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Preface

This	SpringerBrief	 focuses	on	how	 the	numbers	of	 randomly	moving	organisms	
caught	in	monitoring	traps	can	be	translated	into	reliable	estimates	of	their	absolute	
rather	 than	 just	 relative	density.	Quick	and	 inexpensive	methods	 for	establishing	
absolute	density	are	sorely	needed	to	enable	pest	managers	to	sharpen	their	deci-
sions	about	when	pesticides	are	or	are	not	justified,	thereby	boosting	profits	as	well	
as human and environmental safety.

This	book	grew	out	of	seemingly	disparate	experiences	by	Dr.	James	Miller	dur-
ing	a	research	and	teaching	career	as	a	quantitative	insect	behaviorist	and	chemical	
ecologist	working	 at	Michigan	State	University,	 a	Land-Grant	University	where	
fundamental	 and	 applied	 science	 are	 expected	 to	 blend	 seamlessly	 to	 produce	
knowledge	that	makes	a	difference	in	the	world.	Our	applied	research	on	how	insect	
control	might	be	effectively	achieved	using	sex	attractant	pheromones	 to	disrupt	
mate-finding	 led	 to	 fundamental	 research	on	 the	mechanisms	whereby	 sex	pher-
omones	 impact	 insect	behavior	and	physiology.	One	highly	productive	approach	
explored	parallels	between	mating	disruption	of	moth	pests	of	apple	and	enzyme	
kinetics.	The	goal	was	to	determine	whether	mating	disruption	was	or	was	not	medi-
ated	principally	by	competition	between	artificial	and	natural	point	sources	of	pher-
omone	(“substrates”)	for	the	attention	of	responsive	males	(“enzyme”).	However,	
the	“test	tubes”	for	these	quantitative	experiments	interrelating	capture	numbers	in	
traps	with	manipulated	numbers	of	female	and	male	insects	as	well	as	dispensers	
of	artificial	pheromone	were	20	field	cages,	each	covering	12	full-sized	apple	trees.	
Nevertheless,	striking	and	useful	parallels	were	found	between	these	inanimate	and	
molecular	vs.	macroscopic	and	whole-organism	systems.	Highly	reproducible	pat-
terns	 in	 the	capture	data	convinced	us	 that	 insects	and	molecules	were	behaving	
similarly	at	their	given	spatial	scales,	e.g.,	both	diffusing	randomly	throughout	their	
test	tubes	before	complexing	for	measurable	times	with	any	agents	for	which	they	
had	affinity.	Moreover,	we	discovered	that	 the	known	absolute	density	of	 insects	
deployed	in	the	cages	could	accurately	be	derived	from	graphical	plots	of	the	num-
ber	 of	 attractive	pheromone	dispensers	 deployed	per	 cage	 against	 the	 inverse	of	
catch	per	monitoring	trap.	That	insight	piqued	our	curiosity	about	whether	such	an	
approach	might	also	be	successful	in	the	open-field	situation.
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Further	insights	into	random	elements	in	animal	behavior	came	from	teaching	a	
graduate-level	course	in	insect	behavior.	One	of	the	laboratory	exercises	required	
students	to	record	and	analyze	the	tracks	of	dispersing	insects.	The	picture	emerging	
across	years	of	data	was	that	most	insects	not	influenced	by	cues	from	resources,	
move	randomly	and	display	normal	distributions	of	headings	for	new	steps	whose	
width	is	characteristic	of	the	species,	but	varies	across	species.	Additionally,	strik-
ing	matches	were	 found	 between	 the	 tracks	 produced	 by	 real	 vs.	 the	 randomly-
based	computer-simulated	movers	we	developed	for	 teaching	 the	mechanisms	of	
insect	orientation	and	their	consequences	when	foraging.

Yet	another	line	of	research	on	egg	depositional	behaviors	of	onion	flies	interact-
ing	with	artificial	host	plants	of	varying	quality	gave	evidence	for	the	existence	of	
some	sort	of	“random	number	generator”	that	injected	randomness	into	the	invest-
ment	decisions	of	insect	herbivores,	essentially	allowing	them	to	diversify	invest-
ments	across	the	full	range	of	resource	qualities	while	investing	most	heavily	in	the	
best	resources.	The	patterns	of	investment	by	real	insects	were	faithfully	reproduced	
by	simple	computer	simulations	where	the	strength	of	the	positive	factors	promot-
ing	egg	deposition	was	divided	by	the	strength	of	any	negative	factors	to	yield	a	
quotient	then	increased	or	decreased	by	a	random	input.	A	bout	of	oviposition	was	
envisioned	to	turn	on	when	the	overall	outcome	fell	above	some	threshold	value.

This convergence of data from various systems points toward a central and 
highly	valuable	role	for	random	elements	within	the	mechanics	underpinning	the	
biology	of	simple	organisms	like	insects.	We	elected	to	tackle	the	important	puzzle	
of understanding the mechanics of trapping with the confidence that random ele-
ments	and	random	outcomes	would	feature	prominently	in	 the	problem,	and	that	
computer	simulations	permitting	the	manipulation	of	random	elements	would	be	an	
essential	tool	in	that	exploration.	We	also	recognized	that	this	effort	would	best	be	
accomplished	by	a	team	bringing	expertise	from	biology/behavior	(J.R.M.,	C.G.A.,	
P.A.W.),	computer	science	(P.A.W.),	and	mathematical	physics	(J.H.S.).	Thus,	the	
product	you	are	about	to	read	represents	an	interdisciplinary	synthesis.

September	24,	2014	 J.	R.	Miller 
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Chapter 1
Why Care About Trapping Small Organisms 
Moving Randomly?

©	The	Author(s)	2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly, 
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5_1

1.1  Most Animals Are Small and Forage Using Simple 
Behavioral Rules

The	Earth	supports	a	rich	diversity	of	microbial	and	plant	life.	In	turn,	these	primary	
producers are estimated to support well more than 10 million species of animals 
(Mora et al. 2011), the preponderance of which are smaller than a fingernail and 
weigh less than a gram. The resources upon which most small terrestrial animals 
come	to	specialize	are	patchy	and	often	ephemeral.	Life	spans	of	small	animals	are	
short. Their capacity for and the advantages of learning and memory are of less con-
sequence	than	is	usual	for	vertebrates	like	humans,	whose	behaviors	are	dominated	
by	vision,	spatial	maps,	directed	locomotion,	and	planning	before	actions.

In	 contrast,	 animals	 like	a	 small	butterfly	 explore	 their	 environments	 initially	
using	what	appear	to	be	random	search	mechanisms.	If	a	potential	resource	is	en-
countered	by	chance	alone,	it	is	important	that	the	mover	has	the	capacity	to	stop,	
examine, and exploit the resource if appropriate. Foragers initially engaged in sim-
ple random search can also encounter meaningful cues (e.g., visual or chemical) 
at some distance from a potential resource and then switch to more sophisticated 
behaviors	to	steer	toward	the	source	if	the	cues	are	positive	(attractive)	or	away	if	
the cues are negative (repellent) (Miller et al. 2009). The effectiveness of the de-
ceptively simple foraging rules depicted in Fig. 1.1	should	not	be	underestimated,	
given the resounding success of the many organisms using them and for which it is 
challenging to prove that more sophisticated tactics come into play.

1.2  The Most Serious Animal Pests Are Small

An	unhappy	fact	of	life	from	the	human	perspective	is	that	small	animals	like		insects,	
mites,	mollusks,	and	nematodes	compete	with	us	for	resources.	Many		become	se-
vere	pests.	Global	annual	losses	to	insects	alone	for	just	the	top	ten	most		abundant	



2 1	 Why	Care	About	Trapping	Small	Organisms	Moving	Randomly?

food	crops	have	been	estimated	at	more	than	US	$	90	billion	(Yudelman	et	al.	1998).	
In	the	USA	alone,	where	some	0.5	million	tons	of	pesticides	are	applied	to	crops	
annually,	 pests	 still	 destroy	 an	 estimated	 37	%	of	 potential	 production	 (Pimentel	
2005). Moreover, other small creatures cause vector diseases of plants and animals 
including	humans.	For	example,	mosquitoes	of	the	genus	Anopheles transmit hu-
man	malaria,	which	annually	kills	about	1	million	children	in	Sub-Saharan	Africa	
alone (Breman et al. 2001). Successful management of these pests and disease vec-
tors	 typically	 requires	pesticides,	which	present	well-known	safety	challenges	 to	
the	human	food	supply,	nontarget	organisms,	and	the	environment.	An	imperative	
of	a	civilized	world	is	that	pests	and	disease	vectors	be	identified,	monitored,	and	
managed	in	a	manner	that	strikes	a	fair	compromise	between	the	needs	of	humans,	
all	of	Earth’s	biota,	and	the	biosphere.

1.3  Responsible Pest Management Decisions Require 
Knowledge of Pest Numbers

Fortunately,	substantial	progress	toward	this	lofty	aim	has	been	made	in	the	field	
of	pest	management	theory	and	practice	(Kogan	1986;	Arora	et	al.	2012).	A	core	
concept	of	integrated	pest	management	is	that	the	control	measures	be	applied	only	
when	sufficient	numbers	of	pests	are	present	to	justify	intervention.	Thus,	pest	de-
tection	and	monitoring	programs	need	to	be	in	place	to	identify	what	potential	pests	
are	present,	precisely	when	they	are	active,	and,	ideally,	their	absolute	abundance	
through time, as suggested in Fig. 1.2.	The	pest	density	at	which	the	benefit	of	an	
intervention exceeds its cost is termed the economic injury level	(EIL).	Establishing	
the	EIL	requires	both	an	accurate	measure	of	pest	numbers	and	knowledge	of	pest	
biology.	For	example,	if	adult	insects	are	being	monitored	but	it	will	be	larvae	that	
damage	the	crop,	the	pest	manager	must	know	the	fecundity	and	mortality	rates	of	
the pest through time to predict population levels of the damaging life stage.

1.4  Current Methods of Estimating Absolute Densities 
of Pests Are Prohibitively Costly

Unfortunately,	measuring	the	absolute	density	of	organisms	requires	considerable	
time and effort; thus, it is costly. Texts on procedures for estimating animal den-
sity	are	readily	available,	e.g.,	(Krebs	1999;	Southwood	and	Henderson	2000).	The	

Fig. 1.1  Primitive	but	effec-
tive	behavioral	rules	guiding	
foraging	by	simple	organisms
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	simplest	but	 certainly	not	 least	 costly	 approach	 is	direct	 enumeration.	Here,	one	
directly	views	 the	area	over	which	 the	number	of	animals	present	 is	 sought.	For	
example,	a	researcher	wishing	to	quantify	shifts	in	polar	bear	populations	in	the	face	
of	global	warming	can	pass	across	an	expanse	of	polar	ice	in	a	low-flying	airplane	
and	count	how	many	bears	are	sighted.	Similarly,	with	sufficient	patience	and	work	
force,	researchers	can	count	the	hundreds	of	thousands	of	soybean	aphids	present	in	
sections	of	selected	fields.	However,	such	enumerations	are	impossible	for	every-
day management decisions for tiny pests.

Sampling	regimes	can	shrink	such	a	mammoth	task.	For	example,	reliable	esti-
mates	of	absolute	animal	density	can	be	achieved	by	using	transects	across	the	area	
of	interest	and	counting	individuals	within	the	selected	quadrats	of	defined	size	at	
regular	 intervals	along	 the	 transects.	 If	 the	set	of	samples	 taken	 is	 representative	
of	the	area,	overall	absolute	animal	density	can	be	estimated.	Sequential	sampling	
(Krebs	1999)	aims	to	reduce	sampling	to	the	bare	minimum	needed	for	an	estimate	
of animal density at some specified level of confidence sufficient for an informed 
pest management decision.

A	quite	different	approach	 is	mark-release-recapture	(Krebs	1999;	Southwood	
and	Henderson	2000).	Here,	animals	are	collected	from	their	habitat,	distinctively	
marked,	and	released	back	into	the	existing	population.	After	ample	time	for	mix-
ing,	 the	population	 is	 sampled	 for	 the	 ratio	of	marked	vs.	unmarked	 individuals.	
Equations	have	been	developed	whose	solutions	yield	an	estimate	of	the	total	popu-
lation	 density.	This	 technique	was	 first	 conceptualized	 and	 explored	 by	Lincoln	
(1930)	for	birds.	Various	improvements	on	the	original	Lincoln	Index	have	since	
been	devised	in	attempts	to	improve	its	accuracy	across	a	range	of	spatial	contexts.	

Fig. 1.2  Conceptual	framework	for	how	pest	managers	interrelate	pest	numbers	and	population	
growth over time with economics to apply a control measure only when it is actually needed and 
when	 the	benefit	of	 treatment	exceeds	 its	cost.	This	 figure	was	redrawn	from	similar	diagrams	
available	on	the	web
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However,	 neither	 this	 nor	 any	 of	 the	 above	 techniques	 provide	 the	 quick,	 inex-
pensive,	and	reliable	estimates	of	the	absolute	population	density	of	animal	pests	
needed for everyday pest management applications.

1.5  Can Traps and Trapping Fill This Need?

Enthusiasm for this approach as applied to insects ran high with the identification 
and synthesis of potent sex attractant pheromones of diverse pests (Roelofs and 
Cardé	1977).	Pheromone-baited	monitoring	traps	such	as	those	pictured	in	Fig.	1.3 
are	indeed	a	boon	to	insect	pest	management	because	they	reveal	exactly	what	pest	
species are present and when they are active. Such information is critical to timing 
of	sprays	for	maximum	effect	(Judd	and	Gardiner	1997).	However,	the	initial	ex-
pectation	that	catch	numbers	might	be	translated	into	accurate	estimates	of	absolute	
pest	density	went	unfulfilled.	A	key	impediment	has	been	that	the	trapping	process	
is	insufficiently	understood	to	establish	convincing	links	between	numbers	trapped	
with	total	numbers	present	in	the	area	from	which	responders	came.	For	most	re-
searchers,	pest	managers,	and	growers,	trapping	remains	a	“black	box.”

Rather	than	making	control	decisions	on	the	basis	of	actual	pest	numbers,	as	the	
y-axis of Fig. 1.2 suggests, pest managers and growers rely on relative thresholds 
for	control	decisions.	For	example,	our	colleague	Dr.	Larry	Gut	is	responsible	for	
research	and	extension	for	insect	pests	of	tree	fruit	in	Michigan.	He	recommends	
deploying	one	codling	moth	monitoring	trap	like	that	in	Fig.	1.3 for every ca. 5 ac 
of	orchard.	However,	growers	seeking	to	cut	production	costs	usually	deploy	only	
several	traps	per	100	ac.	Control	measures	are	recommended	if	three	or	more	cod-
ling	moths	 are	 trapped	 for	 any	1	week	of	 the	 growing	 season.	This	 threshold	 is	
based	on	expert	judgment	accumulated	over	years	of	correlating	moth	captures	in	

Fig. 1.3  (a) Trap for monitoring adult moth pests of tree fruit, in this case codling moth (b) in 
apple.	A	wire	hanger	permits	the	trap	to	be	attached	to	an	outer	branch	high	in	the	tree	canopy.	The	
trap	is	open	at	the	two	ends;	male	moths	are	attracted	to	the	trap	by	sex	pheromone	released	from	a	
small	piece	of	rubber	pinned	inside	the	trap	roof.	Moths	are	ensnared	on	a	glue-coated	insert	lining	
the	inside	bottom.	The	insert	is	partially	withdrawn	in	(a)	as	the	trap	is	being	checked	by	the	senior	
author.	A	high	number	of	captured	moths	on	the	partially	withdrawn	insert	is	shown	in	(c)
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monitoring traps with spray records and recorded damage to apple crops at the end 
of	the	growing	season.	Codling	moth	infestation	of	apples	must	be	suppressed	to	
less	than	0.5	%,	or	the	crop	will	be	rejected	by	the	fresh-market	processor	and	di-
verted	to	juice	at	substantial	economic	loss.

1.6  Aims and Approach of This Book

Our	motivation	for	this	book	was	the	conviction	that	traps	and	trapping	have	much	
more	potential	 to	 sharpen	pest	management	decisions	 than	has	been	achieved	 to	
date.	Doing	so	requires	deep	understanding	of	the	trapping	process,	including	how	
both	the	 trapping	targets	(movers)	and	trapping	devices	each	contribute	 to	catch.	
We	will	take	a	mechanistic	approach	that	goes	well	beyond	the	richly	historical	and	
more	descriptive	volume	by	Muirhead-Thomson	(1991)—Trap Responses of Flying 
Insects.	Our	investigation	of	trapping	dynamics	was	greatly	aided	by	computer	sim-
ulations	that	capture	the	core	elements	of	the	trapping	problem.	Cyber	tools	made	
it	possible	to	recreate	the	“black	box”	of	trapping	and	then	to	quantify	its	outputs.	
We	then	systematically	disassembled	it	to	understand	the	overall	effects	of	changes	
to	its	“gears,	springs,	and	switches.”	The	computer	simulations	reported	here	were	
conducted in a matter of months and represent research that would have occupied 
most of a career if completed only on real animals.

This	book	then	integrates	the	insights	gained	from	the	cyber	studies	with	real-
world	animal	studies	conducted	in	the	field.	We	build	on	and	extend	the	findings	
of	 various	 researchers	who	have	 already	 identified	 and	 assembled	pieces	of	 this	
intellectually	challenging	and	important	puzzle.	However,	the	current	treatment	is	
not a comprehensive literature review. Rather, we aim for a succinct coverage that 
includes	just	the	material	necessary	and	sufficient	to	achieve	the	above	aims.

As	most	of	its	authors	are	entomologists,	this	book	is	slanted	toward	insect	ex-
amples. But, the principles explained here will hopefully find applications across 
a	wide	 range	 of	 disciplines.	Our	 chief	 applied	 aim	 is	 to	 provide	 the	 knowledge	
sufficient	 for	 translation	of	captured	numbers	 into	accurate	estimates	of	absolute	
densities of small animals useful in sharpening pest management decisions. The 
principles uncovered for trapping are also highly relevant to the ecology of resource 
finding.	These	topics	will	be	intertwined	as	the	text	progresses.

Many of the relationships encountered in this investigation are most efficiently 
conveyed	 by	mathematical	 expressions.	Moreover,	 solving	 equations	 for	 an	 un-
known	variable	when	the	others	are	known	is	an	intellectual	tool	whose	power	must	
be	wielded	in	research	on	trapping.	Thus,	mathematics	is	inescapable.	Only	algebra	
will	be	employed	in	the	main	text	so	that	all	readers	can	follow	the	complete	story	
line	and	use	this	knowledge	without	special	training.	Nevertheless,	the	trapping	of	
random	movers	is	a	problem	that	lends	itself	naturally	to	mathematical	analysis	and	
that	will	ultimately	require	more	advanced	mathematics	 for	 full	characterization.	
We	note	some	of	the	mathematical	issues	related	to	trapping	in	optional	footnotes	
intended for the more mathematically inclined readers.



7

Chapter 2
Trap Function and Overview of the Trapping 
Process

©	The	Author(s)	2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5_2

2.1  Definition and Functions of Traps

Finding no formal scientific definition in the literature, we define traps as devices 
that delimit the displacement of previously free-ranging entities in space through 
time.	Many	types	of	animal	traps	have	been	invented.	Long	before	the	arrival	of	
humans, living organisms were trapping prey (see examples in Fig. 2.1). In such 
cases,	traps	assist	with	capture	and	retention	of	prey	until	it	can	be	fully	subdued	
and consumed.

Traps prolong visits of animals to points in space. For example, a conventional 
hunter	can	rely	on	real-time	encounters	with	prey	to	make	the	occasional	harvest.	
However,	a	trapper	can	set	multiple	snares	so	as	to	greatly	increase	the	probability	
of	prey	encounters	while	walking	just	the	trap	line.	The	time	for	which	snared	prey	
occupies	dangerous	space	is	stretched,	whereas	the	time	required	for	the	trapper	to	
realize	prey	encounters	shrinks.	Likewise,	the	pest	manager	wishing	to	assess	cod-
ling	moth	populations	in	an	apple	orchard	could	walk	about	with	a	flashlight	early	
at night when moths are active and attempt to count them. But, such an endeavor 
would	be	ill-advised,	given	typical	codling	moth	low	numbers,	tiny	size,	and	their	
ability	to	fade	into	the	vegetation	before	identifications	can	be	made.	It	is	a	far	better	
idea	to	deploy	traps	like	those	in	Fig.	1.3	and	then	check	them	all	in	a	short	interval	
after	appreciable	catch	has	accumulated.

Traps	can	also	serve	as	removal	or	killing	devices.	Live	trapping	is	done	with	
the intent of inflicting no permanent harm and releasing the animal where it can no 
longer	be	a	pest.	Trap-and-kill	devices	operate	by,	e.g.,	electrocution	(bug	zapper),	
drowning	 (pitfall	 trap	 for	 garden	 slugs),	 delivering	 a	 killing	 blow	 (mouse	 trap),	
permanently	ensnaring	(fly	paper),	or	poisoning	(cockroach	trap).	The	intent	here	is	
for	the	traps	to	reduce	pest	populations	to	tolerable	levels	quickly	without	requiring	
some additional control measures.
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2.2  Overview of the Trapping Process

A	key	feature	of	all	trapping	is	intersection	of	a	trap	with	its	targets	at	some	point	
in space. Because traps are typically stationary, it is their targets that must move so 
as	to	either	approach	the	trap	by	a	chance	encounter	or	be	lured	there	after	chance	
encounters	with	attractive	cues	emitted	by	the	trap.	The	latter	case	is	diagrammed	
in Fig. 2.2	for	the	situation	where	the	odorant	from	the	trap	diffuses	equally	in	all	
directions	and	its	concentration	then	falls	with	the	square	of	distance.	Responders	
can	then	be	led	to	the	source	by	steering	up-gradient.

Only one of the four movers released near the trap in Fig. 2.2 encountered the 
odor,	approached	the	trap,	and	got	caught.	The	reason	for	low	capture	probability	is	
that more space in Fig. 2.2 is devoid of odorant rather than containing it. Emission 
of	odor	effectively	increases	the	size	of	a	trap;	yet,	empty	space	predominates.	Bait-
ing	the	trap	with	a	lure	having	further	reach	would	elevate	the	probability	that	the	
trap	is	found,	as	would	increasing	foraging	time.	However,	short-lived	small	organ-
isms experience real limits on how far they can travel while avoiding environmental 
threats	such	as	predation.	Catch	is	influenced	by	trap	size,	attractant	reach,	mover	
meander (amount of turning per distance traveled), foraging time, and total distance 
movers displace all influence catch.

Figure 2.3 extends this scenario to the more usual case of a trap emitting an at-
tractant	into	the	breeze	and	where	the	responders	can	forage	by	flying	or	walking.	

Fig. 2.1  Examples	of	trapping	devices	employed	by	living	organisms	for	millions	of	years	before	
humans invented their first trap. (a)	Orb-weaver	spider	wrapping	prey	on	its	web.	©	Dr.	Joseph	
Spencer,	 Illinois	Natural	History	Survey,	Univ.	 Illinois	Campus.	 (b) Bolas spider lying in wait 
while	dangling	a	sticky	drop	emitting	moth	sex	pheromones.	©	K.F.	Haynes	and	K.V.	Yeargan,	
University	of	Kentucky.	(c)	Ant	lion	immature	next	to	its	sand	trap.	©	Christopher	G.	Adams.	(d) 
Pitcher plant. (e)	Venus	fly	trap	with	captured	fly.	©Ernie	Janes/Alamy
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Here,	the	odor	plume	becomes	elongated.	Because	locally	foraging	small	animals	
such as insects responding to sex pheromones concentrate their search mainly to a 
layer	near	the	top	of	a	crop	(Taylor	1974;	Witzgall	et	al.	1999),	the	trapping	prob-
lem	remains	essentially	two-dimensional.	Aerial	plumes	present	a	surprisingly	flat	
concentration gradient along their length (Justus et al. 2002). Responders contacting 
a	plume	get	little	information	about	which	direction	is	toward	vs.	away	from	the	
source. Therefore, they must use visual or tactile information to determine which 
direction	is	upwind	and	then	be	guided	by	the	plume’s	borders	as	detected	upon	zig-
zagging	in	and	out	of	a	plume.	Swimmers	can	also	do	this.	Nevertheless,	the	above	
assessment that there is far more plume-free area around a trap than area occupied 
by	the	plume	still	holds.	Again,	trap	size,	plume	reach,	mover	meander,	foraging	
time, and total distance movers displace all strongly influence catch.

The	series	of	steps	that	must	occur	for	a	target	organism	to	be	harvested	as	catch	
in a trap is listed in Fig. 2.3b.	The	overall	probability	of	catch	is	the	product	of	the	
probabilities	for	the	requisite	individual	steps—steps	1	and	2	and	3	…	and	6.

Findability	( f)	refers	to	the	composite	probability	of	only	those	steps	bringing	a	
target	organism	to	the	trapping	mechanism.	Efficiency	( e) is reserved exclusively 

Fig. 2.2  Paths	 of	 four	 computer-simulated	movers	 typical	 of	 insects	 and	 released	 at	 arbitrary	
distances	from	a	trap	( T)	emitting	an	attractive	odorant	into	still	air.	Displacement	beginning	at	
each s was random until chance encounter with the odor plume. Details of the computer program 
are	given	in	Chap.	3
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for	the	probability	that	the	responder	is	caught	by	the	trap	once	it	has	arrived.	Step	
6,	retention	( r),	is	the	probability	that	the	organism	remains	trapped	until	harvested.	
As	introduced	by	Miller	et	al.	(2010),	we	abbreviate	the	overall	catch	probability	as	
Tfer where T stands for trap. Tfer	equals	the	expected	number	of	organisms	harvested	
after	some	specified	time	of	trap	operation	divided	by	the	total	number	of	organisms	
within the sampling range of the trap.

Of	the	three	probabilities	comprising	Tfer,	findability	is	subject	to	the	most	varia-
tion for two main reasons. First, plume reach varies with wind speed. Plume reach 
under	a	constant	release	of	attractant	will	be	greater	under	 lower	wind	velocities	
than	higher	wind	velocities.	Packets	of	air	passing	slowly	over	the	odorant	source	
get	loaded	with	a	higher	concentration	of	chemical	so	as	to	survive	longer	above	the	
detection	threshold.	Additionally,	greater	turbulence	under	higher	wind	velocities	
dissipates	the	odorant	more	rapidly.	But,	zero	wind	flow	is	also	suboptimal.	Then,	
plume spread depends entirely upon diffusion, which is extremely slow for large 
odorant	molecules	 such	 as	 sex-attractant	 pheromones	 (Gut	 et	 al.	 2004).	Optimal	
wind	velocity	 for	 long-distance	 attraction	 is	 usually	 less	 than	1	m/s.	Second,	 an	
animal’s	willingness	or	ability	to	forage	can	rise	and	fall	with	factors	such	as	wind	
velocity, rainfall, humidity, and temperature. For example, codling moths cease 
flight	whenever	the	air	temperature	falls	below	16	°C	(Batiste	et	al.	1973),	perhaps	
because	operating	the	flight	muscles	becomes	energetically	inefficient.

Efficiency	 of	 a	 given	 trap	 type	 should	 be	more	 constant	 than	 findability.	 If	
environmental	 conditions	 allow	 responders	 to	 arrive	 at	 the	 trap,	 they	 are	 likely	
to	 remain	 favorable	 over	 the	 few	 minutes	 it	 may	 take	 to	 engage	 the	 trapping	
mechanism. But efficiencies across trap types will vary with the degree to which 
their engineering matches the proclivity of the responder to engage the capture 

Fig. 2.3  (a)	Paths	of	four	computer-simulated	movers	exhibiting	meander	typical	of	insects	and	
released	at	arbitrary	distances	from	a	trap	( T) emitting an attractive odorant into moving air so as 
to	generate	a	plume	( pink).	Displacement	beginning	at	each	s was random until a chance encounter 
with the odor plume. (b)	Chain	of	steps	required	for	a	target	animal	to	be	caught	in	a	trap	emitting	
an	attractant	and	designations	for	their	probabilities
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mechanism	(Muirhead-Thomson	1991).	For	moths	responding	to	pheromone-bait-
ed	monitoring	traps,	efficiencies	can	be	as	high	as	0.7	(Elkinton	and	Childs	1983;	
Huang	et	al.	unpublished	data).

Retentions	of	the	traps	designed	by	humans	are	usually	high	because	retention	
is	easy	to	measure	and	remedy	when	faulty.	Animals	can	be	placed	directly	into	the	
trapping	mechanism	and	then	observed	to	see	how	many	escape	and	how	they	man-
age	to	do	so.	Countermeasures	can	then	be	taken.

The maximum net distance most randomly dispersing animals displace from 
their point of origin greatly exceeds the reach of an attractive plume (examples of-
fered	in	Chap.	5).	Thus,	trapping	radius	is	determined	largely	by	the	net	dispersive	
radius of the target organisms plus plume reach (Fig. 2.4).	All	the	moths	depicted	in	
Fig. 2.4	might	reach	the	trap	if	they	flew	exclusively	in	straight	lines	(ballistically)	
and	always	toward	the	trap.	However,	because	of	path	meander	and	limitations	on	
flying time, only the encircled moths in Fig. 2.4	are	suggested	to	have	a	measurable	
probability	of	reaching	the	trap	and	thus	being	within	the	trapping area. Even so, 
only	some	out	of	all	the	moths	in	the	trapping	area	will	be	unlucky	enough	to	string	
together	a	chain	of	turns	that	brings	them	to	the	plume	of	the	trap	rather	than	leading	
them out of the trapping area.

