ROIA instance has dynamically
grown on an on-demand basis. It enables ROIA
applications to adapt themselves during runtime
to meet an increased/decreased user demand and
maintain QoS at a certain level defined in SLA
by on-demand resource provisioning.

Test Scenario

We will use an on-line game called, Hunter, as a
ROIA example (as shown in Figure 5). The Hunter
game was developed by Edutain project partner
Darkworks (http://www.darkworks.com/). It is a
game of “search and capture”. Players will basi-
cally have to find monsters disseminated around
the map and capture them. During the capture
phase, players will be fighting with other teams
of players to make sure that they won’t capture
monsters. One of the major features of the Hunter
game is the scalability, which means that if a given

Figure 4. ROIA application developer develops ROIA for Coordinator. Coordinator creates an account
with Hoster, and outsources hosting ROIA applications service to Hosters. A service level agreement is
established between a Coordinator and Hoster to ensure the quality of service. When a customer need
access to a ROIA, he/she must register with Coordinator to get SAML token, and use this SAML token
to get connection details of associated ROIA instance. The customer then uses this connection details
to connect to the associated ROIA instance

291

QoS-Oriented Service Computing

number of players reaches the maximum limit, the
map will extend seamlessly for the player to fit
with that number. This scalability means that the
game can potentially host hundreds of players on
the same map, along with providing players with
a brand new experience online.

This scalability feature is realised through the
on-demand resource provisioning via zone migra-
tion. A test case scenario is described as follows,
as shown in Figure 6: As currently the widely
used architecture for online games is the multi-
client and multi-server mode of the client/server
architecture (Bartle et al., 2003; Cai et al., 2002;
Rosedale et al., 2003), where it consists of a set
of servers that are concurrently accessed by a
number of users that dynamically interact with
each other within a game session, we deploy the
Hunter game on two Hosters, namely, ‘hoster1’

and ‘hoster2’. Each Hoster is an individual infra-
structure provider which delivers a platform
presented as a collection of Web services required
for running Hunter (e.g. Mgt. Layer, HMI), QoS
assurance (e.g. SLA), and invoicing mission (e.g.
Trade account service). Therefore each Hoster
can be regarded as a single Cloud provider and
they together formulate a service-oriented infra-
structure of federated Cloud computing for on-
demand resource provisioning. We also have a
global session service running at the Coordinator
side, which creates one global session ‘gSession1’.
Two local sessions ‘local session 1’ and ‘local
session 2’ are created at each Hoster and partici-
pate the global session ’gSession1’. A ‘zone0’ is
created and attached to ‘local session 1’.

There are 5 authorized customers participated
to ‘zone0’ to start the use of ROIA application

Figure 5. Hunter game, where if a given number of player reaches maximum limit, the capacity will
extend seamlessly for the player to fit with that number. The QoS-oriented service computing is employed
and the scalability is realized by on-demand resource provisioning via zone migration

292

QoS-Oriented Service Computing

(i.e. Hunter). Six metrics, namely, (i)
RTFRickDuration,(ii) AveragePacketLossTCP,
(iii)RTFThroughputIn, (vi) RTFThroughOut, (v)
AveragePacketLatency, and (vi) ClientConnec-
tionCount are defined in the SLA. Once the
Hunter game is in use, its usage is monitored and
QoS measurement data of these metrics are re-
ported back. The Coordinator then monitors the
SLA conformance of the local session through
Coordinator SLA monitoring service.

Assume some QoS measurement data (e.g.
RTFThroughputIn, RTFThroughputOut) for ‘local
session 1’ at ‘hoster1’ is predicted to exceed the
thresholds defined in SLA, ‘zone0’ can then be
migrated to the idle ‘local session 2’ at ‘hoster2’
either manually or atomically. After the migration,
the number of clients connected to ‘local session 1’
(i.e. ClientConnectionCount) drops to zero, hence
measurement data of metric RTFThroughputIn and
RTFThroughOut are all zero. This is reflected in

the Figure 7 that the running total of QoS measure-
ment data of RTFThroughputIn and RTFThrough-
Out remain unchanged. Now if we migrate back
‘zone0’ from ‘local session 2’ to ‘local session
1’, the running total of QoS measurement data
of RTFThroughputIn and RTFThroughOut start
going up again, as shown in Figure 7. This whole
migration process is transparent to the customers,
whose quality of experience of playing the Hunter
game will not be impacted.

DISCUSSIONS AND FUTURE
RESEARCH DIRECTIONS

There is no doubt that security is paramount in
SLA manager. The reference architecture proposed
mainly concerns with the functional requirements
of the SLA manager, and the security model is not
included. The security model within SLA manager

Figure 6. Test case scenario, where (i) two local sessions are created at Hoster 1 and Hoster 2 (ii) Zone
0 is created and attached to local session 1,(iii) Game players are connected to Zone 0, and (iv)Zone
0 is migrated from Hoster 1 to Hoster 2. Each Hoster can be regarded as a single Cloud provider, and
they together formulate a service-oriented infrastructure of federated Cloud computing for on-demand
resource provisioning

293

QoS-Oriented Service Computing

can be complex as it involves an infrastructure
spanning multiple autonomous administrative
domains of service providers. The SLA manager
security model and associated policies can have
specific architecture depending on the granularity
of the domain system security requirements, which
goes beyond the scope of this paper.

The reference architecture is proposed based
on the requirements identified from SLA related
research projects. It aims to provide an insight into
a comprehensive SLA manager, and to present a
working model of SLA manager starting from
service provider publishing the service to billing
the service consumer at the end-of-life SLA. It
integrates most of the functional aspects during
the SLA life cycle. However, some of components
/sub-modules are not mandatory and may not
be needed subject to the specific requirements.
Informed by the research findings from the sur-
vey, the reference architecture also supports the

incorporation of domain ontology to facilitate the
semantic-aware SLA manager.

The proposed reference architecture recom-
mends using OGF standard WS-Agreement for
SLA representation. WS-Agreement has been
widely used in Grid /e-Science communities. It is
an extensible language and leaves open space for
defining domain specific terms. This means the
defined domain-specific ontology can be ‘embed-
ded’ into the WS-Agreement based specification.

A generic SLA manager software framework
can be developed based on the proposed reference
architecture, to provide prefabricated software
building blocks that developers can use, extend,
or customize for specific SLA life cycle manage-
ment solutions.

At the time of writing this chapter, the work-
shop “The future of Cloud Computing” held in
January, 2010, (http://cordis.europa.eu/fp7/ict/
ssai/events-20100126-cloud-computing_en.html)

Figure 7. On-demand resource provisioning through zone migration. If ‘zone0’ containing 5 players is
migrated to the idle local session, the workload then falls down to 0 and the running total of the measure-
ment data of RTFThroughputIn and RTFThroughOut remain unchanged. If ‘zone0’ is migrated back to
original local session, the running total of measurement data of RTFThroughputIn and RTFThroughOut
start increasing again

294

QoS-Oriented Service Computing

has identified that the scalability and elasticity of
Cloud computing are currently the major issues.
This chapter discusses two approaches to facili-
tate on-demand resource provisioning, that is, the
open federated Cloud computing through zone
migration and ISONI. Although the case study
has demonstrated how zone migration model is
used in federated Cloud computing for on-demand
resource provisioning, zone has a limited mean-
ing in on-line game. How to generalize this zone
migration model in the context of federated Cloud
computing for on-demand resource provisioning
still requires further investigation.

Federated Cloud computing now attracts more
attentions. For example, Hybrid Cloud, a special
kind of federated Cloud, where enterprise or orga-
nization provides and manages some resources in-
house (i.e. private Cloud) and has others provided
externally (e.g. public Cloud), is now emerging.
An organization might use a public Cloud service,
such as Amazon’s Elastic Compute Cloud (EC2)
for general computing but store customer data
within its own data center. As large enterprises /
organizations often already have substantial in-
vestments in the infrastructure required to provide
resources in-house, they would prefer to keep
sensitive data under their own control to ensure
security. We can imagine that this hybrid Cloud
has potential to be widely used. The QoS-oriented
service computing proposed in this chapter and
federated Cloud computing model investigated in
Edutian project can have implications in building
this hybrid cloud.

CONCLUSION

In order to meet the service requirements in Cloud
computing, we proposed the “QoS-oriented ser-
vice computing”, which can be regarded as an
extension of service computing discipline. Major
research topics of the “QoS-oriented service com-
puting” include service level agreement, green
service, service metering and metrics, service

monitoring, and on-demand resource provision-
ing. We proposed an SLA reference architecture
and discussed some research issues of the associ-
ated topics. In the case study, we demonstrate how
we employ QoS-oriented service computing in a
multi-server, multi-user on-line game to facilitate
the on-demand resource provisioning.

ACKOWLEDGMENT

The author would like to acknowledge the support
from EU FP6 funded Edutain@Grid project, EU
FP7 funded IRMOS project, GRIA, and contribu-
tions from project partners.

REFERENCES

Addis, A., Zlatev, Z., Mitchell, B., & Boniface,
M. (2009). Modelling interactive real-time appli-
cations on service oriented infrastructures. 2009
NEM Summit – Towards Future Media Internet,
September 28-30, 2009, St Malo, France.

Bartle, R. (2003). Designing virtual worlds. New
Riders Games.

Boniface, M., Philips, S., & Surridge, M. (2006).
Grid-based business partnerships using service
level agreements. Cracow Grid Workshop, 2006.

Bullinger, H., Fahnrich, K. P., & Meiren, T. (2003).
Service engineering-methodical development of
new service products. International Journal of
Production Economics, 85, 275–287. doi:10.1016/
S0925-5273(03)00116-6

Buyya, R., Yeo, C. S., & Venugopal, S. (2009).
Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering comput-
ing as the 5th utility. Future Generation Com-
puter Systems, 25(6), 599–616. doi:10.1016/j.
future.2008.12.001

295

QoS-Oriented Service Computing

Cai, W., Xavier, P., Turner, S. J., & Lee, B. S.
(2002). A scalable architecture for supporting
interactive games on the Internet. In PADS’02
(pp. 60–67). Washington, DC: IEEE.

Chaari, S., Badr, Y., & Biennier, F. (2008). Enhanc-
ing Web service selection by QoS-based ontology
and WS-policy. SAC’08, Fortaleza, Brazil.

de Haaf, B. (2008, August 8). Cloud computing
– The jargon is back! Cloud Computing Journal.
Retrieved from http://cloudcomputing.sys-con.
com /node/613070

Dobson, G. (2004). Quality of service in service-
oriented architecture. Retrieved from http://digs.
sourceforge.net /papers/qos.pdf

Fahringer, T., Anthes, C., Arragon, A., Lipaj, A.,
Müller-Iden, J., & Rawlings, C. J. … Surridge, M.
(2007). The Edutain@Grid Project. In D. J. Veit
& J. Altmann (Eds.), GECON 2007. LNCS, 4685,
(pp. 182–187). Heidelberg, Germany: Springer.

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2000).
New service development: Creating memorable
experiences. Thousand Oaks, CA: Sage Publica-
tions, Inc.

Ganz, W., & Meiren, T. (2004). Co-design of
products and services. Proceedings of SusProNet
Conference on Product Service Systems: Practi-
cal Value, (pp. 21-22). 3-4 June 2004, Brussels,
Belgium.

Garcia, D., & Toledo, M. (2006). Semantic-en-
riched QoS policies for Web service interactions.
Web Media ’06, Natal, Brazil.

Geelan, J. (2008). Twenty-one experts define cloud
computing. Retrieved from http://cloudcomputing.
sys-con.com /node/612375?page=0,1

Gu, X., Nahrstedt, K., Yuan, W., Wichadakul,
D., & Xu, D. (2002). An XML-based quality of
service enabling language for the Web. Journal
of Visual Language and Computing, Special Is-
sue on Multimedia Language for the Web, 13(1).

Hand, E. (2007). Head in the clouds. Nature,
449(963).

Jeswiet, J. (2003). A definition of life cycle en-
gineering. Proceeding of 36th CIRP International
Seminar on Manufacturing Systems, (pp. 17-20).
June 03 – 05, 2003, Saarland University, Saar-
brücken, Germany.

Lamanna, D. D., Skene, J., & Emmerich, W.
(2003). SLAng: A language for defining service
level agreements. Proceedings of the Ninth IEEE
Workshop on Future Trends of Distributed Com-
puting Systems (FTDCS’03).

Ludwig, H., Keller, A., Dan, A., King, R., & Frank,
R. (2003). A service level agreement language for
dynamic electronic services. Electronic Commerce
Research, 43–49. doi:10.1023/A:1021525310424

Mandelbaum, A. (1998). Service engineering:
Modelling, analysis and inference of stochastic
service networks. Haifa, Israel: Faculty of In-
dustrial Engineering and Management Technion.

McFedries, P. (2008). The cloud is the computer.
IEEE Spectrum Online. Retrieved from http://
www.spectrum.ieee.org/ aug08/6490

Mitchell, B., Zlatev, Z., Addis, M., Neple, T.,
Konstanteli, K., & Kousiouris, G. … Oliveros, R.
(2009). Interactive realtime multimedia applica-
tions on service oriented infrastructures. Retrieved
on September 22, 2010, from http://eprints.ecs.
soton.ac.uk/ 17403/1/IRMOS_WP5_D5_1_1_
IT_Innovation_v1_0.pdf

Ploß, A., Glinka, F., & Gorlatch, S. (2009). A
case study on using RTF for developing multi-
player online games. Lecture Notes in Computer
Science, 5415, 390–400. doi:10.1007/978-3-642-
00955-6_44

Ploß, A., Glinka, F., & Gorlatch, S. (2009). A case
study on using RTF for developing multi-player
online games. Lecture Notes in Computer Science,
Springer, 5415, 390–400. doi:10.1007/978-3-
642-00955-6_44

296

QoS-Oriented Service Computing

Rochwerger, B., Breitgand, D., Levy, E., Galis,
A., Nagin, K., & Llorente, I. M. (2009). The
RESEVOIR model and architecture for open
federated cloud computing. IBM Journal of
Research and Development, 53(4). doi:10.1147/
JRD.2009.5429058

Rosedale, P., & Ondrejka, C. (2003). Enabling
player created online worlds with grid comput-
ing and streaming. Retrieved on September 22,
2010, from http://www.gamasutra.com/ resource_
guide/20030916/ rosedale_pfv.htm

Sahai, A., Durant, A., & Machiraju, V. (2001).
Towards automated SLA management for Web
services. (Research Report HPL-2001-310
R.1), Hewlett-Packard Laboratories Palo Alto.
Retrieved from http://www.hpl.hp.com/ techre-
ports/2001/ HPL-2001-310R1.pdf

Seidel, J., Waldrich, O., & Ziegler, W. (2007).
Using SLA for resource management and sched-
uling – A survey. CoreGRID technical report,
2007. Retrieved on November 5, 2008, from
http://www.coregrid.net/ mambo/images/stories/
TechnicalReports/tr-0096.pdf

Svend, F., & Jari, K. (1998). QML: A language
for quality of service specification. Retrieved
from http://www.hpl.hp.com/ techreports/98/
HPL-98-10.html

Tomiyama, T. (2003). Service CAD. Proceed-
ings of 1st SusProNet Conference, Amsterdam,
5-6 June, 2003.

