Service-Oriented
Software System
Engineering

Challenges and Practices

Service-Oriented
Software System
Engineering:
Challenges and Practices

Zoran Stojanovic
Delft University of Technology, The Netherlands

Ajantha Dahanayake
Delft University of Technology, The Netherlands

IDEA GROUP PUBLISHING
Hershey * London * Melbourne ¢ Singapore

Acquisitions Editor: Mehdi Khosrow-Pour

Senior Managing Editor: Jan Travers

Managing Editor: Amanda Appicello
Development Editor: Michele Rossi

Copy Editor: April Schmidt

Typesetter: Jennifer Wetzel

Cover Design: Lisa Tosheff

Printed at: Integrated Book Technology

Published in the United States of America by
Idea Group Publishing (an imprint of Idea Group Inc.)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@idea-group.com
Web site: http://www.idea-group.com

and in the United Kingdom by
Idea Group Publishing (an imprint of Idea Group Inc.)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 442073793313
Web site: http://www.eurospan.co.uk

Copyright © 2005 by Idea Group Inc. All rights reserved. No part of this book may be repro-
duced in any form or by any means, electronic or mechanical, including photocopying, without
written permission from the publisher.

Library of Congress Cataloging-in-Publication Data

Service-oriented software system engineering : challenges and practices / Zoran Stojanovic and
Ajantha Dahanayake, editors.
p. cm.
Includes bibliographical references and index.
ISBN 1-59140-426-6 (h/c) -- ISBN 1-59140-427-4 (s/c) -- ISBN 1-59140-428-2 (ebook)
1. Software engineering. I. Stojanovic, Zoran, 1969- II. Dahanayake, Ajantha,
1954-
QA76.758.5458 2004
005.1--dc22
2004021990

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in
this book are those of the authors, but not necessarily of the publisher.

Service-Oriented Software
System Engineering:
Challenges and Practices

Table of Contents

Preface vi

SectionI: Core Service Concepts and Technologies

Chapterl

Technical Concepts of Service Orientation 1
Humberto Cervantes, Laboratoire LSR Imag, France
Richard S. Hall, Laboratoire LSR Imag, France

Chapter Il
Beyond Application-Oriented Software Engineering: Service-Oriented Software
Engineering (SOSE) 27
Jiehan Zhou, VIT Technical Research Centre of Finland, Embedded Software,
Finland
Eila Niemeld, VIT Technical Research Centre of Finland, Embedded Software,
Finland

ChapterIII
Service Composition: Concepts, Techniques, Tools and Trends 48
Boualem Benatallah, University of New South Wales, Australia
Remco M. Dijkman, University of Twente, The Netherlands
Marlon Dumas, Queensland University of Technology, Australia
Zakaria Maamar, Zayed University, United Arab Emirates

Section I1: Service-Oriented Architecture Design and Development

ChapterIV
UniFrame: A Unified Framework for Developing Service-Oriented, Component-Based
Distributed Software Systems 68

Andrew M. Olson, Indiana University Purdue University, USA
Rajeev R. Raje, Indiana University Purdue University, USA
Barrett R. Bryant, University of Alabama at Birmingham, USA
Carol C. Burt, University of Alabama at Birmingham, USA
Mikhail Auguston, Naval Postgraduate School, USA

ChapterV

Service-Oriented Design Process Using UML 88
Steve Latchem, Select Business Solutions Inc., Gloucester, UK
David Piper, Select Business Solutions Inc., Gloucester, UK

Chapter VI

Service-Oriented Computing and the Model-Driven Architectureccceeueeueeneee 109
Giacomo Piccinelli, University College London, UK
James Skene, University College London, UK

Chapter VII
Service-Oriented Enterprise Architecture 132
Maarten W.A. Steen, Telematica Institute, The Netherlands
Patrick Strating, Telematica Institute, The Netherlands
Marc M. Lankhorst, Telematica Institute, The Netherlands
Hugo W.L. ter Doest, Telematica Institute, The Netherlands
Maria-Eugenia lacob, Telematica Institute, The Netherlands

Chapter VIII
A Method for Formulating and Architecting Component- and Service-Oriented
Systems 155
Gerald Kotonya, Lancaster University, UK
John Hutchinson, Lancaster University, UK
Benoit Bloin, Lancaster University, UK

ChapterIX
Architecture, Specification, and Design of Service-Oriented Systemscc.c.... 182
Jaroslav Kral, Charles University, Czech Republic

Michal Zemlicka, Charles University, Czech Republic

Chapter X

Service Patterns for Enterprise Information Systems 201
Constantinos Constantinides, Concordia University, Canada
George Roussos, University of London, UK

Section III: Mobile Services and Agents

Chapter XI

Concepts and Operations of Two Research Projects on Web Services and Mobile

Web Services 225
Zakaria Maamar, Zayed University, United Arab Emirates

Chapter XII

Service-Oriented Computing Imperatives in Ad Hoc Wireless Settings 247
Rohan Sen, Washington University in St. Louis, USA
Radu Handorean, Washington University in St. Louis, USA

Gruia-Catalin Roman, Washington University in St. Louis, USA
Christopher D. Gill, Washington University in St. Louis, USA

Chapter XIII

Service-Oriented Agents and Meta-Model Driven Implementationcccuceueeee. 270
Yinsheng Li, Fudan University, China
Hamada Ghenniwa, University of West Ontario, Canada
Weiming Shen, Fudan University, China

SectionI'V: Security in Service-Oriented Systems

Chapter XTIV
Securityin Service-Oriented Architecture: Issues, Standards and Implementations 292
Srinivas Padmanabhuni, Software Engineering and Technology Labs,
Infosys Technologies Limited, India
Hemant Adarkar, Ness Technologies, India

Chapter XV

A Service-Based Approach for RBAC and MAC Security 317
Charles E. Phillips, Jr., United States Military Academy, West Point, USA
Steven A. Demurjian, University of Connecticut, USA
Thuong N. Doan, University of Connecticut, USA
Keith H. Bessette, University of Connecticut, USA

Section V: Service-Orientation in Practice

Chapter XVI
Engineering a Service-Oriented Architecturein E-Governmentccceeevueeueenne 340
Marijn Janssen, Delft University of Technology, The Netherlands

Chapter XVII

Web Services for Groupware 353
Schahram Dustdar, Vienna University of Technology, Austria
Harald Gall, University of Zurich, Switzerland
Roman Schmidt, Swiss Federal Institute of Technology, Lausanne, Switzerland

Chapter XVIII

Building an Online Security System with Web Services 371
Richard Yi Ren Wu, University of Alberta, Canada
Mahesh Subramanium, Oregon State University, USA

Aboutthe Editors 398

Aboutthe Authors 399

Index 410

vi

Preface

Components and Web Services

Modern enterprises are caught in the flux of rapid and often unpredictable changes in
business and information technology (IT). New business demands caused by an
enterprise’s need to be competitive in the market require the immediate support of
advanced IT solutions. At the same time, new IT opportunities and achievements are
constantly emerging and must be rapidly adopted to support new and more effective
ways of conducting business. Therefore, it is crucial to provide effective business/IT
alignment in terms of producing high quality and flexible IT solutions within a short
time-to-market that exactly match business functionality needs and change as business
changes. During the last few years, there has been a growing consensus in the industry
that the way to create these adaptive, business-driven IT solutions is to use discrete
building blocks of software, which are based on industry-standard protocols and
interoperate across platforms and programming languages.

Component-based development (CBD) (Brown & Wallnau, 1998) and then Web ser-
vices (Barry, 2003) have been proposed as ways to build complex but adaptive and agile
enterprise information systems that provide effective inter- and intra-enterprise inte-
gration. The CBD platforms and technologies, such as CORBA Components, Sun’s
Enterprise Java Beans (EJB), and Microsoft’s COM+/.NET, are now de facto standards
in complex Web-based systems development. Further, a growing interest in Web ser-
vices has resulted in a number of industry initiatives to provide platform-independent
communication of software resources across the Internet (W3C, 2004). Basic elements
of the new Web services paradigm are the standards for interoperability — XML, SOAP,
WSDL and UDDI (Newcomer, 2002). On top of this basic interoperability protocol stack,
new languages and specifications for defining the composition of services to form real-
world business processes have emerged, such as Business Process Execution Lan-
guage for Web Services (BPEL4WS) (BPEL, 2003) and Web Service Choreography
Interface (WSCI) (Arkin et al., 2002).

Using this advanced technology, the Internet, once solely a repository of various kinds
of information, is now evolving into a provider of a variety of business services and
applications. Using Web services technology, organizations are now provided with a
way to expose their core business processes on the Internet as a collection of services.

vii

Customers and business partners are potentially able to invoke and retrieve these
services over the Internet and compose them as wished to achieve their business
goals. This idea of a software application as a service was recognized in the past (as in
Brown, 2000), but it can now be fully realized using the Web services technology for
systems interoperability (Newcomer, 2002). Web services can be considered the tech-
nological foundation for the service-oriented computing paradigm. The W3C’s Web
Services Architecture Working Group in its Web Services Glossary (2004) defines a
Web service as:

a software system designed to support interoperable machine-to-machine
interaction over a network. It has an interface described in a machine-
processable format (specifically WSDL). Other systems interact with the Web
service in a manner prescribed by its description using SOAP messages,
typically conveyed using HTTP with an XML serialization in conjunction
with other Web-related standards.

Is Technology Enough?

A common point for both CBD and Web services paradigms is that they are technology
led, that is, they were originally introduced through the new technology standards,
infrastructures, and tools. Although technology is essential in building complex IT
solutions from components and services, it is not sufficient on its own to support the
full extent of an enterprise’s business and IT requirements. Application functionality is
routinely “packaged” into components today; however, the essential design and de-
velopment methods and processes that enable application adaptability, widespread
reuse, and commercialization still have little acceptance (Stojanovic, Dahanayake &
Sol, 2004).

As using component middleware technology does not ensure that one will achieve the
promised benefits of the CBD approach, conversely, the CBD paradigm can be success-
fully employed without using component middleware technology. A similar issue now
arises in the case of Web services. The standards and protocols for Web services are
well established and increasingly used. However, developing a coherent set of design
and process principles for engineering service-oriented solutions throughout the de-
velopment life cycle, which is crucial for achieving the full benefits of service orienta-
tion, is still at an immature stage (Kaye, 2003). As there is more to CBD than packaging
software into Java Beans or .NET components, there is more to service orientation than
simply rendering interfaces of software entities as Web services.

Another critical issue in today’s enterprise IT developments is that the available set of
technologies for components, Web services and business process automation, orches-
tration and integration is complex and constantly evolving. This can cause problems
whenever new versions of technology standards and interoperability protocols appear.
Moreover, developing systems directly using these technologies is tedious, complex,
and error prone.

viii

Therefore, the real challenge lies not just in new technology but also in how best to
make use of the available technology through systems engineering principles and prac-
tices, from service identification and specification to service deployment. Applying
well-defined design and engineering methods and techniques ensures that we do not
end up with a random collection of unusable, although technologically feasible, ser-
vices. Equally important is a conceptual service model that provides a precise defini-
tion of the underlying concepts used in service-oriented computing including service,
component, interface, collaboration, port, and so forth.

Further, we need to develop systems to a higher level of abstraction that make a devel-
opment process more productive, flexible, and understandable for business people
who define requirements, use the solutions, and decide about future strategies. There
is a strong need for service-oriented modeling, design and development methods, and
techniques that will map high-level business requirements to software technology imple-
mentation and bridge the gap between business and IT (Apperly et al., 2003; Atkinson
etal., 2002; Herzum & Sims, 2000). To make components and Web services a prominent
and mainstream paradigm in building enterprise-scale information systems, well-de-
fined engineering principles and techniques are required to maximize the benefits of
service orientation and plug-and-play mechanisms.

The idea of software systems as the collaboration and coordination of components that
provide services represents an interesting perspective with a number of new software
engineering challenges. Service-oriented software engineering (SOSE) is concerned
with theories, principles, methods, and tools for building enterprise-scale solutions as
the collaboration of loosely-coupled application services that provide particular busi-
ness functionality and are distributed within and across organizational boundaries.
Important topics that need to be addressed within the SOSE paradigm include but are
not limited to:

. precise definitions of service-related concepts that are applicable throughout the
development life cycle, specified at the level of analysis and design, and success-
fully refined into implementation and deployment artifacts.

. standard modeling and specification notations for representing service concepts
in graphical, human-understandable, and/or machine-readable formats.

. development methods and processes based on service-oriented and component-
based ways of thinking, organized around the concepts of service and compo-
nent.

. the way of designing the service-oriented enterprise system architecture from
various perspectives and viewpoints that reflect the needs of various stakehold-
ers.

. deployment of the service-oriented system architecture onto available technol-
ogy infrastructure.

Engineering service-oriented solutions need to address the concerns of both the ser-
vice provider and the service consumer. From the service provider perspective, it is
important to define what component of the system can be exposed as a service, offering
a business value to the consumer, and at the same time is, as much as possible, decoupled

from the rest of the system. From the service consumer perspective, it is important to
determine what part of the system logical architecture can be realized by invoking a
particular service over the Web and how that part can interface with the existing
organization’s system services and components. Balancing the needs of service pro-
vider and consumer is crucial to achieving the true benefits of service orientation for
business agility and inter- and intra-enterprise integration.

Principles of Service Orientation

The central point of the SOSE paradigm is the concept of service, as well as the strategy
to expose system capabilities to consumers as services through the Service-Oriented
Architecture (SOA). In this respect, the Web services technology is just a way to
efficiently realize the concepts of services and SOA. The service forms a contractual
agreement between provider and consumer. Besides a common interface that defines
operation signatures, a service can also have attributes of its own, such as service level
agreement, policies, dependencies, and so forth.

A service interface defines a contract and the parties’ obligations precisely and, thus,
allows the consumer to use the functionality offered without being aware of the under-
lying implementation. As defined by the W3C’s Web Services Glossary (2004), a ser-
vice is “an abstract resource that represents a capability of performing tasks that form
a coherent functionality from the point of view of providers entities and requesters
entities. To be used, a service must be realized by a concrete provider agent.” There are
actually a number of parallels between service orientation and classical CBD. Like
components, services represent natural building blocks that allow us to organize the
capabilities of a system in ways that are meaningful to the user of the system. Similar to
components, a service combines information and behavior, hides the internal workings
from the outside perspective, and presents a relatively simple interface to the environ-
ment (Kaye, 2003). When using Web services technology, the component itself is not
acquired in the traditional manner of taking a copy and executing it in the house but
rather just the services provided by the component are consumed via the Web while the
component executes its function at a single location, available to all who subscribe
(Newcomer, 2002).

In its essence, SOA is a way of designing a software system to provide services to
either end-user applications or to other services through published and discoverable
interfaces (Kaye, 2003). As defined by the W3C’s Web Services Glossary (2004), SOA is
“a set of components which can be invoked and whose interfaces descriptions can be
published and discovered.” A basis of SOA is the concept of service as a functional
representation of a real-world business activity that is meaningful to the end user and
encapsulated in a software solution. Using the analogy between the concept of service
and business process, SOA provides for loosely coupled services to be orchestrated
into business processes that support business goals. Initiatives similar to SOA were
proposed in the past, such as CORBA or Microsoft’s DCOM. What is new about SOA
is that it relies on universally accepted standards like XML and SOAP to provide broad
interoperability among different vendors’ solutions, and it is based on the proven
component-based design principles and techniques.

The power and flexibility that SOA potentially offer to an enterprise are substantial. If
an enterprise abstracts its IT infrastructure and functionality in the form of coarse-
grained services that offer clear business value, then the consumers of those services
can access them independent of their underlying technology and use them to achieve
business goals. In essence, services and SOA act as a layer of abstraction between the
business and the technology. The dynamic relationships between the needs of the
business and the available services, on the one hand, and the technology foundation
that realizes and supports the services, on the other hand, must be well understood and
designed. Therefore, one of the main tasks of new service-oriented software engineer-
ing concepts and principles is to help achieve effective business-IT alignment based
on the concept of service as a common ground.

Related Topics

In today’s world of continually changing business and IT, it is crucial to decide what
strategy and process to follow in engineering complex service-oriented software sys-
tems. In the last few years, two increasingly important movements in IT, corresponding
to fundamentally different philosophies about how software systems should be built,
have emerged. The first, model-driven development, tries to preserve investments in
building systems against constantly changing technology solutions by creating formal
architecture models that can be mapped to whatever software technology. The Object
Management Group (OMG) has proposed Model Driven Architecture (MDA) as an
attempt to raise the level of abstraction in software development as a well-established
trend in computing (Frankel, 2003). MDA separates the concerns of the business speci-
fication from the details of the technology implementation. System development using
the MDA approach is organized around a set of models by imposing a series of trans-
formations between the models (OMG-MDA, 2003). A formal foundation for describing
the models is the set of OMG standards — UML, MOF, XMI, CWM (specifications
available at http://www.omg.org) — that facilitate meaningful integration and transfor-
mation among the models, and are the basis for automation through tools. New devel-
opments that support the MDA paradigm are the standard UML profile for Enterprise
Distributed Object Computing (EDOC) and the new major revision of the UML, version
2.0 (OMG-UML, 2004). These standard specifications propose new concepts and ideas
regarding the way components are defined at the logical level, making a solid founda-
tion for modeling and design of services and service-oriented applications.

Parallel to the MDA initiative, the last few years have witnessed considerable interest
in the IT community for eXtreme Programming (XP) and other methodologies for Agile
Development (AD) (Cockburn, 2002). Agile processes are focused on early, fast, and
frequent production of working code using fast iterations and small increments. The
processes are characterized by intensive communication between participants, rapid
feedback, simple design, and frequent testing. Proponents of AD see the software code
as the main deliverable, while the roles of system analysis, design and documentation
in software development, and maintenance are de-emphasized and, to some extent,
ignored.

Xi

While both AD and MDA claim to address the challenges of high change rates, short
time-to-market, increased return-on-investment, and high quality software, it is obvi-
ous that their proposed solutions are actually very dissimilar. MDA assumes mainly
fixed user requirements and suggests creating formal models around them, whereas AD
handles constantly changing user requirements using fast and frequent prototyping. It
is challenging to determine in what ways the principles and practices of both develop-
ment paradigms can be combined in engineering service-oriented systems to gain the
potential benefits of both approaches.

Another interesting development related to the SOSE paradigm is the Business Process
Management Initiative (BPMI) (http://www.bpmi.org) the main purpose of which is to
define ways for enabling computer-assisted management of business processes. The
BPMI has issued the specification of Business Process Modeling Language (BPML),
Business Process Modeling Notation (BPMN), and Business Process Query Language
(BPQL) that provide for the management of different aspects of e-business processes
that span multiple applications, corporate departments, and business partners over the
Internet. BPML has a lot in common with and builds on the foundations of the Web
services composition languages such as BPEL and WSCI. Moreover, BPMN is very
much related to the new diagram set of UML 2.0 that represents action semantics.
Hence, some joint efforts towards unified standard specifications and notations can be
expected in the near future.

The new developments in the field of Web services have provided a lot of possibilities
but have also introduced new challenges. Novel mobile technologies provide new
channels for providing and consuming services in a wireless setting, anytime and
anywhere. Furthermore, for Web services to become a reality across enterprises, secu-
rity and trust issues in providing and consuming services across the Web must be
settled at a much higher level. The earlier dilemma of a software developer regarding
reusing software and how far to trust somebody else’s software code is now largely
substituted by the dilemma of a business analyst regarding how far to trust somebody
else’s services.

Summary

The purpose of this book is to survey the main concepts, principles, practices, and
challenges of the new paradigm of service-oriented software engineering (SOSE). The
series of papers included in this book show the wide variety of perspectives on SOSE
and illustrate the wide-ranging impact that SOSE can have on how complex enterprise
information systems are built today and will be built in the future, when attempting to
hit the moving target of continuously changing business needs.

As illustrated throughout this book, the new SOSE paradigm can provide a meeting
point between business process management and automation on the one side and
component-based software engineering on the other, bridging the gap between busi-
ness and IT. The aim of this book is to disseminate the research results and best
practices from researchers and practitioners interested in and working on different
aspects of SOSE, setting up a new agenda for the exciting world of services.

Xii

One of the strengths of this book is its international flavor. The authors of the various
chapters come from various countries worldwide. This gives the reader a range of
perspectives on the issues taken from different world viewpoints. Although a number
of books about Web services have already been published, this book is one of the first
that goes beyond the pure technology level of the Web services protocols. The book
presents innovative and effective service-oriented software engineering concepts, prin-
ciples, techniques, and practices that can be followed throughout the development life
cycle in order to fulfill the great promises of service orientation. We believe that this
book can serve as a starting point for new, interesting, and challenging developments
in the exciting area of SOSE.

Organization of the Book

The book consists of 18 chapters, organized into five sections. A brief description of
each of the chapters follows.

The first section of the book presents core service-oriented concepts and technologies
as a basis for the rest of the book.

Cervantes and Hall (Chapter I) present service-oriented concepts from a technological
perspective to position them with respect to those present in component orientation
and to illustrate how they are realized. The technical presentation is followed by a
survey of several service-oriented platform technologies including CORBA Traders,
JavaBeans Context, Jini, OSGi, and Web services.

Zhou and Niemela (Chapter II) introduce service-oriented software engineering as an
advanced software development. The authors present SOSE software development
methodology involving the main processes of service extracting, middard, circulation,
evaluation, and evolution with the middard service fundamental.

Benatallah et al. (Chapter III) provide an overview of the area of service composition.
The chapter presents a critical view into a number of languages, standardization ef-
forts, and tools related to service composition and classifies them in terms of the
concepts and techniques that they incorporate or support. It discusses some trends in
service-oriented software systems engineering pertaining to service composition.

The second section of the book deals with different aspects of service-oriented model-
ing, architecture, design, and development.

Olson et al. (Chapter IV) introduce the UniFrame approach for creating high quality
computing systems from heterogeneous components distributed over a network. Their
chapter describes how this approach employs a unifying framework for specifying
such systems to unite the concepts of service-oriented architectures, a component-
based software engineering methodology, and a mechanism for automatically finding
components on a network to assemble a specified system.

Latchem and Piper (Chapter V) present a worked example of a design process for ser-
vice-oriented architecture. The process utilizes the industry standard modeling nota-
tion, the Unified Modeling Language (UML) from the Object Management Group, to
present a practical design for services.

xiif

Piccinelli and Skene (Chapter VI) introduce the model-driven architecture (MDA) con-
cept and technologies to the service-oriented computing (SOC) paradigm and employs
these technologies to enhance support for SOC through the definition of a domain-
specific modeling language for electronic services. The language is defined as an ex-
tension of the Unified Modeling Language (UML).

Steen et al. (Chapter VII) study the relevance and impact of the service concept and
service orientation to the discipline of enterprise architecture. This chapter argues that
a service-oriented approach to enterprise architecture provides better handles for ar-
chitectural alignment and business and IT alignment, in particular.

Kotonya et al. (Chapter VIII) present a negotiation-driven method that can be used to
formulate and design component- and service-oriented systems. The software engi-
neering method is capable of balancing aspects of requirements with business con-
cerns and the architectural assumptions and capabilities embodied in software compo-
nents and services.

Kral and Zemlitka (Chapter IX) discuss the crucial elements of the requirements speci-
fication of service-oriented software systems as well as the relation between the re-
quirements specification and the architecture of these systems. The chapter shows
that there are several variants of service-oriented software systems having different
application domains, user properties, development processes, and software engineer-
ing properties.

Constantinides and Roussos (Chapter X) introduce service patterns for service-ori-
ented enterprise systems. The authors argue that the deployment of such patterns
would be of considerable value as a best-practice guide for practitioners and a starting
point for further research in their role in software engineering. A comprehensive cata-
log of service patterns is included in this chapter as well as recommendations on their
implementation and a practical usage scenario.

The third section of the book is concerned with service-oriented computing in the
wireless and mobile settings and agent-based services.

Maamar (Chapter XI) argues that enacting Web services from mobile devices and pos-
sibly downloading these Web services for execution on mobile devices are avenues
that academia and industry communities are pursuing. The author presents two re-
search initiatives carried out at Zayed University. SAMOS stands for Software Agents
for MObile Services, and SASC stands for Software Agents for Service Composition.

Sen et al. (Chapter XII) introduce an ad hoc wireless network as a dynamic environ-
ment, which exhibits transient interactions, decoupled computing, physical mobility of
hosts, and logical mobility of code. The authors examine the imperatives for a viable
service-oriented computing framework in ad hoc wireless settings.

Li et al. (Chapter XIII) propose service-oriented agents (SOAs) to unify Web services
and software agents. Web services features can be well realized through introducing
sophisticated software modeling and interaction behaviors of software agents. A pro-
totype of the proposed SOAs framework has been implemented.

The fourth section of the book deals with an important topic of security in engineering
service-oriented systems, which is an essential prerequisite for wide use of services
across the Web.

Xiv

Padmanabhuni and Adarkar (Chapter XIV) examine the security requirements in SOA
implementations and discuss the different solution mechanisms to address these re-
quirements. The chapter critically examines the crucial Web services security stan-
dards in different stages of adoption and standardization as well as today’s common
nonstandard security mechanisms of SOA implementations.

Phillips et al. (Chapter XV) examine the attainment of advanced security capabilities
using the middleware paradigm, namely, role-based access control (RBAC) and manda-
tory access control (MAC). The resulting security provides a robust collection of
services that is versatile and flexible and easily integrates into a distributed application
comprised of interacting legacy, COTS, GOTS, databases, servers, clients, and so forth.

The final, fifth section of the book presents service-oriented solutions in several appli-
cation domains that show the whole strength of the new service-oriented computing
paradigm in building today’s complex Web-based software systems.

Janssen (Chapter XVI) presents the design of a service-oriented architecture in public
administration. A case study is conducted at the Ministry of Justice, and a service-
oriented architecture is designed, implemented, and evaluated based on a number of
quality requirements. This case study shows the feasibility replacing functionality
formerly offered by legacy systems, limitations of current technology, and promises of
applying service orientation successfully in complex domains, such as e-government.

Dustdar et al. (Chapter XVII) present a sound and flexible architecture for gluing to-
gether various Groupware systems using Web services technologies. The chapter pre-
sents a framework consisting of three levels of Web services for Groupware support, a
novel Web services management and configuration architecture for integrating various
Groupware systems, and a preliminary proof-of-concept implementation.

Wu and Subramanium (Chapter XVIII) present a case study where Web services are
used to build a user-centric online security system. It explores complicated technical
challenges encountered with the use of the Web services and online security technol-
ogy. The authors argue that their practical experiences and findings can provide more
insight on how the online security system can be built in a user-centric, instead of
vendor-centric, way by using Web services on top of conventional software engineer-
ing processes.

References

Apperly, H. et al. (2003). Service- and component-based development: Using the select
perspective and UML. Boston: Addison-Wesley.

Arkin, A. et al. (Eds.). (2002). Web Service Choreography Interface (WSCI) 1.0. Re-
trieved August 2, 2004: http.://www.w3.org/TR/wsci/

Atkinson, C. et al. (2002). Component-based product line engineering with UML. Bos-
ton: Addison-Wesley.

Barry, D. K. (2003). Web services and service-oriented architectures: The savvy
manager s guide. San Francisco: Morgan Kaufmann.

XV

BPEL. (2003). Business process execution language for Web services version 1.1. Re-
trieved August 2, 2004: http://www-106.ibm.com/developerworks/library/ws-bpel

Brown, A.W. (2000). Large-scale component-based development. Indianapolis, IN:
Prentice Hall PTR.

Brown, A.W., & Wallnau, K.C. (1998). The current state of CBSE. IEEE Software, 15(5),
37-46.

Cockburn, A. (2002). Agile software development. Boston: Addison-Wesley.

Frankel, D. S. (2003). Model driven architecture: Applying MDA to enterprise comput-
ing. Indianapolis, IN: Wiley.

Herzum, P., & Sims, O. (2000). Business component factory: A comprehensive overview

of component-based development for the enterprise. Indianapolis, IN: Wiley.

Kaye, D. (2003). Loosely coupled: The missing pieces of Web services. Kentfield, CA:
RDS Press.

Newcomer, E. (2002). Understanding Web services: XML, WSDL, SOAP and UDDI.
Boston: Addison-Wesley.

OMG-MDA (2003). Model driven architecture. Retrieved August 2, 2004: http://
www.omg.org/mda/

OMG-UML (2004). UML™ resource page. Retrieved August 2, 2004: http://www.uml.org/

Stojanovic, Z., Dahanayake, A., & Sol, H. (2004). An evaluation framework for compo-
nent-based and service-oriented system development methodologies. In K. Siau
(Ed.), Advanced topics in database research, volume 3 (pp. 45-69). Hershey, PA:
Idea Group.

W3C (2004). W3C World Wide Web consortium. XML, SOAP, WSDL specifications.
Retrieved August 2, 2004: http://www.w3c.org/

W3C Web Services Glossary. (2004). W3C group note. Retrieved August 2, 2004: http:/
/www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

XVi

Acknowledgments

We would like to acknowledge the help of all involved in the collation and review
process of the book without whose support the project could not have been satisfacto-
rily completed. Obviously, in any project of this size, it is impossible to remember, let
alone mention, everyone who had a hand in this work becoming what it is today.

First, we wish to thank all of the authors. They deserve the greatest credit because their
contributions were essential, giving us great material with which to work. It was a
wonderful experience to work with them, to read their contributions, and to discuss the
book’s overall objectives and particular ideas. Most of the authors of chapters in-
cluded in this book also served as referees for articles written by other authors. Thanks
go to all those who assisted us in the reviewing process by providing constructive and
comprehensive reviews.

Staff members of Systems Engineering and Information & Communication Technology
groups at the Faculty of Technology, Policy and Management at Delft University of
Technology were critical in creating this final product. Their support was vital in achiev-
ing what we hope is a well-edited publication.

A special note of thanks goes to all the staff at Idea Group Inc., whose contributions
throughout the whole process, from inception of the initial idea to final publication,
have been invaluable. In particular, we thank Michele Rossi who continuously prodded
via e-mail to keep the project on schedule and Mehdi Khosrow-Pour whose enthusiasm
motivated us to accept the invitation to take on this project.

Finally, we wish to express our gratitude to our families for their unfailing patience,
support, and love. Our thanks to all these people!

Zoran Stojanovic & Ajantha Dahanayake
Delft, The Netherlands
2004

Section 1

Core Service Concepts
and Technologies

Technical Concepts of Service Orientation 1

Chapterl

Technical Concepts of
Service Orientation

Humberto Cervantes
Laboratoire LSR Imag, France

Richard S. Hall
Laboratoire LSR Imag, France

Abstract

This chapter presents service-oriented concepts from a technological perspective.
Before delving into service orientation, concepts in component orientation are
introduced for a point of reference. After, service orientation is introduced via the
service-oriented interaction pattern and the entities that participate in it, followed by
a discussion of how these entities and service orientation, in general, relate to
component orientation. The technical presentation is followed by a survey of several
service-oriented platform technologies, including: CORBA Traders, JavaBeans Context,
Jini, OSGi, and Web services. The purpose of this chapter is to present service-oriented
concepts from a technological perspective, position them with respect to those present
in component orientation, and illustrate how they are realized.

Introduction

Service orientation is a trend in software engineering that promotes the construction of
applications based on entities called services. The notion of a service is, however, not
concretely defined and can represent different concepts to different stakeholders. From
acoarse-grained point of view, services are activities that are realized by an application,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2 Cervantes and Hall

machine, or human being. While this point of view is helpful (for example when modeling
an enterprise), it is somewhat distant from application development concepts, where a
service is a reusable building block that offers a particular functionality. In this context,
the term reusable means that the same service can be used to construct multiple
applications. The notion of reusability evokes similarities to component orientation,
which is another software development approach that also promotes the idea of
constructing applications from the assembly of reusable building blocks called compo-
nents (Meijler & Nierstrasz, 1997). Both service and component orientation share a
common development model where building block development and assembly are
performed by different actors and can take place at different locations (that is, different
enterprises). Service orientation focuses on other aspects, though, such as the support
for dynamic discovery, that are generally not explicit considerations of component
orientation.

This chapter presents service orientation from a more technical, fine-grained point of
view. It starts by briefly presenting concepts associated with component orientation.
Following this, the concepts of service orientation are discussed and then compared to
those of component orientation. Finally, a set of technologies that support the service-
oriented approach are surveyed. The surveyed technologies include CORBA Traders
(Stratton, 1998), JavaBeans Context (Sun Microsystems, 1998), Jini (Arnold, O’Sullivan,
Scheifler, Waldo & Wolrath, 1999), Open Services Gateway Initiative framework (OSGi)
(Open Services Gateway Initiative, 2003), and Web services (Curbera, Nagy &
Weerawarana, 2001). The chapter concludes with a discussion about the ideas contained
herein.

Component Orientation

This section presents the concepts of component orientation based on concepts present
in a series of component technologies, which include JavaBeans (Sun Microsystems,
1997), Microsoft’s Component Object Model (COM) (Box, 1998), Enterprise Java Beans
(EJB) (Sun Microsystems, 2001), and the CORBA Component Model (CCM) (Object
Management Group, 2003).

Terminology

Although there is no universal agreement on a definition for the term component, the
definition formulated by Szyperski (1998) is widely referenced in literature:

A software component is a binary unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composition by
third parties.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 3

This definition contains several important concepts that characterize a component. In the
context of this chapter, however, this definition is refined by specifying that a
component can be instantiated to produce component instances and is independently
delivered and deployed in a component package. A component model defines a set of
characteristics regarding components, compositions, and their supporting execution
environment.

Component Elements

Component characteristics are realized by three different elements: components, compo-
nent instances, and component packages.

. Component: A component is similar to a class concept in object orientation in the
sense that instances can be created from it. To support composition, a component
exposes an external view that contains a set of functional interfaces that are
provided or required along with a set of configuration properties. Interfaces are
categorized as being functional since they only contain methods that are related
to the component’s functionality. The external view is implemented by a compo-
nent implementation that can expose a set of additional control interfaces and
deployment dependencies. Control interfaces enable the execution environment to
manage a component instance’s life cycle (this is discussed later), while deploy-
ment dependencies represent, for example, dependencies toward a particular
version of the execution environment or a needed resource.

° Component instance: A component instance is obtained from a component; in
object-oriented terms, it is equivalent to an object since it has a unique identifier
and may have modifiable state. A component instance is configured and connected
to other component instances inside a composition.

i Component package: A component package is a unit that allows components to
be delivered and deployed independently. The term independent refers to the fact
that the component package contains everything that is needed by the component
to function (for example, resources such as images, libraries, configuration files)
with the exception of anything that is declared as an explicit dependency (for
example, required functional interfaces).

Composition

In component orientation, applications are assembled from components and assembly
is achieved through component composition. A composition description is used during
execution to create, configure, and connect a set of component instances that form an
application. The fact that architectural information is located in the composition descrip-
tion and not inside the component’s code facilitates component reuse. Compositions can
becreated in different ways: visually, in a dedicated environment such as the BeanBuilder
from Sun (Davidson, 2002), declaratively, through a language such as an Architecture

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

4 Cervantes and Hall

Description Language (Clements, 1996), or imperatively, through languages such as
system or scripting languages (Ousterhout, 1998).

Execution

During execution, component instances are typically created and destroyed through
factories following an interaction pattern depicted in Figure 1. Factories decouple clients
from particular component implementations. Additionally, factories allow for different
instance creation policies. For example, an instance can be a singleton that is shared
among all clients or instances can be allocated from an instance pool on demand.

When a component instance is created, its life cycle is usually managed by a container
(Conan, Putrycz, Farcet & DeMiguel, 2001), which is an entity from the execution
environment that wraps a component instance. The container manages an instance by
invoking methods defined in the control interfaces following the inversion of control
pattern (Fowler, 2004). These control methods allow, for example, instance execution to
be suspended, instance state to be persisted, or instance to be reconfigured. An
application may also impose a set of nonfunctional requirements on its constituent
components; examples of such requirements include security, performance, or distribu-
tion. These requirements can be handled by the container on behalf of the components
by intercepting the calls made to the component instance.

Figure 1. Instance creation interaction pattern

:Client :ComponentFactory
\ \
| |
_ create()
reat
create() » :Componentinstance
T
__retumnReference |
|
| interact _
1
destroy(reference)
destroy() o
X

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 5

Service Orientation

Although the popularity of service orientation has increased with the emergence of Web
services, service-oriented principles were present in the trading mechanisms of distrib-
uted systems, such as in the ODP trader (Indulska, Bearman & Raymond, 1993).

The following subsections present service-oriented concepts by defining the word
service, describing the service-oriented interaction pattern, presenting the elements that
constitute a service, and introducing the necessary execution environment to support
the service-oriented approach. The section concludes with a comparison to component
orientation.

Terminology

A service offers reusable functionality that is contractually defined in a service descrip-
tion, which contains some combination of syntactic, semantic, and behavioral informa-
tion. In service orientation, application assembly is based only on service descriptions;
the actual service providers are discovered and integrated into the application later,
usually prior to or during application execution. As a result, service orientation focuses
on how services are described in a way that supports the dynamic discovery of
appropriate services at run time (Burbeck, 2000). Service orientation promotes the idea
that a service requester is not tied to a particular provider; instead, service providers are
substitutable as long as they comply with the contract imposed by the service descrip-
tion. An important assumption in service orientation is that services may be dynamically
available, that is, their availability can vary continuously.

Service-Oriented Interaction Pattern

To support dynamic discovery, service orientation is based on an interaction pattern that
involves three different actors, depicted in Figure 2:

. Service provider: The service provider is responsible for supplying service objects
that implement service functionality.

i Service requester: The service requester is a client for a particular service.

i Service registry: The service registry is an intermediary between service request-
ers and service providers. The registry contains a set of service descriptions along
with references to service providers; it provides mechanisms for service publica-
tion, removal, and discovery. The set of service descriptions contained in the
service registry changes as services provided by service providers are published
and removed from the registry.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

6 Cervantes and Hall

Figure 2. Actors of the service-oriented interaction pattern

Service Registry

+publish(:ServiceDescription,:ServiceProvider)

ublish/remove discover
P +remove(:ServiceDescription,:ServiceProvider)

+discover(:ServiceDescription)

Service Provider Service Requester

0.* bind 0.*

+bind():ServiceObject
+release(:ServiceObject)

The basic interaction pattern that characterizes service orientation is depicted in the
sequence diagram in Figure 3. This diagram shows a service provider that publishes a
service description in a service registry. A service requester further queries the service
registry to discover services based on a set of criteria relative to a service description.
If service providers that meet the criteria have been previously published, the service
registry returns the provider’s references to the service requester. In the case where
multiple answers are returned, the service requester may need to select a specific service
provider to which it will bind. When the service requester binds to the provider, a service
objectisreturned by the provider. Finally, when the service requester finishes interacting
with the service, the service object is either implicitly or explicitly released.

Service Description

As previously mentioned, the service description combines syntactic, semantic, and
behavioral information. The syntactic part of a service description is typically embodied
as a service interface, which is a set of operations that provide the functionality of the
service. A service interface defines a syntactic contract and also provides a limited level
of' semantics from its operation names; for example, a method named print() in a printer
service interface. I[tis common that service-oriented technologies rely solely on syntactic
descriptions; this requires, however, that consensus or standards organizations define
the exact behavior ofaservice interface, which is then described in separate specification
documents that are intended for humans. This approach is potentially impractical, since
building consensus on every service interface is not always possible or desirable.
Much research exists in explicitly describing semantics. Approaches like the Semantic
Web (Berners-Lee, Hendler & Lassila,2001) and OWL-S (OWL Services Coalition, 2003)
are investigating techniques for externally describing the semantics of content and Web
services. This leads to a separation between semantic and syntactical description, which

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 7

Figure 3. Service oriented interaction pattern

:ServiceRegistry :ServiceRequester
f) f

:publish(svcDescription,ref)

_:discover(svcDescription)

filterProviders

returnProviderReferences
fffffff =

filterResults

. :bind()
:crefate()
:ServiceObject
returnSe}viceObject
fffffff o= = = = = — =
\
:deétroy() |

\
:remove(schescription,refLD

:re‘lease(objRef) E]
\
\
\
\

is beneficial since it does not require consensus to discover that two services perform
the same or similar tasks, for example. This approach does, however, introduce the
possibility of syntactic mismatches if service discovery is based solely on semantics. For
instance, arequester may expect a particular service interface for printing but discovers
a service with a different one. Approaches such as Ponnenkanti and Fox (2003) address
this problem by constructing adapter chains from adapter repositories.

Service Object

The service object implements the service interface, and it is returned by a service
provider at the moment a service requester binds to the provider. Service objects are
created and released according to a set of policies. In service orientation, service
requesters have no knowledge about the policies followed by a service provider
when creating service objects during binding. Different service object creation
policies exist:

i Shared object: The service provider creates a single object that is returned to all
service requesters when they bind to the provider; the object is consequently
shared by all the requesters.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

8 Cervantes and Hall

i Object pool: The service provider creates a certain number of service objects. A
different service object from the pool is returned to every requester as it binds to
the provider according to availability. Once a service object is released, it is
returned to the pool for reuse. In this situation, service objects are shared by the
requesters, but not concurrently, since two requesters that bind to the provider
never obtain a reference to the same object simultaneously. This policy is useful,
for example, when resources, such as memory, are limited or when service objects
represent a physical resource that is limited in quantity, such as a communications
port.

i Oneobject per requester: A service objectis created for each requester. [fthe same
requester is bound to the service provider several times, the requester always
obtains the same service object. This policy requires that the service requester be
associated with an identifier by the service provider at the time of binding. This
policy is useful, for example, when the service requester interacts with a remote
service object across multiple method calls (that is, a session) but does not maintain
a continuous connection to the service object, such as if communication is done
through a connectionless protocol such as HTTP.

. One object per binding: A different service object is created each time a service
requester is bound to the service provider.

The choice of the object creation policy is important when providing services that are
stateful. A stateful service is capable of maintaining state across several method calls
by the same client. The object pool and one object per requester creation policies are
adequate for stateful services. The shared object creation policy is not a particularly
good policy for stateful services, unless the intention is to explicitly share state among
all requesters. The one object per binding creation policy can be used for stateful
services, but this requires that the service requester is aware of the situation and only
binds to the service provider once and keeps the returned service object across all
interactions with the service. In contrast, all creation policies are adequate for stateless
services.

Atthe end of the interaction between arequester and a service, the requester must release
the service object. This step is necessary since the service provider may need to know
at which time the service object is not being used anymore to either destroy the service
object or to give it to another requester. Two different release policies can exist:

i Explicit: When release is explicit, the service requester explicitly invokes some
method that informs the service provider that its interaction with the service has
ended.

° Implicit: When release is implicit, the end of usage is determined via implicit means

such as garbage collection or lease expiration. The concept of leasing allows a
service provider to automatically release a service object from a service requester
unless the service requester renews the lease. This policy can be used, for example,
in parallel with an object pool creation policy to guarantee that after a certain
amount of time, service objects are released and returned to the pool.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 9

Composition

Service composition represents the usage of a set of services to accomplish a particular
task. Service composition is often considered the responsibility of service requesters.
In practice, service composition is the incorporation of different services inside of an
application to perform some overall function, where the application plays the role of the
service requester. Such an application contains control and data flow that coordinates
service invocation and data transfer among the different services. The coordinating
application can be written in a standard programming language; however, there is a
strong tendency to favor the use of executable processes to write such applications. An
example of this is BPEL4WS (Andrews etal., 2003), which is used in the context of Web
services orchestration (Peltz, 2003).

A service composition is written in terms of service interfaces and is considered abstract
until execution time, when service providers are discovered and bound. Service compo-
sitions must handle issues relating to service discovery and service dynamics. With
respect to service discovery, these issues include service availability, requester-side
filtering (see next subsection), and lack of knowledge with regard to service object
creation policies. With respect to service dynamics, it is possible thata particular service
provider becomes unavailable while the coordinating application is executing. This
problem is addressed in Web services through transaction mechanisms that allow
rollback in case a service invocation fails. Recovery from a service departure can also be
achieved through self-adaptation techniques (Cervantes & Hall, 2003).

Execution

In service orientation, an execution environment provides two main mechanisms to
service providers and requesters that support the service-oriented interaction pattern.
The first mechanism is service registry access, which includes three main operations:

. Publish: Used by service providers to add a service description, along with a
reference to the service provider, to the service registry.

i Remove: Used by service providers to remove a previously published service
description from the service registry. In certain service-oriented technologies, the
removal of aservice provider from the service registry requires that service objects
that the provider has created must be released by the requesters.

i Lookup: Used by service requesters to obtain references to service providers
presentin the service registry. To obtain a service, a service requester sends criteria
to the registry that are used to select a set of service providers (registry-side
filtering); only service providers that match the criteria are returned. The final
selection of a specific service provider is left to the requester, which may need to
selecta single service provider when multiple service providers match the supplied
criteria (requester-side filtering).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

10 Cervantes and Hall

To allow service requesters to be aware about changes in the services, the execution
environment provides a second mechanism which is notifications to signal service
changes. Through notifications, service requesters can know about changes in service
availability to be able to incorporate new services that become available or to stop using
services that become unavailable. Service notifications concern the following events:

. Service published: Aneventthatoccurs whenaservice is published in the registry.
. Serviceremoved: An event that occurs when aservice is removed from the registry.
. Service modified: Aneventthat occurs when aservice thatis registered is modified

without being removed from the registry. A modification can happen, for example,
when the attributes that characterize the service are modified.

When the execution environment does not provide notification mechanisms, service
requesters can poll the registry periodically to know when services are published or
removed.

A Comparison of Service and
Component Orientation

This section summarizes and discusses the similarities and differences between the
concepts present in service and component orientation.

Summary

Table 1 summarizes the main similarities and differences that exist between service and
component orientation based on the discussion of the preceding sections. From this
table, different conclusions can be drawn:

° An important difference between the two approaches is integration time. In
component orientation, applications are assembled from building blocks that are
integrated at the time of assembly, while in service orientation integration occurs
prior to or during execution, since only service descriptions are available during
assembly.

i The focus of service orientation is on discovery, while the focus in component
orientation is on composition. This explains the fact that service orientation places
a stronger emphasis on service description and the separation between service
description and implementation.