Fig. 2.4  Spatial	relationships	between	dispersion	of	the	target	animal,	plume	reach,	and	trapping	
area	for	animals	moving	randomly	before	being	attracted	to	the	trap	after	contacting	the	plume.	
The	trapping	area	would	become	slightly	elliptical	if	the	plume	were	an	ellipse	rather	than	a	disk 
as above;	but,	the	overall	concept	holds
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It	is	well	established	(Wolf	et	al.	1991;	Berg	1993;	Turchin	and	Odendall	1996;	
Östrand	 and	Anderbrant	 2003)	 that	 the	 probability	 of	 capturing	 random	walkers	
declines with increasing distance from which the movers originate from a trap. For 
example, moths originating nearest to the plume as shown in Fig. 2.4 vs. the limit 
of	the	dispersive	distance	(heavy	circle)	might	be	captured	with	probabilities	> 0.5 
vs. <	0.05,	respectively,	depending	upon	the	mover	meander	and	foraging	time.	We	
refer	to	the	probability	of	capture	of	movers	originating	at	a	specified	distance	away	
from a trap as specific Tfer,	abbreviated	as	spTfer.	Characterizing	and	understanding	
the	probability	function	for	spTfer vs. distance of animal origin from a trap is critical 
to understanding and interpreting trapping outcomes.

We	can	predict	catch	for	the	full	trapping	area	by	the	following	procedure	that	
does	 not	 require	 calculus.	 First,	 break	 the	 trapping	 disk	 in	 Fig.	 2.4 into annuli 
(Fig. 2.5). If spTfer for each annulus of Fig. 2.5	below	were	known,	catch	per	annu-
lus	would	be	given	by	spTfer	×	the	number	of	animals	per	annulus.	Catch	( C) for the 
full	trapping	area	would	be	the	sum	of	catches	for	all	six	annuli.	When	the	annuli	of	
Fig. 2.5	are	labeled	1–6,	then	C	per	trapping	area	is	given	by1:

1 Readers	familiar	with	calculus	may	recognize	the	right-hand	side	of	Eq.	(2.1)	as	a	Riemann	sum	
approximation of the integral

where Rmax is the trapping radius, spTfer( r) is specific Tfer at distance r from the trap and D is den-
sity	of	movers	(number	per	area).	Here,	2πrdr	is	the	area	of	an	“infinitesimal”	annulus	at	distance	r 
from the trap. In general, spTfer	might	depend	on	the	absolute	position	of	the	mover	relative	to	the	
trap,	in	which	case	Eq.	(2.1)	would	be	replaced	by	the	relation

spT r D rdrfer

R

( ) ,
max

0

2∫ π

C spT x y Ddxdyfer
Trapping area

= ∫ ( , ) .

Fig. 2.5  Figure 2.4 is redrawn so that the sampling area of the trap is divided into six annuli of 
equal	width.	Here,	the	trap’s	sampling	area	is	shown	with	a	higher	density	of	randomly	distributed	
target organisms, now shown as dots, and none are depicted outside the dispersion limit. The dis-
persion limit indicates that organisms do not have the locomotory capacity to reach the trap from 
distances further than the heavy circle

2 Trap Function and Overview of the Trapping Process
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 (2.1)

where (j) ferspT  is the specific Tfer for the jth annulus and ( j)  M 	 is	 the	 number	 of	
movers in the jth annulus.

Equation	2.1	is	not	the	only	trapping	equation	that	will	be	offered	in	this	book,	
but	the	relationships	it	embodies	are	keys	to	an	understanding	trapping.	As	we	shall	
see	in	Chap.	5,	spTfer	can	be	measured	by	releasing	known	numbers	of	animals	at	
specified distances from a trap and recording the proportion recovered. This mea-
sure	is	an	important	building	block	for	other	useful	measures	of	trapping.	Specific	
Tfer	is	an	effect	caused	by	properties	of:	(i)	the	mover	(distance	originating	from	the	
trap, meander during search for the plume, foraging time, and total distance movers 
can	displace	from	their	starting	points)	and	(ii)	the	trap	(size,	plume	reach).	Each	of	
these	causes	and	their	interactions	require	further	scrutiny	if	the	process	of	trapping	
is	to	be	well	understood.

( ) ( )6
j j

1
   ,fer

i
C spT M

=
= ×∑

2.2  Overview of the Trapping Process 
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Chapter 3
Random Displacement in the Absence of Cues

©	The	Author(s)	2015	
J. R. Miller et al., Trapping of Small Organisms Moving Randomly, 
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5_3

3.1  The Classical Random Walk

The	random	walk	is	a	well-characterized	phenomenon	both	behaviorally	and	math-
ematically	(Feller	1968;	Spitzer	1976;	Berg	1993).	This	term	can	apply	to	any	form	
of locomotion arising when headings for displacement steps are selected randomly, 
be	it	walking,	flying,	or	swimming.	The	concise	book	by	H.C.	Berg	(1993)	provides	
an	excellent	introduction	to	random	walks	in	biology,	prime	examples	of	which	are	
the	spatial	displacements	through	time	( tracks) of simple animals foraging without 
the	benefit	of	cues	from	potential	resources.	Figure	3.1a	exhibits	two-dimensional	
random	walks	that	we	generated	using	a	computer	program	written	by	P. A.W.	The	
initial	versions	of	this	software	(Weston	1986)	were	used	for	demonstrating	orienta-
tion	mechanisms	in	an	insect	behavior	course	at	Michigan	State	University.	Byers	
(1993)	also	developed	similar	software	and	used	it	well	to	characterize	aspects	of	the	
dynamics of mass trapping and mating disruption. Beginning at a set point of origin, 
the	Weston	software	uses	a	computer’s	random	number	generator	to	pick	a	heading	
for	a	first	step	from	the	full	360°	range	of	possibilities.	One	step	of	set	 length	is	
taken.	Then,	the	computer	randomly	picks	headings	for	next	steps	of	length	equal	
to	the	first	step	from	a	normal	distribution	centered	on	the	heading	just	executed.	
Mover	meander	(amount	of	turning)	for	different	simulations	can	be	increased	or	
decreased	by	expanding	or	contracting	the	width	of	 the	normal	distribution	from	
which	new	headings	are	picked	(Fig.	3.1b).	Even	though	the	same	distribution	of	
permissible	headings	was	being	used	for	all	replicate	runs	of	Fig.	3.1a, the overall 
shapes	of	cumulative	tracks	differ	across	runs	because	of	additive	randomness	in	the	
selection of actual headings for each step.

The	random	walks	shown	in	Fig.	3.1a	are	of	the	“classical”	type,	typical	of	dif-
fusing	molecules	or	tiny	particles	exhibiting	Brownian	motion	visible	under	a	mi-
croscope	at	very	high	magnification.	Little	forward	bias	is	noted	when	spatial	dis-
placement	is	driven	mainly	by	random	collisions	of	submicroscopic	particles.	Any	
new	heading	is	equally	likely,	including	complete	reversal.
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3.2  The Correlated Random Walk

Spatial	 displacement	 by	 organisms	 is	 not	 collision-based.	 Here,	 movers	 carry	
a	 forward	bias	due	 to	both	 their	 inertia	and	use	of	propulsive	apparatus	evolved	
mainly	for	forward	rather	than	sidewise	or	backward	displacement.	An	example	of	
antlike	(15°	c.s.d.)	correlated	random	walks	can	be	viewed	in	Fig.	2.2,	where	the	
step length was much shorter and the run time longer than that shown in Fig. 3.1a. 
Such correlated random walks	share	attributes	with	classical	random	walks,	e.g.,	
both	exhibit	stochastic	properties,	and	summed	degrees	for	all	of	the	left	vs.	all	of	
the	right	turns	become	equal	through	time.	Indeed,	all	types	of	random	walks	are	
mechanistically	more	similar	than	different.	The	classical	random	walk	happens	to	
lie on the extreme of a continuum (Fig. 3.3b)	where	forward	bias	is	zero.	However,	
the	behavioral	and	ecological	consequences	of	displacing	with	and	without	forward	
bias	can	be	dramatic	over	the	short	foraging	intervals	typical	of	small	organisms,	as	
we	shall	see	in	Chap.	4.

Viewed	over	prolonged	periods	from	afar,	tracks	of	correlated	random	walkers	
appear	similar	but	are	not	identical	to	those	of	classical	random	walks	viewed	up	
close. This effect is demonstrated in Fig. 3.2,	where	a	random	walker	moving	with	
a	c.s.d.	of	5°	produces	a	track	having	low	meander	when	viewed	at	high	magnifi-
cation (Fig. 3.2b)	but	high	apparent	meander	when	viewed	at	 low	magnification	
(Fig. 3.2a).	From	the	perspective	of	its	body	size,	an	animal	may	be	moving	quite	
straightly,	but	small	 turns	accumulating	over	 time	cause	 the	overall	 track	 to	 turn	
back	on	itself	when	viewed	at	a	larger	scale.	Hence,	the	old	adage—“a	lost	person	

Fig. 3.1  (a)	Four	different	tracks	(each	beginning	at	s and ending at e) of computer-simulated ran-
dom	walkers	taking	a	total	of	50	steps.	Straight segments	reflect	individual	steps.	After	each	step,	
the	computer’s	random	number	generator	picked	a	new	heading.	In	(a), all directions out of a full 
360°	were	equally	probable	for	each	pick.	(b)	Explanation	of	the	Weston	mover	simulation	pro-
gram	showing	an	important	biological	feature—new	headings	are	randomly	picked	from	a	normal	
distribution	centered	on	the	previous	heading	and	the	possibilities	can	be	broadened	or	narrowed	
by	manipulating	the	circular	standard	deviation	(c.s.d.).	For	all	directions	to	be	equally	probable	
(as in (a)),	the	c.s.d.	must	approach	200°
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walks	in	circles.”	In	fact,	 it	 is	 impossible	for	any	biological	mover	to	maintain	a	
straight	course	over	appreciable	distance	without	using	some	distant	reference	point	
to	adjust	the	course	for	inevitable	drift	away	from	the	heading	at	the	outset.	While	
ballistic	(straight-line)	movement	is	the	rule	for	particles	such	as	photons,	it	is	an	
oddity	for	organisms.	Although	the	tracks	of	a	classical	random	walker	viewed	up	
close	and	that	of	a	correlated	random	walker	viewed	from	afar	may	appear	similar,	
the	probability	of	intersection	with	objects	near	the	former	will	be	higher	because	a	
locally	wider	track	is	being	cut	(compare	Fig.	3.1a to 3.2b). Movers with high c.s.d. 
values	are	better	local	searchers,	whereas	those	with	low	c.s.d.	are	better	at	finding	
distant resources.

3.3  Outward Dispersion as Influenced by c.s.d.

Dispersion	by	random	walkers	is	dramatically	affected	by	the	c.s.d.	of	the	distribu-
tion	from	which	new	headings	are	randomly	picked.	Tracks	for	a	population	of	bal-
listic movers released from a common point generate a wheel with randomly spaced 
spokes	(Fig.	3.3a).	As	the	c.s.d.	opens,	the	spokes	twist	increasingly;	by	10°	they	be-
come	a	tangled	disk	having	an	irregular	leading	edge	(Fig.	3.3a).	Disk	diameters	for	
common	run	times	shrink	with	increasing	c.s.d.	until	they	reach	a	minimum	when	
all	angles	for	new	headings	are	equally	probable.	Clearly,	maximum	net	dispersion	
falls	with	increasing	c.s.d.	and	the	drop	is	most	dramatic	for	c.s.d.	values	between	
5–40°	(Fig.	3.3b.),	the	zone	of	biological	random	walking.

Fig. 3.2  Tracks	of	a	Weston	random	walker	starting	at	s	and	displacing	with	a	c.s.d.	of	5°	 for	
30,000	steps	of	length	0.1	in	(a) and 500 steps of length 1.0 in (b). The overall effect is that the 
track	segment	of	(a) that is expanded in (b) is magnified 10 ×
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Fig. 3.3  (a)	Data	taken	from	records	of	the	overlaid	tracks	for	100	computer-simulated	random	
walkers	released	at	the	center	of	each	array	and	taking	250	steps,	each	of	length	1/10th	that	of	the	
steps in Fig. 3.1a. Dispersion decreases with rising c.s.d. as shown in (b), where c.s.d. is plotted 
against the greatest distance any of the 100 individuals in each array displaced from the starting 
point
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3.4  Outward Dispersion as Influenced by Time

The rate of increase for maximum net displacement of a population of random 
walkers	taking	a	constant	number	of	steps	per	unit	of	time	drops	with	elapsed	time	
of locomotion (Fig. 3.4).	At	the	start	of	any	run,	all	movement	is	outward	and	back-
tracking	is	impossible	because	no	track	exists	to	overwrite.	As	time	passes,	howev-
er,	the	probability	of	backtracking	progressively	rises	because	more	and	more	track	
exists	upon	which	to	backtrack.	Therefore,	the	rate	of	progression	into	new	territory	
falls	with	elapsed	time.	It	is	well	established	that	the	dispersion	for	classical	random	
walkers	grows	as	the	square	root	of	the	elapsed	time,	or	t 0.5.	This	observation,	first	
noted	in	the	eighteenth	century,	can	be	found	in	many	standard	mathematics	and	
physics	textbooks,	e.g.,	Feynman	et	al.	(1963).	The	30,	100,	and	200°	c.s.d.	data	of	
Fig. 3.4	support	this	rule,	as	evidenced	by	their	regression	equation	exponents	of	ca.	
0.5.	However,	the	regression	exponent	over	a	fixed	run	time	must	rise	to	1.0	as	the	
c.s.d.	drops	to	zero.	Thus,	over	the	relatively	short	run	time	displayed	for	the	movers	
of Fig. 3.4	with	a	c.s.d.	of	10°,	it	is	not	surprising	to	see	an	exponent	of	0.74.

Fig. 3.4  Mean	maximum	net	displacement	for	individual	random	walkers	as	a	function	of	elapsed	
time and c.s.d.; n = 5 for each datum
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3.5  Does a Population of Random Walkers Spread 
Indefinitely Away from the Point of Origin  
and, If So, Why?

The	answer	to	this	question	is	yes,	based	upon	physical	theory,	computer	simula-
tions,	and	long-running	experiments.	As	evident	from	Fig.	3.3a, populations of ran-
dom	walkers	dispersing	in	two	dimensions	from	a	common	origin	will	form	a	disk	
that expands ever more slowly with increasing elapsed time; and, such expansion 
will	continue	indefinitely.	The	disk	will	remain	internally	populated,	and	its	high-
est	average	density	will	always	be	at	the	origin,	although	the	density	gradient	over	
distance	will	become	flat	with	extended	run	times.

Introductions	 to	 diffusion	 in	 chemistry	 classes	 often	 emphasize	 that	 outward	
dispersion	of	diffusing	molecules	occurs	because	of	collisions	among	 them.	The	
argument is commonly made that the rate of outward progression of a population of 
molecules	slows	because	the	frequency	of	collisions	falls	as	the	molecules	spread.	
But,	the	random	walkers	considered	here	never	collide,	and	thus	the	concentration	
of	movers	behaving	independently	can	have	no	effect	on	outward	dispersion.

The	reason	spread	occurs	even	without	collision	is	quite	simple.	Unvisited	area	
in	an	unbounded	arena	will	always	exceed	visited	area.	Thus,	on	average,	the	proba-
bility	of	moving	into	unvisited	area	(outward	relative	to	the	movers’	point	of	origin)	
will	 always	exceed	 the	probability	of	moving	 into	visited	area	 (backward)	when	
new	headings	are	always	picked	randomly.	Likewise,	 the	average	diffusing	mol-
ecule	will	continue	to	disperse	outwards	even	when	collisions	with	like	molecules	
are	too	infrequent	to	be	the	main	driver	of	spread.	So,	all	populations	of	randomly	
moving	objects	in	unbounded	space	form	an	ever-expanding	universe	unless	acted	
upon	by	some	counterbalancing	force.

3.6  Maximum Net Outward Dispersion as Influenced  
by Mover Sample Size

Among	the	variables	identified	in	Chap.	2	that	must	be	known	for	full	interpreta-
tion	of	catch	in	traps	is	the	maximum	distance	a	population	of	random	walkers	can	
displace	from	an	origin	over	the	time	a	trap	operates.	This	measure,	combined	with	
plume	reach,	establishes	the	trapping	radius	or	sampling	range	of	the	trap	(Fig.	2.4).	
Maximum	dispersion	can	be	measured	experimentally	by	releasing	a	population	of	
marked	individuals,	allowing	them	to	disperse	for	a	defined	time,	and	then	recap-
turing	them	using	a	dense	trapping	grid	immediately	after	dispersion.	A	question	
that	follows	is—how	many	movers	must	be	released	from	a	common	origin	to	ac-
curately	assess	measures	such	as	maximum	dispersal	range?	The	computer	simula-
tions shown in Fig. 3.5	suggest	that	ca.	100	individuals	will	suffice	for	biological	as	
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well as classical random walkers.1 The considerable variability in maximum mover 
displacement across sample sizes of less than 50 movers (Fig. 3.5) suggests that 
measurable trapping radius can shrink significantly as the mover population density 
falls. This knowledge must be considered when interpreting low catch numbers as-
sociated with very low populations of movers.

3.7  Patterns in Random-Walker Ending Positions After  
a Short Period of Dispersion as Influenced by c.s.d.

The terminal positions of random walkers are of interest, as is the maximum net out-
ward dispersion they can achieve. Figure 3.6 demonstrates how the pattern of termi-
nal positions shifts with c.s.d. when 100 Weston movers were displaced for only 250 
steps. As the c.s.d. opened from 0°, terminal positions shifted from a perfect circle 
to an increasingly diffuse circle. By c.s.d. of 10°, the terminal distribution became 
quite uniform throughout the dispersion disk. By c.s.d. 30° and greater (data not 
shown), the density of movers becomes greatest in the interior and sparse around the 
disk perimeter. This knowledge suggests how the meander of real animals moving 

1 In fact, the maximum net outward dispersion will continue to grow with increased sample size, 
approaching the ballistic value as the sample size approaches infinity. However, one may show 
mathematically that this growth is logarithmic, and hence extremely slow. In particular, to see a 
value of the maximal dispersion close to the ballistic value, one would need to consider a sample 
size 2number of time steps, which is unrealistically large for runs of the durations seen in this study.

Fig. 3.5  Mean maximum net displacement from the starting point for simulated random walkers 
with low and high meander displacing for 1,000 steps of length 0.5 as influenced by the number of 
movers in the sample. N = 8––each datum resulted from eight runs
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in	the	field	might	be	judged	if	they	could	be	located	immediately	after	a	short	period	
of	dispersal	by,	e.g.,	then	inserting	a	dense	trapping	grid.	With	longer	elapsed	times	
for dispersion, the empty spaces within the dispersion circles for	the	random	walkers	
would	become	less	apparent	and	this	type	of	analysis	would	become	less	useful.2

3.8  Experimental Analyses of Tracks and Measures  
of Meander for Individuals

Locomotory	tracks	of	small	animals	can	be	captured	in	a	variety	of	ways.	The	senior	
author	does	this	as	a	laboratory	exercise	in	insect	behavior	class	simply	by	introducing	
a	walker	into	the	middle	of	a	featureless	arena	covered	by	Plexiglas™	overlaid	with	
clear	acetate	sheets.	The	animal’s	track	in	real	time	can	be	traced	by	felt	pen	onto	the	
acetate.	Tick	marks	at	regular	periods	along	the	track	provide	a	time	stamp	for	mea-
sures	of	velocity.	However,	the	standard	method	for	track-capture	is	video	recording	
using	a	system	that	provides	a	time	stamp	for	each	frame	and	known	magnification.	
Video	 technology	 is	 required	 for	 fliers;	however,	obtaining	meaningful	 amounts	of	
video	footage	of	small	fliers	dispersing	in	the	field	remains	an	unexplored	(albeit	wor-
thy)	research	area	because	it	requires	specialized	and	therefore	expensive	equipment.

Experimentalists	wishing	to	quantify	the	distribution	of	headings	for	steps	com-
prising	the	tracks	of	real	animals	face	an	important	operational	question—into	what	
lengths	should	the	track	be	broken?	We	suggest	that	the	animal’s	body	length,	includ-
ing	sensory	apparatus	such	as	antennae,	is	a	reasonable	unit	for	such	analyses.	Use	of	

2 Random	walks	 are	well	 studied	 in	 the	mathematics	 literature,	 see,	 e.g.,	 (Spitzer	 1976;	Feller	
1968).	In	particular,	it	is	well	understood	that,	provided	the	c.s.d.	is	nonzero,	each	of	the	correlated	
random	walks	considered	here	“looks	like”	an	uncorrelated	random	walk	over	sufficiently	large	
time and space scales. This fact, already illustrated in Figure 3.2, follows from an invariance prin-
ciple	stating	that	the	long-time	behavior	of	a	wide	variety	of	random	evolutions	is	effectively	de-
scribed	by	Brownian	motion	(the	Wiener	process).	An	invariance	principle	was	originally	proved	
by	Donsker	(1951)	for	uncorrelated	random	walks,	but	has	been	generalized	to	a	wide	variety	of	
correlated	walks,	see,	e.g.,	(Billingsly	1956;	Newman	and	Wright	1981).	However,	the	biological	
problems	considered	here	force	us	to	consider	these	walks	over	fixed	finite	time	and	space	scales	
too	short	for	this	universal	limit	to	be	completely	descriptive.

Fig. 3.6  Ending positions 
of	100	Weston	movers	after	
250 steps of displacing from 
the center of each array as 
influenced	by	c.s.d.	Mover	
size	for	c.s.d.	30	was	reduced	
to	minimize	eclipsing
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larger	track	segments	overlooks	points	in	space	that	the	animal	actually	visited	along	
the	way	to	a	segment	endpoint	and	will	underestimate	meander.	Analyzing	fractions	
of	a	body	length	leads	to	inclusion	of	wobble	in	the	gait	of	the	mover	that	may	be	
irrelevant to overall heading.

Tracks	 are	 quantified	 as	 follows:	 a	 track	 is	 broken	 into	 segments	 of	 declared	
length	 (e.g.,	 body	 length);	 the	 positions	 of	 track	 segment	 ends	 are	 recorded	 us-
ing,	 e.g.,	 a	digitizer;	 the	 angle	 comprised	by	a	preceding	vs.	 current	 segment	of	
track	(Fig.	3.7)	is	measured	or	computed;	and	a	frequency	histogram	of	headings	
is constructed (Fig. 3.8).	 It	 can	be	 tested	 for	 fit	 to	 a	 normal	or	 some	alternative	

Fig. 3.7  Demonstration of 
how angular headings for 
new steps are computed for a 
section	of	the	track	of	a	clas-
sical	random	walker.	s = start; 
e = end; α	=	subtended	angle

 

Fig. 3.8  Example	of	a	frequency	histogram	for	headings	of	track	steps	for	a	random	walker	having	
a	c.s.d.	of	ca.	13°.	Arrows reflect 1 standard deviation to the right and left	of	0°,	which	represents	
the previous heading
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distribution	and	then	parameters	such	as	c.s.d.	can	be	computed	as	a	measure	of	me-
ander.	Alternative	measures	of	meander	are	mean	absolute	value	of	degrees	turned	
per	track	segment	(degrees/distance)	or	degrees	per	time	(angular	velocity).	We	also	
offer	%	meander	as	an	additional	meander	measure;	it	is	computed	as:

 (3.1)

Figure 3.9	demonstrates	that	%	meander	values	are	extremely	high	over	both	long	
and	 short	 intervals	 for	 all	 random	walkers	 except	 those	moving	with	 tiny	 c.s.d.	
values	 (virtually	ballistic).	Finally,	 distance	per	unit	 time	 (velocity)	 is	 always	of	
interest	 in	 track	analyses,	as	 is	constancy	or	shifts	 in	any	of	 the	above	measures	
through time.

% ( ( / )) meander net displacement total displacement= −1 100×

Fig. 3.9  Percentage	of	meander	computed	as	per	Eq.	3.1	for	Weston	random	walkers	displacing	
for short and long intervals as a function of varying c.s.d. value. Over all run times, percentage 
meander values are high except for movers with tiny c.s.d. values
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Chapter 4
Intersections of Movers with Traps

©	The	Author(s)	2015	 
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5_4

4.1  Ballistic Movers—The Simplest Case

Let us deploy a trap having a diameter of length L at distance r from the common 
origin o	of	100	ballistic	movers	(Fig.	4.1). Simple inspection reveals that the pro-
portion	of	movers	intercepting	the	trap	and	defined	here	as	caught	( Prop. C ) is well 
approximated	by	L	divided	by	 the	circumference	of	 the	circle	centered	on	o and 
bisecting	the	trap,	or:

	 (4.1)

Prop. C falls nonlinearly with rising r as graphed in Fig. 4.2a; it is extremely sensi-
tive to small differences in r	near	the	trap,	but	changes	little	across	large	r values. 
This	effect	can	be	experienced	by	holding	a	thumb	very	close	to	one’s	eye,	and	then	
noting	the	apparent	size	of	the	thumbnail	when	moving	slowly	out	to	arm’s	length	
and	back.	This	 relationship	 is	 nonlinear	because	 r resides in the denominator of 
Eq.	(4.1),	rather	than	in	the	numerator.	However,	graphical	output	becomes	linear	
(Fig. 4.2b)	when	Eq.	(4.1)	is	inverted	to	yield	Eq.	(4.2):

 
(4.2)

and	1/Prop. C is plotted against r (Fig. 4.2b;	hereafter	referred	to	as	a	Miller–Ad-
ams–McGhee	(MAG)	plot).	Opportunity	is	thereby	afforded	for	computing	L from 
data on Prop. C as a function of r from an experiment using a single-trap, multiple-
release	configuration	like	that	of	Fig.	4.3.	Since	the	slopes	of	MAG	plots	(Fig.	4.2b) 
generated	by	ballistic	movers	consist	of	2π/L, L	is	revealed	by	dividing	2π	by	the	
MAG	plot	slope:

 (4.3)
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4.2  Random Walkers

So	long	as	they	have	the	capacity	to	reach	the	trap,	more	random	walkers	intercept	a	
trap	than	do	ballistic	movers	under	otherwise	identical	conditions	(Fig.	4.4a).	With	
increases	in	c.s.d.,	random	walkers	lay	more	track	in	the	vicinity	of	a	trap	and	are	
able	to	approach	it	laterally	and	from	the	rear,	as	well	as	frontally	(Fig.	4.4a (2)). 
These	behaviors	enhance	catch.	The	equivalent	effect	of	random	walking	vs.	forag-
ing in straight lines is diagrammed in Fig. 4.4b.	It	is	like	putting	side	panels	(black	
rectangles)	on	the	outward	tracks	of	ballistic	movers	(red	arrows)	so	that	more	an-
gles leading away from the origin produce intersections.

The	approach	developed	above	for	deriving	trap	length	or	plume	reach	from	the	
MAG	plot	data	for	ballistic	movers	(Fig.	4.2b)	can	be	applied	to	random	walkers.	
However,	when	2π	 is	divided	by	the	MAG	plot	slope	for	random	walkers	as	per	
Eq.	(4.3),	the	resultant	L value includes plume reach plus additional apparent length 
that we term gain, as diagrammed in Fig. 4.4b.	Gain	can	be	calculated	from	data	
graphed	as	a	MAG	plot	by	dividing	2π	by	the	MAG	plot	slope	and	then	subtracting	
the actual trap diameter, or:

 (4.4)

A	specific	example	of	this	procedure	is	provided	in	Fig.	4.5.	Gain	comprised	nearly	
70	%	of	L	in	this	example.	And,	the	proportion	of	L	being	gain	was	found	to	be	ca.	
70–80	%	across	a	range	of	biological	c.s.d.	values	(see	Fig.	3.3b),	trap	diameters,	
and	run	times	(data	generated	from	the	simulation	experiments	described	below).	
This	finding	is	notable	because	it	offers	a	means	to	estimate	plume	reach.	First,	an	
uncorrected L	value	can	be	computed	from	by	dividing	2π	by	the	slope	of	a	MAG	
plot of spTfer	data.	Then,	the	ca.	75	%	of	L	that	is	gain	is	subtracted	to	estimate	plume	

Gain trap or plume  diameter= − ( )L

Fig. 4.1  Trap of diameter L 
at distance r from the com-
mon origin o	of	100	ballistic	
movers. The proportion of 
ballistic	movers	intersecting	
the trap is well approximated 
by	L/circumference	of	the	
circle centered on o and 
bisecting	the	trap
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Fig. 4.2  (a)	Untransformed	graph	of	the	proportion	of	ballistic	movers	trapped	when	originating	
from various distances r	from	traps	of	varying	diameter	indicated	by	L. (b) Inverse plot of the same 
data.	This	type	of	plot	is	hereafter	referred	to	as	a	Miller–Adams–McGhee	or	MAG	plot
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Fig. 4.3  A	single-trap,	multiple-release	trapping	configuration	typical	of	that	used	in	field	experi-
ments	covered	in	Chap.	5.	T trap, R	a	point	of	release	for	a	set	number	of	movers	at	a	given	distance	
from	the	trap.	Movers	originating	from	a	common	distance	share	a	particular	marking

      

      

Fig. 4.4  (a)	Tracks	and	catches	of	100	computer-simulated	movers	operating	at	each	of	3	c.s.d.	
values	and	released	200	units	from	a	trap	of	diameter	100	units	and	taking	1,000	steps	of	1	unit.	(b) 
Top-down	view	of	the	net	effect	of	meander;	it	is	equivalent	to	broadening	the	outgoing	track	of	
a	ballistic	mover	so	that	it	intercepts	the	trap	over	a	wider	range	of	angles	than	it	otherwise	would	
have.	By	definition,	ballistic	movers	which	have	a	c.s.d.	of	zero	(b (1))
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reach in the same units as those used for setting distances of mover origin from the 
trap. The only other approach to estimating trap or plume reach of which we are 
aware	is	the	“effective	attraction	radius”	(EAR)	procedure	of	Byers	et	al.	(1989).	It	
produces	an	index	of	plume	reach	by	comparing	catch	in	a	baited	trap	to	that	of	an	
unbaited	trap.	However,	most	insect	monitoring	traps	do	not	catch	any	individuals	
when	unbaited;	 thus,	 the	EAR	approach	has	seen	limited	use	beyond	bark	beetle	
studies that use large vane traps.

