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Preface

This SpringerBrief focuses on how the numbers of randomly moving organisms 
caught in monitoring traps can be translated into reliable estimates of their absolute 
rather than just relative density. Quick and inexpensive methods for establishing 
absolute density are sorely needed to enable pest managers to sharpen their deci-
sions about when pesticides are or are not justified, thereby boosting profits as well 
as human and environmental safety.

This book grew out of seemingly disparate experiences by Dr. James Miller dur-
ing a research and teaching career as a quantitative insect behaviorist and chemical 
ecologist working at Michigan State University, a Land-Grant University where 
fundamental and applied science are expected to blend seamlessly to produce 
knowledge that makes a difference in the world. Our applied research on how insect 
control might be effectively achieved using sex attractant pheromones to disrupt 
mate-finding led to fundamental research on the mechanisms whereby sex pher-
omones impact insect behavior and physiology. One highly productive approach 
explored parallels between mating disruption of moth pests of apple and enzyme 
kinetics. The goal was to determine whether mating disruption was or was not medi-
ated principally by competition between artificial and natural point sources of pher-
omone (“substrates”) for the attention of responsive males (“enzyme”). However, 
the “test tubes” for these quantitative experiments interrelating capture numbers in 
traps with manipulated numbers of female and male insects as well as dispensers 
of artificial pheromone were 20 field cages, each covering 12 full-sized apple trees. 
Nevertheless, striking and useful parallels were found between these inanimate and 
molecular vs. macroscopic and whole-organism systems. Highly reproducible pat-
terns in the capture data convinced us that insects and molecules were behaving 
similarly at their given spatial scales, e.g., both diffusing randomly throughout their 
test tubes before complexing for measurable times with any agents for which they 
had affinity. Moreover, we discovered that the known absolute density of insects 
deployed in the cages could accurately be derived from graphical plots of the num-
ber of attractive pheromone dispensers deployed per cage against the inverse of 
catch per monitoring trap. That insight piqued our curiosity about whether such an 
approach might also be successful in the open-field situation.
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Further insights into random elements in animal behavior came from teaching a 
graduate-level course in insect behavior. One of the laboratory exercises required 
students to record and analyze the tracks of dispersing insects. The picture emerging 
across years of data was that most insects not influenced by cues from resources, 
move randomly and display normal distributions of headings for new steps whose 
width is characteristic of the species, but varies across species. Additionally, strik-
ing matches were found between the tracks produced by real vs. the randomly-
based computer-simulated movers we developed for teaching the mechanisms of 
insect orientation and their consequences when foraging.

Yet another line of research on egg depositional behaviors of onion flies interact-
ing with artificial host plants of varying quality gave evidence for the existence of 
some sort of “random number generator” that injected randomness into the invest-
ment decisions of insect herbivores, essentially allowing them to diversify invest-
ments across the full range of resource qualities while investing most heavily in the 
best resources. The patterns of investment by real insects were faithfully reproduced 
by simple computer simulations where the strength of the positive factors promot-
ing egg deposition was divided by the strength of any negative factors to yield a 
quotient then increased or decreased by a random input. A bout of oviposition was 
envisioned to turn on when the overall outcome fell above some threshold value.

This convergence of data from various systems points toward a central and 
highly valuable role for random elements within the mechanics underpinning the 
biology of simple organisms like insects. We elected to tackle the important puzzle 
of understanding the mechanics of trapping with the confidence that random ele-
ments and random outcomes would feature prominently in the problem, and that 
computer simulations permitting the manipulation of random elements would be an 
essential tool in that exploration. We also recognized that this effort would best be 
accomplished by a team bringing expertise from biology/behavior (J.R.M., C.G.A., 
P.A.W.), computer science (P.A.W.), and mathematical physics (J.H.S.). Thus, the 
product you are about to read represents an interdisciplinary synthesis.

September 24, 2014� J. R. Miller 
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Chapter 1
Why Care About Trapping Small Organisms 
Moving Randomly?

© The Author(s) 2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly, 
SpringerBriefs in Ecology, DOI 10.1007/978-3-319-12994-5_1

1.1 � Most Animals Are Small and Forage Using Simple 
Behavioral Rules

The Earth supports a rich diversity of microbial and plant life. In turn, these primary 
producers are estimated to support well more than 10 million species of animals 
(Mora et al. 2011), the preponderance of which are smaller than a fingernail and 
weigh less than a gram. The resources upon which most small terrestrial animals 
come to specialize are patchy and often ephemeral. Life spans of small animals are 
short. Their capacity for and the advantages of learning and memory are of less con-
sequence than is usual for vertebrates like humans, whose behaviors are dominated 
by vision, spatial maps, directed locomotion, and planning before actions.

In contrast, animals like a small butterfly explore their environments initially 
using what appear to be random search mechanisms. If a potential resource is en-
countered by chance alone, it is important that the mover has the capacity to stop, 
examine, and exploit the resource if appropriate. Foragers initially engaged in sim-
ple random search can also encounter meaningful cues (e.g., visual or chemical) 
at some distance from a potential resource and then switch to more sophisticated 
behaviors to steer toward the source if the cues are positive (attractive) or away if 
the cues are negative (repellent) (Miller et al. 2009). The effectiveness of the de-
ceptively simple foraging rules depicted in Fig. 1.1 should not be underestimated, 
given the resounding success of the many organisms using them and for which it is 
challenging to prove that more sophisticated tactics come into play.

1.2 � The Most Serious Animal Pests Are Small

An unhappy fact of life from the human perspective is that small animals like insects, 
mites, mollusks, and nematodes compete with us for resources. Many become se-
vere pests. Global annual losses to insects alone for just the top ten most abundant 
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food crops have been estimated at more than US $ 90 billion (Yudelman et al. 1998). 
In the USA alone, where some 0.5 million tons of pesticides are applied to crops 
annually, pests still destroy an estimated 37 % of potential production (Pimentel 
2005). Moreover, other small creatures cause vector diseases of plants and animals 
including humans. For example, mosquitoes of the genus Anopheles transmit hu-
man malaria, which annually kills about 1 million children in Sub-Saharan Africa 
alone (Breman et al. 2001). Successful management of these pests and disease vec-
tors typically requires pesticides, which present well-known safety challenges to 
the human food supply, nontarget organisms, and the environment. An imperative 
of a civilized world is that pests and disease vectors be identified, monitored, and 
managed in a manner that strikes a fair compromise between the needs of humans, 
all of Earth’s biota, and the biosphere.

1.3 � Responsible Pest Management Decisions Require 
Knowledge of Pest Numbers

Fortunately, substantial progress toward this lofty aim has been made in the field 
of pest management theory and practice (Kogan 1986; Arora et al. 2012). A core 
concept of integrated pest management is that the control measures be applied only 
when sufficient numbers of pests are present to justify intervention. Thus, pest de-
tection and monitoring programs need to be in place to identify what potential pests 
are present, precisely when they are active, and, ideally, their absolute abundance 
through time, as suggested in Fig. 1.2. The pest density at which the benefit of an 
intervention exceeds its cost is termed the economic injury level (EIL). Establishing 
the EIL requires both an accurate measure of pest numbers and knowledge of pest 
biology. For example, if adult insects are being monitored but it will be larvae that 
damage the crop, the pest manager must know the fecundity and mortality rates of 
the pest through time to predict population levels of the damaging life stage.