Tomiyama, T., Medland, A. J., & Vergeest, J. S. M.
(2000). Knowledge intensive engineering towards
sustainable products with high knowledge and
service contents. TMCE 2000, Third International
Symposium on Tools and Methods of Competitive
Engineering, (pp. 55-67). April 18-20. Delft, The
Netherlands: Delft University Press.

Tosic, V., Pagurek, B., & Patel, K. (2003). WSOL
– A language for the formal specification of vari-
ous constraints and classes of service for Web
services. The International Conference On Web
Services, ICWS’03.

Vaquero, L. M., Rodero-Merino, L., Caceres,
J., & Lindner, M. (2009). A break in the clouds:
Towards a cloud definition. ACM SIGCOMM
Computer Communication Review, 39(1), 50–55.
doi:10.1145/1496091.1496100

Watson, P., Lord, P., Gibson, F., Periorellis, P., &
Pitsilis, G. (2008). Cloud computing for e-science
with CARMEN. Proceedings of IBERGRID
Conference (pp. 1-5). 2008, Porto (Portugal).
May 12–14.

Zhang, L., Zhang, J., & Cai, H. (2007). Services
computing: Core enabling technology of the
modern services industry. Springer.

297

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Compilation of References

Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., &
Levkowetz, H. (Eds.). (2004). Extensible authentication
protocol (EAP) – RFC 3748. Retrieved September 29,
2010, from http://www.ietf.org/ rfc/ rfc3748.txt

Aboba, B., Simon, D., & Eronen, P. (2008). Extensible
authentication protocol (EAP) key management frame-
work – RFC 5247. Retrieved September 29, 2010, from
http://www.ietf.org/ rfc/ rfc5247.txt

Aboelaze, M., & Aloul, F. (2005). Current and future
trends in sensor networks: A survey. In Proceedings of
the Second IFIP International Conference on Wireless
and Optical Communications Networks WOCN 2005,
(pp. 551–555).

Achilleos, A., Yang, K., & Georgalas, N. (2010). Context
modelling and a context-aware framework for pervasive
service creation: A model-driven approach. Pervasive
and Mobile Computing, 6, 281–296. doi:10.1016/j.
pmcj.2009.07.014

Adam, S., & Doerr, J. (2008). The role of service abstrac-
tion and service variability and its impact on require-
ment engineering for service-oriented systems. Annual
IEEE International Computer Software and Applications
Conference.

Adams, C., & Farrell, S. Kause., & Mononen, T. (2005).
Internet X.509 public key infrastructure certificate man-
agement protocol (CMP) – RFC 4210. Retrieved March
29, 2010, from http://www.ietf.org/ rfc/ rfc4210.txt

Addis, A., Zlatev, Z., Mitchell, B., & Boniface, M. (2009).
Modelling interactive real-time applications on service
oriented infrastructures. 2009 NEM Summit – Towards
Future Media Internet, September 28-30, 2009, St Malo,
France.

Adjie-Winoto, W., Schwartz, E., Balakrishnan, H., & Lil-
ley, J. (1999, December). The design and implementation
of an intentional naming system. Paper presented at the
17th ACM Symposium on Operating Systems Principles
(SOSP ’99), Kiawah Island, SC.

Aggarwal, S. (2005). TCO of on-demand applications is
significantly better for SMBs and mid-market enterprises.
Yankees Group report. Retrieved March 10, 2010 from
http://www.intente.net/pdfs/ Yankee_On_Demand_vs_
On _Premises_TCO_1_.pdf?ID=13165

Aichi Steel Corporation. (2009). MI sensor. In The gen-
eral catalogue.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., &
Cayirci, E. (2002). Wireless sensor networks: A survey.
Computer Networks, 38, 393–422. doi:10.1016/S1389-
1286(01)00302-4

Albrecht, A. J. (1979). Measuring application develop-
ment productivity. Proceedings of the Joint SHARE,
GUIDE, and IBM Application Development Symposium,
(pp. 83–92). Monterey, California, October 14–17, IBM
Corporation.

Alkkiomäki, V., & Smolander, K. (2007). Integration use
cases – An applied UML technique for modeling functional
requirements in service oriented architecture. Paper pre-
sented at the Requirements Engineering: Foundation for
Software Quality, 13th International Working Conference,
REFSQ 2007, Trondheim, Norway.

Al-Muhtadi, J., Chetan, S., Ranganathan, A., & Campbell,
R. H. (2004, March). Super spaces: A middleware for
large-scale pervasive computing environments. Paper
presented at the IEEE International Workshop on Per-
vasive Computing and Communications (Perware ‘04),
Orlando, Florida, USA.

Compilation of References

298

Amazon Elastic Cloud. (2010). Amazon platform as
a service. Retrieved March 10, 2010, from http://aws.
amazon.com/ec2/

Apple Computer Inc. (2003). Rendezvous website
Retrieved May, 2003, from http://developer.apple.com/
macosx/rendezvous/

Arkko, J., & Haverinen, H. (2006). Extensible authentica-
tion protocol method for 3rd generation authentication
and key agreement (EAP-AKA) – RFC 4187. Retrieved
September 29, 2010, from http://www.ietf.org/ rfc/
rfc4187.txt

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R. H., Konwinski, A., et al. (2008, February). Above the
clouds: A Berkeley view of cloud computing. (Techni-
cal Report EECS-2009-28), University of California at
Berkeley.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ga-
napathy, S., & Holley, K. (2008). SOMA: A method
for developing service-oriented solutions. IBM Systems
Journal, 47(3), 377–396. doi:10.1147/sj.473.0377

Arsanjani, A. (2005). Toward a pattern language for
service-oriented architecture and integration, part 1:
Build a service eco-system. Retrieved January 19, 2010,
from http://www.ibm.com/developerworks/webservices/
library/ws-soa-soi/

Aurnhammer, M., Hanappe, P., & Steels, L. (2006). In-
tegrating collaborative tagging and emergent semantics
for image retrieval. WWW Collaborative Web Tagging
Workshop, 2006.

Badra, M., & Urien, P. (2004). Toward SSL integration in
SIM smartcards (pp. 889–893). IEEE WCNC.

Balazinska, M., Balakrishnan, H., & Karger, D. (2002,
August). INS/Twine: A scalable peer-to-peer architecture
for intentional resource discovery. Paper presented at the
Pervasive 2002 - International Conference on Pervasive
Computing, Zurich, Switzerland.

Baldauf, M., Dustdar, S., & Rosenberg, F. (2007). A survey
on context-aware systems. International Journal Ad Hoc
and Ubiquitous Computing, 2(4).

Bartle, R. (2003). Designing virtual worlds. New Riders
Games.

Benslimane, D., Dustdar, S., & Sheth, A. P. (2008). Ser-
vices mashups: The new generation of Web applications.
IEEE Internet Computing, 12(5), 13–15. doi:10.1109/
MIC.2008.110

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The
Semantic Web. Scientific American, 284(5), 34–43.
doi:10.1038/scientificamerican0501-34

Besselaar, P., Tanabe, M., & Ishida, T. (2002). Introduc-
tion: Digital cities research and open issues. [Springer-
Verlag.]. Lecture Notes in Computer Science, 2362, 1–9.
doi:10.1007/3-540-45636-8_1

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,
Niclas, D., Ranganathan, A., & Riboni, D. (2010). A survey
of context modelling and reasoning techniques. Perva-
sive and Mobile Computing, 6, 161–180. doi:10.1016/j.
pmcj.2009.06.002

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., &
Shah, R. (2006). Service-oriented architecture compass:
Business value, planning and enterprise roadmap. Upper
Saddle River, NJ: IBM Press.

Blau, J. (2005). Microsoft: Community computing is
on the way. InfoWorld Magazine. Retrieved from http://
www. infoworld.com/ article/ 05/ 11/ 22/ HNcommuni-
tycomputing _1.html

Bluetooth, S. I. G. (2001). Specification of the Bluetooth
system -- Core (version 1.1). Retrieved from http://www.
bluetooth.org/docs /Bluetooth_V11_Core_22Feb01.pdf

Blunk, L., & Vollbrecht, J. (1998). PPP extensible authen-
tication protocol (EAP) – RFC 2284. Retrieved September
29, 2010, from http://www.ietf.org/ rfc/ rfc2284.txt

Boehm, B. (1981). Software engineering economics.
Englewood Cliffs, NJ: Prentice-Hall.

Boniface, M., Philips, S., & Surridge, M. (2006). Grid-
based business partnerships using service level agree-
ments. Cracow Grid Workshop, 2006.

Borghoff, U. M., & Schlichter, J. H. (Eds.). (2000).
Computer-supported cooperative work: Introduction to
distributed applications. Berlin/Heidelberg, Germany &
New York, NY: Springer-Verlag.

Compilation of References

299

Brazier, F. M. T., Jonker, C. M., & Treur, J. (1997). Formal-
ization of a cooperation model based on joint intentions.
In Proceedings of the Third International Workshop on
Agent Theories, Architectures and Languages (ATAL’96),
Lecture Notes in Artificial Intelligence 1193 (pp. 141-
155). Springer.

Brouwers, N., Corke, P., & Langendoen, K. (2008).
Darjeeling, a Java compatible virtual machine for micro-
controllers. In Companion ’08: Proceedings of the ACM/
IFIP/USENIX Middleware ’08 Conference Companion,
(pp. 18–23). New York, NY: ACM.

Bullinger, H., Fahnrich, K. P., & Meiren, T. (2003). Ser-
vice engineering-methodical development of new service
products. International Journal of Production Economics,
85, 275–287. doi:10.1016/S0925-5273(03)00116-6

Buonadonna, P., Gay, D., Hellerstein, J. M., Hong, W.,
& Madden, S. (2005). Task: Sensor network in a box. In
Proceedings of European Workshop on Sensor Networks,
(pp. 133–144). Istanbul, Turkey.

Burgess, L. (2008). Swirl. Notes on Swirl. CMU.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad,
P., & Stal, M. (1996). Pattern-oriented software archi-
tecture: A system of patterns. West Sussex, UK: John
Wiley & Sons Ltd.

Bussler, C. (2001). The role of B2B protocols in inter-
enterprise process execution. In Proceedings of the Second
International Conference on Technologies for E-Services
(pp. 16-29). Berlin / Heidelberg, Germany: Springer.

Buyya, R., Yeo, C. S., & Venugopal, S. (2009). Cloud
computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6), 599–616.
doi:10.1016/j.future.2008.12.001

C4ISR Interoperability Working Group. (1998). Levels
of Information Systems interoperability (LISI). Technical
report, US Department of Defence, Washington, DC.

Cabri, G., Leonardi, L., & Zambonelli, F. (2003). A
framework for flexible role-based interactions in multi-
agent system. In Proceedings of Conference on Coopera-
tive Information Systems (CoopIS) [Berlin, Germany:
Springer.]. Lecture Notes in Computer Science, 2888,
145–161. doi:10.1007/978-3-540-39964-3_11

Cai, W., Xavier, P., Turner, S. J., & Lee, B. S. (2002). A
scalable architecture for supporting interactive games
on the Internet. In PADS’02 (pp. 60–67). Washington,
DC: IEEE.

Cardei, M., Yang, S., & Wu, J. (2008). Algorithms for
fault-tolerant topology in heterogeneous wireless sensor
networks. IEEE Transactions on Parallel and Distributed
Systems, 19(3).

Chaari, S., Badr, Y., & Biennier, F. (2008). Enhancing Web
service selection by QoS-based ontology and WS-policy.
SAC’08, Fortaleza, Brazil.

Chakraborty, A. (2000). A distributed architecture for
mobile, location-dependent applications. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, MA.

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wal-
lach, D. A., & Burrows, M. … Gruber, R. E. (2006).
Bigtable: A distributed storage system for structured
data. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation. Seattle,
WA: USENIX Association.

Chen, H., Finin, T., & Joshi, A. (2005). The SOUPA
ontology for pervasive computing. Whitestein Series in
Software Agent Technologies. Springer.

Chen, H., Finin, T., Joshi, A., Kagal, L., Perich, F., &
Chakraborty, D. (2004). Intelligent agents meet the Se-
mantic Web in smart spaces. IEEE Internet Computing,
8(6), 69–79. doi:10.1109/MIC.2004.66

Chen, H., Finin, T., & Joshi, A. (2004). An ontology
for context-aware pervasive computing environments.
The Knowledge Engineering Review, 18(3), 197–207.
doi:10.1017/S0269888904000025

Cherbakov, L., Galambos, G., Harishankar, R., Kalyana,
S., & Rackham, G. (2005). Impact of service orientation at
the business level. IBM Systems Journal, 44(4), 653–668.
doi:10.1147/sj.444.0653

Cheshire, S. (2002). Discovering named instances of
abstract services using DNS: Apple Computer.

Chirita, P., Costache, S., Handschuh, S., & Nejdl, W.
(2007). PTAG: Large scale automatic generation of
personalized annotation TAGs for the Web. WWW 2007.

