

������������	
��

��

����� ���
��

�	��	����	��
������	�����	������
����

Zoran Stojanovic
Delft University of Technology, The Netherlands

Ajantha Dahanayake
Delft University of Technology, The Netherlands

Hershey • London • Melbourne • Singapore
����� ��� �� � !"��#�$�

Acquisitions Editor: Mehdi Khosrow-Pour
Senior Managing Editor: Jan Travers
Managing Editor: Amanda Appicello
Development Editor: Michele Rossi
Copy Editor: April Schmidt
Typesetter: Jennifer Wetzel
Cover Design: Lisa Tosheff
Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 3313
Web site: http://www.eurospan.co.uk

Copyright © 2005 by Idea Group Inc. All rights reserved. No part of this book may be repro-
duced in any form or by any means, electronic or mechanical, including photocopying, without
written permission from the publisher.

 Library of Congress Cataloging-in-Publication Data

Service-oriented software system engineering : challenges and practices / Zoran Stojanovic and
Ajantha Dahanayake, editors.
 p. cm.
 Includes bibliographical references and index.
 ISBN 1-59140-426-6 (h/c) -- ISBN 1-59140-427-4 (s/c) -- ISBN 1-59140-428-2 (ebook)
 1. Software engineering. I. Stojanovic, Zoran, 1969- II. Dahanayake, Ajantha,
1954-
 QA76.758.S458 2004
 005.1--dc22
 2004021990

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in
this book are those of the authors, but not necessarily of the publisher.

������������	
�����

����
���
����	��	����	��

������	�����	������
����

%�&����
���	
�	
�

Preface .. vi

Section I: Core Service Concepts and Technologies

Chapter I
Technical Concepts of Service Orientation ...1

Humberto Cervantes, Laboratoire LSR Imag, France
Richard S. Hall, Laboratoire LSR Imag, France

Chapter II
Beyond Application-Oriented Software Engineering: Service-Oriented Software
Engineering (SOSE) ... 27

Jiehan Zhou, VTT Technical Research Centre of Finland, Embedded Software,
 Finland
Eila Niemelä, VTT Technical Research Centre of Finland, Embedded Software,
 Finland

Chapter III
Service Composition: Concepts, Techniques, Tools and Trends 48

Boualem Benatallah, University of New South Wales, Australia
Remco M. Dijkman, University of Twente, The Netherlands
Marlon Dumas, Queensland University of Technology, Australia
Zakaria Maamar, Zayed University, United Arab Emirates

Section II: Service-Oriented Architecture Design and Development

Chapter IV
UniFrame: A Unified Framework for Developing Service-Oriented, Component-Based
Distributed Software Systems .. 68

Andrew M. Olson, Indiana University Purdue University, USA
Rajeev R. Raje, Indiana University Purdue University, USA
Barrett R. Bryant, University of Alabama at Birmingham, USA
Carol C. Burt, University of Alabama at Birmingham, USA
Mikhail Auguston, Naval Postgraduate School, USA

Chapter V
Service-Oriented Design Process Using UML ... 88

Steve Latchem, Select Business Solutions Inc., Gloucester, UK
David Piper, Select Business Solutions Inc., Gloucester, UK

Chapter VI
Service-Oriented Computing and the Model-Driven Architecture 109

Giacomo Piccinelli, University College London, UK
James Skene, University College London, UK

Chapter VII
Service-Oriented Enterprise Architecture .. 132

Maarten W.A. Steen, Telematica Institute, The Netherlands
Patrick Strating, Telematica Institute, The Netherlands
Marc M. Lankhorst, Telematica Institute, The Netherlands
Hugo W.L. ter Doest, Telematica Institute, The Netherlands
Maria-Eugenia Iacob, Telematica Institute, The Netherlands

Chapter VIII
A Method for Formulating and Architecting Component- and Service-Oriented
Systems ... 155

Gerald Kotonya, Lancaster University, UK
John Hutchinson, Lancaster University, UK
Benoit Bloin, Lancaster University, UK

Chapter IX
Architecture, Specification, and Design of Service-Oriented Systems 182

Jaroslav Král, Charles University, Czech Republic
Michal Žemli ka, Charles University, Czech Republic

Chapter X
Service Patterns for Enterprise Information Systems ... 201

Constantinos Constantinides, Concordia University, Canada
George Roussos, University of London, UK

Section III: Mobile Services and Agents

Chapter XI
Concepts and Operations of Two Research Projects on Web Services and Mobile
Web Services ... 225

Zakaria Maamar, Zayed University, United Arab Emirates

Chapter XII
Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 247

Rohan Sen, Washington University in St. Louis, USA
Radu Handorean, Washington University in St. Louis, USA

č

Gruia-Catalin Roman, Washington University in St. Louis, USA
Christopher D. Gill, Washington University in St. Louis, USA

Chapter XIII
Service-Oriented Agents and Meta-Model Driven Implementation 270

Yinsheng Li, Fudan University, China
Hamada Ghenniwa, University of West Ontario, Canada
Weiming Shen, Fudan University, China

Section IV: Security in Service-Oriented Systems

Chapter XIV
Security in Service-Oriented Architecture: Issues, Standards and Implementations 292

Srinivas Padmanabhuni, Software Engineering and Technology Labs,
 Infosys Technologies Limited, India
Hemant Adarkar, Ness Technologies, India

Chapter XV
A Service-Based Approach for RBAC and MAC Security 317

Charles E. Phillips, Jr., United States Military Academy, West Point, USA
Steven A. Demurjian, University of Connecticut, USA
Thuong N. Doan, University of Connecticut, USA
Keith H. Bessette, University of Connecticut, USA

Section V: Service-Orientation in Practice

Chapter XVI
Engineering a Service-Oriented Architecture in E-Government 340

Marijn Janssen, Delft University of Technology, The Netherlands

Chapter XVII
Web Services for Groupware .. 353

Schahram Dustdar, Vienna University of Technology, Austria
Harald Gall, University of Zurich, Switzerland
Roman Schmidt, Swiss Federal Institute of Technology, Lausanne, Switzerland

Chapter XVIII
Building an Online Security System with Web Services .. 371

Richard Yi Ren Wu, University of Alberta, Canada
Mahesh Subramanium, Oregon State University, USA

About the Editors .. 398

About the Authors ... 399

Index .. 410

���
���

vi

Components and Web Services

Modern enterprises are caught in the flux of rapid and often unpredictable changes in
business and information technology (IT). New business demands caused by an
enterprise’s need to be competitive in the market require the immediate support of
advanced IT solutions. At the same time, new IT opportunities and achievements are
constantly emerging and must be rapidly adopted to support new and more effective
ways of conducting business. Therefore, it is crucial to provide effective business/IT
alignment in terms of producing high quality and flexible IT solutions within a short
time-to-market that exactly match business functionality needs and change as business
changes. During the last few years, there has been a growing consensus in the industry
that the way to create these adaptive, business-driven IT solutions is to use discrete
building blocks of software, which are based on industry-standard protocols and
interoperate across platforms and programming languages.
Component-based development (CBD) (Brown & Wallnau, 1998) and then Web ser-
vices (Barry, 2003) have been proposed as ways to build complex but adaptive and agile
enterprise information systems that provide effective inter- and intra-enterprise inte-
gration. The CBD platforms and technologies, such as CORBA Components, Sun’s
Enterprise Java Beans (EJB), and Microsoft’s COM+/.NET, are now de facto standards
in complex Web-based systems development. Further, a growing interest in Web ser-
vices has resulted in a number of industry initiatives to provide platform-independent
communication of software resources across the Internet (W3C, 2004). Basic elements
of the new Web services paradigm are the standards for interoperability — XML, SOAP,
WSDL and UDDI (Newcomer, 2002). On top of this basic interoperability protocol stack,
new languages and specifications for defining the composition of services to form real-
world business processes have emerged, such as Business Process Execution Lan-
guage for Web Services (BPEL4WS) (BPEL, 2003) and Web Service Choreography
Interface (WSCI) (Arkin et al., 2002).
Using this advanced technology, the Internet, once solely a repository of various kinds
of information, is now evolving into a provider of a variety of business services and
applications. Using Web services technology, organizations are now provided with a
way to expose their core business processes on the Internet as a collection of services.

vii

Customers and business partners are potentially able to invoke and retrieve these
services over the Internet and compose them as wished to achieve their business
goals. This idea of a software application as a service was recognized in the past (as in
Brown, 2000), but it can now be fully realized using the Web services technology for
systems interoperability (Newcomer, 2002). Web services can be considered the tech-
nological foundation for the service-oriented computing paradigm. The W3C’s Web
Services Architecture Working Group in its Web Services Glossary (2004) defines a
Web service as:

a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.

Is Technology Enough?

A common point for both CBD and Web services paradigms is that they are technology
led, that is, they were originally introduced through the new technology standards,
infrastructures, and tools. Although technology is essential in building complex IT
solutions from components and services, it is not sufficient on its own to support the
full extent of an enterprise’s business and IT requirements. Application functionality is
routinely “packaged” into components today; however, the essential design and de-
velopment methods and processes that enable application adaptability, widespread
reuse, and commercialization still have little acceptance (Stojanovic, Dahanayake &
Sol, 2004).
As using component middleware technology does not ensure that one will achieve the
promised benefits of the CBD approach, conversely, the CBD paradigm can be success-
fully employed without using component middleware technology. A similar issue now
arises in the case of Web services. The standards and protocols for Web services are
well established and increasingly used. However, developing a coherent set of design
and process principles for engineering service-oriented solutions throughout the de-
velopment life cycle, which is crucial for achieving the full benefits of service orienta-
tion, is still at an immature stage (Kaye, 2003). As there is more to CBD than packaging
software into Java Beans or .NET components, there is more to service orientation than
simply rendering interfaces of software entities as Web services.
Another critical issue in today’s enterprise IT developments is that the available set of
technologies for components, Web services and business process automation, orches-
tration and integration is complex and constantly evolving. This can cause problems
whenever new versions of technology standards and interoperability protocols appear.
Moreover, developing systems directly using these technologies is tedious, complex,
and error prone.

viii

Therefore, the real challenge lies not just in new technology but also in how best to
make use of the available technology through systems engineering principles and prac-
tices, from service identification and specification to service deployment. Applying
well-defined design and engineering methods and techniques ensures that we do not
end up with a random collection of unusable, although technologically feasible, ser-
vices. Equally important is a conceptual service model that provides a precise defini-
tion of the underlying concepts used in service-oriented computing including service,
component, interface, collaboration, port, and so forth.
Further, we need to develop systems to a higher level of abstraction that make a devel-
opment process more productive, flexible, and understandable for business people
who define requirements, use the solutions, and decide about future strategies. There
is a strong need for service-oriented modeling, design and development methods, and
techniques that will map high-level business requirements to software technology imple-
mentation and bridge the gap between business and IT (Apperly et al., 2003; Atkinson
et al., 2002; Herzum & Sims, 2000). To make components and Web services a prominent
and mainstream paradigm in building enterprise-scale information systems, well-de-
fined engineering principles and techniques are required to maximize the benefits of
service orientation and plug-and-play mechanisms.
The idea of software systems as the collaboration and coordination of components that
provide services represents an interesting perspective with a number of new software
engineering challenges. Service-oriented software engineering (SOSE) is concerned
with theories, principles, methods, and tools for building enterprise-scale solutions as
the collaboration of loosely-coupled application services that provide particular busi-
ness functionality and are distributed within and across organizational boundaries.
Important topics that need to be addressed within the SOSE paradigm include but are
not limited to:
• precise definitions of service-related concepts that are applicable throughout the

development life cycle, specified at the level of analysis and design, and success-
fully refined into implementation and deployment artifacts.

• standard modeling and specification notations for representing service concepts
in graphical, human-understandable, and/or machine-readable formats.

• development methods and processes based on service-oriented and component-
based ways of thinking, organized around the concepts of service and compo-
nent.

• the way of designing the service-oriented enterprise system architecture from
various perspectives and viewpoints that reflect the needs of various stakehold-
ers.

• deployment of the service-oriented system architecture onto available technol-
ogy infrastructure.

Engineering service-oriented solutions need to address the concerns of both the ser-
vice provider and the service consumer. From the service provider perspective, it is
important to define what component of the system can be exposed as a service, offering
a business value to the consumer, and at the same time is, as much as possible, decoupled

ix

from the rest of the system. From the service consumer perspective, it is important to
determine what part of the system logical architecture can be realized by invoking a
particular service over the Web and how that part can interface with the existing
organization’s system services and components. Balancing the needs of service pro-
vider and consumer is crucial to achieving the true benefits of service orientation for
business agility and inter- and intra-enterprise integration.

Principles of Service Orientation

The central point of the SOSE paradigm is the concept of service, as well as the strategy
to expose system capabilities to consumers as services through the Service-Oriented
Architecture (SOA). In this respect, the Web services technology is just a way to
efficiently realize the concepts of services and SOA. The service forms a contractual
agreement between provider and consumer. Besides a common interface that defines
operation signatures, a service can also have attributes of its own, such as service level
agreement, policies, dependencies, and so forth.
A service interface defines a contract and the parties’ obligations precisely and, thus,
allows the consumer to use the functionality offered without being aware of the under-
lying implementation. As defined by the W3C’s Web Services Glossary (2004), a ser-
vice is “an abstract resource that represents a capability of performing tasks that form
a coherent functionality from the point of view of providers entities and requesters
entities. To be used, a service must be realized by a concrete provider agent.” There are
actually a number of parallels between service orientation and classical CBD. Like
components, services represent natural building blocks that allow us to organize the
capabilities of a system in ways that are meaningful to the user of the system. Similar to
components, a service combines information and behavior, hides the internal workings
from the outside perspective, and presents a relatively simple interface to the environ-
ment (Kaye, 2003). When using Web services technology, the component itself is not
acquired in the traditional manner of taking a copy and executing it in the house but
rather just the services provided by the component are consumed via the Web while the
component executes its function at a single location, available to all who subscribe
(Newcomer, 2002).
In its essence, SOA is a way of designing a software system to provide services to
either end-user applications or to other services through published and discoverable
interfaces (Kaye, 2003). As defined by the W3C’s Web Services Glossary (2004), SOA is
“a set of components which can be invoked and whose interfaces descriptions can be
published and discovered.” A basis of SOA is the concept of service as a functional
representation of a real-world business activity that is meaningful to the end user and
encapsulated in a software solution. Using the analogy between the concept of service
and business process, SOA provides for loosely coupled services to be orchestrated
into business processes that support business goals. Initiatives similar to SOA were
proposed in the past, such as CORBA or Microsoft’s DCOM. What is new about SOA
is that it relies on universally accepted standards like XML and SOAP to provide broad
interoperability among different vendors’ solutions, and it is based on the proven
component-based design principles and techniques.

x

The power and flexibility that SOA potentially offer to an enterprise are substantial. If
an enterprise abstracts its IT infrastructure and functionality in the form of coarse-
grained services that offer clear business value, then the consumers of those services
can access them independent of their underlying technology and use them to achieve
business goals. In essence, services and SOA act as a layer of abstraction between the
business and the technology. The dynamic relationships between the needs of the
business and the available services, on the one hand, and the technology foundation
that realizes and supports the services, on the other hand, must be well understood and
designed. Therefore, one of the main tasks of new service-oriented software engineer-
ing concepts and principles is to help achieve effective business-IT alignment based
on the concept of service as a common ground.

Related Topics

In today’s world of continually changing business and IT, it is crucial to decide what
strategy and process to follow in engineering complex service-oriented software sys-
tems. In the last few years, two increasingly important movements in IT, corresponding
to fundamentally different philosophies about how software systems should be built,
have emerged. The first, model-driven development, tries to preserve investments in
building systems against constantly changing technology solutions by creating formal
architecture models that can be mapped to whatever software technology. The Object
Management Group (OMG) has proposed Model Driven Architecture (MDA) as an
attempt to raise the level of abstraction in software development as a well-established
trend in computing (Frankel, 2003). MDA separates the concerns of the business speci-
fication from the details of the technology implementation. System development using
the MDA approach is organized around a set of models by imposing a series of trans-
formations between the models (OMG-MDA, 2003). A formal foundation for describing
the models is the set of OMG standards — UML, MOF, XMI, CWM (specifications
available at http://www.omg.org) — that facilitate meaningful integration and transfor-
mation among the models, and are the basis for automation through tools. New devel-
opments that support the MDA paradigm are the standard UML profile for Enterprise
Distributed Object Computing (EDOC) and the new major revision of the UML, version
2.0 (OMG-UML, 2004). These standard specifications propose new concepts and ideas
regarding the way components are defined at the logical level, making a solid founda-
tion for modeling and design of services and service-oriented applications.
Parallel to the MDA initiative, the last few years have witnessed considerable interest
in the IT community for eXtreme Programming (XP) and other methodologies for Agile
Development (AD) (Cockburn, 2002). Agile processes are focused on early, fast, and
frequent production of working code using fast iterations and small increments. The
processes are characterized by intensive communication between participants, rapid
feedback, simple design, and frequent testing. Proponents of AD see the software code
as the main deliverable, while the roles of system analysis, design and documentation
in software development, and maintenance are de-emphasized and, to some extent,
ignored.

xi

While both AD and MDA claim to address the challenges of high change rates, short
time-to-market, increased return-on-investment, and high quality software, it is obvi-
ous that their proposed solutions are actually very dissimilar. MDA assumes mainly
fixed user requirements and suggests creating formal models around them, whereas AD
handles constantly changing user requirements using fast and frequent prototyping. It
is challenging to determine in what ways the principles and practices of both develop-
ment paradigms can be combined in engineering service-oriented systems to gain the
potential benefits of both approaches.
Another interesting development related to the SOSE paradigm is the Business Process
Management Initiative (BPMI) (http://www.bpmi.org) the main purpose of which is to
define ways for enabling computer-assisted management of business processes. The
BPMI has issued the specification of Business Process Modeling Language (BPML),
Business Process Modeling Notation (BPMN), and Business Process Query Language
(BPQL) that provide for the management of different aspects of e-business processes
that span multiple applications, corporate departments, and business partners over the
Internet. BPML has a lot in common with and builds on the foundations of the Web
services composition languages such as BPEL and WSCI. Moreover, BPMN is very
much related to the new diagram set of UML 2.0 that represents action semantics.
Hence, some joint efforts towards unified standard specifications and notations can be
expected in the near future.
The new developments in the field of Web services have provided a lot of possibilities
but have also introduced new challenges. Novel mobile technologies provide new
channels for providing and consuming services in a wireless setting, anytime and
anywhere. Furthermore, for Web services to become a reality across enterprises, secu-
rity and trust issues in providing and consuming services across the Web must be
settled at a much higher level. The earlier dilemma of a software developer regarding
reusing software and how far to trust somebody else’s software code is now largely
substituted by the dilemma of a business analyst regarding how far to trust somebody
else’s services.

Summary

The purpose of this book is to survey the main concepts, principles, practices, and
challenges of the new paradigm of service-oriented software engineering (SOSE). The
series of papers included in this book show the wide variety of perspectives on SOSE
and illustrate the wide-ranging impact that SOSE can have on how complex enterprise
information systems are built today and will be built in the future, when attempting to
hit the moving target of continuously changing business needs.
As illustrated throughout this book, the new SOSE paradigm can provide a meeting
point between business process management and automation on the one side and
component-based software engineering on the other, bridging the gap between busi-
ness and IT. The aim of this book is to disseminate the research results and best
practices from researchers and practitioners interested in and working on different
aspects of SOSE, setting up a new agenda for the exciting world of services.

xii

One of the strengths of this book is its international flavor. The authors of the various
chapters come from various countries worldwide. This gives the reader a range of
perspectives on the issues taken from different world viewpoints. Although a number
of books about Web services have already been published, this book is one of the first
that goes beyond the pure technology level of the Web services protocols. The book
presents innovative and effective service-oriented software engineering concepts, prin-
ciples, techniques, and practices that can be followed throughout the development life
cycle in order to fulfill the great promises of service orientation. We believe that this
book can serve as a starting point for new, interesting, and challenging developments
in the exciting area of SOSE.

Organization of the Book

The book consists of 18 chapters, organized into five sections. A brief description of
each of the chapters follows.
The first section of the book presents core service-oriented concepts and technologies
as a basis for the rest of the book.
Cervantes and Hall (Chapter I) present service-oriented concepts from a technological
perspective to position them with respect to those present in component orientation
and to illustrate how they are realized. The technical presentation is followed by a
survey of several service-oriented platform technologies including CORBA Traders,
JavaBeans Context, Jini, OSGi, and Web services.
Zhou and Niemelä (Chapter II) introduce service-oriented software engineering as an
advanced software development. The authors present SOSE software development
methodology involving the main processes of service extracting, middard, circulation,
evaluation, and evolution with the middard service fundamental.
Benatallah et al. (Chapter III) provide an overview of the area of service composition.
The chapter presents a critical view into a number of languages, standardization ef-
forts, and tools related to service composition and classifies them in terms of the
concepts and techniques that they incorporate or support. It discusses some trends in
service-oriented software systems engineering pertaining to service composition.
The second section of the book deals with different aspects of service-oriented model-
ing, architecture, design, and development.
Olson et al. (Chapter IV) introduce the UniFrame approach for creating high quality
computing systems from heterogeneous components distributed over a network. Their
chapter describes how this approach employs a unifying framework for specifying
such systems to unite the concepts of service-oriented architectures, a component-
based software engineering methodology, and a mechanism for automatically finding
components on a network to assemble a specified system.
Latchem and Piper (Chapter V) present a worked example of a design process for ser-
vice-oriented architecture. The process utilizes the industry standard modeling nota-
tion, the Unified Modeling Language (UML) from the Object Management Group, to
present a practical design for services.

xiii

Piccinelli and Skene (Chapter VI) introduce the model-driven architecture (MDA) con-
cept and technologies to the service-oriented computing (SOC) paradigm and employs
these technologies to enhance support for SOC through the definition of a domain-
specific modeling language for electronic services. The language is defined as an ex-
tension of the Unified Modeling Language (UML).
Steen et al. (Chapter VII) study the relevance and impact of the service concept and
service orientation to the discipline of enterprise architecture. This chapter argues that
a service-oriented approach to enterprise architecture provides better handles for ar-
chitectural alignment and business and IT alignment, in particular.
Kotonya et al. (Chapter VIII) present a negotiation-driven method that can be used to
formulate and design component- and service-oriented systems. The software engi-
neering method is capable of balancing aspects of requirements with business con-
cerns and the architectural assumptions and capabilities embodied in software compo-
nents and services.

Král and Žemlička (Chapter IX) discuss the crucial elements of the requirements speci-
fication of service-oriented software systems as well as the relation between the re-
quirements specification and the architecture of these systems. The chapter shows
that there are several variants of service-oriented software systems having different
application domains, user properties, development processes, and software engineer-
ing properties.
Constantinides and Roussos (Chapter X) introduce service patterns for service-ori-
ented enterprise systems. The authors argue that the deployment of such patterns
would be of considerable value as a best-practice guide for practitioners and a starting
point for further research in their role in software engineering. A comprehensive cata-
log of service patterns is included in this chapter as well as recommendations on their
implementation and a practical usage scenario.
The third section of the book is concerned with service-oriented computing in the
wireless and mobile settings and agent-based services.
Maamar (Chapter XI) argues that enacting Web services from mobile devices and pos-
sibly downloading these Web services for execution on mobile devices are avenues
that academia and industry communities are pursuing. The author presents two re-
search initiatives carried out at Zayed University. SAMOS stands for Software Agents
for MObile Services, and SASC stands for Software Agents for Service Composition.
Sen et al. (Chapter XII) introduce an ad hoc wireless network as a dynamic environ-
ment, which exhibits transient interactions, decoupled computing, physical mobility of
hosts, and logical mobility of code. The authors examine the imperatives for a viable
service-oriented computing framework in ad hoc wireless settings.
Li et al. (Chapter XIII) propose service-oriented agents (SOAs) to unify Web services
and software agents. Web services features can be well realized through introducing
sophisticated software modeling and interaction behaviors of software agents. A pro-
totype of the proposed SOAs framework has been implemented.
The fourth section of the book deals with an important topic of security in engineering
service-oriented systems, which is an essential prerequisite for wide use of services
across the Web.

Padmanabhuni and Adarkar (Chapter XIV) examine the security requirements in SOA
implementations and discuss the different solution mechanisms to address these re-
quirements. The chapter critically examines the crucial Web services security stan-
dards in different stages of adoption and standardization as well as today’s common
nonstandard security mechanisms of SOA implementations.
Phillips et al. (Chapter XV) examine the attainment of advanced security capabilities
using the middleware paradigm, namely, role-based access control (RBAC) and manda-
tory access control (MAC). The resulting security provides a robust collection of
services that is versatile and flexible and easily integrates into a distributed application
comprised of interacting legacy, COTS, GOTS, databases, servers, clients, and so forth.
The final, fifth section of the book presents service-oriented solutions in several appli-
cation domains that show the whole strength of the new service-oriented computing
paradigm in building today’s complex Web-based software systems.
Janssen (Chapter XVI) presents the design of a service-oriented architecture in public
administration. A case study is conducted at the Ministry of Justice, and a service-
oriented architecture is designed, implemented, and evaluated based on a number of
quality requirements. This case study shows the feasibility replacing functionality
formerly offered by legacy systems, limitations of current technology, and promises of
applying service orientation successfully in complex domains, such as e-government.
Dustdar et al. (Chapter XVII) present a sound and flexible architecture for gluing to-
gether various Groupware systems using Web services technologies. The chapter pre-
sents a framework consisting of three levels of Web services for Groupware support, a
novel Web services management and configuration architecture for integrating various
Groupware systems, and a preliminary proof-of-concept implementation.
Wu and Subramanium (Chapter XVIII) present a case study where Web services are
used to build a user-centric online security system. It explores complicated technical
challenges encountered with the use of the Web services and online security technol-
ogy. The authors argue that their practical experiences and findings can provide more
insight on how the online security system can be built in a user-centric, instead of
vendor-centric, way by using Web services on top of conventional software engineer-
ing processes.

References

Apperly, H. et al. (2003). Service- and component-based development: Using the select
perspective and UML. Boston: Addison-Wesley.

Arkin, A. et al. (Eds.). (2002). Web Service Choreography Interface (WSCI) 1.0. Re-
trieved August 2, 2004: http://www.w3.org/TR/wsci/

Atkinson, C. et al. (2002). Component-based product line engineering with UML. Bos-
ton: Addison-Wesley.

Barry, D. K. (2003). Web services and service-oriented architectures: The savvy
manager’s guide. San Francisco: Morgan Kaufmann.

xiv

BPEL. (2003). Business process execution language for Web services version 1.1. Re-
trieved August 2, 2004: http://www-106.ibm.com/developerworks/library/ws-bpel

Brown, A.W. (2000). Large-scale component-based development. Indianapolis, IN:
Prentice Hall PTR.

Brown, A.W., & Wallnau, K.C. (1998). The current state of CBSE. IEEE Software, 15(5),
37-46.

Cockburn, A. (2002). Agile software development. Boston: Addison-Wesley.
Frankel, D. S. (2003). Model driven architecture: Applying MDA to enterprise comput-

ing. Indianapolis, IN: Wiley.
Herzum, P., & Sims, O. (2000). Business component factory: A comprehensive overview

of component-based development for the enterprise. Indianapolis, IN: Wiley.
Kaye , D. (2003). Loosely coupled: The missing pieces of Web services. Kentfield, CA:

RDS Press.
Newcomer, E. (2002). Understanding Web services: XML, WSDL, SOAP and UDDI.

Boston: Addison-Wesley.
OMG-MDA (2003). Model driven architecture. Retrieved August 2, 2004: http://

www.omg.org/mda/
OMG-UML (2004). UML™ resource page. Retrieved August 2, 2004: http://www.uml.org/
Stojanovic, Z., Dahanayake, A., & Sol, H. (2004). An evaluation framework for compo-

nent-based and service-oriented system development methodologies. In K. Siau
(Ed.), Advanced topics in database research, volume 3 (pp. 45-69). Hershey, PA:
Idea Group.

W3C (2004). W3C World Wide Web consortium. XML, SOAP, WSDL specifications.
Retrieved August 2, 2004: http://www.w3c.org/

W3C Web Services Glossary. (2004). W3C group note. Retrieved August 2, 2004: http:/
/www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

xv

We would like to acknowledge the help of all involved in the collation and review
process of the book without whose support the project could not have been satisfacto-
rily completed. Obviously, in any project of this size, it is impossible to remember, let
alone mention, everyone who had a hand in this work becoming what it is today.
First, we wish to thank all of the authors. They deserve the greatest credit because their
contributions were essential, giving us great material with which to work. It was a
wonderful experience to work with them, to read their contributions, and to discuss the
book’s overall objectives and particular ideas. Most of the authors of chapters in-
cluded in this book also served as referees for articles written by other authors. Thanks
go to all those who assisted us in the reviewing process by providing constructive and
comprehensive reviews.
Staff members of Systems Engineering and Information & Communication Technology
groups at the Faculty of Technology, Policy and Management at Delft University of
Technology were critical in creating this final product. Their support was vital in achiev-
ing what we hope is a well-edited publication.
A special note of thanks goes to all the staff at Idea Group Inc., whose contributions
throughout the whole process, from inception of the initial idea to final publication,
have been invaluable. In particular, we thank Michele Rossi who continuously prodded
via e-mail to keep the project on schedule and Mehdi Khosrow-Pour whose enthusiasm
motivated us to accept the invitation to take on this project.
Finally, we wish to express our gratitude to our families for their unfailing patience,
support, and love. Our thanks to all these people!

Zoran Stojanovic & Ajantha Dahanayake
Delft, The Netherlands
2004

xvi

��'	��������	
�

Section I

Core Service Concepts
and Technologies

Technical Concepts of Service Orientation 1

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter I

Technical Concepts of
Service Orientation

Humberto Cervantes
Laboratoire LSR Imag, France

Richard S. Hall
Laboratoire LSR Imag, France

Abstract

This chapter presents service-oriented concepts from a technological perspective.
Before delving into service orientation, concepts in component orientation are
introduced for a point of reference. After, service orientation is introduced via the
service-oriented interaction pattern and the entities that participate in it, followed by
a discussion of how these entities and service orientation, in general, relate to
component orientation. The technical presentation is followed by a survey of several
service-oriented platform technologies, including: CORBA Traders, JavaBeans Context,
Jini, OSGi, and Web services. The purpose of this chapter is to present service-oriented
concepts from a technological perspective, position them with respect to those present
in component orientation, and illustrate how they are realized.

Introduction

Service orientation is a trend in software engineering that promotes the construction of
applications based on entities called services. The notion of a service is, however, not
concretely defined and can represent different concepts to different stakeholders. From
a coarse-grained point of view, services are activities that are realized by an application,

2 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

machine, or human being. While this point of view is helpful (for example when modeling
an enterprise), it is somewhat distant from application development concepts, where a
service is a reusable building block that offers a particular functionality. In this context,
the term reusable means that the same service can be used to construct multiple
applications. The notion of reusability evokes similarities to component orientation,
which is another software development approach that also promotes the idea of
constructing applications from the assembly of reusable building blocks called compo-
nents (Meijler & Nierstrasz, 1997). Both service and component orientation share a
common development model where building block development and assembly are
performed by different actors and can take place at different locations (that is, different
enterprises). Service orientation focuses on other aspects, though, such as the support
for dynamic discovery, that are generally not explicit considerations of component
orientation.
This chapter presents service orientation from a more technical, fine-grained point of
view. It starts by briefly presenting concepts associated with component orientation.
Following this, the concepts of service orientation are discussed and then compared to
those of component orientation. Finally, a set of technologies that support the service-
oriented approach are surveyed. The surveyed technologies include CORBA Traders
(Stratton, 1998), JavaBeans Context (Sun Microsystems, 1998), Jini (Arnold, O’Sullivan,
Scheifler, Waldo & Wolrath, 1999), Open Services Gateway Initiative framework (OSGi)
(Open Services Gateway Initiative, 2003), and Web services (Curbera, Nagy &
Weerawarana, 2001). The chapter concludes with a discussion about the ideas contained
herein.

Component Orientation

This section presents the concepts of component orientation based on concepts present
in a series of component technologies, which include JavaBeans (Sun Microsystems,
1997), Microsoft’s Component Object Model (COM) (Box, 1998), Enterprise Java Beans
(EJB) (Sun Microsystems, 2001), and the CORBA Component Model (CCM) (Object
Management Group, 2003).

Terminology

Although there is no universal agreement on a definition for the term component, the
definition formulated by Szyperski (1998) is widely referenced in literature:

A software component is a binary unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third parties.

Technical Concepts of Service Orientation 3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

This definition contains several important concepts that characterize a component. In the
context of this chapter, however, this definition is refined by specifying that a
component can be instantiated to produce component instances and is independently
delivered and deployed in a component package. A component model defines a set of
characteristics regarding components, compositions, and their supporting execution
environment.

Component Elements

Component characteristics are realized by three different elements: components, compo-
nent instances, and component packages.

• Component: A component is similar to a class concept in object orientation in the
sense that instances can be created from it. To support composition, a component
exposes an external view that contains a set of functional interfaces that are
provided or required along with a set of configuration properties. Interfaces are
categorized as being functional since they only contain methods that are related
to the component’s functionality. The external view is implemented by a compo-
nent implementation that can expose a set of additional control interfaces and
deployment dependencies. Control interfaces enable the execution environment to
manage a component instance’s life cycle (this is discussed later), while deploy-
ment dependencies represent, for example, dependencies toward a particular
version of the execution environment or a needed resource.

• Component instance: A component instance is obtained from a component; in
object-oriented terms, it is equivalent to an object since it has a unique identifier
and may have modifiable state. A component instance is configured and connected
to other component instances inside a composition.

• Component package: A component package is a unit that allows components to
be delivered and deployed independently. The term independent refers to the fact
that the component package contains everything that is needed by the component
to function (for example, resources such as images, libraries, configuration files)
with the exception of anything that is declared as an explicit dependency (for
example, required functional interfaces).

Composition

In component orientation, applications are assembled from components and assembly
is achieved through component composition. A composition description is used during
execution to create, configure, and connect a set of component instances that form an
application. The fact that architectural information is located in the composition descrip-
tion and not inside the component’s code facilitates component reuse. Compositions can
be created in different ways: visually, in a dedicated environment such as the BeanBuilder
from Sun (Davidson, 2002), declaratively, through a language such as an Architecture

4 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Description Language (Clements, 1996), or imperatively, through languages such as
system or scripting languages (Ousterhout, 1998).

Execution

During execution, component instances are typically created and destroyed through
factories following an interaction pattern depicted in Figure 1. Factories decouple clients
from particular component implementations. Additionally, factories allow for different
instance creation policies. For example, an instance can be a singleton that is shared
among all clients or instances can be allocated from an instance pool on demand.
When a component instance is created, its life cycle is usually managed by a container
(Conan, Putrycz, Farcet & DeMiguel, 2001), which is an entity from the execution
environment that wraps a component instance. The container manages an instance by
invoking methods defined in the control interfaces following the inversion of control
pattern (Fowler, 2004). These control methods allow, for example, instance execution to
be suspended, instance state to be persisted, or instance to be reconfigured. An
application may also impose a set of nonfunctional requirements on its constituent
components; examples of such requirements include security, performance, or distribu-
tion. These requirements can be handled by the container on behalf of the components
by intercepting the calls made to the component instance.

:Client :ComponentFactory

create()

:ComponentInstance
create()

returnReference

interact

destroy(reference)

destroy()

Figure 1. Instance creation interaction pattern

Technical Concepts of Service Orientation 5

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Orientation

Although the popularity of service orientation has increased with the emergence of Web
services, service-oriented principles were present in the trading mechanisms of distrib-
uted systems, such as in the ODP trader (Indulska, Bearman & Raymond, 1993).
The following subsections present service-oriented concepts by defining the word
service, describing the service-oriented interaction pattern, presenting the elements that
constitute a service, and introducing the necessary execution environment to support
the service-oriented approach. The section concludes with a comparison to component
orientation.

Terminology

A service offers reusable functionality that is contractually defined in a service descrip-
tion, which contains some combination of syntactic, semantic, and behavioral informa-
tion. In service orientation, application assembly is based only on service descriptions;
the actual service providers are discovered and integrated into the application later,
usually prior to or during application execution. As a result, service orientation focuses
on how services are described in a way that supports the dynamic discovery of
appropriate services at run time (Burbeck, 2000). Service orientation promotes the idea
that a service requester is not tied to a particular provider; instead, service providers are
substitutable as long as they comply with the contract imposed by the service descrip-
tion. An important assumption in service orientation is that services may be dynamically
available, that is, their availability can vary continuously.

Service-Oriented Interaction Pattern

To support dynamic discovery, service orientation is based on an interaction pattern that
involves three different actors, depicted in Figure 2:

• Service provider: The service provider is responsible for supplying service objects
that implement service functionality.

• Service requester: The service requester is a client for a particular service.

• Service registry: The service registry is an intermediary between service request-
ers and service providers. The registry contains a set of service descriptions along
with references to service providers; it provides mechanisms for service publica-
tion, removal, and discovery. The set of service descriptions contained in the
service registry changes as services provided by service providers are published
and removed from the registry.

6 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The basic interaction pattern that characterizes service orientation is depicted in the
sequence diagram in Figure 3. This diagram shows a service provider that publishes a
service description in a service registry. A service requester further queries the service
registry to discover services based on a set of criteria relative to a service description.
If service providers that meet the criteria have been previously published, the service
registry returns the provider’s references to the service requester. In the case where
multiple answers are returned, the service requester may need to select a specific service
provider to which it will bind. When the service requester binds to the provider, a service
object is returned by the provider. Finally, when the service requester finishes interacting
with the service, the service object is either implicitly or explicitly released.

Service Description

As previously mentioned, the service description combines syntactic, semantic, and
behavioral information. The syntactic part of a service description is typically embodied
as a service interface, which is a set of operations that provide the functionality of the
service. A service interface defines a syntactic contract and also provides a limited level
of semantics from its operation names; for example, a method named print() in a printer
service interface. It is common that service-oriented technologies rely solely on syntactic
descriptions; this requires, however, that consensus or standards organizations define
the exact behavior of a service interface, which is then described in separate specification
documents that are intended for humans. This approach is potentially impractical, since
building consensus on every service interface is not always possible or desirable.
Much research exists in explicitly describing semantics. Approaches like the Semantic
Web (Berners-Lee, Hendler & Lassila, 2001) and OWL-S (OWL Services Coalition, 2003)
are investigating techniques for externally describing the semantics of content and Web
services. This leads to a separation between semantic and syntactical description, which

Service Registry

+publish(:ServiceDescription,:ServiceProvider)

+remove(:ServiceDescription,:ServiceProvider)

+discover(:ServiceDescription)

Service Provider

+bind():ServiceObject

+release(:ServiceObject)

Service Requester

bind0..* 0..*

publish/remove discover

Figure 2. Actors of the service-oriented interaction pattern

Technical Concepts of Service Orientation 7

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

is beneficial since it does not require consensus to discover that two services perform
the same or similar tasks, for example. This approach does, however, introduce the
possibility of syntactic mismatches if service discovery is based solely on semantics. For
instance, a requester may expect a particular service interface for printing but discovers
a service with a different one. Approaches such as Ponnenkanti and Fox (2003) address
this problem by constructing adapter chains from adapter repositories.

Service Object

The service object implements the service interface, and it is returned by a service
provider at the moment a service requester binds to the provider. Service objects are
created and released according to a set of policies. In service orientation, service
requesters have no knowledge about the policies followed by a service provider
when creating service objects during binding. Different service object creation
policies exist:

• Shared object: The service provider creates a single object that is returned to all
service requesters when they bind to the provider; the object is consequently
shared by all the requesters.

:ServiceProvider :ServiceRegistry :ServiceRequester

:remove(svcDescription,ref)

:ServiceObject

:discover(svcDescription)

filterProviders

returnProviderReferences
filterResults

:bind()

:create()

returnServiceObject

interactWithService

:release(objRef)

:destroy()

:publish(svcDescription,ref)

Figure 3. Service oriented interaction pattern

8 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Object pool: The service provider creates a certain number of service objects. A
different service object from the pool is returned to every requester as it binds to
the provider according to availability. Once a service object is released, it is
returned to the pool for reuse. In this situation, service objects are shared by the
requesters, but not concurrently, since two requesters that bind to the provider
never obtain a reference to the same object simultaneously. This policy is useful,
for example, when resources, such as memory, are limited or when service objects
represent a physical resource that is limited in quantity, such as a communications
port.

• One object per requester: A service object is created for each requester. If the same
requester is bound to the service provider several times, the requester always
obtains the same service object. This policy requires that the service requester be
associated with an identifier by the service provider at the time of binding. This
policy is useful, for example, when the service requester interacts with a remote
service object across multiple method calls (that is, a session) but does not maintain
a continuous connection to the service object, such as if communication is done
through a connectionless protocol such as HTTP.

• One object per binding: A different service object is created each time a service
requester is bound to the service provider.

The choice of the object creation policy is important when providing services that are
stateful. A stateful service is capable of maintaining state across several method calls
by the same client. The object pool and one object per requester creation policies are
adequate for stateful services. The shared object creation policy is not a particularly
good policy for stateful services, unless the intention is to explicitly share state among
all requesters. The one object per binding creation policy can be used for stateful
services, but this requires that the service requester is aware of the situation and only
binds to the service provider once and keeps the returned service object across all
interactions with the service. In contrast, all creation policies are adequate for stateless
services.
At the end of the interaction between a requester and a service, the requester must release
the service object. This step is necessary since the service provider may need to know
at which time the service object is not being used anymore to either destroy the service
object or to give it to another requester. Two different release policies can exist:

• Explicit: When release is explicit, the service requester explicitly invokes some
method that informs the service provider that its interaction with the service has
ended.

• Implicit: When release is implicit, the end of usage is determined via implicit means
such as garbage collection or lease expiration. The concept of leasing allows a
service provider to automatically release a service object from a service requester
unless the service requester renews the lease. This policy can be used, for example,
in parallel with an object pool creation policy to guarantee that after a certain
amount of time, service objects are released and returned to the pool.

Technical Concepts of Service Orientation 9

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Composition

Service composition represents the usage of a set of services to accomplish a particular
task. Service composition is often considered the responsibility of service requesters.
In practice, service composition is the incorporation of different services inside of an
application to perform some overall function, where the application plays the role of the
service requester. Such an application contains control and data flow that coordinates
service invocation and data transfer among the different services. The coordinating
application can be written in a standard programming language; however, there is a
strong tendency to favor the use of executable processes to write such applications. An
example of this is BPEL4WS (Andrews et al., 2003), which is used in the context of Web
services orchestration (Peltz, 2003).
A service composition is written in terms of service interfaces and is considered abstract
until execution time, when service providers are discovered and bound. Service compo-
sitions must handle issues relating to service discovery and service dynamics. With
respect to service discovery, these issues include service availability, requester-side
filtering (see next subsection), and lack of knowledge with regard to service object
creation policies. With respect to service dynamics, it is possible that a particular service
provider becomes unavailable while the coordinating application is executing. This
problem is addressed in Web services through transaction mechanisms that allow
rollback in case a service invocation fails. Recovery from a service departure can also be
achieved through self-adaptation techniques (Cervantes & Hall, 2003).

Execution

In service orientation, an execution environment provides two main mechanisms to
service providers and requesters that support the service-oriented interaction pattern.
The first mechanism is service registry access, which includes three main operations:

• Publish: Used by service providers to add a service description, along with a
reference to the service provider, to the service registry.

• Remove: Used by service providers to remove a previously published service
description from the service registry. In certain service-oriented technologies, the
removal of a service provider from the service registry requires that service objects
that the provider has created must be released by the requesters.

• Lookup: Used by service requesters to obtain references to service providers
present in the service registry. To obtain a service, a service requester sends criteria
to the registry that are used to select a set of service providers (registry-side
filtering); only service providers that match the criteria are returned. The final
selection of a specific service provider is left to the requester, which may need to
select a single service provider when multiple service providers match the supplied
criteria (requester-side filtering).

10 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To allow service requesters to be aware about changes in the services, the execution
environment provides a second mechanism which is notifications to signal service
changes. Through notifications, service requesters can know about changes in service
availability to be able to incorporate new services that become available or to stop using
services that become unavailable. Service notifications concern the following events:

• Service published: An event that occurs when a service is published in the registry.

• Service removed: An event that occurs when a service is removed from the registry.

• Service modified: An event that occurs when a service that is registered is modified
without being removed from the registry. A modification can happen, for example,
when the attributes that characterize the service are modified.

When the execution environment does not provide notification mechanisms, service
requesters can poll the registry periodically to know when services are published or
removed.

A Comparison of Service and
Component Orientation

This section summarizes and discusses the similarities and differences between the
concepts present in service and component orientation.

Summary

Table 1 summarizes the main similarities and differences that exist between service and
component orientation based on the discussion of the preceding sections. From this
table, different conclusions can be drawn:

• An important difference between the two approaches is integration time. In
component orientation, applications are assembled from building blocks that are
integrated at the time of assembly, while in service orientation integration occurs
prior to or during execution, since only service descriptions are available during
assembly.

• The focus of service orientation is on discovery, while the focus in component
orientation is on composition. This explains the fact that service orientation places
a stronger emphasis on service description and the separation between service
description and implementation.

• Service orientation is concerned with dynamic availability, while this is not the case
in component orientation. In general, component orientation is targeted toward the
construction of more static applications, where the hypothesis that components

Technical Concepts of Service Orientation 11

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

may exhibit dynamic availability is not explicitly present, although it may be
supported programmatically.

• Service composition favors the use of executable processes to compose services
while component orientation favors structural architecture description to com-
pose component instances.

• Component orientation gives more responsibility to the execution environment,
which covers aspects ranging from low-level deployment to high-level nonfunc-
tional activities. In contrast, service orientation does not explicitly consider low-
level activities, such as deployment, and high-level nonfunctional activities are

 Component Orientation Service Orientation

Development
model

- Building block development
separated from assembly.

- Assembly based on available
components.

- Building block development
separated from assembly.

- Assembly based on abstract service
descriptions.

Building
block

concept

- External view and
implementation not always
separated.

- Component instances created
from components. Components
are packaged to support
independent delivery and
deployment.

- Separation between service
description and implementation.

- Service providers create service
objects. Packaging is not taken into
account.

Composition - Concrete description that
defines how a set of component
instances are configured and
connected together.

- Dynamic availability (arrival
or departure of components
during execution) is not a
hypothesis.

- Tendency towards structural
architecture description.

- Abstract description based on
service description. Composition
becomes concrete during execution.

- Service availability and dynamism
need to be taken into account during
execution.

- Tendency toward use of executable
process descriptions.

Execution
environment

- Instance creation policy
responsibility of the clients.

- Life-cycle management
through control interfaces.

- Non-functional requirements
support.

- Deployment support.

- Service object creation policy
responsibility of service provider
and unknown to the requester.

- Service registry and notification
mechanisms.

Table 1. Component and service orientation characteristics

12 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

assumed to be provided by upper layers; for example, transactions are defined at
the composition level.

Discussion

It is possible to conclude that service and component orientation are two approaches
targeted toward different needs. Service orientation is adequate when the building
blocks that form an application exhibit dynamic availability and aspects such as
substitutability are important. Component orientation is adequate when applications are
assembled from building blocks that are available at the time of application assembly.
These two approaches are, however, complementary and can be used together in two
different ways.

• Components as service providers: Components are ideally suited to be service
providers. This approach allows aspects which are not considered in service
orientation, such as delivery and deployment, to be taken into account. This
approach is already followed by component models such as EJB, where certain
components can implement services accessible through the Web.

• Introduction of service-oriented concepts into component models: A different
approach is to introduce service-oriented concepts into component models. In
particular, the service-oriented interaction pattern could be used as a means to
connect component instances, which act as service providers and requesters. The
benefit of this approach is that it introduces support for late binding and dynamic
component availability (that is, the arrival or departure of component instances
during execution) to component models. This approach is explored in the service-
oriented component model of Cervantes and Hall (2003).

Survey of Service-Oriented Technologies

From the concepts of service orientation previously described, it is possible to establish
a list of characteristics that are useful for categorizing service-oriented platforms, which
are platforms that implement service-oriented principles. The characteristics are:

• Service description: the approach for describing services.

• Service publication: the operations provided by the service registry so that service
providers and requesters can publish and revoke services.

• Service discovery: the operations provided to service requesters to discover and
bind with service providers as well as registry-side filtering mechanisms.

• Service object creation policies: the policies used by a service provider when
creating service objects.

Technical Concepts of Service Orientation 13

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Service notifications: the notification mechanisms supported by the platform.

• Service release: the policies supported for releasing service objects.

The following subsections use these characteristics to describe the following service-
oriented technologies: CORBA Traders, JavaBeans Context, Jini, OSGi framework, and
Web services.

CORBA Trader

A CORBA Trader (Stratton, 1998) provides support for the service-oriented interaction
pattern in a CORBA environment. The trader belongs to a set of middleware services
defined in the CORBA specification (Object Management Group, 1995). The CORBA
Trader distinguishes itself from other service-oriented platforms by the fact that it
supports the creation of trader networks (called federations) that can increase the
number of answers that are returned for a service request; these trader networks can
continually evolve.
The following is a summary of the CORBA Trader’s service-oriented characteristics:

• Service description: In the CORBA Trader (Figure 4), a service description is
comprised of a reference to a service interface (described in IDL) along with a set
of attributes that characterize the service. The number of attributes in the descrip-
tion is fixed, but attributes can be marked as mandatory or optional and also
immutable or modifiable. Service descriptions must be published in a service
description repository before any service provider can publish provided services
of that type to the service registry.

• Service publication: The publish and revoke operations are named export and
withdraw, respectively. Service attributes are supplied when a service is published.

• Service discovery: The discovery operation is named query. This method supports
complex requests through a constraint over the properties declared in the service
description along with preferences that allow the ordering of responses from the
registry and policies targeted towards limiting the propagation of a request in a
trader federation. There is no explicit bind operation since the results returned by
the service registry contain references to the service objects.

• Service object creation policies: CORBA makes an explicit difference between the
publication of a shared object and the publication of a factory (called proxies) that
allow different creation policies to be implemented. To support factory registration,
a trader must implement a specific interface.

• Service notifications: No notifications are defined as part of the trader specifica-
tion.

14 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a) Service Description

interface PrinterService // service interface
{
 typedef unsigned long JobID;
 JobID print (in string data);
};

service PrinterServiceDescription { // service description
 interface PrinterService;
 mandatory property string building;
 property short floor;
 mandatory property string type;
 mandatory property string language;
 property string name;
};

b) Publication

Property[] props = new Property[5];
props[0]="Laboratory";
props[1]=(short)3;
props[2]="Color";
props[3]="Postscript";
props[4]="LabPrinter";
String id = reg.export(printer, "PrinterService", props);

c) Removal

reg.withdraw(id);

d) Discovery

lookup.query("PrinterService",
 "((color == 'black') and
 (language == 'postscript'))", // Constraint
 "min (floor)", // Answer ordering
 policies,
 desiredProps,
 20, // Max answers
 servicerefs, // Results
 refsiterator, limits);

e) Binding

Offer:
 building = '36'
 color = 'black'
 floor = 2
 language = 'postscript'
 Reference: IOR:00000000002449444c3a6f6d672e6f7 ...

No binding operation since the result includes a reference to a
remote object

Figure 4. CORBA Trader example

Technical Concepts of Service Orientation 15

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Service release: The service requester release the service object explicitly through
the release method.

JavaBeans Context

The concept of JavaBeans Context was introduced in a subsequent specification to the
original JavaBeans component model (Sun Microsystems, 1998). This concept provides
a means to group JavaBeans component instances into execution contexts (which can
themselves be organized hierarchically) and to allow instances to obtain services from
the context at run time.
The application domain for this platform concerns nondistributed applications that are
assembled visually and are user oriented (meaning that they normally support
interaction through a user interface). In JavaBeans Context, only one service
provider for each service can be present in the context (that is, the service registry)
at any given moment.
The following is a summary of JavaBeans Context’s service-oriented characteris-
tics:

• Service description: In JavaBeans Context (Figure 5), a service is described as a
Java class or interface. Since only one service provider per service can be
registered, there is no support for properties that allow service providers to be
differentiated.

• Service publication: The publish and revoke operations are named addService
and revokeService, respectively. When a service is published, only the name of
the service and a reference to the service provider is submitted to the service
registry.

• Service discovery: JavaBeans Context offers an operation, called hasService, to
allow a service requester to test for the availability of a service and an operation,
called getService, to bind a service requester with the service provider. During
binding, a client can give initialization parameters to the service and, in addition,
the service requester is automatically registered to receive notifications concern-
ing the departure of the service.

• Service object creation policies: A service provider must implement a method
called getService that receives, among other things, a reference to the service
requester. This allows different creation policies to be implemented.

• Service notifications: JavaBeans Context supports the registration of listeners
that receive events announcing either the arrival (serviceAvailable) or departure
of a service (serviceRevoked).

• Service release: Service requesters must free the service objects explicitly.

16 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Jini

Jini (Arnold et al., 1999) is a distributed service platform defined by Sun that shares
several concepts with the CORBA Trader platform. Jini is a Java technology that
leverages the capability of the Java platform to dynamically load code from the network.
Thanks to this, a service object is sent to the same location as the service requester,
although distribution is possible if the object received by the requester plays the role of
a proxy. This characteristic differentiates Jini from the CORBA Traders where commu-
nication between service requesters and the service object is always done remotely. Jini
explicitly supports lease policies for service publication and removal. Another charac-
teristic of Jini is that service requesters and providers must initially locate a registry to
be able to initiate service discovery. A registry may be known from a fixed address, or

a) Service Description

interface PrinterService
{
 public long print(String data);
};

b) Publication

BeanContextServiceProvider provider = new
PostscriptPrinterProvider();

beancontext.addService(PrinterService.class,printerprovider);

c) Removal

boolean revokeNow = true; // must service be freed immediately?

beancontext.revokeService(PrinterService.class, printerprovider,
revokeNow);

d) Discovery

//tester présence du service
if(beancontext.hasService(PrinterService.class)==true) {

e) Binding

Object service = beancontext.getService(
 child, //bean instance to service request
 child, //service requester
 PrinterService.class,
 paramsConfig, //configuration parameters
 child //listener to service removal events
);
 ((PrinterService)service).print(data);
}

Figure 5. JavaBeans Context example

Technical Concepts of Service Orientation 17

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

it can be discovered from a request that is broadcast. Jini services are organized into
groups, and a particular service registry can contain a particular group of services. Even
though Jini supports the existence of multiple service registries, it does not offer
mechanisms that allow registries to delegate service requests; instead, service providers
must publish their service offers into multiple registries.
The following is a summary of Jini’s service-oriented characteristics:

• Service description: In Jini (Figure 6), a service is described as a Java interface with
an arbitrary number of attributes, which are subclasses of the Entry class.

• Service publication: Service publishing is done through the register method. This

a) Service Description

interface PrinterService extends Remote
{
 public long print(String data) throws RemoteException;
};

b) Publication

ServiceRegistrar reg = findRegistry(); // find the registry

Entry entries[]={printerType,resolution,...}; // attributes

ServiceItem printsvc = new ServiceItem(
 null, // service id
 serviceObject,// serializable object
 entries); // attributes
ServiceRegistration svcreg = reg.register(registration,
 1000000); // lease time (ms)

c) Removal

Lease expiration or:

Lease lease = svcreg.getLease();
lease.cancel();

d) Discovery

Class svcInterfaces []={PrinterService.class};
Entry entries[]={printerType};

ServiceTemplate template = new ServiceTemplate(null, svcInterfaces,
entries);
ServiceMatches matches = reg.lookup(template,3); // 3 max

e) Binding

if(matches.totalMatches>0)
{
 ((PrinterService)matches.items[0]).print(data);
}

Figure 6. Jini example

18 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

method puts the service in the service registry which grants a lease for the
registration. Before the lease expires, the service provider must renew it to avoid
the removal of its service from the service registry. To revoke a service that has been
published, the service provider can wait for the lease to expire, or it can force its
early expiration.

• Service discovery: Service discovery is done through a method named lookup that
receives a maximum number of answers that the registry should return. Jini does
not support sophisticated registry-side filtering of service providers. The criteria
used to determine if a service matches with a request is that the service interfaces
match with those that were requested and that the attributes sent by the requester
are present and equal to those in the service description.

• Service object creation policies: During service publication, the service provider
includes a reference to the service object and this object is copied into the registry.
When a requester obtains an answer from the registry, it also obtains a copy of the
service object. By default, the creation policy is one object per binding; however,
if the service object plays the role of a proxy for a remote object, the creation policy
becomes shared object since all of the service requesters interact with the same
remote object.

• Service notifications: Jini provides an asynchronous notification mechanism to
inform service requesters about service events. These events include service
publication, revocation, and modification. To receive notifications, a service
requester must subscribe to events produced by the registry.

• Service release: There is no explicit service object release mechanism; instead, this
is accomplished through garbage collection.

OSGi

The Open Services Gateway Initiative (OSGi) (Open Services Gateway Initiative, 2003)
is an independent, nonprofit corporation working to define and promote open specifi-
cations for the delivery of managed services to networks in homes, cars, and other types
of networked environments. The OSGi specification defines a non-distributed Java
service platform that provides mechanisms to deploy service providers and requesters
inside the platform (called the framework). In OSGi, services are delivered and deployed
in a logical and physical unit called a bundle. Physically, a bundle corresponds to a JAR
file that contains code and resources (that is, images, libraries, and so forth); logically,
a bundle corresponds to a service provider and/or requester. The framework provides
administration mechanisms to install, activate, deactivate, update, and remove physical
bundles. The activation or deactivation of a physical bundle results in the activation or
deactivation of the corresponding logical bundle. When the logical bundle is active, it
can publish or discover services and bind to services provided by other bundles through
a service registry provided by the platform. In OSGi, the presence of a service in the
service registry dictates the valid lifetime of the service objects; that is, the service
objects are considered unusable once the service is removed from the registry.

Technical Concepts of Service Orientation 19

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following is a summary of OSGi framework’s service-oriented characteristics:

• Service description: In OSGi (Figure 7), a service is described as a Java class or
interface along with a variable number of attributes that are name-value pairs.
Although these attributes are not specified inside the interface, they are usually
defined in the service interface documentation.

• Service publication: The publish operation is called registerService. This method
receives the name of a service along with the service object and a dictionary of
attributes. When a service is registered, the registry returns a reference that is used
to revoke the service from the registry through the unregister operation.

Figure 7. OSGi example

a) Service Description

interface PrinterService
{
 public long print(String data);
};

b) Publication

// service implementation
class PSPrinter implements PrinterService, Configurable
{...}

PrinterService printersvc = new PSPrinter();
Dictionary props = new Dictionary();
props.put("printertype","Postscript");
props.put("color","true");

ServiceRegistration reg = bundlecontext.registerService(
 PrinterService.class.getName(), // Interface name
 printersvc, // Service object
 props); // Attributes

c) Removal

reg.unregister();

d) Discovery

ServiceReferences refs[]=bundlecontext.getServiceReferences(
 PrinterService.class.getName(),
 "(&(printertype=Postscript)(color=*))" //filter
);

if(refs!=null){
 PrinterService printer
 =(PrinterService)bundlecontext.getService(refs[0]);

 if(printer instanceof Configurable)
 {...configure the service...}

 printer.print(data);
}

e) Release

bundlecontext.ungetService(refs[0]);

20 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Service discovery: Service discovery is done through the getServiceReferences
method that returns a set of objects that represents references to service providers.
The discovery method receives a string that contains a filter in LDAP (Lightweight
Directory Access Protocol) query syntax that allows the registry to perform
registry-side filtering based on the attributes provided during publication. Binding
with a service provider is done explicitly through a method called getService.

• Service object creation policies: OSGi supports two different policies regarding
service object creation, shared object and one object per requester. To implement
the latter policy, a ServiceFactory object must be used when registering the
service. This object is a factory that is responsible for creating service object
instances that are specific to each requester. OSGi considers all requests that
originate from the same physical bundle as belonging to the same requester, and
the service factory automatically receives an identifier corresponding to the bundle
from which the request originated.

• Service notifications: OSGi provides a service notification mechanism for service
requesters using the typical listener approach of Java. During listener registration,
an optional filter may be specified to reduce the number of events received. The
events that the platform supports are service publication, revocation, and modi-
fication.

• Service release: Service objects are freed explicitly through a method named
ungetService, although the framework will automatically free used services when
a bundle (that is, the service requester) is deactivated.

Web Services

According to Andrade and Fiadeiro (2001) and Curbera et al. (2001), Web services
emerged out of the need for interaction among heterogeneous applications residing
inside different companies. Heterogeneity is not only considered at the implementation
language level but also at the level of interaction models, communication protocols, and
quality of service.
Web services description is realized in a language called Web Service Description
Language (WSDL) (W3C World Wide Web Consortium, 2001). This language, which is
XML-based, supports the description of service interfaces, data types, communication
transport protocols, and service location. The service registry, called Universal Descrip-
tion Discovery and Integration (UDDI) (UDDI Organization, 2002), supports the publi-
cation of service descriptions, called service types, along with that of service providers,
called businesses. UDDI is a distributed service registry in which information is replicated
at different sites, and as a consequence, a service provider only needs to publish its
services to a single registry. In Web services, service discovery is usually carried out
by a human and dynamic availability is not as prevalent as in the service platforms
presented previously.

Technical Concepts of Service Orientation 21

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The following is a summary of Web service’s service-oriented characteristics.

• Service description: In Web services (Figure 8), a service description contains the
following information:
definitions: service name and namespace
types: definitions of complex data types
message: description of a message (request or response). This description contains
the name of the message and a number of parts that describe parameters or return
values
portType: method description that combines several messages, for example a
request and a response
binding: description of the message transmission protocol.
service: location of the service (as a URI).

• Service publication: The main methods that are provided by UDDI to publish
information are:

a) S erv ic e D escrip tio n

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloService"
 targetNamespace=
 "http://www.foo.com/wsdl/PrinterService.wsdl" xmlns=...>
 <message name="PrintRequest">
 <part name="data" type="xsd:string"/>
 </message>
 <message name="PrintResponse">
 <part name="jobID" type="xsd:string"/>
 </message>
 <portType name="Print_PortType">
 <operation name="print">
 <input message="tns:PrintRequest"/>
 <output message="tns:PrintResponse"/>
 </operation>
 </portType>
 <binding name="Print_Binding"
 type="tns:Print_PortType">
 ...
 </binding>
 <service name="Print_Service">
 <documentation>
 WSDL pour service impression
 </documentation>
 <port binding="tns:Print_Binding" name="Print_Port">
 <soap:address
 location="http://www.printhost:8080/printsvca"/>
 </port>
 </service>
</definitions>

b) P u b lica tio n

save_service (example not given for lack of space)

c) D isco v ery an d b in d in g

find_service (example not given for lack of space)

Figure 8. Web services example

22 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

save_service: publish a service type.
save_business: publish a service provider.
The main methods that allow information to be removed from the registry are:
delete_service: remove a service type.
delete_business: remove a service provider.

• Service discovery: UDDI provides different discovery methods:

find_service: returns information about services provided by a business.
find_business: returns information about one or more service providers.
Discovery methods support queries through regular expressions. These methods
return keys that can be further used to obtain extended information and values can
be returned in an ordered way following different criteria (e.g., alphabetical order,
registration date, and certificate availability).

• Service object creation policies: All creation policies can be supported by a service
provider.

• Service notifications: UDDI can notify clients about changes in the registry
concerning service types and businesses; notifications include addition, removal,
and modification.

• Service release: Since web services support different communication protocols
both release policies can be implemented by the service providers.

Summary of Service-Oriented Technologies

This section surveyed several technologies that support service-oriented concepts, a
summary of which is presented in Table 2. As the technologies surveyed in this section
target particular application domains, the purpose of the survey was not to compare these
technologies with each other, but to illustrate how service-oriented concepts are realized
in the different platforms. The CORBA Trader is useful in CORBA environments for
decoupling distributed clients and services. JavaBeans Context is useful to introduce
service-oriented concepts to centralized user-oriented applications. Jini is useful for
providing and discovering services in ad hoc networks, where the service may or may
not be remote. OSGi is useful as a remotely administrable gateway for dynamically
deployable services or as a framework for building non-distributed service-oriented
applications. Finally, Web services are useful for providing functionality that is acces-
sible via Web-based protocols.

Conclusion

This chapter presented an overview of service-oriented concepts, a comparison of
service to component orientation, and a survey of a set of service-oriented technologies.

Technical Concepts of Service Orientation 23

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service orientation is an approach for building computing systems around an interaction
pattern where a client is bound to a server that is unknown to the client until execution
time. In contrast, component orientation is a software development approach that
focuses on components as software building blocks that are explicitly assembled into
different applications. These two approaches are similar since both services and
components are used as building blocks to construct applications.

Table 2. Characteristics summary

 CORBA
Trader

JavaBeans
Context

Jini OSGi Web
Services

Service
description

IDL interface
+ mandatory
and optional
properties

Java interface
or class

Java interface
+ attributes

Java interface
or class +
attributes

WSDL
description

Service
publishing

export
withdraw

AddService
revokeServ
ice

Register
lease.can
cel or lease
expiration

RegisterSe
rvice
unregister

save_servi
ce
delete_ser
vice

Service
discovery
and results
filtering
policies

Query

constraint
language,
result
ordering,
policies

GetService

no filtering

Lookup

attributes in
the request
must be
present in
service
description

GetService
References
/
getService

LDAP filter

find_servi
ce

Service
object
creation
policies

shared object
or

all (if proxy)

all an object per
binding or
shared object

shared object
or an object
per requester

all

Notificatio
ns

not defined service arrival
and departure

arrival,
departure,
modification

arrival,
departure,
modification

arrival,
departure,
modification

Release explicit explicit implicit using
both garbage
collection and
leasing

explicit both

Distributed yes no yes no yes

Number of
registries

multiple
registries that
collaborate
and form a
federation

one registry
per context,
but can be
grouped
hierarchically

multiple non-
collaborating
registries

one registry multiple
replicated
registries

Other
characteris
tics

 only one
service
provider per
service can
exist in a
given context

service
objects are
downloaded
to the client's
location

support for
deployment of
service
providers and
requesters

interaction
spans across a
long period

24 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The technology survey covered a set of service-oriented technologies that support the
interaction pattern associated with the service-oriented approach. These technologies
target different kinds of application domains, ranging from nondistributed constrained
environments (in the case of OSGi) to distributed heterogeneous applications (in the case
of Web services). The variety of domains in which service orientation is used reflects
a more general desire of software developers to defer selection of building blocks until
run time and/or accounts for the possibility of dynamically available building blocks.
Although service orientation started as an approach based around a particular interac-
tion pattern, it is slowly evolving into a full-blown software development approach,
thanks in part to the popularity of Web services. Service orientation introduces,
however, new challenges to software development, such as discovering services,
handling dynamic availability, and requester-side filtering. Currently, service discovery
is mostly done based on syntactic approaches; the addition of semantic information
would enable more sophisticated ways to perform this activity. Handling dynamic
availability requires providing means to applications so that they can be capable of
releasing departing services or incorporating new services during execution. Requester-
side filtering requires the definition of criteria that allows the selection, among multiple
providers of a same service, of the candidate that is most appropriate.

References

Andrade, L. F., & Fiadeiro, J. L. (2001). Coordination technologies for Web-services. In
OOPSLA 2001: Workshop on Object-Oriented Web Services. Retrieved August 3,
2004: http://www.research.ibm.com/people/b/bth/OOWS2001/andrade.pdf

Andrews, T. et al. (2003). Business process execution language for Web services, version
1.1. Retrieved August 3, 2004 : http://www-106.ibm.com/developerworks/library/
ws-bpel/

Arnold, K., O’Sullivan, B., Scheifler, R. W., Waldo, J., & Wolrath, A. (1999). The Jini
specification. Reading, MA: Addison-Wesley.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American,
284(5), 34-43.

Bieber, G., & Carpenter, J. (2001). Introduction to service-oriented programming (rev 2.1).
Retrieved August 3, 2004 : http://www.openwings.org/download/specs/
ServiceOrientedIntroduction.pdf

Box, D. (1998). Essential COM. Boston: Addison-Wesley.
Burbeck, S. (2000). The evolution of Web applications into service-oriented components

with Web services. Retrieved August 3, 2004 : http://www-106.ibm.com/
developerworks/library/ws-tao/index.html

Cervantes, H., & Hall, R. S. (2003). Automating service dependency management in a
service-oriented component model. Proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction.

Technical Concepts of Service Orientation 25

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Retrieved August 3, 2004: http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/
Proceedings/papersfinal/p28.pdf

Clements, P. C. (1996). A survey of architecture description languages. Proceedings of
the 8th International Workshop on Software Specification and Design. IEEE
Computer Society (pp. 16-25). Washington, D.C.

Conan, D., Putrycz, E., Farcet, N., & DeMiguel, M. (2001). Integration of non-functional
properties in containers. Proceedings of the Sixth International Workshop on
Component-Oriented Programming. Retrieved August 3, 2004: http://
r e s e a r c h . m i c r o s o f t . c o m / u s e r s / c s z y p e r s / e v e n t s / W C O P 2 0 0 1 /
ConanPutryczFarcetDeMiguel.pdf

Curbera, F., Nagy, W. A., & Weerawarana, S. (2001). Web services: Why and how. In
OOPSLA 2001: Workshop on Object-Oriented Web Services. Retrieved August 3,
2004: http://www.research.ibm.com/people/b/bth/OOWS2001/nagy.pdf

Davidson, M. (2002). The Bean Builder tutorial. Retrieved August 3, 2004: http://
java.sun.com/products/javabeans/beanbuilder/1.0/docs/guide/tutorial.html

Fowler, M. (2004). Inversion of control containers and the dependency injection pattern.
Retrieved August 3, 2004: http://martinfowler.com/articles/injection.html

Indulska, J., Bearman, M., & Raymond, K. (1993). A type management system for an ODP
trader. Proceedings of the IFIP TC6/WG6.1 International Conference on Open
Distributed Processing ICODP (pp. 141-152). Berlin, Germany.

Meijler, T., & Nierstrasz, O. (1997). Beyond objects: Components. In M. P. Papazoglou,
& G. Schlageter (Eds.), Cooperative information systems: Trends and directions
(pp. 49-78). London: Academic Press.

Object Management Group. (2003). CORBA components, V3.0. Retrieved August 3, 2004:
http://www.omg.org/technology/documents/formal/components.htm

Object Management Group. (1995). The common object request broker: Architecture and
specification. Retrieved August 3, 2004: http://www.omg.org/technology/docu-
ments/formal/corba_2.htm

Open Services Gateway Initiative (2003, March). OSGi service platform specification, 3rd
release. Retrieved August 3, 2004: http://osgi.org/resources/spec_download.asp

Ousterhout, J. K. (1998). Scripting: Higher-level programming for the 21st century.
Computer, 31(3), 23-30.

OWL Services Coalition. (2003). OWL-S: Semantic markup for Web services. Retrieved
August, 3, 2004: http://www.daml.org/services/owl-s/1.0/owl-s.html

Peltz, C. (2003). Web services orchestration and choreography. Computer, 36(10), 46-
52.

Ponnenkanti, S. R., & Fox, A. (2003, March). Application-service interoperation without
standardized interfaces. Proceedings of IEEE International Conference on Perva-
sive Computing and Communications (PerCom) (pp. 30-40). Fort Worth, TX.

Stratton, D. (1998). The OMG CORBA Trader service (Tech. Rep.). University of Ballarat,
Australia, School of Information Technology and Mathematical Sciences.

26 Cervantes and Hall

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sun Microsystems. (2001). Enterprise JavaBeans specification version 2.0. Retrieved
August 3, 2004: http://java.sun.com/products/ejb/docs.html

Sun Microsystems. (1998). Extensible runtime containment and services protocol for
JavaBeans version 1.0. Retrieved August 3, 2004: http://java.sun.com/products/
javabeans/glasgow/beancontext.pdf

Sun Microsystems. (1997). Java Beans specification. Retrieved August 3, 2004: http://
java.sun.com/products/javabeans/reference/api/index.html

Szyperski, C. (1998). Component software: Beyond object-oriented programming.
Boston: Addison-Wesley.

UDDI Organization. (2002). UDDI version 3.0 specification. Retrieved August 3, 2004:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm#uddiv3

W3C World Wide Web Consortium. (2001). Web services description language (WSDL)
1.1. Retrieved August 3, 2003: http://www.w3.org/TR/wsdl

SOSE 27

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter II

Beyond
Application-Oriented
Software Engineering:

Service-Oriented
Software Engineering

Jiehan Zhou
VTT Technical Research Centre of Finland, Embedded Software, Finland

Eila Niemelä
VTT Technical Research Centre of Finland, Embedded Software, Finland

Abstract

This chapter introduces SOSE (Service-Oriented Software Engineering) as an advanced
software development. It argues that SOSE is characterized by small projects, existing
software reuse, market changing and software evolution focusing, customer domination,
and common middards in comparison with AOSE (Application-Oriented Software
Engineering). It presents SOSE software development methodology involving the main
processes of service extracting, service middard, service circulation, service evaluation,
and service evolution with the middard service fundamental. Eventually, compared
with other industries (for example, car manufacturing, construction, and electronics)
with global standards and fine-granularity components, the software industry is
immature in unified service standards, service marketplace, and service granularity

28 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

evaluation. The authors hope that understanding the underlying fundamental SOSE
middard service and SOSE methodology will make the software industry more productive
and profitable.

Introduction

As the number of component services (for example, ActiveXs, DCOMs, and CORBAs)
grows, e-business software development is coming into being. Concretely, over-engi-
neered systems with redundant functionality are not required for the majority of
customers. Software organizations are typically of a small size, in a state of continual
process change, never arriving, and always in transition (Bennett et al., 2000). Software
developers prefer exploiting the services available in the marketplace to produce the most
effective software in the least time rather than programming from scratch. If needed,
software will be produced as a particular service, instead of “a system,” conforming to
a service standard technology. The system could be composed, executed, maintained,
and evaluated in the way of online service procuring, engaging, and changing.
Currently, almost all commercial application software is sold on the basis of ownership
(Bennett et al., 2002). Thus, a customer buys the object code with some form of license
to use it. Any updates, however important to the customer, are the responsibility of the
vendor. Any attempt by the customer to modify the application is likely to invalidate
warranties as well as ongoing support. This form of marketing, known as supply-side,
is facing the following challenges:

• Bringing together users and providers of software in a trusted marketplace.

• The continuously changing software market and customer needs. Today’s soft-
ware development is in the way of e-business, in which customers are expecting
and demanding various timely services from sites, not costly and time-consuming
turnkey products.

• Reducing software development cost and time. Supply on customers’ demand is
one of the most successful ways to reduce software development cost and time.

• Large-scale and complex software systems. The systems we need to build are likely
to get more complex. Making service standards or specifications enables us to
successfully develop large complex software systems.

• Evolution in Internet time. This challenge is to achieve very fast change yet provide
very high quality software. Existing software maintenance processes are simply too
slow to meet the needs of much faster implementation of software changes.

In recognition of these challenges, studies have been running all over the world, aiming
at developing new approaches to software development for highly agile software
systems, which design, implement, test, evaluate, and access services across the Web.

SOSE 29

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The emerging key concept is that software is a service rather than an application. The
differences between AOSE development and SOSE development are shown in Table 1.
An application view is one, typically dominated by suppliers, in which suppliers are
closely coupled with customers’ business problems and software solutions; customers
buy and own the application, product, or system offered by suppliers. The supply-side
methods, driven by technological advance, work well for systems with rigid boundaries
of concern such as embedded systems. It can also benefit from being a large-size spindle-
shaped organization, which focuses on product development, not the product market and
maintenance. The nature of the application-oriented mode implies a slower time-to-
market and high cost associated with the maintenance and evolution of the application.
By contrast, a service view is one, typically dominated by customers, in which an
application is broken down into smaller, finer grained parts; organizations are with the
characteristics of small-size and dumbbell-shaped (software market and maintenance-
focusing); customers have no interest in owning the whole application but use the parts
as they require. This implies that application functionality is delivered as a service where
functionality is required and service elements are identified, executed, and then dis-
carded. That is so-called instance service. The demand-side methods are driven by
nontechnology issues, such as supply contracts, terms, and conditions.
In fact, a study of the demand-side mode has been developed and applied early in
manufacturing (Iacocca Institute, 1991), such as agile manufacturing, in which a new car
might be produced on a dynamic product supply chain. The nodes in the chain, small-
size companies, work together in the form of rapid service request/service response. This
enhances companies accelerating the time-to-market of a product, reducing the invest-
ment risk, and rapidly responding to the market change. Similarly, with the growth of well-
structured building blocks and service standards, there exists advanced software
development models in software industry, such as COTS (commercial off-the-shelf)
model (Garlan, Allen & Ockerbloom, 1995) and C-BSE (component-based software
engineering) model (Pree, 1997; Szyperski, 1998). What is the difference between them
and SOSE? What is the SOSE model?
This chapter attempts to answer these questions is organized as follows. The first section
presents the concepts related to SOSE, followed by a section comparing SOSE with the

Table 1. Differences between AOSE and SOSE

Application-oriented software development
• Supply-side method
• Product
• System
• Ownership
• Rigid boundaries
• Technology first
• Large-size organization (spindle-shape)
• Several months
• Product of a calculator

Service-oriented software development
• Demand-side method
• Instant service
• Particular one when needed
• Loose-coupled
• Unfixed boundaries
• Non-technology first
• Small-size organization (dumbbell-shape)
• Procurement first
• Service of multiplying

30 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

existing advanced software development methods. The fourth section develops the
SOSE model and illustrates its key elements. The challenges in SOSE are presented in the
final section.

Notions and Visions in SOSE

Notions in SOSE

The widely accepted definition of a service is: “An act or performance offered by one
party to another. Although the process may be tied to a physical product, the perfor-
mance is essentially intangible and does not normally result in ownership of any of the
factors of production” (Lovelock, Vandermerwe & Lewis, 1996). A service represents a
self-contained Internet-based application, capable of completing tasks on its own and
able to discover and engage other services to complete higher-level transactions. A
service is something that you find, use as and when needed and then discard (Bennett
et al., 2000; Brereton et al., 1999).
In summary, a service is a public program conforming to a middard standard, developed
by service providers, traded by service brokers, and used and accessed when service
customers need it. Note that a service might be an HTML text, a CORBA (Common Object
Request Broker Architecture) object, or an ODBC (open database connectivity method)
server. They are all compliant to a middard, such as a programming guideline, specifica-
tion, or standard. Middard is derived from the connotation of the words of middleware
and standard. Many literatures specify standards, like CORBA (Object Management
Group, 1996), ODBC (Universities and Colleges Software Group, 1995), and TPM
(Transaction Processing Monitor) (The Open Group, 1992), as middleware technologies.
This chapter introduces middard as a term of generalizing the above various specifica-
tions, which essentially provide mediations or standards to enhance the communication
among multicomputers, multipeople, and multidomains.
SOSE breaks an application down into several services, in which services are developed
and configured independently and separately in conformance with a middard. This
strategy allows service providers to focus on the business problems at hand, indepen-
dently developing and managing a service to meet needs at a specific point in time. The
conceptual SOSE model is shown in Figure 1.
SOSE software is developed or assembled by a dynamic organization group, based on
existing services with the characteristics of conformance with a middard, business
problem focus, and minimum programming and customization. SOSE software is some-
times called SOSE service.
Middard is a documented agreement containing specifications to be used consistently
as standards, specifications, methods, rules, and guidelines for developing, describing,
and managing services sharable to software stakeholders. A middard is usually initiated,
developed, and managed by middard initiator. TPM, CORBA, HTML, and XML are
instances of middards. A middard is also referred to as a service middard.

SOSE 31

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A middard vendor is any supporter who implements either a part or whole of a middard
and packages them into a middard service programming interface (MSPI) for service
providers to facilitate service development. A middard may have multiple middard
vendors. A service provider, also called a service supplier, develops and maintains
middard-based SOSE services.
Service brokers are those who act as intermediaries, responding to the requests from
service customers and service providers to make SOSE services circulation easier in the
service marketplace. Service customers, also called service requestors/users, are those
who acquire, select, and use SOSE services.
A service profile contains acceptable values for contract terms and policies to govern
how these values may be negotiated. A service contract contains the terms agreed on
by the service provider and service customer for the supply of the service. A customer
profile contains acceptable legal systems for contracts, the minimum service performance
required, the maximum acceptable cost, and the percentage of average market cost within
which negotiation is possible. Provider profiles contain acceptable legal systems for
contracts, guaranteed performance levels, and the cost of providing the service.

Comparison in Advanced Software Development

This section compares the AOSE method with the SOSE method using the items of the
software market, development objective, software organization, provider-customer
relationship, and middard and software risk. The summary is shown in Table 2.

Figure 1. Conceptual model of SOSE description

MPI
Middard service

Programming Interface
Middard vendor

Middard
initiator

 Service Middard

conforms to

developed by 1..*

developed by 1..*

SOSE

SOSE software

Service provider

Service customer

Service broker

based on
constitutes 1..*

platform for 1..*

registeration

..

..

same as 1..*

develops 1..*

Service marketplace

aims to

32 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Application-oriented software development is a typical waterfall mode, in which a
software organization is responsible for a product or system owned by a customer. Thus,
a spindle-shaped organization focuses on software products.The organization consists
of various teams involving requirement analysis, application design, application coding,
testing and integrating, and application delivery. They sequentially work together on a
thorough consideration of customer business logic, techniques, and market changes
during the product life cycle. AOSE customers are close-coupled with application
providers and middard vendors. The middard used in AOSE varies between different
middard vendors. AOSE is slow to respond to market and customer variations, time
consuming, and costly.
COTS-BSE (COTS-based software engineering), C-BSE (component-based software
engineering), and VE-BSE (virtual enterprise-based software engineering) are the repre-
sentatives of SOSE. If such an organization emphasizes new product research and
product marketing, it is dumbbell-shaped. If an organization focuses on changing
markets and dynamic project teams, the organization is dynamical. COTS-BSE particu-
larly uses COTS products as elements of the COTS-BSE software, due to shrinking
budgets, accelerating rates of COTS enhancement, and expanding system requirements
(Tran & Liu, 1997). COTS-BSE is a procurement-centric method, in which customers
directly buy COTSs from providers. As in the case of procurement, the customer needs
to maintain expertise and processes for technology evaluation to be able to identify and
assess alternative or additional future providers. Meanwhile, the provider may also
control product evolution with the result that it becomes very difficult for the customer
to move to another provider. So, COTS-BSE software is based on a provider-side middard.
The main activities in CBSE are COTS identification, evaluation, and integration.
Establishing criteria for COTS evaluation is vital for realizing COTS-BSE. However,
COTS-BSE has a risk of architecture mismatching.
Software components can be considered to be units of independent production, acqui-
sition, and deployment that interact to form a functional system (Poulin, 2001; Syzperski,
1998). C-BSE refers to the development of software systems from pre-existing parts. C-
BSE aims to create platform-independent component integration frameworks, which
provide standard interfaces and thus enable flexible binding of encapsulated software
components. In C-BSE, providers are able to register their components with a broker and

Table 2. Comparison between AOSE and SOSE

 Market Organization Objectives Customer
Involvement Relationship Middard Risk

AOSE Single-
single

Spindle-
shaped Application Close-

coupled
Provider-
dominated

Miscellane
ous Lower

COTS-BSE Many-
many

Dumbbell-
shaped COTS

Expertise-
maintaining

Long-term
partnership

Provider-
side Low

C-BSE Many-
many

Dumbbell-
shaped Component Loose-

coupled

Customer -
broker-
provider

Consistent High SOSE

VE-BSE Many-
many Dynamical Organization Loose-

coupled
Customer-
sponsor Common Higher

SOSE 33

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

thus make information about their products available to potential customers. Customers
are supported by the broker in making trade-offs between their own requirements and the
offerings of providers, so the relationship between customers and providers is loose-
coupled. C-BSE components have to be associated with a consistent middard. C-BSE
software is high risk since customers may not be able to find a replacement if a component
ceases to be available or if a provider goes out of business.
A virtual enterprise is a temporary consortium or alliance (that is, so-called VE-BSE
sponsor) of organizations formed to share costs and skills and exploit fast-changing
market opportunity (Walton & Whicker, 1996). The VE-BSE sponsor consists of a series
of co-operating “nodes” of core competence which form into a supply chain to address
a specific opportunity in the marketplace. Each node is a VE-BSE organization. VE-BSE
organizations do not produce complete products in isolated facilities. They operate as
service nodes in a network of providers, customers, engineers, and other specialized
service functions. VE-BSE will materialize by selecting skill services and asset services
from different firms, synthesizing them into a single business entity. VE-BSE goes
through four distinct activities in conformance with a common middard: organization
identification, organization formation, organization operation, and organization termina-
tion. In each of them, decision processes, such as organization evaluation and selection,
operation redesign, and organization termination, are involved and sequentially related
(Mahajan, 1995).
COTSs, components, and VEs are all service entities and compliant to a certain middard.
VE is the extremity of SOSE organizations. SOSE is a revolutionary activity emerging well
beyond the application-oriented paradigms that preceded it. SOSE are in a commonality
of breaking down a large application or system into units. SOSE allows service providers
to develop and manage these units independently and simultaneously. Therefore, SOSE
is concerned less with building parts than providing users with constantly reliable parts
that maintain continuously working software. In contrast to application-oriented soft-
ware development, SOSE has the following advantages:
Quick solution: SOSE focuses on providing the user with a solution rather than a
product. That is, SOSE emphasizes the analysis of specific users’ requirements and
service marketplace. If there are well-defined services for use, SOSE conducts the service
procurement. For services that cannot be found, SOSE allows consumers to post a notice
for service providers to respond to. Therefore, SOSE organizations are normally small-
sized and dumbbell-shaped, focusing on market changes and customers’ business.
Making up for insufficient resources: It is impractical for a software organization to build
everything every time. Lack of sufficient money or personnel are usually the main causes
for software system development failure. SOSE makes it possible for software develop-
ment to explore and use services available in the marketplace but cannot develop them
costly and timely. There is some competitive know-how, which is difficult for an
individual provider to master in a short time. Therefore, SOSE makes it cheaper for an
organization to cooperate with a competent partner to provide users with a quick
solution.
Facilitating large-scale and complex software development: A complex system usually
involves contributors from different domains, for example, computer-aided airplane

34 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

manufacturing software. Many problems will arise from the development and mainte-
nance of a complex software system without a unified communication standard. SOSE
provides this unified standard, one kind of a middard, which makes the integration in
different domains easier.
Productivity: The real productivity benefits of SOSE will be achieved by enabling parallel
service development. As the adoption of building system from standard components
taken by automobile manufacturing, electronic, construction, and many industries, SOSE
will be a new paradigm in the maturing software industry, which is more productive and
profitable.

SOSE Vision

This section illustrates SOSE from the viewpoints of service customers, service provid-
ers, service brokers, and service organizations. SOSE vision is shown in Figure 2.
Customers’ viewpoint: Software is a service, not an application. Services are easy to be
customized by customers themselves. Customers obtain the copyright of using services
through contract negotiation. In this way, it is necessary for customers to change the
attitude of possessing software into using software.
Providers’ viewpoint: Software is a service unit that can be used independently but are
more likely to be used as a module in an integrated system. The provider is responsible
for managing the module within its life cycle (for example, module designing, implement-
ing, and maintaining). SOSE providers obtain service requirements from service market-
places, not from customers directly. Services are designed in conformance with a certain
middard. After implementing services, providers submit the detailed information of the
services (for example, functionality, nonfunctional characteristics, and business infor-
mation) to service brokers rather than to customers.
Brokers’ viewpoint: Software is a service to be registered and sold. Brokers provide a
number of facilities to respond to requests from both service providers and service
customers. Facilities to support SOSE may include those for ranking and selecting
candidate services, visualization of services and of their closeness to fit requirements,
and automated support for certification. Brokers share benefits from selling services with
service providers.
Software organizations’ viewpoint: The global software marketplace is coming into
being. The knowledge (for example, user requirements, technologies, expertise, program-
mers, and partnerships) corresponding with software development is highly dynamic and
changeable. For instance, the users change their requirements; employees leave; new
technology emerges; and partners join. It is imperative that software organizations use
an agile development method that allows flexibility and accommodates change. Unlike
application-oriented software development, based on rigid business boundaries, spindle-
shaped organization structure, and time-consuming software ownership delivery, SOSE
organizations take into account the activities of service purchase, organization alliance,
and middard selection during the initial phase of software development. SOSE organi-
zations mainly focus on customers’ business rather than the supporting technologies
in the phase of software implementation. SOSE organizations emphasize improving their

SOSE 35

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

key competence and putting more effort toward service qualities in the phase of software
maintenance. In this way, software organizations will be more customer-centered, small-
scaled, agile, and competitive.

SOSE Conceptual Model

SOSE Model

The SOSE conceptual model is shown in Figure 3. SOSE software is composed of
interactive and interoperative services. SOSE requirements are not only from the
traditional time-to-market (cost and quality) but also from enterprise application integra-
tion, system composition, and collaboration across platforms, in which service providers
do not need to know who service customers are. Service organizations and providers
discover the commonality underlying the pre-existing software, operation systems, and
SOSE marketplace. This process is also called service extraction. Service middards
provide service providers with the framework for describing, designing, publishing, and
assembling services. Service customers use a service in a binding way when needed,
which is called bind once, execute once.

Service Extracting

Service extraction packages the general classes into one service and lets the surrounding
parts in the original classes use the newly packaged service. Generally, there is a possible
reusable part in an existing software. SOSE service extracting aims at specifying this part

Figure 2. SOSE vision

Service broker

Service

Service
customer

Service
provider

Service

Find

Publish

BindService

Service
organisation

36 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

for service sharing. SOSE service extracting includes application-oriented service
extracting and infrastructure-oriented service extracting. Application-oriented service
extracting is a process of extracting common services from existing applications.
Application-oriented service extracting can be divided into extracting enterprise ser-
vices and domain services.

• Extracting enterprise services. Amounts of modules are developed repeatedly in
enterprise applications due to the factors of technologies and platforms. The key
issue for extracting enterprise services is to extract common services in enterprise
applications as enterprise services, which will enhance the efficiency of new
system development.

• The key issue for extracting domain services is to extract common services in a
domain as the domain services.

Figure 3. SOSE conceptual model

Cost

Time
Cost

RPC

MOM

ORB
TPM

SOSE
Unified service middard

 S
er

vic
e

 E
xtr

ac
tin

g
Inf

ras
tru

ctu
re

Orie
nte

d
A

pp
lic

at
io

n
O

rie
nt

ed

Se
rvi

ce
 ci

rcu
lat

ion

Ontology-Oriented

modelin
g

Service

evaluation
Service

requirements

Publishing

Provider

Broker

Cu
sto

mer

Service
middard

Integration
Composition

Collaboration

Quality

N
et

w
or

k la
ng

ua
ge

IT
 al

lia
nc

e

En
te

rp
ris

e/
do

m
ai

n
al

lia
nc

e

En
te

rp
ris

e

Do
m

ain

MOMvendors

D
eveloping

D
escribing

Registration

Classification

Evaluation

Binding

Selection

Discovery

So
ftw

ar
e

m
et

ric
s

O
bj

ec
t-O

rie
nt

ed

m
et

ric
s

Service
evolution

Common lan
guageUnified

 specific
ation

Time Cost

TPM
vendors

ORB

vendors
RPC

vendors

...

...

SOSE 37

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Infrastructure-oriented service extracting can be divided into extracting network ser-
vices and extracting programming language services.

• The key issue for extracting network services is to discover common services,
which are responsible for connecting various kinds of network devices. These
services include multiprotocols transformation, virtual serving, automatic load
balancing, and fault hiding. They need not only to transfer right data to the end user
but also guarantee the QoS of network, network and information security (Adachi,
Kikuchi & Katsuyama, 2000).

• The key issue for extracting programming language services is to discover common
language services, which implement data configuration, object class running, and
components interoperation across platforms (Silberschatz, Korth & Sudarshan,
1997).

Service Middards

Service middards provide technological support for the implementation of the extracted
service. There are various service middards that have been widely used for various
purposes. Table 3 summarizes the initiation, implementation, and evolution of well-
known service middards. They are also the representatives of various standardized
solutions.

• Transaction Processing Monitor (TPM): A transaction is a complete unit of work.
It may comprise many computational tasks, which may include user interface, data
retrieval, and communications. A typical transaction modifies shared resources (X/
Open, 1992). TPM was initially developed as multithreaded servers to support
numerous terminal transaction requests from a single process. It improves batch
and time-sharing application effectiveness by creating online support to share
application services and information resources. ACID (Atomicity, Consistency,
Isolation and Durability) is the basic requirements for TPM. The core services
defined in TPM are (Silberschatz et al., 1997): presentation facilities to simplify
creating user interfaces, persistent queuing of client requests and server re-
sponses, routing of client messages to servers, and the coordination of two-phase
commit when transactions access multiple servers. Some commercial TPM vendors
are CICS from IBM, Top End from NCR, and Encina from Transarc (Houston, 1998).
TPM technology is widely used for delivery order processing, hotel and airline
reservations, electronic fund transfers, security trading, and manufacturing re-
source planning and control. ODBC and distributed transaction processing moni-
tor (DTPM) extend TPM services. ODBC contains ODBC API and ODBC SQL
grammar, which enables any transaction application to communicate with any
database manager. DTPM extends TPM services (for example, identification and
authorization), which enable completing global transactions.

38 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Object Request Broker (ORB): ORB is initially developed as a middleware
technology that facilitates application integration across different programming
languages, hardware platforms, operating systems, and ORB implementation
(Object Management Group, 1996). ORB applications are composed of objects,
which are all identical in functionality. The core services needed in ORB are
interface definition, location and possible activation of remote objects, and
communication between clients and objects. Two major ORB initiatives are the
CORBA specification from OMG and COM from Microsoft. Their services are
similar but slightly different. There are a number of commercial ORB products
available, such as ORBIX by IONA, NEO by SunSoft, and DSOM by IBM. One trend
for ORB is to specify a set of APIs that can be implemented in different ORB
products (for example, Java/RMI). Another trend continues toward intranet- and
Internet-based applications.

• Message-Oriented Middleware (MOM): MOM provides an assured, asynchro-
nous, and connectionless method to exchange messages between processes
(Houston, 1998). MOM commonly satisfies these important conditions: no simul-
taneous connection is required between the message sender and receiver; there are
extremely strong request and response delivery guarantees even when communi-
cation does not occur simultaneously between the sender and receiver; requests
and responses can be translated and reformatted en route between senders and
receivers. MOM may be more suitable for wide-area and large-scale systems. MOM
has a larger share of the market than ORB. There are many MOM products from
different vendors. For example, there are the IBM MQ Series, Microsoft MSMQ,
and the Java Messaging Service (JMS). MOM is being designed towards a
combination with ORB, for example, IBM’s D-Sphere (Tai, Mikalsen, Rouvellou &
Sutton, 2001), MOM across intranet and Internet, for instance, SunTM ONE
Middleware (Sun Microsystems, 2003), and MOM across vendors, such as MSMQ-
MQSeries Bridge (Microsoft Corporation, 2003).

Table 3. Summary of well-known service middards

Name Initiation APIs Vendors Relative terms Evolution
TPM Transaction

processing
x_reg, x_prepare,
x_commit,
x_rollback,
….

IBM's CICS, Micro-
soft's MTS, NCR's
TopEnd …

Many terminals Sin-
gle-Mainframe, 2-tier
C/S, N-tier C/S, data-
base application,…

ODBC, DTPM

ORB Object inter-
working

X_remoteObjectDe
legate, x-
_StubDelegate,…

IONA's ORBIX,
SunSoft's NEO IBM's
DSOM…

CORBA,
COM/DCOM, …

Inter-
ORB(Java/RMI)

MOM Loosely-coupled
connection,
Message queuing

MQConn,
MQOpen,
MQClose,…

IBM's MQSeries, Mi-
crosoft's MSMQ, Java
Messaging Service
(JMS),…

Asynchronous
mechanism, event-
driven applications,
message queuing,
publish/subscribe,…

Combination with
ORB, MOM
across Intranet
and Internet

RPC Interprocess call x_binding,
x_naming,
x_UUID,
…

ONC's RPC, X/Open's
DCE RPC, CORBA
IIOP,…

Synchronous mecha-
nism,

Object-oriented,
TCP/IP support

SOSE 39

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Remote Procedure Call (RPC): RPC is a type of protocol that allows an application
client on one computer to execute an application server on a server computer. RPC
is similar to the local procedure call in that one thread of control logically winds
through two processes (Sun Microsystems, 1998a). The RPC protocol makes no
restrictions on the concurrency model implemented. For example, an implementa-
tion may choose to have RPC calls to be asynchronous so that the client may do
useful work while waiting for the reply from the server. Another possibility is to
have the server create a task to process an incoming request so that the server can
be free to receive other requests. The RPC protocol must offer the following
services: the unique specification of a procedure to be called, matching response
messages to request messages, and authenticating the caller to service and vice
versa. RPC is appropriate for communications between applications that require a
short response times and relatively small amounts of data transfer. The major RPC
products are ONC RPC (Sun Microsystems, 1998b), X/Open DCE RPC (The Open
Group, 1997) and CORBA IIOP (Soley, 1992). RPC is being specified to contain
network protocols, security service, and object management for supporting Intranet-
and Internet-based computing.