1.4 � Current Methods of Estimating Absolute Densities 
of Pests Are Prohibitively Costly

Unfortunately, measuring the absolute density of organisms requires considerable 
time and effort; thus, it is costly. Texts on procedures for estimating animal den-
sity are readily available, e.g., (Krebs 1999; Southwood and Henderson 2000). The 

Fig. 1.1   Primitive but effec-
tive behavioral rules guiding 
foraging by simple organisms
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simplest but certainly not least costly approach is direct enumeration. Here, one 
directly views the area over which the number of animals present is sought. For 
example, a researcher wishing to quantify shifts in polar bear populations in the face 
of global warming can pass across an expanse of polar ice in a low-flying airplane 
and count how many bears are sighted. Similarly, with sufficient patience and work 
force, researchers can count the hundreds of thousands of soybean aphids present in 
sections of selected fields. However, such enumerations are impossible for every-
day management decisions for tiny pests.

Sampling regimes can shrink such a mammoth task. For example, reliable esti-
mates of absolute animal density can be achieved by using transects across the area 
of interest and counting individuals within the selected quadrats of defined size at 
regular intervals along the transects. If the set of samples taken is representative 
of the area, overall absolute animal density can be estimated. Sequential sampling 
(Krebs 1999) aims to reduce sampling to the bare minimum needed for an estimate 
of animal density at some specified level of confidence sufficient for an informed 
pest management decision.

A quite different approach is mark-release-recapture (Krebs 1999; Southwood 
and Henderson 2000). Here, animals are collected from their habitat, distinctively 
marked, and released back into the existing population. After ample time for mix-
ing, the population is sampled for the ratio of marked vs. unmarked individuals. 
Equations have been developed whose solutions yield an estimate of the total popu-
lation density. This technique was first conceptualized and explored by Lincoln 
(1930) for birds. Various improvements on the original Lincoln Index have since 
been devised in attempts to improve its accuracy across a range of spatial contexts. 

Fig. 1.2   Conceptual framework for how pest managers interrelate pest numbers and population 
growth over time with economics to apply a control measure only when it is actually needed and 
when the benefit of treatment exceeds its cost. This figure was redrawn from similar diagrams 
available on the web
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However, neither this nor any of the above techniques provide the quick, inex-
pensive, and reliable estimates of the absolute population density of animal pests 
needed for everyday pest management applications.

1.5 � Can Traps and Trapping Fill This Need?

Enthusiasm for this approach as applied to insects ran high with the identification 
and synthesis of potent sex attractant pheromones of diverse pests (Roelofs and 
Cardé 1977). Pheromone-baited monitoring traps such as those pictured in Fig. 1.3 
are indeed a boon to insect pest management because they reveal exactly what pest 
species are present and when they are active. Such information is critical to timing 
of sprays for maximum effect (Judd and Gardiner 1997). However, the initial ex-
pectation that catch numbers might be translated into accurate estimates of absolute 
pest density went unfulfilled. A key impediment has been that the trapping process 
is insufficiently understood to establish convincing links between numbers trapped 
with total numbers present in the area from which responders came. For most re-
searchers, pest managers, and growers, trapping remains a “black box.”

Rather than making control decisions on the basis of actual pest numbers, as the 
y-axis of Fig. 1.2 suggests, pest managers and growers rely on relative thresholds 
for control decisions. For example, our colleague Dr. Larry Gut is responsible for 
research and extension for insect pests of tree fruit in Michigan. He recommends 
deploying one codling moth monitoring trap like that in Fig. 1.3 for every ca. 5 ac 
of orchard. However, growers seeking to cut production costs usually deploy only 
several traps per 100 ac. Control measures are recommended if three or more cod-
ling moths are trapped for any 1 week of the growing season. This threshold is 
based on expert judgment accumulated over years of correlating moth captures in 

Fig. 1.3   (a) Trap for monitoring adult moth pests of tree fruit, in this case codling moth (b) in 
apple. A wire hanger permits the trap to be attached to an outer branch high in the tree canopy. The 
trap is open at the two ends; male moths are attracted to the trap by sex pheromone released from a 
small piece of rubber pinned inside the trap roof. Moths are ensnared on a glue-coated insert lining 
the inside bottom. The insert is partially withdrawn in (a) as the trap is being checked by the senior 
author. A high number of captured moths on the partially withdrawn insert is shown in (c)
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monitoring traps with spray records and recorded damage to apple crops at the end 
of the growing season. Codling moth infestation of apples must be suppressed to 
less than 0.5 %, or the crop will be rejected by the fresh-market processor and di-
verted to juice at substantial economic loss.

1.6 � Aims and Approach of This Book

Our motivation for this book was the conviction that traps and trapping have much 
more potential to sharpen pest management decisions than has been achieved to 
date. Doing so requires deep understanding of the trapping process, including how 
both the trapping targets (movers) and trapping devices each contribute to catch. 
We will take a mechanistic approach that goes well beyond the richly historical and 
more descriptive volume by Muirhead-Thomson (1991)—Trap Responses of Flying 
Insects. Our investigation of trapping dynamics was greatly aided by computer sim-
ulations that capture the core elements of the trapping problem. Cyber tools made 
it possible to recreate the “black box” of trapping and then to quantify its outputs. 
We then systematically disassembled it to understand the overall effects of changes 
to its “gears, springs, and switches.” The computer simulations reported here were 
conducted in a matter of months and represent research that would have occupied 
most of a career if completed only on real animals.

This book then integrates the insights gained from the cyber studies with real-
world animal studies conducted in the field. We build on and extend the findings 
of various researchers who have already identified and assembled pieces of this 
intellectually challenging and important puzzle. However, the current treatment is 
not a comprehensive literature review. Rather, we aim for a succinct coverage that 
includes just the material necessary and sufficient to achieve the above aims.

As most of its authors are entomologists, this book is slanted toward insect ex-
amples. But, the principles explained here will hopefully find applications across 
a wide range of disciplines. Our chief applied aim is to provide the knowledge 
sufficient for translation of captured numbers into accurate estimates of absolute 
densities of small animals useful in sharpening pest management decisions. The 
principles uncovered for trapping are also highly relevant to the ecology of resource 
finding. These topics will be intertwined as the text progresses.

Many of the relationships encountered in this investigation are most efficiently 
conveyed by mathematical expressions. Moreover, solving equations for an un-
known variable when the others are known is an intellectual tool whose power must 
be wielded in research on trapping. Thus, mathematics is inescapable. Only algebra 
will be employed in the main text so that all readers can follow the complete story 
line and use this knowledge without special training. Nevertheless, the trapping of 
random movers is a problem that lends itself naturally to mathematical analysis and 
that will ultimately require more advanced mathematics for full characterization. 
We note some of the mathematical issues related to trapping in optional footnotes 
intended for the more mathematically inclined readers.
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Chapter 2
Trap Function and Overview of the Trapping 
Process

© The Author(s) 2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs in Ecology, DOI 10.1007/978-3-319-12994-5_2

2.1 � Definition and Functions of Traps

Finding no formal scientific definition in the literature, we define traps as devices 
that delimit the displacement of previously free-ranging entities in space through 
time. Many types of animal traps have been invented. Long before the arrival of 
humans, living organisms were trapping prey (see examples in Fig. 2.1). In such 
cases, traps assist with capture and retention of prey until it can be fully subdued 
and consumed.