4.3  Gain as Influenced by c.s.d. and Run Time

Gain	over	the	foraging	efficiency	of	a	ballistic	mover	is	strongly	influenced	by	the	
c.s.d. employed. This effect is graphed in Fig. 4.6 where the diameter of the single 
trap was small (10 units), step length was 1 unit, and movers were released at five 
distances,	 all	within	 80	 units	 of	 the	 trap.	Gains	were	 calculated	 from	MAG	plot	
slopes	 and	Eq.	 (4.3)	 along	with	 (4.4).	When	 foraging	 times	 are	 extremely	 short,	
ballistic	movers	had	the	highest	probability	of	intercepting	a	nearby	trap	(data	not	
shown)	because	they	were	guaranteed	to	progress	as	far	as	the	trap,	a	necessary	con-
dition for an interception (see Fig. 4.1).	However,	with	increasing	run	times,	random	
walkers	outperformed	ballistic	movers	and	thus	returned	increasing	gains	(Fig.	4.6). 
The	optimal	c.s.d.	in	this	experiment	with	a	small	trap	was	consistently	ca.	25°	for	

Fig. 4.5  MAG	plot	for	100	Weston	random	walkers	per	sample	and	moving	3,000	steps	of	1	with	
a	c.s.d.	of	10°	and	intersecting	a	trap	having	a	diameter	of	100	units.	N = 20 runs per datum
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short, medium, and long run times (Fig. 4.6).	The	c.s.d.	that	optimizes	gain	can	be	
thought	of	as	producing	movement	that	maximizes	the	apparent	size	of	the	trap	or	
reach of a plume. Doing so is clearly advantageous when foraging for resources.

The	existence	of	a	stable,	optimal	solution	of	ca.	25°	c.s.d.	 to	 the	problem	of	
finding	a	single,	small,	and	nearby	object	10	×	body	size	raises	 the	prospect	 that	
the	 c.s.d.	 expressed	 during	 foraging	 should	 be	 a	 biological	 trait	 selectable	 upon	
resource	size,	number,	and	distribution	typically	encountered.	Small	c.s.d.	values	
(less	meander)	were	 inefficient	 in	 this	 experiment	 because	many	movers	 passed	
the trap and did not return within the allotted time (Fig. 4.7). These movers un-
dersearched their environment as they dispersed from the origin. Very large c.s.d. 
values (high meander) were more efficient than tiny ones, particularly at long run 
times (Fig. 4.6). But movers with a very high c.s.d. oversearched as they dispersed 
(Fig. 4.7).	The	optimal	c.s.d.	achieves	the	best	tradeoff	in	these	search	extremes.

4.4  Optimal c.s.d. as Influenced by Trap or Resource Size

Optimal	c.s.d.	for	finding	a	single,	nearby	object	increases	as	size	of	the	object	di-
minishes (Fig. 4.8).	Smaller	objects	require	a	more	thorough	search	if	intersections	
are	to	be	realized.	Conversely,	intersections	with	larger	plumes	are	more	probable	

Fig. 4.6  Foraging gain as a function of c.s.d. and run time when trap diameter was 10 units and 
step	length	was	1.0.	Each	datum	was	computed	from	a	MAG	plot	using	20	runs	of	100	Weston	
movers	released	at	5	distances	from	the	trap.	Only	the	linear	portions	of	MAG	plots	were	used,	i.e.,	
release	distances	too	far	from	the	trap	to	be	reached	with	high	probability	and	thus	resulting	in	up-
turning	data	were	excluded.	A	gain	of	zero	indicates	a	trapping	rate	identical	to	that	for	a	ballistic	
mover.	S.E.M.	bars	were	ca.	10	%	of	these	means
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Fig. 4.7  Tracks	accumulating	around	a	trap	of	diameter	10	units	when	100	Weston	random	walk-
ers	were	released	40	units	to	the	left of the trap in each panel. The c.s.d. of the respective movers is 
given with each panel. Pictures were increasingly cropped with decreasing c.s.d

        

Fig. 4.8  Change	in	optimal	c.s.d.	for	realizing	maximal	gain	as	influenced	by	trap	size.	Gain	was	
measured in the manner of Fig. 4.6.	S.E.M.	bars	averaged	less	than	10	%	of	these	means
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because	they	present	much	more	distance	across	which	any	intersection	yields	the	
whole	prize.	Animals	foraging	for	large	resources	can	therefore	afford	to	displace	
with	less	meander,	which	is	also	likely	to	decrease	the	time	required	to	find	a	given	
resource	at	some	distance	from	the	mover’s	origin.	Gains	are	appreciable	across	a	
wide	range	of	c.s.d.	values	and	trap	sizes	as	seen	in	Fig.	4.8. The existence of promi-
nent foraging optima at particular c.s.d. values supports the legitimacy of random 
walking	as	a	search	tactic	and	presents	a	conceptual	framework	quite	different	from	
that	held	by	previous	investigators	who	expected	that	the	optimal	tactic	for	finding	
plumes was movement in straight lines relative to the wind direction (see references 
in Murlis et al. (1992)).

4.5  What Aspect of Plume Geometry Correlates Best  
with Capture Probability?

We	answered	this	question	by	conducting	the	trapping	simulations	detailed	in	the	
caption of Fig. 4.9.	The	shape	of	the	trap	was	a:	line,	circle,	or	square,	whose	length,	
diameter,	 or	 side	 was	 manipulated	 and	 catch	 recorded.	 Catch	 was	 very	 poorly	
correlated	with	object	area,	not	tightly	correlated	with	object	length	or	silhouette,	
but	well	correlated	with	object	perimeter	(Fig.	4.9).1 This finding supports the idea 
that	 trapping	 is	 fundamentally	a	phenomenon	of	 intersection.	A	 trap	or	plume	of	
any	shape	or	size	can	be	intersected	when	approached	from	any	side	or	angle.	But	
only	when	its	boundary	is	penetrated	does	an	intersection	occur.	Thus,	simple	pe-
rimeter	of	a	trap	or	its	plume	is	the	aspect	best	correlated	with	capture	probability.	
Near-linearity of Fig. 4.9 when perimeters exceeded 100 units indicates that trap 
captures will increase approximately linearly with plume reach when mover density 
is constant.

1 Intersection	probabilities	have	been	extensively	studied	for	Brownian	motion	(Wiener	process)	
and	uncorrelated	random	walks.	In	particular,	Spitzer	(1964)	proved	an	asymptotic	formula	that	
can	be	used	to	compute	the	behavior	of	the	expected	catch	C( t) at time t →∞,  in the limit t , for a 
trap positioned in an infinite plane populated with a density D of Brownian movers:

C t Dt
t t

rc T( )
ln (ln )

[ ( ) ln ] 2 1 1 1 22π γ+ + + −








  

where γ	≈	0.5772…	is	Euler’s	constant	and	rc( T)	is	“conformal	radius,”	or	“logarithmic	capacity,”	
of	the	trapping	radius	(see	Kuz’mina	for	the	definition).	This	result	is	not	particularly	useful	for	our	
analysis	because	we	study	correlated	walks	over	time	scales	too	short	for	this	universal	Brownian	
behavior	to	emerge.	However,	the	above	relation	does	suggest	that	the	conformal	radius	of	the	trap	
might	be	the	correct	geometric	parameter	to	correlate	with	capture	probability,	not	the	perimeter	as	
considered	in	Sect.	4.5.	In	this	regard,	it	is	significant	that	each	of	the	traps	considered	in	Fig.	4.9 
is	a	convex	body	(for	which	conformal	radius	and	perimeter	are	comparable).	We	do	not	expect	
the	relationship	between	perimeter	and	catch	to	extend	to	nonconvex	traps,	as	such	traps	may	have	
deep	fjords	in	their	boundary	which	greatly	increase	perimeter	without	increasing	catch.	Indeed,	a	
trap	with	a	fractal	boundary	could	have	infinite	perimeter	and	finite	catch.
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4.6  Contrasts of Ellipsoid Plumes with Discoid Plumes

As	introduced	in	Chap.	2,	traps	baited	with	attractants	typically	operate	in	mov-
ing air where the plume elongates into an ellipsoid (Fig. 4.10a)	rather	than	a	disk	
(Fig. 4.10b). Elongating a discoid plume into a 10 (length) × 1 (maximum width) 
ellipse	increases	the	longest	axis	by	only	1.5	fold	(Fig.	4.10c) and does not change 
the	perimeter.	If	movers	are	released	equidistantly	from	a	trap	generating	an	ellip-
soid plume, as is standard procedure in field tests of the effectiveness of attractive 
traps, then the simple symmetry of Fig. 4.10b	for	discoid	plumes	is	disturbed.	All	
movers	 are	 now	no	 longer	 released	 equidistantly	 from	 the	 plume,	 as	 shown	 by	
the length of arrows in Fig. 4.10a and b. Rather, movers happening to originate 
downwind	from	the	 trap	are	advantaged	because	 less	 travel	 is	 required	 to	 reach	
the plume (right side of Fig. 4.10a).	When	released	in	a	circle	centered	on	the	trap,	
the mean distance of movers from the ellipsoid plume of Fig. 4.10a	was	ca.	80	%	
of	the	distance	from	the	trap.	But,	ballistic	movers	originating	upwind	of	the	trap	
emitting	an	ellipsoid	plume	are	disadvantaged	because	the	plume	presents	only	its	
width and not its length.

Fig. 4.9  Demonstration	that	catch	of	random	walkers	in	a	trap	is	well	correlated	with	trap	perim-
eter.	A	total	of	5,000	Weston	random	walkers	having	a	c.s.d.	of	20°	were	randomly	seeded	into	an	
environment	4	times	the	size	of	the	computer	screen	and	allowed	1,000	steps	of	1	unit.	The	pro-
gram	recorded	the	number	of	movers	trapped.	Movers	happening	to	originate	within	the	confines	
of a trap were excluded from these data; only movers intercepting the trap when originating from 
outside are shown. Each datum symbol	carries	the	shape	of	its	trap	but	not	its	actual	size,	which	
varied with perimeter. S.E.M. values typical for this experiment are shown for the linear trap
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The	net	impact	of	these	shifts	on	probability	of	capture	and	gain	was	quantified	
by	simulation	experiments	with	Weston	movers.	For	each	run	( N = 10 runs per set of 
conditions),	100	movers	with	representative	c.s.d.	values	spanning	from	0	to	200°	
were	released	for	5,000	steps	of	1	unit	at	6	distances	from	one	end	of	an	ellipsoid	
plume	50	units	long	and	5	units	at	maximum	width.	Half	of	these	release	distances	
exceeded plume length. The distances of release used in data analyses were cor-
rected for the plume proximity effect noted in Fig. 4.10a	by	multiplying	distance	
from	the	trap	by	0.8.	Gain	was	calculated	by	subtracting	the	actual	plume	length	
(50) from L	values	calculated	by	dividing	2π	by	the	MAG	plot	slopes.

Fig. 4.10  Contrasts	 in	 the	distances	 ( length of arrows) movers must displace to reach plumes 
( pink)	when	released	equidistantly	from	a	trap	in	moving	air	(a) and still air (b). The tiny circles 
atop the dashed large circles	represent	an	arbitrary	selection	of	positions	out	of	360°.	(c) Demon-
stration that collapsing circles into 10 × 1 ellipses results in a longest axis of 1.5 times the original 
circle	diameter.	These	measures	were	taken	by	ruler	while	manipulating	rings	of	string
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The L	value	measured	for	ballistic	movers	released	in	circles	centered	on	one	end	
of the 50 × 5 unit ellipsoid plume was 21 rather than the actual 50 units of length. 
Therefore, L	for	this	ellipsoid	plume	approached	from	all	angles	by	ballistic	movers	
was	only	42	%	of	its	actual	longest	length.	This	reduction	can	be	explained	by	the	
preponderance	of	ballistic	movers	that	approached	the	plume	obliquely	rather	than	
perpendicularly to the long axis (see Fig. 4.10a while envisioning arrows departing 
in all directions from each origin).

By	contrast,	random	walkers	were	considerably	less	disadvantaged	by	originat-
ing	at	oblique	angles	to	the	long	axis	of	an	ellipsoid	plume.	The	gain	values	record-
ed here (Fig. 4.11) were only slightly less than those recorded for a discoid plume 
of similar perimeter (see Fig. 4.8,	diameter	40	units).	Likewise,	the	c.s.d.	optimum	
realized	here	of	15°	nearly	matched	the	20°	maximum	for	a	discoid	plume	of	similar	
perimeter (Fig. 4.8).	The	effects	of	ellipsoid	plume	size	and	duration	of	experimen-
tal runs were also very similar to those already reported for discoid plumes. Finally, 
simulations	using	Weston	movers	 executing	various	 c.s.d.	 values,	 various	plume	
sizes,	and	run	times	revealed	that	ca.	70–90	%	of	L	values	were	attributable	to	gain	
and the remainder to plume reach.

Fig. 4.11  Gain	in	foraging	efficiency	for	computer-simulated	random	walkers	released	in	concen-
tric	circles	from	one	end	of	an	ellipsoid	plume	50	units	long	×	5	units	wide	as	influenced	by	c.s.d.	
S.E.M.	bars	were	ca.	10	%	of	these	means
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4.7  Setting the Stage for Estimating Plume Reach  
from Field Experiments Measuring spTfer

Availability	of	the	Weston	mover	simulations	allowed	us	to	generate	a	set	of	stan-
dard curves (Fig. 4.12)	useful	in	estimating	plume	reaches	from	MAG	plot	slopes	
of spTfer data (proportion of movers caught when originating at a particular dis-
tance)	from	field	experiments	with	real	animals.	We	consider	this	approach	to	be	
more	straightforward	and	objective	than	calculating	an	L	from	MAG	plots	and	then	
subtracting	a	percentage	from	it	to	account	for	gain.	Figure	4.12	was	produced	by	
recording	the	proportion	of	simulated	movers	trapped	after	release	in	4–5	concen-
tric	circles	around	one	end	of	ellipsoid	plumes	of	length	3,	10,	30,	and	100	units	
and each having a greatest width of 0.1 × length. Each release employed 100 mov-
ers, and 20 such releases were completed for conditions that, in addition to plume 
length,	included	using	c.s.d.	values	of	6,	15,	and	30°	and	run	times	of	1,000,	5,000,	
and	10,000	steps.	This	range	of	conditions	was	judged	likely	to	encompass	the	key	
variables	coming	into	play	when	biological	random	walkers	respond	to	an	attrac-
tive	trap	in	the	field,	e.g.,	an	insect	responding	to	a	monitoring	trap	baited	with	sex	
pheromone.	MAG	plots	were	made	of	the	respective	spTfer data and then the plume 
reach	was	plotted	against	the	MAG	slope	(Fig.	4.12).

Fig. 4.12  Standard	curves	generated	by	Weston	mover	simulations	(conditions	explained	above) 
and	useful	for	converting	MAG	plot	slopes	of	spTfer data into estimates of plume reach. The units 
for	plume	reach	would	be	the	same	as	the	units	used	for	distances	of	release	of	movers	from	the	
trap
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Figure 4.12	functions	as	a	look-up	graph	for	interpreting	MAG	plot	slopes.	As	
an hypothetical example, let us postulate that researchers are developing a trapping 
system	for	the	emerald	ash	borer,	a	devastating	invasive	pest	of	ash	trees	in	the	USA	
(Herms	and	McCullough	2014).	Imagine	that	the	trap	emits	host-tree	odors.	These	
researchers	release	marked	beetles	at	10,	20,	30,	40,	and	50	m	in	multiple	directions	
from	their	prototype	trap	and	record	the	proportion	of	marked	beetles	appearing	in	
the trap over several days after release. They plot distance of release on the x-axis 
vs.	1/proportion	of	beetles	recovered	on	the	y-axis. Imagine that the first four data 
points fall in a straight line; however, the 50 m datum shows upturn. The latter point 
should	therefore	not	be	included	for	the	slope	analysis.	Imagine	that	the	MAG	plot	
slope	for	the	first	four	data	points	happened	to	be	1.1.	We	then	go	to	this	point	on	the	
x-axis of Fig. 4.12	and	examine	the	possibilities	for	plume	reach	of	this	new	trap.	
These	researchers	would	find	that	the	attractive	reach	of	their	trap	was,	at	best,	less	
than	10	m.	Moreover,	for	 the	plume	reach	to	be	this	 large,	 the	emerald	ash	borer	
must	move	with	a	small	c.s.d.	and	not	be	highly	active	(fits	only	short	run	time	of	
Fig. 4.12).	Given	that	c.s.d.	values	of	foraging	insects	can	be	larger	than	6°	and	that	
these	beetles	are	known	to	be	active	for	hours	on	balmy	days,	it	is	highly	probable	
that the plume reach of this hypothetical new trap was very short, meaning that it is 

Fig. 4.13  The y-intercepts	of	MAG	plots	of	spTfer	data	for	Weston	movers	displacing	1,000	steps	
of 1.0 and using differing c.s.d. values. Extending the run times diminished y-intercept values 
across all c.s.d. values

        

4.7	 Setting	the	Stage	for	Estimating	Plume	Reach	from	Field	Experiments	…
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not	a	great	tool	for	detecting	this	pest.	On	the	other	hand,	if	the	MAG	plot	slope	from	
this	hypothetical	experiment	proved	to	be	0.1	or	0.05,	such	a	trap	could	be	ranked	as	
generating	a	plume	of	40	m	or	more,	which	would	be	conducive	to	beetle	detection.

The y-intercepts	of	MAG	plots	of	spTfer data can also help estimate plume reach. 
Figure 4.13 demonstrates that graphical profiles of y-intercept vs. c.s.d. vary with 
the	size	of	elliptical	plumes.	A	y-intercept	greater	than	4	can	be	obtained	only	when	
the	plume	reach	is	small.	Likewise,	a	y-intercept > 1.5 suggests that the movers gen-
erating	those	data	displaced	with	a	c.s.d.	somewhere	between	3	and	20°.	Negative	
y-intercepts	for	MAG	plots	are	associated	with	plumes	that	are	very	small.

The	following	chapter	will	provide	actual	examples	of	how	plume	reach	can	be	
estimated from spTfer	data	generated	by	real	animals	in	the	field.	It	will	also	demon-
strate	how	to	estimate	mover	dispersive	distance	and	absolute	density	for	real	rather	
than computer-simulated traps and movers.
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Chapter 5
Interpreting Catch in a Single Trap

©	The	Author(s)	2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly, 
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5.1  A Simple Trapping Equation

Figure	2.5	and	Eq.	(2.1)	of	Chap.	2	suggested	how	catch	in	a	trap	can	be	computed	
when	we	know:	(i)	the	number	of	movers	( M) present in each annulus of a trap-
ping	area	( Mden),	and	(ii)	the	probability	of	catch	for	each	annulus	( spTfer). Then, 
one sums across all annuli the spTfer	value	multiplied	by	Mden.	However,	a	simpler	
trapping	equation	can	be	formulated	if	the	average	findability	×	efficiency	×	reten-
tiveness	(abbreviated	as	Tfer) for the set of animals within the whole trapping area is 
known.	Then,	catch	( C)	is	given	simply	by:

 (5.1)

5.2  Converting spTfer into Tfer

But, calculating Tfer	from	known	spTfer values is less straightforward then it might 
first appear. Simply averaging the spTfer values for all annuli of a trapping area 
would overestimate Tfer. The flaw in doing so is that the area of the respective annuli 
increases	with	radius,	albeit	only	with	r and not r 2 as for area of a circle (Fig. 5.1). 
Therefore,	the	number	of	target	organisms	in	each	enlarging	annulus	also	increases	
when	the	animals	are	distributed	randomly	across	a	trapping	area.	For	example,	a	
spTfer value for a Fig. 5.1 annulus with an r	of	180	applies	to	threefold	more	ani-
mals	then	would	be	true	for	an	annulus	with	an	r	of	60.	Thus,	the	calculation	of	Tfer 
requires	averaging	weighted	by	the	number	of	animals	in	each	annulus,	or	by	an-
nulus	area	when	the	number	of	animals	is	unknown.	One	approach	for	computing	
the	weighted	average	is	demonstrated	in	Table	5.1; it yields a Tfer of 0.12 for the 
experimental	conditions	of	Table	5.1.1

1 An	even	simpler	calculation	yielding	the	same	result	is	to	use	the	total	of	spTfer × annulus area 
and	divide	by	total	trapping	area.

C T Mfer den= ×
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 (5.2)

Equation	(5.1)	has	been	confirmed	experimentally.	One	validation	employed	com-
puter	 simulations	 using	 the	 conditions	 of	Table	5.1.	 However,	movers	were	 not	
released	at	prescribed	distances	from	the	trap.	Rather,	they	were	seeded	randomly	

Mean AnnulusArea MeanAnnulusArea( ) /spT Tfer fer× =

Table 5.1  An	example	of	how	a	set	of	spTfer	values	can	be	converted	to	Tfer. The data used were 
generated	by	Weston	movers	displacing	5,000	steps	of	0.2	with	a	c.s.d.	of	15°.	The	single	trap	was	
a	disk	of	diameter	50.	Annulus	radius	is	given	as	the	outer	limit.	No	movers	were	caught	at	r of 
180.

Distance 
movers 
released from 
trap

Annulus	area Proportion 
caught = spTfer

spTfer × annulus area

30 2,826 0.79 2,233
60 8,478 0.36 3,052
90 14,130 0.16 2,261

120 19,782 0.047 930
150 25,434 0.005 127

Mean for column 90 14,130 0.27 1,715
1,715/14,130	=	0.12	=	Tfer

Fig. 5.1  Demonstration	that	the	area	of	a	disk’s	annuli	increases	linearly	with	radius	(r)	while	disk	
area	increases	by	πr2.	Annulus	r	was	arbitrarily	taken	as	the	outer	limit
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at	known	densities	into	a	trapping	area	whose	radius	was	determined	by	measuring	
maximum net displacement of a population of 100 movers under the same con-
ditions,	but	released	from	a	single	point.	As	Eq.	(5.1)	prescribes,	catch	increased	
linearly with Mden (Fig. 5.2 a). The consistent slope of 0.12 directly reveals Tfer and 
the	exact	match	with	the	0.12	value	above	validates	the	procedure	of	Eq.	(5.2).

However,	 we	 actually	 discovered	 Eq.	 (5.1)	 during	 earlier	 field	 experiments	
(Miller et al. 2010) using codling moths released at set densities into large field 
cages,	each	covering	12	full-sized	apple	trees	and	containing	a	single	sex	phero-
mone-baited	trap	like	that	of	Fig.	1.3.	Catch	accumulating	over	several	days	after	
release	of	laboratory-reared	moths	increased	linearly	with	insect	density	(Fig.	5.2b) 
in	accordance	with	Eq.	(5.1)2. But, the Tfer	revealed	by	the	slope	of	the	regression	
equation	for	caged	codling	moth	catch	was	high	(0.5)	because	the	moths	were	not	
free to emigrate. Forced proximity of moths and the trap guaranteed high spTfer 
values for all moths within a cage, and thus an unusually high Tfer relative to values 
we	shall	encounter	below	for	the	open-field	situation.

5.3  From Where Does most of the Catch  
Accumulating in a Trap Originate?

One	might	surmise	that	most	of	the	random	walkers	recovered	from	a	trap	origi-
nated	very	near	that	trap.	However,	such	an	assertion	would	be	incorrect	for	movers	
distributed	 randomly	 throughout	 a	 trapping	 area.	As	 introduced	 in	Chap.	 3,	 and	
reconfirmed in Fig. 5.3 under the experimental conditions generating the results 
of	 Table	 5.1, spTfer	 for	 biological	 random-walkers	 initially	 falls	 nonlinearly	 but	
smoothly	with	distance	of	mover	origin	from	a	trap.	However,	when	distances	of	
origin	are	extended	so	far	 that	few	random	walkers	reach	the	trap	within	the	run	
time	of	the	experiment,	MAG	plots	(Chap.	4)	are	not	linear	throughout;	the	depar-
ture from near-linearity is seen at the right side of Fig. 5.3b, while such a transition 
is	undetectable	in	Fig.	5.3a.	For	this	reason,	only	the	linear	portions	of	MAG	plots	

2 For	independent	random	movers	under	study	here,	the	fundamental	Equation	(5.1)	is	provable	
mathematically for the expected C,	which	corresponds	by	the	law	of	large	numbers	to	the	average	
value	of	C	over	many	repeated	trials,	as	in	Section	5.5.	Indeed,	the	probability	that	a	particular	
mover	is	captured	is	just	Tfer. It follows that the expected catch is simply

where	as	above	Mden	is	the	number	of	movers	in	the	trapping	area.	This	argument	may	make	Equa-
tion	(5.1)	seem	almost	tautological.	Yet,	in	the	derivation	we	used	in	a	critical	way	the	fact	that	the	
capture	events	of	distinct	movers	are	“stochastically	independent,”	which	is	to	say	that	the	prob-
ability	of	a	given	mover	being	captured	is	not	influenced	in	any	way	by	the	trajectories	of	the	other	
movers.	This	is	true	by	fiat	for	the	Weston	movers,	but	is	not	obvious	for	real	biological	movers.	
However,	the	validity	of	Equation	(5.1)	in	the	cage	experiments	of	Miller	et	al.	(2010)	strongly	
supports the hypothesis of stochastic independence of capture events for codling moths.

denM

fer fer den
j=1

C = T = T xM∑
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Fig. 5.2  Demonstrations	that	capture	increases	linearly	with	the	density	of	Weston	movers	intro-
duced into the trapping area of a single trap. (a)	Results	from	computer-simulated	random	walkers,	
details	in	text	above.	(b) Results from large-cage experiments using codling moths (Miller et al. 
2010).	Such	research	validates	Eq.	(5.1)	and	(5.2)
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Fig. 5.3  Nontransformed (a)	and	MAG	plot	(b)	of	catch	probability	as	influenced	by	distance	of	
mover origin from a trap as seen across the full range of distances resulting in any catch. These 
data	were	generated	by	the	computer	simulations	used	for	Table	5.1.	No	catch	was	obtained	when	
r exceeded 150. Error bars indicate S.E.M.
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should	be	used	when	estimating	L	values	(Chap.	4).	However,	a	wider	range	of	r 
values,	including	those	resulting	in	little	catch,	must	be	included	when	estimating	
the	maximum	for	trapping	radius	or	the	favored	zone	of	origin	of	the	movers	recov-
ered from a trap.

As	documented	in	Fig.	5.1	above,	the	area	of	the	annuli	comprising	a	trapping	
disk	rises	linearly	with	r, while spTfer falls nonlinearly with increasing r (Fig. 5.3a). 
The	zone	producing	the	most	catch	can	be	identified	as	the	maximum	in	a	plot	of	
( spTfer × annulus area) as a function of r (referred to hereafter as a Miller plot). For 
biological	random	walkers,	the	zone	contributing	the	most	catch	lies	just	short	of	
the middle of the trapping radius (Fig. 5.4).	For	example,	60	%	of	the	catch	for	mov-
ers with a 15°c.s.d.	was	drawn	from	between	radii	30	and	90	of	a	trapping	radius	
whose	limit	was	150.	The	zone	close	to	the	trap	yields	little	catch.	Even	though	it	
experiences	the	highest	probability	for	plume	encounter,	it	comprises	a	very	small	
portion	of	the	total	trapping	area.	The	zone	far	from	the	trap,	but	yet	within	the	trap-
ping	area,	yields	little	catch	because	spTfer is fast falling even though annulus area 
and	thus	number	of	movers	experiencing	that	spTfer	continues	to	rise.	So,	when	just	
a	few	random	walkers	are	captured	in	a	trap,	it	is	likely	they	originated	from	the	
mid-zone	and	not	near	the	trap	or	from	the	perimeter	of	a	trapping	area.

Subsequent	to	our	discovery	of	the	“sweet-distance”	phenomenon	for	trapping,	
a	similar	idea	was	found	in	Eq.	(3)	of	Östrand	and	Anderbrant	(2003)	dealing	with	
cumulative	proportional	catch	(CPC).	However,	the	importance	and	simplicity	of	
this	phenomenon	seems	to	have	gone	unappreciated	by	the	various	researchers	who	
cite	this	reference	but	do	not	mention	CPC.

Catch	of	ballistic	movers,	on	the	other	hand,	remains	constant	across	all	zones	
throughout a trapping area (except for low catch near the trap) (Fig. 5.4)	because	
spTfer	is	never	reduced	by	backtracking.	Rather,	catch	of	ballistic	movers	abruptly	
drops only when their dispersive capacity is exceeded.

The Fig. 5.4	experiment	provided	further	insight	into	the	problem	of	optimizing	
c.s.d.	when	foraging	for	resources.	When	a	single,	modestly-sized	object	was	pre-
sented	at	5,000	steps	from	movers,	those	with	c.s.d.	values	of	0	and	5°	had	the	high-
est	probability	of	finding	the	resource	at	the	greater	distances.	However,	the	picture	
reverses	when	the	resource	happens	to	be	close	at	hand.	If	the	density	of	randomly	
distributed	 resources	were	 high,	 some	would	be	guaranteed	 to	 be	 close	 at	 hand.	
Then,	a	larger	c.s.d.	might	suffice	and	could	be	favored.	However,	the	smaller	c.s.d.	
values	would	be	favored	under	low	resource	densities,	because	larger	net	displace-
ments	would	be	required.	The	tradeoffs	encountered	in	this	situation	are	obvious,	
further	supporting	the	notion	that,	like	other	genetically-based	traits,	the	c.s.d.	val-
ues	organisms	display	should	be	selectable	upon	resource	density	and	distribution.

Some	 insect	studies	have	shown	that	 it	can	be	advantageous	for	organisms	 to	
modulate c.s.d. values in accordance with how recently the forager has encountered 
a	 resource.	For	example,	walking	house	 flies	 foraging	 for	 invisible	 sugar	depos-
its	 on	 a	 flat	 substrate	use	 a	particular	default	 c.s.d.	 before	 encountering	 the	 first	
resource	by	 chance	 (Bell	 1991).	After	 consuming	 that	 deposit,	 the	 flies	 displace	
with an opened c.s.d. promoting intense local search for other deposits that might 
be	nearby	as	in	a	resource	patch.	When	this	tactic	is	no	longer	rewarding,	the	c.s.d.	
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reverts	to	the	smaller	default	value,	which	sensibly	facilitates	searching	at	greater	
distances for other patches.