Compilation of References

300

Cisco Systems, Inc. (2010). Cisco collaboration cloud.
Retrieved September 26, 2010 from http://www.cisco.
com/en/US/ prod/ps10352/ collaboration_cloud.html

Cloud Computing Congress. (2010). Cloud computing
China. Retrieved March 10, 2010, from http://www.
cloudcomputingchina.org/

Cockburn, D., & Jennings, N. R. (Eds.). (1996). ARCHON:
A distributed artificial intelligence system for industrial
applications (pp. 319–344). Wiley. Foundation of Dis-
tributed Artificial Intelligence.

Czarnecki, K., Hwan, C., & Kalleberg, K. T. (2006).
Feature models are views on ontologies. In Proceedings
of the 10th International on Software Product Line Con-
ference (vol. 1). IEEE Computer Society.

Czerwinski, S., Zhao, B. Y., Hodes, T., Joseph, A., & Katz,
R. (1999). An architecture for a secure service discovery
service. Paper presented at the Fifth Annual International
Conference on Mobile Computing and Networks (Mobi-
Com ‘99), Seattle, WA.

Dabrowski, C., Mills, K., & Elder, J. (2002, July 2002).
Understanding consistency maintenance in service dis-
covery architectures during communication failure. Paper
presented at the 4th International Workshop on Active
Middleware Services, Edinburgh, UK.

Dan, A., Johnson, R., & Arsanjani, A. (2007). Information
as a service: Modeling and realization. Paper presented
at the International Workshop on Systems Development
in SOA Environments, Washington, DC.

de Haaf, B. (2008, August 8). Cloud computing – The
jargon is back! Cloud Computing Journal. Retrieved
from http://cloudcomputing.sys-con.com /node/613070

Department of Energy, US Government. (2010). Report
to congress on server and data center energy efficiency.
Retrieved April 25, 2010, from http://www1.eere.energy.
gov/ femp/pdfs/ epa_dc_report_congress.pdf

Dey, A. K. (2001). Understanding and using context. Per-
sonal and Ubiquitous Computing, 5(1), 4–7. doi:10.1007/
s007790170019

Dey, A. K., & Abowd, G. D. (1999). Towards a better un-
derstanding of context and context-awareness. (Technical
Report GIT-GVU-99-22), Georgia Institute of Technology,
College of Computing.

Dierks, T., & Rescorla, E. (2006). The transport layer
security (TLS) protocol v1.1 – RFC 4346. Retrieved
March 29, 2010, from http://www.ietf.org/ rfc/ rfc4346.txt

Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., &
Vakali, A. (2009). Cloud computing: Distributed Internet
computing for IT and scientific research. IEEE Internet
Computing, 13(5), 10–13. doi:10.1109/MIC.2009.103

Dobson, G. (2004). Quality of service in service-oriented
architecture. Retrieved from http://digs.sourceforge.net
/papers/qos.pdf

DOLCE. (2010). Laboratory for applied ontology. Re-
trieved March 8, 2010, from http://www.loa-cnr.it/

DuraSpace Organization. (2009). DuraCloud overview
2009.

Durkee, D. (2010). Why cloud computing will never
be free. Communications of the ACM, 53(5), 62–69.
doi:10.1145/1735223.1735242

Edgington, T., Choi, B., Henson, K., Raghu, T., & Vinze,
A. (2004). Adopting ontology to facilitate knowledge
sharing. Communications of the ACM, 47(11), 85–90.
doi:10.1145/1029496.1029499

Elizabeth, M., & Hull, C. (1987). Occam - A programming
language for multiprocessor systems. Computer Languag-
es, 12(1), 27–37. doi:10.1016/0096-0551(87)90010-5

Ellison, C. (2002). Home network security. Intel Technol-
ogy Journal, 6(4), 37–48.

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P.,
& Krogdahl, P. (2004). Patterns: Service-oriented archi-
tecture and Web services. IBM Press.

ETSI. (2006). Smartcards UICC security service module:
Stage 1. (ETSI TS 102 266 V7.1.0). Retrieved March 29,
2010, from http://pda.etsi.org/ pda/ queryform.asp

Fahringer, T., Anthes, C., Arragon, A., Lipaj, A., Müller-
Iden, J., & Rawlings, C. J. … Surridge, M. (2007). The
Edutain@Grid Project. In D. J. Veit & J. Altmann (Eds.),
GECON 2007. LNCS, 4685, (pp. 182–187). Heidelberg,
Germany: Springer.

Compilation of References

301

Ferber, J., Gutknecht, O., & Michel, F. (2003). From agents
to organizations: An organizational view of multi-agent
systems. In Proceedings of AOSE 2003 [Springer Verlag.].
Lecture Notes in Computer Science, 2935, 214–230.
doi:10.1007/978-3-540-24620-6_15

Ferber, J., & Gutknecht, O. (1998). A meta-model for
the analysis and design of organization in multi-agent
systems. In Proceedings of 3rd International Conference
on Multi-agent Systems (ICMAS’98), (pp. 128-135).

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2000). New
service development: Creating memorable experiences.
Thousand Oaks, CA: Sage Publications, Inc.

Flick, U. (1998). An introduction to qualitative research.
London, UK: Sage.

Fortes, J. A. B. (2010). Sky computing: When multiple
clouds become one. Cluster, Cloud and Grid Computing
Conference (CCGrid) (pp. 4, 17-20). IEEE Computer
Society.

Franchi, A., Di Stefano, L., & Salmon Cinotti, T. (2010).
Mobile visual search using smart-M3. In IEEE Symposium
on Computers and Communications, (pp. 1065-1070).

Galal, G. H., & Paul, R. J. (1999). A qualitative scenario ap-
proach to managing evolving requirements. Requirements
Engineering, 4(2), 92–102. doi:10.1007/s007660050016

Ganz, W., & Meiren, T. (2004). Co-design of products
and services. Proceedings of SusProNet Conference on
Product Service Systems: Practical Value, (pp. 21-22).
3-4 June 2004, Brussels, Belgium.

Garcia, D., & Toledo, M. (2006). Semantic-enriched
QoS policies for Web service interactions. Web Media
’06, Natal, Brazil.

Garcia-Macias, J. A., & Torres, D. A. (2005). Service dis-
covery in mobile ad-hoc networks: Better at the network
layer? Paper presented at the 2005 International Confer-
ence on Parallel Processing Workshops (ICPPW’05).

Geelan, J. (2008). Twenty-one experts define cloud com-
puting. Retrieved from http://cloudcomputing.sys-con.
com /node/612375?page=0,1

GlobalPlatform. (2006). GlobalPlatform card specifica-
tion v2.2. Retrieved March 29, 2010, from http://www.
globalplatform.org/ specificationscard.asp

Grassi, V., & Sindico, A. (2007). Towards model driven
design of service-based context-aware applications. Inter-
national Workshop on Engineering of Software Services
for Pervasive Environments in conjunction with the 6th
ESEC/FSE joint meeting - ESSPE ‘07, (pp. 69-74). New
York, NY: ACM Press.

Gray, J. (2003, March). Distributed computing econom-
ics. (Technical Report MSR-TR-2003-24), Microsoft
Research.

Gribble, S. D., Welsh, M., Behren, R. v., Brewer, E. A.,
Culler, D., Borisov, N., et al. (2001). The ninja architec-
ture for robust Internet-scale systems and services. IEEE
Computer Networks, 35(4).

Gu, T., Pung, H., & Zhang, D. Q. (2005). A service-
oriented middleware for building context-aware services.
Journal of Network and Computer Applications, 28(1),
1–18. doi:10.1016/j.jnca.2004.06.002

Gu, T., Wang, X. H., Pung, H. K., & Zhang, D. Q. (2004).
An ontology-based context model in intelligent environ-
ments. In Communication Networks and Distributed
Systems Modeling and Simulation Conference, San
Diego, CA, USA.

Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., & Xu,
D. (2002). An XML-based quality of service enabling
language for the Web. Journal of Visual Language and
Computing, Special Issue on Multimedia Language for
the Web, 13(1).

Guédria, W., Naudet, Y., & Chen, D. (2008). Interoper-
ability maturity models – Survey and comparison. In
R. Meersman, Z. Tari, & P. Herrero (Eds.), OTM 2008
Workshop, LNCS 5333, (pp. 273-282), Berlin / Heidelberg,
Germany Springer-Verlag.

Guo, H., Chen, J., Wu, W., & Wang, W. (2009). Personal-
ization as a service: The architecture and a case study. In
Proceedings of the First International Workshop on Cloud
Data Management (pp. 1-8). Hong Kong, China: ACM.

Guo, H., Gao, J., Zeng, Z., & Hu, B. (2006). Recipe, policy
and self-organizing: A hybrid collaboration approach for
agent-based cooperative design. In Proceedings of the
10th International Conference on Computer Supported
Cooperative Work in Design (CSDWD 2006), (pp. 653-
658). IEEE.

Compilation of References

302

Guttman, E., Perkins, C., & Kempf, J. (1999). Service
templates and service: Schemes: Sun Microsystems.

Guttman, E., Perkins, C., Veizades, J., & Day, M. (1999).
Service location protocol, version 2.

Hadim, S., & Mohamed, N. (2006). Middleware for wire-
less sensor networks: A survey. In the 1st International
Conference on Communication System Software and
Middleware, (pp. 1-7).

Hand, E. (2007). Head in the clouds. Nature, 449(963).

Handschuh, H., & Paillier, P. (1998). Smartcard crypto
co-processors for public key cryptography. International
Conference on Smart Card Research and Applications
(pp. 386-394). Springer-Verlag.

Handschuh, H., & Trichina, E. (2007). High density
smartcards: New security challenges and applications.
Securing Electronic Business Processes: Highlights of the
Information Security Solutions Europe/SECURE 2007
Conference (pp. 251-259). Vieweg Wiesbaden.

Harikumar, A. K., Lee, R., Hae Sool, Y., Haeng-Kon,
K., & Byeongdo, K. (2005). A model for application
integration using Web services. Paper presented at the
Computer and Information Science, 2005. Fourth Annual
ACIS International Conference.

Heinzelman, W. B., Murphy, A. L., Carvalho, H. S., &
Perillo, M. A. (2004). Middleware to support sensor net-
work applications. IEEE Network, 18, 6–14. doi:10.1109/
MNET.2004.1265828

Henricksen, K., & Indulska, J. (2004). A software engi-
neering framework for context-aware pervasive comput-
ing. In S. Das & M. Kumar, Proceedings of the Second
Annual Conference on Pervasive Computing and Com-
munications (pp. 77-86). Los Alamitos, CA: The IEEE
Computer Society.

Hua, C., Gao, J., Su, J., & Chen, H. (2003). AGDRSCOM:
A complicated dynamic real-time strong cooperation
system model. In Proceedings of the Second International
Conference on Machine Learning and Cybernetics: Vol.1
(pp. 318-323). IEEE.

Hunter, J., Khan, I., & Gerber, A. (2008). Harvana: Har-
vesting community tags to enrich collection metadata.
Joint Conference on Digital Libraries 2008, (pp. 147-156).

International Software Benchmarking Group. (2010).
ISBSG dataset release 10. Retrieved March 10, 2010,
from http://www.isbsg.org

Ishida, T. (Ed.). (1998). Community computing and sup-
port systems. Lecture Notes in Computer Science (Vol.
1519). Springer.

Issarny, V., Caporuscio, M., & Georgantas, N. (2007). A
perspective on the future of middleware-based software
engineering. In Future of Software Engineering, (pp.
244-258).

Jaemin, P., Kyoungtae, K., & Minjeong, K. (2008). The
Aegis: UICC-based security framework. IEEE FGCN,
2008, 264–269.

Jaemin, P., Yongki, M., & Minjeong, K. (2009). UICC-
based service security framework for pervasive fixed
mobile convergence. Journal of Internet Technology,
10(5), 505–512.

Jaroucheh, Z., Liu, X., & Smith, S. (February 2010). CAN-
DEL: Product line based dynamic context management
for pervasive applications. In International Conference
on Complex, Intelligent and Software Intensive Systems
(ARES/CISIS 2010) (pp. 209-216). Krakow, Poland: IEEE
Computer Society.

Jaroucheh, Z., Liu, X., & Smith, S. (July 2010). Apto: A
MDD-based generic framework for context-aware deeply
adaptive service-based processes. In 8th IEEE International
Conference on Web Services (ICWS2010). Florida: IEEE
Computer Society.

Jarvenpaa, S. L., & Stoddard, D. B. (1998). Business
process redesign: Radical and evolutionary change.
Journal of Business Research, 41(1), 15–27. doi:10.1016/
S0148-2963(97)00008-8

Jeswiet, J. (2003). A definition of life cycle engineer-
ing. Proceeding of 36th CIRP International Seminar on
Manufacturing Systems, (pp. 17-20). June 03 – 05, 2003,
Saarland University, Saarbrücken, Germany.

Johansen, R., Charles, J., Mittman, R., & Saffo, P. (Eds.).
(1998). Groupware: Computer support for business
teams. New York, NY: Free Press. London, UK: Collier
Macmillan.

Compilation of References

303

Johnson, R. K. (2002, November). Institutional reposito-
ries: Partnering with faculty to enhance scholarly com-
munication. D-Lib Magazine, 8(11).

Jung, Y., Lee, J., & Kim, M. (2006, May). Multi-agent
based community computing system development with the
model driven architecture. Paper presented at the Fifth
International Joint Conference on Autonomous Agents
and Multiagent Systems, (pp. 1329-1331).

Kamiya, H., Mineno, H., Ishikawa, N., Osano, T., &
Mizuno, T. (2008). Composite event detection in hetero-
geneous sensor networks. IEEE/IPSJ International Sym-
posium on Applications and the Internet, (pp. 413–416).

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A.
(1990). Feature-oriented domain analysis (FODA) feasi-
bility study. Pittsburgh, PA: Carnegie Mellon University
Software Engineering Institute.