Traps prolong visits of animals to points in space. For example, a conventional 
hunter can rely on real-time encounters with prey to make the occasional harvest. 
However, a trapper can set multiple snares so as to greatly increase the probability 
of prey encounters while walking just the trap line. The time for which snared prey 
occupies dangerous space is stretched, whereas the time required for the trapper to 
realize prey encounters shrinks. Likewise, the pest manager wishing to assess cod-
ling moth populations in an apple orchard could walk about with a flashlight early 
at night when moths are active and attempt to count them. But, such an endeavor 
would be ill-advised, given typical codling moth low numbers, tiny size, and their 
ability to fade into the vegetation before identifications can be made. It is a far better 
idea to deploy traps like those in Fig. 1.3 and then check them all in a short interval 
after appreciable catch has accumulated.

Traps can also serve as removal or killing devices. Live trapping is done with 
the intent of inflicting no permanent harm and releasing the animal where it can no 
longer be a pest. Trap-and-kill devices operate by, e.g., electrocution (bug zapper), 
drowning (pitfall trap for garden slugs), delivering a killing blow (mouse trap), 
permanently ensnaring (fly paper), or poisoning (cockroach trap). The intent here is 
for the traps to reduce pest populations to tolerable levels quickly without requiring 
some additional control measures.
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2.2 � Overview of the Trapping Process

A key feature of all trapping is intersection of a trap with its targets at some point 
in space. Because traps are typically stationary, it is their targets that must move so 
as to either approach the trap by a chance encounter or be lured there after chance 
encounters with attractive cues emitted by the trap. The latter case is diagrammed 
in Fig. 2.2 for the situation where the odorant from the trap diffuses equally in all 
directions and its concentration then falls with the square of distance. Responders 
can then be led to the source by steering up-gradient.

Only one of the four movers released near the trap in Fig. 2.2 encountered the 
odor, approached the trap, and got caught. The reason for low capture probability is 
that more space in Fig. 2.2 is devoid of odorant rather than containing it. Emission 
of odor effectively increases the size of a trap; yet, empty space predominates. Bait-
ing the trap with a lure having further reach would elevate the probability that the 
trap is found, as would increasing foraging time. However, short-lived small organ-
isms experience real limits on how far they can travel while avoiding environmental 
threats such as predation. Catch is influenced by trap size, attractant reach, mover 
meander (amount of turning per distance traveled), foraging time, and total distance 
movers displace all influence catch.

Figure 2.3 extends this scenario to the more usual case of a trap emitting an at-
tractant into the breeze and where the responders can forage by flying or walking. 

Fig. 2.1   Examples of trapping devices employed by living organisms for millions of years before 
humans invented their first trap. (a) Orb-weaver spider wrapping prey on its web. © Dr. Joseph 
Spencer, Illinois Natural History Survey, Univ. Illinois Campus. (b) Bolas spider lying in wait 
while dangling a sticky drop emitting moth sex pheromones. © K.F. Haynes and K.V. Yeargan, 
University of Kentucky. (c) Ant lion immature next to its sand trap. © Christopher G. Adams. (d) 
Pitcher plant. (e) Venus fly trap with captured fly. ©Ernie Janes/Alamy
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Here, the odor plume becomes elongated. Because locally foraging small animals 
such as insects responding to sex pheromones concentrate their search mainly to a 
layer near the top of a crop (Taylor 1974; Witzgall et al. 1999), the trapping prob-
lem remains essentially two-dimensional. Aerial plumes present a surprisingly flat 
concentration gradient along their length (Justus et al. 2002). Responders contacting 
a plume get little information about which direction is toward vs. away from the 
source. Therefore, they must use visual or tactile information to determine which 
direction is upwind and then be guided by the plume’s borders as detected upon zig-
zagging in and out of a plume. Swimmers can also do this. Nevertheless, the above 
assessment that there is far more plume-free area around a trap than area occupied 
by the plume still holds. Again, trap size, plume reach, mover meander, foraging 
time, and total distance movers displace all strongly influence catch.

The series of steps that must occur for a target organism to be harvested as catch 
in a trap is listed in Fig. 2.3b. The overall probability of catch is the product of the 
probabilities for the requisite individual steps—steps 1 and 2 and 3 … and 6.

Findability ( f) refers to the composite probability of only those steps bringing a 
target organism to the trapping mechanism. Efficiency ( e) is reserved exclusively 

Fig. 2.2   Paths of four computer-simulated movers typical of insects and released at arbitrary 
distances from a trap ( T) emitting an attractive odorant into still air. Displacement beginning at 
each s was random until chance encounter with the odor plume. Details of the computer program 
are given in Chap. 3
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for the probability that the responder is caught by the trap once it has arrived. Step 
6, retention ( r), is the probability that the organism remains trapped until harvested. 
As introduced by Miller et al. (2010), we abbreviate the overall catch probability as 
Tfer where T stands for trap. Tfer equals the expected number of organisms harvested 
after some specified time of trap operation divided by the total number of organisms 
within the sampling range of the trap.

Of the three probabilities comprising Tfer, findability is subject to the most varia-
tion for two main reasons. First, plume reach varies with wind speed. Plume reach 
under a constant release of attractant will be greater under lower wind velocities 
than higher wind velocities. Packets of air passing slowly over the odorant source 
get loaded with a higher concentration of chemical so as to survive longer above the 
detection threshold. Additionally, greater turbulence under higher wind velocities 
dissipates the odorant more rapidly. But, zero wind flow is also suboptimal. Then, 
plume spread depends entirely upon diffusion, which is extremely slow for large 
odorant molecules such as sex-attractant pheromones (Gut et  al. 2004). Optimal 
wind velocity for long-distance attraction is usually less than 1 m/s. Second, an 
animal’s willingness or ability to forage can rise and fall with factors such as wind 
velocity, rainfall, humidity, and temperature. For example, codling moths cease 
flight whenever the air temperature falls below 16 °C (Batiste et al. 1973), perhaps 
because operating the flight muscles becomes energetically inefficient.

Efficiency of a given trap type should be more constant than findability. If 
environmental conditions allow responders to arrive at the trap, they are likely 
to remain favorable over the few minutes it may take to engage the trapping 
mechanism. But efficiencies across trap types will vary with the degree to which 
their engineering matches the proclivity of the responder to engage the capture 

Fig. 2.3   (a) Paths of four computer-simulated movers exhibiting meander typical of insects and 
released at arbitrary distances from a trap ( T) emitting an attractive odorant into moving air so as 
to generate a plume ( pink). Displacement beginning at each s was random until a chance encounter 
with the odor plume. (b) Chain of steps required for a target animal to be caught in a trap emitting 
an attractant and designations for their probabilities
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mechanism (Muirhead-Thomson 1991). For moths responding to pheromone-bait-
ed monitoring traps, efficiencies can be as high as 0.7 (Elkinton and Childs 1983; 
Huang et al. unpublished data).

Retentions of the traps designed by humans are usually high because retention 
is easy to measure and remedy when faulty. Animals can be placed directly into the 
trapping mechanism and then observed to see how many escape and how they man-
age to do so. Countermeasures can then be taken.

The maximum net distance most randomly dispersing animals displace from 
their point of origin greatly exceeds the reach of an attractive plume (examples of-
fered in Chap. 5). Thus, trapping radius is determined largely by the net dispersive 
radius of the target organisms plus plume reach (Fig. 2.4). All the moths depicted in 
Fig. 2.4 might reach the trap if they flew exclusively in straight lines (ballistically) 
and always toward the trap. However, because of path meander and limitations on 
flying time, only the encircled moths in Fig. 2.4 are suggested to have a measurable 
probability of reaching the trap and thus being within the trapping area. Even so, 
only some out of all the moths in the trapping area will be unlucky enough to string 
together a chain of turns that brings them to the plume of the trap rather than leading 
them out of the trapping area.