. Service orientation is concerned with dynamic availability, while this is not the case
in component orientation. In general, component orientation is targeted toward the
construction of more static applications, where the hypothesis that components

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 11

Table 1. Component and service orientation characteristics

Development
model

Building
block
concept

Composition

Execution
environment

Component Orientation

- Building block development
separated from assembly.

- Assembly based on available
components.

Service Orientation

- Building block development
separated from assembly.

- Assembly based on abstract service
descriptions.

- External view and
implementation not always
separated.

- Component instances created
from components. Components
are packaged to support
independent delivery and
deployment.

- Separation between service
description and implementation.

- Service providers create service
objects. Packaging is not taken into
account.

- Concrete description that
defines how a set of component
instances are configured and
connected together.

- Dynamic availability (arrival
or departure of components
during execution) is not a
hypothesis.

- Tendency towards structural
architecture description.

- Abstract description based on
service description. Composition
becomes concrete during execution.

- Service availability and dynamism
need to be taken into account during
execution.

- Tendency toward use of executable
process descriptions.

- Instance creation policy
responsibility of the clients.

- Life-cycle management
through control interfaces.

- Non-functional requirements
support.

- Deployment support.

- Service object creation policy
responsibility of service provider
and unknown to the requester.

- Service registry and notification
mechanisms.

may exhibit dynamic availability is not explicitly present, although it may be
supported programmatically.

i Service composition favors the use of executable processes to compose services
while component orientation favors structural architecture description to com-
pose component instances.

i Component orientation gives more responsibility to the execution environment,
which covers aspects ranging from low-level deployment to high-level nonfunc-
tional activities. In contrast, service orientation does not explicitly consider low-
level activities, such as deployment, and high-level nonfunctional activities are

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

12 Cervantes and Hall

assumed to be provided by upper layers; for example, transactions are defined at
the composition level.

Discussion

It is possible to conclude that service and component orientation are two approaches
targeted toward different needs. Service orientation is adequate when the building
blocks that form an application exhibit dynamic availability and aspects such as
substitutability are important. Component orientation is adequate when applications are
assembled from building blocks that are available at the time of application assembly.
These two approaches are, however, complementary and can be used together in two
different ways.

i Components as service providers: Components are ideally suited to be service
providers. This approach allows aspects which are not considered in service
orientation, such as delivery and deployment, to be taken into account. This
approach is already followed by component models such as EJB, where certain
components can implement services accessible through the Web.

° Introduction of service-oriented concepts into component models: A different
approach is to introduce service-oriented concepts into component models. In
particular, the service-oriented interaction pattern could be used as a means to
connect component instances, which act as service providers and requesters. The
benefit of this approach is that it introduces support for late binding and dynamic
component availability (that is, the arrival or departure of component instances
during execution) to component models. This approach is explored in the service-
oriented component model of Cervantes and Hall (2003).

Survey of Service-Oriented Technologies

From the concepts of service orientation previously described, it is possible to establish
alistof characteristics that are useful for categorizing service-oriented platforms, which
are platforms that implement service-oriented principles. The characteristics are:

i Service description: the approach for describing services.

i Service publication: the operations provided by the service registry so that service
providers and requesters can publish and revoke services.

i Service discovery: the operations provided to service requesters to discover and
bind with service providers as well as registry-side filtering mechanisms.

i Service object creation policies: the policies used by a service provider when
creating service objects.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 13

° Service notifications: the notification mechanisms supported by the platform.

i Service release: the policies supported for releasing service objects.

The following subsections use these characteristics to describe the following service-
oriented technologies: CORBA Traders, JavaBeans Context, Jini, OSGi framework, and
Web services.

CORBA Trader

A CORBA Trader (Stratton, 1998) provides support for the service-oriented interaction
pattern in a CORBA environment. The trader belongs to a set of middleware services
defined in the CORBA specification (Object Management Group, 1995). The CORBA
Trader distinguishes itself from other service-oriented platforms by the fact that it
supports the creation of trader networks (called federations) that can increase the
number of answers that are returned for a service request; these trader networks can
continually evolve.

The following is a summary of the CORBA Trader’s service-oriented characteristics:

. Service description: In the CORBA Trader (Figure 4), a service description is
comprised of a reference to a service interface (described in IDL) along with a set
of attributes that characterize the service. The number of attributes in the descrip-
tion is fixed, but attributes can be marked as mandatory or optional and also
immutable or modifiable. Service descriptions must be published in a service
description repository before any service provider can publish provided services
of that type to the service registry.

. Service publication: The publish and revoke operations are named export and
withdraw, respectively. Service attributes are supplied when a service is published.

. Service discovery: The discovery operation is named query. This method supports
complex requests through a constraint over the properties declared in the service
description along with preferences that allow the ordering of responses from the
registry and policies targeted towards limiting the propagation of a request in a
trader federation. There is no explicit bind operation since the results returned by
the service registry contain references to the service objects.

i Service object creation policies: CORBA makes an explicit difference between the
publication of a shared object and the publication of a factory (called proxies) that
allow different creation policies to be implemented. To support factory registration,
atrader must implement a specific interface.

. Service notifications: No notifications are defined as part of the trader specifica-
tion.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

14 Cervantes and Hall

Figure 4. CORBA Trader example

a) Service Description

interface PrinterService // service interface
typedef unsigned long JobID;
JobID print (in string data) ;

i

service PrinterServiceDescription { // service description
interface PrinterService;
mandatory property string building;
property short floor;
mandatory property string type;
mandatory property string language;
property string name;

}i
b) Publication

Property[] props = new Propertyl[5];

lprops [0] ="Laboratory";

lprops [1] = (short) 3;

lprops [2] ="Coloxr™";

lprops [3] ="Postscript";

props [4] ="LabPrinter";

String id = reg.export (printer, "PrinterService", props) ;

c) Removal

reg.withdraw (id) ;

d) Discovery
lookup.query ("PrinterService",
"((color == 'black') and
(language == 'postscript'))", // Constraint
"min (floor)", // Answer ordering
policies,
desiredProps,

20, // Max answers
servicerefs, // Results
refsiterator, limits);

e) Binding
Offer:
building = '36'
color = 'black’
floor = 2
language = 'postscript'

Reference: IOR:00000000002449444c3a6f6d672e6£7

INo binding operation since the result includes a reference to a
remote object

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 15

. Servicerelease: The service requester release the service object explicitly through
the release method.

JavaBeans Context

The concept of JavaBeans Context was introduced in a subsequent specification to the
original JavaBeans component model (Sun Microsystems, 1998). This concept provides
a means to group JavaBeans component instances into execution contexts (which can
themselves be organized hierarchically) and to allow instances to obtain services from
the context at run time.

The application domain for this platform concerns nondistributed applications that are
assembled visually and are user oriented (meaning that they normally support
interaction through a user interface). In JavaBeans Context, only one service
provider for each service can be present in the context (that is, the service registry)
at any given moment.

The following is a summary of JavaBeans Context’s service-oriented characteris-
tics:

i Service description: In JavaBeans Context (Figure 5), a service is described as a
Java class or interface. Since only one service provider per service can be
registered, there is no support for properties that allow service providers to be
differentiated.

. Service publication: The publish and revoke operations are named addService
and revokeService, respectively. When a service is published, only the name of
the service and a reference to the service provider is submitted to the service
registry.

. Service discovery: JavaBeans Context offers an operation, called hasService, to
allow a service requester to test for the availability of a service and an operation,
called getService, to bind a service requester with the service provider. During
binding, a client can give initialization parameters to the service and, in addition,
the service requester is automatically registered to receive notifications concern-
ing the departure of the service.

. Service object creation policies: A service provider must implement a method
called getService that receives, among other things, a reference to the service
requester. This allows different creation policies to be implemented.

° Service notifications: JavaBeans Context supports the registration of listeners
that receive events announcing either the arrival (serviceAvailable) or departure
ofaservice (serviceRevoked).

. Service release: Service requesters must free the service objects explicitly.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

16 Cervantes and Hall

Figure 5. JavaBeans Context example

a) Service Description

interface PrinterService

{

public long print (String data);

b) Publication

BeanContextServiceProvider provider = new
PostscriptPrinterProvider() ;

[beancontext .addService (PrinterService.class, printerprovider) ;

c) Removal
boolean revokeNow = true; // must service be freed immediately?

[beancontext .revokeService (PrinterService.class, printerprovider,
revokeNow) ;

d) Discovery

//tester présence du service
if (beancontext.hasService (PrinterService.class)==true) (

e) Binding

Object service = beancontext.getService(

child, //bean instance to service request
child, //service requester
PrinterService.class,
paramsConfig, //configuration parameters
child //listener to service removal events

)i

((PrinterService) service) .print (data) ;

}

Jini

Jini (Arnold et al., 1999) is a distributed service platform defined by Sun that shares
several concepts with the CORBA Trader platform. Jini is a Java technology that
leverages the capability of the Java platform to dynamically load code from the network.
Thanks to this, a service object is sent to the same location as the service requester,
although distribution is possible if the object received by the requester plays the role of
a proxy. This characteristic differentiates Jini from the CORBA Traders where commu-
nication between service requesters and the service object is always done remotely. Jini
explicitly supports lease policies for service publication and removal. Another charac-
teristic of Jini is that service requesters and providers must initially locate a registry to
be able to initiate service discovery. A registry may be known from a fixed address, or

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 17

Figure 6. Jini example

a) Service Description

interface PrinterService extends Remote

{

public long print (String data) throws RemoteException;

b) Publication
ServiceRegistrar reg = findRegistry(); // find the registry
Entry entries[]={printerType,resolution,444}; // attributes

ServiceItem printsvc = new ServiceItem(

null, // service id
serviceObject,// serializable object
entries); // attributes

ServiceRegistration svcreg = reg.register(registration,
1000000) ; // lease time (ms)

c) Removal

ILease expiration or:

Lease lease = svcreg.getLease();
lease.cancel () ;

d) Discovery

Class svcInterfaces []={PrinterService.class};
Entry entries[]={printerType};

ServiceTemplate template = new ServiceTemplate(null, svcInterfaces,
entries) ;
ServiceMatches matches = reg.lookup (template,3); // 3 max

e) Binding

if (matches.totalMatches>0)

((PrinterService)matches.items [0]) .print (data) ;

}

it can be discovered from a request that is broadcast. Jini services are organized into
groups, and a particular service registry can contain a particular group of services. Even
though Jini supports the existence of multiple service registries, it does not offer
mechanisms that allow registries to delegate service requests; instead, service providers
must publish their service offers into multiple registries.

The following is a summary of Jini’s service-oriented characteristics:

i Service description: In Jini (Figure 6), aservice is described as a Java interface with
an arbitrary number of attributes, which are subclasses of the Entry class.

i Service publication: Service publishing is done through the register method. This

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

18 Cervantes and Hall

method puts the service in the service registry which grants a lease for the
registration. Before the lease expires, the service provider must renew it to avoid
the removal of’its service from the service registry. Torevoke a service that has been
published, the service provider can wait for the lease to expire, or it can force its
early expiration.

i Service discovery: Service discovery is done through a method named lookup that
receives a maximum number of answers that the registry should return. Jini does
not support sophisticated registry-side filtering of service providers. The criteria
used to determine if a service matches with a request is that the service interfaces
match with those that were requested and that the attributes sent by the requester
are present and equal to those in the service description.

i Service object creation policies: During service publication, the service provider
includes areference to the service object and this object is copied into the registry.
When arequester obtains an answer from the registry, it also obtains a copy of the
service object. By default, the creation policy is one object per binding; however,
ifthe service object plays the role of a proxy for aremote object, the creation policy
becomes shared object since all of the service requesters interact with the same
remote object.

° Service notifications: Jini provides an asynchronous notification mechanism to
inform service requesters about service events. These events include service
publication, revocation, and modification. To receive notifications, a service
requester must subscribe to events produced by the registry.

. Servicerelease: There is no explicit service object release mechanism; instead, this
is accomplished through garbage collection.

OSGi

The Open Services Gateway Initiative (OSGi) (Open Services Gateway Initiative, 2003)
is an independent, nonprofit corporation working to define and promote open specifi-
cations for the delivery of managed services to networks in homes, cars, and other types
of networked environments. The OSGi specification defines a non-distributed Java
service platform that provides mechanisms to deploy service providers and requesters
inside the platform (called the framework). In OSGi, services are delivered and deployed
in alogical and physical unit called a bundle. Physically, a bundle corresponds to a JAR
file that contains code and resources (that is, images, libraries, and so forth); logically,
a bundle corresponds to a service provider and/or requester. The framework provides
administration mechanisms to install, activate, deactivate, update, and remove physical
bundles. The activation or deactivation of a physical bundle results in the activation or
deactivation of the corresponding logical bundle. When the logical bundle is active, it
can publish or discover services and bind to services provided by other bundles through
a service registry provided by the platform. In OSGi, the presence of a service in the
service registry dictates the valid lifetime of the service objects; that is, the service
objects are considered unusable once the service is removed from the registry.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 19

The following is a summary of OSGi framework’s service-oriented characteristics:

i Service description: In OSGi (Figure 7), a service is described as a Java class or
interface along with a variable number of attributes that are name-value pairs.
Although these attributes are not specified inside the interface, they are usually
defined in the service interface documentation.

i Service publication: The publish operation is called registerService. This method
receives the name of a service along with the service object and a dictionary of
attributes. When a service is registered, the registry returns a reference thatis used
to revoke the service from the registry through the unregister operation.

Figure 7. OSGi example

a) Service Description

{

b) Publication

{0

reg.unregister() ;

d) Discovery

)i

if (refs!=null) {

e) Release

interface PrinterService

public long print (String data);

// service implementation
class PSPrinter implements PrinterService, Configurable

PrinterService printersvc new PSPrinter() ;
Dictionary props = new Dictionary() ;
props.put ("printertype", "Postscript") ;
props.put ("color", "true") ;

ServiceRegistration reg bundlecontext.registerService (

PrinterService.class.getName () , // Interface name
printersvc, // Service object
props) ; // Attributes

¢) Removal

ServiceReferences refs[]=bundlecontext.getServiceReferences (
PrinterService.class.getName (),
" (& (printertype=Postscript) (color=*))" //filter

PrinterService printer
= (PrinterService)bundlecontext.getService (refs[0]) ;

if (printer instanceof Configurable)
{...configure the service...}

printer.print (data) ;

bundlecontext.ungetService (refs[0]) ;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

20 Cervantes and Hall

. Service discovery: Service discovery is done through the getServiceReferences
method that returns a set of objects that represents references to service providers.
The discovery method receives a string that contains a filter in LDAP (Lightweight
Directory Access Protocol) query syntax that allows the registry to perform
registry-side filtering based on the attributes provided during publication. Binding
with a service provider is done explicitly through a method called getService.

° Service object creation policies: OSGi supports two different policies regarding
service object creation, shared object and one object per requester. To implement
the latter policy, a ServiceFactory object must be used when registering the
service. This object is a factory that is responsible for creating service object
instances that are specific to each requester. OSGi considers all requests that
originate from the same physical bundle as belonging to the same requester, and
the service factory automatically receives an identifier corresponding to the bundle
from which the request originated.

i Service notifications: OSGiprovides a service notification mechanism for service
requesters using the typical /istener approach of Java. During listener registration,
an optional filter may be specified to reduce the number of events received. The
events that the platform supports are service publication, revocation, and modi-
fication.

. Service release: Service objects are freed explicitly through a method named
ungetService, although the framework will automatically free used services when
a bundle (that is, the service requester) is deactivated.

Web Services

According to Andrade and Fiadeiro (2001) and Curbera et al. (2001), Web services
emerged out of the need for interaction among heterogeneous applications residing
inside different companies. Heterogeneity is not only considered at the implementation
language level but also at the level of interaction models, communication protocols, and
quality of service.

Web services description is realized in a language called Web Service Description
Language (WSDL) (W3C World Wide Web Consortium, 2001). This language, which is
XML-based, supports the description of service interfaces, data types, communication
transport protocols, and service location. The service registry, called Universal Descrip-
tion Discovery and Integration (UDDI) (UDDI Organization, 2002), supports the publi-
cation of service descriptions, called service types, along with that of service providers,
called businesses. UDDI is a distributed service registry in which information is replicated
at different sites, and as a consequence, a service provider only needs to publish its
services to a single registry. In Web services, service discovery is usually carried out
by a human and dynamic availability is not as prevalent as in the service platforms
presented previously.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 21

The following is a summary of Web service’s service-oriented characteristics.

i Service description: In Web services (Figure 8), a service description contains the
following information:
definitions: service name and namespace
types: definitions of complex data types

message: description of a message (request or response). This description contains
the name of the message and a number of parts that describe parameters or return
values

portType: method description that combines several messages, for example a
request and a response

binding: description of the message transmission protocol.

service: location of the service (as a URI).

° Service publication: The main methods that are provided by UDDI to publish
information are:

Figure 8. Web services example

a) Service Description

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="HelloService"
targetNamespace=
"http://www.foo.com/wsdl/PrinterService.wsdl" xmlns=...>
<message name="PrintRequest'">
<part name="data" type="xsd:string"/>
</message>
<message name="PrintResponse">
<part name="jobID" type="xsd:string"/>
</message>
<portType name="Print_ PortType">
<operation name="print"s>
<input message="tns:PrintRequest"/>
<output message="tns:PrintResponse"/>
</operations>
</portTypes>
<binding name="Print_Binding"
type="tns:Print_PortType">

</binding>
<service name="Print_Service">
<documentation>
WSDL pour service impression
</documentations>
<port binding="tns:Print_Binding" name="Print_Port">
<soap:address
location="http://www.printhost:8080/printsvca"/>
</port>
</services>
</definitions>

b) Publication
save_service (example not given for lack of space)

c) Discovery and binding

find service (example not given for lack of space)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

22 Cervantes and Hall

save_service: publish a service type.
save_business: publish a service provider.
The main methods that allow information to be removed from the registry are:
delete_service: remove a service type.
delete_business: remove a service provider.
i Service discovery: UDDI provides different discovery methods:
find_service: returns information about services provided by a business.

find_business: returns information about one or more service providers.
Discovery methods support queries through regular expressions. These methods
return keys that can be further used to obtain extended information and values can
bereturned in an ordered way following different criteria (e.g., alphabetical order,
registration date, and certificate availability).

i Service object creation policies: All creation policies can be supported by aservice
provider.

° Service notifications: UDDI can notify clients about changes in the registry
concerning service types and businesses; notifications include addition, removal,
and modification.

i Service release: Since web services support different communication protocols

both release policies can be implemented by the service providers.

Summary of Service-Oriented Technologies

This section surveyed several technologies that support service-oriented concepts, a
summary of which is presented in Table 2. As the technologies surveyed in this section
target particular application domains, the purpose of the survey was not to compare these
technologies with each other, but to illustrate how service-oriented concepts are realized
in the different platforms. The CORBA Trader is useful in CORBA environments for
decoupling distributed clients and services. JavaBeans Context is useful to introduce
service-oriented concepts to centralized user-oriented applications. Jini is useful for
providing and discovering services in ad hoc networks, where the service may or may
not be remote. OSGi is useful as a remotely administrable gateway for dynamically
deployable services or as a framework for building non-distributed service-oriented
applications. Finally, Web services are useful for providing functionality that is acces-
sible via Web-based protocols.

Conclusion

This chapter presented an overview of service-oriented concepts, a comparison of
service to component orientation, and a survey of a set of service-oriented technologies.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 23

Table 2. Characteristics summary

CORBA JavaBeans Jini OSGi Web
Trader Context Services
Service IDL interface | Java interface |Java interface |Java interface | WSDL
description | mandatory | or class + attributes or class + description
and optional attributes
properties
Service export AddService | Register RegisterSe | save_servi
publishing withdraw revokeServ | lease.can |rvice ce
ice cel orlease |unregister |delete_ser
expiration vice
Service Query GetService | Lookup GetService | find_servi
i References |ce
discovery constraint no filtering attributes in /
a_nd ':esu":s language, the request getService
filtering result must be
policies ordering, present in LDAP filter
policies service
description
Service shared object | all an object per | shared object | all
object or binding or or an object
i shared object | per requester
cre_at_lon all (if proxy)) P d
policies
(\[e)ifiler=1i (o) not defined service arrival | arrival, arrival, arrival,
ns and departure | departure, departure, departure,
modification | modification | modification
Release explicit explicit implicit using | explicit both
both garbage
collection and
leasing
Distributed B no yes no yes
Number of ([Ruiiie one registry multiple non- | one registry multiple
registries registries that | per context, collaborating replicated
collaborate but can be registries registries
and form a grouped
federation hierarchically
Other only one service support for interaction
characteris service objects are deployment of | spans across a
tics provider per | downloaded | service long period
service can to the client's | providers and
exist in a location requesters

given context

Service orientation is an approach for building computing systems around an interaction
pattern where a client is bound to a server that is unknown to the client until execution
time. In contrast, component orientation is a software development approach that
focuses on components as software building blocks that are explicitly assembled into
different applications. These two approaches are similar since both services and
components are used as building blocks to construct applications.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

24 Cervantes and Hall

The technology survey covered a set of service-oriented technologies that support the
interaction pattern associated with the service-oriented approach. These technologies
target different kinds of application domains, ranging from nondistributed constrained
environments (in the case of OSGi) to distributed heterogeneous applications (in the case
of Web services). The variety of domains in which service orientation is used reflects
a more general desire of software developers to defer selection of building blocks until
run time and/or accounts for the possibility of dynamically available building blocks.

Although service orientation started as an approach based around a particular interac-
tion pattern, it is slowly evolving into a full-blown software development approach,
thanks in part to the popularity of Web services. Service orientation introduces,
however, new challenges to software development, such as discovering services,
handling dynamic availability, and requester-side filtering. Currently, service discovery
is mostly done based on syntactic approaches; the addition of semantic information
would enable more sophisticated ways to perform this activity. Handling dynamic
availability requires providing means to applications so that they can be capable of
releasing departing services or incorporating new services during execution. Requester-
side filtering requires the definition of criteria that allows the selection, among multiple
providers of a same service, of the candidate that is most appropriate.

References

Andrade, L. F., & Fiadeiro, J. L. (2001). Coordination technologies for Web-services. In
OOPSLA 2001: Workshop on Object-Oriented Web Services. Retrieved August 3,
2004: http://'www.research.ibm.com/people/b/bth/OOWS2001/andrade.pdf

Andrews, T. etal. (2003). Business process execution language for Web services, version
1.1.Retrieved August 3,2004 : http://www-106.ibm.com/developerworks/library/
ws-bpel/

Arnold, K., O’Sullivan, B., Scheifler, R. W., Waldo, J., & Wolrath, A. (1999). The Jini
specification. Reading, MA: Addison-Wesley.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The Semantic Web. Scientific American,
284(5),34-43.

Bieber, G., & Carpenter, J. (2001). Introduction to service-oriented programming (rev 2.1).
Retrieved August 3, 2004 : http://www.openwings.org/download/specs/
ServiceOrientedIntroduction.pdf

Box, D. (1998). Essential COM. Boston: Addison-Wesley.

Burbeck, S. (2000). The evolution of Web applications into service-oriented components
with Web services. Retrieved August 3, 2004 : http://www-106.ibm.com/
developerworks/library/ws-tao/index.html

Cervantes, H., & Hall, R. S. (2003). Automating service dependency management in a

service-oriented component model. Proceedings of the 6th ICSE Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Technical Concepts of Service Orientation 25

Retrieved August 3,2004: http://www.csse.monash.edu.au/~hws/cgi-bin/CBSE6/
Proceedings/papersfinal/p28.pdf

Clements, P. C. (1996). 4 survey of architecture description languages. Proceedings of
the 8th International Workshop on Software Specification and Design. IEEE
Computer Society (pp. 16-25). Washington, D.C.

Conan, D., Putrycz, E., Farcet, N., & DeMiguel, M. (2001). Integration of non-functional
properties in containers. Proceedings of the Sixth International Workshop on
Component-Oriented Programming. Retrieved August 3, 2004: http://
research.microsoft.com/users/cszypers/events/WCOP2001/
ConanPutryczFarcetDeMiguel.pdf

Curbera, F., Nagy, W. A., & Weerawarana, S. (2001). Web services: Why and how. In
OOPSLA 2001: Workshop on Object-Oriented Web Services. Retrieved August 3,
2004: http://www.research.ibm.com/people/b/bth/OOWS2001/nagy.pdf

Davidson, M. (2002). The Bean Builder tutorial. Retrieved August 3, 2004: http://
java.sun.com/products/javabeans/beanbuilder/1.0/docs/guide/tutorial. html

Fowler, M. (2004). Inversion of control containers and the dependency injection pattern.
Retrieved August 3, 2004: http://martinfowler.com/articles/injection.html

Indulska, J., Bearman, M., & Raymond, K. (1993). 4 type management system for an ODP
trader. Proceedings of the IFIP TC6/WG6.1 International Conference on Open
Distributed Processing ICODP (pp. 141-152). Berlin, Germany.

Meijler, T., & Nierstrasz, O. (1997). Beyond objects: Components. In M. P. Papazoglou,
& G. Schlageter (Eds.), Cooperative information systems: Trends and directions
(pp-49-78). London: Academic Press.

Object Management Group. (2003). CORBA components, V3.0. Retrieved August 3, 2004:
http://www.omg.org/technology/documents/formal/components.htm

Object Management Group. (1995). The common object request broker: Architecture and
specification. Retrieved August 3, 2004: http.//www.omg.org/technology/docu-
ments/formal/corba_2.htm

Open Services Gateway Initiative (2003, March). OSGi service platform specification, 3rd
release. Retrieved August 3, 2004: http://osgi.org/resources/spec_download.asp

Ousterhout, J. K. (1998). Scripting: Higher-level programming for the 21st century.
Computer,31(3),23-30.

OWL Services Coalition. (2003). OWL-S: Semantic markup for Web services. Retrieved
August, 3, 2004: http://www.daml.org/services/owl-s/1.0/owl-s.html

Peltz, C. (2003). Web services orchestration and choreography. Computer, 36(10), 46-
52.

Ponnenkanti, S.R., & Fox, A. (2003, March). Application-service interoperation without
standardized interfaces. Proceedings of IEEE International Conference on Perva-
sive Computing and Communications (PerCom) (pp. 30-40). Fort Worth, TX.

Stratton, D. (1998). The OMG CORBA Trader service (Tech. Rep.). University of Ballarat,
Australia, School of Information Technology and Mathematical Sciences.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

26 Cervantes and Hall

Sun Microsystems. (2001). Enterprise JavaBeans specification version 2.0. Retrieved
August 3, 2004: http://java.sun.com/products/ejb/docs. html

Sun Microsystems. (1998). Extensible runtime containment and services protocol for
JavaBeans version 1.0. Retrieved August 3, 2004: http://java.sun.com/products/
javabeans/glasgow/beancontext.pdf

Sun Microsystems. (1997). Java Beans specification. Retrieved August 3, 2004: http://
java.sun.com/products/javabeans/reference/api/index.html

Szyperski, C. (1998). Component software: Beyond object-oriented programming.
Boston: Addison-Wesley.

UDDI Organization. (2002). UDDI version 3.0 specification. Retrieved August 3,2004:
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs. htm#uddiv3

W3C World Wide Web Consortium. (2001). Web services description language (WSDL)
1.1. Retrieved August 3, 2003: http://www.w3.org/TR/wsdl

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 27

Chapter Il

Beyond
Application-Oriented

Software Engineering:
Service-Oriented

Software Engineering

Jiehan Zhou
VTT Technical Research Centre of Finland, Embedded Software, Finland

Eila Niemela
VTT Technical Research Centre of Finland, Embedded Software, Finland

Abstract

This chapter introduces SOSE (Service-Oriented Software Engineering) as an advanced
software development. It argues that SOSE is characterized by small projects, existing
software reuse, market changing and software evolution focusing, customer domination,
and common middards in comparison with AOSE (Application-Oriented Software
Engineering). It presents SOSE software development methodology involving the main
processes of service extracting, service middard, service circulation, service evaluation,
and service evolution with the middard service fundamental. Eventually, compared
with other industries (for example, car manufacturing, construction, and electronics)
with global standards and fine-granularity components, the software industry is
immature in unified service standards, service marketplace, and service granularity

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

28 Zhou and Niemela

evaluation. The authors hope that understanding the underlying fundamental SOSE
middard service and SOSE methodology will make the software industry more productive
and profitable.

Introduction

As the number of component services (for example, ActiveXs, DCOMs, and CORBAs)
grows, e-business software development is coming into being. Concretely, over-engi-
neered systems with redundant functionality are not required for the majority of
customers. Software organizations are typically of a small size, in a state of continual
process change, never arriving, and always in transition (Bennett et al., 2000). Software
developers prefer exploiting the services available in the marketplace to produce the most
effective software in the least time rather than programming from scratch. If needed,
software will be produced as a particular service, instead of “a system,” conforming to
a service standard technology. The system could be composed, executed, maintained,
and evaluated in the way of online service procuring, engaging, and changing.

Currently, almost all commercial application software is sold on the basis of ownership
(Bennett et al., 2002). Thus, a customer buys the object code with some form of license
to use it. Any updates, however important to the customer, are the responsibility of the
vendor. Any attempt by the customer to modify the application is likely to invalidate
warranties as well as ongoing support. This form of marketing, known as supply-side,
is facing the following challenges:

. Bringing together users and providers of software in a trusted marketplace.

i The continuously changing software market and customer needs. Today’s soft-
ware development is in the way of e-business, in which customers are expecting
and demanding various timely services from sites, not costly and time-consuming
turnkey products.

i Reducing software development cost and time. Supply on customers’ demand is
one of the most successful ways to reduce software development cost and time.

i Large-scale and complex software systems. The systems we need to build are likely
to get more complex. Making service standards or specifications enables us to
successfully develop large complex software systems.

i Evolution in Internet time. This challenge is to achieve very fast change yet provide
very high quality software. Existing software maintenance processes are simply too
slow to meet the needs of much faster implementation of software changes.

Inrecognition of these challenges, studies have been running all over the world, aiming
at developing new approaches to software development for highly agile software
systems, which design, implement, test, evaluate, and access services across the Web.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 29

Table 1. Differences between AOSE and SOSE

Application-oriented software development Service-oriented software development

e Supply-side method e Demand-side method

e Product e Instant service

e System e Particular one when needed

e Ownership e Loose-coupled

e Rigid boundaries e Unfixed boundaries

e Technology first e Non-technology first

e Large-size organization (spindle-shape) e Small-size organization (dumbbell-shape)
e Several months e Procurement first

e Product of a calculator e Service of multiplying

The emerging key concept is that software is a service rather than an application. The
differences between AOSE development and SOSE development are shown in Table 1.

An application view is one, typically dominated by suppliers, in which suppliers are
closely coupled with customers’ business problems and software solutions; customers
buy and own the application, product, or system offered by suppliers. The supply-side
methods, driven by technological advance, work well for systems with rigid boundaries
of concern such as embedded systems. It can also benefit from being a large-size spindle-
shaped organization, which focuses on product development, not the product market and
maintenance. The nature of the application-oriented mode implies a slower time-to-
market and high cost associated with the maintenance and evolution of the application.

By contrast, a service view is one, typically dominated by customers, in which an
application is broken down into smaller, finer grained parts; organizations are with the
characteristics of small-size and dumbbell-shaped (software market and maintenance-
focusing); customers have no interest in owning the whole application but use the parts
as they require. This implies that application functionality is delivered as a service where
functionality is required and service elements are identified, executed, and then dis-
carded. That is so-called instance service. The demand-side methods are driven by
nontechnology issues, such as supply contracts, terms, and conditions.

In fact, a study of the demand-side mode has been developed and applied early in
manufacturing (Iacocca Institute, 1991), such as agile manufacturing, in which anew car
might be produced on a dynamic product supply chain. The nodes in the chain, small-
size companies, work together in the form of rapid service request/service response. This
enhances companies accelerating the time-to-market of a product, reducing the invest-
mentrisk, and rapidly responding to the market change. Similarly, with the growth of well-
structured building blocks and service standards, there exists advanced software
development models in software industry, such as COTS (commercial off-the-shelf)
model (Garlan, Allen & Ockerbloom, 1995) and C-BSE (component-based software
engineering) model (Pree, 1997; Szyperski, 1998). What is the difference between them
and SOSE? What is the SOSE model?

This chapter attempts to answer these questions is organized as follows. The first section
presents the concepts related to SOSE, followed by a section comparing SOSE with the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

30 Zhou and Niemela

existing advanced software development methods. The fourth section develops the
SOSE model and illustrates its key elements. The challenges in SOSE are presented in the
final section.

Notions and Visions in SOSE

Notions in SOSE

The widely accepted definition of a service is: “An act or performance offered by one
party to another. Although the process may be tied to a physical product, the perfor-
mance is essentially intangible and does not normally result in ownership of any of the
factors of production” (Lovelock, Vandermerwe & Lewis, 1996). A service represents a
self-contained Internet-based application, capable of completing tasks on its own and
able to discover and engage other services to complete higher-level transactions. A
service is something that you find, use as and when needed and then discard (Bennett
etal.,2000; Breretonetal., 1999).

In summary, a service is a public program conforming to a middard standard, developed
by service providers, traded by service brokers, and used and accessed when service
customers need it. Note that a service might be an HTML text,a CORBA (Common Object
Request Broker Architecture) object, oran ODBC (open database connectivity method)
server. They are all compliant to a middard, such as a programming guideline, specifica-
tion, or standard. Middard is derived from the connotation of the words of middleware
and standard. Many literatures specify standards, like CORBA (Object Management
Group, 1996), ODBC (Universities and Colleges Software Group, 1995), and TPM
(Transaction Processing Monitor) (The Open Group, 1992), as middleware technologies.
This chapter introduces middard as a term of generalizing the above various specifica-
tions, which essentially provide mediations or standards to enhance the communication
among multicomputers, multipeople, and multidomains.

SOSE breaks an application down into several services, in which services are developed
and configured independently and separately in conformance with a middard. This
strategy allows service providers to focus on the business problems at hand, indepen-
dently developing and managing a service to meet needs at a specific point in time. The
conceptual SOSE model is shown in Figure 1.

SOSE software is developed or assembled by a dynamic organization group, based on
existing services with the characteristics of conformance with a middard, business
problem focus, and minimum programming and customization. SOSE software is some-
times called SOSE service.

Middard is a documented agreement containing specifications to be used consistently
as standards, specifications, methods, rules, and guidelines for developing, describing,
and managing services sharable to software stakeholders. A middard is usually initiated,
developed, and managed by middard initiator. TPM, CORBA, HTML, and XML are
instances of middards. A middard is also referred to as a service middard.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 31

Figure 1. Conceptual model of SOSE description

MPI developed by 1..*
Middard service Middard vendor
Programming Interface

platform for 1..* conforms to
SOSE software Service Middard
same as 1..*
based on
develops 1..* registeration constitutes 1..*
developed by 1..*
Service provider Service broker SOSE Ml.d.dard
. initiator
** aims to
Service customer Service marketplace

A middard vendor is any supporter who implements either a part or whole of a middard
and packages them into a middard service programming interface (MSPI) for service
providers to facilitate service development. A middard may have multiple middard
vendors. A service provider, also called a service supplier, develops and maintains
middard-based SOSE services.

Service brokers are those who act as intermediaries, responding to the requests from
service customers and service providers to make SOSE services circulation easier in the
service marketplace. Service customers, also called service requestors/users, are those
who acquire, select, and use SOSE services.

A service profile contains acceptable values for contract terms and policies to govern
how these values may be negotiated. A service contract contains the terms agreed on
by the service provider and service customer for the supply of the service. A customer
profile contains acceptable legal systems for contracts, the minimum service performance
required, the maximum acceptable cost, and the percentage of average market cost within
which negotiation is possible. Provider profiles contain acceptable legal systems for
contracts, guaranteed performance levels, and the cost of providing the service.

Comparison in Advanced Software Development

This section compares the AOSE method with the SOSE method using the items of the
software market, development objective, software organization, provider-customer
relationship, and middard and software risk. The summary is shown in Table 2.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

32 Zhou and Niemela

Table 2. Comparison between AOSE and SOSE

Market | Organization | Objectives Customer Relationship | Middard Risk
Involvement
Single- | Spindle- L Close- Provider- Miscellane
AOSE single shaped Application coupled dominated ous Lower
Expertise- .
COTS-BSE Many- | Dumbbell- COTS maintaining Long—ter[p Provlder— Low
many shaped partnership side
Customer
SOSE | - gsE Many- | Dumbbell- Component Loose- broker- Consistent | High
many shaped coupled .
provider
Many- . L Loose- Customer- .
VE-BSE Dynamical Organization Common Higher
many coupled sponsor

Application-oriented software development is a typical waterfall mode, in which a
software organization is responsible for a product or system owned by a customer. Thus,
a spindle-shaped organization focuses on software products.The organization consists
of'various teams involving requirement analysis, application design, application coding,
testing and integrating, and application delivery. They sequentially work together on a
thorough consideration of customer business logic, techniques, and market changes
during the product life cycle. AOSE customers are close-coupled with application
providers and middard vendors. The middard used in AOSE varies between different
middard vendors. AOSE is slow to respond to market and customer variations, time
consuming, and costly.

COTS-BSE (COTS-based software engineering), C-BSE (component-based software
engineering), and VE-BSE (virtual enterprise-based software engineering) are the repre-
sentatives of SOSE. If such an organization emphasizes new product research and
product marketing, it is dumbbell-shaped. If an organization focuses on changing
markets and dynamic project teams, the organization is dynamical. COTS-BSE particu-
larly uses COTS products as elements of the COTS-BSE software, due to shrinking
budgets, accelerating rates of COTS enhancement, and expanding system requirements
(Tran & Liu, 1997). COTS-BSE is a procurement-centric method, in which customers
directly buy COTSs from providers. As in the case of procurement, the customer needs
to maintain expertise and processes for technology evaluation to be able to identify and
assess alternative or additional future providers. Meanwhile, the provider may also
control product evolution with the result that it becomes very difficult for the customer
to move to another provider. So, COTS-BSE software is based on a provider-side middard.
The main activities in CBSE are COTS identification, evaluation, and integration.
Establishing criteria for COTS evaluation is vital for realizing COTS-BSE. However,
COTS-BSE has arisk of architecture mismatching.

Software components can be considered to be units of independent production, acqui-
sition, and deployment that interact to form a functional system (Poulin, 2001; Syzperski,
1998). C-BSE refers to the development of software systems from pre-existing parts. C-
BSE aims to create platform-independent component integration frameworks, which
provide standard interfaces and thus enable flexible binding of encapsulated software
components. In C-BSE, providers are able to register their components with a broker and

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 33

thus make information about their products available to potential customers. Customers
are supported by the broker in making trade-offs between their own requirements and the
offerings of providers, so the relationship between customers and providers is loose-
coupled. C-BSE components have to be associated with a consistent middard. C-BSE
software is high risk since customers may not be able to find a replacement ifa component
ceases to be available or if a provider goes out of business.

A virtual enterprise is a temporary consortium or alliance (that is, so-called VE-BSE
sponsor) of organizations formed to share costs and skills and exploit fast-changing
market opportunity (Walton & Whicker, 1996). The VE-BSE sponsor consists of a series
of co-operating “nodes” of core competence which form into a supply chain to address
aspecific opportunity in the marketplace. Eachnode is a VE-BSE organization. VE-BSE
organizations do not produce complete products in isolated facilities. They operate as
service nodes in a network of providers, customers, engineers, and other specialized
service functions. VE-BSE will materialize by selecting skill services and asset services
from different firms, synthesizing them into a single business entity. VE-BSE goes
through four distinct activities in conformance with a common middard: organization
identification, organization formation, organization operation, and organization termina-
tion. In each of them, decision processes, such as organization evaluation and selection,
operation redesign, and organization termination, are involved and sequentially related
(Mahajan, 1995).

COTSs, components, and VEs are all service entities and compliant to a certain middard.
VE is the extremity of SOSE organizations. SOSE is arevolutionary activity emerging well
beyond the application-oriented paradigms that preceded it. SOSE are in a commonality
of breaking down a large application or system into units. SOSE allows service providers
to develop and manage these units independently and simultaneously. Therefore, SOSE
is concerned less with building parts than providing users with constantly reliable parts
that maintain continuously working software. In contrast to application-oriented soft-
ware development, SOSE has the following advantages:

Quick solution: SOSE focuses on providing the user with a solution rather than a
product. That is, SOSE emphasizes the analysis of specific users’ requirements and
service marketplace. Ifthere are well-defined services for use, SOSE conducts the service
procurement. For services that cannot be found, SOSE allows consumers to post anotice
for service providers to respond to. Therefore, SOSE organizations are normally small-
sized and dumbbell-shaped, focusing on market changes and customers’ business.

Making up for insufficient resources: Itis impractical for a software organization to build
everything every time. Lack of sufficient money or personnel are usually the main causes
for software system development failure. SOSE makes it possible for software develop-
ment to explore and use services available in the marketplace but cannot develop them
costly and timely. There is some competitive know-how, which is difficult for an
individual provider to master in a short time. Therefore, SOSE makes it cheaper for an
organization to cooperate with a competent partner to provide users with a quick
solution.

Facilitating large-scale and complex software development: A complex system usually
involves contributors from different domains, for example, computer-aided airplane

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

34 Zhou and Niemela

manufacturing software. Many problems will arise from the development and mainte-
nance of a complex software system without a unified communication standard. SOSE
provides this unified standard, one kind of a middard, which makes the integration in
different domains easier.

Productivity: Thereal productivity benefits of SOSE will be achieved by enabling parallel
service development. As the adoption of building system from standard components
taken by automobile manufacturing, electronic, construction, and many industries, SOSE
will be anew paradigm in the maturing software industry, which is more productive and
profitable.

SOSE Vision

This section illustrates SOSE from the viewpoints of service customers, service provid-
ers, service brokers, and service organizations. SOSE vision is shown in Figure 2.

Customers’ viewpoint: Software is a service, not an application. Services are easy to be
customized by customers themselves. Customers obtain the copyright of using services
through contract negotiation. In this way, it is necessary for customers to change the
attitude of possessing software into using software.

Providers’ viewpoint: Software is a service unit that can be used independently but are
more likely to be used as a module in an integrated system. The provider is responsible
for managing the module within its life cycle (for example, module designing, implement-
ing, and maintaining). SOSE providers obtain service requirements from service market-
places, not from customers directly. Services are designed in conformance with a certain
middard. After implementing services, providers submit the detailed information of the
services (for example, functionality, nonfunctional characteristics, and business infor-
mation) to service brokers rather than to customers.

Brokers’ viewpoint: Software is a service to be registered and sold. Brokers provide a
number of facilities to respond to requests from both service providers and service
customers. Facilities to support SOSE may include those for ranking and selecting
candidate services, visualization of services and of their closeness to fit requirements,
and automated support for certification. Brokers share benefits from selling services with
service providers.

Software organizations’ viewpoint: The global software marketplace is coming into
being. The knowledge (for example, user requirements, technologies, expertise, program-
mers, and partnerships) corresponding with software development is highly dynamic and
changeable. For instance, the users change their requirements; employees leave; new
technology emerges; and partners join. It is imperative that software organizations use
an agile development method that allows flexibility and accommodates change. Unlike
application-oriented software development, based on rigid business boundaries, spindle-
shaped organization structure, and time-consuming software ownership delivery, SOSE
organizations take into account the activities of service purchase, organization alliance,
and middard selection during the initial phase of software development. SOSE organi-
zations mainly focus on customers’ business rather than the supporting technologies
in the phase of software implementation. SOSE organizations emphasize improving their

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 35

Figure 2. SOSE vision

Service broker

Service
organisation

Service
provider

customer

key competence and putting more effort toward service qualities in the phase of software
maintenance. In this way, software organizations will be more customer-centered, small-
scaled, agile, and competitive.

SOSE Conceptual Model

SOSE Model

The SOSE conceptual model is shown in Figure 3. SOSE software is composed of
interactive and interoperative services. SOSE requirements are not only from the
traditional time-to-market (cost and quality) but also from enterprise application integra-
tion, system composition, and collaboration across platforms, in which service providers
do not need to know who service customers are. Service organizations and providers
discover the commonality underlying the pre-existing software, operation systems, and
SOSE marketplace. This process is also called service extraction. Service middards
provide service providers with the framework for describing, designing, publishing, and
assembling services. Service customers use a service in a binding way when needed,
which is called bind once, execute once.

Service Extracting

Service extraction packages the general classes into one service and lets the surrounding
parts in the original classes use the newly packaged service. Generally, there is a possible
reusable part in an existing software. SOSE service extracting aims at specifying this part

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

36 Zhou and Niemela

Figure 3. SOSE conceptual model

Software

openier?
201AI9S

Integration| .
& Compositi

Time Cost

for service sharing. SOSE service extracting includes application-oriented service
extracting and infrastructure-oriented service extracting. Application-oriented service
extracting is a process of extracting common services from existing applications.
Application-oriented service extracting can be divided into extracting enterprise ser-
vices and domain services.

i Extracting enterprise services. Amounts of modules are developed repeatedly in
enterprise applications due to the factors of technologies and platforms. The key
issue for extracting enterprise services is to extract common services in enterprise
applications as enterprise services, which will enhance the efficiency of new
system development.

i The key issue for extracting domain services is to extract common services in a
domain as the domain services.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 37

Infrastructure-oriented service extracting can be divided into extracting network ser-
vices and extracting programming language services.

. The key issue for extracting network services is to discover common services,
which are responsible for connecting various kinds of network devices. These
services include multiprotocols transformation, virtual serving, automatic load
balancing, and fault hiding. They need not only to transfer right data to the end user
butalso guarantee the QoS of network, network and information security (Adachi,
Kikuchi & Katsuyama, 2000).

. The key issue for extracting programming language services is to discover common
language services, which implement data configuration, object class running, and
components interoperation across platforms (Silberschatz, Korth & Sudarshan,
1997).