Additionally, there are so many middards emerging for service describing, discovering,
and integration, such as XML (eXtensible Markup Language) and UDDI (Universal
Description, Discovery and Integration).

Service Circulation

Service circulation plays an important role in supplying the right SOSE services for the
right SOSE users at the right time. Service circulation includes service providing, service
brokering, and service executing. Service providing spreads providers’ profiles to the
outside in order to bring customers, other providers, and partners of services. The key
issues for service providing are as follows:

• Service mining for market opportunities: The key business for providers is
shifting from application development to market tracking and maintenance of
existing services.

• Description of service profile: This describes meta information held by services
for contract negotiation, including terms of functionality, performance, cost, and
provider profile.

• Implementation of services: Services are implemented using a middard platform
(for example, HTML, DCOM, or CORBA platform) provided by middard vendors,
which allows service providers to focus on customers’ business logic rather than
supporting technology.

• Publication of services: Implemented services can be published to a service broker
and thus information about services is available to potential customers.

40 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service brokering offers the services of classifying, evaluating, and registering services.
The key issues for service brokering are as follows:

• Classification of services: Classification of services is needed to help customers
find what they really want. Text mining techniques in knowledge discovery area will
be helpful for service classification and management.

• Registration of services: In the process, each service must be assigned a Universal
Unique IDentifier (UUID) for guaranteeing uniqueness.

• Ranking of services: This ranks and visualizes services by service profiles and
provider profiles for customer selection. An evaluation criterion is exactly needed
to be made for automation service rating.

• Query of services: Query service in service brokering enables customers to obtain
execution and configuration information for the different services.

Service executing enhances services to customers by dynamically combining and
executing the services in a just-in-time way. The key issues for service executing are as
follows:

• Discovery of services: Service discovery provides a wide range of choice array that
meets customers’ needs. In contrast to service classification, service discovery
performs for customers. In order to improve searching efficiency, it is necessary
for three parties (service provider, broker, and customer) to comply with a same
classification criterion.

• Selection of services: Referring to the ranking service result provided by service
brokering, customers make a selection from their profiles.

• Binding of services: In this phase, customers and providers connect dynamically,
and services are executed as needed. At the extreme, the binding that takes place
prior to execution is disengaged immediately after execution to permit the SOSE
software to evolve for the next execution.

Realizing the importance of service circulation, the United States and the United
Kingdom have established the service circulation environment, based on the vendors of
Visual Basic and Java, respectively Flashline (Flashline, 2003) and ComponentSource
(ComponentSource, 2003). Flashline is one of the service brokers taking Java compo-
nents (Beans or Enterprise Beans) and .NET/COM components as the services. Services
offered by Flashline consist of service registering, categorizing, and listing.
ComponentSource takes Microsoft components (COM, VBA) and Sun Microsystems’
components as the services and evaluates them by the items of installation/uninstallation,
antivirus, and description of services.

SOSE 41

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Evaluation

Service evaluation is the business of rating service performances and qualities. High-
quality services normally bring high-quality SOSE systems. One or two low-quality
services will remarkably decrease the overall system qualities. Consequently, it is
necessary to measure services before using them. In addition, object-oriented is the basis
of composing SOSE services recently. Some methods have been studied on measuring
software (ISO/IEC, 1991) and object-oriented programs (Chidamber & Kemerer, 1994).
These methods are also helpful for measuring SOSE services. Service evaluation includes
performance and quality measurement. Much effort has been devoted to defining and
describing the metrics involved in measuring service performance and quality (Poulin,
2001; Washizaki, Yamamoto & Fukazawa, 2002). One of SOSE service performance
metrics is shown in Table 4. One of SOSE service quality metrics is shown in Table 5.
In service evaluation, there is one empirical method worthy to be recommended. That is
take-try-and-use, which is widely accepted and applied by service providers, brokers,
and customers today. In this, the provider commonly offers customers a free using
period, and customers make a contract with providers after the customer is satisfied with
the service. Take-try-and-use enables customers to make a wide range of options.
Moreover, take-try-and-use is high risk for long-term and critical SOSE software, so
service brokers may get added value through a third party for a wider and commercial
service scale, like certification, pricing/licensing information, and so forth.

Table 4. One of SOSE service performance metrics

Metrics Meaning
Existence of meta in-
formation

If the value is 1, users of components can easily understand
components’ usage that the components’ developers as-
sume.

Rate of component
observability

The ratio of the number of readable properties to the num-
ber of attributes.

Rate of component
customizability

The ratio of the number of registered properties to the
number of attributes.

Self-completeness of
component’s return
value

The ratio of the number of business methods without return
value to the number of business methods.

Self-completeness of
component’s parame-
ter

The ratio of the number of business methods without pa-
rameters to the number of business methods.

42 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Management and Evolution

Service management provides a number of facilities to support three parties (service
customers, service providers, and service brokers). Service customers expect the service
of shorter qualification interval, lower qualification cost, faster service delivery, service
variations, and lower risk to be offered. Service providers expect to get the information
on service needs, customers’ feedback, timely service middards, and potential partners.
Service brokers expect to get information on the latest service middards, service
classification, service retrieval, service evaluation, and service adaptation. Concretely,
service management includes the following functions:

• Service classification: Service specification, users’ feedback, service evaluation,
service rating, and service listing.

• Service selection: Service description, service commerce properties, service
providers’ trustworthiness.

• Service evolution: Service development, service maintenance, and service extrac-
tion.

In recent years, software evolution, recognized as an essential aspect of software
systems, has become an emerging research subject. In service evolution, a service
business modification and a service middard modification are roughly considered as two
key activities. Service business modification extends the capabilities and functionality
of a service to meet the further needs of the service customer, possibly in major ways.
The process of a service middard modification consists of the following activities:
modification analysis, modification implementation, modification review/acceptance,
and application for international standard. The objective modifying an existing service
middard is to preserve its higher user base. Some intelligent mechanisms may be needed
to manage the dynamic and complex service evolution, such as semantics-based service
modeling and higher-level service middard making.

Table 5. One of SOSE service quality metrics

Metrics Meaning
Productivity The ratio of total development hours for the project to total lines of code contained

in the components that make up the product.
Reliability The amount of errors which are figured out.
Stability The ratio of the total number of open change requests to the total number of

requirements.
Reuse The ratio of the reused lines of code to the total lines of code.

SOSE 43

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Discussion

SOSE business takes a service as a unit that will be individually maintained, updated, and
reused within the life cycle of SOSE software. SOSE is also oriented to software
innovation. SOSE enables SOSE providers to pay more attention to service business and
evolution by making a service choice before starting a new SOSE software development.
SOSE providers focus on selecting a service middard and implementing customers’
business with awareness of what other providers are doing. SOSE organizations work on
core competitive services with a small team. It is important for SOSE organizations to have
quick response to market changes and service evolution rather than delivering a large
two-to-three years-consuming system. SOSE allows customers to take-try-and-use a
service cheaply when needed.
SOSE results from the continually maturing software market and continuously growing
standardization technology and software customization. SOSE has a close association
with traditional software development methods. There are many methods and techniques
appearing in traditional software development and other mature industries (for example,
car manufacturing, construction, and electronics) available for SOSE implementation. For
instance, e-business product circulation has many applications. More service middards
are specified and accepted by providers, vendors, and customers. However, it is the
beginning for service evolution research. Table 6 states SOSE supporting status briefly.
The study of the service middard and service evolution will be emphasized in SOSE.
Future research issues involved in SOSE also include the following topics:

• Extended object-oriented service modeling: Object-oriented is the basis for imple-
menting SOSE. Objects have been criticized for their lack of emphasis on semantics.
Due to the public service characteristic of SOSE running on unanticipated plat-
forms, domains, sites, and cultures, object-oriented will be limited. Therefore, it is
necessary to develop or apply an extended object-oriented modeling with more
strict semantic constraints for SOSE. For instance, ontology-oriented modeling will
be an optional one (Ikeda, 1997).

Table 6. SOSE supporting status

SOSE requirements Supporting status

Service circulation Already exists

Service evaluation Not properly supported

Unified service middards Diversification and competition

Unified middard vendors Not properly supported

Service extracting Some results in knowledge discovery

Service evolution To be researched

44 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Unified service middard: Different service middards, developed by different
initiators, limit the range of service usage. A unified service middard will be helpful
in service description, requisition expression, service decomposition, service
implementation, and service combination. Certainly, it is support from service
providers, brokers, and customers that make the unified service middard meaning-
ful.

• Unanticipated requirement discovery: Unanticipated requirement is a distinct
characteristic for SOSE. The conventional requirement with being easily attainable,
explicit, big piece, and customer-visiting no longer exists in the continually
maturing software market. SOSE organizations face implicit requirements from a
potential customer group rather than an individual customer. Service customers are
able to make various options for their needs. Another key issue is to discover
implicit requirement. An existing code’s value adding and organization alliance will
be helpful to SOSE organization survival. Adding an existing code’s value causes
service life to lengthen by building the legacy code as a service, extending the
service, and promoting the service quality and performance. An organization
alliance is another possible option available for SOSE organization. One activity
for SOSE requirement discovery is to find more partners for existing services.

• Automated engagement: Automated engagement enables customers and provid-
ers to operate one transaction of service providing and service execution over the
Internet automatically. Automated engagement allows customers to get what is
really needed with just one mouse action. The level of customer participation in
software development is reduced in AOSE, COTS-BSE, C-BSE, and VE-BSE.
Automated engagement involves service allocating, service engaging, service
persisting, service rolling back, and so forth. Meanwhile, automated engagement
must be based on a highly unified service middard and a strict unified service
evaluation method.

• Multidisciplinary and interdisciplinary research: Agile manufacturing is a main-
stream advanced manufacturing method in the manufacturing industry, in which
study emphasizing the combination of human-factor, technology-factor, and
organization-factor has been done. Similarly, SOSE, as an agile software develop-
ment in the software industry, is nontechnology dominated with a focus on
software innovation and providing what customers really want. That implies that
SOSE software will be more human-centric with maximum customers and easy
customization, so SOSE software engineers are required to have the knowledge of
service psychology, service negotiation policy, marketing management, social
behavior area, and so forth. Therefore, how to reform the existing software
engineering discipline is another important topic for SOSE.

Conclusion

We introduced the concept of an SOSE model as an advanced software development,
which will make the software industry more productive and profitable. Current compo-

SOSE 45

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

nent-based software development methods (for example, COTS-BSE, C-BSE, and VE-
BSE) are SOSEs. SOSE differentiates into AOSE small projects, existing software reuse,
market changing and software evolution focusing, customer domination, and common
middards. Customers may access SOSE software as data of a public service repository
when needed. SOSE software can be shared by multitudinous systems due to its
compliance with the common middard.
We presented the basic concepts and principles of SOSE middard services. Middard
services define standards for common service description, implementation, management,
and discovery. Additionally, a SOSE software development model involving the main
processes of service extracting, service middard, service circulation, service evaluation,
and service evolution was presented. Compared with other industries (for example, car
manufacturing, construction, and electronics) with global standards and fine-granularity
components, the software industry is immature in unified service standards, service
marketplace, and service granularity evaluation. Typically, coordination among multiple
service middards becomes the bottleneck of wide service usage. Eventually, the main
challenges in SOSE, such as extended object-oriented service modeling, a unified service
middard, unanticipated requirement discovery, automated engagement, and
multidisciplinary and interdisciplinary research, was addressed.

References

Adachi, M., Kikuchi, S., & Katsuyama, T. (2000, November 20-24). NEPRI: Available
bandwidth measurement in IP networks. Proceedings of 7th IEEE Singapore
International Conference on Communication Systems (pp. 511-515).

Bennett, K. H., Gold, N. E., Munro, M., Xu, J., Layzell, P. J., Budgen, D., et al. (2002).
Prototype implementations of an architectural model for service-based flexible
software. Proceedings of 35th Hawaii International Conference on System
Sciences, 8, 76-85.

Bennett, K. H., Layzell, P. J., Budgen, D., Brereton, P., Macaulay, L., & Munro, M. (2000,
December 5-8). Service-based software: The future for flexible software. Proceed-
ings of the 7th Asia-Pacific Software Engineering Conference (pp. 214-221),
Singapore.

Brereton, P., Budgen, D., Bennett, K., Munro, M., Layzell, P., Macaulay, L., et al. (1999).
The future of software: Defining the research agenda. Communications of ACM,
42(12), 78-84.

Chidamber, S., & Kemerer, C. (1994). A metrics suite for object oriented design. IEEE
Transaction on Software Engineering, 20(6), 476-493.

ComponentSource. (2003). About ComponentSource. Retrieved August, 5, 2004: http:/
/www.componentsource.com/

Flashline. (2003). Whitepapers. Retrieved August 5, 2004: http://www.flashline.com/

46 Zhou and Niemelä

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Garlan, D., Allen, R., & Ockerbloom, J. (1995, April 23-30). Architectural mismatch: Or
why it’s hard to build systems out of existing parts. Proceedings of the 17th
International Conference on Software Engineering (pp. 179-185), Seattle, WA.

Houston, P. (1998). Building distributed applications with message queuing middleware.
Retrieved August 5, 2004: http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnmqqc/html/bldappmq.asp

Ikeda, K. S. (1997, August 23-29). Task ontology makes it easier to use authoring tools.
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(pp. 342-347), Nagoya, Japan.

ISO/IEC. (1991). ISO/IEC 9126 International standard: Information technology -
Software product evaluation - Quality characteristics and guidelines for their
use. International Standard ISO/IEC 9126.

Kontio, J. (1996, March 25-30). A case study in applying a systematic method for COTS
selection. Proceedings of the International Conference on Software Engineering
(pp. 201-209), Berlin.

Lovelock, C., Vandermerwe, S., & Lewis, B. (1996). Services marketing (3rd ed.). London:
Prentice Hall International.

Mahajan, R. (1995, March 7-9). Building the virtual enterprise. Proceedings of the 4th
Annual Agility Forum Conference (pp. 32-40), Atlanta.

Microsoft Corporation. (2003). Chapter 22: Administration and management of MSMQ-
MQSeries bridge. Host integration server 2000 resource kit. Retrieved August
5, 2004: http://www.microsoft.com/resources/documentation/host/2000/all/
reskit/en-us/part4/hisrkc22.mspx

Object Management Group. (1996). The common object request broker architecture and
specification (2nd ed.). Boston: John Wiley & Sons.

The Open Group. (1997). DCE 1.1: Remote procedure call. Retrieved August 6, 2004: http:/
/www.opengroup.org/products/publications/catalog/c706.htm

The Open Group. (1992). Distributed TP: The XA specification. Retrieved August 6, 2005:
http://www.opengroup.org/bookstore/catalog/c193.htm

Poulin, J. S. (2001). Measurement and metrics for software components. In G. T.
Heineman, & W. T. Councill (Eds.), Component based software engineering:
Putting the pieces together (pp. 435-452). Boston: Addison-Wesley.

Pree, W. (1997, December, 2-5). Component-based software development - A new
paradigm in software engineering. Proceedings of the Joint Asia-Pacific Software
Engineering Conference and International Computer Science Conference (pp. 523-
524), Hong Kong.

Preiss, K., & Goldman, S. (Eds.). (1991). 21st century manufacturing enterprise strategy.
Bethlehem, PA: Lehigh University.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (1997). Database system concepts. Boston:
McGraw-Hill.

Soley, R. M. (Ed.). (1992). Object management architecture guide: OMG TC document
92.11.1 (2nd ed.). New York: John Wiley & Sons.

SOSE 47

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Sun Microsystems. (2003). Sun ONE middleware. Retrieved August 5, 2004: http://
wwws.sun.com/software/product_family/middleware.html

Sun Microsystems, Network Working Group. (1988, April). RFC 1050 RPC: Remote
procedure call protocol specification. Retrieved August 5, 2004: http://
www.faqs.org/rfcs/rfc1050.html

Sun Microsystems, Network Working Group. (1988, June). RFC 1057 - Remote procedure
call protocol specification: Version 2. Retrieved August 5, 2004: http://
www.faqs.org/rfcs/rfc1057.html

Szyperski, C. (1998). Component software: Beyond object-oriented programming.
Boston: Addison-Wesley.

Tai, S., Mikalsen, T. A., Rouvellou, I., & Sutton, S. M. (2001, September 4-7). Dependency-
spheres: A global transaction context for distributed objects and messages.
Proceedings of the 5th International Enterprise Distributed Object Computing
Conference, Seattle, WA.

Tran, V., & Liu, D. B. (1997, January 13-16). A risk-mitigating model for the development
of reliable and maintainable large-scale Commercial-Off-The-Shelf integrated
software systems. Proceedings of the International Annual Reliability and Main-
tainability Symposium on Product Quality and Integrity (pp. 361-367), Philadelphia,
PA.

Universities and Colleges Software Group. (1995, September). Delivering data to the
desktop: ODBC overview. Retrieved August 5, 2004: http://www.liv.ac.uk/
middleware/html/overview.html

Walton, J., & Whicker, L. (1996). Virtual enterprise: Myth and reality. Journal of Control,
22(8), 22-25.

Washizaki, H., Yamamoto, Y., & Fukazawa, Y. (2002, October 3-4). Software component
metrics and its experimental evaluation. Proceedings of International Symposium
on Empirical Software Engineering, Rome, Italy.

48 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter III

Service Composition:
Concepts, Techniques,

Tools and Trends
Boualem Benatallah

University of New South Wales, Australia

Remco M. Dijkman
University of Twente, The Netherlands

Marlon Dumas
Queensland University of Technology, Australia

Zakaria Maamar
Zayed University, United Arab Emirates

Abstract

This chapter provides an overview of the area of service composition. It does so by
introducing a generic architecture for service composition and using this architecture
to discuss some salient concepts and techniques. The architecture is also used as a
framework for providing a critical view into a number of languages, standardization
efforts, and tools related to service composition emanating both from academia and
industry and to classify them in terms of the concepts and techniques that they
incorporate or support (for example, orchestration and dynamic service selection).
Finally, the chapter discusses some trends in service-oriented software systems
engineering pertaining to service composition.

Service Composition 49

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

The last decade has seen organizations worldwide expose their operations on the Web
to take advantage of the commoditized infrastructure and the potential for global
visibility and increased business process automation that Web technologies offer. An
overwhelming number of organizations have reaped the benefits of the Web by making
their applications available to their customers and partners through interactive interfaces
combining Web forms and dynamically generated Web pages. This has seen the Web
evolve from a vehicle for information dissemination to a vehicle for conducting business
transactions, albeit in a manual way.
The next step in the evolution of Web technologies is the emergence of Web services
(Alonso, Casati, Kuno & Machiraju, 2003). Web services bring together ideas from Web
applications on the one hand (for example, communication via document exchange) and
distributed computing on the other hand (for example, remote procedure calls and
communication middleware). The outcome of this convergence is a technology that
enables applications to communicate with each other in a programmatic way through
standardized message exchanges. This is expected to trigger a move from a Web of mostly
manual interactions to a Web of both manual and programmatic interactions.
There are several definitions of Web services, most of which agree on saying that a Web
service is a software application available on the Web (through a URI) whose capabilities
and modus operandi are described in XML and is able to communicate through XML
messages over an Internet transport protocol. At present, a widely accepted core
infrastructure for Web services is the so-called Web Services Stack which is essentially
structured around three XML-based standards: SOAP, WSDL, and UDDI (Curbera,
Duftler, Khalaf, Nagy, Mukhi & Weerawarana, 2002). These three standards are intended
to support the tasks of service description, discovery, and communication.
This basic core infrastructure is currently being used to build simple Web services such
as those providing information search capabilities to an open audience (for example,
stock quotes, search engine queries, auction monitoring). However, it has rapidly
become clear that this core infrastructure is not sufficient to meet the requirements of
complex applications (especially in the area of B2B integration) since it lacks abstractions
for dealing with key requirements, such as security, reliability, transactions, composi-
tion, service level agreements, and quality of service, among others (Medjahed, Benatallah,
Bouguettaya, Ngu & Elmagarmid, 2003). In light of this, several efforts are underway to
design a standard comprehensive infrastructure for Web services.
In particular, the development of new services through the composition of existing ones
has gained considerable momentum as a means to integrate heterogeneous enterprise
applications and to realize B2B e-commerce collaborations. Unfortunately, given that
individual services are developed using manifold approaches and technologies, con-
necting and coordinating them in order to build integrated services is delicate, time-
consuming, and error-prone, requiring a considerable amount of low-level programming
and system administration efforts. This observation has sparked a wave of R&D efforts
in an area often known as “service composition”.

50 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Stated in simple terms, service composition aims at providing effective and efficient
means for creating, running, adapting, and maintaining services that rely on other
services in some way. In order for service composition to deliver on its promises, there
is a need for development tools incorporating high-level abstractions for facilitating, or
even automating, the tasks associated with service composition. Hence, these tools
should provide the infrastructure for enabling the design and execution of composite
services.
This chapter provides an overview of the benefits and pitfalls of service composition,
the functionalities that the supporting platforms are required to provide, and the extent
to which these requirements are addressed by the current state of the art. However, the
chapter will not address in detail system issues such as reliability, transactions, and
security. We present the main concepts for service composition by presenting a generic
tool architecture for service composition, covering aspects such as design of composite
services and composite service execution. Based on these concepts, we provide a survey
of service composition models, methods, and supporting technologies.
The chapter is structured as follows: The Generic Architecture section discusses the
foundation concepts in Web services composition by introducing a generic tool
architecture for service composition. The Languages for Service Composition section
overviews language support for Web services description and composition, covering
the design module of the generic architecture. The Platforms for Composite Service
Execution section reviews research efforts and commercial platforms for web services
composition by covering the runtime module of the generic architecture. The Trends
Relevant to (Web) Service Composition section reviews some trends in Web services
technologies, and the last section provides concluding remarks.

Generic Architecture

From an architectural point of view, a tool environment for service composition should
provide at least the following modules:

• Design module: This module offers a graphical user interface for specifying
composite services. The module may also support translation of a composite
service design into a description language. More advanced design tools may
support the automated verification and/or simulation of composite service designs
on the basis of a formal language.

• Runtime environment: This module is responsible for executing a composite
service and routing messages between its components. It is also responsible for
monitoring and fault and exception handling. The runtime environment may
additionally support dynamic service selection and binding as discussed below.

Service Composition 51

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1 represents the generic architecture in more detail. This section explains the
generic architecture further.

(WSDL, BPEL, ...)
Service description

Monitoring Module Backend Application
Integration

Synamic Service
Selection Module

Design Tool

Simulation Module
Formal Verification/ Translation Module

Skeletons
SOAP Stubs and

Enactment Module
Composite Service

Module
Internet Transport

Architecture module

Deliverable

Deliverable Transfer

Runtime interaction
(statechart, ...)

Composite Service Design

A tool for composite service design supports a composite service design methodology.
A methodology consists of design languages, formalisms that are coupled with these
design languages, and design approaches. Design languages are graphical notations
that can be used by stakeholders in a design process to represent a design from their
perspective. They focus on representing a service composition in a way that is easy to
understand for the stakeholders. Formalisms are mathematical languages that can be
used to represent a particular aspect of a design. As a mathematical language, a formalism
provides a mathematical basis for verification and simulation of a design. In a composite
service, for example, a formalism provides techniques that allow designers to analyze if
two services can be composed. An overview of formalisms that are used in model-driven
service composition is given in the Languages for Service Composition section. A design
approach prescribes a series of steps that have to be taken to construct a design. In this
way, a design approach provides a structured way to construct a design by gradually
introducing more detail into user requirements and current business operations until a

Figure 1. Generic architecture for a service composition tool

Service design

interaction

ordering

service
Buyer

delivery

ShipperSeller

order

52 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

level of detail is reached at which a design can be directly implemented. For an approach
to service composition, this is the level of detail at which a design in a one-to-one fashion
corresponds to a description that can be executed by a runtime environment. Such a
description is a textual (typically XML-based) representation of the functional and
nonfunctional properties of a service or service composition. The Languages for Service
Composition section, Description Languages subsection explains some existing tech-
niques for describing service compositions.
From existing description techniques in the area of service composition, we can derive
that there are currently two ways to design a service composition, namely choreography
or orchestration. A choreography differs from an orchestration with respect to where the
logic that controls the interactions between the services involved should reside.
A choreography describes a collaboration between some enterprise services to achieve
a common goal. Hence, it does not focus on a particular service but rather on a goal.
Therefore, the control logic is distributed over the involved services and the choreog-
raphy emerges as the services interact with each other. To design a choreography, we
first describe the interactions that enterprise services have with each other to achieve
their goal and then the relations that exist between these interactions. A choreography
does not describe the actions that are performed internally by the service providers to
realize their enterprise services. Figure 2 shows a typical example of a choreography. This
example shows a collaboration that relates to buying an item.
An orchestration describes the behavior that a service provider implements to realize a
service. Hence, it focuses on a particular service, and the control logic is centralized on
the service provider of which we implement the behavior. To design an orchestration, we
describe the interactions that the service provider has with other parties and the actions
that the service provider performs internally to realize the service. An orchestration is
meant to be executed by an orchestration engine, as will be explained in the Composite
Service Execution subsection. Therefore, it is also called an executable process.
From these observations we can derive a set of basic concepts that are important in the
design of service composition, regardless of whether a choreography — or an orches-
tration-oriented approach is chosen and of the description or design language that is

Figure 2. An example of a choreography

shipping notice

Service Composition 53

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

used. Figure 3 shows a meta-model in which our basic concepts are represented. The
figure shows that a service composition consists of a number of services that are
provided by service providers. The same service can be provided more than once by
different service providers (for example, a flight booking service can be provided by
different airlines). A service consists of (internal) actions and events that are part of an
interaction with other services. We claim that interactions are based on message passing
because this is the basic mechanism for interaction that is used in the mainstream service
description languages as they are presented in the Description Languages subsection.
Hence, interactions consist of a send event and a receive event. Relations relate actions
and interactions to each other. The kind of relation that is used (for example, flow relation,
causal relation, state-based relation, and so forth) depends on the language that is used.

Receive Event

Interaction

Send EventProvider

EventService

RelationAction

0..1 0..1

of

1

*

*
provides

of1

*

*
relates_a

*

*

*

relates_e

11

*

Composite Service Execution

The composite service execution engine is the runtime component of a service compo-
sition tool. It takes as input a composite service description and coordinates the
execution of the composite service according to that description. At least two different
execution models can be distinguished:

Figure 3. Basic design concepts for service composition design

{complete, disjoint}

54 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Centralized: (see, for example, Schuster, Georgakopoulos, Cichocki & Baker, 2000
and Casati & Shan, 2001). In this model, the responsibility for coordinating the
execution of a composite service relies on a single “scheduler.” This scheduler
interacts with each of the component services by processing and dispatching
messages. The internal architecture of the central scheduler is similar to that of a
traditional workflow management system (van der Aalst & van Hee, 2002), except
that the resources are all services rather than human actors, and there is no shared
database through which information can be implicitly passed from one stakeholder
to another. Instead, information must be explicitly passed through message
exchanges.

• Peer-to-Peer: (see, for example, Mecella, Parisi-Presicce & Pernici, 2002 and
Benatallah, Sheng & Dumas, 2003). In this model, the responsibility for coordinat-
ing the executions of a composite service is distributed across the providers of the
component services, which interact in a peer-to-peer way without routing mes-
sages through a central scheduler. The composite service execution environment
therefore manifests itself in the form of a collection of inter-connected modules,
which communicate through an agreed protocol. This execution model bears some
similarities with distributed workflow execution models, such as those described
in Muth, Wodtke, Weissenfels, Dittrich, and Weikum (1998) and Chen and Hsu
(2002).

It is crucial that a mechanism is provided for monitoring the executions of a composite
service. Indeed, being able to trace the execution of a composite service is crucial for
metering, accounting, customer feedback, adaptation, and service improvement. The
monitoring mechanism varies depending on the execution model. In the case of central-
ized execution, the central scheduler can maintain a database of execution traces. In the
case of peer-to-peer execution, however, the information about composite service
executions is disseminated across a number of distributed data sources hosted by the
providers of the component services. Accordingly, it is necessary either to consolidate
these distributed data sources periodically or to be able to answer queries on demand
(Fauvet, Dumas & Benatallah, 2002).
A composite service can be linked to its component services either in a static or a dynamic
manner. A link between a composite service and a component service is static when it
is established at design time and cannot be changed without modifying the design of the
composite service. A link with a component service is dynamic when a mechanism
selects, at runtime, the actual service that will be invoked to perform a given step in the
composite service execution. We call this approach dynamic service selection.
The pool of candidate services over which the dynamic selection occurs may be: (i)
determined at design time; (ii) obtained by evaluating a given query over a registry (for
example, UDDI registry); or (iii) obtained from an invocation to a brokering service. The
selection itself is then performed based on a set of requirements and using a set of
preferences expressed in the composite service description. These constraints and
preferences may involve both functional attributes (that is, attributes describing the

Service Composition 55

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

capabilities of the services) and nonfunctional attributes (for example, time, location,
price, reliability, trust).
Once a service within the pool of candidate services is selected, it has to be invoked by
the composite service. This implies that either all the candidate services for a given task
of a composite service offer exactly the same interface (that is, the same set of operations
and common constraints on their use) or that some late binding mechanism is used to
“homogenize” the interfaces provided by all services so that at the end, the composite
service can invoke any of these candidate services.
The CORBA Dynamic Invocation Interface (DII) is an example of a late binding mecha-
nism. Another example from the area of inter-organizational workflow is provided by the
CrossFlow system (Grefen, Aberer, Hoffner & Ludwig, 2000). In this system, a task in a
workflow can be linked to a contract. When the task needs to be executed, a matchmaking
facility attempts to find another workflow that complies with that contract. In the area of
Web services, the Web Services Invocation Framework (WSIF) (Apache Web Services
Project, 2003) has been developed for the purpose of enabling late binding of Web
services.
Figure 4 represents the concepts that are described in this subsection in a meta-model.

Figure 4. Basic execution concepts for service composition design

*

Composite ServiceElementary Service

Service Service Link

Static Link Dynamic Link

Pool of Services

1

*

1

1 binds to

*

refers to

1

*

56 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Languages for Service Composition

The Generic Architecture section explained the need for different types of languages for
describing service compositions from different viewpoints. In this section, we present
some of these languages. We limit the discussion to description languages and formal-
isms, leaving aside design languages because there is not yet a widely accepted standard
for such languages.

Description Languages

• BPEL4WS: The Business Process Execution Language for Web Services (BEA
Systems, Microsoft, IBM & SAP, 2003) is a language with an XML-based syntax,
supporting the specification of processes that involve operations provided by one
or several Web services.
BPEL4WS is intended to support the description of two types of processes:
abstract and executable. An abstract process is a partially ordered set of message
exchanges between a service and a client of this service. It describes the behavioral
interface of a service without revealing its internal behavior. Using the terminology
introduced in the previous section, an abstract process is a two-party choreogra-
phy involving a service provider and a service requestor, described from the
perspective of the provider.
An executable process on the other hand, captures the internal behavior of a
service in terms of the messages that it will exchange with other services and a set
of internal data manipulation steps. An executable process is composed of a
number of constituent activities, the partners involved in these activities, a set of
internal variables, and a set of activities for handling faults and transactional
rollbacks. Using the terminology of the previous section, a BPEL4WS executable
process corresponds to an orchestration specification.
BPEL4WS draws upon concepts developed in the area of workflow management.
When compared to languages supported by existing workflow systems and to
related standards (for example, XPDL, WSCI, and ebXML BPSS), it appears that
BPEL4WS is relatively expressive (Wohed, van der Aalst, Dumas & ter Hofstede,
2003). In particular, the pick construct is not supported in many existing workflow
languages. On the negative side, it can be said that BPEL4WS lacks orthogonality,
in the sense that it has many constructs with overlapping scope (for example, the
switch and sequence constructs overlap with the control link construct).

• WSCI and BPML: The Business Process Management initiative (BPMi) is an
industry consortium aiming at contributing to the development of (service-
oriented) process description standards. The consortium has published a speci-
fication for a service-oriented process description language called BPML (Busi-
ness Process Modeling Language), similar in many ways to BPEL4WS. BPML
draws on a previous standard called WSCI (Web Service Conversation Interface)
developed by the stakeholders behind BPMi. WSCI integrates many of the

Service Composition 57

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

constructs found in BPML and BPEL4WS (for example, sequence, choice, parallel
execution, send/receive primitives, and so forth). However, it differs from them in
its intent: while BPML is mainly intended for describing orchestrations, WSCI is
intended for describing choreographies (see Composite Service Design subsec-
tion in the previous section for a discussion on this dichotomy). The strong
commonalities between these languages suggest that orchestration and choreog-
raphy correspond to two different (and complementary) viewpoints over the same
class of models (that is, composite service models). As discussed earlier, BPEL4WS
has been designed with the goal of capturing both orchestrations and two-party
choreographies. Peltz (2003) discusses the relationships between WSCI, BPML,
and BPEL4WS in more detail.

• ebXML BPSS:Electronic Business XML (ebXML) is a series of standards intended
to provide an implementation platform for business-to-business collaborations.
ebXML adopts a choreography-based approach to service composition. Specifi-
cally, a business collaboration is described as a set of Collaboration Protocol
Profiles (CPP) (UN/CEFACT & OASIS, 2001a). A CPP describes, among other
things, which part of a given business process a given partner is able to provide
by referring to a role in a process specified using the Business Process Specifica-
tion Schema (BPSS) (UN/CEFACT & OASIS, 2001b). A BPSS document specifies
a number of transactions, the roles associated with these transactions, the flow of
control and flow of documents between these transactions, and the document
access rights for the involved documents. Control-flow relationships are described
using guarded transitions (like in state machines) and fork/join operators.

• WS-CDL: The W3C Web Service Choreography Description Languages (WS-
CDL) (W3C World Wide Web Consortium, 2002) is another ongoing standardiza-
tion effort in the area of service composition. Like WSCI and ebXML, the intent of
WS-CDL is to define a language for describing multiparty interaction scenarios (or
choreographies), not necessarily for the purpose of executing them using a central
scheduler but rather with the purpose of monitoring them and being able to detect
deviations with respect to a given specification.

• RosettaNet: RosettaNet (RosettaNet, 2004) is an industry consortium, which has
developed a series of standards for Business-to-Business (B2B) integration with
an emphasis on supply chain management. Among others, RosettaNet defines a
notion of Partner Interface Protocols (PIP), which enables the description of
interactions between business processes deployed by multiple partners. The
notion of PIP is related to the notion of service choreography and has influenced
efforts in this area. For details about RosettaNet and its relationship to Web service
standards, readers are referred to Bussler (2003).

Formalisms

In an attempt to provide a rigorous foundation to service composition and to enable the
use of formal verification and simulation techniques, a number of formalisms for
describing composite services have been proposed. One of the earliest proposals in this

58 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

area is that of Cardelli and Davies (1999), who present an algebra for programming
applications that access multiple Web resources (also called services). This algebra
brings together operators inspired by process algebras (sequential execution, concur-
rent execution, and repetition) with operators capturing the unreliable nature of the Web
(timeout, time limit, rate limit, stall, and fail). Basic services are described using the
operator url, which attempts to fetch the resource associated with a given URL. Although
the algebra is intended for manipulating Web pages, it could conceivably be extended
to take into account the richer structural and behavioral descriptions of Web services.
Various authors have advocated the use of Petri nets as a formal foundation for modeling
composite services or for defining formal semantics for service composition languages.
The VISPO project (Mecella et al., 2002) has advocated the use of Petri nets to model the
control flow aspects of composite services. Van der Aalst (2003) examines a number of
proposed standards for service composition in terms of a collection of workflow patterns
and notes that these proposed standards would benefit from having a formal semantics
defined in terms of established formalisms such as Petri nets. Finally, Narayanan and
McIlraith (2002) present DAML-S, a language that supports the description of composite
services, and defines a mapping from the process-oriented subset of DAML-S to Petri
nets.
More recently, Bultan, Fu, Hull, and Su (2003) adopt Mealy machines (a category of
communicating automata with queues) to describe the interactions (also called conver-
sations) between aggregated services. Each service participating in an aggregation is
described as a Mealy machine, which consumes events from a queue and dispatches
events to the queues of the other services in the aggregation. The authors study the
expressive power of the resulting formalism, measured in terms of the set of traces (that
is, sequences of events) that can be recognized by an aggregation of Mealy machines.
There is not yet a widely accepted formal foundation for service composition. It appears
that Petri nets, process algebras, and state machines are suitable for capturing at least
certain aspects of service composition. Ultimately, however, for a given formalism to be
adopted in this area, it is necessary that its benefits are tangible (for example, availability
of analysis and simulation tools) and that full mappings between this formalism and
concrete modeling and description languages are provided.

Platforms for
Composite Service Execution

The previous section explained the structure of an execution environment for composite
services. In this section, we review existing implementations that serve as execution
environments. We first provide an overview of some research prototypes before looking
more closely at the implementations provided by major vendors: IBM, BEA, and
Microsoft.

Service Composition 59

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Research Prototypes

CMI (Collaboration Management Infrastructure) (Schuster et al., 2000) provides an
architecture for interenterprise services. It uses state machines to describe the behavior
of composite services. The concept of placeholder is used to enable the dynamic
selection of services. A placeholder is a set of services (identified at runtime) and a
method for selecting a service given a set of parameters.
eFlow (Casati & Shan, 2001) is a platform that supports the specification, enactment, and
management of composite services. eFlow uses graph-based model in which the nodes
denote invocations to service operations, and the edges denote control-flow dependen-
cies. A composite service is modeled by a graph that defines the order of execution among
the nodes in the process. The definition of a service node contains a search recipe
represented in a query language. When a service node is invoked, a search recipe is
executed to select a reference to a specific service. Once a service is selected by the search
recipe, the eFlow execution engine is responsible for performing the dynamic binding
using metadata that it stores in the service repository.
CrossFlow (Grefen et al., 2000) features the concept of contracts for services coopera-
tion. When a partner wants to publish a collaboration, it uses its contract manager to send
a contract template to matchmaking engine. When a consumer wants to outsource a
service, it uses a contract template to search for relevant services. Based on the
specifications in the contract, a service enactment structure is set up.
SELF-SERV (compoSing wEb accessibLe inFormation and buSiness services) (Benatallah,
Dumas, Sheng & Ngu, 2002) specifies composite services using statecharts. Further-
more, SELF-SERV proposes a peer-to-peer model for orchestrating a composite service
execution in which the control and data-flow dependencies encoded in a composite
service definition are enforced through software components located in the sites of the
providers participating in a composition. SELF-SERV refines the concepts of search
recipe and placeholder introduced by eFlow and CMI by proposing the concept of
community. A community is an abstract definition of a service capability with a set of
policies for (i) managing membership in the community and (ii) selecting at runtime the
service that will execute a given service invocation on behalf of the community. Policies
for runtime selection of services are formulated using multiattribute value functions. A
community is also responsible for performing the dynamic binding of the selected Web
service, thereby acting as a dynamic service selector.
DySCo (Piccinelli, Finkelstein & Lane Williams, 2003) is another service-oriented workflow
infrastructure, which supports the definition and enactment of dynamic service interac-
tions. DySCo adopts a traditional workflow approach, except with respect to the
definition of a task. Instead of corresponding to an activity involving a number of
resources, a task in DySCo corresponds to an interaction step between services. In
addition, DySCo supports the dynamic reconfiguration of service interactions by
allowing a task to be decomposed at runtime into a more complicated structure. For
example, a document mailing task in a service-based workflow can be decomposed into
two tasks: a document printing task and a document posting task, which can then be
assigned to different providers.

60 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Commercial Tools

Typically, a tool claiming to support the Web services stack would minimally provide an
API in one or more programming languages (for example, Java) for generating and/or
processing SOAP messages. Some tools would go further by supporting tasks such as:
(i) generating WSDL descriptions from modules, packages, or classes (for example, from
a Java class file); (ii) editing WSDL descriptions through a graphical interface; and/or
(iii) extracting information contained in WSDL files in order to dynamically generate
stubs and skeletons that provide transparent communication between Web service
requesters and providers.
Most tools also provide support for UDDI (both for setting up a registry and for
connecting to an existing registry). Few tools currently support composite service
description languages, and when they do, they typically only support a subset of these
languages.

• IBM WebSphere: WebSphere is a family of IBM products for enabling B2B
interactions. The application server is the cornerstone of WebSphere. It aims at
providing database and backend integration as well as security and performance
capability (for example, workload management). The WebSphere application server
Advanced Edition adds support for J2EE and CORBA. The advanced edition
integrates support for key Web service standards such as SOAP, UDDI, and
WSDL. Additionally, it provides distributed transaction support for major data-
base systems. Other products make up the WebSphere platform. These include
WebSphere Business Components, WebSphere Commerce, and WebSphere MQ
Family. The WebSphere Business Components provides prebuilt and tested
components. WebSphere Commerce provides mechanisms for building B2B sites.
WebSphere MQ Family is a family of message-oriented middleware products.

• BEA WebLogic Integrator: BEA WebLogic Integrator is one of the cornerstones
of the BEA WebLogic e-Business Platform. It is built on top of a J2EE compliant
application server and J2EE connector architecture and supports current Web
service standards such as SOAP, UDDI, and WSDL. It is composed of four major
modules:

• The Application Server, which provides the infrastructure and functionalities
for developing and deploying multitier distributed applications as EJB com-
ponents.

• The Application Integration Server, which leverages the J2EE connector
architecture to simplify integration with existing enterprise applications, such
as SAP R/3 and PeopleSoft.

• The Business Process Management System, which provides a design tool and
execution engine for business processes in BPEL4WS.

• The B2B integration manages interactions with external business processes.

Service Composition 61

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Microsoft Web Services Support: Support for Web services is one of the key
aspects of the .Net product series. In particular, ASP.Net provides a programming
model for exposing applications as Web services. Briefly, the skeleton of a Web
service is encoded as an ASMX file (proprietary Microsoft format), which can be
interpreted by the Internet Information Server (IIS) in order to process incoming
SOAP calls for the service and generate SOAP responses and faults. A WSDL
description and a test page are also automatically generated from the ASMX file.
Another Microsoft product, which provides support for Web services, is BizTalk:
a middleware platform for Enterprise Application and B2B Integration. Applica-
tions in BizTalk are integrated based on an XML message-oriented paradigm. Part
of the BizTalk suite is the BizTalk Orchestration Engine, which implements XLANG,
a precursor of BPEL4WS. Developers can define processes using a graphical
interface and export them as XLANG descriptions, which are then fed into the
runtime engine.

Trends Relevant to
(Web) Service Composition

While much of the work to date has focused on standards for announcing, discovering,
and invoking Web services, there are other significant developments happening in Web
services. In this section, we overview some of the developments related to conversation-
driven composition, semantic Web services, and wireless Web services (also known as
M-services), focusing on those aspects relevant to service composition.

Conversation-Driven Composition

A conversation is a consistent exchange of messages between participants involved in
joint operations. A conversation succeeds when what was expected from that conver-
sation in terms of outcome has been achieved. Further, a conversation fails when the
conversation faced difficulties (for example, communication-medium disconnected) or
did not achieve what was expected.
The use of conversations helps in defining composite services at runtime instead of
design time. When a Web service is being executed, it has at the same time to initiate
conversations with the Web services that are due for execution. The purpose of these
conversations is twofold (Maamar, Benatallah & Mansoor, 2003): invite the Web
services to join the composition process and ensure that the Web services are ready for
execution in case they accept the invitation. Furthermore, conversations between Web
services allow addressing of the composability problem. Medjahed, Rezgui, Bouguettaya,
and Ouzzani (2003) note that an issue when defining a composite service is to check if
the Web services can actually work together at the information level. Mapping opera-
tions of the parameters exchanged between Web services may be required. Ensuring the

62 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

composability of Web services can be completed using ontologies and conversations.
Web services engage in conversations to agree on which ontology to use, what/how/
when to exchange, and what to expect from an exchange.
The Web Services Conversation Language is an initiative on the integration of conver-
sations into Web services. This language describes the structure of documents that a
Web service is supposed to receive and produce and the order in which the exchange
of these documents will occur. The conversation component to embed a Web service is
mainly a means for describing the operations that a Web service supports (for example,
clients have to log in first before they can check the catalogue).
Ardissono, Goy, and Petrone (2003) observed that current Web services communication
standards support simple interactions and are mostly structured as question-answer
pairs. These limitations hinder the possibility of expressing complex situations that
require more that two turns of interactions (for example, propose/counter-propose/
accept-reject). In addition, Ardissono et al. (2003) worked on a conversational model that
aims at supporting complex interactions between clients and Web services, where
several messages are exchanged before a Web service is completed.
It is stated that the full capacity of Web services as an integration platform will be reached
only when applications and business processes integrate their complex interactions by
using a standard process integration model such as BPEL4WS. While the orchestration
of Web services is a core component to any Web services integration effort, the use of
conversations gives more “freedom” to Web services to decide if they will take part in
this orchestration. Conversations are more than just combining components; they
promote the autonomy of components that act and react according to their environment
(Hanson, Nandi & Levine, 2002).

Semantic Web Services

Another major trend is the integration of semantics into Web services. Heflin and Huhns
(2003) argue that the goal driving the semantic Web is to automate Web-document
processing. The semantic Web aims at improving the technology that organizes,
searches, integrates, and evolves Web-accessible resources (for example, documents,
data). This requires the use of rich and machine-understandable abstractions to repre-
sent the resource semantics.
One of the core components to the widespread acceptance of the semantic Web is the
development of ontologies that specify standard terms and machine-readable defini-
tions. Although there is no consensus yet on what an ontology is, most researchers in
the field of knowledge representation consider a taxonomy of terms and the mechanisms
for expressing the terms and their relationships. Samples of markup language for
publishing and sharing ontologies on the 3W include RDF (Resource Description
Framework), DAML+ OIL (DARPA Agent Markup Language + Ontology Inference
Layer), and OWL (Web Ontology Language) (W3C World Wide Web Consortium, 2001).
By combining efforts of Web services and semantic Web communities, it is expected that
new foundations and mechanisms for enabling automated discovery, access, combina-
tion, and management for the benefit of semantic Web services will be developed.

Service Composition 63

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Paolucci and Sycara (2003) note that the semantic Web provides tools for explicit markup
of Web content, whereas Web services could create a network of programs (that is,
software agents) that produce and consume information, enabling automated business
interactions. There exist various initiatives in the field of semantic Web services such
as DAML-S (DARPA Agent Markup Language for Services) (DAML-S Consortium,
2004), WSMF (Web Services Modeling Framework) (Fensel & Bussler, 2002), and
METEOR-S (Managing End-To-End OpeRations-Semantic Web Services and Processes)
(Sivashanmugam, Verma, Sheth & Miller, 2003).

Wireless Web Services

Besides the Web expansion, a development occurring in the field of wireless and mobile
technologies is witnessed (Wieland, 2003). Telecom companies are offering new services
and opportunities to customers over mobile devices. The next stage (if we are not already
in it), is to allow users to remotely enact Web services from mobile devices (Maamar &
Mansoor, 2003).
While Web services provisioning is an active area of research and development
(Benatallah & Casati, 2002), little has been done to date regarding their provisioning in
wireless environments. This is due to different obstacles including throughput and
connectivity of wireless networks, limited computing resources of mobile devices, and
risks of communication channel disconnections. In addition, businesses that are eager
to engage in wireless Web services activities are facing technical, legal, and organiza-
tional challenges. To optimize Web services provisioning in wireless environments,
important issues need to be tackled first:
Context-sensitive Web services selection: In addition to traditional criteria such as
monetary cost and execution time, the selection of services should consider, on the one
hand, the location of requesters and, on the other hand, the capabilities of the computing
resources on which these services will be deployed (for example, processing capacity,
bandwidth). This calls for context-aware service selection policies that enable a system
to adapt itself to computing and user requirements.
Handling disconnections during Web services execution: In a wireless environment,
disconnections are frequent. It is noted that to cope with disconnection issues during
a service delivery, software agent-based service composition middleware architectures
are deemed appropriate as proposed in Maamar, Sheng, and Benatallah (2004).

Conclusion

Web services promise to revolutionize the way in which applications interact over the
Web. However, the underlying technology is still in a relatively early stage of develop-
ment and adoption. While the core standards such as XML, SOAP, and WSDL are
relatively stable and are supported in various ways by a number of tools, standardization
efforts in key areas such as security, reliability, policy description, and composition are

64 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

still underway, and the tools supporting these emerging standards are still evolving. In
addition (or perhaps as a result of this), relatively few production-level Web services
have been deployed and are being used in practice. To some extent, these difficulties can
be explained by the fact that businesses have spent considerable resources in the last
few years to expose their functionality as interactive Web applications. As a result, they
are reluctant to invest more to move this functionality into Web services until the benefits
of this move are clear. It will probably take another two years before the technology
reaches the level of maturity necessary to trigger a widespread adoption. In the meantime,
it is important that middleware platform developers integrate the numerous facets of Web
services into their products (for example, facilitating the use of message-oriented
middleware for Web service development), while researchers advance the state of the art
in challenging issues such as Web service delivery in mobile environments, QoS-driven
selection of services, and manipulation of semantic-level service descriptions.

References

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2003). Web services: Concepts,
architectures and applications. Berlin: Springer-Verlag.

Apache Web Services Project. (2003). Web services invocation framework (WSIF).
Retrieved August 6, 2004: http://ws.apache.org/wsif/

Ardissono, L., Goy, A., & Petrone, G. (2003, July 14-18). Enabling conversations with
web services. Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Melbourne, Australia.

BEA Systems, Microsoft, IBM & SAP. (2003). Business process execution language for
Web services (BPEL4WS). Retrieved August 6, 2004: f tp:/ /
www6.software.ibm.com/software/developer/library/ws-bpel.pdf

Benatallah, B., & Casati, F. (2002). Introduction to special issue on Web services.
Distributed and Parallel Databases: An International Journal, 12(2-3).

Benatallah, B., Dumas, M., Sheng, Q., & Ngu, A. (2002, February 26-March 1). Declara-
tive composition and peer-to-peer provisioning of dynamic Web services. Pro-
ceedings of the 18th IEEE International Conference on Data Engineering (ICDE),
San Jose, CA.

Benatallah, B., Sheng, Q., & Dumas, M. (2003). The SELF-SERV environment for Web
services composition. IEEE Internet Computing, 7(1), 40-48.

Bultan, T., Fu, X., Hull, R., & Su, J. (2003, May 20-24). Conversation specification: A new
approach to design and analysis of e-service composition. Proceedings of the 12th
International Conference on the World Wide Web (WWW’03) (pp. 403-410),
Budapest, Hungary.

Bussler, C. (2003). B2B integration: Concepts and architecture. Berlin: Springer-Verlag.
Cardelli, L., & Davies, R. (1999). Service combinators for Web computing. IEEE Trans-

actions on Software Engineering, 25(3), 309-316.

Service Composition 65

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Casati, F., & Shan, M.-C. (2001). Dynamic and adaptive composition of e-services.
Information Systems, 26(3), 143-162.

Chen, Q., & Hsu, M. (2002, October 28-November 1). CPM revisited – An architecture
comparison. Proceedings of the Confederated International Conferences CoopIS,
DOA, and ODBASE (pp. 72-90), Irvine, CA.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).
Unraveling the Web services web: An introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2), 86-93.

DAML-S Consortium. (2004). DAML services. Retrieved August 6, 2004: http://
www.daml.org/services

Fauvet, M.-C., Dumas, M., & Benatallah, B. (2002, October 28-November 1). Collecting
and querying distributed traces of composite service executions. Proceedings of
the Confederated International Conferences CoopIS, DOA, and ODBASE (pp. 373-
390), Irvine, CA.

Fensel, D., & Bussler, C. (2002). The Web services modeling framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2), 113-137.

Grefen, P., Aberer, K., Hoffner, Y., & Ludwig, H. (2000). CrossFlow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering, 15(5), 277-290.

Hanson, J. E., Nandi, P., & Levine, D. W. (2002, June 24-27). Conversation-enabled Web
services for agents and e-business. Proceedings of the International Conference
on Internet Computing (IC), Las Vegas.

Heflin, J., & Huhns, M. (2003). The Zen of the Web. IEEE Internet Computing, 7(5).
Maamar, Z., Benatallah, B., & Mansoor, W. (2003, May 20-24). Service chart diagrams:

Description and application. Proceedings of the 12th International Conference on
the World Wide Web (WWW’03), Budapest, Hungary.

Maamar, Z., & Mansoor, W. (2003). Design and development of a software agent-based
and mobile service-oriented environment. e-Service Journal, 2(3).

Maamar, Z., Sheng, Q.Z., & Benatallah, B. (2004). On composite web services provision-
ing in an environment of fixed and mobile computing resources. Information
Technology and Management Journal, 5(3).

Mecella, M., Parisi-Presicce, F., & Pernici, B. (2002, August 23-24). Modeling e-service
orchestration through Petri nets. Proceedings of the 3rd International Workshop
on Technologies for E-Services (TES) (pp. 38-47), Hong Kong.

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., & Elmagarmid, A. (2003).
Business-to-business interactions: Issues and enabling technologies. The VLDB
Journal, 12(1), 59-85.

Medjahed, B., Rezgui, A., Bouguettaya, A., & Ouzzani, M. (2003). Infrastructure for e-
government Web services. IEEE Internet Computing, 7(1).

Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., & Weikum, G. (1998). From centralized
workflow specification to distributed workflow execution. Journal of Intelligent
Information Systems, 10(2).

66 Benatallah, Dijkman, Dumas and Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Narayanan, S., & McIlraith, S. (2002, May 7-11). Simulation, verification and automated
composition of Web services. Proceedings of the 11th International Conference on
the World Wide Web (pp. 77-88), Honolulu.

Paolucci, M., & Sycara, K. (2003). Autonomous semantic Web services. IEEE Internet
Computing, 7(5).

Peltz, C. (2003). Web services orchestration and choreography. IEEE Computer, 36(8),
46-52.

Piccinelli, G., Finkelstein, A., & Lane Williams, S. (2003, September 1-6). Service-oriented
workflow: The DySCo framework. Proceedings of the 29th EUROMICRO Confer-
ence (pp. 291-297), Belek-Antalya, Turkey.

RosettaNet (2004). RosettaNet home page. Retrieved August 6, 2004: http://
www.rosettanet.org

Schuster, H., Georgakopoulos, D., Cichocki, A., & Baker, D. (2000, June 5-9). Modeling
and composing service-based and reference process-based multi-enterprise
processes. Proceedings of the 12th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE) (pp. 247–263), Stockholm, Sweden.

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003, October 20-23). Adding
semantics to web services standards. Proceedings of the 2nd International Seman-
tic Web Conference (ISWC), Sanibel Island, FL.

UN/CEFACT, & OASIS (2001a). Collaboration-protocol profile and agreement specifi-
cation. Retrieved August 6, 2004: http://www.ebxml.org/specs/ebCCP.pdf

UN/CEFACT, & OASIS (2001b). ebXML business process specification schema. Re-
trieved August 6, 3004: http://www.ebxml.org/specs/ebBPSS.pdf

van der Aalst, W. (2003). Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1).

van der Aalst, W., & van Hee, K. (2002). Workflow management: Models, methods, and
systems. Cambridge, MA: MIT Press.

W3C World Wide Web Consortium. (2002). Web services choreography working group.
Retrieved August 6, 2004: http://www.w3.org/2002/ws/chor

W3C World Wide Web Consortium. (2001). Semantic Web activity. Retrieved August
6, 2004: http://www.w3.org/2001/sw

Wieland, K. (2003). The long road to 3G. International Telecommunications Magazine,
37(2).

Wohed, P., van der Aalst, W., Dumas, M., & ter Hofstede, A. (2003, October 13-16).
Analysis of Web services composition languages: The case of BPEL4WS. Proceed-
ings of the 22nd International Conference on Conceptual Modeling (ER). Chicago.

Service Composition 67

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section II

Service-Oriented
Architecture Design

and Development

68 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IV

UniFrame:
A Unified Framework for

Developing
Service-Oriented,

Component-Based Distributed
Software Systems

Abstract

This chapter introduces the UniFrame approach to creating high quality computing
systems from heterogeneous components distributed over a network. It describes how
this approach employs a unifying framework for specifying such systems to unite the
concepts of service-oriented architectures, a component-based software engineering
methodology and a mechanism for automatically finding components on a network in
order to assemble a specified system. UniFrame employs a formal specification language
to define the components and serve as a basis for generating glue/wrapper code that
connects heterogeneous components. It also provides a high level language for the

Andrew M. Olson
Indiana University Purdue University,

USA

Barrett R. Bryant
University of Alabama at Birmingham,

USA

Rajeev R. Raje
Indiana University Purdue University,

USA

Carol C. Burt
University of Alabama at Birmingham,

USA

Mikhail Auguston
Naval Postgraduate School, USA

UniFrame 69

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system developer to use for inserting code in a created system to validate it empirically
and estimate the quality of service it supports. The chapter demonstrates how a
comprehensive approach, which involves the practicing community as well as technical
experts, can lead to solutions of many of the difficulties inherent in constructing
distributed computing systems.

Introduction

The architecture of a computing system family can be represented by a business model
comprising a set of standard, platform independent models residing in a service layer,
each of which is related to a platform specific model that corresponds to one or more
specific realizations of the service. A system is realized by assembling the realizations
according to the specified architecture. This Service-Oriented Architecture offers many
advantages, such as flexibility, in constructing and modifying a computing system.
Because business requirements can change rapidly, both the services making up a
business model and their platform specific realizations may need to change rapidly in
response. With an agile mechanism to trace out an appropriate architecture, the devel-
opment engineer can react quickly by building a modified realization of the system.
Nevertheless, there are many practical issues that make effecting this process difficult.
For example, an environment in which this approach has greatest appeal is typically
distributed and heterogeneous. This makes the mapping of a system’s platform indepen-
dent model to a platform specific model (Object Management Group, 2002) quite complex
and subject to variation.
This chapter describes the basic principles of the UniFrame Project, which defines a
process, based on Service-Oriented Architecture, for rapidly constructing a distributed
computing system that confronts many of these inherent difficulties. UniFrame’s basic
objective is to create a unified framework to facilitate the interoperation of heterogeneous
distributed components as well as the construction of high quality computing systems
based on them. UniFrame combines the principles of distributed, component-based
computing, Model-Driven Architecture, service and quality of service guarantees, and
generative techniques.
Though better than handcrafting distributed computing systems, developing them by
composing existing components still poses many challenges. A comprehensive treat-
ment of these and the corresponding solutions that UniFrame proposes exceeds the
scope of this chapter, so it sketches the features of UniFrame that are most related to the
book’s service-oriented engineering theme along with references to further reading.

Background

Despite the achievements in software engineering, development of large-scale, decen-
tralized systems still poses major issues. Recent experience has demonstrated that the

70 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

principles of distributed, component-based engineering are effective in dealing with
them. Weck (1997), Lumpe, Schneider, Nierstrasz, and Achermann (1997), and the works
of Batory et al., for example, Batory and Geraci (1997), concern the composition of
components. The approach of Griss (2001) to developing software product lines is similar
to UniFrame’s, except that UniFrame avoids descending to code-fragment-sized compo-
nents. Brown (1999) surveys component-based system development, whereas Heineman
and Councill (2001) and Szyperski, Gruntz, and Murer (2002) provide extensive discus-
sions of different aspects.
Heineman and Councill (2001) provide a general definition of a component model. Many
different models for distributed, component-based computing have been proposed and
implemented. Among these, J2EE™ (Java 2 Enterprise Edition) and its associated
distributed computing model (Java-RMI), CORBA® (Common Object Request Broker
Architecture), and .NET® have achieved the greatest acceptance. Typically, each
prevalent model assumes the presence of homogeneous environments; that is, compo-
nents created using a particular model assume that any other components present adhere
to the same model. For example, the white paper on Java Remote Method Invocation
(2003) describes RMI as an extension of Java’s basic model to achieve distributed
computation, assuming, thus, an environment consisting of components developed
using Java and communicating with each other using method calls. Schmidt (2003)
provides an overview of CORBA, which indicates that CORBA does provide a limited
independence from the components’ development language and deployment platform by
specifying components with an interface definition language. This permits implementa-
tion in any languages for which mappings with the interface definition language exist.
Again, an implicit assumption is that, typically, a CORBA component will communicate
with another CORBA component. Microsoft’s .NET is intended as a programming model
for building XML™-based Web services and associated applications. It provides
language independence with an interface language and a common language runtime
(Microsoft .NET Framework, 2003). The implicit assumption of homogeneity still holds.

UniFrame

Current approaches for tackling heterogeneity are ad hoc in nature, requiring handcrafted
software bridges, so have many drawbacks. It is difficult to make components of different
models interoperate, and handcrafting is known to be error prone. Moreover, depen-
dence on a single model meshes poorly with the grand notion of a component (or services)
bazaar over a distributed infrastructure, as the success of such a bazaar requires local
autonomy for deciding various policies, including the choice of the underlying model.
Thus, there is a need for a framework, such as UniFrame, that will support seamless
interoperation of heterogeneous, distributed components. UniFrame consists of:

• the creation of a standards-based meta-model for components and associated
hierarchical setup for indicating the contracts and constraints of the components;

UniFrame 71

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• an automatic generation of glue and wrappers for achieving interoperability;

• guidelines for specifying and verifying the quality of individual components;

• a mechanism for automatically discovering appropriate components on a net-
work;

• a methodology for developing distributed, component-based systems with ser-
vice-oriented architectures; and

• mechanisms for evaluating the quality of the resulting component assem-
blages.

UniFrame creates more general distributed systems than the point-to-point interactions
of current Web services and also emphasizes determining the Quality of Service (QoS)
during system assembly. For pragmatic reasons, UniFrame provides an iterative, incre-
mental process for assembling a distributed computing system (DCS) from services
available on the network that permit selecting among alternative components during
system construction. In order to increase the assurance of a DCS, UniFrame employs
automation, to the extent feasible, in the processes of locating and assembling compo-
nents, and of component and system integration testing. The ICSE 6th Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction (Crnkovic,
Schmidt, Stafford & Wallnau, 2003) focused on automated composition theories in
constructing a DCS. Although automation is a goal of UniFrame, it presently focuses on
the more practical, implementation aspects.

Unified Meta-Component Model (UMM)

Because future service-oriented systems will consist of independently developed
components adhering to various models, a meta-model that abstracts the features of
different models, enhances them and incorporates innovative concepts, is necessary in
order to facilitate their creation. Raje (2000) and Raje, Auguston, Bryant, Olson, and Burt
(2001) describe a central concept of UniFrame, the Unified Meta-component Model, that
does this. It consists of three parts: (a) components, (b) service and its guarantees, and
(c) infrastructure. These are not novel separately, but their structure, integration, and
interactions form the UMM’s distinguishing features. Components in the UMM have
public interfaces and private implementations, which may be heterogeneous. Each
interface comprises multiple levels. In addition to emphasizing a component’s functional
responsibilities (or the services it offers), the UMM requires component developers to
advertise and guarantee a QoS rating for each component. The UMM’s infrastructure
supplies the environment necessary for developing, deploying, publishing, locating,
assembling, and validating individual components and systems of components. The
following subsections expand upon these concepts.

72 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component

The UMM defines a component as a sextuple consisting of the attributes (inherent,
functional, nonfunctional, cooperative, auxiliary, deployment). This view of a compo-
nent conforms to the definition of Szyperski, Gruntz, and Murer (2002). The inherent
attributes contain the bookkeeping information about a component, such as the author,
the version, and its validity period. The functional attributes of a component contain its
interface, along with the necessary pre- and post-conditions, and component model of
any associated implementation. They also indicate related details, such as algorithms
used, underlying design patterns and technology, and known usages. The nonfunc-
tional attributes represent the QoS parameters supported by the component, along with
their values that the component developer guarantees in a specific deployment environ-
ment. These attributes may also indicate the effects of the deployment environment and
usage patterns on the QoS values. The cooperative attributes describe how components
actively collaborate, exchanging services. The auxiliary attributes exhibit other charac-
teristics, such as mobility, various security features, and fault tolerance that the
components may possess. A component needs deployment rules, specified in the
deployment attributes so that it can be configured, initialized, and made available on a
network.

Service

As described by Raje (2000), this part of the UMM consists of the computational tasks
and guarantees that a component performs. To realize a DCS from a set of independently
created components, the system integrator needs to reason from the service assurance
of each component to obtain the assurance of the integrated DCS. Hence, a component
must provide a predetermined level of assurance of both its functional and nonfunctional
features. Various techniques, such as formal verification, have been proposed for
reasoning about the functional assurance of a DCS. Therefore, the UMM assumes the
use of an appropriate mechanism for functional assurance. The UniFrame research
focuses on assuring the nonfunctional features of components and the integrated
system because many existing application domains (multimedia, critical systems, and so
forth) depend not only on correct functionality but also on how well it is achieved.
UniFrame provides a mechanism for the component provider to specify the QoS
parameters that are applicable to a provided component and determine the ranges that
the component can guarantee.
Table 1 shows the UMM type specification of a component, Validation Server, for
validating user accesses within the application domain of document management. In the
advertised description of a corresponding implementation, the component provider
would supply the actual values for various fields (such as N/A in Table 1). For example,
the specification of a component that implements Validation Server would contain
details, such as the URL where the component is deployed (id), the guaranteed values
for the throughput and end-to-end delay, and the required deployment environment. The

UniFrame 73

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specification associated with each implemented component is published when it is
deployed on the network. The UMM specification of a component enhances the concept
of a multilevel contract for components proposed by Beugnard, Jezequel, Plouzeau, and
Watkins (1999) because it includes other details, such as bookkeeping, collaborative,
algorithmic and technological information, and possible levels of service with associated
costs and effects of different environmental factors on the QoS parameters.

Abstract Component Type: ValidationServer

1. Component Name: ValidationServer
2. Domain Name: Document Management
3. System Name: DocumentManager
4. Informal Description: Provide the user validation service.
5. Computational Attributes:

5.1 Inherent Attributes:
5.1.1 id: N/A
5.1.2 Version: version 1.0
5.1.3 Author: N/A
5.1.4 Date: N/A
5.1.5 Validity: N/A
5.1.6 Atomicity: Yes
5.1.7 Registration: N/A
5.1.8 Model: N/A

5.2 Functional Attributes:
5.2.1 Function description: Act as validation server for users in the system.
5.2.2 Algorithm: N/A
5.2.3 Complexity: N/A
5.2.4 Syntactic Contract
5.2.4.1 Provided Interface: IValidation
5.2.4.2 Required Interface: NONE
5.2.5 Technology: N/A
5.2.6 Expected Resources: N/A
5.2.7 Design Patterns: NONE
5.2.8 Known Usage: Validation of user access
5.2.9 Alias: NONE

6. Cooperation Attributes:
6.1 Preprocessing Collaborators: Users’Terminal
6.2 Postprocessing Collaborators: NONE

7. Auxiliary Attributes:
7.1 Mobility: No
7.2 Security: L0
7.3 Fault tolerance: L0

8. Quality of Service Attributes
8.1 QoS Metrics: throughput, end-to-end delay
8.2 QoS Level: N/A
8.3 Cost: N/A
8.4 Quality Level: N/A
8.5 Effect of Environment: N/A
8.6 Effect of Usage Pattern: N/A

9. Deployment Attributes: N/A

Table 1. UMM type specification of a component

74 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Infrastructure

UniFrame assumes the presence of a publicly accepted knowledgebase that contains
information, such as the component types needed for a specific application domain, the
interconnections and constraints that make up the design specification of each compo-
nent system in a domain, and rules for QoS calculations. Experts, such as standards
organizations’ task forces, create the UMM specifications for the components of each
application domain of the knowledgebase. The UMM specifications of the component
types are publicly distributed so that component developers can supply implementa-
tions that adhere to them.
UniFrame’s Infrastructure consists of the System Generation Process, Resource Discov-
ery Service (URDS), and Glue and Wrapper Generator. The first employs the
knowledgebase to carry out the steps in creating a component system. It invokes the
URDS to locate the components in the network the system requires and validates the
product using an iterative process. The URDS provides mechanisms for components to
publish their UMM specifications and for hosting the services on distributed machines,
receives appropriate queries for locating the deployed services, and performs the
selection of necessary components based upon specified criteria. It invokes the Glue and
Wrapper Generator, which accommodates the heterogeneity across components, incor-
porates the mechanisms necessary to measure the QoS, and configures the selected
services. Subsequent sections will provide more details about these.

Service-Oriented Architecture

In order to provide flexible, efficient support to the process of creating a DCS, UniFrame
organizes its knowledgebase according to the concepts of Model-Driven Architecture
proposed by the Object Management Group (2002) and Business Line Architecture
proposed by the Enterprise Architecture SIG (2003a). UniFrame’s UMM provides an
underlying framework for this organization. The domain elements in the top tier of the
architecture correspond to different business contexts, or lines. A context consists of
a class of related business practice domains (such as, retail grocery, retail hardware,
construction supply, wholesaler), which are located in the next tier down. Conceptually,
elements on one level can share an element on another (health care and construction can
share inventory), which differs in how it performs similar operations in different contexts
(that is, the element comprises a set of variants). The various, hierarchically organized
elements that contribute detail to the definition of a business context constitute its
Business Reference Model, discussed in Succeeding with Component-Based Architec-
ture by the Enterprise Architecture SIG (2003b). This takes the form of a tree, whose root
represents the context in the architecture under consideration. Business domain experts
perform requirements analysis and model the business contexts for which it is desired
to construct DCSs. The Business Reference Models they derive and place in the
knowledgebase define the space of problems UniFrame can solve.

UniFrame 75

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For each Business Reference Model, software engineers construct design models in
various ways to implement DCSs that satisfy its requirements. A design model is
expressed, frequently in Unified Modeling Language (UML®) (Rumbaugh, Jacobson &
Booch, 1999), in terms of tiered layers of components, each component offering a defined
set of services. Several Business Reference Models can share components. A compo-
nent in one tier can be composed (or use of the services) of components on a lower tier.
Thus, a component has two definition forms in the knowledgebase:

• a specification of its abstract properties as a type, as in Table 1, or

• a design specification, following UMM standards, which directly references the
components and refined design specifications that it uses.

The former is called an abstract component, which the UniFrame System Generation
Process considers to be available with no construction necessary. The second form is
called a compound component. The process will attempt to construct it from its design.
A design specification that defines a realization of a Business Reference Model forms
a Service Reference Model for it. It provides a vehicle for realizing the Model-Driven
Architecture’s mapping from a platform-independent model to a platform-specific model.
The Service Reference Models also form part of UniFrame’s knowledgebase.
In order to construct DCS solutions for a significant space of problems, the knowledgebase
must contain matching (Business Reference Model, Service Reference Model) pairs for
each problem variation anticipated. These can be organized efficiently by structuring
related Business Reference Models in feature models according to the optional features
that they exhibit and related Service Reference Models according to variation point
archetypes that show which design variants are available. The experts create a domain-
specific language based on the distinguishing features and variation points in the
models. Then, users of the System Generation Process employ the language to specify
their requirements. The following example illustrates the knowledgebase’s organization.

Case Study

Suppose domain experts want to create a knowledgebase that includes the business
context consisting of users who manage documents. The users’ contact with the
supporting system is via the use case Manage Documents, which includes Validate
User. The use cases Create Document, Delete Document, List Documents, Store
Document, and Get Document all extend Manage Documents. The last in this list includes
Lock Document, whereas the others include Unlock Document. From the requirements
these express, the domain experts identify three subsystems comprising the system: one
for user validation, one for managing the documents themselves, and one for user
interaction. The experts write a domain model for this system containing these three
subsystems.

76 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Suppose the experts decide the users may want to choose between two types of
document manager systems: a standard document manager and a deluxe one that
provides extended persistence support. They represent these options in a simplified
feature diagram for the document manager, as shown in Figure 1. Clear small circles
indicate optional features, whereas an arc indicates an exclusive OR choice. In more
general feature diagrams (Griss, 2001), options of a node can be chosen as any
combination of elements of a subset of the node’s children. A feature diagram carries no
information about how its alternatives might be associated with elements in the domain
model of their parent node. It is an efficient mechanism for representing alternatives; the
domain models are essential for representing the associations among elements in the
models and the constraints on them. The domain model for the standard document
manager consists of only one domain element, Document Server. The domain model for
the deluxe document manager consists of two domain elements, Deluxe Document Server
and its associated Document Database for persistence. Because there are just two
alternatives in the feature diagram, there are just two Business Reference Models in this
example. More generally, there will be as many as there are combinations permitted by
the various feature diagrams present in the knowledgebase.
Software engineers experienced in the domain of the business context (document
management here) develop design models for these two Business Reference Models.
They create a service-oriented architecture of abstract components so that domain
models map to component-based design models. Figure 2 shows the Service Reference
Model, Standard Document System, for the Business Reference Model of the Standard
Document Manager for this example. The Service Reference Model, Deluxe Document
System, for the Deluxe Document Manager is identical, with the addition of a Database
component associated with the Document Server, where the cardinality allows an
arbitrary, positive number of Database units to be present. The Service Reference
Models include the details defining the associations among the components. These
might be views consisting of UML collaboration diagrams. This information is used to
determine the entries in the UMM abstract component specifications and the interrela-
tions of the components’ interfaces. The specification for the abstract component,
Validation Server, appeared in Table 1.
Suppose that the software engineers decide that two implementations of the standard
document manager are possible, one in which the components adhere to .NET and the

DM

SDM DDM

Legend:
 OF: Other Features

DM: Document Manager
SDM: Standard Document Manager
DDM: Deluxe Document Manager

OF

Figure 1. Feature diagram for the document management system

UniFrame 77

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

other to CORBA. They indicate this choice by a design model, labeled Standard
Document System, augmented by variation point information that specifies the choice
of one of these two technologies for the associations in Figure 2, such as in OCL (Warmer
& Kleppe, 2003), as shown:

context Standard Document System
inv: technology = ‘.NET’ or technology = ‘CORBA’

Because the system consists of more than two components, the engineers have other
combinations possible. For example, the Users’ Terminal/Validation Server association
may be in .NET technology, and the Document Server may be in CORBA technology,
implying the need for an appropriate bridge.

UniFrame System Generation Process

The essential steps in UniFrame’s process of constructing a DCS to solve a problem
appear in Table 2. Once the UniFrame knowledgebase is available, a system developer
can pose a statement of requirements for a DCS that solves a problem within its
application domain. This analysis task forms step (1) in Table 2. For the case study in
the previous section, the statement of requirements might be:

Create a Document Management System having a Standard Document Manager.

In step (2), the term Document Management System of the example requirements
statement identifies the business context, so the stated problem lies within the domain
the knowledgebase represents. The corresponding system model shows there are two
alternatives for the Document Manager, which the feature model displays in Figure 1.
The qualifying requirement, Standard, resolves this ambiguity, which completes step (2).
The resulting Business Reference Model maps directly in the knowledgebase to the two
alternative platform-specific Service Reference Models for the entire system shown in

1..* 1..*
UT

VS DS

Legend:
 UT: Users' Terminal
 VS: Validation Server
 DS: Document Server

Figure 2. Service reference model for the standard document system

78 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2, in which the components are either all .NET or all CORBA. This completes
step (3).
Continuing to step (4), the System Generation Process collects the UMM type specifi-
cations of all the abstract components involved in each of the two Service Reference
Models and sends them in a query to the UniFrame Resource Discovery Service. This
searches the network for implemented components whose UMM descriptions satisfy the
type specifications.
Step (5) employs the design information in a Service Reference Model to construct a DCS
with the components found. If the appropriate implementations are available on the
network, the request for a Standard Document Manager in the example will yield two
DCSs, one with .NET technology and one with CORBA technology. If no .NET implemen-
tation of a Validation Server is found, then only the CORBA DCS will be constructed.
Typically, a developer understands the requirements poorly at the initiation of the
System Generation Process. Therefore, it is imperative to evaluate empirically the
consistency of the characteristics of a generated DCS with the perceived requirements
and make modifications as necessary. This motivates having step (6) in Table 2. Such
iterative development provides a mechanism for the developer to validate the outcome
of the process and determine empirically the ranges within which its QoS attributes vary.
This helps to assure a higher quality product. The process allows two levels of testing.
The simplest is black box (or acceptance) testing of the DCS based on only the stated
requirements. The developer supplies a test harness and plan for this. The other is white
box (or integration) testing, again based on the developer’s test plan. In this case, the
design of the DCS serves as a guide for inserting instrumentation code between the
components in the DCS. At runtime, this code reports the behavior of the DCS, giving
the developer a view into its internal operation. The section on the measurement of QoS
discusses a mechanism for inserting this instrumentation easily.
In case there are several Business or Service Reference Models in the knowledgebase
that satisfy the developer’s requirements if step (2) or (3) of the process provides

Steps Activities
1 State the requirements the DCS must satisfy in the knowledgebase's

terminology.
2 Identify a Business Reference Model that represents these.
3 Identify each Service Reference Model specifying a system of

abstract components that satisfies the Business Reference Model.
4 Obtain concrete implementations of the abstract components.
5 Assemble the concrete components into a DCS according to each

Service Reference Model, so that it meets the specified
requirements.

 6 Test the DCS against the requirements and exit if satisfactory;
otherwise, return to step (1) to modify the requirements.

Table 2. Steps in the UniFrame System Generation Process

UniFrame 79

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

feedback, allowing the developer to introduce requirements incrementally so as to reduce
these alternatives, then the process becomes an efficient way to construct the needed
type of DCS. Thus, the System Generation Process supports the iterative, incremental
development paradigm that modern software engineering practices have found produc-
tive.

UniFrame Resource
Discovery Service (URDS)

Once components and their UMM descriptions have been deployed on the network, they
are ready for discovery in the UniFrame System Generation Process. The URDS executes
this process. Siram et al. (2002) discuss its architecture, shown in Figure 3.
The URDS architecture comprises: HeadHunters (HHs), Internet Component Broker
(ICB), Meta-repositories (MRs), and components.
Components are implemented according to some component model, as described earlier,
and registered with the model’s binding service. For example, the Java-RMI components
are registered with the Naming service provided by the Java-RMI framework. An

DSM QM LM AM

C1 C2 AC1 AC2

www

Active
Registry

RMI

S1
S2

S3

Active
Registry

ORB

S4
S5

Active
Registry

.Net

S6
S7

S8

Head Hunter Head Hunter Head Hunter
MRMR MR

ICB

Figure 3. UniFrame Resource Discovery System (URDS)

80 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

advantage of this is that it does not burden the component providers because, to deploy
their implementations, they must register them anyway. The HHs have the sole respon-
sibility of performing matchmaking operations between registered components and
requested specifications. Each HH has an MR, which serves as a local store. An HH is
constantly discovering newly implemented components and storing their UMM speci-
fications in its MR. Anytime an HH receives a query for a component type, it first searches
its MR. If it finds a match, it returns the corresponding component as a result. If not, it
propagates the query to other HHs in the system.
The ICB is analogous to the object request broker (ORB) in other architectures. Unlike
the ORB, which only allows interoperation between components having heterogeneous
implementations, the Internet component broker allows interoperation between compo-
nents with different component models. As Figure 3 shows, the Internet component
broker consists of domain security manager (DSM), query manager (QM), link manager
(LM), and adapter manager (AM). The DSM is responsible for enforcing a security
structure on the URDS. It authenticates the HHs and allows them to communicate with
different binding mechanisms (registries). The QM interfaces with the System Generation
Process. It receives a query consisting of a collection of UMM component types, passes
it to the HHs, and returns the results. The LM allows a federation of URDSs to be created
in order to increase the component search space. The AM locates adapter components,
such as bridges that allow interoperation of different component models, and passes
them to the Glue and Wrapper Generator.
A prototype of URDS has been implemented using the Java-RMI and .NET technologies.
Many experiments have been performed to measure its performance (Siram et al., 2002).
These demonstrate that URDS scales upward, but the details extend beyond this
chapter’s scope.
Industry and academia have proposed and implemented many distributed resource
discovery and directory services. Examples that Siram et al. (2002) describe include
WAIS, Archie, Gopher, UDDI, CORBA Trader, LDAP, Jini, SLP, Ninf, and NetSolve. Each
has its own characteristics and exhibits some similarity with URDS. The distinguishing
features of URDS are its treatment of heterogeneity and its purpose to support creating
heterogeneous integrated systems, not just to discover services.

UniFrame Quality of
Service Framework (UQoS)

Components offer services and indicate and guarantee the quality of their services.
Therefore, it is necessary to facilitate the publication, selection, measurement, and
validation of component and DCS QoS values. The UniFrame Quality of Service
Framework, described by Brahnmath (2002); Sun (2003); and Raje, Bryant, Olson,
Auguston, and Burt (2002), provides necessary guidelines for the component developers
and system integrators using UniFrame. The UQoS consists of three parts: QoS catalog,

UniFrame 81

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

composition/decomposition models for QoS parameters, and specification and measure-
ment of QoS. The reader is referred to the references above for the first two because the
details are extensive.
To prepare the UMM description of a component to be publicized, the component
developer must measure empirically the QoS parameters in the corresponding UMM type
specification. The QoS catalog provides model definitions and formulas to assist in this.
Some parameters are static in nature (like reliability), while some are dynamic (like end-
to-end delay). If the parameter is static and characterizes a system of components, then
its value can be determined from the components’ parameter values. Otherwise, its value
must be determined empirically.

Evaluation of QoS Parameters

UniFrame uses the principles of event grammars for measuring parameters empirically.
Event grammar, as described by Auguston (1995), forms the basis for system behavior
models. An event represents any detectable action during execution, such as a statement
execution, expression evaluation, procedure call, and receiving a message. It has a
beginning, end, and duration (a time interval corresponding to the action of interest).
Actions (or events) evolve in time, and system behavior represents the temporal
relationship among actions. This implies a partial ordering relation for events, as Lamport
(1978) discussed.
System execution can be modeled as a set of events (event trace) with two basic relations:
partial ordering and inclusion. The event trace actually is a model of the system’s
temporal behavior. In order to specify meaningful system behavior properties, events
must be enriched with attributes. An event may have a type and other attributes, such
as duration, source code related to the event, associated state (that is, variable values
at the event’s beginning and end), and function name and returned value for function
call events.
A special programming language, FORMAN, for computations over event traces greatly
facilitates measuring parameters empirically. As described by Fritzson, Auguston, and
Shahmehri (1994) and Auguston (1995), it is based on the notions of the functional
paradigm, event patterns, and aggregate operations over events.
The execution model of a component (or a system of integrated components) is defined
by an event grammar, which is a set of axioms that describes possible patterns of basic
relations between events of different types in a program execution trace. It is not intended
to be used for parsing actual event traces. If an event is compound, the grammar describes
how it splits into other event sequences or sets. For example, the event execute-
assignment-statement contains a sequence of events evaluate-right-hand-part and
execute-destination.
The rule A :: (B C) establishes that, if an event a of the type A occurs in the trace of a
program, it is necessary that events b and c of types B and C, also exist, such that the
relations b IN a, c IN a, b PRECEDES c hold. For example, the event grammar describing

82 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the semantics of an imperative programming language may contain the following rule (the
names, such as execute-program and ex-stmt in the grammar denote event types):

execute-program :: (ex-stmt *)

This means that each event of the type execute-program contains an ordered (w.r.t.
relation PRECEDES) sequence of zero or more events of the type ex-stmt. For the function
call event, the event grammar may provide the following rule:

func_call:: (param *) (ex-stmt *)

This event may contain zero or more parameter evaluation events followed by statement
executions.

Example of Evaluating Turn-Around Time

If the event type component_call corresponds to the whole component call event and
request denotes the event for a single request (the time interval from the request’s
beginning to its completion), then the following FORMAN formula specifies the mea-
surement of the turn-around time:

FOREACH a: session FROM execute_program
SAY (‘Turn-around Time for a session is ‘

SUM[b: request FROM a APPLY b.duration]
/ CARD[request FROM a])

Similar rules can be specified for any other dynamic QoS parameters or related compu-
tations. Thus, the principles of event traces provide a mechanism to validate empirically
the QoS values for a component and for an integrated system of components.

Interoperability Using the
Glue and Wrapper Generator

For interoperation of heterogeneous distributed components, it is necessary to con-
struct glue and wrapper code to interconnect the components. Because a project
objective is to achieve high quality systems, a goal is to automatically generate the glue/
wrapper code. In order to achieve this, there should be formal rules for interconnecting

UniFrame 83

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

components from a specific application domain as well as integration of multiple
technology domains, that is, component models. UniFrame uses the Two-Level Grammar
(TLG, also called W-grammar) formal specification language (Bryant & Lee, 2002) to
specify both types of rules. The TLG formalism is used to specify the components
deployed under UniFrame and also the generative rules needed for system assembly. The
output of the TLG will provide the desired target code (for example, glue and wrappers
for components and necessary infrastructure for the distributed runtime architecture).
The UMM formalization establishes the context for which the generative rules may be
applied. Bryant, Auguston, Raje, Burt, and Olson (2002) provide further details about the
glue/wrapper code generation rules, including a discussion of how the Quality of Service
validation code is inserted into the glue code. The general principle is that for each QoS
parameter to be dynamically verified, the glue code is instrumented according to the
event grammar rules described earlier.

Future Trends

The concept of Business Reference Models “is meant to provide the foundation for
common understanding of business processes across the Federal government in a
service-oriented manner,” enabling an agency to define an enterprise architecture as
mandated by law (Enterprise Architecture SIG, 2003). A significant sector of industry is
involved in establishing standards and guidelines on how to enable successful enter-
prise architecture. The component-based architecture of UniFrame’s knowledgebase
closely follows these guidelines, incorporating the concepts of Object Management
Group’s (2002) Model-Driven Architecture as an integral part. Consequently, UniFrame
is working toward the realization of an operational framework for enterprise architecture
and is a source of feedback into the activities necessary.
Many existing component models provide the necessary mechanisms for describing the
functional aspects of components but not for the QoS aspects. Standards organizations
have recently started to address this weakness. For example, in the fall of 2000, the OMG
began issuing a number of Requests for Proposals for UML profiles for modeling QoS
in several contexts. UniFrame is addressing some of these QoS issues and is making
efforts (via presentations to different OMG task forces) to ensure that its research is
aligned with emerging industry standards.
The creation of the Business Line and Service-Oriented knowledgebase will largely
continue to be a human endeavor aided by CASE tools because humans determine what
constitutes the problems they must solve. However, the System Generation Process
could be accomplished mostly automatically for any problem in a given knowledgebase.
The person who formulates the requirements for the DCS will need to do so in the
knowledgebase’s terminology. The degree to which this can be made to match the typical
user’s terminology remains a research area.
Huang (2003) implemented a prototype of the UniFrame System Generation Process with
the UniFrame Resource Discovery Service. Because of the labor involved in constructing
the knowledgebase, it was limited to a small banking case study. Experimental studies

84 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

proved efficient, user communication issues were easily managed, and QoS values were
calculated. The automated creation of bridges and glue/wrapper code and using FORMAN
to insert the code into them for the QoS computations remain to be incorporated into the
implementation.

Conclusion

This chapter has described the UniFrame process for constructing distributed comput-
ing systems and has shown how it facilitates achieving the current goals of government
and industry in rapidly creating high quality computing systems. UniFrame provides a
framework within which a diverse array of technologies can be brought to achieve these
ends. These include software engineering practices, such as rapid, iterative, and
incremental development. Its business line, service-oriented, model-driven architecture
based on components is a realization of the movement to provide mutability, quick
development, and conservation of resources. A knowledgebase of component-based,
predefined and tested designs for distributed computing systems, event traces for
empirical testing, and quality of service prediction and calculation are tools it utilizes for
increasing quality assurance. UniFrame decouples the requirements analysis and system
assembly activities from the problem of collecting appropriate components published on
the network. Its novel resource discovery service facilitates the efficient acquisition of
components meeting stated specifications. It provides a mechanism for seamlessly
bridging components of different models, such as RMI and CORBA, to support the
construction of heterogeneous, distributed computing systems having platform-inde-
pendent definitions. The UniFrame project is also investigating techniques and patterns
related to using quality of service parameters during the design of components and
integrated systems to create high assurance distributed computing systems.

Acknowledgments

This work was supported in part by the U.S. Office of Naval Research, grant N00014-01-
1-0746.

References

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automaton. In M. Ducassé (Ed.), Proceedings of the
2nd International Workshop on Automated and Algorithmic Debugging
(AADEBUG’95) (pp. 277-291), Rennes: Université de Rennes.

UniFrame 85

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Batory, D., & Geraci, B. (1997). Component validation and subjectivity in GenVoca
generators. IEEE Transactions on Software Engineering, 23(2), 67-82.

Beugnard, A., Jezequel, J., Plouzeau, N., & Watkins, D. (1999). Making components
contract aware. IEEE Computer, 32(7), 38-45.

Brahnmath, G. (2002). The UniFrame Quality of Service Framework. Unpublished
master’s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame/

Brown, A. (1999). Building systems from pieces with component-based software engi-
neering. In P. Clements (Ed.), Constructing superior software (Chapter 6). India-
napolis, IN: MacMillan Technical.

Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., & Olson, A. M. (2002). Formal
specification of generative component assembly using two-level grammar. Pro-
ceedings of SEKE 2002, 14th International Conference on Software Engineering
and Knowledge Engineering (pp. 209-212). Los Alamitos: IEEE Press.

Bryant, B. R., & Lee, B.-S. (2002). Two-Level grammar as an object-oriented require-
ments specification language. Proceedings of HICSS-35, the 35th Hawaii Interna-
tional Conference on System Sciences (p. 280). Los Alamitos, CA: IEEE Press.
Retrieved August 8, 2004: http://www.hicss.hawaii.edu/HICSS_35/HICSSpapers/
PDFdocuments/STDSL01.pdf

Crnkovic, I., Schmidt, H., Stafford, J., & Wallnau, K. (Eds.). (2003). Proceedings of the
6th Workshop on Component-Based Software Engineering: Automated Reason-
ing and Prediction. The 25th International Conference on Software Engineering
(ICSE). Retrieved August 8, 2004: http://www.csse.monash.edu.au/~hws/cgi-bin/
CBSE6

Enterprise Architecture SIG, Industrial Advisor Council (IAC). (2003a, March). Business
line architecture and integration. Retrieved August 8, 2004: http://216.219.201.97/
documents_presentations/index.htm

Enterprise Architecture SIG, Industrial Advisor Council. (2003b, March). (IAC). Suc-
ceeding with component-based architecture in e-government. Retrieved August 8,
2004: http://216.219.201.97/documents_presentations/index.htm

Fritzson, P., Auguston, M., & Shahmehri, N. (1994). Using assertions in declarative and
operational models for automated debugging. The Journal of Systems and Soft-
ware, 25, 223-239.

Griss, M. L. (2001). Product line architectures. In G. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering: Putting the pieces together (pp. 405-
420). Boston: Addison-Wesley.

Heineman, G. T., & Councill, W. T. (Eds.). (2001). Component-based software engineer-
ing: Putting the pieces together. Boston: Addison-Wesley.

Huang, Z. (2003). The UniFrame system-level generative programming framework.
Unpublished master’s thesis, Indiana University Purdue University, Indianapolis,
IN, United States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame

Java Remote Method Invocation – Distributed computing for Java. (2003, October 2).
Retrieved August 8, 2004: http://java.sun.com/marketing/collateral/javarmi.html

86 Olson, Raje, Bryant, Burt and Auguston

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558-565.

Lumpe, M., Schneider, J., Nierstrasz, O., & Achermann, F. (1997). Towards a formal
composition language. In G. T. Leavens & M. Sitamaran (Eds.), Proceedings of the
1st ESEC Workshop on Foundations of Component-Based Systems (pp. 178-187).
Heidelberg: Springer-Verlag.

Microsoft .Net Framework: Technology overview. (2003, October 2). Retrieved August
8, 2004: http://msdn.microsoft.com/netframework/technologyinfo/overview/

Object Management Group. Model-Driven Architecture™, the architecture of choice for
a changing world. (2002, March 12). Retrieved August 8, 2004: http://www.omg.org/
mda

Raje, R. (2000). UMM: Unified Meta-object Model for open distributed systems. Proceed-
ings of the Fourth IEEE International Conference on Algorithms and Architecture
for Parallel Processing (ICA3PP 2000) (pp. 454-465). Los Alamitos, CA: IEEE Press.

Raje, R., Auguston, M., Bryant, B., Olson, A., & Burt, C. (2001). A unified approach for
integration of distributed heterogeneous software components. Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive
System Integration, SEAC technical report (pp. 109-119). Monterey, CA: U.S.
Naval Postgraduate School. Retrieved August 8, 2004: http://www.cs.iupui.edu/
uniFrame/

Raje, R., Bryant, B., Olson, A., Auguston, M., & Burt, C. (2002). A quality-of-service-
based framework for creating distributed heterogeneous software components.
Concurrency and Computation: Practice and Experience, 14, 1009-1034.

Rumbaugh, J., Jacobson, I., & Booch, G. (1999). The Unified Modeling Language
reference manual. Reading, MA: Addison Wesley.

Schmidt, D. (2003, October 2). Overview of CORBA. Retrieved August 8, 2004: http://
www.cs.wustl.edu/~schmidt/corba-overview.html

Siram, N., Raje, R., Olson, A., Bryant, B., Burt, C., & Auguston, M. (2002). An architecture
for the UniFrame Resource Discovery Service. Proceedings of the 3rd Interna-
tional Workshop of Software Engineering and Middleware: Vol. 2596. Lecture
Notes in Computer Science (pp. 20-35). Heidelberg: Springer-Verlag.

Sun, C. (2003). QoS composition and decomposition models in UniFrame. Unpublished
master’s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: www.cs.iupui.edu/uniFrame

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software - Beyond object-
oriented programming. (2nd ed.). Boston: Addison-Wesley/ACM Press.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language. (2nd ed.). Boston:
Addison-Wesley.

Weck, W. (1997, June). Independently extensible component frameworks. In M.
Mühlhäuser (Ed.), Proceedings of the 1st International Workshop on Component-

UniFrame 87

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Oriented Programming (European Conference on Object-Oriented Program-
ming, Jyväskylä, Finland), Special Issues in Object-Oriented Programming (pp.
177-188). Heidelberg: Springer-Verlag.

88 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter V

Service-Oriented
Design Process

Using UML
Steve Latchem

Select Business Solutions Inc., Gloucester, UK

David Piper
Select Business Solutions Inc., Gloucester, UK

Abstract

This chapter presents a worked example of a design process for Service-Oriented
Architecture. It utilizes the industry standard modeling notation, the Unified Modeling
Language (UML) from the Object Management Group, to present a practical design for
services. The authors have used their real world experience on many service-oriented
projects to develop a design method using visual modeling to implement high quality
services and service implementation. The chapter introduces a terminology for services
and their implementing components and then works through the example to show how
the implementation is designed in UML. We hope that this will show the reader how
services are implemented by organizations on real projects.

Introduction

We have been assisting organizations to use Component-Based Design and Develop-
ment to implement Service-Based Architecture for over seven years, utilizing the Select
Perspective development process and the principles of the Supply, Manage, and

Service-Oriented Design Process Using UML 89

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Consume Model for Web services and dependent components. Web services are a
natural development from components, which in turn were a natural development from
OO. We have leveraged the power of the Object Management Group’s Unified Modeling
Language (UML) to analyze and specify the services within a Service-Oriented Archi-
tecture.
In this chapter, we intend to initially present the difference in terminology from the
Component View of the world and the Service view of the world. We will then present
a worked example of the process and modeling hotspots for implementing Web services
and Component Based Development:

• Business Process Modeling: the identification and definition of the business
processes, including their inputs, outputs, and dependencies

• Business Web Page Design: the identification and modeling of the Web page
designs and their interaction within the Business Web

• Web Service Identification and Reuse, Supply, Manage, and Consume (SMaC):
defining the requirements and prospecting for reusable Web services to support
the Business Web Pages and the Business Processes defined

• Web Service Internal Design: designing and constructing the components and
agents that will deliver the component functionality to execute the required Web
services across the distributed domain

• EAI: Enterprise Application Integration, effectively “hooking” in the requests to
both legacy/package data and functionality to deliver the required Business
Processes across the software architecture that is currently in place

• Testing: providing the capability to dynamically build the test cases and scripts
from the design environment and track the test results

Component View

Component Based Development (CBD) has gained great popularity in recent years as the
technology required to support the development and use of components has matured.
Highly capable modeling environments, such as Select Component Factory, support the
CBD process from business alignment through to solution deployment by fully imple-
menting the SMaC paradigm.
CBD promises the key benefits of high levels of reuse and complete interoperability
between different forms of component implementation as long as they share a common
communications standard. Implementations for components include the use of:

• Object technology to implement new business functionality;

• Heritage code wrapping to reuse existing functionality;

90 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Data wrapping to separate data manipulation from data persistence;

• Package wrapping to support the integration of package and bespoke code; and

• Purchase or hire of services from open service markets.