Fig. 2.4   Spatial relationships between dispersion of the target animal, plume reach, and trapping 
area for animals moving randomly before being attracted to the trap after contacting the plume. 
The trapping area would become slightly elliptical if the plume were an ellipse rather than a disk 
as above; but, the overall concept holds
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It is well established (Wolf et al. 1991; Berg 1993; Turchin and Odendall 1996; 
Östrand and Anderbrant 2003) that the probability of capturing random walkers 
declines with increasing distance from which the movers originate from a trap. For 
example, moths originating nearest to the plume as shown in Fig. 2.4 vs. the limit 
of the dispersive distance (heavy circle) might be captured with probabilities > 0.5 
vs. < 0.05, respectively, depending upon the mover meander and foraging time. We 
refer to the probability of capture of movers originating at a specified distance away 
from a trap as specific Tfer, abbreviated as spTfer. Characterizing and understanding 
the probability function for spTfer vs. distance of animal origin from a trap is critical 
to understanding and interpreting trapping outcomes.

We can predict catch for the full trapping area by the following procedure that 
does not require calculus. First, break the trapping disk in Fig.  2.4 into annuli 
(Fig. 2.5). If spTfer for each annulus of Fig. 2.5 below were known, catch per annu-
lus would be given by spTfer × the number of animals per annulus. Catch ( C) for the 
full trapping area would be the sum of catches for all six annuli. When the annuli of 
Fig. 2.5 are labeled 1–6, then C per trapping area is given by1:

1 Readers familiar with calculus may recognize the right-hand side of Eq. (2.1) as a Riemann sum 
approximation of the integral

where Rmax is the trapping radius, spTfer( r) is specific Tfer at distance r from the trap and D is den-
sity of movers (number per area). Here, 2πrdr is the area of an “infinitesimal” annulus at distance r 
from the trap. In general, spTfer might depend on the absolute position of the mover relative to the 
trap, in which case Eq. (2.1) would be replaced by the relation

spT r D rdrfer

R

( ) ,
max

0

2∫ π

C spT x y Ddxdyfer
Trapping area

= ∫ ( , ) .

Fig. 2.5   Figure 2.4 is redrawn so that the sampling area of the trap is divided into six annuli of 
equal width. Here, the trap’s sampling area is shown with a higher density of randomly distributed 
target organisms, now shown as dots, and none are depicted outside the dispersion limit. The dis-
persion limit indicates that organisms do not have the locomotory capacity to reach the trap from 
distances further than the heavy circle

2  Trap Function and Overview of the Trapping Process
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� (2.1)

where (j) ferspT  is the specific Tfer for the jth annulus and ( j)  M  is the number of 
movers in the jth annulus.

Equation 2.1 is not the only trapping equation that will be offered in this book, 
but the relationships it embodies are keys to an understanding trapping. As we shall 
see in Chap. 5, spTfer can be measured by releasing known numbers of animals at 
specified distances from a trap and recording the proportion recovered. This mea-
sure is an important building block for other useful measures of trapping. Specific 
Tfer is an effect caused by properties of: (i) the mover (distance originating from the 
trap, meander during search for the plume, foraging time, and total distance movers 
can displace from their starting points) and (ii) the trap (size, plume reach). Each of 
these causes and their interactions require further scrutiny if the process of trapping 
is to be well understood.
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Chapter 3
Random Displacement in the Absence of Cues

© The Author(s) 2015 
J. R. Miller et al., Trapping of Small Organisms Moving Randomly, 
SpringerBriefs in Ecology, DOI 10.1007/978-3-319-12994-5_3

3.1 � The Classical Random Walk

The random walk is a well-characterized phenomenon both behaviorally and math-
ematically (Feller 1968; Spitzer 1976; Berg 1993). This term can apply to any form 
of locomotion arising when headings for displacement steps are selected randomly, 
be it walking, flying, or swimming. The concise book by H.C. Berg (1993) provides 
an excellent introduction to random walks in biology, prime examples of which are 
the spatial displacements through time ( tracks) of simple animals foraging without 
the benefit of cues from potential resources. Figure 3.1a exhibits two-dimensional 
random walks that we generated using a computer program written by P. A.W. The 
initial versions of this software (Weston 1986) were used for demonstrating orienta-
tion mechanisms in an insect behavior course at Michigan State University. Byers 
(1993) also developed similar software and used it well to characterize aspects of the 
dynamics of mass trapping and mating disruption. Beginning at a set point of origin, 
the Weston software uses a computer’s random number generator to pick a heading 
for a first step from the full 360° range of possibilities. One step of set length is 
taken. Then, the computer randomly picks headings for next steps of length equal 
to the first step from a normal distribution centered on the heading just executed. 
Mover meander (amount of turning) for different simulations can be increased or 
decreased by expanding or contracting the width of the normal distribution from 
which new headings are picked (Fig. 3.1b). Even though the same distribution of 
permissible headings was being used for all replicate runs of Fig. 3.1a, the overall 
shapes of cumulative tracks differ across runs because of additive randomness in the 
selection of actual headings for each step.

The random walks shown in Fig. 3.1a are of the “classical” type, typical of dif-
fusing molecules or tiny particles exhibiting Brownian motion visible under a mi-
croscope at very high magnification. Little forward bias is noted when spatial dis-
placement is driven mainly by random collisions of submicroscopic particles. Any 
new heading is equally likely, including complete reversal.
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3.2 � The Correlated Random Walk

Spatial displacement by organisms is not collision-based. Here, movers carry 
a forward bias due to both their inertia and use of propulsive apparatus evolved 
mainly for forward rather than sidewise or backward displacement. An example of 
antlike (15° c.s.d.) correlated random walks can be viewed in Fig. 2.2, where the 
step length was much shorter and the run time longer than that shown in Fig. 3.1a. 
Such correlated random walks share attributes with classical random walks, e.g., 
both exhibit stochastic properties, and summed degrees for all of the left vs. all of 
the right turns become equal through time. Indeed, all types of random walks are 
mechanistically more similar than different. The classical random walk happens to 
lie on the extreme of a continuum (Fig. 3.3b) where forward bias is zero. However, 
the behavioral and ecological consequences of displacing with and without forward 
bias can be dramatic over the short foraging intervals typical of small organisms, as 
we shall see in Chap. 4.