Service Middards

Service middards provide technological support for the implementation of the extracted
service. There are various service middards that have been widely used for various
purposes. Table 3 summarizes the initiation, implementation, and evolution of well-
known service middards. They are also the representatives of various standardized
solutions.

i Transaction Processing Monitor (TPM): A transactionisacomplete unitof work.
It may comprise many computational tasks, which may include user interface, data
retrieval, and communications. A typical transaction modifies shared resources (X/
Open, 1992). TPM was initially developed as multithreaded servers to support
numerous terminal transaction requests from a single process. It improves batch
and time-sharing application effectiveness by creating online support to share
application services and information resources. ACID (Atomicity, Consistency,
Isolation and Durability) is the basic requirements for TPM. The core services
defined in TPM are (Silberschatz et al., 1997): presentation facilities to simplify
creating user interfaces, persistent queuing of client requests and server re-
sponses, routing of client messages to servers, and the coordination of two-phase
commit when transactions access multiple servers. Some commercial TPM vendors
are CICS from IBM, Top End from NCR, and Encina from Transarc (Houston, 1998).
TPM technology is widely used for delivery order processing, hotel and airline
reservations, electronic fund transfers, security trading, and manufacturing re-
source planning and control. ODBC and distributed transaction processing moni-
tor (DTPM) extend TPM services. ODBC contains ODBC API and ODBC SQL
grammar, which enables any transaction application to communicate with any
database manager. DTPM extends TPM services (for example, identification and
authorization), which enable completing global transactions.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

38 Zhou and Niemela

Table 3. Summary of well-known service middards

Name |Initiation APIs Vendors Relative terms Evolution
TPM |Transaction x_reg, x_prepare, (IBM's CICS, Micro- [Many terminals Sin- {ODBC, DTPM
processing X_commit, soft's MTS, NCR's gle-Mainframe, 2-tier
x_rollback, TopEnd ... C/S, N-tier C/S, data-
base application,...
ORB |Object inter- X _remoteObjectDe [IONA's ORBIX, CORBA, Inter-
working legate, x- SunSoft's NEO IBM's (COM/DCOM,, ... ORB(Java/RMI)
StubDelegate,... |[DSOM...
MOM |Loosely-coupled [MQConn, IBM's MQSeries, Mi- |Asynchronous Combination with
connection, MQOpen, crosoft's MSMQ, Java [mechanism, event- |ORB, MOM

Message queuing

MQClose,...

Messaging Service

driven applications,

across Intranet

IMS),... message queuing, and Internet

publish/subscribe,...

RPC |Interprocess call |x_binding, ONC's RPC, X/Open's |Synchronous mecha- |Object-oriented,
X_naming, DCE RPC, CORBA |nism, TCP/IP support
1IOP,...

x_UUID,

i Object Request Broker (ORB): ORB is initially developed as a middleware
technology that facilitates application integration across different programming
languages, hardware platforms, operating systems, and ORB implementation
(Object Management Group, 1996). ORB applications are composed of objects,
which are all identical in functionality. The core services needed in ORB are
interface definition, location and possible activation of remote objects, and
communication between clients and objects. Two major ORB initiatives are the
CORBA specification from OMG and COM from Microsoft. Their services are
similar but slightly different. There are a number of commercial ORB products
available, such as ORBIX by IONA, NEO by SunSoft,and DSOM by IBM. One trend
for ORB is to specify a set of APIs that can be implemented in different ORB
products (for example, Java/RMI). Another trend continues toward intranet- and
Internet-based applications.

i Message-Oriented Middleware (MOM): MOM provides an assured, asynchro-
nous, and connectionless method to exchange messages between processes
(Houston, 1998). MOM commonly satisfies these important conditions: no simul-
taneous connection is required between the message sender and receiver; there are
extremely strong request and response delivery guarantees even when communi-
cation does not occur simultaneously between the sender and receiver; requests
and responses can be translated and reformatted en route between senders and
receivers. MOM may be more suitable for wide-area and large-scale systems. MOM
has a larger share of the market than ORB. There are many MOM products from
different vendors. For example, there are the IBM MQ Series, Microsoft MSMQ,
and the Java Messaging Service (JMS). MOM is being designed towards a
combination with ORB, for example, IBM’s D-Sphere (Tai, Mikalsen, Rouvellou &
Sutton, 2001), MOM across intranet and Internet, for instance, SunTM ONE
Middleware (Sun Microsystems, 2003), and MOM across vendors, such as MSMQ-
MQSeries Bridge (Microsoft Corporation, 2003).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 39

Remote Procedure Call (RPC): RPCisatype of protocol thatallows an application
client on one computer to execute an application server on a server computer. RPC
is similar to the local procedure call in that one thread of control logically winds
through two processes (Sun Microsystems, 1998a). The RPC protocol makes no
restrictions on the concurrency model implemented. For example, an implementa-
tion may choose to have RPC calls to be asynchronous so that the client may do
useful work while waiting for the reply from the server. Another possibility is to
have the server create a task to process an incoming request so that the server can
be free to receive other requests. The RPC protocol must offer the following
services: the unique specification of a procedure to be called, matching response
messages to request messages, and authenticating the caller to service and vice
versa. RPC is appropriate for communications between applications that require a
shortresponse times and relatively small amounts of data transfer. The major RPC
products are ONC RPC (Sun Microsystems, 1998b), X/Open DCE RPC (The Open
Group, 1997) and CORBA IIOP (Soley, 1992). RPC is being specified to contain
network protocols, security service, and object management for supporting Intranet-
and Internet-based computing.

Additionally, there are so many middards emerging for service describing, discovering,
and integration, such as XML (eXtensible Markup Language) and UDDI (Universal
Description, Discovery and Integration).

Service Circulation

Service circulation plays an important role in supplying the right SOSE services for the
right SOSE users at the right time. Service circulation includes service providing, service
brokering, and service executing. Service providing spreads providers’ profiles to the
outside in order to bring customers, other providers, and partners of services. The key
issues for service providing are as follows:

Service mining for market opportunities: The key business for providers is
shifting from application development to market tracking and maintenance of
existing services.

Description of service profile: This describes meta information held by services
for contract negotiation, including terms of functionality, performance, cost, and
provider profile.

Implementation of services: Services are implemented using a middard platform
(forexample, HTML, DCOM, or CORBA platform) provided by middard vendors,
which allows service providers to focus on customers’ business logic rather than
supporting technology.

Publication of services: Implemented services can be published to a service broker
and thus information about services is available to potential customers.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

40 Zhou and Niemela

Service brokering offers the services of classifying, evaluating, and registering services.
The key issues for service brokering are as follows:

i Classification of services: Classification of services is needed to help customers
find what they really want. Text mining techniques in knowledge discovery area will
be helpful for service classification and management.

i Registration of services: In the process, each service must be assigned a Universal
Unique [Dentifier (UUID) for guaranteeing uniqueness.

i Ranking of services: This ranks and visualizes services by service profiles and
provider profiles for customer selection. An evaluation criterion is exactly needed
to be made for automation service rating.

i Query of services: Query service in service brokering enables customers to obtain
execution and configuration information for the different services.

Service executing enhances services to customers by dynamically combining and
executing the services in a just-in-time way. The key issues for service executing are as
follows:

i Discovery of services: Service discovery provides a wide range of choice array that
meets customers’ needs. In contrast to service classification, service discovery
performs for customers. In order to improve searching efficiency, it is necessary
for three parties (service provider, broker, and customer) to comply with a same
classification criterion.

i Selection of services: Referring to the ranking service result provided by service
brokering, customers make a selection from their profiles.

i Binding of services: In this phase, customers and providers connect dynamically,
and services are executed as needed. At the extreme, the binding that takes place
prior to execution is disengaged immediately after execution to permit the SOSE
software to evolve for the next execution.

Realizing the importance of service circulation, the United States and the United
Kingdom have established the service circulation environment, based on the vendors of
Visual Basic and Java, respectively Flashline (Flashline, 2003) and ComponentSource
(ComponentSource, 2003). Flashline is one of the service brokers taking Java compo-
nents (Beans or Enterprise Beans) and .NET/COM components as the services. Services
offered by Flashline consist of service registering, categorizing, and listing.
ComponentSource takes Microsoft components (COM, VBA) and Sun Microsystems’
components as the services and evaluates them by the items of installation/uninstallation,
antivirus, and description of services.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 41

Table 4. One of SOSE service performance metrics

Metrics

Meaning

Existence of meta in-
formation

If the value is 1, users of components can easily understand
components’ usage that the components’ developers as-
sume.

Rate of component
observability

The ratio of the number of readable properties to the num-
ber of attributes.

Rate of component
customizability

The ratio of the number of registered properties to the
number of attributes.

Self-completeness of
component’s return
value

The ratio of the number of business methods without return
value to the number of business methods.

Self-completeness of
component’s parame-

The ratio of the number of business methods without pa-
rameters to the number of business methods.

ter

Service Evaluation

Service evaluation is the business of rating service performances and qualities. High-
quality services normally bring high-quality SOSE systems. One or two low-quality
services will remarkably decrease the overall system qualities. Consequently, it is
necessary to measure services before using them. In addition, object-oriented is the basis
of composing SOSE services recently. Some methods have been studied on measuring
software (ISO/IEC, 1991) and object-oriented programs (Chidamber & Kemerer, 1994).
These methods are also helpful for measuring SOSE services. Service evaluation includes
performance and quality measurement. Much effort has been devoted to defining and
describing the metrics involved in measuring service performance and quality (Poulin,
2001; Washizaki, Yamamoto & Fukazawa, 2002). One of SOSE service performance
metrics is shown in Table 4. One of SOSE service quality metrics is shown in Table 5.

In service evaluation, there is one empirical method worthy to be recommended. That is
take-try-and-use, which is widely accepted and applied by service providers, brokers,
and customers today. In this, the provider commonly offers customers a free using
period, and customers make a contract with providers after the customer is satisfied with
the service. Take-try-and-use enables customers to make a wide range of options.
Moreover, take-try-and-use is high risk for long-term and critical SOSE software, so
service brokers may get added value through a third party for a wider and commercial
service scale, like certification, pricing/licensing information, and so forth.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

42 Zhou and Niemela

Table 5. One of SOSE service quality metrics

Metrics Meaning

Productivity The ratio of total development hours for the project to total lines of code contained
in the components that make up the product.

Reliability The amount of errors which are figured out.

Stability The ratio of the total number of open change requests to the total number of
requirements.

Reuse The ratio of the reused lines of code to the total lines of code.

Service Management and Evolution

Service management provides a number of facilities to support three parties (service
customers, service providers, and service brokers). Service customers expect the service
of shorter qualification interval, lower qualification cost, faster service delivery, service
variations, and lower risk to be offered. Service providers expect to get the information
on service needs, customers’ feedback, timely service middards, and potential partners.
Service brokers expect to get information on the latest service middards, service
classification, service retrieval, service evaluation, and service adaptation. Concretely,
service management includes the following functions:

. Service classification: Service specification, users’ feedback, service evaluation,
service rating, and service listing.

i Service selection: Service description, service commerce properties, service
providers’ trustworthiness.

o Service evolution: Service development, service maintenance, and service extrac-
tion.

In recent years, software evolution, recognized as an essential aspect of software
systems, has become an emerging research subject. In service evolution, a service
business modification and a service middard modification are roughly considered as two
key activities. Service business modification extends the capabilities and functionality
of a service to meet the further needs of the service customer, possibly in major ways.
The process of a service middard modification consists of the following activities:
modification analysis, modification implementation, modification review/acceptance,
and application for international standard. The objective modifying an existing service
middard is to preserve its higher user base. Some intelligent mechanisms may be needed
to manage the dynamic and complex service evolution, such as semantics-based service
modeling and higher-level service middard making.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 43

Table 6. SOSE supporting status

SOSE requirements Supporting status

Service circulation Already exists

Service evaluation Not properly supported
Unified service middards Diversification and competition
Unified middard vendors Not properly supported

Service extracting Some results in knowledge discovery

Service evolution To be researched

Discussion

SOSE business takes a service as a unit that will be individually maintained, updated, and
reused within the life cycle of SOSE software. SOSE is also oriented to software
innovation. SOSE enables SOSE providers to pay more attention to service business and
evolution by making a service choice before starting a new SOSE software development.
SOSE providers focus on selecting a service middard and implementing customers’
business with awareness of what other providers are doing. SOSE organizations work on
core competitive services with a small team. It is important for SOSE organizations to have
quick response to market changes and service evolution rather than delivering a large
two-to-three years-consuming system. SOSE allows customers to take-try-and-use a
service cheaply when needed.

SOSE results from the continually maturing software market and continuously growing
standardization technology and software customization. SOSE has a close association
with traditional software development methods. There are many methods and techniques
appearing in traditional software development and other mature industries (for example,
car manufacturing, construction, and electronics) available for SOSE implementation. For
instance, e-business product circulation has many applications. More service middards
are specified and accepted by providers, vendors, and customers. However, it is the
beginning for service evolution research. Table 6 states SOSE supporting status briefly.

The study of the service middard and service evolution will be emphasized in SOSE.
Future research issues involved in SOSE also include the following topics:

. Extended object-oriented service modeling: Object-oriented is the basis forimple-
menting SOSE. Objects have been criticized for their lack of emphasis on semantics.
Due to the public service characteristic of SOSE running on unanticipated plat-
forms, domains, sites, and cultures, object-oriented will be limited. Therefore, it is
necessary to develop or apply an extended object-oriented modeling with more
strict semantic constraints for SOSE. For instance, ontology-oriented modeling will
be an optional one (Ikeda, 1997).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

44 Zhou and Niemela

. Unified service middard: Different service middards, developed by different
initiators, limit the range of service usage. A unified service middard will be helpful
in service description, requisition expression, service decomposition, service
implementation, and service combination. Certainly, it is support from service
providers, brokers, and customers that make the unified service middard meaning-
ful.

° Unanticipated requirement discovery: Unanticipated requirement is a distinct
characteristic for SOSE. The conventional requirement with being easily attainable,
explicit, big piece, and customer-visiting no longer exists in the continually
maturing software market. SOSE organizations face implicit requirements from a
potential customer group rather than an individual customer. Service customers are
able to make various options for their needs. Another key issue is to discover
implicitrequirement. An existing code’s value adding and organization alliance will
be helpful to SOSE organization survival. Adding an existing code’s value causes
service life to lengthen by building the legacy code as a service, extending the
service, and promoting the service quality and performance. An organization
alliance is another possible option available for SOSE organization. One activity
for SOSE requirement discovery is to find more partners for existing services.

i Automated engagement: Automated engagement enables customers and provid-
ers to operate one transaction of service providing and service execution over the
Internet automatically. Automated engagement allows customers to get what is
really needed with just one mouse action. The level of customer participation in
software development is reduced in AOSE, COTS-BSE, C-BSE, and VE-BSE.
Automated engagement involves service allocating, service engaging, service
persisting, service rolling back, and so forth. Meanwhile, automated engagement
must be based on a highly unified service middard and a strict unified service
evaluation method.

° Multidisciplinary and interdisciplinary research: Agile manufacturing is a main-
stream advanced manufacturing method in the manufacturing industry, in which
study emphasizing the combination of human-factor, technology-factor, and
organization-factor has been done. Similarly, SOSE, as an agile software develop-
ment in the software industry, is nontechnology dominated with a focus on
software innovation and providing what customers really want. That implies that
SOSE software will be more human-centric with maximum customers and easy
customization, so SOSE software engineers are required to have the knowledge of
service psychology, service negotiation policy, marketing management, social
behavior area, and so forth. Therefore, how to reform the existing software
engineering discipline is another important topic for SOSE.

Conclusion

We introduced the concept of an SOSE model as an advanced software development,
which will make the software industry more productive and profitable. Current compo-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 45

nent-based software development methods (for example, COTS-BSE, C-BSE, and VE-
BSE) are SOSEs. SOSE differentiates into AOSE small projects, existing software reuse,
market changing and software evolution focusing, customer domination, and common
middards. Customers may access SOSE software as data of a public service repository
when needed. SOSE software can be shared by multitudinous systems due to its
compliance with the common middard.

We presented the basic concepts and principles of SOSE middard services. Middard
services define standards for common service description, implementation, management,
and discovery. Additionally, a SOSE software development model involving the main
processes of service extracting, service middard, service circulation, service evaluation,
and service evolution was presented. Compared with other industries (for example, car
manufacturing, construction, and electronics) with global standards and fine-granularity
components, the software industry is immature in unified service standards, service
marketplace, and service granularity evaluation. Typically, coordination among multiple
service middards becomes the bottleneck of wide service usage. Eventually, the main
challenges in SOSE, such as extended object-oriented service modeling, aunified service
middard, unanticipated requirement discovery, automated engagement, and
multidisciplinary and interdisciplinary research, was addressed.

References

Adachi, M., Kikuchi, S., & Katsuyama, T. (2000, November 20-24). NEPRI: Available
bandwidth measurement in IP networks. Proceedings of 7th IEEE Singapore
International Conference on Communication Systems (pp. 511-515).

Bennett, K. H., Gold, N. E., Munro, M., Xu, J., Layzell, P. J., Budgen, D., et al. (2002).
Prototype implementations of an architectural model for service-based flexible
software. Proceedings of 35th Hawaii International Conference on System
Sciences, 8, 76-85.

Bennett, K. H., Layzell, P.J., Budgen, D., Brereton, P., Macaulay, L., & Munro, M. (2000,
December 5-8). Service-based software: The future for flexible software. Proceed-
ings of the 7th Asia-Pacific Software Engineering Conference (pp. 214-221),
Singapore.

Brereton, P., Budgen, D., Bennett, K., Munro, M., Layzell, P., Macaulay, L., etal. (1999).
The future of software: Defining the research agenda. Communications of ACM,
42(12),78-84.

Chidamber, S., & Kemerer, C. (1994). A metrics suite for object oriented design. [EEE
Transaction on Software Engineering, 20(6), 476-493.

ComponentSource. (2003). About ComponentSource. Retrieved August, 5,2004: http:/
/www.componentsource.com/

Flashline. (2003). Whitepapers. Retrieved August 5, 2004: http://www.flashline.com/

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

46 Zhou and Niemela

Garlan, D., Allen, R., & Ockerbloom, J. (1995, April 23-30). Architectural mismatch: Or
why it’s hard to build systems out of existing parts. Proceedings of the 17th
International Conference on Software Engineering (pp. 179-185), Seattle, WA.

Houston, P. (1998). Building distributed applications with message queuing middleware.
Retrieved August 5, 2004: http://msdn.microsoft.com/library/default.asp?url=/
library/en-us/dnmqqc/html/bldappmgq.asp

Ikeda, K. S. (1997, August 23-29). Task ontology makes it easier to use authoring tools.
Proceedings of the 15th International Joint Conference on Artificial Intelligence
(pp- 342-347),Nagoya, Japan.

ISO/IEC. (1991). ISO/IEC 9126 International standard: Information technology -
Software product evaluation - Quality characteristics and guidelines for their
use. International Standard ISO/IEC 9126.

Kontio, J. (1996, March 25-30). 4 case study in applying a systematic method for COTS
selection. Proceedings of the International Conference on Software Engineering
(pp-201-209), Berlin.

Lovelock, C., Vandermerwe, S., & Lewis, B. (1996). Services marketing (3rd ed.). London:
Prentice Hall International.

Mahajan, R. (1995, March 7-9). Building the virtual enterprise. Proceedings of the 4th
Annual Agility Forum Conference (pp. 32-40), Atlanta.

Microsoft Corporation. (2003). Chapter 22: Administration and management of MSMQ-
MQSeries bridge. Host integration server 2000 resource kit. Retrieved August
5, 2004: http://www.microsoft.com/resources/documentation/host/2000/all/
reskit/en-us/part4/hisrkc22.mspx

Object Management Group. (1996). The common object request broker architecture and
specification (2nd ed.). Boston: John Wiley & Sons.

The Open Group. (1997). DCE 1.1: Remote procedure call. Retrieved August 6,2004: http:/
/www.opengroup.org/products/publications/catalog/c706.htm

The Open Group. (1992). Distributed TP: The XA specification. Retrieved August 6,2005:
http://www.opengroup.org/bookstore/catalog/c193.htm

Poulin, J. S. (2001). Measurement and metrics for software components. In G. T.
Heineman, & W. T. Councill (Eds.), Component based software engineering:
Putting the pieces together (pp. 435-452). Boston: Addison-Wesley.

Pree, W. (1997, December, 2-5). Component-based software development - A new
paradigmin software engineering. Proceedings of the Joint Asia-Pacific Software
Engineering Conference and International Computer Science Conference (pp. 523-
524),Hong Kong.

Preiss, K., & Goldman, S. (Eds.). (1991). 21st century manufacturing enterprise strategy.
Bethlehem, PA: Lehigh University.

Silberschatz, A., Korth, H. F., & Sudarshan, S. (1997). Database system concepts. Boston:
McGraw-Hill.

Soley, R. M. (Ed.). (1992). Object management architecture guide: OMG TC document
92.11.1 (2nd ed.). New York: John Wiley & Sons.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

SOSE 47

Sun Microsystems. (2003). Sun ONE middleware. Retrieved August 5, 2004: http://
wwws.sun.com/software/product_family/middleware.html

Sun Microsystems, Network Working Group. (1988, April). RFC 1050 RPC: Remote
procedure call protocol specification. Retrieved August 5, 2004: http://
www.faqs.org/rfes/rfc1050.html

Sun Microsystems, Network Working Group. (1988, June). RFC 1057 - Remote procedure
call protocol specification: Version 2. Retrieved August 5, 2004: http.//
www.faqs.org/rfes/rfc1057.html

Szyperski, C. (1998). Component software: Beyond object-oriented programming.
Boston: Addison-Wesley.

Tai, S., Mikalsen, T. A., Rouvellou, I., & Sutton, S. M. (2001, September 4-7). Dependency-
spheres: A global transaction context for distributed objects and messages.
Proceedings of the 5th International Enterprise Distributed Object Computing
Conference, Seattle, WA.

Tran, V., & Liu, D.B. (1997, January 13-16). 4 risk-mitigating model for the development
of reliable and maintainable large-scale Commercial-Off-The-Shelf integrated
software systems. Proceedings of the International Annual Reliability and Main-
tainability Symposium on Product Quality and Integrity (pp. 361-367), Philadelphia,
PA.

Universities and Colleges Software Group. (1995, September). Delivering data to the
desktop: ODBC overview. Retrieved August 5, 2004: http://www.liv.ac.uk/
middleware/html/overview.html

Walton, J., & Whicker, L. (1996). Virtual enterprise: Myth and reality. Journal of Control,
22(8),22-25.

Washizaki, H., Yamamoto, Y., & Fukazawa, Y. (2002, October 3-4). Software component
metrics and its experimental evaluation. Proceedings of International Symposium
on Empirical Software Engineering, Rome, Italy.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

48 Benatallah, Dijkman, Dumas and Maamar

Chapter I11

Service Composition:

Concepts, Techniques,
Tools and Trends

Boualem Benatallah
University of New South Wales, Australia

Remco M. Dijkman
University of Twente, The Netherlands

Marlon Dumas
Queensland University of Technology, Australia

Zakaria Maamar
Zayed University, United Arab Emirates

Abstract

This chapter provides an overview of the area of service composition. It does so by
introducing a generic architecture for service composition and using this architecture
to discuss some salient concepts and techniques. The architecture is also used as a
framework for providing a critical view into a number of languages, standardization
efforts, and tools related to service composition emanating both from academia and
industry and to classify them in terms of the concepts and techniques that they
incorporate or support (for example, orchestration and dynamic service selection).
Finally, the chapter discusses some trends in service-oriented software systems

engineering pertaining to service composition.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

Service Composition 49

Introduction

The last decade has seen organizations worldwide expose their operations on the Web
to take advantage of the commoditized infrastructure and the potential for global
visibility and increased business process automation that Web technologies offer. An
overwhelming number of organizations have reaped the benefits of the Web by making
their applications available to their customers and partners through interactive interfaces
combining Web forms and dynamically generated Web pages. This has seen the Web
evolve from a vehicle for information dissemination to a vehicle for conducting business
transactions, albeit in a manual way.

The next step in the evolution of Web technologies is the emergence of Web services
(Alonso, Casati, Kuno & Machiraju, 2003). Web services bring together ideas from Web
applications on the one hand (for example, communication via document exchange) and
distributed computing on the other hand (for example, remote procedure calls and
communication middleware). The outcome of this convergence is a technology that
enables applications to communicate with each other in a programmatic way through
standardized message exchanges. This is expected to trigger amove froma Web of mostly
manual interactions to a Web of both manual and programmatic interactions.

There are several definitions of Web services, most of which agree on saying thata Web
serviceis a software application available on the Web (through a URI) whose capabilities
and modus operandi are described in XML and is able to communicate through XML
messages over an Internet transport protocol. At present, a widely accepted core
infrastructure for Web services is the so-called Web Services Stack which is essentially
structured around three XML-based standards: SOAP, WSDL, and UDDI (Curbera,
Duftler, Khalaf, Nagy, Mukhi & Weerawarana, 2002). These three standards are intended
to support the tasks of service description, discovery, and communication.

This basic core infrastructure is currently being used to build simple Web services such
as those providing information search capabilities to an open audience (for example,
stock quotes, search engine queries, auction monitoring). However, it has rapidly
become clear that this core infrastructure is not sufficient to meet the requirements of
complex applications (especially in the area of B2B integration) since it lacks abstractions
for dealing with key requirements, such as security, reliability, transactions, composi-
tion, service level agreements, and quality of service, among others (Medjahed, Benatallah,
Bouguettaya, Ngu & Elmagarmid, 2003). In light of this, several efforts are underway to
design a standard comprehensive infrastructure for Web services.

In particular, the development of new services through the composition of existing ones
has gained considerable momentum as a means to integrate heterogeneous enterprise
applications and to realize B2B e-commerce collaborations. Unfortunately, given that
individual services are developed using manifold approaches and technologies, con-
necting and coordinating them in order to build integrated services is delicate, time-
consuming, and error-prone, requiring a considerable amount of low-level programming
and system administration efforts. This observation has sparked a wave of R&D efforts
in an area often known as “service composition”.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

50 Benatallah, Dijkman, Dumas and Maamar

Stated in simple terms, service composition aims at providing effective and efficient
means for creating, running, adapting, and maintaining services that rely on other
services in some way. In order for service composition to deliver on its promises, there
is aneed for development tools incorporating high-level abstractions for facilitating, or
even automating, the tasks associated with service composition. Hence, these tools
should provide the infrastructure for enabling the design and execution of composite
services.

This chapter provides an overview of the benefits and pitfalls of service composition,
the functionalities that the supporting platforms are required to provide, and the extent
to which these requirements are addressed by the current state of the art. However, the
chapter will not address in detail system issues such as reliability, transactions, and
security. We present the main concepts for service composition by presenting a generic
tool architecture for service composition, covering aspects such as design of composite
services and composite service execution. Based on these concepts, we provide a survey
of service composition models, methods, and supporting technologies.

The chapter is structured as follows: The Generic Architecture section discusses the
foundation concepts in Web services composition by introducing a generic tool
architecture for service composition. The Languages for Service Composition section
overviews language support for Web services description and composition, covering
the design module of the generic architecture. The Platforms for Composite Service
Execution section reviews research efforts and commercial platforms for web services
composition by covering the runtime module of the generic architecture. The Trends
Relevant to (Web) Service Composition section reviews some trends in Web services
technologies, and the last section provides concluding remarks.

Generic Architecture

From an architectural point of view, a tool environment for service composition should
provide at least the following modules:

. Design module: This module offers a graphical user interface for specifying
composite services. The module may also support translation of a composite
service design into a description language. More advanced design tools may
support the automated verification and/or simulation of composite service designs
on the basis of a formal language.

i Runtime environment: This module is responsible for executing a composite
service and routing messages between its components. It is also responsible for
monitoring and fault and exception handling. The runtime environment may
additionally support dynamic service selection and binding as discussed below.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 51

Figure 1. Generic architecture for a service composition tool

:] Architecture module
:] Deliverable Design Tool

“«» Deliverable Transfer

/ Service design
’

—> Runtime interaction (statechart,)

Formal Verification/ Translation Module
Simulation Module

/Service description
(WSDL, BPEL, ...)

Internet Transport | 4...p) SOAP Stubs and l¢--p] Composite Service

Module Skeletons Enactment Module
)
P P ’
Monitoring Module Backend Application Synamic Service
Integration Selection Module

Figure 1 represents the generic architecture in more detail. This section explains the
generic architecture further.

Composite Service Design

A tool for composite service design supports a composite service design methodology.
A methodology consists of design languages, formalisms that are coupled with these
design languages, and design approaches. Design languages are graphical notations
that can be used by stakeholders in a design process to represent a design from their
perspective. They focus on representing a service composition in a way that is easy to
understand for the stakeholders. Formalisms are mathematical languages that can be
used to represent a particular aspect of a design. As amathematical language, a formalism
provides a mathematical basis for verification and simulation of a design. In a composite
service, for example, a formalism provides techniques that allow designers to analyze if
two services can be composed. An overview of formalisms that are used in model-driven
service composition is given in the Languages for Service Composition section. A design
approach prescribes a series of steps that have to be taken to construct a design. In this
way, a design approach provides a structured way to construct a design by gradually
introducing more detail into user requirements and current business operations until a

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

52 Benatallah, Dijkman, Dumas and Maamar

level of detail isreached at which a design can be directly implemented. For an approach
to service composition, this is the level of detail at which a design in a one-to-one fashion
corresponds to a description that can be executed by a runtime environment. Such a
description is a textual (typically XML-based) representation of the functional and
nonfunctional properties of a service or service composition. The Languages for Service
Composition section, Description Languages subsection explains some existing tech-
niques for describing service compositions.

From existing description techniques in the area of service composition, we can derive
that there are currently two ways to design a service composition, namely choreography
or orchestration. A choreography differs from an orchestration with respect to where the
logic that controls the interactions between the services involved should reside.

A choreography describes a collaboration between some enterprise services to achieve
a common goal. Hence, it does not focus on a particular service but rather on a goal.
Therefore, the control logic is distributed over the involved services and the choreog-
raphy emerges as the services interact with each other. To design a choreography, we
first describe the interactions that enterprise services have with each other to achieve
their goal and then the relations that exist between these interactions. A choreography
does not describe the actions that are performed internally by the service providers to
realize their enterprise services. Figure 2 shows a typical example of a choreography. This
example shows a collaboration that relates to buying an item.

An orchestration describes the behavior that a service provider implements to realize a
service. Hence, it focuses on a particular service, and the control logic is centralized on
the service provider of which we implement the behavior. To design an orchestration, we
describe the interactions that the service provider has with other parties and the actions
that the service provider performs internally to realize the service. An orchestration is
meant to be executed by an orchestration engine, as will be explained in the Composite
Service Execution subsection. Therefore, it is also called an executable process.

From these observations we can derive a set of basic concepts that are important in the
design of service composition, regardless of whether a choreography — or an orches-
tration-oriented approach is chosen and of the description or design language that is

Figure 2. An example of a choreography

@ interaction

—» ordering

D service
Buyer

order delivery
Seller Shipper

shipping notice

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 53

Figure 3. Basic design concepts for service composition design

Interaction
0..1 0.1
1 1
Provider Send Event Receive Event
*
»| provides {complete, disjoint}
Service Event
of
*
1
1] of * | relates_e
* *
Action Relation
*
relates_a *

used. Figure 3 shows a meta-model in which our basic concepts are represented. The
figure shows that a service composition consists of a number of services that are
provided by service providers. The same service can be provided more than once by
different service providers (for example, a flight booking service can be provided by
different airlines). A service consists of (internal) actions and events that are part of an
interaction with other services. We claim that interactions are based on message passing
because this is the basic mechanism for interaction that is used in the mainstream service
description languages as they are presented in the Description Languages subsection.
Hence, interactions consist of a send event and a receive event. Relations relate actions
and interactions to each other. The kind of relation thatisused (for example, flow relation,
causal relation, state-based relation, and so forth) depends on the language that is used.

Composite Service Execution

The composite service execution engine is the runtime component of a service compo-
sition tool. It takes as input a composite service description and coordinates the
execution of the composite service according to that description. At least two different
execution models can be distinguished:

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

54 Benatallah, Dijkman, Dumas and Maamar

. Centralized: (see, for example, Schuster, Georgakopoulos, Cichocki & Baker, 2000
and Casati & Shan, 2001). In this model, the responsibility for coordinating the
execution of a composite service relies on a single “scheduler.” This scheduler
interacts with each of the component services by processing and dispatching
messages. The internal architecture of the central scheduler is similar to that of a
traditional workflow management system (van der Aalst & van Hee, 2002), except
that the resources are all services rather than human actors, and there is no shared
database through which information can be implicitly passed from one stakeholder
to another. Instead, information must be explicitly passed through message
exchanges.

. Peer-to-Peer: (see, for example, Mecella, Parisi-Presicce & Pernici, 2002 and
Benatallah, Sheng & Dumas, 2003). In this model, the responsibility for coordinat-
ing the executions of a composite service is distributed across the providers of the
component services, which interact in a peer-to-peer way without routing mes-
sages through a central scheduler. The composite service execution environment
therefore manifests itself in the form of a collection of inter-connected modules,
which communicate through an agreed protocol. This execution model bears some
similarities with distributed workflow execution models, such as those described
in Muth, Wodtke, Weissenfels, Dittrich, and Weikum (1998) and Chen and Hsu
(2002).

It is crucial that a mechanism is provided for monitoring the executions of a composite
service. Indeed, being able to trace the execution of a composite service is crucial for
metering, accounting, customer feedback, adaptation, and service improvement. The
monitoring mechanism varies depending on the execution model. In the case of central-
ized execution, the central scheduler can maintain a database of execution traces. In the
case of peer-to-peer execution, however, the information about composite service
executions is disseminated across a number of distributed data sources hosted by the
providers of the component services. Accordingly, it is necessary either to consolidate
these distributed data sources periodically or to be able to answer queries on demand
(Fauvet, Dumas & Benatallah, 2002).

A composite service can be linked to its component services either in a static or a dynamic
manner. A link between a composite service and a component service is static when it
is established at design time and cannot be changed without modifying the design of the
composite service. A link with a component service is dynamic when a mechanism
selects, at runtime, the actual service that will be invoked to perform a given step in the
composite service execution. We call this approach dynamic service selection.

The pool of candidate services over which the dynamic selection occurs may be: (i)
determined at design time; (ii) obtained by evaluating a given query over a registry (for
example, UDDIregistry); or (iii) obtained from an invocation to a brokering service. The
selection itself is then performed based on a set of requirements and using a set of
preferences expressed in the composite service description. These constraints and
preferences may involve both functional attributes (that is, attributes describing the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 55

capabilities of the services) and nonfunctional attributes (for example, time, location,
price, reliability, trust).

Once a service within the pool of candidate services is selected, it has to be invoked by
the composite service. This implies that either all the candidate services for a given task
ofacomposite service offer exactly the same interface (that is, the same set of operations
and common constraints on their use) or that some late binding mechanism is used to
“homogenize” the interfaces provided by all services so that at the end, the composite
service can invoke any of these candidate services.

The CORBA Dynamic Invocation Interface (DII) is an example of a late binding mecha-
nism. Another example from the area of inter-organizational workflow is provided by the
CrossFlow system (Grefen, Aberer, Hoffner & Ludwig, 2000). In this system, a task ina
workflow can be linked to a contract. When the task needs to be executed, a matchmaking
facility attempts to find another workflow that complies with that contract. In the area of
Web services, the Web Services Invocation Framework (WSIF) (Apache Web Services
Project, 2003) has been developed for the purpose of enabling late binding of Web
services.

Figure 4 represents the concepts that are described in this subsection in a meta-model.

Figure 4. Basic execution concepts for service composition design

Elementary Service Composite Service

\/ *

Service Service Link

* 1 | binds to /\

Static Link Dynamic Link

1

1 | refersto

Pool of Services

*

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

56 Benatallah, Dijkman, Dumas and Maamar

Languages for Service Composition

The Generic Architecture section explained the need for different types of languages for
describing service compositions from different viewpoints. In this section, we present
some of these languages. We limit the discussion to description languages and formal-
isms, leaving aside design languages because there is not yet a widely accepted standard
for such languages.

Description Languages

i BPEL4WS: The Business Process Execution Language for Web Services (BEA
Systems, Microsoft, IBM & SAP, 2003) is a language with an XML-based syntax,
supporting the specification of processes that involve operations provided by one
or several Web services.

BPEL4WS is intended to support the description of two types of processes:
abstract and executable. An abstract process is a partially ordered set of message
exchanges between a service and a client of this service. It describes the behavioral
interface of aservice withoutrevealing its internal behavior. Using the terminology
introduced in the previous section, an abstract process is a two-party choreogra-
phy involving a service provider and a service requestor, described from the
perspective of the provider.

An executable process on the other hand, captures the internal behavior of a
service in terms of the messages that it will exchange with other services and a set
of internal data manipulation steps. An executable process is composed of a
number of constituent activities, the partners involved in these activities, a set of
internal variables, and a set of activities for handling faults and transactional
rollbacks. Using the terminology of the previous section, a BPEL4WS executable
process corresponds to an orchestration specification.

BPEL4WS draws upon concepts developed in the area of workflow management.
When compared to languages supported by existing workflow systems and to
related standards (for example, XPDL, WSCI, and ebXML BPSS), it appears that
BPEL4WS isrelatively expressive (Wohed, van der Aalst, Dumas & ter Hofstede,
2003). In particular, the pick construct is not supported in many existing workflow
languages. On the negative side, it can be said that BPEL4 WS lacks orthogonality,
in the sense that it has many constructs with overlapping scope (for example, the
switch and sequence constructs overlap with the control link construct).

° WSCI and BPML: The Business Process Management initiative (BPMi) is an
industry consortium aiming at contributing to the development of (service-
oriented) process description standards. The consortium has published a speci-
fication for a service-oriented process description language called BPML (Busi-
ness Process Modeling Language), similar in many ways to BPEL4WS. BPML
draws on a previous standard called WSCI (Web Service Conversation Interface)
developed by the stakeholders behind BPMi. WSCI integrates many of the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 57

constructs found in BPML and BPEL4WS (for example, sequence, choice, parallel
execution, send/receive primitives, and so forth). However, it differs from them in
its intent: while BPML is mainly intended for describing orchestrations, WSCI is
intended for describing choreographies (see Composite Service Design subsec-
tion in the previous section for a discussion on this dichotomy). The strong
commonalities between these languages suggest that orchestration and choreog-
raphy correspond to two different (and complementary) viewpoints over the same
class of models (thatis, composite service models). As discussed earlier, BPEL4WS
has been designed with the goal of capturing both orchestrations and two-party
choreographies. Peltz (2003) discusses the relationships between WSCI, BPML,
and BPEL4WS in more detail.

i ebXML BPSS:Electronic Business XML (ebXML)is aseries of standards intended
to provide an implementation platform for business-to-business collaborations.
ebXML adopts a choreography-based approach to service composition. Specifi-
cally, a business collaboration is described as a set of Collaboration Protocol
Profiles (CPP) (UN/CEFACT & OASIS, 2001a). A CPP describes, among other
things, which part of a given business process a given partner is able to provide
by referring to a role in a process specified using the Business Process Specifica-
tion Schema (BPSS) (UN/CEFACT & OASIS, 2001b). A BPSS document specifies
anumber of transactions, the roles associated with these transactions, the flow of
control and flow of documents between these transactions, and the document
access rights for the involved documents. Control-flow relationships are described
using guarded transitions (like in state machines) and fork/join operators.

i WS-CDL: The W3C Web Service Choreography Description Languages (WS-
CDL) (W3C World Wide Web Consortium, 2002) is another ongoing standardiza-
tion effort in the area of service composition. Like WSCI and ebXML, the intent of
WS-CDL isto define a language for describing multiparty interaction scenarios (or
choreographies), not necessarily for the purpose of executing them using a central
scheduler but rather with the purpose of monitoring them and being able to detect
deviations with respect to a given specification.

i RosettaNet: RosettaNet (RosettaNet, 2004) is an industry consortium, which has
developed a series of standards for Business-to-Business (B2B) integration with
an emphasis on supply chain management. Among others, RosettaNet defines a
notion of Partner Interface Protocols (PIP), which enables the description of
interactions between business processes deployed by multiple partners. The
notion of PIP is related to the notion of service choreography and has influenced
efforts in this area. For details about RosettaNet and its relationship to Web service
standards, readers are referred to Bussler (2003).

Formalisms

In an attempt to provide a rigorous foundation to service composition and to enable the
use of formal verification and simulation techniques, a number of formalisms for
describing composite services have been proposed. One of the earliest proposals in this

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

58 Benatallah, Dijkman, Dumas and Maamar

area is that of Cardelli and Davies (1999), who present an algebra for programming
applications that access multiple Web resources (also called services). This algebra
brings together operators inspired by process algebras (sequential execution, concur-
rentexecution, and repetition) with operators capturing the unreliable nature of the Web
(timeout, time limit, rate limit, stall, and fail). Basic services are described using the
operator url, which attempts to fetch the resource associated with a given URL. Although
the algebra is intended for manipulating Web pages, it could conceivably be extended
to take into account the richer structural and behavioral descriptions of Web services.

Various authors have advocated the use of Petri nets as a formal foundation for modeling
composite services or for defining formal semantics for service composition languages.
The VISPO project (Mecellaetal.,2002) has advocated the use of Petri nets to model the
control flow aspects of composite services. Van der Aalst (2003) examines a number of
proposed standards for service composition in terms of a collection of workflow patterns
and notes that these proposed standards would benefit from having a formal semantics
defined in terms of established formalisms such as Petri nets. Finally, Narayanan and
Mcllraith (2002) present DAML-S, a language that supports the description of composite
services, and defines a mapping from the process-oriented subset of DAML-S to Petri
nets.

More recently, Bultan, Fu, Hull, and Su (2003) adopt Mealy machines (a category of
communicating automata with queues) to describe the interactions (also called conver-
sations) between aggregated services. Each service participating in an aggregation is
described as a Mealy machine, which consumes events from a queue and dispatches
events to the queues of the other services in the aggregation. The authors study the
expressive power of the resulting formalism, measured in terms of the set of traces (that
is, sequences of events) that can be recognized by an aggregation of Mealy machines.

There is not yet a widely accepted formal foundation for service composition. It appears
that Petri nets, process algebras, and state machines are suitable for capturing at least
certain aspects of service composition. Ultimately, however, for a given formalism to be
adopted in this area, it is necessary that its benefits are tangible (for example, availability
of analysis and simulation tools) and that full mappings between this formalism and
concrete modeling and description languages are provided.

Platforms for
Composite Service Execution

The previous section explained the structure of an execution environment for composite
services. In this section, we review existing implementations that serve as execution
environments. We first provide an overview of some research prototypes before looking
more closely at the implementations provided by major vendors: IBM, BEA, and
Microsoft.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 59

Research Prototypes

CMI (Collaboration Management Infrastructure) (Schuster et al., 2000) provides an
architecture for interenterprise services. It uses state machines to describe the behavior
of composite services. The concept of placeholder is used to enable the dynamic
selection of services. A placeholder is a set of services (identified at runtime) and a
method for selecting a service given a set of parameters.

eFlow (Casati & Shan, 2001) is a platform that supports the specification, enactment, and
management of composite services. eFlow uses graph-based model in which the nodes
denote invocations to service operations, and the edges denote control-flow dependen-
cies. A composite service is modeled by a graph that defines the order of execution among
the nodes in the process. The definition of a service node contains a search recipe
represented in a query language. When a service node is invoked, a search recipe is
executed to selectareference to a specific service. Once a service is selected by the search
recipe, the eFlow execution engine is responsible for performing the dynamic binding
using metadata that it stores in the service repository.

CrossFlow (Grefen et al., 2000) features the concept of contracts for services coopera-
tion. When a partner wants to publish a collaboration, it uses its contract manager to send
a contract template to matchmaking engine. When a consumer wants to outsource a
service, it uses a contract template to search for relevant services. Based on the
specifications in the contract, a service enactment structure is set up.

SELF-SERV (compoSing wEb accessibLe inFormation and buSiness services) (Benatallah,
Dumas, Sheng & Ngu, 2002) specifies composite services using statecharts. Further-
more, SELF-SERYV proposes a peer-to-peer model for orchestrating a composite service
execution in which the control and data-flow dependencies encoded in a composite
service definition are enforced through software components located in the sites of the
providers participating in a composition. SELF-SERV refines the concepts of search
recipe and placeholder introduced by eFlow and CMI by proposing the concept of
community. A community is an abstract definition of a service capability with a set of
policies for (i) managing membership in the community and (ii) selecting at runtime the
service that will execute a given service invocation on behalf of the community. Policies
for runtime selection of services are formulated using multiattribute value functions. A
community is also responsible for performing the dynamic binding of the selected Web
service, thereby acting as a dynamic service selector.

DySCo (Piccinelli, Finkelstein & Lane Williams, 2003) is another service-oriented workflow
infrastructure, which supports the definition and enactment of dynamic service interac-
tions. DySCo adopts a traditional workflow approach, except with respect to the
definition of a task. Instead of corresponding to an activity involving a number of
resources, a task in DySCo corresponds to an interaction step between services. In
addition, DySCo supports the dynamic reconfiguration of service interactions by
allowing a task to be decomposed at runtime into a more complicated structure. For
example, a document mailing task in a service-based workflow can be decomposed into
two tasks: a document printing task and a document posting task, which can then be
assigned to different providers.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

60 Benatallah, Dijkman, Dumas and Maamar

Commercial Tools

Typically, atool claiming to support the Web services stack would minimally provide an
API in one or more programming languages (for example, Java) for generating and/or
processing SOAP messages. Some tools would go further by supporting tasks such as:
(1) generating WSDL descriptions from modules, packages, or classes (for example, from
a Java class file); (ii) editing WSDL descriptions through a graphical interface; and/or
(iii) extracting information contained in WSDL files in order to dynamically generate
stubs and skeletons that provide transparent communication between Web service
requesters and providers.