5.4  Preparing to Put Eq. (5.1) to Work

The	 introductory	 chapter	 declared	 that	 establishing	 trapping	 methodologies	 to	
quickly,	cheaply,	and	accurately	estimate	the	absolute	density	of	small	animals	dis-
persing	randomly	was	 the	core	applied	goal	of	 this	 investigation.	Are	we	getting	
close	to	that	goal?	Can	Eq.	(5.1)	do	the	job?	And,	what	information	must	be	in	place	
to	apply	Eq.	(5.1)?

Let’s	address	 these	questions	 in	reverse	order.	Equation	(5.1)	( C = Tfer × Mden) 
enables	one	to	solve	for	any	of	its	three	variables	when	any	two	of	them	are	known.	
In practice, catch C	will	always	be	known,	because	some	number	caught	(be	it	zero	
or many) always results from any trapping research. Mden	could	be	experimentally	
varied as per Fig. 5.2 and then Tfer calculated as:

Fig. 5.4  Graphs	documenting	the	radii	for	greatest	capture	for	a	single	trap	of	diameter	50	units	
as	influenced	by	mover	c.s.d.	Movers	displaced	for	5,000	steps	of	0.2	units.	For	this	run	time,	the	
chosen	radii	exceeded	the	maximum	dispersion	for	movers	with	c.s.d.	30	and	15°,	but	not	5	and	
0°.	The	maximal	trapping	radius	occurs	where	descending	graphs	reach	the	x-axis.	Annulus	area	is	
directly	correlated	with	mover	numbers	when	the	mover	population	is	distributed	randomly	across	
a trapping area. Therefore, the y-axis	can	be	 interpreted	as	 relative	numbers	of	movers	caught.	
Large	areas	under	segments	of	any	curve	equate	to	high	catches.	This	type	of	graph	is	designated	
as	a	Miller	plot.	S.E.M.	bars	were	<	20	%	of	the	means
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	 (5.3)

Alternatively,	Mden	can	be	solved	for	if	Tfer and C	are	known,	i.e.,

	 (5.4)

However,	in	both	the	cases,	one	needs	to	know	the	trapping	radius	(or	area)	to	asso-
ciate	units	of	area	to	the	catch.	As	noted	in	Chap.	1,	pest	managers	harvest	a	plethora	
of	catch	numbers,	but	they	do	not	know	to	what	area	those	numbers	apply.

Judged	 from	 the	published	 literature	and	our	above	analyses,	 the	most	 acces-
sible	method	 for	 establishing	 trapping	 radius	 is	 to	 deploy	 a	 single	 trap,	 release	
known	numbers	of	marked	animals	at	set	distances	and	directions	from	the	trap	(see	
Fig.	4.3),	and	then	trap	those	animals	to	exhaustion.	The	untransformed	spTfer data 
can	then	be	plotted	as	in	Fig.	5.3a	above.	A	first	approximation	of	trapping	radius	
is	offered	by	where	catch	drops	to	zero.	However,	a	challenge	to	establishing	the	
limit	for	trapping	radius	from	a	plot	like	Fig.	5.3a	is	accuracy	in	judging	whether	
catch	actually	ceased,	or	whether	it	simply	became	undetectable	because	low	sam-
pling power resulted in false negatives, i.e., catch would have occurred if more ani-
mals	were	released.	This	problem	is	particularly	acute	for	ballistic	or	near-ballistic	
movers	whose	capture	profiles	approach	zero	catch	very	slowly.	However,	a	Miller	
plot (Fig. 5.4)	 can	 sharpen	 judgments	 about	 the	 limit	 to	 trapping	 radius.	A	peak	
followed	by	a	smooth	down-turn	in	such	a	graph	indicates	that	the	movers	are	non-
ballistic	 and	 that	 the	 limit	 to	 trapping	 radius	 is	 indeed	 approaching.	Again,	 that	
determination	can	be	unacceptably	arbitrary	when	using	only	a	Fig.	5.3a	plot.	We	
also	recommend	against	estimating	sampling	distance	for	a	trap	by	extrapolating	to	
zero	catch	after	logarithmic	transformation	of	the	spTfer	data.	Although	sometimes	
done,	this	procedure	seems	questionable	when	such	log	graphs	cut	the	x-axis rather 
than approaching it asymptotically as would the more appropriate inverse function.

We	learned	from	Fig.	5.4	that,	for	biological	random	walkers	expressing	c.s.d.	
values	greater	than	a	few	degrees,	the	most	distant	zone	of	the	trapping	area	will	
have	little	impact	on	catch	numbers	because	few	movers	from	near	the	boundary	of	
the trapping area arrive at the trap due to very low spTfer. But, the limit placed on 
trapping	radius	will	always	strongly	influence	the	area	to	which	any	catch	number	
applies.	Thus,	trapping	radius	must	always	be	established	with	care.

It is instructive to consider the potential impacts of over- vs. underestimating 
trapping	radius	when	using	catch	numbers	and	Eq.	(5.4)	to	estimate	absolute	density	
of a pest population. Overestimating trapping radius is the more dangerous error. 
Then,	a	given	catch	number	would	be	interpreted	as	applying	to	an	incorrectly	large	
area;	thus,	the	density	estimate	assigned	would	be	incorrectly	low.	A	grower	would	
be	justifiably	upset	if,	on	this	basis,	he	or	she	failed	to	spray	a	highly	valuable	crop	
that	was	actually	destined	to	be	lost	to	pests.	The	better	scenario	would	be	that	trap-
ping	radius	is	somewhat	underestimated	so	that	the	absolute	density	estimate	of	the	
pest	is	not	underestimated.	Rather	than	emphasizing	the	absolute	limit	to	trapping	
radius,	pest	managers	might	be	better	served	by	seeking	a	solid	estimate	of,	e.g.,	
75	%	of	the	trapping	radius,	which	could	be	abbreviated	as	the	TR75.

T =C /Mfer den

M C Tden fer= /
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A	similar	argument	can	be	made	for	estimates	of	Tfer	destined	to	be	used	in	pest	
management	decisions.	Here	again,	it	would	be	better	that	the	procedures	used	to	
establish	Tfer produce under- rather than overestimates. Tfer occurs in the denomi-
nator	of	Eq.	(5.4);	thus,	smaller	values	of	Tfer will raise rather than lower the Mden 
estimate.

5.5  Measures of Variation around Estimates  
of Absolute Animal Density Derived from Trapping

Measures of precision and accuracy are critical to any estimate of importance. This 
is	 certainly	 true	 for	 estimates	of	 absolute	pest	density	 that	will	be	used	 to	make	
decisions	of	whether	or	not	to	execute	control	measures	for	serious	pests.	A	starting	
point	is	assessment	of	the	likelihood	of	obtaining	a	given	catch	number	when	the	
elapsed time for trapping runs is held constant across various densities of movers 
within	a	trapping	area.	To	do	so	we	used	Weston	movers	displacing	1,000	steps	of	
1.0	unit	under	a	c.s.d.	of	15°.	We	used	300,	1,000,	and	3,000	such	movers	randomly	
seeded	into	an	unbounded	cyber	arena	to	generate	an	average	of	50,	170,	and	500	
movers	per	 trapping	area	(396,000	square	units).	 If	 this	 trapping	area	is	 taken	as	
equivalent	to	20	ac	(units	relevant	to	US	growers	and	area	shown	below	to	be	real-
istic	for	locally	searching	flying	insects),	the	seeded	mover	densities	would	be	3,	9,	
and	15	/ac,	respectively.	Deployed	at	the	center	of	the	trapping	area	was	either	one	
large	(100	×	10	unit)	or	one	small	(10	×	1	unit)	trap	plume.	Catch	was	tallied	for	100	
runs	under	each	condition	and	analyzed	for	count	variation.

As	is	to	be	expected	for	a	process	as	stochastic	as	trapping,	variation	in	catch	was	
appreciable	across	replicated	trapping	runs	for	a	given	set	of	conditions	(Fig.	5.5). 
Some	of	this	variation	can	be	attributed	to	random	seeding.	Simply	by	chance,	the	
zone	 around	 a	 trap	may	 be	 populated	with	more	 or	 less	movers.	The	 lower	 the	
average	density	of	movers,	the	greater	will	be	the	probability	of	empty	zones.	Varia-
tion	in	catch	is	then	expanded	by	the	irregularities	in	the	tracks	produced	by	each	
mover	 upon	 departure	 from	 its	 origin,	 as	 documented	 in	Chap.	 3.	Nevertheless,	
meaningful	confidence	intervals	can	be	drawn	around	any	given	catch	number.	For	
example,	a	catch	of	zero	is	plausible	only	for	a	population	of	Fig.	5.5 movers of <	9	/
ac when the plume reach is small. Provided the trap was functioning properly and 
the	movers	were	 active	 for	 the	 expected	 time,	getting	zero	catch	 for	 a	 trap	with	
a	large	plume	when	there	are	3	animals/ac	or	greater	is	so	unlikely	that	a	grower	
could	place	this	bet	with	supreme	confidence.	The	bounds	on	the	range	for	estimat-
ed Mden	associated	with	various	recorded	catch	categories	are	shown	in	Table	5.2. 
They	demonstrate	that	the	precision	for	these	estimates	improves	substantially	with	
plume	reach.	This	knowledge	suggests	that,	when	the	plume	from	a	trap	is	found	to	
have little reach, the precision of Mden	estimates	using	it	could	be	considerably	tight-
ened	by	deploying	multiple	copies	of	this	trap	closely	spaced	in	a	given	location	to	
increase the overall amount of plume perimeter without increasing time demands 
to visit widely spaced sites to collect the data. The total catch for, e.g., four traps 
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could	be	used	in	place	of	the	catch	number	for	a	single	trap	(see	Fig.	5.6). But, the 
calibrations	for	trapping	area	and	Tfer	would	then	need	to	be	established	using	the	
trap multiples.

5.6  Examples of Eq. 5.1 at Work

We	now	offer	four	real-world	examples	 that	collectively	demonstrate	how	these	
methods	and	Eq.	(5.1)	and	its	derivatives	can	be	put	to	practical	use.	The	first	ex-
ample	draws	upon	ongoing	field	research	by	author	C.	G.	Adams	for	the	codling	

Table 5.2  Translation	of	the	catch	probabilities	of	Fig.	5.5	into	estimates	of	the	plausible	range	for	
Mden as calculated for a small and large plume reach

Movers per acre
Catch 10 unit plume 100 unit plume
0 0–9 0
1–2 0–25 1–5
3–5 3–25 2–5
6–15 10–50 5–15
15–28 – 8–20

Fig. 5.5  Frequency	histograms	revealing	variation	in	catch	outcomes	for	a	single	trap	when	the	
duration of trapping runs was held constant. M = movers
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moth.	A	trap	like	that	of	Fig.	1.3	c	baited	with	an	optimized	sex	pheromone	lure	
for males of this species was deployed at the center of a large, commercial apple 
orchard	in	Western	Michigan	presenting	uniform	conditions.	Approximately	140	
laboratory-reared	and	reproductively	sterilized	males	per	site	were	released	at	40,	
80,	120,	160,	and	200	m	in	each	of	the	four	cardinal	directions	from	the	trap.	Those	
for	each	distance	were	marked	with	a	distinctively	colored	powder	that	fluoresced	
under	UV	light.	Catch	in	the	trap	was	recorded	over	the	following	week	and	the	
moths	caught	were	identified	by	release	distance.	We	determined	what	proportion	
of	the	released	moths	were	actually	capable	of	responding	to	pheromone	and	being	
caught	in	a	trap	by	releasing	a	sample	of	several	hundred	moths	into	a	3	×	3	×	2	m	
field	cage	holding	a	single	trap.	This	step	was	important	because	the	below	analy-
sis	of	plume	reach	requires	knowing	the	proportion	of	responsive movers captured 
from each distance.

Most	of	the	catch	yielding	the	data	of	Table	5.3 accumulated on the first three 
nights	after	moth	release.	Although	these	given	data	are	preliminary	and	the	study	
is	being	replicated	to	arrive	at	central	tendency,	these	results	can	be	used	to	dem-
onstrate	recommended	procedures	for	analyzing	such	data.	First,	the	spTfer data are 
plotted as per Fig. 5.7.	Catch	diminished	with	release	distance	and	fell	to	a	mere	

Fig. 5.6  Scatter plots of total catch per run for a single trap vs. total catch for four traps under 
various	densities	of	randomly	seeded	Weston	movers	displacing	1,000	steps	of	1.0	using	a	c.s.d.	
of 15°.	Traps	had	elliptical	plumes	of	50	×	5	units	and	were	separated	by	70	units	when	deployed	
as	multiples.	Greater	precision	of	the	4-trap	metric	is	evidenced	by	a	narrower	range	of	possible	
seeding	densities	producing	a	given	catch	( dashed double-headed arrows) and a higher R2 value 
for the regression line
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0.2	%	by	200	m,	suggesting	that	the	limit	to	trapping	radius	was	approaching.	How-
ever,	because	zero	catch	was	not	yet	reached,	release	distances	must	be	expanded	in	
further runs of this experiment.

The	down-turn	by	200	m	in	 the	Miller	plot	of	 these	data	 (Fig.	5.7b) provides 
strong	evidence	that:	(i)	codling	moth	males	dispersed	by	correlated	random	walks	
and	not	ballistically,	and	(ii)	that	the	limit	to	trapping	radius	was	ca.	225	m.	If	the	
sampling	radius	of	 this	 trap	was	 taken	at	225	m,	 the	full	 trapping	area	would	be	
16	ha.	However,	if	the	bulk	of	catch	accumulates	inside	of	120	m,	as	suggested	by	
Fig. 5.7b,	the	area	over	which	this	trap	is	most	powerful	would	be	closer	to	8	ha.	
This	 finding	 suggests	 that	 deploying	one	 trap	 every	 20	 ac	may	be	 sufficient	 for	
monitoring of codling moth populations using this trapping system.

Given	that	the	trapping	limit	was	nearly	approached	in	the	above	test,	we	calcu-
lated Tfer	using	the	method	of	Table	5.1	and	Eq.	(5.2);	the	value	returned	was	0.008	
(Table	5.3),	suggesting	that	only	0.8	%	of	all	the	moths	present	in	the	full	16	ha	of	
apples	being	sampled	by	the	trap	would	be	captured.	Table	5.4 translates catch num-
bers	for	a	single	trap	into	densities	scaled	to	units	smaller	than	trapping	area.	Readers	
should	recognize	that	variation	similar	to	that	documented	in	Table	5.2	is	to	be	ex-
pected surrounding the listed mean values for Mden.	Intriguingly,	the	number	caught	
draws	ever	closer	to	the	density	number	as	the	unit	of	area	referenced	shrinks.	But,	
this effect is strictly an accounting phenomenon; it does not mean that trapping ef-
ficacy increased for smaller areas. For example, the ratio appears impressive when 
a	catch	of	one	in	the	trap	is	compared	with	the	calculated	3	males/ac.	However,	that	
catch	of	one	must	be	considered	shared	with	all	of	the	many	other	1	ac	zones	within	
the	full	trapping	area.	It	cannot	be	attributed	to	the	males	originating	in	one	given	
acre.	Here	is	a	potential	conceptual	pitfall	to	be	avoided	as	this	knowledge	is	shared	
with practitioners.

Rather	than	using	the	maximal	trapping	radius	to	establish	the	units	of	area	to	
which a given catch applies, we could follow the more conservative route and use 
the	75	%	trapping	radius	( TR75).	Doing	so	translates	into	a	trapping	radius	of	168	m	
rather	than	225	m.	The	trapping	area	then	becomes	9	ha	and	the	estimates	of	abso-
lute	moth	density	double	those	shown	in	Table	5.4.	Again,	using	the	TR75 rather than 
the full trapping radius would assure that the pest density is not underestimated.

As	the	sex	ratio	of	codling	moths	is	1:1,	the	absolute	density	of	female	moths	
can	 be	 taken	 as	 identical	 to	male	 density.	The	 currently	 recommended	 threshold	

Table 5.3  Results of a preliminary single-trap, multiple-release field test with codling moth. 
Experimental	details	are	given	in	the	text	above
Release distance (m) Annulus	area	(m2) spTfer spTfer × annulus area

40 5,024 0.039 197
80 15,072 0.014 215
120 25,120 0.013 314
160 35,168 0.005 188
200 45,216 0.002 81
Mean 25,120 0.015 199

Tfer	=	199/25,120	=	0.008
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triggering	sprays	for	codling	moth	 in	Michigan	 is	3	males/trap/wk.	If	catch	were	
four,	we	see	from	Table	5.4	 that	about	 ten	females	would	be	present	per	ac.	The	
following	projections	can	then	be	made	about	maximal	possible	%	apple	infesta-

Fig. 5.7  Untransformed plot (a) and Miller plot (b)	of	codling	moth	trapping	data	from	Table	5.2. 
The datum at 20 m in panel (a) came from a preliminary test and is included to show the shape of 
the	curve	as	it	extends	back	toward	the	trap.	No	error	bars	are	included	because	only	one	replicate	
of this experiment is reported here
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tions	based	upon	knowledge	of	 this	moth’s	biology	gathered	by	Michigan’s	 tree-
fruit extension specialists: each of the nine out of ten females successfully mating 
will scatter ca. 50 eggs individually near a developing apple for an estimated total of 
450	eggs;	40	%	of	these	eggs	are	likely	to	produce	larvae	that	successfully	colonize	
apples	for	a	total	of	180	infested	apples/ac.	The	average	density	of	Michigan	apple	
fruits/ac	 is	 about	150,000,	 thus,	 the	estimated	maximal	 infestation	 rate	would	be	
1.2/1,000	fruits	when	the	permissible	threshold	is	1	infested	fruit/200	apples	(0.5	%).	
These calculations suggest that the current threshold triggering codling moth sprays 
is	reasonable,	but	that	it	includes	quite	a	wide	safety	margin.	It	is	eye-opening	to	
learn	that	Michigan	growers	spend	about	$	60	to	spray	ten	codling	moth	females	
per ac, or ca.	$	6	per	 female	moth.	Growers	spraying	whenever	 their	monitoring	
traps	register	any	catch	at	all	are	spending	$	10	per	female	or	more.	Our	hope	is	
that	further	field	demonstrations	of	the	validity	of	our	trapping	approach	will	enable	
growers to confidently withhold sprays when they are, in fact, not needed. Doing 
so	will	result	in	increased	profits,	enhanced	levels	of	biological	control,	and	greater	
lifespan	for	the	valuable	insecticides	because	of	reduced	selection	pressure	for	re-
sistance development.

Finally, the reach of the pheromone plume from the standard monitoring trap 
used	in	this	codling	moth	test	can	be	estimated	from	the	MAG	plot	(Fig.	5.8) slope 
generated for responsive test organisms. The slope returned from the near-linear 
portion	of	that	plot	was	0.68.	Figure	4.12	can	then	be	used	to	interpret	this	slope.	
The	first	step	in	doing	so	is	to	locate	0.68	on	the	x-axis	of	Fig.	4.12	and	note	what	
plume	reaches	could	be	attributed	to	this	given	MAG	slope.	If	 the	c.s.d.	used	by	
foraging	codling	moth	were	as	small	as	6°,	we	observe	that	the	plume	reach	could	
be	about	10	m.	However,	if	these	moths	use	a	c.s.d.	of	15°or	more,	which	we	judge	
likely,	the	plume	reach	could	be	as	small	as	only	several	m.

The y-intercept	was	4.0	for	the	near-linear	phase	of	the	MAG	plot	of	Fig.	5.8. It 
can	be	seen	from	the	simulations	of	Fig.		4.13	that	such	a	large	y-intercept is associ-
ated	with	a	small	plume	reach.	Thus,	both	the	slope	and	the	y-intercept	of	the	MAG	

Table 5.4  An	example	of	how	catches	of	animals	in	one	standard	monitoring	trap	might	trans-
late	to	absolute	densities	scaled	to	differing	units	of	area.	Tfer for this codling moth example was 
taken	at	0.008	and	trapping	radius	225	m	as	per	the	above	analyses.	Then	male	moth	density	was	
computed	as	density	per	trapping	area	=	catch	per	one	trap	divided	by	Tfer. That density was then 
scaled to smaller units of area relevant to grower experience. Since the sex ratio for codling moth 
is	1:1,	the	number	of	females	equals	that	of	males.	Warning:	These	numbers	are	preliminary	and	
cannot	safely	be	used	for	actual	pest	management	decisions	for	codling	moth	or	other	such	pests.	
These	data	are	only	instructive	for	how	to	apply	the	trapping	approaches	developed	in	this	book
Catch	per	single	
monitoring trap

Males per trapping 
area	(16.9	hectares)

Males per hectare Males per acre

1 125 8 3
3 375 23 9
10 1,250 80 30
30 3,750 230 90
100 12,500 800 300
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plot for codling moth argue for a small plume reach. Moreover, a previous investi-
gation	(Grieshop	et	al.	2010),	where	marked	codling	moths	were	released	directly	
downwind of a trap and then monitored for rapid appearance in the trap, suggested 
a plume reach of under 10 m for this standard codling moth monitoring trap. So, the 
evidence is mounting that the time-averaged plume reach for the standard codling 
moth trap is surprisingly small.

Our	 second	 example	 draws	upon	 research	 (Whamsley	 et	 al.	 2006)	 conducted	
on	the	corn	rootworm,	a	beetle	whose	larvae	attack	corn	roots.	This	pest’s	annual	
economic	impact	in	the	USA	alone	is	estimated	at	over	$	1	billion	in	crop	losses	
and	control	costs.	These	investigators	collected	thousands	of	adult	beetles	from	a	
natural	 infestation	 in	a	Kansas	corn	 field	and	brought	 them	to	 the	 laboratory	 for	
several	days	to	standardize	their	physiological	condition	by	provision	of	abundant	
foodstuffs.	One	hundred	beetles	were	then	released	back	into	a	corn	field	at	each	of	
five	distances	on	six	equidistantly	spaced	spokes	radiating	from	a	single	Trécé™	
corn	rootworm	trap	baited	with	an	experimental	 lure	releasing	the	plant	volatiles	
eugenol	and	4-methoxy	cinnamaldehyde.	Beetles	at	each	distance	were	dusted	with	
a	distinctively	colored	powder.	The	total	number	of	released	beetles	in	this	nonrep-
licated	test	was	3,000	for	the	setup	receiving	the	baited	trap	and	another	3,000	for	a	
nearby	setup	receiving	an	unbaited	trap.	The	test	ran	for	3	days	after	which	captured	
beetles	were	examined	under	the	microscope	for	powder	color.

Fig. 5.8  MAG	plot	of	the	trapping	data	for	the	preliminary	single-trap,	multiple-release	test	with	
codling	moth.	Only	the	first	three	release	distances	were	used	because	of	up-turn	evident	in	the	
MAG	plot	above	and	down-turn	evident	in	the	Miller	plot	(Fig.	5.5b). The corresponding plume 
reaches	consistent	with	this	slope	of	0.68	can	be	read	from	the	standard	curve	of	Fig.	4.12
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No	beetles	were	captured	in	the	unbaited	trap,	while	80	beetles	total	(2.7	%	of	
those	released)	were	captured	in	the	baited	trap.	Catch	dropped	smoothly	with	re-
lease distance (Fig. 5.9a)	and	reached	zero	by	60	m.	The	investigators	rightly	con-
cluded:	 (i)	catch	 in	 this	 trap	does	not	occur	without	bait,	 (ii)	maximum	trapping	

Fig. 5.9  Untransformed and Miller plot of data from a single-trap, multiple-release field study on 
corn	rootworm	conducted	in	a	Kansas	cornfield	(Whamsley	et	al.	2006).	No	error	bars	are	included	
because	this	test	was	not	replicated
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radius	for	the	3-day	test	was	<	60	m,	and	(iii)	this	trapping	system	had	a	short	ra-
dius.	However,	this	data	set	contains	more	information	than	the	authors	were	able	
to harvest at the time. For example, the smoothly rising then falling Miller plot 
Fig. 5.9b	demonstrates	 that	 these	 corn	 rootworm	beetles	dispersed	by	 correlated	
random	walks	and	not	ballistically.	A	trapping	radius	of	less	than	60	m	is	also	firmly	
supported,	i.e.,	this	conclusion	is	based	on	more	than	possible	false	negatives	due	
to	low	sampling	power.	Given	that	the	limit	to	the	trapping	radius	was	firm,	Tfer for 
this	test	was	calculated	as	per	Table	5.5	at	0.006,	a	value	remarkably	similar	to	the	
0.008	for	the	codling	moth	study	above.	Table	5.6 demonstrates how this trap could 
be	used	to	estimate	corn	rootworm	densities	from	catch	data,	despite	its	short	trap-
ping radius.

Finally,	a	MAG	plot	of	the	corn	rootworm	data	(Fig.	5.10) yields an initial slope 
of	1.9.	This	slope	is	so	steep	as	to	be	off	the	standard	curve	for	interpreting	plume	
reaches	(Fig.	4.12).	A	firm	conclusion	can	be	drawn,	however,	that	the	plume	for	
this trap was extraordinarily tiny (1 m or less). The very high y-intercept of Fig. 5.10 
also	supports	this	conclusion.	Indeed,	it	is	likely	that	the	plant	volatiles	released	by	
the	trap	functioned	only	as	arrestants	of	the	beetles	(caused	them	to	land)	(Miller	
et	al.	2009)	 rather	 than	attractants	 (steer	upwind	 in	 the	plume).	Although	such	a	
trap	would	be	ineffective	as	a	detection	or	trap-out	tool,	it	could	function	well	in	
assessing	absolute	densities	of	corn	rootworms	when	pest	pressure	was	high	and	
thus could serve as an important pest management tool.

A	third	example	draws	on	research	from	Sweden	(Östrand	and	Anderbrant	2003)	
on the European pine sawfly, a wasp whose larvae feed in groups on the needles of 

Table 5.5  Reinterpretation of results for the single-trap, multiple-release study on corn rootworm
Release distance 
(meters)

Annulus	area	(m2) spTfer spTfer × annulus area

3 28 0.085 2.4
15 678 0.032 21.5
30 2,120 0.012 24.7
45 3,533 0.005 17.7
Mean 2,261 0.027 13.3

Tfer	=	13.3/2261	=	0.006

Table 5.6  Translation	of	capture	numbers	in	a	single	corn	rootworm	trap	into	numbers	per	the	
0.5 ha trapping area or per acre when Tfer	 is	 taken	as	0.006.	Responders	per	 trapping	area	was	
computed	as	catch	in	the	trap	divided	by	Tfer; then that density was scaled to the smaller unit of area

# caught #per 0.5 ha # per acre
1 167 67
3 500 200
10 1,667 667
30 5,000 2,000
100 16,667 6,667
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pine trees. Males of this pest are reported to respond from 50 m or more (Östrand 
et al. 2000) to a potent female-produced sex pheromone, and, catch in traps is well 
correlated	with	subsequent	egg	production	and	damage	(Fig.	5.11). The design of 
this	study	was	similar	to	that	for	the	above	examples,	except	that	the	intervals	of	
release distance were enlarged with distance and not regular. This experiment was 
conducted	in	a	large	plantation	of	maturing	Scots	pine	and	is	superior	to	the	above	
examples	because	it	was	replicated	four	times.	The	trap	was	deployed	at	a	height	of	
2	m;	thus,	the	plume	would	largely	have	been	wafting	through	the	understory	where	
the	foliage	of	this	tree	species	becomes	sparse	in	maturing	stands.	Less	physical	ob-
struction	would	have	been	presented	to	the	plume	from	this	trap	than	for	the	plumes	
of codling moth and corn rootworm.

Our interpretations of the results support and extend those of the original in-
vestigators. The spTfer values recorded declined smoothly with release distance 
(Fig. 5.12a).	As	the	authors	of	this	study	were	unaware	that	an	inverse	function	was	
the	more	appropriate	fit	to	their	data	on	probability	of	catch	vs.	release	distance,	they	
used a log curve fit and then extrapolated to an estimated maximum trapping radius 
of	1,040	m.	This	step	warrants	reconsideration	because	the	Miller	plot	of	these	data	
(Fig. 5.12b) shows no convincing decline in spTfer at the largest distances of release. 
The	recorded	profile	does	not	rule	out	possible	near-ballistic	displacement	by	the	
pine sawfly males (compare Fig. 5.12b with Fig. 5.4 c.s.d. 0°).	Here	is	a	case	where	

Fig. 5.10  MAG	plot	for	corn	rootworm	trapping	data	from	Fig.	5.7. Basing the slope on only two 
data	points	weakens	the	analysis	for	this	case.	However,	the	up-turn	visible	by	30	m	and	down-
turning profile of Fig. 5.9b	beginning	at	30	m	supports	not	including	more	than	two	data	points	in	
the	MAG	slope	analysis
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the	evidence	is	unconvincing	that	the	maximum	trapping	radius	was	approached	by	
the	chosen	release	distances	for	what	must	be	a	highly	dispersive	insect	capable	of	
appearing in a trap hundreds of meters away from the release point on the first day 
of	the	experiment.	Clearly	the	trapping	area	for	this	insect	is	huge,	e.g.,	it	could	have	
been	as	large	as	700	ha	if	the	trapping	radius	were	guessed	at	1,500	m,	which	from	
Fig. 5.12a	is	not	out	of	the	question.	One	wonders	if	the	females	disperse	as	far	as	
males. The negative x-intercept of Fig. 5.11 suggests they may not.