Viewed over prolonged periods from afar, tracks of correlated random walkers 
appear similar but are not identical to those of classical random walks viewed up 
close. This effect is demonstrated in Fig. 3.2, where a random walker moving with 
a c.s.d. of 5° produces a track having low meander when viewed at high magnifi-
cation (Fig. 3.2b) but high apparent meander when viewed at low magnification 
(Fig. 3.2a). From the perspective of its body size, an animal may be moving quite 
straightly, but small turns accumulating over time cause the overall track to turn 
back on itself when viewed at a larger scale. Hence, the old adage—“a lost person 

Fig. 3.1   (a) Four different tracks (each beginning at s and ending at e) of computer-simulated ran-
dom walkers taking a total of 50 steps. Straight segments reflect individual steps. After each step, 
the computer’s random number generator picked a new heading. In (a), all directions out of a full 
360° were equally probable for each pick. (b) Explanation of the Weston mover simulation pro-
gram showing an important biological feature—new headings are randomly picked from a normal 
distribution centered on the previous heading and the possibilities can be broadened or narrowed 
by manipulating the circular standard deviation (c.s.d.). For all directions to be equally probable 
(as in (a)), the c.s.d. must approach 200°
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walks in circles.” In fact, it is impossible for any biological mover to maintain a 
straight course over appreciable distance without using some distant reference point 
to adjust the course for inevitable drift away from the heading at the outset. While 
ballistic (straight-line) movement is the rule for particles such as photons, it is an 
oddity for organisms. Although the tracks of a classical random walker viewed up 
close and that of a correlated random walker viewed from afar may appear similar, 
the probability of intersection with objects near the former will be higher because a 
locally wider track is being cut (compare Fig. 3.1a to 3.2b). Movers with high c.s.d. 
values are better local searchers, whereas those with low c.s.d. are better at finding 
distant resources.

3.3 � Outward Dispersion as Influenced by c.s.d.

Dispersion by random walkers is dramatically affected by the c.s.d. of the distribu-
tion from which new headings are randomly picked. Tracks for a population of bal-
listic movers released from a common point generate a wheel with randomly spaced 
spokes (Fig. 3.3a). As the c.s.d. opens, the spokes twist increasingly; by 10° they be-
come a tangled disk having an irregular leading edge (Fig. 3.3a). Disk diameters for 
common run times shrink with increasing c.s.d. until they reach a minimum when 
all angles for new headings are equally probable. Clearly, maximum net dispersion 
falls with increasing c.s.d. and the drop is most dramatic for c.s.d. values between 
5–40° (Fig. 3.3b.), the zone of biological random walking.

Fig. 3.2   Tracks of a Weston random walker starting at s and displacing with a c.s.d. of 5° for 
30,000 steps of length 0.1 in (a) and 500 steps of length 1.0 in (b). The overall effect is that the 
track segment of (a) that is expanded in (b) is magnified 10 ×
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Fig. 3.3   (a) Data taken from records of the overlaid tracks for 100 computer-simulated random 
walkers released at the center of each array and taking 250 steps, each of length 1/10th that of the 
steps in Fig. 3.1a. Dispersion decreases with rising c.s.d. as shown in (b), where c.s.d. is plotted 
against the greatest distance any of the 100 individuals in each array displaced from the starting 
point
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3.4 � Outward Dispersion as Influenced by Time

The rate of increase for maximum net displacement of a population of random 
walkers taking a constant number of steps per unit of time drops with elapsed time 
of locomotion (Fig. 3.4). At the start of any run, all movement is outward and back-
tracking is impossible because no track exists to overwrite. As time passes, howev-
er, the probability of backtracking progressively rises because more and more track 
exists upon which to backtrack. Therefore, the rate of progression into new territory 
falls with elapsed time. It is well established that the dispersion for classical random 
walkers grows as the square root of the elapsed time, or t 0.5. This observation, first 
noted in the eighteenth century, can be found in many standard mathematics and 
physics textbooks, e.g., Feynman et al. (1963). The 30, 100, and 200° c.s.d. data of 
Fig. 3.4 support this rule, as evidenced by their regression equation exponents of ca. 
0.5. However, the regression exponent over a fixed run time must rise to 1.0 as the 
c.s.d. drops to zero. Thus, over the relatively short run time displayed for the movers 
of Fig. 3.4 with a c.s.d. of 10°, it is not surprising to see an exponent of 0.74.

Fig. 3.4   Mean maximum net displacement for individual random walkers as a function of elapsed 
time and c.s.d.; n = 5 for each datum
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3.5 � Does a Population of Random Walkers Spread 
Indefinitely Away from the Point of Origin  
and, If So, Why?

The answer to this question is yes, based upon physical theory, computer simula-
tions, and long-running experiments. As evident from Fig. 3.3a, populations of ran-
dom walkers dispersing in two dimensions from a common origin will form a disk 
that expands ever more slowly with increasing elapsed time; and, such expansion 
will continue indefinitely. The disk will remain internally populated, and its high-
est average density will always be at the origin, although the density gradient over 
distance will become flat with extended run times.

Introductions to diffusion in chemistry classes often emphasize that outward 
dispersion of diffusing molecules occurs because of collisions among them. The 
argument is commonly made that the rate of outward progression of a population of 
molecules slows because the frequency of collisions falls as the molecules spread. 
But, the random walkers considered here never collide, and thus the concentration 
of movers behaving independently can have no effect on outward dispersion.

The reason spread occurs even without collision is quite simple. Unvisited area 
in an unbounded arena will always exceed visited area. Thus, on average, the proba-
bility of moving into unvisited area (outward relative to the movers’ point of origin) 
will always exceed the probability of moving into visited area (backward) when 
new headings are always picked randomly. Likewise, the average diffusing mol-
ecule will continue to disperse outwards even when collisions with like molecules 
are too infrequent to be the main driver of spread. So, all populations of randomly 
moving objects in unbounded space form an ever-expanding universe unless acted 
upon by some counterbalancing force.

3.6 � Maximum Net Outward Dispersion as Influenced  
by Mover Sample Size

Among the variables identified in Chap. 2 that must be known for full interpreta-
tion of catch in traps is the maximum distance a population of random walkers can 
displace from an origin over the time a trap operates. This measure, combined with 
plume reach, establishes the trapping radius or sampling range of the trap (Fig. 2.4). 
Maximum dispersion can be measured experimentally by releasing a population of 
marked individuals, allowing them to disperse for a defined time, and then recap-
turing them using a dense trapping grid immediately after dispersion. A question 
that follows is—how many movers must be released from a common origin to ac-
curately assess measures such as maximum dispersal range? The computer simula-
tions shown in Fig. 3.5 suggest that ca. 100 individuals will suffice for biological as 
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well as classical random walkers.1 The considerable variability in maximum mover 
displacement across sample sizes of less than 50 movers (Fig. 3.5) suggests that 
measurable trapping radius can shrink significantly as the mover population density 
falls. This knowledge must be considered when interpreting low catch numbers as-
sociated with very low populations of movers.

3.7 � Patterns in Random-Walker Ending Positions After  
a Short Period of Dispersion as Influenced by c.s.d.

The terminal positions of random walkers are of interest, as is the maximum net out-
ward dispersion they can achieve. Figure 3.6 demonstrates how the pattern of termi-
nal positions shifts with c.s.d. when 100 Weston movers were displaced for only 250 
steps. As the c.s.d. opened from 0°, terminal positions shifted from a perfect circle 
to an increasingly diffuse circle. By c.s.d. of 10°, the terminal distribution became 
quite uniform throughout the dispersion disk. By c.s.d. 30° and greater (data not 
shown), the density of movers becomes greatest in the interior and sparse around the 
disk perimeter. This knowledge suggests how the meander of real animals moving 

1  In fact, the maximum net outward dispersion will continue to grow with increased sample size, 
approaching the ballistic value as the sample size approaches infinity. However, one may show 
mathematically that this growth is logarithmic, and hence extremely slow. In particular, to see a 
value of the maximal dispersion close to the ballistic value, one would need to consider a sample 
size 2number of time steps, which is unrealistically large for runs of the durations seen in this study.