Kantorovitch, J., & Niemelä, E. (2008). Service description
ontologies. In Khosrow-Pour, M. (Ed.), Encyclopedia of
Information Science and Technology (2nd ed., Vol. VII,
pp. 3445–3451). Hershey, PA: Information Science Refer-
ence. doi:10.4018/978-1-60566-026-4.ch547

Kapitsaki, G., Prezerakos, G., Tselikas, N., & Venieris,
I. (2009). Context-aware service engineering: A sur-
vey. Journal of Systems and Software, 82, 1885–1297.
doi:10.1016/j.jss.2009.02.026

Kassab, M., Ormandjieva, O., & Daneva, M. (2009). An
ontology based approach to non-functional requirements
conceptualization. In the 4th International Conference on
Software Engineering Advances, (pp. 299- 307), IEEE
Computer Science.

Katasonov, A., & Palviainen, M. (2010). Towards
ontology-driven development of applications for smart
environments. In International Workshop on the Web of
Things, IEEE Intl. Conf. on Pervasive Computing and
Communications, (pp. 696-701).

Kindberg, T., & Fox, A. (2002). System software for
ubiquitous computing. IEEE Pervasive Computing
/ IEEE Computer Society [and] IEEE Communica-
tions Society, (January-March): 70–81. doi:10.1109/
MPRV.2002.993146

Klein, M., Konig-Ries, B., & Obreiter, P. (2003). Service
rings – A semantic overlay for service discovery in ad
hoc networks. Paper presented at the 14th International
Workshop on Database and Expert Systems Applications
(DEXA’03).

Klems, M., Nemis, J., & Tai, S. (2009). Do clouds compute?
A framework for estimating the value of cloud computing.
Lecture Notes in Business Information Processing (pp.
110–123). Springer-Verlag.

Knight, D. (2009). Why cloud vs. premise is the wrong ques-
tion. Retrieved March 10, 2010, from http://blogs.cisco.
com/collaboration /comments/why_cloud_vs._premise
_is_the_wrong_question/

Kondol, D., Bahman, J., Malecot, P., Cappello, F., &
Anderson, D. (2009). Cost-benefit analysis of cloud
computing versus desktop Grids. Proceedings of the 18th
International Heterogeneity in Computing Workshop,
May, 2009, Rome.

Koning, M., Sun, C., Sinnema, M., & Avgeriou, P. (2009).
VxBPEL: Supporting variability for Web services in
BPEL. Information and Software Technology, 51(2),
258–269. doi:10.1016/j.infsof.2007.12.002

Kozat, U. C., & Tassiulas, L. (2004). Service discovery
in mobile ad hoc networks: An overall perspective on
architectural choices and network layer support issues.
Ad Hoc Networks, 2(1), 23–44. doi:10.1016/S1570-
8705(03)00044-1

Krasniewski, M., Varadharajan, P., Rabeler, B., Bagchi, S.,
& Hu, Y. (2005). Tibfit: Trust index based fault tolerance
for arbitrary data faults in sensor networks. In. Proceed-
ings of the International Conference on Dependable
Systems and Networks DSN, 2005, 672–681. doi:10.1109/
DSN.2005.92

Krishnamachari, B., & Iyengar, S. (2004). Distributed
Bayesian algorithms for fault-tolerant event region de-
tection in wireless sensor networks. IEEE Transac-
tions on Computers, 53(3), 241–250. doi:10.1109/
TC.2004.1261832

Krishnamachari, B., & Iyengar, S. S. (2003). Efficient
and fault-tolerant feature extraction in sensor networks.
In 2nd Workshop on Information Processing in Sensor
Networks, IPSN ’03, Palo Alto, California.

Compilation of References

304

Kumar, M., Shirazi, B., Das, S. K., Singhal, M., Sung, B.,
& Levine, D. (2003). Pervasive information communities
organization: A middleware framework for pervasive
computing. IEEE Pervasive Computing / IEEE Computer
Society [and] IEEE Communications Society, (July-
September): 72–79. doi:10.1109/MPRV.2003.1228529

Kumar, K., & Lu, Y. (2010). Cloud computing for mobile
users: Can offloading computation save energy? IEEE
Computer, 43(4), 51–56.

La Cayla. (2006). A white paper for independent software
vendors. Retrieved March 10 2010, from http://www.
opsource.net/

Laboratories, R. S. A. (n.d.). Public key cryptography
standards (PKCS) series. Retrieved March 29, 2010, from
http://www.rsa.com/ rsalabs/ node.asp?id=2124

Lagoze, C., Payette, S., Shin, E., & Wilper, C. (2006).
Fedora: An architecture for complex objects and their
relationships. International Journal on Digital Libraries,
6(2), 124–138. doi:10.1007/s00799-005-0130-3

Lamanna, D. D., Skene, J., & Emmerich, W. (2003).
SLAng: A language for defining service level agreements.
Proceedings of the Ninth IEEE Workshop on Future Trends
of Distributed Computing Systems (FTDCS’03).

Landmark, C. R. M. (2009). SaaS total cost of ownership.
Retrieved March 10, 2010, from http://www.crmlandmark.
com/ saasTCO.htm

Larson, R. (2009). Education: Our most important service
sector. The Service Science, 1(4), i–iii.

Lassila, O. (2007). Programming Semantic Web ap-
plications: A synthesis of knowledge representation and
semi-structured data. PhD thesis, Helsinki University of
Technology, November, 2007.

Lassila, O. (2008). Semantic Web programming using
PIGLET – Programmer’s guide to the PIGLET Semantic
Web toolkit. Nokia Research Center 2008.

Laudon, K., & Laudon, J. (2009). Management Informa-
tion Systems. Pearson.

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm, T.
(2009). What’s inside the cloud? An architectural map
of the cloud landscape. Proceedings of the International
Conference on Software Engineering (ICSE) Workshop
on Software Engineering Challenges of Cloud Computing
(CLOUD), (pp. 23-31).

Lenk, A., Klems, M., Nimis, J., Tai, S., & Sandholm,
T. (2009). What’s inside the cloud? An architectural
map of the cloud landscape. In Proceedings of the 2009
ICSE Workshop on Software Engineering Challenges of
Cloud Computing (pp. 23-31). Washington, DC: IEEE
Computer Society.

Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R.,
& Whitehouse, K. … Culler, D. (2005). Tinyos: An operat-
ing system for sensor networks. In W. Weber, J. Rabaey
& E. Aarts (Eds.), Ambient intelligence. Springer-Verlag.

Lifton, J., Seetharam, D., Broxton, M., & Paradiso, J.
(2002). Pushpin computing system overview: A platform
for distributed, embedded, ubiquitous sensor networks.
London, UK: Springer-Verlag.

Lo, A., & Yu, E. (2008). From business models to
service-oriented design: A reference catalog approach.
In Proceedings of the 26th International Conference on
Conceptual Modeling - ER 2007 (Vol. 4801, pp. 87-101).
Berlin / Heidelberg, Germany: Springer.

Lovelock, C., & Wirtz, J. (2007). Services marketing:
People, technology, strategy (6th ed.). New Jersey, USA:
Pearson International - Pearson/Prentice Hall.

Ludwig, H., Keller, A., Dan, A., King, R., & Frank, R.
(2003). A service level agreement language for dynamic
electronic services. Electronic Commerce Research,
43–49. doi:10.1023/A:1021525310424

Luukkala, V., Binnema, D.-J., Börzsei, M., Corongiu, A.,
& Hyttinen, P. (2010). Experiences in implementing a
cross-domain use case by combining semantic and service
level platforms. In IEEE Symposium on Computers and
Communications, (pp. 1071-1076).

MacGowan, G. (2006). Helping small businesses choose
between on-demand and on-premise software. Retrieved
March 10, 2010, from http://www.computerworld.com /s/
article/9002362/Helping_small _businesses_choose_be-
tween_ On_demand_and_On_ premise_software

Compilation of References

305

Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong,
W. (2005). Tinydb: An acquisitional query processing sys-
tem for sensor networks. ACM Transactions on Database
Systems, 30(1), 122–173. doi:10.1145/1061318.1061322

Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., &
Anderson, J. (2002). Wireless sensor networks for habitat
monitoring. In WSNA ‘02: Proceedings of the 1st ACM
International Workshop on Wireless Sensor Networks and
Applications (pp. 88-97). NY, USA.

Man, J., Yang, A., & Sun, X. (2005). Shared ontology for
pervasive computing. Lecture Notes in Computer Science,
3818, 64–78. doi:10.1007/11596370_7

Mandelbaum, A. (1998). Service engineering: Modelling,
analysis and inference of stochastic service networks.
Haifa, Israel: Faculty of Industrial Engineering and
Management Technion.

Manzaroli, D., Roffia, L., Salmon Cinotti, T., Azzoni,
P., Ovaska, E., Nannini, C., & Matarozzi, S. (2010).
Smart-M3 and OSGi: The interoperability platform. In
IEEE Symposium on Computers and Communications,
(pp. 1053-1058).

Markines, B., Cattuto, C., Menczer, F., Benz, D., Hotho,
A., & Stumme, G. (2009). Evaluating similarity measures
for emergent semantics of social tagging. WWW, 2009,
641–650. doi:10.1145/1526709.1526796

Marlow, C., Naaman, M., Boyd, D., & Davis, M. (2006).
HT06, tagging paper, taxonomy, Flickr, academic article,
ToRead. Proceedings of the Seventeenth Conference on
Hypertext and Hypermedia, 2006, (pp. 31-40).

McFedries, P. (2008). The cloud is the computer. IEEE
Spectrum Online. Retrieved from http://www.spectrum.
ieee.org/ aug08/6490

McRitchie, K., & Accelar, S. (2008). A structured
framework for estimating IT projects and IT support.
Joint Annual Conference ISPA/SCEA Society of Cost
Estimating and Analysis.

Meier, R., Harrington, A., Beckmann, K., & Cahill, V.
(2009). A framework for incremental construction of real
global smart space applications. Pervasive and Mobile
Computing, 5, 350–368. doi:10.1016/j.pmcj.2008.11.001

Mennie, D., & Pagurek, B. (2000, June 12, 2000). An
architecture to support dynamic composition of service
components. Paper presented at the 5th International
Workshop on Component-Oriented Programming, WCOP
2000, Cannes, France.

Michael, A., et al. (2009). Above the clouds: A Berkeley
view of cloud computing. (Technical Report No. UCB/
EECS-2009-28). Retrieved on April 25, 2010, from http://
www.eecs.berkeley.edu/ Pubs/TechRpts/2009/ EECS-
2009-28.html

Microsoft. (2005). Community technologies research
group. Retrieved from http://research.microsoft.com/
community/

Microsystems, S. U. N. (2006). Java card platform
specification 2.2.2. Retrieved March, 2008, from http://
java.sun.com/ javacard/ specs.html

Microsystems, S. U. N. (2010). Java card platform speci-
fication 3.01. Retrieved March 29, 2010, from http://java.
sun.com/ javacard/ 3.0.1/ specs.jsp

Mietzner, R., & Leymann, F. (2008). Generation of BPEL
customization processes for SaaS applications from vari-
ability descriptors. 2008 IEEE International Conference
on Services Computing, (pp. 359-366).

Miller, B. A., Nixon, T., Tai, C., & Wood, M. D. (2001).
Home networking with universal plug and play. IEEE
Communications Magazine, (December): 104–109.
doi:10.1109/35.968819

Miller, M. (2009). Cloud computing pros and cons for
end users. Retrieved March 10, 2010, from http://www.
informit.com/articles/article.aspx?p=1324280

Mitchell, B., Zlatev, Z., Addis, M., Neple, T., Konstanteli,
K., & Kousiouris, G. … Oliveros, R. (2009). Interactive
realtime multimedia applications on service oriented infra-
structures. Retrieved on September 22, 2010, from http://
eprints.ecs.soton.ac.uk/ 17403/1/IRMOS_WP5_D5_1_1_
IT_Innovation_v1_0.pdf

Moon, M., Hong, M., & Yeom, K. (2008). Two-level
variability analysis for business process with reusabil-
ity and extensibility. 32nd Annual IEEE International
Computer Software and Applications, COMPSAC ‘08.
Turku, Finland.

Compilation of References

306

Muller, R., Greiner, U., & Rahm, E. (2004). AW: A
workflow system supporting rule-based workflow adapta-
tion. Data & Knowledge Engineering, 51(2), 223–256.
doi:10.1016/j.datak.2004.03.010

Myers, M., Ankney, R., Malpani, A., Galperin, S., & Ad-
ams, C. (1999). X.509 Internet public key infrastructure
online certificate status protocol (OCSP) – RFC 2560.
Retrieved March 29, 2010, from http://www.ietf.org/
rfc/ rfc2560.txt

Nedos, A., Singh, K., & Clarke, S. (2005). Service*:
Distributed service advertisement for multi-service,
multi-hop MANET environments. Paper presented at the
7th IFIP International Conference on Mobile and Wirelss
Communication Networks Marrakech, Morocco.

Nefsis. (2010). Pricing model. Retrieved March 10,
2010, from http://www.nefsis.com/Pricing /concurrent-
user.html

Nidd, M. (2001). Service discovery in DEAPspace. IEEE
Personal Communications, (August), 39-45.

Noel Yuhanna, M. G. (2008). The Forrester wave:
Information-as-a-service Q1 2008. Retrieved February
16, 2010, from http://www.forrester.com/rb/Research/
wave%26trade%3B_information-as-a-service%2C_
q1_2008/q/id/43199/t/2

Northrop, L. (2002). SEI’s software product line
tenets. IEEE Software, 19(4), 32–40. doi:10.1109/
MS.2002.1020285

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G.,
Soman, S., Youseff, L., & Zagorodnov, D. (2009). The
Eucalyptus open-source cloud-computing system. In
Cappello, F., Wang, C.-L., & Buyya, R. (Eds.), CCGRID.
IEEE Computer Society (pp. 124–131).