Tfer	for	this	sawfly	experiment	was	calculated	at	0.024	using	the	above	methods.	
However,	this	value	is	likely	inflated	because	the	limit	to	trapping	radius	had	not	
yet	been	reached;	thus,	Tfer	was	not	reduced	by	spTfer × annulus area values for the 
untested	larger	distances	of	release.	Translations	into	density	estimates	via	Eq.	(5.1)	
are	given	in	Table	5.7,	when	trapping	radius	was	taken	at	a	conservative	1,200	m.	
Variation	around	the	mean	densities	given	in	Table	5.7	is	expected	to	be	similar	to	
that	shown	for	the	large	plume	of	Table	5.2. The current analysis supports the earlier 
reports	that	this	sawfly	trapping	system	is	extremely	potent	and	would	be	excellent	
for	pest	detection.	Capture	of	a	single	individual/trap	equates	to	0.1	insects/ha	for	
pine	 sawfly,	while	 it	 equates	 to	8	 and	334	 insects/ha	 for	 codling	moth	 and	 corn	
rootworm, respectively. It is not surprising then that the plume reach for this pine 
sawfly	trap,	as	estimated	from	the	MAG	plot	slope	(0.12	Fig.	5.13) and the standard 
curve	of	Fig.	4.12	was	50	m.	In	this	case,	it	is	appropriate	to	focus	only	on	the	low	
c.s.d.	graph	because	the	incomplete	profile	of	Fig.	5.12b is consistent only with a 

Fig. 5.11  Relationship	between	catch	of	male	pine	sawflies	in	pheromone-baited	traps	and	density	
of	eggs	deposited	at	those	sites.	Data	re-plotted	from	Lyytikäinen-Saarenmaa	et	al.	(2001)
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low c.s.d. value. The small y-intercept of 1.2 is also consistent with a large plume 
reach	(Fig.	4.13).	This	estimate	of	plume	reach	agrees	well	with	and	refines	that	of	
up	to	100	m	arrived	at	by	direct	behavioral	observations	of	sawflies	released	at	vari-
ous distances downwind and perpendicular to a line of traps (Östrand et al. 2000).

Fig. 5.12  Untransformed (a) and Miller plot (b) of data for a single-trap, multiple-release trapping 
study	of	pine	sawfly	(Östrand	and	Anderbrant	2003)

 



595.6	 	Examples	of	Eq.	5.1	at	Work	

Our	final	detailed	example	comes	from	research	(Brêthes	et	al.	1985)	conducted	
on	snow	crabs	 in	 the	Gulf	of	St.	Lawrence,	 just	east	of	Quebec,	Canada.	 In	 this	
study, an anchor was attached to one end of a long line, and one standard com-
mercial	snow	crab	trap	(bait	unspecified	but	probably	some	type	of	chopped	fish)	
was	attached	100	m	up	the	line.	Bags	containing	15	snow	crabs	each,	distinctively	
marked	for	each	distance,	were	short-tied	at	intervals	between	the	anchor	and	the	
trap. The array was carefully deployed from a research vessel in a straight line more 
than	100	m	below	sea	level	onto	the	sea	bed.	Ingeniously,	the	ties	on	the	crab	bags	
dissolved	after	about	30	min,	releasing	the	crabs	to	forage	freely.	So	in	this	case,	
only a single line of release points radiated away from the trap. Traps were recov-
ered	and	crabs	counted	after	24	h	in	one	test	and	48	h	in	another.

Table 5.7  Translation	of	capture	numbers	in	a	single	pine	sawfly	trap	into	numbers	per	a	450	ha	
trapping area or per smaller areas within that trapping area. Trapping radius used was a conserva-
tive 120 m and the Tfer	was	0.024

# caught #	per	450	ha # per ha # per acre
1 42 0.1 0.04
3 125 0.3 0.11
10 417 0.9 0.37
30 1,250 2.8 1.11
100 4,167 9.3 3.70

Fig. 5.13  MAG	plot	of	pine	sawfly	spTfer	data.	The	lack	of	an	up-turn	is	further	evidence	that	the	
limit	to	trapping	radius	had	not	been	reached
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Proportions	of	crabs	caught	in	the	24	h	test	are	graphed	in	Fig.	5.14a. The highest 
proportion	(0.026)	was	caught	at	5	m;	catch	fell	from	there,	and	no	marked	crabs	
were	captured	beyond	60	m.	The	profile	of	the	Miller	plot	(Fig.	5.14b) suggests that 

Fig. 5.14  Untransformed (a) and Miller plots (b) of data from a single-trap, multiple-release test 
using	snow	crabs	(Brêthes	et	al.	1985).	The	data	for	several	close	release	points	at	the	mid-range	
of	release	distances	were	averaged	to	keep	the	distance	increments	nearly	regular.	As	only	a	single	
line	of	traps	was	used,	annulus	area	was	divided	by	four	to	yield	a	sector	area
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the	snow	crabs	displaced	by	correlated	random	walks	rather	than	ballistically.	Given	
that	a	maximum	trapping	radius	of	60	m	was	evident,	trapping	area	can	be	com-
puted	at	just	over	1	ha;	Tfer	was	computed	at	0.007	by	the	above	methods,	with	the	
exception	that	only	one	quarter	of	the	annulus	area	was	used	because	of	the	single	
line of release points. Using this Tfer value and the 1 ha trapping area, application of 
Eq.	5.4	suggests	that	catches	of	1,	3,	and	10	snow	crabs	in	one	such	trap	over	this	
brief	interval	equate	to	143,	430,	and	1,430	crabs/ha,	if	 their	starting	distribution	
across the sea floor were random.

Plume	 reach	 of	 a	 baited	 trap	 is	 of	 considerable	 interest	 to	 fishermen,	 as	 that	
knowledge	helps	gauge	appropriate	trap	spacing	for	maximizing	overall	catch	with	
a	minimum	of	equipment	and	travel.	Thus,	the	data	of	Fig.	5.15	will	be	important	to	
snow	crab	fishermen.	The	MAG	slope	of	0.78,	as	interpreted	using	the	calibration	
curve	of	Fig.	4.12,	suggests	the	plume	emanating	from	the	trap	was	detectable	for	
only	ca.	10	m	under	the	above	conditions.	Such	an	outcome	suggests	little	concern	
is	justified	about	fishing	inefficiencies	due	to	overlapping	bait	plumes,	unless	traps	
would	be	very	densely	packed.	The	suspiciously	large	y-intercept	of	40	is	also	sug-
gestive of a small plume.

Fig. 5.15  MAG	plot	of	spTfer data from a single-trap, multiple-release trapping study of snow 
crabs.	This	case	is	unusual	in	that	only	a	single	line	of	traps	radiated	from	the	trap,	not	multiple	
lines in various directions as is the more standard procedure for terrestrial studies

 

5.7	 	Patterns	in	Tfer Values and Plume Reaches for Organisms …
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635.8	 	This	Single	Trap	Approach	is	Ready	…

5.7  Patterns in Tfer Values and Plume Reaches  
for Organisms Displacing Randomly

Across	these	four	examples,	it	is	the	displacement	of	the	responder	that	comprises	
the	preponderance	of	trapping	radius,	not	the	plume	reach.	To	be	successful	at	find-
ing	stationary	traps	or	resources	like	food	and	mates,	it	appears	that	animals	must	
move	over	a	considerable	area.

We	located	some	additional	studies	from	the	literature	that	could	be	analyzed	by	
the	above	methods	for	Tfer	and	plume	reach.	The	expanded	list	appears	in	Table	5.8. 
Most of these studies yielded Tfer values higher than those of the experiments 
detailed	above.	The	largest	Tfer	found	(0.21)	was	for	a	click	beetle	attacking	turf.	
However,	like	the	pine	sawfly	test,	none	of	these	additional	examples	returning	the	
higher Tfer values used release distances proven to approach or exceed the trapping 
radius	as	judged	by	up-turning	MAG	plots	or	down-turning	Miller	plots.	Thus,	these	
Tfer	values	must	be	taken	as	inflated	over	what	would	have	been	obtained	over	a	full	
trapping	area.	Notably,	the	three	Tfer	values	taken	over	the	full	trapping	range	and	
using	relatively	short	run	times	(codling	moth,	corn	rootworm,	and	snow	crab)	all	
fell	 just	below	0.01.	We	anticipate	that	Tfer values may converge around 0.01 for 
various	random	walkers	when	spTfer measures include the full trapping radius. Tfer 
might	reflect	some	sampling	limit	given	the	number	of	movers	in	play.	This	would	
be	fortuitous,	as	Tfer	would	essentially	become	a	constant.	The	number	of	movers	
in	 play	 could	 then	 be	 easily	 calculated	 via	Eq.	 (5.4).	However,	measurement	 of	
trapping	radius	and	area	would	still	be	required	for	the	attribution	of	units	to	this	
number	as	required	for	an	estimate	of	absolute	density.

The Tfer	values	of	Table	5.8	appear	positively	correlated	with	both	plume	reach	
(Fig. 5.16a) and duration of the respective trapping experiment (Fig. 5.16b). These 
findings	make	sense,	as	both	factors	increase	interactions	of	movers	with	the	trap	
resulting	in	more	intersections.	However,	such	a	conclusion	must	await	accumula-
tion	of	a	more	robust	set	of	representative	Tfer values all measured using a complete 
set	of	release	distances	(some	returning	zero	catch).

5.8  This Single Trap Approach is Ready  
for Testing and Implementation Where  
Proven Reliable

Hopefully,	 the	 explanations	 and	examples	 above	have	clearly	demonstrated	how	
Eq.	(5.1)	and	its	derivatives	can	be	used	to	estimate	absolute	density	of	animals	via	
trapping.	If	robust	field	tests	across	a	geographical	region	show	that	trapping	radius	
and Tfer	are	quite	constant	through	time	for	given	animals	and	trapping	systems,	use	
of	Eq.	(5.1)	and	generation	of	tables	for	catch	interpretation	like	those	above	is	now	
possible	and	justified.	Improved	pest	management	decisions	and	savings	for	grow-
ers will hopefully follow.
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Fig. 5.16  Demonstration	of	positive	correlations	between	Tfer	values	from	Table	5.8 and plume 
reach (a) as well as the duration of the respective trapping tests (b). The data for Douglas fir and 
southern	 pine	 beetles	 could	 not	 be	 included	 in	 (b)	 because	 the	 durations	 of	 trapping	were	 not	
reported. Note: Most of the larger Tfer	 values	 are	 artificially	 inflated	because	 release	 distances	
for the respective single-trap, multiple-release experiment did not extend to the limit of sampling 
radius for the trap

 



655.9	 	A	Caveat	

Implementing	 this	approach	 to	quantifying	absolute	pest	density	 requires	col-
lection	or	rearing	of	goodly	numbers	of	pests	so	 that	robust	single-trap,	multiple	
release	 experiments	 can	be	 conducted	 to	 establish	Tfer for particular growing re-
gions.	Perhaps	the	various	private	companies	specializing	in	rearing	small	animals	
like	biological	control	agents	could	fill	this	niche	in	collaboration	with	university	
researchers.

Alternatively,	government	agencies	could	facilitate	laying	this	foundation.	It	will	
be	the	role	of	applied	researchers	and	extension	agents	to	understand	the	principles	
and procedures for this approach, to set protocols for how monitoring traps are de-
ployed	to	maximize	constancy	in	trapping	radius	and	Tfer,	and	to	generate	the	tables	
for	translating	catch	into	absolute	pest	density.	Then,	the	connection	must	be	made	
between	estimated	pest	density	and	 the	probability	of	damage.	For	example,	 the	
translation	of	pest	density	to	projected	percent	injury	will	need	to	be	informed	by	
reliable	knowledge	of	pest	fecundity	and	survivorship,	as	well	as	measures	of	total	
crop	mass	available	to	the	estimated	number	of	pests.	The	good	news	is	that	many	
pest	managers	 are	 already	 doing	 a	 good	 job	 of	 integrating	 these	 factors	without	
having	a	firm	grip	on	absolute	pest	density.	So,	even	better	pest	management	deci-
sions	should	be	possible	when	inexpensive,	quick,	and	accurate	estimates	of	pest	
density	become	available	through	the	use	of	the	above	tools	of	trapping.	It	is	likely	
that growers will follow resultant extension recommendations when properly taught 
how	to	set	a	monitoring	trap,	tend	it	for	the	required	time,	and	interpret	the	resulting	
catch.	The	costs	in	trapping	materials	and	time	will	also	matter,	but	not	as	much	
as	being	guaranteed	good	pest	control	and	increased	overall	profits	from	applying	
controls only when actually needed.

5.9  A Caveat

Trapping radius and Tfer might vary with the activity level of the target animals. 
Using values of trapping radius and Tfer	established	under	ideal	environmental	con-
ditions for estimating Mden from catch data collected under inclement conditions 
could lead to underestimates of Mden.	Linking	catches	with	recorded	environmental	
conditions	(now	commonplace	in	agriculture)	should	be	helpful	in	avoiding	such	
over-reaches.	The	 following	chapter	 explores	how	 this	 limitation	might	be	over-
come	by	use	of	a	set	of	competing	traps	to	obtain	estimates	of	trapping	radius	and	
Mden simultaneously from a single set of capture data.
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Chapter 6
Competing Traps

©	The	Author(s)	2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5_6

6.1  Definition of Trap Competition

We	define	traps	as	competing	when	the	presence	of	one	or	more	traps	reduces	the	
catch	in	a	given	trap	below	what	would	have	been	measured	if	the	additional	trap	
or	traps	were	not	present.	This	effect	has	been	sometimes	labeled	as	interference	
or	 poaching.	Wall	 and	Perry	 (1978,	 1980)	were	 the	 first	 to	 investigate	 this	 phe-
nomenon	for	attractive	insect	traps.	Until	now,	the	kinetics	of	trap	competition	has	
received surprisingly little attention.

6.2  Complete Competition

The most easily understood case of competition occurs when identical traps are 
deployed so closely that their plumes overlap completely without influencing each 
other’s	effective	size.	Under	these	hypothetical	conditions,	the	number	of	movers	
arriving	at	the	set	of	traps	equals	those	arriving	at	a	single	trap.	However,	the	catch	
would	be	split	evenly	between	them	under	ample	replication.	If	we	designate	some	
number	( Tden) of focal traps T	and	some	number	( tden) of competing traps t, then the 
probability	of	catch	in	the	focal	traps	( PT) for movers arriving at the set of com-
pletely	competing	traps	is	given	by:

	 (6.1)

This	situation	is	analogous	to	drawing	cards	from	a	randomized	deck.	Imagine	that	
we	have	1	T	and	4	t	in	the	deck,	or	Tden = 1 and tden	=	4.	The	probability	of	drawing	T 
on	a	single	draw	from	the	randomized	deck	is	then	1/5	or	0.2;	and,	the	cumulative	
catch	in	the	one	T	( CT)	with	multiple	draws	followed	by	replacement	is:

P T T tT den den den= +( )  / .
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	 (6.2)

Transitioning	from	cards	fully	back	to	trapping,	the	number	of	draws	becomes	the	
number	of	movers	arriving	at	the	set	of	fully	competing	traps	(arriving	M), or:

	 (6.3)

Since	the	density	of	T	in	this	situation	is	one,	Eq.	(6.3)	reduces	to:

	 (6.4)

We	learned	in	Chap.	5	that	only	a	small	fraction	(designated	Tfer) of the total random 
walkers	(designated	Mden) present in a large trapping area find, get caught in, and are 
retained	by	the	trap.	Under	no	competition,	CT = TferMden	(Eq.	5.1).	The	number	of	
movers from the full trapping area that get caught in the focal trap under complete 
competition	becomes:

	 (6.5)

Finally,	the	brackets	identifying	PT	per	arriving	mover	can	be	removed	to	yield:

	 (6.6)

6.3  Test for Whether or Not Competition is Complete

Plotting tden on the x-axis	vs.	1/CT on the y-axis	(designated	Miller-Gut	plot	(Miller	
et	 al.	2006a,b))	 can	 test	whether	 the	 trap	competition	was	actually	complete.	As	
demonstrated in Fig. 6.1, such graphs generate straight lines whose x-intercept is 
negative 1.0 when competition is complete, indicating that the catch in T	will	be	
halved	 by	 one	 competing	 trap	 (Eq.	 6.4).	An	 x-intercept	 of	 −	2.0	 (inverse	=	−	0.5)	
would indicate that each t suppressed catch in the focal trap T	by	only	half	of	what	
would	 be	 expected	 for	 a	 fully	 competing	 trap.	 Figure	 6.2 offers the mathemati-
cal	justification	for	this	test	of	competition	completeness	and	establishes	that	for	a	
Miller-Gut	plot	of	data	from	traps	competing	fully:
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696.3	 	Test	for	Whether	or	Not	Competition	is	Complete	

Fig. 6.1  Graphical	outputs	of	Eq.	(6.6)	for	several	Tfer and Mden values when tden	is	plotted	vs.	1/C, 
Miller-Gut	plot	(Miller	et	al.	2006	a,b).	The	x-intercept	and	its	inverse	return	−	1.0	under	complete	
competition

 

Fig. 6.2  Mathematics explaining why the Fig. 6.1 graphs yield straight lines and why the inverse 
of the x-intercepts	must	be	−	1.0	when	competition	between	T and t is complete
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	 (6.7)

Therefore:

	 (6.8)

6.4  Incomplete Competition

Things	become	a	bit	more	complex	when	the	plumes	from	competing	traps	do	not	
overlap	completely	or	at	all.	For	example,	a	catch	of	73	±	4	(S.E.M.)	movers	was	
realized	when	a	trap	having	an	elliptical	plume	of	100	×	10	units	was	deployed	at	the	
center	of	a	large	cyber	space	containing	5,000	uniformly	distributed	Weston	movers	
operating with a c.s.d. of 15°	and	displacing	for	1,000	steps	of	1	unit.	Catch	in	such	
a trap was reduced (Fig. 6.3) when two identical traps were deployed closely in 
this	unbounded	arena.	When	the	plumes	of	the	two	traps	were	fully	superimposed,	
catch	was	halved.	As	the	interplume	distance	increased	for	two	plumes	arranged	so	
that their long axes fell on the same straight line, captures in the competing traps 
increased in two distinct linear phases: 1 and 2 (Fig. 6.3).	A	steeper	rise	in	catch	
was recorded over the first 100 units of trap separation (Fig. 6.3, Phase 1), whose 

Slope = 1
T Mfer den

.

M
Tden

fer

= 1
Slope

.

Fig. 6.3  Capture	of	computer-simulated	random	walkers	as	influenced	by	distance	separating	two	
competing	traps.	Twenty	replicates	were	run	for	each	datum;	error	bars	=	S.E.M
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span	matched	the	plume	reach.	Then,	the	captures	increased	in	Phase	2	at	about	half	
the	rate	for	Phase	1,	until	no	competition	was	detectable	at	or	beyond	215	units	of	
separation	(Phase	3).

The sampling radius for this trap interacting with these movers was measured 
by	releasing	(at	varying	distances)	sets	of	100	Weston	movers	 in	a	ring	centered	
on one end of the 100 × 10 plume and then rendering the capture data as a Miller 
plot. Figure 6.4b	reveals	that	the	trapping	radius	was	ca.	450	units.	Thus,	our	initial	
hypothesis	that	the	threshold	distance	for	measurable	trap	competition	would	match	
that	for	trapping	radius	was	falsified.	Rather,	the	radius	for	detectable	trap	competi-
tion (Fig. 6.3) was less than half of the measured trapping radius.

Understanding	the	above	outcome	requires	consideration	of	the	behavior	of	in-
dividual	movers.	The	mismatch	between	measured	trapping	radius	and	competition	
radius	suggests	that	more	is	required	for	measurable	trap	competition	beyond	the	
availability	of	some	movers	with	the	capacity	to	reach	one	trap	or	the	other,	or	sim-
ply	with	theoretical	capacity	to	reach	both	traps.	Measurable	competition	requires	
a	 detectable	 reduction	 in	 catch	 relative	 to	 that	 for	 a	 trap	 operating	 alone.	Thus,	
no	competition	would	be	measured	unless	Trap	2	captured	movers	destined	to	be	
caught	in	Trap	1,	had	Trap	2	not	been	present,	and	vice	versa.	Captures	by	Trap	2	
of	movers	not	catchable	by	Trap	1	cannot	suppress	catch	of	Trap	1,	and	vice	versa.	
Therefore,	realized	competition	of	traps	requires	not	only	capacity	of	some	movers	
to	reach	both	traps,	but	also	certainty	that	either	trap	would	have	caught	any	mover	
gone	“missing.”

The	 latter	 stipulation	explains	why	 the	measurable	 competition	 radius	proved	
smaller	than	the	trapping	radius.	For	example,	the	probability	of	a	visit	by	a	mover	
originating	300	units	from	a	space	that	could	have	been	occupied	by	one	plume	can	
be	read	from	Fig.	6.4a	as	ca.	0.02.	Requiring	that	the	same	mover,	having	arrived	
at	 this	 first	plume,	 then	visit	another	plume	now	300	units	away	would	 likewise	
be	probable	at	0.02.	Multiplying	these	individual	probabilities	gives	the	combined	
probability	that	one	mover	will	visit	both	Trap	2	and	Trap	1,	i.e.,	0.0004.	This	prob-
ability	was	apparently	too	tiny	for	an	actual	event	to	be	realized	given	the	sample	
sizes	and	power	of	the	Fig.	6.4	experiment	where	no	catches	were	registered	below	
a	probability	of	0.001.	However,	 if	 the	distances	were	 reduced	 to	200	units,	 the	
probability	of	visiting	one	trap	is	ca.	0.06	(Fig.	6.2	A)	and	that	for	visiting	two	traps	
in	the	same	run	would	have	been	0.0036,	making	the	competition	detectable	in	this	
experiment	at	200	but	not	300	units	of	plume	separation.

The	hypothesis	that	realized	trap	competition	requires	that	a	given	mover	would	
actually	have	visited	the	space	potentially	occupied	by	both	plumes	is	further	sup-
ported	by	the	data	in	Fig.	6.5. In this experiment, individual Fig. 6.3 movers were 
released	equidistantly	from	two	Fig.	6.3 plumes placed at set separation distances 
onto	the	computer	screen,	but	where	neither	of	the	plumes	were	endowed	with	the	
capacity	to	arrest	movers.	The	individual	tracks	(n	=	50	for	each	distance)	laid	down	
by	the	simulation	program	during	runs	of	1,000	steps	were	scored	for	whether	the	
mover	visited	the	areas	under	both,	one,	or	no	plumes.	Obtaining	a	straight	line	be-
yond a separation distance of 100 units (plume reach) with an x-intercept (210) very 
similar	to	the	detectable	competition	threshold	of	Fig.	6.3 (215) supports the idea 
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that the trap competition measured in Fig. 6.3 resulted only from the events where 
there	was	certainty	 that	 the	plumes	 from	both	competing	 traps	would	have	been	
contacted	had	the	competitor	not	been	present.

Fig. 6.4  Untransformed (a) and Miller plot (b)	of	data	for	Weston	movers	having	a	c.s.d.	of	15° 
and	displacing	for	1,000	steps	of	1.0.	These	data	support	a	trapping	radius	of	450	units;	and,	they	
returned a Tfer	value	of	0.047	computed	as	per	Chap.	5
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6.5  Trapping Radius Does Not Equate to Competition 
Threshold

The	 above	 result	 demonstrates	 that	 using	 the	 competition	 threshold	 to	 estimate	
trapping	radius	would	badly	underestimate	the	latter	and	particularly	trapping	area	
which	increases	by	π r 2.	Rather,	trapping	radius	for	biological	random	walkers	can	
exceed	competition	radius	by	a	factor	of	two.	This	fact	was	not	recognized	in	previ-
ous	studies	of	trap	competition	(e.g.,	Wall	and	Perry	1978,	1980)	and	will	require	a	
revision	of	some	previous	measures	of	trapping	radius	taken	as	equivalent	to	com-
petition radius.

6.6  Equation for Incompletely Competing Traps

We	conducted	simulation	experiments	like	the	following	to	determine	how	Eq.	(6.6)	
fitting	completely	competing	traps	must	be	modified	to	fit	data	from	incompletely	
competing traps. The conditions were those of the Fig. 6.3 experiment, except that 
either	1,	2,	3,	or	4	trap	plumes	were	deployed	singly,	one	horizontal	plume	above	
another	(2	traps),	three	horizontal	plumes	arranged	vertically	(3	traps),	or	as	a	2	×	2	
grid	(4	traps).	Plume	centers	were	spaced	110	units	apart.	Each	trap	density	was	run	

Fig. 6.5  Graph	of	the	proportion	of	runs	Fig.	6.1	movers	contacted	both	competing	plumes	as	a	
function of plume separation distance. The shape of this profile and its limit of 210 units is a good 
match to the Phase 2 result of Fig. 6.1
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for	300,	1,000,	2,000,	3,000,	4,500,	and	6,000	steps	of	1.0	unit	(10	replicates	of	each	
condition).	We	also	measured	maximum	net	dispersive	distance	for	each	runtime	
for	these	Weston	movers	operating	with	a	c.s.d.	of	15°	after	releasing	300	movers	
from a point at the edge of the computer screen. Trapping radius and area could 
then	be	 computed.	Numbers	of	 randomly	 seeded	movers	per	 trapping	 area	were	
then counted for computations of Tfer for each run time. Results of a typical run are 
shown in Fig. 6.6.	All	such	plots	yielded	straight	lines	suggesting	that	the	equation	
fitting	incomplete	competition	had	a	form	similar	to	that	of	Eq.	(6.6),	as	explained	
in Fig. 6.2. The inverse of all x-intercepts	was	well	less	than	−1.0,	as	expected,	when	
traps	experienced	no	plume	overlaps.	For	example,	the	absolute	value	of	the	inverse	
of the x-intercept for Fig. 6.6	was	0.28,	indicating	that	the	level	of	competition	per	
t	was	only	28	%	of	 that	 for	a	completely	overlapping	 trap.	 It	became	evident	by	
inspection	that	Eq.	(6.6)	needed	only	the	below	modification	to	fit	 these	data	for	
incomplete trap competition:

	 (6.9)

Nevertheless,	 a	mechanistic	 explanation	 for	 this	 relationship	was	 desired—what	
phenomenon did an inverse of x-intercept	value	 like	0.28	 from	Fig.	6.6 actually 
represent?	One	approach	 to	 this	puzzle	was	exploration	of	how	the	 inverse	of	x-
intercept	varied	with	duration	of	trapping	runs.	As	shown	in	Fig.	6.7a, the inverse 
of x-intercept	rose	according	to	 the	number	of	steps	raised	 to	 the	power	of	0.74.	
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Fig. 6.6  Miller-Gut	plot	of	data	for	runs	of	6,000	steps	using	1,	2,	3,	and	4	traps	where	one	of	
these traps was considered the focal trap T and the remainder were considered competing traps t
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In	light	of	Fig.	3.4,	such	an	outcome	suggested	that	the	inverse	of	x-intercept was 
closely tied to the maximum net dispersion of movers; this match was confirmed in 
Fig. 6.7b	and	solidified	by	Fig.	6.8.

Based	on	the	findings	of	Chap.	5,	we	reasoned	that	the	parameter	likely	to	vary	
most dramatically (at least initially) with run time of a trapping experiment was Tfer. 

Fig. 6.7  Demonstration using Fig. 6.3 movers and plumes that the inverse of x-intercept. (a) Max-
imum net displacement of movers. (b)	Both	rise	with	the	number	of	steps	raised	to	the	0.7	power
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For the current experimental conditions, Tfer initially dropped precipitously with in-
creasing run time (Fig. 6.9a)	and	then	stabilized	upon	approaching	0.05.	A	graph	of	
1/Tfer vs. run time (Fig. 6.9b)	bore	a	striking	resemblance	to	Fig.	6.7a and returned 
an	exponent	of	0.70	that	we	take	as	matching	the	exponent	of	0.74	for	1/x-intercept 
vs. run time (Fig. 6.7a). This match led to the hypothesis that:

	 (6.10)

We	then	sought	 to	 identify	an	unknown	parameter	whose	numerical	value	might	
provide	hints	for	a	mechanism	leading	to	the	above	quantitative	relationships.	To	
this end, the expression unknown parameter/Tfer	was	substituted	for	1/x-intercept 
in	Eq.	(6.9)	and	then	solved	for	after	plugging	in	all	other	terms,	each	known	from	
experimental	measurements	detailed	above.	The	solution	returned	for	unknown pa-
rameter for all run times with t densities >	0	turned	out	to	be	a	value	close	to	0.02.	
Further inspection of this data set revealed that the product of 0.02 × Mden for the 
trapping area associated with each respective run time nearly matched the differ-
ence	between	catch	 in	 a	 trap	under	no	 competition	 and	 catch	under	 competition	
from one t.	We	concluded	 that	 this	unknown parameter (hereafter designated Pt) 
is	the	proportion	of	all	movers	populating	a	trapping	area	that	will	be	captured	per	
competing trap t that otherwise would have appeared as part of the catch in the fo-
cal trap T. The inverse of the x-intercept	for	a	Miller-Gut	plot	can	then	be	taken	as:

	 (6.11)

1
x Tfer− intercept

= unknown parameter .
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Fig. 6.8  Proof that the inverse of x-intercept was well correlated with maximum net displacement 
of movers
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The	number	of	movers	approaching	T	from	the	trapping	area	is	given	by:

	 (6.12)Movers approaching    T T Mfer den= ×

Fig. 6.9  Tfer (a)	and	1/Tfer (b)	as	a	function	of	run	time	for	Weston	movers	with	a	c.s.d.	of	15°	and	
a trap having elliptical plume dimensions of 100 × 10 computer units
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and	the	number	of	approaching	movers	pilfered	by	t	is	given	by:

	 (6.13)

It follows that:

	 (6.14)

Here,	then	is	the	first-principles	explanation	for	the	inverse	of	x-intercept: it is the 
proportion of movers incoming to T	that	are	intercepted	and	pilfered	by	one	t. De-
ploying competing traps near the focal trap screens T	 from	some	but	not	all	 ap-
proaching movers (Fig. 6.10).	Packing	additional	competing	traps	around	the	cen-
tral T of Fig. 6.10	 translates	 into	more	movers	pilfered.	However,	 the	 inverse	of	
x-intercept	quantifies	the	proportion	of	movers	incoming	to	T that are pilfered per 
t. Values for Pt	shifted	only	from	0.017	to	0.023	across	simulation	runs	of	duration	
200–5,000	steps.