Most tools also provide support for UDDI (both for setting up a registry and for
connecting to an existing registry). Few tools currently support composite service
description languages, and when they do, they typically only support a subset of these
languages.

. IBM WebSphere: WebSphere is a family of IBM products for enabling B2B
interactions. The application server is the cornerstone of WebSphere. It aims at
providing database and backend integration as well as security and performance
capability (for example, workload management). The WebSphere application server
Advanced Edition adds support for J2EE and CORBA. The advanced edition
integrates support for key Web service standards such as SOAP, UDDI, and
WSDL. Additionally, it provides distributed transaction support for major data-
base systems. Other products make up the WebSphere platform. These include
WebSphere Business Components, WebSphere Commerce, and WebSphere MQ
Family. The WebSphere Business Components provides prebuilt and tested
components. WebSphere Commerce provides mechanisms for building B2B sites.
WebSphere MQ Family is a family of message-oriented middleware products.

° BEA WebLogic Integrator: BEA WebLogic Integrator is one of the cornerstones
of the BEA WebLogic e-Business Platform. It is built on top of a J2EE compliant
application server and J2EE connector architecture and supports current Web
service standards such as SOAP, UDDI, and WSDL. It is composed of four major
modules:

e The Application Server, which provides the infrastructure and functionalities
for developing and deploying multitier distributed applications as EJB com-
ponents.

e The Application Integration Server, which leverages the J2EE connector

architecture to simplify integration with existing enterprise applications, such
as SAP R/3 and PeopleSoft.

* TheBusiness Process Management System, which provides a design tool and
execution engine for business processes in BPEL4WS.

* The B2B integration manages interactions with external business processes.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 61

i Microsoft Web Services Support: Support for Web services is one of the key
aspects of the .Net product series. In particular, ASP.Net provides a programming
model for exposing applications as Web services. Briefly, the skeleton of a Web
service is encoded as an ASMX file (proprietary Microsoft format), which can be
interpreted by the Internet Information Server (IIS) in order to process incoming
SOAP calls for the service and generate SOAP responses and faults. A WSDL
description and a test page are also automatically generated from the ASMX file.
Another Microsoft product, which provides support for Web services, is BizTalk:
a middleware platform for Enterprise Application and B2B Integration. Applica-
tions in BizTalk are integrated based on an XML message-oriented paradigm. Part
ofthe BizTalk suite is the BizTalk Orchestration Engine, which implements XLANG,
a precursor of BPEL4WS. Developers can define processes using a graphical
interface and export them as XLANG descriptions, which are then fed into the
runtime engine.

Trends Relevant to
(Web) Service Composition

While much of the work to date has focused on standards for announcing, discovering,
and invoking Web services, there are other significant developments happening in Web
services. In this section, we overview some of the developments related to conversation-
driven composition, semantic Web services, and wireless Web services (also known as
M-services), focusing on those aspects relevant to service composition.

Conversation-Driven Composition

A conversation is a consistent exchange of messages between participants involved in
joint operations. A conversation succeeds when what was expected from that conver-
sation in terms of outcome has been achieved. Further, a conversation fails when the
conversation faced difficulties (for example, communication-medium disconnected) or
did not achieve what was expected.

The use of conversations helps in defining composite services at runtime instead of
design time. When a Web service is being executed, it has at the same time to initiate
conversations with the Web services that are due for execution. The purpose of these
conversations is twofold (Maamar, Benatallah & Mansoor, 2003): invite the Web
services to join the composition process and ensure that the Web services are ready for
execution in case they accept the invitation. Furthermore, conversations between Web
services allow addressing of the composability problem. Medjahed, Rezgui, Bouguettaya,
and Ouzzani (2003) note that an issue when defining a composite service is to check if
the Web services can actually work together at the information level. Mapping opera-
tions of the parameters exchanged between Web services may be required. Ensuring the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

62 Benatallah, Dijkman, Dumas and Maamar

composability of Web services can be completed using ontologies and conversations.
Web services engage in conversations to agree on which ontology to use, what/how/
when to exchange, and what to expect from an exchange.

The Web Services Conversation Language is an initiative on the integration of conver-
sations into Web services. This language describes the structure of documents that a
Web service is supposed to receive and produce and the order in which the exchange
of these documents will occur. The conversation component to embed a Web service is
mainly a means for describing the operations that a Web service supports (for example,
clients have to log in first before they can check the catalogue).

Ardissono, Goy, and Petrone (2003) observed that current Web services communication
standards support simple interactions and are mostly structured as question-answer
pairs. These limitations hinder the possibility of expressing complex situations that
require more that two turns of interactions (for example, propose/counter-propose/
accept-reject). Inaddition, Ardissono et al. (2003) worked on a conversational model that
aims at supporting complex interactions between clients and Web services, where
several messages are exchanged before a Web service is completed.

Itis stated that the full capacity of Web services as an integration platform will be reached
only when applications and business processes integrate their complex interactions by
using a standard process integration model such as BPEL4WS. While the orchestration
of Web services is a core component to any Web services integration effort, the use of
conversations gives more “freedom” to Web services to decide if they will take part in
this orchestration. Conversations are more than just combining components; they
promote the autonomy of components that act and react according to their environment
(Hanson, Nandi & Levine, 2002).

Semantic Web Services

Another major trend is the integration of semantics into Web services. Heflin and Huhns
(2003) argue that the goal driving the semantic Web is to automate Web-document
processing. The semantic Web aims at improving the technology that organizes,
searches, integrates, and evolves Web-accessible resources (for example, documents,
data). This requires the use of rich and machine-understandable abstractions to repre-
sent the resource semantics.

One of the core components to the widespread acceptance of the semantic Web is the
development of ontologies that specify standard terms and machine-readable defini-
tions. Although there is no consensus yet on what an ontology is, most researchers in
the field of knowledge representation consider a taxonomy of terms and the mechanisms
for expressing the terms and their relationships. Samples of markup language for
publishing and sharing ontologies on the 3W include RDF (Resource Description
Framework), DAML+ OIL (DARPA Agent Markup Language + Ontology Inference
Layer),and OWL (Web Ontology Language) (W3C World Wide Web Consortium, 2001).

By combining efforts of Web services and semantic Web communities, it is expected that
new foundations and mechanisms for enabling automated discovery, access, combina-
tion, and management for the benefit of semantic Web services will be developed.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 63

Paolucciand Sycara (2003) note that the semantic Web provides tools for explicit markup
of Web content, whereas Web services could create a network of programs (that is,
software agents) that produce and consume information, enabling automated business
interactions. There exist various initiatives in the field of semantic Web services such
as DAML-S (DARPA Agent Markup Language for Services) (DAML-S Consortium,
2004), WSMF (Web Services Modeling Framework) (Fensel & Bussler, 2002), and
METEOR-S (Managing End-To-End OpeRations-Semantic Web Services and Processes)
(Sivashanmugam, Verma, Sheth & Miller, 2003).

Wireless Web Services

Besides the Web expansion, a development occurring in the field of wireless and mobile
technologies is witnessed (Wieland, 2003). Telecom companies are offering new services
and opportunities to customers over mobile devices. The next stage (if we are not already
in it), is to allow users to remotely enact Web services from mobile devices (Maamar &
Mansoor, 2003).

While Web services provisioning is an active area of research and development
(Benatallah & Casati, 2002), little has been done to date regarding their provisioning in
wireless environments. This is due to different obstacles including throughput and
connectivity of wireless networks, limited computing resources of mobile devices, and
risks of communication channel disconnections. In addition, businesses that are eager
to engage in wireless Web services activities are facing technical, legal, and organiza-
tional challenges. To optimize Web services provisioning in wireless environments,
important issues need to be tackled first:

Context-sensitive Web services selection: In addition to traditional criteria such as
monetary cost and execution time, the selection of services should consider, on the one
hand, the location of requesters and, on the other hand, the capabilities of the computing
resources on which these services will be deployed (for example, processing capacity,
bandwidth). This calls for context-aware service selection policies that enable a system
to adapt itself to computing and user requirements.

Handling disconnections during Web services execution: In a wireless environment,
disconnections are frequent. It is noted that to cope with disconnection issues during
aservice delivery, software agent-based service composition middleware architectures
are deemed appropriate as proposed in Maamar, Sheng, and Benatallah (2004).

Conclusion

Web services promise to revolutionize the way in which applications interact over the
Web. However, the underlying technology is still in a relatively early stage of develop-
ment and adoption. While the core standards such as XML, SOAP, and WSDL are
relatively stable and are supported in various ways by a number of tools, standardization
efforts in key areas such as security, reliability, policy description, and composition are

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

64 Benatallah, Dijkman, Dumas and Maamar

still underway, and the tools supporting these emerging standards are still evolving. In
addition (or perhaps as a result of this), relatively few production-level Web services
have been deployed and are being used in practice. To some extent, these difficulties can
be explained by the fact that businesses have spent considerable resources in the last
few years to expose their functionality as interactive Web applications. As aresult, they
are reluctant to invest more to move this functionality into Web services until the benefits
of this move are clear. It will probably take another two years before the technology
reaches the level of maturity necessary to trigger a widespread adoption. In the meantime,
itis important that middleware platform developers integrate the numerous facets of Web
services into their products (for example, facilitating the use of message-oriented
middleware for Web service development), while researchers advance the state of the art
in challenging issues such as Web service delivery in mobile environments, QoS-driven
selection of services, and manipulation of semantic-level service descriptions.

References

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2003). Web services: Concepts,
architectures and applications. Berlin: Springer-Verlag.

Apache Web Services Project. (2003). Web services invocation framework (WSIF).
Retrieved August 6, 2004: http://ws.apache.org/wsif/

Ardissono, L., Goy, A., & Petrone, G. (2003, July 14-18). Enabling conversations with
web services. Proceedings of the Second International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Melbourne, Australia.

BEA Systems, Microsoft, IBM & SAP. (2003). Business process execution language for
Web services (BPEL4WS). Retrieved August 6, 2004: fip://
wwwo.software.ibm.com/software/developer/library/ws-bpel.pdf

Benatallah, B., & Casati, F. (2002). Introduction to special issue on Web services.
Distributed and Parallel Databases: An International Journal, 12(2-3).

Benatallah, B., Dumas, M., Sheng, Q., & Ngu, A. (2002, February 26-March 1). Declara-
tive composition and peer-to-peer provisioning of dynamic Web services. Pro-
ceedings of the 18th IEEE International Conference on Data Engineering (ICDE),
San Jose, CA.

Benatallah, B., Sheng, Q., & Dumas, M. (2003). The SELF-SERYV environment for Web
services composition. [EEE Internet Computing, 7(1),40-48.

Bultan, T., Fu, X.,Hull,R., & Su, J. (2003, May 20-24). Conversation specification: A new
approach to design and analysis of e-service composition. Proceedings of the 12th
International Conference on the World Wide Web (WWW’03) (pp. 403-410),
Budapest, Hungary.

Bussler, C. (2003). B2Bintegration: Concepts and architecture. Berlin: Springer-Verlag.

Cardelli, L., & Davies, R. (1999). Service combinators for Web computing. /EEE Trans-
actions on Software Engineering, 25(3), 309-316.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service Composition 65

Casati, F., & Shan, M.-C. (2001). Dynamic and adaptive composition of e-services.
Information Systems,26(3), 143-162.

Chen, Q., & Hsu, M. (2002, October 28-November 1). CPM revisited — An architecture
comparison. Proceedings of the Confederated International Conferences CooplIS,
DOA, and ODBASE (pp. 72-90), Irvine, CA.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., & Weerawarana, S. (2002).
Unraveling the Web services web: An introduction to SOAP, WSDL, and UDDI.
IEEE Internet Computing, 6(2), 86-93.

DAML-S Consortium. (2004). DAML services. Retrieved August 6, 2004: http://
www.daml.org/services

Fauvet, M.-C., Dumas, M., & Benatallah, B. (2002, October 28-November 1). Collecting
and querying distributed traces of composite service executions. Proceedings of
the Confederated International Conferences CooplS, DOA, and ODBASE (pp. 373-
390), Irvine, CA.

Fensel, D., & Bussler, C. (2002). The Web services modeling framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2), 113-137.

Grefen, P., Aberer, K., Hoffner, Y., & Ludwig, H. (2000). CrossFlow: Cross-organizational
workflow management in dynamic virtual enterprises. International Journal of
Computer Systems Science & Engineering, 15(5),277-290.

Hanson, J. E.,Nandi, P., & Levine, D. W. (2002, June 24-27). Conversation-enabled Web
services for agents and e-business. Proceedings of the International Conference
on Internet Computing (IC), Las Vegas.

Heflin, J., & Huhns, M. (2003). The Zen of the Web. IEEE Internet Computing, 7(5).

Maamar, Z., Benatallah, B., & Mansoor, W. (2003, May 20-24). Service chart diagrams:
Description and application. Proceedings of the 12th International Conference on
the World Wide Web (WWW?’03), Budapest, Hungary.

Maamar, Z., & Mansoor, W. (2003). Design and development of a software agent-based
and mobile service-oriented environment. e-Service Journal, 2(3).

Maamar, Z., Sheng, Q.Z., & Benatallah, B. (2004). On composite web services provision-
ing in an environment of fixed and mobile computing resources. Information
Technology and Management Journal, 5(3).

Mecella, M., Parisi-Presicce, F., & Pernici, B. (2002, August 23-24). Modeling e-service
orchestration through Petri nets. Proceedings of the 3rd International Workshop
on Technologies for E-Services (TES) (pp. 38-47), Hong Kong.

Medjahed, B., Benatallah, B., Bouguettaya, A., Ngu, A., & Elmagarmid, A. (2003).
Business-to-business interactions: Issues and enabling technologies. The VLDB
Journal, 12(1),59-85.

Medjahed, B., Rezgui, A., Bouguettaya, A., & Ouzzani, M. (2003). Infrastructure for e-
government Web services. IEEE Internet Computing, 7(1).

Muth, P., Wodtke, D., Weissenfels, J., Dittrich, A., & Weikum, G. (1998). From centralized
workflow specification to distributed workflow execution. Journal of Intelligent
Information Systems, 10(2).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

66 Benatallah, Dijkman, Dumas and Maamar

Narayanan, S., & Mcllraith, S. (2002, May 7-11). Simulation, verification and automated
composition of Web services. Proceedings of the 1 1th International Conference on
the World Wide Web (pp. 77-88), Honolulu.

Paolucci, M., & Sycara, K. (2003). Autonomous semantic Web services. IEEE Internet
Computing, 7(5).

Peltz, C. (2003). Web services orchestration and choreography. IEEE Computer, 36(8),
46-52.

Piccinelli, G., Finkelstein, A., & Lane Williams, S. (2003, September 1-6). Service-oriented
workflow: The DySCo framework. Proceedings of the 29th EUROMICRO Confer-
ence (pp.291-297), Belek-Antalya, Turkey.

RosettaNet (2004). RosettaNet home page. Retrieved August 6, 2004: http://
www.rosettanet.org

Schuster, H., Georgakopoulos, D., Cichocki, A., & Baker, D. (2000, June 5-9). Modeling
and composing service-based and reference process-based multi-enterprise
processes. Proceedings of the 12th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE) (pp. 247-263), Stockholm, Sweden.

Sivashanmugam, K., Verma, K., Sheth, A., & Miller, J. (2003, October 20-23). Adding
semantics to web services standards. Proceedings of the 2nd International Seman-
tic Web Conference (ISWC), Sanibel Island, FL.

UN/CEFACT, & OASIS (2001a). Collaboration-protocol profile and agreement specifi-
cation. Retrieved August 6, 2004: http://www.ebxml.org/specs/ebCCP.pdf
UN/CEFACT, & OASIS (2001b). ebXML business process specification schema. Re-

trieved August 6, 3004: http://www.ebxml.org/specs/ebBPSS.pdf

van der Aalst, W. (2003). Don’t go with the flow: Web services composition standards
exposed. IEEFE Intelligent Systems, 18(1).

vander Aalst, W., & van Hee, K. (2002). Workflow management: Models, methods, and
systems. Cambridge, MA: MIT Press.

W3C World Wide Web Consortium. (2002). Web services choreography working group.
Retrieved August 6, 2004: http://www.w3.0rg/2002/ws/chor

W3C World Wide Web Consortium. (2001). Semantic Web activity. Retrieved August
6,2004: http://www.w3.0rg/2001/sw

Wieland, K. (2003). The long road to 3G. International Telecommunications Magazine,
37(2).

Wohed, P., van der Aalst, W., Dumas, M., & ter Hofstede, A. (2003, October 13-16).
Analysis of Web services composition languages: The case of BPEL4WS. Proceed-
ings of the 22nd International Conference on Conceptual Modeling (ER). Chicago.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Section 11

Service-Oriented
Architecture Design
and Development

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

68 Olson, Raje, Bryant, Burt and Auguston

Chapter 1V

UniFrame:

A Unified Framework for
Developing
Service-Oriented,
Component-Based Distributed
Software Systems

Andrew M. Olson Rajeev R. Raje
Indiana University Purdue University, Indiana University Purdue University,
USA USA
Barrett R. Bryant Carol C. Burt
University of Alabama at Birmingham, University of Alabama at Birmingham,
USA USA

Mikhail Auguston
Naval Postgraduate School, USA

Abstract

This chapter introduces the UniFrame approach to creating high quality computing
systems from heterogeneous components distributed over a network. It describes how
this approach employs a unifying framework for specifying such systems to unite the
concepts of service-oriented architectures, a component-based software engineering
methodology and a mechanism for automatically finding components on a network in
order to assemble a specified system. UniFrame employs a formal specification language
to define the components and serve as a basis for generating glue/wrapper code that
connects heterogeneous components. It also provides a high level language for the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 69

system developer to use for inserting code in a created system to validate it empirically
and estimate the quality of service it supports. The chapter demonstrates how a
comprehensive approach, which involves the practicing community as well as technical
experts, can lead to solutions of many of the difficulties inherent in constructing
distributed computing systems.

Introduction

The architecture of a computing system family can be represented by a business model
comprising a set of standard, platform independent models residing in a service layer,
each of which is related to a platform specific model that corresponds to one or more
specific realizations of the service. A system is realized by assembling the realizations
according to the specified architecture. This Service-Oriented Architecture offers many
advantages, such as flexibility, in constructing and modifying a computing system.
Because business requirements can change rapidly, both the services making up a
business model and their platform specific realizations may need to change rapidly in
response. With an agile mechanism to trace out an appropriate architecture, the devel-
opment engineer can react quickly by building a modified realization of the system.
Nevertheless, there are many practical issues that make effecting this process difficult.
For example, an environment in which this approach has greatest appeal is typically
distributed and heterogeneous. This makes the mapping of a system’s platform indepen-
dentmodel to a platform specific model (Object Management Group, 2002) quite complex
and subject to variation.

This chapter describes the basic principles of the UniFrame Project, which defines a
process, based on Service-Oriented Architecture, for rapidly constructing a distributed
computing system that confronts many of these inherent difficulties. UniFrame’s basic
objectiveisto create aunified framework to facilitate the interoperation of heterogeneous
distributed components as well as the construction of high quality computing systems
based on them. UniFrame combines the principles of distributed, component-based
computing, Model-Driven Architecture, service and quality of service guarantees, and
generative techniques.

Though better than handcrafting distributed computing systems, developing them by
composing existing components still poses many challenges. A comprehensive treat-
ment of these and the corresponding solutions that UniFrame proposes exceeds the
scope of this chapter, so it sketches the features of UniFrame that are most related to the
book’s service-oriented engineering theme along with references to further reading.

Background

Despite the achievements in software engineering, development of large-scale, decen-
tralized systems still poses major issues. Recent experience has demonstrated that the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

70 Olson, Raje, Bryant, Burt and Auguston

principles of distributed, component-based engineering are effective in dealing with
them. Weck (1997), Lumpe, Schneider, Nierstrasz, and Achermann (1997), and the works
of Batory et al., for example, Batory and Geraci (1997), concern the composition of
components. The approach of Griss (2001) to developing software product lines is similar
to UniFrame’s, except that UniFrame avoids descending to code-fragment-sized compo-
nents. Brown (1999) surveys component-based system development, whereas Heineman
and Councill (2001) and Szyperski, Gruntz, and Murer (2002) provide extensive discus-
sions of different aspects.

Heineman and Councill (2001) provide a general definition of acomponent model. Many
different models for distributed, component-based computing have been proposed and
implemented. Among these, J2EE™ (Java 2 Enterprise Edition) and its associated
distributed computing model (Java-RMI), CORBA® (Common Object Request Broker
Architecture), and .NET® have achieved the greatest acceptance. Typically, each
prevalent model assumes the presence of homogeneous environments; that is, compo-
nents created using a particular model assume that any other components present adhere
to the same model. For example, the white paper on Java Remote Method Invocation
(2003) describes RMI as an extension of Java’s basic model to achieve distributed
computation, assuming, thus, an environment consisting of components developed
using Java and communicating with each other using method calls. Schmidt (2003)
provides an overview of CORBA, which indicates that CORBA does provide a limited
independence from the components’ development language and deployment platform by
specifying components with an interface definition language. This permits implementa-
tion in any languages for which mappings with the interface definition language exist.
Again, an implicit assumption is that, typically,a CORBA component will communicate
with another CORBA component. Microsoft’s .NET is intended as a programming model
for building XML™-based Web services and associated applications. It provides
language independence with an interface language and a common language runtime
(Microsoft NET Framework, 2003). The implicit assumption of homogeneity still holds.

UniFrame

Current approaches for tackling heterogeneity are ad hoc in nature, requiring handcrafted
software bridges, so have many drawbacks. It is difficult to make components of different
models interoperate, and handcrafting is known to be error prone. Moreover, depen-
dence on asingle model meshes poorly with the grand notion of a component (or services)
bazaar over a distributed infrastructure, as the success of such a bazaar requires local
autonomy for deciding various policies, including the choice of the underlying model.
Thus, there is a need for a framework, such as UniFrame, that will support seamless
interoperation of heterogeneous, distributed components. UniFrame consists of:

i the creation of a standards-based meta-model for components and associated
hierarchical setup for indicating the contracts and constraints of the components;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 71

. an automatic generation of glue and wrappers for achieving interoperability;

° guidelines for specifying and verifying the quality of individual components;

. a mechanism for automatically discovering appropriate components on a net-
work;

i a methodology for developing distributed, component-based systems with ser-

vice-oriented architectures; and

° mechanisms for evaluating the quality of the resulting component assem-
blages.

UniFrame creates more general distributed systems than the point-to-point interactions
of current Web services and also emphasizes determining the Quality of Service (QoS)
during system assembly. For pragmatic reasons, UniFrame provides an iterative, incre-
mental process for assembling a distributed computing system (DCS) from services
available on the network that permit selecting among alternative components during
system construction. In order to increase the assurance of a DCS, UniFrame employs
automation, to the extent feasible, in the processes of locating and assembling compo-
nents, and of component and system integration testing. The ICSE 6th Workshop on
Component-Based Software Engineering: Automated Reasoning and Prediction (Crnkovic,
Schmidt, Stafford & Wallnau, 2003) focused on automated composition theories in
constructing a DCS. Although automation is a goal of UniFrame, it presently focuses on
the more practical, implementation aspects.

Unified Meta-Component Model (UMM)

Because future service-oriented systems will consist of independently developed
components adhering to various models, a meta-model that abstracts the features of
different models, enhances them and incorporates innovative concepts, is necessary in
order to facilitate their creation. Raje (2000) and Raje, Auguston, Bryant, Olson, and Burt
(2001) describe a central concept of UniFrame, the Unified Meta-component Model, that
does this. It consists of three parts: (a) components, (b) service and its guarantees, and
(c) infrastructure. These are not novel separately, but their structure, integration, and
interactions form the UMM’s distinguishing features. Components in the UMM have
public interfaces and private implementations, which may be heterogeneous. Each
interface comprises multiple levels. In addition to emphasizing a component’s functional
responsibilities (or the services it offers), the UMM requires component developers to
advertise and guarantee a QoS rating for each component. The UMM’s infrastructure
supplies the environment necessary for developing, deploying, publishing, locating,
assembling, and validating individual components and systems of components. The
following subsections expand upon these concepts.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

72 Olson, Raje, Bryant, Burt and Auguston

Component

The UMM defines a component as a sextuple consisting of the attributes (inherent,
functional, nonfunctional, cooperative, auxiliary, deployment). This view of a compo-
nent conforms to the definition of Szyperski, Gruntz, and Murer (2002). The inherent
attributes contain the bookkeeping information about a component, such as the author,
the version, and its validity period. The functional attributes of a component contain its
interface, along with the necessary pre- and post-conditions, and component model of
any associated implementation. They also indicate related details, such as algorithms
used, underlying design patterns and technology, and known usages. The nonfunc-
tional attributes represent the QoS parameters supported by the component, along with
their values that the component developer guarantees in a specific deployment environ-
ment. These attributes may also indicate the effects of the deployment environment and
usage patterns on the QoS values. The cooperative attributes describe how components
actively collaborate, exchanging services. The auxiliary attributes exhibit other charac-
teristics, such as mobility, various security features, and fault tolerance that the
components may possess. A component needs deployment rules, specified in the
deployment attributes so that it can be configured, initialized, and made available on a
network.

Service

As described by Raje (2000), this part of the UMM consists of the computational tasks
and guarantees thata component performs. Torealize a DCS from a set of independently
created components, the system integrator needs to reason from the service assurance
of each component to obtain the assurance of the integrated DCS. Hence, a component
must provide a predetermined level of assurance of both its functional and nonfunctional
features. Various techniques, such as formal verification, have been proposed for
reasoning about the functional assurance of a DCS. Therefore, the UMM assumes the
use of an appropriate mechanism for functional assurance. The UniFrame research
focuses on assuring the nonfunctional features of components and the integrated
system because many existing application domains (multimedia, critical systems, and so
forth) depend not only on correct functionality but also on how well it is achieved.
UniFrame provides a mechanism for the component provider to specify the QoS
parameters that are applicable to a provided component and determine the ranges that
the component can guarantee.

Table 1 shows the UMM type specification of a component, Validation Server, for
validating user accesses within the application domain of document management. In the
advertised description of a corresponding implementation, the component provider
would supply the actual values for various fields (such as N/A in Table 1). For example,
the specification of a component that implements Validation Server would contain
details, such as the URL where the component is deployed (id), the guaranteed values
for the throughput and end-to-end delay, and the required deployment environment. The

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 73

Table 1. UMM type specification of a component

Abstract Component Type: ValidationServer

1. Component Name: ValidationServer
2. Domain Name: Document Management
3. System Name: DocumentManager
4. Informal Description: Provide the user validation service.
5. Computational Attributes:
5.1 Inherent Attributes:
5.1.11id: N/A
5.1.2 Version: version 1.0
5.1.3 Author: N/A
5.1.4 Date: N/A
5.1.5 Validity: N/A
5.1.6 Atomicity: Yes
5.1.7 Registration: N/A
5.1.8 Model: N/A
5.2 Functional Attributes:
5.2.1 Function description: Act as validation server for users in the system.
5.2.2 Algorithm: N/A
5.2.3 Complexity: N/A
5.2.4 Syntactic Contract
5.2.4.1 Provided Interface: Validation
5.2.4.2 Required Interface: NONE
5.2.5 Technology: N/A
5.2.6 Expected Resources: N/A
5.2.7 Design Patterns: NONE
5.2.8 Known Usage: Validation of user access
5.2.9 Alias: NONE
6. Cooperation Attributes:
6.1 Preprocessing Collaborators: Users 'Terminal
6.2 Postprocessing Collaborators: NONE
7. Auxiliary Attributes:
7.1 Mobility: No
7.2 Security: L0
7.3 Fault tolerance: L0
8. Quality of Service Attributes
8.1 QoS Metrics: throughput, end-to-end delay
8.2 QoS Level: N/A
8.3 Cost: N/A
8.4 Quality Level: N/A
8.5 Effect of Environment: N/A
8.6 Effect of Usage Pattern: N/A
9. Deployment Attributes: N/A

specification associated with each implemented component is published when it is
deployed on the network. The UMM specification of a component enhances the concept
of amultilevel contract for components proposed by Beugnard, Jezequel, Plouzeau, and
Watkins (1999) because it includes other details, such as bookkeeping, collaborative,
algorithmic and technological information, and possible levels of service with associated
costs and effects of different environmental factors on the QoS parameters.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

74 Olson, Raje, Bryant, Burt and Auguston

Infrastructure

UniFrame assumes the presence of a publicly accepted knowledgebase that contains
information, such as the component types needed for a specific application domain, the
interconnections and constraints that make up the design specification of each compo-
nent system in a domain, and rules for QoS calculations. Experts, such as standards
organizations’ task forces, create the UMM specifications for the components of each
application domain of the knowledgebase. The UMM specifications of the component
types are publicly distributed so that component developers can supply implementa-
tions that adhere to them.

UniFrame’s Infrastructure consists of the System Generation Process, Resource Discov-
ery Service (URDS), and Glue and Wrapper Generator. The first employs the
knowledgebase to carry out the steps in creating a component system. It invokes the
URDS to locate the components in the network the system requires and validates the
product using an iterative process. The URDS provides mechanisms for components to
publish their UMM specifications and for hosting the services on distributed machines,
receives appropriate queries for locating the deployed services, and performs the
selection of necessary components based upon specified criteria. It invokes the Glue and
Wrapper Generator, which accommodates the heterogeneity across components, incor-
porates the mechanisms necessary to measure the QoS, and configures the selected
services. Subsequent sections will provide more details about these.

Service-Oriented Architecture

In order to provide flexible, efficient support to the process of creating a DCS, UniFrame
organizes its knowledgebase according to the concepts of Model-Driven Architecture
proposed by the Object Management Group (2002) and Business Line Architecture
proposed by the Enterprise Architecture SIG (2003a). UniFrame’s UMM provides an
underlying framework for this organization. The domain elements in the top tier of the
architecture correspond to different business contexts, or lines. A context consists of
a class of related business practice domains (such as, retail grocery, retail hardware,
construction supply, wholesaler), which are located in the next tier down. Conceptually,
elements on one level can share an element on another (health care and construction can
share inventory), which differs in how it performs similar operations in different contexts
(that is, the element comprises a set of variants). The various, hierarchically organized
elements that contribute detail to the definition of a business context constitute its
Business Reference Model, discussed in Succeeding with Component-Based Architec-
ture by the Enterprise Architecture SIG (2003b). This takes the form of a tree, whose root
represents the context in the architecture under consideration. Business domain experts
perform requirements analysis and model the business contexts for which it is desired
to construct DCSs. The Business Reference Models they derive and place in the
knowledgebase define the space of problems UniFrame can solve.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 75

For each Business Reference Model, software engineers construct design models in
various ways to implement DCSs that satisfy its requirements. A design model is
expressed, frequently in Unified Modeling Language (UML®) (Rumbaugh, Jacobson &
Booch, 1999), interms of tiered layers of components, each component offering a defined
set of services. Several Business Reference Models can share components. A compo-
nent in one tier can be composed (or use of the services) of components on a lower tier.
Thus, a component has two definition forms in the knowledgebase:

i a specification of its abstract properties as a type, as in Table 1, or

i a design specification, following UMM standards, which directly references the
components and refined design specifications that it uses.

The former is called an abstract component, which the UniFrame System Generation
Process considers to be available with no construction necessary. The second form is
called a compound component. The process will attempt to construct it from its design.
A design specification that defines a realization of a Business Reference Model forms
a Service Reference Model for it. It provides a vehicle for realizing the Model-Driven
Architecture’s mapping from a platform-independent model to a platform-specific model.
The Service Reference Models also form part of UniFrame’s knowledgebase.

Inorder to construct DCS solutions for a significant space of problems, the knowledgebase
must contain matching (Business Reference Model, Service Reference Model) pairs for
each problem variation anticipated. These can be organized efficiently by structuring
related Business Reference Models in feature models according to the optional features
that they exhibit and related Service Reference Models according to variation point
archetypes that show which design variants are available. The experts create a domain-
specific language based on the distinguishing features and variation points in the
models. Then, users of the System Generation Process employ the language to specify
their requirements. The following example illustrates the knowledgebase’s organization.

Case Study

Suppose domain experts want to create a knowledgebase that includes the business
context consisting of users who manage documents. The users’ contact with the
supporting system is via the use case Manage Documents, which includes Validate
User. The use cases Create Document, Delete Document, List Documents, Store
Document, and Get Document all extend Manage Documents. The last in this list includes
Lock Document, whereas the others include Unlock Document. From the requirements
these express, the domain experts identify three subsystems comprising the system: one
for user validation, one for managing the documents themselves, and one for user
interaction. The experts write a domain model for this system containing these three
subsystems.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

76 Olson, Raje, Bryant, Burt and Auguston

Suppose the experts decide the users may want to choose between two types of
document manager systems: a standard document manager and a deluxe one that
provides extended persistence support. They represent these options in a simplified
feature diagram for the document manager, as shown in Figure 1. Clear small circles
indicate optional features, whereas an arc indicates an exclusive OR choice. In more
general feature diagrams (Griss, 2001), options of a node can be chosen as any
combination of elements of a subset of the node’s children. A feature diagram carries no
information about how its alternatives might be associated with elements in the domain
model of their parentnode. It is an efficient mechanism for representing alternatives; the
domain models are essential for representing the associations among elements in the
models and the constraints on them. The domain model for the standard document
manager consists of only one domain element, Document Server. The domain model for
the deluxe document manager consists of two domain elements, Deluxe Document Server
and its associated Document Database for persistence. Because there are just two
alternatives in the feature diagram, there are just two Business Reference Models in this
example. More generally, there will be as many as there are combinations permitted by
the various feature diagrams present in the knowledgebase.

Software engineers experienced in the domain of the business context (document
management here) develop design models for these two Business Reference Models.
They create a service-oriented architecture of abstract components so that domain
models map to component-based design models. Figure 2 shows the Service Reference
Model, Standard Document System, for the Business Reference Model of the Standard
Document Manager for this example. The Service Reference Model, Deluxe Document
System, for the Deluxe Document Manager is identical, with the addition of a Database
component associated with the Document Server, where the cardinality allows an
arbitrary, positive number of Database units to be present. The Service Reference
Models include the details defining the associations among the components. These
might be views consisting of UML collaboration diagrams. This information is used to
determine the entries in the UMM abstract component specifications and the interrela-
tions of the components’ interfaces. The specification for the abstract component,
Validation Server, appeared in Table 1.

Suppose that the software engineers decide that two implementations of the standard
document manager are possible, one in which the components adhere to .NET and the

Figure 1. Feature diagram for the document management system

O OF
DM
Legend:
L D OF: Other Features

DM: Document Manager
SDM: Standard Document Manager
SDM DDM DDM: Deluxe Document Manager

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 77

Figure 2. Service reference model for the standard document system

E Ut Legend:
1 % 1.* UT: Users' Terminal
VS: Validation Server
E VS E DS DS: Document Server

other to CORBA. They indicate this choice by a design model, labeled Standard
Document System, augmented by variation point information that specifies the choice
of'one of these two technologies for the associations in Figure 2, such as in OCL (Warmer
& Kleppe, 2003), as shown:

context Standard Document System

inv: technology = *NET’ or technology = ‘CORBA’

Because the system consists of more than two components, the engineers have other
combinations possible. For example, the Users’ Terminal/Validation Server association
may be in .NET technology, and the Document Server may be in CORBA technology,
implying the need for an appropriate bridge.

UniFrame System Generation Process

The essential steps in UniFrame’s process of constructing a DCS to solve a problem
appear in Table 2. Once the UniFrame knowledgebase is available, a system developer
can pose a statement of requirements for a DCS that solves a problem within its
application domain. This analysis task forms step (1) in Table 2. For the case study in
the previous section, the statement of requirements might be:

Create a Document Management System having a Standard Document Manager.

In step (2), the term Document Management System of the example requirements
statement identifies the business context, so the stated problem lies within the domain
the knowledgebase represents. The corresponding system model shows there are two
alternatives for the Document Manager, which the feature model displays in Figure 1.
The qualifying requirement, Standard, resolves this ambiguity, which completes step (2).
The resulting Business Reference Model maps directly in the knowledgebase to the two
alternative platform-specific Service Reference Models for the entire system shown in

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

78 Olson, Raje, Bryant, Burt and Auguston

Table 2. Steps in the UniFrame System Generation Process

Steps Activities
1 State the requirements the DCS must satisfy in the knowledgebase's
terminology.
2 Identify a Business Reference Model that represents these.

3 Identify each Service Reference Model specifying a system of
abstract components that satisfies the Business Reference Model.

4 Obtain concrete implementations of the abstract components.

5 Assemble the concrete components into a DCS according to each
Service Reference Model, so that it meets the specified
requirements.

6 Test the DCS against the requirements and exit if satisfactory;

otherwise, return to step (1) to modify the requirements.

Figure 2, in which the components are either all NET or all CORBA. This completes
step (3).

Continuing to step (4), the System Generation Process collects the UMM type specifi-
cations of all the abstract components involved in each of the two Service Reference
Models and sends them in a query to the UniFrame Resource Discovery Service. This
searches the network for implemented components whose UMM descriptions satisfy the
type specifications.

Step (5) employs the design information in a Service Reference Model to constructa DCS
with the components found. If the appropriate implementations are available on the
network, the request for a Standard Document Manager in the example will yield two
DCSs, one with .NET technology and one with CORBA technology. Ifno .NET implemen-
tation of a Validation Server is found, then only the CORBA DCS will be constructed.

Typically, a developer understands the requirements poorly at the initiation of the
System Generation Process. Therefore, it is imperative to evaluate empirically the
consistency of the characteristics of a generated DCS with the perceived requirements
and make modifications as necessary. This motivates having step (6) in Table 2. Such
iterative development provides a mechanism for the developer to validate the outcome
ofthe process and determine empirically the ranges within which its QoS attributes vary.
This helps to assure a higher quality product. The process allows two levels of testing.
The simplest is black box (or acceptance) testing of the DCS based on only the stated
requirements. The developer supplies a test harness and plan for this. The other is white
box (or integration) testing, again based on the developer’s test plan. In this case, the
design of the DCS serves as a guide for inserting instrumentation code between the
components in the DCS. At runtime, this code reports the behavior of the DCS, giving
the developer a view into its internal operation. The section on the measurement of QoS
discusses a mechanism for inserting this instrumentation easily.

In case there are several Business or Service Reference Models in the knowledgebase
that satisfy the developer’s requirements if step (2) or (3) of the process provides

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 79

feedback, allowing the developer to introduce requirements incrementally so as to reduce
these alternatives, then the process becomes an efficient way to construct the needed
type of DCS. Thus, the System Generation Process supports the iterative, incremental
development paradigm that modern software engineering practices have found produc-
tive.

UniFrame Resource
Discovery Service (URDS)

Once components and their UMM descriptions have been deployed on the network, they
areready for discovery in the UniFrame System Generation Process. The URDS executes
this process. Siram et al. (2002) discuss its architecture, shown in Figure 3.

The URDS architecture comprises: HeadHunters (HHs), Internet Component Broker
(ICB), Meta-repositories (MRs), and components.

Components are implemented according to some component model, as described earlier,
and registered with the model’s binding service. For example, the Java-RMI components
are registered with the Naming service provided by the Java-RMI framework. An

Figure 3. UniFrame Resource Discovery System (URDS)

DE ACD(AC2
P N e

L/

MR

[z

S " Active Active S6 Active
2 Registry Registry 7 Registry

RMI ORB Net
S8

S3

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

80 Olson, Raje, Bryant, Burt and Auguston

advantage of this is that it does not burden the component providers because, to deploy
their implementations, they must register them anyway. The HHs have the sole respon-
sibility of performing matchmaking operations between registered components and
requested specifications. Each HH has an MR, which serves as a local store. An HH is
constantly discovering newly implemented components and storing their UMM speci-
fications in its MR. Anytime an HH receives a query for acomponent type, it first searches
its MR. If it finds a match, it returns the corresponding component as a result. If not, it
propagates the query to other HHs in the system.

The ICB is analogous to the object request broker (ORB) in other architectures. Unlike
the ORB, which only allows interoperation between components having heterogeneous
implementations, the Internet component broker allows interoperation between compo-
nents with different component models. As Figure 3 shows, the Internet component
broker consists of domain security manager (DSM), query manager (QM), link manager
(LM), and adapter manager (AM). The DSM is responsible for enforcing a security
structure on the URDS. It authenticates the HHs and allows them to communicate with
different binding mechanisms (registries). The QM interfaces with the System Generation
Process. Itreceives a query consisting of a collection of UMM component types, passes
it to the HHs, and returns the results. The LM allows a federation of URDSs to be created
in order to increase the component search space. The AM locates adapter components,
such as bridges that allow interoperation of different component models, and passes
them to the Glue and Wrapper Generator.

A prototype of URDS has been implemented using the Java-RMIand .NET technologies.
Many experiments have been performed to measure its performance (Siram et al., 2002).
These demonstrate that URDS scales upward, but the details extend beyond this
chapter’s scope.

Industry and academia have proposed and implemented many distributed resource
discovery and directory services. Examples that Siram et al. (2002) describe include
WAIS, Archie, Gopher, UDDI, CORBA Trader, LDAP, Jini, SLP, Ninf, and NetSolve. Each
has its own characteristics and exhibits some similarity with URDS. The distinguishing
features of URDS are its treatment of heterogeneity and its purpose to support creating
heterogeneous integrated systems, not just to discover services.

UniFrame Quality of
Service Framework (UQoS)

Components offer services and indicate and guarantee the quality of their services.
Therefore, it is necessary to facilitate the publication, selection, measurement, and
validation of component and DCS QoS values. The UniFrame Quality of Service
Framework, described by Brahnmath (2002); Sun (2003); and Raje, Bryant, Olson,
Auguston, and Burt (2002), provides necessary guidelines for the component developers
and system integrators using UniFrame. The UQoS consists of three parts: QoS catalog,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 81

composition/decomposition models for QoS parameters, and specification and measure-
ment of QoS. The reader is referred to the references above for the first two because the
details are extensive.

To prepare the UMM description of a component to be publicized, the component
developer must measure empirically the QoS parameters in the corresponding UMM type
specification. The QoS catalog provides model definitions and formulas to assist in this.
Some parameters are static in nature (like reliability), while some are dynamic (like end-
to-end delay). If the parameter is static and characterizes a system of components, then
its value can be determined from the components’ parameter values. Otherwise, its value
must be determined empirically.

Evaluation of QoS Parameters

UniFrame uses the principles of event grammars for measuring parameters empirically.
Event grammar, as described by Auguston (1995), forms the basis for system behavior
models. An event represents any detectable action during execution, such as a statement
execution, expression evaluation, procedure call, and receiving a message. It has a
beginning, end, and duration (a time interval corresponding to the action of interest).
Actions (or events) evolve in time, and system behavior represents the temporal
relationship among actions. This implies a partial ordering relation for events, as Lamport
(1978) discussed.

System execution can be modeled as a set of events (event trace) with two basic relations:
partial ordering and inclusion. The event trace actually is a model of the system’s
temporal behavior. In order to specify meaningful system behavior properties, events
must be enriched with attributes. An event may have a type and other attributes, such
as duration, source code related to the event, associated state (that is, variable values
at the event’s beginning and end), and function name and returned value for function
call events.

A special programming language, FORMAN, for computations over event traces greatly
facilitates measuring parameters empirically. As described by Fritzson, Auguston, and
Shahmehri (1994) and Auguston (1995), it is based on the notions of the functional
paradigm, event patterns, and aggregate operations over events.

The execution model of a component (or a system of integrated components) is defined
by an event grammar, which is a set of axioms that describes possible patterns of basic
relations between events of different types in a program execution trace. It is not intended
tobeused for parsing actual event traces. Ifan event is compound, the grammar describes
how it splits into other event sequences or sets. For example, the event execute-
assignment-statement contains a sequence of events evaluate-right-hand-part and
execute-destination.

The rule 4 :: (B C) establishes that, if an event a of the type 4 occurs in the trace of a
program, it is necessary that events b and c of types B and C, also exist, such that the
relations bIN a, c INa, b PRECEDES c hold. For example, the event grammar describing

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

82 Olson, Raje, Bryant, Burt and Auguston

the semantics of an imperative programming language may contain the following rule (the
names, such as execute-program and ex-stmt in the grammar denote event types):

execute-program :: (‘ex-stmt *)

This means that each event of the type execute-program contains an ordered (w.r.t.
relation PRECEDES) sequence of zero or more events of the type ex-s¢m¢. For the function
call event, the event grammar may provide the following rule:

func_call:: (param *) (ex-stmt *)

This event may contain zero or more parameter evaluation events followed by statement
executions.

Example of Evaluating Turn-Around Time

If the event type component call corresponds to the whole component call event and
request denotes the event for a single request (the time interval from the request’s
beginning to its completion), then the following FORMAN formula specifies the mea-
surement of the turn-around time:

FOREACH a: session FROM execute_program
SAY (‘Turn-around Time for a session is *
SUM[b: request FROM a APPLY b.duration]
/ CARD[request FROM a])

Similar rules can be specified for any other dynamic QoS parameters or related compu-
tations. Thus, the principles of event traces provide a mechanism to validate empirically
the QoS values for a component and for an integrated system of components.

Interoperability Using the
Glue and Wrapper Generator

For interoperation of heterogeneous distributed components, it is necessary to con-
struct glue and wrapper code to interconnect the components. Because a project
objective is to achieve high quality systems, a goal is to automatically generate the glue/
wrapper code. In order to achieve this, there should be formal rules for interconnecting

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 83

components from a specific application domain as well as integration of multiple
technology domains, that is, component models. UniFrame uses the Two-Level Grammar
(TLG, also called W-grammar) formal specification language (Bryant & Lee, 2002) to
specify both types of rules. The TLG formalism is used to specify the components
deployed under UniFrame and also the generative rules needed for system assembly. The
output of the TLG will provide the desired target code (for example, glue and wrappers
for components and necessary infrastructure for the distributed runtime architecture).
The UMM formalization establishes the context for which the generative rules may be
applied. Bryant, Auguston, Raje, Burt, and Olson (2002) provide further details about the
glue/wrapper code generation rules, including a discussion of how the Quality of Service
validation code is inserted into the glue code. The general principle is that for each QoS
parameter to be dynamically verified, the glue code is instrumented according to the
event grammar rules described earlier.