Object Management Group. (2003). Technical guide
to model driven architecture: The MDA guide v1.0.1.
Retrieved from http://www.omg.org / cgi-bin/ doc?omg/
03-06-01

Open Mobile Alliance. (2008). OMA digital rights man-
agement V2.1. Retrieved March 29, 2010, from http://
www.openmobilealliance.org/ Technical/ release_pro-
gram/ drm_v2_1.aspx

Open Mobile Alliance. (2009). OMA smartcard Web
server V1.1. Retrieved March 29, 2010, from http://www.
openmobilealliance.org/ Technical/ release_program/
scws_v1_1.aspx

Optitz, A., Konig, H., & Szamlewska, S. (2008). What
does Grid computing cost? Journal of Grid Computing,
6(6), 385–397. doi:10.1007/s10723-008-9098-8

Ovaska, E., Evesti, A., Henttonen, K., Palviainen, M.,
& Aho, P. (2010). Knowledge based quality-driven
architecture design and evaluation. Information and
Software Technology, 52(6), 577–601. doi:10.1016/j.
infsof.2009.11.008

Pantsar-Syväniemi, S., Simula, K., & Ovaska, E. (2010).
Context-awareness in smart spaces. In IEEE Symposium
on Computers and Communications, (pp. 1023-1028).

Papazoglou, M. P., & Dubray, J.-J. (2004). A survey of
Web service technologies. Retrieved February 16, 2010,
from http://eprints.biblio.unitn.it/archive/00000586/

Papazoglou, M. P., Traverso, P., Dustdar, S., Leymann,
F., & Kramer, B. J. (2006). Service-oriented computing:
A research roadmap. In F. Cubera, B. J. Krämer & M. P.
Papazoglou (Eds.), Service oriented computing (SOC)
(vol. 05462). Internationales Begegnungs- und Forsc-
hungszentrum für Informatik (IBFI).

Patroklos, G. A., Raja, V., Hitesh, T., & Donal, O. (2004).
Performance analysis of cryptographic protocols on
handheld devices. 3rd IEEE International Symposium
on Network Computing and Applications (pp. 169-174).

Pendyala, V., & Shim, S. (2009). Web as the ubiquitous
computer. IEEE Computer, 42(9), 90–92.

Pendyala, V. S., & Holliday, J. (2010). Performing intel-
ligent mobile searches in the cloud using semantic tech-
nologies. In Granular Computing GrC (pp. 381–386).
IEEE Computer Society.

Perez, M. S., Sanchez, A., Robles, V., Pena, J. M., &
Abawajy, J. (2004). Cooperation model of a multiagent
parallel file system for clusters. In Proceedings of IEEE
International Symposium on Cluster Computing and the
Grid (pp. 595-601). IEEE computer Society.

Compilation of References

307

Peristeras, V., & Tarabanis, K. (2006). The connection,
communication, consolidation, collaboration interoper-
ability framework (C4IF) for Information Systems interop-
erability. IBIS – Interoperability in Business Information
Systems, 1(1), 61-72.

Pham, H. N., Pediaditakis, D., & Boulis, A. (2007). From
simulation to real deployments in WSN and back. In IEEE
International Symposium on a World of Wireless, Mobile
and Multimedia Networks, WoWMoM 2007, (pp. 1 – 6).

Phani Kumar, A. V. U., Reddy, V. A. M., & Janakiram,
D. (2005). Distributed collaboration for event detection
in wireless sensor networks. In MPAC ’05: Proceedings
of the 3rd International Workshop on Middleware for
Pervasive and Ad-Hoc Computing, (pp. 1–8). New York,
NY: ACM.

Ploß, A., Glinka, F., & Gorlatch, S. (2009). A case study
on using RTF for developing multi-player online games.
Lecture Notes in Computer Science, 5415, 390–400.
doi:10.1007/978-3-642-00955-6_44

Ploß, A., Glinka, F., & Gorlatch, S. (2009). A case study
on using RTF for developing multi-player online games.
Lecture Notes in Computer Science, Springer, 5415,
390–400. doi:10.1007/978-3-642-00955-6_44

Preuveneers, D., & Berbers, Y. (2008). Internet of things:
A context-awareness perspective. In Yan, L. (Eds.), The
Internet of things: From RFID to the next generation
pervasive networked systems (pp. 287–307). CRC Press.
doi:10.1201/9781420052824.ch13

Raman, R., Livny, M., & Solomon, M. (1998, July 28-31).
Matchmaking: Distributed resource management for high
throughput computing. Paper presented at the Seventh
IEEE International Symposium on High Performance
Distributed Computing, Chicago, IL.

Ramollari, E., Dranidis, D., & Simons, A. J. H. (2007).
A survey of service oriented development methodologies.
Paper presented at the 2nd European Young Researchers
Workshop on Service Oriented Computing, Leicester, UK.

Rankl, W., & Effing, W. (2004). Smart card handbook
(3rd ed.). Wiley.

Ratsimor, O., Chakraborty, D., Joshi, A., & Finin, T.
(2002). Allia: Alliance-based service discovery for ad-hoc
environments. Paper presented at the 2nd International
Workshop on Mobile Commerce Atlanta, Georgia, USA.

Reichert, M., Rechtenbach, S., Hallerbach, A., & Bauer, T.
(2009). Extending a business process modeling tool with
process configuration facilities: The Provop Demonstra-
tor. In BPM’09 Demonstration Track, Business Process
Management Conference (vol. 1). Ulm, Germany.

Robson, C. (2002). Real world research (2nd ed.). Oxford,
UK: Blackwell Publishing.

Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin,
K., & Llorente, I. M. (2009). The RESEVOIR model and
architecture for open federated cloud computing. IBM
Journal of Research and Development, 53(4). doi:10.1147/
JRD.2009.5429058

Román, M., Hess, C., Cerqueira, R., Campbell, R. H., &
Nahrstedt, K. (2002). Gaia: A middleware infrastructure to
enable active spaces. IEEE Pervasive Computing / IEEE
Computer Society [and] IEEE Communications Society,
1, 74–83. doi:10.1109/MPRV.2002.1158281

Romer, K., & Mattern, F. (2004). Event-based systems
for detecting real-world states with sensor networks: A
critical analysis. In Proceedings of 2004 Conference on
Intelligent Sensors, Sensor Networks and Information
Processing, (pp. 389–395).

Rosedale, P., & Ondrejka, C. (2003). Enabling player
created online worlds with grid computing and streaming.
Retrieved on September 22, 2010, from http://www.gama-
sutra.com/ resource_guide/20030916/ rosedale_pfv.htm

Rothboard, J. (2009). Linking SaaS software pricing
to value. Retrieved March 10, 2010, from http://www.
readwriteweb.com/ enterprise/2009/01/linking -saas-
software-pricing-to-value.php

Saa, S. Optics. (2010). SaaS optics deep dive. Retrieved
March 10, 2010, from http://www.saasoptics.com/ saas_
operations_operating_model/ saas_metrics_manage-
ment_deep _dive/saas_metrics_management _deep_dive.
html

Compilation of References

308

Sadiq, S., Orlowska, M., & Sadiq, W. (2005). The role
of messaging in collaborative business processes. Paper
presented at the IRMA International Conference, San
Diego, USA.

Sahai, A., Durant, A., & Machiraju, V. (2001). Towards
automated SLA management for Web services. (Research
Report HPL-2001-310 R.1), Hewlett-Packard Laborato-
ries Palo Alto. Retrieved from http://www.hpl.hp.com/
techreports/2001/ HPL-2001-310R1.pdf

Salesforce. (2010). CRM SaaS. Retrieved March 10, 2010,
from http://www.salesforce.com/ platform/platform-
edition/

Salutation Consortium. (1999). Salutation architecture
specification (Version 2.0c).

Santhanam, G., Ryu, S., Yu, B., Afshar, A., & Shenoy, K.
(2006). A high-performance brain–computer interface.
Nature, 442(13). doi:.doi:10.1038/nature04968

Sarker, S., & Lee, A. S. (1999). IT-enabled organizational
transformation: A case study of BPR failure at TELECO.
The Journal of Strategic Information Systems, 8(1),
83–103. doi:10.1016/S0963-8687(99)00015-3

Satyanarayanan, M., Bahl, P., Cáceres, R., & Davies,
N. (2009). The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Computing / IEEE Computer
Society [and] IEEE Communications Society, 8(4), 14–23.
doi:10.1109/MPRV.2009.82

SCA. (2009). Specification, final version 1.0. Retrieved
from http://www.osoa.org/display/Main/Service+Comp
onent+Architecture+Specifications

Schwiderski-Grosche, S. (2008). Context-dependent event
detection in sensor networks. In 2nd Intl. Conf. on Dis-
tributed Event-Based Systems (DEBS’08), Rome, Italy.

Scrum. (2009). What is Scrum? Retrieved March 8, 2010,
from http://www.scrumalliance.org/learn_about_scrum

Seidel, J., Waldrich, O., & Ziegler, W. (2007). Using SLA
for resource management and scheduling – A survey.
CoreGRID technical report, 2007. Retrieved on November
5, 2008, from http://www.coregrid.net/ mambo/images/
stories/ TechnicalReports/tr-0096.pdf

Sen, S., Vig, J., & Riedl, J. (2009). Tagommenders: Con-
necting users to items through tags. WWW, 2009, 671–680.
doi:10.1145/1526709.1526800

Sheng, Q. Z., Pohlenz, S., Yu, J., Wong, H. S., Ngu, A.
H., Maamar, Z., et al. (2009). ContextServ: A platform
for rapid and flexible development of context-aware Web
services. 2009 IEEE 31st International Conference on
Software Engineering (pp. 619-622).

Shih, K.-P., Wang, S.-S., Yang, P.-H., & Chang, C.-
C. (2006). Collect: Collaborative event detection and
tracking in wireless heterogeneous sensor networks. In
Proceedings of the 11th IEEE Symposium on Computers
and Communications ISCC ’06, (pp. 935–940).

Simon, D., Cifuentes, C., Cleal, D., Daniels, J., & White, D.
(2006). Java on the bare metal of wireless sensor devices:
The squawk java virtual machine. In VEE ’06: Proceedings
of the 2nd International Conference on Virtual Execution
Environments, (pp. 78–88). New York, NY: ACM.

SLA definition. (2009). Definition of service level agree-
ment. Retrieved March 10 2010, from http://loosely-
coupled.com/ glossary/SLA

Smith, M. (2002). DSpace: An institutional repository
from the MIT libraries and Hewlett Packard laboratories.
ECDL, 2002, 213–226.

Sofia.(2010). Smart objects for intelligent applications.
Retrieved March 8, 2010, from http://www.sofia-project.
eu/

Song, Y., Zhuang, Z. M., Li, H. J., Zhao, Q. K., Li,
J., Lee, W., & Giles, C. L. (2008). Real-time auto-
matic tag recommendation. SIGIR, 2008, 515–522.
doi:10.1145/1390334.1390423

Soylu, A., De Causmaecker, P., & Desmet, P. (2009). Con-
text and adaptivity in pervasive computing environments:
Links with software engineering and ontological engineer-
ing. Journal of Software, 4(9), 992–1013. doi:10.4304/
jsw.4.9.992-1013

SPICE. (2010). Spice mobile ontology. Retrieved March
8, 2010, from http://ontology.ist-spice.org/index.html

Steen, M. v., Hauck, F. J., Homburg, P., & Tanenbaum,
A. S. (1998). Locating objects in wide-area systems.
IEEE Communications Magazine, (January): 104–109.
doi:10.1109/35.649334

Compilation of References

309

Strang, T., & Linnhoff-Popien, C. (2004). A context
modeling survey. In Proceedings of the 1st International
Workshop on Advanced Context Modeling, Reasoning and
Management at UbiComp2004.

Strauss, A. L., & Corbin, J. M. (1998). Basics of qualita-
tive research: Techniques and procedures for developing
grounded theory (2nd ed.). Thousand Oaks, CA: Sage
Publications Inc.

Sugiyama, S. (2008). Fundamental behaviour in com-
munication method. In Proceedings of IEEE/INFORMS
International Conference on Service Operations and
Logistics, and Informatics. Beijing, China.

Sugiyama, S. (2008). Ubiquitous framework in service
science. In Proceedings of The 2008 Logic and Science
of Service (The New Wealth and Wellbeing of Nations),
Hawaii, US.

Sugiyama, S. (2009). Feature extraction in system. In
Proceedings of INFORMS International Conference on
Service Science. Hong Kong, China.

Sugiyama, S. (2010). Business plan oriented service in
service science. In Proceedings of INFORMS Service
Science Conference. Taipei, Taiwan.

Sugiyama, S., & Tharumarajah, A. (2007). Fundamental
behavior of holonic system. The International Journal
of Services Operations and Informatics, 2(4). INDER-
SCIENCE.

Sun Microsystems. (2001). Jini™ technology core
platform specification (version 1.2). Sun Microsystem.
Retrieved from http://wwws.sun.com/ software/jini/specs/

Sung, B., Shirazi, B., & Kumar, M. (2002). Pervasive
community organization. In Proceedings Eurasia 2002,
Tehran, November.

Svend, F., & Jari, K. (1998). QML: A language for quality
of service specification. Retrieved from http://www.hpl.
hp.com/ techreports/98/ HPL-98-10.html

TechAmerica. (2008). Chapter 12, software cost estimat-
ing. Retrieved March 10, 2010, http://www.techamerica.
org/

The Foundation of Intelligent Physical Agents (FIPA)
Standard. (2000). FIPA communicative act library
specification. Retrieved from http://www.fipa.org/ specs/
fipa00037/

Tolk, A., Diallo, S. Y., Turnitsa, C. D., & Winters, L. S.
(2006). Composable M&S Web services for netcentric
applications. Journal for Defense Modeling and Simu-
lation, 3(1), 27–44. doi:10.1177/875647930600300104

Tolk, A., Turnitsa, C., & Diallo, S. (2008). Implied on-
tological representation within the levels of conceptual
interoperability model. [IOP Press.]. Intelligent Decision
Technologies, 2, 3–19.

Tolk, A., & Muguira, J. A. (2003). The levels of conceptual
interoperability model. In Proceedings of the Simulation
Interoperability Workshop, (p. 10).

Tomiyama, T. (2003). Service CAD. Proceedings of 1st
SusProNet Conference, Amsterdam, 5-6 June, 2003.