Now	an	equation	fitting	incompletely	competing	traps	can	be	offered	with	terms	
precisely	defined.	When:	T = one focal trap; t	=	a	trap	placed	close	by	so	as	to	com-
pete with T; Mden	=	number	of	entities	per	trapping	area;	Tfer = proportion of all mov-
ers	in	a	trapping	area	caught	by	T when under no competition; Pt = proportion of all 
movers	in	the	trapping	area	caught	by	t while on their way to T and that otherwise 
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Fig. 6.10  Tracks	of	Weston	movers	displacing	for	1,000	steps	of	1.0	with	c.s.d.	15°	in	the	vicinity	
of a trap under no competition (a) and when competing incompletely (b). The small solid circles 
indicate	the	starting	points	for	randomly	seeded	movers.	Any	intersection	of	a	track	with	the	dark 
elliptical plume yielded a capture. Note that captures were fewer on the sides of plumes that were 
shielded	from	incoming	movers	by	a	competing	trap.	The	shielding	effect	of	each	trap	operating	
under	these	given	conditions	reduced	catch	in	a	focal	trap	by	about	20	%	on	average	and	yielded	
a Pt	value	of	0.017
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would	have	been	caught	by	T; and CT = cumulative catch in the focal trap T per trap-
ping interval; then:

	 (6.15)

Equation	 (6.15)	can	be	viewed	as	 the	general	equation	 for	all	 trap	competitions;	
Eq.	(6.6)	for	complete	competition	becomes	a	special	case	where	Pt = Tfer and Pt

/Tfer 
thus	becomes	invisible	because	it	is	1.0.

6.7  Estimating Mover Numbers and Trapping Area 
Simultaneously by Competitive Trapping

A	central	goal	of	this	book	is	development	of	quick,	inexpensive,	but	valid	method-
ologies	for	accurately	estimating	absolute	density	of	random	walkers	from	trapping	
data.	A	possible	limitation	of	the	methods	outlined	in	Chap.	5	is	that	the	experimen-
tal conditions extant for a particular trapping run might not always match those in 
effect when Tfer	and	trapping	area	were	established	using	the	single-trap,	multiple-
release	technique.	For	example,	inclement	weather	might	truncate	animal	activity	
to yield a smaller than expected trapping area and a larger than expected Tfer. The 
resulting Mden	estimate	would	then	be	falsely	low.	The	ideal	situation	would	be	to	
obtain	 a	measure	 of	 trapping	 area	 and	Tfer concurrently while collecting a catch 
number	from	which	the	Mden	would	be	calculated.

Equation	 (6.15)	 could	 be	 the	 gateway	 to	 such	 procedures.	We	 suggest	 that	 a	
small array of traps (e.g., Fig. 6.11)	could	be	deployed	simultaneously	to	compete	
incompletely at multiple strengths of competition. If an appropriate tden value could 
be	assigned	to	the	strengths	of	competition	for	respective	trap	positions	in	the	grid,	
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Fig. 6.11  One suggested array of incompletely competing traps that could serve to simultaneously 
estimate trapping area and Mden	 via	Eq.	 (6.13).	The	 level	of	 competition	as	 influenced	by	 trap	
position	(corner,	mid-edge,	and	center)	is	suggested	by	the	boldness	of	each	respective	imaginary	
symbol	drawn	around	the	elongated	elliptical	plumes	emanating	from	each	competing	trap	t
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those values plotted on the x-axis	against	1/CT on the y-axis will yield a straight line 
and an x-intercept,	the	magnitude	of	whose	inverse	would	be	pivotal	to	assigning	
a	trapping	area.	As	demonstrated	in	Fig.	6.7a,	values	for	1/x-intercept can serve as 
proxy for elapsed time of the trapping run. In that experiment, values of 0.05 vs. 
0.3	for	1/x-intercept indicate very short and long trapping runs, respectively. Thus, 
1/x-intercept	can	function	as	a	clock	for	trapping	runs.	Importantly,	this	clock	oper-
ates independently of Mden. The inverse of x-intercept correlates well with trapping 
area as demonstrated in Fig. 6.12.	After	such	experimental	calibrations,	an	experi-
menter	would	be	able	to	calculate	trapping	area	via	a	regression	equation	like	that	of	
Fig. 6.12,	but	unique	to	the	given	set	of	plume	and	mover	characteristics.

The Tfer	value	for	a	given	competitive-trapping	experiment	can	be	obtained	when	
the	relationship	between	x-intercept and Tfer	has	been	calibrated	as	in	Fig.	6.13 for 
the Fig. 6.7 experiment using 100 × 10 plumes. Once Tfer and trapping area are es-
timated for a competitive trapping run, Mden	can	be	found	by	using	Eq.	(6.18)	or	
(6.19)	 offered	 in	 Fig.	 6.14	 showing	 equations	 derivable	 from	Eq.	 (6.13)	 and	 its	
graphical	outputs.	We	anticipate	that	the	competitive-trapping	method	of	estimating	
Mden	will	prove	more	robust	than	always	relying	on	Eq.	5.1	and	an	historically	es-
tablished	estimate	of	trapping	area	and	Tfer.

Fig. 6.12  Demonstration that values for trapping area recorded in the experiment of Fig. 6.7 cor-
relate	well	with	1/x-intercept
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Fig. 6.13  Demonstration that Tfer is well correlated with the x-intercept of a plot of tden on the 
x-axis	vs.	1/CT on the y-axis

 

Fig. 6.14  Equations	derivable	 from	Eq.	 (6.15)	enabling	calculation	of	Mden from experimental 
data once x-intercept, Tfer is measured, and trapping area are estimated
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6.8  Computer Simulations Demonstrating How Absolute 
Density of Biological Random Walkers Can Be 
Estimated by Competitive Trapping under Variable 
Run Times

This	example	builds	upon	the	foundation	laid	thus	far	in	this	chapter	for	traps	hav-
ing	 100	×	10	 elliptical	 plumes	 and	movers	 taking	 steps	 of	 1.0	while	 executing	 a	
15°	c.s.d.	The	competing-trap	array	utilized	was	the	3	×	3	grid	of	Fig.	6.11 under a 
trap	spacing	of	110	units.	The	last	piece	of	groundwork	needed	is	calibration	of	the	
appropriate tden value to assign to traps at the corner, mid-edge, and center of the 
array (Fig. 6.11) such that tden	values	to	be	plotted	on	the	x-axis occurred in incre-
ments of one t	against	1/CT. To this end, mean captures in corner, mid-edge, and 
center	traps	were	recorded	after	6,000	steps	for	10	replicate	runs	of	the	3	×	3	grid	of	
traps	deployed	in	a	field	of	5,000	randomly	seeded	Weston	movers	as	above.	Then,	
the	regression	equation	of	Fig.	6.6 was used to solve for the tden corresponding to 
the catch recorded for each trap position. The corner, mid-edge, and center traps 
returned tden	values	of	3.3,	8.2,	and	20.9,	respectively.	A	tden	value	of	about	3	is	un-
derstandable	for	a	corner	trap,	because	two	competing	traps	lie	at	right	angles	and	
a	 third	occurs	diagonally	between	these	 two	competitors.	However,	as	additional	
competing	 traps	were	added	 into	 the	array	 their	competitive	effect	became	more	
than	additive.	For	example,	a	mid-edge	trap	in	a	3	×	3	array	is	surrounded	by	only	
five competing traps, yet the tden	value	for	this	configuration	was	slightly	above	8.	
A	center	trap	is	surrounded	by	eight	competing	traps	and	returned	a	 tden value of 
over	 20.	As	 competing	 traps	 increasingly	 surround	 a	 focal	 trap,	 they	 apparently	
interact	to	choke	off	an	increasing	proportion	of	the	overall	access	to	the	focal	trap.	
But,	once	understood	and	accounted	for,	this	lack	of	linearity	is	no	impediment	to	
competitive trapping.

With	this	background	information	in	place,	we		randomly	seeded	various	densi-
ties	of	movers	into	an	unbounded	cyberspace	and	determined	Mden after various run 
times	between	300	and	6,000	steps.	The	steps	of	this	analysis	were:

1.	 For	 a	given	 run	using	 a	3	×	3	 trapping	grid,	 record	 the	mean	catch	 for	 corner	
traps, mid-edge traps, as well as the single value for the central trap.

2. Plot the inverse of catch on the y-axis against the tden	values	of	3.3,	8.2,	and	20.9	
for corner, mid-edge, and center traps, respectively.

3.	 Compute	the	x-intercept	for	the	graph	by	dividing	the	y-intercept	by	the	slope.
4.	 Compute	1/x-intercept.
5.	 Use	the	regression	equation	of	Fig.	6.12 to compute trapping area.
6.	 Use	the	regression	equation	of	Fig.	6.13 to compute Tfer.
7.	 Use	Eq.	6.18	to	compute	M per trapping area.
8.	 Scale	 all	 outcomes	 to	 a	 common	 area	 (one	 computer	 screen)	 to	 facilitate	

comparisons.
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Estimated Mden	values	for	both	short	(2,000	steps)	and	long	(6,000	steps)	run	times	
proved	 to	be	 linearly	 related	 to	 the	actual	values	 (Fig.	6.15).	Precision	was	a	bit	
better	for	longer	vs.	shorter	run	time,	as	evidenced	by	values	for	shorter	runs	usu-
ally	bracketing	those	for	longer	runs	for	a	given	seeded	Mden (Fig. 6.15). Encour-
agingly, precision and accuracy of the method did not rapidly degrade under low 
numbers	of	randomly	seeded	movers.	However,	evidence	for	a	lower	limit	to	the	
utility of this method was noted. Zero catch was recorded for the center trap in three 
of	ten	instances	when	the	number	of	seeded	movers	was	1,000	or	less.	This	meant	
that the analysis could proceed only using the data for corner and mid-edge traps, 
which	was	not	a	problem.	However,	in	4	out	of	the	50	determinations	comprising	
Fig. 6.15, nonsense values resulted primarily for the lowest mover densities, usu-
ally	because	the	x-intercept returned a positive rather than a negative value. In one 
case,	the	slope	of	the	Miller-Gut	plot	was	negative	rather	than	positive.	Such	out-
comes	are	not	unexpected	when	the	catch	numbers	for	corner	traps	fall	to	less	than	
ten	per	 trap.	Nonsense	values	were	easy	to	identify	among	a	majority	of	reliable	
values.	Overall,	this	method	shows	real	potential.	Indeed,	the	potential	problem	of	
unknown	run	time	effects	can	be	overcome	by	competitive	trapping.

Fig. 6.15  Results from computer simulations estimating Mden	of	Weston	movers	(using	a	c.s.d.	
of 15°	and	steps	of	1.0	unit)	via	competitive	trapping	using	a	3	×	3	trapping	grid	and	plumes	of	
100 × 10 units. Each datum is the outcome from a single run of designated duration for the indi-
cated seeding density. Five valid replicate runs are shown for each condition
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6.9  Suggested Plan for Employing Competitive  
Trapping Under Field Conditions

Although	now	recommended	for	basic	research	studies,	it	is	unlikely	that	growers	
could afford to deploy nine traps as per Fig. 6.11 to estimate pest density at one 
given location. Instead, we recommend that growers deploy their monitoring traps 
singly	or	in	small	multiples	to	increase	accuracy	by	increasing	overall	plume	reach	
as	explained	in	Chap.	5.	Rather	than	relying	only	on	historically	established	esti-
mates of trapping area and Tfer to derive Mden, we envision that a few competitive 
trapping	tests	could	be	ongoing	under	the	care	of	extension	personnel	responsible	
for	a	growing	region.	Growers	could	use	the	historical	values	to	compute	Mden from 
their	 catch	 numbers	 as	 per	Chap.	 5	 unless	 alerted	 to	more	 appropriate	 real-time	
estimates arising from the ongoing and rapidly shared competitive-trapping assays 
for the region.

6.10  Summary

This	chapter	has	established	 that,	although	the	outcomes	of	 trap	competition	can	
be	 somewhat	 counter-intuitive,	 their	kinetics	 can	be	 captured	 in	 a	 few	 relatively	
simple	equations.	This	knowledge	provided	an	opportunity	for	the	development	of	
competitive trapping, a novel method for computing Mden from capture data that is 
unencumbered	by	unknown	time	of	the	trapping	run.	Competitive	trapping	can	be	
accomplished	only	after	the	following	background	information	has	been	laid	for	a	
given	pest	and	trapping	system:	(1)	plume	reach	must	be	estimated	via	results	from	
a	 single-trap,	multiple-release	 experiment	 (as	 per	Chap.	 5);	 (2)	 the	 c.s.d.	 for	 the	
given	pest	should	be	estimated	(upcoming	in	Chap.	7),	and	if	this	is	not	possible,	
c.s.d.	can	be	reasonably	guessed	at	approximately	15–20°	(Chap.	5);	(3)	computer	
simulations	of	trapping	under	various	run	times	would	be	conducted	as	demonstrat-
ed	in	this	chapter	so	as	to	establish	the	quantitative	relationships	among	x-intercept, 
trapping area, and Tfer;	(4)	the	relationships	arising	from	step	3	would	be	tested	by	
further computer simulations to ascertain precision and accuracy of Mden determina-
tions	from	a	trapping	grid;	and	(5)	the	simulation	results	would	be	corroborated	by	
actual	field	tests	using	the	given	pest.	The	authors	were	recently	funded	by	the	U.S.	
National Science Foundation to accomplish this step for codling moths.
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Chapter 7
Experimental Method for Indirect  
Estimation of c.s.d. for Random Walkers  
via a Trapping Grid

©	The	Author(s)	2015	 
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5_7

7.1  The Idea

The	 research	of	Chap.	6	with	grids	of	 traps	 suggested	a	means	 for	experimental	
measurement	 of	 the	 circular	 standard	 deviation	 (c.s.d.)	 being	 used	 by	 random-
walkers	before	they	encounter	the	plume	from	a	trap.	For	example,	the	c.s.d.	of	a	
population of movers released at one point outside of a regular grid of traps might 
be	obtained	via	analysis	of	the	pattern	in	resultant	catch	across	the	array.	Figure	7.1 
shows	one	such	trap	configuration	we	explored	in	some	depth	for	that	purpose.	As	
demonstrated in Fig. 7.2, movers executing a small c.s.d. populate edge traps more 
evenly and penetrate the grid more deeply than those using a large c.s.d.

The	next	step	was	converting	capture	data	from	across	the	grid	into	an	objective	
dependent	variable	 for	constructing	a	 standard	curve	 for	c.s.d.	 such	 that	 it	 could	
be	 back-calculated	 once	 the	 dependent	 variable	 was	 measured	 experimentally.	
This	was	not	difficult.	It	required	use	of	only	the	data	for	the	traps	labeled	1–5	in	
Fig. 7.3a.	Catch	for	traps	in	a	given	position	was	first	normalized	(this	step	optional)	
to	catch	in	Trap	1—the	corner	trap	nearest	the	release	point	for	100	movers.	Plots	
of	mean	catch	for	a	given	trap	position	against	a	trap	position	number	on	the	x-axis 
(Fig. 7.3b)	proved	a	better	fit	to	an	exponential	curve	than	any	other	model	exam-
ined.	Conveniently,	the	magnitude	of	the	decay	constant	returned	for	graphical	plots	
resulting	from	a	given	combination	of	plume	reach,	plume	spacing,	mover	popula-
tion,	 and	 run	 time	 for	 the	 simulation	proved	 to	be	 linearly	 correlated	with	 c.s.d.	
(Fig. 7.4) to generate a useful standard curve with no need for transformations.
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7.2  Translation of the Idea to Field Tests with Real 
Organisms

We	suggest	that	this	trapping-grid	approach	could	be	used	by	field	researchers	to	es-
timate	the	c.s.d.	for	real	biological	random	walkers.	The	plume	reach	and	maximum	
dispersive	radius	must	first	be	estimated	for	a	given	organism	using	the	single-trap,	
multiple-release,	and	associated	techniques	of	Chap.	5.	Spacing	of	traps	in	a	5	×	5	
grid	would	then	be	set	to	at	1.5	times	plume	reach	so	that	the	standard	curves	of	
Fig. 7.4	can	be	utilized.	The	elapsed	time	for	the	trapping	run	would	be	kept	short	
to	 capture	mainly	 the	 initial	 flux	of	movers	 through	 the	 grid.	The	 techniques	of	
Fig. 7.3	would	be	used	to	obtain	the	decay	constant	from	the	trapping	outcomes.	

Fig. 7.2  Visual demonstra-
tion of differences in penetra-
tion	of	a	5	×	5	grid	of	traps	by	
100	Weston	movers	displac-
ing for 1,000 steps of 1 unit 
while executing various c.s.d. 
values. The setup and release 
point was that of Fig. 7.1. 
Plume reach was only 5 
units so as to mimic that for 
codling moth and intertrap 
distance	was	30	units

 

Fig. 7.1  One of various 
possible	configurations	of	
traps explored for potential to 
estimate	random-walker	c.s.d.	
via the resultant pattern in 
catch across an array of traps
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Finally, the standard curves of Fig. 7.4 having the appropriate plume reach would 
be	used	to	translate	decay	constant	into	a	measure	of	c.s.d.	At	least	five	replicate	
runs	of	such	an	experiment	would	be	required	to	produce	error	bars	as	tight	as	those	
of Fig. 7.4.	If	sufficient	numbers	of	test	organisms	are	available,	simultaneous	re-

Fig. 7.3  (a)	Numbering	system	for	positions	of	traps	whose	capture	data	were	analyzed	to	produce	
a	dependent	variable	well-correlated	with	c.s.d.	(b) Plot of capture results 1,000 steps after a single 
corner	release	of	100	Weston	movers	taking	steps	of	1.0	unit	and	operating	with	a	c.s.d.	of	10°.	The	
negative	exponent	in	the	regression	equation	above	( decay constant)	served	as	a	suitable	measure	
for	generating	a	standard	curve	for	back-calculating	c.s.d.	from	experimental	data
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leases	bearing	distinctive	marks	could	be	made	at	all	four	corners	of	the	grid	both	
to improve statistical power and to assess whether there was any directional effects 
during the trapping run.

We	believe	 this	 approach	 has	 the	 potential	 to	 reveal	 important	 data	 on	 c.s.d.	
never	previously	harvested	because	of	the	difficulty	in	directly	observing	small	for-
aging	animals,	some	of	which	fly	at	night.	An	experiment	currently	underway	with	
codling moth in Michigan apple orchards using the 5 × 5 array of traps on a 15 m 
spacing	has	revealed	that	the	relationship	between	catch	and	distance	of	release	is	
indeed a negative exponential. It also suggests that this insect forages with a c.s.d. 
of	 ca.	 30–40°,	which	 is	 somewhat	 above	 the	 theoretical	optimum	 for	 a	 resource	
with	a	plume	having	an	average	reach	of	less	than	10	m	(Chap.	5).	Perhaps	being	
forced	to	fly	around	the	many	obstructions	offered	by	the	branches	and	foliage	of	
apple	trees	elevates	the	realized	c.s.d.	over	the	theoretical	value	measured	by	our	
computer	simulations	under	no	obstructions.

Fig. 7.4  Standard curves for c.s.d. determinations when elapsed time for the trapping simulations 
was short (1,000 steps) and trap spacing in a 5 × 5 grid was 1.5 times the plume length. The decay 
constants	came	from	the	exponents	of	regression	equations	like	that	shown	in	Fig.	7.3.	Error	bars	
reveal S.E.M. values when n	=	5	 for	each	 treatment	combination.	Additional	 simulations	estab-
lished that the slopes of graphs for the respective plume reaches diminished slightly as run times 
increased	and	movers	had	appreciable	time	to	double	back	upon	the	trapping	grid.	For	this	reason,	
such	experiments	should	be	brief
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Chapter 8
Trapping to Achieve Pest Control Directly

©	The	Author(s)	2015	 
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8.1  The Idea

As	noted	in	Chap.	2,	 traps	are	sometimes	explored	as	 instruments	 to	reduce	pest	
populations	 to	 tolerable	 levels	 without	 additional	 control	 measures.	 In	 the	 field	
of	entomology,	this	tactic	goes	by	various	names	(Knipling	1979;	El-Sayed	et	al.	
2006),	e.g.,	mass	trapping	(the	term	we	will	use);	 trap	out;	and	trap-and-remove.	
Such	insect	traps	are	usually	baited	with	an	attractant	to	improve	their	findability,	
but	some	like	an	electrically	charged	bug-zapper	operate	without	bait.	The	core	idea	
is	to	quickly	remove	the	pest	from	the	environment	where	it	has	appeared	and	begun	
causing	damage	by	e.g.,	feeding,	inoculating	a	host	with	a	disease	agent,	or	mating	
and	 producing	 damaging	 progeny.	The	 lure-and-kill	 approach	 operates	 similarly	
(El-Sayed	et	al.	2006);	however,	the	pest	is	enticed	to	carry	away	a	lethal	dose	of	
poison	without	 requiring	capture	 in	 a	 trap	per	 se.	Nevertheless,	 the	dynamics	of	
such a system match those of mass trapping.

8.2  Time-Dependency and Dynamics of Mass Trapping

Crop	damage	is	influenced	by	the	time	a	pest	interacts	with	its	environment	(Miller	
and	Cowles	1990);	or:

	 (8.1)

It	follows	that	equivalent	damage	can	be	done	by	few	pests	active	for	a	prolonged	
time	or	many	pests	active	briefly.	Thus,	 the	speed	with	which	pests	are	removed	
matters	for	pest	control.	Pesticides	usually	act	very	quickly	and	kill	a	high	propor-
tion of all individuals in the system. The elapsed time the few survivors are active 
after	treatment	typically	becomes	inconsequential	for	conventional	pesticides.	Their	

Damage Pest Timeden∝ ×
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efficacy	is	then	said	to	be	pest-density-independent,	which	is	a	highly	desirable	trait	
for	any	control	tactic.	However,	behavioral	controls	usually	require	time	to	take	ef-
fect.	Byers	(1993)	conducted	pioneering	research	on	the	dynamics	of	mass	trapping	
using	computer	simulations	similar	to	the	Weston	simulations	featured	in	this	book.	
As	first	documented	by	Byers	and	redemonstrated	in	Fig.	8.1	for	our	Weston	mov-
ers,	the	proportion	of	simulated	movers	removed	by	a	trap	deployed	for	a	constant	
time in a closed arena representing a crop field from which they do not depart is 
independent of Mden;	thus,	the	proportion	of	individuals	removed	by	a	trap	is	pest-
density-independent.	However,	the	time	required	for	a	trap	to	lower	the	pest	density	
to	a	level	that	would	be	nondamaging	rises	with	Mden	(Byers	1993;	and	Fig.	8.2).	As	
seen in Fig. 8.3,	the	level	of	interaction	of	pest	and	crop,	and	thus	damage	shown	by	
amount	of	coloration	per	panel,	rises	nearly	linearly	with	pest	abundance.	It	follows	
that	control	by	mass	trapping	or	other	similar	behavioral	tactics	requiring	apprecia-
ble	time	to	take	effect	becomes	pest-density-dependent	once	elapsed	time	to	remove	
the pests is considered in addition to the proportion of the population removed.

It	has	long	been	understood	(e.g.,	Knipling	1979)	that	behavioral	control	tactics,	
such	as	mass	trapping	or	mating	disruption	using	sex	attractant	pheromones	(Thack-
er	2002),	are	best-suited	for	suppressing	the	growth	of	pest	populations	once	they	
are	already	reduced	by	a	pest-density-independent	means	 like	a	pesticide.	More-
over,	some	authors	(El-Sayed	et	al.	2006)	suggest	 that	mass	trapping	and	mating	
disruption	are	well-suited	for	eradicating	low-density	pest	populations	because	their	
efficacy	increases	as	pest	density	approaches	zero.

8.3  Damage Suppression as Influenced by Trap Number 
and Spacing: Simulations

As	a	starting	point	for	exploring	how	best	to	deploy	traps	for	direct	pest	control,	we	
used	computer	simulations	to	quantify	what	impact	a	single	trap	can	have	on	dam-
age when deployed in a crop under high pest pressure. For this heuristic exercise, 
satisfactory	control	was	arbitrarily	taken	as	a	reduction	in	cumulative	track	density	
to	the	level	equal	to	or	less	than	the	track	density	seen	in	the	Fig.	8.3	panel	for	16	
movers.	As	shown	in	Fig.	8.4,	where	the	panel	for	one	trap	should	be	compared	to	
the	panel	for	zero	traps,	a	single	trap	under	high	pest	density	provided	no	control,	
as	evidenced	by	only	a	few	flecks	of	white	around	the	trap	and	no	noticeable	dimi-
nution	in	the	intensity	of	blue	throughout	the	arena.	The	single	trap	removed	only	
3	%	of	the	movers	from	the	overall	population	and	the	area	around	it	was	continu-
ously	inundated	by	movers	from	all	directions.	Such	a	result	is	consistent	with	the	
experience	 of	 some	 homeowners	who	 use	 Japanese	 beetle	 traps	 baited	with	 sex	
pheromone	and	floral	odors	(Potter	and	Held	2002)	in	an	attempt	to	protect	their	
landscape	plantings.	Although	these	traps	may	capture	hundreds	or	sometimes	thou-
sands	of	beetles,	it	is	difficult	to	show	that	they	actually	protect	nearby	plants.	Some	
authors	warn	that	use	of	the	Japanese	beetle	trap	may	actually	increase	damage	by	
attracting	more	insects	than	are	caught.	Clearly,	deploying	a	single	trap	into	a	space	
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Fig. 8.1  Number	(a) and proportion (b)	of	movers	caught	when	varying	numbers	of	randomly	
seeded	Weston	movers	displaced	for	5,000	steps	of	1.0	and	c.s.d.	15°	in	a	500	×	300	unit	bounded	
arena.	Movers	were	reflected	back	into	the	arena	when	encountering	a	wall.	Trap	plumes	measured	
either 10 × 2 or 100 × 10 units
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where the trap plume will occupy only a small fraction of the area from which a 
mobile	pest	is	being	recruited	is	not	a	fruitful	approach.

The same conclusion holds for deploying a pair of traps in close proximity 
(Fig. 8.4).	However,	now	one	sees	the	first	hint	that	deploying	multiple	traps	near	
one	another	may	lead	to	synergism,	i.e.,	the	number	of	white	flecks	around	two	traps	
is	slightly	greater	than	twice	the	number	around	a	single	trap.	But,	control	improved	
dramatically when traps were arranged as a grid (Fig. 8.4).	A	3	×	3	grid	of	 traps	
generated	a	small	patch	of	control	at	its	center	that	approached	our	target	of	tracks	
no	more	dense	than	for	16	movers	in	Fig.	8.3.	Then	that	area	of	acceptable	control	
expanded	with	the	size	of	trapping	grids	maintaining	the	same	spacing.	But,	control	
as	defined	by	this	example	could	never	be	complete,	because	some	of	the	randomly	
seeded pests always originated within the trapping grid.

These simulation results suggest that two important and complementary effects 
are at play when traps are arrayed as a large and close grid. First, the interior of the 
grid is rapidly cleared of movers. Then, the traps on the perimeter shield the interior 
(also	documented	in	Chap.	7)	from	recolonization	so	that	the	cleared	interior	is	held. 
Single traps, a tiny grid of traps, or traps spaced more than two plume reaches apart 
(Fig. 8.5)	fail	to	thoroughly	clear	any	areas	and	fail	to	prohibit	repopulation	of	the	
grid	interior	by	immigrants.	Each	widely	spaced	trap	functions	as	a	stationary	soli-
tary	soldier.	Each	is	unable	to	effectively	clear	any	area	of	the	enemy,	and	no	soldier	
is	close	enough	to	effectively	guard	another’s	back.	The	parallels	between	the	mass	
trapping	problem	and	the	soldier-survival	problem	are	obvious	and	suggest	that	the	

Fig. 8.2 Relationship	between	the	number	of	steps	(time)	required	to	catch	all	but	two	movers	in	
one	trap	with	a	100	×	10	plume	as	influenced	by	number	of	randomly	seeded	movers	under	condi-
tions very similar to those of Fig. 8.1
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Fig. 8.3  Demonstration	of	the	amount	of	interaction	( cumulative tracks shown in blue) simulated 
movers	accumulated	in	a	1,000	×	600	unit	plot	of	crop	during	2,000	steps	of	1.0	unit	and	c.s.d.	15° 
as	influenced	by	number	of	randomly	seeded	movers

Fig. 8.4  Demonstration of 
the amount and location of 
damage	protection	( clear 
zones)	as	influenced	by	the	
number	and	placement	of	
traps. These computer simu-
lations	used	300	randomly	
seeded	Weston	movers	
displacing for 5,000 steps 
of 1.0 and c.s.d. of 15° in an 
enclosed	1,000	×	600	unit	
arena. The black ellipses 
represent 50 × 5 unit trap 
plumes. Traps were spaced 
at	80	units.	Intensity	of	blue 
equates to intensity of accu-
mulated	mover	tracks	and	can	
be	interpreted	as	likelihood	
of damage
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rich history of military experience may inform the optimal deployment and use of 
traps for direct pest control. “Clear-and-hold”	is	a	well-recognized	counter-insur-
gency	tactic	(http://en.wikipedia.org/wiki/Clear_and_hold;	Marston	and	Malkasian	
2008)	heavily	used	in	current	and	recent	wars.	It	is	the	best	tactic	we	have	found	to	
date for simulated mass trapping using stationary traps.