Despite these varying component implementations, solutions which make use of the
business services provided by components see only components and the business
services they offer. All functionality is provided to the solution via the components’
business services. The homogeneity of this architecture is a key benefit to the solution.
In particular, it supports the plug-and-play concept, allowing current component
implementations to be replaced in a manner that is transparent to the solution and, in
consequence, to the user. From the solution developers’ point of view, the simple
architecture simplifies and speeds development.
Figure 1 shows the external, published specification of a component, AccountCustomer.
The component offers two service interfaces: ICustomer and ICustomerAccount. Each
of the service interfaces offers business services to one or more business solutions. Also
shown in the figure are two business solutions that make use of the interfaces offered
by the AccountCustomer component. The assembly of the business services to provide
the behavior required by the solution can be modeled using UML interaction diagrams.
Figure 2 shows a partial implementation for the component, including the service
interfaces in noniconic form. Each operation listed on the interfaces represents a

Figure 1. Component specification

Service-Oriented Design Process Using UML 91

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

business service that the service interface offers. The internal architecture of the
component shows that a service class implements each of the service interfaces. The
service class will be responsible for delegating the service request received by the
component onto the implementation constructs (classes, legacy code, and so forth) that
exist within it. These additional implementation artifacts have been omitted.

Component Terminology

Together these show examples of the key terms commonly used in the component-based
world. They do not represent a complete set of terminology; for example, stereotypical
architectural roles can be drawn out for different types of components (see Table 1).

Web Service View

Web services are seen to be effective mechanisms for providing functionality in widely
distributed architectures, including typical Business-to-Business (B2B) applications.
Their key feature is the very weak coupling required between the solutions using the Web
services and the Web services being used. The use of a directory to resolve the location
of the implementation of a Web service is a powerful feature, supporting the runtime
coupling of solution to Web service. Directories also potentially offer the capability for

Figure 2. Partial component implementation

92 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

automatic fail-over so that in the case of a service provider being temporarily unavailable,
alternative implementations from other providers can be invoked.
There is now a strong argument about the identity of the Web service content. Are Web
services fundamentally predicated on the Web? Must Web services use the current
standards of SOAP, UDDI, WSDL, WSCL, and so on? More importance is being given
to the view that Web services are not about the standards used for any specific
implementation but more about the concepts of a defined interface and protocol for the
service itself. Indeed, even the term Web is being increasingly dropped from their name.
Weak coupling through a directory is seen as a key differentiator between components
and services in a service-oriented architecture.

Table 1.

Term Definition
Component A mechanism for offering multiple business services to one or more

business solutions; a unit of deployment for the implementation.
Service
Interface

An interface onto a component – a component will offer one or more
service interfaces.

Business
Service

An operation defined on a service interface that supports some need
expressed by one or more business solutions.

Service
Class

A class that provides the implementation of a service interface on a
component. The service class receives the service request and delegates
control to the artefacts internal to the component.

Figure 3. External view of Web services use

Service-Oriented Design Process Using UML 93

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3 shows the external view of the use of Web services by solutions. Each of the
Web services is available independently and there is no information given about their
implementation — whether as distinct executables or grouped together as a component.
Indeed, the loose coupling of the directory implies that the services may be implemented
by different suppliers, so no information concerning their physical configuration (other
than that provided in the directory) can be inferred.
Each of the Web services is implemented via a defined interface offering a number of Web
methods. The current standards explicitly support the concept of multiple implementa-
tions of a single Web method being supported.

Service Terminology

This shows examples of the key terms commonly used in the service-based world. They
do not represent a complete set of terminology; for example, stereotypical architectural
roles can be drawn out for different types of components (see Table 2).

A Service-Oriented Approach

Is it possible to define an approach and terminology that effectively unifies the
component and Web services viewpoints? Such an approach is defined by a service-
oriented architecture, a solution architecture that offers functionality to the user only
through services. The services may be implemented by components — newly built,
bought-in, legacy wrapping — or as Web-style services.
From each solution’s point of view, the environment looks completely uniform; all
functionality is exposed as services provided by interfaces. Technical complexities
around the implementation of those services are hidden from the user (or encapsulated)
in exactly the same way as they are in both the component and Web service worlds.
Indeed, we can imagine complex architectures where Web services are wrapped inside
components and are, in turn, implemented by components in the target environment.

Term
Definition

(Web)
Service

An interface defining the protocol of the service – it infers nothing about the
implementation of the service – indeed each service may be backed by
several, distinct implementations, perhaps using different technology.

(Web)
Method

An operation defined on an interface that supports an aspect of the protocol
of the service.

Table 2.

94 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The Role of Components

In the service-oriented architecture, the role of components as a deployment mechanism
is reduced since at least some of the functionality is going to be delivered in other ways.
What, then, is the role of the component?
Certainly components are still a key deployment route. Performance critical functionality
and functionality that encompasses key competitive advantage will still be retained in-
house implemented as relatively tightly coupled behavior. In development process
terms, components continue to play other important roles. They remain the key vehicle
for the early identification of groupings of information and behavior and, in conse-
quence, serve as the vehicle for the provisioning of the functionality. It will often be at
the point of making provisioning decisions that the choice between component and Web-
service implementations will be made. The choice will be influenced by commercial and
technical constraints but does not need to be predetermined as part of the analysis
process.
At the specification level, when analysis techniques are primary, the service-oriented
architecture is still dominated by components and their interfaces. Driven by the selected
architectural constraints, design and implementation takes advantage of the extra

Figure 4. Service-oriented terminology

Service-Oriented Design Process Using UML 95

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

flexibility offered by the service-oriented architecture to choose the most appropriate
implementation and deployment mechanism.

Service Oriented Terminology

The concepts and related terminology used in the definition of the service-oriented
architecture are illustrated in the meta-model shown in Figure 4.
The concepts shown are defined in the Table 3. Related component and Web service
terms are offered for comparison.

Stereotypes

Within the service-oriented architecture clear stereotypes of the specific concepts can
be identified. The stereotypes are derived from both the component-based and Web
service origins of the service-oriented architecture. These stereotypes are used to
enhance the UML specification, and are typically added to Packages, Classes, and
Operations to specify Service-Oriented Architecture concepts to these UML artifacts.
Example stereotypes are defined in Table 4.

Service-
Oriented

Term

Definition Component
Term

Web
Service
Term

Component A container used for the analysis of the
business architecture, encapsulation of
functionality and information and as a
deployment vehicle for component-based
services

Component None

Service The combination of the specification,
interface and set of service operations that
together define a service

Component
Specification

None

Service
Specification

The specification of functionality to be
offered to one or more consumers

None Web
Service

Service
Interface

An interface offering a protocol capable of
providing the specified functionality to
one or more consumers

Service
Interface

Web
Service

Service
Controller

A mechanism for implementing the
service interface

Service Class None

Service
Operation

The specification of a unit of functionality
required to execute the service; forms part
of the protocol of the service

Business
Service

Web
Method

Service
Method

The implementation of a service operation
by a physical method on the service
controller

Service Class
Method

None

Table 3.

96 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Worked Example

The following sections provide an example of the Select Perspective Web Services and
Components Process and Modeling Artifacts. To usefully demonstrate this, we have
used a candidate Business Web, consisting of a number of organizations looking to
provide a Consolidated Product Catalog via a Web application, utilizing the latest Web
technologies and allowing customers to purchase products from that catalog. We have
called our “virtual” Business Web Organization Web Entertainment Products. The Web
Entertainment Products organizations’ business is the sale of products; we have
assumed these are leisure media products, for example, CDs, computer games, and books.
A group of organizations in this space have come together to provide a consolidated
offering of rental and sales of these items to a broad customer base. The sales portal will
be their consolidated Web site with the execution of new and existing application
functionality making the catalog available to browse and complete a rental or sale
transaction for the selected product, irrespective of the organization within the Business
Web that supplies it.

Business Process Modeling

Business Process Modeling (BPM) is a precursor technique used to establish the content
and scope of the business domain before Solutions Design begins in earnest. It
establishes a shared understanding of the business domain expressed in a formal manner.
By focusing on business processes, the model can be used as a starting point to drive
synchronized programs of business and systems change. The new business processes

Stereotype Definition
«Business
Component»

A component focused on offering one or more services that
manipulate business information and implements business policies,
rules and algorithms.

«Business
Service»

A service (potentially implemented by a «business component» or as a
«web service») that specialises in manipulating business information
and implements business policies, rules and algorithms.

«Data Service» A service responsible for accessing and updating data in persistent
storage within the context of a transaction.

«Data Service
Operation»

A service operation, typically offered by a «data service», responsible
for performing a specific persistent storage operation.

«Process
Component»

A component focused on the implementation of a process by
controlling the protocol of service operation invocation on services.

«Web Method» The implementation of an operation defined by the service interface of
a «web service».

«Web Service» A service implemented using internet protocols and which adheres to
specific standards for service location through a service directory.

Table 4.

Service-Oriented Design Process Using UML 97

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

must be implemented both by the business and used as requirements for constructing
new solutions to support those processes.
Web services standards are taking an increasingly abstract view of the way that
organizations and solutions will interact. Currently, the most abstract view is at the
business process level. Standards such as BPML (http://www.bpmi.org) allow organi-
zations to publish the structure and protocols of their business processes. Within these
published definitions, the requirements and implementations of Web services together
can be published.
One critical aspect to any Service-Oriented Architecture is the need for Business
Alignment. The exposure of services from existing applications is not enough; services
need to be delivered to a business context for the organization today and its future
processes and capabilities.
Here we use the industry-leading Business Process Modeling notation from Computer
Sciences Corporation, Catalyst. The notation is supported by a large number of CASE
modeling tools, for example, Select Component Architect, System Architect, Aris, and
CaseWise.

Figure 5. Process hierarchy diagram

<<Process Group>>
Central Customer

Services

<<Identifiable Process>>
Central Member
Service Provision

<<Process Group>>
Customer and
Membership
Management

<<Identifiable Process>>
Issue

Membership

<<Identifiable Process>>
Review

Membership

<<Identifiable Process>>
Register
Customer

<<Identifiable Process>>
Central Sale
Transaction

<<Process Group>>
Store Customer

Services

<<Identifiable Process>>
In Store Member
Service Provision

<<Identifiable Process>>
In Store Sale
Transaction

<<Identifiable Process>>
Notify Member
of Availability

98 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The notation has two key diagramming types:

• Process Hierarchy: to present the hierarchical structure of business process
groups (nonelemental processes);

• Process Threads: to show the dynamic transitions, constraints and input/outputs
of elementary business processes.

The hierarchy diagram in Figure 5 shows the hierarchical relationships between process
groups for Web Entertainment Products. These are the Stock Management, Online

Figure 6. Process thread diagrams

<<EBP>>

Identify Member*

Customer Assistant

Membership Confirmed?

Membership Confirmed?

Y e s No

<<EBP>>

Amend
Personal Details

*

<<EBP>>

Return Rented
Entertainment Item

<<EBP>>

Sell Entertainment
I tem

*

<<EBP>>

Take In Store
Payment

*

<<EBP>>

Identify
Entertainment Item

<<EBP>>

Rent Entertainment
I tem

*

<<EBP>>

Reserve
Entertainment Item

<<Iteration>>

For Each Entertainment Item to Return

<<Iteration>>

For Each Desired Entertainment Item

Member’s Service Choice Member’s Service Choice

Member’s Service Choice

Not Successful

Successfu l

Payment Outcome?

Member Services Outcome

Payment Outcome?

Services Confirmed
In Store

Member Purchases
I tem

Member Rents Item Member Reserves
I tem

Member Service Outcome

Services Cancelled

Service-Oriented Design Process Using UML 99

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Transactions/Customer Services, and the Registration and Acceptance of Customers/
Members.
For the thread diagrams in our example, we have concentrated on the customer transac-
tion, encompassed within the Process Group – Online Customer Service Provision.
The thread diagram in Figure 6 shows the Events and Results of the Process Group that
is its parent, their transitions, exclusivity (represented by the arcs on the transitions), and
the elementary business processes (EBPs) to be implemented. In addition, swimlanes are
added to represent the ownership of each EBP by Business Actors, in this case, the
customer using the Web sales portal. Documenting each EBP are detailed descriptions,
objectives and process volumetrics, enabling the designer to not only refine and/or
refactor the business processes before automation but also to look at performance and
scalability of nonfunctional requirements. In addition, traceable links to use cases allow
the dependencies between the business processes and systems requirements to be
understood easily.
In parallel with the Business Process Modeling, the “front of store” work is typically
carried out. The general graphic user interface design, impact/atmosphere, core page
prototyping, and market analysis are performed. Here we use Collaboration Diagrams
defined by the Unified Modeling Language (UML). This has two purposes:

• To design the page interactions and dependencies, in the context of the actor
using the Web solution;

Figure 7. Business Web page design

Customer

1:
Access Website()

<<user>>
:Welcome Page

<<user>>
:Customer Login Page

<<user>>
:Product Catalog

2:
Request Login()

3:
Browse Catalog()

4:
Search For Items()

5:
Add Purchase Item()

<<user>>
:Customer Shopping Cart

100 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• To scope the pages to be built, associate the growing graphic designs of these
pages, and support the development of the Use Cases to define the Web Service
requirements.

The Object Collaboration Diagram in Figure 7 shows the simple scenario of Logging In
to the Web site, browsing the entertainment item product catalog, and adding an item to
an Internet shopping cart for rental/purchase later. While this is not a User Interface
prototype, this clearly shows the involvement of the Server Pages, and their interaction
for this scenario.

Web Service Identification

The next stage of the Business Web life cycle is to identify and define the Web services
that will fulfill the requirements of the Business Web. This includes the reuse of Web
services from external parties (that is, commercial UDDI repositories) or internal sources
(that is, the internal repository of Web services and components) that may fulfil the
Business Web process requirements.
Typically, an organization would use the Business Process definitions to browse and
identify potential Web services/components then include these into this modeling phase
after performing a gap analysis.

Supply, Manage, and Consume Model (SMaC)

The diagram shows the SMaC model for components and Web services, where suppliers
(external or internal) and consumers form a reuse relationship for the delivery of the

Figure 8. Supply, manage, and consume

Business
Needs

MANAGE

Business
Solutions

Web Services

Components

CONSUMERS

Solution
Delivery
Process

SUPPLIERS

Web Service
&

Component
Delivery
Process

Service-Oriented Design Process Using UML 101

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Business Web solution. The central Manage function deals with publication of service/
component versions, the service/component consumer lists, and the dependencies
between services and components. This enables the organization to employ a solution,
service and component “factory” model in their analysis, design, reuse, and construction
of software solutions.
Figure 8 shows a high-level graphical representation of SMaC, where Business Needs
feed into a Consume process, services are sought through the central Manage function,
and delivered through the Supply function; then, the deliverable from Consume is an
integrated Business Solution to fulfil the Business Needs.
Identification and reuse of services is a practice already well established in the CBD
arena, especially in the concept of Supply-Manage-Consume. The maturing Component
Management tools enable publication, search, and reuse of components/services.
Consumers can publish the specification of new components and services as requests
for delivery. They consume existing components and services as they assemble or
reassemble solutions. Consumers are typically not interested in the implementation
technology of a particular service as long as it meets the functional and nonfunctional
specification and can integrate with their solution architecture.
Suppliers receive component/service specifications and supply implementations in
return. Different sources of components are maturing rapidly; in-house teams are
increasingly skillful at component delivery; System Integrators have adopted compo-
nent supply as a valuable channel of business; Package solutions are becoming
componentized; Component Market Places are maturing rapidly. Web services provide
another channel for the supply of services.
The identification and definition of Web services forms a critical part of Business Web
Design, particularly when the power of Web Service Discovery technology (UDDI) is to
be used (http://www.uddi.org). This uses a Web Service Business Registry to lodge and
discover Web services.

Figure 9. Component and service repositories

102 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Web Services Provisioning is a variation on a theme. The need is the same as for other
forms of provisioning: to identify services that meet a set of functional, informational,
and protocol requirements. In common with other channels of provisioning, a common
medium for stating the need has been specified — UDDI. This is different in form but not
in fundamental nature from specification mechanisms used by other channels. There are
additional elements to consider, particularly if Web services are from third parties, the
aggregation of Web services to support the transactional context required by the
organization’s business processes, and the security/trust facilities provided by the
service. Nonfunctional requirements are considered here, too. For example, does the
service provider guarantee sufficient robustness, scalability, availability, and perfor-
mance?
Having identified candidate services, details of these can be published by the Compo-
nent Management function into an organizations component/service repository for
future reuse. Activities performed by the Component Manager in relation to Web
services are similar to those carried out for any other form of service, including
Certification, Quality Assurance, Reuse Advice, and Authorization. The Web services
model is essentially commercial at base, but in SMaC focused organizations, other
commercial service channels are already in use, including Component Market Places.
While the economic model may differ in form, the need to work within a commercial
licensing framework is not new.

Figure 10. Use case model

Service-Oriented Design Process Using UML 103

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Gap Analysis and Business Web Design

For this analysis and design, SBS uses the power of UML. Use Cases are used to define
the functional requirements of the system in terms of the Actor’s interactions with the
system. These Use Cases are directly mapped to the Elementary Business processes they
have been derived from, providing complete traceability to the Business Model.
The Use Case diagram in Figure 10, defines the Use Cases for the Customer system actor;
it also shows the use of an external System Actor for Online Authorization.
From the Use Cases, the Web services can be identified and modeled using Object
Sequence Diagrams to define the contextual use, and definition of the Web Services. Each
Use Case has a detailed Intent, Description, Pre/Post Conditions and Alternate Course
descriptions, enabling the Designer to identify and define the Web services in detail.
The Object Sequence Diagram in Figure 11 shows the Web service identification from the
Identify Entertainment Item Use Case. Note that the Services defined follow the slightly
different paradigm-to-component services, that is, they are coarse grain, single shot
service requests that perform a single focused business service for the calling Web
solution.
The Web services are bundled into cohesive groups, defined as UML Packages to show
their notional inclusion in virtual components. Additionally, the internal data/XML
structure of the collection of services is modeled as class diagrams with relationships to
show hierarchy and multiplicity.
The data-centric nature of a Web service contract, its input/output, drives the strong
need for detailed data modeling of the XML structures. This effectively becomes the
basis for information exchange internal to the organization and across organizations,
similar to the data exchange and information modeling requirements for EAI and B2Bi
initiatives, for example. This XML modeling (as Class/Package structures) extends the
behavioral nature of UML modeling to include the data requirements for the services.
Figure 12 shows a Package Diagram of the bundling or chunking of the services to
cohesive business groups, for example, Party for customer and member processing,

Figure 11. Service level Object Sequence Diagram

104 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Organization for the company’s services, and Online Authorization for the external use
of a card processing service.
In Figure 13, we show an internal data model developed for each of our logical services
groups. This is done to model the data structures and enables us to synchronize our XML
design/implementation with the internally owned data for the service groups.

Web Service Internal Design

The supplier of the Web service, whether internal or external to the organization, now
needs to design its concrete implementation. There are distinct layers to the implemen-
tation of a published Web service:
1. Components and Agents: the use of components and peer-to-peer (P2P) agents

design to provide the dynamic deployment and discovery of components that will
implement the Web service.

Figure 12. Web services Package Diagram

Service-Oriented Design Process Using UML 105

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 13. Internal Data/XML Structure Diagram

106 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Component Internals Design: the internal design of business components that
provide services to the Web service and the controlling agents.

3. Legacy Integration (EAI): the integration of legacy functionality and data into the
Business Web internal components.

Component and Agent Design

For each Web service designed, its internal implementation is now required. The Object
Sequence Diagram in Figure 14 shows the design of the inclusion of this agent and its
use of the interface to an XML Server to configure its actions when the Web service is
requested.
The business components themselves, like our Search Engine from the Figure 14 Object
Sequence Diagram, require design, too. The Object Sequence Diagram in Figure 15 shows
the decomposition of the component’s internal object-oriented design, using a façade
Session EJB, which delegates to an Entity EJB to perform the product search.

Figure 14. Internal service Object Sequence Diagram

Figure 15. Internal Component Sequence Diagram

Service-Oriented Design Process Using UML 107

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Integration Legacy Applications and Data – EAI Design

The final piece of Business Web design/development activity is the integration of legacy
applications and/or data into the design of the Web service. For this integration work,
Enterprise Application Integration (EAI) vendors typically provide solutions to seamlessly
integrate the legacy systems. Typically, organizations make use of legacy application
and system Connectors. The inclusion of these Connectors is modeled in the Object
Sequence Diagrams to show the interaction and transformation of the component
internals to the legacy message through the Connector.
In Figure 16, we show the internal design of a communication to a legacy procedure using
a Connector and the required data transformation to turn our XML into a format
understood by the legacy transaction.

Testing

The final stage of the Business Web development life cycle is testing. The designs that
have been discussed so far provide an excellent documentation base for test cases and
scenarios. The UML models are converted to test cases using a bridge. In the testing
tools, these definitions of Business processes, Web services, components, agents,
classes, methods, and data marshalling are refined to include the Business Inputs and
Expected Results. As the Testing Tool records the test case interactions for repetition,
the results are captured in its repository, but the basis of the test case has come
automatically from the design. Additionally, the volumetrics captured at the Business
process level can now form the basis of the acceptance criteria for the load/volume tests
and the deployment and load balancing tests that are performed.

Figure 16. Internal Component Sequence Diagram with Legacy Wrapping

108 Latchem and Piper

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary

For the CBD-experienced organization used to assembling solutions in a service-based
architecture, Web services are an interesting new channel of service provision. They
present no fundamental challenge in terms of analysis or design. Nor do they present a
challenge in terms of processes and structures for managing the virtual software assets.
CBD-mature organizations are already assembling solutions from a mixture of software
assets, both created internally and provisioned from external sources.
The challenge is in adapting to the details of the commercial models underlying Web
service usage and in extending the existing provisioning mechanisms, so they support
the active search for and publication and reuse of Web services. With Select Perspective,
a mature Supply, Manage, and Consume (SMaC) model aligns perfectly with the
principles of Web services and components, enabling the organization to migrate to Web
services processes and architectural models more easily.

References

Apperly, Latchem, McGibbon, Piper, Maybank, Hofman, Simons, Service- and Compo-
nent-based Development, Using the Select Perspective and UML, ISBN 0-321-
15985-3

http://www.selectbs.com/resources/resources.htm - various White Papers and collat-
eral relating to methodology and visual modelling for services.

Service-Oriented Computing 109

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VI

Service-Oriented
Computing and

the Model-Driven
Architecture

Giacomo Piccinelli
University College London, UK

James Skene
University College London, UK

Abstract

Service-Oriented Computing (SOC) and the Model-Driven Architecture (MDA) are
complementary systems development approaches with the mutual aim of reducing the
cost of future systems integration. This chapter introduces the MDA concept and
technologies to an SOC audience and employs these technologies to enhance support
for SOC through the definition of a domain-specific modeling language for electronic
services. The language is defined as an extension of the Unified Modeling Language
(UML). Its semantics are defined using a domain model of electronic service systems
based on concepts drawn from literature and experience with a range of commercial
platforms for the deployment of electronic services.

Introduction

Service-Oriented Computing (SOC) and the Model-Driven Architecture (MDA) are both
approaches to developing systems that anticipate the need for integration in heteroge-
neous computing environments.

110 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOC attempts to lessen the cost of future integration by making a recommendation about
the design of systems: a service paradigm should be applied to software and business
functions to support standardized communication and control technologies, such as
Web services and workflow languages.
The MDA attempts to lessen the cost of future integration by making a recommendation
about the process by which systems are developed: systems should first be developed
as abstract models that do not contain technical details related to implementation, then
transformed into platform-specific representations. Removing the need to disentangle
business functionality from legacy platform decisions when redeploying all or part of a
system on a new platform reduces the cost of integration when it is necessary to support
a previously unexpected integration technology, such as a new middleware. As the MDA
matures, the cost of redeployment may be reduced still further by the availability of
reusable automated transformations to produce platform-specific models from platform-
independent models.
The MDA is potentially a good complement to SOC. Service-oriented systems can be
developed according to the MDA process in order to structure a system according to a
services paradigm while maintaining a platform-independent specification. The first
objective of this chapter is to introduce the MDA concept and its supporting technolo-
gies to an SOC audience.
The second objective of this chapter is to discuss how MDA standards such as the
Enterprise Distributed Object Computing (EDOC) profile support SOC. The EDOC profile
defines standard extensions to the Unified Modeling Language (UML) to allow the
platform-independent modeling of enterprise computing systems, a class of system that
subsumes electronic services.
The third objective of this chapter is to show how MDA support for SOC can be fruitfully
expanded. The MDA approach gains productivity advantages when supported by
domain-specific languages, such as the EDOC profile, for modeling systems in particular
application areas. The advantage of such languages is that they allow the modeling of
systems in a manner that is more concise and less error prone than if attempting to model
the same systems using a more generic language. The EDOC profile does not allow the
explicit modeling of several system facets unique to electronic services. We therefore
believe it beneficial to provide more refined support for modeling electronic services by
defining a UML extension (a profile) specifically for this purpose.
Our profile supports three modeling tasks particular to the development of electronic
service systems:

• First, it allows the modeling of services at an abstract level, using the service
vocabulary of capabilities, content, provisioning, offers, and information ex-
change. This allows the planning and documentation of the intended behavior for
both single and coordinated services, essential when applying a service paradigm
to systems development and a precursor to implementation efforts.

• Second, the profile allows the modeling of service deployments in terms of the
concrete business assets that fulfil capability roles. This provides a concrete view

Service-Oriented Computing 111

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of services in the environment in which they will operate, supporting planning of
service deployment and asset management.

• Third, the profile allows the modeling at a high level of abstraction of IT infrastruc-
ture components used to support the management and implementation of services.
This includes Electronic Service Management Systems (ESMS), a class of appli-
cation designed explicitly to support electronic services. The concepts underlying
the profile are drawn in part from experience with a range of ESMSs. The identifi-
cation of ESMSs and other infrastructure components, such as databases and
workflow engines, in the profile reflects the reality of the electronic service world,
in which services are seldom implemented from scratch but instead depend, to a
large extent, on specialized platforms and predeveloped components.

Domain-specific modeling languages must be supported by strong semantic definitions
so that the contribution of models to system specifications can be understood by
developers and model transformations can be defined that produce platform-specific
models according to the original intent of the developer as expressed in a platform-
independent model. A popular approach to defining the semantics of an MDA language
is by reference to a domain model, expressed in UML with accompanying natural
language descriptions, which describes the concepts and relationships referred to by
language constructs.
Our profile is defined with reference to a domain model of electronic service systems,
based on an analysis of existing concepts from SOC literature and the author’s experience
of a range of ESMSs from major vendors.
The chapter is structured as follows: In the next section, we present an overview of the
MDA and UML concepts with a particular emphasis on modeling using domain-specific
language extensions. We then briefly discuss the EDOC profile and its application in
implementing SOC systems. In the second section, we introduce our own domain model
for high-level modeling of SOC systems, and in the third section, we define its associated
UML extension. Subsequently, we present an example application of our UML extension
to model services in the freight domain. In the final section, we discuss future trends and
conclusions.

Background

The Model-Driven Architecture (MDA)

The MDA is an initiative of the Object Management Group (OMG), an industrial
consortium chartered to standardize specifications for interoperable enterprise comput-
ing systems. In its early years, it standardized and championed CORBA, the Common
Object Request Broker Architecture, a middleware platform that raised the level of
abstraction for designing distributed systems by providing a number of critical trans-
parencies for developers. Crucially, these included location and implementation trans-

112 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

parencies, meaning that components in a distributed system could be accessed using the
same mechanisms regardless of their position in the network and the technologies used
to implement their functionality.
Unfortunately, the success of CORBA was limited. To gain the advantages of CORBA,
developers must choose to support it. Competition from other middleware standards
such as Microsoft’s COM and .NET and lately, the Web services initiative, have
reintroduced heterogeneity at the middleware level.
In response, the OMG have made the decision to raise the level of abstraction still further.
The Model-Driven Architecture (MDA) is an approach to systems development that
aims to reduce the cost of deploying system functionality on multiple technical platforms,
even after an initial implementation is complete. This cost reduction makes systems
cheaper to maintain as technological standards change and easier to integrate either by
migrating parts of the system to make use of a new integration technology or by reusing
models of data and interactions in technology bridges. The following discussion of the
MDA is drawn primarily from the MDA guide (OMG, 2003).
Fundamentally, the MDA approach consists of three recommendations concerning the
process by which systems should be developed:
1. System designs should be expressed using models (typically UML models).
2. Models of two distinct kinds should be developed: Platform Independent Models

(PIMs), which represent system functionality independently of features peculiar
to any intended deployment platform and Platform Specific Models (PSMs), which
provide a view of all or part of the system deployed using a particular platform
technology and are detailed enough to be automatically converted into platform
artifacts.

3. PIMs should be developed first and then automatically transformed as far as
possible into PSMs.

These recommendations contribute to the goal of reducing the cost of redeploying
system functionality in the following ways:

• System modeling ensures that designs and data models are preserved indepen-
dently from implementations, allowing maintenance and integration to be per-
formed without the effort of reverse engineering systems at the source-code level.

• Isolating models of business logic from the details of particular technical solutions
makes this logic easier to reuse because it is easier to understand. Designs cannot
depend on features or behaviors that are implicit to a platform, such as the operation
of standard libraries or transactional behavior. Designs can be expressed at a level
of abstraction which is convenient for understanding the business logic, rather
than at a level that is convenient for processing by a platform.

Service-Oriented Computing 113

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A system must eventually be implemented by deploying its business logic onto one or
more platforms. In the MDA approach, this is achieved by converting PIMs into PSMs.
This appears to add an additional stage in an MDA development that could be avoided
by simply developing for a single platform initially. However, having produced a detailed
model of the business logic of a system, its implementation is often a matter of routine
translation into the platform of choice. Some or all of this may be automated. If automated
transformations are available to deploy the system to a variety of platforms, then
developing for all of those platforms is little more expensive than developing for just one.
The MDA approach also provides a principled approach to integrating legacy systems.
PIMs for such systems must first be obtained using some combination of reverse
engineering and a conventional analysis (an object-oriented analysis if the modeling
language is UML). Once modeled, these systems can be integrated into larger confed-
erations as easily as nonlegacy applications developed using the MDA approach.
The implications of the MDA idea are far reaching. With the largest part of its benefit
coming from the idea that computing systems should be developed in a language related
to the application domain rather than the deployment platform, the approach is effec-
tively raising the level of abstraction at which systems are developed into the realm of
domain-specific business languages. Such languages could dramatically increase the
productivity of development organizations. Much research and standardization efforts
surrounding the MDA initiative is focused on developing domain-specific languages.
The MDA and SOC are complementary approaches to the problem of maintaining and
integrating systems. SOC complements the MDA approach by providing a template for
structuring business systems and integration solutions, the service paradigm. The MDA
complements SOC by promoting the early modeling of systems to understand their
operation, a necessary prerequisite when wrapping a system with a service interface.

Models and Model Transformation

The MDA guide provides more specific details of the MDA approach. In the MDA
terminology, a business-domain model is either a Computation Independent Model
(CIM) or Platform Independent Model (PIM). CIMs represent the interrelationships of
domain concepts and are intended as early analysis and requirements models, to be
produced by domain experts but not requiring systems development expertise. PIMs are
refined system models that represent a complete specification of the structure and
behavior of an application, independently of platform decisions. Models describing the
implementation of a system on a particular platform are referred to as Platform Specific
Models (PSM). In the MDA approach, the business knowledge for a system is first
captured in CIMs and PIMs, then mapped to PSMs for the supported technical infrastruc-
tures, as shown in Figure 1.
In the MDA vision, model transformations automate repetitive development tasks, for
example, the translation of PIMs into PSMs. Figure 2 illustrates a model transformation,
also referred to as a mapping. This conception of model transformation is referred to as
the MDA pattern. A source model, usually a PIM, is transformed into a target model,
usually a PSM.

114 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The figure shows the transformation incorporating some additional information. Trans-
formations often require additional guidance, for example, incorporating design deci-
sions to guide exactly how the PIM should be implemented on the platform. This
information is usually provided in the form of markings, annotations to designs
associated with a particular transformation.
Transformations need not be uniquely associated with the transition from PIM to PSM.
Transformations can also potentially be used to perform complex edits, such as
refactorings. In a situation where multiple CIMs or PIMs use a number of different domain
languages, transformations can be used to manage the relationships between these
platform-independent models, for example, by combining domain-specific representa-
tions into more generic representations. Model transformations can also be used to
derive new views of a system from existing specifications, produce documentation, or
derive formal analysis models as in Skene and Emmerich (2003).
The OMG is in the process of standardizing languages for the description of transfor-
mations (OMG, April 2002). Transformations will be described in terms of model type
mappings in which rules will specify how typed elements in the source models are
transformed into elements in the target models. Also possible are instance mappings in
which model elements are marked by the user as the source for a transformation pattern,
regardless of their underlying type. It is expected that most mappings will allow a
combination of these approaches with model type mappings managing routine corre-

Figure 1. Models in the MDA approach

Figure 2. A pattern for model transformations

Service-Oriented Computing 115

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

spondences between source and target and instance mappings allowing the user to direct
model transformation.

The Unified Modeling Language (UML)

UML (OMG, January 2003) is an object-oriented graphical language that has been widely
adopted in industry to represent software designs, particularly those which are to be
implemented in one of the currently dominant object-oriented programming languages,
such as Java, C++, and C#. However, it is its heritage as an analysis language (in the sense
of requirements capture and problem-domain modeling) that makes it a suitable core
representation for the MDA approach, as the ability to represent a technology-neutral
PIM is provided by the facilities that support the modeling of problem domains in object-
oriented analysis.
In this chapter, we describe how UML can be used as a basis for modeling electronic
services. This modeling depends on domain-specific extensions to UML, delivered using
profiles. Profiles are a UML extension mechanism whereby the innate notations provided
by the UML can be augmented with labels, called stereotypes, tagged values and
constraints which provide semantic refinement, annotations, and syntactic refinement,
respectivly.
Extensions to the UML provide the means to denote designs more concisely. By
introducing domain-specific vocabulary using profiles, the designer can avoid the
overhead of expressing standard aspects of the design in fine detail. Extending the UML
is a useful activity when following an MDA development process. In the MDA models
are specific to unique, well-encapsulated semantic domains, for example, a PIM for a
particular type of business process or a PSM targeting a specific platform. It is
convenient to describe designs in these domains using the vocabulary of the domain.
UML is based on a conceptual architecture that is divided into four meta-modeling layers
as shown in Figure 3. The lowest level is the data layer (M0), in which objects such as
data-patterns in computer memory and other real-world phenomena, including people
and things, are supposed to reside. The elements in the lowest level are classified by
types in the UML models that analysts and designers produce, which hence reside at the
next meta-level (M1). UML model elements are, in turn, objects of classes in the UML
meta-model (M2). Attached to these meta-classes are semantic descriptions and syntac-
tic constraints that control the meaning and applicability of the UML. The meta-model
at level M2 is self-describing so can also be regarded as residing in level M3 (and
plausibly all higher levels).
Profiles then, are a means of refining classes, semantics and syntactic constraints at the
M2 level. Confusingly, profiles are defined at the M1 level so that they can be denoted
using UML and deployed by including them with any UML model that requires their
language extensions. They can therefore be regarded as injecting virtual meta-classes
into the UML meta-model (M2).
When presenting profiles, it is common to first present a domain model (Frankel, 2003).
Domain models directly describe the semantic domain, independently of the need to

116 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

refine the semantics of the UML meta-model. Domain models are usually UML class
models.
In the context of the MDA, domain models have additional significance. MDA transfor-
mations that proceed from designs annotated with profile elements must be informed not
only by the design model but by the semantics of the extensions used in this model. This
makes the provision of domain models as a reference for UML extensions vital when
supporting the MDA development approach. When presenting our profile for electronic
service systems below, we first present our domain model. This introduces the concepts
and relationships intrinsic to electronic services and serves as the semantic basis for our
profile. This was also the approach taken by the OMG when standardizing the EDOC
profile described in the next section.

Profile for Enterprise Distributed Object Computing
(EDOC)

The EDOC profile is an OMG standard, intended to simplify the development of open
distributed systems when taking a UML modeling approach (OMG, May 2002). We
present a brief overview of EDOC as an example of the support for developing electronic
services already provided by the UML and MDA initiatives.
The EDOC profile actually consists of several related profile specifications supporting
an MDA development approach. The Enterprise Collaboration Architecture (ECA)
profiles enable the definition of an EDOC system in a platform-independent manner by
recursive decomposition into collaborating components. Technology-specific profiles
provide language extensions supporting common implementation platforms for EDOC
systems, in particular the Enterprise Java Beans (EJB) platform (Sun Microsystems,
2001). According to the MDA process, designs are first refined using the ECA profile
then deployed using a particular platform technology. The EDOC profiles are:

Figure 3. Meta-modeling architecture of the UML

Service-Oriented Computing 117

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The Enterprise Collaboration Architecture (ECA) Profile: Comprised of:

• The Component Collaboration Architecture: Allows the specification of the
system as a set of collaborating components. Component processes and
collaboration protocols (choreography) are modeled in a manner compat-
ible with the ebXML process language specification (Gibb & Damodaran,
2002).

• Business Process Profile: Specializes CCA to model systems in the context
of the enterprise that they support. Includes extensions to indicate dependen-
cies between business processes and associations between business tasks
and the roles that perform them.

• Entities Profile: Enables the description of concepts in the problem domain
of the system, in particular the data-types of entities and their relationships.
Entities are defined as CCA components, integrating data and process views.

• Events Profile: Extensions to the CCA to model event-driven systems.

• Relationships Profile: More rigorous concepts of relationships for business
and software entities than UML provides by default.

• The Patterns Profile: Increases the expressive power of the ECA by allowing the
definition of generic patterns of business object collaborations and the reuse of
these patterns in specific bindings.

• The EJB Profile: A platform-specific extension allowing the concise modeling of
EJB designs. The EJB profile is included in the EDOC profile as an example of the
platform-specific modeling support required to develop open distributed systems.
Other platform-specific profiles such as the CORBA profile (OMG, April 2002) are
also compatible with the general MDA approach.

The EDOC profile reuses many of the concepts introduced in the ISO standard Reference
Model for Open Distributed Computing (RM-ODP). RM-ODP standardizes a conceptual
model of open distributed systems, supporting the definition of five viewpoint languages
that allow the specification of particular distributed system designs. Each viewpoint is
tailored to a particular set of concerns for the system. The EDOC profile reuses these
viewpoints and redistributes the expressive capabilities of the viewpoint languages into
the profiles described above. This unification of the RM-ODP concepts with the UML
significantly increases the usefulness of both specifications, lending the former a
standard language for representing designs and the latter a rich semantic for describing
EDOC systems. The viewpoints are:

• Enterprise specification: Models the structure and behavior of a system in the
context of the business of which it forms a part. Supported by the CCA and
Business Process profiles which model the system and its environment as
interoperating components.

118 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Computational specification: Models the implementation of enterprise compo-
nents. The CCA supports a smooth transition from the enterprise specification to
computational specification through recursive decomposition of components.

• Information specification: Describes the data environment of the system. Sup-
ported by the Entities profile.

• Engineering specification: Describes the middleware and services infrastructure
of the system. The RM-ODP engineering language allows explicit descriptions of
protocol elements and standard services, such as naming and transaction services.
EDOC relegates these details to the technology mappings, relying on the platform
semantics to provide the infrastructure specification.

• Technology specification: Describes the deployment of the system. Supported by
technology mappings and the UML’s native deployment models.

A complete specification of an EDOC system includes models providing each of these
viewpoints. This includes a platform-independent description of the system using the
CCA and one or more platform-specific implementations of the system, expressed using
technology-specific profiles. Hence, the RM-ODP viewpoint system can be seen to be
aligned with an MDA development approach.

Domain Model for
Electronic Service Systems

The remainder of this chapter presents a profile for modeling Electronic Service Systems
(ESSs) using UML and provides an example of its application for modeling services in
the freight domain. The example is based on previous research in the freight domain
(Linketscher & Child, 2001), and we will use it to illustrate aspects of electronic services
in the following discussion.
As discussed previously in the section on UML, the semantics of profiles are often
defined with reference to a domain model. The domain model is a UML model with
accompanying natural language descriptions that presents the concepts, entities, and
relationships present in semantic domain of the extension. The next subsection describes
the sources of concepts from the model and its overall section. Subsequent sections
elaborate various aspects of the model.

Analysis

In this section, we discuss the sources of concepts in the domain model for ESSs.
The model is based, in part, on the author’s experience with commercial platforms for
electronic services. Electronic Service Management Systems (ESMSs) are applications

Service-Oriented Computing 119

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

based on the electronic service paradigm, providing facilities to integrate, control, and
enact electronic services. Such systems present service-oriented viewpoints of the
enterprise to management, supporting the structuring of businesses as systems of
electronic services, and may include data, resource, and process management facilities.
We have considered ESMSs from vendors, including BEA, IBM, Microsoft, Oracle, and
HP (see references for all). While terminology and emphasis vary across the range of
platforms, the proposed model captures the essential common concepts and technology
elements: the modularization pattern for capabilities and services is reflected in the
design and management tools included in the platforms. Databases, electronic service
management systems, and, in some cases, workflow engines, constitute the core
technology for all the platforms.
Alignment between these platforms is supported by joint standardization efforts pro-
moted by the respective vendors. An exemplary case in terms of the central role of
workflow is BPEL (Business Process Execution Language) (Andrews et al., 2003). The
model proposed takes into consideration existing standards, as well as evolutionary
trends for standard frameworks, both in the commercial and scientific domain exemplified
by the activities of W3C, OASIS, and the Global Grid Forum.
In addition, the model reflects concepts inherent to established development method-
ologies for electronic services adopted within the industry (McCarthy) and published
methodologies associated with the platform specifications. For example, the HP Service
Composer structures its usage around a methodology for the definition and development
of electronic services. The essence of the methodology is captured in the following steps.
We identify the corresponding elements of our model in parentheses:
1. Define Public Business Processes: The developer defines the public workflow

that clients will use to interact with the service. The developer either selects an
existing process definition or defines new ones (ElectronicService, ServiceOffer,
Capability).

2. Program Web Service Interfaces: The developer generates the Web Services
Description Language (WSDL) files, which describe the Web services associated
to the process of step one.

3. Generate Business Objects and Data: The developer generates or creates connec-
tions to the business objects and data that support the service (Capability,
InformationItem, BusinessEntity, ITSystem).

4. Define Internal Business Processes: The developer defines the internal workflow
specifying the operational logic for the service. For pre-existing workflows, the
developer builds access points to relevant process nodes (Capability).

5. Map Public Interfaces: The public interfaces defined in steps one and two are
mapped to backend logic from steps three and four. As an example, a WSDL
interface might be mapped to a backend component for its concrete implementation
(Capability, CapabilityRole, RoleAssignment).

6. Package the Service: The various components and descriptor files that make up
the service are combined into a deployment unit. The deployment unit can vary
depending on the target platforms (ElectronicService).

120 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

7. Deploy the Service: The service is deployed onto the various components of the
runtime platform (for example, application server, workflow engine, ERP — enter-
prise resource panning—system, Web service infrastructure) (ITSystem,
RoleAssignment).

8. Advertise the Services: Once a service has been deployed, it can be offered to
clients. For example, entries for the related Web services can be added to a UDDI
repository.

9. Monitor Running Services: Graphical tools should provide an end-to-end view of
the service at instance level or as aggregates (ESMS).

Aligned with industry trends such as ebXML (Gibb & Damodaran, 2002) and technology
trends, such as Web services, HPSC is representative of the state of the art in commercial
systems. The conceptual framework employed by the HPSC is reflected in the concepts
of business services, electronic services, and ESMSs presented in the domain model.
Elements in the model fall into two categories: those representing the abstract concepts
inherent to electronic services and those representing the IT infrastructure used to
implement such systems. In the following subsections, we describe the domain model for
electronic services in more detail.
We begin by establishing a working definition of electronic services. This definition is
abstracted from the technical details of electronic service provision, including decisions
regarding implementation technologies or supporting platforms.
Having established the features of electronic services, we consider their concrete
implementation in a business setting. Business capabilities require their roles to be
fulfilled by business entities, which include electronic services, staff, resources, external
services, and clients.
Finally, we introduce a model of infrastructure components, reflecting the common
practice of employing commercial components such as databases, electronic service
management systems, and workflow engines when implementing ESSs.
The domain model is divided into two packages as shown in Figure 4. These partition the
elements pertaining to services from those which represent the IT infrastructure for
managing services.

Electronic Services

The notion of a business service enables the management within an enterprise of
capabilities to deliver some benefit to a consumer. The term capability refers to the
coordination of simpler tasks to achieve an end; the concept is used to raise the level of
abstraction when describing the way that a business behaves. A capability can be
associated with a workflow specification to show how its end is achieved. When
describing business services, capabilities are divided into those involved in provision-
ing the service and those providing the content of the service.

Service-Oriented Computing 121

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The content of a service is the set of capabilities that deliver the benefit of the service
to the client. For example, the content of a freight service refers to the capability of moving
goods from one place to the other.
Provisioning refers to the business channel between the provider and the consumer of
a service. In a freight service, provisioning covers selection, product offer, pricing, and
interaction processes that the freight company applies to its customers.
Content and provisioning are complementary aspects of a service: provisioning logic
depends on the capabilities that the provider can support. The capabilities made
available to consumers depend on the provisioning logic adopted by the provider. In the
example, the option of delivery tracking might be made available only to selected
customers.
Because business services require communication between the provider, the consumer,
and entities fulfilling other supporting roles, it is natural to provide interfaces to business
services using communication technologies, such as computer networks, and support-
ing software, such as middleware for distributed systems. An electronic service is a set
of meta-data, communication interfaces, software, and hardware supporting a business
service (Marton, Piccinelli & Turfin, 1999).
Middleware services and computing resources also provide the opportunity to imple-
ment new business services with highly automated content, and this is an expected
benefit of the electronic service model. However, despite the similarities, the notion of
electronic services should not be confused with middleware services. Electronic services
are associated with business capabilities, and this association is significant to the way
in which electronic services are used and coordinated. The workflow descriptions
associated with a service’s capabilities can be used to coordinate the service: internally,
to marshal the involved capabilities and resources and establish the relationship
between content and provisioning, and externally, to manage the interaction between the
service and its clients and environment.
Figure 5 shows the part of the services domain model related to the composition of
capabilities into services. The elements shown are now described:

• ElectronicService: The encapsulation or realization of a business service using
electronic interfaces. Electronic services have any number of provisioning capa-
bilities and a single top-level content capability (the capability to deliver the
service). Services can be composed of subservices, in which case the content
capability coordinates the content of each subservice, and each subservice must

Figure 4. Subpackages within the ESS domain model

122 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have a provisioning capability that makes a service offer to a role in the coordinat-
ing content capability.

• Capability: A behavior which realizes some benefit to the business, described by
a workflow. A number of roles perform actions and cooperate to complete some
task. Capabilities can be composed in a hierarchy. The workflow of a coordinating
capability constrains the order of tasks in the component capabilities.

• CapabilityRole: A capability role identifies the behavior of a worker or resource
in a coordinated task. Capability roles can be assigned to actual business entities
as discussed shortly.

• InformationItem: An identifier for a piece of information about an enterprise that
is relevant to a task. Some workflow actions require information as a prerequisite
and produce or process information as by-product of their enactment.

• Observation: Observations infer new information from existing information. This
captures the idea that not all derived information is produced by a particular action.
When the condition of the observation is satisfied, new information may be
introduced by the observation expression.

Figure 5. Capabilities view of the services domain model

Service-Oriented Computing 123

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Business Entities

Complementary to the abstract view of business capabilities are models of the concrete
assets in an enterprise and their assignment to capability roles to realize a service.
Electronic services are business assets themselves. Services cooperate at a peer-to-peer
level by fulfilling roles in capabilities. Figure 6 shows the domain model classes.

• BusinessEntity: A business entity is a person, resource, or system that can fulfil
one or more roles in a capability.

• Service Offer: A service offer is made to a capability role (typically that of the
‘customer’). That capability role must be associated with one of the provisioning
mechanisms of the service.

• RoleAssignment: Captures the idea that business entities can be assigned to
perform roles in capabilities on behalf of a particular service (capabilities may be
employed by multiple services, so it is necessary to state what service an entity is

Figure 6. Implementation view of the services domain model

124 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

assisting). Deployment models, including role assignments, represent a snapshot
of the enterprise with a particular disposition of resources.

• ITSystem: An IT system is a computing system that can perform a role in a
capability. Electronic services are intended to provide integration and automated
coordination. This class allows the identification of the components providing
these services, possibly as a prelude to an MDA-style development activity. The
subsequent subsection, Electronic Service Management Systems, provides refine-
ments of this stereotype to identify likely management applications.

Additional classes not shown in Figures 5 and 6 are now discussed:

• Property and HasProperties: Properties capture different types of meta-data about
capabilities. Such meta-information mainly refers to functional and nonfunctional
requirements for a capability. For example, a property for a negotiation capability
is to be usable only with a certain type of customers. The following classes inherit
from HasProperties to enable the attachment of properties: BusinessEntity,
CapabilityRole, Capability and Service. The properties mechanism maps onto the
tagged-value mechanism in UML in the profile definition.

• Group and Groupable: Experience with the HP Service Composer revealed the
benefit of composing capabilities into higher-level aggregates called clusters, in
which capabilities exhibited functional overlaps, dependencies, mutual ownership,
or other subjective similarities. There is also often the need to group services into
related offerings or service packs. Group and Groupable provide a single mecha-
nism for hierarchical grouping. The following elements inherit from Groupable and,
hence, may appear in a Group: CapabilityRole, Capability, BusinessEntity,
InformationItem, Service and Group. Grouping is implemented by UML’s package
mechanism in the profile definition.

Electronic Service Management Systems

In this section, we introduce a preliminary model of IT infrastructure components
involved in the management and implementation of ESSs. Because it is common practice
to employ such components when structuring business capabilities as electronic
services, we believe that a pragmatic modeling approach for ESSs must represent these
components explicitly. The following discussion identifies several common types of
infrastructure component.
Our domain model describes abstractly the effect that activities have on the information
in their environment, for example, the known locations of resource or statistics, such as
the total revenue for a service. Such information can have a role in coordinating
capabilities and may be maintained and leveraged using databases or other accounting
mechanisms.

Service-Oriented Computing 125

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Business services encapsulated by electronic services benefit from additional commu-
nication and provisioning channels. However, the notion of electronic service includes
workflow descriptions for the capabilities from which services are composed. This
suggests that services may be automatically coordinated or enacted using commercial
workflow engines.
There may also be a need to manage the resources required by a service, support for which
is provided by Enterprise Resource Planning (ERP) applications.
Generally, if electronic services are in place, there will be the need and opportunity to
integrate them using a technical infrastructure. This integration is the key benefit of the
SOC paradigm. ESMSs bundle facilities for data and workflow management with devel-
opment tools based on the service paradigm.
The management domain model shown in Figure 7 identifies several common types of
management components and their relationship to electronic services.

• ESMS: An application offering an enterprise-oriented management view of an
electronic service environment. For example, the HP Service Composer or the
DySCo research prototypes (Piccinelli & Mokrushin, 2001). Other candidate
technologies might be an application service offering a middle-tier of business
logic with a web server providing the management interfaces.

Figure 7. Management domain model

126 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• WfMS: A workflow management system, either embodying a capability (enact-
ment) or coordinating a number of subcapabilities. Examples of workflow applica-
tions are IBM’s MQ-Series Workflow and PeopleSoft’s PeopleTools and Integra-
tion Broker.

• ERPS: An Enterprise Resource Planning System, dedicated to coordinating
entities in the system, presumably making them available to fulfil capability roles.
We do not consider resource planning in this paper, although it interacts at a
functional level with coordination based on capabilities, and future work may
provide a combined modeling approach. Examples of ERP systems are SAP’s
mySAP and Baan’s iBaan.

• Database: Most enterprises use databases to store information about the enter-
prise. Establishing a relationship between the (conceptual) information items and
the databases that store them allows a modeler to check whether the information
required by a business entity to fulfil a capability role is available in its context.
Popular databases are Oracle and MySQL.

Electronic Service Systems Profiles

The following tables relate elements in the domain model to profile elements and elements
in the UML domain model. This style of profile definition is compatible with both UML
version 1.5 (OMG, January 2003) and UML 2 (OMG, September 2003).
All name attributes in the domain models map to the name attribute of the class element
in the UML meta-model. All associations in the domain model map to associations in
models. Stereotypes on AssociationEnds are used to disambiguate associations where
more than one exists between the same two domain model elements.

Profile Usage Example

We now present an example of the profile in use to model a freight moving service, based
on previous research in the freight domain (Linketscher & Child, 2001). This example was
also used to demonstrate the HP Service Composer.
We present three diagrams corresponding to the three views supported by our profile:
an abstract view of a service and its underlying capabilities; a snapshot of the enterprise
with business entities implementing roles in capabilities; and a view of the IT infrastruc-
ture supporting services.
Figure 8 shows the freight service and the capabilities that support it. The service is
provisioned by a tendering capability. This service bids in a reverse auction. Simulta-

Service-Oriented Computing 127

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

neously it coordinates resources required for the freight movement. Resources are traded
in an online market to drive down the overhead of the transport. A successful tender
resorts in a move order. This is an example of information in the ESS.
Each capability has an associated workflow description. The workflow for the handover
capability is shown using an informal notation. The role names present correspond to
associated capability roles.

Domain model element Stereotype UML base class Parent Tags

ElectronicService Service Class -- external

enabled

ElectronicService.content content AssociationEnd -- --

ElectronicService.provisioning provisioning AssociationEnd -- --

ElectronicService.component component AssociationEnd -- --

Capability Capability Class -- --

Capability.input input AssociationEnd -- --

Capability.output output AssociationEnd -- --

CapabilityRole CapabilityRole Class -- --

InformationItem InformationItem Class -- --

Observation Observation Class -- condition

observation

Observation.input input AssociationEnd -- --

Observation.output output AssociationEnd -- --

BusinessEntity BusinessEntity Class -- --

ServiceOffer ServiceOffer Class -- enabled

ServiceImplementation Fulfills Association -- service

ITSystem ITSystem Class Business-

Entity

--

ESMS ESMS Class ITSystem --

WfMS.actor wfactor AssociationEnd -- --

WfMS.enacts enacts Class -- --

WfMS.coordinated coordinates Class -- --

ERPS ERPS Class ITSystem --

Database Database Class ITSystem --

Table 1. Stereotypes in the ESS profile

128 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9 shows a deployment view of the service in operation. The model shows the
association of commercial entities with the roles associated with the handover capability.
Finally, Figure 10 shows a view of the IT infrastructure supporting the freight service.
The overall service is managed by an ESMS. The tender and auction capabilities are

Figure 8. Services and capabilities in the Freight mover example

Table 2. Tags in the ESS profile

Domain model element Tag Stereotype Type Multiplicity

Service.external external Service Boolean 0..1

Service.enabled enabled Service Boolean 0..1

Capability.workflow workflow Capability String 0..1

Observation.condition condition Observation String 1

Observation.observation observation Observation String 1

ServiceImplementation.service service Fulfills Class 1

BusinessEntity.external external BusinessEntity Boolean 0..1

ServiceOffer.enabled enabled ServiceOffer Boolean 0..1

Service-Oriented Computing 129

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

enacted by a workflow engine. An orders database manages information produced by
successful tenders to move goods.

Conclusion and Future Trends

Service orientation and model-driven architectures closely represent complementary
approaches to tackling the complexity of software systems engineering. On the one hand,

Figure 10. Infrastructure components in the Freight mover example.

Figure 9. Resource assignments in the Freight mover example.

130 Piccinelli and Skene

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systems are decomposed into functional units (services) that can be composed in a
modular and flexible way. On the other hand, the engineering of individual services and
of complete solutions is based on a coherent management of multiple views (models) of
the underlying system. The combination of service orientation and model-driven archi-
tectures results in a comprehensive conceptual framework for systems engineering.
In this chapter, we have proposed a concrete example of the possible synergies between
service orientation and model-driven architecture. Using the extension capabilities of
UML, the conceptual framework defined for ESSs has been used to enhance standard
UML modeling tools. The resulting modeling and development environment intrinsically
supports the realization of service-oriented systems.
Models of systems developed using a profile of this kind provide a high-level view of
a system in terms of the concepts underlying its design, in this case, the electronic service
paradigm. The benefit of such a view is in understanding and documenting the system
and serving as a starting point for refinement based development, as suggested by the
MDA development approach. The profile identifies elements, such as services and
workflow specifications, pertinent to platform artifacts, and we suggest that such models
could therefore serve as high-level PIMs appropriate as the source for MDA transfor-
mations to platform-specific representations. Given the high level of abstraction of the
models and the great variety of possible implementation platforms and strategies for
electronic service systems, we are currently content to leave this as a manual transfor-
mation, the details of which should be determined for each particular development.
However, if the increasing popularity of the MDA results in the emergence and
widespread adoption of standards and tools supporting automated transformations, it
may also be profitable to formally define transformations to a variety of platforms.

References

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., et al. (2003, May
5). Business process execution language for web services version 1.1. Retrieved
August 9, 2004, from http://www.ibm.com/developerworks/library/ws-bpel/

Baan. iBaan. Retrieved August 9, 2004, from http://www.baan.com/
BEA. Web logic integration. Retrieved August 9, 2004, from http://www.bea.com/

content/news_events/white_papers/BEA_WL_Integration_ds.pdf
Frankel, D. S. (2003). Model driven architecture: Applying MDA to enterprise comput-

ing. John Wiley & Sons.
Gibb, B., & Damodaran, S. (2002). ebXML: Concepts and application.
Global Grid Forum. Retrieved August 9, 2004, from http://www.ggf/org/
HP. (2002). HP service composer user guide.
IBM. Websphere MQ workflow. Retrieved August 9, 2004, from http://www.ibm.com/

software/integration/wmqwf/

Service-Oriented Computing 131

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

IBM. WebSphere Studio Application Developer. Retrieved August 9, 2004, from http:/
/www.ibm.com/websphere

ISO/IEC, ITU-T. Open distributed processing — Reference model — Part 2: Foundations.
(ISO/IEC 10746-2, ITU-T Recommendation X.902).

Linketscher, N., & Child, M. (2001). Trust issues and user reactions to e-services and e-
marketplaces: A customer survey. DEXA Workshop on e-negotiation.

MacDonald, M. (2003). Microsoft .NET distributed applications: Integrating XML Web
services and .Net remoting. Microsoft Press.

Marton, A., Piccinelli, G., & Turfin, C. (1999). Service provision and composition in
virtual business communities. IEEE-IRDS Workshop on Electronic Commerce.

McCarthy, J. A design center for Web services. Retrieved August 9, 2004, from http:/
/www.webservices.org

MySQL AB. MySQL database. Retrieved August 9, 2004, from http://www.mysql.com/
OASIS. Retrieved August 9, 2004, from http://www.oasis-open.org/committees/
Object Management Group (OMG). (2002, April). MOF 2.0 queries/views/transforma-

tions RFP. (Document — ad/02-04-10).
Object Management Group (OMG). (2002, April). UML profile for CORBA specification.

(Document — formal/02-04-01).
Object Management Group (OMG). (2002, May). UML profile for enterprise distributed

object computing specification. (Document — ptc/02-02-05).
Object Management Group (OMG). (2003, January). Unified Modeling Language (UML),

version 1.5. (Document — formal/03-03-01).
Object Management Group (OMG). (2003, June). MDA guide version 1.0.1. (Document

— omg/03-06-01).
Object Management Group (OMG). (2003, September). UML 2.0 infrastructure final

adopted specification. (Document — ptc/03-09-15).
Oracle. Oracle database products. Retrieved August 9, 2004, from http://www.oracle.com
Piccinelli, G., & Mokrushin, L. (2001). Dynamic e-service composition in DySCo.

Workshop on Distributed Dynamic Multiservice Architecture, IEEE ICDCS-21.
SAP. mySAP. Retrieved August 9, 2004, from http://www.sap.com/
Skene, J., & Emmerich, W. (2003, October). A model-driven approach to non-functional

analysis of software architectures. Proceedings of the18th IEEE Conference on
Automated Software Engineering.

Sun Microsystems. (2001). Enterprise Java-Beans (EJB) specification v2.0. Retrieved
August 9, 2004, from http://java.sun.com/products/ejb/docs.html

W3C. Web services activity. Retrieved August 9, 2004, from http://www.w3.org/2002/
ws

132 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VII

Service-Oriented
Enterprise Architecture

Abstract

Service orientation is a new paradigm, not only for software engineering but also for
the broader topic of enterprise architecture. This chapter studies the relevance and
impact of the service concept and service orientation to the discipline of enterprise
architecture. It provides ideas on how to set up a service-oriented enterprise architecture.
It is argued that a service-oriented approach to enterprise architecture provides better
handles for architectural alignment and business and IT alignment, in particular.

Introduction

Continuing globalization, the economic downturn, mergers and acquisitions, and chang-
ing customer demands are forcing enterprises to rethink and restructure their business
models and organizational structures. New products and services need to be developed

Maarten W.A. Steen
Telematica Institute, The Netherlands

Marc M. Lankhorst
Telematica Institute, The Netherlands

Patrick Strating
Telematica Institute, The Netherlands

Hugo W.L. ter Doest
Telematica Institute, The Netherlands

Maria-Eugenia Iacob
Telematica Institute, The Netherlands

Service-Oriented Enterprise Architecture 133

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and delivered better, faster, and cheaper due to increasing international competition.
Therefore, enterprises have to be increasingly efficient, flexible, and innovative to be
successful. They will focus more on core competencies and outsource other activities
to dynamically selected partners to deliver the best possible customer value and the
shortest time-to-market.
In order to manage all these changes and stay competitive, enterprises have started to
develop enterprise architectures. These bring together all architectures modeling spe-
cific aspects of an enterprise. They provide a way for managers and enterprise architects
to assess the impact of changes in one aspect of the enterprise’s operations on the other
aspects.
The emergence of the service-oriented computing (SOC) paradigm and Web services
technology, in particular, has aroused enormous interest in service-oriented architecture
(SOA). Probably because such hype has been created around it, there are a lot of
misconceptions about what SOA really is. Numerous Web services evangelists make us
believe that if you would divide the world into service requestors, service providers and
a service registry, you would have a service-oriented architecture (for example, Ferris &
Farrell, 2003). Others emphasize that SOA is a way to achieve interoperability between
distributed and heterogeneous software components, a platform for distributed comput-
ing (for example, Stevens, 2002). The interesting thing is that the service concept applies
equally well to the business as it does to software applications. Services provide the units
of business that represent value propositions within a value chain or within business
processes. Even though dynamic discovery and interoperability are important benefits
of Web services, a purely technological focus would be too limited and would fail to
appreciate the value of the (much more general) service concept. SOA represents a set
of design principles that enable units of functionality to be provided and consumed as
services. This essentially simple concept can and should be used not just in software
engineering but also at all other levels of the enterprise architecture to achieve ultimate
flexibility in business and IT design.
The main objective of this chapter is to study the relevance and impact of the service
concept and service orientation on the discipline of enterprise architecture. The chapter
answers the following questions:

• What is enterprise architecture and why is it important?

• What is the current state of practice in enterprise architecture?

• Why should enterprises consider moving to a service-oriented enterprise architec-
ture?

• What are the implications of service orientation for enterprise architecture?

• What support is required for doing service-oriented enterprise architecture?

• What road maps exist for moving to a service-oriented enterprise architecture?

The rest of the chapter is structured as follows. First, we survey the state of the art in
enterprise architecture and architectural support. Then we study the relevance and

134 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

impact of the service concept and service orientation on the discipline of enterprise
architecture. This is followed by a number of emerging trends and adoption strategies.
We conclude with issues for further research.

Enterprise Architecture

Enterprise architecture has the effective purpose to align the strategies of enterprises
with their business processes and their (business and IT) resources (Wegmann, 2003;
Zachman, 1987). An enterprise architecture for an organization combines and relates all
architectures describing particular aspects of that organization. META Group, for
example, defines the enterprise architecture to consist of the enterprise business
architecture, the enterprise information architecture, the enterprise-wide technology
architecture, and the enterprise application portfolio (Buchanan & Soley, 2002). The goal
of enterprise architecture is to provide insight in the organizational structures, pro-
cesses, and technology that make up the enterprise, highlighting opportunities for
efficiency improvements and improved alignment with business goals.
Enterprise architecture is important because organizations need to adapt increasingly
fast to changing customer requirements and business goals. This need influences the
entire chain of activities of an enterprise from business processes to IT support.
Moreover, a change in one architecture may influence other architectures. For example,
when a new product is introduced, someone should be made responsible for it, and
business processes for production, sales, and after-sales need to be adapted. It might
be necessary to change applications or even adapt the IT infrastructure. To keep the
enterprise architecture coherent, the relations between the different types of architecture
must be clear, and a change should be carried through methodically in all architectures.
Architectural alignment and business and IT alignment, in particular, have proved to be
difficult problems in enterprise architecture. On the one hand, this is due to differences
in architectural modeling methods. Business analysts are capable of modeling complex
business processes. Likewise, IT architects are capable of designing complex applica-
tions. Unfortunately, the two cannot understand each other’s designs because they do
not have a common vocabulary and language. On the other hand, there is no overarching
set of design rules governing the structuring of the various architectures making up the
enterprise architecture. In practice, each type of architecture is supplemented with
guidelines and best practices for optimal design. The use of such design principles is
well known in software engineering, but also in the field of business process modeling
a number of guidelines have been assembled in various methods. For example, Biemans
et al. (2001) describe guidelines, such as “use domain-specific terminology, notation, and
conventions,” and “use a limited number of pre-defined abstraction levels; the choice
of abstraction levels should be an opportunistic, domain-specific one”. These principles
render optimal architectures that, however, may constitute an enterprise architecture that
is not optimal or even aligned. Therefore, one also wishes for some form of enterprise-
wide design optimization. The well-known practical approach is to generate views or
mappings of one architecture onto another and analyze the result for possible discrep-

Service-Oriented Enterprise Architecture 135

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ancies. A simple example is to assign actors to process activities and analyze whether
the result makes sense from the actor’s point of view. In this way, architectures can be
pair-wise aligned. Until now, enterprise architecture lacks concepts for expressing global
optimization and criteria that guide this optimization across different architectures. We
return to these problems later. First, we survey some of the available frameworks,
methods, and modeling techniques for enterprise architecture.

Frameworks

In order to define the field and determine the scope of enterprise architecture, both
researchers and practitioners have produced a number of architecture frameworks.
Frameworks provide structure to the architectural descriptions by identifying and
sometimes relating different architectural domains and the modeling techniques associ-
ated with them. Well-known examples of architectural frameworks are:

• Zachman’s “framework for enterprise architecture” (see Sowa & Zachman, 1992;
Zachman, 1987). The Zachman framework is widely known and used. The frame-
work is a logical structure for classifying and organizing the representations of an
enterprise architecture that are significant to its stakeholders. It identifies 36 views
on architecture (cells), based on six levels (scope, enterprise, logical system,
technology, detailed representations, and functioning enterprise) and six aspects
(data, function, network, people, time, and motivation).

• The Reference Model for Open Distributed Processing (RM-ODP) is an ISO/ITU
Standard (ITU, 1996) which defines a framework for architecture specification of
large distributed systems. It identifies five viewpoints on a system and its
environment: enterprise, information, computation, engineering, and technology.

• The architectural framework of The Open Group (TOGAF) is completely incorpo-
rated in the TOGAF methodology (http://www.opengroup.org/architecture/togaf8/
index8.htm). TOGAF has four main components, one of which is a high-level
framework defining three views: Business Architecture, Information System Archi-
tecture, and Technology Architecture.

For the remainder of this chapter, we will use a very simple framework (Jonkers et al., 2003)
to illustrate our ideas, which is based on the frameworks mentioned above. This
framework, which is illustrated in Figure 1, uses just three layers and three aspects. The
layers – business, application, and technology – roughly correspond to the enterprise,
logical system, and technology levels in the Zachman framework. The aspects –
structure, behavior, and information – correspond to the network, function, and data
aspects in the Zachman framework.
As shown in the figure, different known conceptual domains can be projected onto this
framework. Frameworks like this provide clues as to which domains may be relevant for
modeling and analyzing but do not provide guidelines for relating and aligning different

136 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

architectural domains, nor for optimizing architecture domains or the entire set of
domains.

Methodology

Most of the architecture frameworks are quite precise in establishing what elements
should be part of an enterprise architecture. However, to keep the enterprise architecture
coherent during its life cycle, the adoption of a certain framework is not sufficient. The
relations between the different types of domains, views, or layers of the architecture must
remain clear, and any change should be carried through methodically in all of them. For
this purpose, a number of methods are available, which assist architects through all
phases of the life cycle of architectures.
An architecture method is a structured collection of techniques and process steps for
creating and maintaining an enterprise architecture. Methods typically specify the
various phases of an architecture’s life cycle, what deliverables should be produced at
each stage, and how they are verified or tested. The following methods for architecture
development are worth mentioning:

• Although meant for software development, the Rational Unified Process (RUP)
(Jacobson et al., 1999) is of interest here, as it defines an iterative process, as
opposed to the classical waterfall process, that realizes software by adding
functionality to the architecture at each increment.

• The UN/CEFACT Modeling Methodology (UMM) is an incremental business
process and information model construction methodology. The scope is intention-
ally restricted to business operations, omitting technology-specific aspects. The
Business Collaboration Framework (BCF), which is currently under development,

Figure 1. Architectural framework

Business
layer

Application
layer

Technology
layer

Information
aspect

Behaviour
aspect

Structure
aspect

Process
domain

Organisation
domain

Information
domain

Data
domain

Application domain

Technical infrastructure domain

Product
domain

Service-Oriented Enterprise Architecture 137

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

will be a specialization of the UMM aimed at defining an enterprise’s external
information exchanges and their underlying business activities. See http://
www.unbcf.org/index.html.

• The Chief Information Officers Council has created The Federal Enterprise Archi-
tecture Framework (FEAF) accompanied by a practical and useful manual for
developing enterprise architecture for governmental organizations. See http://
www.cio.gov. Other initiatives of the United States government include Technical
Architecture Framework for Information Management (TAFIM) by the U.S. Depart-
ment of Defense and the Treasury Architecture Development Process by the
Department of the Treasure. See http://www.library.itsi.disa.mil/tafim.html and
http://www.ustreas.gov/teaf/, respectively.

• The TOGAF Architecture Development Method (ADM), developed by the Open
Group, provides a detailed and well-described phasing for developing an IT
architecture. Version 8 of TOGAF entitled “Enterprise Edition” provides a frame-
work and development method for developing enterprise architectures. See http:/
/www.opengroup.org/architecture/togaf8.

• MEMO (Frank, 2002) is a method for enterprise modeling that offers a set of
specialized visual modeling languages together with a process model, as well as
techniques and heuristics to support problem specific analysis and design. The
languages allow the modeling of various interrelated aspects of an enterprise.

Differences between these methods are partly due to historical reasons and partly due
to differences in scope. First, they may or may not specify the detailed techniques,
languages, or tools to be used in each phase. Second, they differ in the degree to which
they encourage the repetition of various stages. Some methods take the “right first time”
approach for each stage of development, while others promote iteration. Some methods
favor the involvement of users during the whole process, while others limit user
involvement to the early stages.

Modeling Support

The industry has produced a number of tools supporting architecture work within
enterprises, especially in the area of modeling and modeling languages (for example, the
ARIS toolset, the Rational tools, Metis, Enterprise Architect, System Architect, Testbed
Studio, MEMO). Languages are an essential instrument for the description and commu-
nication of architectures, and languages and tools have evolved more or less hand in
hand. In some cases, methodologies and frameworks have grown around and are
supplied together with architecture support tools, for instance, in the Rational, ARIS
(Scheer, 1994), Testbed (Eertink et al., 1999) and MEMO cases. In other cases, tool
vendors have strived to endow their tools with new functionality in order to support
frameworks (for example, System Architect was supplemented with a Framework Man-
ager, which supports, among others, the Zachman and TOGAF frameworks) or other

138 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modeling notations such as UML (Booch, Rumbaugh & Jacobson, 1999) or the IDEF
family (IDEF, 1993), besides their own proprietary notations (for example, ARIS, System
Architect). Languages and modeling notations are at the core of all these architecture
support packages.
Most languages mentioned provide concepts to model specific domains, for example,
business processes or software architectures, but they rarely model the high-level
relationships between these different domains. We can illustrate this with Figure 1. In
current practice, architectural descriptions are made for the different domains. Although,
to a certain extent, modeling support within each of these domains is available, well-
described concepts to describe the relationships between the domains are almost
completely missing. Such concepts are essential to tackle the problems of business-IT
alignment and architecture optimization in a systematic way.

Service Orientation in
Enterprise Architecture

From the overview of enterprise architecture in the previous section, one can conclude
that there are two main issues in enterprise architecture today:
1. The problem of alignment between the various architectures and
2. The lack of a guiding principle for overall optimization with respect to an enterprise’s

goals.

The service concept may provide an interesting direction to solve these issues. The idea
of systems (applications or components) delivering services to other systems and their
users is really starting to catch on in software engineering; witness, for example, this
book. However, in other relevant disciplines, there is an increasing focus on services,
too. In fact, economic development is to an increasing extent driven by services, not only
in traditional service companies but also in manufacturing companies and among public
service providers (Illeris, 1997). In the service economy, enterprises no longer convert
raw materials into finished goods, but they deliver services to their customers by
combining and adding value to bought-in services. As a consequence, management and
marketing literature is increasingly focusing on service design, service management, and
service innovation (for example, see Fitzsimmons & Fitzsimmons, 2000 or Goldstein et al.,
2002).
Another upcoming area in which the service concept plays a central role is IT service
management. This discipline is aimed at improving the quality of IT services and the
synchronization of these services with the needs of their users (Van Bon, 2002).
Combining these three developments — the focus on services in management, the
growing attention for service management, and the hype around Web services —
convinced us that services should have a more prominent role in enterprise architecture.

Service-Oriented Enterprise Architecture 139

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In the rest of this section, we study what the impact of service orientation is on enterprise
architecture and how it could potentially solve the two problems identified above.

The Service Concept

Given the central role of the service concept in this chapter, a clear and precise definition
is required. This definition should make sense both in the business and in the IT domain.
For a generic definition, we refer back to the seminal work by Vissers and Logrippo (1985)
and Quartel et al. (1997), where a service is defined as “the observable behavior of a
system (the service provider) in terms of the interactions that may occur at the interfaces
between the system and the environment and the relationships between these interac-
tions”. The term system is used here in the widest sense, including both applications and
organizational units.
The service concept is the result of a separation of the external and internal behavior
of a system. As such, it should be self-contained and have a clear purpose from the
perspective of its environment. The internal behavior, on the other hand, represents what
is required to realize this service. For the consumers of a service, the internal behavior
of a system or organization is usually irrelevant: they are only interested in the
functionality and quality that will be provided.

Relevance and Benefits

One might ask why we should focus on services for architecting the enterprise and its
IT support. What makes the service concept so appealing for enterprise architecture
practice? First, there is the fact that the service concept is used and understood in the
different domains making up an enterprise. In using the service concept, the business
and IT people have a mutually understandable language, which facilitates their commu-
nication. Second, service orientation has a positive effect on a number of key differentiators
in current and future competitive markets, that is, interoperability, flexibility, cost
effectiveness, and innovation power.

Interoperability

Of course, Web services and the accompanying open XML-based standards are heralded
for delivering true interoperability at the information technology level (Stevens, 2002).
However, service orientation also promotes interoperability at higher semantic levels by
minimizing the requirements for shared understanding: a service description and a
protocol of collaboration and negotiation are the only requirements for shared under-
standing between a service provider and a service user. Therefore, services may be used
by parties different from the ones originally perceived or used by invoking processes at
various aggregation levels.

140 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Flexibility

Interoperability and separation of internal and external behavior provide new dimensions
of flexibility: flexibility to replace or substitute services in cases of failure, flexibility to
upgrade or change services without affecting the enterprise’s operations, flexibility to
change suppliers of services, flexibility to reuse existing services for the provision of new
products or services. This will create new opportunities for outsourcing, rendering more
competition and more efficient value chains.

Cost Effectiveness

By focusing on services, many opportunities for reuse of functionality will arise,
resulting in more efficient use of existing resources. In addition, outsourcing and
competition between service providers will also result in a reduction of costs. From a more
macroscopic point of view, costs will be reduced as a result of more efficient distribution
of services in value chains.

Innovation Power

The ability to interoperate and collaborate with different partners, including partners not
familiar to the enterprise, provides new opportunities for innovation. Existing services
can be recombined, yielding new products and services, ad hoc liaisons with new
partners become possible that exploit emerging business opportunities, and newly
developed services can easily be advertised and offered all over the world, and integrated
in the overall service architecture.
Finally, service orientation stimulates new ways of thinking. Traditionally, applications
are considered to support a specific business process, which in turn realizes a specific
business service. Service orientation also allows us to adopt a bottom-up strategy, where
the business processes are just a mechanism of instantiating and commercially exploiting
the lower-level services to the outside world. In this view, the most valuable assets are
the capabilities to execute the lower-level services, and the business processes are
merely a means of exploitation.

Introducing a Service Architecture

The wide applicability of the service concept to all levels of enterprise architectures
paves the way for the introduction of a separate service architecture. The service
architecture defines and relates all services of an enterprise. The enterprise is essentially
regarded as a collection of interrelated services at various aggregation levels, or more
precisely, a collection of abilities to instantiate services. These services can be business
services or technical services, and the services can be both high-level aggregated
services and low-level atomic services.

Service-Oriented Enterprise Architecture 141

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A service architecture can be extracted from existing architectures by projecting out all
(business, application, and technology infrastructure) services provided, or it can be
developed separately. Services are typically grouped by type in a service architecture,
as depicted in Figure 2.
The resulting hierarchy corresponds to the architectural layers (business, application,
and technology) defined in the architectural framework in Figure 1. Each layer makes its
external services available to the next higher layer. The external services of the higher
layer may depend on services in the same or lower architectural layers. Business services,
for example, may depend on external application services. Internal services are used
within the same architectural layer; for instance, an application component may use
services offered by another application component. Likewise, a business process may
be viewed as comprising subprocesses that offer their services to each other and to the
containing process. External business services could also be called customer services,
that is, services offered to the (external) customers of the enterprise.
Naturally, within these different layers, services will have to be augmented with aspects
specific to these layers. This might entail, for example, adding (representations of)
service level agreements to services in the business layer or WSDL specifications to

Figure 2. Service architecture: Hierarchy of services

External
business
services

Internal
business
s ervices

External
application

services

Internal
application

services

External
technology

services

Internal
technology
services

customer

Business

Application

Technology

Environment

behaviour

behaviour

behaviour

behaviour

behaviour

behaviour

142 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

describe the details of internal application services. However, central is the generic
concept of a service as a business-relevant unit of behavior as it is exposed to the
environment.

Guidelines

The development of a service-oriented enterprise architecture (SOEA) should be guided
by the following principles in order to achieve the benefits listed previously.

Separation of Internal and External Behavior

Following the definition of the service concept, a service should only define the
externally observable behavior of a system, not how that behavior is realized. Such
encapsulation has long been a guiding principle in software development (for example,
see Dijkstra, 1968). It provides a mechanism for being truly platform-independent for
substituting different implementations with the same external behavior or interchanges
different suppliers of services.

Definition of the Meaning of Services in External Context

The definition of the external behavior should be in terms of the invoking processes,
systems, or users, making the added value and possible uses of the service explicit for
service consumers. It encourages cross-domain thinking and design, reducing the
semantic gaps between domains. It also facilitates the communication between stake-
holders from these different domains, such as business analysts and software architects.

Minimization of Shared Understanding

Services should be specified such that (potential) users require a minimum amount of
information to understand the external behavior of the service and with a minimum
number of handles to operate the service for these purposes. Minimizing the shared
understanding is an enabler for the second guiding principle, as it reduces gaps from
different perspectives.
These guiding principles provide directions for the development of services and
interoperability in all sorts of domains. They hold for the development of infrastructural
services, application services, business processes, and business functions.

Architectural Alignment

Once a service architecture is established, it can be used as a vehicle for achieving
architectural alignment or as the starting point for optimization or redesign of the

Service-Oriented Enterprise Architecture 143

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

enterprise. As we explained in the introduction, an enterprise architecture is not a single
entity but a collection of all relevant architectures making up the enterprise. One of the
main challenges in enterprise architecture is to relate and align all these architectures with
each other and with the overall goals and objectives of the enterprise.
Having a service architecture makes it easier to relate the various architectures to one
another. We have already shown that a service architecture provides insight in the
dependency relationships between an enterprise’s services at different levels. The
service architecture thus provides a global overview of the functioning of an enterprise,
which can be used to play what-if games. For example, what is the impact if a certain
application service is removed, outsourced, or upgraded?
In addition, services can serve as linking pins between the concepts used in other
architectural domains. A service is used by and provided by actors fulfilling roles in the
organization domain. A service is invoked by and implemented by business processes
in the process domain or application components in the application domain. And, a
service requires and processes information and data from the information and data
domains, respectively.
It may seem too much of a simplification to use only one construct for the complicated
matter of enterprise design, but service-oriented architecture does not mean that there
is no longer a place for classical distinctions between roles, processes, applications,
information, and so forth. Rather, in service-oriented architectures there is one pivotal
construct (the service concept) between different aspects and between different levels
of aggregation. The different types of architecture arise as aspect views for the service-
oriented architecture. Thus, SOEA imposes a direct correlation between business
processes and application services, improving governance and maintainability, while
simplifying the development of new services from existing ones.

Figure 3. Services as a pivotal construct linking different architectural domains

service

Actors

Systems

ProcessesInformation

144 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Optimization

Currently, optimizing an enterprise architecture, that is, improving performance, quality,
or cost effectiveness, is typically done locally within one type of architecture. For
example, an enterprise may decide to change its business processes to improve its
efficiency. This change might require changes in the supporting applications and IT
infrastructure and lead to changes in the organization. In this way, the enterprise can,
at most, achieve a locally optimal situation because the resulting changes could have a
detrimental impact on the efficiency of the applications and on the effectiveness of the
organization as a whole. Our hypothesis is that services could provide the overall
optimizing concept currently lacking in enterprise architecture. This hypothesis still
requires validation but is derived from the reasoning that most enterprises today belong
to the service industry and compete on service levels. Therefore, their goal generally is
to provide the best possible quality of service.
There are two ways in which services could guide optimization. The first way is to start
from a particular service and analyze how this service is supported in different architec-
ture domains. This is illustrated in Figure 3. The challenge is to design processes,
organizational structures, and information systems to effectively support the selected
service.
Even more challenging is the optimization of the entire set of services across architectural
domains and aggregation levels. Consider the archetypical corporate service architec-
ture as illustrated in Figure 4. An end-user service (top level) depends on lower-level
services for its service delivery, which again may depend on service at an even lower
level. On the other hand, lower-level services can be used in different end-user services.
In general, to attain the goal of cost reduction, lower-level services should be more
generic than higher-level services, limited in number, and used by as many higher-level
services as possible. However, the more a lower-level service is used by higher-level

Figure 4. Corporate service architecture with different layers of services (circles) and
dependencies (arrows) (The thick arrows represent a particular set of services that are
required for one of the end-user services.)

Service-Oriented Enterprise Architecture 145

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

services, the more difficult it will be to change this service. To retain flexibility,
decomposition of such services may be preferable.
From this example, it is clear that it is a real challenge to define guidelines for optimal
service architectures that specify decomposition and reuse to achieve the combined
goals of increased flexibility, costs effectiveness, and innovation power.
One could argue that this problem is not different from the problems of component-based
design. In fact, it is similar, but it is now applied to the entire service architecture of the
enterprise. In this field, it provides a new concept for enterprise optimization. Current
optimization strategies start from classical domains, for example, business processes,
products, customers groups, as starting points to perform an optimization strategy. In
service orientation, the services are the primary building blocks of organizations.
Because the service concept intrinsically refers to interoperability, flexibility, and reuse,
as argued in the Benefits and Relevance section, the promise of service orientation is that
optimization strategies based on services will lead to more optimal business architectures
for the envisioned competitive business world.

Modeling Support for Service-Oriented Enterprise
Architecture

In order to facilitate a service-oriented approach to enterprise architecture, a high-level
modeling language is needed in which the different conceptual domains can be described
at a sufficiently abstract level. Such a language, in which the service concept plays a
central role, is being developed in the ArchiMate project (Jonkers et al., 2003). The
objective of the ArchiMate language is to define relationships between concepts in
different architectures, the detailed modeling of which may be done using other standard
or proprietary modeling languages.
Concepts in the ArchiMate language currently cover the business, application, and
technology layers of an enterprise. For each layer, concepts and relations for modeling
the information, behavior, and structure aspects are defined. Services offered by one
layer to another play an important role in relating the behavior aspects of the layers. The
structural aspects of the layers are linked through the interface concept and the
information aspects through realization relations.
Figure 5 illustrates the main concepts in the ArchiMate architectural modeling language.
The concepts of this language hold the middle between the detailed concepts that are
used for modeling individual domains, for example, the UML for modeling software. For
a more complete definition of the language, we refer to the ArchiMate project archive at
http://archimate.telin.nl/.
In order to illustrate our approach to service-oriented enterprise architecture and to using
services for architectural alignment, we have developed an example enterprise architec-
ture for an imaginary insurance company (Figure 6). It illustrates the use of services to
relate the infrastructure layer, the application layer, the business process layer, and the
environment. The insurant and insurer roles represent the client and insurance company
(ArchiSurance), respectively. Invocation of the claims registration service by the

146 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

insurant starts the damage claiming process. The insurant is informed whether the claim
is accepted, and, if so, the insurant receives a payment. Interaction between business
processes and organizational roles is through business services. Thus, services connect
the process architecture and the organization architecture. Likewise, application ser-
vices relate the business process architecture to the application architecture. The
automated part of each business process is provided by an external application service.
These application services are realized by application components. Finally, the technol-
ogy layer consists of a number of infrastructure elements, such as a mainframe and an
application server, which execute application components and provide services to the
application layer.
In the example, a high-level overview of an entire enterprise is shown in a single integrated
and well-defined model. Admittedly, our example is simple; in reality, such a model would
be much larger, requiring techniques for selecting and visualizing the elements that are
relevant for a particular stakeholder.
An important advantage of the service concept is that it can be interpreted by both
business and IT people. This model can be used by, for example, both a manager requiring
the big picture and a software engineer that implements an application component and
needs to know the context of this component. Thus, by using such a service-centric
model, different stakeholders can better understand each other. Within each specific
domain, this high-level model serves as a starting point for more detailed descriptions.

Figure 5. Concepts of the ArchiMate architectural modeling language

ActorActor

RoleRole
SpecialisationSpecialisation

AssociationAssociation

TriggeringTriggering

Used byUsed by

RealisationRealisation

Assigment
(behaviour to
structure, or
role to actor)

Assigment
(behaviour to
structure, or
role to actor)

ProcessProcess

Service

Component

DeviceDevice
NetworkNetwork

Object

Service-Oriented Enterprise Architecture 147

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. Example of a service-oriented enterprise architecture (For more details on
the notation used in this example, see Van Buuren et al., 2003.)

Infrastructure

External infrastructure services

Application components and services

Roles and actors

External application services

External business services

 Damage claiming process

Client Insurant InsurerArchiSurance

Registration PaymentValuationAcceptance

Customer
information

service

Claims
payment
service

Claims
administration

service

Risk
assessment

service

Payment
service

 Risk
 assessment

 Claims
 administration

 Financial
 application

Claim
information

service

Claim
registration

service

Claim
registration

service

Customer
administration

service

 Customer
 administration

Claim
files

service

zSeries mainframe

DB2
database

Risk
assessment

EJB

Customer
files

service

Sun Blade

iPlanet
app server

148 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Future Trends

Currently, most developments with respect to service orientation are taking place on the
technology front. Web services standards continue to emerge at a dazzling speed.
Unfortunately, there is little ongoing effort to revise methods for enterprise architecture
in the light of service orientation.

Emerging Technologies

Web Services

Web services are a relatively young technology in full development, sustained by a
rapidly evolving set of industry standards. Their broad acceptance is guaranteed by the
global status of organizations such as W3C, UN-CEFACT, UDDI.org, OMG, and OASIS
that lead the standardization work in this field. However, there are problems (for example,
security, interoperability, availability, and reliability) that are not yet completely ad-
dressed, and therefore, most of these standards should be seen as work in progress.
We are witnessing a strong competition for the leading positions in the Web services
market. The list of competing companies include big supporters of Web services such
as Microsoft with its .Net strategy, IBM with its WebSphere, its “business on demand”
framework and its patterns for e-business, Novell with its DENIM (Directory-Enabled Net
Infrastructure Model) cross-platform infrastructure, Sun with its ONE (Open Net Envi-
ronment), BEA Systems with its WebLogic, and many others.

Grid Services

A parallel development in service orientation is the ability to access ICT resources, such
as computing power, storage capacity, and ICT devices as services over the Internet.
With devices, we refer to everything that can be shared via the network. It includes
scientific devices such as radio telescopes or MRI scanners, as well as your home video
camera or your PDA. This development has its origin in e-science environments
(computing grids), but also has large potential for a variety of other application areas like
healthcare, education, finance, life sciences, industry, and entertainment. The idea is that
in the near future, a user or a company can simply plug into the wall to get access to
commoditized computing and storage services. In analogy with electricity provisioning
over the Power Grid, this next generation service infrastructure is called the Service Grid.
This will give large and small organizations access to ICT resources currently out of
reach.
For grid development, the Global Grid Forum (http://www.ggf.org) leads standardization.
The integration with business requirements is addressed in the OGSA (open grid services
architecture) and OGSI (open grid services infrastructure) working groups. These
primarily concern basic integration of grid computing concepts with Web service
technology.

Service-Oriented Enterprise Architecture 149

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The grid service developments strengthen the impact of service orientation on business
architectures because they extend the application of Web service technology to the
domain of utility computing and ASP, while its focus on sharing of ICT resources will
have additional impact on the way ICT infrastructure services are managed within
organizations.

Real-Time Business Service Management

Tool vendors like BMC (http://www.bmc.com) recognize the importance of integrating
real-time IT service management with operational business processes and customer
services. They provide tools that propagate events at the IT level to process owners and
customers; the other way around, problem reports from users and customers can be
propagated to the IT service level. Such integrations should offer operational business-
IT alignment giving insight into real-time performance and service levels. These devel-
opments create a strong case for service-oriented methods since they apply service
orientation in real-time operational service management allowing services to be used for
online decision making and problem solving.

Adoption Patterns

Drivers for Adoption

Although many enterprises are very reluctant in embracing what might appear to be yet
another IT hype, there are some that have already started to implement Web services and
gained some practical experience in understanding how and where they can use them.
In a survey concerning the usage of Web services by early adopters of SOA, Wilkes
(2003) has identified several incentives to move toward SOA that are worthwhile to be
mentioned here because they express a position that is becoming a trend: SOA is a
strategic decision, it delivers more flexible solutions for business, is more practical and
more cost effective than the existent architectures, is compliant with existing and
emerging standards, delivers a more practical solution for IT, allows for easy business
process reengineering and optimization, and is device- and platform-independent.

Maturity Model

Since both service-oriented development methods and technology and standards
surrounding Web services are still very much under development, we may ask ourselves
what the future of service-oriented architectures will be like and when all these devel-
opments will finally lead to a mature, widely accepted and stable approach for organiza-
tions to proceed with such environments.
One outlook that tries to give a realistic prognosis for the near future is that of the Stencil
Group (Sleeper & Robins, 2002). Their forecast with respect to the growth of the Web

150 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

services market emphasizes three phases: the first will cover the “organic adoption of
Web services tools and standards” (2001-2003), the second, the “systematic deployment
of services infrastructure” (2002-2006), and the third, the “pervasive use of services in
collaborative business processes” (2005 and beyond).
The vision of Sleeper and Robins is partly confirmed by Sprott’s (2003) maturity model
that identifies four phases on the way of SOA toward maturity: early learning (experi-
mental, mostly internal, focused on better application integration) which is happening
now, integration (still internal, business process oriented and based on a more mature
understanding of SOA) that will start probably in 2004 and will take three years,
reengineering (services used across organizations and implemented as part of business
products, both internal and external) that will start in 2005, and finally, maturity
(ubiquitous and federated services, service consumer ecosystems). Sprott does not
predict when we should expect maturity.

Road Maps for Moving to a Service-Oriented Architecture

There are numerous resources available that discuss what Web services are, how to
implement or use them, what their benefits are in terms of costs, ROI, flexibility, and
architecture integration. However, in contrast with the literature addressing classical
enterprise and software architectures, one can hardly find well-structured methodolo-
gies, frameworks, or best practices that might assist enterprise architects during the
complex migration process from classic enterprise architectures to SOEA and Web
services. This is not a total surprise because such instruments are usually developed as
soon as the expertise gathered in the application of new ideas and technologies in real
environments reaches a certain critical mass, which is not yet the case with SOEA: there
are few examples of fully developed and mature service-oriented enterprise architectures.
However, we can refer to a few roadmapping initiatives in the area of SOA.
CBDi Forum has proposed “the Web Services Roadmap”, which is in fact a collection of
articles (see http://roadmap.cbdiforum.com/) focused on practical guidance for organi-
zations adopting SOA and Web services. This Roadmap is structured around several
“streams,” which provide a division of the migration process into its main activities:

• The “Plan & Manage” stream involves activities related to the development and
coordination of common policies and practices between the parts of the new
federated environment, enabled by SOA.

• The “Infrastructure” stream offers guidance on the strategies, activities, and timing
involved in the transition of the existing infrastructures.

• The “Architecture” stream covers the integration of Web services into core
business processes, as the units of reuse across an organization.

• The “Process” stream deals with the “service life cycle” seen as a collaborative
process between the Supplier and the Consumer of services.

• The “Projects” stream briefly refers to five service project profiles.

Service-Oriented Enterprise Architecture 151

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The second approach belongs to The Stencil Group (Robins et al., 2003). The first part
of this report is dedicated to the business objectives and technical patterns emerging
from the experiences of early adopters. In the second part, the authors propose a “Web
service scorecard”, intended to become a decision-making tool for new adopters. The
scorecard is based on the findings of a study of 50 organizations and is divided in two
parts: the first half should be used for the assessment of the enterprise IT strategy with
respect to Web services and the second half for the examination of the services that are
fit for a specific project. Apart from the scorecard, the paper discusses a four-step plan
of “how to get started”.
The third contribution originates from ZapThink, in the form of “ten emerging best
practices” (Bloomberg, 2003) and a “path for SOA implementation” (Schmelzer &
Bloomberg, 2003). These best practices give general common sense indications (such as
“Encapsulate existing/legacy functionality” or “Compose atomic Services into coarse-
grained business Services”) that might be useful principles to follow during the design
of service architectures. No time line or methodological steps are suggested. Neverthe-
less, the authors strongly encourage the use of principles and techniques of agile
methodologies. In contrast with the best practices, “the path for SOA implementation”
is an attempt to express in a graphical manner the most important moments toward the
maturity of a SOEA. The process is divided into four phases: Point-to-point integration,
Internal SOAs, B2B process-driven services, and the on-demand enterprise.