Tomiyama, T., Medland, A. J., & Vergeest, J. S. M. (2000).
Knowledge intensive engineering towards sustainable
products with high knowledge and service contents.
TMCE 2000, Third International Symposium on Tools and
Methods of Competitive Engineering, (pp. 55-67). April
18-20. Delft, The Netherlands: Delft University Press.

Toninelli, A., Pantsar-Syväniemi, S., Bellavista, P., &
Ovaska, E. (2009). Supporting context awareness in
smart environments: A scalable approach to information
interoperability. In International Workshop on Middle-
ware for Pervasive Mobile and Embedded Computing,
Article No: 5, ACM, IFIP, USENIX.

Tosic, V., Pagurek, B., & Patel, K. (2003). WSOL – A lan-
guage for the formal specification of various constraints
and classes of service for Web services. The International
Conference On Web Services, ICWS’03.

Trichina, E., Hyppönen, K., & Hassinen, M. (2007). SIM-
enabled open mobile payment system based on nation-wide
PKI. Securing Electronic Processes: Highlights of the
Information Security Solutions Europe/SECURE 2007
Conference (pp. 355-366). Vieweg Wiesbaden.

Tual, J. P., Couchard, A., & Sourgen, L. (2005). USB
full speed enabled smartcards for consumer electronics
applications (pp. 230–236). IEEE ISCE.

Compilation of References

310

Van Nuffel, D. (2007). Towards a service-oriented meth-
odology: Business-driven guidelines for service identifi-
cation. In On the Move to Meaningful Internet Systems
2007: OTM 2007 Workshops (pp. 294-303).

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lind-
ner, M. (2009). A break in the clouds: Towards a cloud
definition. ACM SIGCOMM Computer Communication
Review, 39(1), 50–55. doi:10.1145/1496091.1496100

Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lind-
ner, M. (2009). A break in the clouds: Towards a cloud
definition. ACM SIGCOMM Computer Communication
Review, 39(1), 50–55. doi:10.1145/1496091.1496100

Varga, A. (2002). Omnet++. Software tools for network-
ing. IEEE Network Interactive, 16(4).

Varshavsky, A., Reid, B., & Lara, E. d. (2005). A cross-
layer approach to service discovery and selection in
MANETs. Paper presented at the 2nd International Con-
ference on Mobile Ad-Hoc and Sensor Systems (MASS),
Washington, DC.

Viera, V., Brézillon, P., Salgado, A. C., & Tedesco, P.
(2008). A context-oriented model for domain-independent
context management. Revue d’Intelligence Artificielle,
22(5), 609–627. doi:10.3166/ria.22.609-627

Vu, C., Beyah, R., & Li, Y. (2007). Composite event
detection in wireless sensor networks. In. Proceedings
of IEEE International Performance, Computing, and
Communications Conference IPCCC, 2007, 264–271.
doi:10.1109/PCCC.2007.358903

Wada, H., Boonma, P., & Suzuki, J. (2007). A spacetime
oriented macroprogramming paradigm for push-pull
hybrid sensor networking. In Proceedings of the 16th
International Conference on Computer Communications
and Networks ICCCN 2007, (pp. 868–875).

Walker, D. M. (2006). White paper - Overview ar-
chitecture for enterprise data warehouses. Retrieved
February 16, 2010, from http://www.datamgmt.com/
index.php?module=documents&JAS_DocumentMan-
ager_op=downloadFile&JAS_File_id=29

Wang, X., Dong, J. S., Chin, C., Hettiarachchi, R. S., &
Dhang, Z. (2004). Semantic space: An infrastructure for
smart spaces. IEEE Pervasive Computing / IEEE Com-
puter Society [and] IEEE Communications Society, 3(3),
32–39. doi:10.1109/MPRV.2004.1321026

Wang, T.-Y., Han, Y., Varshney, P., & Chen, P.-N. (2005).
Distributed fault-tolerant classification in wireless sensor
networks. IEEE Journal on Selected Areas in Communica-
tions, 23(4), 724–734. doi:10.1109/JSAC.2005.843541

Wang, H. H., Li, Y. F., Sun, J., Zhang, H., & Pan, J.
(2007). Verifying feature models using OWL. In Web
Semantics: Science, Services and Agents on the World
Wide Web, 5(5), 117-129.

Watson, H. J., Goodhue, D. L., & Wixom, B. H. (2002).
The benefits of data warehousing: Why some organizations
realize exceptional payoffs. Information & Management,
39(6), 491–502. doi:10.1016/S0378-7206(01)00120-3

Watson, P., Lord, P., Gibson, F., Periorellis, P., & Pitsilis,
G. (2008). Cloud computing for e-science with CARMEN.
Proceedings of IBERGRID Conference (pp. 1-5). 2008,
Porto (Portugal). May 12–14.

Weiser, M. (1993). Some computer science issues in
ubiquitous computing. Communications of the ACM,
36(7), 75–85. doi:10.1145/159544.159617

Weiser, M. (1991). The computer for the 21st century.
Scientific American, 265(3), 66–75. doi:10.1038/scien-
tificamerican0991-94

Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., & Welsh,
M. (2005, 31 January-2 February). Monitoring volcanic
eruptions with a wireless sensor network. In Proceedings
of the Second European Workshop on Wireless Sensor
Networks (pp. 108-120).

Wikipedia. (2010). Institutional repository. Retrieved
from http://en.wikipedia.org/wiki/Institutional_repository

Wilson, P. (1991). Computer supported cooperative work:
An introduction. Oxford, UK: Intellect Books.

Winograd, T. (2001). Architectures for context. Human-
Computer Interaction, 16(2), 401–419. doi:10.1207/
S15327051HCI16234_18

Wooldridge, M. (2002). An introduction to multiagent
systems. John Wiley & Sons.

Wooldridge, M., & Jennings, N. R. (1999). The cooperative
problem-solving process. Journal of Logic Computation,
9(4), 563–592. doi:10.1093/logcom/9.4.563

Compilation of References

311

Wooldridge, M., & Jennings, N. R. (2000). The Gaia
methodology for agent-oriented analysis and design.
Journal of Autonomous Agents and Multi-Agent Systems,
3, 285–312. doi:10.1023/A:1010071910869

Yao, Y., & Gehrke, J. (2002). The cougar approach to in-
network query processing in sensor networks. SIGMOD
Record, 31(3), 9–18. doi:10.1145/601858.601861

Yau, S. S., & Liu, J. (2006). Hierarchical situation modeling
and reasoning for pervasive computing. In Proceedings
of 3rd Workshop on Software Technologies for Future
Embedded and the Second International Workshop on
Collaborative Computing, Integration, and Assurance
(SEUS-WCCIA’06), (pp. 5-10). IEEE Computer Society.

Yusuke, M., Patrick, S., Kris, T., & Ingrid, V. (2004).
Java cryptography on KVM and its performance and
security optimization using HW/SW co-design techniques.
International Conference on Compilers, Architectures and
Synthesis of Embedded System (pp. 303-311). ACM Press.

Zachman, J. A. (1987). A framework for Information Sys-
tems architecture. IBM Systems Journal, 26(3), 276–292.
doi:10.1147/sj.263.0276

Zambonelli, F., Jennings, N. R., & Wooldredge, M. (2003).
Developing multiagent systems: The Gaia methodology.
ACM Transactions on Software Engineering and Meth-
odology, 12(3), 317–370. doi:10.1145/958961.958963

Zdun, U., Hentrich, C., & Dustdar, S. (2007). Modeling
process-driven and service-oriented architectures using
patterns and pattern primitives. [TWEB]. ACM Transac-
tions on the Web, 1(3), 14. doi:10.1145/1281480.1281484

Zhang, L., Zhang, J., & Cai, H. (2007). Services comput-
ing: Core enabling technology of the modern services
industry. Springer.

Zheng, Y., He, D., Wang, H., & Tang, X. (2005). Secure
DRM scheme for future mobile networks based on trusted
mobile platform (pp. 1164–1167). IEEE WCNM.

Zhou, J. (2005). Knowledge dichotomy and semantic
knowledge management. In 1st IFIP WG 12.5 Working
Conference on Industrial Applications of Semantic Web,
Jyväskylä, Finland.

Zhu, F., Mutka, M., & Ni, L. (2005). Facilitating secure
ad hoc service discovery in public environments. Journal
of Systems and Software, 76(1), 45–54. doi:10.1016/j.
jss.2004.07.014

Zhu, F., Mutka, M., & Ni, L. (2006). A private, secure
and user-centric information exposure model for service
discovery protocols. IEEE Transactions on Mobile Com-
puting, 5(4), 418–429. doi:10.1109/TMC.2006.1599409

Zhu, F., Zhu, W., Mutka, M., & Ni, L. (2007). Private
and secure service discovery via progressive and proba-
bilistic exposure. IEEE Transactions on Parallel and
Distributed Systems, 18(11), 1565–1577. doi:10.1109/
TPDS.2007.1075

Zhu, F., Mutka, M., & Ni, L. (2003, March 23-26, 2003).
Splendor: A secure, private, and location-aware service
discovery protocol supporting mobile services. Paper
presented at the 1st IEEE Annual Conference on Pervasive
Computing and Communications, Fort Worth, Texas.

Zimmermann, O., Schlimm, N., Waller, G., & Pestel,
M. (2005). Analysis and design techniques for service-
oriented development and integration. Paper presented
at the INFORMATIK 2005 - Informatik LIVE! Bonn.

Zoho. (2010). CRM SaaS. Retrieved March 10, 2010,
http://www.zoho.com/

312

About the Contributors

Xiaodong Liu received his PhD in Computer Science from De Montfort University, UK. He is a
reader and the director of Centre for Information & Software Systems, in the School of Computing,
Edinburgh Napier University, UK. As an active researcher, his current research focuses on Context-aware
adaptive services, service evolution, mobile clouds, pervasive computing, software reuse, and component-
based software engineering. Dr. Liu has led 6 externally funded projects, and published over 50 papers
in established international journals and conferences and 2 book chapters. He is the inventor of 1 patent
registered in UK, USA and at International Level. He has been the chair, co-chair or PC member of a
number of IEEE and IASTED international conferences. He is the editorial board member of 3 interna-
tional journals and editor of 2 research books. He is a member of IEEE Computer Society and British
Computer Society.

Yang Li holds BSc, MSc, and PhD degrees in Computer Science, and is a Principal Researcher at
British Telecom. He made original contributions to service science & systems, resulting in the granting
of world patents, widely cited papers, two live BT systems, and a number of internal and external awards.
He has more than 100 citations by Google Scholar and is the founding chair of an IEEE workshop series.
Yang was included in Marquis Who’s Who in the World, 28th Edition.

* * *

Ville Alkkiomäki, M.Sc., is currently working as an Enterprise Architect for Itella Corporation,
where he is responsible for enterprise architecture governance and development. Alkkiomäki has over
ten years of experience in the field of system integration, large scale system architecture, and related
technologies. Originally starting out as a software developer in an EDI software vendor, his career is
characterized by varying architect roles, including chief architect of an in-house system integration
center, chief infrastructure architect and the current position as an enterprise architect. Additionally, his
postgraduate studies in Lappeenranta University of Technology focused on service elicitation methods.

Stamatia Bibi is a contracted Lecturer at the University of Thessaly and University of Western
Macedonia. Her research interests include software process models, estimation of software develop-
ment cost and quality, cloud computing, and open source software. Bibi has a PhD in informatics from
Aristotle University of Thessaloniki.

About the Contributors

Panayiotis Bozanis is currently an Assistant Professor at the University of Thessaly, Greece. His
publications comprise several journal and conference papers, and four books in Greek about data struc-
tures and algorithms. He is an EATCS member.

Lowry Burgess, having been educated at the Pennsylvania Academy of the Fine Arts, the University
of Pennsylvania, and at the Instituto Allende in San Miguel Mexico, is an internationally renowned artist
and educator who created the first official art payload taken into outer space by NASA in 1989 among
his many Space Art works. He founded and administrated many departments, programs, and institutions
during his 45 years as an educator in the arts. For 27 years he has been a Fellow, Senior Consultant, and
Advisor at the Center for Advanced Visual Studies at MIT.

Juan Cáceres is Research Programme Manager on Cloud Computing at Telefónica Labs. He holds
an Msc. in Computer Science and a Research Msc. in Distributed Systems (Universidad Politécnica de
Madrid). Juan is coordinating the research agenda on infrastructure and platform as a service clouds, and
supervising the EU-Funded projects RESERVOIR, IRMOS, VISION, StratusLab, and 4Caast. Juan’s
areas of interest include architecture of distributed systems, cloud computing and design & development
of complex software (networking, multi-threading, high-performance computing).

Clovis Chapman received a BSc in Computer Science from King’s College London in 1998, fol-
lowed by an M.S.c in Data Communication and Distributed Systems and PhD in Computer Science
from University College London. As a Research Fellow in University College London, he was involved
in establishing a UK wide Grid infrastructure for molecular simulation in the context of the eMinerals
project and worked alongside IBM research, Telefonica, and other institutions on the definition and
implementation of a cloud infrastructure for the provisioning Web-based IT services in the context of
the RESERVOIR FP7 European project. His research interests are in the area of large scale distributed
computing, focusing specifically on Grid and cloud computing technologies. He has authored over 20
papers in the domain and has acted as a consultant for startups looking to rapidly scale their Web based
service offerings.

Tullio Salmon Cinotti is Associate Professor of Computer Architecture and Logic Design at the
Faculty of Engineering of the University of Bologna. He has a long standing experience in research and
education on embedded systems. For many years he has been coordinating research teams in large projects
on ambient intelligence and user interaction, in application domains ranging from cultural heritage to
health monitoring. His current focus is on ambient information interoperability and on architectures to
open innovation in cross-domain multi-actor smart space based applications. He is serving the research
community by regularly contributing to workgroups of the European Platform on Embedded Systems.

Quansong Deng is currently a Master’s student majoring in Computer Software and Theory in
Web and Software R&D Center, Research Institute of Information Technology, Tsinghua University.
He received his BS degree of Computer Science and Technology in Tsinghua University in 2008. He’s
interested in analysis and study in the areas of massive digital resource management and service, data
mining in Web environment and content aggregation technologies.