Fig. 3.5   Mean maximum net displacement from the starting point for simulated random walkers 
with low and high meander displacing for 1,000 steps of length 0.5 as influenced by the number of 
movers in the sample. N = 8––each datum resulted from eight runs
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in the field might be judged if they could be located immediately after a short period 
of dispersal by, e.g., then inserting a dense trapping grid. With longer elapsed times 
for dispersion, the empty spaces within the dispersion circles for the random walkers 
would become less apparent and this type of analysis would become less useful.2

3.8 � Experimental Analyses of Tracks and Measures  
of Meander for Individuals

Locomotory tracks of small animals can be captured in a variety of ways. The senior 
author does this as a laboratory exercise in insect behavior class simply by introducing 
a walker into the middle of a featureless arena covered by Plexiglas™ overlaid with 
clear acetate sheets. The animal’s track in real time can be traced by felt pen onto the 
acetate. Tick marks at regular periods along the track provide a time stamp for mea-
sures of velocity. However, the standard method for track-capture is video recording 
using a system that provides a time stamp for each frame and known magnification. 
Video technology is required for fliers; however, obtaining meaningful amounts of 
video footage of small fliers dispersing in the field remains an unexplored (albeit wor-
thy) research area because it requires specialized and therefore expensive equipment.

Experimentalists wishing to quantify the distribution of headings for steps com-
prising the tracks of real animals face an important operational question—into what 
lengths should the track be broken? We suggest that the animal’s body length, includ-
ing sensory apparatus such as antennae, is a reasonable unit for such analyses. Use of 

2 Random walks are well studied in the mathematics literature, see, e.g., (Spitzer 1976; Feller 
1968). In particular, it is well understood that, provided the c.s.d. is nonzero, each of the correlated 
random walks considered here “looks like” an uncorrelated random walk over sufficiently large 
time and space scales. This fact, already illustrated in Figure 3.2, follows from an invariance prin-
ciple stating that the long-time behavior of a wide variety of random evolutions is effectively de-
scribed by Brownian motion (the Wiener process). An invariance principle was originally proved 
by Donsker (1951) for uncorrelated random walks, but has been generalized to a wide variety of 
correlated walks, see, e.g., (Billingsly 1956; Newman and Wright 1981). However, the biological 
problems considered here force us to consider these walks over fixed finite time and space scales 
too short for this universal limit to be completely descriptive.

Fig. 3.6   Ending positions 
of 100 Weston movers after 
250 steps of displacing from 
the center of each array as 
influenced by c.s.d. Mover 
size for c.s.d. 30 was reduced 
to minimize eclipsing
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larger track segments overlooks points in space that the animal actually visited along 
the way to a segment endpoint and will underestimate meander. Analyzing fractions 
of a body length leads to inclusion of wobble in the gait of the mover that may be 
irrelevant to overall heading.

Tracks are quantified as follows: a track is broken into segments of declared 
length (e.g., body length); the positions of track segment ends are recorded us-
ing, e.g., a digitizer; the angle comprised by a preceding vs. current segment of 
track (Fig. 3.7) is measured or computed; and a frequency histogram of headings 
is constructed (Fig. 3.8). It can be tested for fit to a normal or some alternative 

Fig. 3.7   Demonstration of 
how angular headings for 
new steps are computed for a 
section of the track of a clas-
sical random walker. s = start; 
e = end; α = subtended angle

 

Fig. 3.8   Example of a frequency histogram for headings of track steps for a random walker having 
a c.s.d. of ca. 13°. Arrows reflect 1 standard deviation to the right and left of 0°, which represents 
the previous heading
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distribution and then parameters such as c.s.d. can be computed as a measure of me-
ander. Alternative measures of meander are mean absolute value of degrees turned 
per track segment (degrees/distance) or degrees per time (angular velocity). We also 
offer % meander as an additional meander measure; it is computed as:

� (3.1)

Figure 3.9 demonstrates that % meander values are extremely high over both long 
and short intervals for all random walkers except those moving with tiny c.s.d. 
values (virtually ballistic). Finally, distance per unit time (velocity) is always of 
interest in track analyses, as is constancy or shifts in any of the above measures 
through time.

% ( ( / )) meander net displacement total displacement= −1 100×

Fig. 3.9   Percentage of meander computed as per Eq. 3.1 for Weston random walkers displacing 
for short and long intervals as a function of varying c.s.d. value. Over all run times, percentage 
meander values are high except for movers with tiny c.s.d. values
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Chapter 4
Intersections of Movers with Traps
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4.1 � Ballistic Movers—The Simplest Case

Let us deploy a trap having a diameter of length L at distance r from the common 
origin o of 100 ballistic movers (Fig. 4.1). Simple inspection reveals that the pro-
portion of movers intercepting the trap and defined here as caught ( Prop. C ) is well 
approximated by L divided by the circumference of the circle centered on o and 
bisecting the trap, or:

� (4.1)

Prop. C falls nonlinearly with rising r as graphed in Fig. 4.2a; it is extremely sensi-
tive to small differences in r near the trap, but changes little across large r values. 
This effect can be experienced by holding a thumb very close to one’s eye, and then 
noting the apparent size of the thumbnail when moving slowly out to arm’s length 
and back. This relationship is nonlinear because r resides in the denominator of 
Eq. (4.1), rather than in the numerator. However, graphical output becomes linear 
(Fig. 4.2b) when Eq. (4.1) is inverted to yield Eq. (4.2):

�
(4.2)

and 1/Prop. C is plotted against r (Fig. 4.2b; hereafter referred to as a Miller–Ad-
ams–McGhee (MAG) plot). Opportunity is thereby afforded for computing L from 
data on Prop. C as a function of r from an experiment using a single-trap, multiple-
release configuration like that of Fig. 4.3. Since the slopes of MAG plots (Fig. 4.2b) 
generated by ballistic movers consist of 2π/L, L is revealed by dividing 2π by the 
MAG plot slope:

� (4.3)

Prop C L r.   /= 2π
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4.2 � Random Walkers

So long as they have the capacity to reach the trap, more random walkers intercept a 
trap than do ballistic movers under otherwise identical conditions (Fig. 4.4a). With 
increases in c.s.d., random walkers lay more track in the vicinity of a trap and are 
able to approach it laterally and from the rear, as well as frontally (Fig. 4.4a (2)). 
These behaviors enhance catch. The equivalent effect of random walking vs. forag-
ing in straight lines is diagrammed in Fig. 4.4b. It is like putting side panels (black 
rectangles) on the outward tracks of ballistic movers (red arrows) so that more an-
gles leading away from the origin produce intersections.