Conclusion

Service orientation is a new paradigm, not only for software engineering but also for the
broader topic of enterprise architecture. Service-oriented enterprise architecture (SOEA)
introduces the idea of a service architecture, which facilitates alignment between the
various architectural domains. In addition, services and the service architecture are
useful starting points for synchronizing an enterprise’s design with its goals.
Future research will have to determine whether service orientation really can deliver on
all its promises of increased interoperability, flexibility, and innovation power. Some
organizations are already starting to experiment with service-oriented enterprise archi-
tectures. We will carefully monitor their experiences to verify if they can indeed improve
their competitive power.
Thus far, SOEA is merely an appealing idea. It will have to be operationalized by concrete
methods and techniques that are centered around the service concept. Work to this end
is, for example, taking place within the ArchiMate project. We expect this work to generate
many more issues and questions related to implementing a service-oriented architecture.
For example, what aspects of a service should be specified? How should a service be
specified? How can service management profit from an explicit service architecture? And
so forth.

152 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Arkin, A. (2002). Business Process Modeling Language, BPMI.org. Retrieved August
10, 2004, from http://www.bpmi.org/bpmi downloads/BPML1.0.zip

Biemans, F. P. M., Lankhorst, M. M., Teeuw, W. B. & van de Wetering, R. G. (2001).
Dealing with the complexity of business systems architecting. Systems Engineer-
ing, 4(2).

Bloomberg, J. (2003). Ten emerging best practices for building SOAs, ZapThink. Re-
trieved August 10, 2004, from http://searchWebservices.techtarget.com/
originalContent/1,289142,sid26_gci882714,00.html

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language user
guide. Addison-Wesley.

Buchanan, R. D., & Soley, R. M. (2002). Aligning enterprise architecture and IT invest-
ments with corporate goals, OMG.

Dijkstra, E. W. (1968). Structure of the ‘THE’-Multiprogramming system. Communica-
tions of the ACM, 11(5), 341-346.

Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W., & Vissers, C. A. (1999,
September). A business process design language. Proceedings of the 1st World
Congress on Formal Methods, Toulouse, France.

Eriksson, H.-E., & Penker, M. (2000). Business modeling with UML: Business patterns
at work. New York: Wiley.

Ferris, C., & Farrell, J. (2003). What are Web services? Communications of the ACM,
46(6).

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2001). Service Management (3rd ed.). New York:
McGraw-Hill.

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2000). New service development: Creating
memorable experiences. Thousand Oaks, CA: Sage.

Frank, U. (2002). Multi-perspective Enterprise Modeling (MEMO) - Conceptual frame-
work and modeling languages. Proceedings of the Hawaii International Confer-
ence on System Sciences (HICSS-35), Honolulu.

Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., & Schmidt, H. (2001).
The MNM service model - Refined views on generic service management. Journal
of Communications and Networks, 3(4), 297-306.

Goldstein, S. M., Johnston, R., Duffy, J., & Rao, J. (2002, April). The service concept: The
missing link in service design research. 121-134.

IDEF. (1993). Integration Definition for Function Modeling (IDEF0) Draft (Federal
Information Processing Standards Publication No. FIPSPUB 183.) U.S. Department
of Commerce, Springfield, VA.

IEEE. (2000). IEEE Computer Society, IEEE Std 1471-2000: IEEE Recommended Prac-
tice for Architectural Description of Software-Intensive Systems, Oct. 9, 2000.

Illeris, S. (1997). The service economy: A geographical approach. Wiley.

Service-Oriented Enterprise Architecture 153

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ITU. (1996). ITU Recommendation X.901 | ISO/IEC 10746-1: 1996, Open Distributed
Processing - Reference Model - Part 1: Overview.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development
method. Addison-Wesley.

Jonkers, H., et al. (2003). Towards a language for coherent enterprise architecture
descriptions. Proceedings of the 7th International IEEE Enterprise Distributed
Object Computing Conference (EDOC).

Kramer, J., & Finkelstein, A. (1991). A configurable framework for method and tool
integration. Software Development Environments and CASE Technology, 233-
257.

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison framework for
software architecture description languages. IEEE Transactions on Software
Engineering, 26(1), 70-93.

Menor, L. J., Tatikonda, M. V., & Sampson, S. E. (2002). New service development: Areas
for exploitation and exploration. Journal of Operations Management, 20(2), 135-
157.

Quartel, D. A. C., Ferreira Pires, L., van Sinderen, M. J., Franken, H. M., & Vissers, C. A.
(1997). On the role of basic design concepts in behavior structuring. Computer
Networks and ISDN Systems, 29(4), 413-436.

Robins, B., Sleeper, B., & McTiernan, C. (2003). Web services rules: Real-world lessons
from early adopters business-technology solutions, The Stencil Group. Retrieved
August 10, 2004, from http://www.stencilgroup.com/ideas/reports/2003/wsrules/

Scheer, A.-W. (1994). Business process engineering: Reference models for industrial
enterprises (2nd ed.). Berlin: Springer-Verlag.

Schmelzer, R., & Bloomberg, J. (2003). ZapThink’s path to service-oriented architecture
implementation poster. Retrieved August 10, 2004, from http://www.zapthink.com/
report.html?id=ZTS-GI102

Sleeper, B., & Robins, B. (2002). The laws of evolution: A pragmatic analysis of the
emerging Web services market, The Stencil Group. Retrieved August 10, 2004, from
http://www.stencilgroup.com/ideas_scope_200204evolution.pdf

Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for
information systems architecture. IBM Systems Journal, 31(3), 590-616.

Sprott, D. (2003). A Web services maturity model: A strategic perspective for technology
and business planning. Retrieved August 10, 2004, from http://
roadmap.cbdiforum.com/reports/maturity/index.php

Stephenson, J. (2003). Roadmap report - UN/CEFACT move into enterprise architecture
space. Retrieved August 10, 2004, from http://www.cbdiforum.com/secure/inter-
act/2003-10/un-cefact.php3

Stevens, M. (2002). Service-oriented architecture introduction, part 1. Retrieved August
10, 2004, from http://www.developer.com/design/article.php/1010451

Van Bon, J. (Ed.). (2002). IT service management: An introduction. ITSMF.

154 Steen, Strating, Lankhorst, ter Doest and Iacob

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Van Buuren, R. (Ed.). (2003). In S. Hoppenbrouwers, H. Jonkers, & M. M. Lankhorst,
Architecture language reference manual, TI/RS/2003/030, (ArchiMate/D2.2.2b).
Enschede: Telematica Instituut. Retrieved August 10, 2004, from https://
doc.telin.nl/dscgi/ds.py/Get/File-31626/

Vissers, C. A., & Logrippo, L. (1985). The importance of the service concept in the design
of data communications protocols. In M. Diaz (Ed.), Protocol specification, testing
and verification V (pp. 3-17). North-Holland.

Wegmann, A. (2003). On the systemic enterprise architecture methodology (SEAM).
Proceedings of the International Conference on Enterprise Information Systems
(ICEIS 2003), Angers, France.

Wilkes, L. (2003). Web services usage survey. Retrieved August 10, 2004, from http://
www.cbdiforum.com/bronze/Webserv_usage/Webserv_usage.php3

Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems
Journal, 26(3), 276-292.

Component- and Service-Oriented Systems 155

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter VIII

A Method for
Formulating and

Architecting
Component- and
Service-Oriented

Systems

Abstract

This chapter describes a negotiation-driven method that can be used to formulate and
design component and service-oriented systems. Component and service-oriented
development are increasingly being promoted in literature as rapid low-cost strategies
for implementing adaptable and extensible software systems. In reality, these
development strategies carry significant risk throughout the system life cycle. The risks
are related to the difficulty in mapping requirements to component and service-based
architectures, the black-box software used to compose the systems, and the difficulty
in managing and evolving the resulting systems. These problems underscore the need
for software engineering methods that can balance aspects of requirements with

Gerald Kotonya
Lancaster University, UK

John Hutchinson
Lancaster University, UK

Benoit Bloin
Lancaster University, UK

156 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

business concerns and the architectural assumptions and capabilities embodied in
software components and services.

Introduction

The development of component and service-oriented systems share several character-
istics (Bennett & Gold, 2003; Szyperski, 2002). Both approaches are based on develop-
ment with reuse and are therefore constrained by the availability of suitable off-the-shelf
software components and services. In both cases, negotiation is central to achieving a
balanced solution. In both cases, the design of the interface is done such that the
software component or service exposes a key part of its definition. In general functional
terms, there is little difference to the consumer between reusing an existing internal
component or service and buying or renting an external component or services. Differ-
ences arise in the nature of the applications and how they are composed (Szyperski, 2001).
Component-based development proceeds by composing software systems from prefab-
ricated components (often third-party black-box software) (Brown & Wallnau, 1998;
Szyperski, 2002). A typical component-based system architecture comprises a set of
components that have been purposefully designed and structured to ensure that they
fit together (that is, have pluggable interfaces) and have an acceptable match with a
defined system context. Service-oriented development proceeds by integrating dispar-
ate heterogeneous software services from a range of providers (Cerami, 2002; Layzell et
al., 2000; Stal, 2002). A service-oriented architecture is a means of designing software
systems to provide services to either end-user applications or other services through
published and discoverable interfaces. A typical service-oriented architecture com-
prises a service requestor, service provider, and service broker (registry) that interact
through standard messaging protocols (for example, HTTP and SOAP) that support the
publishing, discovery, and binding of services. However, the diverse nature of software
systems means that it is unlikely that systems will be developed using a purely service
or component-based approach (Kim, 2002; Kotonya & Rashid, 2001). Rather, a hybrid
model of software development where components and services coexist in the same
system is likely to emerge.
This chapter describes a method for software system development, COMPOSE
(COMPonent-Oriented Software Engineering), that extends the notion of service to
requirements definition to provide a framework for mapping requirements to hybrid
component/service-oriented architectures. The method incorporates negotiation as a
key process activity to balance aspects of system requirements and business concerns
with the architectural assumptions and capabilities embodied in software components
and services. The focus of the method is on system formulation and design. However,
the method also provides hooks that allow it to be extended to system composition and
management.

Component- and Service-Oriented Systems 157

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Background

Component and service-oriented development poses many challenges to organizations
intending to adopt them:

• Traditional software development approaches are unsuitable for developing com-
ponent and service-oriented systems (Boehm & Abts, 1999):

• In the waterfall model, requirements are identified at an earlier stage and the
components chosen at a later stage. This increases the likelihood of the
components not offering or supporting required features.

• Evolutionary development assumes that additional features can be added if
required. However, the inaccessibility of component code prevents develop-
ers from adjusting them to their needs.

• There is a general lack of analysis tools that support development with reuse
(particularly black-box development).

• Limited specification provided with software components and services makes
it difficult to predict how the systems that were built using them behave under
different loads and application contexts.

• The features supported by the components and services may vary greatly in
quality and complexity. This complexity together with the variability of
application contexts means that specifications delivered with black-box
software are likely to be incomplete or inadequate.

• The design assumptions of black-box software are largely unknown to the
application builder.

• There is a general lack of methods for mapping functionality to services and for
grouping services into logical domains (Nadhan, 2003).

• Proper identification of services and determination of corresponding service
providers is a critical first step in architecting a service-oriented solution. It
is worth noting that in today’s world, similar business functions could very
well be provided by multiple systems within (and external to) the enterprise.
The architectural framework adopted must provide a means for service
rationalization. This involves careful analysis of all the systems and applica-
tions providing the given business function to ensure a more consistent
delivery of services.

• For most organizations, a key business objective is that a given service
operates in an ideal location for the service. However, distributed architec-
tural solutions can result in critical, often sensitive business data, being
spread across multiple applications and service providers. It is important that
the partitioning process takes these factors into account.

158 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Service grouping or clustering has a direct influence on many important
system characterics such as load balancing, access control, performance,
maintainability, safety management, proxy simulation, vertical or horizontal
partitioning of business logic. However, it is often a serious challenge for
business units and technology centers within an enterprise to come to a
consensus on an appropriate definition of service domains.

• There is a need for effective mechanisms to support service orchestration. A given
service exists because there is at least one instance of a service consumer initiating
the request for that service. In some scenarios, however, a service may have to
invoke many other services to fulfil service consumers’ original request. However,
complex scenarios can involve recursive invocation of multiple services and, in
some extreme cases, interdependent invocation of multiple services, which could
result in a deadlock.

• Regardless of the way service domains are defined within an enterprise, need is
likely to emerge for creating new services and modifying existing ones. Current
service models do not define schemes for monitoring, defining, and authorizing the
changes to existing suites of services supported within the enterprise.

These problems underpin the need for software engineering processes and methods that:

• Can balance aspects of system requirements, business and project concerns, with
the assumptions and capabilities embodied in off-the-shelf software components.
Current methods for development with reuse have focused on specific develop-
ment activities (for example, component selection and component specification)
rather than the process. This has obscured the correspondence between the
different activities and made it difficult to achieve a balanced solution.

• Can support hybrid component/service-oriented development to leverage their
different design strengths. There is a general lack of software engineering ap-
proaches that support this kind of hybrid development.

COMPOSE is a service-based, negotiation-driven method that supports a hybrid devel-
opment approach. Unlike traditional methods, COMPOSE is not a closed approach but
a framework for integrating different methods and techniques. These are mapped onto
a generic development with reuse process that supports development, verification, and
negotiation (Kotonya, Sommerville & Hall, 2003).

Development Process

COMPOSE is mainly intended to support black-box development but makes allowances
for white-box development where black-box development is not feasible. Figure 1 shows

Component- and Service-Oriented Systems 159

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the four-phase development process. The planning phase sets out justification, objec-
tives, strategies (methods and resources to achieve development objectives), and tactics
(start and end dates and tasks with duration) for the development project. The develop-
ment phase implements the agenda set out in the planning phase. The first step in
application development is requirements engineering. This often starts with require-
ments elicitation, followed by requirements ranking and modeling (as system services).
The requirements process is constrained by the availability of potentially suitable
components and services as well the nature of the application.
The design stage partitions the service descriptions into abstract subsystem blocks with
well-defined interfaces. Subsystems are replaced with concrete software components
and services at the composition stage. Beyond this stage, the system goes into a
management cycle. Like the requirements stage, the design stage proceeds in tandem
with the verification and planning phases and may iterate to the requirements stage from
time to time.
The verification phase is intended to ensure that there is an acceptable match between
selected software components and services and the system being built. This is important
because the perception of software quality may vary amongst software component
producers and service providers. A matching color scheme has been used to show the
correspondence between the different development stages and aspects of verification
that apply to them. At the requirements stage, verification is used to establish the
availability of suitable software components and services and the viability of a reuse-
driven solution. At the design stage, verification is concerned with ensuring that the
design matches the system context (system characteristics, such as requirements, cost,
schedule, operating, and support environments). This may require detailed black-box
testing of the software components and architectural analysis. At the composition stage,
verification translates to design validation through subsystem, assembly, and system
testing. The negotiation phase provides a framework for reviewing aspects of system
development and for trading-off competing attributes.

The Method

Requirements Engineering

The principal challenge in defining system requirements for development with reuse is
to develop requirements models and methods that allow us to balance aspects of
requirements with the assumptions and capabilities embodied in software components
and services. However, few approaches address themselves to this challenge. Vigder,
Gentleman, and Dean (1996) propose that system requirements should be defined
according to what is available in the marketplace and that organizations should be flexible
enough to accept off-the-shelf solutions when they are proposed. They note that overly
specific requirements preclude the use of off-the-shelf solutions and should be avoided.
This is a reasonable assumption; however, most systems have requirements that are
unavoidably specific, for example, critical systems.

160 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Ncube and Maiden (1999) propose an approach in which the requirements process is
tightly integrated with a process for selecting off-the-shelf products. Central to the PORE
(Procurement-Oriented Requirements Engineering) approach is an iterative process in
which candidate products are tested for fitness against increasing levels of requirements
detail. PORE’s singular focus on component selection has been criticized for ignoring
system level concerns and the important role architecture plays in formulating the
requirements for these kinds of system (Kotonya et al., 2002).
Our proposed solution interleaves requirements definition with negotiation and software
component verification. Negotiation ensures that there is an acceptable trade-off
between the capabilities embodied in components or service, aspects of requirements,
and critical architectural concerns. Verification serves three objectives. In the early
stages of the requirements definition, it is useful as a coarse filter for establishing the

Figure 1. System development process

Verification Negotiate

Define system
requirements

Design system
architecture

Compose
system

-Elicit requirements
-Rank requirements
-Model requirements

-Partition services into abstract
 sub-systems

- Establish sub-system interfaces

D
ev

el
op

m
en

t

- Establish availability of
software components or
services

-Establish viability of
 black-box solution

-Perform regression
 testing

-Analyse architecture

-Test subsystem assembly

-Perform non-functional
 testing

M
anagem

ent

-Replace abstract sub-systems with
 concrete components and services

Plan

Planning and Negotiation

-Test and qualify software
 components and services

-Adapt components/services

Component- and Service-Oriented Systems 161

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

availability of suitable software components or services. In the later stages of require-
ments, verification may be used to establish how well selected software components or
services match the desired system functionality and constraints. Verification may also
be used at the requirements stage to provide project managers with an indication of the
viability of a black-box solution.
The requirements approach used in COMPOSE has three iterative steps interleaved with
component verification, negotiation, and planning:
1. Requirements elicitation
2. Requirements ranking
3. Requirements modeling

Eliciting Requirements

All requirements methods must address the basic difficulty of identifying the problem
domain entities for the system being specified. The majority of methods provide little
guidance in this, relying instead on the method user’s judgment and experience. Our
approach is based on the notion of viewpoints. Viewpoints correspond to requirements
sources which comprise end-users, systems interfacing with the proposed system,
organization, and external concerns (Kotonya, 1999). Our approach provides some help
to the system developer in the critical step of viewpoint identification. We have
generalized potential requirements sources into a set of viewpoints classes that can be
used as a starting point for finding viewpoints specific to the problem domain.
Figure 2 shows the abstract viewpoint tree used as a starting point for eliciting system
requirements. The root of the tree represents the general notion of a viewpoint.
Information can be inherited by subclasses, so global requirements are represented in
the more abstract classes and inherited by subclasses.
We have identified the following abstract viewpoints:

• Actor viewpoints are analogous to clients in a client-server system. The proposed
system (or required component) delivers services (functional requirements) to
viewpoints, which may impose specific constraints (nonfunctional requirements)
on them. Actor viewpoints also pass control information and associated param-
eters (represented by viewpoint attributes) to the system. There are two main types
of Actor viewpoints:

• Operator viewpoints map onto classes of users who interact with the pro-
posed system. They represent frequent and occasional users of the system.

• Component viewpoints correspond to software components (or subsystems)
and hardware devices that interface with the proposed system.

• Stakeholder viewpoints vary radically from organizational viewpoints to external
certification bodies. Stakeholders are entities that do not interact directly with the
intended system but which may express an interest in the system requirements.

162 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

These viewpoints often generate requirements that affect the way the system is
developed. Stakeholder viewpoints provide a mechanism for expressing critical
holistic requirements, which apply to the system as a whole although they may also
generate requirements that affect a subset of its services or functionality. Stake-
holder generated requirements reflect essential system characteristics such as
dependability (that is, safety, reliability, security, and performance) but may also
correspond to critical business and project objectives, such as resources, sched-
ule, cost, and standardization.

A viewpoint template has the following structure:

Viewpoint id: <A unique viewpoint identifier>
Type: <Viewpoint type (for example, operator, system, component, organization, regu-
latory, and so forth)>
Attribute: <An optional set of data attributes for the Actor viewpoint>
Role: <Role of the viewpoint in the system>
Requirements: <Set of requirements generated by the viewpoint>
History: <Development history>

A requirement can be considered at different levels of abstraction to allow for scoping
and ease of understanding. A requirement template has the following structure:

Requirement id: <Requirement identifier>
Rationale: <Justification for requirement>
Description: <Natural language definition>|<Service description>|<Other description>

Figure 2. Abstract viewpoint structure

VIEWPOINT

Operator

Component

Actor

Organisation

Regulatory

Stakeholder

Associated requirement types

Services + Constraints on services
Control information

Business goals (Organisation viewpoint)
Project concerns (cost, effort, schedule –
Organisation viewpoint)
System quality concerns (e.g. interoperability,
dependability etc. – Organisation viewpoint)
Legal requirements, Government certification
requirements (Regulatory viewpoint)

[attribute1]

[attributen]

[attribute2]

Component- and Service-Oriented Systems 163

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Levels of abstraction may map the requirement description to different representations
and levels of detail.

Ranking Requirements

Ranking techniques range from simple weighted schemes that are concerned with a single
requirement aspect to multiattribute schemes that take into account several requirement
aspects such as benefit, effort, and risk (Karlsson & Ryan, 1997; Lootsma, 1999; Saaty,
1980). However, most of these schemes are intended for custom development and are
unsuitable for component-based development. They often require that detailed require-
ments to be formulated early, which is inappropriate for component-based development.
It would also be difficult to provide useful estimates for system aspects, such as risk and
effort at this early stage without prior knowledge of suitable components and services.
COMPOSE uses requirement benefit as a basis for ranking requirements and solution-
dependent aspects, such as effort and risk that are deferred to the component verification
stage. Requirement benefit can be categorized as essential, important, and useful. The
output from the ranking process is a list of prioritized requirements that together with
potential components and services form input to the component verification process.

Modeling Requirements

The concept of a service is common to many areas of computing, including digital
libraries, distributed computing, data management, and electronic commerce (Arsanjani
et al., 2003; Dumas, Heravizadeh & Hofstede, 2001). In many of these areas, the term
service has several common characteristics, for example, functionality, quality, and
delivery.
In COMPOSE, a service description is characterized by at least one identifiable function,
a trigger by which the service commences, a recipient (Actor viewpoint), service provider
(proposed system/component), conditions for service delivery, and constraints on
service provision (Figure 3). Service descriptions are derived from viewpoint require-
ments and represent a level of abstraction in the requirement description. Service
descriptions may be partitioned into abstract subsystems at design, which may be
realized (composed) using concrete software components or services.
Use cases provide high-level service descriptions (that is, the underlying system
functionality). UML sequence diagrams provide detailed service descriptions and
capture interactions between services. Sequence diagrams are augmented with state
diagrams to capture the system behavior in the context of specific services.
Service descriptions provide a mechanism for modeling viewpoint requirements and for
mapping requirements to concrete software components and services.
A service description comprises the following elements:

164 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Invocation: <Set of parameters required by a service and how the parameter values are
used by service. Parameters correspond to attributes in the service model>
Behavior: <Specification of the system behavior that results from the invocation of the
service. This can be described at different levels of abstraction to aid understanding and
component selection>
Constraints: <Description of constraints on service>
Evaluation criteria: <Tests that should be carried out to evaluate a component’s
conformance with service>
Constraints define the overall qualities or attributes of the resulting system and are
derived from nonfunctional requirements. Nonfunctional requirements may constrain
the way the system is constructed or the way services are provided. Because they are
restrictions or constraints on system services, nonfunctional requirements greatly
influence the design solution.
In COMPOSE, service constraints are considered from two different perspectives:

• Actor Viewpoint: An actor viewpoint might require that a service be provided with
a certain level of quality (for example, availability, response time, format and so
forth).

• Stakeholder viewpoint: A stakeholder viewpoint might not interact directly with
the target system but might express an interest in the overall dependability of the

Figure 3. COMPOSE service model

1

 *

1..*

*

Partitioned into

1

Uses

1

*

Generates
 1

Mapped onto
 1

*

Viewpoint

Actor Stakeholder

Attribute

Requirement

Service description

Constraint

Behaviour

1

1..*

1..* 1..*

U
se

s

1

*

Evaluation
criterion

1..*

1

Concrete software
component or

service

Realised using

1

0..*

Sub-system

Component- and Service-Oriented Systems 165

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

system, the resources required to provide the services or the conformance of the
services with various regulations and standards.

This viewpoint/service-centric approach provides a framework for:

• Reasoning about the events that are responsible for triggering or suspending
services. Because the events arise from actors in the system environment, it is
possible to specify the required control information from the point of view of the
actors. This information is represented as data attributes in viewpoints.

• Structuring service requirements across instances of a viewpoint.

• Integrating functional and nonfunctional requirements. A viewpoint can impose
quality constraints on the services it requires from the target system. For example,
a viewpoint may require that a service have an availability of 98% (say between
8pm – 6pm, Monday to Friday).

A constraint description comprises the following elements:

Identifier: <Constraint identifier>
Type: <Constraint type (for example, availability, response time, format, safety, security,
and so forth)>
Rationale: <Justification for constraint>
Specification: <Specification of constraint>
Scope: <Identifiers of services affected by constraint>
Evaluation criteria: <Tests to evaluate a component’s conformance with constraint>

In COMPOSE, certain types of constraint find use at the requirements stage where they
are used to support the process verifying software components. Constraints related to
effort, vendor and system resource requirements (for example, cost, schedule, hardware,
operating system, and standards) might provide the specifier with a mechanism for
establishing the availability and viability of a component-based solution. Other types
of constraint (for example, dependability) filter down to the design stage where they form
the basis for identifying suitable architectures as part of a negotiated design process.

Design and Composition

The main aim of any design process is to achieve fitness for use. This is achieved when
a set of software components and services have an acceptable match with system
context. The system context is defined by the system requirements, cost, schedule, and
operating and support environments. Formal Architecture Description Languages
(ADLs) have emerged as an effective way of designing and composing component-based

166 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systems (Medvidovic & Taylor, 2000). In COMPOSE, the design process is driven by a
service-oriented ADL (Kotonya et al., 2001).
The design starts with the partitioning of service descriptions into logical subsystems
as part of the iterative process shown in Figure 4. In principle, the process of partitioning
service descriptions should be straightforward (for example, initial partitioning may be
driven solely by architectural considerations). However, there is never a clean match
between service descriptions and concrete software components and services; abstract
services may therefore have to be reassigned or requirements renegotiated. Partitioning
is therefore subject to a negotiation process that must take into account capabilities of
available components, business concerns, and viable architectures.
Figure 5 shows how a typical top-down process may be used to partition the system by
clustering services to reflect desired architectural and system properties. A security
constraint may, for example, give rise to an architecture where security-critical services
are held in a single component at the lower levels of layered architecture to ensure a
certain level of security. Performance needs may result in a dynamic architecture where
popular service components are replicated with increasing load. For these reasons,
support for negotiation in the design process is essential. For cases where no suitable
off-the-shelf solution can be found (for example, in the case of critical components), the
subsystem design may be viewed as a placeholder for custom development. This allows
the developed subsystem to acquire the pluggability of a component while maintaining
consistency with the global system requirements.
Service descriptions focus on system behavior and associated constraints providing a
simple but effective mechanism for mapping requirements to component and service
architectures. The flexibility and implementation-independent nature of services means
the engineer can explore different technologies to compose the system. This may, for
example, result in a hybrid system where certain services are provided using black-box
components while others are delivered using Web services. There are several reasons
why a hybrid solution might be preferred to a purely component or service-based
approach:

Figure 4. Component-based design process

Negotiate
trade-offs

Partition service
descriptions into sub-

systems

Compose
system

Verify support for
sub-systems

Component- and Service-Oriented Systems 167

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Efficiency: The document-exchange model that is inherent to a service-centric
approach is incredibly inefficient. The text-based nature of XML means that the
amount of information transferred in bits is much larger than is simply required to
encode the information, and there is significant overhead involved in parsing and
generating XML documents. This means that a service-centric approach is unsuit-
able for real-time systems with tight performance deadlines and for the develop-
ment of systems that process high volumes of transactions.

• Competitive advantage: If all organizations move to a development approach
where they rely on externally provided services, it is difficult for them to innovate
in their IT systems to gain a competitive advantage. Therefore, there will always
be a class of companies who are unwilling to be dependent on external suppliers
and who will rely on conventional software development.

• Trust: While a service-oriented approach may be adopted within an organization
or group of cooperating organizations with existing trust relationships, the vision
of service brokering and the use of unknown service providers is a very risky one.
The associated risks mean that businesses will be reluctant to move to an entirely
service-centric approach to software development.

• Dependability: Current languages for service orchestration are limited to relatively
simple composition constructs and do not provide facilities for exception manage-
ment. Similarly, current Web service and grid service standards assume that a
requested service will be available and will function correctly. Services do not
define their failure modes, their limitations, and the quality of service that they offer.
Generally, dependability depends on transparency, and the opaqueness of ser-
vice-centric systems means that it will be difficult to write dependable systems
using anything apart from very simple services.

• Services as an exception-handling mechanism: For many systems and compo-
nents, more than 50% of the code in the system is required to handle rare events
and exceptions. This introduces significant overhead for normal users of the code.
By integrating components and services, we have the opportunity to produce much
leaner components that are used within a program and to handle exceptions, where
performance is less important, using externally provided services.

Verification

Component Selection

This is achieved by formulating selection filters to match requirements to a checklist of
component and service properties. Checklist items might range from component func-
tionality, documentation, certification, and vendor support to resource requirements and
cost. Table 1 shows an example of a checklist table. The requirement(s) on the top left
of the table are matched against the candidate components and services in column 2,
using selection filters as follows:

168 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(1) Select the highest ranked requirement from the list of ranked requirements.
(2) Select a product from the software component/service shortlist (that is, C1, C2,..S1),

where Ci corresponds to a component and Si to a service.
(3) For each checklist question, determine the extent to which the response is positive

in relation to the component/service. Score each response as follows:

• 2, if the response is positive.

• 1, if the response is weakly positive or there is lack of adequate information
to make a definitive judgement.

• 0, if the response is negative.

Figure 5. Partitioning services

 Service4 ---

Sub-system1

 Service1 --- Service2 --- Service3 ---

 Service5 --- Service6 ---

 Service3 ---

 Service2 ---

Sub-system2

 Service5 ---

 Service6 ---

 Service1 ---

 Service4 ---

Abstract
interfaces

Existing component
(Implements Service1

and Service6)

OR

 Service5 ---

Service
descriptions

Concrete
interface

Sub-system2

Sub-system3

Component- and Service-Oriented Systems 169

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(4) Repeat 2–3 until the short listed components/services are exhausted.
(5) Apply appropriate selection filters. Filters are used to focus the selection of

components/services on critical properties.
(6) Repeat 1–5 until all ranked requirements are exhausted.

Filters are reusable artifacts with the following structure:

Identifier: <Filter name>
Description: <Description of filter and its effect>
Predicate: <Predicate over checklist questions>

The formulation and selection of filters is likely to be influenced by the nature of the
application being assembled and the business concerns of the organization. For example,
if we assume that our starting point is a set of components, T1, such that:

T1 = {C1, C2, C3, C4, S1}

We can define a “fast” filter f1 such that only members of the set T1 that support the
selected requirement or can be configured to support it are selected. Filter f1 is defined
by the predicate, where c represents the general component and checklist(i) represents
the checklist item i:

∀c: T1 •(c.checklist(1) ≥ 1)

T2 represents the result of applying f1 to T1:

T2 = {C2, C3, C4}

Filters can be combined to provide more a refined selection. Filter f2:

∀c: Ti •(c.checklist(1) = 2 ∨ (c.checklist(1)=1 ∧ c.checklist(7)= 2))

may be applied to T2 to ensure that all components that need to be reconfigured also have
help desk available. Thus the set T2 contracts to set T3:

T3 = {C2, C4}

170 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

By relating development aspects, such as risk and effort to appropriate checklist items,
we can formulate filters to minimize their adverse effects. Table 1 shows how the various
checklist items relate to effort and risk. Effort corresponds to the time and resources
required to realize the feature. Risk corresponds to the probability that providing the
feature might cause the project to experience undesirable events, such as cost overruns,
schedule delays, or even cancellation. Effort and risk can be categorized as low, medium,
and high. The relationships shown in Table 1 are based on the dominant development
aspect and are not necessarily exclusive.
Assuming the checklist item scores of 2, 1, and 0 to correspond to low, medium, and high
risk/effort, we can design risk and effort sensitive filters. The following filter focuses on
functionality, component cost, system resource requirements, and component certifica-
tion to select components and services that reflect low risk and medium to low effort
requirements:

∀c: Ti •(c.checklist(1) ≥ 1 ∧ c.checklist(2)=2 ∧ c.checklist(4)=
 2 ∧ c.checklist(6)= 2 ∧ c.checklist(10) ≥ 1 ∧ c.checklist(11) ≥ 1)

The following filter is an example of a low risk, low effort filter:

∀c: Ti •(c.checklist(1) = 2 ∧ c.checklist(2)=2 ∧ c.checklist(4)= 2 ∧ c.checklist(6)=
 2 ∧ c.checklist(10)= 2 ∧ c.checklist(11)= 2)

Testing Components and Services

The testing of software components and services is constrained by the lack of source
code as well as difficulty in performing direct tests in the case of Web services. Therefore,
the system integrator is restricted to performing only black-box testing. In the case of
Web services, trust schemes might be the only viable means of verification. Onyino et
al. (2002) proposes trust model for component-based system development that uses
context-sensitive trust variables such as product, project, and business concerns to
identify appropriate trust schemes. The model provides a framework for combining
various trust schemes (for example, contractual, certification and experience-based
schemes).
Detailed testing regimes are out of the scope of this chapter. However, the various ways
of expressing services described in the Modeling Requirements section provide the
engineer with a good basis for developing black-box test cases (evaluation criteria) for
services.
In COMPOSE, verification may involve any or all of the following activities (Rosenblum,
1997):
1. Component functionality: The integrator or engineer needs to thoroughly test a

new component to verify its functionality prior to deploying it in a larger system.

Component- and Service-Oriented Systems 171

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Architectural analysis: For certain types of systems, architectural analysis may be
required to establish how well the design supports desired quality attributes (for
example, performance, security, availability, and so forth).

3. Assembly and integrated system: If a new component is added to the system or an
older version was replaced, the integrated system must be tested. Testing should
also be done if the system configuration is altered.

4. Regression testing: It is a good idea to perform regression testing on selective
critical system components whenever new versions of other constituent compo-
nents are installed in the system.

Requirement: 1. Requirement_xyz
Checklist Components/Services
Id Question C1 C2 C3 C4 S1

Related
Development
Aspect

1 Does component/service support
requirement?
Yes explicitly = 2;
Not explicitly, but can be configured to
support requirement = 1,
Don’t know/does not support feature = 0;

0

2

1

1

0

Effort

2 Is the component/service specification
provided?
Yes, detailed = 2; Yes, limited = 1; No = 0

2 2 1 2 1 Risk

3 Are release notes provided?
Yes, detailed = 2; Yes, limited = 1; No = 0

2 0 1 1 1 Risk

4 Are installation notes provided?
Yes, detailed = 2; Yes, limited = 1; No = 0

0 2 1 2 1 Effort, Risk

5 Is component/service available for
evaluation?
Yes, full functionality = 2;
Yes, restricted functionality = 1; No = 0

2 0 2 2 1 Risk

6 Is component/service certified?
Yes, independent certification = 2;
Yes, local certification =1; No =0;

2 2 1 0 1 Risk

7 Is help desk support available?
Yes, continuous = 2; Yes, limited =1; No
=0

2 1 0 2 1 Effort, Risk

8 What is vendor’s market share?
Good =2; Moderate =1; Don’t know/Poor
=0

2 0 2 1 1 Risk

9 What is maturity of producer development
process?
CMM Level ≥ 3 = 2; CMM Level 2 =1;
CMM Level 1/Don’t know = 0

2 1 0 0 1 Risk

10 Are system resources needed by
component/service available?
Yes =2; Not sure =1; No =0

2 1 2 1 1 Effort

11 Is component/service cost within estimated
cost?
Yes = 2; No, but acceptable =1; No =0

1 2 1 2 2 Effort

Table 1. Component preselection using filters

172 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Nonfunctional testing. Various kinds of nonfunctional testing on the system are
required to ensure that the system meets the desired level of performance,
dependability, stress, and loading.

Negotiation

The negotiation process attempts to find an acceptable trade-off amongst multiple
(often) competing system attributes. For example, in cases where requirements need to
be ranked or where decisions need to be made on alternative designs. The negotiation
process described here uses the Simple Multi-Attribute Rating Technique (SMART) to
support trade-off analysis. However, other decision support techniques, such as AHP,
may also be used. SMART is a powerful and flexible decision-making tool. Because of
its simplicity of both responses required of the decision maker and the manner in which
these responses are analyzed, SMART has been widely used. The main stages in the
SMART analysis are as follows:
1. Identify the decision maker or makers. Examples might include the project manag-

ers, customers, system integrators, and system maintainers.
2. Identify the intended goal for the analysis (for example, best design).
3. Identify factors or criteria important in satisfying the goal.
4. Where appropriate, identify subcriteria under each criterion. The lowest level of

criteria/subcriteria represents an attribute of the alternatives that can be objec-
tively evaluated.

5. Identify the alternative ways of achieving the goal.
6. Weight the criteria and rate alternatives. Quantify the relationships between

criteria by establishing the relevant importance of criteria. Values assigned to
criteria are likely to vary with organization and application.

7. Determine how well alternatives score against the lowest criteria. Similarly, the
scoring scheme used for alternative is likely to vary with organization and
application.

8. For each alternative, compute the weighted average of the values assigned to that
alternative.

9. Make a provisional decision.

Method Summary

Figure 6 shows the COMPOSE method steps including requirements definition.

Component- and Service-Oriented Systems 173

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. COMPOSE method

Abstract requirements & abstract
system architecture

 + 1. Abs_Req1
:

n. Abs_Reqn

System stakeholders establish need for:
New system
System evolution (corrective,
adaptive, perfective)

Develop an outline description of the
proposed system including:

Abstract requirements
Abstract system architecture

1

Actor

Operator

Component

Stakeholder

Organisation

Regulatory
2

aSystem_User

anExisting_System

anOrganisation

aRegulation

Viewpoint instance Viewpoint subclass Viewpoint class

1. Identify what each viewpoint instance requires from or expects of the proposed system.
Use the following questions as a guideline for eliciting requirements for a viewpoint:

Actor viewpoint:
(i) What functionality (services) does the viewpoint require from the system?
(ii) What quality attributes (if any) does the actor associate with the required service?
(iii) For each quality attribute identity the minimum acceptable value.
(iv) What data (attribute) is the system likely to require from the viewpoint in order to provide the required

service?

Stakeholder viewpoint:
(i) What quality attributes are critical to the system as a whole (e.g. security, safety, usability etc)?
(ii) For each quality attribute identify the minimum acceptable value.
(iii) What are the resource constraints associated with the project (i.e. cost, effort and time)?
(iv) What legal requirements/government regulations must the system conform to?
(v) What must the system not do?

2. Document each requirement (i.e. identifier, natural language description, rationale and source) and actor viewpoint
attribute. This is an iterative process that may be performed at different levels of abstraction to suit customer
background and system modelling needs. A later stage models the requirements as detailed services (see step 5).

3. Rank the requirements
4. Verify component and service availability for candidate requirements in 3.
5. Model requirements as services.
6. Partition services into abstract sub-systems
7. Verify component/service support for the sub-system designs in 6.
8. Negotiate system trade-offs based architectural concerns, component/service support and business concerns
9. Compose sub-systems
10. Repeat 6-9 until an acceptable partition-composition match is achieved
11. Repeat 4

3

Use the abstract viewpoint tree to
identify viewpoint instances, which are
likely to be affected by the
introduction of the proposed system

[Attribute1]
[Attribute2]
[Attributen]

174 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Example

We will now illustrate aspects of the method using a subset of requirements extracted
from the specification of a real electronic document delivery and interchange system
(EDDIS) (Kotonya, 1999). The illustration focuses on requirements and design. The
EDDIS runs on a Windows 2000/Windows XP platform and its main function is to manage
the process of identifying, locating, ordering, and supplying electronic documents.
Users access the system via a Web-based interface using valid usernames and pass-
words. EDDIS users have access to a range of services determined by the permissions
associated with the accounts they use. EDDIS will have a local administrator whose task
will be to set up and manage user accounts.
Before an EDDIS user can place a document order, the user must first obtain documents
and location identifiers from a centralized document registry. Document orders are placed
with the document supplier. All document interchange will use the Z39.50 document
retrieval protocol. In this example, we will consider a small but diverse subset of EDDIS
requirements. Table 2 shows the EDDIS requirements together with associated view-
points.

Requirements Modeling and Documentation

Service descriptions can be documented at different levels of abstraction using a variety
of notations to aid user understanding and to facilitate mapping to component and
service architectures. Figures 7-10 show how uses-cases and state transition diagrams
can be used to model and specify abstract services at different levels of abstraction.
Figure 8 and 9 show the state diagrams for user validation and document search services.

Subsystem Interfaces and Relationships

Figure 11 shows a typical service partitioning. The final partitioning is subject to the
availability of suitable components and services. In this case the document services,
document search, document locate, and document order are provided by black-box
components, while the document registry and document supplier services are provided
as Web services.Subsystems can be used to model interactions between the services
they represent as shown in Figure 12. Subsystems are flexible grouping constructs and
the services they represent are likely to be a trade-off between the desired architecture
and the available components and services. The interfaces associated with subsystems
are a function of the services represented and the external interaction between the
subsystem and other subsystems. Figure 13 shows an example of interface identification
for the EDDIS system.

Component- and Service-Oriented Systems 175

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 2. EDDIS viewpoints and requirements

Conclusion

This chapter has identified the challenges and problems likely to be faced by organiza-
tions intending to adopt component and service-oriented software development. While
component and service-oriented development offer significant advantages over tradi-
tional development approaches, they also carry significant risk throughout the system
life cycle. Part of this risk is related to the lack of effective processes and methods that

Viewpoint Requirement
Type I

D
Role ID Description Rationale Ranking

1.1

EDDIS users shall be able to login
onto the system via a Web-based
interface using valid usernames and
passwords.

To provide a
universal access
to EDDIS
services

Essential

1.1.1

Once logged in, EDDIS users will
have access to a set of services
determined by the permissions
associated with their accounts.

To provide a
simple
mechanism for
managing user
accounts.

Important

1.2

EDDIS shall allow users to search
for and identify documents, which
interest them. A document search
will be initiated by a search criterion
and a list of databases to be
searched. The output will be a set of
document identifiers.

Basic EDDIS
functionality

Essential

1.3 EDDIS shall allow users to
determine the location of
documents. A document locate
service will be initiated by a set of
document identifiers and the output
shall be a set of location identifiers.

Basic EDDIS
functionality

Essential

Operator 1 EDDIS_user

1.4 EDDIS user shall allow users to
order documents. A document order
will be initiated by a set of
document and location identifiers.
The output will be a set of order
identifiers and electronic documents.

Basic EDDIS
functionality

Important

Operator 2 EDDIS_
administrator

2.1 EDDIS shall provide facilities for
setting up and managing user
accounts.

Basic EDDIS
functionality

Important

Component 3 Document_
supplier

 The document order client will use
the Z39.50 document retrieval
standard.

Document
retrieval
standard used by
document
suppliers

Essential

Component 4 Document_
registry

4.1 EDDIS shall be able to access a
centralized document registry to
obtain document and location
identifiers using the Z39.50
document retrieval standard.

Document
retrieval
standard used in
document
registry

Important

5.1 The system shall run on Microsoft
Windows 2000 and Windows XP

Most users are
likely to use a
Windows-based
PC to access
EDDIS services

Important Stakeholder 5 EDDIS_
consortium

5.2 The system shall ensure that a
reasonable level of performance is
maintained across the services at all
times.

 Useful

176 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Administrative_services

EDDIS Administrator <<Uses>>

User_validation

Document Registry

Document_services

EDDIS User

<<Uses>>

Document_search Document_locate Document_order

Document Supplier

<<Extends>> <<Extends>> <<Extends>>

Figure 7. Using use cases to model EDDIS services

Figure 8. Use case specifications

Use case specification

Name: Document_services
Uses: User_validation
Extends:
Participating actors:
 EDDIS_User
Entry conditions:

1. Valid username
2. Valid password

Flow of events:
1. EDDIS user enters a username and password
2. If username and password are valid:

2.1 System initializes user account permissions
2.2 Displays the services available to the user
 else
2.3 System prompts the user to re-enter

username and password
Exit conditions:

1 System resets user account permission
2 Closes user account

Constraints:
1 The service shall be available on Microsoft

2000/XP platform
2 Service shall have a reasonable level of

performance at all times

Use case specification

Name: Document_search
Uses:
Extends: Document_services
Participating actors:
 EDDIS_User, Document Registry
Entry conditions:

1 Document_search ∈ available_services
2 Document databases ⊆ set of user permissible

databases
Flow of events:

1 EDDIS user enters search criterion and a set of
document databases

2 If document is found a set of document identifiers
is displayed else a “document not found” message
is displayed

3 Search criterion is retained in user workspace for
future searches

Exit conditions:
1 Service access conditions are reset

Constraints:
1 Service conform to Z39.50 document retrieval

standard

Component- and Service-Oriented Systems 177

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9. User-validation and document services state diagram

Figure 10. State model for Document_search service

Ready

Verifying

enter(username,password)

[login ∉ validLogins]
/error message

Document_services

quit
/close session

[login ∈ validLogins]
/open session
/set account permissions
/display available services

select(service)
[service ∈ availableServices] &
[service ∈ permissibleServices]
/display selected service menu

login = username-password pair
validLogins = set of valid username-password pairs
availableServices = set of available services
permissibleServices = set of services associated with user account

User_Validation

Waiting

search(sc,D)
[D⊆Pdb]
/retain sc in work-area
/set i to 1
/search Di

Searching

[i<#D]
/set i to i+1
/search Di

[sc ∈ ∪D]
/display success message
/place document_ids in search basket
/display document ids

D = set of selected databases
Pdb = set of user permissible databases
Di = database being searched (1≤ i ≤ #D)
sc = search criterion

Identifier: 1.2
Service : Document_search

select(“search”)

178 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 Validation_service

User_validation

Document_services

Document_search

Document_locate

Document_order

<<Uses>>

Document_registry Document_supplier

<<Uses>> <<Uses>>

Provided by
web services

Provided by
blackbox
components

<<Uses>>

Figure 11. Service partitioning

supp = set of user permissible suppliers

Figure 12. Service subsystem interaction diagram

Validation_services Document_services Document_registry Document_supplier

enter(username,password)

authorise_access()
[login ∈ validLogins]

search(sc,D)
[D⊆ Pdb]

locate(di, C)
[C⊆ Pcat]

order(document_ids,location_ids)
[Ssupp⊆ Psupp]

logout()

resetAccessConditions()

login = username-password pair
validLogin = set of valid username-password pairs
D = set of selected databases
Pdb = set of user permissible databases
sc = search criterion
C = set of selected catalogues
Pcat = set of user permissible catalogues
Ssupp = set of selected suppliers
Psupp = set of user permissible suppliers

Component- and Service-Oriented Systems 179

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 <<interface>>
Login

create()
validateUser()
logout()

<<interface>>
Find

create()
search()
locate()

<<interface>>
Order

create()
order()

Login

Authorisation

Find Order

Document_services
(Integrated with UI)

Validation_services

Document_registry Document_supplier

<<interface>>
Authorisation

create()
authoriseAccess()
resetConditions()

Figure 13. Interfaces identification

support component and service-oriented development. Component and service-ori-
ented development are highly iterative processes requiring simultaneous consideration
of the system context (system characteristics, such as requirements, cost, schedule,
operating and support environments), capabilities of the software component or service,
the marketplace, and viable system designs. The diverse nature of software systems also
means that it is unlikely that systems will be developed using a purely service or
component-based approach. Rather, a hybrid model of software development where
components and services coexist in the same system is likely to emerge. There is a general
lack of methods that support this type of hybrid development. Our solution has been to
develop COMPOSE as a service-based, negotiation-driven approach that supports a
hybrid component/service-oriented development. COMPOSE provides a framework for
integrating different methods and techniques and for mapping these to a generic
development with reuse process. COMPOSE provides an intuitive scheme for eliciting
and modeling requirements and for mapping these to component and service architec-
tures. It also provides the developer with a pluggable basis for custom development in
cases where available components or services are inadequate or inappropriate. The
process is supported by verification and negotiation at different levels of abstraction.

180 Kotonya, Hutchinson and Bloin

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Acknowledgments

The work described in this chapter is being undertaken as part of the project ECO-ADM
(IST 20771) funded under the EU IST Program. We are grateful for the contribution of our
partners in ECO-ADM: CCS, Ingegneria Informatica, EIDOS Sistemi Di Formazione and
DHL, Ireland.

References

Arsanjani, A., Hailpern, B., Martin, J. & Tarr, P.(2003). Web services: Promises and
compromises. ACM Queue, 48-58.

Bennet, K.H. & Gold, N. (2003). Achieving Ultra Rapid Evolution Using Service-based
Software. Proceedings of the 4th International Workshop on Principles of
Software Evolution, European Software Engineering Conference, Helsinki, Fin-
land

Boehm, B. & Abts, C. (1999). Integration: Plug and pray. IEEE Computer, 32(1), 135-138.
Brown, A.W. & Wallnau, K.C. (1998). The current state of CBSE. IEEE Software, 15(5).
Cerami, E. (2002). Web service essentials. O’Reilly & Associates.
Crnkovic, I., Hnich, B., Jonsson, T. & Kiziltan, Z. (2002). Specification, implementation

and deployment of components: Clarifying common terminology and exploring
component-based relationships. Communications of the ACM, 45(10), 35-40.

Dumas, M., Heravizadeh, J. & Hofstede, D. (2001, April). Towards a semantic framework
for service description. Proceedings of the International Conference on Database
Semantics, Hong Kong.

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritising requirements.
IEEE Software, 14 (5), 67-80.

Kim, S.D. (2002). Lessons learned from a nationwide CBD promotion project. Communi-
cations of the ACM, 45(10), 83-87.

Kotonya, G. (1999). Experience with viewpoint-based specification. Requirements engi-
neering, 4(3), 115-133.

Kotonya, G., Hutchinson, J., Onyino, W. & Sawyer, P. (2002, April). Component-oriented
requirements expression. Proceedings of the 16th European Meeting on Cybernet-
ics and Systems Research, Vienna, Austria.

Kotonya, G., Onyino, W., Hutchinson, J. & Sawyer, P. (2001). Component architecture
description language (CADL). Technical Report, CSEG/57/2001, Computing De-
partment, Lancaster University.

Kotonya, G. & Rashid, A. (2001, December). A strategy for managing risk in component-
based systems. Proceedings of the 26th IEEE Euromicro Conference, Warsaw,
Poland.

Component- and Service-Oriented Systems 181

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kotonya, G., Sommerville, I., & Hall, S. (2003, September). Towards a classification model
for CBSE research. Proceedings of the 29th Euromicro Conference, Antalya,
Turkey.

Layzell, P.J., Bennett, K.H., Budgen, D., Brereton, O.P., Macaulay, L.A. & Munro, M.
(2000, December). Service-based software: The future for flexible software. Pro-
ceedings of the Asia-Pacific Software Engineering Conference, Singapore.

Lootsma, F.A. (1999). Multi-criteria decision analysis via ratio and difference judge-
ment. Kluwer Academic Publishers.

Medvidovic, N. & Taylor, R.N. (2000). A classication and comparison framework for
software architecture description languages. IEEE Transactions of Software
Engineering, 26 (1), 70-93.

Nadhan, E.G. (2003). Service oriented architecture implementation challenges. EDS.com
[Online]. Available: http://www.eds.com/thought/thought_leadership_so_
architecture.pdf

Ncube, C. & Maiden, N (1999). PORE: Procurement-oriented requirements engineering
method for the component-based systems engineering development paradigm.
Proceedings of the 2nd IEEE International Workshop on Component-Based
Software Engineering, Los Angeles, California, USA (May 1-12).

Onyino W., Kotonya, G., Hutchinson J., & Sawyer, P. (2000, June). Towards an inclusive
model of trust for COTS-based software development. Proceedings of the Inter-
national Conference on Software Engineering Research and Practice, Las Vegas,
USA.

Rosenblum, D.S. (1997). Adequate testing of component-based software. Technical
Report No. 97-34. University of California, Irvine.

Saaty, T.L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
Stal, M. (2002). Web services: Beyond component-based computing. Communications

of ACM, 45(10), 71-76.
Szyperski, C. (2002). Component software: Beyond object-oriented programming (2nd

edition). Addison-Wesley.
Szyperski, C. (2001, January). Component and Web services. Software Development

Media.
Vigder, M., Gentleman, M. & Dean, J. (1996). COTS software integration: State of the art.

Institute for Information Technology, National Research Council, Canada.

182 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter IX

Architecture,
Specification,
and Design of

Service-Oriented
Systems

Jaroslav Král
Charles University, Czech Republic

Michal � emli�ka
Charles University, Czech Republic

Abstract

Service-oriented software systems (SOSS) are becoming the leading paradigm of
software engineering. The crucial elements of the requirements specification of SOSSs
are discussed as well as the relation between the requirements specification and the
architecture of SOSS. It is preferable to understand service orientation not to be limited
to Web services and Internet only. It is shown that there are several variants of SOSS
having different application domains, different user properties, different development
processes, and different software engineering properties. The conditions implying
advantageous user properties of SOSS are presented. The conditions are user-oriented
interfaces of services, the application of peer-to-peer philosophy, and the combination
of different technologies of communication between services (seemingly the obsolete

Design of Service-Oriented Systems 183

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

ones inclusive), and autonomy of the services. These conditions imply excellent
software engineering properties of SOSSs as well. Service orientation promises to open
the way to the software as a proper engineering product.

Introduction

Service orientation (SO) is becoming the central topic of software engineering. There is
an explosive growth in the number of conferences, products, and articles discussing and
using the principles of SO and service-oriented architectures (SOA). Service-oriented
software systems (SOSS) are of different types depending on the character of the
functions the system provides, the system environment (for example, e-commerce or a
decentralized international enterprise), and the way the system is developed. The
common property of SOSS is that their components behave like the services in real life
mass service systems. The SOSS must then be virtual peer-to-peer (p2p) networks of
autonomous components (services). The services can have various properties; they
need not be Web services in the sense of W3C (2002) and need not therefore use standard
communication protocols, compare Barry and Associates (2003) and Datz (2004).
We shall show that the software engineering properties as well as the user-oriented
properties of any SOSS strongly depend on the properties of the service interfaces and
that user interfaces of the system should be implemented as specific services (peers of
the network) as well. All these issues are related to the architecture of the system. We
will discuss how the properties of the architecture influence the set of feasible functions,
development (especially the requirements specifications), feasible development tech-
niques (for example, agile ones), standards, politics of IT management, and marketing
strategies of software vendors and/or system integrators (Figure 1). The feasible
functions of SOSSs include the functions important for user top-management.

System
architecture

IT
management

Marketing policies of
software vendors and
systems integrators

Development

Feasible
requirements

Users,CEO
inclusive

IT managers

Software vendors
Software

developers

Figure 1. Central role of system architecture

184 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Feasible functions of any large system depend on its architecture. The decision as to
what architecture is to be used must therefore be formulated in early stages of the system
life cycle. On the other hand, the structure, techniques, and content of requirements
specifications are influenced by the properties of the system architecture and the details
of its implementation. We shall show that SOSS should use a combination of various
techniques developed during the software history (for example, message passing, object
orientation, common databases, and, sometimes, batch-oriented systems). All these
issues should be addressed in the specifications of SOSSs. SO is a paradigm new for many
software people. It implies some problems with the application of SO.

Peer-to-Peer
Information Systems (P2PIS)

Large information systems must often be developed as a network of loosely coupled
autonomous components — services (possibly information systems) integrated using
peer-to-peer principle (further P2PIS). The change of the architecture should be accom-
panied by changes in requirements specification that should reflect the service-oriented
structure of the system.
The specification of P2PIS starts from the specification of system user interface (portal)
and from the specifications of the services. The specification of services starts from the
definition of their interfaces. It can be accompanied by specification of the services of
the infrastructure (message formats, communication protocols, middleware services, in
general). Services in P2PIS can be newly developed applications, encapsulated legacy
systems, or third party products. P2PIS enables new types of requirements (for example,
the requirement that a P2PIS should support decentralized and flexible organization of
a global enterprise, see Král & � emli�ka, 2003) and makes achievable software engineering
properties like reusability, flexibility, openness, maintainability, the use of legacy
systems and third party products, or the reduction of development costs and duration.
Experience shows that such systems can be extremely stable (Král, 1995).
There are two main variants of P2PIS. The first one is used in e-commerce where the
service starting a communication must first look for communication partners. The
partners must offer their interfaces (typically specified by WSDL). This schema implies
the use of Internet and international standards like SOAP. We shall call such systems
(software) alliances.
The systems formed by stable sets of services knowing their permanent communication
partners will be called (software) confederations. Confederations occur often. Examples
are:

• Information systems of international enterprises having the structure of a network
of autonomous organizational units (divisions). The information systems are
formed by a peer-to-peer network of the information systems of the divisions and
by some additional components serving the whole enterprise (for example, portals).

Design of Service-Oriented Systems 185

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Such an architecture simplifies the integration of new divisions and/or of newly
purchased enterprises as well as the selling out or outsourcing of some divisions
or splitting the enterprise into smaller ones.

• Information systems of e-government built as a network of the information systems
of particular offices1 (Král & � emli�ka, 2001).

• A long-term collaboration between the information system of an enterprise and the
information systems of its business partners needed for supply chain management
(SCM) (Lowson, King & Hunter, 1999) and customer relationship management
(CRM) (Dyché, 2002).

• An open association of health organizations (physicians, hospitals, laboratories,
health database services, and so forth) forming an information system intended to
simplify, enhance, and speed up health care.

• Process control systems (soft real-time systems) supporting, e.g. computer inte-
grated manufacturing. Such systems were the first systems having main properties
of service-oriented systems. They have proved for the first time the advantages of
service orientation.

If a system S has p2p architecture, it must have structure allowing its peers/services to
collaborate. The services must be equipped by gates connecting them to a middleware.
The system S must usually be equipped by a user interface (portal). There can be several
portals. Alliances need not have any portals (Figure 2).
The properties of P2PIS depend substantially on the properties of the interfaces provided
by the gates and by the functions of the middleware. The most important property of the
interfaces is how much they vary. Stable interfaces increase the stability of P2PIS, reduce
the development and maintenance costs, and hide the implementation details and
philosophy of the component. It is shown below that the gates need not transform
components into Web services and that the middleware in confederations need not be
Internet based. On the other hand, Web services and Internet-oriented middleware are
necessary in alliances as the use of worldwide standards and tools is the precondition
of e-commerce and of the communication between partners unknown to each other before
the communication starts.

Figure 2. Architecture of a service oriented system (G is a gate, UC is an user interface
service (portal))

Middleware Service G G Service

Service G

UC
�

UC

�

�

Old service
interface

System
interface 1

System
interface 2

186 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Note that SOSSs are usually built starting from the specification of the interfaces and that
the components providing the services are mainly integrated as black boxes.

Alliances

A crucial issue of the development of alliances is the standardization of communication
protocols. From the technical point of view, the dialog between partners (peers) in a P2PIS
can easily be fully automated, but the business agreements should be (and, due to
business and legislative reasons, usually are) controlled (supervised) personally by
representatives of the communicating parties.
The dialog is driven by a businessperson (initiator) searching for business partners. The
businessperson applies knowledge about the history of collaboration with the partners
and about the current situation (that is, credibility) on the market. The partner should
evaluate the enterprise of the initiator similarly. The partners have to check whether to
conclude a contract. Supervision is necessary as someone must be responsible for any
business operations. The business documents produced in this way are often to be
formally confirmed by people. It holds for P2PIS in general, but it is especially needed
in alliances.
Current practice is to establish the cooperation in alliances via Web services in the sense
of W3C. The dialog of business partners then starts using UDDI, WSDL standards, and
continues in SOAP.
The coordination of the business processes of several partners can be a complicated
task. Optimal solution of the supervision of the stages of business processes is a
cornerstone of alliance requirements specification. It is to some degree true for confed-
erations as well. The business processes are often developed using development tools
like .NET or J2EE. There are discussions about what choice is the best (see the discussion
on e-services in Communications of the ACM, July 2003, pp. 24-69).
The main advantage of alliances is their flexibility, generality, and standardized solu-
tions. The disadvantage is the problems with efficiency, stability, the size of the used
standards, and problems with integration of legacy systems and third party products.
A deeper problem is that SOAP is not too user friendly as it is based on remote procedure
calls (RPC) close to programmers’ knowledge domain (for example, object orientation)
and not to the user problem domains. It enlarges the problems with requirements
specification via WSDL and UDDI. UDDI is a centralized service. Centralized services
are not good in p2p frameworks. It is confirmed by the experiences with UDDI systems.
SOAP, like object-oriented languages, requires many method calls and, therefore, also
many messages during even very simple dialogs. It causes efficiency problems, problems
with prototyping and understanding the communication by human beings.
The systems using RPC (for example, SOAP) are better suited to the business operative
than to business process analysis, usually based on a common data tier.
Alliances are suited to operative tasks in the global market. Important decisions should
often be, however, preceded by analysis of the market and the history of cooperation with

Design of Service-Oriented Systems 187

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a given partner. It implies user involvement, massive data analysis, and the tools specific
for it. The tools often do not fit into RPC/SOAP frameworks.
A very important advantage of alliances is that communicating software parties can be
in the framework of the SOAP/Web services developed individually like programs
serving, for example, terminals.
It can happen that a business case (process) fails for some reason. In this case, the
reasons of the failure and people responsible for it can be detected via the analysis of
the messages logged during the corresponding business process. The analysis can be
used as evidence at court. The messages stored in a log memory must therefore be
understandable for users and experts in economy and even for lawyers, who should be
user-oriented. It is not clear whether messages in SOAP format can fulfill this require-
ment. It indicates that a proper message presentation tier enhancing communication
legibility should be available.

Software Confederations

E-Government: Confederation via Integration

We shall demonstrate some typical software confederation (SWC) related issues on the
example of e-government. The engine of e-government — state information system, SIS
— is one of the largest software systems to be built in any country. Let us now give the
list of the most important requirements on SIS:

• SIS should service citizens, enterprises, and state and municipal offices. SIS should
be able to communicate with information systems of private companies and/or
(potentially) of citizens. To fulfill it, SIS must have a complex subsystem (portal)
providing the interface for citizens. Such an interface should be flexible in its
functionality depending on the rights/profiles of specific groups of citizens and/
or state officers/clerks. There should be one or more user interface gates (portals)
providing an integrated interface making the internal structure of the system
invisible (transparent).

• SIS should support the collaboration of all state offices and majorities. Examples
are the collaboration during the investigation of car robberies and/or document
verification.

• SIS should reflect the frequent changes in laws and in the structure of state
administration.

• SIS should use autonomous tools, often third-party products for data filtering,
mining, and analyzing. It is likely that many new tools will be added in the future.

As there are many systems used by individual offices, it is very difficult to rewrite them
in time. The existing system should therefore be integrated without any substantial
change of its functions. The systems must be easily integrated into SIS without any

188 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

substantial reconstruction. There is yet another, maybe substantially important, reason
for these requirements. No office will take any responsibility for a (sub)system if there
is any doubt it works correctly — there must be the feeling of ownership of the
(sub)system. It can reduce the resistance of users and/or politicians caused by their
apprehensions about their positions and power.
As it is highly desirable that the IS of various offices should be at the local level (in a
particular office), used without substantial changes (for example, business as before). It
usually implies that the interfaces of constituent autonomous information systems
(autonomous components/services) tend to be user knowledge domain oriented and
coarse grained. We shall see that it offers substantial software engineering advantages
as well as many benefits for users. A properly specified and designed software confed-
eration increases the dynamics of the system structure and openness of the system.
The conclusions can be illustrated on the following example. People responsible for SIS
of the Czech Republic wanted to redevelop the SIS as a monolithic system from scratch.
Practical experiences induced them to accept that the SIS must be a P2PIS.
The number of peers in confederations is not too large (compared with e-commerce) and
the peers are known. The collection of peers (services) does not vary too quickly. The
communication protocols between the peers can then be suited to particular needs; they
can be based on nonstandardized tools/solutions without any substantial penalty
(compare to Demetriades, 2003). It allows use of various turns known from the history
of computing for specific tasks like data reconstruction, data- or object-oriented design
for the development of peers.

Manufacturing System: Decomposition and Integration

Systems supporting e-government are the systems developed mainly via integration of
existing systems, possibly equipped by appropriate gates and transformed so that they
can work as services (peers in a p2p system). Some SOSSs are, however, developed from
scratch via decomposition of the system into services. Then the services, user interfaces,
and middleware are developed and integrated. It is typical for (soft) real-time systems,
for example, in manufacturing. Such systems have shown many advantages of service
orientation.
Figure 3 shows the interface of the manager of a flexible manufacturing system producing
parts of machine tools (Král, 1995). The manufacturing of the parts is defined by linear
sequences of manufacturing operations. A generalization to more complex workflows
(for example, assembling) is possible but the interface becomes more complex. The
workshop manager chooses the central (actual) operation D.i, and the system shows the
previous and next operations in the technological sequence D and in the workplace
queues. Note that the manager felt the interface as a support for the standard management
activities that were familiar. The manager could add/modify the technological sequence
and rearrange the queues. The required data could also be filled by a scheduler from the
enterprise level. If the scheduler produced right data, no actions from the manager were
needed. We call such types of business processes reconstruction (BPR) the soft one.
It should be used as often as possible.

Design of Service-Oriented Systems 189

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The interface of the manager was data-oriented — generated from a database. Other parts
of the system communicated via commands (for example, store product P in warehouse
place WP), so different attitudes (not only RPC) had to be used. It was important that the
structure of software services reflected the structure (and interfaces) of real-life services.
These properties of the system were the reasons why the flexible manufacturing system
(FMS), an island of automation, was very successfully used for more than twenty years
in an enterprise having several successive enterprise information systems. FMS was
used without any substantial changes and almost without any maintenance. It was
thanks to the fact that the interface has corresponded to the manager intuition, used his
knowledge, and supported his skills. To generalize, EAI (service interface) should
support the intuition and knowledge of users and should be user and problem oriented.
The user should have a chance to influence the design of the interface. User orientation
of interfaces offers the possibility to simulate (even substitute) the services (compo-
nents) not yet existing by communication via portals. We say then that such interfaces
are user performable. It substantially enhances prototyping tools.

Middleware Enhancement in Confederations

The decision whether to use standard or proprietary message formats should be based
on a proper (service-oriented) analysis of the partnerships of autonomous services. The
standards in their current form are difficult to use. It can be reasonable for the dynamic
enterprises to choose a proprietary solution of message formats. It need not be too
difficult to adapt the proprietary solutions to future stabilized standards using the tools
like XSLT and PHP. Using the tools like XSLT and PHP, we can build new types of services
called front-end gate (FEG). FEG is a service used as a front-end part of the gate G of a
service S (Figures 4 and 5) or as a router. FEG transforms the formats of input and output
messages of S into forms acceptable by the partners of S and hides undesirable properties
of the gate G, like disclosing the implementation details of S. The problem is that,

Figure 3. Interface of the manager of the manufacturing system

WP2.y
D.i

WP1.z
D.i-1

WP3.x
D.i+1

WP2.y-1
E.k

WP1.z-1
Q.j

WP3.x-1
F.t

WP2.y+1
H.p

WP1.z+1
R.h

WP3.x+1
M.r

WP2

WP1

WP3

Segment of WP1
queue

Segment of WP2
queue

Segment of WP3
queue

Production chain
segment

The data of the actual operation D.i

Work-
places

190 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

according to our experiments, XSLT is awfully ineffective and unstable today for more
complex tasks.
Our two examples show the main extreme situations in the confederation development.
In e-government, the system is mainly built via integration of existing systems. In this
case, we can define the interfaces only. In the case of manufacturing, the integration
stage is preceded by decomposition. In this case, we must specify the boundaries of
services. They should be intuitively “similar” to the boundaries of real world services.
A specific issue in confederations is that we must often also apply attitudes/philoso-
phies known from the software development history. Middleware can be implemented via
Internet or via a common database with triggers. CORBA can be used in some situations
as well. All the attitudes must be in practice combined, depending on the type of the
functionality (for example, commands on operational level and data analysis on manage-
ment level), so different philosophies can and must be applied and combined in
confederations. It increases the complexity of development.

Business Processes in Confederations

Business processes in confederations (BPC) must be composed from steps — functions/
actions of peers offered by their interfaces. We have seen that business services must
usually be supervised by users — the owners of the processes — or there should be such
a possibility. It is also necessary to offer users a tool to define business processes. Both
requirements imply that the languages understood by the gates should be based on user
knowledge domain languages and notions. They should be user-oriented.
The data defining business processes are best to store in system user interface (portals)
and the business steps are supervised via a portal or by a temporary service S controlling

Figure 4. Three-tier service (encapsulated information system) with gate G and its
communication links

Front End Gate (FEG)

A service providing message
translations and routing - of

middleware enhacement

Application service (encapsulated legacy system)

Other services of system

Im

pl
em

en
ta

tio
n

de
pe

m
de

nt
 c

om
m

un
ic

at
io

n

 Partner-friendly communication

� Old service
interface

G

User tier

Application tier

Data tier

Design of Service-Oriented Systems 191

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the particular process. An extreme solution is that there are no business processes
defining data. Business data analysis (via, for example, OLAP) must be based on a data-
oriented view. In this case, the users (usually managers) must have a transparent access
to data tiers of the components. It is a very complicated problem (Lenzerini, 2001).
The notions and languages specifying the actions of components (for example, book-
keeping) in a user-oriented way are remarkably stable. The same can therefore hold for
the languages of the component interfaces. It is then possible that the interface of a
component need not vary if the component implementation varies. The stability of
interfaces is important for the communication partners of the given component and for
the stability of SOSSs. It has further substantial software engineering advantages
(modifiability, outsourcing opportunities, reduction of number of messages, integration
of products of various vendors, openness, and so forth).

Historical Technologies Used in
Service-Oriented Systems

As mentioned above, it is not feasible to limit the philosophy and the software
architecture to one choice, so the crucial point of the requirements specification is what
philosophy or combination of philosophies is to be used. This issue is not addressed in
existing CASE tools and only a little by research. We shall attempt to find some criteria
for the choice of philosophy using historical knowledge.
Due to an improper, too concise coding of date, almost all programs written in COBOL
had to be rewritten during the 1990s. It is known as the Y2K problem. It appeared that
many enterprises used COBOL programs for years without having any COBOL program-
mer. Such programs had to be very stable as they were used without any maintenance.
Systems written in COBOL are like SOSSs designed as virtual networks of COBOL
applications. The communication between the applications is implemented via data
stores/files. If input data stores of an application A are ready, A can be started and it works
autonomously until input data stores are processed. Thanks to this property, COBOL
systems can be developed incrementally provided that input data stores can be easily
generated. Each application can be specified as a data transformer and programmed and
tested autonomously. It led to specific techniques. COBOL systems usually contained
various input filters, data format transformers, report generators, and so forth.
The ability of components to be developed autonomously is the crucial qualitative
property of the components of large systems. Batch COBOL systems must often be
combined with services of confederations. An example is massive data reconstruction.
Data-oriented systems (DOS) appeared after the success of modern database systems.
It was common at that time that the main aim was to computerize operative levels of
enterprises (warehouses, bookkeeping, business data). Data types were known and
various known operations could be defined over the same data. Moreover, properly
designed data structures can be used for many other potential operations — that is, the
data enabled many further operations not specified yet. It was and still is supported by

192 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the power of SQL language. The data orientation must be applied in confederations when
the services are intelligent, especially if management activities must be supported.
Technically, it implies data analysis and presentation tools (Figure 3). There are,
however, problems with common database schema and data replication (Lenzerini, 2001).
Elements of DOS must be applied in subsystems providing online/interactive data
analysis (for example, OLAP/ROLAP).

Implementation Issues

Integration of Legacy Systems

Technically, a legacy system LS is integrated into the system via adding a gate G to LS.
LS then becomes an autonomous service AC (Figure 4). G connects AC to a middleware.
AC is also reconstructed to be a permanent process if needed. The software confedera-
tion then has the structure from Figure 2. We will often say that AC is an autonomous
component if we want to express its implementation character.
Although the choice of the p2p architecture seems to be a technical matter, it should be
included into requirements specification as it substantially influences user properties of
the system and the structure of the specifications. If an autonomous component
(encapsulated legacy system) AC belongs to some department/division (for example, its
local information system), the department is satisfied with AC, and AC can provide all
required information/services to other collaborating autonomous components, then AC
can and often should be integrated without any substantial reconstruction. It reduces
coding effort as substantial parts of the system are reused. The people using AC feel that
they still own it. It is well known that a feeling of ownership is advantageous and often
necessary.
Confederative architecture can support new requirement types raised by CEO, like the
transformation of the enterprise organization structure into a decentralized form, selec-
tive outsourcing of some parts of the information system, selling out some divisions/
departments, integration of newly purchased firms/divisions, support for supply chain
management, and forming various business coordination groups (Král & � emli�ka, 2002).

Front-End Gates

Requirements specifications of software confederations must be based on the properties
of the interfaces of autonomous services/components (AC). The AC is used as black
box, that is, its interface is known only to its partners. This is very important, as interfaces,
especially the user-oriented ones, are usually more stable than the implementations (Král
& � emli�ka, 2003).
Interfaces should hide the implementation details and philosophy of autonomous
services. If we, however, need the gate G from Figure 5 to offer an access to all

Design of Service-Oriented Systems 193

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

functionality of the corresponding component, the gate must usually disclose the main
features of the implementation. So, under such a condition, the message formats of G must
be, to some degree, implementation oriented. As such, it is not stable enough or optimal
for some (usually many) partners of AC. We have seen that we can use front-end gates
(FEG) to solve the problem. FEG is again an autonomous service (peer) with the properties
similar to user components. FEG must usually be developed — it is a white box.
Front-end gates play several roles. They stabilize and generalize the interfaces of
components and make them partner-friendly. They can provide several different inter-
faces of a given AC when different groups of its partners need different interfaces.
Different FEGs can provide different security levels or different middleware services for
different partners. In some situations, one FEG can provide a parallel access to more than
one application component. The condition is that some application components offer
similar or complementary functions (for example, in a lecture/test reservation system of
a university, different application components may handle different faculties or subject
groups).
FEG can direct messages to the components that are less loaded at a given moment. Some
services can be replicated. It enables load balancing and distribution of services. As FEG
is used as a white box, the properties of its input language L and its output language L1
must be included in the requirements specifications. It is similar to the specification and
design of user interface components (portals), compare Král and � emli�ka (2003), and to
the generation of temporary services controlling individual business processes. The
proper specification of gates and front-end gates substantially simplifies the system
specification, documentation, development, and maintenance.
FEG can be viewed as an enhancement of the middleware services as the developers
develop, in this case, rather the middleware than the applications (Figure 5, see Král,
1999).
The interfaces of software services should mirror the interfaces of real-life services if
possible. P2p systems enable the incremental development strategy starting from the
most useful services. The relation of the services to their real-life counterparts enables
a reliable estimation of what services are the most useful ones. According to Pareto 80-
20 rule, it enables the achievement of 80% usefulness of the system consuming 20% of
effort only.

Petri Nets

FEG are based on specific tools and methods having common features with compiler
construction and formal language translation. Methodologically, they are similar to user
interface services (portals). They can also play the role of message routers. The time of
execution of FEG is negligible as there is no waiting on answers from users and/or
technologies. FEG can compose several messages into one message and decompose one
message into several messages. FEG is a solution of the interoperability problem
mentioned by Schoder and Fischbach (2003). FEG can therefore be viewed as a gener-
alization of places in Petri nets with colored tokens (Petersen, 1997). Tokens are

194 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

messages, whereas application services behave like processes in temporal colored Petri
nets. It is open as to how to generalize Petri nets so that they enable a proper modeling
(diagramming inclusive) and simulation of confederations. Petri nets describe, in some
sense, atoms of communications in networks of static structure. Workflows must
therefore be defined using some other tools. Petri nets are used in manufacturing control
systems (Vondrák et al., 2001). It again indicates links between software confederations
and manufacturing systems (and, generally, soft real-time systems). Confederations are
necessary but there is not enough experience with them among computer professionals
at enterprise level.

Requirement Specification Issues

The requirement specifications for confederations must often be oriented toward the use
of existing systems and their interfaces. The specifications should take into account the
properties of the interfaces and their dynamics. It appears that the people with the
experience with low-level process control systems could today help a lot at the top-most
tier of enterprise systems now having confederative architecture, as the confederative
orientation is common for the soft real-time system developers. They should therefore
take part in requirements specification of large software systems.
The requirements can now include the new system function types formulated by CEOs
like enterprise decentralization, boundaries of divisions, various forms of in- and
outsourcing, CRM, purchase coalitions, and so forth. Many such requirements are
feasible only if the enterprise information system is confederated and has an appropriate
structure. The top management should be aware about it, and the developers should
know something about management and its needs. So, there should be no high wall
between developers and users (Král & � emli�ka, 2003). It contradicts the recommenda-
tions from “Recipe for Success” by Standish Group, available at www.standishgroup.com.
Note that agile programming proposes permanent contacts between developers and
users. Software confederations offer the opportunity to use agile programming in the
development of large systems provided they are service-oriented.

Figure 5. System with front-end gates

middleware Service G G Service

Service G

UC
�

UC

�

�

Old service
interface

System
interface 1

System
interface 2

FEG

FEG

FEG

FEG

Design of Service-Oriented Systems 195

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Confederations are challenge and issues for CIO like the balance between centralized and
decentralized agreement of message formats. The concept of software confederations
and e-commerce is a large challenge for software vendors and system integrators. They
have to change their business strategies.

Other Issues

Software confederations can solve the problem of Reorg Cycle (Armour, 2003) saying
that the enterprises are permanently reorganized. As during a lengthy reorganization, the
conditions on the market change and a new reorganization is necessary. SO is a solution,
as it simplifies and shortens the reorganization.
The first SOSS have long ago manifested their advantages like easy prototyping,
incremental development, stability, and flexibility. The mainstream of software engineer-
ing has then not been faced with the necessity to build confederations at enterprise level.
There was no appropriate technology and no strong need to leave the design viewing
the system as one possibly distributed logical unit containing no large black boxes.
The situation has changed due to the progress in hardware and software (Internet). SOSS
became technically feasible. At the same time, globalization has generated the need for
confederated global enterprises and, therefore, for SOSS.
The services can be cloned and made movable like software agents. It can simplify the
design of mobile systems. There are issues common with grid systems.

Paradigm Shift

The construction of any system as a collection of services mirroring the structure of real-
world services has substantial advantages:

• As the interfaces are user-oriented, the system specification is simpler due to easier
involvement of users and a better structure of the specification. It simplifies the use
of the system by users, as they understand what the system offers. The users can
then easily modify business processes.

• It supports preferable software engineering properties like openness, maintainabil-
ity, modifiability, and so forth.

• The services can be specified by their interfaces. It opens the opportunity to apply
agile programming (Beck et al., 2001) or extreme programming (Beck, 1999) in large
projects.

The decomposition of the activities into autonomous services is a very important
invention. It is likely that the use of human-like behaving services in service-oriented
systems brings the flexibility and power known from human society.

196 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The main barrier of a wider application of service orientation in our sense is that SO is
a new paradigm for the majority of software developers. The acceptance and governance
of SO will therefore be a long-term process (remember the case of object orientation).
There is no general agreement, even in the definition of the content of service orientation
(Barry and Associates, 2003). Many antipatterns from Brown et al. (1998), like “Islands
of Automation,” “Function Decomposition,” and so forth, need not be antipatterns in
SOSS anymore. Other antipatterns like “Lava Flow” are not dangerous.
The main attributes of good SOSSs are: (i) system is designed as a peer-to-peer network
of services; (ii) the peers mirror real-life services and have user-oriented interfaces; and
(iii) it is preferable to have user performable service interfaces.

Information Systems of Manufacturing and
Information Systems of Global Enterprises

The automated manufacturing systems have the main features of software confedera-
tions; they are (partly) service-oriented. SO has therefore been applied in manufacturing
systems for many years. Object orientation (OO) is common now at the enterprise level.
OO CASE systems based on UML (OMG, 2001b) and model-driven architecture (MDA)
(OMG, 2001a) are used there. SO is common for the lowest enterprise management
(manufacturing) systems and should be common on the top management level (manage-
ment of international enterprises), as well. The middle management (local factories)
usually rely on OO methodology (compare Table 1).
The format mismatch of enterprise application interface (EAI) can be resolved by front-
end gates. Note that EAI is not primarily intended to support B2B (compare Pinkston,
2002). The fact that manufacturing systems are service-oriented has important conse-
quences. The middle management, usually managing the local units of international
enterprises, should not insist on the use of OO methods as a golden hammer applicable
everywhere as it can lead to the application of OO philosophy outside its applicability.
The shift to SOSS on the upper enterprise level is, however, not easy as there is lack of
SO experts. It is not optimal to involve here only the people from middle management level.
They are not service-oriented. It is difficult for them to convert their object-oriented
thinking into the service-oriented one. The obstacle is their mental barrier. The nice OO
design patterns (Gamma et al., 1993) are, to a high degree, useless in SOSS; OO people
often have the feeling that the confederative philosophy is a step back. Such a barrier
is exceptional for people having experience with systems including technological
process control. The difficulty of the acceptance of SO thinking could be for OO people
even more difficult than the conversion from structural thinking to OO thinking (compare
Nelson, Armstrong & Ghods, 2002) several decades ago.

Conclusion

Important functions, especially the functions supporting CEO activities, depend on
application of service orientation. It implies that the system must have a proper

Design of Service-Oriented Systems 197

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

architecture as a p2p network of autonomous services having user-oriented interface,
system user interface services, and eventually, some newly developed infrastructure
services (FEG). The SO philosophy therefore influences requirements specification more
substantially than other philosophies. This issue is not understood enough. Architec-
tures are very difficult to change. They must therefore be chosen early during the
requirements specifications. Vice versa, the requirements must reflect the properties of
the architecture.
User-oriented interfaces of services simplify the collaboration between users and
developers, enable the development, exploiting the possibility that services can be
simulated via user interface services (portals). It simplifies the design of business
processes and enhances the software engineering properties of the system. Good
interfaces can easily be designed if the services mirror the real-life services.
The user-oriented interfaces can serve as a specification of the services. It is achievable
only if the collaboration between users and developers should be tight, and the
developers should be able to understand user knowledge domains. It must be trained.
The user-oriented interfaces enable the use of different implementation technologies in
different services and the agile forms of development in large projects.
Properly chosen system architecture influences and often determines the tools and
processes of the system development. An issue is that there are no good modeling tools
for SOSS. The main obstacle here, however, is the inability or unwillingness of many
developers to apply SO. It is the consequence of the fact that it is as any paradigm shift:
a long-term process. Solution can be in the engagement of people already having the
service-oriented feeling, for example, of the developers of soft real-time systems.
SO changes the tasks of IT management that should facilitate the agreements of the
details of system architecture. IT management can be less dependent on software
vendors as it now has a greater freedom of what to buy from whom and what to develop
to achieve a competitive advantage. Good software engineering properties of SOSS
simplify many tasks of IT management (selective outsourcing, development process
control, modifications and maintenance, and so forth). SO requires changes of marketing
strategies and methods of software vendors and system integrators.
SOSS developers must often apply data- and object-oriented techniques and even
integrate batch applications. The developers must be able to understand and use the

Table 1. Application domains of object and confederative orientations

Software Technique Area of Application
Service orientation
(possibly partly)

Manufacturing control level: CIM components, real-time systems

Object orientation (for example,
UML, MDA) still suffices

Monolithic enterprise level: middle management, divisions of an
international enterprise, highly centralized organizations

Service orientation desirable,
necessary, EAI

Global (world-wide) enterprise level: international enterprises, state
administration ...

SO philosophy necessary, EAI,
B2B

World-wide business: some health network services, coalition of car
vendors, e-business

198 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

knowledge of users from all the levels of organization hierarchy. It is not easy, and it
should be taken into account in the education of software experts, usually too proud of
their narrow and detailed computer-oriented knowledge.
SO is a philosophy influencing the whole software industry and practice. It promises to
open the way to the software of the quality known from the other branches of industry
(no “Warranty Disclaimer”).

Acknowledgments

This work has been supported by Czech Science Foundation by grants No. 201/02/1456
and 201/04/1102.

References

Armour, P. (2003). The Reorg Cycle. Communications of the ACM, 46, 19-22.
Barry and Associates. (2003). Retrieved August 15, 2004, from http://www.service-

architecture.com
Beck, K. (1999). Extreme programming explained: Embrace change. Boston: Addison-

Wesley.
Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., et

al. (2001). Agile programming manifesto. Retrieved August 15, 2004, from http://
www.agilemanifesto.org/

Bray, I. K. (2002). An introduction to requirements engineering. Harlow, UK: Addison-
Wesley.

Brown, W. J., Malveau, R. C., McCormick, I. H. W., & Mowbray, T. J. (1998). AntiPatterns:
Refactoring software, architectures, and projects in crisis. New York: John Wiley
& Sons.

Datz, T. (2004, January 15). What you need to know about service-oriented architecture.
CIO Magazine. Retrieved August 15, 2004, from http://64.28.79.79/archive/
011504/soa.html

Demetriades, J. T. (2003). Does IT still matter. Business Integration Journal, 20-23.
Donnay Software Designs (1999). Mature, portable, data-driven systems. Retrieved

August 15, 2004, from http://www.dclip.com/datadr.htm
Dyché, J. (2002). The CRM handbook: A business guide to customer relationship

management. Boston: Addison-Wesley Professional.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design patterns. Elements of

reusable object-oriented software. Boston: Addison-Wesley.

Design of Service-Oriented Systems 199

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Král, J. (1995). Experience with the development and use of flexible manufacturing
systems. Unpublished manuscript.

Král, J. (1999). Middleware orientation: Inverse software development strategy. In W.
Wojtkovski, W. G. Wojtkowski, S. Wrycza, & J. � upan�i� (Eds.), Systems develop-
ment methods for databases, enterprise modeling, and workflow management (pp.
385-396). New York: Kluwer Academic/Plenum.

Král, J., & � emli�ka, M. (2000). Autonomous components. In V. Hlavá�, K. G. Jeffery, &
J. Wiedermann (Eds.), SOFSEM 2000: Theory and practice of informatics, Vol.
1963 LNCS (pp. 375-383). Berlin: Springer-Verlag.

Král, J., & � emli�ka, M. (2001). Electronic government and software confederations. In
A. M. Tjoa, & R. R. Wagner (Eds.), Twelfth International Workshop on Database
and Experts System Application (pp. 125-130). Los Alamitos, CA: IEEE Computer
Society.

Král, J., & � emli�ka, M. (2002). Component types in software confederations. In M. H.
Hamza, (Ed.), Applied informatics (pp. 125-130). Anaheim: ACTA Press.

Král, J., & � emli�ka, M. (2003). Software confederations - An architecture for global
systems and global management. In S. Kamel, (Ed.), Managing globally with
information technology (pp. 57-81). Hershey, PA: Idea Group.

Lenzerini, M. (2001). Data integration is harder than you thought. Retrieved August 15,
2004, from www.science.unitn.it/coopis, choice videos/slides

Lowson, B., King, R., & Hunter, A. (1999). Quick response: Managing the supply chain
to meet consumer demand. New York: John Wiley & Sons.

Nelson, J., Armstrong, D. A., & Ghods, M. (2002). Old dogs and new tricks. Communi-
cations of the ACM, 45(10), 132-136.

OMG. (2001a). Model driven architecture. Retrieved August 15, 2004, from http://
www.omg.org/mda

OMG. (2001b). Unified Modeling Language. Retrieved August 15, 2004, from www.omg.org/
technology /documents/formal/uml.htm

Peterson, J. L. (1997). Petri nets. ACM Computing Surveys, 9(3), 223-251.
Pinkston, J. (2002). The ins and outs of integration, how EAI differs from B2B integration.

e-I Journal, 48-52.
Rowe, D. (2002). E-government motives and organizational framework. In J. Pour, & J.

Vo��íšek (Eds.), Systems integration 2002, Conference presentations (pp. 93-99).
Prague University of Economics, Prague, Czech Republic.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., & Lorensen, W. (1991). Object-
oriented modeling and design. Englewood Cliffs, NJ: Prentice Hall.

Schoder, D., & Fischbach, K. (2003). Peer-to-peer prospects. Communications of the
ACM, 46, 27-29.

Vondrák, I., Kru� el, M., Matoušek, P., Szturc, R., & Beneš, M. (2001). From business
process modeling to workflow management. In M. Bieliková (Ed.), DATAKON 2001
(pp. 241-248). Brno.

200 Král and � emli�ka

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

W3C. (2001). Web service definition language. A proposal of W3 Consortium. Retrieved
August 15, 2004, from http://www.w3.org/TR/wsdl

W3C. (2002). Web services activity. Retrieved August 15, 2004, from http://www.w3.org/
2002/ws/

Yourdon, E. (1988). Modern structured analysis (2nd ed.). Prentice Hall.

Endnotes

1 Other solutions are not feasible for technical as well as for practical reasons (Král
& � emli�ka, 2001, 2003; Rowe, 2002).

Service Patterns for Enterprise Information Systems 201

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter X

Service Patterns for
Enterprise Information

Systems
Constantinos Constantinides
Concordia University, Canada

George Roussos
University of London, UK

Abstract

This chapter introduces service patterns for SOA-based enterprise systems. The authors
believe that the deployment of such patterns would be of considerable value both as
a best-practice guide for practitioners as well as a starting point for further research
in their role in software engineering. A comprehensive catalog of service patterns is
included in this chapter. In the catalog, each pattern is discussed in the context of
selected examples and in terms of a brief description of its role, functionality, and
deployment. For each pattern there are recommendations on implementation and a
practical usage scenario.

Introduction

Modern enterprise information systems constitute a core component in business
support. Not only must they provide reliable infrastructures for the organization itself
but they also must be capable of seamlessly connecting to the systems of other
businesses in their value added network of partnerships. These operating conditions

202 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

demand that enterprise systems should operate transparently and should be flexible.
Over the past few years, service-oriented architectures (SOA) have emerged as a
framework that addresses this requirement both effectively and efficiently. Furthermore,
time after time systems developers discover that successful and cost-effective design
of information architectures requires a combination of theory and practical experience
as well as reuse of robust and proven designs that form solutions to frequently occurring
problems. Effective reuse can speed up the development process, reduce costs, increase
productivity, and improve the quality of software.

Design-Level Reuse

As software products need to satisfy both technical and nontechnical criteria, develop-
ers find it essential to combine theory and experience in order to reuse proven designs.
The importance of reuse lies on the fact that it can speed up the development process,
cut down costs, increase productivity, and improve the quality of software. Design-level
reuse is viewed as the attempt to share certain aspects of an approach across various
projects. There is, however, no single approach that can support reuse across all
architectural layers. Object- and component-based systems offer a wide spectrum of
techniques to reuse designs on different levels, ranging from system architectures,
frameworks, and patterns to libraries and programming languages. Developers can view
reuse on a range of different levels of granularity, ranging from effective consistency
sharing in low-level programming to sharing subsystem architectures or overall struc-
ture. Libraries and languages constitute an approach on how to best program in the small.
Patterns, on the other hand, fall in the part of the spectrum that supports the sharing of
interaction architectures, and they constitute an approach on how to best program in the
large (Szyperski, 2002).

Patterns

The notion of a pattern originates from the discipline of Architecture from the book by
Alexander et al. (1977), and it refers to solutions of occurring problems in the construc-
tions of towns and buildings. Along the same lines, a pattern in Software Engineering
refers to a solution to a recurring problem that arises during software development that
can be used in different contexts. This definition leaves space for overloading and the
term, indeed, tends to be overloaded in the literature, as patterns are becoming available
over a wide spectrum of granularity, ranging from very general design principles to
language-specific idioms.

• Design patterns: Design patterns are micro-architectures that describe the abstract
interaction between objects collaborating to solve a particular problem. They have
become popular through the seminal book by Gamma et al. (1995), also referred to
as the Gang of Four (GoF). In Gamma et al. (1995), each pattern is discussed in terms
of purpose (what the pattern does) and scope (whether the pattern applies primarily

Service Patterns for Enterprise Information Systems 203

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to classes or objects). Furthermore, patterns are categorized into creational,
structural, and behavioral.

• Responsibility assignment patterns: GRASP (General Responsibility Assignment
Software Patterns) proposed by Larman (2002) are a set of design principles on the
assignment of responsibilities to objects where a responsibility refers to the
obligation of an object in terms of its behavior. GRASP patterns are centered on
the notion of two types of responsibilities: doing and knowing.

• Service patterns: With the wide availability of enterprise information systems and
Web services, service patterns (Monday, 2003) are introduced to identify abstract
problem-solving scenarios that involve Web services as the appropriate solution,
particularly in view of their property to expose state management services in the
context of a heterogeneous network of client components. The effectiveness of
service patterns lies in their ability to address a design problem in many different
domains, thus providing a generic solution that may be available and can be
adapted in various contexts. Unlike design patterns which define micro-architec-
tures by describing the abstract interaction between objects that operate collec-
tively to solve one particular problem, service patterns encompass larger segments
of functionality in a decentralized and heterogeneous context. Moreover, service
patterns can effectively be used as a vocabulary between developers who can use
combinations of patterns to develop service pattern languages in a manner similar
to design pattern languages.

Overall, patterns can help developers reuse successful designs based on proven
experience, as well as provide good documentation and a high level of maintenance of
systems.

Background

The Service-Oriented Architecture itself is often seen as a design pattern. Its value lies
in the fact that it can abstract enterprise architectures using the concept of the so-called
Enterprise Service Bus (ESB), a shared communications medium on which services may
connect to and use in a plug-and-play manner (Figure 1). This may be thought of as the
equivalent of a bus in a computer architecture, which provides the foundation for core
and peripheral components to connect to and communicate transparently with each
other. Different internal and external systems may connect to the bus transparently.
Enterprise computing is one of the most complex and challenging computing and
communications environments in use today. Indeed, enterprise systems are highly
decentralized and heterogeneous, and they are frequently geographically distributed
with global scope: (1) they need to be scalable to cater to large numbers of changing
users; (2) they have to be highly reliable to effectively support business processes
(indeed, systems failure has distinct and measurable business impact); (3) they have to
be trustworthy so as to protect confidential information on which business operations

204 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

depend; and (4) they have to be heterogeneous in terms of technologies and systems at
all levels from application all the way to hardware. In particular, heterogeneity and
distribution imply that there are frequent nontrivial issues on synchronization and
concurrency as well as compatibility.
To address these issues, numerous frameworks have been developed over the past
decades, which employ middleware services and may rely heavily on reusable code and
design patterns. Such frameworks need to address multiple issues including efficient and
effective handling of remote processes, data and input/output; naming; brokering,
trading, and leasing resources; multiple levels of software abstractions; multiple at-
tributes; security and trust management; threading and synchronization; and finally,
distributed transaction processing. In this context, SOA provides a novel solution which
offers a significant advantage over all other solutions, namely, its conceptual simplicity.
Indeed, the level of transparency offered by the SOA pattern is unprecedented in
enterprise systems.
Further to the conceptual model offered by the SOA pattern for systems architectures,
a question naturally arises on the actual implications of the model for efficient implemen-
tation. This architecture is often represented as a triangle (Figure 2) with the three main
participating actors at the apexes: the service provider, the service requestor, and the
discovery agencies (Kreger, 2003). The latter is responsible for providing the illusion of
plug-and-play operation: it responds to requests for service, matches up the request with
a suitable provider, and provides the rules that define the interaction between them.
The SOA pattern provides a mediation mechanism which abstracts systemic behavior,
thus removing the need for engineering and coordinating resources which is a common
feature of framework-based approaches. It is therefore a natural consequence that most
of the service patterns discussed in this chapter provide mediation mechanisms for
different contexts and uses. Service-Oriented Architectures bring under a common
umbrella the need for access, location, concurrency, replication, failure, migration,
performance, and scaling transparency.
All service patterns discussed in this chapter are intended to provide solutions for
common cases for the support exactly this type of transparent operation in different
circumstances. Our primary aim is to show that service patterns provide a useful
abstraction for the development of such architectures, and they are therefore a useful
tool for both researchers and practitioners.

Enterprise Service Bus

SAP

DB

Inventory

Supplier
System

Figure 1. Enterprise service bus

Service Patterns for Enterprise Information Systems 205

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Furthermore, we aim to discuss a selection of service patterns following a structured and
consistent format, choosing from patterns that have emerged in the last few years and
have proven to be effective in a variety of circumstances. In doing this, we expect to
develop a catalog of service patterns which can be used as a reference for systems
developers who wish to examine and possibly implement particular patterns as solutions
to practical problems. Moreover, we anticipate that this service pattern catalog will be
a useful starting point for software engineering researchers who wish to further develop
and document this emerging area. Finally, we will discuss specific case studies drawn
from both industrial and research projects where each of the presented service patterns
has proven useful.
In the remaining sections of this chapter, we will present a selection of service patterns.
We have classified these patterns as structural, behavioral, and concurrency. For each
pattern the presentation will include a brief description of its role and an illustration of
their functionality with the aid of UML diagrams. We also provide recommendations on
their deployment and implementation and discuss a practical usage scenario for each.