Byers	(1993)	demonstrated	that	the	exact	placement	of	traps	for	mass	trapping	
may	be	of	little	consequence,	so	long	as	they	are	spread	out	and	their	plumes	do	
not overlap. For example, randomly seeded traps produced mass-trapping results 
nearly as good as an evenly spaced trapping grid. Nevertheless, we suggest that a 
trapping	grid	is	sensible	and	may	be	easier	to	deploy	in	row	crops	than	some	more	
irregular design. Our simulations indicate that the optimal trap spacing for control 
by	a	mass	trapping	grid	will	be	ca.	1.5	times	the	elliptical	plume	reach	of	the	given	
trap.	Thus,	 it	will	be	 important	 that	pest	managers	use	 the	 tools	 for	determining	
plume	reach	as	developed	in	Chaps.	4	and	5.	In	contrast	to	the	report	that	c.s.d.	has	
negligible	 impact	on	mass	 trapping	outcomes	 (Byers	1993),	we	 found	 that	mass	
trapping efficacy does degrade somewhat when the c.s.d. of movers departs from 
ca. 20°, (Fig. 8.6)	the	zone	where	gain	(Chap.	4)	was	maximal	for	the	plume	sizes	
encountered	for	typical	insects.	Fortunately,	the	selective	pressures	that	maximize	
the	foraging	efficiency	of	pests	for	plumes	from	potential	mates	will	likewise	have	
optimized	foraging	efficiency	for	plumes	from	traps.

We	close	this	section	with	a	clear	demonstration	of	the	extent	to	which	pest	con-
trol	by	a	behavioral	tactic	like	mass	trapping	is	pest	density-dependent.	In	the	simu-
lations of Fig. 8.7, we used the optimal spacing (1.5 × plume reach) for a trapping 
grid as arrived at from Fig. 8.5. Then we varied only pest density. By the standard 

Fig. 8.5  Influence of trap 
grid	spacing	on	control	by	
mass	trapping.	Numbers	
above	panels	indicate	trap	
spacing in computer units. 
In these simulations, plumes 
( black ellipses) measured 
30	×	5	to	make	them	visible.	
Other conditions were as for 
Fig. 8.4
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of	cumulative	tracks	no	denser	than	the	panel	for	16	movers	in	Fig.	8.3,	control	by	
mass	trapping	was	possible	for	a	population	density	at	or	below	(but	not	above)	300	
movers/arena	(Fig.	8.7). Efficacy of mass trapping or mating disruption is usually 
judged	by	the	suppression	of	catch	in	one	standard	monitoring	trap	placed	within	
the	treated	crop	plot	relative	to	one	trap	in	an	equivalent	but	untreated	plot.	It	may	
startle some readers to see that the percent suppression of catch was virtually identi-
cal for all panels in Fig. 8.7; yet, control was certainly not identical. Incongruence 
between	percent	catch	suppression	and	control	has	been	the	bane	of	mating	disrup-
tion	research	since	its	inception	40	years	ago	and	could	be	equally	confusing	when	
judging	efficacy	of	mass	trapping.	To	our	knowledge,	the	cause	of	this	troublesome	
mismatch	has	never	been	clearly	identified.	It	occurs	because	the	ratio	of	catch	for	
one trap operating alone vs. one trap operating within the grid of traps is time-
independent	and	thus	pest	density-independent.	However,	damage	is	pest	density-
dependent	as	shown	above.	A	time-independent	measure	of	efficacy	(percent	catch	
suppression) will not correlate well with a time-dependent (percent infestation) 
measure of efficacy across a wide range of pest densities. Expecting a good match 
between	these	efficacy	measures	is	a	misconception	that	needs	to	be	laid	to	rest.

Figures 8.8 and 8.9 offer insight into how percent crop infestation varies with 
time of interaction with pests. This relationship is not linear. Percent infestation 
initially	rises	rapidly	with	elapsed	time;	but	then	the	rate	of	increase	slows	and	only	
asymptotically	approaches	100	%	infestation.	These	two	factors	are	related	in	much	
the	same	way	as	are	the	number	of	movers	in	an	arena	and	the	time	it	takes	for	most	
of	them	to	be	removed	by	traps	(Fig.	8.2).	In	both	cases,	the	object	being	sought	is	
in	diminishing	supply.	The	severity	of	the	bow	in	the	curves	of	Fig.	8.9 diminishes 
with	pest	density.	Yet,	plots	of	crop	under	behavioral	controls	that	modestly	reduce	
pest density relative to untreated control plots can, over long-running experiments, 
register similar high levels of damage as the damage curve for the former eventually 
catches up with that of the latter. Such outcomes have perplexed many investigators 
who found little difference in percent infestations while simultaneously recording 
pronounced differences in percent catch suppression. Such incongruence is most 
pronounced under high pest populations, as seen in Fig. 8.9.

Fig. 8.6  Control	by	a	mass	
trapping	grid	as	influenced	by	
c.s.d.	of	movers.	Conditions	
as per Fig. 8.4. Note: the 
density	of	tracks	for	c.s.d.	
zero	is	reduced	because	these	
ballistic	movers	accumulated	
at	the	field	border	not	shown	
at this magnification
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Fig. 8.7  Control	( white zones)	of	an	optimized	mass	trapping	grid	as	influenced	by	the	density	of	
simulated	pests	in	the	crop.	Conditions	for	these	simulations	match	those	of	Fig.	8.4. Percent catch 
suppression	is	computed	as	(1	−	(catch	of	a	trap	inside	the	49	T/catch	by	a	single	trap	operating	in	
an untreated plot)) × 100

Fig. 8.8  Proportion	of	crop	visited	( blue)	vs.	unvisited	( white)	as	influenced	by	elapsed	time	of	
the	simulation	run	measured	in	number	of	steps	taken.	The	number	of	movers	randomly	seeded	
was 500 and no traps were deployed; other conditions were identical to those of Fig. 8.4
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8.4  Examples of Successful Pest Control by Mass 
Trapping

Such	examples	remain	few.	El-Sayed	et	al.	(2006)	aptly	summarized	the	best	cases	
for insects. They emerge where: (i) pest densities are low, (ii) reproductive capac-
ity	of	the	pest	is	not	extraordinarily	high,	(iii)	the	plants	or	animals	to	be	protected	
are at least somewhat isolated from sites generating new immigrants, (iv) potent 
attractants	 exist	 for	 the	 pest	 species	 and	 their	 chemistry	 is	well	 elucidated	 both	
qualitatively	and	quantitatively,	(v)	lures	and	traps	are	not	terribly	costly	and	are	
effective	 for	months,	 (vi)	 traps	experience	high	 findability,	efficiency,	and	 reten-
tion	(cannot	saturate),	(vii)	pests	are	sufficiently	mobile	to	rapidly	find	the	plumes	
of	nearby	traps,	but	not	so	mobile	that	they	rain	down	upon	a	crop	from	elevations	
where	they	would	not	encounter	a	perimeter	of	traps,	and	(viii)	cheap	labor	is	avail-
able	for	trap	manufacture,	deployment,	and	servicing.	In	fact,	the	cost/benefit	ratio	
has	everything	to	do	with	the	feasibility	of	mass	trapping.	It	is	not	surprising,	then,	
that	 examples	 of	 effective	 and	 economical	mass	 trapping	 (El-Sayed	 et	 al.	 2006)	
have	been	reported	from	locations	where	labor	in	inexpensive,	i.e.,	pink	bollworm,	
Pectinophora gossypiella,	 in	Brazilian	cotton:	 certain	weevil	pests	of	palm	 trees	
in	 the	Middle	East	 and	 in	Central	America:	 and	 the	West	 Indian	 cane	weevil.	A	
recent	study	(Samson	and	Kirk	2013)	on	control	of	western	flower	thrips,	Frankli-
niella occidentalis,	concluded	that	use	of	pheromone-baited	blue	sticky	traps	will	be	
economical for control of this pest in isolated locations producing cut flowers and 

Fig. 8.9  Simulation results showing the proportion of a crop plot infested vs. elapsed time mea-
sured	as	number	of	steps	taken	in	the	simulation.	The	measure	of	proportion	of	crop	infested	was	
taken	as	the	proportion	of	traps	(20	×	2	unit plumes)	out	of	a	7	×	7	trapping	grid	( widely spaced in a 
1,000	×	600	arena)	that	were	visited	when	movers	were	not	arrested	by	the	traps
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vegetables,	where	insecticide	residues	are	highly	undesirable.	Mass	trapping	is	also	
expected	to	find	a	viable	niche	in	control	of	stored	food	pests	(Phillips	1994)	where	
pesticide	use	is	restricted.	Mass	trapping	will	likely	be	a	viable	option	for	manage-
ment of some insect pests in organic agriculture.

Large	 sums	 of	money	 are	 justified	 if	mass	 trapping	 or	 lure-and-kill	 formula-
tions	can	eradicate	a	serious	new	invasive	pest,	as	has	been	accomplished	for	the	
Mediterranean fruit fly, Ceratitis capitata,	in	California	(Myers	et	al.	2000)	using	a	
lure-and-kill	approach	where	malathion	was	widely	sprayed	with	a	sugar	bait.	Here,	
the up-front costs pale in light of the long-term savings.

Mass	trapping	is	also	a	viable	pest	control	option	for	some	vertebrate	pests.	The	
following	 examples	 deal	with	 pests	whose	 foraging	 behaviors	may	 not	 conform	
fully	 to	 the	 patterns	 described	 for	 biological	 random	walkers	 in	 earlier	 chapters	
of	 this	 book.	Nevertheless,	 it	 is	 informative	 to	 consider	 the	 similarities	 and	 dif-
ferences	 in	mass	 trapping	 outcomes	 between	 such	movers	 and	 random	walkers.	
Trapping	of	mice	invading	houses,	businesses,	etc.	seems	to	be	the	hallmark	of	suc-
cessful	pest	control	by	mass	trapping,	as	judged	by	user	satisfaction,	profits	reaped	
by	trap	suppliers,	and	longevity	of	 this	market.	Dagg	(2011)	elegantly	traced	the	
history of the modern mouse trap while using it as an example for addressing prin-
ciples	of	cultural	evolution	pertaining	to	the	controversy	of	intelligent	design.	As	
evidenced	by	pictographs,	human	use	of	mouse-	and	rat-traps	predates	the	Bronze	
Age.	Thereafter,	interest	in	“the	better	mousetrap”	never	subsided.	Between	1996	
and	the	inception	of	the	US	Patent	Office	in	1,838,	4,400	mousetrap	patents	were	
awarded	(Jackson	2011).	This	number	sets	the	all-time	record	for	patents	surround-
ing	any	single	US	technology.	Although	thousands	of	designs	have	competed	for	
a	 share	 in	 an	 estimated	 50	million	 unit	 annual	 international	market,	 the	 designs	
retaining	more	 than	60	%	of	 the	market	are	only	slight	variants	of	 that	shown	 in	
Fig. 8.10. This design was apparently converged upon simultaneously at the turn 
of	the	twentieth	century	by	John	Mast	of	Lancaster,	PA,	USA,	and	James	Atkinson	
of	Leeds,	Yorkshire,	England.	Such	traps	were	originally	priced	at	just	pennies	per	
copy	but	have	now	inflated	to	about	a	dollar	or	substantially	more	if	the	trip	pedal	is	
made from plastic infused with a long-lasting attractive odorant. The senior author 
can	personally	attest	that	investment	in	traps	like	that	of	Fig.	8.10 is well worth the 
benefits	of	restored	domestic	tranquility	each	fall	when	cold	weather	drives	mice	
indoors.	The	number	of	traps	required	for	effective	mass	trapping	in	this	particular	

Fig. 8.10  An	example	of	
the dominant design of traps 
sold	across	the	globe	for	
mass trapping of mice in 
homes	and	businesses.	Key	
features	are	labeled.	This	trap	
based	on	the	Mast	patent	is	
manufactured	by	Woodstream	
Corp.	of	Lititz,	PA,	USA
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Michigan	farmhouse	over	ca.	4	weeks	is	4–6	and	the	annual	harvest	is	ca.	12	mice.	
Our	threshold	for	control	is	zero	mice	or	mouse	droppings.	And,	each	trap	lasts	for	
years.	This	is	an	example	of	unequivocally	successful	mass	trapping.

Larger	traps	like	that	in	Fig.	8.10 have played an important role for many years in 
mass	trapping	of	rats	around	businesses	like	farms.	And	they	were	recently	investi-
gated	as	agents	for	protecting	Hawaiian	crops	of	macadamia	nuts	from	roof	rat	dam-
age	(Tobin	et	al.	1993).	Some	40	ha	of	nut	trees	received	traps	in	a	grid	pattern	(trap	
every	4th	tree)	at	40	traps/ha.	Traps	were	baited	with	coconut	and	deployed	on	low	
horizontal	branches	where	the	rats	were	known	to	be	most	active.	The	layout	and	
spacing of traps appeared to approach the clear and hold	standards	detailed	above	
from	computer	simulations.	More	than	1,700	rats	were	captured	in	the	1,600	traps	
in	1	year	of	this	study.	Satisfyingly,	rat	damage	to	the	crop	was	reduced	from	ca.	4	
to	1	%.	But,	it	remains	to	be	seen	whether	this	method	will	be	adopted	when	the	pro-
gram	costs	approached	$	250/ha.	Another	concern	was	that	the	traps	injured	birds.

By	contrast,	trapping	of	bandicoot	rats	for	control	of	deepwater	rice	in	Bangla-
desh	is	reported	to	be	highly	effective	and	practical	(Islam	and	Karim	1995).	Here,	
live	traps	worked	better	than	snap	traps	and	each	one	was	deployed	on	a	floating	
platform among the deeply flooded rice stems. Rats swimming among the flooded 
rice plants tired and were attracted to the floating platforms holding the traps. Thus, 
the drawing power to each trap was much increased over random encounter as was 
likely	for	the	macadamia	nut	mass	trapping	research.

Trapping	 of	 vertebrate	 pests	 such	 as	 raccoons,	 skunks,	 and	 ground	moles	 re-
mains an important component of wildlife pest control in the home and garden set-
ting	(Salmon	et	al.	2006).	It	is	also	an	important	source	of	income	for	pest	control	
companies.	Having	one	skunk	in	the	back	yard	is	no	small	problem	when	one’s	dog	
is	 released	from	the	back	door	 to	 relieve	himself	and	he	bolts	off	 into	 the	night.	
Trapping	of	this	sort	is	rarely	referred	to	as	mass	trapping	because	relatively	few	
traps	are	used	per	site.	Instead	the	elapsed	time	that	a	pest	is	subjected	to	trapping	
is	extended	until	it	is	no	longer	productive.	Nevertheless,	the	goal	is	the	same—re-
duce	the	pest	problem	to	acceptable	levels	by	traps	alone	(rather	than	e.g.,	poisons).	
In many cases, live traps are employed that do not harm the wildlife. But, as some 
of us can attest when a pest control company traps our lawns for ground moles, 
one	reevaluates	the	threshold	for	acceptable	pest	density	as	the	bill	for	this	service	
mounts	over	the	weeks	or	months	when	eradication	clearly	has	not	been	attained.	
The	standards	for	humane	treatment	of	animals	by	homeowners	and	vertebrate	pest	
control	operators	are	appropriately	rising	through	time	(Fall	and	Jackson	1998).

Mass	trapping	using	large	cage	traps	contributes	to	successful	management	of	
the sea lamprey, Petromyzon marinus,	 an	 eel-like	 parasite	 of	 sport	 fish	 species	
throughout	the	Great	Lakes	(McLaughlin	et	al.	2007).	Although	not	nearly	as	effec-
tive	as	lampricides	directed	against	the	worm-like	immature	sea	lamprey	develop-
ing	as	sedentary	feeders	in	stream	beds	leading	into	the	lakes,	mass	trapping	helps	
reduce	the	density	of	spawner	runs	recolonizing	streams	each	spring.	The	hope	that	
synthetic sex pheromones (in this case released from the gills of males preparing 
nests)	would	greatly	increase	captures	of	female	lamprey	over	unbaited	traps	as	they	
do	for	male	insects,	unfortunately,	has	not	been	fulfilled	(Johnson	et	al.	2013).	To	
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date,	baiting	traps	with	pheromone	increases	lamprey	capture	by	less	than	twofold.	
The current hypothesis is that the pheromone is increasing trap entry (raising trap 
efficiency)	but	not	findability.	Nevertheless,	the	benefit	of	modestly	increased	cap-
tures is tentatively considered worth the cost of the rather expensive pheromone. 
Mass trapping is an especially appealing approach in the lamprey system having a 
great advantage that the pests are forced to follow stream channels; thus traps can 
be	 deployed	 so	 that	 their	 targets	must	 repeatedly	 pass	 them	before	 reaching	 the	
spawning	grounds.	Only	 then	 can	damage	 result	 by	 the	 production	of	 offspring.	
However,	this	advantage	is	offset	by	the	disadvantage	that	this	species	is	an	extreme	
r-strategist. Each female produces tens of thousands of eggs. Thus, the proportion of 
spawners	that	must	be	removed	by	mass	trapping	to	reduce	final	larval	populations	
in	the	limited	zones	of	suitable	larval	habitat	must	be	extremely	high.	So,	this	is	yet	
another	case	where	mass	trapping	is	not	a	stand-alone	pest	management	tactic.	As	
in most other cases, trapping is considered a component of an overall IPM program 
for sea lamprey.

8.5  New Approaches to Mass Trapping

An	impediment	to	the	practical	development	of	mass	trapping	for	insects	has	been	
that	standard	monitoring	traps	are	frequently	used	for	mass	trapping	research.	Each	
of	these	traps	is	designed	to	collect	dozens	of	insects	without	saturating,	and	there-
fore	their	trapping	surface	must	be	large.	However,	if	mass	trapping	is	conducted	
under	low	pest	densities	and	dozens	of	traps	will	be	used	per	ha,	large	trap	size	is	
wasteful	because	large	traps	will	never	saturate.	They	represent	design	overkill.	This	
realization	prompted	the	Michigan	State	University	team	of	Reinke	et	al.	(2012)	to	
develop a small trap more appropriate to a mass trapping role for codling moth. 
This patented MicroTrap (Fig. 8.11)	is	an	enclosed	cube	measuring	only	4	cm	on	a	

Fig. 8.11  Michigan State 
University’s patented Micro-
Trap developed for mass 
trapping of small moth pests 
of	fruit	like	codling	moth	
and	perhaps	extendable	to	
other insect pests. This trap 
measures	only	4	cm	on	a	side,	
while a standard monitoring 
trap	(Fig.	1.3)	is	nearly	30	cm	
long
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side.	A	sex	pheromone	lure	is	contained	inside	the	trap	whose	inner	walls	are	coated	
with	nonodorous	glue	that	does	not	inhibit	insect	entry.	Twelve-mm	diam	holes	on	
cube	faces	permit	airflow	through	the	trap,	ample	release	of	pheromone,	and	quick	
entry of male moths into the trap interior where they are permanently ensnared. Mi-
croTraps caught similarly to the standard codling moth monitoring trap and, when 
mass-produced, will cost far less per copy than the standard monitoring trap.

In	a	test	(Reinke	et	al.	2012)	conducted	using	0.2	ha	plots	of	apple	and	a	grid	of	
traps	spaced	at	4	m,	mass	trapping	with	MicroTraps	yielded	92	%	catch	suppression	
of	codling	moth	males	that	was	superior	to	the	best	mating	disruption	product	on	
the	market	 (71	%).	Mass	 trapping	of	 the	obliquebanded	 leafroller,	Choristoneura 
rosaceana, under similar conditions also suppressed catch in monitoring traps more 
strongly	(85	%)	than	did	mating	disruption	(58	%)	(Reinke	et	al.	2012).	Moreover,	
damage	of	this	pest	to	young	shoots	was	reduced	to	1	%	by	mass	trapping	relative	
to	4	%	measured	in	control	plots.	We	therefore	conclude	that	mass	trapping	is	more	
efficacious than mating disruption when the mechanism of disruption is competitive 
(Miller	et	al.	2006a,	2010)—point	sources	act	as	false	females	attracting	the	males.

We	suggest	that	the	mass	trapping	tactic	has	substantially	more	to	offer	to	pest	
control	than	has	been	realized	to	date	because	the	fundamentals	of	the	method	(like	
reach	of	attractive	plumes	and	required	spacing	based	on	plume	reach)	are	only	now	
being	uncovered.	With	more	effort	on	research	and	development,	it	is	likely	that	the	
costs	of	small	traps	used	for	insects	could	drop	substantially.	If	mass	trapping	is	to	
be	adopted	in	developed	countries,	the	high	labor	costs	associated	with	trap	deploy-
ment	will	need	to	be	solved	by	automating	deployment.	For	example,	the	Tangler®	
(http://www.goodfruit.com/the-tangler/)	bolas	technique	(patent	pending	by	Ridge-
Quest)	shows	great	promise	as	a	method	for	securing	small	devices	 launched	by	
pressurized	 gas	 into	 tree	 canopies.	 Commercial	 opportunities	 remain	wide	 open	
to	entrepreneurs	who	grasp	the	science	behind	effective	trapping,	are	sufficiently	
creative to invent, engineer, and manufacture effective trap designs and deployment 
techniques,	and	who	can	develop	effective	marketing	and	servicing	networks.
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Chapter 9
Automated Systems for Recording,  
Reporting, and Analyzing Trapping Data
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9.1  Need for Such Systems

Crop	production	in	the	global	economy	is	highly	competitive.	Profit	margins	have	
become	remarkably	thin	and	are	likely	to	remain	so	indefinitely.	Market	forces	drive	
agriculture	to	adopt	economies	of	scale	and	to	cut	costs	wherever	possible.	Labor	
is	one	segment	of	the	cost	equation	being	squeezed	to	its	minimum.	Thus,	it	is	not	
surprising	that	growers	and	pest	management	consultants	question	whether	they	can	
afford	the	time	it	takes	them	or	their	employees	to	deploy	the	recommended	den-
sity of monitoring traps for pests and to visit all of them at recommended intervals 
to	collect	the	data.	This	dissatisfaction	combined	with	the	availability	of	powerful	
new	 information	 technologies	 that	 are	 becoming	 ever	 cheaper	makes	 it	 sensible	
and	inevitable	that	trapping,	reporting,	and	analysis	of	data	will	become	automated.

9.2  History of Insect Trap Automation

With	the	invention	of	the	first	light	trap	for	insects	in	1927	(http://wwwrci.rutgers.
edu/~insects/njtrap.htm),	entomologists	became	interested	in	when	during	the	diel	
cycle	insects	were	responding.	Such	studies	initially	required	investigators	to	tend	
their	experiments	continuously	for	24	h	to	change	collecting	jars	under	traps	at	reg-
ular	intervals	to	record	when	catch	began,	peaked,	and	ceased.	Clever	minds	soon	
devised	machinery	for	doing	this	sleep-depriving	job.	In	1934,	Seamans	and	Gray	
developed	a	turntable	that	automatically	switched	the	collecting	vessels	at	regular	
intervals.	Many	publications	on	that	theme	followed.

When	sex	pheromones	became	available	in	the	1970s	for	baiting	insect	traps,	the	
turnabout	idea	was	again	soon	utilized	for	assessing	the	timing	of	responses.	One	
such	device	(Comeau	1971)	simply	mounted	a	large	pizza	pan	to	the	hour	hand	of	a	
large	wind-up	mechanical	clock	so	that	it	made	one	revolution	every	12	h.	A	cutout	
equivalent	to	1	h	of	travel	over	a	sticky	disk	permitted	moths	to	become	ensnared	
after approaching a sex pheromone lure mounted immediately over the opening. 
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Such devices conveniently permitted investigators to graph activity level over time, 
including	a	full	day	with	one	clock	switch.

In	the	mid-1980s,	 insect	 trap	automation	advanced	beyond	simple	mechanical	
technology	when	Hendricks	(1985)	incorporated	a	portable	infrared	(IR)	detector	
into	an	inverted	cone	trap	baited	with	sex	pheromones	targeting	the	medium-sized	
moth	pests	of	cotton	in	South	Texas,	tobacco	budworm	( Heliothis virescens), and 
cabbage	looper	( Trichoplusia ni).	The	traps	were	powered	by	an	ordinary	lantern	
battery	and	operated	in	remote	open	fields	subject	to	ambient	wind,	rain,	fog,	and	
dust.	The	 records	of	moth	 transit	 into	 the	 trap	 reservoir	were	 translated	 into	 ink	
dots	 deposited	 on	 a	 time-stamped	 revolving	 paper	 disk.	The	 results	were	 excel-
lent;	captures	in	the	automated	traps	were	95	%	correlated	with	those	recorded	from	
nonautomated	traps.	No	serious	problems	were	experienced	with	the	electronics	or	
mechanics of this trap.

Recognizing	the	great	potential	of	automated	traps	and	apparently	permitting	his	
inventions	to	remain	in	the	public	domain,	Hendricks	(1989)	quickly	proceeded	to	
use	a	portable	computer	to	receive	the	tone-coded	radio	frequency	pulses	emitted	by	
the	traps	upon	moth	entry.	Count	data	could	then	be	provided	in	easily	understood	
format	to	a	farm	manager.	This	system	was	92	%	accurate	in	counting	moths	and	
100	%	accurate	in	reporting	the	detection	of	single	moths	as	a	first	event	each	night.	
Again,	the	system	proved	highly	robust	under	the	full	range	of	field	conditions.

Other	researchers	(Schouest	and	Miller	1994),	working	with	the	cotton	pest	pink	
bollworm	( Pectinophora gossypiella),	extended	this	effort	by	linking	various	com-
puters to receive trapping data from multiple sites and then transmit the cumulative 
data	over	phone	lines	to	a	central	location	where	it	could	be	analyzed	and	poten-
tially translated into control decisions appropriate to each field.

Tseng	et	al.	(2006)	used	a	high-voltage	electrocution	system	to	record	visits	of	
Taiwanese	diamondback,	Plutella xylostella,	moths	to	traps	baited	with	sex	phero-
mone.	But	the	notable	advancement	was	the	demonstration	that	the	global	system	
for	mobile	communication	(GSM)	and	short	message	service	(SMS)	could	success-
fully transmit the collected data over long distances to a central location where data 
could	be	processed	for	pest	management	decisions.	Based	on	performance	testing	
on over 915 data transmissions, the one-way SMS transmission time for a field 
monitoring	platform	to	a	host-control	platform	was	reported	to	be	10–15	s,	while	
the average transmission time of a field monitoring platform to host-control com-
mand	was	about	30	s,	both	tolerable	time	delays.	The	correctness	of	the	data	sent	by	
the	GSM-SMS	system	was	judged	at	100	%.	The	rate	of	data	loss	was	about	1	%	and	
that	was	entirely	due	to	the	service	quality	of	the	commercial	telecommunication	
company	used.	Notably,	this	system	simultaneously	collected	and	transmitted	en-
vironmental data along with the capture data from the monitoring traps, a develop-
ment that will appropriately facilitate integration of weather with capture data. Two 
years	later,	this	research	group	demonstrated	(Jiang	et	al.	2008)	that	a	similar	system	
worked	well	for	collecting	and	transmitting	trapping	data	for	the	oriental	fruit	fly,	
Bactrocera dorsalis. In this case, an optical sensor was used to count flies entering 
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the	trap.	Moreover,	this	trap	employed	a	pneumatic	“inhaler”	that	overcame	a	previ-
ous	problem	of	multiple	counts	of	the	same	arriving	fly.

Reports	 of	 other	 kinds	 of	 automated	 traps,	 some	 also	 simultaneously	 collect-
ing	environmental	data,	are	appearing	in	the	literature	(Beerwinkle	2001;	Tabuchi	
et	al.	2006;	Tobin	et	al.	2009).	Such	a	trap	has	been	developed	by	the	United	States	
Department	of	Agriculture	(USDA)	Animal	and	Plant	Health	Inspection	Service	for	
gypsy the moth, Lymantria dispar, a devastating forest pest toward which the US 
Forest Service has directed much research and management effort. This modified 
milk	carton	trap	(Fig.	9.1)	baited	with	(+)	disparlure	counts	male	gypsy	moths	via	a	
piezoelectric	counter	interfaced	with	an	event	data	logger	giving	each	capture	a	time	
and	date	stamp.	The	 trap	also	contains	a	HOBO	TidbiT	 temperature	data	 logger.	
However,	this	trap	lacks	any	capacity	to	transmit	data.	Researchers	must	visit	each	
trap	and	physically	download	the	data	from	the	respective	recorders	onto	a	portable	
computer for transport and analysis. Nevertheless, the accuracy of this automated 
gypsy moth trap shows great promise (Figs. 9.2 and 9.3).

Another	promising	technology	for	automatically	recording	insect	appearance	in	
traps	is	digital	photography.	Kondo	et	al.	(1994)	demonstrated	that	this	technique	al-
lowed	accurate	counts	of	arrivals	into	traps	of	the	Asiatic	rice	stemborer,	Chilo sup-
pressalis, and the Oriental leafworm moth, Spodoptera litura.	Guarnieri	et	al.	(2011)	
improved	the	method	by	incorporating	a	smartphone	into	a	pheromone-baited	trap	

Fig. 9.1  Design	of	the	milk	
carton trap modified for auto-
mated recording of captures 
of	male	gypsy	moths	(Tobin	
et	al.	2009).	As	they	pass	
through	the	tube	toward	the	
source of the sex pheromone, 
moths	displace	the	piezo-
electric counter for which the 
date–time	stamp	is	recorded	
by	an	event	data	logger
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Fig. 9.2  Data	from	Tobin	et	al.	(2009)	demonstrating	that	the	number	of	captures	recorded	by	the	
automated	gypsy	moth	trap	is	very	well	correlated	with	the	actual	catch	recorded	by	visual	inspec-
tion. The solid diagonal line indicates a 1:1 relationship

       

Fig. 9.3  Remarkably	 consistent	 pattern	 in	 diel	 responsiveness	 of	 male	 gypsy	 moths	 to	 sex	
pheromone	as	measured	by	the	automated	gypsy	moth	trap	(Tobin	et	al.	2009)
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for codling moth, Cydia pomonella, and programmed to wirelessly transmit updated 
images to any location for processing (Fig. 9.4).	The	battery	pack	used	permitted	
the system to operate continuously for 20 days. Image resolution was sufficient to 
guarantee that only codling moths were counted. Moreover, use of a highly species-
specific	pheromone	and	the	trap	design	make	catches	of	nontarget	organisms	highly	
improbable.