 313

About the Contributors

Fermin Galan holds an M.Sc degree in Telecommunications and a Ph.D in Telematics from Univer-
sidad Politécnica de Madrid in 2002 and 2010 respectively. Since 2001, he has participated in several
EU and Spanish research projects and involved in standardization activities at DMTF as Telefónica
delegate. He has authored more than 40 papers in international conferences and journals. His current
research interests include configuration management, networking testbeds, virtualization technologies,
and cloud computing.

JoAnne Holliday is an Associate Professor at Santa Clara University. She received her B.A. from
the University of California at Berkeley and her M.S. degree from Northeastern University. She got the
PhD degree from the University of California at Santa Barbara. She has been on the faculty of the Santa
Clara University Computer Engineering department since September 2000. Her research interests include
distributed systems, mobile computing, wireless networks, and replicated databases.

Zakwan Jaroucheh received the B.Sc. (Honors) degree in Computer Science from Higher Insti-
tute for Applied Sciences and Technology (HIAST), Syria. He worked as a research engineer in the
Information Technology Department in HIAST. He received the MSc. degree in Business Information
Systems from ESIGELEC, France. His Master’s research work was conducted at R&D Center of Océ
Print Logic Technologies, Paris. He is currently working toward the Ph.D. degree with the School of
Computing in Edinburgh Napier University. His research interests include ubiquitous and pervasive
computing, context-aware systems, and service-based systems. He has published in several well-known
international conferences.

Youna Jung received the PhD degree from Ajou University in 2007. She is currently a postdoctoral
researcher in LERSAIS at the University of Pittsburgh. Her research interests include situation-aware
computing, cooperative computing, community computing, security of intelligent systems, and security
of cooperative systems.

Dimitrios Katsaros is a Lecturer at the University of Thessaly, Greece. His research interests include
distributed systems, such as the Web and Internet, cloud computing, wireless ad hoc, and wireless sensor
networks. Katsaros has a PhD in informatics from Aristotle University of Thessaloniki.

Minsoo Kim received the Master’s and PhD degree from Ajou University where his research activi-
ties involved the developing the technique for situation-aware computing. His research interests include
context-awareness, access control, Semantic Web, and multi-agent systems. He is a visiting researcher
in LERSAIS at the University of Pittsburgh and now developing a situation-based access control model
and security systems.

Peter Langendörfer holds a diploma and a doctorate degree in computer science. Since 2000 he
is with the IHP in Frankfurt (Oder). There, he is team leader of the wireless sensor network group. He
has published more than 80 refereed technical articles and filed seven patents in the security/privacy
area. His research interests include wireless communication and especially privacy and security issues.

314

About the Contributors

Maik Lindner works as a researcher and business development manager for SAP Research in the
United Kingdom. In his function as a researcher, Maik is currently the SAP team lead of the European
Union FP7 funded project RESERVOIR. For this he deals with aspects of large-scale enterprise soft-
ware on on-demand IT resources including the importance of standardization for this. In his role as a
business development manager, he builds an interface between SAP internal development groups and
researchers for future ICT systems and architectures. Maik holds a PhD from University of Muenster
(Germany), in Information and Controlling Systems with a focus on Business Intelligence. The cores
of Maik’s research are business aspects and business/market models for emerging technologies such as
cloud/Grid computing.

Michael Maaser received his MSc in computer sciences in 2004 and his PhD in 2010 at the Bran-
denburg University of Technology Cottbus. During his research he was active in the area of privacy
protection in location and context aware systems. Currently he is active in wireless sensor networks for
tele-medical applications. Throughout his research career he has 20 reviewed publications in international
conferences and journals and contributed to three book chapters.

Matt W. Mutka received the B.S. degree in electrical engineering from the University of Missouri-
Rolla, the M.S. degree in electrical engineering from Stanford University, and the Ph.D. degree in
Computer Sciences from the University of Wisconsin-Madison. He is on the faculty of the Department
of Computer Science and Engineering at Michigan State University, where he is currently Professor
and Chairperson. He has been a visiting scholar at the University of Helsinki, Finland, and a member of
technical staff at Bell Laboratories in Denver, Colorado. His current research interests include mobile
computing, wireless networking, and multimedia networking.

Lionel M. Ni is Chair Professor in the Department of Computer Science and Engineering at the Hong
Kong University of Science and Technology (HKUST). He also serves as the Special Assistant to the
President of HKUST and Director of the HKUST China Ministry of Education/Microsoft Research Asia
IT Key Lab. A fellow of IEEE, Dr. Ni has chaired over 30 professional conferences and has received 6
awards for authoring outstanding papers.

Steffen Ortmann received his diploma in computer science in 2007 and his PhD by scholarship in
2010 from the Brandenburg University of Technology Cottbus. Since 2005 he is active in the sensor
network research group of IHP in Frankfurt (Oder). He has published 15 refereed technical articles in
conferences and journals and one book chapter about reliability, privacy, and efficient data processing in
wireless sensor networks and ubiquitous environments. His current research focuses on wireless sensor
networks for tele-medical innovations.

Eila Ovaska obtained the MSc degree in 1995 and the PhD degree in 2000 from the University of
Oulu. Before graduation she worked fifteen years as a software engineer, from 1995 as a senior research
scientist and from 1999 to 2002 as the group manager of the Software Architectures Group at VTT.
Since 2001 she has been working as a Professor at VTT and since 2002 also as an adjunct professor of
software architectures and components at the University of Oulu. She has acted as a reviewer for several
scientific journals and conferences. She is a member of the IEEE.

 315

About the Contributors

Jaemin Park received the BS and MS degrees in Computer Science from Handong Global Univer-
sity, South Korea, in 2004, and from Korea Advanced Institute of Science and Technology (KAIST),
South Korea, in 2006, respectively. He is currently an Assistant Manager in the Device R&D Center of
the Korea Telecom (KT), South Korea. His current research interests include Security in UICC, NFC,
RFID, I-WLAN, and FMC environments.

Vishnu Pendyala holds BE, MBA, and MS degrees from Indian and U.S. universities. He is cur-
rently pursuing his PhD in Computer Engineering at Santa Clara University. He presented papers in
international conferences and reviewed technical papers for professional journals and conferences, in-
cluding the annual IEEE International Conference on E-Commerce from 2003 - 2007. Vishnu received
the Ramanujam memorial gold medal at State Math Olympiad and has been a successful leader during
his undergrad years. He also played an active role in Computer Society of India and was the Program
Secretary for its annual convention, which was attended by over 1500 delegates. Recently, Marquis
Who’s Who has selected Vishnu’s biography for inclusion in Who’s Who in Science and Engineering
2011-2012 (11th Edition). Vishnu spends his fast vanishing spare time volunteering and has been a judge
at school science fairs for the past few years.

Luis Rodero-Merino is a researcher at the GRAAL group, part of the French INRIA’s Laboratoire
de l’Informatique du Parallélisme. He has a Master Degree in Computing from the Universidad de Val-
ladolid, Spain. After working as an engineer at the Research and Development branch of Ericsson Spain,
he obtained a PhD in Computing from the Universidad Rey Juan Carlos, Madrid, Spain, where he also
worked as a teaching assistant. Later he joined Telefónica Research and Development as researcher,
working in the field of cloud computing. In January 2010 he joined GRAAL, where he is working in
the same research area.

Sally Smith is the Head of School of Computing at Edinburgh Napier University. She studied an
MA (Hons) in Mathematics at Aberdeen University, Scotland and an MSc in Computer Science at City
University, London. She has worked in the telecommunications and aerospace industries in the UK and
Europe. She is a Teaching Fellow and her research and teaching interests combine mobile and pervasive
computing with pedagogical research.

Kari Smolander is Professor of Software Engineering in the Department of Information Technology,
Lappeenranta University of Technology, Finland. He has a PhD (2003) in Computer Science from Lap-
peenranta University of Technology and a Licentiate (1993) and Master (1988) degree from University of
Jyväskylä, Finland. In addition to his long teaching experience, he has worked several years in industry
and in 1990s he was the main architect in the development of MetaEdit CASE tool. He has more than
80 refereed research papers in international journals and conferences. His current research interests
include architectural aspects of systems development and organizational view of software development.

Shigeki Sugiyama has been working on various fields from Industrial Engineering, Control, AI,
Neural Networking, Virtual Reality, E-learning, Embedded Technology, Computer, to Consciousness
Studies for more than 30 years and have published more than 70 papers. I also put much attention on
Service Science, especially on a network behavior in a scalable situation. And I have touched upon setting
up a science park project about the matters of IT during 1994 – 1999 and I have done some cooperative
research works with Universities in US and in Europe about IT.

316

About the Contributors

Yigang Sun is the director of the Information and Network department of the National Library of
China, the deputy director of the Modern Technology Research Institution of the National Library of China,
member of the expert working group on the Digital Library Project of China, the standing director of the
Network Security Committee of the Internet Society of China, member of the Internet Application and
Information Service Committee of China Institute of Communication, the deputy director of the Digital
Library Construction Professional Committee of Library Association of China, editorial board member
of the Journal of National Library of China. He has leaded several national key projects, and published
over 10 research papers. His research interests include digital library, computer applications, et cetera.

Alessandra Toninelli is currently a post-doctoral fellow at INRIA within the ARLES research group.
She received her PhD in Computer Science Engineering from the University of Bologna in 2008. Her
recent research is focused on middleware to support the development of mobile social applications, but
her background also includes context-aware applications, semantic technologies, semantic-based middle-
ware, policy specification and management, and security for pervasive and mobile environments. She
has authored several peer-reviewed publications, and actively contributes to the research community by
taking part to conferences and workshops organization, participating in program committees and regularly
undertaking review activities for research funding agencies, international journals, and conferences.

Luis Vaquero holds a BSc inElectronics, MSc. in Telematics and Pharmacology and Ph.D. in Medi-
cine (Universidad Complutense de Madrid) and Computer Science (Universidad de Valladolid). After
his Ph.D. he worked for several American Universities and then joined Telefónica Labs as a researcher.
He is now patent manager in the cloud computing area and Assistant Professor at Universidad Rey Juan
Carlos (Madrid, Spain, EU). His research interests are in the area of large scale distributed computing,
focusing specifically on Grid and cloud computing technologies and its interdisciplinary use in different
application domains.

Michael Whitney holds a PhD from Southern Illinois University Carbondale (SIUC) in Educational
Administration and is currently a PhD student in the College of Computing and Informatics at the
University of North Carolina Charlotte (UNCC). He has served as faculty as networking and security
professor at SIUC, has developed a Human Computer Interaction expertise with adaptive technologies
and accessible design and is currently focused on community based participatory sensing applications
and methodologies.

Chunxiao Xing is the Director of Web and Software Technology R&D Center(WeST), Research
Institute of Information Technology, Tsinghua University. Dr. Xing received his PhD from Depart-
ment of Automatic Control, Northwestern Polytechnical University. From 1999 to 2001, he worked as
a postdoctoral researcher in Tsinghua University. His research interests include digital library, digital
government, digital entertainment, and personalized service.

Xiaoyu Yang is currently with the University of Southampton, UK. He is also a Senior Member of
Wolfson College, University of Cambridge, UK. He was a post-doctoral Research Associate in the Earth
Sciences Department, University of Cambridge, and an affiliated Software Engineer in Cambridge e-
Science Center. His technical interests include Systems Engineering, e-Science, Grid / cloud computing,
SOA, distributed system, and product lifecycle information management. He has got both MSc and PhD
degrees from Faculty of Computing Science and Engineering, De Montfort University, UK.

 317

About the Contributors

Yong Zhang is an Associate Professor and deputy director of Web and Software R&D Center,
Research Institute of Information Technology, Tsinghua University. He received his BSc degree in
Computer Science and Technology in 1997, and PhD degree in Computer Software and Theory in 2002
from the CS department of Tsinghua University. From 2002 to 2005, he did his Postdoctoral studies at
Cambridge University, UK. His research interests include massive digital resource management and
service, personalized recommendation system, and high-volume transaction processing.

Feng Zhu received the B.S. degree in computer science from East China Normal University, the
M.S. degree in computer science and engineering from Michigan State University, the M.S. degree in
statistics from Michigan State University, and the Ph.D. degree from Michigan State University. He is an
Assistant Professor at The University of Alabama in Huntsville. He was a program manager at Microsoft
and a software engineer at Intel. His current research interests include pervasive computing, security for
pervasive computing, computer networks, and distributed systems.

Wei Zhu received the Ph.D. degree in computer science and engineering from Michigan State Uni-
versity in 2006, the M.S. degree in statistics from Michigan State University in 2004, the M.S. degree
in computer science and engineering from Michigan State University in 2001, and the B.S. degree in
computer science from East China Normal University in 1994. Her research interests include human-
computer interaction, computer graphics, augmented reality, and multimedia systems. She was a software
design engineer at Microsoft Corporation. She is currently a software consultant at Intergraph Corporation.