A Service Pattern Catalog

We have selected eight structural, behavioral, and concurrency patterns for inclusion
to this catalog. To differentiate between the different types of service patterns, it is useful
to refer to the Web Services Six-Layer Architecture (Table 1).
Structural Service Patterns refer to the composition of services into larger structures,
potentially also constructed as Web services themselves:

Service
Requestor

Service
Provider

Service

Find

Interact

Publish

Client

Discovery
Agencies

Service
Description

Service
Description

Figure 2. Service-oriented architectures

206 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The proxy service pattern forces messages to a service to be delivered indirectly
through a surrogate service which remains transparent to clients of the service.
The proxy pattern operates at the messaging layer, and it is oblivious of the
semantics of the involved Web services.

• The façade service pattern simplifies access to a related set of Web services by
providing one contact point that all clients use in order to communicate with the
set, effectively reducing the complexity of interactions with it.

Behavioral Service Patterns define different modes of interaction as well as relation-
ships between Web services. Unlike structural patterns, which operate at the messaging
layer, behavioral service patterns operate at the workflow, discovery, or registry levels.

• The infomediator service pattern uses one public service point to coordinate state
changes between a set of services and at the same time to maintain low coupling
between them. The infomediator pattern operates at the Registry layer and provides
translation and coordination functionality using application semantic knowledge
(for example, product catalog data) (Roussos, 2004).

• The observer service pattern provides a one-to-many dependency among Web
services so that when the subject service changes state, its dependents (observ-
ers) are notified and maintain a state in synchronicity with the subject. In this
case, state refers to workflow, discovery, and registry layer status.

• The strategy service pattern encapsulates related behavior in Web services that
are derivatives of a common service template. Thus, a request for a higher-layer
operation may be translated in different fulfillment strategies according to the
specific context, transparently for the client.

• The marketplace service pattern interfaces transparently with both service con-
sumers and providers and implements pair-wise matching algorithms (for example,
auctions or reverse auctions) to balance service requirements and offerings.

Concurrency Service Patterns aim to organize exploitable concurrency between Web
services.

LAYER PROTOCOL
Service Negotiation Trading Partner Agreement

(legal document)
Workflow, Discovery
and Registries

UDDI, ebXML registries, IBM
WSFL, MS XLANG

Service Description WSDL, WSCL
Messaging SOAP, XML RPC
Transport HTTP, HTTPS, FTP, SMTP
Network TCP/IP, Diffserv, RSVP,

SSL/TLS, SNMP

Table 1. Web service six-layer architecture (adapted from WebServices.Org)

Service Patterns for Enterprise Information Systems 207

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The producer-consumer service pattern observes the concurrency protocol with
the same name and coordinates the asynchronous production and consumption of
information resources.

• The retrieve-update lock pattern, based on Lea (1999), observes the readers-
writers protocol which allows concurrent access to a particular service for retrieval
while it requires exclusive access for update operations. Variations of the protocol
refer to the allocation of priorities (for example, updates may have priority over
retrieval).

In the following sections, we will discuss each of the eight service patterns in turn, in
terms of the following views: (1) intent: what is the intended function of the pattern; (2)
forces: what is the motivation behind the development of this pattern, and it would
usually include a real work example; (3) applicability: in which situations is it appropriate
to use this particular pattern; (4) structure: what are the different elements of the pattern,
and how do they interact with each other; (5) collaborations: how may this pattern be
used with others to construct more complex solutions; and (6) consequences: what are
the architectural, performance, overhead, or other implications of the deployment of the
specific pattern.

Proxy Service Pattern

• Intent: The proxy pattern is used to provide a surrogate for the actual service
provider in a way that its existence is transparent to clients. Even though clients
interact with the proxy, they are unaware of its existence.

• Forces: Interacting with proprietary systems or frameworks places considerable
restrictions on the flexibility of development, especially when one is dealing with
legacy systems or deprecated frameworks. The proxy pattern provides a Web
service interface to proprietary interfaces behind an appropriately constructed
service point. A proxy usually implements an equivalent interface as the propri-
etary system it serves as a surrogate to. The proxy intercepts incoming messages,
translates them to the proprietary interface, and passes them to the actual system,
often after possibly performing certain additional tasks

• Applicability: The best use of the proxy pattern is in prolonging the usefulness of
enterprise legacy systems by enabling their access over the SOA enterprise bus.
Rather than re-implementing the subsystem that supports certain (possibly mis-
sion critical) business processes, such systems are hidden behind a proxy service,
which acts effectively as its connector to the service architecture. Variants of the
pattern are protection proxies (controlling access to the original service), or smart
references (taking additional actions when the target service provider is accessed).
An example is the Beauty Shop cosmetics retail site (URL: http://
www.beautyshop.gr), which is supported by legacy IBM mainframes in an enter-
prise system used for over two decades to provide retail operations for a brick-and-
mortar chain of retail shops. The shop catalog data can be made available as a web

208 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

service to an extensive network of resellers. Thus, access to catalog data would be
made possible via a standard interface and clients would not require direct
communication with the back end.

• Structure: The interactions of the participants of the proxy service pattern are
shown on the UML sequence diagram in Figure 3(a). A UML class diagram that
illustrates the static structure of the pattern is illustrated in Figure 3(b).

• Collaborations: The proxy may interact with a service provider service or delegate
requests to it.

• Consequences: The proxy pattern provides a level of indirection (transparent to
clients of the target service) when clients request services from a provider service.
The consequences of the level of indirection are based on the type of proxy.

A virtual proxy may implement performance optimizations, a remote proxy may hide the
actual location of the service provider and a protection or smart reference proxy may allow
additional tasks to be performed when the service provider is accessed. The performance
penalty that a proxy service pattern may introduce should be evaluated against the
additional development effort and resources required for the re-engineering of the legacy
system it abstract.

Figure 3(a). UML sequence diagram for the proxy service pattern

:Proxy :EShop
:Enterprise

System

getProductData()

getProductData(id,
consumer_id)

validate(consumer_id)

[valid consumer]
retrieveProductData(id)

:Consumer

Service Patterns for Enterprise Information Systems 209

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 3 (b). UML class diagram of the proxy service pattern.

Façade Service Pattern

• Intent: The façade pattern defines a service point for a subsystem that clients can
use in order to communicate with that subsystem.

• Forces: Within a subsystem, the dependencies between components add complex-
ity to clients. The façade pattern provides a service endpoint that hides most of the
complexity of directly interacting with the individual elements of the subsystem.
Clients need only be aware of the interface provided by the façade service.

• Applicability: The façade pattern can be used to provide a common service access
point to a collection of architecturally different end systems. Clients then can use
a single, standard service partner rather than having to implement a variety of
different protocols. For example, Amazon (URL: www.amazon.com) brings together
under the same roof catalogs of different consumer good categories, for example
books, electric goods and travel. The different elements of the catalog are hosted
in different subsystems implemented on different platforms using different frame-
works (this is a result of the business acquisition strategy of Amazon rather than
a sound systems architecture principle). However, the full Amazon catalog is
available to third parties as a searchable Web service.

• Structure: The UML class diagram that illustrates the static structure of the façade
service pattern is illustrated in Figure 4.

• Consequences: The deployment of the façade design pattern simplifies access to
the service, as clients do not need to know the implementation details of the
underlining systems.

<<interface>>
EShopIF

EShop.getProductData()

EShopProxy EShop

Consumer

validateConsumer()
getProductData()
getPersonalData()

accesses-system-via

210 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Consumer Façade

EShop

Subsystem

Registered
subsystem

Figure 4. Structure of the façade service pattern

Infomediator Service Pattern

• Intent: The infomediator pattern defines a service that encapsulates how a
collection of services interacts. The infomediator promotes loose coupling and
decreased system complexity by keeping objects from referring to each other
explicitly, and it allows varying their interaction independently.

• Force: Often, complex interaction patterns within a collection of services results
in an increased system complexity, as each service requires knowledge of every
other service. As a consequence, overall system behavior tends to be distributed
among different system components, making it difficult to modify even a single
element.

Reusability and adaptability of individual services is low, as even minor modifications
require considerable changes to all services interacting with it. The infomediator pattern
provides a service endpoint whose responsibility is twofold: (1) to encapsulate the rules
of interaction between services and (2) to coordinate the interactions of a collection of
communicating services by providing a centralized point of access, thus preventing
services from having to explicitly refer to others. Services do not need to know about each
other; they just need to know their infomediator and how to interact with it.

• Structure: The interactions of the participants of the infomediator service pattern
are shown on the UML sequence diagram in Figure 5(a), and a UML class diagram
that illustrates the static structure of the pattern is illustrated in Figure 5(b).

• Consequences: The clients are the primary benefactors of the infomediator pattern
since they may participate in complex interaction scenarios without the overhead
of adaptation to each peer separately. The infomediator service itself may imple-
ment different interaction strategies or policies, thus modifying the behavior of the
overall system transparently for the clients.

Service Patterns for Enterprise Information Systems 211

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Observer Service Pattern

• Intent: The observer pattern maintains a one-to-many dependency between
services. This service pattern notifies dependent services, the observers, for
changes in the state of the observed service, the subject, without exposing the state
of the subject itself.

• Forces: A subject may have any number of dependant observers. Once a subject
generates an event marking a change of state, all observers receive notifications
and, upon checking appropriate conditions, proceed to take a predefined action.
Often, conditions relate to composite events, that is, they depend on two or more
events joined by logical operators.

This pattern should be used when a change in state on one service requires a change in
an unanticipated number of others. In more complex interaction situations, subjects may
be joined in collections and observers may be notified of events of common types
generated by any one of the subjects. In this case, we have the publish-subscribe
observer service pattern.

• Applicability: Workflow applications may often benefit by the use of the observer
pattern. In particular, when such applications are built on top of XML documents,
the observer service pattern may be used to synchronize them. For example, when

:Consumer :Infomediator :Retailer

sendList()

queryRetailers(reverse auction rules)

retrieve (retailer_id, WDSL)

return retailer_id

submitOrder()

selectWinner

requestQuote

return Quote

loop

loop

:UDDI
Directory

:Profile
Directory

Figure 5(a). UML sequence diagram of the infomediator service pattern

212 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Infomediator

Profile Directory

UDDI Directory

Consumer 0..* 0..*
Information Source11

business process descriptions are maintained as distributed XML representations
and changes to a particular process element are applied, this service pattern would
generate events which will trigger a chain of changes throughout the descriptors
according to the defined rules. The use of this pattern has proven particularly
useful in the context of Event-Condition-Action (ECA) rules for the synchroniza-
tion of learning objects formatted as XML metadata (Papamarkos et al., 2003).

• Structure: The interactions of the participants of the observer service pattern are
shown on the UML sequence diagram in Figure 6(a), and a UML class diagram that
illustrates the static structure of the pattern is illustrated in Figure 6(b).

• Consequences: There is a low coupling between subject and observer services.
Furthermore, observers may be functionally different and unrelated services as
long as they follow the pattern requirements. The responsibility of how to handle
a notification relies completely with the observer. The observer service pattern
implementation also allows for broadcasting. An undesirable result in the deploy-
ment of this pattern is that a delivery notification may take a relatively long time

Strategy Service Pattern

• Intent: The strategy pattern supports the definition of a set of related algorithms,
their separate encapsulation in independent services, and their interchangeable
use by allowing them to vary independently of their clients.

• Forces: The strategy service pattern relates to the case when there are multiple
pathways through an enterprise system for the completion of a specific process.
Different circumstances require that the process be better serviced by selecting
one of these pathways depending on the local context. Strategy removes the

Figure 5(b). UML class diagram of the infomediator service pattern

Service Patterns for Enterprise Information Systems 213

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

complexity of dealing with the specifics of each service request and taking an
appropriate decision by disconnecting the variant services from the enterprise bus
and controlling access via a single path.

• Applicability: Searching corporate resources for specific information may provide
the best illustration of the strategy pattern. Different searching approaches are
more appropriate depending on the type of data searched, for example, Page Rank
(http://www.google.com) (Brin & Page, 1998) is more appropriate for Intranet Web
pages; social network-based approaches (http://www.teoma.com) are more appro-
priate for e-mail searches; and Navigation Zone (http://www.navigationzone.net)
(Wheeldon & Levene, 2003) search is better suited to relational database investi-
gation. A client should not be aware of these different approaches but can only
query once for a particular area of interest, and the strategy service pattern will
select the most appropriate way to carry out the search.

• Structure: The UML class diagram that illustrates the static structure of the
strategy service pattern is illustrated in Figure 7.

• Consequences: The strategy service pattern supports transparent operation while,
at the same time, it offers increased flexibility. Remote state and implementation
specifics are abstracted inside the strategy pattern, and thus clients can operate
remaining oblivious of such details.

Marketplace Service Pattern

• Intent: The marketplace service pattern interfaces transparently with both service
consumers and providers and implements pair-wise matching algorithms, aiming to
optimize patterns of demand and supply for a specific service.

Figure 6(a). UML sequence diagram of the observer service pattern

setState(…)

notifyObservers()

update()

update()

getState()

getState()

XMLDoc:Subject XMLObs1:
Observer

XMLObs2:
Observer

214 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Forces: Two actors interact with the marketplace: service consumers and service
suppliers. The role of the consumer is to register and advertise a list of requirements
for which suppliers bid competitively according to rules defined by marketplace
policies. Both consumers and suppliers interact directly only with the marketplace
service and may remain anonymous to each other until the end of the bidding
process.

Consumers interact with the marketplace in order to: (1) register (and authenticate); (2)
initiate a request for a matching supplier; and (3) receive notification on the end of the
competitive bidding process and the name of the winner. The supplier interacts with the
service in order to: (1) register its interest (and authenticate); (2) receive notification that
possible matches are available; (3) bid for suitable matches and receive notifications of
success or failure (this step may be repeated several times); and (4) receive notification
on the end of the matching process and the final result.
The marketplace implements access control and directory functionality, a common
vocabulary for resource descriptions, WSDL interfaces for both consumer and supplier
interaction, and last but not least, application-specific business logic that defines the
rules of matching suppliers to consumers. The latter is transparent to both consumers
and suppliers and may change according to the context of the transactions performed.

• Applicability: The marketplace pattern is useful when many-to-many relationships
are involved, for example, in reverse auctions for hospitality services procurement.
To support their operations, hotels require a constant stream of products, fre-
quently supplied by different vendors or vendor consortia. Procurement is thus a

<<interface>>
SubjectIF

attachToXMLDoc(Observer)
detachFromXMLDoc(Observer)
notifyObservers()

Subject

getState()
setState()

subjectState

<<interface>>
ObserverIF

update()

1 *

Observer

observerState

Figure 6(b). UML class diagram of the observer service pattern

Service Patterns for Enterprise Information Systems 215

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

core component of their operation and, indeed, a process that requires significant
efficiency optimizations. For this reason, in the past few years several business-
to-business exchanges have been established to provide such procurement
services (For example, http://yassas.com). Such exchanges match consumer needs
to supplier offers via a competitive bidding process, but because they are imple-
mented on proprietary platforms, they provide either a Web-based interface which
requires significant manual intervention by the user or require that the participating
actors modify their systems to implement vendor-specific interfaces (Nartovich &
Cunico, 2002). Due to the limitations of the Web-based approach and the increased
costs of the proprietary systems, both suppliers and consumers increasingly
demand that exchanges integrate their systems by providing Web service inter-
faces. In this context, the marketplace pattern can be used to provide a suitable
paradigm for the architecture of such exchanges.

• Structure: The interaction of the participants involved in the marketplace service
pattern is illustrated in Figure 8.

• Collaborations: The robustness factor of the marketplace service pattern imple-
mentation may be greatly improved by the combined use of two mechanisms. First,
marketplaces may protect their internal state from possible errors caused by
unpredictable interruptions of network service by including a client-generated,
globally-unique identifier (GUID) that can be stored and checked against at a later
time. The GUID provides for the identification of duplicate messages that must be
discarded so as to preserve the consistency of the marketplace internal state.
Second, the marketplace should implement an event-based queuing mechanism
that processes incoming requests so as to provide for high concurrency, robust-
ness, and predictable behavior. Thus, the marketplace service pattern is frequently
implemented in conjunction with the ESB pattern.

Figure 7. UML class diagram of the strategy service pattern.

...

AbstractStrategy

rankSearchResults()

BestTrailAlgorithmPageRankAlgorithm

Client

accesses

Search Engine

Concrete strategies

216 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Consequences: Clients are separated in distinct classes according to their role.
Each class needs only be aware of the rules of interaction with the marketplace and
changes in these rules affect only this class locally. The marketplace service may
modify its internal strategies for matching requests between different classes as
appropriate, transparently to all clients. The usefulness of the pattern increases
with the number of clients since it reduces the complexity of pair-wise interactions
from order N2 to order N, for N clients. The performance overhead due to indirection
should always be offset against this reduction in complexity.

Producer-Consumer Service Pattern

• Intent: The producer-consumer service pattern coordinates the asynchronous
production and consumption of items placed in a (bounded) information reposi-
tory, which acts as a shared resource. A producer client may only place items in
a nonfull repository. Similarly, a consumer client may only retrieve items from a
nonempty repository.

• Forces: The producer-consumer service pattern provides an effective and efficient
mechanism for decoupling system elements, thus removing the need for them to
execute in lockstep. It can be used to provide interoperability between messaging
systems, especially in the context of a heterogeneous environment. For example,
using the producer-consumer pattern, it is possible to provide flexibility in
implementing event persistence as well as to support guaranteed message delivery
and queue management. Moreover, this service pattern can enforce event ordering
and discard policies as well as provide limitations of message lifeline.

• Applicability: Often, transactions that execute in a distributed or heterogeneous
environment may have components that require significantly longer completion
times. Effectively, that singular transaction element will define the overall time for
transaction execution and may prolong its lifetime beyond some acceptable limit.
For example, every business-to-consumer (B2C) e-commerce site supports a
consumer shopping cart, the data of which at checkout must be used to update
inventories to be forwarded for fulfillment and payment received as part of the
contract conclusion between the shop and the customer. However, the use of
electronic payment methods, for example, Barclay’s e-PDQ, or other third-party
payment service providers may take up to several minutes to complete, time which
is considerably longer than the expected time (normally a few seconds) for user
interaction. In this case, the producer-consumer service pattern may be used to
queue payment instructions for a later time and proceed with the user interaction
scenario. This behavior may be made part of the contract with the consumer as it
frequently is, for example, http://currys.com, the digital branch of a UK high street
retailer of electric goods, defines in its terms and conditions that submitting an
order is treated as an offer to buy on the side of the consumer, and the supplier does
not accept it until after funds have been transferred to its accounts.

• Structure: The interactions of the participants of the producer-consumer service
pattern are shown on the UML communication (collaboration) diagram of Figure

Service Patterns for Enterprise Information Systems 217

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8(b). UML sequence diagram for the marketplace service pattern

Figure 8(a). Initializing a session with the marketplace service pattern

9(a). An alternative design of this pattern can be adopted by taking into consid-
eration that the implementation of the synchronization policy would end up cutting
across the various methods of the DataWarehouse class. In general, synchroni-
zation is a concern that is inherently crosscutting. There are a number of implica-
tions of crosscutting such as: (1) low cohesion of modular units resulting in a low
level of comprehensibility of code; (2) strong coupling between modular units

:Client :Server

requestServiceInitialization()

request()

session

confirmation

:Supplier :Server

requestServiceInitialization()

interestRegister()

notification

bid()

completion of auction

loop

218 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resulting in classes that are difficult to change and where changes in code are
difficult to trace; (3) low level of reusability of code; (4) low level of system
adaptability; and (5) programs that tend to be more error prone. Aspect-Oriented
Programming (AOP), introduced by Kiczales et al. (1997) is a term adopted to
describe an increasing number of technologies and approaches that support the
explicit capture of crosscutting concerns (or aspects) whereby the implementation
of functional components and crosscutting concerns is performed (relatively)
separately, and their composition and coordination (referred to as weaving) is
specified by a set of rules. Even though AOP is not bound to object systems, most
of the current approaches involve extensions to current object-oriented languages
that provide linguistic support for the explicit definition of crosscutting concerns,
together with special compilers (weavers) that can combine them with components.
In this example, we can place the synchronization policy of the producers-
consumers protocol in an aspect (and within a separate package) with a unidirec-
tional visibility over the functional component of the system (class DataWarehouse).
A UML class diagram that illustrates the aspect-oriented version of the static
structure of the pattern is illustrated in Figure 9(b).

• Collaborations: The façade service pattern may be used to provide federated event
channel and may be used in conjunction with the proxy pattern to connect to legacy
endpoints. Finally, the strategy service pattern may provide different implementa-
tions, for example, a choice of peer-to-peer or publish-subscribe architectures for
the design of producer-consumer systems.

• Consequences: Items may be placed in the repository even if no consumer is
available at the time. To prevent overflow, production requests first inquire and
then possibly wait on condition of a full repository. Similarly, consumption
requests should wait on an empty repository. When used in the context of
messaging, this service pattern removes the need for solutions based on propri-
etary application programming interfaces or frameworks and may provide bridging
services for CORBA, Java Messaging Service, and other message-oriented
middleware solutions.

Retrieve–Update Lock Service Pattern

• Intent: The retrieve-update service pattern is based on the readers-writers
concurrency protocol, and it enforces safe access to shared resources. To maintain
data integrity, a writer client would operate with self and mutual exclusion, whereas
readers would operate with mutual exclusion only.

• Forces: This service pattern addresses the need to concurrently access a shared
resource. The logic for coordinating read (retrieve) and write (update) operations
is encapsulated in the service provider and should be reusable, adaptable, and
clearly should ensure that starvation of clients is not impossible.

• Applicability: The retrieve-update service pattern provides synchronization ser-
vices for messaging systems. It can therefore provide the foundation for the

Service Patterns for Enterprise Information Systems 219

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 9(a). UML communication diagrams for operations placeItem() and
retrieveItem()

construction of the ESB architecture by protecting the integrity of information
barriers across systems. Thus, it is often seen as a component of the infrastructure.

Moreover, in the case of an air-travel booking portal like http://www.bookers.com,
correctness of prices at the time of purchase can be guaranteed using a retrieve-update

Client DataWarehouse

+placeItem(Item): void
+retrieveItem(): Item
+getSize(): int
+isEmpty(): Boolean

producer

consumer

*

*

Service Provider

Synchronization Policy

PC-Protocol

Implemented as an aspect.

Visibility (dependency) is
unidirectional.

Figure 9(b). UML class diagram for the (aspect-oriented) producer-consumer pattern

dw:DataWarehouse

[dw.size not full] placeItem(Item)

[dw.size > 0] retrieveItem()

dw:DataWarehouse

shared resource

220 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

pattern. In case a change of price is initiated by one of the participant airlines, the retrieve-
update pattern can guarantee that no sales are possible using the deprecated price, thus,
guaranteeing the integrity of all cooperating systems.

• Structure: The interactions of the participants of the retrieve-update service
pattern are shown on the UML communication diagram in Figure 10(a) for the read
(retrieve) operation and in Figure 10(b) for the write (update) operation. This
pattern may also adopt an AOP implementation along the lines of the producer
consumer pattern, thus, treating synchronization and scheduling as aspects
whose implementation will be placed in a set of classes in a separate package.

• Collaborations: The retrieve-update service pattern can be deployed to improve
robustness for the infomediator and marketplace patterns. For example, in the case
of time-sensitive bidding processes, the retrieve-update service pattern offers a
mechanism that guarantees protection and linearity of transactions.

• Consequences: The retrieve-update service pattern may provide significant effi-
ciency improvements by helping to avoid unnecessary waiting in accessing shared
resources. It can also result in significant improvements in two areas: (1) safety of
system operation by protecting from interference and (2) improving systems
liveliness by preventing starvation of business processes.

Future Trends

In this chapter, we discussed the use of service patterns in service-oriented enterprise
systems. We believe that the use of service patterns in this context offers significant
advantages and, thus, a catalog of service patterns would be of considerable value both
as a best-practice guide for practitioners and also as a starting point for further research
in their role in software engineering. To this end, we introduced a brief catalog of some
important service patterns to initiate this discussion. Each pattern was discussed in terms
of a brief description of its role in the context of selected examples, and its functionality
was illustrated in terms of applicable UML diagrams. We also presented recommenda-
tions on their deployment and implementation and discussed practical usage scenarios.
This discussion highlights several commonalities between the different patterns. In-
deed, in many cases, they have a meditative role at various levels between systems
components, and they effectively support transparency in distributed and heteroge-
neous situations. Hence, different combinations of the service patterns can be used in
the context of diverse enterprise environments to tailor the implementation of the ESB
to the particular requirements of specific organizations. Even though, conceptually, the
ESB abstraction offers a generic fabric for constructing SOAs, its actual design and
mapping to existing operational systems will differ dramatically depending on the
situation under which it operates. To be sure, in the next few years, as SOAs become
extensively deployed, more patterns are likely to emerge customized to novel implemen-
tation conditions.

Service Patterns for Enterprise Information Systems 221

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 10(a). UML communication diagram for a read operation

Figure 10(b). UML communication diagram for a write operation

[synchronization constraints]
1. read()

wishToRead()

if (no active writers) and
(no waiting writers) then {

if (waiting readers) then
(notify waiting readers);

(increment active readers);
}

else {
(increment waiting readers);
wait;

}

2. (update scheduling semantics)

3. (update synchronization semantics)

if (waiting writers) and
(no active readers) then

(notify waiting writers);

(decrement active readers);

:MessageRepository:Manager

:Manager

[synchronization and scheduling constraints]
1. write()

wishTowrite()

:MessageRepository

2. (update scheduling semantics)

3. (update synchronization semantics)

if (no active writers)
and (no active readers) {

if (waiting writers) then {
(increment waiting writers);
wait;

}
else (increment active writers);

else { // some client is active
(increment waiting writers); wait; }

if (waiting writers) then {
(increment waiting writers);
wait;

}

if (waiting writers) then notify them
else if (waiting readers) then notify them;

(decrement active writers);

222 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In this chapter, we initiated the discussion on the use and collection of service patterns
for the construction of efficient and effective SOAs. We anticipate that both software
engineering researchers and practitioners will benefit from this discussion and will carry
this work forward.

References

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S.
(1977). A pattern language: Towns, buildings, construction. Oxford: Oxford
University Press.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine,
Computer Networks and ISDN Systems, 30(1-7).

Burner, M. (2003, March). The deliberate revolution: Transforming integration with XML
Web services. ACM Queue, 1(1).

Fowler, M. (2002). Patterns of enterprise application architecture. Addison-Wesley.
Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of

reusable object-oriented software. Reading, MA: Addison-Wesley.
Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C. V., Loingtier, J.-V., &

Irving, J. (1997, June 9-13). Aspect oriented programming. Proceedings of the 11th
European Conference on Object-Oriented Programming (pp. 220–242), Jyväskylä,
Finland.

Kreger, J. (2003). Conceptual architecture for Web services. Cambridge, MA: World
Wide Web Consortium.

Larman, C. (2002). Applying UML and patterns: An introduction to object-oriented
analysis and design and the unified process (2nd ed.). Prentice Hall.

Lea, D. (1999). Concurrent programming in Java: Design principles and patterns (2nd
ed.). Addison-Wesley.

Monday, P. B. (2003). Web services patterns: Java edition. APress.
Nartovich, A., & Cunico, H. (2002). B2B e-marketplace with WebSphere Commerce v. 5.4.

IBM Redbooks.
Papamarkos, G., Poulovassilis, A., & Wood, P. T. (2003, September 7-8). Event-condi-

tion-action rule languages for the semantic Web. In I. F. Cruz, V. Kashyap, S.
Decker, & R. Eckstein (Eds.), Proceedings of the first International Workshop on
Semantic Web and Databases (pp. 309–327), Humboldt-Universität, Berlin, Ger-
many.

Roussos, G. (2004, April). The Infomediator service pattern for mobile services (Tech.
Rep. No. BBKCS-04-05). Birkbeck: University of London, School of Computer
Science and Information Systems.

Szyperski, C. (2002). Component software: Beyond object-oriented programming (2nd
ed.). Addison-Wesley.

Service Patterns for Enterprise Information Systems 223

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wheeldon, R., & Levene, M. (2003, November 10-12). The best trail algorithm for
assisted navigation of Web sites. Proceedings of the 1st Latin American Web
Congress (pp. 166- 178), Santiago, Chile.

224 Constantinides and Roussos

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section III

Mobile Services and Agents

Concepts and Operations of Two Research Projects 225

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XI

Concepts and
Operations of Two

Research Projects on
Web Services and

Mobile Web Services
Zakaria Maamar

Zayed University, United Arab Emirates

Abstract

Today, Internet technologies are enabling a wave of innovations that have an important
impact on the way businesses deal with their partners and customers. Most businesses
are moving their operations to the Web for more automation, efficient business
processes, and global visibility. Web services are one of the promising technologies
that help businesses in achieving these operations and being more Web-oriented.
Besides the new role of the Internet as a vehicle of delivering Web services, a major
growth in the field of wireless and mobile technologies is witnessed. Because users are
heavily relying on mobile devices to conduct their operations, enacting Web services
from mobile devices and possibly downloading these Web services for execution on
mobile devices are avenues that academia and industry communities are pursuing. M-
services denote the Web services in the wireless world. In this chapter, two research
initiatives carried out at Zayed University are presented and referred to as SAMOS,
standing for Software Agents for MObile Services, and SASC, standing for Software
Agents for Service Composition.

226 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Overview

Today, several businesses are adopting Web-based solutions for their operation, aiming
for more process automation and more worldwide visibility. Thanks to the Web technol-
ogy, users from all over the world can satisfy their needs by browsing and triggering the
services of these businesses. Such services are usually referred to as Web services
(Boualem, Zeng & Dumas, 2003). The advantages of Web services have already been
demonstrated in various projects and highlight their capacity to be composed into high-
level business processes. For example, a vacation business process calls for the
collaboration of at least four Web services: flight reservation, accommodation booking,
attraction search, and user notification. These Web services have to be connected with
respect to a certain flow of control (first, flight reservation, then accommodation booking
and attraction search). Multiple technologies are associated with the success of Web
services, namely, WSDL (Web Services Definition Language), UDDI (Universal Descrip-
tion, Discovery, and Integration), and SOAP (Simple Object Access Protocol) (Curbera,
Duftler, Khalaf, Nagy, Mukhi & Weerawarana, 2002). These technologies support the
definition, advertisement, and binding of Web services.
Besides the Web expansion, we witness the tremendous progress in the field of wireless
technologies. Telecom companies are deploying new services for mobile devices.
Reading e-mails and sending messages between cell phones are becoming natural.
Surfing the Web, thanks to the Wireless Application Protocol (WAP), is another
evidence of the wireless technology development. The next stage (if we are not already
in it) for telecom and IT businesses is to allow users to enact Web services from mobile
devices and, possibly, to make these Web services runnable on mobile devices. M-
services (M for mobile) denote these new type of Web services (Maamar & Mansoor,
2003).
It is accepted that composing multiple services (whether Web services or M-services)
rather than accessing a single service is essential. Berardi et al. (2003) report that
composition addresses the situation of a client’s request that cannot be satisfied by any
available service, whereas a composite service obtained by combining a set of available
services might be used. Searching for the relevant services, integrating these services
into a composite service, triggering the composite service, and monitoring its execution
are among the operations that users will be in charge of. Most of these operations are
complex, although repetitive, with a large segment suitable for computer aids and
automation. Therefore, software agents are deemed appropriate candidates to assist
users in their operations (Jennings, Sycara & Wooldridge, 1998).
Throughout this chapter, two research initiatives that our research group is conducting
at Zayed University are presented. These initiatives are respectively SAMOS, standing
for Software Agents for MObile Services, and SASC, standing for Software Agents for
Service Composition. Both initiatives deal with the composition of services using
software agent-oriented approaches. This chapter is structured as follows. The Back-
ground section outlines the concepts that are used in our research work, such as mobile
computing and software agents. The next section overviews some research projects
related to mobile computing. The SAMOS Research Initiative and SASC Research

Concepts and Operations of Two Research Projects 227

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Initiative sections present SAMOS and SASC in terms of architecture, types of agents,
and operation. In the last section, we draw our conclusions.

Background

Mobile Computing

Mobile computing refers to systems in which computational components, either hard-
ware or software, change locations in a physical environment. The ability to move from
one location to another is because of the progress in several technologies: component
miniaturization, wireless networks, and mobile-code programming languages. Categories
of mobility include (Wand & Chunnian, 2001): hardware mobility, software mobility, and
combined mobility. A code that is downloaded from a server to a mobile phone combines
both hardware and software mobility. The Overview of Some Research Projects Related
to Mobile Computing section provides more details on mobile computing using research
projects as examples.

Web Services and M-Services

A Web service is an accessible application that can be automatically discovered and
invoked by other applications and humans. An application is a Web service if it is
(Benatallah et al., 2003): (i) independent as much as possible from specific platforms and
computing paradigms; (ii) developed mainly for interorganizational situations rather
than for intraorganizational situations; and (iii) easily composable so its composition
with other Web services does not require the development of complex adapters.
Two definitions are associated with an M-service (Maamar & Mansoor, 2003). The weak
definition is to remotely trigger a Web service for execution from a mobile device. In that
case, the Web service acts as an M-service. The strong definition is to wirelessly transfer
a Web service from its hosting site to a mobile device where its execution happens. In
that case, the Web service acts as an M-service that is: (i) transportable through wireless
networks; (ii) composable with other M-services; (iii) adaptable with regard to the
computing features of mobile devices; and (iv) runnable on mobile devices. In both
SAMOS and SASC initiatives, only the M-services that comply with the strong definition
are considered.
The differences between Web services and M-services are depicted at two levels. The
first level concerns the communication medium (wired channel for Web services versus
wireless channel for M-services). And the second level concerns the location of where
the processing of the service occurs (server side for Web services versus user side for
M-services).

228 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In Maamar, Benatallah, and Mansoor (2003), we introduced the concept of service chart
diagram as a technique for modeling and specifying the component services that
participate in composite services. A service chart diagram enhances the state chart
diagram of UML. In fact, the emphasis this time is on the context surrounding the
execution of a service rather than only on the states that a service takes (Figure 1).
A service chart diagram wraps the states of a service into five perspectives, each
perspective has a set of parameters. The state perspective corresponds to the state chart
diagram of the service. The flow perspective corresponds to the execution chronology
of the composite service in which the service participates (Previous services/Next
services parameters; M/O respectively stands for Mandatory and Optional). The
business perspective identifies the organizations (that is, providers) that make the
service available (Business parameter). The information perspective identifies the data
that are exchanged between the services of the composite service (Data from previous
services/Data for next services parameters). Because the services participating in a
composition can be either mandatory or optional, the information perspective is tightly
coupled to the flow perspective with regard to mandatory data and optional data. Finally,
the performance perspective illustrates the ways the service can be invoked for execution
(Performance type parameter).

Software Agents

A software agent is a piece of software that autonomously acts to undertake tasks on
behalf of users (Jennings et al., 1998). The design of many software agents is based on
the approach that the user only needs to specify a high-level goal instead of issuing
explicit instructions, leaving the how and when decisions to the agent. A software agent
exhibits a number of features that make it different from other traditional components
including autonomy, goal orientation, collaboration, flexibility, self-starting, temporal
continuity, character, communication, adaptation, and mobility. It is noted that not all of
these characteristics have to embody an agent.

���������
	�
���
���
����
�

�������
�
����
����
�

�
��������

��	

�

�

��
���
�
�
����
�������

�
��
�
����
�������

�
���
���

�
����

���
��

��

����
�� ����
��
�

����
�
!

����
�� ���

Figure 1. Service chart diagram of a component service

Concepts and Operations of Two Research Projects 229

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Besides the availability of several approaches and technologies related to the deploy-
ment of Web services (for example, SOAP, UDDI, Salutation), they are all tailored to a
context of type wired. In a similar context, all the computing resources are fixed and
connected through a permanent and reliable communication infrastructure. The applica-
tion of these approaches and technologies to a context of type mobile computing is not
straightforward. Indeed, major adjustments are required because of multiple obstacles
ranging from potential disconnections of mobile devices and unrestricted mobility of
persons to power scarcity of mobile devices and possibility of capturing the radio signals
while in the air. These obstacles highlight the suitability of software agents as potential
candidates to overcome them. First, an agent is autonomous. Thus, it can make decisions
on the user’s behalf while this one is disconnected. Second, an agent can be mobile. Thus,
it can move from one host to another. Continuous network connectivity is not needed.
Third, an agent is collaborative. Thus, it can work with other agents that identify, for
example, the providers of Web services. Last but not least, an agent is reactive. Thus,
it can monitor the events that occur in the user’s environment, so relevant actions can
be promptly taken.

Overview of Some Projects Related to
Mobile Computing

There exist several research projects that have studied how mobile devices can change
the way of doing business and undertaking operations. In HP Laboratories, the authors
in Milojicic et al. (2001) worked on delivering Internet services to mobile users. This work
was conducted under the project Ψ for Pervasive Services Infrastructure (PSI). The Ψ
vision is “any service to any client (anytime, anywhere)”. The project investigated how
offloading parts of applications to midpoint servers can enable and enhance service
execution on a resource-constrained device.
The Odyssey project aimed at providing system support for mobile and adaptive
applications (Noble et al., 1997). Odyssey defined a platform for adaptive mobile data
access on which different applications, such as Web browser, video player, and speech
recognition, can run on top. The Odyssey approach is to adjust the quality of accessed
data to match available resources.
Ninja aimed at suggesting new types of robust and scalable distributed Internet services
(Ninja, 2001). The objective in Ninja is to meet the requirements of an emerging class of
extremely heterogeneous devices that would access these services in a transparent way.
In Ninja, the architecture considered four elements: bases, units, active proxies, and
paths. Proxies are transformational intermediaries that are deployed between devices and
services to shield them from each other. A service discovery service is also suggested
in Ninja for two reasons: (i) enable services to announce their presence and (ii) enable
users and programs to locate the announced services.

230 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SAMOS Research Initiative

In addition to the role of the Internet as a vehicle of provisioning Web services, it is
noticed that more Web services will be delivered to people who use mobile devices and,
particularly, to those who are on the move most of the time (for example, sales represen-
tatives). It is also noticed that mobile devices are being enhanced with extra computing
resources and advanced functionalities (Yunos, Gao & Shim, 2003). Unfortunately, the
growth in the development and use of mobile devices is subject to multiple challenges.
For instance, mobile devices are still bound to their batteries for operation, which leads
to limit, to a certain extent, their computation performance.
It occurs that mobile users have to postpone their operations because they lack
appropriate facilities running on their mobile devices (for example, an application that
converts a drawing file into a format that the user’s mobile device can display). In
SAMOS, we support such users by allowing them: (i) to search for additional facilities,
when needed; (ii) to fetch these facilities to their mobile devices; and (iii) to conduct these
two operations in a transparent way. Various solutions are put forward to handle these
points and are discussed throughout this part of the chapter. A solution to point (i)
consists of devising brokering mechanisms. A solution to point (ii) consists of using
wireless communication channels. Finally, a solution to point (iii) consists of using
Software Agents (SAs) to make the search for and fetch the facilities transparent to users.

Architecture and Software Agents of SAMOS

Brokering mechanisms and SAs are considered in the design and development of
SAMOS. The salient features of the architecture of SAMOS are:

• Three types of SAs: user-agent, provider-agent, and device-agent. The first type
is associated with users of M-services, whereas the second and third types are
associated with providers of M-services.

• A software platform, called Meeting Infrastructure (MI), is headed by a supervisor-
agent. This MI has a brokering role (Maamar, Dorion & Daigle, 2001).

• Two types of delegates, namely, provider-delegate and user-delegate. Delegates
respectively interact on behalf of user-agents and provider-agents in the MI.

• Storage servers that save the sequence of M-services to be submitted to mobile
devices for execution. Storage servers are spread across networks, and storage-
agents are responsible for managing these servers. In SAMOS, a sequence
corresponds to a composite service that has M-services as primitive components.

Figure 2 illustrates the architecture of SAMOS. It consists of four parts: user, provider,
MI, and storage. The MI and storage parts are wirelessly linked to the user component,
whereas the MI and storage parts are linked to the provider component with wires.

Concepts and Operations of Two Research Projects 231

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The user part consists of users and user-agents. User-agents accept users’ needs,
convert them into requests, and submit them to user-delegates. The supervisor of the MI
creates user-delegates on requests from user-agents. To satisfy users’ requests, user-
delegates interact with provider-delegates.
The provider part consists of providers, provider-agents, and device-agents. Provider-
agents act on behalf of providers by advertising their M-services to user-delegates
through provider-delegates. Plus, provider-agents monitor the behavior of providers
when new M-services are offered and, thus, need to be announced. In Figure 2, M-
services are gathered into a bank on which provider-agents and device-agents reside.
Provider-agents create provider-delegates. In the provider part, device-agents support
the work of provider-agents, whereas the role of device-agents is to wrap the M-services
before they are sent to mobile devices for execution. The rationale of device-agents is
to consider the differences that exist between mobile devices (for example, screen size,
processor power).
The MI part is a software platform in which user-delegates and provider-delegates
interact in a local and secure environment (Maamar et al., 2001). In an open environment,
most of the interactions occurring between requesters of services and providers of
services are conducted through third parties (referred to as brokers). Despite its
important role, a third party can easily become a bottleneck. To overcome this problem,
requesters and providers need a common environment in which they meet and interact
directly. The MI corresponds to this common environment. In SAMOS, the supervisor-

�

���"���������
��
�

#�
�
$
%
"��

�����$
�
$
%
"��

&��
��������

&��
�������� &��
��������

#�
�
#�
�'�"
��

�����$
�'�"
��
�
���
'�"
��

�
	
������
�"
��

���(���
�'�
����
�

�����$
�

�����"

�
��
��

�'�
����
�
�'�
����
�
)
*

���

������������

�����"
'�"
���

+��
%
�������
�����

+��
$�����
�����

�����"

�
��
�

�����"

�
��
��

Figure 2. Architecture of SAMOS

232 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

agent of the MI has several responsibilities including monitoring the interactions that
occur within the MI and making the MI a safe environment.
The storage part receives the sequence of M-services that will be submitted to mobile
devices for performance. In SAMOS, one of the operation principles is to submit the M-
services to mobile devices for execution one at a time. This restriction is due to the limited
resources of these devices. However, the restriction can be handled (that is, adjust the
number of M-services to be submitted) based on the computing resources of a mobile
device and the bandwidth of the wireless communication channels. Several advantages
are obtained from the use of storage servers. For instance, a user-agent does not have
to deal with several providers. Its unique point of contact for getting the M-services is
the storage-agent. The same thing applies to device-agents that will only be interacting
with few storage-agents instead of multiple user-agents. Security is increased for both
users and providers. Indeed, storage servers are independent platforms where security
controls are carried out.

User-Oriented Components

A user-agent resides in a mobile device. First, the user interacts with the user-agent to
arrange requests. After submitting those requests to the user-delegate, the user-agent
takes a standby state and waits for notifications from its user-delegate. Notifications
concern the sequence of M-services that satisfies the user’s requests. Before executing
them on the user’s device, the M-services are put in a storage server. The MI supervisor-
agent suggests to the user-delegate the storage server to be used based, for example, on
the server’s location. To download the M-services one at a time from the storage server
to the user’s device, the user-agent communicates with the storage-agent. The user-
agent keeps track of the execution of the M-services before it asks the storage-agent to
submit further M-services. When an M-service is received, the executed M-service is
deleted from the mobile device. Finally, the user-agent informs the user about the
completed requests.
A user-delegate resides in the MI, acting on behalf of the user-agent. The user-delegate
receives the user’s requests from the user-agent. Afterward, it interacts with provider-
delegates. The purpose of these interactions is to match the requests of users to the M-
services of providers that are announced. In case there is a match (we assume that there
is always a match), the user-delegate designs the sequence of M-services that satisfies
the user’s requests. Information about this sequence is sent afterward to the storage-
agent. The objective is to make the storage-agent ready for receiving the M-services from
device-agents. Furthermore, the user-delegate notifies the user-agent about the se-
quence of M-services it has prepared for its user. To set up a sequence, the storage-agent
knows the M-service that comes before and after the M-services to be submitted by a
device-agent (flow perspective of a service chart diagram, Figure 1). Instead of creating
a user-delegate on a mobile platform and shipping that delegate to the MI, we suggested
to perform this operation in the MI for two main reasons: (i) even if we expect a major
improvement in the resources of mobile devices, those resources have to be used in a
rationale way and (ii) the wireless connection that transfers the user-delegate to the MI
is avoided.

Concepts and Operations of Two Research Projects 233

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Provider-Oriented Components

A Provider-agent resides in a provider site running on top of its resources such as M-
services. Provider-delegates broadcast the M-services to user-agents through user-
delegates. The provider-agent is in constant interaction with its provider-delegate. For
instance, it notifies the provider-delegate about the negotiation strategy it has to follow
with user-delegates.
A device-agent resides in a provider site. Its responsibility is to wrap the M-services
according to the features of the devices to which these M-services will be submitted for
performance. Initially, the M-services are sent to storage servers. The provider-agent has
already submitted the contact details of the storage server to the device agent. We recall
that the user-delegate informs the storage-agent of the storage server about the M-
services it will receive. Double checking the information that user-delegates and
provider-delegates submit to a storage-agent offers more security to the agents of
SAMOS.
A provider-delegate resides in the MI, acting on behalf of a provider-agent. In SAMOS,
the provider-delegate is responsible for interacting with user-delegates regarding the M-
services it offers. In addition, the provider-delegate interacts with its provider-agent for
notification purposes. Notifications are then forwarded to device-agents for action. We
recall that the provider-agent is responsible for creating the provider-delegate and its
transfer to the MI.

MI-Oriented Components

The supervisor-agent resides in the MI and has several responsibilities: it supervises the
operations that occur in the MI; it mediates in case of conflicts between user-delegates
and provider-delegates; it sets user-delegates and assigns them to user-agents; it checks
the identity of provider-delegates when they arrive from provider sites; and finally, it
suggests to user-delegates the storage server to be used.

Storage-Oriented Components

A Storage-agent runs on top of a storage server. This server saves the M-services to be
sent to mobile devices for performance. According to the information on the sequence
of M-services it receives from the user-delegate, the storage-agent arranges the se-
quence as the M-services start arriving from providers. As soon as this sequence is
completed, it notifies the user-agent in order to get ready for receiving the M-services.
Based on the requests it receives from the user-agent, the storage-agent submits the M-
services one at a time. These M-services are ready for execution. The deletion of M-
services from the storage servers and mobile devices follows certain reliability rules.
These rules ensure that the M-services to be sent to a mobile device for execution are
successfully received and executed.

234 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Operation of SAMOS

The operation of SAMOS consists of five stages (Figure 3): agentification, identification,
correspondence, notification, and realization. The purpose of the agentification stage is
to set up the different infrastructures and agents that constitute SAMOS. User-agents
are established at the user level. Provider-agents and device-agents are established at
the provider level, too. Finally, the meeting infrastructure and storage servers, including
their storage-agent, are deployed. In Figure 3, operations (1.a) and (1.b) illustrate the
agentification stage.
The purpose of the identification stage is to inform the supervisor-agent of the MI about
the existence of users and providers who are interested in using SAMOS. At the
agentification stage, user-agents and provider-agents are respectively installed on top
of mobile devices of users and resources of providers. The outcome of the identification
stage is the creation of user-delegates and the reception of provider-delegates arriving
from provider-sites. Creation and reception operations occur in the MI. Provider-agents
notify the supervisor-agent about their readiness to submit the provider-delegates to the
MI. User-agents inform the supervisor-agent about the users’ requests they would like
to submit. In Figure 3, operations (2.a) and (2.b) illustrate the identification stage.
The purpose of the correspondence stage is to enable user-delegates and provider-
delegates to get together. In Figure 3, operation (3) illustrates this stage. User-delegates

�������	��
��
��������

�,�&��
��������

�
��
�
��������

�������
��������

���(���
�'�
����
�

�����$
�

�����"

�
��
��

��������������

�,�
�-�

�
���

�

�,.���"������

����
,���

$
�

�
���
��������

���������
��������

������������

��������
�������� ��������������

�,.�-�
�����

/,���'�
����
�
����������� /,.�-��������

�����������
0,�-��������
������������

1,��'�
����
�
������
�

2,��'�
����
�
������
�����

�
�
����

Figure 3. Operation of SAMOS

Concepts and Operations of Two Research Projects 235

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

have requests to satisfy, and provider-delegates have services to offer. First, the user-
delegate searches for the provider-delegates that have the M-services it needs. Two
approaches are offered (Maamar & Mansoor, 2003):
a) The user-delegate asks the supervisor-agent to suggest a list of provider-del-

egates that have the services it needs.
b) The user-delegate requests from the supervisor-agent the contact details of all the

provider-delegates that exist in the MI.

Independently of the approach that is adopted, the user-delegate submits its needs of
services to a shortlist of selected provider-delegates. Based on different parameters,
such as workload and commitments, provider-delegates answer the user-delegate. At
this time of our research in SAMOS, it is assumed that providers do not have services
in common. Consequently, there is no need for a user-delegate to look for the best service.
Once the user-delegate and provider-delegates agree on the M-services to use, notifi-
cations are sent to different recipients as it is discussed in the next stage.
The purpose of the notification stage is to inform different agents about the agreements
between user-delegates and provider-delegates. In Figure 3, operations (4.a), (4.b), (5),
and (6) illustrate this stage. Regarding the user-delegate, it is in charge of informing (i)
the user-agent about the sequence of M-services it has established to satisfy its user’s
request and (ii) the storage-agent about the sequence of M-services it will receive from
different device-agents. Regarding the provider-delegate, it notifies the provider-agent
about its agreements with a user-delegate. Based on the information it receives from its
provider-delegate, the provider-agent forwards this information to the device-agent.
This information is about the M-services that are involved and the storage server that
is used. Among the actions the device-agent takes is to submit the M-services to the
storage-agent of the storage server.
The purpose of the realization stage is to execute the sequence of M-services that the
user-delegate has designed. User-agent and storage-agent participate in this stage. We
recall that the user-delegate has already informed the storage-agent about the M-
services it will receive from device-agents. Before the user-agent starts asking the
storage-agent for the M-services it has, it waits for a notification message from the
storage-agent mentioning that the sequence is ready for submission and, thus, for
execution. In Figure 3, operation (7) illustrates the realization stage. In the realization
phase, reliability is one of the concerns that have been considered in SAMOS. We
consider a storage server as a backup server for the M-services. When a storage-agent
sends an M-service to a user-agent, the storage-agent keeps a copy of this service at its
level. The storage-agent deletes that M-service when the user-agent asks for the M-
service that follows the one it has received. For the last M-service of a sequence, the user-
agent sends an acknowledgment message to the storage-agent, so this M-service can
be deleted.

236 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Summary on SAMOS

In this part of the chapter, we discussed the use of M-services in the context of SAMOS.
M-services are seen as a logical extension to the widespread use of Web services in the
wireless world. Considering mobile devices as computing platforms is becoming a reality
as the networks that make them reachable are in constant progress, offering more
bandwidth and ensuring more reliability and efficiency. For instance, third-generation
communication systems are providing high quality streamed Internet content (Chisalita
& Shahmehri, 2001). In addition to higher data rates, these systems back the provision
of new value-added services to users, such as geographical positioning and mobile
payment.

SASC Research Initiative

Despite that provisioning Web services is a very active area of research and develop-
ment, very little has been done to date regarding their integration with M-services.
Several obstacles still exist including throughput and connectivity of wireless networks,
limited computing resources of mobile devices, and risks of communication channel
disconnections.
A framework that composes services, whether Web services or M-services, should offer
more opportunities to users to conduct operations regardless of (i) the type of services,
(ii) the location of users, and (iii) the computing resources on which services will be
performed. This situation is challenging due to the gap existing between wired and
wireless. First, Web services are associated with fixed devices. However, M-services are
associated with mobile devices. Second, the execution of Web services occurs in the
server side, whereas the execution of M-services occurs in the client side (according to
the strong definition of what an M-service is). Third, fixed devices are not resource-
constrained which is not the case for mobile devices. Despite the multiple opportunities
that could be offered to users, few research efforts are being dedicated to the composition
of Web services and M-services.
Because the information space is already full of several providers of services, a broker
that matches services to needs of users is one step in the design of the SASC framework

�
����
��

$�)
��
��
�
����3��"

���
����3��"

�.�

���(
������
����
� ���(
������
��
��
�

Figure 4. Needs versus services and services versus resources

Concepts and Operations of Two Research Projects 237

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Figure 4a). On the other side, because services require resources on which they can be
computed, there is a need for another broker as a second step in the design of the SASC
framework (Figure 4b). This broker matches services (those that satisfy users’ needs) to
the resources of providers.
In the previous paragraph, it is shown that two types of providers are involved: provider
of services and provider of resources (a provider can play both roles). Due to this
distinction of providers, a user with a fixed or mobile device is also seen in the SASC
framework as a provider of resources in the composition framework (that is, users’
devices are advertised to the broker of resources). Considering users as providers of
resources enables them to play an active role instead of always being limited to their
traditional passive role of consumers. The rationale is to take advantage of the spare
resources that are available on devices. It is observed that many of the systems are often
underutilized due to geography factor. Busy hours in one time zone tend to be idle hours
in another zone. Therefore, demands for computational resources can be met with hosts
that have idle resources. For the needs of the SASC initiative, the term composite service
denotes the set of component services (whether composite services, Web services, or
M-services) that take part in a composition.

Architecture and Software Agents of SASC

Figure 5 is the agent-based architecture upon which the SASC framework is deployed.
The architecture has three parts. The first part corresponds to providers of services (S)
or resources (R). The second part corresponds to consumers of services (that is, users)
with their fixed or mobile devices. Finally, the third part corresponds to the meeting
infrastructure (similar to the one that is used in SAMOS) on which brokers carry out the
matching operations between needs of users and services of providers and, later on,
between services of providers and resources of providers (Figure 4). The meeting
infrastructure connects the provider and consumer parts. To keep Figure 5 clear, the
different agents that populate the architecture are not represented. The core agents of
the framework are briefly described below.
Provider-agents are specialized into two types: resource-provider-agents and service-
provider-agents. Resource-provider-agents handle the execution of the services of
service-provider-agents. In the MI, resource-delegates and service-delegates, respec-
tively, represent resource providers and service providers (delegates are agents but are
given a different name to avoid confusion).
User-agents reside in the devices of users and are specialized into two types: fixed-user-
agents (for users of fixed devices) and mobile-user-agents (for users with mobile
devices). In the meeting infrastructure, user-delegates represent users to whom their
needs are submitted.
Broker-agents are specialized into two types (Figure 4): service-broker-agent and
resource-broker-agent. A service-broker-agent receives (i) notifications from service-
delegates about their offers of services and (ii) requests from user-delegates about their
needs of services. Whereas a resource-broker-agent receives (i) notifications from

238 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resource delegates regarding their respective offers of resources and (ii) requests from
service-delegates regarding their needs of resources.
The supervisor-agent is in charge of the MI. For instance, it creates user-delegates and
checks the security credentials of service-delegates and resource-delegates once both
arrive from their original host. It should be noted that the security of delegates is beyond
the scope of this chapter. However, the security of the services that run on computing
resources is discussed in Maamar, Hamdi, Mansoor, and Bhati (2003).

Rationale of User/Resource/Service-Delegates

• Because mobile devices are resource-constrained, several authors, such as Jailani,
Othman, and Latih (2002) and Messer, Greeberg, Bernadat, and Milojicic (2002),

Figure 5. Architecture of SASC

���(
�
����
����
�

���(
�
����
��
��
�

�
�
�
��
��

	�
�

��

�

��
��

��
�

�����$
�����
�
����
��������
��
��
�

�����
����
���$��
��
��
��$�
����
�
��

��

+��
%
����3���
%� �4��
����
5�)4�)
��
��
+��
$��3���
%�

#�
�'$
%
"��
�

�
	
������

����-�
�����

�0�&��
��������

�/�

&��

��

����
��

#�
��
��.�%
���������
$�$
���
�

��������
�
����
��

��������
�
����
��

��

��6��)
��
��
��$�
����
�
��
���������������������
����
��
%
�����

Concepts and Operations of Two Research Projects 239

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

observe that it is appropriate to offload computing from mobile devices to fixed
ones. In SASC, once the service-broker-agent matches users’ needs to providers’
services, the next step for a user-delegate is to integrate the component services
into a composite service. This integration requires resources that have to be used
in a rationale way when it comes to mobile devices. Therefore, it is preferable to
undertake the development of composite services in the MI rather than in mobile
devices. In addition, it may happen that the user-delegate needs further information
from a broker to complete its work on a composite service. Since the user-delegate
already resides in the MI, it locally interacts with the broker. This constitutes
another argument in favor of using user-delegates. Because of the advantages that
local interactions offer, even users of fixed devices are encouraged to develop their
composite services in the meeting infrastructure.

• When there is a match between the needs of a user and the offers of services, the
service-broker-agent locally notifies the user-delegate and remotely notifies the
relevant service-provider-agents. Since remote exchanges are subject to obstacles
(for example, network reliability, transfer safety), providers of services are associ-
ated with service-delegates. Service-delegates are transferred from the sites of
their respective provider-service-agents to the MI. After the first match is over, the
service-delegate informs the resource-broker-agent about its needs of resources;
certain services have been selected and, thus, need to be executed. Once the
resources are identified, the service-delegate remotely interacts with the resource-
provider-agents about the modalities of using their resource. Similarly to service-
delegates, it is more convenient if the interactions between service-delegates and
resource-provider-agents occur locally. Therefore, resource-provider-agents have
resource-delegates to act on their behalf in the meeting infrastructure.

Operation of SASC

The operation of SASC consists of six stages: initialization, advertisement, search for
services, search for resources, refinement, and completion. Below is a summary of the
main actions that occur in each stage.

Initialization stage:
• Agentify users and providers.
• Create supervisor and brokers and deploy them in the meeting infrastructure.-

Embody agents with operation mechanisms.

Advertisement stage:
• Create service-delegates and resource-delegates.
• Transfer delegates to the meeting infrastructure.

240 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Check delegates before they enter the meeting infrastructure.
• Advertise services and resources to brokers.

Search for services stage:
• Create user-delegates in the meeting infrastructure.
• Submit users’ needs to user-delegates.
• Interact with service-broker-agent.
• Match user’s needs with providers’ services.
• If positive match, return list of service-delegates to user-delegate.

Search for resources stage:
• Interact with resource-broker-agent.
• Match selected service with providers’ resources.
• If positive match, return list of resource-delegates to service-delegates.
• Select a specific resource-delegate for a service.
• Transfer service for execution to resource-delegate site.

Refinement stage:
• Combine outcomes of search for services and search for resources stages.
• Submit new details (version and processing type) on service to user-delegate.
• Finalize selection of service-delegate by user-delegate.

Completion stage:
• Work on next service based on details of previous service.
• Select a specific resource-delegate for a service.
• Transfer service for execution to resource-delegate site.
• Submit new details (version and processing type) on service to user-delegate.
• Finalize selection of service-delegate by user-delegate.Keep running completion

stage until all services are processed.

The purpose of the initialization stage is to perform the agentification of the components
of SASC (that is, provider and user). Each provider/user is associated with an agent that
exhibits a behavior in terms of resources to have, services to offer, and needs to satisfy.
User-agents and provider-agents are respectively installed on top of users’ devices and
providers’ resources/services. Moreover, further agents (supervisor, service-broker,
and resource-broker) are created in the MI. Afterwards, information on “services versus

Concepts and Operations of Two Research Projects 241

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

needs” is loaded into the knowledge base of the service-broker-agent (operation done
by the administrator of SASC). Likewise, information on “resources versus services” is
loaded into the knowledge base of the resource-broker-agent. Finally, the supervisor-
agent is embodied with the mechanisms of creating user-delegates as well as verifying
and installing service-delegates and resource-delegates.
The purpose of the advertisement stage is to notify the brokers about the available
services and resources that are made available to the user community. As a first step,
service/resource-provider-agents create service/resource-delegates and transfer them
to the MI. Because mobile devices are resource-constrained, the supervisor-agent
creates the resource-delegates on behalf of the users of these devices. Mechanisms that
embody a service/resource-delegate are several, including how to announce itself to the
supervisor-agent, how to register at the service/resource-broker-agent, and how to
notify its respective service/resource-provider-agent. When service/resource-delegates
access the meeting infrastructure, they register at the appropriate broker to submit their
offers of services/resources. It should be noted that service-delegates have a dual role
(Figure 4): (i) as a provider of services when they interact with the service-broker-agent
and (ii) as a consumer of resources when they interact with the resource-broker-agent.
The purpose of the search for services stage is to look for the services that satisfy a user’s
needs. On reception of the needs, the supervisor-agent creates a user-delegate to be in
charge of user satisfaction. First of all, the user-delegate interacts with the service-
broker-agent. The purpose is to identify the services of service-delegates that satisfy the
user’s needs. In case certain services are identified, the service-broker-agent notifies the
user-delegate and the service-delegate of these services. Because service-delegates may
have services in common, the user-delegate has to select a particular service-delegate.
However, the user-delegate delays its selection until further details on services are
provisioned. These details concern the cost, version, and processing type of each
service.
The purpose of the search for resources stage is to identify the resources that support
the execution of the services (that is, those that have been identified in the search for
services stage). In the MI, service-delegates trigger the matching between services and
resources. The identification of the resources is conducted service per service. As it will
be described, the selection of a resource for any service depends on the version and type
of processing (that is, remote processing or local processing) of the direct predecessor
service of this service. On receiving the service-delegates’ requests, the resource-
broker-delegate identifies the appropriate resource-delegates. Since several resource-
delegates can support the execution of the same service, a service-delegate has to select
a resource-delegate. In SASC, the selection strategy consists of minimizing the cost of
running a service on a resource considering the version and type of processing of this
service. At this time of the operation of SASC, each service-delegate knows exactly for
its service the version and type of processing to offer to the user-delegate.
The purpose of the refinement stage is to improve the outcome of the search for services
stage. Since a service-delegate is aware of the version and type of processing of the
service it will offer to the user-delegate, the service-delegate prepares a cost for that
service. In its offer, the service-delegate includes the cost of running the service on a

242 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

resource. After it receives all the offers from service-delegates, the user-delegate selects
for a service a particular service-delegate. The user-delegate minimizes the cost of getting
the service from all the service-delegates. When the user-delegate selects a service-
delegate, this service-delegate submits to the resource-provider-agent the following
details: (i) the service this resource-provider-agent will receive for processing; (ii) the
version of this service; (iii) the user-delegate that will trigger the processing of this
service; and (iv) the way this service will be invoked for processing.Completion is the
final stage in the operation of SASC. Here, the selection of any service directly depends
on the version and type of processing of its direct predecessor service. In addition to
the cost criterion that was used in the previous stages, another selection criterion is now
included, namely, location. Location criterion aims at gathering the maximum number of
services for execution in the same computing site1. By computing site, it is meant: location
of resource-provider-agents and current location of the user-delegate. By gathering
services in the same computing site, the following advantages are obtained: (i) extra
moves of the user-delegate to distant sites of resource providers are avoided and (ii) extra
remote communication and data exchange messages between user-delegates and re-
source-provider-agents are avoided, too. Therefore, the location criterion is privileged
over the cost criterion. When the details on a service are known, the user-delegate
requests from the service-delegates to identify the resource-delegates for the next
service. The work on service(i) is decomposed into three cases: Web version and remote
processing of service(i-1), Web version and local processing of service(i-1), and M-version
and local processing of service(i-1). To keep the chapter self-contained, only the first case
is presented.

Figure 6. Application of location criterion to service selection

�
"��

&�	
�4��
����
��'��+
.��
�����7�)
���
�	���
����"�

�	������

8
�

�	������

8
�

��

��

�	������

!�$

9��3
�
��
����
��'�7��
����
���

����3
����
����
:

9��3
�
�#�
�'$
%
"��
7��
����
���

����3
����
����
:

Concepts and Operations of Two Research Projects 243

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Web Version and Remote Processing of Service(i-1) Case

Since the processing of the Web version of service(i-1) has been remotely conducted, this
means that the user-delegate is in a different site to the execution site of service(i-1). Three
exclusive options are offered to the user-delegate to make a decision on service(i)
(Figure 6).
• Option 1: the processing of service(i) takes place in the site of service(i-1) in order

to comply with the location criterion. Therefore, the user-delegate requests from
the service-delegates of service(i) to check with the resource-broker-agent what
follows: does resource-delegate(i-1) support the remote processing of the Web
version of service(i)? If yes, then the service-delegates have to select resource-
delegate(i-1). Afterwards, the user-delegate selects a service-delegate based on the
cost criterion. As a result, the Web versions of service(i) and service(i-1) will be both
installed in site(i-1) of resource-delegate(i-1). The user-delegate will remotely pro-
cess them.

• Option 2: the processing of service(i) takes place in the site of the user-delegate in
order to comply with the location criterion. Option 2 exists because resource-
delegate(i-1) does not support the remote processing of the Web version of
service(i). Therefore, the user-delegate requests from the service-delegates of
service(i) to check with the resource-broker-agent what follows: does the resource-
delegate of the current site of the user-delegate support the local processing of the
Web version of service(i)? If yes, then the service-delegates have to select
resource-delegate(i-1). Afterwards, the user-delegate selects a service-delegate
based on the cost criterion. As a result, the Web version of service(i-1) and the Web
version of service(i) will be located in different sites. However, the user-delegate
will locally process service(i).

• Option 3: the processing of service(i) takes place in any site (different from the site
of the user-delegate and the site of service(i-1)). Option 3 happens because the site
of the user-delegate does not support the local processing of the Web version of
service(i). In that case, the location criterion does not hold. Search for services and
search for resources stages as previously described are carried out in order to
define the version and type of processing of service(i) and the respective resource-
delegate.

Summary on SASC

Future computing environments will involve a variety of devices with different capacities
in terms of processing power, screen display, input facilities, and network connectivity.
Furthermore, a variety of services will be offered to users making the use of these devices
important in their performance. In this second part of the chapter, we presented SASC
that aims at composing services whether Web services or M-services. The backbone of

244 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SASC is a software agent-based architecture that integrates several agents such as user,
provider, service, and resource. SASC also aims at provisioning services independently
of the location of users and the resources they may be using. Service provisioning has
relied on two selection criteria (execution cost and resource location) to identify which
resources should be assigned to which services.

Conclusion

In this chapter, we presented the research initiatives that are carried out @ Zayed
University on Web services and Mobile Web services. Among these initiatives, we cited
SAMOS, standing for Software Agents for MObile Services, and SASC, standing for
Software Agents for Service Composition. New issues that are related to mobile Web
services and their integrations with traditional Web services are raised, varying from low
bandwidth and high latency of wireless networks to screen sizes of mobile devices. To
deal with these issues, software agents are considered due to their various features. For
instance, a software agent is autonomous. Thus, it can make decisions on the user’s
behalf while this one is disconnected. Second, a software agent can be mobile. Thus, it
can move from one host to another. Continuous network connectivity is not needed. The
major progress happening in the wireless field will be offering the right mechanisms to
users to conduct their daily activities over a variety of mobile devices. Three major factors
should boost the penetration and expansion of mobile Web services, namely: personal-
ization, time-sensitivity, and context-awareness.

Acknowledgments

The author would like to thank the referees for their valuable comments and suggestions
of improvements. The author also acknowledges the contributions of Q. H. Mahmoud
(Guelph University, Canada) and W. Mansoor (Zayed University, U.A.E.) to SAMOS,
and B. Benatallah (University of New South Wales, Australia) and Q. Z. Sheng (Univer-
sity of New South Wales, Australia) to SASC.

References

Benatallah, B., Sheng, Q. Z., & Dumas, M. (2003, January/February). The SELF-SERV
environment for Web services composition. IEEE Internet Computing, 7(1).

Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., & Mecella, M. A. (2003).
Foundational vision for e-services. Proceedings of the Workshop on Web Ser-
vices, e-Business, and the Semantic Web (WES’2003) in conjunction with The 15th

Concepts and Operations of Two Research Projects 245

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conference On Advanced Information Systems Engineering (CAiSE’2003),
Klagenfurt/Velden, Austria.

Chakraborty, D., Perich, F., Joshi, A., Finin, T., & Yesha, Y. (2002). A reactive service
composition architecture for pervasive computing environments. Proceedings of
the 7th Personal Wireless Communications Conference (PWC’2002), Singapore.

Chisalita, I., & Shahmehri, N. (2001). Issues in image utilization with mobile e-services.
Proceedings of the 10th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE’2001), Boston, Massachu-
setts.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002,
March/April). Unraveling the Web services web: An introduction to SOAP, WSDL,
and UDDI. IEEE Internet Computing, 6(2).

Jailani, N., Othman, M., & Latih, R. (2002). Secure agent-based marketplace model for
resource and supplier broker. Proceedings of the 2nd Asian International Mobile
Computing Conference (AMOC’2002), Langkawi, Malaysia.

Jennings, N., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and
development. Autonomous Agents and Multi-Agent Systems, Kluwer Academic
Publishers, 1(1).

Maamar, Z., Dorion, E., & Daigle, C. (2001, December). Towards virtual marketplaces for
e-commerce. Communications of the ACM, 44(12).

Maamar, Z., Benatallah, B., & Mansoor, W. (2003). Service chart diagrams - Description
& application. Proceedings of the 12th International World Wide Web Conference
(WWW’2003), Budapest, Hungary.

Maamar, Z., Yahyaoui, H., Mansoor, W., & Bhati, A. (2003). Towards an environment
of mobile services: Architecture and security. Proceedings of the 2003 Interna-
tional Conference on Information Systems and Engineering (ISE’2003), Montreal,
Canada.

Maamar, Z., & Mansoor, W. (2003). Design and development of a software agent-based
and mobile service-oriented environment. e-Service Journal, Indiana University
Press, 2(3).

Messer, A., Greeberg, I., Bernadat, P., & Milojicic, D. (2002). Towards a distributed
platform for resource-constrained devices. Proceedings of the IEEE 22nd Interna-
tional Conference on Distributed Computing Systems (ICDCS’2002), Vienna,
Austria.

Milojicic, D., Messer, A., Bernadat, P., Greenberg, I., Fu, G., Spinczyk, O., et al. (2001).
Pervasive services infrastructure (Tech. Rep. No. HPL-2001-87). HP Laboratories,
Palo Alto, CA.

Ninja. (2001). The Ninja project. Retrieved August 15, 2004, from http://
ninja.cs.berkeley.edu

Noble, B. D., Satyanarayanan, M., Narayanan, D., Tilton, J. E., Flinn, J., & Walker, K. R.
(1997). Agile application-aware adaptation or mobility. Proceedings of the 16th
ACM Symposium on Operating Systems Principles, France.

246 Maamar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Wand, A. I., & Chunnian, L. (2001). Process support for mobile work across heteroge-
neous systems (Tech. Rep.). Norwegian University of Science and Technology,
Department of Information Sciences.

Yunos, H. M., Gao, J. Z., & Shim, S. (2003, May). Wireless advertising’s challenges and
opportunities. IEEE Computer.layers: network, service discovery, service compo-
sition, service execution, and application.

Endnote

 1 The use of the location criterion is backed by the work of Chakraborty, Perich, Joshi,
Finin, and Yesha (2002). In this work, a reactive service composition architecture
for pervasive computing environments has been designed. The architecture
consists of five layers: network, service discovery, service composition, service
execution, and application. We focus on the service execution layer. During the
execution of services, this layer might want to optimize the bandwidth required to
transfer data over the wireless links between services and, hence, execute the
services in an order that minimizes the bandwidth utilization. This optimization is
similar to the location criterion. With that criterion, the cross-network traffic
between the resources can be reduced, which avoids extra data exchanges between
distant resources.

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 247

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XII

Service-Oriented
Computing Imperatives

in Ad Hoc Wireless
Settings

Rohan Sen
Washington University in St. Louis, USA

Radu Handorean
Washington University in St. Louis, USA

Gruia-Catalin Roman
Washington University in St. Louis, USA

Christopher Gill
Washington University in St. Louis, USA

Abstract

Service-oriented computing is the latest step in a progression of programming paradigms
containing, among others, the object-oriented computing and component-oriented
computing paradigms. The service-oriented computing paradigm is characterized by
a minimalist philosophy, in that a user needs to carry only a small amount of code in
its local storage, and exploits other services by discovering and using their capabilities
to complete its assigned task. While the paradigm was born and reached a certain level
of maturity in wired networks, we examine the imperatives for service-oriented computing
in ad hoc wireless networks. An ad hoc wireless network is a dynamic environment by
necessity, which exhibits transient interactions, decoupled computing, physical mobility

248 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of hosts, and logical mobility of code. The motivation for this chapter is to understand
the imperatives for a viable service-oriented computing framework in ad hoc wireless
settings.

Introduction

Service-oriented computing is a new paradigm that is gaining popularity in distributed
computing environments due to its emphasis on highly specialized, modular and platform
agnostic code facilitating interoperability of systems. It borrows concepts from more
mature paradigms, such as object-oriented and component-oriented computing. This
results in a progression from object-oriented computing to component-oriented comput-
ing and, finally, to service-oriented computing, a new paradigm for designing and
delivering software. Just as an object encapsulates state and behavior at a fine level of
granularity, a service offers similar encapsulation at a larger scale. This evolution raises
the level of abstraction at which systems are engineered, while preserving beneficial
properties such as modularity, substitution, and encapsulation. Every participant in a
service-oriented computing system is a provider or user of a service, or both. The service-
oriented computing paradigm is characterized by a minimalist philosophy, in that a user
needs to carry only a small amount of code in its local storage, and exploits other services
by discovering and using their capabilities to complete its assigned task.
In this chapter, we examine the imperatives for service-oriented computing in ad hoc
wireless networks. Ad hoc wireless networks are collections of hosts capable of wireless
communication. Hosts within proximity of each other opportunistically form a network
which changes due to host mobility. An ad hoc wireless network is a dynamic environ-
ment by necessity, which exhibits transient interactions, decoupled computing, physical
mobility of hosts, and logical mobility of code. An important class of ad hoc mobile
systems is based on small, portable devices, and this class of systems is the focus of this
chapter. Such devices have limited storage capacity and battery power which restricts
the number of programs they can store and run locally. Service-oriented computing offers
a solution to this problem. By its very nature, service-oriented computing is designed
to facilitate sharing of capabilities while minimizing the amount of functionality a single
host needs to possess. Such a design is especially effective in ad hoc networks where
storage space on individual hosts is at a premium, yet a large number of hosts can
contribute small code fragments resulting in a rich set of capabilities being available in
the network as a whole.
Service-oriented computing has received much attention from researchers worldwide.
However, most of this work has been focused on architectures and implementations for
wired networks.
Migrating service-oriented computing to ad hoc networks is nontrivial and requires a
systematic rethinking of core concepts. Many lessons have been learned from the work
done in the wired setting, especially regarding description and matching of services.
However, the more demanding environment of an ad hoc wireless network requires novel
approaches to advertising, discovering, and invoking services. We envision such ad hoc
networks being used in a range of application domains, such as response coordination

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 249

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

by firefighters and police at disaster sites or command and control by the military in a
battlefield. Such scenarios demand reliability despite the dynamic nature of the under-
lying network.
A key issue with service-oriented computing in ad hoc networks is to mitigate the problem
of frequent disconnection and to ensure that some channel between the user and the
provider of a service is maintained for a sufficient duration. To deal with this, we introduce
a new concept that considers the issue of automatic and transparent discovery of
services and the maintenance of channels between an application and the services
needed to carry it out. We call this concept context sensitive binding, a novel way to
maintain the service provision channel between two entities dynamically as they move
through changing physical and logical contexts. This helps decouple concerns about
network availability and connectivity from concerns specific to service-oriented comput-
ing. It also facilitates simplifications in the software development process. Context
sensitive binding is put forth in this chapter as the foundation for reliable service
advertisement, discovery, invocation, and composition in ad hoc networks. Among other
things, this idea promises to facilitate the porting of wired network technologies to ad
hoc wireless networks as it mitigates some of the problems inherent to ad hoc networks.
We discuss these issues in more detail in the main section of this chapter.
The motivation for this chapter is to understand the imperatives for a viable service-
oriented computing framework in ad hoc wireless settings. We begin by examining
current technologies, algorithms, and capabilities that have been implemented for use in
wired networks as a baseline. We then extend these concepts to cater to the special
challenges of service-oriented computing in ad hoc networks and direct the reader’s
attention to research issues in this area. The rest of the chapter is organized as follows.
We cover information on existing service-oriented computing architectures and the
Semantic Web effort in the Background section. The section on Ad Hoc Wireless
Network Perspective on Service-Oriented Computing represents the main thrust of this
chapter and discusses the elements of a service-oriented computing framework, exam-
ining current technologies alongside our ideas on how these concepts may be applied
to ad hoc networks. We cover potential areas of research in the Future Trends section.
We summarize in the Conclusion section.

Background

In this section, we define the elements that make up a service-oriented computing
framework and then review some of the existing models that have been proposed using
these elements. Finally, we highlight the Semantic Web as an existing example of service-
oriented computing.

Characterizing the Service Elements

A service-oriented computing framework is a conglomerate of elements, each element
fulfilling a very specific role in the overall framework. We list the salient elements required

250 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

for a viable service-oriented computing framework and the criteria used to judge their
quality. We use this list as a basis for future discussion.

• The service description element is responsible for describing a service in a
comprehensive, unambiguous manner that is machine interpretable to facilitate
automation and human readable to facilitate rapid formulation by users. The aim is
to specify the functions and capabilities of a service declaratively using a known
syntax. A good service description mechanism must have a clear syntax and well-
defined semantics which facilitate matching of services on a semantic level.

• The service advertisement element is responsible for advertising a given service
description on a directory service or directly to other hosts in the network. The
effectiveness of an advertisement is measured as a combination of the extent of its
outreach and the specificity of information it provides up front about a service,
which can help a user determine whether he or she would like to exploit that service.

• The service discovery element is the keystone of a service-oriented computing
framework and carries out three main functions. It formulates a request, which is
a description of the needs of a user. This request is formatted in a similar manner
to the service description. This element also provides a matching function that
pairs requests to services with similar descriptions. Finally, it provides a mecha-
nism for the user to communicate with the service provider. A good discovery
mechanism provides a flexible matching algorithm that matches advertisements
and requests based on their semantics and maximizes the number of positive
matches giving the user a more eclectic choice of services for his or her needs.

• The service invocation element is responsible for facilitating the use of a service.
Its functions include transmitting commands from the user to the service provider
and receiving results. It is also responsible for maintaining the connection between
the user and the provider for the duration of their interaction. A good invocation
mechanism abstracts communication details from the user and, in the case of
network failure, redirects requests to another provider or gracefully terminates.

• The service composition element provides mechanisms to merge two or more
services into a single composite service which combines and enhances the
functions of the services being composed. A good service composition mechanism
leverages off each of the elements listed above to provide automatic composition
of services without human intervention.

Using Service Elements to Build Models

The elements described previously form the building blocks for most service-oriented
computing models. Various models entail the use of some or all of the elements described,
depending on their complexity. We review some of the more popular models as back-
ground to our work and highlight features unique to each model. The Service Location
Protocol (SLP) is designed for use on corporate LANs. Universal Description, Discovery
and Integration (UDDI) and Universal Plug and Play (UPnP) are designed for use on the

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 251

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Semantic Web. Salutation is a general service model originally created with communi-
cation between appliances and other equipment in mind. Jini is a more general model that
can be used on the Web and with a wide range of applications.
The Service Location Protocol (SLP) (Kempf & Pierre, 1999) was developed by the
SRVLOC working group of the Internet Engineering Task Force (IETF) with the idea of
creating a service-oriented computing standard that was platform independent for the
Internet community. In SLP, every entity is represented as an agent. There are three kinds
of agents: User Agents which perform service discovery on behalf of clients, Service
Agents which advertise locations and capabilities on the behalf of services and register
them with a central directory, and Directory
Agents which accumulate service information received from numerous Service Agents
in their repository and handle service requests from User Agents. An interesting feature
of SLP is that it can operate without the presence of a Directory Agent, that is, it does
not require a central service registry to function. User Agents search for a Directory
Agent by default, but if they do not receive any replies, they continue to operate directly
with peer agents. If a Directory Agent starts operating at some point in the future, it
advertises its presence and the User and Service Agents that receive the advertisement
automatically start using the Directory Agent as a central service repository.
SLP registers services using templates which follow a specific pattern. Requests are made
using a similar template though the parameters differ slightly. SLP’s ability to operate in
the absence of a Directory Agent makes it especially useful in ad hoc environments where
it is not feasible to have a central service registry. Overall, SLP offers a clean model that
is easy to conceptualize, and, due to its design, it can be implemented readily in modern
languages like C++ and Java.
Universal Description, Discovery and Integration (UDDI) (UDDI Organization, 2000)
was formulated jointly by IBM Corporation, Ariba Incorporated, and Microsoft Corpo-
ration. UDDI technology is aimed at promoting interoperability among Web services. It
specifies two frameworks, one to describe services and another to discover them. UDDI
uses existing standards such as Extensible Markup Language (XML) (XML Core
Working Group, 2000), Hypertext Transfer Protocol (HTTP) (Fielding et al., 1999), and
Simple Object Access Protocol (SOAP) (XML Protocol Working Group, 2003).
The UDDI model envisions a central repository which is called the UDDI Business
Registry (UBR). A simple XML document is used to specify the properties and capabili-
ties of a service. Registration with the UBR is done using SOAP. Information present in
a service description can include things like the name of the business that provides the
service, contact information for people in charge of administering the service, and
identifiers for the service and descriptions. The UBR acts as a mediator and assigns a
unique identifier to each business and each service. Marketplaces, search engines, and
enterprise-level applications query the UBR for services, which they use to integrate their
software better with other business entities like suppliers, dealers, and so forth.
The UDDI model is distinctive in that its approach looks at service-oriented computing
from a business process perspective. It envisions electronic interactions between
businesses resulting in trading of services and goods, much like the business-to-
business (B2B) model today but with enhanced capabilities and features. With the

252 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

backing of industry giants like Microsoft and IBM, the future of this technology looks
promising.
Universal Plug and Play (UPnP) (Microsoft Corporation, 2000) was developed by
Microsoft Corporation to facilitate seamless communication between networked devices
in close proximity to each other. UPnP leverages TCP/IP and the Internet for its
communication needs. It assumes a network that is dynamic with devices frequently
joining or leaving. A device, on joining a network, conveys its own capabilities on request
and learns about the capabilities of other devices. When it leaves the network, a device
does so without leaving behind any explicit evidence that it was there. Entities in the
network may be controllable devices or controllers. Controllers actively search for
proximal devices. The network is unmanaged in that there is no DNS or DHCP capability.
Instead, a mechanism called AutoIP (Miller, 2003) is used to allocate IP addresses.
In UPnP, a client, also called a control point, can undertake five kinds of actions. The
discovery action is based on the Simple Service Discovery Protocol (SSDP) (Goland, Cai,
Leach & Gu, 1998). It exchanges information about the device type, an identifier, and a
URL for more detailed information. During the description action, the control point uses
the URL obtained during the discovery action to get a detailed XML description of the
device. Then the control point sends a control message encoded in XML to a Control URL
using SOAP to discover the actions and parameters to which the discovered device
responds. The event action consists of a series of events formatted in XML using the
General Event Notification Architecture (GENA) (Cohen & Aggarwal, 1998) which
reports changes in the state of the service. The presentation action consists of
presenting a URL that can be retrieved by a control point, presumably in a format that
allows an end user to control the discovered device. At this point, UPnP assumes some
external architecture and protocol that handles subsequent interactions with the device.
UPnP uses multicast for discovery and unicast for service utilization and event notifi-
cation. Services and controllers are written using an asynchronous, multithreaded
application model.
UPnP requires a Web server to transmit device and control descriptions, though this
server is not required to be on the device itself. This requirement means that UPnP works
best on the Web and porting it to other environments, especially those with low-power
hosts, is nontrivial.
Salutation (Salutation Consortium, 2003) is an open standard service discovery and
utilization model formulated by the Salutation Consortium. The vision for Salutation is
not on the scale of the World Wide Web. Instead, Salutation hopes to promote
interoperability among heterogeneous devices in settings such as corporate LANs
where there is permanent connectivity from either wired networks or wireless gateways,
and disconnection is not an issue. In addition, Salutation strives to be platform,
processor, and protocol agnostic.
Salutation has two major components:

• (1) the Salutation Manager (SLM) which presents a transport-independent API
called the SLM-API and

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 253

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• (2) The Transport Manager (TM) which is dependent on network transport and
presents an SLM-TI interface between the Salutation Manager and the Transport
Manager.

Services are registered via a local SLM or by a nearby SLM connected to a client. Service
discovery occurs when SLMs find other SLMs and the services registered with them.
Capability exchange is done by type and attribute matching. The SLM protocol uses
Sun’s ONC RPC (Srinivas, 1995). Periodic checks by the client ensure that it has the most
current list of available services.
Salutation is interesting in that it solves a highly focused but widely relevant problem.
An ideal environment for a Salutation deployment is a busy office space where there are
a lot of computers, printers, fax machines, and other electronic devices. Using Salutation
to automatically discover and use devices within range eliminates the effort of individu-
ally configuring every single device. This makes Salutation a useful productivity-
enhancing tool.
Jini (Edwards, 1999) is a distributed service-oriented model developed by Sun
Microsystems. Services in a Jini system can be hardware devices, software components,
or a combination of the two. A Jini system has three types of entities: service providers,
lookup services, and users. A service provider multicasts a request for a lookup service
or directly requests a remote lookup service known to it a priori. Once the handle to a
lookup service has been obtained, the service provider registers a proxy object and its
attributes with the lookup service. The proxy object serves as a client-side handle to the
actual service. The user makes a request for some service by specifying a Java type (or
interface that the desired service must implement) and desired attributes. Matching is
done based on type and values. Once a candidate service is found, the proxy object
registered by the service provider is copied to the client using RMI (Sun Microsystems,
2003b). Clients use the proxy object to interact with the service.
The Jini model is designed for ubiquitous computing and is intrinsically scalable. It is
language and protocol independent (though Java and TCP/IP seem to be natural choices
for an implementation) and is resilient because multiple lookup services ensure that there
is no single point of failure. Jini holds much promise for middleware developers that use
the Java programming language and has been formulated with Java-like languages in
mind. Also, Jini is unique in that it introduces the idea of shipping a proxy object to the
client where it is used as a handle to the actual service. The proxy approach allows
complex services to reside on a server at a well-known location. The service then simply
has to encode its well-known location within its proxy and can then be called from any
client without that client having any knowledge of the actual location of the service. It
also mitigates the issue of establishing the protocol between the service and the user
since the proxy object hides from the end user all such communication.
These five models illustrate how various elements must come together and work as a
cohesive whole to deliver the promise of service-oriented computing. We now highlight
the practical feasibility of such models by focusing on a model that promises to evolve
the World Wide Web into a service-oriented Semantic Web. While much work has already
been done on this model, efforts continue to refine and augment its core.

254 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A Service-Oriented Computing Model at Work: The
Semantic Web

The largest deployment of a service-oriented computing model is the Semantic Web
(Berners-Lee, Hendler & Lassila, 2001). The Semantic Web effort aims to add logic to the
current World Wide Web so that machines can infer the meaning and spirit of the content
they handle. The vision is to evolve the Web into a collection of entities, each of which
may be a user or provider of services. The key technologies needed to deliver the
Semantic Web concept are (1) innovative naming systems that provide simple constructs
to describe complex objects, (2) relations that are machine interpretable, and (3) flexible
matching algorithms that can match user requests with services based on the meaning
of the request and service advertisement. Some issues of service-oriented computing,
such as providing a central service registry and reliable links between user and provider,
are mitigated since we can leverage the existing infrastructure of the World Wide Web.
Hence, the discovery and invocation elements are not especially significant in the Web
setting.
The Semantic Web uses a layered naming system. Lower level languages such as the Web
Services Description Language (WSDL) (W3C XML Activity on XML Protocols, 2003)
describe how the data is sent across the wires. This layer handles all application layer
protocol issues. Higher level languages describe what is being sent across and why. High
level description languages are required to be clear, concise, and support easy matching
between two entities. Ontologies are high level languages that capture the semantics of
an entity and its relation to other entities. An ontology is often itself structured into
layers. DAML+OIL (Horrocks, 2002) is a combination of a markup language to construct
ontologies (DAML) and an ontology inference layer (OIL) to interpret the semantics of
the description. It is currently the language of choice for formulating ontologies for Web
services. The lowest layer of the system provides the syntax and is encoded in XML
(XML Core Working Group, 2000) since it is a W3C standard and, hence, has maximum
outreach. Above the syntax layer is a framework that provides a basic set of objects and
constructs to describe entities and relations. In DAML+OIL, the Resource Description
Framework (RDF) (W3C Semantic Web Activity, 2003), also a W3C standard, fulfils this
functionality. However, RDF is not powerful enough to describe entire ontologies.
DAML+OIL fills this gap by extending the RDF concept to provide more constructs and
relations. Finally, DAML-S (Ankolekar et al., 2002) is an ontology specific to Web
services that has been built using DAML+OIL.
DAML-S can be used to encode both service advertisements and service requests. The
only remaining element is a matching algorithm that matches a service advertisement to
a request. Conventional matching algorithms perform exact matches, which are consid-
ered too rigid for this purpose. Many inexact matching algorithms have been proposed
to date, but due to constraints of space, we discuss just one suggested by Paolucci,
Kawmura, Payne, and Sycara (2002) for the Semantic Web. The algorithm compares
requests and advertisements and assigns a degree of similarity to each pair. Valid degrees
of similarity are: exact, plugIn, subsumes, and fail with exact being the strongest and fail
being the weakest in the hierarchy. For every request, the algorithm returns the request-

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 255

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

advertisement pair that has the strongest degree of matching. This allows inexact
matches to be returned, which improves the flexibility of the system.
The Semantic Web, though still in its infancy, is a good illustration of the potential for
service-oriented computing in wired networks. In the next section, we explore the
potential of service-oriented computing in ad hoc wireless networks and discuss the
imperatives, issues, technical challenges, and benefits of migration to such a new
environment.

The Ad Hoc Wireless Network
Perspective on Service-Oriented

Computing

In the previous section, we described the salient elements of a service-oriented comput-
ing framework and reviewed some existing models. In this section, we revisit the same
elements but from an ad hoc wireless network perspective. We discuss issues relevant
to ad hoc networks and offer solutions in certain cases. From our discussion, we distill
imperatives for service-oriented computing in ad hoc wireless settings. To facilitate our
discussion, we make use of an example and highlight how each element plays a unique
and key role in the illustrated interaction.

Example: A Discerning Tourist

David is a researcher working in St. Louis, USA. He plans to attend a conference in
London, UK, to present a paper. However, due to his busy schedule in London, he only
has one day for sightseeing. David is a history buff so he is only interested in visiting
places of interest that have historical significance. However, David is not familiar with
London since this is his first visit. Hence, he needs some help planning his day of
sightseeing.
On the flight to London, David enters a request on his PDA for tourist information
services and indicates his preference for historical sites. On his arrival in London, David
waits for his baggage in the arrivals lounge, but his PDA immediately starts working. It
begins communicating with wireless information kiosks in the arrivals lounge. After a few
seconds of searching, it finds a London Tourism Bureau service which lists all tourist
attractions around London. David’s PDA automatically transmits David’s pre-entered
preferences to the service and gets a modified list containing only historical sites. David
sees the list and checks off the sites in which he is most interested. At the same time, he
requests directions to each of these sites. The London Tourism Bureau service has no
map data to provide directions. Hence, the service automatically queries the London Map
service to get directions to each attraction. David now notices that all these attractions
are far away from his hotel, and since he does not have access to a car, requests an
itinerary that uses only public transport. The tourism service now queries the London
Transport service and gets times of buses and trains and compiles a full itinerary for

256 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

David. As a last step, it queries the BBC Weather service for a weather forecast and then
rearranges the itinerary so that outdoor sites are scheduled when there is a lesser chance
of inclement weather. The compiled itinerary is then transmitted back to David, who saves
it on his PDA. Using a complex set of services, David has now managed to plan his day
of sightseeing in London while waiting for his bags. In the following subsections, we
show how each element fulfills a portion of the functionality required to deliver such
services to users.

Description

The description element is responsible for dealing with issues related to creating a
profile, a comprehensive and unambiguous description of a service. A comprehensive
description of a service ensures the service can be used to the maximum extent of its
capabilities. The unambiguous characteristic of the service description will ensure
consistent interpretation of the data in the profile. The profile must be machine readable
to facilitate the automation of the search process.
To make a profile machine readable, a well defined syntax must be imposed on the service
description. Some service discovery infrastructures use simple data structures to
describe their service profiles, but most use markup languages like the Resource
Description Framework (RDF) (W3C Semantic Web Activity, 2003) and DAML (Horrocks,
2002). XML (XML Core Working Group, 2000) is used for syntactic purposes. In some
cases, the service profile can be replaced with an introspective analysis of the code.
Using a technique called reflection, the code of a service can be inspected and its
capabilities inferred from the list of methods it contains and their parameters. This
technique is useful in languages that have reflection built in, as this mitigates the
overhead of formulating a service profile.
Once a common syntax for the description has been established, the information in a
service description can be broken into tokens and automatically processed by algo-
rithms. However, the tokens have no value unless they have semantics associated with
them. Semantics can be defined by introducing a type system and establishing relation-
ships between entities. RDF (W3C Semantic Web Activity, 2003) describes relations
between entities using directed graph-like data structures. Its Resource Description
Framework Schemas (RDFS) (W3C Metadata Activity, 2000) extension provides addi-
tional basic notions such as classes. Details of the protocol to communicate with the
service, if required, can be described using languages like WSDL (W3C XML Activity
on XML Protocols, 2003).
Syntax and semantics are combined in ontologies. Ontologies define specific terms for
certain contexts and encode relationships between elements of a service description that
help in matching the client’s request to the right service profile. For example, the London
Tourism Bureau ontology may have the HistoricalSite class be a child of the
GenericTouristSite class, but the London Map ontology may not even contain the
GenericTouristSite class. The parties involved in the transaction need to make sure they
understand the same semantics from the information represented in the service profile;
that is, they need to share a common ontology.

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 257

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There is an ongoing effort to develop ontologies for specific fields of activity building
up a global scale standardization system. The reader is pointed to http://www.daml.org/
ontologies/ for samples of such ontologies.
The mechanics of describing a service essentially do not change when we move to ad
hoc networks. Certainly, the syntax can be reused and the semantics remain the same.
However, it would be remiss to say that a service profile tailored for use in a wired network
would work as effectively in an ad hoc environment. This is because the ad hoc network
is a more demanding and dynamic environment. The service profile has to be enhanced
to meet these changes. Examples of enhancements include adding location information,
motion profiles (if the service provider is mobile), possible alternate providers in case a
provider moves out of communication range, battery power remaining, trust certificates,
and other such details.

Distilled Imperatives for Description in Ad Hoc Settings

• The service profile must be comprehensive, unambiguous, and machine interpret-
able.

• A common ontology is required to ensure that both user and provider infer the same
semantics for an entity.

• The profile should be enhanced with details pertaining to the mobility and available
resources of the service provider.

Advertisement

In our example, David’s PDA automatically discovered the tourism service when he
arrived in London. This was a two-way process by which David’s PDA requested such
a service, and the service advertised itself. In this subsection, we discuss issues
pertaining to advertising a service. Simply put, advertisement is the process of putting
the service profile and its ancillaries in a place where it can be read by anyone so that
users are made aware of the services’ existence and can use them when they need to.
Advertisements come in many different flavors, ranging from simple text to complex
objects. The simplest kind of advertisement is a plain text description of a service, for
example, encoded in XML (XML Core Working Group, 2000). This kind of advertisement
is used widely on the Semantic Web. Next in order of complexity is the two-step form of
advertisement used by the UPnP (Microsoft Corporation, 2000) system. The first step
conveys information about the existence of the service and offers a Uniform Resource
Identifier (URI) for a more comprehensive description. On obtaining this URI, the user
connects to the specified location to get a complete description. The most advanced kind
of advertisement is the proxy object approach used by the Jini (Edwards, 1999) system.
The proxy object is advertised along with the service profile text. The proxy object
behaves like a client-side handle to the provider of the service and is used to control
interactions between the user and provider.