The approach developed above for deriving trap length or plume reach from the 
MAG plot data for ballistic movers (Fig. 4.2b) can be applied to random walkers. 
However, when 2π is divided by the MAG plot slope for random walkers as per 
Eq. (4.3), the resultant L value includes plume reach plus additional apparent length 
that we term gain, as diagrammed in Fig. 4.4b. Gain can be calculated from data 
graphed as a MAG plot by dividing 2π by the MAG plot slope and then subtracting 
the actual trap diameter, or:

� (4.4)

A specific example of this procedure is provided in Fig. 4.5. Gain comprised nearly 
70 % of L in this example. And, the proportion of L being gain was found to be ca. 
70–80 % across a range of biological c.s.d. values (see Fig. 3.3b), trap diameters, 
and run times (data generated from the simulation experiments described below). 
This finding is notable because it offers a means to estimate plume reach. First, an 
uncorrected L value can be computed from by dividing 2π by the slope of a MAG 
plot of spTfer data. Then, the ca. 75 % of L that is gain is subtracted to estimate plume 

Gain trap or plume  diameter= − ( )L

Fig. 4.1   Trap of diameter L 
at distance r from the com-
mon origin o of 100 ballistic 
movers. The proportion of 
ballistic movers intersecting 
the trap is well approximated 
by L/circumference of the 
circle centered on o and 
bisecting the trap
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Fig. 4.2   (a) Untransformed graph of the proportion of ballistic movers trapped when originating 
from various distances r from traps of varying diameter indicated by L. (b) Inverse plot of the same 
data. This type of plot is hereafter referred to as a Miller–Adams–McGhee or MAG plot
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Fig. 4.3   A single-trap, multiple-release trapping configuration typical of that used in field experi-
ments covered in Chap. 5. T trap, R a point of release for a set number of movers at a given distance 
from the trap. Movers originating from a common distance share a particular marking

      

      

Fig. 4.4   (a) Tracks and catches of 100 computer-simulated movers operating at each of 3 c.s.d. 
values and released 200 units from a trap of diameter 100 units and taking 1,000 steps of 1 unit. (b) 
Top-down view of the net effect of meander; it is equivalent to broadening the outgoing track of 
a ballistic mover so that it intercepts the trap over a wider range of angles than it otherwise would 
have. By definition, ballistic movers which have a c.s.d. of zero (b (1))
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reach in the same units as those used for setting distances of mover origin from the 
trap. The only other approach to estimating trap or plume reach of which we are 
aware is the “effective attraction radius” (EAR) procedure of Byers et al. (1989). It 
produces an index of plume reach by comparing catch in a baited trap to that of an 
unbaited trap. However, most insect monitoring traps do not catch any individuals 
when unbaited; thus, the EAR approach has seen limited use beyond bark beetle 
studies that use large vane traps.

4.3 � Gain as Influenced by c.s.d. and Run Time

Gain over the foraging efficiency of a ballistic mover is strongly influenced by the 
c.s.d. employed. This effect is graphed in Fig. 4.6 where the diameter of the single 
trap was small (10 units), step length was 1 unit, and movers were released at five 
distances, all within 80 units of the trap. Gains were calculated from MAG plot 
slopes and Eq.  (4.3) along with (4.4). When foraging times are extremely short, 
ballistic movers had the highest probability of intercepting a nearby trap (data not 
shown) because they were guaranteed to progress as far as the trap, a necessary con-
dition for an interception (see Fig. 4.1). However, with increasing run times, random 
walkers outperformed ballistic movers and thus returned increasing gains (Fig. 4.6). 
The optimal c.s.d. in this experiment with a small trap was consistently ca. 25° for 

Fig. 4.5   MAG plot for 100 Weston random walkers per sample and moving 3,000 steps of 1 with 
a c.s.d. of 10° and intersecting a trap having a diameter of 100 units. N = 20 runs per datum
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short, medium, and long run times (Fig. 4.6). The c.s.d. that optimizes gain can be 
thought of as producing movement that maximizes the apparent size of the trap or 
reach of a plume. Doing so is clearly advantageous when foraging for resources.

The existence of a stable, optimal solution of ca. 25° c.s.d. to the problem of 
finding a single, small, and nearby object 10 × body size raises the prospect that 
the c.s.d. expressed during foraging should be a biological trait selectable upon 
resource size, number, and distribution typically encountered. Small c.s.d. values 
(less meander) were inefficient in this experiment because many movers passed 
the trap and did not return within the allotted time (Fig. 4.7). These movers un-
dersearched their environment as they dispersed from the origin. Very large c.s.d. 
values (high meander) were more efficient than tiny ones, particularly at long run 
times (Fig. 4.6). But movers with a very high c.s.d. oversearched as they dispersed 
(Fig. 4.7). The optimal c.s.d. achieves the best tradeoff in these search extremes.

4.4 � Optimal c.s.d. as Influenced by Trap or Resource Size

Optimal c.s.d. for finding a single, nearby object increases as size of the object di-
minishes (Fig. 4.8). Smaller objects require a more thorough search if intersections 
are to be realized. Conversely, intersections with larger plumes are more probable 

Fig. 4.6   Foraging gain as a function of c.s.d. and run time when trap diameter was 10 units and 
step length was 1.0. Each datum was computed from a MAG plot using 20 runs of 100 Weston 
movers released at 5 distances from the trap. Only the linear portions of MAG plots were used, i.e., 
release distances too far from the trap to be reached with high probability and thus resulting in up-
turning data were excluded. A gain of zero indicates a trapping rate identical to that for a ballistic 
mover. S.E.M. bars were ca. 10 % of these means
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Fig. 4.7   Tracks accumulating around a trap of diameter 10 units when 100 Weston random walk-
ers were released 40 units to the left of the trap in each panel. The c.s.d. of the respective movers is 
given with each panel. Pictures were increasingly cropped with decreasing c.s.d

        

Fig. 4.8   Change in optimal c.s.d. for realizing maximal gain as influenced by trap size. Gain was 
measured in the manner of Fig. 4.6. S.E.M. bars averaged less than 10 % of these means
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because they present much more distance across which any intersection yields the 
whole prize. Animals foraging for large resources can therefore afford to displace 
with less meander, which is also likely to decrease the time required to find a given 
resource at some distance from the mover’s origin. Gains are appreciable across a 
wide range of c.s.d. values and trap sizes as seen in Fig. 4.8. The existence of promi-
nent foraging optima at particular c.s.d. values supports the legitimacy of random 
walking as a search tactic and presents a conceptual framework quite different from 
that held by previous investigators who expected that the optimal tactic for finding 
plumes was movement in straight lines relative to the wind direction (see references 
in Murlis et al. (1992)).

4.5 � What Aspect of Plume Geometry Correlates Best  
with Capture Probability?

We answered this question by conducting the trapping simulations detailed in the 
caption of Fig. 4.9. The shape of the trap was a: line, circle, or square, whose length, 
diameter, or side was manipulated and catch recorded. Catch was very poorly 
correlated with object area, not tightly correlated with object length or silhouette, 
but well correlated with object perimeter (Fig. 4.9).1 This finding supports the idea 
that trapping is fundamentally a phenomenon of intersection. A trap or plume of 
any shape or size can be intersected when approached from any side or angle. But 
only when its boundary is penetrated does an intersection occur. Thus, simple pe-
rimeter of a trap or its plume is the aspect best correlated with capture probability. 
Near-linearity of Fig. 4.9 when perimeters exceeded 100 units indicates that trap 
captures will increase approximately linearly with plume reach when mover density 
is constant.