Future Trends

The concept of Business Reference Models “is meant to provide the foundation for
common understanding of business processes across the Federal government in a
service-oriented manner,” enabling an agency to define an enterprise architecture as
mandated by law (Enterprise Architecture SIG, 2003). A significant sector of industry is
involved in establishing standards and guidelines on how to enable successful enter-
prise architecture. The component-based architecture of UniFrame’s knowledgebase
closely follows these guidelines, incorporating the concepts of Object Management
Group’s (2002) Model-Driven Architecture as an integral part. Consequently, UniFrame
isworking toward the realization of an operational framework for enterprise architecture
and is a source of feedback into the activities necessary.

Many existing component models provide the necessary mechanisms for describing the
functional aspects of components but not for the QoS aspects. Standards organizations
have recently started to address this weakness. For example, in the fall 02000, the OMG
began issuing a number of Requests for Proposals for UML profiles for modeling QoS
in several contexts. UniFrame is addressing some of these QoS issues and is making
efforts (via presentations to different OMG task forces) to ensure that its research is
aligned with emerging industry standards.

The creation of the Business Line and Service-Oriented knowledgebase will largely
continue to be a human endeavor aided by CASE tools because humans determine what
constitutes the problems they must solve. However, the System Generation Process
could be accomplished mostly automatically for any problem in a given knowledgebase.
The person who formulates the requirements for the DCS will need to do so in the
knowledgebase’s terminology. The degree to which this can be made to match the typical
user’s terminology remains a research area.

Huang (2003) implemented a prototype of the UniFrame System Generation Process with
the UniFrame Resource Discovery Service. Because of the labor involved in constructing
the knowledgebase, it was limited to a small banking case study. Experimental studies

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

84 Olson, Raje, Bryant, Burt and Auguston

proved efficient, user communication issues were easily managed, and QoS values were
calculated. The automated creation of bridges and glue/wrapper code and using FORMAN
to insert the code into them for the QoS computations remain to be incorporated into the
implementation.

Conclusion

This chapter has described the UniFrame process for constructing distributed comput-
ing systems and has shown how it facilitates achieving the current goals of government
and industry in rapidly creating high quality computing systems. UniFrame provides a
framework within which a diverse array of technologies can be brought to achieve these
ends. These include software engineering practices, such as rapid, iterative, and
incremental development. Its business line, service-oriented, model-driven architecture
based on components is a realization of the movement to provide mutability, quick
development, and conservation of resources. A knowledgebase of component-based,
predefined and tested designs for distributed computing systems, event traces for
empirical testing, and quality of service prediction and calculation are tools it utilizes for
increasing quality assurance. UniFrame decouples the requirements analysis and system
assembly activities from the problem of collecting appropriate components published on
the network. Its novel resource discovery service facilitates the efficient acquisition of
components meeting stated specifications. It provides a mechanism for seamlessly
bridging components of different models, such as RMI and CORBA, to support the
construction of heterogeneous, distributed computing systems having platform-inde-
pendent definitions. The UniFrame project is also investigating techniques and patterns
related to using quality of service parameters during the design of components and
integrated systems to create high assurance distributed computing systems.

Acknowledgments

This work was supported in part by the U.S. Office of Naval Research, grant N00014-01-
1-0746.

References

Auguston, M. (1995). Program behavior model based on event grammar and its
application for debugging automaton. In M. Ducassé (Ed.), Proceedings of the
2nd International Workshop on Automated and Algorithmic Debugging
(AADEBUG’95) (pp-277-291), Rennes: Université de Rennes.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 85

Batory, D., & Geraci, B. (1997). Component validation and subjectivity in GenVoca
generators. [EEE Transactions on Software Engineering, 23(2), 67-82.

Beugnard, A., Jezequel, J., Plouzeau, N., & Watkins, D. (1999). Making components
contract aware. I[EEE Computer,32(7),38-45.

Brahnmath, G. (2002). The UniFrame Quality of Service Framework. Unpublished
master’s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame/

Brown, A. (1999). Building systems from pieces with component-based software engi-
neering. In P. Clements (Ed.), Constructing superior software (Chapter 6). India-
napolis, IN: MacMillan Technical.

Bryant, B. R., Auguston, M., Raje, R. R., Burt, C. C., & Olson, A. M. (2002). Formal
specification of generative component assembly using two-level grammar. Pro-
ceedings of SEKE 2002, 14th International Conference on Software Engineering
and Knowledge Engineering (pp.209-212). Los Alamitos: IEEE Press.

Bryant, B. R., & Lee, B.-S. (2002). Two-Level grammar as an object-oriented require-
ments specification language. Proceedings of HICSS-35, the 35th Hawaii Interna-
tional Conference on System Sciences (p. 280). Los Alamitos, CA: IEEE Press.
Retrieved August 8,2004: http://www. hicss.hawaii.edu/HICSS 35/HICSSpapers/
PDFdocuments/STDSLOI.pdf

Crnkovic, I., Schmidt, H., Stafford, J., & Wallnau, K. (Eds.). (2003). Proceedings of the
6th Workshop on Component-Based Software Engineering: Automated Reason-
ing and Prediction. The 25" International Conference on Software Engineering
(ICSE). Retrieved August 8,2004: http.//www.csse.monash.edu.au/~hws/cgi-bin/
CBSE6

Enterprise Architecture SIG, Industrial Advisor Council (IAC). (2003a, March). Business
line architecture and integration. Retrieved August 8,2004: http.//216.219.201.97/
documents_presentations/index.htm

Enterprise Architecture SIG, Industrial Advisor Council. (2003b, March). (IAC). Suc-
ceeding with component-based architecture in e-government. Retrieved August 8§,
2004: http://216.219.201.97/documents_presentations/index. htm

Fritzson, P., Auguston, M., & Shahmehri, N. (1994). Using assertions in declarative and
operational models for automated debugging. The Journal of Systems and Soft-
ware, 25,223-239.

Griss, M. L. (2001). Productline architectures. In G. T. Heineman, & W. T. Councill (Eds.),
Component-based software engineering.: Putting the pieces together (pp. 405-
420). Boston: Addison-Wesley.

Heineman, G.T., & Councill, W. T.(Eds.). (2001). Component-based software engineer-
ing: Putting the pieces together. Boston: Addison-Wesley.

Huang, Z. (2003). The UniFrame system-level generative programming framework.
Unpublished master’s thesis, Indiana University Purdue University, Indianapolis,
IN, United States. Retrieved August 8, 2004: http://www.cs.iupui.edu/uniFrame

Java Remote Method Invocation — Distributed computing for Java. (2003, October 2).
Retrieved August 8,2004: http://java.sun.com/marketing/collateral/javarmi.html

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

86 Olson, Raje, Bryant, Burt and Auguston

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 558-565.

Lumpe, M., Schneider, J., Nierstrasz, O., & Achermann, F. (1997). Towards a formal
composition language. In G. T. Leavens & M. Sitamaran (Eds.), Proceedings of the
1st ESEC Workshop on Foundations of Component-Based Systems (pp. 178-187).
Heidelberg: Springer-Verlag.

Microsoft .Net Framework: Technology overview. (2003, October 2). Retrieved August
8, 2004: http://msdn.microsoft.com/netframework/technologyinfo/overview/

Object Management Group. Model-Driven Architecture™, the architecture of choice for
achanging world. (2002, March 12). Retrieved August 8,2004: http://www.omg.org/
mda

Raje,R.(2000). UMM: Unified Meta-object Model for open distributed systems. Proceed-
ings of the Fourth IEEE International Conference on Algorithms and Architecture
for Parallel Processing (ICA3PP2000) (pp. 454-465). Los Alamitos, CA: IEEE Press.

Raje, R., Auguston, M., Bryant, B., Olson, A., & Burt, C. (2001). 4 unified approach for
integration of distributed heterogeneous software components. Proceedings of
the Monterey Workshop on Engineering Automation for Software Intensive
System Integration, SEAC technical report (pp. 109-119). Monterey, CA: U.S.
Naval Postgraduate School. Retrieved August 8, 2004: http.//www.cs.iupui.edu/
uniFrame/

Raje, R., Bryant, B., Olson, A., Auguston, M., & Burt, C. (2002). A quality-of-service-
based framework for creating distributed heterogeneous software components.
Concurrency and Computation: Practice and Experience, 14, 1009-1034.

Rumbaugh, J., Jacobson, 1., & Booch, G. (1999). The Unified Modeling Language
reference manual. Reading, MA: Addison Wesley.

Schmidt, D. (2003, October 2). Overview of CORBA. Retrieved August 8,2004: http://
www.cs.wustl.edu/~schmidt/corba-overview. html

Siram, N., Raje,R., Olson, A., Bryant, B., Burt, C., & Auguston, M. (2002). An architecture
for the UniFrame Resource Discovery Service. Proceedings of the 3rd Interna-
tional Workshop of Software Engineering and Middleware: Vol. 2596. Lecture
Notes in Computer Science (pp.20-35). Heidelberg: Springer-Verlag.

Sun, C. (2003). QoS composition and decomposition models in UniFrame. Unpublished
master’s thesis, Indiana University Purdue University, Indianapolis, IN, United
States. Retrieved August 8, 2004: www.cs.iupui.edu/uniFrame

Szyperski, C., Gruntz, D., & Murer, S. (2002). Component software - Beyond object-
oriented programming. (2nd ed.). Boston: Addison-Wesley/ACM Press.

Warmer, J., & Kleppe, A. (2003). The Object Constraint Language. (2nd ed.). Boston:
Addison-Wesley.

Weck, W. (1997, June). Independently extensible component frameworks. In M.
Miihlhduser (Ed.), Proceedings of the st International Workshop on Component-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

UniFrame 87

Oriented Programming (European Conference on Object-Oriented Program-
ming, Jyvéskyld, Finland), Special Issues in Object-Oriented Programming (pp.
177-188). Heidelberg: Springer-Verlag.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

88 Latchem and Piper

ChapterV

Service-Oriented
Design Process
Using UML

Steve Latchem
Select Business Solutions Inc., Gloucester, UK

David Piper
Select Business Solutions Inc., Gloucester, UK

Abstract

This chapter presents a worked example of a design process for Service-Oriented
Architecture. It utilizes the industry standard modeling notation, the Unified Modeling
Language (UML) from the Object Management Group, to present a practical design for
services. The authors have used their real world experience on many service-oriented
projects to develop a design method using visual modeling to implement high quality
services and service implementation. The chapter introduces a terminology for services
and their implementing components and then works through the example to show how
the implementation is designed in UML. We hope that this will show the reader how
services are implemented by organizations on real projects.

Introduction

We have been assisting organizations to use Component-Based Design and Develop-
ment to implement Service-Based Architecture for over seven years, utilizing the Select
Perspective development process and the principles of the Supply, Manage, and

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 89

Consume Model for Web services and dependent components. Web services are a
natural development from components, which in turn were a natural development from
00. We have leveraged the power of the Object Management Group’s Unified Modeling
Language (UML) to analyze and specify the services within a Service-Oriented Archi-
tecture.

In this chapter, we intend to initially present the difference in terminology from the
Component View of the world and the Service view of the world. We will then present
aworked example of the process and modeling hotspots for implementing Web services
and Component Based Development:

. Business Process Modeling: the identification and definition of the business
processes, including their inputs, outputs, and dependencies

i Business Web Page Design: the identification and modeling of the Web page
designs and their interaction within the Business Web

° Web Service Identification and Reuse, Supply, Manage, and Consume (SMaC):
defining the requirements and prospecting for reusable Web services to support
the Business Web Pages and the Business Processes defined

. Web Service Internal Design: designing and constructing the components and
agents that will deliver the component functionality to execute the required Web
services across the distributed domain

° EAI: Enterprise Application Integration, effectively “hooking” in the requests to
both legacy/package data and functionality to deliver the required Business
Processes across the software architecture that is currently in place

. Testing: providing the capability to dynamically build the test cases and scripts
from the design environment and track the test results

Component View

Component Based Development (CBD) has gained great popularity in recent years as the
technology required to support the development and use of components has matured.
Highly capable modeling environments, such as Select Component Factory, support the
CBD process from business alignment through to solution deployment by fully imple-
menting the SMaC paradigm.

CBD promises the key benefits of high levels of reuse and complete interoperability
between different forms of component implementation as long as they share a common
communications standard. Implementations for components include the use of:

i Object technology to implement new business functionality;

. Heritage code wrapping to reuse existing functionality;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

90 Latchem and Piper

° Data wrapping to separate data manipulation from data persistence;
. Package wrapping to support the integration of package and bespoke code; and
i Purchase or hire of services from open service markets.

Despite these varying component implementations, solutions which make use of the
business services provided by components see only components and the business
services they offer. All functionality is provided to the solution via the components’
business services. The homogeneity of this architecture is a key benefit to the solution.
In particular, it supports the plug-and-play concept, allowing current component
implementations to be replaced in a manner that is transparent to the solution and, in
consequence, to the user. From the solution developers’ point of view, the simple
architecture simplifies and speeds development.

Figure 1 shows the external, published specification of a component, AccountCustomer.
The component offers two service interfaces: ICustomer and ICustomerAccount. Each
ofthe service interfaces offers business services to one or more business solutions. Also
shown in the figure are two business solutions that make use of the interfaces offered
by the AccountCustomer component. The assembly of the business services to provide
the behavior required by the solution can be modeled using UML interaction diagrams.

Figure 2 shows a partial implementation for the component, including the service
interfaces in noniconic form. Each operation listed on the interfaces represents a

Figure 1. Component specification

Customer Contact Sulutiun| Branch Administration Sulutiur‘

\
\
at

«Comp n\entn

AccuuntCuékum&r

Ny

winterfaces
ICustomer

winterfaces
ICustomerAccount

RegizterCustomer

ListAccounts
CustomerD: Custome
ChangeCon

gisterCustomer

countsummary

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 91

Figure 2. Partial component implementation

zComponents
AccountCustomer

«interfaces
ICustomerAccount

ginterfaces
ICustomer

«z5ervice Classs z3envice Classz
scCustomer scCustomerAccount
ChangeContactDetails AccountSummary
CustomerDetails CustomerStatus
DeregisterCustomer ListAccounts
RegisterCustomer

business service that the service interface offers. The internal architecture of the
component shows that a service class implements each of the service interfaces. The
service class will be responsible for delegating the service request received by the
component onto the implementation constructs (classes, legacy code, and so forth) that
exist within it. These additional implementation artifacts have been omitted.

Component Terminology

Together these show examples of the key terms commonly used in the component-based
world. They do not represent a complete set of terminology; for example, stereotypical
architectural roles can be drawn out for different types of components (see Table 1).

Web Service View

Web services are seen to be effective mechanisms for providing functionality in widely
distributed architectures, including typical Business-to-Business (B2B) applications.
Their key feature is the very weak coupling required between the solutions using the Web
services and the Web services being used. The use of a directory to resolve the location
of the implementation of a Web service is a powerful feature, supporting the runtime
coupling of solution to Web service. Directories also potentially offer the capability for

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

92 Latchem and Piper

Table 1.

Term Definition

Component | A mechanism for offering multiple business services to one or more
business solutions; a unit of deployment for the implementation.

Service An interface onto a component — a component will offer one or more

Interface service interfaces.

Business An operation defined on a service interface that supports some need

Service expressed by one or more business solutions.

Service A class that provides the implementation of a service interface on a

Class component. The service class receives the service request and delegates
control to the artefacts internal to the component.

automatic fail-over so that in the case of a service provider being temporarily unavailable,

alternative implementations from other providers can be invoked.

There is now a strong argument about the identity of the Web service content. Are Web
services fundamentally predicated on the Web? Must Web services use the current
standards of SOAP, UDDI, WSDL, WSCL, and so on? More importance is being given
to the view that Web services are not about the standards used for any specific
implementation but more about the concepts of a defined interface and protocol for the
service itself. Indeed, even the term Web is being increasingly dropped from their name.
Weak coupling through a directory is seen as a key differentiator between components

and services in a service-oriented architecture.

Figure 3. External view of Web services use

Branch Adminiztration Soluticen | Customer Contact Salution

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

eb
ICustom

ListA,
Customer:

AccountSummary

DeregisterCustomer

permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 93

Table 2.
Definition
Term
(Web) An interface defining the protocol of the service — it infers nothing about the

Service implementation of the service — indeed each service may be backed by
several, distinct implementations, perhaps using different technology.
(Web) An operation defined on an interface that supports an aspect of the protocol
Method | of the service.

Figure 3 shows the external view of the use of Web services by solutions. Each of the
Web services is available independently and there is no information given about their
implementation — whether as distinct executables or grouped together as a component.
Indeed, the loose coupling of the directory implies that the services may be implemented
by different suppliers, so no information concerning their physical configuration (other
than that provided in the directory) can be inferred.

Each ofthe Web services is implemented via a defined interface offering a number of Web
methods. The current standards explicitly support the concept of multiple implementa-
tions of a single Web method being supported.

Service Terminology

This shows examples of the key terms commonly used in the service-based world. They
do not represent a complete set of terminology; for example, stereotypical architectural
roles can be drawn out for different types of components (see Table 2).

A Service-Oriented Approach

Is it possible to define an approach and terminology that effectively unifies the
component and Web services viewpoints? Such an approach is defined by a service-
oriented architecture, a solution architecture that offers functionality to the user only
through services. The services may be implemented by components — newly built,
bought-in, legacy wrapping — or as Web-style services.

From each solution’s point of view, the environment looks completely uniform; all
functionality is exposed as services provided by interfaces. Technical complexities
around the implementation of those services are hidden from the user (or encapsulated)
in exactly the same way as they are in both the component and Web service worlds.
Indeed, we can imagine complex architectures where Web services are wrapped inside
components and are, in turn, implemented by components in the target environment.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

94 Latchem and Piper

Figure 4. Service-oriented terminology

winterfaces
=Service Interface

Implemented Using ‘

winterfaces
=Service Operation

The Role of Components

Inthe service-oriented architecture, the role of components as a deployment mechanism
isreduced since at least some of the functionality is going to be delivered in other ways.
What, then, is the role of the component?

Certainly components are still akey deployment route. Performance critical functionality
and functionality that encompasses key competitive advantage will still be retained in-
house implemented as relatively tightly coupled behavior. In development process
terms, components continue to play other important roles. They remain the key vehicle
for the early identification of groupings of information and behavior and, in conse-
quence, serve as the vehicle for the provisioning of the functionality. It will often be at
the point of making provisioning decisions that the choice between component and Web-
service implementations will be made. The choice will be influenced by commercial and
technical constraints but does not need to be predetermined as part of the analysis
process.

At the specification level, when analysis techniques are primary, the service-oriented
architecture is still dominated by components and their interfaces. Driven by the selected
architectural constraints, design and implementation takes advantage of the extra

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 95

Table 3.
Service- Definition Component Web
Oriented Term Service
Term Term
Component A container used for the analysis of the Component None
business architecture, encapsulation of
functionality and information and as a
deployment vehicle for component-based
services
Service The combination of the specification, Component None
interface and set of service operations that | Specification
together define a service
Service The specification of functionality to be None Web
Specification | offered to one or more consumers Service
Service An interface offering a protocol capable of | Service Web
Interface providing the specified functionality to Interface Service
one or more consumers
Service A mechanism for implementing the Service Class | None
Controller service interface
Service The specification of a unit of functionality | Business Web
Operation required to execute the service; forms part | Service Method
of the protocol of the service
Service The implementation of a service operation | Service Class | None
Method by a physical method on the service Method
controller

flexibility offered by the service-oriented architecture to choose the most appropriate
implementation and deployment mechanism.

Service Oriented Terminology

The concepts and related terminology used in the definition of the service-oriented
architecture are illustrated in the meta-model shown in Figure 4.

The concepts shown are defined in the Table 3. Related component and Web service
terms are offered for comparison.

Stereotypes

Within the service-oriented architecture clear stereotypes of the specific concepts can
be identified. The stereotypes are derived from both the component-based and Web
service origins of the service-oriented architecture. These stereotypes are used to
enhance the UML specification, and are typically added to Packages, Classes, and
Operations to specify Service-Oriented Architecture concepts to these UML artifacts.
Example stereotypes are defined in Table 4.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

96 Latchem and Piper

Table 4.
Stereotype Definition
«Business A component focused on offering one or more services that
Component» manipulate business information and implements business policies,
rules and algorithms.
«Business A service (potentially implemented by a «business component» or as a
Service» «web service») that specialises in manipulating business information

and implements business policies, rules and algorithms.

«Data Service»

A service responsible for accessing and updating data in persistent
storage within the context of a transaction.

«Data Service | A service operation, typically offered by a «data service», responsible
Operation» for performing a specific persistent storage operation.

«Process A component focused on the implementation of a process by
Component» controlling the protocol of service operation invocation on services.
«Web Method» | The implementation of an operation defined by the service interface of

a «web servicey.
A service implemented using internet protocols and which adheres to
specific standards for service location through a service directory.

«Web Service»

Worked Example

The following sections provide an example of the Select Perspective Web Services and
Components Process and Modeling Artifacts. To usefully demonstrate this, we have
used a candidate Business Web, consisting of a number of organizations looking to
provide a Consolidated Product Catalog via a Web application, utilizing the latest Web
technologies and allowing customers to purchase products from that catalog. We have
called our “virtual” Business Web Organization Web Entertainment Products. The Web
Entertainment Products organizations’ business is the sale of products; we have
assumed these are leisure media products, for example, CDs, computer games, and books.
A group of organizations in this space have come together to provide a consolidated
offering of rental and sales of these items to a broad customer base. The sales portal will
be their consolidated Web site with the execution of new and existing application
functionality making the catalog available to browse and complete a rental or sale
transaction for the selected product, irrespective of the organization within the Business
Web that supplies it.

Business Process Modeling

Business Process Modeling (BPM) is a precursor technique used to establish the content
and scope of the business domain before Solutions Design begins in earnest. It
establishes a shared understanding of the business domain expressed in a formal manner.
By focusing on business processes, the model can be used as a starting point to drive
synchronized programs of business and systems change. The new business processes

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 97

Figure 5. Process hierarchy diagram

<<Process Group>>
Central Customer
Services

<<ldentifiable Process>>]
Central Sale
Transaction

<<Identifiable Process>>]
Central Member
Service Provision

<<Process Group>> <<F'CFOC$SS GrOL:jp»
Store Customer ustomeran
Membership
Management

<<Identifiable Process>>]
In Store Member
Service Provision

<<Identifiable Process>>|
Notify Member
of Availability

<<Identifiable Process>>|
Register
Customer

<<Identifiable Process>>
Review
Membership

<<Identifiable Process>>}
In Store Sale
Transaction

<<ldentifiable Process>>
Issue
Membership

must be implemented both by the business and used as requirements for constructing
new solutions to support those processes.

Web services standards are taking an increasingly abstract view of the way that
organizations and solutions will interact. Currently, the most abstract view is at the
business process level. Standards such as BPML (Attp.://www.bpmi.org) allow organi-
zations to publish the structure and protocols of their business processes. Within these
published definitions, the requirements and implementations of Web services together
can be published.

One critical aspect to any Service-Oriented Architecture is the need for Business
Alignment. The exposure of services from existing applications is not enough; services
need to be delivered to a business context for the organization today and its future
processes and capabilities.

Here we use the industry-leading Business Process Modeling notation from Computer
Sciences Corporation, Catalyst. The notation is supported by a large number of CASE
modeling tools, for example, Select Component Architect, System Architect, Aris, and
CaseWise.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

98 Latchem and Piper

Figure 6. Process thread diagrams

<<EBP>>

Amend

Personal Details.

Customer Assistant

<<EBP>>

Identify Member.

Membership Confirmed? \\/

Yes

Membership Confirmed?

<<Iteration>>

For Each Entertainment Item to Return

<<EBP>>

Return Rented

Entertainment Item

v

<<lteration>>

For _Each Desired Entertainment Item

Member’'s Service Choice

<<EBP>>

Item

Member's Service Choicg |

Member Purchases

e Identify

Entertainment Item

Member's Service Choice

ot

Member Rents Item

Item

Item

Item
<<EBP>> <<EBP>> <<EBP>>
Sell Entertainment Rent Entertainment Reserve

Entertainment Item

Member Se
N

rvice Outcome

Member Rese

1
/ Services Cancelled

rves

Member Services Outcome‘\‘ Services Confirmed

Payment Outcome?
Y L/

rin Store

<<EBP>>

Take In Store
Payment

Payment Outcome?

Not Successful

The notation has two key diagramming types:

Successful

Process Hierarchy: to present the hierarchical structure of business process
groups (nonelemental processes);

Process Threads: to show the dynamic transitions, constraints and input/outputs
of elementary business processes.

The hierarchy diagram in Figure 5 shows the hierarchical relationships between process
groups for Web Entertainment Products. These are the Stock Management, Online

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 99

Figure 7. Business Web page design

o

<<user>>
— | :Welcome Page Py
N Request Login()
Customer Access Website() \‘

<<user>>
:Customer Login Page

3:
Browse Catalog()

<user>>
:Product Catalog 5
\Add Purchase Item()
-+~
4: <<user>>
Search For Items() :Customer Shopping Cart

Transactions/Customer Services, and the Registration and Acceptance of Customers/
Members.

For the thread diagrams in our example, we have concentrated on the customer transac-
tion, encompassed within the Process Group — Online Customer Service Provision.

The thread diagram in Figure 6 shows the Events and Results of the Process Group that
is its parent, their transitions, exclusivity (represented by the arcs on the transitions), and
the elementary business processes (EBPs) to be implemented. In addition, swimlanes are
added to represent the ownership of each EBP by Business Actors, in this case, the
customer using the Web sales portal. Documenting each EBP are detailed descriptions,
objectives and process volumetrics, enabling the designer to not only refine and/or
refactor the business processes before automation but also to look at performance and
scalability of nonfunctional requirements. In addition, traceable links to use cases allow
the dependencies between the business processes and systems requirements to be
understood easily.

In parallel with the Business Process Modeling, the “front of store” work is typically
carried out. The general graphic user interface design, impact/atmosphere, core page
prototyping, and market analysis are performed. Here we use Collaboration Diagrams
defined by the Unified Modeling Language (UML). This has two purposes:

i To design the page interactions and dependencies, in the context of the actor
using the Web solution;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

100 Latchem and Piper

Figure 8. Supply, manage, and consume

Business
Needs

Components
SUPPLIERS
CONSUMERS
Web Service
&

Component

Delivery

- Process

Solution
Delivery
Process

Web Services

Business

Solutions.
-._J/

i To scope the pages to be built, associate the growing graphic designs of these
pages, and support the development of the Use Cases to define the Web Service
requirements.

The Object Collaboration Diagram in Figure 7 shows the simple scenario of Logging In
to the Web site, browsing the entertainment item product catalog, and adding an item to
an Internet shopping cart for rental/purchase later. While this is not a User Interface
prototype, this clearly shows the involvement of the Server Pages, and their interaction
for this scenario.

Web Service Identification

The next stage of the Business Web life cycle is to identify and define the Web services
that will fulfill the requirements of the Business Web. This includes the reuse of Web
services from external parties (that is, commercial UDDI repositories) or internal sources
(that is, the internal repository of Web services and components) that may fulfil the
Business Web process requirements.

Typically, an organization would use the Business Process definitions to browse and
identify potential Web services/components then include these into this modeling phase
after performing a gap analysis.

Supply, Manage, and Consume Model (SMaC)

The diagram shows the SMaC model for components and Web services, where suppliers
(external or internal) and consumers form a reuse relationship for the delivery of the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 101

Figure 9. Component and service repositories

Consume

Business Web solution. The central Manage function deals with publication of service/
component versions, the service/component consumer lists, and the dependencies
between services and components. This enables the organization to employ a solution,
service and component “factory” model in their analysis, design, reuse, and construction
of software solutions.

Figure 8 shows a high-level graphical representation of SMaC, where Business Needs
feed into a Consume process, services are sought through the central Manage function,
and delivered through the Supply function; then, the deliverable from Consume is an
integrated Business Solution to fulfil the Business Needs.

Identification and reuse of services is a practice already well established in the CBD
arena, especially in the concept of Supply-Manage-Consume. The maturing Component
Management tools enable publication, search, and reuse of components/services.

Consumers can publish the specification of new components and services as requests
for delivery. They consume existing components and services as they assemble or
reassemble solutions. Consumers are typically not interested in the implementation
technology of a particular service as long as it meets the functional and nonfunctional
specification and can integrate with their solution architecture.

Suppliers receive component/service specifications and supply implementations in
return. Different sources of components are maturing rapidly; in-house teams are
increasingly skillful at component delivery; System Integrators have adopted compo-
nent supply as a valuable channel of business; Package solutions are becoming
componentized; Component Market Places are maturing rapidly. Web services provide
another channel for the supply of services.

The identification and definition of Web services forms a critical part of Business Web
Design, particularly when the power of Web Service Discovery technology (UDDI) is to
beused (http://www.uddi.org). This uses a Web Service Business Registry to lodge and
discover Web services.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

102 Latchem and Piper

Web Services Provisioning is a variation on a theme. The need is the same as for other
forms of provisioning: to identify services that meet a set of functional, informational,
and protocol requirements. In common with other channels of provisioning, a common
medium for stating the need has been specified — UDDI. This is different in form but not
in fundamental nature from specification mechanisms used by other channels. There are
additional elements to consider, particularly if Web services are from third parties, the
aggregation of Web services to support the transactional context required by the
organization’s business processes, and the security/trust facilities provided by the
service. Nonfunctional requirements are considered here, too. For example, does the
service provider guarantee sufficient robustness, scalability, availability, and perfor-
mance?

Having identified candidate services, details of these can be published by the Compo-
nent Management function into an organizations component/service repository for
future reuse. Activities performed by the Component Manager in relation to Web
services are similar to those carried out for any other form of service, including
Certification, Quality Assurance, Reuse Advice, and Authorization. The Web services
model is essentially commercial at base, but in SMaC focused organizations, other
commercial service channels are already in use, including Component Market Places.
While the economic model may differ in form, the need to work within a commercial
licensing framework is not new.

Figure 10. Use case model

[Entertainment Perspective j

Sales User

alUser Roles

Customer

Process Failed
Paymeant
Transaction

A

«Extamal Systams
OLA

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 103

Figure 11. Service level Object Sequence Diagram

Buy Entertainment item

Description|

Customer Searches for lem Bt

Call Search Web Senice W Fi i I In Rag; ritaria XML, Out RespanseProductResults XML) 81
Customer selects item for ShowltemDatalls|
ditails

Call product details Web GetE i I smmary(In R ProductSelected XML, Out R ProductDetails XML j-
Senice

Gap Analysis and Business Web Design

For this analysis and design, SBS uses the power of UML. Use Cases are used to define
the functional requirements of the system in terms of the Actor’s interactions with the
system. These Use Cases are directly mapped to the Elementary Business processes they
have been derived from, providing complete traceability to the Business Model.

The Use Case diagram in Figure 10, defines the Use Cases for the Customer system actor;
it also shows the use of an external System Actor for Online Authorization.

From the Use Cases, the Web services can be identified and modeled using Object
Sequence Diagrams to define the contextual use, and definition of the Web Services. Each
Use Case has a detailed Intent, Description, Pre/Post Conditions and Alternate Course
descriptions, enabling the Designer to identify and define the Web services in detail.

The Object Sequence Diagram in Figure 11 shows the Web service identification from the
Identify Entertainment Item Use Case. Note that the Services defined follow the slightly
different paradigm-to-component services, that is, they are coarse grain, single shot
service requests that perform a single focused business service for the calling Web
solution.

The Web services are bundled into cohesive groups, defined as UML Packages to show
their notional inclusion in virtual components. Additionally, the internal data/XML
structure of the collection of services is modeled as class diagrams with relationships to
show hierarchy and multiplicity.

The data-centric nature of a Web service contract, its input/output, drives the strong
need for detailed data modeling of the XML structures. This effectively becomes the
basis for information exchange internal to the organization and across organizations,
similar to the data exchange and information modeling requirements for EAI and B2Bi
initiatives, for example. This XML modeling (as Class/Package structures) extends the
behavioral nature of UML modeling to include the data requirements for the services.

Figure 12 shows a Package Diagram of the bundling or chunking of the services to
cohesive business groups, for example, Party for customer and member processing,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

104 Latchem and Piper

Figure 12. Web services Package Diagram

Farty

Sacurty

Zunply Managemant

What Saniza Is Gsing Requested

A
|
|
|
|
|
|
|
|
|
|
|
|
|

v
i -
Waare i3 it locates N

; Senice Managemert:

Organization for the company’s services, and Online Authorization for the external use
of a card processing service.

In Figure 13, we show an internal data model developed for each of our logical services
groups. This is done to model the data structures and enables us to synchronize our XML
design/implementation with the internally owned data for the service groups.

Web Service Internal Design

The supplier of the Web service, whether internal or external to the organization, now
needs to design its concrete implementation. There are distinct layers to the implemen-
tation of a published Web service:

1. Components and Agents: the use of components and peer-to-peer (P2P) agents
design to provide the dynamic deployment and discovery of components that will
implement the Web service.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 105

Figure 13. Internal Data/XML Structure Diagram

Facilitates

-l Changes Balance Of

I3 Authonsed Agime

Changes Tatal Of

=l Records Points For
1

= Dazcribes 4

Organisation

~lFufills

Supply Management

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

106 Latchem and Piper

Figure 14. Internal service Object Sequence Diagram

15tock Find rtainmentitem

Pascripin]
Web Senice Imvaked
Delegate to Search Engine Agent
Call XML Server 1o Configure |
Agerd

FindE: '{r!nair-men’.lrzm "

Bt Respansze XML)

DalagataSenicel In Ragueat KM a
Transformy In WebSanice AML, Out CompOes XML | 'Y

Use configuraticn to call
Component

Uss XML Saner to configure
result

[ExecuteSearchi In siring Sear:ncmmft it atructure ProductDetais |81

|
|
|
|
|

Transform In sbiusture ProduciList, Out Hespense ML | '¥

Figure 15. Internal Component Sequence Diagram

IWEP SearchEngine.Execute Search
| <Saason Sass | ey Bean I
¥ i
. L3 *

hrchCriteria, Out structufe ProductDatails jm

ExecuteSearch{ In strif SearchCriteria. Out strcture ProductDetails)
ValidateCriteria

Searchi In ginng Searchlatena, oul stucture ProduciDetads |

Use corfiguratien to call Component
Delegate to Session Bean
Validate criteria
Delegate to RDEMS Entity

Bean

ancmnSea[ch(In striny

2. Component Internals Design: the internal design of business components that
provide services to the Web service and the controlling agents.

3. LegacyIntegration (EAI): the integration of legacy functionality and data into the
Business Web internal components.

Component and Agent Design

Foreach Web service designed, its internal implementation is now required. The Object
Sequence Diagram in Figure 14 shows the design of the inclusion of this agent and its
use of the interface to an XML Server to configure its actions when the Web service is
requested.

The business components themselves, like our Search Engine from the Figure 14 Object
Sequence Diagram, require design, too. The Object Sequence Diagram in Figure 15 shows
the decomposition of the component’s internal object-oriented design, using a facade
Session EJB, which delegates to an Entity EJB to perform the product search.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Design Process Using UML 107

Figure 16. Internal Component Sequence Diagram with Legacy Wrapping

«businesss abusinessn
«Session Beans «Entity Baans

|
In string SpprehCriteria, Out sl:uilu o ProductDatails R
E In gtnpp SearchCriteria, Out stracture ProductDetails)

:Valldmecmena

Searchi In string Seam;ﬁnleﬂa out structure ProduciDetails |

Transform In string SeafchCriteria, out LeqscyTxrﬂﬁt',n)

EwecuteTxn[In LegacyTininput. Out LegacyTxnOuipit) o
Transform In LegacyTxpOutput, Out structurs Pri tDetails |

IWEPSearchEngine Execute Search

Use

g to call Comp
Delegate to Session Bean
WValidate cmeria
IF Using 247 RDBMS
Delegate to ROBMS
Entity Bean
ELSE
Transform to Legacy
fomat

Execute Legacy
Transaction

|

Transfoen retumed
Legacy data
ENDIF

Integration Legacy Applications and Data — EAI Design

The final piece of Business Web design/development activity is the integration of legacy
applications and/or data into the design of the Web service. For this integration work,
Enterprise Application Integration (EAI) vendors typically provide solutions to seamlessly
integrate the legacy systems. Typically, organizations make use of legacy application
and system Connectors. The inclusion of these Connectors is modeled in the Object
Sequence Diagrams to show the interaction and transformation of the component
internals to the legacy message through the Connector.

InFigure 16, we show the internal design of a communication to alegacy procedure using
a Connector and the required data transformation to turn our XML into a format
understood by the legacy transaction.

Testing

The final stage of the Business Web development life cycle is testing. The designs that
have been discussed so far provide an excellent documentation base for test cases and
scenarios. The UML models are converted to test cases using a bridge. In the testing
tools, these definitions of Business processes, Web services, components, agents,
classes, methods, and data marshalling are refined to include the Business Inputs and
Expected Results. As the Testing Tool records the test case interactions for repetition,
the results are captured in its repository, but the basis of the test case has come
automatically from the design. Additionally, the volumetrics captured at the Business
process level can now form the basis of the acceptance criteria for the load/volume tests
and the deployment and load balancing tests that are performed.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

108 Latchem and Piper

Summary

For the CBD-experienced organization used to assembling solutions in a service-based
architecture, Web services are an interesting new channel of service provision. They
present no fundamental challenge in terms of analysis or design. Nor do they present a
challenge in terms of processes and structures for managing the virtual software assets.
CBD-mature organizations are already assembling solutions from a mixture of software
assets, both created internally and provisioned from external sources.

The challenge is in adapting to the details of the commercial models underlying Web
service usage and in extending the existing provisioning mechanisms, so they support
the active search for and publication and reuse of Web services. With Select Perspective,
a mature Supply, Manage, and Consume (SMaC) model aligns perfectly with the
principles of Web services and components, enabling the organization to migrate to Web
services processes and architectural models more easily.

References

Apperly, Latchem, McGibbon, Piper, Maybank, Hofman, Simons, Service- and Compo-
nent-based Development, Using the Select Perspective and UML, ISBN 0-321-
15985-3

http://www.selectbs.com/resources/resources.htm - various White Papers and collat-
eral relating to methodology and visual modelling for services.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 109

Chapter VI

Service-Oriented
Computing and
the Model-Driven
Architecture

Giacomo Piccinelli
University College London, UK

James Skene
University College London, UK

Abstract

Service-Oriented Computing (SOC) and the Model-Driven Architecture (MDA) are
complementary systems development approaches with the mutual aim of reducing the
cost of future systems integration. This chapter introduces the MDA concept and
technologies to an SOC audience and employs these technologies to enhance support
for SOC through the definition of a domain-specific modeling language for electronic
services. The language is defined as an extension of the Unified Modeling Language
(UML). Its semantics are defined using a domain model of electronic service systems
based on concepts drawn from literature and experience with a range of commercial
platforms for the deployment of electronic services.

Introduction

Service-Oriented Computing (SOC) and the Model-Driven Architecture (MDA) are both
approaches to developing systems that anticipate the need for integration in heteroge-
neous computing environments.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

110 Piccinelli and Skene

SOC attempts to lessen the cost of future integration by making a recommendation about
the design of systems: a service paradigm should be applied to software and business
functions to support standardized communication and control technologies, such as
Web services and workflow languages.

The MDA attempts to lessen the cost of future integration by making a recommendation
about the process by which systems are developed: systems should first be developed
as abstract models that do not contain technical details related to implementation, then
transformed into platform-specific representations. Removing the need to disentangle
business functionality from legacy platform decisions when redeploying all or part of a
system on a new platform reduces the cost of integration when it is necessary to support
apreviously unexpected integration technology, such as anew middleware. As the MDA
matures, the cost of redeployment may be reduced still further by the availability of
reusable automated transformations to produce platform-specific models from platform-
independent models.

The MDA is potentially a good complement to SOC. Service-oriented systems can be
developed according to the MDA process in order to structure a system according to a
services paradigm while maintaining a platform-independent specification. The first
objective of this chapter is to introduce the MDA concept and its supporting technolo-
gies to an SOC audience.

The second objective of this chapter is to discuss how MDA standards such as the
Enterprise Distributed Object Computing (EDOC) profile support SOC. The EDOC profile
defines standard extensions to the Unified Modeling Language (UML) to allow the
platform-independent modeling of enterprise computing systems, a class of system that
subsumes electronic services.

The third objective of this chapter is to show how MDA support for SOC can be fruitfully
expanded. The MDA approach gains productivity advantages when supported by
domain-specific languages, such asthe EDOC profile, for modeling systems in particular
application areas. The advantage of such languages is that they allow the modeling of
systems in a manner that is more concise and less error prone than if attempting to model
the same systems using a more generic language. The EDOC profile does not allow the
explicit modeling of several system facets unique to electronic services. We therefore
believe it beneficial to provide more refined support for modeling electronic services by
defining a UML extension (a profile) specifically for this purpose.

Our profile supports three modeling tasks particular to the development of electronic
service systems:

. First, it allows the modeling of services at an abstract level, using the service
vocabulary of capabilities, content, provisioning, offers, and information ex-
change. This allows the planning and documentation of the intended behavior for
both single and coordinated services, essential when applying a service paradigm
to systems development and a precursor to implementation efforts.

. Second, the profile allows the modeling of service deployments in terms of the
concrete business assets that fulfil capability roles. This provides a concrete view

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 111

of services in the environment in which they will operate, supporting planning of
service deployment and asset management.

° Third, the profile allows the modeling at a high level of abstraction of I T infrastruc-
ture components used to support the management and implementation of services.
This includes Electronic Service Management Systems (ESMS), a class of appli-
cation designed explicitly to support electronic services. The concepts underlying
the profile are drawn in part from experience with a range of ESMSs. The identifi-
cation of ESMSs and other infrastructure components, such as databases and
workflow engines, in the profile reflects the reality of the electronic service world,
in which services are seldom implemented from scratch but instead depend, to a
large extent, on specialized platforms and predeveloped components.

Domain-specific modeling languages must be supported by strong semantic definitions
so that the contribution of models to system specifications can be understood by
developers and model transformations can be defined that produce platform-specific
models according to the original intent of the developer as expressed in a platform-
independent model. A popular approach to defining the semantics of an MDA language
is by reference to a domain model, expressed in UML with accompanying natural
language descriptions, which describes the concepts and relationships referred to by
language constructs.

Our profile is defined with reference to a domain model of electronic service systems,
based on an analysis of existing concepts from SOC literature and the author’s experience
of arange of ESMSs from major vendors.

The chapter is structured as follows: In the next section, we present an overview of the
MDA and UML concepts with a particular emphasis on modeling using domain-specific
language extensions. We then briefly discuss the EDOC profile and its application in
implementing SOC systems. In the second section, we introduce our own domain model
for high-level modeling of SOC systems, and in the third section, we define its associated
UML extension. Subsequently, we present an example application of our UML extension
to model services in the freight domain. In the final section, we discuss future trends and
conclusions.

Background

The Model-Driven Architecture (MDA)

The MDA is an initiative of the Object Management Group (OMG), an industrial
consortium chartered to standardize specifications for interoperable enterprise comput-
ing systems. In its early years, it standardized and championed CORBA, the Common
Object Request Broker Architecture, a middleware platform that raised the level of
abstraction for designing distributed systems by providing a number of critical trans-
parencies for developers. Crucially, these included location and implementation trans-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

112 Piccinelli and Skene

parencies, meaning that components in a distributed system could be accessed using the
same mechanisms regardless of their position in the network and the technologies used
to implement their functionality.

Unfortunately, the success of CORBA was limited. To gain the advantages of CORBA,
developers must choose to support it. Competition from other middleware standards
such as Microsoft’s COM and .NET and lately, the Web services initiative, have
reintroduced heterogeneity at the middleware level.

Inresponse, the OMG have made the decision to raise the level of abstraction still further.
The Model-Driven Architecture (MDA) is an approach to systems development that
aims to reduce the cost of deploying system functionality on multiple technical platforms,
even after an initial implementation is complete. This cost reduction makes systems
cheaper to maintain as technological standards change and easier to integrate either by
migrating parts of the system to make use of a new integration technology or by reusing
models of data and interactions in technology bridges. The following discussion of the
MDA is drawn primarily from the MDA guide (OMG, 2003).

Fundamentally, the MDA approach consists of three recommendations concerning the
process by which systems should be developed:

1. System designs should be expressed using models (typically UML models).

2. Models of two distinct kinds should be developed: Platform Independent Models
(PIMs), which represent system functionality independently of features peculiar
to any intended deployment platform and Platform Specific Models (PSMs), which
provide a view of all or part of the system deployed using a particular platform
technology and are detailed enough to be automatically converted into platform
artifacts.

3. PIMs should be developed first and then automatically transformed as far as
possible into PSMs.

These recommendations contribute to the goal of reducing the cost of redeploying
system functionality in the following ways:

i System modeling ensures that designs and data models are preserved indepen-
dently from implementations, allowing maintenance and integration to be per-
formed without the effort of reverse engineering systems at the source-code level.

. Isolating models of business logic from the details of particular technical solutions
makes this logic easier to reuse because it is easier to understand. Designs cannot
depend on features or behaviors that are implicit to a platform, such as the operation
of standard libraries or transactional behavior. Designs can be expressed at a level
of abstraction which is convenient for understanding the business logic, rather
than at a level that is convenient for processing by a platform.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 113

A system must eventually be implemented by deploying its business logic onto one or
more platforms. In the MDA approach, this is achieved by converting PIMs into PSMs.
This appears to add an additional stage in an MDA development that could be avoided
by simply developing for a single platform initially. However, having produced a detailed
model of the business logic of a system, its implementation is often a matter of routine
translation into the platform of choice. Some or all of this may be automated. If automated
transformations are available to deploy the system to a variety of platforms, then
developing for all of those platforms is little more expensive than developing for just one.