258 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Services may advertise themselves in two ways: on a central service registry or directly
to users in a peer-to-peer fashion. The central registry is easier to maintain and configure.
However, this design may introduce single points of failure. In such a setting, the
complete failure of a lookup service could paralyze an entire community of hosts trying
to interact. Another issue inherent in central directories is services that become suddenly
unavailable (for example, due to their host crashing or disconnecting) but which leave
behind their advertisements in the registry. Lease agreements for services can be used
to mitigate this issue but do not eliminate it. Finally, using a central registry means that
the knowledge of the location of this registry may need to be disseminated using other
channels. Using our example, David would have to know a priori the address of the
London service registry and configure his PDA before he could discover the tourism
service. While this is not unreasonable, it does detract from the plug-and-play charac-
teristic of the system.
The second approach to advertisement is the registry-less technique used by SSDP
(Goland et al., 1998). Clients and servers advertise their needs and/or presence directly
using unicast (when the location of the party is known) or multicast. The announcements
happen when the process comes up and possibly periodically thereafter. The advantage
of this approach is that it eliminates the need for a third-party mediator. Orphan
advertisements cannot exist due to the simple nature of the mechanism. The downside
of the approach is the higher bandwidth usage and the limited scope of users an
advertisement can reach. In the context of our example, the tourism service would
advertise itself individually to David’s PDA and everyone else in proximity, whether they
asked for such a service or not. Hybrid approaches exist that use both service directories
and direct announcements. Users would then try to contact a service registry manager
process, and if it were not available, they would start interacting in a peer-to-peer fashion.
An effective advertisement mechanism for the ad hoc setting needs to consider two main
issues. The first is the size of the advertisement. Advertisements need to be as small as
possible so that they do not monopolize bandwidth and can be transmitted in the short
periods of time in which connectivity may exist. The second is the manner of advertising.
Services should be advertised in a transiently shared space that adapts to host mobility.
Neither of the approaches discussed, for example, central registry or peer-to-peer are
suitable. By nature of the network, a central well-known registry is not feasible and direct
peer-to-peer advertisements use up a lot of bandwidth and battery power on resource
poor hosts.
The solution to the problem lies in the use of global virtual data structures. Lime (Murphy,
Picco & Roman, 2001) is a Java implementation of the Linda (Gelernter, 1985) coordination
model, adapted for ad hoc networking. The mechanism used for advertising services is
based on transient sharing of a local service registry (Handorean & Roman, 2002; Storey,
Blair & Friday, 2002). The content of the service registry is distributed across participat-
ing hosts and processes. Each process has its own local registry which it shares with local
registries held by other processes, forming a federated service registry. The content of
the federated registry is atomically updated as processes join or leave the community.
When a process leaves the community, the advertisements in its local registry become
inaccessible but the remaining processes are not affected. The approach guarantees the
consistency of the service registry content at all times, in that a service cannot be

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 259

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

discovered if it is not available. Returning to our example, the tourism service would put
its service advertisement in its local registry. When David landed in London, his PDA
would merge its local registry with the tourism registry and exchange data. Once the data
transfer was completed, the two registries could separate.

Distilled Imperatives for Advertisement in Ad Hoc Settings

• The size in bytes of the advertisement should be minimized.

• Advertisements should be placed in a transiently shared space that is accessible
by all interacting parties.

• The advertisements in the registry should be consistent and there should be no
advertisements without there being an associated active service.

Discovery

The process by which a user finds a service provider is called service discovery. Service
providers do the best they can to get their advertisements out to interested users.
However, as mentioned in the previous subsection, there is essentially a two-part
process of (1) advertising by the provider and, (2) requesting by the user. Without the
user’s request, there is no relation established between the user and provider. Requests
are also referred to as templates that describe the required characteristics of a service.
Like advertisements, requests also have varying levels of complexity. The simplest
request contains the identifier of a service the client already knows. This scenario
assumes that the client knows the protocol and the semantics of interacting with the
provider and only needs to discover the provider’s presence. When the client runs for
the first time in a new environment or needs to search for a service it has never used before,
the request becomes more detailed. Such a request is formulated as a template that
describes the capabilities that the service must implement and performance parameters
in the form of attribute-value pairs. The formulation of a request follows the same
guidelines that apply to the description of a service. A more advanced request breaks
up the required list of attributes into must have and can have attributes. A candidate
service is rejected if it does not have any of the must have attributes while the can have
attributes behave like bonuses and are used as tie-breakers by the matching algorithm.
Like a service advertisement, a service request can be broadcast or multicast as repetitive
or periodic messages. Indirect requests unicast their messages to a central service
registry and obtain results from there. Models, such as Salutation (Salutation Consor-
tium, 2003), support service brokers which are processes that manage service registries.
The servers contact these brokers to advertise their services while the clients contact
them to address their requests for services. If the model is based on service repositories
and service brokers (lookup services), both clients and servers need to discover these
special services first.

260 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The most critical piece of the discovery mechanism is the algorithm that matches requests
to advertisements. Matching algorithms themselves constitute a comprehensive re-
search area: due to limitations of space, we mention them only briefly here. Matching can
take two forms. Exact matching is the type of matching that is most common today and
represents a logical equivalence operator. The other form is inexact matching, which
seeks to discover essential commonality of features of the two entities being matched.
Even when two entities are not equivalent, a positive match is returned if the differences
do not matter. This is a nontrivial process since teaching a machine to make correct
judgment calls is a very complex task.
An exact matching policy is, in many circumstances, considered too rigid for the purpose
of matching services. Consider our example where David’s PDA made a request for
“sightseeing services” whereas the advertisement was for a “tourism service”. An exact
matching algorithm would not return a match, but, in fact, the two are a good match for
each other, even though they do not use the same terms. A first step towards a more
general matching policy is to allow for polymorphic matching, for example, a client looking
for a transportation service could be given a handle to a bus service if a bus service is,
in fact, a subclass of a transportation service. Another type of inexact matching is inexact
value matching or approximation; for example, David may be looking for a taxi to take him
from the airport to the hotel, but he would accept a limousine if no taxis were available.
The client can specify a range or set of values for a certain attribute rather than a single
rigid value. It is also important for the client to be able to specify what the best match
looks like in these cases. In some cases, the lower value is better while, in other cases,
the higher value is better. The best choice is the result of optimizing a function over the
range or set of values allowed by the client. Semantic matching as discussed in Paolucci
et al. (2002) is an inexact method of matching services based on their semantics and holds
much promise.
In an ad hoc networking environment, the clients must be more flexible in requesting and
using services. Allowing for flexible matching is extremely important in an environment
where all interactions are opportunistic and many of the participants may be resource
poor. While an inexact matching policy seems very important in ad hoc networks, it comes
at a cost. Exact matching can return the first match and terminate. Inexact matching needs
not only to verify the relationship between the advertised value and the acceptable range,
but it also needs to compare matches to all other available matches. Simply discovering
a match does not mean that another advertisement, not yet considered, could not yield
a better match. These enhancements to the requests formulated by clients and to the
matching algorithms may lead to costly searches. In ad hoc networks, this can be critical.
While in a wired setting a client can afford to browse a service repository, in ad hoc
settings the connectivity may not be guaranteed for such a long period of time. This
constraint affects the type of search a client performs. A synchronous search usually
assumes reliable connectivity, but for an ad hoc networking environment, an asynchro-
nous approach can be better for several reasons. The client delegates the effort to perform
the search to another party (possibly a searching service) and, if possible, continues
execution while waiting for a notification. This approach abstracts issues of consistency
of the data in the service registry away from the client. The result of a match is usually
a handle to a service. Returning multiple handles forces the client to filter them locally
and to choose the best fit. In ad hoc networks with low power hosts, this can become a

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 261

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

problem as discovering multiple services and filtering them can be resource intensive.
Hence, matching algorithms designed for ad hoc networks must be designed so that the
filtering occurs on the provider side rather than the client side.
When a service handle is returned, it is paired with a service identifier. This can be used
by the client to access the service in the future, provided it is within communication range.
The service provisioning framework ensures that the ID is globally unique. Besides the
service ID, the client can receive the provider’s profile, a URI to the provider profile, or
a proxy object that represents the provider locally to the client. The simpler the return
type, the more complex the processing on the client side. This requires more sophisti-
cated clients which are able to filter the results themselves, learn communication
protocols, and so forth. The advantage is reduced bandwidth consumption and frame-
work simplification at the expense of more complex clients. An alternate solution is the
proxy object approach. At the expense of higher bandwidth usage, the client retrieves
a proxy object that abstracts details of communication with the provider. When it is no
longer needed, the proxy object can be discarded, thus, saving memory space. The proxy
idea is implemented in Jini (Edwards, 1999). Jini uses RMI (Sun Microsystems, 2003b) to
download the proxy object locally to the client and then to mediate the interaction
between the proxy and its server, even though they may communicate without using (Sun
Microsystems, 2003b). The proxy object approach is more elegant, but it brings its own
challenges; for example, it implies a mechanism for code mobility as suggested in ìCode
(Picco, 1998). From the ad hoc perspective, the trade-off between bandwidth and power
is a challenge as both commodities are in short supply in the ad hoc setting. In general,
solutions differ appropriately from system to system.

Distilled Imperatives for Discovery in Ad Hoc Settings

• The request should be comprehensive to enable semantic matching which can
maximize hits and is useful in environments with transient interactions and
decoupled computing.

• The matching algorithm should be flexible and should return the fewest possible
results to reduce client-side processing.

• The handle to the service should have a small footprint but should be able to
abstract details of communication and coordination in ad hoc networks away from
the user of the service.

Invocation

The next step after discovering a service is to use or invoke it. This step is one of the most
challenging in the ad hoc wireless setting. Consider the scenario in our example where
David is downloading his itinerary from the tourism service. When the download is half
completed, David unknowingly walks out of range of the transmitter. This breaks the

262 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

connection and terminates the download. This scenario is typical of an ad hoc network
where frequent and unannounced disconnections abound.
The biggest challenge is to maintain connectivity for a sufficiently long period of time.
If we could assume that the connectivity lasts for the entire duration of the service
discovery and invocation, the dynamic character of an ad hoc network would be reduced
to that of a reliable wired network. A novel solution which mitigates this problem is the
notion of context-sensitive bindings. Context sensitive bindings create a binding
between the user and provider of the service and try to maintain it for the duration of some
interaction between them. If the provider goes out of range, the framework tries
automatically to redirect the user to another similar provider or else to fail gracefully.
Context-sensitive bindings can also use the notion of a motion profile published by a
service provider in its advertisement to estimate disconnections before they occur and
to judge how long the disconnection will last. If an imminent disconnection seems to be
permanent, a service invocation may be cancelled. However, if the analysis of the motion
profile indicates possible future contact between the two parties, an asynchronous type
of interaction can be employed. The client only needs connectivity initially until the
method execution is launched, that is, until the parameters of the call are shipped, and
the call is made on the remote host. The connection between the two ends can be dropped
after that, until some result is ready for the client. Some notification mechanism must tell
the client that there is a result ready or the client will need to poll for the result when the
connection is restored. A more sophisticated version of the above example can entail
result delivery to a remote location. It is possible to deduce from motion profiles that the
client moves towards a certain destination while its task is being processed. Geocast (Ko
& Vaydia, 1998) protocols can help deliver the result in a certain physical area while
Mobicast (Huang, Lu & Roman, 2003) can help coordinate both the time and the place
of result delivery.
Once the provision for a connection is made, the next consideration is the protocol that
is to be used. The description, advertisement, and discovery styles employed by a
service provision model have direct implications for the mechanism used for service
invocation. The simplest discovery mechanisms use well-known remote procedure call
protocols like RMI (Sun Microsystems, 2003b) or SOAP (XML Protocol Working Group,
2003). At the next level lie services that can learn the communication protocol described
in the advertised service profile. The clients need to share an ontology with the provider
offering the services to be sure they understand the description of the protocol. WSDL
(W3C XML Activity on XML Protocols, 2003) is an example of an XML-based language
for describing services and how to access them. The last category consists of models
in which clients do not need to know anything about the communication protocol. They
use proxy objects as local representations of services. These proxy objects may be
sophisticated enough to implement the entire service themselves, or they may be client-
side handles to the server providing the service. Each proxy is used by the client to
interact with the actual implementation of the service. The proxy handles the communi-
cation with the provider, and the client only needs to have knowledge of the interface
the proxy offers. We observe again that the client and the provider’s proxy need to adhere
to the same ontology. The service provider needs to address issues like the communi-
cation protocol, how to handle disconnections, and dynamic rebinding of the proxy to
another instance of the service running on a different machine while the framework offers

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 263

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

support for downloading code and possibly introspection. This model of interaction is
implemented in Jini (Edwards, 1999). Support for proxy downloading and remote method
invocation is ensured by RMI (Sun Microsystems, 2003b), while the client is expected
to know how to interact with the proxy object (for example, it may use a given Java
interface which the proxy object implements).

Distilled Imperatives for Invocation in Ad Hoc Settings

• Provide a mechanism that mitigates the problem of frequent and unannounced
disconnections.

• Use motion profiles to predict where a certain host will be at a given time and plan
interactions using this information.

• Have a sophisticated proxy that can hide communication protocol details from the
user and perform tasks like rebinding to better service providers without user
intervention.

Composition

Service composition is the notion of taking two or more autonomous services and
combining them to behave like one composite service. We illustrate the usefulness of this
concept by referring back to our original example. Note that David initially requested a
service which gave him a list of tourist attractions. However, as he started receiving
information from the service, he realized that he would require maps and directions. The
tourism service did not have map data so it went to a map service and a weather service
to find relevant data and combined it with the list of tourist attractions. In other words,
the tourism service composed itself with the map and weather services.
Service composition is a powerful concept that allows multiple stand-alone services,
each of which is highly specialized to a particular task, to be combined into a single service
which can then offer an interlocked collection of services under a single umbrella. The
benefit of the composed service is generally greater than the sum of benefits yielded by
its constituents.
Composition promotes specialization in the development of services. In our example, if
the tourism service had to develop its own mapping program, it would most likely be
inferior to that of a dedicated mapping service. By composing itself with a third-party
mapping service, it effectively outsources the problem of mapping the route, saving the
cost of development of a mapping tool while, at the same time, providing a better quality
of service. Composed services can differ based on the way they are constructed and used.
We first discuss ways of building a composed service, followed by ways a composed
service may be used.
The two main approaches for composing services are the distributed approach and the
integrated approach. In the distributed approach, the composed service behaves like a
distributed application with component services residing on different machines. The

264 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

composing mechanism may use the Façade design pattern (Gamma, Helm, Johnson &
Vlissides, 1994) to provide a single common interface to the user (Mennie & Pagurek,
2000). The user makes local method calls to the interface which determines which of the
component services can service the request and uses a protocol such as RMI (Sun
Microsystems, 2003b) to call that service. Results are returned to the interface which
disburses them to the user locally. In the integrated approach, the code for all the services
is aggregated by the composing entity and runs locally. Regardless of the approach for
composing a service, it is critical to ensure that the elements of the composed services
neither conflict with each other nor cause the composed service to deadlock. In essence,
if we have no services that have been successfully composed, adding the n+1st service
should not violate the integrity of the n original services (Kirner, 2002). This can be
verified in some cases through formal reasoning.
Composed services can be used in two ways. In automatic composition, the user makes
some request to a specific service; for example, David requests a list of historical sites
and the route that covers all of them from the tourism service. The tourism service checks
its data and discovers that it can service the request for the list of sites, but it cannot
provide route information. Hence, to fulfil the request, it automatically requests that a
map service compute a route on its behalf. In object-oriented terms, this process is
analogous to a method call on an external object. Notice that to David, all the data seems
to be coming from a single source, the tourism service. In manual composition, the user
manually selects a list of services that he or she believes will yield a useful result when
combined. These services are then integrated according to the specific request. They do
not seek out additional services to help them complete their tasks if they are lacking in
some capability. The onus is on the user to ensure that such a situation does not arise.
We now discuss the merits of each approach as it pertains to ad hoc networks. The
distributed approach to composing services is less reliable in ad hoc networks because
a single element moving out of range can affect the entire composed service whereas if
the services are hoarded, the connectivity needs to be preserved for a shorter period of
time during which the services are copied over to the composing host. However, the
downside of hoarding services is that everything needs to be ran locally which can drain
power or tie up crucial memory. The best compromise in such a situation is to exploit the
notion of motion profiles as discussed in the previous subsection and hoard only those
services which are likely to move out of range and use the stable proximal ones in a
distributed fashion.
For composed services, the automatic composition approach is more user friendly, but
it does raise a concern that affects all composed services, that of security and confiden-
tiality. Issues of security and privacy come to the fore in automatic service composition,
especially if there is an exchange of personal information; for example, David might be
willing to give his name and address to the tourism service since he knows it is reliable
and has appropriate security measures to safeguard his information. However, he may
not want his address transmitted to the mapping service for the purposes of computing
the route since he does not trust their security systems. Such an event could lead to loss
of privacy without the individual being aware of it. With manual composition, one can
presume that the user would select only those services that he or she trusted.

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 265

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service composition is critical in the ad hoc wireless setting for two reasons. An ad hoc
network by definition is an “anytime, anywhere” network. This means that an ad hoc
network encounters a dynamic environment with its own nuances, requiring customized
situation-specific services. Having large indivisible services which cater to specific
needs is not flexible enough for such dynamic environments. It is much more effective
to have a set of smaller services and select a subset of them to form a customized service
on demand. Composition supports such a capability. The second reason why composi-
tion is an essential feature of ad hoc networks is that it allows for highly specialized
services with potentially smaller footprints. This means that such services can run on
small devices like PDAs or cell phones, increasing the number of devices in the network
that can potentially be service providers and thereby increasing the number of basic and
composed services available in the network.
The final issue we discuss is related to the control of a composed service with an eye
toward security issues. Note that the elements of a composed service are provided by
many different providers. Also observe that to use a provided service in a composition,
the composing entity has to obtain some degree of control over the provided service. The
provider may not necessarily want to relinquish control over its service and hence a
middle ground must be found. We envision the use of management software, like Java
Management Extension (Sun Microsystems, 2003a), which can manage services from
different providers and yet allow them to retain some degree of autonomy.

DistilledImperatives for Composition in Ad Hoc Settings

• The approach to composing services should consider a hybrid strategy of inte-
grated and distributed composition, which exploits the state of the network and
services to the fullest.

• Composable services should be designed so as not to conflict with other services
to increase the range of allowable compositions.

• Security and management systems should be compatible to maximize interoperability.

Future Trends

While service-oriented computing has reached a certain level of maturity in wired
networks, it remains a nascent area of research in ad hoc wireless networks. Much
potential for future research exists. In this section, we briefly describe some of the key
research issues which we feel hold technical challenges and/or promise social impact.
Service descriptions can be enhanced to include motion profiles, battery power levels,
and composability. The content of a description could also be made dynamic to
incorporate the current status of a service; for example, a printer would advertise how
much paper is remaining in its trays. In the area of service advertisements, one can
envision active advertisements where services do not wait for a request but actively
solicit jobs. The idea of a client advertising jobs rather than providers advertising

266 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

services is also one that could be explored. Providers would examine a pool of jobs and
pick up ones that they could perform. A provider would send a notification to the client
when the job was completed. Another novel idea is time-limited advertisements, analo-
gous to limited-time discount offers. A provider could offer lower cost or higher quality
services at certain times when the load on the network is low, and the service is not being
fully exploited.
In the arena of discovery, approximate matching based on semantics is an open area of
investigation. These algorithms could be tailored to ad hoc networks with decision
making based on the available content and urgency of requests. This direction of study
could extend work on metrics for service discovery and usage, functions that help a user
decide which is the best of two or more given services. Service invocation also poses
some interesting problems; for example, the notion of follow-me services is one in which
the client holds the service proxy, but the providing host changes over time due to
physical mobility. This work can be related to resource leasing, pushing services onto
resource-rich hosts and controlling them through proxy objects and delivering results
remotely; for example, a client requests a job in St. Louis, shuts down, restarts in New
York, and receives the result from a local access point. The concept of context-sensitive
binding can be applied as well to facilitate active resource monitoring and load balancing
based on network traffic.
The concept of composing multiple instances of a service for parallel processing for
performance gains is extremely useful in ad hoc networks when the connection may exist
for short periods of time only. This would require specification of dependencies between
services with a hierarchy ranging from required to preferred. It also raises issues of
combining code from various sources seamlessly and ensuring that the result exhibits
correct and expected behavior.
Other than work related to enhancing the elements of service-oriented computing, there
are some broader trends that can improve service-oriented computing as a whole. One
such idea is the use of virtual currency, a version of which has been proposed in Buttyan
and Hubaux (2001). Another concept is that of a language-independent representation
of services, where the skeleton of the description highlights the semantics of the service
and appropriate words from any language can be used to describe those semantics. This
would allow the framework to understand requests in any language as long as the
semantics of the service remained consistent. Lastly, one cannot ignore the security
implications of such a framework which will require much research into online security,
especially in scenarios where two programs can interact with each other without human
intervention.

Conclusion

We began this chapter by introducing the notion of service-oriented computing and its
applicability in ad hoc wireless networks. We discussed existing service-oriented
computing models and highlighted the Semantic Web as an example of service-oriented
computing at work. We then discussed issues of service-oriented computing in ad hoc
wireless networks as they pertain to each of the salient elements of a service-oriented

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 267

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

computing framework, viz. description, advertisement, discovery, invocation, and com-
position. For each of these elements, we distilled a set of imperatives for the ad hoc
wireless setting. Finally, we highlighted some key research issues and enhancements
which we see as defining the next steps for research in this area. We hope this chapter
has given a perspective on the issues, challenges, and imperatives of designing and
implementing a service-oriented computing framework for ad hoc wireless settings, one
that will serve as a guide for future research.

References

Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., McDermott, D., et al. (2002).
DAML-S: Web service description for the semantic Web. Proceedings of the 1st
International Semantic Web Conference.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001, May). The Semantic Web. Scientific
American.

Buttyan, L., & Hubaux, J. (2001). Nuglets: A virtual currency to stimulate cooperation
in self organized ad hoc networks (Tech. Rep.). EPFL.

Cohen, J., & Aggarwal, S. (1998, July). General event notification architecture. Retrieved
August 15, 2004, from http://www.globecom.net/ietf/draft/draft-cohen-gena-p-
base-01.html

Edwards, W. K. (1999). Core Jini. Sun Microsystems Press.
Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., & Berners-Lee, T.

(1999, June). Request for comments 2616 - Hypertext Transfer Protocol - HTTP/1.1.
Retrieved August 15, 2004, from ftp://ftp.isi.edu/innotes/rfc2616.txt

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design patterns: Elements of
reusable object-oriented software. Addison Wesley.

Gelernter, D. (1985, January). Generative communication in Linda. ACM Computing
Surveys, 7, 80-112.

Goland, Y., Cai, T., Leach, P., & Gu, Y. (1998, April). Simple service discovery protocol.
Retrieved August 15, 2004, from http://www.upnp.org/download/draft caissdp v1
03.txt

Handorean, R., & Roman, G.-C. (2002, April). Service provision in ad hoc networks.
Proceedings of the 5th International Conference on Coordination Models (pp. 207-
219).

Horrocks, I. (2002). DAML+OIL: A description logic for the semantic Web. IEEE Bulletin
of the Technical Committee on Data Engineering.

Huang, Q., Lu, C., & Roman, G.-C. (2003, April). Mobicast: Just-in-time multicast for
sensornetworks under spatiotemporal constraints. In Lecture Notes in Computer
Science. Springer-Verlag.

Kempf, J., & Pierre, P. S. (1999). Service location protocol for enterprise networks:
Implementing and deploying a dynamic service resource finder. John Wiley &
Sons.

268 Sen, Handorean, Roman and Gill

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Kirner, R. (2002, October). Enforcing composability for ubiquitous computing systems.
Proceedings of the 7th Cabernet Radicals Workshop.

Ko, Y., & Vaidya, N. (1998). Geocasting in mobile ad hoc networks. Location-based
Multicast Algorithms.

Mennie, D., & Pagurek, B. (2000, June). An architecture to support dynamic composition
of service components. Proceedings of the 5th International Workshop on Compo-
nent-Oriented Programming (WCOP 2000).

Microsoft Corporation. (2000, June). Universal plug and play device architecture.
Retrieved August 15, 2004, from http://www.upnp.org/download/UPnPDA10
20000613.htm

Miller, S. (2003, October). The AutoIP publisher page. Retrieved August 15, 2004, from
http://www.autoip.net

Murphy, A., Picco, G., & Roman, G.-C. (2001, April). Lime: A middleware for physical and
logical mobility. Proceedings of the 21st International Conference on Distributed
Computing Systems (pp. 524–533).

Paolucci, M., Kawmura, T., Payne, T., & Sycara, K. (2002). Semantic matching of Web
services capabilities. Proceedings of the 1st International Semantic Web Confer-
ence.

Picco, G.-P. (1998, September). Code: A lightweight and flexible mobile code toolkit.
Lecture Notes on Computer Science, 1477, 160-171.

Salutation Consortium. (2003, October). The Salutation consortium homepage. Retrieved
August 15, 2004, from http://www.salutation.org

Srinivas, J. (1995, August). RFC 1831 - Open Network Computing Remote Procedure Call
Protocol Specification. Retrieved August 15, 2004, from http://www.ietf.org/rfc/
rfc1831.txt

Storey, M., Blair, G., & Friday, A. (2002). MARE - Resource discovery and configuration
in ad hoc networks. Mobile Networks and Applications, 7, 277-287.

Sun Microsystems. (2003a, October). Java management extensions homepage. Retrieved
August 15, 2004, from http://java.sun.com/products/JavaManagement/

Sun Microsystems. (2003b, October). Java remote method invocation page. Retrieved
August 15, 2004, from http://java.sun.com/products/jdk/rmi/

UDDI Organization. (2000). UDDI technical white paper. Retrieved August 15, 2004, from
http://www.uddi.org/pubs/

W3C Metadata Activity. (2000, March). Resource description framework schema speci-
fication 1.0. Retrieved August 15, 2004, from http://www.w3.org/TR/2000/CR-rdf-
schema-20000327/

W3C Semantic Web Activity. (2003, October). Worldwide Web Consortium page on
resource description framework. Retrieved August 15, 2004, from http://
www.w3.org/RDF/

W3C XML Activity on XML Protocols. (2003, October). W3C recommendation: Web
services description language 1.1. Retrieved August 15, 2004, from http://
www.w3.org/TR/wsdl

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 269

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

XML Core Working Group. (2000, October). W3C recommendation: XML version 1.0
second edition. Retrieved August 15, 2004, from http://www.w3.org/TR/2000/
REC-xml-20001006

XML Protocol Working Group. (2003, June). W3C recommendation: SOAP version 1.2
parts 0-2. Retrieved August 15, 2004, from http://www.w3.org/TR/SOAP/

270 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIII

Service-Oriented
Agents and Meta-Model
Driven Implementation

Yinsheng Li

Fudan University, China

Hamada Ghenniwa

University of West Ontario, Canada

Weiming Shen

Fudan University, China

Abstract

Current efforts have not enforced Web services as loosely coupled and autonomous
entities. Web services and software agents have gained different focuses and
accomplishments due to their development and application backgrounds. This chapter
proposes service-oriented agents (SOAs) to unify Web services and software agents.
Web services features can be well realized through introducing software agents’
sophisticated software modeling and interaction behaviors. We present a natural
framework to integrate their related technologies into a cohesive body. Several critical
challenges with SOAs have been addressed. The concepts, system and component
structures, a meta-model driven semantic description, agent-oriented knowledge
representation, and an implementation framework are proposed and investigated.

Service-Oriented Agents and Meta-Model Driven Implementation 271

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

They contribute to the identified setbacks with Web services technologies, such as
dynamic composition, semantic description, and implementation framework. A prototype
of the proposed SOAs implementation framework has been implemented. Several
economic services are working on it.

Introduction

Web services are featured with application, platform, and provider independence. They
provide an appropriate paradigm for implementing open large-scale application environ-
ments. These environments can be viewed as collaborative integration environments
with services. Services are not treated as isolated and one-time affairs but rather as
elements in an interactive and dynamic collaboration structure. Service collaborations
within or across environments are modeled in terms of supported transactions and
processes. These collaborations are subject to norms and protocols specified for
business domains. Services are thereby orchestrated vertically within one or horizontally
across multiple environments. As a result, an individual environment streamlines
services in terms of provided transactions while preserving its function scope to be
highly specific to the targeted user group. Multiple environments collaborate to extend
their business chains. Web services have been supported by major IT players through
their commercial platforms such as Microsoft’s .NET (Trowbridge et al., 2003) and SUN’s
J2EE/SUN One (Sun Microsystems). They are also underlying technologies behind the
currently promoted business initiatives such as HP’s Adaptive Enterprise (HP) and
IBM’s On-Demand e-Business (Wainewright, 2002).
Software agents have been developed with sophisticated interaction patterns. They are
efficient in enforcing automatic and dynamic collaborations. Agent orientation is an
appropriate design paradigm for e-business systems with complex and distributed
transactions, especially for Web services. In services realization, software agents are
very instrumental to provide a focused and cohesive set of active service capabilities.
We therefore envision a Web service-based environment as a collection of economically
motivated service-oriented agents (SOAs). SOAs cooperatively or competitively inter-
act to provide common services in one specified environment, such as brokering, pricing,
and negotiation in an e-marketplace, as well as cross-enterprise environment, such as
integration and cooperation in an electronic supply chain. The fundamental elements of
such environments are services, where transactions are behavioral aspects of the
services. Software agents dynamically implement services as functionalities and roles.
The primary objective of our work is to integrate software agents and Web services into
a cohesive body that attempts to avoid the weaknesses of each individual technology,
while capitalizing on their individual strengths. There are two observations that set the
stage for SOAs’ comprehensive technical solution. On one side, Web services paradigm
is fast evolving and has been provided with plentiful industry-oriented technologies.
These technologies support Web services to be deployed, published, discovered,
invoked, and composed in a standard and consistent way. It has therefore attained
advantages, in that it is business and application driven. On the other side, software

272 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

agent paradigm has attained advantages in software construction, legacy systems
integration, knowledge-based reasoning, and transaction-oriented composition and
semantics-based interaction. With the above observations, we have found agent
modeling technologies could lead to an appropriate solution for Web services implemen-
tation framework. A coordinative technical strategy for SOAs is therefore proposed.
Agent orientation technologies are applied for SOAs construction, knowledge represen-
tation, and interaction patterns. Web service-oriented execution, invocation, manage-
ment, and communication technologies and protocols are complied for business-
oriented functionalities and environments. This arrangement will enforce SOAs with
essential advances both in market acceptance over software agents and interactive
automation over Web services.
This chapter addresses critical challenges with SOAs as related to principles, technolo-
gies, implementation framework, and application domains. We propose and investigate
incurred concepts, system and component structures, a meta-model, a meta-model driven
semantic description method, an agent-oriented knowledge representation solution, and
an implementation framework. They consequently contribute to current main setbacks
with Web services technologies, such as dynamic composition, semantic description,
and implementation framework. A prototype of the proposed SOAs implementation
framework, SOAStudio (versioned 1.02 as of this writing), has been implemented. Several
economic services are being developed, for example, (reverse) auction services for
commodity markets, brokering services for healthcare environments, and security
services for financial domains.

Web Services and Software Agents: State of the Art

Web Services Technologies and Frameworks

We believe that Web services could be explained technically as a computation paradigm
for constructing systems by autonomous, loosely-coupled and collaborative software
components with emphases on standard protocols in service-related activities like
description, publishing, deployment, discovery, and invocation. W3C and OASIS are
devoted to developing Web services-related technologies and standards. There are a
number of companies; for example, IBM, SUN, and MSC have been involved in the
technologies development, as well as frameworks and platforms releases.
Web services technologies have emphases on open protocols and business-centric
commitments. These kinds of protocols are fast emerging. Examples for basic Web
services operations include XML, UDDI (OASIS, 2002), SOAP (W3C, 2003) and WSDL
(W3C, 2001). Examples for Web services orchestration include BPEL4WS (McIlraith &
Mandell, 2002) and ebXML (OASIS, 2001). They have been enriched with business-
centric considerations. For instance, ebXML has been instructive for Web services to
enforce its process engineering, though, from workflow’s viewpoint. It combines
process-involved business and execution logics with two views (Business Operational
View and Functional Service View). BPEL4WS has been submitted to OASIS for approval,
and a few companies have committed to accept it. It distinguishes abstract processes

Service-Oriented Agents and Meta-Model Driven Implementation 273

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

from executable processes. The former is for describing business protocols, and the latter
is for executable processes to be compiled into invocable services. BPEL4WS has been
complemented by process-enhancing specifications, for example, WS-Transaction
(Cabrera et al., 2002), WS-Coordination (IBM, Microsoft & BEA, 2003), and those special
for security and business policy, for example, WS-Trust, WS-SecureConversation, WS-
SecurityPolicy, WS-Policy, WS-PolicyAttachment, and WS-PolicyAssertions (Microsoft
Corporation, 2002).
There are two main application development frameworks supporting Web services, for
example, J2EE and .NET. They both accept basic Web services protocols such as UDDI,
SOAP and WSDL. The majority of application and development environments, for
example, WebSphere and Tomcat, are accepting either of them. Web services have seen
a few successes at the application level, for instance, through e-business. There have
been a few examples of using .NET-based Web services (Microsoft, 2002). Sun
Microsystems has helped FordFinancial design to build a platform infrastructure based
on the Sun ONE framework. Amazon.com Inc. and Google have given developers and
owners the ability to build applications and tools using their Web services APIs.
However, there is still no common implementation framework for Web services to
facilitate their functional elements and implementation processes.

Web Services Semantics and Software Agents

An essential aspect for Web services is semantic description in a way that makes them
recognizable and interoperable. A basic service semantic model accommodates its profile
and representation. The profile plays a central role in publishing and searching services
to satisfy a case. It provides sufficient information for service requesters or brokers to
categorize and decide whether it satisfies their requirements. The representation in-
volves service execution processes and is intended for service usage, composition,
execution, and management. The profile and representation work together to support and
automate service-oriented operations. There has been an attempt (Andreas, 2002) to
specify a software agent using standard markup languages. However, current Web
services technologies have not incorporated sophisticated semantics in their profile and
representation. For example, UDDI (OASIS, 2002) is a profile-based protocol for regis-
tration and search, and it only relies on predefined keywords, instead of semantics. E-
Speak (Karp, 2000) has a base vocabulary to define basic attributes but with no semantics
with them. WSDL (W3C, 2001) has accommodated service profile, process, and usage
with no well-defined semantics. BPEL4WS (McIlraith & Mandell, 2002) was initiated for
process representation and orchestration. It is capable of supporting runtime semantics
based on its logical operations and representation, but its formal semantics are contro-
versial.
Web services paradigm is also promoted for its nature to support dynamic, distributed,
and reconfigurable business and application integration. Current efforts have been
obtaining this goal through Web services choreography and orchestration. The applied
approaches are mainly originated from traditional top-down workflow principles. They
have not distinguished Web services as autonomous entities. These features have been
overlooked since service-oriented interaction patterns are more suitable for bottom-up

274 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

design and agent-based implementation, as we proposed in Li, Ghenniwa, and Shen
(2003). Later, W3C (2003) introduced the concept of software agents as a foundation for
Web services architecture specifications, called agencies of services. Further, W3C no
longer separates Web services from provider agents. That implies that software agents
are not used for services communication front ends, proxies, or as agencies. Rather, they
are treated as unified entities that provide Web services. This approach goes along with
our vision. We believe that agent-based services implementation, that is, service-
oriented agents, can embody essential features and functions of Web services. The well-
developed agent technologies for software construction, knowledge representation, and
semantics-based interaction can thus be applied. It is a promising implementation
framework for Web services.

Software Agents Models and Platforms

Here, we view “an agent” as a metaphorical conceptualization tool at a high level of
abstraction (knowledge level) that captures, supports, and implements features that are
useful for distributed computation in open environments. In our view, an agent is an
individual collection of primitive components that provide a focused and cohesive set
of capabilities. Figure 1 depicts the Coordinated Rational Agent (CIR-Agent) (Ghenniwa
& Kamel, 2000). Each component of a CIR-Agent is associated with a particular
functionality to support a specific agent’s mental state as related to its goals. The basic
components include problem-solving, interaction, and communication components. A
particular arrangement (or interconnection) of the agent’s components is required to
constitute an agent. This arrangement reflects the pattern of the agent’s mental state as
related to its reasoning about achieving a goal. In a distributed context, for example, an
e-marketplace, such agents play different roles (or provide services) and are able to
coordinate, cooperate, and possibly compete with other agents including human beings.
Massive research efforts in software agents have yielded well-developed agent model-
ing and interaction technologies. The Foundation for Intelligent Physical Agents (FIPA)
has been focusing on developing software specification standards for agent platforms
and communication protocols. For example, the published communication language,
FIPA ACL (FIPA, 2002), has been well known. An agent-based unified modeling
language, AUML, is being developed by the FIPA Modeling Technical Committee (2003).
There have been a few agent development frameworks and environments like JADE,
FIPA-OS, and AgentBuilder (IntelliOne Technologies, 2001). JADE (TILAB, 2003) is a
software framework to develop agent applications in compliance with the FIPA specifi-
cations (FIPA, 2002) for multiagent systems. It deals with all aspects external to agents
that are independent of their applications, such as message transport, encoding and
parsing, and agent life cycle. FIPA-OS (Emorphia Limited, 2003) is an experimental agent
framework and component-oriented toolkit for constructing FIPA-compliant agents
using mandatory components, components with switchable implementations, and op-
tional components. In addition to supporting the FIPA interoperability concepts, it also
provides a component-based architecture to enable the development of domain-specific

Service-Oriented Agents and Meta-Model Driven Implementation 275

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

agents, which can utilize the services of the FIPA Platform agents (that is, AMS, DF, and
Dummy). AgentBuilder is a commercial integrated tool suite for constructing intelligent
software agents. Agents constructed using AgentBuilder communicate using the
Knowledge Query and Manipulation Language (KQML) (Finin, Labrou & Mayfield,
1997). AgentBuilder consists of two major components: the toolkit and the runtime
system. The toolkit includes tools for managing the agent-based software development
process, analyzing the domain of agent operations, designing and developing networks
of communicating agents, defining behaviors of individual agents, and debugging and
testing agent software. The Run-Time System includes an agent engine that provides an
environment for execution of agent software.

Figure 1. Logic and detailed architecture of CIR-Agent

276 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

There are attempts to develop ontology representation languages, for example,
DAML+OIL (Richard & Deborah, 2001), Ontology Web Language (OWL) (W3C, 2003),
and KIF (Genesereth & Fikes, 1992). A couple of ontology-level languages have been
applicable for Web services, for example, DAML-S (OWL-S) (The DAML Services
Coalition, 2002). The ontology-based comprehensive descriptions are supporting ser-
vice-oriented registration, discovery, interaction, and collaboration.
However, market facts have not favored agent-oriented applications in that these
technologies are mostly associated with academic researches. It is still far from success-
ful commercialization despite that there have been a few attempts to put software agents
into e-business environments (Bjornsson et al., 2002; Chavez & Maes, 1996; Ghenniwa,
2001; The Intelligent Software Agents Lab, 2001). Web services provide an application
carrier for software agent technologies to be more market-driven and business-centric.

Service-Oriented Agents Framework

The concept of service-oriented agent (SOA) is to capture and model the intended
functionality of the service into autonomous and dynamic interactions. A similar
approach has recently been adopted by W3C (2003), in which an agent is defined as “a
program acting on behalf of another person, entity, or process” while “specifically
eschews any attempt to govern the implementation of agents.” We strongly believe that
SOAs could be one of the essential evolutions of Web services at functional entities,
instead of simple interaction delegations or communication proxies. In system design,
SOAs comply that Web services are designed by service-oriented methodology. Namely,
the components are deemed service-oriented agents. The objective is for agents to
account for the interaction aspect while enhancing services at their behavior.
Technically, the applied principle for SOAs is to exploit agent-oriented software con-
struction, knowledge representation, and interaction methodologies and adapt them to
service-oriented business transactions and application environments through specified
Web services protocols. The major efforts toward this end include determining and
coordinating technologies from Web services and software agents. As mentioned, Web
services have proved to be prosperous in e-business applications while still undergoing
fundamental setbacks in semantic integration, interaction behaviors, and implementa-
tion framework. Software agents have not scored in commercial applications while they
could naturally contribute to the above setbacks. We have set up a coordinative
technical framework for SOAs based on our observations.
The proposed technical framework accommodates multiple technical stacks from agent-
oriented construction and service-oriented operation to business-oriented application
environments. Figure 2 illustrates the scheme in terms of six layers, that is, business
application environment, Web service operation protocols, knowledge representation,
function entity, interaction, and transportation layers. At the layer of business applica-
tion environment, for example, an e-marketplace or supply chain, service-oriented and
business-centric protocols for transactions are applied for SOAs to collaborate with each
other. They could be contract net, e-auction, and so forth. At the layer of services
operation, service-oriented operation protocols, such as UDDI, WSDL, and BPEL4WS,

Service-Oriented Agents and Meta-Model Driven Implementation 277

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

are applied to incorporate incurred considerations by the objective business transac-
tions. At the layer of knowledge representation, the ontology-level language DAML-S
and agent-oriented description and knowledge modeling technologies are applied to
support SOAs autonomous behaviors. At the layer of function entity, the agent-oriented
modeling and software construction technologies, for example, CIR-Agent and AUML,
are applied to build the entity. The presented SOA modules enforce service abilities and
interaction patterns in that the interaction components handle the conversations among
SOAs, the problem-solving component provides the core computation function, and the
communication component works with service-oriented messaging mechanism. At the
layer of interaction or messaging, service-oriented SOAP or otherwise specified XML-
based protocols are applied to implement SOA-oriented interaction performatives.
Finally, at the layer of transportation, the basic Internet communication protocols such
as HTTP, FTP, or HTTPS are applied to get through the data.
Knowledge representation is the key to coordinate technologies from two areas. On one
side, knowledge base is a global component in an SOA software entity. The agent-
oriented knowledge representation technologies qualify the SOA to support the commu-
nication, interaction, and problem solving components to analyze, determine, compute,
and communicate. On the other side, the knowledge is established with ontology-level
description languages and composed of semantic descriptions of itself, its tasks, and
surrounding world. These descriptions could also represent what is involved in service-
oriented protocols. This proves to be feasible since the current ontology supporting
languages, for example, OWL and DAML-S (The DAML Services Coalition, 2002), have
basic considerations to provide sufficient information to support agent-oriented inter-
action semantics and service-oriented discovery, composition, and execution.

C
om

m
unication

InteractionProblem-
Solving

SOA: #m

In
te

ra
ct

io
n

C
om

m
un

ic
at

io
n

Problem-
Solving

SOA: #n

(e.g.DAML-S) (e.g.DAML-S)HTTP

S
O

A
P

S
O

A
P

Business Application Environment (Business-oriented protocols)
(e.g. contract-net and e-auction for e-Marketplace)

Web Service Operation Protocols (e.g. WSDL, BPEL4WS and WS-Security)

Knowledge Knowledge

Figure 2. Technical framework for service-oriented agents

278 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Meta-Model Driven SOA Implementation Framework

The concept of SOA is viewed as a computational model that enables a designer to
capture and represent complex applications in open environments, for example, e-
marketplaces, as a software artifact independent of the target framework. A meta-model
is essential for SOAs to facilitate systems implementation and integration. This meta-
model is mainly derived from concepts of ad hoc semantic Web language, that is, DAML-
S (OWL-S). It expresses and relates fundamental SOA classes and operations concepts
and is treated at two levels: (i) UML-based model for service capabilities and processes
and (ii) agent-oriented model for service interactions (cooperative or competitive). As
illustrated in Figure 3, a preliminary model for SOAs is currently composed of two main
packages, SOAInterface and SOAClass. Five classes have been identified under the
SOAInterface, that is, Resource, Service, ServiceGrounding, ServiceModel and
ServiceProfile classes. Three classes, that is, Grounding, ProcessModel, and Profile, and
three subpackages; that is, profileclasses, processclasses, and groundclasses are under
SOAClass. There are further classes respectively under these subpackages.
SOAs use ontology-level languages to describe designated services, build their own
knowledge, and support service-oriented composition and execution. The procedure is
started with the semantic descriptions of the related services in terms of the proposed
meta-model. The acquired SOA descriptions are further arranged to build SOA knowl-
edge. An SOA’s knowledge is equipped with a rule base, which incorporates execution
logics and business logics into decision-supported and task-oriented rules. A consistent
analyzer runs over the rule base to support the other SOA modules. SOAs, therefore,
apply reasoning principles and accomplish automatic interaction patterns. Business-
centric commitments and service-involved registration, discovery, execution, orchestra-

Figure 3. An SOA meta-model for current prototype

Service-Oriented Agents and Meta-Model Driven Implementation 279

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tion, and monitoring are achieved by this way. The agent-oriented information sensing
and handling mechanisms enforce timely update of the descriptions and knowledge of
SOAs.
There is a concern that the applied representation technologies should account for
efficient exchanges between SOA knowledge and service-oriented protocols. The
ontology-level language that SOAs use has addressed this concern (Li et al., 2003). It
coordinates knowledge representation with Web services protocols through essential
semantic correspondences between them. The technical scheme is illustrated in Figure
4. SOA description is built on the ontology-compliant meta-model. The interrelated
constructs of the meta-model express the SOA and accommodate its abilities and usage.
The description is supported by a variety of languages with accrued semantic schemas
and expressiveness, for example, XML/Schema, RDF/RDFS, DAML+OIL/OWL, and
DAML-S. SOA knowledge is derived from and aware of the description. From the other
side of Web services environment, there are a variety of protocols, for example, UDDI,
SOAP, and WSDL, enforcing Web services operations. Such operations include regis-
tration, discovery, execution, and composition. The interlink between the description
and protocols is feasible since the meta-model of the former can also account for those
elements of the latter. It is translatable since XML/Schema is the foundation for both of
them. SOA knowledge is thereby feasible to efficiently handle service-oriented opera-
tions.
As mentioned earlier, an efficient and standard implementation framework is still
undergoing with Web services. SOAs, however, have addressed this challenge through
their associated frameworks and methodologies, for example, an implementation frame-

W
S

D
L

W
S

D
L

Grounding

types of I/O

daml-s
parameter

ServiceProfile
atomic
process

wsdl
Reference

…
other

Reference

D
A

M
L

-S U
D

D
I

U
D

D
ID

A
M

L + O
il (O

W
L)

D
A

M
L +

 O
il (O

W
L)

R
D

F
/R

D
F

S
R

D
F

/R
D

F
S

X
M

L/S
chem

a
X

M
L/S

chem
a ServiceModel

Resource

SOAs
Knowledge

Abstract type

Message

operation

wsdl/uri

soap/http S
O

A
P

S
O

A
P

W
eb

 S
er

vi
ce

 P
ro

to
co

ls

X
M

L/
S

ch
em

a
X

M
L/

S
ch

em
aD

escription
D

escription

Semantic correspondence

Figure 4. Meta-model-based SOAs description, knowledge, and their interlink with
Web service protocols

280 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

work in that a semantic meta-model, a CIR-Agent compliant software construction
methodology, and a coordination technical framework have been present. As described
in Figure 5, SOAs are designed to function as Web services while being built as software
agents. They achieve service-oriented operations by agent-oriented interaction pat-
terns. The ontological descriptions of them are organized into SOAs’ knowledge
modules (caps with the letter S). SOAs can therefore recognize and deal with Web
service-oriented protocols, as discussed earlier. For example, they generate and expose
WSDL interfaces (boxes with the letter I), publish and look up through UDDI-based
registrar, and interact through SOAP and HTTP. Being built as Web applications, SOAs
generally serve up behind Web servers to take advantages of Web technologies.

Prototype Implementation: SOAStudio

A prototype called SOAStudio (SOAs Studio, versioned 1.02 as of this writing) has been
developed in terms of the proposed implementation framework. The studio provides
platform-related components to implement SOAs and their working systems (for example,
e-marketplaces), including development workspaces and mechanisms as well as basic
application programming interfaces and examples. As illustrated in Figure 6, service-
oriented agents are the objects under development. They are based on the proposed
meta-model, and have agent constructs in function entity and DAML-S description to
build agent knowledge. The extracted WSDL interfaces are published through UDDI-
compliant registrar. The registrar is also an SOA and offered as a platform facility.
SOAStudio considers six functionalities for SOAs definition, design, development,
debugging, execution, and management. The first four of them are functional with
SOAStudio. The execution and management environments are implemented by integrat-
ing JADE and Tomcat. SOAs are executed in JADE while served up via Tomcat. They are

Registration

discovery

composition Management

Execution

I

A

S

I

A

S

I

A

S

I

A

S

I

A

S

I

A

S

SOAP
HTTP

WSDLWSDL

SOAStudio Application
Environment

Web Service-Oriented Protocols

Agent-Oriented
Interaction Patterns

Service-Oriented Operations

A

S

A

S

UDDI-based Registrar

Publish
Lookup

Figure 5. SOAs-based implementation framework

Service-Oriented Agents and Meta-Model Driven Implementation 281

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

therefore applicable for both FIPA ACL-compliant communication, usually within JADE
platform, and SOAP-compliant communication, usually remotely.
As shown in Figure 7, SOAStudio is designed with a unified graphical user interface for
users to interactively access system functionalities. The SOAs runtime environment
includes an execution and management platform. SOAStudio integrates JADE and
Tomcat by interacting with and managing their consoles, APIs and outputs. The unified
interface provides users with four functional workspaces, that is, SOA design work-
space, SOA development workspace, SOA debugging workspace, and SOA runtime
environment. The design workspace is achieved by SOAs definition and project manage-
ment functions. The definition function collects information about ongoing projects and
SOAs. This workspace covers complete items for DAML-S service properties in terms
of profile, process, and grounding. The development workspace is achieved by functions
of making descriptions and agent files based on the meta-model and user inputs. The
description files include DAML-based semantic description files and associated WSDL-
based files. Agent-oriented class files are generated based on JADE-applicable agent
classes with reference to the CIR-Agent structure. Developers can further customize and
improve the codes to attain their specified SOAs with specified characteristics. The
debugging workspace is composed of a building tool, an operation and output window,
and a view tool. The building tool is provided to generate executable byte-stream classes
on the generated agent files. The operation and output window monitors the performance
of the studio and integrated platforms through operation log, outputs, and error reports.
The view tool is used to check generated packages, descriptions, codes, and project data.
Developers can complement pertinent resources to make the generated agent functional
and refined. The runtime environment is achieved by the integrated JADE platform and
Tomcat application server. They together provide execution, monitoring, and manage-
ment environment for SOAs.
The SOAStudio integrates the JADE platform (TILAB, 2003). JADE supports a distrib-
uted environment of agent containers, which provide a runtime environment optimized
to allow several agents to execute concurrently. This feature has been utilized to create

I

A

S

I

A

S

I

A

S

I

A

S

I

A

S

I

A

S
Running
&Interact

Registrar

Publish

Lookup

Service-Oriented Agent Studio

JADE 3.0b Tomcat 5.0

Definition
Design Development

Debug

Serving
&Comm.

Figure 6. System architecture for SOAs studio

282 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

several concurrent market sessions, such as commodity and auction sessions. A
complete agent platform may be composed of several agent containers. Communication
in JADE, whether internal to the platform or external between platforms, is performed
transparently to agents. Internal communication is realized using Java Remote Method
Invocation to facilitate communication across the e-marketplace and its market sessions.
External non-Java based communication between an e-marketplace and its participating
organizations are realized through the Internet InterOrb Interoperability Protocol mecha-
nism or HTTP. JADE provides the support for standard FIPA ontologies and user-
defined ontologies.
Although the implementation takes advantage of the JADE platform and its supporting
agents, such as a nameserver and a directory facilitator, the architecture of the SOAs is
based on the CIR-Agent model (Ghenniwa & Kamel, 2000). Java features, such as
portability, dynamic loading, multithreading, and synchronization support, make it
appropriate to implement the inherent complexity and concurrency in a distributed
environment, for example, e-marketplace. These features are also instrumental for
executing CIR-Agents in parallel. The design of each SOA is described in terms of its

Figure 7. Service-Oriented Agent Studio (SOAStudio)

Service-Oriented Agents and Meta-Model Driven Implementation 283

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

knowledge and capabilities. The agent’s knowledge includes the SOA’s self-model,
goals, and local history of the world, as well as a model of its acquaintances. The agent’s
knowledge also includes its desires, commitments, and intentions as related to its goals.
Implementation of the communication component takes advantage of JADE messaging
capabilities. It is equipped with an incoming message inbox, whereby message polling
can be both blocking and nonblocking, and with an optional timeout mechanism.
Messages between SOAs are based on the FIPA ACL. The agent’s reasoning capabilities
include problem solving and interaction devices. The problem solving of an SOA is
implemented through the use of complex behaviors. Behaviors can be considered as
logical execution threads that can be suspended and spawned. The SOA keeps a task list,
containing active behaviors. The problem-solving component varies from one SOA to
another. The SOA behaviors can be classified as follows: behaviors that are concerned
with distributed services, such as a market-registry service, advertisement service,
mediation and auction service and behaviors that are concerned with providing busi-
ness-specific services, such as selling and purchasing.

Case Study: e-Marketplace Services

The proposed SOA concept, related methodology and implementation framework as well
as the SOAStudio prototype have been validated through a case study on e-marketplace
services. The test environment is based on the business-centric knowledge-oriented
architecture (BCKOA) (Ghenniwa, 2001). The BCKOA specifications provide the ab-
straction to support domain entities and applications independent of any specific
technology. The main elements of BCKOA include domain services, integration services,
and domain ontology. A key to BCKOA is a service-oriented CIR-Agent model.
As a distributed cooperative environment, an e-marketplace focuses on providing
efficient business processes as well as value-added services such as community
services, localization, customer relationship management, and authentication. It typi-
cally charges a subscription- or transaction-based fee as profits. A common functionality
of an e-marketplace is to match buyers and providers of goods and/or services. The
marketplace is therefore a broker among its members (buyers and providers). The valid
buyers and providers could be businesses or individuals. The involved scenarios could
be dynamic pricing for providers or optimizing procurement for buyers.
A BCKOA-applicable e-marketplace with SOAs is shown in Figure 8. ABC Corporation
and XYZ Incorporated are virtual business entities registered with the e-marketplace for
both purchasing and sales services. Both organizations use a BCKOA-based computa-
tion environment. Individual customers or business-entity personnel in the e-market-
place can participate in the market through their user interface agents. Similarly, each
business-entity service is represented by an SOA in the e-marketplace. These SOAs
provide intelligent and autonomous implementation for the business-entity services that
might be based on legacy applications. For example, the ABC purchasing-service SOA
represents the implementation of the business-specific purchases by ABC in the e-
marketplace. Each user interface and business-entity SOA is registered in the e-
marketplace. Thus, a user interface SOA can benefit from the market, business-specific,

284 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and business-entity services by interacting with their representative SOAs. Each
business-entity service must also be registered with a UDDI agent for the corresponding
business-specific service. Each layer and its registry services are intended to provide
some aspect of information about the e-business environment and enables an interested
party to obtain information to potentially use offered services or to join the e-marketplace
and either provide new services or interoperate as a trading partner with other business
entities in that e-marketplace.
In the present case study, we experiment with commodity exchange and auction market
structures, as shown in Figure 9, where customers and suppliers are brought together
to trade with each other, and prices are set by the selected market structure. The trading
behavior of the participant SOAs is also governed by the selected market structure. An
individual customer is able to participate in the market through a dedicated user interface
agent possibly assigned by the e-marketplace. Similarly, each participating business
entity is assigned to a team of SOAs for the registered services and representative
personnel who might have a direct contact with the market as well as with the customers.
The market ontology provides a conceptualization of the domain at the knowledge level.

Figure 8. BCKOA-based e-marketplace with SOAs

Service-Oriented Agents and Meta-Model Driven Implementation 285

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The current auction market structure can be applied either for seller-oriented auction
service or for buyer-oriented reverse auction. Reverse auction allows multiple sellers to
bid an item down to the lowest price for the buyer. A sample scenario of reverse auction
could be found in Laskey and Parker (2000). The sense of competition heightens as
suppliers compete in real-time by bidding lower as they see other offers. Buyers benefit
from this service by assuring they receive the lowest price possible for various products
and services they require. For the competition strategies, those for conventional
auctions, for example, English, Dutch, Sealed-Bid, and Vickrey auctions, could also be
processing protocols for reverse auctions. They are chosen on the basis of business-
by-business analysis. We have adopted the Sealed-Bid strategy in the current prototype
with higher bid (for example, lower overall charges) benefiting the buyer more.
One implementation consideration for the reverse auction is to assign the decision maker
between the buyer and the auctioneer, that is, who determines the final winner. In our
case, the auctioneer matches sellers and provides a recommended winner for the buyer
to make a final decision for the auction session. A scenario of this e-marketplace service
therefore comes up. A buyer submits a request for bids to a marketplace auctioneer
through its user interface. The auctioneer starts with an auction session and sends
requests for bids to all matching sellers. The sellers decide if they want to participate and
submit bids through their interfaces. They may spell out some attached conditions
related to their bids. For example, sellers may ask for a minimum price to be paid for the
good. The auctioneer collects sells’ bids, calculates their credits based on the buyer’s
preferences, and recommends a winner bid to the buyer. The best offer is determined on
the buyer’s concerns, since the definition of “goodness” may vary from one buyer to
another. The concerns are therefore defined on the attributes of the requested good and
their associated weights.
Figure 10 shows the performance of this case with SOAStudio. One buyer, three sellers
(bidders), one auctioneer, and one UDDI registration SOAs are defined, developed, built,
and deployed on the platform. The execution is done with JADE. The SOAs’ interactions
include registration with UDDIFacility, buyer’s call-for-bid and credit calculation re-
quirements settings, seller’s offer settings, and winner recommendation to the buyer.
During the auction, the auctioneer SOAService sends a call-for-bid to three bidders. The
bidders set and submit offers. The auctioneer suggests the winner to the buyer. The case

Business Entity
Agent

Auction
Market

Business Entity
Agent

Business Entity
Agent

Auctioneer

Business Entity
Agent

Tote Board

Commodity Market

G1
Mediator Gn

Mediator G2
Mediator

Business Entity
Agent

Business Entity
Agent

User Interface
Agent

Business Entity
Agent

P1 P2 Pn

Agenda
 G3

Agenda
G1, G2

Agenda
G3, G2

Agenda

(a) (b)

Figure 9. Logical design of (a) commodity market and (b) auction market session

286 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

does not get critical setbacks with the proposed principles except for programming and
platform integration issues.

Conclusion and Future Work

Both Web services and software agents have been envisioned as appropriate compu-
tational paradigms for service-oriented distributed environments. However, they have
gained different focuses and accomplishments due to their development and application
backgrounds. Web services are motivated and associated intimately with businesses
and applications. They have been promoted to incorporate inventive business and
integration rules. They are therefore featured by business orientation and appropriate
for dynamic e-business applications. Software agents have gained more research efforts
along with artificial intelligence. They proved to be sophisticated in pertinent method-
ologies, for example, semantics-based reasoning and interaction-oriented software
construction technologies. As discussed, Web services currently have challenges with
semantic description and implementation frameworks. The current Web services efforts
have not distinguished Web services right as loosely coupled and autonomous entities.
These features have been overlooked since service-oriented interaction patterns are
more suitable for bottom-up design and agent-based implementation. We have found

Figure 10. Performance of a reverse auction with SOAStudio

Service-Oriented Agents and Meta-Model Driven Implementation 287

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

that Web service operations can be realized through software agents’ sophisticated
interaction behaviors. There is a natural way to combine them to integrate related
technologies into a cohesive body that attempts to avoid the weaknesses of each
individual technology, while capitalizing on their individual strengths.
This chapter proposes service-oriented agents (SOAs) to unify Web services and
software agents and coordinate the related technologies. We have addressed critical
challenges with SOAs in principles, technologies, implementation frameworks, and
application cases. The incurred concepts, system and component structures, a meta-
model, a meta-model driven semantic description, an agent-oriented knowledge repre-
sentation, and an implementation framework are thus proposed and investigated. They
consequently contribute to the identified setbacks with Web services technologies such
as dynamic composition, semantic description, and implementation framework. A proto-
type of the proposed SOAs implementation framework called SOAStudio (versioned 1.02
as of this writing) has been implemented. The critical features of the SOAs paradigm,
meta-model, semantic description, and implementation technologies have been demon-
strated through the prototype. Several economic services are being implemented, for
example, (reverse) auction services in commodity markets, brokering services in health
care environments, and security services in financial domains. With convincing prin-
ciples and experimental results, SOA is believed to be a promising methodology in
service-oriented technologies and applications.
This chapter sets a stage for SOAs in paradigm and implementation technologies. Critical
challenges can be anticipated ahead with the investigation, development, and applica-
tions. For example, a common collection of agent interaction patterns is a prerequisite to
boost Web services-oriented dynamic businesses. We have obtained a preliminary
UML-based meta-model. Their packages structure and class members need to be
improved to incorporate agent-oriented paradigm. Semantic SOAs description technolo-
gies are also under development in parallel with their developments in Web technologies.
The formal relationships between meta-model, description, agent knowledge, and Web
service protocols have been identified as a key challenge with the proposed implemen-
tation framework. There are also imposed topics with technical stacks of SOAs since
those related technologies are still evolving. The investigation on SOAs applications in
a variety of distributed environments, such as e-marketplaces and supply chains, also
makes a big difference since it could make direct benefits for industries.

References

Amazon.com Inc. Web services FAQ. Retrieved August 18, 2004, from http://
www.amazon.com/gp/aws/download_sdk.html/102-3008605-0441735

Andreas, E. (2002). OntoAgent: A platform for the declarative specification of agents.
In M. Schroeder & G. Wagner (Eds.), Proceedings of the International Workshop
on Rule Markup Languages for Business Rules on the Semantic Web (pp. 58-71).

288 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Apache Software Foundation. The Tomcat 5 Servlet/JSP container. Retrieved August 18,
2004, from http://jakarta.apache.org/tomcat/tomcat-5.0-doc/index.html

Bjornsson, H., et al. (2002, January 2). FX-Agents description - White paper. Retrieved
August 18, 2004, from http://fxagents.stanford.edu/vision.php

Cabrera, F., et al. (2002, August 9). Specification: Web services transaction (WS-
Transaction). Retrieved August 18, 2004, from http://www-106.ibm.com/
developerworks/webservices/library/ws-transpec/

Chavez, A., & Maes, P. (1996). Kasbah: An agent marketplace for buying and selling
goods. Proceedings of the 1st International Conference on the Practical Applica-
tion of Intelligent Agents and Multi-Agent Technology (pp. 75-90), London.

DAML Services Coalition. (2002, October 2). DAML-S: Semantic markup for Web
services. Retrieved August 18, 2004, from http://www.daml.org/services/daml-s/
0.7/daml-s.html

Emorphia Limited. (2003). Toolkit Overview. Retrieved August 18, 2004, from http://
www.emorphia.com/research/features.htm

Finin, T., Labrou, Y., & Mayfield, J. (1997). KQML as an Agent Communication Language.
In J. Bradshaw (Ed.), Software agents (pp.291-316). MA: AAAI/MIT Press.

FIPA. (2002, December 3). FIPA ACL message structure specification. Retrieved August
18, 2004, from http://www.fipa.org/specs/fipa00061/SC00061G.html

FIPA Modeling Technical Committee. (2003, July 15). Working documents. Retrieved
August 18, 2004, from http://www.auml.org

Genesereth, M. R., & Fikes, R. E. (Eds.). (1992). Knowledge interchange format, version
3.0 reference manual. CA: Stanford University.

Ghenniwa, H. H. (2001). eMarketplace: Cooperative distributed systems architecture.
Proceedings of the 4th International Conference on Electronic Commerce Re-
search, Southern Methodist University, Texas.

Ghenniwa, H. H., & Kamel, M. (2000). Interaction devices for coordinating cooperative
distributed systems. Automation and Soft Computing, 6(2), 173-184.

Google. Google Web APIs (beta). Retrieved August 18, 2004, from http://
www.google.com/apis/api_faq.html

HP. HP adaptive enterprise glossary. Retrieved August 18, 2004, from http://
h71028.www7.hp.com/enterprise/downloads/res_glossary.pdf

IBM, Microsoft, & BEA. (2003, September 16). Web services coordination (WS-Coordi-
nation). Retrieved August 18, 2004, from http://www-106.ibm.com/
developerworks/webservices/library/ws-coor

Intelligent Software Agents Lab. (2001). RETSINA. Retrieved August 18, 2004, from
http://www-2.cs.cmu.edu/~softagents/retsina.html

IntelliOne Technologies. (2001, December 17). Agent construction tools: Academic and
research projects. Retrieved August 18, 2004, from http://www.agentbuilder.com/
AgentTools/index.html

Service-Oriented Agents and Meta-Model Driven Implementation 289

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Karp, A. (2000, August 7). E-speak E-xplained. Retrieved August 18, 2004, from http:/
/www.hpl.hp.com/techreports/2000/HPL-2000-101.html

Laskey, B., & Parker, J. (2000, July). Microsoft BizTalk Server 2000: Building a reverse
auction with BizTalk orchestration. Retrieved August 18, 2004, from http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbiz/html/
bizorchestr.asp

Li, Y., Ghenniwa, H. H., & Shen, W. (2003, June). Integrated description for Web service-
oriented agents in eMarketplaces. Proceedings of the Business Agents and the
Semantic Web Workshop (pp. 11-17), Halifax, Nova Scotia, Canada.

McIlraith, S., & Mandell, D. (2002). Comparison of DAML-S and BPEL4WS. Stanford
University: Knowledge Systems Lab.

Microsoft Corporation. (2002, April 10). Web services in action: Microsoft delivers
software as a service with MapPoint .NET. Retrieved August 18, 2004, from http:/
/www.microsoft.com/presspass/features/2002/apr02/04-10mappoint.asp

Microsoft Corporation. (2002, December 18). New group of specifications to build on
industry work for Web services. Retrieved August 18, 2004, from http://
w w w . m i c r o s o f t . c o m / p r e s s p a s s / p r e s s / 2 0 0 2 / D e c 0 2 / 1 2 -
18AdvancedSpecsBEPR.asp

OASIS. (2002, July 19). UDDI version 2.04 API specification. Retrieved August 18, 2004,
from http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

OASIS. (2001, February 16). ebXML technical architecture specification v1.0.4. Re-
trieved August 18, 2004, from http://www.ebxml.org/specs/ebTA.doc

Richard, F., & Deborah, L. M. (2001, October). An axiomatic semantics for RDF, RDF
schema, and DAML+OIL. Retrieved August 18, 2004, from http://
www.ksl.stanford.edu/people/dlm/daml-semantics/abstract-axiomatic-
semantics.html

Sun Microsystems. Ford Financial: J2EE technology-based architecture drives transfor-
mation across enterprise. Retrieved August 18, 2004, from http://wwws.sun.com/
software/sunone/success/Ford.pdf

Sun Microsystems. Sun Open Net Environment (Sun ONE). Retrieved August 18, 2004,
from http://www.sun.com/software/sunone

TILAB. (2003, March 19). Java Agent DEvelopment Framework. Retrieved August 18,
2004, from http://sharon.cselt.it/projects/jade/

Trowbridge, D., et al. (2003, June). Enterprise solution patterns using Microsoft .NET.
Retrieved August 18, 2004, from http://msdn.microsoft.com/practices/type/Pat-
terns/Enterprise/

W3C. (2003). Web Services Architecture. Retrieved August 18, 2004, from http://
www.w3.org/2002/ws/arch/

W3C. (2003, June 24). SOAP version 1.2 part 1: Messaging framework. Retrieved August
18, 2004, from http://www.w3.org/TR/soap12-part1

290 Li, Ghenniwa and Shen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

W3C. (2003, August 18). OWL Web ontology language overview. Retrieved August 18,
2004, from http://www.w3.org/TR/owl-features/

W3C. (2001, March 15). Web Services Description Language (WSDL) 1.1. Retrieved
August 18, 2004, from http://www.w3.org/TR/2001/NOTE-wsdl-20010315

Wainewright, P. (2002, November 01). Loosely coupled Weblog. Retrieved August 18,
2004, from http://www.looselycoupled.

Service-Oriented Agents and Meta-Model Driven Implementation 291

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section IV

Security in
Service-Oriented

Systems

292 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XIV

Security in
Service-Oriented

Architecture:
Issues, Standards and

Implementations
Srinivas Padmanabhuni

Software Engineering and Technology Labs,
Infosys Technologies Limited, India

Hemant Adarkar
Ness Technologies, India

Abstract
This chapter covers the different facets of security as applicable to Service-Oriented
Architecture (SOA) implementations. First, it examines the security requirements in
SOA implementations, highlighting the differences as compared to the requirements of
generic online systems. Later, it discusses the different solution mechanisms to address
these requirements in SOA implementations. In the context of Web services, the
predominant SOA implementation standards have a crucial role to play. This chapter
critically examines the crucial Web services security standards in different stages of
adoption and standardization. Later, this chapter examines the present-day common
nonstandard security mechanisms of SOA implementations. Towards the end, it discusses
the future trends in security for SOA implementations with special bearing on the role
of standards. The authors believe that the pragmatic analysis of the multiple facets of
security in SOA implementations provided here will serve as a guide for SOA security
practitioners.

Security in Service-Oriented Architecture 293

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Security is a fundamental issue of concern in computing systems. With the recent trends
in distributed computing, primarily the emergence of World Wide Web (WWW) as a
universal medium for conducting business, security has become critical in IT architec-
tures. Successful Web security mechanisms like Secure Sockets Layer (SSL) have played
a critical role in the emergence of WWW as a mainstream technology with wide
acceptance.
In the context of distributed systems, SOA has caught the critical attention of both
technology and business champions alike because of its promise in removing some of
the hurdles in earlier models of distributed computing. Though SOA as a concept is not
new, this promise is based on the open and loosely coupled nature of the newer SOA
implementations.
In this chapter, we are concerned with multiple dimensions of security in loosely coupled
SOA implementations. Web services, the most prevalent SOA implementation, represent
an extension of the paradigm of Web. Web services represent applications that can be
invoked over open networks using standard Web-based protocols. Other upcoming
SOA implementations include Jini (Jini Spec, 2003), Open Grid Services Architecture
(OGSA) (OGSA Spec, 2003), and so forth. We shall cover the various security require-
ments in SOA implementations, highlighting the differences from security requirements
in generic online systems. We shall proceed to cover the different solution mechanisms
to address these requirements in SOA implementations. Later, we shall explore the Web
services security standards in detail. We shall then proceed to explore the common
nonstandard security mechanisms of today, addressing Web services security. Towards
the end, we shall present the future trends in security for SOA implementations including
Web services.

Background

Since we are concerned with security of loosely coupled SOA implementations, we shall
cover the generic security requirements and solutions in online systems, alongside the
core concepts in SOA.
While online systems have been in use for the past few decades, the advent of the Web
as a commercial medium has posed significant security challenges due to its public and
open nature. Further, e-business and e-commerce has placed stringent security require-
ments due to the online transactions involved. Current security technologies in Web are
able to handle and manage the expectations for e-commerce and e-business transactions.
Security, in effect, broadly reflects a collection of security requirements to be satisfied.
In this section, we point out the primary security requirements in online systems. Some
of the typical security requirements of online systems are outlined below:

294 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Confidentiality: The confidentiality requirement states that any piece of informa-
tion should not be understood by anyone other than the person for whom it was
intended. Message privacy is a key requirement here.

• Data Integrity: The integrity requirement states that information should not be
altered in storage or transit between a sender and the intended receiver without the
alteration being detected.

• Authentication: The authentication requirement states that the sender and re-
ceiver should be able to confirm each other’s identity and the origin/destination
of the information.

• Authorization: The authorization requirement ensures that the sender has the
required authority to perform the operation. This may range from permission to
perform some action to permission for viewing some content.

• Non-repudiation: The nonrepudiation requirement ensures that the creator/
sender of the information cannot deny at a later stage his or her intentions in the
creation or transmission of the information.

• Privacy: The privacy requirement is more general than the confidentiality require-
ment above. It also deals with the question of whether to trust the personal
information with a Web site.

• Trust: This refers to the confidence in a person or a partner doing the transaction.
This concept extends beyond trust in a person accessing an online service to even
include participants in business-to-business transactions where trust may be used
to refer to the adherence to the contractual agreements between the partners.

• Auditing: The ability to know who did what, when and where. This is a key
requirement when it comes to detection of possible security breaches.

• Availability: The computing resources should be available for genuine users when
they wish to access the resource. Denial of Service (DoS) attacks may cause lack
of availability, and hence, there is a need to protect against such attacks.

• Intrusion Detection: The ability to detect when an unwanted user of an online
system has entered the system and done some damage to the system.

Security Solution Mechanisms in Online Systems

Diverse security solutions and mechanisms have been designed and implemented for
tackling online security requirements. In this section, we cover the different relevant
solutions. This list is not meant to be exhaustive, however it will serve as the base for
the discussion in the context of security solutions and standards for SOA implementa-
tions. The primary mechanisms of security employed in online systems are enumerated
below:

Security in Service-Oriented Architecture 295

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Passwords: A password refers to a unique secret series of characters which allows
a user to access a computing resource. Ideally a password should be difficult to
guess to prevent access to unauthorized users. It is the most common authentica-
tion mechanism in online systems.

• Encryption: Encryption is the most common security technique to ensure confi-
dentiality in online systems. Essentially it refers to the process of taking a piece
of data (called cleartext) and a short seed string (a key) and producing an altered
piece of data referred to as ciphertext, which is not understood by anybody who
does not know the key. Decryption is the reverse process of converting the
ciphertext to cleartext. Typically, encryption process relies on hard to emulate
mathematical algorithms involving the key and the cleartext.
Encryption algorithms can be divided into symmetric and asymmetric encryption
algorithms. In symmetric algorithms, both the encryption and decryption keys are
the same. Hence, they function on the basis of shared secret. In asymmetric
algorithms, the encryption and decryption keys form a key pair, in which one key
is a private key (which shall be kept a secret) and the other is a public key. If a piece
of data is encrypted with the public key, it needs the private key to decrypt.
Asymmetric methods distribution of the keys is easy, and hence, public key
infrastructure relies on asymmetric methods. Encryption of messages ensures
confidentiality by making it difficult to deduce the content of the original message
from the encrypted message.

• Access Control Lists: These are generic formats of security information concerning
permissions to access certain resources or to perform certain tasks. Most often,
authorization is provided by usage of access control lists (ACL).

• Hashing: Hashing is another important technique used to ensure data integrity in
online systems. The idea is to take an arbitrary-sized input data (referred to as a
message) and generate a fixed-size output, called a digest (or hash), such that it is
nearly impossible to compute or guess the message from the hash. The hash of a
piece of data can be used to verify the integrity after an online transfer by
comparison with the recomputed hash of the transferred data.

• Digital Signature: Digital Signature is an important technique to ensure data
integrity and nonrepudiation. Typically, the hash of a message is encrypted with
the private key of an entity and is termed as the signature of the data. To ensure
that the message received by the receiver is actually sent by the person who signed
the message, the signature after decryption with the public key of sender should
match the hash.

• Digital Certificate: Usage of digital signature in sending a message requires that
the receiver knows a priori the sender’s public key. This is a big constraint, and
hence, it becomes important to make the public key available of the sender as part
of the message to achieve flexibility. However, that opens up the requirement of
the trust of the public key sent by the sender, whether it is genuine or not. Hence,
to overcome these problems, specialized entities termed as certification authorities
are entrusted with the task of signing the public key of senders and generate a

296 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

special form that can be sent along with a message. This signed form of represen-
tation of a public key is termed as a digital signature. By leveraging a third-party
certification authority (CA), the problem of public keys is reduced to the receivers
having to know the public key of the CA. Popular ways of broadcasting this
information of public keys of CA entities include integrating them into the popular
browsers or other online systems. Digital certificates are stored in standard formats
like the popular X.509 Certificate format. Digital certificates are used for authenti-
cation and data integrity in public networks.

• SSL: SSL (Secure Sockets Layer) is a Web-based protocol that enables a secure
connection between the client and the server. It is based on a series of exchange
of keys (and the server digital certificate) between the server and the client to
generate a session key that is used to encrypt all the following messages in the
session. Typically as part of the protocol, the server certificate is requested by the
client allowing the client to ensure communication with the right Web server. Thus,
SSL enables channel encryption between the client and the server.
Client-side SSL uses digital certificates of clients enabling them to prove their
identity to the Web server. This personal certification attribute, or the client
identification, is not very common at the moment due to the cumbersome process
involved in maintenance of huge numbers of client certificates.

• PKI: Public Key Infrastructure (PKI) refers to a collection of authorities and a
system for exchange of digital certificates to entities. A PKI set up typically
includes a CA for generating, revoking, or maintaining the digital certificates. It also
includes a registration authority (RA) for physically verifying the identity of a
certificate requester using physical means like checking against an identity card
before directing the CA to issue a certificate. CA uses the concept of Certificate
Revocation Lists (CRL) for revoking inactive certificates.

• Firewalls: Firewalls are specialized security tools designed to protect an enter-
prise typically against attacks from the external network. All network traffic
between the internal and external network is channeled through it, and the firewall
allows only desired traffic as configured. Traffic from internal network to external
network can also be filtered in the firewall. The conventional firewalls are typically
based on the concept of packet filtering, and they operate on the network layer of
the stack.

• Code Signing: A popular concept for ensuring security of downloadable code on
the network is code signing. Any piece of code including Applets, Jar files, ActiveX
controls, and so forth are signed before download is allowed. Thus, digitally signed
code after download guarantees that the code really comes from the publisher who
signs it and ensures that the content has not been corrupted or altered, so it is safe
to run.

• Sandbox model: An alternative to code signing, the sandbox model, also applies
to downloaded code on the network. Unlike the requirement of signing of every
piece of code, it places restrictions on the capabilities of the downloaded code to

Security in Service-Oriented Architecture 297

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

limit the harm it can do on the client machine. Thus, the sandbox model ensures
safety to the client machine by restricting the capabilities of the untrusted code;
for example, it is not allowed to look at the file system on the client machine.

Service-Oriented Architecture

Research and development over the past few decades in distributed computing has
resulted in the current day ideas in SOA implementations. SOA implementations revolve
around the basic idea of a service. A service, unlike other previous concepts in
distributed computing like objects or components, is more modular and self-contained.
In raw terms, a service refers to a modular and self-contained piece of software, which
has a well-defined functionality expressed in abstract terms independent of the under-
lying implementation that is accessible at a network point. Basically, any implementation
of Service-Oriented Architecture has three fundamental roles: Service provider, Service
requester, and Service registry and three fundamental operations: Publish, Find, and
Bind (Figure 1). The service provider publishes details pertaining to service invocation
with a service registry. The service requester finds the details of a service from the service
registry. The service requester then invokes (binds) the service on the service provider.
The role of service registry is sometimes also referred to as the service broker because
it acts as a service broker between the requesters and providers.
SOA as a concept is not new to distributed computing. Earlier distributed architectural
models based on CORBA, DCOM, Java RMI, and so forth had their basis in the SOA
concept. However, these implementations were based on tight coupling between the
service requesters and service providers. In these systems, there was a strict requirement
of matching of data and protocol formats on both sides in order for the systems to
interoperate. Further, tight coupling required significant changes in any dependent
system when one system was changed, and hence, maintenance of systems in tightly
coupled SOA implementations was costly.
On the other hand, a loosely coupled SOA implementation offers independence between
the different participants so that each can act independently without requiring signifi-
cant changes when one participant undergoes any change. This independence further
extends the removal of strict matching requirements of data and protocol between the two
systems. Such independence enables creation of flexible and adaptive distributed
environments. Examples of such implementations of SOA include Web services, Jini, and
OGSA. Unless otherwise mentioned, we shall use the term SOA implementations to refer
to loosely coupled SOA implementations only. Web services represent standards-based
functions accessible over a network with XML-based protocols. Jini (Jini Spec, 2003) is
an architecture recommendation from Sun Microsystems for networks of devices inter-
acting in a peer-to-peer loosely coupled fashion. OGSA (OGSA Spec, 2003) is an open
loosely coupled SOA implementation of grid systems based on the concepts in Web
services.

298 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Security Requirements
in SOA Implementations

SOA security requirements are more complex than that of online systems due to the
following factors:

• Heightened security threats on account of easier access to implementations.

• Loosely coupled nature of interaction, requiring flexible ways of handling hetero-
geneous implementations.

• Dynamic interaction between services necessitates dynamic security mechanisms.

• Need to reuse existing security mechanisms in distributed systems because
services are essentially wrappers over implementations.

Loose coupling security requirements in SOA will essentially translate to decentraliza-
tion of conventional security mechanisms so that the interactions between service
requesters and service providers carry the security information. These increased
requirements necessitate additional security features including message level security,
distributed credential management functions like single sign-on, message content
inspection, interoperability of diverse security systems, and federation cum delegation
requirements for trust and policies. Some SOA implementations like Web services
advocate a recasting of the conventional security strategies and implementations for
XML, and others reuse existing security concepts (for example, Jini uses Java RMI
concepts).

Figure 1. Service-Oriented Architecture

�����
�����

����	�
��

�
�����

���
�
��

�
�����

����
��

�
�����
�
�����

Security in Service-Oriented Architecture 299

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2 lists some of the basic security requirements of an SOA implementation.
The primary security requirements in SOA implementations can be outlined as shown in
Figure 2. A generic SOA implementation has been depicted in the figure, keeping in view
different SOA implementations including Web services, Jini, and so forth. SOA imple-
mentations share the generic facets shown in the figure barring minor differences in
details of execution of the processes between the three roles. While in some paradigms
like Web services, the information retrieved about a service from the service registry
could be plain interface information. In other paradigms like Jini, it could involve
downloading of actual code proxies. We have highlighted the role of a service provider
platform typically consisting of a development platform, combined with a deployment
platform because the deployment platform is responsible for some of the enterprise grade
requirements for service providers.

Online Security Requirements As Mapped to SOA

The primary security requirements in SOA implementations include the following:

• Confidentiality: The confidentiality requirement for Web services pertains to the
requirement that a certain piece of information (XML Document) should not be
understood by anyone other than the person for whom it was intended, while the
rest of the document is left untouched. In conventional terms, this requirement
applied to the whole of a piece of information. This necessitates partial encryption
of the document.

• Data Integrity: The integrity requirement in Web services mandates that a portion
of a piece of information (XML Document) should not be altered in storage or transit
between sender and intended receiver without the alteration being detected, while
other portions might be altered or in certain cases even be deliberately altered. For
example, in a value added intermediary it is possible that extra information is added
to the header of a message while the body is untouched. XML digital signatures
can enforce such requirement of partial document integrity. In some other SOA
implementations, it may be necessary to verify if a piece of code downloaded is
correct. This is enforced by digitally signing the appropriate pieces of code.

• Authentication: In SOA implementations, it is necessary to have the capacity for
one authentication system to interoperate with another authentication system for
reasons of efficiency as well as usability. Further, more specifically with Web
services, it might be necessary to accept credentials from outside an enterprise, for
example, from a business partner. Such requirements can be met by standardized
formats for authentication information accepted mutually or universally.

• Authorization and Access Control: The basic authorization mechanisms in online
systems commonly prescribe static access control information where permissions
are provided for static resources like file systems, systems, and so forth. In SOA
implementations, there is a need to further specify operation level access privileges

300 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(like permission to execute) dynamically because it may require invocation of
operations by different kinds of clients at different times. Further, SOA implemen-
tations also need fine-grained specification of access control information related
to restricting permissions to specific methods in a service, or a specific data item
within a method, depending upon the requester.

• Non-repudiation: Besides capturing the fact that a certain piece of information was
created or transmitted, nonrepudiation in SOA requires that any service invocation
details be captured so that at a later time the requester cannot deny the invocation.

• Privacy: SOA implementations should have well-defined formalisms to use and
disclose personal information provided by the service-requesting clients.

Service
Registry

Service
Requestor

Service Provider
Platform

Service
Production
Platform

Service
Development
Platform

 Deploy

 Publish

Bind/Invoke

Availability
Provisioning
Auditing

Confidentiality
Privacy
Auditing

Data Integrity
Access Control
Auditing
Code Genuity
Trust

Confidentiality
Authenticity
Access Control
Data Integrity
Auditing
Non-Repudiation
Federated Trust
Replay Prevention
Attack Prevention

Figure 2. A bird's eye view of security requirements in service oriented architecture

Security in Service-Oriented Architecture 301

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Trust: In SOA, a proxy on the service consumer is used to access services on the
service provider. In some implementations, these proxies are downloaded dynami-
cally. There is a need to implement mechanisms to trust the downloaded code and
provide access to it to execute.

• Auditing: The ability to know who did what, when and where. This includes
capturing of failed invocations of a service, faulty credentials, and so forth.

• Availability: The service should be available to a genuine service requester when
requested. This is typically the responsibility of the service provider platform.

• Provisioning: Security provisioning refers to the process of administering the
security information as part of the deployment. In SOA implementations, it is
essential that devices or a hosting environment of a service be appropriately
provisioned with the appropriate security credentials.

Additional Security Requirements for SOA

SOA poses additional security requirements that can be outlined below:

• Single Sign-On: Diverse service providers and service consumers have different
authentication and authorization systems, and it is impractical for each system to
maintain each other’s authentication rights and access control lists. Single sign-
on solutions remove the necessity of a universal credential by allowing credential
mapping among many diverse systems. When one system authenticates a user, the
state of authentication can be used by other systems without reauthenticating and
with no change in the authentication mechanisms at other systems. Single sign-on
can be implemented by standards for interoperating of security credentials.

• Malicious Invocations: The invocations of services may be done with malicious
data, which may otherwise appear to be harmless to conventional solutions like
firewalls, as input to the service. This malicious data may be in the form of spurious
code being sent as part of a Web service request, or it can be a piece of untrusted
code downloaded in a Jini environment. Appropriate code inspection technologies
are required to identify the appropriate malicious code segments before it is acted
on. Another approach to tackle the same is by secluding the running environment
for the code execution, as followed by the sandbox model.

• Repeated Invocations: Owing to the ease of invocation of services with exposed
interfaces, a repeated set of attacks on a service can occur leading to denial of
service and loss of availability. This requires a specialized kind of firewalls with the
capacity to diagnose the content of the request and examine method invocations
in isolation. Code inspection of service requests can provide a clue about repeated
requests and appropriate mechanisms can be used to avoid such attacks.

• Delegation and Federation: Delegation refers to the capability of a service or an
organization to transfer security rights and policies to another trusted service or
organization. Federation is a special case when the transferee service is a peer, not

302 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a child. Delegation is a crucial component in SOA implementations like OGSA,
where failure of a service should not let the whole federation collapse; instead, a
delegation is done to another service. A related requirement is federated identity
where users can single sign-on across heterogeneous hosts and Web services
beyond one’s enterprise. Standards and mechanisms to describe appropriate
policies for federation and delegation are crucial to perform proper delegation and
federation.

Security Standards
and Solutions for SOA

Standards have special relevance to SOA security implementations, primarily Web
services, as they form the crucial backbone for implementation of security solutions.
Standards are crucial in any discussion of Web services security solutions. A plethora
of security standards are being worked on at different standards bodies to enable faster
adoption of Web services and grid technologies. Since Web services represent the
predominant SOA implementation, we shall first cover the standards and implementa-
tions of Web services security before proceeding to discuss more generic SOA security
solutions.

Web Services Security Standards

Web services security standards extend standard mechanisms like encryption, digital
signature, and public-key infrastructure to handle XML and Web services specific
nuances and problems. Some of the protocols are work in progress, and some have been
standardized already. A top-level hierarchy of Web services standards is presented in
Figure 3, and a detailed listing of the relevant key standards is shown in Table 1.
In the hierarchy shown in Figure 3, we have tried to highlight the fact that solutions to
Web services security fall above the application layer in the conventional networking
stack. Conventional network security protocols have been clubbed for the purpose of
simplicity as the bottom-most layer. SSL, the predominant standard for Web security,
provides point-to-point confidentiality and, hence, fails to address the situation where
intermediaries are involved. Thus, SSL is not ideal for Web services.
Above this layer lies the layer of XML Signature (XML-Signature Spec, 2002) and XML
Encryption (XML-Encryption Spec, 2002). Encryption and Digital Signature are key
solution mechanisms for security in online systems. XML-Signature and XML Encryp-
tion are attempts to remap existing concepts in Web-based security to XML
message level security. In that sense, these protocols stress message-level security in
contrast to session-level protocols in Web-based world. All the protocols at this level
specify how to carry security data as part of XML documents. The ability to encrypt/sign
only parts of XML documents is a critical part of security requirements for Web services
as mentioned in the previous section.

Security in Service-Oriented Architecture 303

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Above this layer is XKMS (XKMS Spec, 2003), an attempt at extending PKI for XML-
based Web services in order to promote widespread acceptability of XML-based security
mechanisms. XKMS leverages the XML-Signature and XML-Encryption specifications.
Above this layer are the Web services security standards that leverage the lower level
XML security specifications. An overlap is also observable between some key standards
in this layer. The two standards of SAML and WS-Security are poised to become the
popular de facto Web services security standards with wide acceptance. Other standards
have not seen widespread acceptance. At the top lie the standards for federated identity
of Web services. Federated identity is key to promote widespread acceptance of
customer-focused dynamic Web services. In this section, we shall cover the key Web
services security standards in greater detail.
 XML Signature: In Web services, there is a need to partially encrypt the body or parts
of a SOAP request to enable transmission with authenticity and integrity assured.
Because of the involvement of such multi-hop data transfers in Web services, the original
concept of digital signatures will not extend to XML-based content as it is based on the
idea of getting signatures from the message digests of the entire document. Hence,
intermediaries need mechanisms for development of complete trust of the handling of the
content of messages keeping partial content intact. Such mechanisms have been
provided in the XML Signature (XML-Signature Spec, 2002) specification.
XML Signature defines an XML-compliant syntax for representing signatures over Web
resources and portions of protocol messages and procedures for computing and
verifying such signatures.
Such signatures will be able to provide data integrity, authentication, and/or
nonrepudiation. In real-life scenarios, it is necessary that in the transmission route of the
XML message, different parties sign different parts. XML Signature specification allows
for this kind of signing. XML Signature validation requires that the data object that was
signed be accessible. The XML Signature itself will generally indicate the location of the
original signed object. This reference can:
• Be referenced by a URI within the XML Signature;
• Reside within the same resource as the XML Signature (the signature is

asibling);
• Be embedded within the XML Signature (the signature is the parent-enveloping

form); and
• Have its XML Signature embedded within itself (the signature is the child-

enveloped form).

Typical computation of XML Signature of an XML document involves computing of the
message digest of the given XML document. However, it is often necessary to under-
stand there are many cases where seemingly dissimilar XML documents and nodes
actually refer to the same document/node. A typical example is shown in Listing 1 (all
listings are at the end of the chapter): All three of the above represent the same basic
structure, that is, the structure 1. Thus, the idea in canonical XML is to obtain the core
of any XML structure so that any two structurally equivalent XML documents are

304 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

identical byte for byte in their core form. This core form is termed as the canonical form
of an XML document. Canonicalization refers essentially to the process of conversion
of any XML documents to its canonical form and is necessary for XML Signature
computation. An example of enveloped XML Signature is shown in Listing 2. This
example uses the DSAwithSHA1 algorithm to compute the signature, and the XML
Signature also provides details of key values used to compute the signature.
XML Encryption: XML Encryption (XML-Encryption Spec, 2002) is a W3C standard for
storing results of an encryption operation performed on XML data in XML form. XML
Signature supports the concept of encrypting only specific portions of an XML
document. This minimizes the encryption processing and leaves non-sensitive informa-
tion in plain text form such that general (i.e., non-security-related) processing of the XML
can proceed. This addresses the necessity of partial encryption of an XML document in
case of involvement of intermediaries. A typical example of an XML-Encryption output
is shown in Listing 3. It shows that only the credit card component is encrypted.
XKMS: This standard (XKMS Spec, 2003) is being developed to handle the infrastructure
requirements for capturing the security information (values, certificates, and trust data)
related to public Web services. It defines protocols for distributing and registering public
keys suitable for use in conjunction with XML Signature. Essentially, it is attempting to
extend concepts in PKI to XML-based interactions. It is being designed to support the
key management functionalities including registrations, trust, and delegation when XML
documents are involved. XKMS is critical for large-scale deployments of Web services
for public consumers.

Figure 3. Web services security standards stack

����������	
������
������
�����
�����
��
��������������������	��������
����

�

� ����!�	��
�� � ��"��
�#�����

�$ ���� �%&	�����$���

 	����
�	'�(�&�
��
����������
����

��	��	
���
��) ���(�%����
�����

*���
	�������������
���&�
����(�%*���
	������

+���
�(�&���
������
����
������	��	
���
��
 ���,�*���)� ���
�� ��(�%��
�����

Figure 3. Web services security standards stack

Security in Service-Oriented Architecture 305

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SAML: Security Assertions Markup Language (SAML) (SAML Spec, 2003) is a standard
ratified by OASIS as a high level XML-based standard for exchanging security creden-
tials (assertions) among online business partners. The assertions could be authentica-
tion assertions (identity), attribute assertions (user limits and so forth), or authorization
decision assertions (access control like read/write permission and so forth). It also
specifies different protocols and profiles governing structure of SAML requests,
responses, and mode of retrieval of assertions, for example, using SOAP over HTTP.
SAML does not prescribe a standard for authentication or authorization; instead, it offers
a universal language to specify the information on authentication or authorization.

Table 1. A listing of key Web service security standards
����
�������

��������

�� ���!�

�" ���#���$�
%����$$���

��&'&$����!�
��� $�&(�����

�������

��������

� ��"��
�#����� ���	!��
���
�
����������	
����

(-�� (-��	##
�����

� ����!�	��
�� ���	!��
���
�
����!
�����
���
�#���	�����

(-�� (-��	##
�����

� ��$���
 	�	!�'���������'�

� �%&	�����$�� (-�� (-��
��
�&�
	���������

����
����)���
������
 	
��#��	�!�	!��

���!
����!�%����
)��������	������
	���
)����
�.	�����
����
�#�
	&�
����

+)���� +)����	##
�����

(�%����
���� �+)�� ���	!��
����
�����
����
����
�
������	
��
����
�#�
	&�
����

 ��
�������
/�
���!���	���
�, �

+)�����#��0�

�����
��
	##
�����

�)� ��)����������
�
�
	�����
����
 	�	!�'����

+)���� +)����	##
�����

(�%�
���� �
����
 	�	!�'����

 ��
������ ���
��	��	
��.	�����

(�%��
���� ��
����
 	�	!�'����

 ��
������ ���
��	��	
��.	�����

(�%
����
������
�	�����

����
����������
 	�	!�'����

 ��
������ ���
��	��	
��.	�����

�,�*� ,��'��
���� +)���� +)����	##
�����

�� �� ��
�����
�
���������!�

+)����� +)����	##
�����

�
�1������&�
��� *���
	����
���������

����	���
����
��

�
�1������&�
���
	##
�����

(�%*���
	����� *���
	����
���������

 ��
������	���
�, �

�����

Table 1. A listing of key Web service security standards

306 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Hence, heterogeneous authentication mechanisms can interoperate using SAML. This
way, SAML addresses the requirement related to single sign-on of Web services, too.
SAML assertions can be signed using XML Signature. SAML is also the base for the
federated identity system developed by Project Liberty. A sample SAML Response is
shown in Listing 4. This example shows an authentication assertion and an attribute
assertion which indicates the membership attribute as having the value Gold.
WS-Security: WS-Security (IBM-MS WS-Security Roadmap, 2002) is an overall frame-
work for security for Web services. As part of the framework, the initial spec has been
submitted to OASIS for ratification. Currently, WS-Security is in the final stages of public
review and will be ratified soon. WS-Security has support from a critical mass of Web
services vendors and will be a key standard for Web services security.
WS-Security provides a generic mechanism to attach a generic security token (public
certificate, X.509 certificate and so forth) to SOAP messages in the header. The token
takes care of many special variations including public certificates, shared tickets, and so
forth. WS-Security defines how to attach signature and encryption headers to SOAP
messages. Leveraging XML Signature in conjunction with security tokens provides
message integrity, and leveraging XML Encryption in conjunction with security tokens
provides message confidentiality. WS-Security allows interoperation of different exist-
ing security mechanisms like Kerberos, PKI, username-passwords, and so forth. A
sample WS-Security SOAP message for passing username-password information is as
given in Listing 5.
Federated Identity Standards: Federated identity is the ability to securely recognize and
leverage user identities enabling single sign-on across disparate applications and hosts.
Federation also allows an organization to securely share its confidential user identities
with other trusted organizations with a single sign-on. Enterprises of today use multiple
sources of identities including NT Domains, LDAP servers, RADIUS, and so forth, but
none of them qualify for the federated identity system because of the heterogeneous
nature of each of these protocols. There have been multiple attempts at creation of such
a federated infrastructure by multiple vendors. The prominent among them are WS-
Federation and Project Liberty. WS-Federation is a proposition from Microsoft/IBM
combination based on the WS-Security specification. WS-Federation (WS-Federation
Spec, 2003) describes how to manage the trust relationships in a heterogeneous federated
environment including support for federated identities. Project Liberty (Project Liberty
Spec, 2003) is a consortium of companies formed to provide a simplifying standard for
federated identity, which will allow consumers to share credentials and enable single
sign-on to disparate applications and Web sites. Its vision is to enable choice and
convenience for consumers to access business services using any device connected to
the Internet in a secure manner. Project Liberty has based its federated identity
implementation on SAML as the core of the identity management system in combination
with XACML, XKMS, and XML Signature. Project Liberty released its first functional
specs in August 2002.