9.3  Recent Developments and Future Prospects

Capture	and	transmission	of	visual	images	from	traps	is	becoming	the	favored	meth-
od	for	automated	data	flow	as	judged	by	recent	publications	(López	et	al.	2012).	
Rapid	 advances	 are	 being	made	 in	 reducing	 the	 power	 (and	 thus	 cost)	 required	
to	run	these	systems	and	increasing	the	speed	and	reliability	of	data	transmission.	
Smart	traps	using	visual	imaging	are	becoming	commercially	available.	The	model	
shown in Fig. 9.5a	is	sold	by	Trapview	(http://www.trapview.com/en).	It	is	manu-
factured	by	EFOS	informacijske	resitve	d.o.o.	of	Slovenia,	a	company	specializ-
ing in software and technologies advancing environmental and food safety. Spensa 
Technologies	of	West	Lafayette,	IN	(USA)	also	offers	a	smart	trap	(Fig.	9.5b) along 
with a complete analysis system. The speed with which such automated trapping 
systems	are	adopted	by	pest	managers	and	growers	remains	to	be	seen	and	will	be	
highly	influenced	by	pricing.	We	predict	that	smart	traps	will	remove	much	of	the	
labor	 costs	 associated	with	pest	monitoring	 and	 a	 few	 inexpensive	versions	will	
inevitably	sweep	the	market	in	developed	countries.	Evidence	is	mounting	that	the	
marketing	strategy	of	companies	promoting	this	technology	is	to	bundle	the	traps	
and transmission systems with data storage (already includes cloud storage and re-
trieval) and analysis systems.

Fig. 9.4  Design of the 
codling moth trap incorporat-
ing a smartphone to snap and 
periodically transmit images 
of	the	sticky	liner.	Redrawn	
from	Guarnieri	et	al.	(2011)
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No	peer-reviewed	publications	were	 found	on	 smart	 trap	 technologies	 for	 ar-
thropods	such	as	lobsters	and	crabs.	However,	they	are	soon	to	arrive.	A	web	article	
(http://www.halfbakery.com/idea/smart_20shrimp_20crab_20pots)	reports	at-
tachment	of	an	underwater	camera	to	a	crab	or	shrimp	pot.	A	floating	data	cable	
delivered	 images	 to	 an	 radio	 frequency	 (RF)	 transmitter	 attached	 to	 a	 buoy	 that	
periodically	transmitted	the	images	to	a	base-station	where	the	images	were	used	
to	determine	whether	or	not	to	visit	the	trap	for	collecting	the	harvest	and/or	rebait-
ing.	Smart	mouse	traps	are	currently	available.	Some	models	even	send	the	tender	
a	text	message	or	an	email	notifying	them	that	the	trap	has	caught	and	needs	to	be	
serviced.

To	our	knowledge,	the	possible	benefits	of	mobile	vs.	stationary	monitoring	traps	
for	 pests	 have	 not	 yet	 been	 explored,	 probably	 because	 costs	 for	 achieving	 trap	
mobility	are	thought	to	be	prohibitive.	However,	our	preliminary	explorations	using	
computer simulations show that capture rate of a single trap moving in a circular 
orbit	in	a	field	of	insectlike	Weston	movers	rises	approximately	linearly	with	trap	
speed	for	any	plume	reach.	Intersections	of	movers	with	plumes	can	rise	substan-
tially when trap speed exceeds the movers’ net speed such that the plume sweeps 
over the movers in addition to having the movers fly into the passing plume. In es-
sence,	the	trap	then	becomes	a	mobile	rather	than	sit-and-wait	predator.	Encounter	
rates	of	mobile	predators	with	prey	are	well	known	to	be	substantially	higher	than	
those	 for	 stationary	predators	 (see	Gurarie	and	Ovaskainen	2013,	and	 references	
therein).	In	today’s	world	where	increasingly	inexpensive	and	reliable	unmanned	
aircraft	are	becoming	available	for	civil	uses	(Nonami	2007),	it	seems	appropriate	
that	mobile	monitoring	traps	receive	their	due	attention,	because	they	could	offer	
decided advantages in pest detection and sampling efficiency.

Fig. 9.5  Smart	traps	purchasable	from	Trapview	(a) and Spensa Technologies (b). Both companies 
offer	analysis	systems	or	services.	(Images	and	permission	to	use	theme	here	were	provided	by	the	
respective companies)

     



109

9.4  Wrap-Up

Our	hope	 is	 that	 the	principles	of	 trapping	set	 forth	 in	 this	book	will	become	an	
integral	part	of	modern	trapping	systems.	Clearly,	companies	selling	traps	and	pest	
managers	will	want	to	know	the	plume	reaches	and	trapping	radii	of	their	traps	so	
as	to	optimize	deployment	spacing.	Conversion	of	catch	numbers	into	absolute	pest	
density	will	surely	become	a	key	part	of	any	sophisticated	analysis	system.	Smart	
traps	will	be	a	boon	to	collection,	speed	of	analysis,	and	sharing	of	competitive	trap-
ping	data	(Chap.	7)	so	as	to	simultaneously	measure	trapping	area	as	well	as	catch.	
Such	 information,	 combined	with	other	data	 streams	on	past	 and	 future	weather	
conditions,	crop	loads,	and	projected	prices	attainable	for	the	developing	crop,	will	
all	 become	part	 of	 an	overall	 decision	 system	 that	will	 increasingly	become	au-
tomated	and	centralized.	 In	 the	end,	 software	and	computer	 systems,	 rather	 than	
pencil-pushing	humans,	will	be	crunching	the	numbers	and	suggesting	optimized	
actions	 and	 their	 timing.	Considerable	 efficiency	will	 be	 gained	 in	 this	 process.	
Hopefully,	 those	gains	will	 translate	 into	a	 safer,	 less	expensive,	and	sustainable	
food supply.

9.4	 	Wrap-Up	



111©	The	Author(s)	2015	 
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs	in	Ecology,	DOI	10.1007/978-3-319-12994-5

References

Adams	CG,	McGhee	PS,	Gut	LJ,	Miller	JR	(2015)	Trapping	radius	and	plume	reach	for	the	stan-
dard monitoring trap for codling moth, Cydia pomonella. (In preparation)

Arora	R,	Singh	B,	Dhawan	AK	(eds)	(2012)	Theory	and	practice	of	integrated	pest	management.	
Scientific	Pub.	Jodhpur,	India,	529	p

Batiste	WC,	Olson	WH,	Berlowitz	A	(1973)	Codling	moth:	influence	of	temperature	and	daylight	
intensity	on	periodicity	of	daily	flight	in	the	field.	J	Econ	Entomol	66:883–892

Beerwinkle	KR	(2001)	An	automatic	capture-detection	time-logging	instrumentation	system	for	
boll	weevil	pheromone	traps.	Appl	Eng	Agric	17:893–898

Bell	WJ	(1991)	Searching	behaviour:	the	behavioural	ecology	of	finding	resources.	Chapman	and	
Hall,	New	York,	358	p

Berg	HC	(1993)	Random	walks	in	biology.	Princeton	University	Press,	Princeton,	N.J.,	152	p
Billingsley	P	(1956)	The	 invariance	principle	 for	dependent	 random	variables.	Trans	Am	Math	

Soc	83:250–268
Breman	JG,	Egan	A,	Keusch	GT	(2001)	The	intolerable	burden	of	malaria:	a	new	look	at	the	num-

bers.	Am	J	Trop	Med	Hyg	64:iv–vii
Brêthes	JC,	Bouchard	R,	Desrosiers	G	(1985)	Determination	of	the	area	prospected	by	a	baited	

trap	from	a	tagging	and	recapture	experiment	with	snow	crabs	( Chionoecetes opillo). J North-
west	Atl	Fish	Sci	6:37–42

Byers	 JA	 (1993)	 Simulation	 and	 equation	models	 of	 insect	 population	 control	 by	 pheromone-
baited	traps.	J	Chem	Ecol	19:1919–1956

Byers	JA,	Anderbrant	O,	Löfqvist	J	(1989)	Effective	attraction	radius:	a	method	for	comparing	
species	attractants	and	determining	densities	of	flying	insects.	J	Chem	Ecol	15:749–765

Comeau	A	(1971)	Physiology	of	sex	pheromone	attraction	in	Tortricidae	and	other	Lepidoptera.	
Ph.	D.	Dissertation,	Cornell	University

Dagg	JL	(2011)	Exploring	mouse	trap	history.	Evo	Edu	Outreach	4:397–414
Dodds	KJ,	Ross	DW	(2002)	Sampling	range	and	range	of	attraction	of	Dendroctonus pseudotsug-

ae	pheromone-baited	traps.	Can	Entomol	134:343–355
Donsker	MD	(1951)	An	invariance	principle	for	certain	probability	limit	thermos.	Mem	Am	Math	

Soc	6:1–10
Elkinton	JS,	Childs	RW	(1983)	Efficiency	of	two	gypsy	moth	(Lepidoptera:	Lymantriidae)	phero-

mone-baited	traps.	Environ	Entomol	12:1519–1525
El-Sayed	AM,	Suckling	DM,	Wearing	CH,	Byers	JA	(2006)	Potential	of	mass	trapping	for	long-

term	pest	management	and	eradication	of	invasive	species.	J	Econ	Entomol	99:1550–1564
Fall	MW,	Jackson	WB	(1998)	A	new	era	of	vertebrate	pest	control?	An	introduction.	Int	Biodete-

rior	Biodegrad	42:85–91
Feller	W	(1968)	An	introduction	to	probability	theory	and	its	applications,	vol	1.	Wiley,	New	York,	

528	p



112 References

Feynman	 RPl	 Leighton	 RG	 Sands	M	 (1963)	 Feynman,	 Lectures	 on	 physics,	 vol	 1.	Addison-
Wesley,	Reading,	Massachusetts,	USA

Grieshop	MJ,	 Brunner	 JF,	 Jones	VP,	 Bello	 NM	 (2010)	 Recapture	 of	 codling	moth	 (Lepidop-
tera:	Tortricidae)	males:	influence	of	lure	type	and	pheromone	background.	J	Econ	Entomol	
103:1242–1249

Guarnieri	A,	Maini	S,	Molari	G,	Rondelli	V	(2011)	Automatic	trap	for	moth	detection	in	integrated	
pest	management.	Bull	Insectol	64:247–251

Gurarie	 E,	Ovaskainen	O	 (2013)	Toward	 a	 general	 formulation	 of	 encounter	 rates	 in	 ecology.	
Theor	Ecol	6:189–202

Gut	LJ,	Stelinski	L,	Thompson	D,	Miller	JR	(2004)	Behavior-modifying	chemicals:	prospects	and	
constraints	in	IPM.	In:	Koul	O,	Dhaliwal	GS,	Cuperus	GW	(eds)	Integrated	pest	management:	
potential,	constraints,	and	challenges.	CABI	Press,	New	York,	pp	73–121

Hendricks	DE	(1985)	Portable	electronic	detector	system	used	with	inverted-cone	sex	pheromone	
traps	to	determine	periodicity	and	moth	captures.	Environ	Entomol	14:199–204

Hendricks	DE	 (1989)	Development	of	 an	 electronic	 system	 for	detecting	Heliothis spp. moths 
(Lepidoptera: Noctuiidae) and transferring incident information from the field to a computer. 
J	Econ	Entomol	82:675–684

Hermes	DA,	McCullough	DG	(2014)	Emerald	ash	borer	invasion	of	North	America:	history,	biol-
ogy,	ecology,	impacts,	and	management.	Annu	Rev	Entomol	59:13–30

Islam	 Z,	 Karim	ANMR	 (1995)	 Rat	 control	 by	 trapping	 in	 deepwater	 rice.	 Int	 J	 Pest	Manage	
41:229–233

Jackson	N	(2011)	Mousetraps:	a	symbol	of	the	American	entrepreneurial	spirit.	The	Atlantic,	Mar	
28,	2011

Jiang	JA,	Tseng	CL,	Lu	FM,	Yang	EC,	Wu	ZS,	Chen	CP,	Lin	SH,	Lin	KC,	Liao	CS	(2008)	A	GSM-
based	 remote	wireless	 automatic	monitoring	 system	 for	 field	 information:	 a	 case	 study	 for	
ecological monitoring of the oriental fruit fly, Bactrocera dorsalis	(Hendel).	Comput	Electron	
Agric	62:243–259

Johnson	NS,	Siefkes	MJ,	Wagner	CM,	Dawson	H,	Wang	H,	Steeves	T,	Twohey	M,	Li	W	(2013)	A	
synthesized	mating	pheromone	component	increases	adult	sea	lamprey	( Petromyzon marinus) 
trap	capture	in	management	scenarios.	Can	J	Fish	Aquat	Sci	70:1101–1108

Judd	GJR,	Gardiner	MGT	(1997)	Forecasting	phenology	of	Orthosia hibisciguenée (Lepidoptera: 
Noctuiidae)	in	British	Columbia	using	sex-attractant	traps	and	degree-day	models.	Can	Ento-
mol	129:815–825

Justus	KA,	Murlis	J,	Jones	C,	Cardé	RT	(2002)	Measurement	of	odor-plume	structure	in	a	wind	
tunnel	using	a	photoionization	detector	and	a	tracer	gas.	Environ	Fluid	Dyn	2:115–142

Knipling	EF	(1979)	The	basic	principles	of	insect	population	suppression	and	management.	Agri-
culture	Handbook	512.	USDA,	Washington	DC,	659	p

Kogan	M	(1986)	Ecological	theory	and	integrated	pest	management	practice.	Wiley-Interscience,	
New	York,	362	p

Kondo	A,	Sano	T,	Tanaka	F	(1994)	Automatic	record	using	camera	of	diel	periodicity	of	phero-
mone	trap	catches.	Jap	J	Appl	Entomol	Zool	38:197–199

Krebs	CJ	(1999)	Ecological	methodology.	Addison-Welsey	Educational	Publishers,	Inc.,	Menlo	
Park,	620	p

Kuz’zima	GV	Conformal	radius	of	a	domain.	Encyclopedia	of	mathematics.	http://www.encyclo-
pediaofmath.org/index.php?title=Conformal_radius_of_a_domain&oldid=18740

Lincoln	FC	(1930)	Calculating	waterfowl	abundance	on	the	basis	of	banding	returns.	Circular	118.	
United	States	Department	of	Agriculture,	Washington	DC

López	O,	Rach	MM,	Migallon	H,	Malumbres	MP,	Bonastre	A,	Serrano	JJ	(2012)	Monitoring	pest	
insect	traps	by	means	of	low-power	image	sensor	technologies.	Sensors	12:15801–15819

Lyytikäinen-Saarenmaa	P,	Varama	MC,	Anderbrant	O,	Kukkola	M,	Hedenström	E,	Högberg	HE	
(2001)	Predicting	pine	 sawfly	population	densities	 and	 subsequent	defoliation	 In:	Liebhold	
AM,	McManus	AM,	Otvos	LS,	Fosbroke	SLC	(eds)	Proceedings:	integrated	management	and	
dynamics	of	forest	defoliating	insects,	pp	108-116;	1999	August	15-Victoria,	B.C.	Gen.	Tech.	
Rep.	NE-277,	Newton	Square,	PA;	US	Dept.	Agric,	Forest	Service,	NE	Research	Station

http://www.encyclopediaofmath.org/index.php?title=Conformal_radius_of_a_domain&oldid=18740
http://www.encyclopediaofmath.org/index.php?title=Conformal_radius_of_a_domain&oldid=18740


113References

Maki	EC,	Millar	JG,	Rodstein	J,	Hanks	LM,	Barbour	JD	(2011)	Evaluation	of	mass	trapping	and	
mating disruption for managing Prionus californicus	(Coleoptera:Cerambycidae)	in	hop	pro-
duction	yards.	J	Econ	Entomol	104:933–938

Marston	D,	Malkasian	C	(eds)	(2008)	Counterinsurgency	in	modern	warfare.	Osprey	Publishing,	
304	p

Mason	LJ,	Jansson	RK,	Heath	RR	(1990)	Sampling	range	of	male	sweetpotato	weevils	( Cylas for-
micarius elegantulus)	(Summers)	(Coleoptera:Curculionidae)	to	pheromone	traps:	influence	of	
pheromone	dosage	and	lure	age.	J	Chem	Ecol	16:2493–2502

McLaughlin	RL,	Hallett	A,	Pratt	TC,	O’Connor	LM,	McDonald	DG	(2007)	Research	to	guide	use	
of	barriers,	traps,	and	fishways	to	control	sea	lamprey.	J	Great	Lakes	Res	33:7–19

Miller	JR,	Cowles	RS	(1990)	Stimulo-deterrent	diversion:	a	concept	and	its	possible	application	to	
onion	maggot	control.	J	Chem	Ecol	16:3197–3212

Miller	 JR,	Gut	LJ,	 de	Lamé	FM,	Stelinski	LL	 (2006a)	Differentiation	 of	 competitive	 vs.	 non-
competitive	mechanisms	mediating	disruption	of	moth	sexual	communication	by	point	sources	
of	sex	pheromones:	(Part	1)	Theory.	J	Chem	Ecol	32:2089–2114

Miller	 JR,	Gut	LJ,	 de	Lamé	FM,	Stelinski	LL	 (2006b)	Differentiation	of	 competitive	vs.	 non-
competitive	mechanisms	mediating	disruption	of	moth	sexual	communication	by	point	sources	
of	sex	pheromones:	(Part	2)	Case	studies.	J	Chem	Ecol	32:2115–2143

Miller	JR,	Siegert	PY,	Amimo	FA,	Walker	ED	(2009)	Designation	of	chemicals	in	terms	of	the	
locomotor	responses	they	elicit	from	insects:	an	update	of	Dethier	et	al.	(1960).	J	Econ	Entomol	
102:2056–2060

Miller	JR,	McGhee	PS,	Siegert	PY,	Adams	CG,	Huang	J,	Grieshop	MJ,	Gut	LJ	(2010)	General	
principles	of	attraction	and	competitive	attraction	as	revealed	by	large-cage	studies	of	moths	
responding	to	sex	pheromone.	PNAS	107:22–27

Mora	C,	Tittlensor	DP,	Adi	S,	Simpson	AGB,	Worm	B	(2011)	How	many	species	are	there	on	earth	
and	in	the	ocean?	PLoS	Biol	(8):e1001127.	doi:10.1371/journal.pbio.1001127

Muirhead-Thomson	RC	(1991)	Trap	responses	of	flying	insects:	the	influence	of	trap	design	on	
capture	efficiency.	Academic	Press,	New	York,	287	p

Murlis	J,	Elkinton	JS,	Cardé	RT	(1992)	Odor	plumes	and	how	insects	use	them.	Ann	Rev	Entomol	
37:505–532

Myers	J,	Simberloff	D,	Kuris	AM,	Carey	JR	(2000)	Eradication	revisited:	dealing	with	exotic	spe-
cies.	Trends	Ecol	Evol	15:316–320

Newman	CM,	Wright	AL	(1981)	An	invariance	principle	for	certain	dependent	sequences.	Ann	
Prob	9:671–675

Nonami	K	(2007)	Prospect	and	 recent	 research	and	development	 for	civil	use	autonomous	un-
manned	aircraft	as	UAV	and	MAV.	J	Syst	Design	and	Dynam	1:120–128

Östrand	F,	Anderbrant	O	(2003)	From	where	are	insects	recruited?	A	new	model	to	interpret	catch-
es	in	attractive	traps.	Agric	For	Entomol	5:163–171

Östrand	F,	Anderbrant	O,	Jönsson	P	(2000)	Behaviour	of	male	pine	sawflies,	Neodiprion sertifer, 
released	downwind	from	pheromone	sources.	Entomol	Exp	Appl	95:119–128

Phillips	TW	(1994)	Pheromones	of	stored-product	insects:	current	status	and	future	perspectives.	
In:	Highley	E,	Wright	EJ,	Banks	HJ,	Champ	BR	(eds)	Stored	product	protection,	pp	479-486.	
Proceedings	of	the	6th	International	Working	Conference	on	Stored-Product	Protection,	17-23	
April	1994,	Canberra,	Australia.	CAB	International,	Wallingford,	UK

Pimentel D (2005) Environmental and economic costs of the application of pesticides primarily in 
the	United	States.	Environ	Dev	Sustain	7:229–252

Potter	DA,	Held	DW	(2002)	Biology	and	management	of	the	Japanese	beetle.	Annu	Rev	Entomol	
47:175–205

Reinke	MD,	Miller	JR,	Gut	LJ	(2012)	Potential	of	high-density	pheromone-releasing	microtraps	
for control of codling moth, Cydia pomonella,	 and	obliquebanded	 leafroller,	Chroistoneura 
rosaceana.	Physiol	Entomol	37:53–59

Roelofs	WL,	Cardé	RT	(1977)	Responses	of	Lepidoptera	to	synthetic	sex	pheromone	chemicals	
and	their	analogues.	Annu	Rev	Entomol	22:377–405



114 References

Salmon	TP,	Whisson	DA,	Marsh	RE	(2006)	Wildlife	pest	control	around	gardens	and	homes,	2nd	
edn.	U.C.	Ag.	and	Nat.	Res.	Publication	21385,	Univ.	CA	Publications

Sampson	C,	Kirk	WDJ	(2013)	Can	mass	trapping	reduce	thrips	damage	and	is	it	economically	vi-
able?	Management	of	the	western	flower	thrips	in	strawberry.	PloS	One.	doi:10.1371/journal.
pone.0080787

Schouest	LP	Jr,	Miller	TA	(1994)	Automated	pheromone	traps	show	male	pink	bollworm	(Lepi-
doptera:	Gelechiidae)	mating	response	is	dependent	on	weather	conditions.	J	Econ	Entomol	
87:965–974

Seamans	HL,	Gray	HE	(1934)	Design	of	a	new	type	of	light	trap	to	operate	at	controlled	intervals.	
25th	and	26th	Repts.	Quebec	Soc.	Prot.	Plants.	1933–1934,	pp	39–46

Southwood	TRE,	Henderson	PA	(2000)	Ecological	methods:	with	particular	reference	to	the	study	
of	insect	populations.	Chapman	and	Hall,	New	York,	575	p

Spitzer	F	 (1964)	Electrostatic	capacity,	heat	 flow,	and	Brownian	motion.	Z	Wahracheinlichkeit	
3:110–121

Sufyan	M,	Neuhoff	D,	Furlan	L	(2011)	Assessment	of	the	range	of	attraction	of	pheromone	traps	
to Agriotes lineatus and Agriotes obscurus.	Agric	For	Entomol	13:313–319

Tabuchi	K,	Moriya	S,	Mizutani	N,	Ito	K	(2006)	Recording	the	occurrence	of	the	bean	bug	Riptor-
tus clavatus	(Thunberg)	(Heteroptera:Alydidae)	using	an	automatic	counting	trap.	Jap	J	Appl	
Entomol	Zool	50:123–129

Taylor	LR	(1974)	Insect	migration:	flight	periodicity	and	the	boundary	layer.	J	Anim	Ecol	43:225–
238

Thacker	 JRM	 (2002)	An	 introduction	 to	 arthropod	 pest	 control.	 Cambridge	 University	 Press,	
Cambridge,	UK,	337	p

Tobin	ME,	Koshler	AE,	Sugihara	RT,	Ueunter	GR,	Yamaguchi	AM	(1993)	Effects	of	 trapping	
rat	populations	and	subsequent	damage	and	yields	of	macadamia	nuts.	Crop	Prot	12:243–248

Tobin	PC,	Klein	KT,	Leonard	DS	(2009)	Gypsy	moth	(Lepidoptera:	Lymantriidae)	flight	behavior	
and	phenology	based	on	field-deployed	automated	pheromone-baited	traps.	Environ	Entomol	
38:1555–1562

Tseng	CL,	Jiang	JA,	Lee	RG,	Lu	FM,	Ouyand	CS,	Chen	YS,	Chang	CH	(2006)	Feasibility	study	on	
application	of	GSM-SMS	technology	to	field	data	acquisition.	Comp	Electron	Agric	53:45–59

Turchin	P,	Odendaal	FJ	 (1996)	Measuring	 the	effective	sampling	area	of	a	pheromone	 trap	 for	
monitoring	population	density	of	southern	pine	beetle.	Environ	Entomol	25:582–588

Wall	C,	Perry	NJ	(1978)	Interactions	between	pheromone	traps	for	the	pea	moth,	Cydia nigricana 
(F.).	Entomol	Exp	Appl	24:155–162

Wall	C,	Perry	NJ	(1980)	Effect	of	spacing	and	trap	numbers	on	interactions	between	pea	moth	
pheromone	traps.	Entomol	Exp	Appl	28:313–321

Wamsley	C,	Wilde	GC,	Higgins	R	(2006)	Preliminary	results	of	use	of	a	mark-release-recapture	
technique	for	determining	the	sphere	of	influence	of	a	kairomone-baited	lure	trap	attractive	to	
adult	western	corn	rootworm	(Coleoptera:	Chrysomelidae).	J	Kansas	Entomol	Soc	79:23–27

Weston	PA	(1986)	Experimental	and	theoretical	studies	in	insect	chemical	ecology:	ovipositional	
biology	of	Delia flies and simulation modeling of insect movement. Ph. D. Dissertation, Michi-
gan State University

Witzgall	P,	Bäckman	AC,	Svensson	M,	Koch	U,	Rama	F,	El-Sayed	A,	Brauchli	J,	Arn	H,	Bengts-
son	M,	Löfqvist	J	(1999)	Behavioral	observations	of	codling	moth,	Cydia pomonella, in or-
chards	permeated	with	synthetic	pheromone.	BioControl	44:2011–237

Wolf	WW,	Kishaba	AN,	Toba	HH	(1971)	Proposed	method	for	determining	density	of	traps	re-
quired	to	reduce	and	insect	population.	J	Econ	Entomol	64:872–877

Yudelman	M,	Rattu	A,	Nygaard	D	(1998)	Pest	management	and	food	production:	looking	to	the	
future.	Food,	Agriculture,	and	the	Environment	Discussion	Paper	25.	International	Food	Policy	
Research Institute


	Preface
	Acknowledgements
	Contents
	Author Contributions
	List of Abbreviations
	Chapter-1
	Why Care About Trapping Small Organisms Moving Randomly?
	1.1 Most Animals Are Small and Forage Using Simple Behavioral Rules
	1.2 The Most Serious Animal Pests Are Small
	1.3 Responsible Pest Management Decisions Require Knowledge of Pest Numbers
	1.4 Current Methods of Estimating Absolute Densities of Pests Are Prohibitively Costly
	1.5 Can Traps and Trapping Fill This Need?
	1.6 Aims and Approach of This Book


	Chapter-2
	Trap Function and Overview of the Trapping Process
	2.1 Definition and Functions of Traps
	2.2 Overview of the Trapping Process


	Chapter-3
	Random Displacement in the Absence of Cues
	3.1 The Classical Random Walk
	3.2 The Correlated Random Walk
	3.3 Outward Dispersion as Influenced by c.s.d.
	3.4 Outward Dispersion as Influenced by Time
	3.5 Does a Population of Random Walkers Spread Indefinitely Away from the Point of Origin and, If So, Why?
	3.6 Maximum Net Outward Dispersion as Influenced by Mover Sample Size
	3.7 Patterns in Random-Walker Ending Positions After a Short Period of Dispersion as Influenced by c.s.d.
	3.8 Experimental Analyses of Tracks and Measures of Meander for Individuals


	Chapter-4
	Intersections of Movers with Traps
	4.1 Ballistic Movers—The Simplest Case
	4.2 Random Walkers
	4.3 Gain as Influenced by c.s.d. and Run Time
	4.4 Optimal c.s.d. as Influenced by Trap or Resource Size
	4.5 What Aspect of Plume Geometry Correlates Best with Capture Probability?
	4.6 Contrasts of Ellipsoid Plumes with Discoid Plumes
	4.7 Setting the Stage for Estimating Plume Reach from Field Experiments Measuring spTfer


	Chapter-5
	Interpreting Catch in a Single Trap
	5.1 A Simple Trapping Equation
	5.2 Converting spTfer into Tfer
	5.3 From Where Does most of the Catch Accumulating in a Trap Originate?
	5.4 Preparing to Put Eq. (5.1) to Work
	5.5 Measures of Variation around Estimates of Absolute Animal Density Derived from Trapping
	5.6 Examples of Eq. 5.1 at Work
	5.7 Patterns in Tfer Values and Plume Reaches for Organisms Displacing Randomly
	5.8 This Single Trap Approach is Ready for Testing and Implementation Where Proven Reliable
	5.9 A Caveat


	Chapter-6
	Competing Traps
	6.1 Definition of Trap Competition
	6.2 Complete Competition
	6.3 Test for Whether or Not Competition is Complete
	6.4 Incomplete Competition
	6.5 Trapping Radius Does Not Equate to Competition Threshold
	6.6 Equation for Incompletely Competing Traps
	6.7 Estimating Mover Numbers and Trapping Area Simultaneously by Competitive Trapping
	6.8 Computer Simulations Demonstrating How Absolute Density of Biological Random Walkers Can Be Estimated by Competitive Trapping under Variable Run Times
	6.9 Suggested Plan for Employing Competitive Trapping Under Field Conditions
	6.10 Summary


	Chapter-7
	Experimental Method for Indirect Estimation of c.s.d. for Random Walkers via a Trapping Grid
	7.1 The Idea
	7.2 Translation of the Idea to Field Tests with Real Organisms


	Chapter-8
	Trapping to Achieve Pest Control Directly
	8.1 The Idea
	8.2 Time-Dependency and Dynamics of Mass Trapping
	8.3 Damage Suppression as Influenced by Trap Number and Spacing: Simulations
	8.4 Examples of Successful Pest Control by Mass Trapping
	8.5 New Approaches to Mass Trapping


	Chapter-9
	Automated Systems for Recording, Reporting, and Analyzing Trapping Data
	9.1 Need for Such Systems
	9.2 History of Insect Trap Automation
	9.3 Recent Developments and Future Prospects
	9.4 Wrap-Up


	References