The MDA approach also provides a principled approach to integrating legacy systems.
PIMs for such systems must first be obtained using some combination of reverse
engineering and a conventional analysis (an object-oriented analysis if the modeling
language is UML). Once modeled, these systems can be integrated into larger confed-
erations as easily as nonlegacy applications developed using the MDA approach.

The implications of the MDA idea are far reaching. With the largest part of its benefit
coming from the idea that computing systems should be developed in a language related
to the application domain rather than the deployment platform, the approach is effec-
tively raising the level of abstraction at which systems are developed into the realm of
domain-specific business languages. Such languages could dramatically increase the
productivity of development organizations. Much research and standardization efforts
surrounding the MDA initiative is focused on developing domain-specific languages.

The MDA and SOC are complementary approaches to the problem of maintaining and
integrating systems. SOC complements the MDA approach by providing a template for
structuring business systems and integration solutions, the service paradigm. The MDA
complements SOC by promoting the early modeling of systems to understand their
operation, a necessary prerequisite when wrapping a system with a service interface.

Models and Model Transformation

The MDA guide provides more specific details of the MDA approach. In the MDA
terminology, a business-domain model is either a Computation Independent Model
(CIM) or Platform Independent Model (PIM). CIMs represent the interrelationships of
domain concepts and are intended as early analysis and requirements models, to be
produced by domain experts but not requiring systems development expertise. PIMs are
refined system models that represent a complete specification of the structure and
behavior of an application, independently of platform decisions. Models describing the
implementation of a system on a particular platform are referred to as Platform Specific
Models (PSM). In the MDA approach, the business knowledge for a system is first
captured in CIMs and PIMs, then mapped to PSMs for the supported technical infrastruc-
tures, as shown in Figure 1.

In the MDA vision, model transformations automate repetitive development tasks, for
example, the translation of PIMs into PSMs. Figure 2 illustrates a model transformation,
also referred to as a mapping. This conception of model transformation is referred to as
the MDA pattern. A source model, usually a PIM, is transformed into a target model,
usually a PSM.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

114 Piccinelli and Skene

Figure 1. Models in the MDA approach

Computation Platform Flatform
Independent | —— = Independent | —— = Specific
Maodel (CIh) Model (PIM] Madel (PSM)

The figure shows the transformation incorporating some additional information. Trans-
formations often require additional guidance, for example, incorporating design deci-
sions to guide exactly how the PIM should be implemented on the platform. This
information is usually provided in the form of markings, annotations to designs
associated with a particular transformation.

Transformations need not be uniquely associated with the transition from PIM to PSM.
Transformations can also potentially be used to perform complex edits, such as
refactorings. In a situation where multiple CIMs or PIMs use a number of different domain
languages, transformations can be used to manage the relationships between these
platform-independent models, for example, by combining domain-specific representa-
tions into more generic representations. Model transformations can also be used to
derive new views of a system from existing specifications, produce documentation, or
derive formal analysis models as in Skene and Emmerich (2003).

The OMG is in the process of standardizing languages for the description of transfor-
mations (OMG, April 2002). Transformations will be described in terms of model type
mappings in which rules will specify how typed elements in the source models are
transformed into elements in the target models. Also possible are instance mappings in
which model elements are marked by the user as the source for a transformation pattern,
regardless of their underlying type. It is expected that most mappings will allow a
combination of these approaches with model type mappings managing routine corre-

Figure 2. A pattern for model transformations

PIM

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 115

spondences between source and target and instance mappings allowing the user to direct
model transformation.

The Unified Modeling Language (UML)

UML (OMG, January 2003) is an object-oriented graphical language that has been widely
adopted in industry to represent software designs, particularly those which are to be
implemented in one of the currently dominant object-oriented programming languages,
such as Java, C++, and C#. However, itis its heritage as an analysis language (in the sense
of requirements capture and problem-domain modeling) that makes it a suitable core
representation for the MDA approach, as the ability to represent a technology-neutral
PIM is provided by the facilities that support the modeling of problem domains in object-
oriented analysis.

In this chapter, we describe how UML can be used as a basis for modeling electronic
services. This modeling depends on domain-specific extensions to UML, delivered using
profiles. Profiles are a UML extension mechanism whereby the innate notations provided
by the UML can be augmented with labels, called stereotypes, tagged values and
constraints which provide semantic refinement, annotations, and syntactic refinement,
respectivly.

Extensions to the UML provide the means to denote designs more concisely. By
introducing domain-specific vocabulary using profiles, the designer can avoid the
overhead of expressing standard aspects of the design in fine detail. Extending the UML
is a useful activity when following an MDA development process. In the MDA models
are specific to unique, well-encapsulated semantic domains, for example, a PIM for a
particular type of business process or a PSM targeting a specific platform. It is
convenient to describe designs in these domains using the vocabulary of the domain.

UML is based on a conceptual architecture that is divided into four meta-modeling layers
as shown in Figure 3. The lowest level is the data layer (MO), in which objects such as
data-patterns in computer memory and other real-world phenomena, including people
and things, are supposed to reside. The elements in the lowest level are classified by
types in the UML models that analysts and designers produce, which hence reside at the
next meta-level (M1). UML model elements are, in turn, objects of classes in the UML
meta-model (M2). Attached to these meta-classes are semantic descriptions and syntac-
tic constraints that control the meaning and applicability of the UML. The meta-model
at level M2 is self-describing so can also be regarded as residing in level M3 (and
plausibly all higher levels).

Profiles then, are a means of refining classes, semantics and syntactic constraints at the
M2 level. Confusingly, profiles are defined at the M1 level so that they can be denoted
using UML and deployed by including them with any UML model that requires their
language extensions. They can therefore be regarded as injecting virtual meta-classes
into the UML meta-model (M2).

When presenting profiles, it is common to first present a domain model (Frankel, 2003).
Domain models directly describe the semantic domain, independently of the need to

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

116 Piccinelli and Skene

Figure 3. Meta-modeling architecture of the UML

M3: Meta-meta-model UML meta-madel

iﬂ o e
M2: Meta-models ML etwodel) K~ s e)
Sk

| > d
I %
= !
M1: Models “2model>> <<profiles>
MyhModel UNMLExtension

G L o
H

MO: Real world Ij ﬁlf O

refine the semantics of the UML meta-model. Domain models are usually UML class
models.

Inthe context of the MDA, domain models have additional significance. MDA transfor-
mations that proceed from designs annotated with profile elements must be informed not
only by the design model but by the semantics of the extensions used in this model. This
makes the provision of domain models as a reference for UML extensions vital when
supporting the MDA development approach. When presenting our profile for electronic
service systems below, we first present our domain model. This introduces the concepts
and relationships intrinsic to electronic services and serves as the semantic basis for our
profile. This was also the approach taken by the OMG when standardizing the EDOC
profile described in the next section.

Profile for Enterprise Distributed Object Computing
(EDOC)

The EDOC profile is an OMG standard, intended to simplify the development of open
distributed systems when taking a UML modeling approach (OMG, May 2002). We
present a brief overview of EDOC as an example of the support for developing electronic
services already provided by the UML and MDA initiatives.

The EDOC profile actually consists of several related profile specifications supporting
an MDA development approach. The Enterprise Collaboration Architecture (ECA)
profiles enable the definition of an EDOC system in a platform-independent manner by
recursive decomposition into collaborating components. Technology-specific profiles
provide language extensions supporting common implementation platforms for EDOC
systems, in particular the Enterprise Java Beans (EJB) platform (Sun Microsystems,
2001). According to the MDA process, designs are first refined using the ECA profile
then deployed using a particular platform technology. The EDOC profiles are:

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 117

. The Enterprise Collaboration Architecture (ECA) Profile: Comprised of:

° The Component Collaboration Architecture: Allows the specification of the
system as a set of collaborating components. Component processes and
collaboration protocols (choreography) are modeled in a manner compat-
ible with the ebXML process language specification (Gibb & Damodaran,
2002).

i Business Process Profile: Specializes CCA to model systems in the context
of'the enterprise that they support. Includes extensions to indicate dependen-
cies between business processes and associations between business tasks
and the roles that perform them.

. Entities Profile: Enables the description of concepts in the problem domain
of the system, in particular the data-types of entities and their relationships.
Entities are defined as CCA components, integrating data and process views.

. Events Profile: Extensions to the CCA to model event-driven systems.

i Relationships Profile: More rigorous concepts of relationships for business
and software entities than UML provides by default.

i The Patterns Profile: Increases the expressive power of the ECA by allowing the
definition of generic patterns of business object collaborations and the reuse of
these patterns in specific bindings.

. The EJB Profile: A platform-specific extension allowing the concise modeling of
EJB designs. The EJB profile is included in the EDOC profile as an example of the
platform-specific modeling support required to develop open distributed systems.
Other platform-specific profiles such as the CORBA profile (OMG, April 2002) are
also compatible with the general MDA approach.

The EDOC profile reuses many of the concepts introduced in the ISO standard Reference
Model for Open Distributed Computing (RM-ODP). RM-ODP standardizes a conceptual
model of open distributed systems, supporting the definition of five viewpoint languages
that allow the specification of particular distributed system designs. Each viewpoint is
tailored to a particular set of concerns for the system. The EDOC profile reuses these
viewpoints and redistributes the expressive capabilities of the viewpoint languages into
the profiles described above. This unification of the RM-ODP concepts with the UML
significantly increases the usefulness of both specifications, lending the former a
standard language for representing designs and the latter a rich semantic for describing
EDOC systems. The viewpoints are:

. Enterprise specification: Models the structure and behavior of a system in the
context of the business of which it forms a part. Supported by the CCA and
Business Process profiles which model the system and its environment as
interoperating components.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

118 Piccinelli and Skene

° Computational specification: Models the implementation of enterprise compo-
nents. The CCA supports a smooth transition from the enterprise specification to
computational specification through recursive decomposition of components.

i Information specification: Describes the data environment of the system. Sup-
ported by the Entities profile.

. Engineering specification: Describes the middleware and services infrastructure
of the system. The RM-ODP engineering language allows explicit descriptions of
protocol elements and standard services, such as naming and transaction services.
EDOC relegates these details to the technology mappings, relying on the platform
semantics to provide the infrastructure specification.

i Technology specification: Describes the deployment of the system. Supported by
technology mappings and the UML’s native deployment models.

A complete specification of an EDOC system includes models providing each of these
viewpoints. This includes a platform-independent description of the system using the
CCA and one or more platform-specific implementations of the system, expressed using
technology-specific profiles. Hence, the RM-ODP viewpoint system can be seen to be
aligned with an MDA development approach.

Domain Model for
Electronic Service Systems

The remainder of this chapter presents a profile for modeling Electronic Service Systems
(ESSs) using UML and provides an example of its application for modeling services in
the freight domain. The example is based on previous research in the freight domain
(Linketscher & Child, 2001), and we will use it to illustrate aspects of electronic services
in the following discussion.

As discussed previously in the section on UML, the semantics of profiles are often
defined with reference to a domain model. The domain model is a UML model with
accompanying natural language descriptions that presents the concepts, entities, and
relationships present in semantic domain of the extension. The next subsection describes
the sources of concepts from the model and its overall section. Subsequent sections
elaborate various aspects of the model.

Analysis

In this section, we discuss the sources of concepts in the domain model for ESSs.

The model is based, in part, on the author’s experience with commercial platforms for
electronic services. Electronic Service Management Systems (ESMSs) are applications

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 119

based on the electronic service paradigm, providing facilities to integrate, control, and
enact electronic services. Such systems present service-oriented viewpoints of the
enterprise to management, supporting the structuring of businesses as systems of
electronic services, and may include data, resource, and process management facilities.

We have considered ESMSs from vendors, including BEA, IBM, Microsoft, Oracle, and
HP (see references for all). While terminology and emphasis vary across the range of
platforms, the proposed model captures the essential common concepts and technology
elements: the modularization pattern for capabilities and services is reflected in the
design and management tools included in the platforms. Databases, electronic service
management systems, and, in some cases, workflow engines, constitute the core
technology for all the platforms.

Alignment between these platforms is supported by joint standardization efforts pro-
moted by the respective vendors. An exemplary case in terms of the central role of
workflow is BPEL (Business Process Execution Language) (Andrews et al.,2003). The
model proposed takes into consideration existing standards, as well as evolutionary
trends for standard frameworks, both in the commercial and scientific domain exemplified
by the activities of W3C, OASIS, and the Global Grid Forum.

In addition, the model reflects concepts inherent to established development method-
ologies for electronic services adopted within the industry (McCarthy) and published
methodologies associated with the platform specifications. For example, the HP Service
Composer structures its usage around a methodology for the definition and development
ofelectronic services. The essence of the methodology is captured in the following steps.
We identify the corresponding elements of our model in parentheses:

1. Define Public Business Processes: The developer defines the public workflow
that clients will use to interact with the service. The developer either selects an
existing process definition or defines new ones (ElectronicService, ServiceOffer,
Capability).

2. Program Web Service Interfaces: The developer generates the Web Services
Description Language (WSDL) files, which describe the Web services associated
to the process of step one.

3. Generate Business Objects and Data: The developer generates or creates connec-
tions to the business objects and data that support the service (Capability,
Informationltem, BusinessEntity, ITSystem).

4. Define Internal Business Processes: The developer defines the internal workflow
specifying the operational logic for the service. For pre-existing workflows, the
developer builds access points to relevant process nodes (Capability).

5. Map Public Interfaces: The public interfaces defined in steps one and two are
mapped to backend logic from steps three and four. As an example, a WSDL
interface might be mapped to a backend component for its concrete implementation
(Capability, CapabilityRole, RoleAssignment).

6. Package the Service: The various components and descriptor files that make up
the service are combined into a deployment unit. The deployment unit can vary
depending on the target platforms (ElectronicService).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

120 Piccinelli and Skene

7. Deploy the Service: The service is deployed onto the various components of the
runtime platform (for example, application server, workflow engine, ERP — enter-
prise resource panning—system, Web service infrastructure) (ITSystem,
RoleAssignment).

8 Advertise the Services: Once a service has been deployed, it can be offered to
clients. For example, entries for the related Web services can be added to a UDDI
repository.

9. Monitor Running Services: Graphical tools should provide an end-to-end view of
the service at instance level or as aggregates (ESMS).

Aligned with industry trends such as ebXML (Gibb & Damodaran, 2002) and technology
trends, such as Web services, HPSC is representative of the state of the art in commercial
systems. The conceptual framework employed by the HPSC is reflected in the concepts
of business services, electronic services, and ESMSs presented in the domain model.

Elements in the model fall into two categories: those representing the abstract concepts
inherent to electronic services and those representing the IT infrastructure used to
implement such systems. In the following subsections, we describe the domain model for
electronic services in more detail.

We begin by establishing a working definition of electronic services. This definition is
abstracted from the technical details of electronic service provision, including decisions
regarding implementation technologies or supporting platforms.

Having established the features of electronic services, we consider their concrete
implementation in a business setting. Business capabilities require their roles to be
fulfilled by business entities, which include electronic services, staff, resources, external
services, and clients.

Finally, we introduce a model of infrastructure components, reflecting the common
practice of employing commercial components such as databases, electronic service
management systems, and workflow engines when implementing ESSs.

The domain model is divided into two packages as shown in Figure 4. These partition the
elements pertaining to services from those which represent the IT infrastructure for
managing services.

Electronic Services

The notion of a business service enables the management within an enterprise of
capabilities to deliver some benefit to a consumer. The term capability refers to the
coordination of simpler tasks to achieve an end; the concept is used to raise the level of
abstraction when describing the way that a business behaves. A capability can be
associated with a workflow specification to show how its end is achieved. When
describing business services, capabilities are divided into those involved in provision-
ing the service and those providing the content of the service.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 121

Figure 4. Subpackages within the ESS domain model

[] [1

Services <——— Management

The content of a service is the set of capabilities that deliver the benefit of the service
tothe client. Forexample, the content of a freight service refers to the capability of moving
goods from one place to the other.

Provisioning refers to the business channel between the provider and the consumer of
aservice. In a freight service, provisioning covers selection, product offer, pricing, and
interaction processes that the freight company applies to its customers.

Content and provisioning are complementary aspects of a service: provisioning logic
depends on the capabilities that the provider can support. The capabilities made
available to consumers depend on the provisioning logic adopted by the provider. In the
example, the option of delivery tracking might be made available only to selected
customers.

Because business services require communication between the provider, the consumer,
and entities fulfilling other supporting roles, it is natural to provide interfaces to business
services using communication technologies, such as computer networks, and support-
ing software, such as middleware for distributed systems. An electronic service is a set
of meta-data, communication interfaces, software, and hardware supporting a business
service (Marton, Piccinelli & Turfin, 1999).

Middleware services and computing resources also provide the opportunity to imple-
ment new business services with highly automated content, and this is an expected
benefit of the electronic service model. However, despite the similarities, the notion of
electronic services should not be confused with middleware services. Electronic services
are associated with business capabilities, and this association is significant to the way
in which electronic services are used and coordinated. The workflow descriptions
associated with a service’s capabilities can be used to coordinate the service: internally,
to marshal the involved capabilities and resources and establish the relationship
between contentand provisioning, and externally, to manage the interaction between the
service and its clients and environment.

Figure 5 shows the part of the services domain model related to the composition of
capabilities into services. The elements shown are now described:

i ElectronicService: The encapsulation or realization of a business service using
electronic interfaces. Electronic services have any number of provisioning capa-
bilities and a single top-level content capability (the capability to deliver the
service). Services can be composed of subservices, in which case the content
capability coordinates the content of each subservice, and each subservice must

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

122 Piccinelli and Skene

have a provisioning capability that makes a service offer to arole in the coordinat-
ing content capability.

Capability: A behavior which realizes some benefit to the business, described by
a workflow. A number of roles perform actions and cooperate to complete some
task. Capabilities can be composed in a hierarchy. The workflow of a coordinating
capability constrains the order of tasks in the component capabilities.

CapabilityRole: A capability role identifies the behavior of a worker or resource
in a coordinated task. Capability roles can be assigned to actual business entities
as discussed shortly.

InformationItem: Anidentifier forapiece of information about an enterprise that
is relevant to a task. Some workflow actions require information as a prerequisite
and produce or process information as by-product of their enactment.

Observation: Observations infer new information from existing information. This
captures the idea that not all derived information is produced by a particular action.
When the condition of the observation is satisfied, new information may be
introduced by the observation expression.

Figure 5. Capabilities view of the services domain model

rprovisioned

ElectronicService

+external : Boolean

+enabled ; Boolean

ServiceOffer

+5Ubservice

0.7

+provisioning

+hame @ String

1.7

+name : String

+enabled ; Boolean

0.r
+realised | 0.7 Q 0.
+content +customer | 0..°
0. Capability CapabilityRole

+name : String

0. +actor
rproducer | +workflow : String
_ +components
0.*
0..*| +consumer
+coordinator
0..%| +inpul
0.% - 1. 0." Observation
Informationltem - ' SR Ve
+output +input +dependant

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

+output

permission of Idea Group Inc. is prohibited.

Service-Oriented Computing

Figure 6. Implementation view of the services domain model

BusinessEntity

+name : String

i

[TSystem

JAN

ElectronicService

+external : Boolean

renabled : Boolean

+realised | 0. 0.

+content 0.

+provisicned

+provisioning

Capability

1.7

+name : 5tring

rwaorkflow : String

RoleAssignment

CapabilityRole

+actor

Business Entities

+name : String

123

Complementary to the abstract view of business capabilities are models of the concrete
assets in an enterprise and their assignment to capability roles to realize a service.
Electronic services are business assets themselves. Services cooperate at a peer-to-peer

level by fulfilling roles in capabilities. Figure 6 shows the domain model classes.

BusinessEntity: A business entity is a person, resource, or system that can fulfil
one or more roles in a capability.

Service Offer: A service offer is made to a capability role (typically that of the
‘customer’). That capability role must be associated with one of the provisioning
mechanisms of the service.

RoleAssignment: Captures the idea that business entities can be assigned to
perform roles in capabilities on behalf of a particular service (capabilities may be
employed by multiple services, so it is necessary to state what service an entity is

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

124 Piccinelli and Skene

assisting). Deployment models, including role assignments, represent a snapshot
of the enterprise with a particular disposition of resources.

° ITSystem: An IT system is a computing system that can perform a role in a
capability. Electronic services are intended to provide integration and automated
coordination. This class allows the identification of the components providing
these services, possibly as a prelude to an MDA-style development activity. The
subsequent subsection, Electronic Service Management Systems, provides refine-
ments of this stereotype to identify likely management applications.

Additional classes not shown in Figures 5 and 6 are now discussed:

. Property and HasProperties: Properties capture different types of meta-data about
capabilities. Such meta-information mainly refers to functional and nonfunctional
requirements for a capability. For example, a property for a negotiation capability
isto be usable only with a certain type of customers. The following classes inherit
from HasProperties to enable the attachment of properties: BusinessEntity,
CapabilityRole, Capability and Service. The properties mechanism maps onto the
tagged-value mechanism in UML in the profile definition.

. Group and Groupable: Experience with the HP Service Composer revealed the
benefit of composing capabilities into higher-level aggregates called clusters, in
which capabilities exhibited functional overlaps, dependencies, mutual ownership,
or other subjective similarities. There is also often the need to group services into
related offerings or service packs. Group and Groupable provide a single mecha-
nism for hierarchical grouping. The following elements inherit from Groupable and,
hence, may appear in a Group: CapabilityRole, Capability, BusinessEntity,
Informationltem, Service and Group. Grouping is implemented by UML’s package
mechanism in the profile definition.

Electronic Service Management Systems

In this section, we introduce a preliminary model of IT infrastructure components
involved in the management and implementation of ESSs. Because it is common practice
to employ such components when structuring business capabilities as electronic
services, we believe that a pragmatic modeling approach for ESSs must represent these
components explicitly. The following discussion identifies several common types of
infrastructure component.

Our domain model describes abstractly the effect that activities have on the information
in their environment, for example, the known locations of resource or statistics, such as
the total revenue for a service. Such information can have a role in coordinating
capabilities and may be maintained and leveraged using databases or other accounting
mechanisms.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 125

Business services encapsulated by electronic services benefit from additional commu-
nication and provisioning channels. However, the notion of electronic service includes
workflow descriptions for the capabilities from which services are composed. This
suggests that services may be automatically coordinated or enacted using commercial
workflow engines.

There may also be aneed to manage the resources required by a service, support for which
is provided by Enterprise Resource Planning (ERP) applications.

Generally, if electronic services are in place, there will be the need and opportunity to
integrate them using a technical infrastructure. This integration is the key benefit of the
SOC paradigm. ESMSs bundle facilities for data and workflow management with devel-
opment tools based on the service paradigm.

The management domain model shown in Figure 7 identifies several common types of
management components and their relationship to electronic services.

° ESMS: An application offering an enterprise-oriented management view of an
electronic service environment. For example, the HP Service Composer or the
DySCo research prototypes (Piccinelli & Mokrushin, 2001). Other candidate
technologies might be an application service offering a middle-tier of business
logic with a web server providing the management interfaces.

Figure 7. Management domain model

ITSystam
ESMS ElactronicService
0.1 0." sexternal : Boclean
+manager +managed | Lanabled : Boolean
0. 0.
ERP3 BusinessEntity
sresource
+name : Slring
0"
+actor
i
WS . "
0.1 o.* Capability
0.1 senacts| +name : Slring
ml— +=workflow : String
0.7
seoordinates
Database
0. p.» | Informationltemn
+stores

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

126 Piccinelli and Skene

. WIMS: A workflow management system, either embodying a capability (enact-
ment) or coordinating a number of subcapabilities. Examples of workflow applica-
tions are IBM’s MQ-Series Workflow and PeopleSoft’s PeopleTools and Integra-
tion Broker.

. ERPS: An Enterprise Resource Planning System, dedicated to coordinating
entities in the system, presumably making them available to fulfil capability roles.
We do not consider resource planning in this paper, although it interacts at a
functional level with coordination based on capabilities, and future work may
provide a combined modeling approach. Examples of ERP systems are SAP’s
mySAP and Baan’s iBaan.

. Database: Most enterprises use databases to store information about the enter-
prise. Establishing a relationship between the (conceptual) information items and
the databases that store them allows a modeler to check whether the information
required by a business entity to fulfil a capability role is available in its context.
Popular databases are Oracle and MySQL.

Electronic Service Systems Profiles

The following tables relate elements in the domain model to profile elements and elements
in the UML domain model. This style of profile definition is compatible with both UML
version 1.5 (OMG, January 2003) and UML 2 (OMG, September 2003).

All name attributes in the domain models map to the name attribute of the class element
in the UML meta-model. All associations in the domain model map to associations in
models. Stereotypes on AssociationEnds are used to disambiguate associations where
more than one exists between the same two domain model elements.

Profile Usage Example

We now present an example of the profile in use to model a freight moving service, based
onprevious research in the freight domain (Linketscher & Child, 2001). This example was
also used to demonstrate the HP Service Composer.

We present three diagrams corresponding to the three views supported by our profile:
an abstract view of a service and its underlying capabilities; a snapshot of the enterprise
with business entities implementing roles in capabilities; and a view of the IT infrastruc-
ture supporting services.

Figure 8 shows the freight service and the capabilities that support it. The service is
provisioned by a tendering capability. This service bids in a reverse auction. Simulta-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Table 1. Stereotypes in the ESS profile

Service-Oriented Computing

Domain model element Stereotype UML base class Parent Tags

ElectronicService Service Class - external

enabled
ElectronicService.content content AssociationEnd - --
ElectronicService.provisioning provisioning AssociationEnd - -
ElectronicService.component component AssociationEnd -- -
Capability Capability Class - -
Capability.input input AssociationEnd - -
Capability.output output AssociationEnd - -
CapabilityRole CapabilityRole Class - -
Informationltem Informationltem Class - --
Observation Observation Class - condition

observation
Observation.input input AssociationEnd - --
Observation.output output AssociationEnd - -
BusinessEntity BusinessEntity Class - --
ServiceOffer ServiceOffer Class - enabled
Servicelmplementation Fulfills Association - service
ITSystem ITSystem Class Business- | --

Entity

ESMS ESMS Class ITSystem --
W{MS.actor wfactor AssociationEnd - --
W{MS.enacts enacts Class - -
W{MS.coordinated coordinates Class - --
ERPS ERPS Class ITSystem -
Database Database Class ITSystem --

127

neously it coordinates resources required for the freight movement. Resources are traded
in an online market to drive down the overhead of the transport. A successful tender

resorts in a move order. This is an example of information in the ESS.

Each capability has an associated workflow description. The workflow for the handover
capability is shown using an informal notation. The role names present correspond to

associated capability roles.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

128 Piccinelli and Skene

Table 2. Tags in the ESS profile

Domain model element Tag Stereotype Type Multiplicity
Service.external external Service Boolean 0.1
Service.enabled enabled Service Boolean 0.1
Capability. workflow workflow Capability String 0.1
Observation.condition condition Observation String 1
Observation.observation observation Observation String 1
Servicelmplementation.service service Fulfills Class 1
BusinessEntity.external external BusinessEntity Boolean 0.1
ServiceOffer.enabled enabled ServiceOffer Boolean 0.1

Figure 8. Services and capabilities in the Freight mover example

Businessknlily

+name @ Slring

1

ITSystem

1

EleclronicService RoleAssignmenl

+axlermnal @ Boolean

+enabled : Boolean

+realised | 0.7 0..*| +provisioned
+content .| +provisioning
Capability 1+ CapabilityRole
+name : 5tring +name : String
.- actor
+workllow @ Slring

Figure 9 shows a deployment view of the service in operation. The model shows the
association of commercial entities with the roles associated with the handover capability.

Finally, Figure 10 shows a view of the IT infrastructure supporting the freight service.
The overall service is managed by an ESMS. The tender and auction capabilities are

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 129

Figure 9. Resource assignments in the Freight mover example.

= Capability == wefylfillsss
Handover | < «(CapabilityRiolo: = Jaervice = FreightSendice}

Customer

| <<fulfils>> -
:':ﬂII\ShUI'Y.‘;

{service = Fraightenice)}

<eCapablityRoles»

<<fulfills ==
Fraighthdizer Fickfords
{Service = Frai i

<< CapabilityRoles» - _“r”m"s;_ﬁ - LLayds
rvice = Fraigh

InsuranceFrovider |

N =<efulfills=> .
<aCapabilityRoles - FddieStobart
- {service = Freight! ice}

TransportProvider

Figure 10. Infrastructure components in the Freight mover example.

<<ESMS== <Senicesx
ServiceManager FreightService
<<provisioning s>
=«<Capability=:= ==Informationltem:=
<<enacts> [ender <<output> MerveOrde
=<WiMS==
TenderManager
<<CoMmponents:
<<enacts> - -
=< Capability== =<Dalabases:
ServiceAuctio Orders[B

enacted by a workflow engine. An orders database manages information produced by
successful tenders to move goods.

Conclusion and Future Trends

Service orientation and model-driven architectures closely represent complementary
approaches to tackling the complexity of software systems engineering. On the one hand,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

130 Piccinelli and Skene

systems are decomposed into functional units (services) that can be composed in a
modular and flexible way. On the other hand, the engineering of individual services and
of complete solutions is based on a coherent management of multiple views (models) of
the underlying system. The combination of service orientation and model-driven archi-
tectures results in a comprehensive conceptual framework for systems engineering.

In this chapter, we have proposed a concrete example of the possible synergies between
service orientation and model-driven architecture. Using the extension capabilities of
UML, the conceptual framework defined for ESSs has been used to enhance standard
UML modeling tools. The resulting modeling and development environment intrinsically
supports the realization of service-oriented systems.

Models of systems developed using a profile of this kind provide a high-level view of
asystem in terms of the concepts underlying its design, in this case, the electronic service
paradigm. The benefit of such a view is in understanding and documenting the system
and serving as a starting point for refinement based development, as suggested by the
MDA development approach. The profile identifies elements, such as services and
workflow specifications, pertinent to platform artifacts, and we suggest that such models
could therefore serve as high-level PIMs appropriate as the source for MDA transfor-
mations to platform-specific representations. Given the high level of abstraction of the
models and the great variety of possible implementation platforms and strategies for
electronic service systems, we are currently content to leave this as a manual transfor-
mation, the details of which should be determined for each particular development.
However, if the increasing popularity of the MDA results in the emergence and
widespread adoption of standards and tools supporting automated transformations, it
may also be profitable to formally define transformations to a variety of platforms.

References

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., etal. (2003, May
5). Business process execution language for web services version 1.1. Retrieved
August 9, 2004, from http://www.ibm.com/developerworks/library/ws-bpel/

Baan. iBaan. Retrieved August 9, 2004, from http://www.baan.com/

BEA. Web logic integration. Retrieved August 9, 2004, from http.//www.bea.com/
content/news_events/white_papers/BEA_WL Integration_ds.pdf

Frankel, D. S. (2003). Model driven architecture: Applying MDA to enterprise comput-
ing. John Wiley & Sons.

Gibb, B., & Damodaran, S. (2002). ebXML: Concepts and application.
Global Grid Forum. Retrieved August9, 2004, from http://www.ggf/org/
HP. (2002). HP service composer user guide.

IBM. Websphere MQ workflow. Retrieved August 9, 2004, from http://www.ibm.com/
software/integration/wmaqwf/

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Computing 131

IBM. WebSphere Studio Application Developer. Retrieved August 9, 2004, from http:/
/www.ibm.com/websphere

ISO/IEC,ITU-T. Open distributed processing— Reference model — Part 2: Foundations.
(ISO/TIEC 10746-2,ITU-T Recommendation X.902).

Linketscher, N., & Child, M. (2001). Trust issues and user reactions to e-services and e-
marketplaces: A customer survey. DEXA Workshop on e-negotiation.

MacDonald, M. (2003). Microsoft . NET distributed applications: Integrating XML Web
services and .Net remoting. Microsoft Press.

Marton, A., Piccinelli, G., & Turfin, C. (1999). Service provision and composition in
virtual business communities. IEEE-IRDS Workshop on Electronic Commerce.

McCarthy, J. A design center for Web services. Retrieved August 9, 2004, from http:/
/www.webservices.org

MySQL AB. MySQL database. Retrieved August 9, 2004, from http://www.mysql.com/

OASIS. Retrieved August 9, 2004, from http://www.oasis-open.org/committees/

Object Management Group (OMG). (2002, April). MOF 2.0 queries/views/transforma-
tions RFP. (Document— ad/02-04-10).

Object Management Group (OMG). (2002, April). UML profile for CORBA specification.
(Document— formal/02-04-01).

Object Management Group (OMG). (2002, May). UML profile for enterprise distributed
object computing specification. (Document — ptc/02-02-05).

Object Management Group (OMG). (2003, January). Unified Modeling Language (UML),
version 1.5. (Document— formal/03-03-01).

Object Management Group (OMG). (2003, June). MDA guide version 1.0.1. (Document
—omg/03-06-01).

Object Management Group (OMG). (2003, September). UML 2.0 infrastructure final
adopted specification. (Document — ptc/03-09-15).

Oracle. Oracle database products. Retrieved August9,2004, from http://www.oracle.com

Piccinelli, G., & Mokrushin, L. (2001). Dynamic e-service composition in DySCo.
Workshop on Distributed Dynamic Multiservice Architecture, IEEEICDCS-21.

SAP. mySAP. Retrieved August 9, 2004, from http://www.sap.com/

Skene, J., & Emmerich, W. (2003, October). A model-driven approach to non-functional

analysis of software architectures. Proceedings of thel8th IEEE Conference on
Automated Software Engineering.

Sun Microsystems. (2001). Enterprise Java-Beans (EJB) specification v2.0. Retrieved
August 9, 2004, from http://java.sun.com/products/ejb/docs.html

W3C. Web services activity. Retrieved August 9, 2004, from http.://www.w3.0rg/2002/
ws

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

132 Steen, Strating, Lankhorst, ter Doest and lacob

Chapter VII

Service-Oriented
Enterprise Architecture

Maarten W.A. Steen Patrick Strating
Telematica Institute, The Netherlands Telematica Institute, The Netherlands

Marc M. Lankhorst Hugo W.L. ter Doest
Telematica Institute, The Netherlands Telematica Institute, The Netherlands

Maria-Eugenialacob
Telematica Institute, The Netherlands

Abstract

Service orientation is a new paradigm, not only for software engineering but also for
the broader topic of enterprise architecture. This chapter studies the relevance and
impact of the service concept and service orientation to the discipline of enterprise
architecture. It provides ideas on how to set up a service-oriented enterprise architecture.
It is argued that a service-oriented approach to enterprise architecture provides better
handles for architectural alignment and business and IT alignment, in particular.

Introduction

Continuing globalization, the economic downturn, mergers and acquisitions, and chang-
ing customer demands are forcing enterprises to rethink and restructure their business
models and organizational structures. New products and services need to be developed

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 133

and delivered better, faster, and cheaper due to increasing international competition.
Therefore, enterprises have to be increasingly efficient, flexible, and innovative to be
successful. They will focus more on core competencies and outsource other activities
to dynamically selected partners to deliver the best possible customer value and the
shortest time-to-market.

In order to manage all these changes and stay competitive, enterprises have started to
develop enterprise architectures. These bring together all architectures modeling spe-
cific aspects of an enterprise. They provide a way for managers and enterprise architects
to assess the impact of changes in one aspect of the enterprise’s operations on the other
aspects.

The emergence of the service-oriented computing (SOC) paradigm and Web services
technology, in particular, has aroused enormous interest in service-oriented architecture
(SOA). Probably because such hype has been created around it, there are a lot of
misconceptions about what SOA really is. Numerous Web services evangelists make us
believe that if you would divide the world into service requestors, service providers and
aserviceregistry, you would have a service-oriented architecture (for example, Ferris &
Farrell, 2003). Others emphasize that SOA is a way to achieve interoperability between
distributed and heterogeneous software components, a platform for distributed comput-
ing (for example, Stevens, 2002). The interesting thing is that the service concept applies
equally well to the business as it does to software applications. Services provide the units
of business that represent value propositions within a value chain or within business
processes. Even though dynamic discovery and interoperability are important benefits
of Web services, a purely technological focus would be too limited and would fail to
appreciate the value of the (much more general) service concept. SOA represents a set
of design principles that enable units of functionality to be provided and consumed as
services. This essentially simple concept can and should be used not just in software
engineering but also at all other levels of the enterprise architecture to achieve ultimate
flexibility in business and IT design.

The main objective of this chapter is to study the relevance and impact of the service
concept and service orientation on the discipline of enterprise architecture. The chapter
answers the following questions:

° What is enterprise architecture and why is it important?

° What is the current state of practice in enterprise architecture?

. Why should enterprises consider moving to a service-oriented enterprise architec-
ture?

° What are the implications of service orientation for enterprise architecture?

. What support is required for doing service-oriented enterprise architecture?

. What road maps exist for moving to a service-oriented enterprise architecture?

The rest of the chapter is structured as follows. First, we survey the state of the art in
enterprise architecture and architectural support. Then we study the relevance and

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

134 Steen, Strating, Lankhorst, ter Doest and lacob

impact of the service concept and service orientation on the discipline of enterprise
architecture. This is followed by a number of emerging trends and adoption strategies.
We conclude with issues for further research.

Enterprise Architecture

Enterprise architecture has the effective purpose to align the strategies of enterprises
with their business processes and their (business and IT) resources (Wegmann, 2003;
Zachman, 1987). An enterprise architecture for an organization combines and relates all
architectures describing particular aspects of that organization. META Group, for
example, defines the enterprise architecture to consist of the enterprise business
architecture, the enterprise information architecture, the enterprise-wide technology
architecture, and the enterprise application portfolio (Buchanan & Soley, 2002). The goal
of enterprise architecture is to provide insight in the organizational structures, pro-
cesses, and technology that make up the enterprise, highlighting opportunities for
efficiency improvements and improved alignment with business goals.

Enterprise architecture is important because organizations need to adapt increasingly
fast to changing customer requirements and business goals. This need influences the
entire chain of activities of an enterprise from business processes to IT support.
Moreover, a change in one architecture may influence other architectures. For example,
when a new product is introduced, someone should be made responsible for it, and
business processes for production, sales, and after-sales need to be adapted. It might
be necessary to change applications or even adapt the IT infrastructure. To keep the
enterprise architecture coherent, the relations between the different types of architecture
must be clear, and a change should be carried through methodically in all architectures.

Architectural alignment and business and IT alignment, in particular, have proved to be
difficult problems in enterprise architecture. On the one hand, this is due to differences
in architectural modeling methods. Business analysts are capable of modeling complex
business processes. Likewise, IT architects are capable of designing complex applica-
tions. Unfortunately, the two cannot understand each other’s designs because they do
not have acommon vocabulary and language. On the other hand, there is no overarching
set of design rules governing the structuring of the various architectures making up the
enterprise architecture. In practice, each type of architecture is supplemented with
guidelines and best practices for optimal design. The use of such design principles is
well known in software engineering, but also in the field of business process modeling
anumber of guidelines have been assembled in various methods. For example, Biemans
etal. (2001) describe guidelines, such as “use domain-specific terminology, notation, and
conventions,” and “use a limited number of pre-defined abstraction levels; the choice
of abstraction levels should be an opportunistic, domain-specific one”. These principles
render optimal architectures that, however, may constitute an enterprise architecture that
is not optimal or even aligned. Therefore, one also wishes for some form of enterprise-
wide design optimization. The well-known practical approach is to generate views or
mappings of one architecture onto another and analyze the result for possible discrep-

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 135

ancies. A simple example is to assign actors to process activities and analyze whether
the result makes sense from the actor’s point of view. In this way, architectures can be
pair-wise aligned. Until now, enterprise architecture lacks concepts for expressing global
optimization and criteria that guide this optimization across different architectures. We
return to these problems later. First, we survey some of the available frameworks,
methods, and modeling techniques for enterprise architecture.

Frameworks

In order to define the field and determine the scope of enterprise architecture, both
researchers and practitioners have produced a number of architecture frameworks.
Frameworks provide structure to the architectural descriptions by identifying and
sometimes relating different architectural domains and the modeling techniques associ-
ated with them. Well-known examples of architectural frameworks are:

. Zachman’s “framework for enterprise architecture” (see Sowa & Zachman, 1992;
Zachman, 1987). The Zachman framework is widely known and used. The frame-
work is a logical structure for classifying and organizing the representations of an
enterprise architecture that are significant to its stakeholders. It identifies 36 views
on architecture (cells), based on six levels (scope, enterprise, logical system,
technology, detailed representations, and functioning enterprise) and six aspects
(data, function, network, people, time, and motivation).

° The Reference Model for Open Distributed Processing (RM-ODP) is an ISO/ITU
Standard (ITU, 1996) which defines a framework for architecture specification of
large distributed systems. It identifies five viewpoints on a system and its
environment: enterprise, information, computation, engineering, and technology.

i The architectural framework of The Open Group (TOGAF) is completely incorpo-
rated inthe TOGAF methodology (http://www.opengroup.org/architecture/togaf8/
index8.htm). TOGAF has four main components, one of which is a high-level
framework defining three views: Business Architecture, Information System Archi-
tecture, and Technology Architecture.

Forthe remainder of this chapter, we will use a very simple framework (Jonkers etal., 2003)
to illustrate our ideas, which is based on the frameworks mentioned above. This
framework, which is illustrated in Figure 1, uses just three layers and three aspects. The
layers — business, application, and technology — roughly correspond to the enterprise,
logical system, and technology levels in the Zachman framework. The aspects —
structure, behavior, and information — correspond to the network, function, and data
aspects in the Zachman framework.

As shown in the figure, different known conceptual domains can be projected onto this
framework. Frameworks like this provide clues as to which domains may be relevant for
modeling and analyzing but do not provide guidelines for relating and aligning different

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

136 Steen, Strating, Lankhorst, ter Doest and lacob

Figure 1. Architectural framework

Information Behaviour Structure
aspect aspect aspect

Product S
Business domain Or%zr:r:sé?rt:on
layer domain '
Application @ Application domain
layer

Technology
layer

Technical infrastructure domain

architectural domains, nor for optimizing architecture domains or the entire set of
domains.

Methodology

Most of the architecture frameworks are quite precise in establishing what elements
should be part of an enterprise architecture. However, to keep the enterprise architecture
coherent during its life cycle, the adoption of a certain framework is not sufficient. The
relations between the different types of domains, views, or layers of the architecture must
remain clear, and any change should be carried through methodically in all of them. For
this purpose, a number of methods are available, which assist architects through all
phases of the life cycle of architectures.

An architecture method is a structured collection of techniques and process steps for
creating and maintaining an enterprise architecture. Methods typically specify the
various phases of an architecture’s life cycle, what deliverables should be produced at
each stage, and how they are verified or tested. The following methods for architecture
development are worth mentioning:

i Although meant for software development, the Rational Unified Process (RUP)
(Jacobson et al., 1999) is of interest here, as it defines an iterative process, as
opposed to the classical waterfall process, that realizes software by adding
functionality to the architecture at each increment.

i The UN/CEFACT Modeling Methodology (UMM) is an incremental business
process and information model construction methodology. The scope is intention-
ally restricted to business operations, omitting technology-specific aspects. The
Business Collaboration Framework (BCF), which is currently under development,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 137

will be a specialization of the UMM aimed at defining an enterprise’s external
information exchanges and their underlying business activities. See http://
www.unbcf.org/index.html.

° The ChiefInformation Officers Council has created The Federal Enterprise Archi-
tecture Framework (FEAF) accompanied by a practical and useful manual for
developing enterprise architecture for governmental organizations. See http://
www.cio.gov. Other initiatives of the United States government include Technical
Architecture Framework for Information Management (TAFIM) by the U.S. Depart-
ment of Defense and the Treasury Architecture Development Process by the
Department of the Treasure. See http://www.library.itsi.disa.mil/tafim.html and
http://www.ustreas.gov/teaf/, respectively.

i The TOGAF Architecture Development Method (ADM), developed by the Open
Group, provides a detailed and well-described phasing for developing an IT
architecture. Version 8 of TOGAF entitled “Enterprise Edition” provides a frame-
work and development method for developing enterprise architectures. See http:/
/www.opengroup.org/architecture/togaf8.

. MEMO (Frank, 2002) is a method for enterprise modeling that offers a set of
specialized visual modeling languages together with a process model, as well as
techniques and heuristics to support problem specific analysis and design. The
languages allow the modeling of various interrelated aspects of an enterprise.

Differences between these methods are partly due to historical reasons and partly due
to differences in scope. First, they may or may not specify the detailed techniques,
languages, or tools to be used in each phase. Second, they differ in the degree to which
they encourage the repetition of various stages. Some methods take the “right first time”
approach for each stage of development, while others promote iteration. Some methods
favor the involvement of users during the whole process, while others limit user
involvement to the early stages.

Modeling Support

The industry has produced a number of tools supporting architecture work within
enterprises, especially in the area of modeling and modeling languages (for example, the
ARIS toolset, the Rational tools, Metis, Enterprise Architect, System Architect, Testbed
Studio, MEMO). Languages are an essential instrument for the description and commu-
nication of architectures, and languages and tools have evolved more or less hand in
hand. In some cases, methodologies and frameworks have grown around and are
supplied together with architecture support tools, for instance, in the Rational, ARIS
(Scheer, 1994), Testbed (Eertink et al., 1999) and MEMO cases. In other cases, tool
vendors have strived to endow their tools with new functionality in order to support
frameworks (for example, System Architect was supplemented with a Framework Man-
ager, which supports, among others, the Zachman and TOGAF frameworks) or other

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

138 Steen, Strating, Lankhorst, ter Doest and lacob

modeling notations such as UML (Booch, Rumbaugh & Jacobson, 1999) or the IDEF
family (IDEF, 1993), besides their own proprietary notations (for example, ARIS, System
Architect). Languages and modeling notations are at the core of all these architecture
support packages.