318

 319

A
absorbing incarnation system entity (AISE) 56-57,

60
accelerometers 22
Agent/Group/Role model (AGR model) 211
Agile Smart Space Development and Evolution

(ASSDE) 28-30, 40, 44
Amazon Machine Image (AMI) 258
Anti-Virus 180, 183-186, 188, 190-191, 193-194
Apache Cassandra 256
Apache HBase 256
Application Programming Interface (API) 71, 81,

187, 193-194, 258, 265, 272
Aspect Oriented Programing (AOP) 27, 256
Authentication Center (AuC) 174
axial coding 6-7

B
Bandwidth (B) 4, 15-16, 36, 45, 52, 60, 75, 79-81,

85, 89-90, 96-100, 116, 120, 153-155, 158-160,
170-172, 191, 210, 216, 220-221, 225, 227,
229, 231, 234, 237, 239-240, 242, 244, 248-
249, 271-272, 284, 286, 294-296

Berkeley Orders Of Magnitude (BOOM) 61, 268
Boolean value 109, 152-153, 156
business process analysis 8, 10
business-to-business (B2B) 4, 15, 286

C
Capital Expense (CapEx) 243
certificate authority (CA) 16, 45, 126, 194, 295
chief architect 12
Chinese Data Object Identifier System (CDOI) 70,

74-75
CIM-PS 195, 200-202, 207-208
client-service-directory model 84-85
client-service model 84-85

Cloud Computing 55-56, 61-62, 65, 80-81, 219-
223, 226, 231, 234, 236-252, 259-260, 262-
264, 267, 270-276, 280-281, 288-296

Cloud Computing Services 65, 219-220, 249, 251
Cloud Ecosystem 242-244
cloudified 253
Cloud Supply Chain (C-SC) 251-253, 270
Cloud Supply Chain Management (C-SCM) 252
communication channel 53, 263
Community Computing Development Toolkit

(CDTK) 195, 208-209
Community Computing Model (CCM) 195, 197,

200-203, 206-209, 214
Computer Aided Software Engineering (CASE)

1-2, 7-10, 12-14, 16, 31, 36, 38, 43, 46, 50,
57, 59, 64, 69, 72, 80, 87, 90, 93-94, 103, 109,
115-116, 120-121, 131-134, 138-139, 141-142,
146, 148, 150-151, 153, 156, 158-167, 170,
176-179, 186-187, 199, 202, 206, 211, 215,
222, 224-225, 227, 230, 232, 235, 239, 248,
258-259, 273-274, 276, 281-282, 289, 291-292,
294-295

Computer Emergency Response Team (CERT) 256
Computer Supported Cooperative Work (CSCW)

81, 210, 212, 216-217
Connection, Communication, Consolidation, Col-

laboration Interoperability Framework (C4IF)
23-24, 32, 46

Containers 62, 72, 75, 109, 253-257, 270
context-aware adaptive processes (CAAPs) 102,

115
context-aware computing 20-21
context-awareness 19-21, 26, 32, 35-36, 38, 43-46,

91, 102, 129, 203
Context-Aware Systems 104, 106, 125
Context Dependent Event Detection (CoDED) 38,

133, 135
context product (CP) 104, 108-110
context sharing 103-104

Index

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

320

Index

Contextual Knowledge (CK) 104, 106
Cooperation Management (CM) 213
Crypto Co-Processor (CCP) 175, 178
Customer relationship management (CRM) 221,

223-224, 229, 232, 235, 238-239
Cycles of Computation (C) 15-17, 22-24, 32, 36-37,

45-47, 67, 74-75, 79-81, 96-100, 125-126, 131,
151, 158-160, 171, 191-192, 215-216, 221,
226, 231-232, 235, 238-240, 244, 248, 271,
277-279, 294-296

D
data retrieval 50
data storage 50, 73, 75, 227, 236, 245, 256, 280
Data to be transmitted (D) 16, 45-47, 60, 79-81,

95-100, 126, 170-172, 174, 182, 191-192,
215-216, 237-240, 244, 248-249, 252, 271-272,
295-296

Digital Resource Management System Version 2.0
(DRMS2.0) 62, 78

Digital rights management (DRM) 179-180, 183-
188, 190-194

Disjunctive Normal Form (DNF) 109
Distributed Computing Environment (DCE) 65
Distributed Management Task Force (DMTF) 260,

271, 279
Domain Name System (DNS) 74, 86, 90, 95, 98
DuraCloud 63-64, 79

E
Eclipse Modeling Framework (EMF) 114
electro-magnetic sensor 58
Enforcement Engine 284
enterprise application integration (EAI) 3
enterprise information integration (EII) 3
Enterprise Service Bus (ESB) 69, 71-74, 77-80
Event Decision Trees (EDTs) 128, 136-138, 150-

156, 159-160, 163-165, 168-170
Event Specification Language (ESL) 128, 136-137,

140, 142-144, 146-148, 165, 168-169
Everything as a Service (XaaS) paradigm 242-244
evolution fragments (EFs) 103, 111-114, 121, 124-

125
evolution primitive 103, 111, 125
Execution Monitoring (EM) 256
existence conditions (ECs) 63-64, 108-110, 237,

258-260, 273, 294-295
Extensible Authentication Protocol (EAP) 182, 191

eXtensible Markup Language (XML) 70, 72-75,
77, 80-81, 86-87, 108, 116-117, 133, 136, 138,
141, 146, 168, 184-186, 260, 266-267, 277

External Knowledge (EK) 104

F
Feature Oriented Domain Analysis (FODA) 106,

126
First In-First Out (FIFO) 150
Fixed-Mobile Convergence (FMC) 173-174, 178,

180, 183-191, 193
flexible computer environment (FCE) 52-54, 56, 59
Foundation for Intelligent Physical Agents (FIPA)

202, 216
functional magnetic resonance imaging (fMRI) 58

G
Generating Finite State Machine (GFSM) 136, 151,

169
GlobalPlatform 174, 176-180, 186, 192-194
global positioning system (GPS) 22, 25, 50
global service candidates 10, 14
Google App Engine (GAE) 256-257, 266
Google’s BigTable 245, 256
Graphical User Interface (GUI) 77, 121, 130, 136,

258
Grid Computing 62, 222, 238-239, 248, 276, 280,

296
gyroscopes 22

H
Hierarchical QoS Markup Language (HQML) 277
High-level Data Link Control (HDLC) 176
Host Controller Interface (HCI) 127, 176
Hyper Text Transform Protocol (HTTP) 15-16,

45-47, 74, 79-81, 87, 95, 97-100, 161, 175-176,
191-192, 215-216, 237-239, 248-249, 257, 263,
271-273, 276, 278-281, 285-288, 290, 293,
295-296

I
Information and Communications Technology (ICT)

51-53, 59, 252, 293
Infrastructure Costs 221, 228-229, 233, 236-237,

240-241
Infrastructure for Managing and Controlling Agents’

Cooperation (IMCAC) 214
Inline Reference Monitors (IRM) 256
Institutional Repositories (IRs) 61-65, 69-73, 77-81

 321

Index

Intelligent Service Oriented Network Infrastructure
(INSONI) 288

Intentional Naming System (INS) 86, 89, 91-92,
95, 97

Internet Storm Center 256
internetworking 48, 50-51, 55, 58-59, 180, 193
I-WLAN 180, 182-183, 191, 193

J
Java Card Platform 174, 176-178, 180, 183-184,

192-194
Java Virtual Machines (JVMs) 89, 146, 171, 174

K
knowledge processor interface (KPI) 36-37, 47,

259, 263
knowledge processor (KP) 35-40, 47
Korea Financial Telecommunications & Clearings

Institute (KFTC) 181

L
levels of conceptual interoperability model (LCIM)

22-24, 32, 47
levels of information system interoperability (LISI)

22-23, 45
local service candidates 13-14
low-cost applications 1

M
Management of Web Services (MOWS) 279
Management Using Web Services (MUWS) 279
mathematical expression 52, 56, 58-59
MDA 2, 28, 195, 197, 200-201, 216
Mean Time Between Failures (MTBF) 229
Mean Time To Failure (MTTF) 166, 229, 285
memory management unit (MMU) 178
messaging adapters 4
meta-statements (MSs) 108-110, 117, 119-120, 126
Microsoft Azureus 256
Model-Driven Architecture (MDA) 195, 197
Model-Driven Development 103, 124
motorization 49
MultiAgent Parallel File System (MAPFS) 214, 216
multi-modal processing 58

N
Nano-Tesla (NT) electro-magnetic sensor 58

Near Field Communication (NFC) 175-176, 180,
193

New Service Development (NSD) 275, 295

O
on-demand resource provisioning 274-276, 282,

286, 288-294
ontology-based context model (OCM) 45, 108-111
open coding 6-8
Open Software Foundation (OSF) 65
Open Virtualization Format (OVF) 260-263, 270-

271
Operational Expense (OpEx) 243

P
personal computers (PCs) 84, 104, 116, 186-187,

194, 219, 234-235, 244
pervasive computing devices 83
pervasive computing environments 18, 26, 46, 83-

84, 86, 95, 98, 100, 115, 125, 215
Pervasive Information Community Organization

(PICO) 196, 210-212
PICO Project 196
Pico-Tesla (PT) electro-magnetic wave sensor 58-

59
Platform-as-a-Service (PaaS) 220, 223, 225-228,

236-237, 240-241, 243, 251, 253-254, 258-259,
265-271, 280

Proceduralized Context (PC) 104, 116, 186
program manager 12
programmatic services 3
project RESEVIOR 281
Project Voldemort 256
Public-Key Cryptography standards (PKCS) 179,

184, 187, 192-194

Q
QoS Modeling Language (QML) 277-278, 296
QoS-oriented service 274-276, 281, 285, 289, 291,

294
qualitative service elicitation (QSE) 1-2, 4-5, 7,

12-15
Quality of Experience (QoE) 274, 286, 288, 292
Quality of Service (QoS) 24, 26, 36, 260, 264-265,

274-278, 280, 282-283, 285-292, 295-296

R
Real-time Online Interactive Applications (ROIA)

288-291

322

Index

Reference Monitors (RM) 256
Remote Procedure Call (PRC) 87
Removal Analysis 110
resource description framework (RDF) 22, 35, 37-

38, 47, 108
routing protocols 93, 101

S
Salesforce Automation (SFA) 224
scalability 24, 33, 35, 63-64, 75, 83, 86, 196, 236,

242, 256-258, 263, 267-271, 273-274, 280-281,
288-291, 294

Secure Channel Protocol (SCP) 176, 179-180, 186,
190

Secure Sockets Layer (SSL) 176, 179-180, 183,
185, 187, 191, 194

Security Assertions Markup Language (SAML)
289-290

security domain (SD) 177, 193
semantic information broker (SIB) 33-37, 40-41, 47
Semantic Web Rule Language (SWRL) 111, 117,

119-120
Service Components (SC) 61, 67, 72, 78, 94-97, 99,

184-188, 191, 257-259, 261, 266, 288
service discovery protocols 84-87, 89-95, 97-101
service engineering 1-2, 14, 27-28, 44, 46, 275, 295
Service Level Agreements (SLA) 223, 238, 240,

260, 264-265, 274, 276-296
Service Level Objectives (SLO) 260, 262-264, 275-

279, 282, 284
Service Location Protocol (SLP) 86-87, 89, 91,

96-98
service-oriented architecture (SOA) 2-4, 15, 48,

52-53, 56, 58-59, 81, 271, 274, 276, 279, 281,
288, 295

service-oriented computing 1, 16, 272
service-oriented modeling and architecture (SOMA)

2-3, 15
service-oriented systems 1, 14-15, 266
service science 48-49, 54, 59-60
shared knowledge model 21
Simple Object Access Protocol (SOAP) 74, 80, 87,

257, 266
Simplified High Level Data Link Control (SHDLC)

176
Single Point of Failure (SPoF) 89, 131-133, 170
Single Wire Protocol (SWP) 176
Sky Computing 239, 246, 248
Small-Medium Enterprise (SME) 52-56, 58-59, 232

smart environment 19, 36, 40, 47
smart object 47, 196
smart space 18-23, 25-44, 46-47
smart space access protocol (SSAP) 34, 37, 47
smart space application (SSA) 26, 29, 32, 35-38,

40-41, 44, 47
Software-as-a-Service (SaaS) 48, 62, 69, 75-76, 78-

79, 126, 220, 223-228, 236-241, 243, 251, 253,
258, 265-267, 269-271, 280, 289-290

Software Development Costs 228-229, 232, 236,
240

software product line (SPL) 103, 105, 107, 122,
125-126

Special Interest Group (SIG) 86, 97, 99
Swirl Computing 48, 51-59
Swirl Manipulation Environment (SME) 52-56,

58-59, 232
swirl oriented architecture (SOA) 2-4, 15, 48, 52-

54, 56, 58-59, 274, 276, 279, 281, 288
Swirl Sensor 57-59

T
TAGSYS 70, 76-77, 79
Total Cost of Ownership 231, 237-238, 240
Transport Layer Security (TLS) 176, 179-180, 183-

185, 187, 191, 194
trivial service discovery model 84

U
Ubiquitous Computer 242, 246-248
UICC-based Service Security Framework (USF)

173-174, 180, 183-191, 194
Universal Integrated Circuit Card (UICC) 173-191,

193-194
Universally Unique Identifier (UUID) 65, 75-76
Universal Mobile Telecommunications System

(UMTS) 174, 180, 182, 194
University of College London (UCL) 278
User Behavior Modeling 286
User Log Analysis System (ULAS) 71, 76

V
Virtual Execution Environments (VEE) 171, 281
Virtualisation 280-281
Virtual Machine Unit (VMU) 289
Virtual Private Network (VPN) 48, 227-228, 281
Virtual Service Network (VSN) 289

 323

Index

W
Web 2.0 242
Web 3.0 242, 246
Web application 3, 62, 77-78, 175-176, 226, 234,

259
Web Service Level Agreement (WSLA) 277-278,

280
Web Services Distributed Management (WSDM)

277, 279

WeST Matadata Management System (WMMS) 70,
75

Wireless Sensor Networks (WSNs) 128-129, 131-
132, 134, 138, 142, 147, 156-157, 160-161,
167-170

World Wide Web Consortium (W3C) 22, 47, 74,
256, 277-279

	Title
	Copyright Page
	Editorial Advisory Board
	Table of Contents
	Detailed Table of Contents
	Preface
	Section 1
	Service Elicitation Method Using Applied Qualitative Research Procedures
	The Design Principles and Practices of Interoperable Smart Spaces
	Principle for Engineering Service Based System by Swirl Computing
	A Service Component Model and Implementation for Institutional Repositories

	Section 2
	Service Discovery Architecture and Protocol Design for Pervasive Computing
	A Software Engineering Framework for Context-Aware Service-Based Processes in Pervasive Environments
	High Level Definition of Event-Based Applications for Pervasive Systems
	A Methodology for UICC-Based Security Services in Pervasive Fixed Mobile Convergence Systems
	Community Computing

	Section 3
	How to Choose the Right Cloud
	Cloud As a Computer
	Principles, Methodology and Tools for Engineering Cloud Computing Systems
	QoS-Oriented Service Computing

	Compilation of References
	About the Contributors
	Index