Security in Service-Oriented Architecture 307

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Current Web Services Security Implementations

In spite of the fact that all standards required for Web services security have not
converged, most Web services security implementations have embraced the crucial Web
services standards discussed in the previous section. We shall explore briefly the broad
categories of Web services security solutions not necessarily based upon Web services
standards.
XML Firewalls: In Web services environments, malicious attacks and DoS attacks
present new challenges. XML firewalls (Quadrasis Firewall, 2003; Reactivity Firewall,
2003; Vordel Firewall, 2004; Westbridge Firewall, 2004) are a new generation technology,
which operate above the conventional application layer unlike conventional firewalls
that operate on the network layer. XML firewalls have the capability of examining an
incoming SOAP request and taking an appropriate action based on the message content.
Such content inspection is vital to prevention of malicious as well as DoS attacks.
Further, XML firewalls can offer nonrepudiation mechanisms by providing audit trails
of all service accesses.
XML Networks: Some Web services management vendors view that a network-based
solution is better suitable for Web services, owing to the peer-to-peer nature of the
paradigm. These solution vendors (Blue Titan Network, 2004; Flamenco Network, 2004)
provide solutions that cater to various QoS parameters and sit at various network
endpoints where the requests and responses from service consumers/providers respec-
tively pass through in Web services invocations. Security is also a crucial function
performed by these Web services networks.
Extension of EAI and Application Server Technologies: Existing enterprise application
integration (EAI) products are enabling Web services today. They are able to provide
security by extending their current security infrastructure, as it exists today. These
vendors use some of the key existing Web-based technologies like SSL and X.509
certificates.
J2EE application server vendors base the Web services on current security infrastruc-
tures provided by J2EE platform itself. A leading number of J2EE application server
vendors are working towards Web services standards like SAML, WS-Security, and so
forth but have not come out with J2EE-based standard implementations of these
standards due to the corresponding Java Specification Requests for Standardization
(JSRs) that are still incomplete.
The .NET application server suite has been incrementally offering security support for
Web services as outlined in IBM-MS WS-Security Roadmap (2002). Current versions
fully support the WS-Security specification.
Security Infrastructure Vendors: Existing market leaders for Web-based security and
PKI have made moves for extending their current implementations for Web services.
These vendors have come up with suites of software products for securing Web services.
Some of these products are offering support for SAML, WS-Security, and other
standards. SAML is being adopted by a majority of identity management vendors (SAML
Interop, 2002), while WS-Security is being adopted for Web services security. In the long

308 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

run, all vendors will offer entirely standards-based products once the dust on standards
gets cleared.
Web Services Management Vendors: Many pure play and enterprise management
vendors have jumped into the Web services management space. Some of these vendors
are providing implementations based on the new Web services standards, while some
are based on proprietary implementations. Most pure play or mainstream Web services
management vendors have security as part of their management suite.

Security Solutions in Other SOA Implementations

Each SOA implementation has its own specialized security requirements, which may
require specialized solutions.
Jini is essentially based on the idea of transfer of code from one entity to another. Hence,
security of mobile code is important for Jini. Jini relies on the basic Java Security model
and its extensions to fulfil the security requirements. The basic idea is to define a
mechanism of trust for dynamically downloaded code and use it in combination with
code-signing mechanisms. While code signing provides the integrity check, trust
mechanism enables a decision point for execution of the dynamically downloaded code
on the client.
OGSA has prescribed a standard for implementation of security in a service-oriented
fashion. The recommended architecture for security in OGSA (Nataraj Nagartnam et al.,
2002) is based around core Web services security standards. While it leverages SAML
spec for the authorization service, it leverages WS-Security as the base for message-level
security. The core recommendation of the security model for OGSA endorses the view
of security requirements being provided by OGSA-compliant services. In that sense,
certain core OGSA-compliant services form the infrastructure-level OGSA security
services and are invoked for security needs. This model furthers the notion of a loosely
coupled security model for the security requirements of a loosely coupled architecture
model like OGSA.

Future Trends

SOA being a relatively recent trend in enterprise architecture, SOA implementations are
still in infancy and have not matured yet. However, it is fast capturing the mindshare of
enterprise architects with many enterprises announcing long term plans for migration to
SOA. In due course of time, SOA implementations involving loose coupling will be
pervasive across enterprises. In terms of trends in security for SOA implementations, we
envisage the following trends in the future.

Security in Service-Oriented Architecture 309

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Standards Convergence and Maturity

The current standards stack in Web services security is a mix of standards under various
stages of standardization: some (like XML Encryption) are fully ratified as standards;
some (WS-Security) are nearing the end of the standardization process, while some (like
WS-Federation) are proprietary and yet to be submitted to a standards body. Also, there
is a clash in some competing security standards addressing the same requirements (for
example, WS-Federation and Project Liberty both address federated identity).
Over time, it can be envisaged that the standards will converge to a core set of standards
addressing Web services security. It is likely that two competing standards may be
present for the same functionality with ways of interoperating. An example of such
competing standards can be seen in SAML and WS-Security where there is some amount
of overlap with each other, and WS-Security is working on a profile for including SAML
assertions in WS-Security tokens. Some of the current security requirements like
nonrepudiation, auditing, and so forth, which have not seen any standardization process
yet, will be tackled by standards in the long run.

Standards Compliance for Security Products

Over time, the majority of Web services security offerings will be based on standards.
This will lead to decreased cost of security administration. This is already evident from
some category of products like identity management products, a majority of which have
provided compliance with SAML (SAML Interop, 2002). In case of availability of multiple
standards for the same implementation, products will offer interoperability support for
multiple standards.
WS-I (Web Services Interoperability Organization) will have a key role in promoting
standards adoption in products and vendors. WS-I is working on a security profile for
Web services. This will be a key step in increasing standards compliance awareness
among security vendors.

Federated Identity

Even though vendors and standards bodies have been quick in coming up with standards
for federated identity in view of lack of convergence in standards and the enhanced
skepticism, there is a lesser chance of federated identity-based business models being
successful. Hence, federated identity as a concept will take more time to make inroads
into enterprises.

XML-Based PKI

In view of the increased role of XML in SOA implementations in distributed systems,
dealing with public keys will become a major scalability issue for SOA implementations.

310 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The current PKI constituents like Registration Authorities and Certification Authorities
will evolve to be compliant with XML-based PKI. Hence, in due course of time, XKMS
will play a key role for the development of PKI.

New Generation Security Products

On account of the peer-to-peer nature of SOA implementations, specialized security
intermediaries will be vital to managing the complexity of security requirements in
enterprise grade and highly distributed environments. These specialized intermediaries
will offload the security-related services away from the service consumers and service
providers, thereby increasing scalability.
As part of this trend, some of the current day innovative SOA security products like XML
networks and XML gateways will be commoditized owing to standardization of these
innovative technologies as part of security best practices in enterprise architecture.

Component Security Models

Current component models like J2EE and .NET have varying levels of support for different
Web services standards. The Java Community process (JCP) has currently admitted
various specification requests to include various Web services security standards as
part of J2EE spec. Until these are approved in the JCP, J2EE products will base their
implementations of Web services security standards on proprietary mechanisms and
APIs. In the .NET platform, the current support for WS-Security is proprietary, as the
standard is only recently ratified. In the long run, it will be standards compliant.

Conclusion

In this chapter, we have examined the various security requirements as applicable to SOA
implementations. As part of this exercise, we have seen how generic online security
requirements map to SOA implementations. Further, the paradigm of SOA introduces new
categories of security requirements.
Towards identifying potential solutions to the security requirements in SOA implemen-
tations, we have examined in detail the various standards and implementation mecha-
nisms in Web services. Web Services being the predominant SOA implementation, these
solution mechanisms guide us to appropriate security solutions for SOA implementa-
tions. We have shown the vital role of standards in Web services security implementa-
tions.
We also attempted a brief summary of different solution mechanisms in other SOA
implementations. Since the SOA requirements for these implementations are varied, some
of the concepts in Web services cannot be applied directly to these models. OGSA-based

Security in Service-Oriented Architecture 311

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

grid solutions being based on Web services, solutions for OGSA security are directly
dependent upon Web services security solutions.
Towards the end, we have tried to outline the future trends in SOA security on multiple
dimensions, primary among them being the trends in standards. Over time, we feel that
standards compliance will be commonplace among all the implementations.
We can see that standards have a key role to play in driving Web services security
implementations. Over time, we feel that Web services security standards of WS-Security
and SAML will occupy center stage for message-level security and identity management,
respectively. These standards will provide flexibility as desired in Web services appli-
cations.
OGSA security architecture by its dependence upon core Web services architecture will
be directly dependent upon the success of Web services security standards. Hence, the
full realization of the security architecture for OGSA will take a somewhat longer time. A
lot of work in security for Jini is still at a research stage, especially on requirements of
trust management in networked computing and security of mobile code.
Further, we have seen that the loosely-coupled nature of SOA implementations neces-
sitates a loosely-coupled approach to security, as is evident by the necessity of message-
level security in Web services instead of the conventional channel-level security. We
have also seen how SOA security implementation mechanisms advocate reuse of existing
security infrastructure instead of fresh investment. All the standards for Web services
security leverage existing security mechanisms and techniques in online systems and
handle the extra requirements owing to usage of XML as the language.
Overall, security in SOA implementations is vital for success of SOA as a futuristic
enterprise architecture paradigm.

References

Blue Titan Network. (2004, January 3). Blue Titan Network Director. Retrieved August
18, 2004, from http://www.bluetitan.com/products/btitan_network.htm

Flamenco Network. (2004, January). Flamenco Networks. Retrieved August 18, 2004,
from http://www.flamenconetworks.com/solutions/nsp.html

IBM-MS WS-Security Roadmap. (2002, April 7). Security in a Web services world: A
proposed architecture and roadmap. Retrieved August 18, 2004, from http://
msdn.microsoft.com/library/en-us/dnwssecur/html/securitywhitepaper.asp

Jini Spec. (2003, September 12). Jini technology specification. Retrieved August 18, 2004,
from http://wwws.sun.com/software/jini/jini_technology.html

Nataraj Nagaratnam, Jason Philippe, Dayka John, Nadalin Anthony, Siebenlist Frank,
Welch Von, et al. (2002, July). OGSA security roadmap. Retrieved August 18, 2004,
from http://www.cs.virginia.edu/~humphrey/ogsa-sec-wg/OGSA-SecArch-v1-
07192002.pdf

312 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

OGSA Spec. (2003, April 5). Open grid services infrastructure. Retrieved August 18, 2004,
from http://www.gridforum.org/ogsi-wg/drafts/draft-ggf-ogsi-gridservice-
29_2003-04-05.pdf

Project Liberty Spec. (2003, January 15). Project Liberty specification. Retrieved August
18, 2004, from http://www.projectliberty.org/specs/archive/v1_1/liberty-archi-
tecture-overview-v1.1.pdf

Quadrasis Firewall. (2004, January 2). Quadrasis EASI SOAP content inspector. Re-
trieved August 18, 2004, from http://www.quadrasis.com/solutions/products/
easi_product_packages/easi_soap.htm

Reactivity Firewall. (2004, January 2). Reactivity XML firewall. Retrieved August 18,
2004, from http://www.reactivity.com/products/solution.html

SAML Spec. (2003, September 2). Security Assertions Markup Language (SAML).
Retrieved August 18, 2004, from http://www.oasis-open.org/committees/
download.php/2949/sstc-saml-1.1-cs-03-pdf-xsd.zip

SAML Interop. (2002, July 15). SAML interoperability event. Retrieved August 18, 2004,
from http://xml.coverpages.org/ni2002-07-15-a.html

Vordel Firewall. (2004, January 2). Vordel XML security server. Retrieved August 18,
2004, from http://www.vordel.com/products/xml_security_server.html

Westbridge Firewall. (2004, January 2). Westbridge XML message server. Retrieved
August 18, 2004 from http://www.westbridgetech.com/products.html

WS-Federation Spec. (2003, July 18). WS-Federation specification. Retrieved August 18,
2004, from http://www-106.ibm.com/developerworks/webservices/library/ws-fed/

WS-Policy Spec. (2002, December 18). WS-Policy Specification. Retrieved August 18,
2004, from http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
dnglobspec/html/wspolicyspecindex.asp

WS-Security Spec. (2002, April 5). Web services security (WS-Security). Retrieved
August 18, 2004, from http://msdn.microsoft.com/library/en-us/dnglobspec/html/
ws-security.asp

XACML Spec. (2003, February 18). eXtensible Access Control Markup Language
(XACML). Retrieved August 18, 2004, from http://www.oasis-open.org/commit-
tees/download.php/2406/oasis-xacml-1.0.pdf

XKMS Spec. (2001, March). XML Key Management Specification (XKMS). Retrieved
August 18, 2004, from http://www.w3.org/TR/xkms/

XML-Encryption Spec. (2002, December 10). XML Encryption Syntax and Processing.
Retrieved August 18, 2004, from http://www.w3.org/TR/xmlenc-core/

XML-Signature Spec. (2002, February 12). XML-Signature Syntax and Processing.
Retrieved August 18, 2004, from http://www.w3.org/TR/xmldsig-core/

Security in Service-Oriented Architecture 313

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. <node>b & c</node>
2. <node> b & c</node>
3. <node><![CDATA[b&c]]</node>

Listing 1. Cannonical Form Inputs

Source Code Listings

Listing 2. Enveloped Digital Signature

 <!-- Comment before -->
<apache:RootElement xmlns:apache="http://www.apache.org/ns/#app1">SOME
SIMPLE TEXT
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"></CanonicalizationMethod>
<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-
sha1"></SignatureMethod>
<Reference URI="">
<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-
signature"></Transform>
<Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315#WithComments"></Transform>
</Transforms>
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>
<DigestValue>YNvvmanoIyMNI+33mqiZuJe9WlE=</DigestValue>
</Reference>
</SignedInfo>
<SignatureValue>TrTeerc9ddqStQ0X/0XO/6G5k48kgUQtvRQofcbOZrJnYKyTJG9PX
Q==</SignatureValue>
<KeyInfo>
<X509Data>
<X509Certificate>
…………………………………….(Contents Shortened..)
</X509Certificate>
</X509Data>
<KeyValue>
<DSAKeyValue><P>
….(Contents Shortened).</P>
<Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>
<G>9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxC
BgLRJFnEj6EwoFhO3
zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9
/hWuWfBpKL
Zl6Ae1UlZAFMO/7PSSo=</G>
<Y>
45T+wNtzv+XRinm6c/D/xb4DCcndZUtGeHva+0BbLBrIYHO2VN1mV1Sk1R4ThcPrjtx
Oa2Q4F6+O
MKIwSVIeCsk/2gUhHPNdBTEt+wEG7GpvO1QEE7i1k+AK8BhEzEAr7mUEh/7QhS6/
Kd+H0ZkLD/ZK
pTmYZnSP0EGVmscK0sY=</Y>

</DSAKeyValue> </KeyValue> </KeyInfo> </Signature></apache:RootElement>
<!-- Comment after -->

314 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 <?xml version='1.0'?>
 <PaymentInfo xmlns='http://example.in/payments'>
 <Name>Srini<Name/>
 <CreditCard Limit='2,000' Currency='INR'>
 <Number>
 <EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
 Type='http://www.w3.org/2001/04/xmlenc#Content'>
 <CipherData><CipherValue>A213C45D79</CipherValue>
 </CipherData>
 </EncryptedData>
 </Number>
 <Issuer>Online State Bank of the India</Issuer>
 <Expiration>03/04</Expiration>
 </CreditCard>
 </PaymentInfo>

Listing 3. Example of XML Encryption

Security in Service-Oriented Architecture 315

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 <Response xmlns="urn:oasis:names:tc:SAML:1.0:protocol"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol" IssueInstant="2003-10-
16T13:04:03Z" MajorVersion="1" MinorVersion="0" Recipient="ravi"
ResponseID="7ea17dd3-655a-40e9-a890-ab548c0d71c1">
<Status>
<StatusCode Value="samlp:Success">
</StatusCode></Status>
<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion" AssertionID="dab9ae6d-
01a2-4122-a3a0-a2da221907e8" IssueInstant="2003-10-16T13:04:08Z"
Issuer="Srinivas" MajorVersion="1" MinorVersion="0">
<Conditions NotBefore="2003-10-16T13:04:03Z" NotOnOrAfter="2003-10-
16T13:06:03Z">
</Conditions>
<AuthenticationStatement AuthenticationInstant="2003-10-16T13:04:03Z"
AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:unspecified">
<Subject>
<NameIdentifier>
Gold
</NameIdentifier>
<SubjectConfirmation>
<ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:bearer</ConfirmationMethod
>
</SubjectConfirmation>
</Subject>
</AuthenticationStatement>
<AttributeStatement xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<Subject>
<NameIdentifier>Gold</NameIdentifier>
</Subject>
<Attribute AttributeName="Membership" AttributeNamespace="namespace">
<AttributeValue>Gold</AttributeValue>
</Attribute>
</AttributeStatement>
</Assertion>
</Response>

Listing 4. Example of SAML Response with embedded Authentication and Attribute
Assertions

316 Padmanabhuni and Adarkar

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 <?xml version="1.0" encoding="utf-8"?>
<S:Envelope
 <S:Header>
 <wsse:Security>
 <wsse:UsernameToken wsu:Id="MyID">
 <wsse:Username>Sam</wsse:Username>
 <wsse:Password>MyPassword</wsse:Password>
 <wsse:Nonce>FKJh...</wsse:Nonce>
 <wsu:Created>2001-10-23T09:00:00Z</wsu:Created>
 </wsse:UsernameToken> </wsse:Security>
 </S:Header>
 <S:Body wsu:Id="MsgBody"> </S:Body>

</S:Envelope>

Listing 5. WS-Security example with username password credentials

A Service-Based Approach for RBAC and MAC Security 317

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XV

A Service-Based
Approach for RBAC
and MAC Security

Charles E. Phillips, Jr.
United States Military Acadamy, West Point, USA

Steven A. Demjurian
University of Connecticut, USA

Thuong Doan
University of Connecticut, USA

Keith Bessette
University of Connecticut, USA

Abstract

Middleware security encompasses a wide range of potential considerations, ranging
from the ability to utilize the security capabilities of middleware solutions (for example,
CORBA, .NET, J2EE, DCE, and so forth) directly out-of-the-box in support of a
distributed application to leveraging the middleware itself (paradigm) to realize
complex and intricate security solutions (for example, discretionary access control,
role-based access control, mandatory access control, and so forth). The objective in
this chapter is to address the latter consideration: examining the attainment of
advanced security capabilities using the middleware paradigm, namely, role-based

318 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

access control (RBAC) and mandatory access control (MAC). The resulting security
provides a robust collection of services that is versatile and flexible and easily
integrates into a distributed application comprised of interacting legacy, COTS,
GOTS, databases, servers, clients, and so forth.

Introduction

One challenge facing government and corporations today is to architect and prototype
solutions that integrate new and existing software artifacts (that is, legacy applications,
COTS, GOTS, databases, clients, servers, and so forth), facilitating their interoperation
in a network-centric environment via middleware (collections of services), thereby
providing the computing infrastructure to support day-to-day operations, as shown in
the top portion of Figure 1. In these distributed collections of software artifacts, security

S e c u r ity A u th o r iz a t i o n
C lie n t (S A C)

S e c u r ity P o lic y
C lie n t (S P C)

S e cu r ity
R eg is tr a tio n

S e rv ice s

U n if ie d S e c u r i ty R e s o u r c e (U S R)
S e cu r ity

P o lic y
S e rv ice s

S e c u r ity D e le g a t io n
C lie n t (S D C)

S e cu r ity
A n a ly s is a n d

T ra c k in g (S A T)

S e cu r ity
A u th o r iz a tio n

S e rv ice s

W r a p p e d
R e so u r c e

fo r L e g a c y
A p p lic a t io n

W r a p p e d
R e so u r c e

fo r D a ta b a se
A p p lic a t io n

G e n e r a l
R e s o u r c e

W r a p p e d
R e so u r c e
fo r C O T S

A p p lic a t io n
J a v a

C lie n t

L e g a c y
C lie n t

D a ta b a s e
C lie n t

C O T S
C lie n t

L o o k u p
S e r v ic e

L o o k u p
S e r v ic e

Figure 1. The security framework

A Service-Based Approach for RBAC and MAC Security 319

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

must play a fundamental role, considered at early and all stages of the design and
development life cycle. Middleware security encompasses a wide range of potential
considerations, ranging from utilizing out-of-the-box security services of middleware
platforms, that is, DCE (Open Software Foundation, 1994; Rosenberry, Kenney &
Fischer, 1992), CORBA (Object Management Group, 2002; Vinoski, 1997; Yang & Duddy,
1996), DCOM/OLE (Microsoft Corporation, 1995), J2EE/EJB (Roman, 1999; Valesky,
1999), Jini (Arnold et al., 1999; Waldo, 1999), and .NET (Riordan, 2002; Sceppa 2002), to
custom-built service-based solutions that realize complex and intricate security ap-
proaches (for example, discretionary access control, role-based access control, manda-
tory access control, and so forth).
In such a scenario, one can conceptualize each of the software artifacts in terms of
resources that provide services (methods) for use within the environment, and as such,
each artifact publishes an application programmer interface (API). The problem with
these APIs is that they contain all of the public methods needed by all users without
regard to security. If one user (for example, a physician) needs access to a method (for
example, prescribe_medicine) via a patient tool, then that method must be part of the API,
and as such, the responsibility would be on the software engineer to ensure that the
method is only accessible via the patient tool to users who are physicians and not all
users of the patient tool (which may include nurses, administrators, billing, and so forth).
Thus, in many applications, the ability to control the visibility of APIs (services) based
on user role would be critical to ensure security.
Towards this end in this chapter, we present a service-based approach using middleware
that unifies role-based access control (RBAC) and mandatory access control (MAC) into
a security model and enforcement framework for a distributed environment comprised of
interacting software artifacts (Liebrand et al., 2003; Phillips et al., 2002a; Phillips et al.,
2002b; Phillips et al., 2003a; Phillips et al., 2003b). Our approach concentrates on the APIs
of software resources, the services, providing the means for them to be customizable and
restricted by time intervals, data values, and clearance levels to define the portions of
APIs that can be invoked based on the responsibilities of a user role and the security level
of the user. For enforcement, as shown in the bottom half of Figure 1, there is the Unified
Security Resource (USR), which provides the security infrastructure via services:
Security Policy Services to manage roles; Security Authorization Services to authorize
roles to users; and Security Registration Services to identify clients and track security
behavior. These services are utilized by a set of administrative and management tools,
namely: the Security Policy Client (SPC) to manage user roles, the Security Authori-
zation Client (SAC) to authorize roles to end users, and the Security Delegation Client
(SDC) to handle the delegation of responsibilities from user to user. Our objective in this
chapter is to explore in detail the middleware services that we have designed in support
of RBAC/MAC security modeling and enforcement.
The remainder of this chapter has five sections. First, an overview provides background
on the security modeling capabilities and features in our approach. Then, the middleware
services and associated processing that supports RBAC/MAC security is examined.
Next, the prototyping of USR and security tools (Uconn, 2003) is explored, which uses
the technologies Jini 1.1 and Visibroker 4.5 to realize sophisticated and complex security
capabilities. After that, RBAC/MAC security within other frameworks will be discussed.

320 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Then, future trends are discussed with a focus on the support for security in CORBA,
.NET, and J2EE. Finally, concluding remarks are presented.

Background

This section presents background concepts of middleware that are important for
understanding the chapter, which provide a context for the RBAC/MAC security model
that serves as the basis of the work presented herein. A lookup service, as supported in
middleware such as CORBA, Jini, DCOM, and so forth, is a clearinghouse for resources
to register services and for clients to find services. A lookup service allows stakeholders
to construct distributed applications by federating groups of users (clients) and the
resources that they require (Arnold et al., 1999; Demurjian et al., 2001). With any lookup
service, it is key that the services are registered, or they will not be readily available.
Resources register services provided for use by a person, program (client), or another
resource, including a computation, a persistent store, a communication channel, a
software filter, a printer, and so on. Figure 2 illustrates the interactions of a lookup service,
client, and resource in a distributed resource environment (DRE). In Figure 2, the
CourseDB resource joins the lookup service by registering its services (methods). Each
service consists of methods (for example, AddCourse) that are provided for use by clients
(and other resources). Figure 2 also illustrates the steps that are taken when a client
requests a service (AddCourse) from a resource (CourseDB).
The main limitation of the process as given in Figure 2 is that once registered, all of the
resource’s services are available to all clients; that is, there is no security. To integrate
security into a service-based environment, we have developed a RBAC/MAC security
model (Phillips et al., 2002a; Phillips et al., 2002b) with role delegation (Liebrand et al.,
2003) that provides a means to formalize relevant middleware and security concepts and
combine them into an approach that promotes secure policy definition and real-time
access using security services via a Unified Security Resource (USR - see Figure 1 again).
Since our emphasis in this chapter is on the security services, we provide only a brief
summary of the security model as background.
To begin, to constrain access based on time, we define a lifetime, LT, as a time interval
with start time (st) and end time (et) of the form (mo., day, yr., hr., min., sec.). Lifetimes
will be utilized in the definition of the various constructs of the security model and by
the USR security services to verify if access can occur at the current time. In support of
MAC, we define sensitivity levels unclassified (U), confidential (C), secret (S), and top
secret (T) forming a hierarchy: U < C < S < T with clearance (CLR) given to users and
classification (CLS) given to entities (roles, methods, and so forth). To characterize the
distributed environment (top half of Figure 1), we define a distributed application as a
set of unique software resources (for example, legacy, COTS, database, and so forth),
each composed of a unique set of services, which each in turn are composed of a unique
set of methods. Methods are defined by their name, LT of access, CLS level, and
parameters; services and resources by their name, LT of access, and CLS level, where CLS

A Service-Based Approach for RBAC and MAC Security 321

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of a service is minimum (least secure) of its methods, and the CLS of a resource is the
minimum of its services. Methods have LTs to indicate when they are available via a
lookup service and have CLSs to denote the level of security classification that must be
present in order for the method to be invoked.
To represent privileges, we define a user role, UR, to be a triple of name, LT of access,
and CLS level, and maintain a list of all URs for an application. Next, a user, U, is uniquely
identified by UserId (typically name), LT of access, and CLR level with an associated user
list for the application. At security policy definition time, the services of USR are utilized
by a security officer to define URs and once defined, to assign each UR a select set of
methods that represent the privileges that a role is allowed. To further customize this
process, we allow this assignment to be constrained based on a method’s actual
parameter values (called a signature constraint, SC) and limit when a method can be
active for a UR in time (called a time constraint, TC). Thus, a user-role authorization,
URA, associates a UR with a method M constrained by SC (what values can a method
be invoked) and a TC (when can a method be invoked). Then, a user authorization, UA,
associates a user with a UR and a TC (when can a user be authorized to a role). Finally,
at runtime a client, C, is authorized to a user, identified by a unique client token
comprised of user, UR, IP address, and client creation time. Given a client (an identifiable
user) with a selected UR, in order for a lookup of a method (see Figure 2) to occur, there
must be a number of dynamic security checks using USR to ensure that all of the defined
security privileges are satisfied at runtime (enforcement) prior to the invocation.

Figure 2. Join, lookup, and invocation of service

Step1. Join. Services are registered
Step2. Client makes request
Step3. Lookup Service returns Service
Step4. Client Invokes AddCourse(CSE230) on Resource
Step5. Resource Returns Results of Invocation to Client

Client
Resource

Service Object
Service Attributes

Lookup Service
Request
Service
AddCourse(CSE230)

Return
Service

for
AddCourse()

J
o
i
n

Register Services
CourseDB Class

Contains Method
AddCourse ()

Service Invocation

Service Object
Service Attributes

Registry of Entries

322 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

To illustrate the concepts, consider a health care application could have URs for Nurse,
Physician, Biller, and so forth, and these roles could be assigned methods for manipu-
lating a resource Patient Record that has methods Record_Patient_History assigned to
Nurse, Set_Vital_Signs assigned to Nurse and Physician, Prescribe_Medicine assigned
to Physician, and Send_Bill assigned to Biller. Actual users would be assigned URs (for
example, Steve to Physician, Lois to Nurse, Charles to Biller, and so forth), thereby
acquiring the ability to invoke methods. There could also be limits placed on the methods
assignment to a role to control values (for example, Nurse Lois can only access patients
Smith and Jones for the Record_Patient_History and Set_Vital_Signs methods) or to
control time (for example, Biller Charles can only access Send_Bill after patient has been
discharged).

The USR Security Services

This section focuses on describing in detail, the Unified Security Resource (USR) as
given in Figure 1, which consists of three sets of services: Security Policy Services
managing roles and their privileges, Security Authorization Services to authorize roles
to users, and Security Registration Services to identify clients and track security
behavior. The USR is a repository for all static and dynamic security information on roles,
clients, resources, authorizations, and so forth and is organized into a set of services,
as given in Figures 3 and 4. These services are utilized by the various security tools
(Security Policy, Security Authorization, and Security Delegation clients) (Figure 1) and
by the resources that comprise the distributed application. In the remainder of this
section, we begin by providing a detailed review of the different services of USR. We
follow this introduction with an examination of the service interactions that demonstrate
the security checks and verifications that are performed to ensure that a user playing a
role is allowed to invoke a method at a particular time.

• Security Policy Services (Figure 3) are utilized to define, track, and modify user
roles to allow resources to register their services and methods (and signatures) and
to grant/revoke access by user roles to resources, services, and/or methods with
optional time and signature constraints. These services are used by a security
officer to define a policy and by the resources (for example, database, Java server,
and so forth) to dynamically determine if a client has permission to execute a
particular resource, service, or method under a time and/or signature constraint.
There are five different services:

• The Register Service is provided to allow a resource to (un)register itself, its
services, and their methods (and signatures), which is used by a resource for secure
access to its services. The objective is to register the identifier, lifetime (LT), and
classification (CLS) level for each resource, service, and method. Each resource can
have its services and methods registered in two different ways. One approach has
the resource controlling the registration process and registering itself. A second
approach puts the registration under the control of the security officer using the

A Service-Based Approach for RBAC and MAC Security 323

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Security Policy Client (SPC) (see Prototyping section). Both of these approaches
utilize the Register Service.

• The Query Privileges Service is utilized for the verification of privileges for the
situation when a user (a client application or another resource of the distributed
environment) is attempting to lookup on a (resource, service, method) triple. The
critical method of this service is Check_Privileges(Token, R_Id, S_Id, M_Id,
ParamValueList), which is used to ensure that a user playing a role (as identified
by a token) is allowed to invoke a method (as identified by R_Id, S_Id, M_Id,
ParamValueList) at the current time. The Query Privileges Service is tasked with
ensuring that only allowable method invocations occur.

• The User Role Service is provided for the security officer to define and delete user
roles. Recall that when defining a user role (see Background section), the name,
lifetime, and classification must be provided, as is indicated in the method
definition Create_New_Role.

• The Constraint Service is used in two different ways. The DefineTC and DefineSC
methods are used by the security officer to specify time and signature constraints
via the Security Policy Client tool, allowing the security officer to define the
conditions under which the method can be invoked. The CheckTC and CheckSC
methods are used by the Check_Privileges method of the Query Privileges service
to allow these constraints to be dynamically verified at runtime when a user playing
a role is attempting to invoke a method.

• The Grant-Revoke Service is used by the Security Policy Client for establishing
privileges of each role. The security officer can grant each user role an entire
resource (all of its services and their methods), a service (all of its methods), or
individual methods, and for individual methods, these grants can be constrained
based on time or signature constraints. Revocation methods of the Grant-Revoke
Service remove the permissions.

• Security Authorization Services (Figure 4) are utilized to maintain profiles on the
clients (for example, users, tools, software agents, and so forth) that are authorized
and actively utilizing nonsecurity services, allowing a security officer to create
users and authorize users to roles. There are three services:

• The User Service is the counterpart of the User-Role Service and is provided for
the security officer to define and delete users. Recall that when defining a user (see
Background section), the name, lifetime, and clearance must be provided, as is
indicated in the method definition Create_New_User.

• The Authorize Role Service is the counterpart of the Grant-Revoke Service for the
security officer to grant (for a limited time) and revoke a role to a user with the
provision that a user may be granted multiple roles but must play only a single role
when utilizing a client application.

324 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• The Client Profile Service is utilized by the security officer to monitor and manage
the clients that have active sessions. The main method of interest for this chapter
is Verify_UR(User_Id, UR_Id) which is used to verify if the user is allowed to play
a specific role at the current time and is the counterpart of the Check_Privileges
method of the Query Privileges Service.

The Security Registration Services (Figure 4) are utilized by clients at start-up for
identity registration (client id, IP address, and user role), which allows a unique Token
to be generated for each session of a client. These capabilities are all captured by the
methods of the Register Client Service. Finally, there is the Global Clock Resource
(GCR) and its associated method Get_Current_Time which is used by Security Policy
Services to verify a TC when a client (via a UR) is attempting to invoke a method and
Security Registration Services to obtain a common time, which is then used in the
generation of a unique Token.
In order to illustrate the services given in Figures 3 and 4, the remainder of this section
examines the processing required by a client that is joining the distributed environment

Figure 3. The security policy services of USR

Register Service
Register_Resource(R_I, TC, CLS);
Register_Service(R_Id, S_Id , TC, CLS);
Register_Method(R_Id, S_Id, M_Id, TC, CLS);
Register_Signature(R_Id, S_Id, M_Id, Signat);
UnRegister_Resource(R_Id);
UnRegister_Service(R_Id, S_Id);
UnRegister_Method(R_Id, S_Id, M_Id);
Unregister_Token(Token)

Query Privileges Service
Query_AvailResource();
Query_AvailMethod(R_Id);
Query_Method(Token, R_Id, S_Id, M_Id);
Check_Privileges(Token, R_Id,
 S_Id, M_Id, ParamValueList);

User Role Service
Create_New_Role(UR_Name, UR_Disc, UR_Id,
 LT, CLS);
Delete_Role(UR_Id);

Constraint Service
DefineTC(R_Id, S_Id, M_Id, TC);
DefineSC(R_Id, S_Id, M_Id, SC);
CheckTC(Token, R_Id, S_Id, M_ID);
CheckSC(Token, R_Id, S_Id, M_ID,
 ParamValueList);

Grant-Revoke Service
Grant_Resource(UR_Id, R_Id);
Grant_Service(UR_Id, R_Id, S_Id);
Grant_Method(UR_Id, R_Id, S_Id, M_Id);
Grant_SC(UR_Id, R_Id, S_Id, M_Id, SC);
Grant_TC(UR_Id, R_Id, S_Id, M_Id, TC);
Revoke_Resource(UR_Id, R_Id);
Revoke_Service(UR_Id, R_Id, S_Id);
Revoke_Method(UR_Id, R_Id, S_Id, M_Id);
Revoke_SC(UR_Id, R_Id, S_Id, M_Id, SC);
Revoke_TC(UR_Id, R_Id, S_Id, M_Id, TC);

SECURITY POLICY SERVICES

A Service-Based Approach for RBAC and MAC Security 325

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and attempting to access resources, which is given in Figure 5. In steps 1 to 4, the client
is authenticated. In step 5, the client selects a role to play for the session. In steps 6 to
8, a token is generated and assigned to the user for the session via a name and password
verification of the Unified Security Resource (USR). USR is a set of middleware security
resources (Jini and CORBA) that manage all MAC and RBAC meta-data for users, user
roles, and resources (Phillips et al., 2002a). The user chooses a role and registers via the
RegisterClient method, which requests a global time from the GCR and returns a Token
via CreateToken. In step 9, the client discovers the desired method from the lookup
service (Jini or CORBA) and attempts to invoke the method with its parameters and the
Token. In step 10, the resource uses the hasClientRight method (step 11) to check
whether the user/client meets all of the MACC, time, and signature constraints required
to invoke the method (step 12).
To further illustrate the process, consider an example using a university application,
which is given in Figure 6. In the first step in the process, the user of the University Client
must be authenticated to play a particular role. To do so, the University Client registers
with USR via the Register_Client method (step 1), which must verify the user role (steps
2 and 3), and return a generated token via the Create_Token method (step 4). To generate

Register Client Service
Create_Token(User_Id, UR_Id, Token);
Register_Client(User_Id, IP_Addr, UR_Id);
UnRegister_Client(User_Id, IP_Addr, UR_Id);
IsClient_Registered(Token);
Find_Client(User_Id, IP_Addr);

SECURITY REGISTRATION SERVICES

SECURITY AUTHORIZATION SERVICES
User Service
Create_New_User(User_Name, User_Id, LT, CLR);
Delete_User(User_Id);

Authorize Role Service
Grant_Role(UR_Id, User_Id, TC);
Revoke_Role(UR_Id, User_Id, TC);

Client Profile Service
Verify_UR(User_Id, UR_Id);
Find_Client(User_Id);
Find_All_Clients();

GLOBAL CLOCK RESOURCE
Get_Current_Time(): returns Time;

Figure 4. The security authorization and registration services of USR

326 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the token in step 4, the Security Registration Service will interact with the Global Clock
Resource. Since the GCR processes all requests sequentially, a unique time is always
returned, and the token consisting of User-Id, UR-ID, IP address, and creation time is
unique. A user with multiple sessions on the same machine with the same role has
different tokens for each session as distinguished by the creation time.
Assuming that the registration and token generation was successful, the user can then
attempt to utilize services from the University DB Resource. The University Client
consults the lookup service for desired [resource, service, method] (step 5) which returns
a proxy to RegisterCourse, allowing the method to be invoked (step 6) with the parameters
Token, CSE230, and Martinez. The UnivDB Resource has two critical steps to perform
before executing RegisterCourse. First, UnivDB Resource verifies that the Client has
registered with the security services (steps 7 and 8). If this fails, a negative result is sent
back via the RegisterCourse result (step 11). If this is successful, then the University DB
Resource must perform a positive privilege check (privileges assigned by role) to verify
if the user role can access the method limited by signature constraints and/or time
constraints (both may be null). This is done in step 9 with two other method calls from
Figure 3:

 9a CheckTC(Token, UnivDB, Modification, RegisterCourse)
 9b CheckSC(Token, UnivDB, Modification, RegisterCourse, [CSE230,Martinez]);

Figure 5. Client interactions and service invocations

USR

1. Login (user_id, pass_wd)
2. isClientAuthorized()
3 getRoleList(user_id)
4 Return Role List
5. Register_Client (user_id, pass_wd, role)
6. Request Time from GRC
7. Return Current Global Time

Security
Authorization

Services

Security
Registration

Services

Resource
Client

Security
Policy

Services
Resource

Server

Tracking
Tool

GCR

(1)

(2)(3)

(4)
(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

8. If client time not expired, return Token
9. Make Resource Request
10. Check Authentication and Authorization
Constraints via hasClientRight(role_id, R_id, S_id,
 m_id, Token, paramlist)
11. Return Results of Constraint Check
12. If Validated Request, Return Results to Client

A Service-Based Approach for RBAC and MAC Security 327

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 6. Service invocations and processing for university application

4 Return Result of Create_Token(CSEUndergrad, Token)

1 Register_Client(Martinez, cse.uconn.edu, CSEUndergrad)

S e c u r ity
A u th o riza tio n

S e r v ic e s

S e c u r ity
R e g is tra tio n

S e r v ic e s

L o o k u p
S e r v ic e

C o u r s e
C l ie n t

3 Client OK?

6 RegisterCourse(Token, CSE230, Martinez)

7 IsClient_Registered(Token)

10 Return Result of Check_Privileges(…)

11 Return Result of RegisterCourse(…)

U S R

5. Discover/Lookup(UnivDB, Modification, RegisterCourse)
Returns Proxy to Course Client

9 Check_Privileges(Token, UnivDB, Modification,
RegisterCourse, [CSE230,Martinez])

2 Verify_UR(Martinez, CSEUndergrad)

S e c u r ity
P o lic y

S e r v ic e s
U n iv D B

R e so u r c e
8 Return Result of IsClient_Registered(…)

Figure 7. Assurance checks performed by security services

Start Constraint-Based
Assurance Checks

Token Check

Authentication
Unsuccessful

(to error handler)

No

No

No

No

Yes

YesYes

No

Yes

IP Constraint
Check

Authentication
Successful

MACC Check SC CheckTC Check

Authorization
Unsuccessful

(to error handler)

Authorization
Successful

(continue process)

Yes

328 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The CheckTC method interacts with GCR to verify that the current time is within the limits
of the time constraint (if present). If the privilege check is successful (step 10), then the
method executes as called, and the result (registering Martinez for CSE230) is returned
as a success in step 11. Otherwise, the result (step 10) denies the registration via step
11. Note that the signature constraint is verified in two phases. The parameters constraint
(if present) must be checked prior to method invocation, while the return-type constraint
(if present) must be checked after execution and before the result has been returned.
In summary, in order to obtain access to a service or method, there are a series of checks
as shown in Figure 7: Client Authentication with Token Check on the validity of the
token and IP Constraint Check to verify if the user is logged on from a permitted location
and Client Authorization with a MACC Check to verify that the user/client has the
required CLR to access the method, a TC Check to verify if the access is within the
allowable time period, and a SC Check to verify that the invocation satisfies the signature
constraint. Collectively, all of the checks illustrated in Figures 5 and 6 provide runtime
assurance of the RBAC/MAC policy as a client (with a UR and CLR) invokes methods
(with CLS) of resources.

J a v a
G U I

P D B C lie n t

J IN I
L o o k u p
S e r v ic e

U S R
A ll

S e r v ic e s

C o m m o n
R e so u r c e

(G lo b a l C lo c k)

C O R B A
L o o k u p
S e r v ic e

P D B R e s o u r c e
write_medical_history();
write_prescription();
get_medical_history();
get_diagnosis();
set_payment_mode();

U D B R e s o u r c e
 GetClasses();
 PreReqCourse();
 GetVacantClasses();
 EnrollCourse();
 AddCourse();
 RemoveCourse();
 UpdateCourse();

J a v a
G U I

U D B C lie n t

S e c u r i t y
P o lic y
C li e n t

S e c u r i t y
A u th o r i z a ti o n

C li e n t

S e c u r i t y
D e le g a t io n

C li e n t

S t a t i c
A n a ly s i s

T o o l

Figure 8. Prototype security and resource architecture

A Service-Based Approach for RBAC and MAC Security 329

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Prototyping: Administrative/Management Tools

This section reviews the prototyping for our service-based security model and enforce-
ment framework. As shown in Figure 8, we have designed and implemented the entire
security framework as given in Figure 1, which includes the USR and administrative/
management tools, capable of interacting with either CORBA or Jini as the middleware.
We have also prototyped a University DB resource and client and a hospital application
where a client can access information in a Patient DB (Figure 8). The hospital portion of
Figure 8 (left side) interacts with CORBA as the middleware; the university portion (right
side) uses Jini. Note that since the lookup service is transparent to the user, a client could
be constructed to use CORBA and/or Jini depending on which one is active in the
network. From a technology perspective, the university application in Figure 8 (right
side) is realized using Java 1.3, Jini 1.1, Windows NT 4.0 and Linux, and Oracle 8.1.7. The
hospital application (left side) uses the same technologies except for Visibroker 4.5 for
Java as middleware. Both resources (Patient DB and University DB) operate in a single
environment using the shared USR and are designed to allow them to register their
services with CORBA, Jini, or both. The University DB Java Client allows students to

Figure 9. Security policy client - defining a role

330 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

query course information and enroll in classes and faculty to query and modify the class
schedule. The Patient DB Java Client supports similar capabilities in a medical domain.
In addition, the prototyping environment supports administrative and management
tools, as shown in the bottom portion of Figure 1. The Security Policy Client (SPC),
shown in Figure 9, can be used to define and remove roles and to grant and revoke
privileges (that is, CLR/CLS, time constraints, resources, services, methods, and/or
signature constraints). The security officer can also inspect and monitor security via the
tracking capabilities of SPC. Also, SPC is used to establish whether a role is delegatable.
In Figure 9, the tab for defining a user role, assigning a classification, and determining
the delegation status, is shown. The Security Authorization Client (SAC), shown in
Figure 10, supports authorization of role(s) to users. A user may hold more than one role
but can only act in one role at a time. SAC provides the security officer with the ability
to create a new User as discussed in the previous section. SAC is also used to authorize
role delegation. In Figure 10, a user is being granted access to role for a specific time
period. Not shown is the Security Delegation Client (SDC) (see Liebrand et al., 2003;
Uconn, 2003), which is intended to handle the delegation of responsibilities from user
to user.

Figure 10. Security Authorization Client - Granting a Role

A Service-Based Approach for RBAC and MAC Security 331

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In addition to the definitional capabilities of SPC and SAC, Figure 11 is an example of one
output of the Security Analysis Tool (SAT) which is used to dynamically track all client
activity, including log-ons and method invocations. SAT is intended as a means to allow
security personnel to watch and track behavior within the system, providing a tracking
capability for all authorized and attempted unauthorized access. SAT utilizes many of the
different services in Figures 3 and 4.

Future Trends

To complement our own approach to middleware security, it is relevant to examine the
emerging trends for support of security in a middleware setting. Modern middleware
platforms like CORBA (Object Management Group, 2002), .NET (Microsoft Corporation,
2003a), and J2EE (Sun Microsystems, 2003) have begun to offer security capabilities. In
assessing these three approaches (Demurjian et al., 2004), the major difference between
the support for security in CORBA (as opposed to its realization in an actual CORBA
product, for example, Visibroker) and security in .NET/J2EE is that the CORBA security

Figure 11. Security Analysis Tool - Access History

332 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

specification is a meta-model. As a meta-model, the CORBA security specification
generalizes many security models and associated security principles (wide variety of
security capabilities at the model level — RBAC, MAC, encryption, and so forth) with
language independence (not tied to Java, C++, .NET, and so forth). .NET and J2EE provide
actual security capabilities via their respective runtime environments and APIs, which
provide security functionality. The remainder of this section explores the security
capabilities of CORBA, .NET, and J2EE.
The CORBA Security Service Specification (Object Management Group, 2002a) focuses
on confidentiality (limiting access to authorized individuals/programs), integrity (limit-
ing modifications to authorized users), accountability (requiring users to be responsible
for their actions), and availability. These aspects are part of the CORBA security
reference model, given in Figure 12. In this model, the access control process verifies a
subject’s permissions (via privilege attributes) against the target objects which are
managed via control attributes (grouped as domains) and operations (grouped as
rights). Privilege attributes are associated with the user (principal), and the permis-
sions tracked for each principal are: identity (user id), role(s), group(s) that the principal
belongs to, security clearance (for example, secret, classified, and so forth), and target
objects and operations to which has been granted access. From a complementary
perspective, control attributes track the security privileges for each target, for example,
an access control list entry for a target object would track the security characteristics of
the object (for example, security classification), the rights of a target object (that is, the

Figure 12. The CORBA security model (Object Management Group, 2002b)

Client

reply
request

Security Services request
reply

T a r g e t
Object

Access
Control

per request Access
Control

Vault

Secure
Invocation

Secure
Invocation

Vault

Client
Access
Decision

Target
Access
Decision

Security
Context

Security
Context

ORB Security Services

create create

to set up
security
association

per message
to protect
message

A Service-Based Approach for RBAC and MAC Security 333

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

set of operations that are available for assignment to each principal), and the principals
who have been authorized.
In order to define privileges for principals and target objects, a security policy domain
is used to represent the scope over which each security policy is enforced, assuming that
an organization may have multiple policies. A security policy domain permits the
definition of security requirements for a group of target objects, allowing this group to
be managed as a whole, thereby reducing the needed administrative effort. A policy
domain hierarchy allows a security administrator to design a hierarchy of policy domains
and then delegate subsets of the hierarchy (subdomain) to different individuals. As a
meta-model, the CORBA security specification is robust enough to realize RBAC, MAC,
or any other security model by customizing the concepts of principal, privilege attributes,
target objects, control attributes, and policy domains to suit the desired security model
nomenclature.
This structural model of security of .NET (Microsoft Corporation, 2003a), as represented
in Figure 13, consists of the Common Language Runtime (CLR), the Hosting Environment,
and the Security Settings. For the Hosting Environment to execute an application, it must
provide the code (via assembly — compiler generated code) and its identity (via evidence
— proof that is supplied regarding identity) in its interactions with CLR. CLR contains
the Security System, which realizes the security policy at enterprise, machine, user, and
application domain levels. For an actual application, the different parameters related to

Figure 13. .NET security structural model (Microsoft Corporation, 2003b)

Hosting
Environment

Assembly

Evidence

Security
Settings

Common Language Runtime

Security System

Policy Levels Permission
Set

Assembly

Enterprise

Machine

User

Application
Domain

334 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

security must be set within the Security System, as shown by the input from the Security
Settings box in Figure 13, to establish the security at one or more policy levels. For
execution to occur within CLR, the assembly is used to identify the required permission
set (for example, allowances given to a piece of code to execute a certain method) and
be provided with evidence from the Host to the Security System.
Code-based access control, a part of CLR’s security, dictates the situations where access
by a code segment to a resource is permitted (prevented). The determination of what a
piece of code is allowed to do is decided by evidence-based security, permissions, and
a security policy. During execution, the CLR reviews evidence of an assembly, deter-
mines an identity for the assembly, and looks up and grants permissions based on the
security policy for that assembly identity (Open Web Application Security Project, 2002).
Evidence-based security determines the origin(s) of an assembly. At runtime, the CLR
examines the meta-data of an assembly for the origin of the code, the creator of the
assembly, and the URL and zone (for example, Internet, LAN, local machine, and so forth)
of the assembly.
The successful verification of evidence leads to the permissions of code and code
segments, which is the ability to execute a certain method or access a certain resource.
An assembly will request permissions to execute, and these requests are answered at
runtime by the CLR, assuming that the assembly has provided apropos evidence. If not,
CLR throws a security exception, and an assembly’s request is denied. Since numerous
different permissions can be requested, permissions are grouped into sets. Permissions
and permission sets in .NET are similar to privilege/control attributes and domains in
CORBA, respectively. As such, it is possible to establish permissions for MAC classi-
fication levels for code and resources with the access permitted or denied based on the
domination of the code’s classification over the resource’s classification.
Lastly, the grouping of assemblies based on different criteria establishes different
security policies for different code groupings (Microsoft 2003a, Open Web Application
Security Project, 2002). In .NET, there are three different security policies that are
supported: enterprise level for a cohesive and comprehensive policy for the entire
enterprise, machine level for different policies for different machines, and user level to
capture individual responsibilities. The .NET framework provides the means to organize
security policy groups of assemblies into hierarchical categories based on the identity
that the CLR determines from the evidence. Once related assemblies have been grouped
and categorized, the actual security policy can be specified as permissions for all
assemblies in a group. RBAC in .NET extends the policies and permissions concepts of
code-based access control to apply to a user or role. .NET uses role-based security to
authenticate an identity and to pass on that identity to resources, thereby authorizing
the users playing roles access to resources according to policies and permissions.
Security in the Java 2 Enterprise Edition (J2EE) (Sun Microsystems, 2003) focuses on its
ability to keep code, data, and systems safe from inadvertent or malicious errors. In Figure
14, the compilation of Java code creates bytecode, whose execution involves the class
loader (with bytecode verifier), the Java class libraries (APIs), and the Java virtual
machine (JVM). The JVM manages memory by dynamically allocating different areas for
use by different programs, isolating executing code, and performing runtime checks. The
block labeled Runtime System, as shown in Figure 14, contains the Security Manager,

A Service-Based Approach for RBAC and MAC Security 335

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Access Controller, and other features that all interact to maintain security of executing
code. Security considerations in J2EE are important for both applications and applets,
but applets are of particular concern for security, since they represent remote code that
is brought in and executed on a local machine. To control applet behavior, Java uses a
sandbox, which forces downloaded applets to run in a confined portion of the system
and allows the software engineer to customize a security policy. The Security Manager
enforces the boundaries around the sandbox by implementing and imposing the security
policy for applications. All classes in Java must ask the security manager for permission
to perform certain operations. Java only has two security policy levels, one for the
executing machine and one for the user. Each level can expand or restrict on all of the
permissions of another level, and there can be multiple policy files at each level.
Permissions in Java are determined by the security policy at runtime and are granted by
the security policy based on evidence. The evidence that Java looks for is a publisher
signature and a location origin. Permissions are also grouped into protection domains
(similar to security policy domains in CORBA and to security policy files in .NET) and
associated with groups of classes in Java in much the same way they are grouped into

Figure 14. The Java 2 platform - compile and execute

336 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

permission sets and associated with code groups in .NET. However, in Java, MAC is not
automatic; it requires programmatic effort by the software engineer.
In support of RBAC, J2EE uses the Java Authentication and Authorization Service
(JAAS), which implements a Java version of the Pluggable Authentication Module
framework. Using JAAS, software engineers are allowed to modify and then plug in
domain/application-specific authentication modules (DevX Enterprise Zone, 2002).
JAAS currently supports authentication methods including UNIX, JNDI, and Kerberos,
akin to OS level security. JAAS can only provide limited impersonation authentication
because the user identity is different for the application and OS levels. User access
checking can be done both declaratively and imperatively within different components
of J2EE.

Concluding Remarks

In this chapter, we have explored a middleware services solution for a unified RBAC/
MAC security model and enforcement framework for a distributed environment (Liebrand
et al., 2003; Phillips et al., 2002a; Phillips et al., 2002b; Phillips et al., 2003a; Phillips et al.,
2003b) where clients and resources interact via services implemented in Jini and
Visibroker. In the approach, client interactions to resource APIs are controlled on a role-
by-role basis, constrained by security level, time, and data values. This work is
interesting since it demonstrates that service-based software can be an extremely
effective tool to easily and seamlessly integrate complex security capabilities. In
addition, we have examined the future trends of the support by security in middleware
by exploring the security capabilities and features of CORBA, .NET, and J2EE. Overall,
we believe that the material presented in this chapter can be used as a basis to understand
the design and integration of security into distributed applications via a service-based
approach.

References

Arnold, K., et al. (1999). The JINI specification. Addison-Wesley.
Demurjian, S., et al. (2004). Concepts and capabilities of middleware security. In Q.

Mahmoud (Ed.), Middleware for communications. John Wiley & Sons.
Demurjian, S., et al. (2001). A user role-based security model for a distributed environ-

ment. In J. Therrien (Ed.), Research advances in database and information systems
security. Kluwer.

DevX Enterprise Zone. (2002). Software engineers put .NET and Enterprise Java Security
to the test. Retrieved August 19, 2004, from http://www.devx.com/enterprise/
articles/dotnetvsjava/GK0202-1.asp

A Service-Based Approach for RBAC and MAC Security 337

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Liebrand, M., et al. (2003). Role delegation for a resource-based security model. In E.
Gudes & S. Shenoi (Eds.), Data and applications security: Developments and
directions II. Kluwer.

Microsoft Corporation. (1995). The component object model (technical overview).
Microsoft Press.

Microsoft Corporation. (2003a). Microsoft DN, Microsoft .NET security. Retrieved
August 19, 2004, from http://msdn.microsoft.com/library/default.asp?url=/nhp/
Default.asp?contentid=28001369

Microsoft Corporation. (2003b) Microsoft TechNet. Security in the Microsoft .NET
framework. Retrieved August 19, 2004, from http://www.microsoft.com/technet/
treeview/default.asp?url=/technet/itsolutions/net/evaluate/fsnetsec.asp

Object Management Group. (2002a). Common object request broker architecture: Core
specification – version 3.0.2. Retrieved August 19, 2004, from http://www.omg.org

Object Management Group. (2002b). Security Service Specification - Version 1.8, March
2002, Figure 2-47, page 2.65. http://www.omg.org

Open Software Foundation. (1994). OSF DCE application development guide - revision
1.0.

Open Web Application Security Project. (2002). J2EE and .NET security. Retrieved
August 19, 2004, from http://www.owasp.org/downloads/
J2EEandDotNetsecurityByGerMulcahy.pdf

Phillips, C., et al. (2002a). Security engineering for roles and resources in a distributed
environment. Proceedings of the 3rd Annual ISSEA Conference.

Phillips, C., et al. (2002b). Towards information assurance in dynamic coalitions.
Proceedings of the 2002 IEEE Information Assurance Workshop.

Phillips, C., et al. (2003a). Security assurance for an RBAC/MAC security model.
Proceedings of the 2003 IEEE Information Assurance Workshop.

Phillips, C., et al. (2003b). Assurance guarantees for an RBAC/MAC security model.
Proceedings of the 17th IFIP 2002 11.3 WG Conference.

Riordan, R. (2002). Microsoft ADO.NET step by step. Microsoft Press.
Roman, E. (1999). Mastering Enterprise JavaBeans and the Java 2 Platform, enterprise

edition. John Wiley & Sons.
Rosenberry, W., Kenney, D., & Fischer, G. (1992). Understanding DCE. O’Reilly &

Associates.
Sceppa, D. (2002). Microsoft ADO.NET (core reference). Microsoft Press.
Sun Microsystems. (2003). J2EE security model. Java 2 platform security. Retrieved

August 19, 2004, from http://java.sun.com/j2se/1.4.1/docs/guide/security/spec/
security-spec.doc.html

UConn. (2003). Distributed security. Retrieved August 19, 2004, from http://
www.engr.uconn.edu/~steve/DSEC/dsec.html

Valesky, T. (1999). Enterprise JavaBeans: Developing component-based distributed
applications. Addison-Wesley.

338 Phillips, Jr., Demurjian, Doan and Bessette

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Vinoski, S. (1997). CORBA: Integrating diverse applications within distributed hetero-
geneous environments. IEEE Communications Magazine, 14(2).

Waldo, J. (1999). The JINI architecture for network-centric computing. Communications
of the ACM, 42(7).

Yang Z., & Duddy, K. (1996). CORBA: A platform for distributed object computing. ACM
Operating Systems Review, 30(2).

A Service-Based Approach for RBAC and MAC Security 339

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section V

Service-Orientation in
Practice

340 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVI

Engineering a
Service-Oriented
Architecture in
E-Government

Marijn Janssen
Delft University of Technology, The Netherlands

Abstract

Service-oriented enterprise architectures have gained considerable attention of
politicians and public servants as a solution for designing new applications and
leveraging investments in legacy systems. Service-oriented architectures can help to
share data and functionality among information systems and provide the flexibility to
include existing legacy systems, which cannot be replaced easily and otherwise restrict
further development. In this chapter, the design of a service-oriented architecture in
public administration is explored. A case study is conducted at the Ministry of Justice,
and a service-oriented architecture is designed, implemented, and evaluated. The
architecture is evaluated based on a number of quality requirements. This case study
shows the feasibility to replace functionality formerly offered by legacy systems and
shows limitations of current technology. This chapter should lead to a greater
understanding of the concept of service-oriented architectures in e-government.

Engineering a Service-Oriented Architecture in E-Government 341

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Electronic government (e-government) is emerging as the result of technological devel-
opments in the field of Information and Communication Technology (ICT) and is
reshaping relationships (Chen, 2002). Government organizations are becoming increas-
ingly aware of the opportunities provided by service-oriented architectures. ICT-
Architecture is the description of the set of components and the relationships between
them (Armour, Kaisler & Liu, 1999). The basic idea is to break a large and complex system
down into relative simple parts. The parts can be designed individually, and a new system
can be constructed by (re)using the relative simple parts as configurable, modular
services. The service-oriented paradigm focuses on building information systems by
discovering, matching, and integrating predeveloped components as services. Gener-
ally, a service functions independently of other components and communicates using
well-defined standardized interfaces. The manageability increases as large modular
services can be constructed from smaller ones. In essence, a complex problem is split up
into smaller problems, which can be solved independently. Openness and flexibility is
created as new services can be added and removed from the architecture, and each single
component can be replaced by another component without affecting the others. Service-
oriented modular architectures can leverage investments in legacy systems running the
enterprise’s key business-critical applications (Arsanjani, 2002).
The service-oriented paradigm offers many benefits to enterprises, and the creation of
a class of enterprise services allows us to create services that are modular, accessible,
well-described, implementation-independent, and interoperable (Fremantle, Weerawarana
& Khalaf, 2002). Modular services can be found, described, discovered, and integrated
using Web services technology. Service-oriented paradigms are becoming more impor-
tant in today’s design of information systems. Service-oriented business integration
enables the on-demand composition of new business processes using already existing
services possibly provided by other parties. In service-oriented applications, services
are configured to meet a specific set of requirements at a certain point in time, executed
and then disengaged. Services only exist during execution; components provide ser-
vices.
A few Web services protocols have become the de facto standard by the Dutch
government. Many architecture departments have adopted HTTP, XML, XSLT, XML
Schemas, SOAP, UDDI, and WSDL as standards for designing service-oriented archi-
tectures. Although the basic protocols have been set, and the concept of service-
oriented architectures has great promises, their application still stays far behind in the
public sector. Most government organizations are relatively slow in adapting service-
oriented architectures as they lack sufficient insight into the real pros and cons of such
an approach (Fan, Stallaert & Whinston, 2000).
The objective of this chapter is to explore the concept of a service-oriented architecture
in e-government. In the following section, a case study will be introduced, and the quality
requirements on a service-oriented architecture will be discussed. In the section there-
after, a service-oriented architecture levering investments in legacy systems and where
some functionality of legacy systems has been replaced using Web services technology
is discussed. Using interviews, the quality requirements are evaluated, and the service-

342 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

oriented architecture is discussed. Based on this discussion, conclusions are drawn in
the last section.

Introduction to the Case Study

The Ministry of Justice in the Netherlands has more than 14,000 employees working in
the colleges of judges and public prosecutors. There are 19 county courts, five courts,
and one supreme court and three types of law: civil, public administration, and criminal.
Between courts and often for each type of law within one court, different kinds of
information systems are used. This ministry is continuously developing new applica-
tions and replacing existing systems. In the past, development projects, control, and
maintenance of information systems were not coordinated. Each information system was
designed using different knowledge, often coming from external consultants. This has
resulted in information systems residing on the MS Windows, VMS, and UNIX platforms,
written in languages like PL/SQL, C++, and Java using applications from Oracle,
Microsoft, and other vendors. All by all, this resulted in 22 heterogeneous types of
information systems having overlap in functionality and each having its own control and
maintenance team. In total, more than 250 FTE are involved in maintaining and controlling
the systems.
The Ministry of Justice wants to introduce a more open and flexible service-oriented
architecture. The interest in a service-oriented architecture is coming from the following
aspects:
1. Modularity: Components are reusable, and new components and business pro-

cesses can be composed out of existing components. Legacy systems are also
viewed as modules accessible as a service.

2. Implementation-independent interfaces: Interfaces can be described using WSDL
independent of the implementation. WSDL is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information. The operations and mes-
sages are described abstractly and then bound to a concrete network protocol and
message format to define an endpoint. Related concrete endpoints are combined
into abstract endpoints (services). WSDL supports the description of multiple
implementations.

3. Use of registry: Services descriptions can be registered in a directory service based
on UDDI. Users and information system can discover services and integrate them
into their business processes.

An architecture is a high-level map of the information requirements of an organization.
It is a personnel-, organization-, and technology-independent profile of the major
information categories within an enterprise (Branchau, Schuster & March, 1981). Over
time, the courts, users, and ICT Department have agreed on over a number of quality
attributes, described in Table 1, which can be viewed as requirements on the architecture.

Engineering a Service-Oriented Architecture in E-Government 343

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Two types of attributes can be distinguished: user attributes, which are quality require-
ments taken from the user perspective and design attributes, which determine the
adaptability of the architecture from the developers point of view. Only for the perfor-
mance and availability attributes are quantitative norms available. The response time for
users may not exceed 0.5 seconds. The availability should be 99% during daytime (8.30-
18.00) and 99% during special time windows to accommodate crime investigations.
In Figure 1, the desired growing strategy of the service-oriented architecture is mapped
out in the time. Messages are the most elementary part of the architecture. A message
can be a simple signal, such as an acknowledgment of delivery, or it can have a more
complex nature and contain whole documents. During the first step, messages should be
converted to SOAP/XML-based protocols. In this way, interoperability between sys-
tems should be guaranteed. In the following step, a number of services should be
implemented and made available within the Ministry, such as document generating,
scheduling of appointments, document retrieval, and so forth. Web Services Description
Languages (WSDL) can be used to describe the services.
In the following phase, a services catalog based on the Universal Discovery and
Integration (UDDI) standard should be used to store, find, and integrate services.
Initially, the UDDI registry is only for use within the Ministry of Justice, and the services
will not be provided to other parties. This has advantages for maintainability, updating,
monitoring, and forecasting use. Transactions are composed of messages or other
transactions.
A business process orchestrates transactions into a sequence of activities in times.
Although there is still disagreement over the selection of orchestration languages, the
Business Process Execution Language for Web services (BPEL4WS) was selected as this
seemed to be the most promising language at this moment (Fremantle et al., 2002; Thatte,

Table 1. Quality requirements on architecture

Quality attributes Description
User attributes
Performance The time required to respond to stimuli (events)
Availability The proportion of time the system is up and running
Personalization The ability to personalize systems output to the user wishes
Security The ability to resist unauthorized attempts at usage and denial of service while

still providing services to legitimate users
Time-to-market When new laws are introduced, a system has to comply to it prior to its

activation
Design attributes
Modifiability The ability to make changes quickly and cost effectively
Portability The ability of the system to run under various computing environments
Reusability The ability to reuse some or all of the components of the system
Integratability The ability to make the separately developed components of the system work

together
Testability The probability that a system will fail on the next use. The components input

needs to be controlled, and the internal state and outputs need to be observed
Use of legacy system New systems must integrate with existing systems which cannot be replaced

easily

344 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2002). In the last phase toward a complete SOA, business scenarios should be described,
that is, the context in which business processes can take place and the dependencies
between business processes. This includes partner profiles, describing the capabilities
of each partner, contracts, rights, responsibilities, obligations, and so on.
To investigate the feasibility and value of a service-oriented architecture to accommo-
date the requirements of the Ministry of Justice and to explore the feasibility of the first
phases a pilot was started. Initially, the pilot was limited to investigate the possibilities
of messages (XML/SOAP), services (WSDL), and service registry (UDDI) to build a
service-oriented architecture that could include the legacy systems currently in use.
When this part showed to be feasible, a succeeding pilot project might be initiated to test
and evaluate orchestration and business scenario within an SOA.

Engineering a Service-Oriented Architecture

Currently, a large project called GPS is initiated to replace a large and complex legacy
system (COMPASS) in criminal law using innovative technologies. The names refer to
tools supporting the finding of the right track. GPS consists of several projects: one is
a pilot project aimed at verifying the concepts of modular services discussed in the
preceding section and to explore the opportunities and limitations coming from the
application of readily available technology. Document generation was chosen as
modular functionality to be made accessible using services, as all existing information

Figure 1. Growing strategy

Messages: XML/SOAP

Services: WSDL

Business processes: BPEL4WS

Business scenarios

implementation
layer

time (years)

2003 2004 2005 20062002

Catalogue: UDDI

Engineering a Service-Oriented Architecture in E-Government 345

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

systems within the Ministry of Justice have to generate and print documents in some way
or another.

Functional Requirements

The current functionality of the information systems and the organizational character-
istics were taken as a starting point for the requirement elicitation. Further requirement
elicitation was conducted using interviews. The general requirements are summarized
hereafter.

• Documents consist of static and dynamic parts. The static data is predefined and
makes up the body of the document containing the position of dynamic data,
layout, law text, and logos. Elements of the static part can be filled with dynamic
data like name, address and so forth.

• Dynamic data should be extracted from existing and potentially new databases.

• Documents like summons that seem to be similar on the first sight are different for
each court. As there are in total 25 courts (one supreme court, five high courts, and
19 courts), content managers in a court should be able to update the content of the
static part of a document.

• Roughly speaking, two types of documents should be created. The first type is
incidentally created by users and is immediately needed. The other type of
document is created automatically by the system based on the progress and status
of cases. Often, these documents are generated at night and concern large volumes.
At an average court, 150 summons are created each night.

• It should be able to generate documents that are stored in a document management
system that cannot accidentally be changed, as they might be needed for evidence.
It should also be possible to generate documents that can be changed by court
employees before printing.

• There should be one single point where the document generator is developed,
controlled, and maintained in a technical sense.

• A prerequisite is the use of Web services technology.

The static part of a document is implemented as a template. Local content managers in
each court can create, edit, and save static document templates using a document editor
in MS Word. For maintenance purposes, the templates are stored and retrieved at a
central place and not local at a content manager’s computer. The advantages of this
construction are that a backup can be automatically made after each change and that in
case of conversion of document formats, all document templates can be converted at
once. The document generator should be able to generate RTF for use within a word
processor and PDF documents to ensure that the content cannot easily be changed.

346 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Implementation of the Document Generation Service

The service-oriented architecture for document generation is schematically shown in
Figure 2. The communication manager mediates communication between legacy systems
and the document generation service. The new information system can communicate
directly with the document generator by sending an XML/SOAP message. Legacy
systems are made accessible as services using adapters, in this way, concealing the
complexities of the interface. Legacy systems, GPS, and the communication manager
communicate with the document generator using XML message over SOAP and HTTP.
XML (eXtensible Markup Language) is a language for describing hierarchical structured
documents using tags. The SOAP (Simple Object Access Protocol) consists of an
envelope/body structure and defines the way applications can request and deliver data
using XML. The HTTP (Hypertext Transfer Protocol) is a simple request-respond
protocol for communication between a client and server.
The legacy systems communicate with the document generator using the communica-
tion manager. The communication manager is a middleware application using message
queuing based on Oracle technology. When a message is submitted, the message is
placed into a persistent queue. In the following step, the communication manager gets
the message from the incoming queue, translates the messages from a legacy system into
an XML format, and the message is placed into the outgoing queue. The communication
manager also performs validity checks on data structures and completeness. A Java
client, which is also part of the communication manager, takes the message out of the
outgoing queue and submits the message based on XML/SOAP to the document
generator. The document generator is only able to read XML-based messages. In the
opposite direction, the communication manager translates XML messages coming from

Figure 2. Overview of the service-oriented architecture

docum ent
editor

d y n a m ic d a t a (S O A P /X M L)

d o c u m e n t g en e ra te d
(S O A P /X M L)

legac y ap p lica tio n 1

legac y ap p lica tio n 2

legac y ap p lica tio n 22

printer

doc um en t gen e ra to r

com m unication
m anager

G P S

docum ent
tem plates

d y n a m ic d a t a (S O A P /
X M L)

d o c u m e n t g en e ra te d
(S O A P /X M L)

Engineering a Service-Oriented Architecture in E-Government 347

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

the document generator into a format readable by the legacy application. In this way,
communication with components not supporting HTTP and XML message formats
becomes possible.
Service descriptions are necessary for using the document generator in an open market
situation. WSDL is used to describe the properties of services and to make comparison
with other descriptions possible. A registry based on UDDI can be used to discover and
integrate services.
In Figure 3, screen shots of the prototype are shown to demonstrate the document
generation process. The screen shot on the left side shows a SOAP envelope loaded
within a Web browser. Dynamic data is packaged within the SOAP envelope. The SOAP
envelope contains information about the type of document that needs to be generated
(RTF, Rich Text Format and PDF, Portable Document Format) and the static template and
styles that should be used. The SOAP body contains the dynamic data that should be
inserted into the document and extracted from a database. After a document is generated,
the results are sent back in a SOAP envelope shown in the middle of Figure 3. The SOAP
envelope contains information about possible communication failures, the type of
document returned (RTF, PDF), and the body contains the document, in our example, an
RTF file. The screen shot on the right side of Figure 3 shows the generated RTF document
after the generated document was loaded into a word processor.

Document Generation Process

For the new information systems, GPS, the process needed for generating documents like
summons is shown in Figure 4. The event-manager takes care of the orchestration of
invoking Web services. A process is triggered by (1) a client (human) request to generate
some kind of document, which often requires the immediate generation of a document,
or (2) a batch process, which is often started at night as there is no urgent need for
generating the documents immediately. In the case of a batch process, the request for
generating a document is generated by the workflow application. Based on events like

Figure 3. Example of the process of generating a summon

dynam ic input data for
docum ent generator (SOA P/

XM L)

results docum ent generation
(SO AP/XM L)

Docum ent generated
(RTF)

348 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a public hearing or trial, the involved persons need to be sent a summons. To generate
a document, first, data need to be extracted from a database and wrapped up in the body
of an XML message. Often the data extraction requires more than one query; therefore,
multiple queries need to be merged into the body of one single XML message and the
type of document that needs to be generated, and the document format (RTF/PDF) needs
to be added in the envelope of the message.
Using a simple client written in the Java language, a SOAP request is submitted to a Web
server, which unpacks the SOAP message and invokes the document generator by
providing information about the template to be used, the type of document to be
generated, and the dynamic data extracted from the database. An RTF is generated and
wrapped up as a SOAP message by the Web server, which submits this message to the
Java client. The event-manager can store the document, type of trigger, generation data,
and other data in a Document Management System (DMS). If a human client request
triggers, the document generation process, the document can either be presented in
Adobe Reader (if a PDF is generated), or MS Word (if an RTF is generated). The document
is printed if a batch process initiates the document generation process. Often, printing
is performed at night, and printed documents are automatically inserted into an envelope.
A label is also automatically printed on the envelope, so civil servants have only to post
the envelopes the following working day.

Figure 4. Orchestration of the process of generating a summon

data extraction
Java client
R TF /PD F
generation

1 . C lien t request
2 . B a tch p rocess

m erge data into
one XML
docum ent

M icrosoft
IIS-server

SOAP
request

SOAP
response

XML

D ocum ent
generator

RTF

save in D ocum ent
M anagem ent

System (DM S)

D MS (Fusion)

RTF
doc confirm

presentation
(A dobe Reader

or MS W ord)
prin t docum ent

R T F /P D F docum entXM L docXM L da ta

event-manager

Engineering a Service-Oriented Architecture in E-Government 349

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Evaluation

In this section, our experiences with developing a service-oriented architecture are
summarized. In Table 2, the evaluation of the quality requirements is discussed. The
quality requirements are evaluated using a number of tests. For clarity, it should be
remembered that quantitative norms were only available for the performance and
availability attributes. From the evaluation of these attributes, the need for service levels
control becomes clear. Systems availability is no problem; however, communication and
processing time can vary largely. Although a priority mechanism was introduced, it is not
suitable for time-sensitive or mission-critical interaction. Response time can exceed 0.5
seconds, when coincidentally a large number of users want to generate documents or if
the communication network has a high utilization. The communication manager can
provide a solution to this problem as it is constructed using message queuing. The
number of document generators can be scaled up, and load balancing can be accom-
plished by assigning documents to multiple document generators. The testing of this
solution was considered to be outside the scope of our research.
A number of experiences with developing a service-oriented architecture are summarized
hereafter.
 1. Componentization: Identifying functionality to transfer to a modular architecture:

Document generation is an intuitive appealing functionality that is used by all
applications, can easily be reused, and does not need high performance. Presum-
ably, it will be more difficult to find other functionality suitable for modularization.

2. Asynchronous communication: When a large number of requests for document
generation are submitted a none-response can occur, and the request needs to be
resubmitted. Although HTTP is probably so commonly adopted due to its simplic-
ity, the Web services model over HTTP fails as a time-out occurs if it takes more
than several seconds to create a response. The resubmission of a request can
already be easily handled by the SOAP protocol, however, is not included as a
standard mechanism.

3. Security: The prototype has no secure communications. sHTTP can be used;
however, this protocol is not suitable for creating a complete public key infrastruc-
ture. The prototype is used by applications behind a firewall; however, in the
future, there is a need for secure communication to create an open market of Web
services.

4. Integrity of transactions: Functionality to generate a number of single documents
and integrate them into one document is not supported by Web services protocols.
It is possible to build transaction functionality into the communication manager.
There is no standard yet, although Web services transaction (WS-T) might likely
become the preferred standard (Dalal, Temel, Little, Potts & Webber, 2003).

5. Process flow: The workflow management package, Staffware, is already used to
support workflow management. This workflow package can trigger events to start
the document generation process. The sequence of Web services invocation by
the event-manager was hard-coded in the event-manager. Ideally, a process

350 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 2. Evaluation of quality requirements

Q u a lity
a t tr ib u te s

D e s c r ip t io n

U se r a t tr ib u te s
P e rfo rm a n c e T h e re s p o n s e t im e o f th e d o c u m e n t g e n e ra to r c a n v a ry

d e p e n d in g o n th e n u m b e r o f re q u e s ts . A t n ig h t w h e n a n
a v e ra g e o f 3 0 0 s u m m o n s n e e d to b e g e n e ra te d , th e
re s p o n s e t im e c a n in c re a s e u p to 3 0 s e c o n d s , w h ic h w o u ld
b e u n a c c e p ta b le d u r in g d a y tim e .

A v a ila b il i ty A v a ila b il i ty is n o p ro b le m . T h e te s t in d ic a te s a n u p tim e a t
d a y - a n d n ig h tt im e o f m o re th a n 9 9 % . U p d a tin g o f
c o m p o n e n ts h a d n o in f lu e n c e o n th e u p tim e ; u p d a tin g o f
th e s e rv e r c a n h a v e a m in im u m im p a c t o n th e u p tim e .

P e rs o n a liz a tio n G e n e ra te d d o c u m e n t c a n b e p e rs o n a liz e d b a s e d o n th e
c o u r t a n d w ith in th e c o u r t b a se d o n th e J u d g e a n d p u b lic
p ro s e c u to r .

S e c u r ity T h is a t tr ib u te is n e g le c te d in th e p ro to ty p e a n d n e e d s to
b e in v e s tig a te d in th e fu tu re a s th e M in is try o f J u s t ic e h a s
a d e d ic a te d n e tw o rk . T h e c o n n e c tio n to th e In te rn e t is
p ro te c te d u s in g f ire w a lls a n d th e y h a v e a d e d ic a te d
id e n tif ic a t io n a n d a u th o r iz a tio n s e rv e r .

T im e - to -m a rk e t L a w te x ts a re e n te re d a s d y n a m ic d a ta in th e d a ta b a se .
T h is m e a n s th a t a t o n ly o n e p o s it io n te x ts h a v e to b e
u p d a te d to b e in c o rp o ra te d in th e fo rm . T h e n e e d fo r
c h a n g in g w o rk f lo w to s u p p o rt la w s h a s n o t b e e n
in v e s tig a te d .

D e s ig n
a t tr ib u te s

M o d ifia b il i ty M o d u la r e n c a p s u la te d g e n e ra to r c o m p o n e n t. V e rs io n s
c o u ld b e u p d a te d a n d c h a n g e d w ith e a s e .

P o r ta b il i ty A n X M L /S O A P m e s s a g e c a n b e s e n t f ro m v a r io u s
h e te ro g e n e o u s p la tfo rm s a n d a p p lic a tio n s , in c lu d in g V M S
o p e ra tin g s y s te m s a n d J a v a p ro g ra m m in g la n g u a g e s to
th e W in d o w s p la tfo rm c o n ta in in g I IS s e rv e r a n d
d o c u m e n t g e n e ra tin g .

R e u s a b il i ty T h e d o c u m e n t g e n e ra to r c o m p o n e n t c a n a n d is re u s e d b y
a n u m b e r o f a p p lic a tio n s .

In te g ra ta b il i ty C o m m u n ic a tio n b e tw e e n le g a c y s y s te m s a n d d o c u m e n t
g e n e ra to r is in te g ra te d w ith o u t a n y m a jo r o b s ta c le s o n th e
p a r t o f th e d o c u m e n t g e n e ra tio n ; h o w e v e r , m a k in g le g a c y
d e p lo y m o d u la r s e rv ic e s re m a in s a h u g e p ro b le m a s th e y
a re n o t d e s ig n e d fo r th a t p u rp o s e .

T e s ta b il i ty T h e c o m p o n e n t is th o ro u g h ly te s te d , a n d a n u m b e r o f
p ro b le m s l ik e d e a lin g w ith m u lt ip le re q u e s ts a n d m a k in g
te m p la te s fo o l p ro o f h a v e b e e n re s o lv e d .

U s e o f le g a c y
s y s te m

U s in g th e c o m m u n ic a tio n m a n a g e r , le g a c y s y s te m s c a n
b e a c c e s se d a n d d a ta c a n b e u se d b y th e d o c u m e n t
g e n e ra to r to g e n e ra te d o c u m e n ts .

Engineering a Service-Oriented Architecture in E-Government 351

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

orchestration language like BPEL4WS should be used for both the workflow
management and the document generation process. Staffware and BPEL4WS have
differences in order to support routing construct, and the workflows already
modeled in Staffware can currently not be converted to BPEL4WS. Van der Aalst
(2003) argues that the Web services standardization community did not look at
experiences in the workflow domain and that BPEL4WS joins viewpoints from both
WSFL and XLANG which makes the language unnecessarily complex.

A number of problems are or can be dealt with by building additional functionality on top
of Web services technology; however, this is a cumbersome way. Issues like guaranteed
service levels, dealing with delays over HTTP, security, and integrity of transactions
seem to be typical functionality which should be handled by standardized Web services
technology. In our case study, the middleware layer in the form of the communication
manager had to deal with these shortcomings which, however, could lead to limited
openness and flexibility in the future. It was decided to delay the adoption of a transaction
and process description standards, as they were not viewed as mature and stable enough
yet. A major advantage of using the communication manager on the growth path towards
a fully service-oriented architecture is that this application can backup and recover data,
can give priority to documents needed to be generated, has queues for capacity
balancing, can deal with the limited availability of legacy systems, and can provide
additional functionality.

Conclusion and Future Research

Rather than replacing legacy systems, modularity can help to leverage investments in
legacy systems and incrementally remove functionality from legacy systems. With Web
services technology, the life of legacy applications can be extended and a step-by-step
migration towards a modular architecture is enabled. Although the current Web services
protocol stack can be used for engineering a service-oriented architecture, the current
protocols being used in this case study have a number of shortcomings including
guaranteeing service levels, security, and data integrity. There are protocols under
development to support these problems; however, none of them have become an official
standard yet. In our case study, a middleware layer was introduced to overcome these
shortcomings and also to add additional functionality.
Currently, integration of business processes and services is an arduous and time-
consuming job. The real-time composition of a business process using services is still
one step too far. The on-demand buying or renting of services from external parties is
even further away. Government organizations can make their applications ready to
function in a service-oriented architecture by using standards.

352 Janssen

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Arsanjani, A. (2002). Developing and integrating enterprise components and services.
Communications of the ACM, 45(10), 31-34.

Armour, F. J. Kaisler, S. H., & Liu, S. Y. (1999). A big-picture look at enterprise
architectures. IEEE IT Professional, 1(1), 35-42.

Branchau, J. C., Schuster, L., & March, S. T. (1989). Building and implementing an
information architecture. DataBase, 19, 9-17.

Chen, H. (2002). Digital government: Technologies and practices. Decision Support
Systems, 34(3), 223-357.

Dalal, S., Temel, S., Little, M., Potts, M., & Webber, J. (2003). Coordinating business
transactions on the Web. IEEE Internet Computing, 7(1), 30-39.

Fan, M., Stallaert, J., & Whinston, A. B. (2000). The adoption and design methodologies
of component-based enterprise systems. European Journal of Information Sys-
tems, 9(1), 25-35.

Fremantle, P., Weerawarana, S., & Khalaf, R. (2002). Enterprise services: Examining the
emerging field of Web services and how it is integrated into existing enterprise
infrastructures. Communications of the ACM, 45(20), 77-82.

Thatte, S. (Ed.). (2003, May 5). Business Process Execution Language for Web services
version 1.1. Retrieved August 19, 2004, from http://www-106.ibm.com/
developerworks/webservices/library/ws-bpel/

Tweney, D. (2002, November). Still waiting for the Web services miracle. Business 2.0.
Van der Aalst, W. (2003). Don’t go with the flow: Web services composition standards

exposed. IEEE Intelligent Systems, 18(1), 72-76.

Web Services for Groupware 353

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVII

Web Services for
Groupware

Schahram Dustdar
Vienna University of Technology, Austria

Harald Gall
University of Zurich, Switzerland

Roman Schmidt
Swiss Federal Institute of Technology, Lausanne, Switzerland

Abstract

While some years ago the focus of many Groupware systems has been on the support of
Web based information systems to support access with Web browsers, the focus today
is shifting towards a programmatic access to software services, regardless of their
location and the application used to manipulate those services. Whereas the goal of
Web Computing has been to support group work on the Web (browser), Web services
support for Groupware has the goal to provide interoperability between many Groupware
systems. The contribution of this chapter is threefold: (1) to present a framework
consisting of three levels of Web services for Groupware support, (2) to present a novel
Web services management and configuration architecture with the aim of integrating
various Groupware systems in one overall configurable architecture, and (3) to
provide a use case scenario and preliminary proof -of-concept implementation. Our
overall goal for this chapter is to provide a sound and flexible architecture for gluing
together various Groupware systems using Web services technologies.

354 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Since the late 1960s, Groupware aims at supporting various group activities of individuals
embedded in multiple teams within organizations as well as between organizations. While
some years ago the focus of many Groupware systems has been the support of Web
computing, that is, to support access with Web browsers, the focus today is shifting
towards a programmatic access to software services, regardless of their location and the
application used to manipulate those services. Web services should provide the required
standards, protocols, and technologies to fulfil this goal. Whereas the goal of Web
Computing has been to support group work on the Web (browser), Web services support
for Groupware has the goal to provide interoperability between many Groupware
systems.
Web services can be seen as a newly emerging distributed computing model for the Web.
The standardization process is driven by the growing need to enable business-to-
business (B2B) interactions on the Web. Web services are self-contained selfdescribing
modular applications. The Web services model develops a componentized view of Web
applications and is becoming the emerging platform for distributed computing. The
architecture considers a loosely integrated component model, where a Web service
interface (component) encapsulating any type of business logic is described in a
standardized interface definition language, the Web Services Description Language
(WSDL) (W3C-WSDL, 2003). Web service components interact over XML messaging
protocols and interoperate with other components using the Simple Object Access
Protocol (SOAP) (W3C-SOAP, 2003). Many software vendors and a plethora of standard-
ization consortia, for example, ebXML (EbXML, 2003), W3C (2003), and OASIS (2003),
are providing models, languages, and interfaces for the life cycle of Web services:
describing, publishing, unpublishing, discovering, and making them available to users
for invocation.
Web services coordination middleware needs to support key mechanisms, such as
coordination, composition, synchronization, event notification, event logging, transac-
tions, control and data flow, workflow definition and enactment, security, and monitoring
management. The basic layers comprising SOAP and WSDL are agreed standards. They
provide the means to exchange messages (SOAP) supporting four interaction patterns
(Table 2) and to describe service interfaces (WSDL). Higher layers, such as the Web
Services Endpoint Language (WSEL), dealing with issues of Quality of Service (QoS) or
the Business Process Execution Language for Web Services (BPEL4WS, 2002), the Web
Services Flow Language (WSFL, 2003), XLANG (2003), BPML (Business Process
Modeling Language) (BPML, 2003), Web Services Choreography Interface (W3C-WSCI,
2003), ebXML BPSS (Business Process Specification Schema) (EbXML, 2003), among
others, dealing with Web services workflows, are not standardized yet but only pub-
lished as specifications. Currently, several BPEL4WS engines are implemented in
coordination middleware systems, such as IBM’s WebSphere Process Manager or the
Collaxa BPEL engine. While XLANG is an XML extension of WSDL describing private
workflow processes as Web service composition, WSFL also deals with public models
of workflows. XLANG is implemented within the Microsoft BizTalk server. Both of these
initiatives of workflow-based Web services coordination do not support existing

Web Services for Groupware 355

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

normalizations of workflow languages and protocols (for example, workflow interfaces,
Wf-XML by WfMC, and CORBA Workflow Facility by Object Management Group).
Vertical layers are responsible for foundational services required by all Web services:
Discovery (UDDI), Security, for example, WS-Security, Security Assertions Markup
Language (SAML, 2003), Transactions, Trust management, routing, Service Level
agreements (contracts) to name the most relevant ones, are, however, not yet standard-
ized and currently subject to ongoing research. Current Web services standards mainly
focus on horizontal higher layers. Table 1 provides an overview of Web services
protocols and their characteristics.
Higher layers of the Web services software stack are built on top of WSDL, which
provides four interaction (message) patterns listed in Table 2. The one-way pattern
provides a high level of decoupling between the requestor and the provider. In the one-
way pattern, the request and the response are two messages defined within separate
WSDL operations. The request is modeled as an inbound one-way operation, and the
response is modeled as an outbound notification operation. Each message is sent as a
separate transport-level transmission. The request/response pattern also provides a
high degree of decoupling between the parties. The service provider needs to be able to
handle some application logic; that is, it needs to know the address to which it should
send the response. The solicit response pattern (also called request/reply with polling)
requires four messages defined within two separate WSDL documents to handle an
interaction. The initial request is modeled as a request/reply op-eration with two
messages, that is, a transmission and one reply sent as a single transport-level exchange.
The response is retrieved by a second request. The two operations are implemented as
synchronous flows with information being returned from the service provider for each
request providing the requester with an acknowledg-ment for each request. In the
notification pattern (also called request/reply with posting), request and response are
handled using four messages defined within two separate WSDL operations. The first
request is modeled as a request-/reply operation with two messages sent as a single
transport-level exchange. The response is modeled as a solicit/reply operation with two
messages also sent as a single transport-level exchange.

Table 1. Web services – characteristics and protocols

Characteristics Web service Protocols
Description WSDL (Web Services Description Language)
Publishing UDDI (Universal Description, Discovery, and Integration)
Discovery UDDI (Universal Description, Discovery, and Integration)
Bind and
Invoke

SOAP (Simple Object Access Protocol)

Composition BPEL4WS, BPML, WSCI
Coordination
and
Transactions

WS-Coordination, WS-Transaction, WSCI, BPML

Security WS-Security (proposal by Microsoft), SAML
Routing proposals (for example, Microsoft)
Service Level
Agreements

WSEL (Web Service Endpoint Language)

356 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

However, not all application servers support all possible interaction patterns so far. The
message patterns are the means of interaction between application code using Web
services. Hence, the interaction patterns supported by WSDL provide the foundation for
coordination services provided by coordination middleware.
Now let us turn our attention to Groupware. Ellis et al. (1991, 1996) provide a functionally-
oriented taxonomy of collaborative systems, which assists in understanding the integra-
tion issues of workflow and Groupware systems. This classification system provides a
framework to understand the characteristics of collaborative systems and their technical
implementations. The first category (Keepers) provides those functionalities related to
storage and access to shared data (persistency). The metaphor used for systems based
on this category is a shared workspace. A shared workspace is basically a central
repository where all team members put (upload) shared artifacts (in most cases, docu-
ments) and share those among the team members. Technical characteristics of Keepers
include database features, access control, versioning, and backup/recovery control.
Popular systems examples include BSCW, IBM/Lotus TeamRoom, and the Peer-to-Peer
workspace system Groove (Groove, 2003). The second category (Communicators)
groups all functionality related to explicit communications among team members. Basi-
cally, this boils down to messaging systems (e-mail). Its fundamental nature is a point-
to-point interaction model, where team members are identified only by their name (e-mail
address) and not by other means (for example, by skills, roles, or other constructs as in
some advanced workflow systems). The third category (Coordinators) is related to
ordering and synchronization of individual activities that make up a whole process.
Examples of Coordinator systems include Workflow Management Systems. Finally, the
fourth category (Team-Agents) refers to (semi) intelligent software components that
perform domain-specific functions and thereby help the group dynamics. An example for
this category is a meeting scheduler agent. Most systems in this category are not off-
the-shelf standard software. Both evaluation models presented above provide guidance
to virtual teams on how to evaluate products based on the frameworks. Current systems
for virtual teamwork have their strength in one or two categories of Ellis’ framework. Most
systems on the market today provide features for Keepers and Communicators support
or are solely Coordinator systems (for example, Workflow Management Systems) or are
Team-Agents.

Table 2. Web services interaction patterns

Message Patterns Characteristics
One-Way

• Analogous to “Fire-and-Forget”
• The message is sent and no response is expected

Request/Response

• Analogous to RPC (Remote Procedure Call)
• The sender sends a message and the receiver sends a message

(response)
Solicit Response

• Sends a Request without Data for a response
• The message is sent and a response is expected

Notification

• Potentially many receivers per message (similar to broadcasts)
• Analogous to Publish/Subscribe

Web Services for Groupware 357

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Groupware systems have the potential to offer and consume such services on many
levels of abstraction. Consider a typical scenario of team work: (Distributed) Team
members collaborate by using messaging systems for communications. In most cases,
the work-space metaphor is used for collaboration. This means that team members have
access to a joint work-space (in most cases, a shared file system), where files (artifacts)
and folders may be uploaded and retrieved. In many cases, (mobile) experts are part of
such teams and their workspaces. One can argue that a workspace can be seen as a
community of team members working on a shared project or toward a common goal. The
aim of Groupware systems is to provide tool support for communication, collaboration,
and to a limited extent, for coordination of joint activities. Figure 1 illustrates a typical
scenario for Groupware usage. It shows that when a person instantiates a process (or
project), in most of the cases, e-mail is used since the basis for interoperability for
Groupware is limited today to e-mail. However, different group members need to
collaborate on (sub) activities for achieving added value and results. Hence, in most
cases, other team members create artifacts and send them to other team members who are
depending on them to get their own work done. The fundamental problem team members
witness is that each person only sees the immediate neighbor (see circles in Figure 1) and
therefore lacks complete information about the context of group work and the dependen-
cies and timing constraints. This motivates the need for integration of various Groupware
systems with the goals of providing extended context information to all team members
and the ability to integrate a great variety of Groupware systems, including mobile
systems.
The contribution of this chapter is threefold: (1) to present a framework for analyzing
three levels of Web services for Groupware support, (2) to present a novel Web services
management and configuration architecture with the aim of integrating various Group-
ware systems in one overall configurable architecture, and (3) to provide a use case
scenario and preliminary proof-of-concept implementation example. Our overall goal for
this chapter is to provide a sound and flexible architecture for gluing together various
Group-ware systems using Web services technologies.

Figure 1. Groupware communities and actors

358 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The remainder of this chapter is organized as follows. The Web Service Management
Architecture section presents a novel approach for Web services management architec-
ture based on three levels: business, application, and Teamwork service. Furthermore,
it provides an overview on our suggested Web services management and service
configuration architecture. The Groupware Support Using Groove section discusses the
Groupware support provided by Groove workspaces and shows how the provided Web
services interfaces can be utilized for the purpose we present in this chapter. Finally, the
last section concludes the chapter.

Web Service Management Architecture

Web Services can be used to address several management aspects as shown in Figure 2:
1. Business management, that is, exposing application functionalities as Web ser-

vices to other business partners;
2. Application management from a business perspective, that is, wrapping

functionalities provided by business applications under a common service inter-
face (Casati & Machiraju, 2003); and

3. Service management, that is, providing common service interfaces to applications
for monitoring their operation.

In our case, it is essential that Groupware systems, such as Groove (2003), Caramba
(Dustdar, 2004), Colligo (2003), and so forth, have a common way of interoperability.
Tools are still closed with respect to integrating their functionality for a particular
business. For example, it is not possible to have one team member work with Groove, the
other one working with Caramba or some other Groupware tool, and commonly share
information and collaborate on a task across specific Groupware systems. The utmost
common denominator is to exchange data via some common file formats (for example,
XML or XGL) but without any business process support. Hence, virtual teams are
restricted to particular tools and tool-specific workspaces or formats.
Web services for Groupware systems for the first time allow such a multitool collabora-
tion in the sense of the above mentioned application management. Uniform Web service
interfaces would allow access to Groupware-specific services, such as groups, member
data, files, calendars, and so forth, and sharing of these data for a higher business value.