Most languages mentioned provide concepts to model specific domains, for example,
business processes or software architectures, but they rarely model the high-level
relationships between these different domains. We can illustrate this with Figure 1. In
current practice, architectural descriptions are made for the different domains. Although,
to a certain extent, modeling support within each of these domains is available, well-
described concepts to describe the relationships between the domains are almost
completely missing. Such concepts are essential to tackle the problems of business-IT
alignment and architecture optimization in a systematic way.

Service Orientation in
Enterprise Architecture

From the overview of enterprise architecture in the previous section, one can conclude
that there are two main issues in enterprise architecture today:

1. The problem of alignment between the various architectures and

2. Thelackofa guiding principle for overall optimization with respect to an enterprise’s
goals.

The service concept may provide an interesting direction to solve these issues. The idea
of systems (applications or components) delivering services to other systems and their
users is really starting to catch on in software engineering; witness, for example, this
book. However, in other relevant disciplines, there is an increasing focus on services,
too. In fact, economic developmentis to an increasing extent driven by services, not only
in traditional service companies but also in manufacturing companies and among public
service providers (Illeris, 1997). In the service economy, enterprises no longer convert
raw materials into finished goods, but they deliver services to their customers by
combining and adding value to bought-in services. As a consequence, management and
marketing literature is increasingly focusing on service design, service management, and
service innovation (for example, see Fitzsimmons & Fitzsimmons, 2000 or Goldsteinetal.,
2002).

Another upcoming area in which the service concept plays a central role is IT service
management. This discipline is aimed at improving the quality of IT services and the
synchronization of these services with the needs of their users (Van Bon, 2002).

Combining these three developments — the focus on services in management, the
growing attention for service management, and the hype around Web services —
convinced us that services should have a more prominent role in enterprise architecture.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 139

Inthe rest of this section, we study what the impact of service orientation is on enterprise
architecture and how it could potentially solve the two problems identified above.

The Service Concept

Given the central role of the service concept in this chapter, a clear and precise definition
isrequired. This definition should make sense both in the business and in the IT domain.
Forageneric definition, we refer back to the seminal work by Vissers and Logrippo (1985)
and Quartel et al. (1997), where a service is defined as “the observable behavior of a
system (the service provider) in terms of the interactions that may occur at the interfaces
between the system and the environment and the relationships between these interac-
tions”. The term system is used here in the widest sense, including both applications and
organizational units.

The service concept is the result of a separation of the external and internal behavior
of a system. As such, it should be self-contained and have a clear purpose from the
perspective of its environment. The internal behavior, on the other hand, represents what
is required to realize this service. For the consumers of a service, the internal behavior
of a system or organization is usually irrelevant: they are only interested in the
functionality and quality that will be provided.

Relevance and Benefits

One might ask why we should focus on services for architecting the enterprise and its
IT support. What makes the service concept so appealing for enterprise architecture
practice? First, there is the fact that the service concept is used and understood in the
different domains making up an enterprise. In using the service concept, the business
and IT people have a mutually understandable language, which facilitates their commu-
nication. Second, service orientation has a positive effect on anumber of key differentiators
in current and future competitive markets, that is, interoperability, flexibility, cost
effectiveness, and innovation power.

Interoperability

Of course, Web services and the accompanying open XML-based standards are heralded
for delivering true interoperability at the information technology level (Stevens, 2002).
However, service orientation also promotes interoperability at higher semantic levels by
minimizing the requirements for shared understanding: a service description and a
protocol of collaboration and negotiation are the only requirements for shared under-
standing between a service provider and a service user. Therefore, services may be used
by parties different from the ones originally perceived or used by invoking processes at
various aggregation levels.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

140 Steen, Strating, Lankhorst, ter Doest and lacob

Flexibility

Interoperability and separation of internal and external behavior provide new dimensions
of flexibility: flexibility to replace or substitute services in cases of failure, flexibility to
upgrade or change services without affecting the enterprise’s operations, flexibility to
change suppliers of services, flexibility to reuse existing services for the provision of new
products or services. This will create new opportunities for outsourcing, rendering more
competition and more efficient value chains.

Cost Effectiveness

By focusing on services, many opportunities for reuse of functionality will arise,
resulting in more efficient use of existing resources. In addition, outsourcing and
competition between service providers will also resultin areduction of costs. From a more
macroscopic pointof view, costs will be reduced as a result of more efficient distribution
of services in value chains.

Innovation Power

The ability to interoperate and collaborate with different partners, including partners not
familiar to the enterprise, provides new opportunities for innovation. Existing services
can be recombined, yielding new products and services, ad hoc liaisons with new
partners become possible that exploit emerging business opportunities, and newly
developed services can easily be advertised and offered all over the world, and integrated
in the overall service architecture.

Finally, service orientation stimulates new ways of thinking. Traditionally, applications
are considered to support a specific business process, which in turn realizes a specific
business service. Service orientation also allows us to adopt a bottom-up strategy, where
the business processes are justa mechanism of instantiating and commercially exploiting
the lower-level services to the outside world. In this view, the most valuable assets are
the capabilities to execute the lower-level services, and the business processes are
merely a means of exploitation.

Introducing a Service Architecture

The wide applicability of the service concept to all levels of enterprise architectures
paves the way for the introduction of a separate service architecture. The service
architecture defines and relates all services of an enterprise. The enterprise is essentially
regarded as a collection of interrelated services at various aggregation levels, or more
precisely, a collection of abilities to instantiate services. These services can be business
services or technical services, and the services can be both high-level aggregated
services and low-level atomic services.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 141

Figure 2. Service architecture: Hierarchy of services

Environment customer

External

Business business
services
behaviour
Internal
business
services
behaviour
External
L application
Application A -
behaviour ﬁ
Internal
application
senvices
"""""" fechnoiogy ~ mmmmmmmmmmme-
Technology

services

Internal
technology
services

behaviour

A service architecture can be extracted from existing architectures by projecting out all
(business, application, and technology infrastructure) services provided, or it can be
developed separately. Services are typically grouped by type in a service architecture,
as depicted in Figure 2.

The resulting hierarchy corresponds to the architectural layers (business, application,
and technology) defined in the architectural framework in Figure 1. Each layer makes its
external services available to the next higher layer. The external services of the higher
layer may depend on services in the same or lower architectural layers. Business services,
for example, may depend on external application services. Internal services are used
within the same architectural layer; for instance, an application component may use
services offered by another application component. Likewise, a business process may
be viewed as comprising subprocesses that offer their services to each other and to the
containing process. External business services could also be called customer services,
that is, services offered to the (external) customers of the enterprise.

Naturally, within these different layers, services will have to be augmented with aspects
specific to these layers. This might entail, for example, adding (representations of)
service level agreements to services in the business layer or WSDL specifications to

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

142 Steen, Strating, Lankhorst, ter Doest and lacob

describe the details of internal application services. However, central is the generic
concept of a service as a business-relevant unit of behavior as it is exposed to the
environment.

Guidelines

The development of a service-oriented enterprise architecture (SOEA) should be guided
by the following principles in order to achieve the benefits listed previously.

Separation of Internal and External Behavior

Following the definition of the service concept, a service should only define the
externally observable behavior of a system, not how that behavior is realized. Such
encapsulation has long been a guiding principle in software development (for example,
see Dijkstra, 1968). It provides a mechanism for being truly platform-independent for
substituting different implementations with the same external behavior or interchanges
different suppliers of services.

Definition of the Meaning of Services in External Context

The definition of the external behavior should be in terms of the invoking processes,
systems, or users, making the added value and possible uses of the service explicit for
service consumers. It encourages cross-domain thinking and design, reducing the
semantic gaps between domains. It also facilitates the communication between stake-
holders from these different domains, such as business analysts and software architects.

Minimization of Shared Understanding

Services should be specified such that (potential) users require a minimum amount of
information to understand the external behavior of the service and with a minimum
number of handles to operate the service for these purposes. Minimizing the shared
understanding is an enabler for the second guiding principle, as it reduces gaps from
different perspectives.

These guiding principles provide directions for the development of services and
interoperability in all sorts of domains. They hold for the development of infrastructural
services, application services, business processes, and business functions.

Architectural Alignment

Once a service architecture is established, it can be used as a vehicle for achieving
architectural alignment or as the starting point for optimization or redesign of the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 143

Figure 3. Services as a pivotal construct linking different architectural domains

o e
I

enterprise. As we explained in the introduction, an enterprise architecture is not a single
entity but a collection of all relevant architectures making up the enterprise. One of the
main challenges in enterprise architecture is to relate and align all these architectures with
each other and with the overall goals and objectives of the enterprise.

Having a service architecture makes it easier to relate the various architectures to one
another. We have already shown that a service architecture provides insight in the
dependency relationships between an enterprise’s services at different levels. The
service architecture thus provides a global overview of the functioning of an enterprise,
which can be used to play what-if games. For example, what is the impact if a certain
application service is removed, outsourced, or upgraded?

In addition, services can serve as linking pins between the concepts used in other
architectural domains. A service is used by and provided by actors fulfilling roles in the
organization domain. A service is invoked by and implemented by business processes
in the process domain or application components in the application domain. And, a
service requires and processes information and data from the information and data
domains, respectively.

It may seem too much of a simplification to use only one construct for the complicated
matter of enterprise design, but service-oriented architecture does not mean that there
is no longer a place for classical distinctions between roles, processes, applications,
information, and so forth. Rather, in service-oriented architectures there is one pivotal
construct (the service concept) between different aspects and between different levels
of aggregation. The different types of architecture arise as aspect views for the service-
oriented architecture. Thus, SOEA imposes a direct correlation between business
processes and application services, improving governance and maintainability, while
simplifying the development of new services from existing ones.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

144 Steen, Strating, Lankhorst, ter Doest and lacob

Service Optimization

Currently, optimizing an enterprise architecture, that is, improving performance, quality,
or cost effectiveness, is typically done locally within one type of architecture. For
example, an enterprise may decide to change its business processes to improve its
efficiency. This change might require changes in the supporting applications and IT
infrastructure and lead to changes in the organization. In this way, the enterprise can,
at most, achieve a locally optimal situation because the resulting changes could have a
detrimental impact on the efficiency of the applications and on the effectiveness of the
organization as a whole. Our hypothesis is that services could provide the overall
optimizing concept currently lacking in enterprise architecture. This hypothesis still
requires validation but is derived from the reasoning that most enterprises today belong
to the service industry and compete on service levels. Therefore, their goal generally is
to provide the best possible quality of service.

There are two ways in which services could guide optimization. The first way is to start
from a particular service and analyze how this service is supported in different architec-
ture domains. This is illustrated in Figure 3. The challenge is to design processes,
organizational structures, and information systems to effectively support the selected
service.

Evenmore challenging is the optimization of the entire set of services across architectural
domains and aggregation levels. Consider the archetypical corporate service architec-
ture as illustrated in Figure 4. An end-user service (top level) depends on lower-level
services for its service delivery, which again may depend on service at an even lower
level. On the other hand, lower-level services can be used in different end-user services.
In general, to attain the goal of cost reduction, lower-level services should be more
generic than higher-level services, limited in number, and used by as many higher-level
services as possible. However, the more a lower-level service is used by higher-level

Figure 4. Corporate service architecture with different layers of services (circles) and
dependencies (arrows) (The thick arrows represent a particular set of services that are
required for one of the end-user services.)

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 145

services, the more difficult it will be to change this service. To retain flexibility,
decomposition of such services may be preferable.

From this example, it is clear that it is a real challenge to define guidelines for optimal
service architectures that specify decomposition and reuse to achieve the combined
goals of increased flexibility, costs effectiveness, and innovation power.

One could argue that this problem is not different from the problems of component-based
design. In fact, it is similar, but it is now applied to the entire service architecture of the
enterprise. In this field, it provides a new concept for enterprise optimization. Current
optimization strategies start from classical domains, for example, business processes,
products, customers groups, as starting points to perform an optimization strategy. In
service orientation, the services are the primary building blocks of organizations.
Because the service concept intrinsically refers to interoperability, flexibility, and reuse,
as argued in the Benefits and Relevance section, the promise of service orientation is that
optimization strategies based on services will lead to more optimal business architectures
for the envisioned competitive business world.

Modeling Support for Service-Oriented Enterprise
Architecture

In order to facilitate a service-oriented approach to enterprise architecture, a high-level
modeling language is needed in which the different conceptual domains can be described
at a sufficiently abstract level. Such a language, in which the service concept plays a
central role, is being developed in the ArchiMate project (Jonkers et al., 2003). The
objective of the ArchiMate language is to define relationships between concepts in
different architectures, the detailed modeling of which may be done using other standard
or proprietary modeling languages.

Concepts in the ArchiMate language currently cover the business, application, and
technology layers of an enterprise. For each layer, concepts and relations for modeling
the information, behavior, and structure aspects are defined. Services offered by one
layer to another play an important role in relating the behavior aspects of the layers. The
structural aspects of the layers are linked through the interface concept and the
information aspects through realization relations.

Figure 5 illustrates the main concepts in the ArchiMate architectural modeling language.
The concepts of this language hold the middle between the detailed concepts that are
used for modeling individual domains, for example, the UML for modeling software. For
amore complete definition of the language, we refer to the ArchiMate project archive at
http://archimate.telin.nl/.

In order to illustrate our approach to service-oriented enterprise architecture and to using
services for architectural alignment, we have developed an example enterprise architec-
ture for an imaginary insurance company (Figure 6). It illustrates the use of services to
relate the infrastructure layer, the application layer, the business process layer, and the
environment. The insurant and insurer roles represent the client and insurance company
(ArchiSurance), respectively. Invocation of the claims registration service by the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

146 Steen, Strating, Lankhorst, ter Doest and lacob

Figure 5. Concepts of the ArchiMate architectural modeling language

= | ety

Process Actor

Association

(e o)
—
Role

Specialisation

—_—
Triggering

Object

Component o——o
Assigment
(behaviour to
structure, or

= role to actor)

N% Device S

etwork Used by

insurant starts the damage claiming process. The insurant is informed whether the claim
is accepted, and, if so, the insurant receives a payment. Interaction between business
processes and organizational roles is through business services. Thus, services connect
the process architecture and the organization architecture. Likewise, application ser-
vices relate the business process architecture to the application architecture. The
automated part of each business process is provided by an external application service.
These application services are realized by application components. Finally, the technol-
ogy layer consists of a number of infrastructure elements, such as a mainframe and an
application server, which execute application components and provide services to the
application layer.

Inthe example, a high-level overview of an entire enterprise is shown in a single integrated
and well-defined model. Admittedly, our example is simple; in reality, such amodel would
be much larger, requiring techniques for selecting and visualizing the elements that are
relevant for a particular stakeholder.

An important advantage of the service concept is that it can be interpreted by both
business and IT people. This model can be used by, for example, both a manager requiring
the big picture and a software engineer that implements an application component and
needs to know the context of this component. Thus, by using such a service-centric
model, different stakeholders can better understand each other. Within each specific
domain, this high-level model serves as a starting point for more detailed descriptions.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 147

Figure 6. Example of a service-oriented enterprise architecture (For more details on

the notation used in this example, see Van Buuren et al., 2003.)

Roles and actors

% —o

Client Insurant ArchiSurance

O

Insurer

External business seryices

Customer
information
service

Claim
registration
service
ZAN
|
|

Claims

payment

service
AN

1
Damage claiming process

= =

Registration Valuation Payment

Claims Customer Risk
administration administration assessment
service service service
AN

Payment
service

I
|

'

|
Il

Customer Risk
dministration assessment

3 1
| I
} I
q q T q 1
Application gomponents and serches 1 }
| |
| 1
I
I
I
I
I
I

laim
information
service

Claims | L }
dministration

Financial
] application

External infrastructure services

Claim Customer
files files
service service
ZN

T
|
;
Infrastructure:

T
|
4
|
L
| |

zSeries mainframe [SunBlade [
082 O ; O Risk D
{ iPlanet assessment
database app server EJB

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

148 Steen, Strating, Lankhorst, ter Doest and lacob

Future Trends

Currently, most developments with respect to service orientation are taking place on the
technology front. Web services standards continue to emerge at a dazzling speed.
Unfortunately, there is little ongoing effort to revise methods for enterprise architecture
in the light of service orientation.

Emerging Technologies

Web Services

Web services are a relatively young technology in full development, sustained by a
rapidly evolving set of industry standards. Their broad acceptance is guaranteed by the
global status of organizations suchas W3C, UN-CEFACT, UDDI.org, OMG, and OASIS
thatlead the standardization work in this field. However, there are problems (for example,
security, interoperability, availability, and reliability) that are not yet completely ad-
dressed, and therefore, most of these standards should be seen as work in progress.

We are witnessing a strong competition for the leading positions in the Web services
market. The list of competing companies include big supporters of Web services such
as Microsoft with its .Net strategy, IBM with its WebSphere, its “business on demand”
framework and its patterns for e-business, Novell with its DENIM (Directory-Enabled Net
Infrastructure Model) cross-platform infrastructure, Sun with its ONE (Open Net Envi-
ronment), BEA Systems with its WebLogic, and many others.

Grid Services

A parallel development in service orientation is the ability to access ICT resources, such
as computing power, storage capacity, and ICT devices as services over the Internet.
With devices, we refer to everything that can be shared via the network. It includes
scientific devices such as radio telescopes or MRI scanners, as well as your home video
camera or your PDA. This development has its origin in e-science environments
(computing grids), butalso has large potential for a variety of other application areas like
healthcare, education, finance, life sciences, industry, and entertainment. The idea is that
in the near future, a user or a company can simply plug into the wall to get access to
commoditized computing and storage services. In analogy with electricity provisioning
over the Power Grid, this next generation service infrastructure is called the Service Grid.
This will give large and small organizations access to ICT resources currently out of
reach.

For grid development, the Global Grid Forum (http://www.ggf.org) leads standardization.
The integration with business requirements is addressed in the OGS A (open grid services
architecture) and OGSI (open grid services infrastructure) working groups. These
primarily concern basic integration of grid computing concepts with Web service
technology.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 149

The grid service developments strengthen the impact of service orientation on business
architectures because they extend the application of Web service technology to the
domain of utility computing and ASP, while its focus on sharing of ICT resources will
have additional impact on the way ICT infrastructure services are managed within
organizations.

Real-Time Business Service Management

Tool vendors like BMC (http://www.bmc.com) recognize the importance of integrating
real-time IT service management with operational business processes and customer
services. They provide tools that propagate events at the IT level to process owners and
customers; the other way around, problem reports from users and customers can be
propagated to the IT service level. Such integrations should offer operational business-
IT alignment giving insight into real-time performance and service levels. These devel-
opments create a strong case for service-oriented methods since they apply service
orientation in real-time operational service management allowing services to be used for
online decision making and problem solving.

Adoption Patterns

Drivers for Adoption

Although many enterprises are very reluctant in embracing what might appear to be yet
another IT hype, there are some that have already started to implement Web services and
gained some practical experience in understanding how and where they can use them.
In a survey concerning the usage of Web services by early adopters of SOA, Wilkes
(2003) has identified several incentives to move toward SOA that are worthwhile to be
mentioned here because they express a position that is becoming a trend: SOA is a
strategic decision, it delivers more flexible solutions for business, is more practical and
more cost effective than the existent architectures, is compliant with existing and
emerging standards, delivers a more practical solution for IT, allows for easy business
process reengineering and optimization, and is device- and platform-independent.

Maturity Model

Since both service-oriented development methods and technology and standards
surrounding Web services are still very much under development, we may ask ourselves
what the future of service-oriented architectures will be like and when all these devel-
opments will finally lead to a mature, widely accepted and stable approach for organiza-
tions to proceed with such environments.

One outlook that tries to give a realistic prognosis for the near future is that of the Stencil
Group (Sleeper & Robins, 2002). Their forecast with respect to the growth of the Web

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

150 Steen, Strating, Lankhorst, ter Doest and lacob

services market emphasizes three phases: the first will cover the “organic adoption of
Web services tools and standards™ (2001-2003), the second, the “systematic deployment
of services infrastructure” (2002-2006), and the third, the “pervasive use of services in
collaborative business processes” (2005 and beyond).

The vision of Sleeper and Robins is partly confirmed by Sprott’s (2003) maturity model
that identifies four phases on the way of SOA toward maturity: early learning (experi-
mental, mostly internal, focused on better application integration) which is happening
now, integration (still internal, business process oriented and based on a more mature
understanding of SOA) that will start probably in 2004 and will take three years,
reengineering (services used across organizations and implemented as part of business
products, both internal and external) that will start in 2005, and finally, maturity
(ubiquitous and federated services, service consumer ecosystems). Sprott does not
predict when we should expect maturity.

Road Maps for Moving to a Service-Oriented Architecture

There are numerous resources available that discuss what Web services are, how to
implement or use them, what their benefits are in terms of costs, ROI, flexibility, and
architecture integration. However, in contrast with the literature addressing classical
enterprise and software architectures, one can hardly find well-structured methodolo-
gies, frameworks, or best practices that might assist enterprise architects during the
complex migration process from classic enterprise architectures to SOEA and Web
services. This is not a total surprise because such instruments are usually developed as
soon as the expertise gathered in the application of new ideas and technologies in real
environments reaches a certain critical mass, which is not yet the case with SOEA: there
are few examples of fully developed and mature service-oriented enterprise architectures.
However, we can refer to a few roadmapping initiatives in the area of SOA.

CBDi Forum has proposed “the Web Services Roadmap”, which is in facta collection of
articles (see http://roadmap.cbdiforum.com/) focused on practical guidance for organi-
zations adopting SOA and Web services. This Roadmap is structured around several
“streams,” which provide a division of the migration process into its main activities:

. The “Plan & Manage” stream involves activities related to the development and
coordination of common policies and practices between the parts of the new
federated environment, enabled by SOA.

° The “Infrastructure” stream offers guidance on the strategies, activities, and timing
involved in the transition of the existing infrastructures.

i The “Architecture” stream covers the integration of Web services into core
business processes, as the units of reuse across an organization.

i The “Process” stream deals with the “service life cycle” seen as a collaborative
process between the Supplier and the Consumer of services.

i The “Projects” stream briefly refers to five service project profiles.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 151

The second approach belongs to The Stencil Group (Robins et al., 2003). The first part
of this report is dedicated to the business objectives and technical patterns emerging
from the experiences of early adopters. In the second part, the authors propose a “Web
service scorecard”, intended to become a decision-making tool for new adopters. The
scorecard is based on the findings of a study of 50 organizations and is divided in two
parts: the first half should be used for the assessment of the enterprise IT strategy with
respect to Web services and the second half for the examination of the services that are
fit for a specific project. Apart from the scorecard, the paper discusses a four-step plan
of “how to get started”.

The third contribution originates from ZapThink, in the form of “ten emerging best
practices” (Bloomberg, 2003) and a “path for SOA implementation” (Schmelzer &
Bloomberg, 2003). These best practices give general common sense indications (such as
“Encapsulate existing/legacy functionality” or “Compose atomic Services into coarse-
grained business Services”) that might be useful principles to follow during the design
of service architectures. No time line or methodological steps are suggested. Neverthe-
less, the authors strongly encourage the use of principles and techniques of agile
methodologies. In contrast with the best practices, “the path for SOA implementation”
is an attempt to express in a graphical manner the most important moments toward the
maturity ofa SOEA. The process is divided into four phases: Point-to-point integration,
Internal SOAs, B2B process-driven services, and the on-demand enterprise.

Conclusion

Service orientation is a new paradigm, not only for software engineering but also for the
broader topic of enterprise architecture. Service-oriented enterprise architecture (SOEA)
introduces the idea of a service architecture, which facilitates alignment between the
various architectural domains. In addition, services and the service architecture are
useful starting points for synchronizing an enterprise’s design with its goals.

Future research will have to determine whether service orientation really can deliver on
all its promises of increased interoperability, flexibility, and innovation power. Some
organizations are already starting to experiment with service-oriented enterprise archi-
tectures. We will carefully monitor their experiences to verify if they can indeed improve
their competitive power.

Thus far, SOEA is merely an appealing idea. It will have to be operationalized by concrete
methods and techniques that are centered around the service concept. Work to this end
is, for example, taking place within the ArchiMate project. We expect this work to generate
many more issues and questions related to implementing a service-oriented architecture.
For example, what aspects of a service should be specified? How should a service be
specified? How can service management profit from an explicit service architecture? And
so forth.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

152 Steen, Strating, Lankhorst, ter Doest and lacob

References

Arkin, A. (2002). Business Process Modeling Language, BPMI.org. Retrieved August
10,2004, from http://www.bpmi.org/bpmi downloads/BPMLI.0.zip

Biemans, F. P. M., Lankhorst, M. M., Teeuw, W. B. & van de Wetering, R. G. (2001).
Dealing with the complexity of business systems architecting. Systems Engineer-
ing, 4(2).

Bloomberg, J. (2003). Ten emerging best practices for building SOAs, ZapThink. Re-
trieved August 10, 2004, from http://searchWebservices.techtarget.com/
originalContent/1,289142,5id26 _gci882714,00.html

Booch, G., Rumbaugh, J., & Jacobson, I. (1999). The Unified Modeling Language user
guide. Addison-Wesley.

Buchanan, R.D., & Soley, R. M. (2002). Aligning enterprise architecture and IT invest-
ments with corporate goals, OMG.

Dijkstra, E. W. (1968). Structure of the ‘THE’-Multiprogramming system. Communica-
tions of the ACM, 11(5),341-346.

Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W., & Vissers, C. A. (1999,
September). A business process design language. Proceedings of the 1st World
Congress on Formal Methods, Toulouse, France.

Eriksson, H.-E., & Penker, M. (2000). Business modeling with UML: Business patterns
at work. New York: Wiley.

Ferris, C., & Farrell, J. (2003). What are Web services? Communications of the ACM,
46(6).

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2001). Service Management (3rd ed.). New Y ork:
McGraw-Hill.

Fitzsimmons, J. A., & Fitzsimmons, M. J. (2000). New service development: Creating
memorable experiences. Thousand Oaks, CA: Sage.

Frank, U. (2002). Multi-perspective Enterprise Modeling (MEMO) - Conceptual frame-
work and modeling languages. Proceedings of the Hawaii International Confer-
ence on System Sciences (HICSS-35), Honolulu.

Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., & Schmidt, H. (2001).
The MNM service model - Refined views on generic service management. Journal
of Communications and Networks, 3(4),297-306.

Goldstein, S. M., Johnston, R., Duffy, J., & Rao, J. (2002, April). The service concept: The
missing link in service design research. 121-134.

IDEF. (1993). Integration Definition for Function Modeling (IDEF0) Draft (Federal
Information Processing Standards Publication No. FIPSPUB 183.) U.S. Department
of Commerce, Springfield, VA.

IEEE. (2000). IEEE Computer Society, [EEE Std 1471-2000.: IEEE Recommended Prac-
tice for Architectural Description of Software-Intensive Systems, Oct. 9, 2000.

Ileris, S. (1997). The service economy: A geographical approach. Wiley.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Service-Oriented Enterprise Architecture 153

ITU. (1996). ITU Recommendation X.901 | ISO/IEC 10746-1: 1996, Open Distributed
Processing - Reference Model - Part 1: Overview.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development
method. Addison-Wesley.

Jonkers, H., et al. (2003). Towards a language for coherent enterprise architecture
descriptions. Proceedings of the 7th International IEEE Enterprise Distributed
Object Computing Conference (EDOC).

Kramer, J., & Finkelstein, A. (1991). A configurable framework for method and tool
integration. Software Development Environments and CASE Technology, 233-
257.

Medvidovic, N., & Taylor, R. N. (2000). A classification and comparison framework for
software architecture description languages. I[EEE Transactions on Software
Engineering, 26(1),70-93.

Menor, L. J., Tatikonda, M. V., & Sampson, S. E. (2002). New service development: Areas
for exploitation and exploration. Journal of Operations Management, 20(2), 135-
157.

Quartel, D. A. C., Ferreira Pires, L., van Sinderen, M. J., Franken, H. M., & Vissers, C. A.
(1997). On the role of basic design concepts in behavior structuring. Computer
Networks and ISDN Systems, 29(4),413-436.

Robins, B., Sleeper, B., & McTiernan, C. (2003). Web services rules: Real-world lessons
from early adopters business-technology solutions, The Stencil Group. Retrieved
August 10,2004, from http://www.stencilgroup.com/ideas/reports/2003/wsrules/

Scheer, A.-W. (1994). Business process engineering: Reference models for industrial
enterprises (2nd ed.). Berlin: Springer-Verlag.

Schmelzer, R., & Bloomberg, J. (2003). ZapThink’s path to service-oriented architecture
implementation poster. Retrieved August 10,2004, from http.//www.zapthink.com/
report.html?id=ZTS-GI102

Sleeper, B., & Robins, B. (2002). The laws of evolution: A pragmatic analysis of the
emerging Web services market, The Stencil Group. Retrieved August 10,2004, from
http://'www.stencilgroup.com/ideas _scope 200204evolution.pdf

Sowa, J. F., & Zachman, J. A. (1992). Extending and formalizing the framework for
information systems architecture. IBM Systems Journal, 31(3),590-616.

Sprott, D. (2003). A Web services maturity model: A strategic perspective for technology
and business planning. Retrieved August 10, 2004, from http://
roadmap.cbdiforum.com/reports/maturity/index.php

Stephenson, J. (2003). Roadmap report - UN/CEFACT move into enterprise architecture
space. Retrieved August 10, 2004, from http.//www.cbdiforum.com/secure/inter-
act/2003-10/un-cefact.php3

Stevens, M. (2002). Service-oriented architecture introduction, part 1. Retrieved August
10, 2004, from http://www.developer.com/design/article.php/1010451

Van Bon, J. (Ed.). (2002). IT service management: An introduction. ITSMF.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

154 Steen, Strating, Lankhorst, ter Doest and lacob

Van Buuren, R. (Ed.). (2003). In S. Hoppenbrouwers, H. Jonkers, & M. M. Lankhorst,
Architecture language reference manual, TI/RS/2003/030, (ArchiMate/D2.2.2b).
Enschede: Telematica Instituut. Retrieved August 10, 2004, from https://
doc.telin.nl/dscgi/ds.py/Get/File-31626/

Vissers, C. A., & Logrippo, L. (1985). The importance of the service concept in the design
of data communications protocols. In M. Diaz (Ed.), Protocol specification, testing
and verification V (pp. 3-17). North-Holland.

Wegmann, A. (2003). On the systemic enterprise architecture methodology (SEAM).
Proceedings of the International Conference on Enterprise Information Systems
(ICEIS 2003), Angers, France.

Wilkes, L. (2003). Web services usage survey. Retrieved August 10, 2004, from http://
www.cbdiforum.com/bronze/Webserv_usage/Webserv_usage.php3

Zachman, J. A. (1987). A framework for information systems architecture. /BM Systems
Journal, 26(3),276-292.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 155

Chapter VIII

A Method for
Formulating and
Architecting
Component-and
Service-Oriented
Systems

Gerald Kotonya John Hutchinson
Lancaster University, UK Lancaster University, UK

Benoit Bloin
Lancaster University, UK

Abstract

This chapter describes a negotiation-driven method that can be used to formulate and
design component and service-oriented systems. Component and service-oriented
development are increasingly being promoted in literature as rapid low-cost strategies
for implementing adaptable and extensible software systems. In reality, these
development strategies carry significant risk throughout the system life cycle. The risks
are related to the difficulty in mapping requirements to component and service-based
architectures, the black-box software used to compose the systems, and the difficulty
in managing and evolving the resulting systems. These problems underscore the need
for software engineering methods that can balance aspects of requirements with

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

156 Kotonya, Hutchinson and Bloin

business concerns and the architectural assumptions and capabilities embodied in
software components and services.

Introduction

The development of component and service-oriented systems share several character-
istics (Bennett & Gold, 2003; Szyperski, 2002). Both approaches are based on develop-
ment with reuse and are therefore constrained by the availability of suitable off-the-shelf
software components and services. In both cases, negotiation is central to achieving a
balanced solution. In both cases, the design of the interface is done such that the
software component or service exposes a key part of its definition. In general functional
terms, there is little difference to the consumer between reusing an existing internal
component or service and buying or renting an external component or services. Differ-
ences arise in the nature of the applications and how they are composed (Szyperski, 2001).

Component-based development proceeds by composing software systems from prefab-
ricated components (often third-party black-box software) (Brown & Wallnau, 1998;
Szyperski, 2002). A typical component-based system architecture comprises a set of
components that have been purposefully designed and structured to ensure that they
fit together (that is, have pluggable interfaces) and have an acceptable match with a
defined system context. Service-oriented development proceeds by integrating dispar-
ate heterogeneous software services from a range of providers (Cerami, 2002; Layzell et
al., 2000; Stal, 2002). A service-oriented architecture is a means of designing software
systems to provide services to either end-user applications or other services through
published and discoverable interfaces. A typical service-oriented architecture com-
prises a service requestor, service provider, and service broker (registry) that interact
through standard messaging protocols (for example, HTTP and SOAP) that support the
publishing, discovery, and binding of services. However, the diverse nature of software
systems means that it is unlikely that systems will be developed using a purely service
or component-based approach (Kim, 2002; Kotonya & Rashid, 2001). Rather, a hybrid
model of software development where components and services coexist in the same
system is likely to emerge.

This chapter describes a method for software system development, COMPOSE
(COMPonent-Oriented Software Engineering), that extends the notion of service to
requirements definition to provide a framework for mapping requirements to hybrid
component/service-oriented architectures. The method incorporates negotiation as a
key process activity to balance aspects of system requirements and business concerns
with the architectural assumptions and capabilities embodied in software components
and services. The focus of the method is on system formulation and design. However,
the method also provides hooks that allow it to be extended to system composition and
management.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 157

Background

Component and service-oriented development poses many challenges to organizations
intending to adopt them:

i Traditional software development approaches are unsuitable for developing com-
ponent and service-oriented systems (Boehm & Abts, 1999):

. In the waterfall model, requirements are identified at an earlier stage and the
components chosen at a later stage. This increases the likelihood of the
components not offering or supporting required features.

i Evolutionary development assumes that additional features can be added if
required. However, the inaccessibility of component code prevents develop-
ers from adjusting them to their needs.

i There is a general lack of analysis tools that support development with reuse
(particularly black-box development).

. Limited specification provided with software components and services makes
itdifficult to predict how the systems that were built using them behave under
different loads and application contexts.

i The features supported by the components and services may vary greatly in
quality and complexity. This complexity together with the variability of
application contexts means that specifications delivered with black-box
software are likely to be incomplete or inadequate.

. The design assumptions of black-box software are largely unknown to the
application builder.

i There is a general lack of methods for mapping functionality to services and for
grouping services into logical domains (Nadhan, 2003).

i Proper identification of services and determination of corresponding service
providers is a critical first step in architecting a service-oriented solution. It
is worth noting that in today’s world, similar business functions could very
well be provided by multiple systems within (and external to) the enterprise.
The architectural framework adopted must provide a means for service
rationalization. This involves careful analysis of all the systems and applica-
tions providing the given business function to ensure a more consistent
delivery of services.

. For most organizations, a key business objective is that a given service
operates in an ideal location for the service. However, distributed architec-
tural solutions can result in critical, often sensitive business data, being
spread across multiple applications and service providers. It is important that
the partitioning process takes these factors into account.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

158 Kotonya, Hutchinson and Bloin

i Service grouping or clustering has a direct influence on many important
system characterics such as load balancing, access control, performance,
maintainability, safety management, proxy simulation, vertical or horizontal
partitioning of business logic. However, it is often a serious challenge for
business units and technology centers within an enterprise to come to a
consensus on an appropriate definition of service domains.

i There is aneed for effective mechanisms to support service orchestration. A given
service exists because there is at least one instance of a service consumer initiating
the request for that service. In some scenarios, however, a service may have to
invoke many other services to fulfil service consumers’ original request. However,
complex scenarios can involve recursive invocation of multiple services and, in
some extreme cases, interdependent invocation of multiple services, which could
result in a deadlock.

i Regardless of the way service domains are defined within an enterprise, need is
likely to emerge for creating new services and modifying existing ones. Current
service models do not define schemes for monitoring, defining, and authorizing the
changes to existing suites of services supported within the enterprise.

These problems underpin the need for software engineering processes and methods that:

i Can balance aspects of system requirements, business and project concerns, with
the assumptions and capabilities embodied in off-the-shelf software components.
Current methods for development with reuse have focused on specific develop-
ment activities (for example, component selection and component specification)
rather than the process. This has obscured the correspondence between the
different activities and made it difficult to achieve a balanced solution.

i Can support hybrid component/service-oriented development to leverage their
different design strengths. There is a general lack of software engineering ap-
proaches that support this kind of hybrid development.

COMPOSE is a service-based, negotiation-driven method that supports a hybrid devel-
opment approach. Unlike traditional methods, COMPOSE is not a closed approach but
a framework for integrating different methods and techniques. These are mapped onto
a generic development with reuse process that supports development, verification, and
negotiation (Kotonya, Sommerville & Hall, 2003).

Development Process

COMPOSE is mainly intended to support black-box development but makes allowances
for white-box development where black-box development is not feasible. Figure 1 shows

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 159

the four-phase development process. The planning phase sets out justification, objec-
tives, strategies (methods and resources to achieve development objectives), and tactics
(start and end dates and tasks with duration) for the development project. The develop-
ment phase implements the agenda set out in the planning phase. The first step in
application development is requirements engineering. This often starts with require-
ments elicitation, followed by requirements ranking and modeling (as system services).
The requirements process is constrained by the availability of potentially suitable
components and services as well the nature of the application.

The design stage partitions the service descriptions into abstract subsystem blocks with
well-defined interfaces. Subsystems are replaced with concrete software components
and services at the composition stage. Beyond this stage, the system goes into a
management cycle. Like the requirements stage, the design stage proceeds in tandem
with the verification and planning phases and may iterate to the requirements stage from
time to time.

The verification phase is intended to ensure that there is an acceptable match between
selected software components and services and the system being built. This is important
because the perception of software quality may vary amongst software component
producers and service providers. A matching color scheme has been used to show the
correspondence between the different development stages and aspects of verification
that apply to them. At the requirements stage, verification is used to establish the
availability of suitable software components and services and the viability of a reuse-
driven solution. At the design stage, verification is concerned with ensuring that the
design matches the system context (system characteristics, such as requirements, cost,
schedule, operating, and support environments). This may require detailed black-box
testing of the software components and architectural analysis. Atthe composition stage,
verification translates to design validation through subsystem, assembly, and system
testing. The negotiation phase provides a framework for reviewing aspects of system
development and for trading-off competing attributes.

The Method

Requirements Engineering

The principal challenge in defining system requirements for development with reuse is
to develop requirements models and methods that allow us to balance aspects of
requirements with the assumptions and capabilities embodied in software components
and services. However, few approaches address themselves to this challenge. Vigder,
Gentleman, and Dean (1996) propose that system requirements should be defined
according to whatis available in the marketplace and that organizations should be flexible
enough to accept off-the-shelf solutions when they are proposed. They note that overly
specific requirements preclude the use of off-the-shelf solutions and should be avoided.
This is a reasonable assumption; however, most systems have requirements that are
unavoidably specific, for example, critical systems.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

160 Kotonya, Hutchinson and Bloin

Figure 1. System development process

\

Planning and Negotiation

v v

Negotiate

Verification
- Establish availability of
software components or A
services / | ~<
Establish viability of | \
black-box solution I \ Define system) I
-Test and qualify software I LEqIuKemEnts I
components and services | e) |
-Analyse architecture | “Elicit requ-zrements |
I - -Rank requirements |
I g -Model requirements =2 I
| § = [
I 2 . 0 |
| @ \ Design system (<) |
| 3 architecture E |
& o
| -Partition services into abstract |
I sub-systems I
I - Establish sub-system interfaces I
| |
| |
| |
| |
I |
| -Replace abstract sub-systems with :
I concrete components and services |
|
|\ -Adapt components/services /l
AN /

Ncube and Maiden (1999) propose an approach in which the requirements process is
tightly integrated with a process for selecting off-the-shelf products. Central to the PORE
(Procurement-Oriented Requirements Engineering) approach is an iterative process in
which candidate products are tested for fitness against increasing levels of requirements
detail. PORE’s singular focus on component selection has been criticized for ignoring
system level concerns and the important role architecture plays in formulating the
requirements for these kinds of system (Kotonya et al., 2002).

Our proposed solution interleaves requirements definition with negotiation and software
component verification. Negotiation ensures that there is an acceptable trade-off
between the capabilities embodied in components or service, aspects of requirements,
and critical architectural concerns. Verification serves three objectives. In the early
stages of the requirements definition, it is useful as a coarse filter for establishing the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 161

availability of suitable software components or services. In the later stages of require-
ments, verification may be used to establish how well selected software components or
services match the desired system functionality and constraints. Verification may also
be used at the requirements stage to provide project managers with an indication of the
viability of a black-box solution.

The requirements approach used in COMPOSE has three iterative steps interleaved with
component verification, negotiation, and planning:

1. Requirements elicitation
2. Requirements ranking

3. Requirements modeling

Eliciting Requirements

All requirements methods must address the basic difficulty of identifying the problem
domain entities for the system being specified. The majority of methods provide little
guidance in this, relying instead on the method user’s judgment and experience. Our
approach is based on the notion of viewpoints. Viewpoints correspond to requirements
sources which comprise end-users, systems interfacing with the proposed system,
organization, and external concerns (Kotonya, 1999). Our approach provides some help
to the system developer in the critical step of viewpoint identification. We have
generalized potential requirements sources into a set of viewpoints classes that can be
used as a starting point for finding viewpoints specific to the problem domain.

Figure 2 shows the abstract viewpoint tree used as a starting point for eliciting system
requirements. The root of the tree represents the general notion of a viewpoint.
Information can be inherited by subclasses, so global requirements are represented in
the more abstract classes and inherited by subclasses.

We have identified the following abstract viewpoints:

° Actor viewpoints are analogous to clients in a client-server system. The proposed
system (or required component) delivers services (functional requirements) to
viewpoints, which may impose specific constraints (nonfunctional requirements)
on them. Actor viewpoints also pass control information and associated param-
eters (represented by viewpoint attributes) to the system. There are two main types
of Actor viewpoints:

* Operator viewpoints map onto classes of users who interact with the pro-
posed system. They represent frequent and occasional users of the system.

* Component viewpoints correspond to software components (or subsystems)
and hardware devices that interface with the proposed system.

° Stakeholder viewpoints vary radically from organizational viewpoints to external
certification bodies. Stakeholders are entities that do not interact directly with the
intended system but which may express an interest in the system requirements.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

162 Kotonya, Hutchinson and Bloin

Figure 2. Abstract viewpoint structure

Associated requirement types

Services + Constraints on services
Control information

— Actor

[attribute,]

I: [attribute,]

VIEWPOINT I__[attribute,]

Business goals (Organisation viewpoint)
Project concerns (cost, effort, schedule —
Organisation viewpoint)

System quality concerns (e.g. interoperability,
dependability etc. — Organisation viewpoint)
Legal requirements, Government certification
requirements (Regulatory viewpoint)

These viewpoints often generate requirements that affect the way the system is
developed. Stakeholder viewpoints provide a mechanism for expressing critical
holistic requirements, which apply to the system as a whole although they may also
generate requirements that affect a subset of its services or functionality. Stake-
holder generated requirements reflect essential system characteristics such as
dependability (that is, safety, reliability, security, and performance) but may also
correspond to critical business and project objectives, such as resources, sched-
ule, cost, and standardization.

A viewpoint template has the following structure:

Viewpointid: <A unique viewpoint identifier>

Type: <Viewpoint type (for example, operator, system, component, organization, regu-
latory, and so forth)>

Attribute: <An optional set of data attributes for the Acfor viewpoint>
Role: <Role of the viewpoint in the system>
Requirements: <Set of requirements generated by the viewpoint>

History: <Development history>

A requirement can be considered at different levels of abstraction to allow for scoping
and ease of understanding. A requirement template has the following structure:

Requirementid: <Requirementidentifier>
Rationale: <Justification for requirement>

Description: <Natural language definition>|<Service description>|<Other description>

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 163

Levels of abstraction may map the requirement description to different representations
and levels of detail.

Ranking Requirements

Ranking techniques range from simple weighted schemes that are concerned with a single
requirement aspect to multiattribute schemes that take into account several requirement
aspects such as benefit, effort, and risk (Karlsson & Ryan, 1997; Lootsma, 1999; Saaty,
1980). However, most of these schemes are intended for custom development and are
unsuitable for component-based development. They often require that detailed require-
ments to be formulated early, which is inappropriate for component-based development.
It would also be difficult to provide useful estimates for system aspects, such as risk and
effort at this early stage without prior knowledge of suitable components and services.
COMPOSE uses requirement benefit as a basis for ranking requirements and solution-
dependentaspects, such as effort and risk that are deferred to the component verification
stage. Requirement benefit can be categorized as essential, important, and useful. The
output from the ranking process is a list of prioritized requirements that together with
potential components and services form input to the component verification process.

Modeling Requirements

The concept of a service is common to many areas of computing, including digital
libraries, distributed computing, data management, and electronic commerce (Arsanjani
et al., 2003; Dumas, Heravizadeh & Hofstede, 2001). In many of these areas, the term
service has several common characteristics, for example, functionality, quality, and
delivery.

In COMPOSE, aservice description is characterized by at least one identifiable function,
atrigger by which the service commences, arecipient (Actor viewpoint), service provider
(proposed system/component), conditions for service delivery, and constraints on
service provision (Figure 3). Service descriptions are derived from viewpoint require-
ments and represent a level of abstraction in the requirement description. Service
descriptions may be partitioned into abstract subsystems at design, which may be
realized (composed) using concrete software components or services.

Use cases provide high-level service descriptions (that is, the underlying system
functionality). UML sequence diagrams provide detailed service descriptions and
capture interactions between services. Sequence diagrams are augmented with state
diagrams to capture the system behavior in the context of specific services.

Service descriptions provide a mechanism for modeling viewpoint requirements and for
mapping requirements to concrete software components and services.