Architectural Components

In the description of the key components of our Web Services for Groupware (WS4G)
architecture, we focus on the connectivity and process awareness as the basis for WfMS
and Groupware systems, consisting of all basic services below the Teamwork Services

Web Services for Groupware 359

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

layer in Figure 2. Users should be granted access via various types of devices ranging
from PCs and notebooks to PDAs or mobile phones for connected, disconnected, or ad
hoc mode. In the following, we describe the WS4G architecture components depicted in
Figure 3.
Participants can be addressed and reached via the concept of a community that resembles
a project team. This concept allows building communities for specific purposes and tasks
as the basis for distributed and mobile collaboration of people. Both participants and
artifacts are connected in communities, and users share their information in a loosely
coupled peer-to-peer style.
The User and Community Management component in Figure 3 provides setup and
configuration of community leaders, community members, and also community friends
(as a more loosely coupled variant of a team member that could act as a temporary expert
or advisor for some task). Adding or removing participants to or from a community,
granting participants specific access rights to resources, and so forth, define the
responsibilities of this component. It provides a community as a central abstraction to
other components for addressing groups of people and sharing and exchanging infor-
mation with them.
Resources cover various kinds of artifacts required for a particular process (or process
template) and can be of any MIME-type (text, audio, video, graphics, and so forth). The
Resource Management component also includes information about particular resources,
such as search queries for artifacts, notifications about the availability of an artifact(s)
(the peer or server on which it resides), and so forth. In this context, information about
a resource includes both meta-information about an artifact and the artifact itself. As a
consequence, searches and subscriptions/notifications can be handled on a meta-data
level more easily and efficiently for large sets of users.
Process Configuration is concerned with managing the relationships between process
participants and artifacts and providing this information to other components. Process
participants may be human users or software agents (that is, other software components).
Such a process configuration, for example, can be that user (process participant) Schmidt

Figure 2. Web services levels

WS Teamwork Service Level

WS Application Level

WS Business Level

G
ro

ov
e

C
o

lli
g

o

C
a

ra
m

b
a

360 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requires the document artifact paper submission in a process named paper review
process.
Process Composition is concerned with managing process models including coordina-
tion and synchronization of its subprocesses and tasks. Each process model consists
of a set of tasks. The degree of granularity of process tasks can vary. On a generic level,
a process model (template) consists of a directed graph consisting of tasks and
connection constructors such as OR and AND. On an instance level, a process model
consists of instantiated tasks (activities) performed by process participants (human
agents or software agents).
Publish/Subscribe, Messaging, and Distributed Search is a component that provides
loosely coupled communication among components via messages, events, or synchro-
nous remote method invocations. Its focus is on subscription to all kinds of resources
(including artifacts, users, communities, processes, access rights, and so forth). A
participant can use this functionality to declare interest in a state of a particular artifact
(for example, whenever it is changed or updated, the participant should be notified). The
same applies to users, communities, or processes. As a result, this component allows
notification of specific activities and can be used for process composition and configu-
ration within or across communities.
Distributed Searches are based on meta-data stored in so-called profiles. These profiles
describe artifacts, users, processes, or communities in a concise way and represent it in
XML. A distributed search, therefore, queries XML repositories (of different content) on
each peer and, if successful, returns the requested piece(s) of information. Distributed
Searches further allow querying for information that a user wants to be notified whenever
it becomes available; therefore, such queries are stored in the system. Distributed
Searches can be further used to search for experts in a particular problem domain and
invite them on availability and reachability to join a (virtual) community. This enables the
exchange of expertise across communities and processes, which is especially important
in mobile and distributed collaboration in large enterprises where people are on the move
rather often.
The Authentication and Access Control component consists of an access control
system called DUMAS (Dynamic User Management System) (Fenkam, 2000) and a
security component responsible for integrity, confidentiality, and authentication. The
access control system covers three responsibilities: user control, community control,
and authorization.
The above Basic Services components are shielded by the MobiTeam Teamwork
Services to provide uniform access for teamwork applications. Based on this layer, any
specific collaboration application, such as WfMS or Groupware, can configure the
Teamwork Services according to their specific requirements and also build new business-
specific services on top of the Teamwork Services layer. Such a service configuration,
therefore, includes the instantiation of processes (templates) and communities (includ-
ing artifacts, users, and access rights) for specific tasks (for example, holding a Design
Review while process participants are on the move in different branches of the enterprise
and/or work on various devices). For more detailed component descriptions, we refer to
Dustdar and Gall (2003).

Web Services for Groupware 361

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The described component architecture is one major prerequisite to define a set of common
services and protocols to exchange all kinds of data among applications. In our case, the
applications are different kinds of Groupware systems such as Groove, Caramba, or
Colligo. Figure 2 depicts the three different levels of interoperability possibilities among
these tools: (1) on the Teamwork Services level based on the above teamwork services
component architecture; (2) on the application level for services beyond basic teamwork
services, such as calendar, contacts, discussion forum, or tools like shared editing or
other means of synchronous communication; and (3) on the business level that is even
more specific with respect to the needs of a particular business to use the WS4G
architecture to, for instance, run design reviews across different Groupware tools for
mobile and distributed process participants all over the world.
Given the common services and interoperability levels, the Web service technology is
well-suited to be adopted to work for common services and protocols. For that, we
propose the following Web services management and configuration architecture includ-
ing particular Web service configuration points (Figure 3).
In the architecture depicted in Figure 3, we base on our previous work in which we devised
an architecture for distributed and mobile collaboration presented in Dustdar and Gall
(2003). There we proposed a teamwork services layer that offers all kinds of basic
services, such as user and group, artifacts, access rights management, distributed
searches, publish-subscribe, messaging, or process management.
The API of these Teamwork Services has been enhanced to a Web service interface to
allow usage of such services for all kinds of collaborative systems. For example, basic
services, such as group management realized separately in every Groupware system,
could then be used in a uniform way. This would exploit the Teamwork Services layer and
provide a more general layer as known from communication middleware (for example,
CORBA). For Groupware systems, the Teamwork Services will act as a teamwork
middleware providing the required abstractions and mechanisms for distributed and
mobile collaboration scenarios. As depicted in Figure 3, we propose several Web service
configuration points:
1. Configuration of applications for business goals (in the sense of business manage-

ment);
2. Configuration of application-specific services, for example, of Groove (in the sense

of application management); and
3. Configuration of teamwork-specific services of a teamwork middleware (in the

sense of service manage-ment).

These Web service configuration points allow multilevel customization of Groupware
applications. The common denominator of such an approach is the Web service
interfaces that enable collaboration across Groupware applications but do not restrict
application-specific and, therefore, tool-specific feature sets. As long as each tool maps
its features to the teamwork services level, the application (interoperability) level and the
business level (for activity-oriented collaboration), the room for unique selling propo-
sitions is not limited but, on the contrary, significantly expanded. Interoperability is no

362 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

more limited to exchanging data in a common file format but extended to full-fledged
intertool collaboration.
In the following section, we describe the Web service support that has been integrated
in Groove and, as a first significant step, allows addressing service integration on the
application management level.

Groupware Support Using Groove

Groove Workspace (Groove, 2003) is a desktop Groupware software supporting virtual
workspaces for working with different groups of people. Groove allows management of
projects, file sharing and joint work on files, discussions of work in real-time (for example,
audio-conferencing), and presentations sharing. Figure 4 depicts a screen shot of a PDP
2004 workspace, presenting shared files and folders. Each workspace may contain many
tools to manipulate artifacts of the work-space. Such tools include Files, Calendar, and
a Discussion space, in which ideas can be structured and (re)grouped (for example, in

Service
Configuration

Publish-Subscribe
Messaging

Distributed Search

Process Composition

MobiTeam (Teamwork) Services

Authentication & Access Control

Process
Configuration

Workflow Management
Systems

Groupware

Device Adaptation & Information Tailoring

Service
Configuration

Application-specific
Services

Resource
Management

User Management

Communication Middleware

Web-Service
Configuration Point

Figure 3. Web services management and configuration architecture

Web Services for Groupware 363

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

brainstorming sessions). More tools can be integrated by a plug-in concept. However,
all plug-ins remain proprietary in the sense that only Groove itself has access to these
features.

Groove Web Services

Furthermore, Groove Web services extend the reach of current Groove tools by providing
a way to distribute, access, and process Groove workspace data for customized Group-
ware systems by utilizing standard Web services protocols. Groove Web services allow
exposing of Groove objects and data as a Web service, which makes it easier to provide
solutions that work in an extended environment. For example, Groove Web services can
be used to:

• Integrate Groove tools with external applications running locally on the same
device as Groove or running on a server on the network.

• Provide an integrated solution powered by a Groove tool that runs on any endpoint
in an IP network, including endpoints running any operating system and light-
weight endpoints that include a SOAP client. In addition, Web access to solutions
can be provided.

• Allow a Groove user to access their data when they do not have access to a Groove
client by using a Web browser or lightweight SOAP client, such as a cell phone.

Figure 4. Groove workspace

364 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Provide access to data stored in Groove on a Web page on an internal or external
Web site.

Groove Web Services Architecture

There are three major components that are part of Groove Web services:

• A SOAP client that consumes Groove Web services;

• A Groove Web services Access Point; and

• A Groove client with Web services enabled.

Figure 5 illustrates these components and the relationship between the SOAP client and
the Groove tool.
The remote SOAP client uses the Access Point to connect with Groove clients, the
Access Point name registration to identify Groove clients and Groove identities, and
polls the Access Point for events fired by Web services. The local SOAP client connects
with Groove via localhost, accesses the accounts avail-able on the local Groove client,
and polls the Groove client via localhost for events fired by Web services. The Groove
Access Point transmits data between SOAP client and Web services exposed by a Groove
client, provides name registration for SOAP client and a Groove client, and provides
queuing for the SOAP client. The Groove client contains Groove data and objects,
exposes Web services, provides access to data and generates events when data changes,
and provides a local access point for SOAP clients running on the same device as the
Groove client.

Groove Web Services Development Kit

The Groove Web services Development Kit (GWS GDK) allows developing SOAP clients
to access Groove Web services locally or remotely using the Groove Access Point. The
GDK includes WSDL definitions of all available Web services, tools, and sample
implementations of SOAP clients and documentation. The included tool, Groove Ex-
plorer, demonstrates the usage of some Web services. It retrieves information about
Identities, Contacts, Shared Spaces, and Tools of a local or remote Groove Workspace,
as depicted in Figure 6.
Groove Web services provide a mechanism for SOAP clients to register as listeners for
Groove events and check an event queue for messages. The SOAP clients receive events
that are generated by changes in the underlying data. These changes can be initiated by
the Groove user on the client system providing the Web services, by another Groove user
in a shared space, or by the SOAP client itself. Table 3 lists the events provided by Groove
Web services provided by Groove 2.5.

Web Services for Groupware 365

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5. Groove Web services architecture

Figure 6. Groove explorer for services

366 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

For the Teamwork Services level we adapted the interfaces of our MobiTeam platform,
that is, a platform to enable mobile and distributed collaboration among users and
communities and should be installed on every peer and, in this respect, has similar
characteristics as other Groupware systems: it basically talks only to MobiTeam peers.
To overcome this limitation, we raised the level of its interfaces to that of Web services.
To showcase that, we show some samples of our MobiTeam interfaces as follows:

public interface IMobiteamArtifactManager {
void insertArtifact(ArtifactProfile artifactProfile, String ID);
void deleteArtifact(String artifactID);
}

The MobiteamArtifactManager interface allows a physical storage layer access to the
artifact repository. Any artifact repository that implements this interface can be deployed
ranging from file system for storing the artifacts to an SQL-DBMS by implementing the
interface.

Table 3. Groove Web services

Service Event Class Event Types
GrooveCalendar urn:groove-

net:CalendarEvent
CalendarAddEventData,
CalendarDeleteEventData,
CalendarUpdateEventData

GrooveContacts urn:groove-
net:ContactEvent

ContactAddEventData,
ContactDeleteEventData,
ContactUpdateEventData

GrooveDiscussion urn:groove-
net:DiscussionEvent

DiscussionAddEventData,
DiscussionDeleteEventData,
DiscussionUpdateEventData

GrooveFilesBase64
GrooveFilesDIME

urn:groove-
net:FileEvent

FileAddEventData,
FileDeleteEventData,
FileRenameEventData,
FileUpdateEventData

GrooveSpaces urn:groove-
net:SpaceEvent

SpaceAddEventData,
SpaceDeleteEventData,
SpaceRenameEventData

GrooveTools urn:groove-
net:ToolEvent

ToolAddEventData,
ToolDeleteEventData,
ToolRenameEventData

Web Services for Groupware 367

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

public interface IMobiteamCommunityManager {
CommunityID createCommunity(UserID uid, CommunityID cid);
void deleteCommunity(UserID uid, CommunityID cid);
CommunityID getCommunity(CommunityID;
void linkCommunity(UserID uid, CommunityID subjectId, CommunityID destId);
void moveCommunity(UserID uid, CommunityID sourceId, CommunityID destId);
void unlinkCommunity(UserID uid, CommunityID subjectId, CommunityID

sourceId);
}

The MobiteamCommunityManager interface enables all basic services to deal with
communities from creating them, structuring them by links, to assigning users to them.

public interface MobiteamUserManager {
void createUser(UserID uid, CommunityID cid, UserID tid;
void deleteUser(UserID uid, UserID subjectId);
UserID getUser(UserID actorId, UserID subjectId);
void linkUser(UserID uid, UserID subjectId, CommunityID destId);
void moveUser(UserID uid, UserID subjectId, CommunityID destId);
void unlinkUser(UserID uid, UserID subjectId, CommunityID sourceId);
}

The MobiteamUserManager interface deals with all services concerned with a particular
user–creating, deleting, moving, linking, and unlinking to some community.

public interface IMobiTeamAuthorisationManager {
Boolean checkPermission(UserID uid, RightID rid, SubjectID sid, Certificate

 [] c);
Boolean checkBusinessPermission(string methodPath, Subject[] obj, Certifi
cate[] c) view);

Certificate [] requestCertificates(XQLQuery query);
}

The MobiteamAuthorisationManager interface covers basic functionality for granting
permission for some user to resources; this is only a small part of the interfaces
implemented in the MobiTeam platform. Web Services for Groupware that provide the

368 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Teamwork Services functionality can be derived directly from the above interface
definitions.

Use Case Paper Review

A technical paper review process is used to demonstrate the possibilities of Groove
Workspace and its Web service interface. Therefore, a new shared space is created and
all reviewers are invited by a review coordinator. The new shared space includes at least
the Groove tools, Files to make all papers available for the review process and Discussion
to allow a minimum of interaction between the reviewers and the coordinator (Figure 7).
Groove Workspace would also provide a special Document Review tool, but as it is not
accessible during a Web service interface, it could not be used by third-party software
and is restricted to run Groove Workspace for every reviewer.
The used shared space, PDP 2004 in Figure 7, shows the Groove tool, Files, including
several papers to review and an empty directory for each reviewer (Dustdar, Gall &
Schmidt) which will include the reviewed papers at the end of the review process. As
creator of PDP 2004, Roman Schmidt also acts as review coordinator. The reviewers,
Dustdar and Gall, are running third party software tools, for example, Colligo for PDAs
(Colligo, 2003) or Caramba (Dustdar, 2004), which will interact with Groove by their Web
service interface. Therefore, they are not visible to the coordinator by the Groove
Workspace. The only possibility for communication between all reviewers and the
coordinators is the Groove tool, Discussion, which allows creating topics, writing
messages, and writing responses for all participants.
To stay up-to-date, all reviewers using the Web service interface have to subscribe for
events possibly raised by the used tools (Figure 7). Dustdar and Gall subscribe the Event
Class, urn:groove-net:DiscussionEvent and urn:groove-net:FileEvent, to receive noti-
fications about new or updated files or changes in the discussion forum. For example, if
Schmidt adds a new file to the Groove tool, Files, all subscribed listeners receive the raised
FileAddEventData event. As Schmidt uses the Groove Workspace software, it is not
necessary to subscribe explicitly for events because it is done automatically.
Using subscriptions and events, reviewers will be informed about new papers, or updated
versions of papers, and new messages during a discussion. This allows the coordinator
to add new papers and assign these papers to reviewers by adding a new topic to the
discussion. Therefore, the paper is accessible for the assigned (of course, also for all
other participants) and can be reviewed. Afterwards, the reviewed version is added to
the Files under the reviewer’s subdirectory. Again, all participants will be informed about
the progress, and the coordinator can detect the end of the review process.

Web Services for Groupware 369

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conclusion and Future Work

Web services are increasingly gaining momentum as an example for service-oriented
architectures. Their loosely coupled nature is suited for distributed teamwork where team
members are geographically dispersed and utilize various hardware and software infra-
structures for their collaborative work. Groupware research has a long tradition; how-
ever, today’s perception on Groupware, in many cases, only comprises e-mail, whereas
the richness of potential Groupware is rarely realized. This chapter presented a novel
Web services management and configuration architecture with the aim of integrating
various Groupware systems into a coherent and configurable architecture. Furthermore,
we provided a motivational example and a small proof-of-concept implementation
extending Groove workspaces with Web services. Our future work will focus on
extending our previously built Teamwork services platform (Dustdar & Gall, 2003) to
provide the presented functionalities for gluing together various Group-ware systems
(for example, Dustdar, 2004) using Web services technologies.

Figure 7. Groove Web service events

370 Dustdar, Gall and Schmidt

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

BPEL4WS. (2002). Business Process Execution Language for Web Services specifica-
tion. Retrieved August 19, 2004, from http://www-106.ibm.com/developerworks/
library/ws-bpel/

BPWS4J. (2003). Business Process Execution Language for Web Services Java Run Time.
Retrieved August 19, 2004, from http://www.alphaworks.ibm.com/tech/bpws4j

BPML. (2002). Business Process Modeling Language. Retrieved August 19, 2004, from
http://www.bpmi.org/bpml-spec.esp

Casati, F., & Machiraju, V. (2003). Business visibility with Web services: Making sense
of your IT operations and of what they mean to you. Proceedings of the UMICS
2003 collocated with CAiSE 2003 (pp. 123-135), Velden, Austria.

Colligo. (2003, October 23). Retrieved August 19, 2004, from http://www.colligo.com
Conen W., & G. Neumann (Eds.), Coordination technology for collaborative applica-

tions: organizations, processes, and agents (pp.121-144). Springer-Verlag.
Dustdar, S. (2004). Caramba: A process-aware collaboration system supporting ad hoc

and collaborative processes in virtual teams. Distributed and Parallel Databases,
15(1), 45-66.

Dustdar, S., & Gall, H. (2003). Architectural concerns in distributed and mobile collabo-
rative systems. Journal of Systems Architecture, 49, 457-473.

EbXML. (2003, October 23). Retrieved August 19, 2004, from http://www.ebxml.org
Ellis, C. A., Gibbs, S. J., & Rein, G. L. (1991). Groupware: Some issues and experiences.

Communications of the ACM, 34(1), 39-58.
Ellis, C. A. (1998). A framework and mathematical model for collaboration technology. In
Fenkam, P. (2000). DUMAS: Dynamic User Management System. Unpublished master’s

thesis, Technical University of Vienna, Distributed Systems Group.
Groove. (2003, October 23). Retrieved August 19, 2004, from http://www.groove.net
OASIS. (2003, October 23). Retrieved August 19, 2004, from http://www-oasis-open.org
SAML. (2003). Security Assertions Markup Language. Retrieved August 19, 2004, from

http://www.saml.org/
W3C-SOAP. (2003, October 23). Simple Object Access Protocol. Retrieved August 19,

2004, from http://www.w3.org/TR/2001/WD-soap12-part1-20011002
W3C-WSDL. (2003, October 23). Web Service Description Language. Retrieved August

19, 2004, from http://www.w3.org/TR/wsdl
W3C-WSCI. (2003). Web Services Choreography Interface. Retrieved August 19, 2004,

from http://www.w3.org/TR/wsci/
WSFL. (2002). Web Services Flow Language. Retrieved August 19, 2004, from http://

www-3.ibm.com/software/solutions/-web-services/-pdf/WSFL.pdf
XLANG. (2002). XLANG specification. Retrieved August 19, 2004, from http://

www.gotdotnet.com/team/-xml_wsspecs/-xlang-c/-default.htm

Building an Online Security System with Web Services 371

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Chapter XVIII

Building an Online
Security System with

Web Services
Richard Yi Ren Wu

University of Alberta, Canada

Mahesh Subramanium
Oregon State University, USA

Abstract

This chapter presents a case study where Web services are used to build a user-centric
online security system. It explores complex technical challenges encountered with the
use of the Web services and online security technologies. Furthermore, the authors
hope that their practical experiences and findings will shed some lights on how the
online security system should and can be built in the approach of being user-centric
instead of vendor-centric and on the implications of embracing Web services to
conventional software engineering processes.

372 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Introduction

Virtually everyone in the IT industry, from vendors to service providers to buyers, has
taken up positions to support Web services in their software product and services
offerings, but there tends to be some variance in what everyone’s definition is. This
chapter has chosen the definition from the Web Services Architecture Working Group
(2004).
A Web service is a software system designed to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-processable
format (specifically WSDL). Other systems interact with the Web service in a manner
prescribed by its description using SOAP-messages, typically conveyed using HTTP
with an XML serialization in conjunction with other Web-related standards.
In a typical use scenario, one business application sends a request to a Web service using
the SOAP protocol over HTTP. Another business service receives the request, pro-
cesses it, and returns a response using the same SOAP protocol.
For years, the software industry has developed several technologies, such as DCOM and
CORBA, to battle against the interoperability problem, but the Internet-scale distributed
computing need has pushed those technologies to an absolute limit. Web services
promise to meet this challenge. As shown in the above simple scenario, it is simple using
simple HTTP-based request/response call patterns using SOAP. It is also loose coupling
separating service interfaces from service implementations. It is heterogeneous as the
applications and services may be implemented in different languages and operate in
different platforms. Finally, it is open because its messaging communication model and
service interfaces are based on open standards, SOAP/WSDL.
Though the confidence in Web services has been increasingly gained in the enterprise-
computing world, more issues remain. One such issue is whether there is any impact Web
services technology has brought about to conventional software system engineering
and what it is if the answer is yes. Software system engineering is about tools, methods,
processes, and a quality focus (Pressman, 2001); it touches all the issues involved in
software system analysis, design, construction, verification, and management of tech-
nical (or social) entities.
The case study presented in this chapter is a graduate level development project. Its
purpose is to research, design, and prototype an online user-centric security system,
called Persona System (Toth & Subramanium, 2003). Conceptually, Persona System is
composed of two parts: a Persona Client on the user’s device that is integrated with, for
example, a web browser, and a Persona Server deployed on a trusted host system. The
Persona Server stores and manages the user’s personal and identity data. In reality, both
parts also need to interact with other online systems, Web services providers and
certificates issuing authority systems, for example, http://www.amazon.com.
The implied distributed nature of Persona System introduces a tremendous interoperability
challenge simply because both client and server parts are made up of software compo-
nents that are to be implemented likely in different languages and operational on different
platforms using different protocols. This challenge renders itself a perfect case for

Building an Online Security System with Web Services 373

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

employing Web services and exploring online security problems and related system
design and implementation issues.
The scale of Web services used in Persona System provides an opportunity for
understanding the impact Web services bring about in conventional software engineer-
ing realms. Due to our time and resource constraints, we limit our efforts on these realms:
architectural design and evaluation, development tools, programming languages, test-
ing, and deployment processes.
The objective of this chapter is twofold: to present practical experience and findings in
building Persona System and shed some lights on the implications of employing Web
services to conventional software engineering.

Background

Web services do not fundamentally change the conventional software engineering
principles as creation of Web services still involves design of services, fabrication of
service implementation parts associated with service interfaces, assembly of those parts
into a service-based solution, and so forth. However, they do introduce new issues to
the conventional software engineering practices and processes. To unearth them, related
software development life cycle and methodology need to be well studied with regard
to Web services. Due to our limited resources and time, we present our findings only on
software architectural evaluation, development tools, programming languages, testing,
and deployment processes for the following reasons.

Architecture-First

Architecture-first is the first priority of the modern software management principles
argued in Royce (1998) mainly because software architecture is a result of technical,
business, and social influences stated in Bass, Clements, and Kazman (1998). Identifying
and managing those influences earlier and throughout a software development project
is critically needed to build a quality software system. Web services will be a very
important part of the technical influences and impacts on how a software project should
or can be managed simply because the Web services-based computing effectively and
potentially brings in a lot more different project stakeholders involvement, for example,
in the case of building Web services-based B2B applications.

Architecture Evaluation

If architecture-first is a first priority principle, how can we determine if one architecture
is the right one? In our study, unfortunately, very few IT companies have adopted any
systematic architectural evaluation methods in order to reach such a delicate but
challenging determination. That is possibly because there is none or few out there for
them to adopt. In the project, we tried SAAM Method (Kazman, Bass, Abowd & Webb,

374 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1994; Kazman, Bass, Abowd & Clements, 2001) to evaluate the Persona System
architecture as we speculate. The dynamic nature of Web services that are not neces-
sarily created with specified functionality as the traditional component-based approach
encourages will make such an evaluation even more of a necessity because potentially
much broader application of Web services definitely means more technical, business,
and social influences.

Development versus Deployment

Our study indicates that the issues related to installing, configuring, running, and
integrating Web services do not seem to be encountered until their deployment begins.
Plus, the intricacy of customer-side networking environments and operational con-
straints, testing and deploying Web services are often complicated and error prone
without an appropriate mechanism for a good feedback loop from the operations teams
to development teams. This, to some degree, seems to challenge modern software
development models such as EXP (Extreme Programming) or RUP (Rational Universal
Process) and warrants a good understanding of what the challenge may be.

Development Tools

Development tools play a vital role in assuring the success in building Web services-
based software systems. We have seen continued changes in the development tools
toward a more integrated approach that covers analysis, designs, coding, testing, and
deployment. The transition from component-based to Web services-based development
will bring in a new engineering issue for both the tools vendors and the developers who
use those tools. Tools for Web services-oriented development will likely need to be
integrated into an application server or into an operating system. The way such an
integration shapes up in the marketplace will somehow impact Web services-based
software engineering processes.

Programming Languages

Programming languages carry many resources and technical implications in software
development. Web services are clearly redefining the role of programming languages in
the system interoperability and, likely, more so with the shift to the virtual machine (VM)
approach, such as Microsoft Common Language Runtime. Programming languages,
especially compiled languages, are still advantageous to a certain degree as XML-based
implementations do not seem to perform as fast as a compiled language code. This is
noted in the .NET Framework that provides XML-based Web services and .NET
Remoting. Besides, Web services do not seem to practically eliminate all interoperability
issues. For example, serializing and deserializing the floating point data type properly
between the C# and Java implementation of a particular Web service with the SOAP
protocol remains uneasy and more so with user-defined complex data types. Thus, it is
important to examine engineering issues related to programming languages.

Building an Online Security System with Web Services 375

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Context for the Case Study

Building Persona System is a development project jointly participated by three graduate
students from Oregon State University and University of Alberta and under the
supervision and guidance of Dr. Kal Toth and Dr. Eleni Stroulia. The project started in
2002 and wound down in 2003.
Persona System is based on the concept in Toth and Subramanium (2003) and, unlike
Microsoft Passport, provides a user-centric control over the personal data and identity
information access using the existing technological infrastructure.
The system has evolved from the basic question: Why should Microsoft or any other
company be the custodian of an individual’s private data? The discussion was focused
on empowerment of users with the proper tools to manage and secure their data. Various
systems (including Passport, Liberty alliance, PGP, and TTP) were considered and
analyzed for their pros and cons. We were able to draw many advantageous points that
the systems have and also pinpoint some glaring defects which make them unsuitable
for our purposes. Finally, the requirements for Persona System were identified. One key
requirement is to vest the user with proper controls for the management of personal data
using public key encryption technologies. Thus, authentication and authorization
across multiple disconnected domains with different security policies will need the
facilitation of single sign-on and the passing of credentials on the fly. Web services seem
to offer a good mechanism to meet this need. The user’s credentials and other private
data, for example, can be wrapped in XML documents and protected with public key
encryption. Credentials in the form of SAML assertions can be issued through Web
services.

System Engineering

To meet the project goal we made a few important engineering choices:

Process Model

The process model was informal but the methods and techniques in Rational Unified
Process (RUP) and Extreme Programming (XP) were applied whenever possible. For
example, the concepts of use cases, architecture-first, and iterations were applied across
requirements specifications, design, and prototyping phases.

Architectural Design/Evaluation Methods

Our architectural design approach was based on Kruchten (2001), which presents a 4+1
multiview model, logical, process, physical, and development architectural views cen-

376 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

tered around use cases. However, we deviated a little to meet the development needs.
First, our logical architectural view is not object model but component model of the
design; each component has its corresponding interface, a service interface. Secondly,
the deployment architectural view was used instead of physical architectural view. The
architectural views were modeled in UML to maintain the semantic and syntactic
consistency.
SAAM (Kazman et al., 1994; Kazman et al., 2001) was applied to evaluate the Persona
System architectural designs by following the suggested three stages and eight steps.
First, a number of nonfunctional requirements was developed from which a set of
architectural quality attributes was derived, such as reliability and security. Then, a
corresponding set of scenarios against those attributes was determined and, finally,
followed by the evaluation.

Development Platforms

All the server-side components were developed on Linux while the client-side compo-
nents on the Windows 2000 platforms where Microsoft .NET Framework and Compact
Framework are available.
Both open source software, such as Apache and commercial software tools like
VisualStudio.NET, were used to develop Persona Server and Client parts. WebSphere
Studio Enterprise Developer was used for developing a simulated online service provider
system for the testing and evaluation purposes.
All the server-side components including the simulated online server provider systems
were written either in Java or C/C++. C# was used to develop client-side .NET compo-
nents. JavaScript was limited only to Web browser rendering.
We did not have an access to any commercial design tool kit such as Rational Rose so
completely depended on some basic diagramming tools for communicating our design
thoughts and decisions among the team members.

Persona Overview

Persona has been used as a term to denote a user’s profile in cyberspace or to denote
a software agent in Suziki and Yamamoto (1998). Our usage of the term denotes the entire
gamut of data that is in a user’s possession. The data can be classified into three types:

1. Personal/Private data: data that belong to the user including name, address, credit
card numbers, bank account numbers, and social security numbers.

2. Authentication data: data that allow access to domains protected by authentica-
tion schemes (like login names, passwords, and so forth).

3. Authorization data: data attested to by a third party as to the identity/capabilities
of the user including a range of certificates and assertions (SAML documents).

Building an Online Security System with Web Services 377

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Distinction of this data with personal/private data is that the user is the holder of
the data, and there is an issuer who issues it to the user. The assertions may possess
specified lifetime and depend on the role the user plays in an organization.

Persona’s overriding purpose is to provide direct control over its owner’s personal and
private data. As a software agent, it encapsulates personal identification, authentication,
credentials, and other personal data and exposes selected information to Web services
providers on a strictly enforced need-to-know basis. If possible, it should also track
where, when, and what data has been left in the care of Web services providers accessed
by its owner. This will allow the user to keep data updated at all WSPs of concern. This
is to be supported by an agent-based architecture such as Persona with intrusion
detection capabilities built in.

Functional and Operational Requirements

The high level requirements identified so far include:

• The Persona Client that is to be embedded in a physical medium like a smart card
with a single sign-on (SSO) effect achieved by perfecting an access scheme based
on a password.

• The Persona that contains personal data (as decided by the user) and other forms
of credentials (support for formats like SAML), X.509 digital certificates and private
keys for two-way SSL sessions.

• The SAML assertions and X.509 certificates that are to be issued and signed by
Credential Issuing Authority (CA, for short) with a Web services interface to its
services.

• Existence of mandatory and discretionary security policies that can be subjected
to formal verification methods. The policies are to be formed with respect to
domains and the nature of Web services the Persona Client is interacting with.

• Support for credentials from multiple credential issuing authorities due to various
affiliations (government, university, employer, and so forth).

• Support for intrusion detection mechanisms.

Conceptual System Model

Figure 1 illustrates the concept of Persona. Users interact with Web services providers
and servers hosting Persona Server, which manage their Persona data, and with
Credential Issuing authorities. The user may use a variety of devices to get connected.
Persona Client manages users’ local data and also provides an interface to connect to
the services. The Client is often integrated with a Web browser context. Users have a

378 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 1. Persona concept

physical
control

User
Context

Persona

Identity, Profile,
Credentials, Preferences

Private Info, Logs

Persona Concept

Credentia
ls Is

sued

Credential
Issuing

Authorities

Credentials Distributed

C
redentials C

hecked

Persona

Persona

password

Flash Card, Smart Card,
SIM, Bio-Modules, Diskettes

Web
Services

Figure 2. Scenario 1

1

2

4

3

5

6

P e rs o n a S e rve r
o n H o s tP e rs o n a C lie n t

o n U se r’s D e v ic e

W eb S e rv ice
P ro v id e r (W S P)

S c e n a rio 1 : P e rs o n a D a ta R o u te d th ro u g h U s e r’s D e v ic e
1 . U s e r c on ne cts to W S P th rou g h the ir b row se r
2 . W S P lau nc h es S S L sess io n a nd u s e r au the n tic a te s W S P
3 . W S P lau nc h es a n a u th en tica tio n re qu es t w h ic h is re c e ived b y th e P e rso na C lien t
4 . If use r h a s b ee n inac tive , P e rso na C lie n t au the n tic a tes us e r w ith ID + p ass w o rd
5 . P e rso na C lien t co n tac ts P e rs on a S e rve r & re tr ieve s req u ired au the n tic a tion + o the r p e rs on a d ata
6 . P e rso na C lien t d e live rs au the ntica tion da ta & o th e r p e rs on a d ata (c re d it ca rd # , c red en tia ls e tc).

P e rs o n a u p d a te s & sy n ch ro n iz a tio n

Building an Online Security System with Web Services 379

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

physical control over the devices. The local data can be protected with a single password.
Since the Client is the conduit for connecting to the servers hosting the Persona data and
credentials, the use of a single password gives the effect of a virtual Single Sign-on
experience. Users use the credentials issued to them by credential issuing authorities as
part of their Persona in order to gain access to various domains. The domains that the
Persona is associated with have the capability to verify these credentials (depending on
their security policy) with the credential issuing authorities. The Web services interface
built for this purpose makes this a secure and straightforward process.
 Figures 2 and 3 (Toth & Subramanium, 2003) show the two scenarios that illustrate the
usage of Persona with Web services. Both of them have a Persona client interacting with
a server hosting the Persona data to provide data to Web services on a need-to-know
basis.
The data on the Persona is further protected with user-implemented security policies.

Persona System Development

The development mainly involves architectural design and prototype implementation.
The architectural design attempts to address a wide range of architectural issues with
a focus on their width. The prototyping work is directed to a narrower set of functional
partitions of the Persona System. This strategy makes it possible to explore a broad set

1

2

4

3

6

5

Persona S erve r
on H ostPe rsona C lien t

on U se r’s Device

W eb Serv ice
Provide r (W SP)

Scen ario 2: Person a D ata Access D irectly b y the W S P
1. U ser connects to W SP th rough the ir b rowser
2. W SP launches S SL sess ion and user au thenticates W SP
3. W SP launches an authen tica tion reques t w hich is received by the Persona C lien t
4. If use r has been inac tive, P e rsona C lien t au thenticates user w ith ID + password
5. P ersona C lien t d irec ts W S P to P ersona S erve r fo r authen tication data
6. W SP m akes authen tica tion reques t to P ersona S erver & receives persona data .

Pe rsona upda tes & synch roniza tion

Figure 3. Scenario 2

380 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

of architectural issues and current technologies needed in building Persona System
within time and resource constraints.

Design

Architecture Overview

Architecturally, Persona Server and Client form the core of Persona System. Certificates
Issuing Authority Server plays a major role in the usage of Persona System but is not part
of the core architecture.
Persona Server is entrusted with the storage and protection of user data. It is deployed
on a server in which the user possesses some disk space and has access to it. The data
stored there is encrypted with a range of encryption schemes available for the user to
choose from. The default is a public key encryption scheme. The keys are obtained from
the certificate issuing authorities. This approach allows any server to host Persona
System, either in full or in part. Our initial development approach is focused on hosting
the Persona on a trusted server. Distributed Personae with backup copies for redundancy
and with intrusion detection capabilities are something that would be explored in the
future.
Persona Server is mainly built with components based on J2EE and Web services. These
components are open source-based and interoperable across a wide range of systems.
Persona Client is built either with J2ME or Microsoft .NET technology.
The system is designed to be scalable, aiming for a distributed architecture. Based on
the amount of data and also considering the need for redundant data, Persona System
is to be distributed and stored on multiple servers. Data are to be stored encrypted with
public key encryption schemes. We believe that this makes the system inherently secure,
even in the eventuality of the hosting server getting compromised. Only users will be able
to decrypt and access their own data.

Persona Server Design

Figure 4 illustrates in broad terms the usage of Persona Server. Users obtain signed
credentials and other certificates from certification issuing authorities, which are a part
of their Persona along with other personal data, and stored in the trusted/semi-trusted
host. The interaction with the Persona proceeds with the help of Persona Client that can
be integrated with a Web browser context. Both the CA and Persona Server will be hosted
using SOAP/Web services to provide open but protected access. Persona Client is
responsible for coordinating the interactions with Web services providers, getting the
data from Persona Server, and providing them to Web services providers. The back-end
storage of Persona data of users can be implemented through commercial database
solutions like MySQL, or more preferably (as is done in this project), through more
interoperable solutions like XML format documents.

Building an Online Security System with Web Services 381

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. Persona Architecture

Persona Server (PS) / Host

Most Sensitive
Data

+
Private Key

Personal Info

Wallet Info

Certificates

Persona

User
devices

Persona Client
(PC)

Web Service Provider (WSP)

Certification Authority
(CA) / Certificate Issuing
Web services (CIWS)

•Verisign

•OSU

•Bank of America

•Better Business bureau

Load/make certs

part of persona

Obtain certs

SSL + SO
AP + Digital

Signature

Encrypted + SOAP based

Contained by

Data loaded in encrypted
form

SSL
+

SO
AP

Acc
ess

ed b
y W

SP fo
r

ve
rifi

ca
tio

n of c
erts

Persona Data Access
Methods

Intrusion Detection
software

Digitally signed codes

Authentication
mechanisms for
accessing server
components of Persona

Provide certs

Implemented as web
service

Maintain CRL

Verify certs for WSPs

Persona Architecture

S y stem A rch itec tu r e

S O A P /X M P P

S
O

A
P

S O A P /X M P P

S
O

A
P

E n te rp r is e A E n te rp ris e B

C A C A

F la s h C a rd , S m a rt C a rd , S IM , W IM , B io -M o d u le s , D is ke tte s

p ers o n a

e C re d e n tia ls (S A M L id e n titie s , a tt r ib u te s , a u th o r iza tio n s)

L o c a l S e c u r ity
P o lic y

L o c a l S e c u r ity
P o lic y

U s e rs :
- C o n s u m e r s
- E m p lo yee s

X

Y

p ers o n a p e rso n a

G lo b a l (F ed era te d)
S e cu rity P o lic y

Figure 5. System Architecture

382 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 5 (Toth & Subramanium, 2003) details the usage of Persona across different
enterprises and demonstrates the implementation of Web services that enables the
seamless interaction among users from one domain to another. The credentials are
passed from one domain to another through Web service interfaces.

Major Use Cases

The major functional use cases are:
1. Creation of a new Persona;
2. Add/Delete/Update/Obtain the data in the Persona;

 Creation of Persona + Addition of new data to Persona

Persona Client Persona server

createPersona(<cert>,id)
•Decrypt and verify the
details in the cert. Conduct
additional verification
(like contacting issuing
CA and so forth) if
necessary.
•Allocate space for storage
of persona.

<ack, id>

addNewData(Epk(<data>),<signature>,id,Data
Class)

•Verify signature with
persona public key. Also
check id for match.

•Ascertain authenticity
•Store Epk(data), which is
the data passed in,
encrypted with the Persona
public key, under
‘DataClass’ tag.
•Log transaction

<ack>

•Upon successful
creation of
Persona, store
the id assigned.
•Encrypt the data
to be stored with
public key.
Create signature
to this data.

Figure 6

Building an Online Security System with Web Services 383

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

oVerify
signature and
establish owner

oCommunicatio
n to CA for
verification of
cert (optional)

oRetrieve CC
info

CP – PS – WSP Transaction processing (front end)

WSP PS PC

User wants to
conduct
transaction.
Contacts WSP

Establish 2-way authenticated SSL communication

Need credit card data

oVerify signature

oMatch id

oRetrieve the encrypted CC
data

Decrypt with
persona
private key

Pass CC data + <signature> to WSP through secure channel

Communication
to CC company
to detect fraud
(optional)

Acknowledgement + signature (WSP)

oVerify signature

oStore ACK
oWrite to log
(instruct PS to do
so)

Figure 7

PC –Persona Client
PS – Persona Server

3. Interaction of the Persona with trusted Web services providers without the explicit
involvement of the user; and

4. Synchronize the data present in distributed Personae.

Figure 8 and 9 are two sequence diagrams that illustrate how the Persona system works
in various scenarios:
The current internal software architecture is derived from the Persona Test Bed configu-
ration shown in Figure 9.

384 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 8. Persona logical view

Persona Client

Data Access manager

Certification Authority service

System

Persona web service interface manager

Intrusion detection agent

Signature verifier

SSL implementor

«subsystem»
Credential manager

Domain information holder

«subsystem»
Bilateral shared space access manager

Signed credentials Data

Web Service Provider
*

*

*

*

*

*

*

*

«uses»

*

*

«uses»
«uses»

«uses»

*

*

Building an Online Security System with Web Services 385

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Persona Client Design

The design involves a Mobile Persona Agent that the end user directly interacts with.
It is deployed on users’ computing device, such as a PDA, which is connected with their
other devices and to Persona Server, certificates issuing servers, and third-party systems
over the Internet. The design is mostly driven by major use cases and typical end-user
computing environments.

Major Use Cases and Computing Environments

The major use cases are:
1. Access end users’ personal and identity data located on a remote Persona Server.
2. Manage end users’ own account and data locally on their computing devices

operating in a home networking environment.
3. Retrieve or maintain end users’ own certificates from a remote Certificates Server.
4. Synchronize the account and data across end users’ own computing devices

connected with each other.

Figure 9. Persona test bed

R e q u e s ts / R e s p o n s e s

S O A P & S A M L

T ra n s a c tio n s

P e r s o n a T e s t B e d

c o n te x t

A P Is

S
S
L

In tru s io n
D e te c t io n

A g e n t

P e rs o n a
C l ie n t

B r o w s e r

P r iv a te
K e y M y C e rts

C A C e r ts

W A P
G a te w a y

C A ’s
C e rt i fic a te s

B

A

Z

U s e r
P e rs o n a s

C A A d m inS y s te m A d m in

S
S
L

S
O
A
P

D
e

v
ic

e

A
d

a
p

ta
ti

o
n

O th e r A p p s

T a m p e r
P re v e n t io n

P e rs o n a
S e rv e r

C re d e n t ia l
S e rv e r

P
a

s
s

w
o

rd

H O S TW S L T

R e g is t ry

In tru s io n
D e te c t io n

A g e n t

W e b
S e rv e r

W e b
S e r v ic e

P ro v id e r

R
eq u e s ts / R

e s p o n s e s

S O
A P & S A

M
L

T ra n sa c tion s

W
S

P

In
te

rf
a

c
e

S
S
L

S
O
A
P

W eb
S e r v e r

386 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The home networking situation introduces a new challenge for security and privacy of
personal and identity data that are either passed through or stored locally on one of those
home devices. Given the wireless penetration in the regular user’s home and overall
networking technology development, we are seeing the growing establishment of a home
networking environment where a number of the user’s computing (mobile or wireless)
devices are connected with each other and to the outside world. Users’ own personal and
identity data may be stored on a remote Persona Server but may also be managed off-line
on their own devices operating in their home networking environments. Mobile Persona
Agent (or Persona Client) needs to be designed to address such end users’ needs for
privacy and security of their personal and identity data in their home networking
environments.

Logical View

Figure 10 presents a high-level abstraction of the Mobile Persona Agent.
1. User Interfaces provides the graphical user interface;
2. Access Controller controls calls or events coming from User Interfaces;
3. Data Manager manages the online and off-line user personal and identity data;
4. Security Manager contains the local access security policy;

Figure 10. Mobile persona agent

Access
Controller

Security Manager

User Interfaces

Synchronizer Communicator

Intrusion
Detection

Agent

Data ManagerMessage1Message/call

Message2Message/call

Message/call

Message/call Message/call

Building an Online Security System with Web Services 387

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Synchronizer manages the Persona data synchronization among all users’ comput-
ing devices connected with each other in their home networking environments;

6. Communicator contains the Web services logic used to communicate with remote
servers or components; and

7. Intrusion Detection Agent detects any unauthorized access to users’ devices and
Persona data and code and alerts users of any such access.

Component View

Figure 11 presents an implementation-oriented component view.
The Mobile Persona Agent is made up of the following four components:

Figure 11. Mobile persona agent .NET component view

AgentUser Interface

Agent Host

Certiciate Authority Service

Persona Server Service

On-line Pizza Order System

Mobile Persona Agent .NET Component Architecture

Web Browser

Legend

Component

Two way messaging

.NET component

Database

388 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Agent Host is embedded in an HTML page that launches the Mobile Persona Agent
running in a Web browser that supports .NET Comment Language Runtime but
fully under the control of .NET Common Language Runtime;

2. Agent contains all the Persona Client’s logic such as Security Manager, Data
Manager, and Access Controller mentioned above;

3. Database is an encrypted XML-based document that contains all the user’s off-
line data; and

4. User Interface provides a graphic way for the user to interact with the Mobile
Persona Client.

Prototyping Implementation

We have not implemented the Persona System fully according to the architectures we
have developed. Instead, we have prototyped it with the focus on a few areas to further
our understanding of the Persona System requirements and the degree to which the
current technologies can support the Persona System needs. To facilitate this prototyping
need and test the Persona components, two external systems are designed and prototyped:
1. Certificates Issuing Server
2. Online Pizza Order System

Web services are the only way for communication between Mobile Persona Agent,
Persona Server, Certificates Issuing Server and Online Pizza Order System with SSL
support.

Persona Server

The server was developed on Red-Hat Linux. Apache Tomcat Axis was used for hosting
the Web services for the Persona server. The Web services were initially developed using
Java Web services. Axis automatically locates the Java Web service code files, compiles
the class, and converts SOAP calls correctly into Java invocations of the service class.
Java2wsdl can be used to generate WSDL files from Java programs.
A client test code was developed just to test those Web services in isolation before the
Mobile Persona Client code was ready for integration and testing.

Certificates Issuing Authority Server

The server is responsible for issuing signed certificates and credentials to requesting
users. It employs Web services for exposing such services as requesting a new
certificate, validation, recovery of lost certificates, and so forth. Those services are
associated with security policies depending on how secure the certificates need to be.

Building an Online Security System with Web Services 389

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

The server was implemented on a Red-Hat Linux system both with a Web page interface,
where a form is presented to the user, and with a Web service interface, implemented with
Java Web services. The Web page interface uses Apache 2.0 with mod_ssl and openssl
0.9.6b libraries. The page was implemented with Perl scripts.

Online Server Pizza Ordering System

To test the interoperability and interactions between the Persona System parts and
online Web services providers, a simulator was built with IBM WebSphere Studio
Enterprise Developer 5.0 and deployed and configured on IBM WebSphere Application
Server running on Windows 2000 Server. The simulator provides a number of Web
services in WSDL that allows Persona Server, Certificates Issuing Server, and Mobile
Persona Agent to communicate directly with each other for a particular online transaction,
for example, ordering pizza.
Users place a pizza order over the Internet. Before they commit to the order, they are asked
to submit the payment and payment method, which triggers a series of actions, involving
authentication, authorization and payment determination, and transaction. These ac-
tions via Mobile Persona Agent all occur on Persona server systems and Online Pizza
Order System with Web services and SSL.

Mobile Persona Agent

The client was prototyped using Microsoft .NET Framework. The code is literally a set
of .NET C# assemblies that are downloadable from a remote Web site. It is then loaded
in Internet Explorer but effectively executed under the control of .NET Common Language
Runtime.
The Agent performs those functions described in the previous section and communi-
cates with Persona Server, Certificates Issuing System, and external online Web services
providers via Web services calls over SSL.

Work Evaluation

The following sections present the evaluation on the Persona System itself and system
engineering.

Persona System

The evaluation of the Persona system focuses on the design, testing, and deployment
of server and client components and the interactions with the certification authority
system and Web services.

390 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Architectural Design

The evaluation of server and client components are entirely under different criteria.
Server components are evaluated based on their robustness and scalability and also their
resilience under different load conditions. Threat analysis and counter measures are
another gamut of evaluation conditions for the server components. Client components
are mostly evaluated under the heads of ease of use, robustness, error handling, and
effective communications. The design is aimed to be as loosely coupled as possible. We
have found the use of UML an effective way to bring out the design decisions and depict
the interactions among components (server, client, certification authority), both intra-
and inter-, and also helps to show the process flow in the different design elements and
in different processing phases.

Deployment

Deployment of actual systems is to be evaluated under ease of use and also how quickly
changes can be made. We have found that with Web services, deployment is a very
straight-forward process. Changes are reflected quickly. Of course, as we go to more
complex systems, dependencies increase and so do the amount of associated change.
This is truer of the server components. The server has components to interact with clients
and also with Web services which request data. The server has to build different levels
of security depending on the data it stores, and consequently, this leaves the door open
to different levels of authentication. The most basic kind of data can be provided after
the verification of a simple signature, but more sensitive data requires additional
authentication like in the form of SAML signed assertions/X.509 certificates.
Client components have much more flexibility with regard to deployment. The compo-
nents can be built as simple applets or small applications in the user device. Also, since
all of the development is done with open source tools, deployment and execution of
programs is very straightforward.

System Engineering

The system engineering work evaluation is focused on architecture evaluation methods,
the usage of open source code, programming languages and development tools, and
testing and deployment.

Architecture Evaluation Methods

The architecture-first strategy proves to be even more important and necessary for
developing Web services-oriented applications. Service orientation makes it possible to
partition the Persona System along the Web service layers or interfaces earlier in the
project cycle. The partitioning has allowed each team member to start their development

Building an Online Security System with Web Services 391

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

independently and earlier with a clear focus more on the service boundary or interface
issues rather than the implementation of each other’s partitions and resulted in easier
coordination among each other’s design, coding, and testing work.
Multidimensional architectural views, such as component and deployment views, are
critical with the use of Web services as Web services deployment depends much on the
customer’s internal networking systems and operations, in our case, on the .NET/
Windows 2000 and Apache Tomcat/Linux networks in the intranet and over the Internet.
Addressing deployment architectural issues earlier in the game has made it possible to
address more effectively phased testing and operational issues earlier, as well.
Architectural evaluation, though still difficult, is absolutely necessary with the Web
services-based software engineering. SAAM applied in our project seems to work
reasonably well to address those nonfunctional quality attributes. However, the evalu-
ation is still manually driven, very time-consuming, and definitely needs some auto-tool
to be productive.

Open Source

The open source code and tools from http://www.apache.org were widely used in the
project. They are readily available at little cost. For research and development like this
project, open source code and tools are affordable and indispensable. However, com-
pared with the commercial tools like IBM WebSphere Studio Enterprise Developer and
Microsoft Visual Studio.NET, the open source code and tools are not productive enough
because of lack of high app, modeling, and code generation capabilities.

Development Tools

Easy-to-use development tools is one of the keys to build quality Web services-based
software applications or products. Both Microsoft Visual Studio.NET and WebSphere
Studio Enterprise Developer support the Web services-based software development and
provide fundamental services and facilities for Web services test and deployment and
version control. Both tools have some type of wizard to somehow automate the process
in generating Web services and related code, assembly, testing, and deployment.
One issue with the commercial software development tools is they are not only platform-
dependent but also vendor-centric when dealing with further integration into mainframe,
database management products, packaged application suites, application server prod-
ucts, and pure middleware systems. Microsoft Visual Studio.NET provides superior
services and capabilities for .NET component integration with DNA/COM components
that only run on Windows platforms. IBM WebSphere Studio Enterprise Developer
provides similar superior hooks and adapters into IBM-only systems.

392 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Programming Languages

With Web services in place, programming languages do not play a significant role in
addressing interoperability issues. We do not need to worry too much about the
constraints imposed by a particular programming language, C# or Java. However, the
interoperability issue remains with user-defined objects or components and objects,
such as Date and Floating Numbers. The other issues with programming languages are
related to supporting Web services stacks. For example, there is no easy way for a C#
assembly to access the UDDI services implemented in Java and vice versa, and it is still
cumbersome to resolve the difference between the WSDLs generated in VisualStudio.NET
and in the J2EE-compliant tools because the former bundles the Web service interface
together the Web service implementation but the latter does not.

Deployment

The two major engineering issues we have observed is that Web services do not
effectively begin to encounter interoperability with third-party systems until after their
deployment starts and that developers are not necessarily clear about how those Web
services will be eventually called. The first challenge is more related to the fact that most
of the issues related to Web service installation, configuration, and runtime are not
encountered until after deployment. The second challenge is because as soon as Web
services are published, it will not be easy to control who should access them; quite often,
the types of access may not be well defined in the development.
To address those problems, developers and operations teams will need to work much
closer, likely enabling developers to debug interoperability problems and test fixes even
on the live systems but in a secure and controlled manner

Process Model

XP and RUP that we attempted to apply are good but not complete in addressing some
of the engineering issues, in particular, when it comes to addressing the needs of Web
services. For example, RUP assumes building code from a domain model derived from use
cases, which is incomplete for Web services. XP does not really define a clear way to
handle the new testing and deployment issues. For example, how to manage integration
on customers and handoff to a production environment/team to operate.
Figure 12 presents our experience in the Web services development. The model is
iterative in development but Waterfall after the handoff to production.

Building an Online Security System with Web Services 393

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Future Trends

The Web service technology has advanced rapidly with a continuous push from the
major business drivers, such as increased market share, quick and easy business process
integration and adaptability, and centralized, real-time availability of services regardless
of platforms. In the following sections, we outline a few important changes on the horizon
and engineering challenges ahead.

Changes on the Horizon

Personal/Private Data Management and Accounting

As we have seen, personal data management and accounting for where data have been
left and in whose care are all gaining prominence among Web-literate consumers.

Figure 12. Process model for Web services

S y s t e m
E n g i n e e r i n g

T e s t

D e s i g n

(S I T o r U A T)

P r o d u t i o n

I t e r a t i v e D e v e l o p m e n t

C o n t i n u o u s d e v e l o p m e n t ,
i n t e g r a t i o n a n d d e p l o y m e n tW a t e r f a l l H a n d le - o f f

R e q u i r e m e n t s

C o d e

394 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Moreover, consumers are getting more interested in how Web sites use their personal
data and how it is protected. With the evolution of complex authentication systems to
enable user migration across diverse systems and environments, secure storage of
profile information, minimizing the number of user log-ins to different services to enhance
user experience, and storage and transfer of user preferences across diverse systems and
devices are focal points for companies intending to provide better service. The explosion
of data is causing a security risk that needs efficient handling. However, better security
solutions can be created with open source and free resources like SAML, XACML, and
so forth. Though much is left desired in the forms of universal standards in Web services,
the healthy stage of development of many open source security tools is a positive
outcome.

Evolving Web Services Protocol Stack

Since Web Services Conceptual Architecture 1.0 in Kreger (2001) was published in May
2001, the stack of Web services protocol has continued to evolve. Lawrence Wilkes
presents a more updated picture of the current Web services protocol stack (http://www-
106.ibm.com/developerworks/webservices/library/ws-ref2/#f1).
With the rapid evolvement of Web services protocols, the degree of industry consensus
on low-level Web service protocols has been significant. For example, there is a general
consensus on low-level protocols such as SOAP and WSDL. However, the road does not
seem to be so easy and smooth in the agreement on the high-level protocols. For example,
there are currently two alternative proposals, namely, Reliable Messaging and Orches-
tration. The alternatives reflect an IBM/Microsoft-led initiative on one side and one led
by Sun/Oracle on the other.
Though alternative proposals have been made in some high-level protocols, it seems that
the formation of an appropriate working group in either W3C or OASIS has usually seen
the attempt for convergence or subsequent convergence of all interested parties.
The proposal of various Web services protocols has been a fast moving area but their
transition into actual well-accepted open standards turns out to be unbelievably slower.
Currently, the areas not fully addressed are Web services management, service/business
level agreements, and WS-Security.

Open Source Movement

Open source code and tools continue to grow and will be an important part of the
commercial development tool offerings over time. There are clearly signs that the Apache
KDE and Gnome are rapidly developing Web service hooks and tools for serious
industrial uses. Tomcat and related Web services library are included in the IBM
WebSphere Web Service Development offering.

Building an Online Security System with Web Services 395

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Model-Driven Architecture

Model-Driven Architecture (MDA), driven by the Object Management Group (http://
www.omg.org/mda/) describes how to create standards-based, technology-indepen-
dent models of business concepts and then map them to different specific technologies.
Platform-independent applications built using MDA standards can be realized on a range
of open and proprietary platforms including CORBA, J2EE, .NET, and Web services. The
key concepts in an MDA model are business information model and service model. The
MDA approach may potentially alleviate some issues we encountered in the architectural
evaluation.

Better Development Tools

Development tools continue to play a more important role in the success of Web services-
based software development as better tools can extend Web services to provide
functionality and ease of use that will map business processes to application functions
in a seamless fashion, regardless of platforms, languages, or devices. Integrated
development environments (IDE), such as Microsoft’s Visual Studio .NET already
provide a core framework to leverage, create, and consume Web services in an integrated
fashion. Other integrated development environments such as IBM’s WebSphere are
extending their J2EE environments to incorporate Web services into an easy-to-use
development platform. In the not-too-distant future, it will be possible to discover, bind,
and execute Web services dynamically and to coordinate the process flow through one
integrated development environment. This will allow external Web services to be widely
adopted, which is very important as the need for service level agreements (SLAs),
confidentiality/security, and alternative suppliers is a must for any business providing
or consuming Web services.

Programming Languages

The battle for the enterprise market will mostly remain between Java and .NET, both of
which rely on a virtual machine (VM), the layer of abstraction between the programmer
and the operating system. Much of the power of Java and .NET is not in the programming
languages themselves but in services made possible by the VM. These services include
runtime-type information, security, versioning, mobile code, and dynamic code genera-
tion.

Engineering Challenges Ahead

The continuously evolving Web services protocols introduce an amount of uncertainty
as software development cannot wait for the completeness of a particular protocol. For

396 Wu and Subramanium

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

example, the WS-Reliable Messaging is not ready and incomplete but the Web services-
based software system to build still requires messaging reliability. A first work-around
may be with the use of MQSeries, CICS, or MSMQ/COM+, when it is not ready and then
incorporate it later when ready.
Coarse-grained Web services will pose a big challenge to many already existing objects
and components based on J2EE, CORBA, or COM because they are generally fine-
grained. It is clearly the business interest to reuse and protect those technology-specific
objects and components, but it will likely take years to complete this First Generation Web
Services Integration journey as described in Frankel (2003).

Conclusion

It is clearly necessary and important to empower users with the proper tools to manage
and secure their personal and identity data over the Internet. Web services, public key
encryption, and related XML technologies, such as SAML, offer much promise to
address this need, but providing a well-working solution based on those technologies
has proved to be a tremendous challenge. Our work in building a user-centric online
security system is far from over, but our findings and practical experience have enabled
us to get closer to delivering a system that will finally find a user marketplace.
Web services do not fundamentally change the software engineering principles but
introduce some issues that need to be well understood in order to build high-quality
systems. To unearth those issues, our case study has been focused on architectural
design/evaluation, development tools, programming languages, and overall processing
model.
We have presented our findings in the Persona System development project. Architec-
ture-first strategy proves to be very important and necessary for architecting Web
services-based software systems. Development tools are increasingly critical in the
success of Web-services-based software development. Open source continues to play
a key role in the Web services-based software development. Programming Languages
remain important with the interoperability issue. The conventional software testing and
deployment model and practices are challenged as development is more deployment-
centric.
Web services, derived from service-oriented architecture, will continue to evolve rapidly
in many aspects. Newer issues and challenges will emerge and further challenge the
conventional software engineering methodology and practices. Thus, a further study
will be needed not only to understand those newer software engineering issues but also
to discover best practices and formulate appropriate development process model.

Building an Online Security System with Web Services 397

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

References

Bass, L., Clements, P., & Kazman, R. (1998). Software architecture in practice. Addison-
Wesley Longman.

Frankel, D. S. (2003). Applying MDA to enterprise computing. Wiley.
Kazman, R., Bass, L., Abowd, G., & Webb, M. (1994). SAAM: A method for analyzing the

properties software architectures. Proceedings of the 16th International Confer-
ence on Software Engineering.

Kazman, R., Bass, L., Abowd, G., & Clements, P. (2001). An architectural analysis case
study: Internet information systems. University of Waterlool, Carnegie Mellon
University and Georgia Institute of Technology.

Kreger, H. (2001). Web services conceptual architecture 1.0. IBM Software Group.
Retrieved August 19, 2004, from http://www.ibm.com/software/solutions/
webservices/pdf/WSCA.pdf

Kruchten, P. (2001). Architecture blueprints: The “4+1” view model of software architec-
ture. Retrieved August 19, 2004, from http://www.rational.com/media/whitepapers/
Pbk4p1.pdf

Pressman, R. S. (2001). Software engineering: A practitioner’s approach (5th ed.).
McGraw-Hill.

Royce, W. (1998). Software project management: A unified framework. Addison-
Wesley Longman.

Suziki, J., & Yamamoto, Y. (1998). Document brokering with agents: Persona approach.
Proceedings of the JSSST WISS’98 Workshop on Interactive Systems and Soft-
ware.

Toth, K., & Subramanium, M. (2003).The Persona concept: A consumer-centred identity
model. Proceedings of the MobEA Conference, Budapest, Hungary.

Toth, K., & Subramanium, M. (2003). Requirements for the Persona concept. Proceed-
ings of the International Workshop on Requirements for High Assurance Systems,
Monterey, California.

398 About the Editors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Editors

Zoran Stojanovic is a researcher at the Faculty of Technology, Policy and Management,
Delft University of Technology, The Netherlands. His research interests are in the areas
of component-based development, Web services, system modeling and architecture,
geographic information systems (GIS), and location-based services. He received his
graduate engineering degree and master’s of philosophy degree in computer science and
GIS from the Faculty of Electronic Engineering, University of Nis (Yugoslavia) (1993 and
1998, respectively). He has been working since 1993 as a researcher and lecturer in
computer science, software and system engineering, first with the University of Nis,
Yugoslavia and after February 2000, with the Delft University of Technology. During this
period, he has been an author of a number of publications.

Ajantha Dahanayake is an associate professor at the Faculty of Technology, Policy and
Management, Delft University of Technology, The Netherlands. She previously served
as an associate professor in the Department of Information Systems and Algorithms at
the Faculty of Information Technology and Systems. She received a BSc and MSc in
computer science from the University of Leiden and a PhD in information systems from
Delft University of Technology. She had served in a number of Dutch research and
academic institutions. Her research interests are distributed Web-enabled systems,
CASE, methodology engineering, component-based development and m-business. She
is the research director of the research program, Building Blocks for Telematics Appli-
cations Development and Evaluation (BETADE).

About the Authors 399

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

About the Authors

Hemant Adarkar is currently chief technology officer at Ness Global Services, India. Dr.
Adarkar holds a master’s degree in electronics and a PhD in experimental nuclear physics.
He has more than 18 years of experience in heterogeneous systems. In the last 10 years,
Hemant has been involved in architecting secure, high transaction volume systems
primarily in the BFSI industry. His areas of interest include information security,
application integration, mobile computing, and service-oriented architecture. He has
authored several papers in international journals and conference proceedings and
delivered talks around the globe. He is an examiner and a guest faculty at various
technical and business schools of international repute.

Mikhail Auguston is an associate professor with the Computer Science Department of
the Naval Postgraduate School in Monterey, California, USA. His research interests are
in testing and debugging automation, programming language design and implementa-
tion, and visual programming. Recent work includes debugging automation tools based
on event grammars and computations over event traces, the compiler writing language,
RIGAL, and experimental visual programming notation.

Boualem Benatallah is senior lecturer at the University of New South Wales, Sydney,
Australia. His research interests lie in the areas of Web services, workflows, Web
semantics, and mobile data management. He has several ARC (Australian Research
Council) funded projects in these areas. He was a visiting scholar at Purdue University,
USA and Visiting Professor at INRIA-Loria, France. He is member of the editorial board
of the International Journal of Business Process Integration and Management. He has
been a program committee member of several conferences and has published widely in
international journals and conferences.

Keith H. Bessette holds a bachelor’s degree and master’s degrees in computer science
and engineering at the University of Connecticut, USA. His research interests are
network security and mobile data mining. Mr. Bessette works as a network security
engineer for UITS, University Information Technology Services, at the University of

400 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Connecticut, responsible for network intrusion detection, intrusion prevention, and
vulnerability analysis and testing.

Benoit Bloin was formerly a research assistant in the Computing Department at Lancaster
University. His research collaborations included Extended Component Architecture
Design and Management (ECOADM), a European Union sponsored project whose aim
was to develop tools and methods to support the development of component-based
systems. He now works for Hyperion Solutions, UK.

Barrett R. Bryant is a professor and associate chair of computer and information
sciences at the University of Alabama at Birmingham (UAB), USA. He joined UAB in 1983
after completing his PhD in computer science at Northwestern University. His primary
research focus is in theory and implementation of programming languages, and he has
authored or coauthored more than 80 technical papers in these areas. Barrett is a member
of ACM, the IEEE Computer Society, and the Alabama Academy of Science. He is an ACM
distinguished lecturer and chair of the ACM Special Interest Group on Applied Comput-
ing (SIGAPP).

Carol C. Burt is president and CEO of 2AB (http://www.2ab.com), a specialist in trusted
solutions for distributed business. Carol has been working in the development of
software solutions for distributed computing for more than 25 years. Her technical
background is in design and development of distributed computing middleware, software
protocol converters, and security access control solutions. She holds leadership
positions in the Object Management Group (OMG), as a member of the Board and the
Architecture Board, and participates in distributed component technology research as
an adjunct research professor at the University of Alabama at Birmingham (UAB). Carol
holds a BS in mathematics and an MS in computer science.

Humberto Cervantes (humberto.cervantes@imag.fr) is a guest researcher in the software
engineering group of the software systems and network research laboratory (LSR) of
Grenoble University, France. His research focuses on supporting dynamic availability
in component models. Other research interests include service orientation and dynamic
reconfiguration. He received a PhD in computer science from the University Joseph
Fourier in Grenoble, France.

Constantinos Constantinides is a lecturer at the School of Computer Science and
Information Systems at Birkeck, University of London, UK. Prior to coming to Birkbeck,
he was a visiting assistant professor at Loyola University Chicago. He also has taught
at the Illinois Institute of Technology and Roosevelt University in Chicago. He holds a
PhD in computer science from the Illinois Institute of Technology, an MS in computer
science from the New York Institute of Technology, and a BSc in electronics from Keele
University, UK. His research interests fall within the general areas of software engineer-
ing and programming languages, focusing on approaches that can support the

About the Authors 401

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

modularization of crosscutting concerns throughout software development, collectively
known as aspect-oriented software development.

Steven A. Demurjian is a full professor and associate department head of computer
science & engineering at the University of Connecticut with research interests of secure
software design using UML and aspect-oriented programming, security requirements
specification and assurance, RBAC/MAC models and security solutions for distributed
environments and for XML documents, and reusability and refactoring for component-
based systems (UML and Java). Dr. Demurjian has more than 100 publications in the
following categories: one book, one edited book, eight journal articles, 23 book chapters,
and 72 refereed articles.

Remco M. Dijkman obtained an MSc at the University of Twente in 2001. After his
graduation, he worked at Ordina, a large software consultancy firm. Here, he was involved
in the design of business processes and software to support business processes. At the
same time, he worked as a researcher in the same area at the Open University of the
Netherlands. In 2002, he returned to the University of Twente to work on his PhD thesis.
His research focuses on the architecture of distributed systems and, particularly, the
development of a modeling technique for describing their behavior.

Thuong N. Doan is a PhD student of computer science and engineering at the University
of Connecticut, USA with research interests of secure software design using UML,
security requirements specification and assurance, RBAC/MAC models, and applying
logics in security assurance analysis.

Marlon Dumas received a PhD in computer science from the University of Grenoble,
France in 2000. Since then, he has taken successive positions as postdoctoral fellow and
lecturer at the Queensland University of Technology, Brisbane, Australia. His research
interests are in the areas of Web services and business process technologies. He
regularly serves as program committee member for international forums in these and
related areas. He is a member of the IEEE Computer Society. For more information, visit
http://www.fit.qut.edu.au/~dumas.

Schahram Dustdar is associate professor at the Distributed Systems Group, Vienna
University of Technology, Austria. Since 1999, he has worked as the cofounder and chief
scientist of Caramba Labs Software AG (http://CarambaLabs.com) in Vienna, a venture
capital cofunded software company focused on software for collaborative processes in
teams. His research interests are service-oriented information systems, process-oriented
information systems, and distributed and mobile collaboration. For more information,
visit http://www.infosys.tuwien.ac.at/Staff/sd/.

Harald Gall is professor of software engineering at the University of Zurich, Department
of Informatics, Switzerland. Prior to that, he was associate professor at the Vienna

402 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

University of Technology in the Distributed Systems Group (TUV). His research
interests are in software engineering with focus on software architectures, reverse
engineering, long-term soft-ware evolution, program families, as well as distributed and
mobile collaboration processes. For more information, visit http://www.ifi.unizh.ch/
~gall.

Hamada Ghenniwa is an assistant professor at the Department of Electrical and Computer
Engineering, The University of Western Ontario, Canada. Dr. Ghenniwa’s main research
expertise includes computational intelligence with a specific focus on intelligent agents,
cooperation and coordination theory, as well as their application to cooperative distrib-
uted systems, such as electronic business and commerce, enterprise integration, health
care, real-time systems, and manufacturing. He is the head of Cooperative Distributed
Systems Engineering group in Bell-Centre for Information Engineering at the University
of Western Ontario. He has authored and co-authored several papers in refereed journals
and conference proceedings as well as technical and industrial project reports. Dr.
Ghenniwa is currently leading research and industrial projects concerned with integra-
tion in distributed information systems, business-to-business e-commerce, and multiagent
systems for manufacturing control.

Christopher D. Gill is an assistant professor of computer science and engineering at
Washington University in St. Louis, Missouri, USA. His research interests include
combining real-time, fault-tolerance, and security properties in middleware, distributed
real-time and embedded systems, and communication and coverage strategies in mobile
ad hoc networks and sensor networks. Dr. Gill developed the Kokyu scheduling and
dispatching framework and led development of the nORB small-footprint real-time object
request broker, both at Washington University. He has more than 50 technical publica-
tions and an extensive service record in standards bodies, workshops, and conferences
for distributed real-time and embedded computing.

Richard S. Hall (richard.hall@imag.fr) is a guest researcher in the software engineering
group of the software systems and network research laboratory (LSR) of Grenoble
University, France. His research focuses on component and service orientation and
mechanisms to dynamically assemble applications at runtime. Other research interests
include software deployment, which was the focus of his PhD thesis. He received a PhD
in computer science from the University of Colorado, Boulder.

Radu Handorean received a BS in computer science from the Politehnica University in
Bucharest, Romania in 1999. In 2000, he began his graduate studies at the Department
of Computer Science at Washington University in St. Louis. In 2003, he received his MSc
in computer science and he is currently pursuing the doctorate degree. His research
focuses on service-oriented computing and its particular challenges when applied in a
mobile ad hoc networking environment.

About the Authors 403

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

John Hutchinson is a research associate in the Computing Department at Lancaster
University, UK. His current research interests are in process support for component- and
service-oriented software engineering. His recent and current research collaborations
include extended component architecture design and management (ECOADM) and
CBSEnet. ECOADM was a European Union-sponsored project whose aim was to develop
tools and methods to support the development of component-based systems. CBSEnet
is an EU-sponsored initiative, which aims to create a European-wide forum for the
exchange of information between researchers and developers working in CBSE.

Maria-Eugenia Iacob is a scientific researcher at Telematica Instituut, The Netherlands
since 2000. She holds a PhD in mathematical analysis from the University Babes-Bolyai
of Cluj-Napoca, Romania. She also worked for this university from 1990-2000 as an
assistant and then associate professor in the Department of Computer Science. At
Telematica Instituut she has carried out research in several projects in the areas of
business and e-business process (re)engineering and of information systems architec-
tures.

Marijn Janssen is an assistant professor in the field of information systems for public
administration at the Information and Communication Technology group of the Faculty
of Technology, Policy and Management at Delft University of Technology, The Neth-
erlands. His research interests include business engineering, adaptive architectures,
simulation, electronic intermediaries, and agent-mediated coordination. He has been a
consultant for the Ministry of Justice and received a PhD in 2001 in information systems.

Gerald Kotonya is a senior lecturer in software engineering at Lancaster University, UK.
He has more than 10 years experience in software engineering research and development.
His current research interests are in component- and service-oriented software engineer-
ing. His recent research collaborations include extended component architecture design
and management (ECOADM) and CBSEnet. ECOADM was a European Union-sponsored
project whose aim was to develop tools and methods to support the development of
component-based systems. CBSEnet is an EU sponsored initiative, which aims to create
a European-wide forum for the exchange of information between researchers and
developers working in CBSE.

Jaroslav Král graduated at Faculty of Mathematics and Physics of the Charles Univer-
sity, Prague, Czech Republic in 1959. He has been working in computer science at Czech
Academy of Sciences and several Czech universities. He is now a full professor at the
Faculty of Mathematical Physics of Charles University Prague and a visiting professor
at the Faculty of Informatics of Masaryk University Brno, Czech Republic. His current
research interests include theory of formal languages and compilers, service-oriented
systems engineering, and education of software experts. He has published more than 120
scientific papers. Jaroslav Král took part as the project leader in several successful
projects including compilers, flexible manufacturing, and automated warehouse sys-
tems.

404 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Marc M. Lankhorst started his research career in applications of genetic algorithms at
the University of Groningen. He then moved to the Telematica Instituut where he became
involved in modeling-related projects, for example, on business process modeling and
analysis, modeling tools for middleware, and services for 2G/3G mobile networks and e-
business modeling and architectures. Within these projects, he has held several research
and management positions. Furthermore, he has been responsible for the Telematica
Instituut’s expertise management on modeling and architecture. Presently, he heads the
group of application engineers of the institute and is project manager of a large multiparty
project on modeling, visualization, and analysis of enterprise architectures. He teaches
a course on reference models for networked applications at the University of Twente.

Steve Latchem is vice president of global business development and professional
services at Select Business Solutions Inc., UK. Steve has been within the IT industry for
more than 20 years, holding positions in large consultancy groups and IT departments
ranging from business analyst to object-oriented consultant, architect, and project
manager. Steve now directs the consulting group at SBS, which specializes in helping
organizations to analyze, model, and develop high quality component-based solutions
within multiple tier distributed architectures, using his experience of multiple object and
component technology projects over the last 10 years. In addition, Steve has edited,
collaborated, and co-authored books on software processes, design patterns, and
component-based software engineering.

Yinsheng Li is an associate professor of School of Software, Fudan University, China.
His current research interests include software agents and Web services and their
applications in e-business and enterprise application integration. Dr. Li joined National
Research Council of Canada and University of Western Ontario as Postdoctoral Fellow
from 2001 to 2003. He received his PhD from Tsinghua University in 2001, his MSc from
Southeast University in 1995, and his BSc from Chongqing University in 1992. He was
working as project manager at Information Centre of National Building Material Industry
Bureau from 1995-1997.

Zakaria Maamar, Zayed University, United Arab Emirates. In addition to receiving his
PhD in 1998, Zakaria Maamar also received an MSc and BS in computer science from Laval
University (Canada) and the Institut National d’Informatique, Algeria. Prior to joining
Zayed University, he held a defense scientist position with the Defense Research
Establishment Valcartier, Canada and an adjunct professor position in the Department
of Computer Science of Laval University. His research interests lie in the areas of mobile
computing, Web and mobile services, and software agents. His research work has been
published in several international journals and magazines, such as Communications of
the ACM, Information & Software Technology (Elsevier), and Information Technology
and Management (Kluwer).

Eila Niemelä is a research professor of embedded software engineering at VTT Technical
Research Centre of Finland and a docent of the University of Oulu. She obtained an MSc

About the Authors 405

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

and PhD in information processing science from the University of Oulu. Before gradu-
ation, she worked 15 years as a software engineer of embedded systems and from 1995-
1998 as a senior research scientist in the embedded software research area at VTT. In 1998-
2002, she led the Software Architectures Group at VTT. Architecture design, quality
analysis on the architecture level, and service architectures of pervasive computing
environments are her current research topics. She has published more than 50 scientific
papers about component-based software architectures and middleware services. She is
a member of IEEE and ACM.

Andrew M. Olson is professor emeritus of computer and information science at Indiana
University Purdue University in Indianapolis, USA and adjunct research professor of
computer science and software engineering at Butler University in Indianapolis. His
research has ranged from symbolic-numeric computation through visual programming
languages, human/machine interaction to, currently, software engineering of distributed
computing systems with service-oriented architectures. Prior to these Indianapolis
appointments, he served on the faculty of the Mathematics Department at the University
of Puerto Rico, Rio Piedras, becoming professor and chair. Andrew spent four years in
the Engineering Mathematics Department at the University of Chile, Santiago, before
this.

Srinivas Padmanabhuni is currently a senior research associate at Software Engineering
and Technology Labs in Infosys Technologies Limited, Bangalore, India. Dr. Srinivas
specializes in Web services, service-oriented architecture, and grid technologies along-
side pursuing interests in semantic Web, intelligent agents, and enterprise architecture.
He has authored several papers in international conferences. Prior to Infosys, Dr.
Srinivas has worked in multiple capacities in start-ups out of Canada and USA. Dr.
Srinivas holds a PhD in computing science from University of Alberta, Edmonton,
Canada. Prior to the PhD, he secured his BTech and MTech from Indian Institutes of
Technology at Kanpur and Mumbai, respectively.

Charles E. Phillips, Jr. is a lieutenant colonel (LTC) in the US Army, holds a PhD in
computer science and engineering from the University of Connecticut, and is currently
an assistant professor with the Department of Electrical Engineering and Computer
Science, United States Military Academy, West Point, USA. In 23 years of service, LTC
Phillips has held leadership positions of increasing responsibility as a communications
and automation officer. His research areas of interest are RBAC/MAC models, security
solutions for distributed environments, and information assurance in coalition warfare.
LTC Phillips has 10 publications: three book chapters and seven refereed articles.

Giacomo Piccinelli is a research fellow in the Software Systems Engineering Group at
the University College London (UCL), UK. His research focus is on service-oriented
computing (SoC) and electronic services systems (ESS). Currently, he is scientific and
technical coordinator for FRESCO (Foundational Research in Service Composition) and
EGSO (European Grid for Solar Observation). Previously a member of technical staff at

406 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

HP Labs, he has been involved in the development of HP’s e-service model, as well as
other initiatives in the area of Web services. Results from his work contributed to HP’s
Service Composer and were recently discussed in the context of OMG and W3C
workshops.

David Piper, principal consultant, Select Business Solutions Inc., UK, has worked in the
IT industry since graduating from City University, London in 1979. Experience ranges
from working with engineering companies supplying the automotive industry, extensive
involvement with financial services companies, and as a consultant with the Select
Business Solutions division of SBS. Working with SBS, David has helped many
organizations to adopt component-based development, using the Select Perspective,
and to customize the method in the light of project delivery experience. David’s
involvement has included working with companies of different sizes, system integrators
and consultancies, and public sector bodies including government departments in the
UK and overseas.

Rajeev R. Raje is an associate professor in the Department of Computer and Information
Science at Indiana University, Purdue University Indianapolis, USA. Rajeev holds
degrees from the University of Bombay (BE) and Syracuse University (MS and PhD). His
research interests are in distributed-object computing, component- and service-based
systems, and software engineering. Dr. Raje’s current and past research has been
supported by the US Office of Naval Research, National Science Foundation, Microsoft
Corporation, and Eli Lilly and Company. Rajeev has published extensively in journals and
conferences. He is also a member of ACM and IEEE.

Gruia-Catalin Roman received a PhD in computer science from the University of
Pennsylvania in 1976. In the same year, he joined the faculty of the Department of
Computer Science at Washington University in St. Louis. Roman is a professor and
chairman of the department. He has an established research career with numerous
published papers in a multiplicity of computer science areas including mobile computing,
formal design methods, visualization, requirements and design methodologies for
distributed systems, interactive high speed computer vision algorithms, formal lan-
guages, biomedical simulation, computer graphics, and distributed databases. Roman is
an associate editor for ACM TOSEM and will serve as general chair for ICSE 2005.

George Roussos holds a BSc in mathematics from the University of Athens, an MSc in
numerical analysis and computing from UMIST, and a PhD from Imperial College,
London. Before joining the School of Computer Science and Information Systems at
Birkbeck as a lecturer, he was the research and development manager for Pouliadis
Associates Corporation, Athens, where he was responsible for the strategic develop-
ment of new IT products in the areas of knowledge management and the mobile Internet.
Previously, he was a Marie Curie research fellow at the Department of Mathematics,
Imperial College, London, and then the Internet systems security officer for the Ministry
of Defence, Athens. Dr Roussos has several years of experience in managing software

About the Authors 407

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

development teams in industrial, military, and academic settings. He is a member of the
ACM and an associate of the IEEE and the IEEE Computer Society.

Roman Schmidt is a PhD student at the Swiss Federal Institute of Technology Lausanne
(EPFL). He received an MSc in computer science from the Vienna University of Technol-
ogy. His main research interests include the self-organization of distributed information
systems, peer-to-peer systems, and semantic Web services.

Rohan Sen received a BS in computer science from Washington University in St. Louis,
USA (2003). He began his graduate studies at the Department of Computer Science at
Washington University in the Fall of 2003 and is currently working toward a doctorate
in computer science. His research focuses on algorithms and middleware supporting
service-oriented computing in ad hoc wireless settings.

Weiming Shen is a senior research scientist at the National Research Council, Canada’s
Integrated Manufacturing Technologies Institute. He received his BS in 1983 and MS in
1986, both degrees from Northern Jiaotong University, China, and his PhD degree in 1996
from the University of Technology of Compiègne, France. He has been working on
intelligent agents and their applications to concurrent engineering design, intelligent
manufacturing, and virtual enterprises for about 12 years. He has published one book,
about 170 papers in scientific journals and international conferences/workshops, and
coedited nine conference/workshop proceedings in the related areas. He is an editorial
board member of the International Journal of Networking and Virtual Organizations and
served as guest editor for another four international journals. He is senior member of IEEE
and a member of AAAI, ACM, and ASME. He is also adjunct professor at the University
of Western Ontario.

James Skene is a postgraduate researcher in the Computer Science Department of
University College London, UK, having his BS from the same institution in 2000. His
research interests lie in the areas of modeling languages, distributed systems, and
performance analysis. He is primarily occupied with the TAPAS project, an IST frame-
work 5 project addressing the problem of providing trustworthy electronic services with
reliable performance properties across organizational boundaries. James is pursuing a
related PhD, focused on the specification, management, and analysis of performance
information in system specification.

Maarten Steen joined Telematica Instituut, The Netherlands in 1999. Dr. ir. Maarten Steen
has been working on various topics related to e-business engineering, both in research
projects as in applied projects with industry. His main research interests are modeling
techniques, methods, and architectures for e-business applications. He has lectured on
these topics at industry seminars and at universities. Before joining Telematica Instituut,
Maarten Steen worked at the University of Kent at Canterbury on the application of
formal methods in the area of open distributed processing. More specifically, he worked

408 About the Authors

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

on techniques for partial specification, such as consistency checking and composition
and on enterprise modeling and policy specification.

Patrick Strating joined the Telematica Instituut, The Netherlands, in 1999. He has been
working on various topics related to business networks. His main research interests are
business architectures in the context of open business networks and enterprise model-
ing. He has given courses in business process innovation, business process modeling,
and engineering, quantitative analysis, and Web service technology. Before joining
Telematica Instituut, Patrick Strating worked in distributed and high performance
computing at the Numerical Mathematics Department of the University of Twente.

Mahesh Subramanium is a graduate student at Oregon State University, Corvallis,
Oregon, USA, registered to complete a master’s degree in computer science. He has a
Bachelor’s of Technology in computer engineering from Kannur University, Kerala,
India. He has more than two years of professional research and development experience.
His main research interests are in the areas of information security, cryptography,
intrusion detection and prevention, mobile intelligent agents, Web services and distrib-
uted systems.

Hugo ter Doest is a scientific researcher at the Telematica Instituut, The Netherlands, a
public/private research consortium consisting of academia and companies. His main
focus is on architecture modeling and design ranging from domain-specific architectures
to enterprise architectures. He has been involved in several research and consultancy
projects with an emphasis on development and application of methods and techniques
for architecture description, implementation, and management. Currently, he is respon-
sible for the adoption of ArchiMate project research results by market parties.

Richard Yi Ren Wu obtained a Master’s of Computer Science from the University of
Alberta, Canada and is a senior technical consultant of Marlborough-Stirling Group
offering software products and outsourced services in the international financial
services sector. Having worked in the software industry throughout his career, Richard
has expertise in software architectures and engineering, project management, and mobile
distributed computing as well as public institutional education. His over 15 years of
experience includes commercial wholesales and distribution systems for IBM Canada,
mobile call processing systems for BCTel Wireless Mobility, financial investment and
data warehousing systems for Hong Kong Bank of Canada, international language
grammar checkers for Microsoft Corporation, XML document distributed authoring
systems for SoftQuad, online payment transactions and financial/vendor systems for
Amazon.com, and Internet-based lending and ASP-based brokerage systems for
Marlborough-Stirling Canada.

Michal � emli� ka is an assistant professor at the Faculty of Mathematics and Physics
of Charles University, Prague. He graduated in 1996. His current research interests are

About the Authors 409

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

extensible compilers, theory of parsing, the design of large software systems, data
structures, and computational linguistics. He has published more than 20 scientific
papers.

Jiehan Zhou received a PhD in manufacturing and automation from Huazhong University
of Science and Technology (Wuhan, PR China) in 2000. He is being sponsored by the
ERCIM (European Research Consortium for Informatics and Mathematics) fellowship for
studying agile software development method in VTT (Oulu, Finland) and semantic Web
in INRIA (France). Before that, Dr. Zhou carried out two years postdoctoral research in
Computer Integrated Manufacturing System in National CIMS Center of Tshinghua
University (Beijing, PR China). He has published several papers on manufacturing
engineering, software engineering, and knowledge engineering.

410 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Index

Symbols

.NET 374

A

access control 318
access control lists 295
ad hoc wireless networks 247
adapter manager (AM) 80
adoption patterns 149
advanced software development 31
alliance 186
AOSE 27
application-oriented software

engineering 27
architectural alignment 142
architecture 372
auditing 294
authentication 294
authorization 294
availability 294

B

BEA WebLogic Integrator 60
Business Entities 123
business process modeling 96
business service 120
business Web page design 89
business-to-business 354

C

case study 341
code signing 296
collaboration management infrastructure

(CMI) 59
component 3
component based development (CBD)

89
component orientation 2
components 94
composite service design 51
composite service execution 53
composition 226
confederation 187
confidentiality 294
content inspection 298
conversation-driven composition 61
CORBA trader 13
cost effectiveness 140
CrossFlow 59

D

data integrity 294
delegation 301
description language 56
design module 50
digital certificate 295
digital signature 295
discretionary access control 319

Index 411

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

distributed and mobile collaboration
359

distributed application 317
distributed applications 320
domain security manager (DSM) 80
DySCo 59

E

e-business 271
e-commerce 185
e-government (e-government) 185, 187,

341
eFlow 59
electronic service management

systems 124
electronic service systems 118
electronic services 120
encryption 295, 375
enterprise application integration (EAI)

89
enterprise architecture 134
enterprise distributed object computing

(EDOC) 116
evauluation 349
EXP 374

F

façade 206
federated identity 303
federation 301
firewalls 296
framework for enterprise architecture

135
front-end gates 192

G

global enterprises 196
globalization 132
glue and wrapper generator 82
grid services 148
groupware 354

H

hashing 295

I

IBM WebSphere 60
ICT-architecture 341
infomediator 206
innovation power 140
integration 187
intermediaries 303
interoperability 82, 139, 354
intrusion detection 294

J

JavaBeans 15
Jini 16, 293

K

knowledge representation 270
knowledge-based reasoning 272

L

legacy systems 192
legacy systems 341
Linux 376
loosely coupled 293

M

m-services 226
mandatory access control 318
marketplace 206
maturity model 149
message-oriented middleware (MOM)

38
Middard 30
middleware enhancement 189
middleware security 317
mobile 385
mobile systems 248
model transformation 113
Model-Driven Architecture 109, 111,

395

N

non-repudiation 294

412 Index

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

O

object request broker (ORB) 80
observer 206
open distributed processing 135
open grid services architecture 293
open source 376
OSGi 18
ownership 188

P

passwords 295
peer-to-peer philosophy 182
petri nets 193
privacy 294, 386
process hierarchy 98
process model 375
process threads 98
producer-consumer 207
profile usage 126
proxy 206
public key infratructure 295

Q

query manager (QM) 80

R

real-time business service management
149

remote procedure call (RPC). 38
retrieve-update lock 207
role-based access control 317
runtime environment 50
RUP 374

S

SAML 303
sandbox model 296
secure sockets layer 293
security 292, 372
security policy 319
security standards 292
SELF-SERV 59
semantic Web services 62
service broker 297

service circulation 39
service composition 48
service description 6
service evaluation 40
service extracting 35
service management 41
service middards 37
service object 7
service orientation 1, 5, 182
service patterns 201
service provider 297
service requester 297
service-oriented 247
service-oriented architecture 74, 88
service-oriented architecture(s) (SOA)

133, 183, 292, 341, 396
service-oriented computing 109
service-oriented enterprise architecture

132
service-oriented interaction pattern 5
service-oriented paradigm 341
service-oriented software engineering

27
service-oriented software systems

(SOSS) 182
service-oriented technologies 12
services 1
single sign-on 298
SMaC 89
SOAP 341, 354, 372
software agents 226, 271
software confederations 187
software engineering 373
SOSE 27
SOSE conceptual model 35
stereotypes 95
strategy 206
supply, manage, and consume (SMaC)

89

T

trust 294
turn-around time 82

U

UDDI 341

Index 413

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

unified meta-component model (UMM)
71

unified modeling language (UML)
88, 115

UniFrame 68
UniFrame system generation process

77
use cases 375
user performable 189

V

virtual enterprise 33
Visual Studio.NET 391

W

Web service 293
Web service identification & reuse 89
Web service internal design 89
Web services 20, 93, 148,

183, 226, 271, 354, 372
Web services security 293
WebSphere 391
wireless Web services 63
WS-security 306
WSDL 341, 354

X

XKMS 302
XML document 299
XML encryption 302
XML firewalls 307
XML networks 307
XML signature 302

BO O K CH A P T E R S

JO U R N A L ART I C L E S

CO N F E R E N C E PR O C E E D I N G S

CA S E ST U D I E S

The InfoSci-Online database is the

most comprehensive collection of

full-text literature published by

Idea Group, Inc. in:

n Distance Learning

n Knowledge Management

n Global Information Technology

n Data Mining & Warehousing

n E-Commerce & E-Government

n IT Engineering & Modeling

n Human Side of IT

n Multimedia Networking

n IT Virtual Organizations

BENEFITS

n Instant Access

n Full-Text

n Affordable

n Continuously Updated

n Advanced Searching Capabilities

The Bottom Line: With easy
to use access to solid, current
and in-demand information,
InfoSci-Online, reasonably
priced, is recommended for
academic libraries.

- Excerpted with permission from
Library Journal, July 2003 Issue, Page 140

“

”

Start exploring at
www.infosci-online.com

Recommend to your Library Today!

Complimentary 30-Day Trial Access Available!

InfoSci-Online

Instant access to the latest offerings of Idea Group, Inc. in the fields of

INFORMATION SCIENCE, TECHNOLOGY AND MANAGEMENT!

Database
InfoSci-Online
Database

A product of:

Information Science Publishing*
Enhancing knowledge through information science

*A company of Idea Group, Inc.
www.idea-group.com

An excellent addition to your library

�����������	�
��
���
��
��	����
����������
����	����	��	�

��������������������
 ���!�

"	��#����$�!�����$!!����%
��&�	��'� �(��)	�������������*�����++�

Idea Group Publishing
Hershey • London • Melbourne • Singapore

ISBN 1-59140-046-5(h/c) • eISBN 1-59140-084-8 • US$84.95 • 255 pages • Copyright © 2003

From theoretical and practical viewpoints, the
application of intelligent software agents is a topic of
major interest. There has been a growing interest
not only in new methodologies for the development
of intelligent software agents, but also the way in
which these methodologies can be supported by
theories and practice. Intelligent Agent Software
Engineering focuses on addressing the theories
and practices associated with implementing intelligent
software agents.

���
����
���,�
��

-	'����
������

����

Valentina Plekhanova
University of Sunderland, UK

“Intelligent software agents are a unique generation of information society
tools that independently perform various tasks on behalf of human user(s) or

other software agents. The new possibility of the information society requires
the development of new, more intelligent methods, tools, and theories for the

modeling and engineering of agent-based systems and technologies.”
–Valentina Plekhanova, University of Sunderland, UK

An excellent addition to your library!

�����������	�
��
���
��
��	����
����������
����	����	��	�

��������������� ��!�"

#	��$����%�"�����%""����&
��'�	��(�!�) �*	�������������������++�

ISBN 1-931777-50-0 (s/c) • US$59.95 • eISBN 1-931777-66-7
• 300 pages • Copyright © 2003

IRM Press
Hershey • London • Melbourne • Singapore

,����������-	(����

�����

���������*

)����.
�����

Joan Peckham and Scott J. Lloyd
University of Rhode Island, USA

“…during the past 30 years a generalized body of knowledge about design as other
aspects of software engineering processes has emerged with some generally accepted
standards.”

Joan Peckham & Scott J. Lloyd
University of Rhode Island, USA

Over the last four decades, computer systems have
required increasingly complex software development
and maintenance support. The marriage of software
engineering, the application of engineering principals to
produce economical and reliable software, to software
development tools and methods promised to simplify
software development while improving accuracy and
speed, tools have evolved that use computer graphics
to represent concepts that generate code from inte-
grated design specifications. Practicing Software En-
gineering in the 21st Century addresses the tools and
techniques utilized when developing and implementing
software engineering practices into computer sys-
tems.

	Preface
	Section I
Core Service Concepts
and Technologies
	Chapter I
Technical Concepts of
Service Orientation
	Chapter II
Beyond
Application-Oriented
Software Engineering:
Service-Oriented
Software Engineering
	Chapter III
Service Composition:
Concepts, Techniques,
Tools and Trends
	Section II
Service-Oriented
Architecture Design
and Development
	Chapter IV
UniFrame:
A Unified Framework for
Developing
Service-Oriented,
Component-Based Distributed
Software Systems
	Chapter V
Service-Oriented
Design Process
Using UML
	Chapter VI
Service-Oriented
Computing and
the Model-Driven
Architecture
	Chapter VII
Service-Oriented
Enterprise Architecture
	Chapter VIII
A Method for
Formulating and
Architecting
Component- and
Service-Oriented
Systems
	Chapter IX
Architecture,
Specification,
and Design of
Service-Oriented
Systems
	Chapter X
Service Patterns for
Enterprise Information
Systems
	Section III
Mobile Services and Agents
	Chapter XI
Concepts and
Operations of Two
Research Projects on
Web Services and
Mobile Web Services
	Chapter XII
Service-Oriented
Computing Imperatives
in Ad Hoc Wireless
Settings
	Chapter XIII
Service-Oriented
Agents and Meta-Model
Driven Implementation
	Section IV
Security in
Service-Oriented
Systems
	Chapter XIV
Security in
Service-Oriented
Architecture:
Issues, Standards and
Implementations
	Chapter XV
A Service-Based
Approach for RBAC
and MAC Security
	Section V
Service-Orientation in
Practice
	Chapter XVI
Engineering a
Service-Oriented
Architecture in
E-Government
	Chapter XVII
Web Services for
Groupware
	Chapter XVIII
Building an Online
Security System with
Web Services
	About the Editors
	About the Authors
	Index