A service description comprises the following elements:

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

164 Kotonya, Hutchinson and Bloin

Figure 3. COMPOSE service model

Evaluation
criterion

Uses

1 O
Partitioned into

Requirement Mapped onfo ; Sub-system
1 . Service description 1.7 1.%
1 Generates <>7]

1 1 1 ’ 1 Realised using

Viewpoint 0.*
Concrete software

Constraint component or

onstrain service
1.

1 Behaviour "

Attribute =

=)

‘ Stakeholder

Invocation: <Set of parameters required by a service and how the parameter values are
used by service. Parameters correspond to attributes in the service model>

Behavior: <Specification of the system behavior that results from the invocation of the
service. This can be described at different levels of abstraction to aid understanding and
component selection>

Constraints: <Description of constraints on service>

Evaluation criteria: <Tests that should be carried out to evaluate a component’s
conformance with service>

Constraints define the overall qualities or attributes of the resulting system and are
derived from nonfunctional requirements. Nonfunctional requirements may constrain
the way the system is constructed or the way services are provided. Because they are
restrictions or constraints on system services, nonfunctional requirements greatly
influence the design solution.

In COMPOSE, service constraints are considered from two different perspectives:

° Actor Viewpoint: An actor viewpoint might require that a service be provided with

a certain level of quality (for example, availability, response time, format and so
forth).

° Stakeholder viewpoint: A stakeholder viewpoint might not interact directly with
the target system but might express an interest in the overall dependability of the

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 165

system, the resources required to provide the services or the conformance of the
services with various regulations and standards.

This viewpoint/service-centric approach provides a framework for:

. Reasoning about the events that are responsible for triggering or suspending
services. Because the events arise from actors in the system environment, it is
possible to specify the required control information from the point of view of the
actors. This information is represented as data attributes in viewpoints.

i Structuring service requirements across instances of a viewpoint.

. Integrating functional and nonfunctional requirements. A viewpoint can impose
quality constraints on the services it requires from the target system. For example,
a viewpoint may require that a service have an availability of 98% (say between
8pm — 6pm, Monday to Friday).

A constraint description comprises the following elements:

Identifier: <Constraintidentifier>

Type: <Constraint type (for example, availability, response time, format, safety, security,
and so forth)>

Rationale: <Justification for constraint>
Specification: <Specification of constraint>
Scope: <Identifiers of services affected by constraint>

Evaluation criteria: <Tests to evaluate a component’s conformance with constraint>

In COMPOSE, certain types of constraint find use at the requirements stage where they
are used to support the process verifying software components. Constraints related to
effort, vendor and system resource requirements (for example, cost, schedule, hardware,
operating system, and standards) might provide the specifier with a mechanism for
establishing the availability and viability of a component-based solution. Other types
of constraint (for example, dependability) filter down to the design stage where they form
the basis for identifying suitable architectures as part of a negotiated design process.

Design and Composition

The main aim of any design process is to achieve fitness for use. This is achieved when
a set of software components and services have an acceptable match with system
context. The system context is defined by the system requirements, cost, schedule, and
operating and support environments. Formal Architecture Description Languages
(ADLs) have emerged as an effective way of designing and composing component-based

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

166 Kotonya, Hutchinson and Bloin

Figure 4. Component-based design process

4 A

Partition service

Fegomgfz descriptions into sub-
TaCeal systems

\. 7
Verify support for /
-

sub-systems

systems (Medvidovic & Taylor, 2000). In COMPOSE, the design process is driven by a
service-oriented ADL (Kotonyaetal.,2001).

The design starts with the partitioning of service descriptions into logical subsystems
as partof the iterative process shown in Figure 4. In principle, the process of partitioning
service descriptions should be straightforward (for example, initial partitioning may be
driven solely by architectural considerations). However, there is never a clean match
between service descriptions and concrete software components and services; abstract
services may therefore have to be reassigned or requirements renegotiated. Partitioning
is therefore subject to a negotiation process that must take into account capabilities of
available components, business concerns, and viable architectures.

Figure 5 shows how a typical top-down process may be used to partition the system by
clustering services to reflect desired architectural and system properties. A security
constraint may, for example, give rise to an architecture where security-critical services
are held in a single component at the lower levels of layered architecture to ensure a
certain level of security. Performance needs may result in a dynamic architecture where
popular service components are replicated with increasing load. For these reasons,
support for negotiation in the design process is essential. For cases where no suitable
off-the-shelf solution can be found (for example, in the case of critical components), the
subsystem design may be viewed as a placeholder for custom development. This allows
the developed subsystem to acquire the pluggability of a component while maintaining
consistency with the global system requirements.

Service descriptions focus on system behavior and associated constraints providing a
simple but effective mechanism for mapping requirements to component and service
architectures. The flexibility and implementation-independent nature of services means
the engineer can explore different technologies to compose the system. This may, for
example, result in a hybrid system where certain services are provided using black-box
components while others are delivered using Web services. There are several reasons
why a hybrid solution might be preferred to a purely component or service-based
approach:

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 167

. Efficiency: The document-exchange model that is inherent to a service-centric
approach is incredibly inefficient. The text-based nature of XML means that the
amount of information transferred in bits is much larger than is simply required to
encode the information, and there is significant overhead involved in parsing and
generating XML documents. This means that a service-centric approach is unsuit-
able for real-time systems with tight performance deadlines and for the develop-
ment of systems that process high volumes of transactions.

. Competitive advantage: 1f all organizations move to a development approach
where they rely on externally provided services, it is difficult for them to innovate
in their IT systems to gain a competitive advantage. Therefore, there will always
be a class of companies who are unwilling to be dependent on external suppliers
and who will rely on conventional software development.

° Trust: While a service-oriented approach may be adopted within an organization
or group of cooperating organizations with existing trust relationships, the vision
of service brokering and the use of unknown service providers is a very risky one.
The associated risks mean that businesses will be reluctant to move to an entirely
service-centric approach to software development.

° Dependability: Current languages for service orchestration are limited to relatively
simple composition constructs and do not provide facilities for exception manage-
ment. Similarly, current Web service and grid service standards assume that a
requested service will be available and will function correctly. Services do not
define their failure modes, their limitations, and the quality of service that they offer.
Generally, dependability depends on transparency, and the opaqueness of ser-
vice-centric systems means that it will be difficult to write dependable systems
using anything apart from very simple services.

° Services as an exception-handling mechanism: For many systems and compo-
nents, more than 50% of the code in the system is required to handle rare events
and exceptions. This introduces significant overhead for normal users of the code.
By integrating components and services, we have the opportunity to produce much
leaner components that are used within a program and to handle exceptions, where
performance is less important, using externally provided services.

Verification

Component Selection

This is achieved by formulating selection filters to match requirements to a checklist of
component and service properties. Checklist items might range from component func-
tionality, documentation, certification, and vendor support to resource requirements and
cost. Table 1 shows an example of a checklist table. The requirement(s) on the top left
of the table are matched against the candidate components and services in column 2,
using selection filters as follows:

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

168 Kotonya, Hutchinson and Bloin

Figure 5. Partitioning services

N N\
[Servicel - [Service, | ___ Service; | ___
Service > J J
descriptions - N - N -
{Serwcm . [Services ___ Services ___
))

‘L Sub-systems =:I
Sub-system; Sub-system, — |

- Services -
Service, — Services

Services ___ Services | ___ ()
Service; | ___ \ /

Abstract
interfaces

JEEH

—

Existing component

(Implements Service;
and Serviceg) \
Concrete

interface

Sub-system; gl

Services ___

(1) Select the highest ranked requirement from the list of ranked requirements.

(2) Selectaproduct from the software component/service shortlist (thatis,C ,C, ..S),
where C, corresponds to a component and S, to a service.

(3) Foreachchecklist question, determine the extent to which the response is positive
in relation to the component/service. Score each response as follows:

e 2, if the response is positive.

e 1, iftheresponse is weakly positive or there is lack of adequate information
to make a definitive judgement.

e 0, if the response is negative.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 169
(4) Repeat 2-3 until the short listed components/services are exhausted.

(5) Apply appropriate selection filters. Filters are used to focus the selection of
components/services on critical properties.

(6) Repeat 1-5 until all ranked requirements are exhausted.
Filters are reusable artifacts with the following structure:

Identifier: <Filter name>
Description: <Description of filter and its effect>

Predicate: <Predicate over checklist questions>

The formulation and selection of filters is likely to be influenced by the nature of the
application being assembled and the business concerns of the organization. For example,
if we assume that our starting point is a set of components, T, such that:

T, ={C,C,C,C,S}

We can define a “fast” filter f such that only members of the set T, that support the
selected requirement or can be configured to support it are selected. Filter f, is defined
by the predicate, where c represents the general component and checklist(i) represents
the checklist item i:

Ve: T, o(c.checklist(1) > 1)
T, represents the result of applying f, to T.:
T,={C,C,C}
Filters can be combined to provide more a refined selection. Filter f.:

Ve: T, e(c.checklist(l1) = 2 v (c.checklist(1)=1 A c.checklist(7)= 2))

may be applied to T, to ensure that all components that need to be reconfigured also have
help desk available. Thus the set T, contracts to set T,:

T, ={C,C}

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

170 Kotonya, Hutchinson and Bloin

By relating development aspects, such as risk and effort to appropriate checklist items,
we can formulate filters to minimize their adverse effects. Table 1 shows how the various
checklist items relate to effort and risk. Effort corresponds to the time and resources
required to realize the feature. Risk corresponds to the probability that providing the
feature might cause the project to experience undesirable events, such as cost overruns,
schedule delays, or even cancellation. Effort and risk can be categorized as low, medium,
and high. The relationships shown in Table 1 are based on the dominant development
aspect and are not necessarily exclusive.

Assuming the checklistitem scores of 2, /, and 0 to correspond to low, medium, and high
risk/effort, we can design risk and effort sensitive filters. The following filter focuses on
functionality, component cost, system resource requirements, and component certifica-
tion to select components and services that reflect low risk and medium to low effort
requirements:

Ve: T, o(c.checklist(1) =2 1 A c.checklist(2)=2 A c.checklist(4)=
2 A c.checklist(6)= 2 A c.checklist(10) = 1 A c.checklist(11) =1)

The following filter is an example of a low risk, low effort filter:

Ve: T eo(c.checklist(1) = 2 ac.checklist(2)=2 nc.checklist(4)= 2 nc.checklist(6)=
2 A c.checklist(10)= 2 A c.checklist(11)= 2)

Testing Components and Services

The testing of software components and services is constrained by the lack of source
code as well as difficulty in performing direct tests in the case of Web services. Therefore,
the system integrator is restricted to performing only black-box testing. In the case of
Web services, trust schemes might be the only viable means of verification. Onyino et
al. (2002) proposes trust model for component-based system development that uses
context-sensitive trust variables such as product, project, and business concerns to
identify appropriate trust schemes. The model provides a framework for combining
various trust schemes (for example, contractual, certification and experience-based
schemes).

Detailed testing regimes are out of the scope of this chapter. However, the various ways
of expressing services described in the Modeling Requirements section provide the
engineer with a good basis for developing black-box test cases (evaluation criteria) for
services.

In COMPOSE, verification may involve any or all of the following activities (Rosenblum,
1997):

1. Component functionality: The integrator or engineer needs to thoroughly test a
new component to verify its functionality prior to deploying it in a larger system.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 171

Table 1. Component preselection using filters

Requirement: 1. Requirement xyz

ChecKklist Components/Services Related

Id

Question C, C, C; Cy S Development
Aspect

1

Does component/service support Effort
requirement? 0 2 1 1 0
Yes explicitly =2;

Not explicitly, but can be configured to
support requirement = 1,

Don’t know/does not support feature = 0;

Is the component/service specification 2 2 1 2 1 Risk
provided?
Yes, detailed = 2; Yes, limited =1; No=0

Are release notes provided? 2 0 1 1 1 Risk
Yes, detailed = 2; Yes, limited =1; No=0

Are installation notes provided? 0 2 1 2 1 Effort, Risk
Yes, detailed = 2; Yes, limited = 1; No=0

Is component/service available for 2 0 2 2 1 Risk
evaluation?

Yes, full functionality =2;

Yes, restricted functionality = 1; No =0

Is component/service certified? 2 2 1 0 1 Risk
Yes, independent certification = 2;
Yes, local certification =1; No =0;

Is help desk support available? 2 1 0 2 1 Effort, Risk
Yes, continuous = 2; Yes, limited =1; No
=0

What is vendor’s market share? 2 0 2 1 1 Risk
Good =2; Moderate =1; Don’t know/Poor
=0

What is maturity of producer development | 2 1 0 0 1 Risk
process?

CMM Level 23 =2; CMM Level 2 =1;
CMM Level 1/Don’t know =0

10

Are system resources needed by 2 1 2 1 1 Effort
component/service available?
Yes =2; Not sure =1; No=0

Is component/service cost within estimated | 1 2 1 2 2 Effort
cost?
Yes = 2; No, but acceptable =1; No =0

Architectural analysis: For certain types of systems, architectural analysis may be
required to establish how well the design supports desired quality attributes (for
example, performance, security, availability, and so forth).

Assembly and integrated system: If a new component is added to the system or an
older version was replaced, the integrated system must be tested. Testing should
also be done if the system configuration is altered.

Regression testing: It is a good idea to perform regression testing on selective
critical system components whenever new versions of other constituent compo-
nents are installed in the system.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

172 Kotonya, Hutchinson and Bloin

5. Nonfunctional testing. Various kinds of nonfunctional testing on the system are
required to ensure that the system meets the desired level of performance,
dependability, stress, and loading.

Negotiation

The negotiation process attempts to find an acceptable trade-off amongst multiple
(often) competing system attributes. For example, in cases where requirements need to
be ranked or where decisions need to be made on alternative designs. The negotiation
process described here uses the Simple Multi-Attribute Rating Technique (SMART) to
support trade-off analysis. However, other decision support techniques, such as AHP,
may also be used. SMART is a powerful and flexible decision-making tool. Because of
its simplicity of both responses required of the decision maker and the manner in which
these responses are analyzed, SMART has been widely used. The main stages in the
SMART analysis are as follows:

1. Identify the decision maker or makers. Examples might include the project manag-
ers, customers, system integrators, and system maintainers.

2. Identify the intended goal for the analysis (for example, best design).
Identify factors or criteria important in satisfying the goal.

4. Where appropriate, identify subcriteria under each criterion. The lowest level of
criteria/subcriteria represents an attribute of the alternatives that can be objec-
tively evaluated.

Identify the alternative ways of achieving the goal.

6. Weight the criteria and rate alternatives. Quantify the relationships between
criteria by establishing the relevant importance of criteria. Values assigned to
criteria are likely to vary with organization and application.

7. Determine how well alternatives score against the lowest criteria. Similarly, the
scoring scheme used for alternative is likely to vary with organization and
application.

8 Foreach alternative, compute the weighted average of the values assigned to that
alternative.

9. Make a provisional decision.

Method Summary

Figure 6 shows the COMPOSE method steps including requirements definition.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 173

Figure 6. COMPOSE method

int inst Viewpoi bel Viewpoint class

\ System stakeholders establish need for:
New system
System evolution (corrective,
adaptive, perfective)

Develop an outline description of the

[Attribute,]—| proposed system including:

[Attribute,]— Abstract requirements

[Attribute,] Abstract system architecture
]

|

Organisation Abstract requirements & abstract

system architecture

1.Abs Reql 4 !?l

n. Abs_Reqn

o1

Use the abstract viewpoint tree to
identify viewpoint instances, which are
] likely to be affected by the

- introduction of the proposed system

[

moYeNankWw

- o

1.

Identify what each viewpoint instance requires from or expects of the proposed system.
Use the following questions as a guideline for eliciting requirements for a viewpoint:
Actor viewpoint:
(i) What functionality (services) does the viewpoint require from the system?
(i) What quality attributes (if any) does the actor associate with the required service?
(iii) For each quality attribute identity the minimum acceptable value.
(iv) What data (attribute) is the system likely to require from the viewpoint in order to provide the required
service?

Stakeholder viewpoint:

(i) What quality attributes are critical to the system as a whole (e.g. security, safety, usability etc)?

(i) For each quality attribute identify the minimum acceptable value.

(iii) What are the resource constraints associated with the project (i.e. cost, effort and time)?

(iv) What legal requirements/government regulations must the system conform to?

(v) What must the system not do?
Document each requirement (i.e. identifier, natural language description, rationale and source) and actor viewpoint
attribute. This is an iterative process that may be performed at different levels of abstraction to suit customer
background and system modelling needs. A later stage models the requirements as detailed services (see step 5).
Rank the requirements
Verify component and service availability for candidate requirements in 3.
Model requirements as services.
Partition services into abstract sub-systems
Verify component/service support for the sub-system designs in 6.
Negotiate system trade-offs based architectural concerns, component/service support and business concerns
Compose sub-systems

. Repeat 6-9 until an acceptable partition-composition match is achieved
. Repeat 4

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

174 Kotonya, Hutchinson and Bloin

Example

We will now illustrate aspects of the method using a subset of requirements extracted
from the specification of a real electronic document delivery and interchange system
(EDDIS) (Kotonya, 1999). The illustration focuses on requirements and design. The
EDDIS runs on a Windows 2000/Windows XP platform and its main function is to manage
the process of identifying, locating, ordering, and supplying electronic documents.
Users access the system via a Web-based interface using valid usernames and pass-
words. EDDIS users have access to a range of services determined by the permissions
associated with the accounts they use. EDDIS will have a local administrator whose task
will be to set up and manage user accounts.

Before an EDDIS user can place a document order, the user must first obtain documents
and location identifiers from a centralized document registry. Document orders are placed
with the document supplier. All document interchange will use the Z39.50 document
retrieval protocol. In this example, we will consider a small but diverse subset of EDDIS
requirements. Table 2 shows the EDDIS requirements together with associated view-
points.

Requirements Modeling and Documentation

Service descriptions can be documented at different levels of abstraction using a variety
of notations to aid user understanding and to facilitate mapping to component and
service architectures. Figures 7-10 show how uses-cases and state transition diagrams
can be used to model and specify abstract services at different levels of abstraction.
Figure 8 and 9 show the state diagrams for user validation and document search services.

Subsystem Interfaces and Relationships

Figure 11 shows a typical service partitioning. The final partitioning is subject to the
availability of suitable components and services. In this case the document services,
document search, document locate, and document order are provided by black-box
components, while the document registry and document supplier services are provided
as Web services.Subsystems can be used to model interactions between the services
they represent as shown in Figure 12. Subsystems are flexible grouping constructs and
the services they represent are likely to be a trade-off between the desired architecture
and the available components and services. The interfaces associated with subsystems
are a function of the services represented and the external interaction between the
subsystem and other subsystems. Figure 13 shows an example of interface identification
for the EDDIS system.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 175

Table 2. EDDIS viewpoints and requirements

Viewpoint Requirement
Type I | Role ID Description Rationale Ranking
D
Operator 1 | EDDIS_user 1.1 EDDIS users shall be able to login To provide a Essential
onto the system via a Web-based universal access
interface using valid usernames and | to EDDIS
passwords. services
1.1.1 Once logged in, EDDIS users will To provide a Important
have access to a set of services simple
determined by the permissions mechanism for
associated with their accounts. managing user
accounts.
1.2 EDDIS shall allow users to search Basic EDDIS Essential
for and identify documents, which functionality
interest them. A document search
will be initiated by a search criterion
and a list of databases to be
searched. The output will be a set of
document identifiers.
1.3 EDDIS shall allow users to Basic EDDIS Essential
determine the location of functionality

documents. A document locate
service will be initiated by a set of
document identifiers and the output
shall be a set of location identifiers.
1.4 EDDIS user shall allow users to Basic EDDIS Important
order documents. A document order | functionality
will be initiated by a set of
document and location identifiers.
The output will be a set of order
identifiers and electronic documents.

Operator 2 | EDDIS_ 2.1 EDDIS shall provide facilities for Basic EDDIS Important
administrator setting up and managing user functionality
accounts.
Component 3 | Document_ The document order client will use Document Essential
supplier the Z39.50 document retrieval retrieval
standard. standard used by
document
suppliers
Component 4 | Document 4.1 EDDIS shall be able to access a Document Important
registry centralized document registry to retrieval
obtain document and location standard used in
identifiers using the Z39.50 document
document retrieval standard. registry
Stakeholder 5 | EDDIS 5.1 The system shall run on Microsoft Most users are Important
consortium Windows 2000 and Windows XP likely to use a

Windows-based
PC to access
EDDIS services
5.2 The system shall ensure that a Useful
reasonable level of performance is
maintained across the services at all
times.

Conclusion

This chapter has identified the challenges and problems likely to be faced by organiza-
tions intending to adopt component and service-oriented software development. While
component and service-oriented development offer significant advantages over tradi-
tional development approaches, they also carry significant risk throughout the system
life cycle. Part of this risk is related to the lack of effective processes and methods that

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

176 Kotonya, Hutchinson and Bloin

Figure 7. Using use cases to model EDDIS services

% _ Administrative_services

EDDIS Administrator

<<Uses>>

Figure 8.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

<<Uses>>

User_validation

% Document_services

EDDIS User

<<Extends>>

N\

Document_order

x

Document Registry

Use case specifications

<<Extends>>

Document_locate Document_search

<<Extends>>

x

Document Supplier

Use case specification

Name: Document_services
Uses: User_validation
Extends:
Participating actors:
EDDIS_User
Entry conditions:
1. Valid username
2. Valid password
Flow of events:
1. EDDIS user enters a username and password
2. Ifusername and password are valid:
2.1 System initializes user account permissions
2.2 Displays the services available to the user
else
2.3 System prompts the user to re-enter
username and password
Exit conditions:
1 System resets user account permission
2 Closes user account
Constraints:
1 The service shall be available on Microsoft
2000/XP platform
2 Service shall have a reasonable level of
performance at all times

Use case specification

Name:
Uses:
Extends: Document_services
Participating actors:
EDDIS_User, Document Registry
Entry conditions:
1 Document_search € available_services
2 Document databases set of user permissible
databases
Flow of events:
EDDIS user enters search criterion and a set of
document databases
2 If document is found a set of document identifiers
is displayed else a “document not found” message
is displayed
3 Search criterion is retained in user workspace for
future searches
Exit conditions:
1 Service access conditions are reset

Document_search

Constraints:
1 Service conform to Z39.50 document retrieval
standard

permission of Idea Group Inc. is prohibited.

Component-

Figure 9. User-validation and document services

and Service-Oriented Systems 177

state diagram

/close session

[login € validLogins]
/open session

/set account permissions
/display available services

1/ User_Validation]
: enter(useri password) }
| |
: Ready Verifying |

< |
: Y w— [login ¢ validLogins] — I
\ /error message ‘

quit

Document_services

select(service)
[service € availableServices] &
[service € permissibleServices]

login = username-password pair

validLogins = set of valid username-password pairs
availableServices = set of available services

permissibleServices = set of services associated with user account

/display selected service menu

Figure 10. State model for Document_search service

Identifier: 1.2
Service : Document_search

l select(“search”)

TR

search(sc,D)

[D=Pg]

/retain sc in work-area
/setito 1

/search D;

Waiting

Searching

[sc € UD]
/display success message

/display document ids

D =set of selected databases

Pg,= set of user permissible databases

D; = database being searched (1<i<#D)
sc = search criterion

/place document_ids in search basket

[i<#D]
/setito i+l
/search D;

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written

permission of Idea Group Inc. is prohibited.

178 Kotonya, Hutchinson and Bloin

Figure 11. Service partitioning

<<Uses>>

Validation_service Document_services

User_validation <<Uses>> Document_search Provided by
< —————— blackbox
components
Document_locate
T T /
<<Uses>> | | <<Uses>>
| |
V A\
Document_registry Document_supplier Provided by

web services

Figure 12. Service subsystem interaction diagram

Validation_services ’ Document_services ‘ ’ Document_registry ‘ ’ Document_supplier

enter(username, password) J
search(sc,D)
[Dc Pab)
authorise_access() o
[login € validLogins]
locate(di, C)
[C< Pea]
<] L
order(document_ids,location_ids)

[Ssupp< Psupp]

logout()

resetAccessConditions() T

|

login = username-password pair

validLogin = set of valid username-password pairs
D = set of selected databases

Pao = set of user permissible databases

sc = search criterion

C = set of selected catalogues

Pcat = set of user permissible catalogues

Ssupp = set of selected suppliers

Psupp = set of user permissible suppliers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 179

Figure 13. Interfaces identification

<<interface>>
Login
create()
validateUser()
logout() \O Togin gl
\IJ Document_services
(Integrated with UI)

g‘ Authorisation
Validation_services
—O)—

. <<interface>>
<<1nterf.ace.>> Find Order Order
Authorisation

create()
create() order()
authoriseAccess()
resetConditions()
Document_registry Document_supplier

<<interface>>

Find

create()

search()

locate()

support component and service-oriented development. Component and service-ori-
ented development are highly iterative processes requiring simultaneous consideration
of the system context (system characteristics, such as requirements, cost, schedule,
operating and support environments), capabilities of the software component or service,
the marketplace, and viable system designs. The diverse nature of software systems also
means that it is unlikely that systems will be developed using a purely service or
component-based approach. Rather, a hybrid model of software development where
components and services coexist in the same system is likely to emerge. There is a general
lack of methods that support this type of hybrid development. Our solution has been to
develop COMPOSE as a service-based, negotiation-driven approach that supports a
hybrid component/service-oriented development. COMPOSE provides a framework for
integrating different methods and techniques and for mapping these to a generic
development with reuse process. COMPOSE provides an intuitive scheme for eliciting
and modeling requirements and for mapping these to component and service architec-
tures. It also provides the developer with a pluggable basis for custom development in
cases where available components or services are inadequate or inappropriate. The
process is supported by verification and negotiation at different levels of abstraction.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

180 Kotonya, Hutchinson and Bloin

Acknowledgments

The work described in this chapter is being undertaken as part of the project ECO-ADM
(IST20771) funded under the EU IST Program. We are grateful for the contribution of our
partners in ECO-ADM: CCS, Ingegneria Informatica, EIDOS Sistemi Di Formazione and
DHL, Ireland.

References

Arsanjani, A., Hailpern, B., Martin, J. & Tarr, P.(2003). Web services: Promises and
compromises. ACM Queue,48-58.

Bennet, K.H. & Gold, N. (2003). Achieving Ultra Rapid Evolution Using Service-based
Software. Proceedings of the 4th International Workshop on Principles of
Software Evolution, European Software Engineering Conference, Helsinki, Fin-
land

Boehm, B. & Abts, C. (1999). Integration: Plug and pray. IEEE Computer, 32(1), 135-138.
Brown, A.W. & Wallnau, K.C. (1998). The current state of CBSE. IEEFE Software, 15(5).
Cerami, E. (2002). Web service essentials. O’Reilly & Associates.

Crnkovic, I., Hnich, B., Jonsson, T. & Kiziltan, Z. (2002). Specification, implementation
and deployment of components: Clarifying common terminology and exploring
component-based relationships. Communications of the ACM, 45(10), 35-40.

Dumas, M., Heravizadeh, J. & Hofstede, D. (2001, April). Towards a semantic framework
for service description. Proceedings of the International Conference on Database
Semantics, Hong Kong.

Karlsson, J., & Ryan, K. (1997). A cost-value approach for prioritising requirements.
IEEE Software, 14(5),67-80.

Kim, S.D. (2002). Lessons learned from a nationwide CBD promotion project. Communi-
cations of the ACM,45(10), 83-87.

Kotonya, G. (1999). Experience with viewpoint-based specification. Requirements engi-
neering,4(3),115-133.

Kotonya, G., Hutchinson, J., Onyino, W. & Sawyer, P. (2002, April). Component-oriented
requirements expression. Proceedings of the 16" European Meeting on Cybernet-
ics and Systems Research, Vienna, Austria.

Kotonya, G., Onyino, W., Hutchinson, J. & Sawyer, P. (2001). Component architecture
description language (CADL). Technical Report, CSEG/57/2001, Computing De-
partment, Lancaster University.

Kotonya, G. & Rashid, A. (2001, December). A strategy for managing risk in component-
based systems. Proceedings of the 26™ IEEE Euromicro Conference, Warsaw,
Poland.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Component- and Service-Oriented Systems 181

Kotonya, G., Sommerville, I., & Hall, S. (2003, September). Towards a classification model
for CBSE research. Proceedings of the 29th Euromicro Conference, Antalya,
Turkey.

Layzell, P.J., Bennett, K.H., Budgen, D., Brereton, O.P., Macaulay, L.A. & Munro, M.
(2000, December). Service-based software: The future for flexible software. Pro-
ceedings of the Asia-Pacific Software Engineering Conference, Singapore.

Lootsma, F.A. (1999). Multi-criteria decision analysis via ratio and difference judge-
ment. Kluwer Academic Publishers.

Medvidovic, N. & Taylor, R.N. (2000). A classication and comparison framework for
software architecture description languages. IEEE Transactions of Software
Engineering,26(1),70-93.

Nadhan, E.G. (2003). Service oriented architecture implementation challenges. EDS.com
[Online]. Available: http://www.eds.com/thought/thought leadership so
architecture.pdf

Ncube, C. & Maiden, N (1999). PORE: Procurement-oriented requirements engineering
method for the component-based systems engineering development paradigm.
Proceedings of the 2nd IEEE International Workshop on Component-Based
Software Engineering, Los Angeles, California, USA (May 1-12).

Onyino W., Kotonya, G., HutchinsonJ., & Sawyer, P. (2000, June). Towards an inclusive
model of trust for COTS-based software development. Proceedings of the Inter-
national Conference on Software Engineering Research and Practice, Las Vegas,
USA.

Rosenblum, D.S. (1997). Adequate testing of component-based software. Technical
ReportNo. 97-34. University of California, Irvine.

Saaty, T.L. (1980). The analytic hierarchy process. New York: McGraw-Hill.

Stal, M. (2002). Web services: Beyond component-based computing. Communications
of ACM,45(10),71-76.

Szyperski, C. (2002). Component software: Beyond object-oriented programming (2nd
edition). Addison-Wesley.

Szyperski, C. (2001, January). Component and Web services. Software Development
Media.

Vigder, M., Gentleman, M. & Dean, J. (1996). COTS software integration: State of the art.
Institute for Information Technology, National Research Council, Canada.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

182 Kral and Zemlicka

ChapterIX

Architecture,
Specification,
and Design of
Service-Oriented
Systems

Jaroslav Kral
Charles University, Czech Republic

Michal Zemli¢ka
Charles University, Czech Republic

Abstract

Service-oriented software systems (SOSS) are becoming the leading paradigm of
software engineering. The crucial elements of the requirements specification of SOSSs
are discussed as well as the relation between the requirements specification and the
architecture of SOSS. It is preferable to understand service orientation not to be limited
to Web services and Internet only. It is shown that there are several variants of SOSS
having different application domains, different user properties, different development
processes, and different software engineering properties. The conditions implying
advantageous user properties of SOSS are presented. The conditions are user-oriented
interfaces of services, the application of peer-to-peer philosophy, and the combination
of different technologies of communication between services (seemingly the obsolete

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of Service-Oriented Systems 183

ones inclusive), and autonomy of the services. These conditions imply excellent
software engineering properties of SOSSs as well. Service orientation promises to open
the way to the software as a proper engineering product.

Introduction

Service orientation (SO) is becoming the central topic of software engineering. There is
an explosive growth in the number of conferences, products, and articles discussing and
using the principles of SO and service-oriented architectures (SOA). Service-oriented
software systems (SOSS) are of different types depending on the character of the
functions the system provides, the system environment (for example, e-commerce or a
decentralized international enterprise), and the way the system is developed. The
common property of SOSS is that their components behave like the services in real life
mass service systems. The SOSS must then be virtual peer-to-peer (p2p) networks of
autonomous components (services). The services can have various properties; they
need notbe Web services in the sense of W3C (2002) and need not therefore use standard
communication protocols, compare Barry and Associates (2003) and Datz (2004).

We shall show that the software engineering properties as well as the user-oriented
properties of any SOSS strongly depend on the properties of the service interfaces and
that user interfaces of the system should be implemented as specific services (peers of
the network) as well. All these issues are related to the architecture of the system. We
will discuss how the properties of the architecture influence the set of feasible functions,
development (especially the requirements specifications), feasible development tech-
niques (for example, agile ones), standards, politics of IT management, and marketing
strategies of software vendors and/or system integrators (Figure 1). The feasible
functions of SOSSs include the functions important for user top-management.

Figure 1. Central role of system architecture

Feasible Users,CEO
requirements inclusive
IT managers _I

Lo T TS . Marketing policies of

1T ¢ System N software vendors and
/ . <5 .
management 4—-'\ architecture ’l systems integrators
A .
~ - -

Software vendors

soar v |
developers

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

184 Kral and Zemlicka

Feasible functions of any large system depend on its architecture. The decision as to
what architecture is to be used must therefore be formulated in early stages of the system
life cycle. On the other hand, the structure, techniques, and content of requirements
specifications are influenced by the properties of the system architecture and the details
of its implementation. We shall show that SOSS should use a combination of various
techniques developed during the software history (for example, message passing, object
orientation, common databases, and, sometimes, batch-oriented systems). All these
issues should be addressed in the specifications of SOSSs. SO is a paradigm new for many
software people. It implies some problems with the application of SO.

Peer-to-Peer
Information Systems (P2PIS)

Large information systems must often be developed as a network of loosely coupled
autonomous components — services (possibly information systems) integrated using
peer-to-peer principle (further P2PIS). The change of the architecture should be accom-
panied by changes in requirements specification that should reflect the service-oriented
structure of the system.

The specification of P2PIS starts from the specification of system user interface (portal)
and from the specifications of the services. The specification of services starts from the
definition of their interfaces. It can be accompanied by specification of the services of
the infrastructure (message formats, communication protocols, middleware services, in
general). Services in P2PIS can be newly developed applications, encapsulated legacy
systems, or third party products. P2PIS enables new types of requirements (for example,
the requirement that a P2PIS should support decentralized and flexible organization of
aglobal enterprise, see Kral & Zemlicka, 2003) and makes achievable software engineering
properties like reusability, flexibility, openness, maintainability, the use of legacy
systems and third party products, or the reduction of development costs and duration.
Experience shows that such systems can be extremely stable (Kral, 1995).

There are two main variants of P2PIS. The first one is used in e-commerce where the
service starting a communication must first look for communication partners. The
partners must offer their interfaces (typically specified by WSDL). This schema implies
the use of Internet and international standards like SOAP. We shall call such systems
(software) alliances.

The systems formed by stable sets of services knowing their permanent communication
partners will be called (software) confederations. Confederations occur often. Examples
are:

i Information systems of international enterprises having the structure of a network
of autonomous organizational units (divisions). The information systems are
formed by a peer-to-peer network of the information systems of the divisions and
by some additional components serving the whole enterprise (for example, portals).

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of Service-Oriented Systems 185

Such an architecture simplifies the integration of new divisions and/or of newly
purchased enterprises as well as the selling out or outsourcing of some divisions
or splitting the enterprise into smaller ones.

° Information systems of e-government built as a network of the information systems
of particular offices! (Kral & Zemlicka, 2001).

i A long-term collaboration between the information system of an enterprise and the
information systems of its business partners needed for supply chain management
(SCM) (Lowson, King & Hunter, 1999) and customer relationship management
(CRM) (Dyché, 2002).

i An open association of health organizations (physicians, hospitals, laboratories,
health database services, and so forth) forming an information system intended to
simplify, enhance, and speed up health care.

i Process control systems (soft real-time systems) supporting, e.g. computer inte-
grated manufacturing. Such systems were the first systems having main properties
of service-oriented systems. They have proved for the first time the advantages of
service orientation.

If a system S has p2p architecture, it must have structure allowing its peers/services to
collaborate. The services must be equipped by gates connecting them to a middleware.
The system S must usually be equipped by a user interface (portal). There can be several
portals. Alliances need not have any portals (Figure 2).

The properties of P2PIS depend substantially on the properties of the interfaces provided
by the gates and by the functions of the middleware. The most important property of the
interfaces is how much they vary. Stable interfaces increase the stability of P2PIS, reduce
the development and maintenance costs, and hide the implementation details and
philosophy of the component. It is shown below that the gates need not transform
components into Web services and that the middleware in confederations need not be
Internet based. On the other hand, Web services and Internet-oriented middleware are
necessary in alliances as the use of worldwide standards and tools is the precondition
of e-commerce and of the communication between partners unknown to each other before
the communication starts.

Figure 2. Architecture of a service oriented system (G is a gate, UC is an user interface
service (portal))

System
i interface 1
o N Old servi
_ / . - service
oo 6 o, Middieware e
System
uc i interface 2

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

186 Kral and Zemlicka

Note that SOSSs are usually built starting from the specification of the interfaces and that
the components providing the services are mainly integrated as black boxes.

Alliances

A crucial issue of the development of alliances is the standardization of communication
protocols. From the technical point of view, the dialog between partners (peers) in a P2PIS
can easily be fully automated, but the business agreements should be (and, due to
business and legislative reasons, usually are) controlled (supervised) personally by
representatives of the communicating parties.

The dialog is driven by a businessperson (initiator) searching for business partners. The
businessperson applies knowledge about the history of collaboration with the partners
and about the current situation (that is, credibility) on the market. The partner should
evaluate the enterprise of the initiator similarly. The partners have to check whether to
conclude a contract. Supervision is necessary as someone must be responsible for any
business operations. The business documents produced in this way are often to be
formally confirmed by people. It holds for P2PIS in general, but it is especially needed
inalliances.

Current practice is to establish the cooperation in alliances via Web services in the sense
of W3C. The dialog of business partners then starts using UDDI, WSDL standards, and
continues in SOAP.

The coordination of the business processes of several partners can be a complicated
task. Optimal solution of the supervision of the stages of business processes is a
cornerstone of alliance requirements specification. It is to some degree true for confed-
erations as well. The business processes are often developed using development tools
like .NET or J2EE. There are discussions about what choice is the best (see the discussion
on e-services in Communications of the ACM, July 2003, pp. 24-69).

The main advantage of alliances is their flexibility, generality, and standardized solu-
tions. The disadvantage is the problems with efficiency, stability, the size of the used
standards, and problems with integration of legacy systems and third party products.

A deeper problem is that SOAP is not too user friendly as it is based on remote procedure
calls (RPC) close to programmers’ knowledge domain (for example, object orientation)
and not to the user problem domains. It enlarges the problems with requirements
specification via WSDL and UDDI. UDDI is a centralized service. Centralized services
are not good in p2p frameworks. It is confirmed by the experiences with UDDI systems.
SOAP, like object-oriented languages, requires many method calls and, therefore, also
many messages during even very simple dialogs. It causes efficiency problems, problems
with prototyping and understanding the communication by human beings.

The systems using RPC (for example, SOAP) are better suited to the business operative
than to business process analysis, usually based on a common data tier.

Alliances are suited to operative tasks in the global market. Important decisions should
often be, however, preceded by analysis of the market and the history of cooperation with

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of Service-Oriented Systems 187

agiven partner. [t implies user involvement, massive data analysis, and the tools specific
for it. The tools often do not fit into RPC/SOAP frameworks.

A very important advantage of alliances is that communicating software parties can be
in the framework of the SOAP/Web services developed individually like programs
serving, for example, terminals.

It can happen that a business case (process) fails for some reason. In this case, the
reasons of the failure and people responsible for it can be detected via the analysis of
the messages logged during the corresponding business process. The analysis can be
used as evidence at court. The messages stored in a log memory must therefore be
understandable for users and experts in economy and even for lawyers, who should be
user-oriented. It is not clear whether messages in SOAP format can fulfill this require-
ment. It indicates that a proper message presentation tier enhancing communication
legibility should be available.

Software Confederations

E-Government: Confederation via Integration

We shall demonstrate some typical software confederation (SWC) related issues on the
example of e-government. The engine of e-government — state information system, SIS
— is one of the largest software systems to be built in any country. Let us now give the
list of the most important requirements on SIS:

i SIS should service citizens, enterprises, and state and municipal offices. SIS should
be able to communicate with information systems of private companies and/or
(potentially) of citizens. To fulfill it, SIS must have a complex subsystem (portal)
providing the interface for citizens. Such an interface should be flexible in its
functionality depending on the rights/profiles of specific groups of citizens and/
or state officers/clerks. There should be one or more user interface gates (portals)
providing an integrated interface making the internal structure of the system
invisible (transparent).

. SIS should support the collaboration of all state offices and majorities. Examples
are the collaboration during the investigation of car robberies and/or document
verification.

. SIS should reflect the frequent changes in laws and in the structure of state
administration.

. SIS should use autonomous tools, often third-party products for data filtering,

mining, and analyzing. It is likely that many new tools will be added in the future.

As there are many systems used by individual offices, it is very difficult to rewrite them
in time. The existing system should therefore be integrated without any substantial
change of its functions. The systems must be easily integrated into SIS without any

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

188 Kral and Zemlicka

substantial reconstruction. There is yet another, maybe substantially important, reason
for these requirements. No office will take any responsibility for a (sub)system if there
is any doubt it works correctly — there must be the feeling of ownership of the
(sub)system. It can reduce the resistance of users and/or politicians caused by their
apprehensions about their positions and power.

As it is highly desirable that the IS of various offices should be at the local level (in a
particular office), used without substantial changes (for example, business as before). It
usually implies that the interfaces of constituent autonomous information systems
(autonomous components/services) tend to be user knowledge domain oriented and
coarse grained. We shall see that it offers substantial software engineering advantages
as well as many benefits for users. A properly specified and designed software confed-
eration increases the dynamics of the system structure and openness of the system.

The conclusions can be illustrated on the following example. People responsible for SIS
ofthe Czech Republic wanted to redevelop the SIS as a monolithic system from scratch.
Practical experiences induced them to accept that the SIS must be a P2PIS.

The number of peers in confederations is not too large (compared with e-commerce) and
the peers are known. The collection of peers (services) does not vary too quickly. The
communication protocols between the peers can then be suited to particular needs; they
can be based on nonstandardized tools/solutions without any substantial penalty
(compare to Demetriades, 2003). It allows use of various turns known from the history
of computing for specific tasks like data reconstruction, data- or object-oriented design
for the development of peers.

Manufacturing System: Decomposition and Integration

Systems supporting e-government are the systems developed mainly via integration of
existing systems, possibly equipped by appropriate gates and transformed so that they
can work as services (peers ina p2p system). Some SOSSs are, however, developed from
scratch via decomposition of the system into services. Then the services, user interfaces,
and middleware are developed and integrated. It is typical for (soft) real-time systems,
for example, in manufacturing. Such systems have shown many advantages of service
orientation.

Figure 3 shows the interface of the manager of a flexible manufacturing system producing
parts of machine tools (Kral, 1995). The manufacturing of the parts is defined by linear
sequences of manufacturing operations. A generalization to more complex workflows
(for example, assembling) is possible but the interface becomes more complex. The
workshop manager chooses the central (actual) operation D.i, and the system shows the
previous and next operations in the technological sequence D and in the workplace
queues. Note that the manager felt the interface as a support for the standard management
activities that were familiar. The manager could add/modify the technological sequence
and rearrange the queues. The required data could also be filled by a scheduler from the
enterprise level. If the scheduler produced right data, no actions from the manager were
needed. We call such types of business processes reconstruction (BPR) the soft one.
It should be used as often as possible.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Design of Service-Oriented Systems 189

Figure 3. Interface of the manager of the manufacturing system

z\l/:;gs_ Production chain
segment

WP1.z-1 WPI1.z WP1.z+1 Segment of WP1
WP1 | |Qj D.i-1 R.h queue

WP2.y-1 WP2.y WP2.y+1 Segment of WP2
WP2 | [Ek Di Hp queue

WP3.x-1 WP3.x WP3.x+1 Segment of WP3
WP3 | |kt D.i+l M.r queue

| The data of the actual operation D.i

The interface of the manager was data-oriented — generated from a database. Other parts
of the system communicated via commands (for example, store product P in warehouse
place WP), so different attitudes (not only RPC) had to be used. It was important that the
structure of software services reflected the structure (and interfaces) of real-life services.

These properties of the system were the reasons why the flexible manufacturing system
(FMS), an island of automation, was very successfully used for more than twenty years
in an enterprise having several successive enterprise information systems. FMS was
used without any substantial changes and almost without any maintenance. It was
thanks to the fact that the interface has corresponded to the manager intuition, used his
knowledge, and supported his skills. To generalize, EAI (service interface) should
support the intuition and knowledge of users and should be user and problem oriented.
The user should have a chance to influence the design of the interface. User orientation
of interfaces offers the possibility to simulate (even substitute) the services (compo-
nents) not yet existing by communication via portals. We say then that such interfaces
are user performable. It substantially enhances prototyping tools.

Middleware Enhancement in Confederations

The decision whether to use standard or proprietary message formats should be based
on a proper (service-oriented) analysis of the partnerships of autonomous services. The
standards in their current form are difficult to use. It can be reasonable for the dynamic
enterprises to choose a proprietary solution of message formats. It need not be too
difficult to adapt the proprietary solutions to future stabilized standards using the tools
like XSLT and PHP. Using the tools like XSLT and PHP, we can build new types of services
called front-end gate (FEG). FEG is a service used as a front-end part of the gate G of a
service S (Figures 4 and 5) or as arouter. FEG transforms the formats of input and output
messages of S into forms acceptable by the partners of S and hides undesirable properties
of the gate G, like disclosing the implementation details of S. The problem is that,

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

190 Kral and Zemlicka

according to our experiments, XSLT is awfully ineffective and unstable today for more
complex tasks.

Our two examples show the main extreme situations in the confederation development.
In e-government, the system is mainly built via integration of existing systems. In this
case, we can define the interfaces only. In the case of manufacturing, the integration
stage is preceded by decomposition. In this case, we must specify the boundaries of
services. They should be intuitively “similar” to the boundaries of real world services.

A specific issue in confederations is that we must often also apply attitudes/philoso-
phies known from the software development history. Middleware can be implemented via
Internet or via a common database with triggers. CORBA can be used in some situations
as well. All the attitudes must be in practice combined, depending on the type of the
functionality (for example, commands on operational level and data analysis on manage-
ment level), so different philosophies can and must be applied and combined in
confederations. It increases the complexity of development.

Business Processes i