1  Intersection probabilities have been extensively studied for Brownian motion (Wiener process) 
and uncorrelated random walks. In particular, Spitzer (1964) proved an asymptotic formula that 
can be used to compute the behavior of the expected catch C( t) at time t →∞,  in the limit t , for a 
trap positioned in an infinite plane populated with a density D of Brownian movers:

C t Dt
t t

rc T( )
ln (ln )

[ ( ) ln ] 2 1 1 1 22π γ+ + + −








  

where γ ≈ 0.5772… is Euler’s constant and rc( T) is “conformal radius,” or “logarithmic capacity,” 
of the trapping radius (see Kuz’mina for the definition). This result is not particularly useful for our 
analysis because we study correlated walks over time scales too short for this universal Brownian 
behavior to emerge. However, the above relation does suggest that the conformal radius of the trap 
might be the correct geometric parameter to correlate with capture probability, not the perimeter as 
considered in Sect. 4.5. In this regard, it is significant that each of the traps considered in Fig. 4.9 
is a convex body (for which conformal radius and perimeter are comparable). We do not expect 
the relationship between perimeter and catch to extend to nonconvex traps, as such traps may have 
deep fjords in their boundary which greatly increase perimeter without increasing catch. Indeed, a 
trap with a fractal boundary could have infinite perimeter and finite catch.
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4.6 � Contrasts of Ellipsoid Plumes with Discoid Plumes

As introduced in Chap. 2, traps baited with attractants typically operate in mov-
ing air where the plume elongates into an ellipsoid (Fig. 4.10a) rather than a disk 
(Fig. 4.10b). Elongating a discoid plume into a 10 (length) × 1 (maximum width) 
ellipse increases the longest axis by only 1.5 fold (Fig. 4.10c) and does not change 
the perimeter. If movers are released equidistantly from a trap generating an ellip-
soid plume, as is standard procedure in field tests of the effectiveness of attractive 
traps, then the simple symmetry of Fig. 4.10b for discoid plumes is disturbed. All 
movers are now no longer released equidistantly from the plume, as shown by 
the length of arrows in Fig. 4.10a and b. Rather, movers happening to originate 
downwind from the trap are advantaged because less travel is required to reach 
the plume (right side of Fig. 4.10a). When released in a circle centered on the trap, 
the mean distance of movers from the ellipsoid plume of Fig. 4.10a was ca. 80 % 
of the distance from the trap. But, ballistic movers originating upwind of the trap 
emitting an ellipsoid plume are disadvantaged because the plume presents only its 
width and not its length.

Fig. 4.9   Demonstration that catch of random walkers in a trap is well correlated with trap perim-
eter. A total of 5,000 Weston random walkers having a c.s.d. of 20° were randomly seeded into an 
environment 4 times the size of the computer screen and allowed 1,000 steps of 1 unit. The pro-
gram recorded the number of movers trapped. Movers happening to originate within the confines 
of a trap were excluded from these data; only movers intercepting the trap when originating from 
outside are shown. Each datum symbol carries the shape of its trap but not its actual size, which 
varied with perimeter. S.E.M. values typical for this experiment are shown for the linear trap
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The net impact of these shifts on probability of capture and gain was quantified 
by simulation experiments with Weston movers. For each run ( N = 10 runs per set of 
conditions), 100 movers with representative c.s.d. values spanning from 0 to 200° 
were released for 5,000 steps of 1 unit at 6 distances from one end of an ellipsoid 
plume 50 units long and 5 units at maximum width. Half of these release distances 
exceeded plume length. The distances of release used in data analyses were cor-
rected for the plume proximity effect noted in Fig. 4.10a by multiplying distance 
from the trap by 0.8. Gain was calculated by subtracting the actual plume length 
(50) from L values calculated by dividing 2π by the MAG plot slopes.

Fig. 4.10   Contrasts in the distances ( length of arrows) movers must displace to reach plumes 
( pink) when released equidistantly from a trap in moving air (a) and still air (b). The tiny circles 
atop the dashed large circles represent an arbitrary selection of positions out of 360°. (c) Demon-
stration that collapsing circles into 10 × 1 ellipses results in a longest axis of 1.5 times the original 
circle diameter. These measures were taken by ruler while manipulating rings of string

        



35

The L value measured for ballistic movers released in circles centered on one end 
of the 50 × 5 unit ellipsoid plume was 21 rather than the actual 50 units of length. 
Therefore, L for this ellipsoid plume approached from all angles by ballistic movers 
was only 42 % of its actual longest length. This reduction can be explained by the 
preponderance of ballistic movers that approached the plume obliquely rather than 
perpendicularly to the long axis (see Fig. 4.10a while envisioning arrows departing 
in all directions from each origin).

By contrast, random walkers were considerably less disadvantaged by originat-
ing at oblique angles to the long axis of an ellipsoid plume. The gain values record-
ed here (Fig. 4.11) were only slightly less than those recorded for a discoid plume 
of similar perimeter (see Fig. 4.8, diameter 40 units). Likewise, the c.s.d. optimum 
realized here of 15° nearly matched the 20° maximum for a discoid plume of similar 
perimeter (Fig. 4.8). The effects of ellipsoid plume size and duration of experimen-
tal runs were also very similar to those already reported for discoid plumes. Finally, 
simulations using Weston movers executing various c.s.d. values, various plume 
sizes, and run times revealed that ca. 70–90 % of L values were attributable to gain 
and the remainder to plume reach.

Fig. 4.11   Gain in foraging efficiency for computer-simulated random walkers released in concen-
tric circles from one end of an ellipsoid plume 50 units long × 5 units wide as influenced by c.s.d. 
S.E.M. bars were ca. 10 % of these means
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4.7 � Setting the Stage for Estimating Plume Reach  
from Field Experiments Measuring spTfer

Availability of the Weston mover simulations allowed us to generate a set of stan-
dard curves (Fig. 4.12) useful in estimating plume reaches from MAG plot slopes 
of spTfer data (proportion of movers caught when originating at a particular dis-
tance) from field experiments with real animals. We consider this approach to be 
more straightforward and objective than calculating an L from MAG plots and then 
subtracting a percentage from it to account for gain. Figure 4.12 was produced by 
recording the proportion of simulated movers trapped after release in 4–5 concen-
tric circles around one end of ellipsoid plumes of length 3, 10, 30, and 100 units 
and each having a greatest width of 0.1 × length. Each release employed 100 mov-
ers, and 20 such releases were completed for conditions that, in addition to plume 
length, included using c.s.d. values of 6, 15, and 30° and run times of 1,000, 5,000, 
and 10,000 steps. This range of conditions was judged likely to encompass the key 
variables coming into play when biological random walkers respond to an attrac-
tive trap in the field, e.g., an insect responding to a monitoring trap baited with sex 
pheromone. MAG plots were made of the respective spTfer data and then the plume 
reach was plotted against the MAG slope (Fig. 4.12).

Fig. 4.12   Standard curves generated by Weston mover simulations (conditions explained above) 
and useful for converting MAG plot slopes of spTfer data into estimates of plume reach. The units 
for plume reach would be the same as the units used for distances of release of movers from the 
trap
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Figure 4.12 functions as a look-up graph for interpreting MAG plot slopes. As 
an hypothetical example, let us postulate that researchers are developing a trapping 
system for the emerald ash borer, a devastating invasive pest of ash trees in the USA 
(Herms and McCullough 2014). Imagine that the trap emits host-tree odors. These 
researchers release marked beetles at 10, 20, 30, 40, and 50 m in multiple directions 
from their prototype trap and record the proportion of marked beetles appearing in 
the trap over several days after release. They plot distance of release on the x-axis 
vs. 1/proportion of beetles recovered on the y-axis. Imagine that the first four data 
points fall in a straight line; however, the 50 m datum shows upturn. The latter point 
should therefore not be included for the slope analysis. Imagine that the MAG plot 
slope for the first four data points happened to be 1.1. We then go to this point on the 
x-axis of Fig. 4.12 and examine the possibilities for plume reach of this new trap. 
These researchers would find that the attractive reach of their trap was, at best, less 
than 10 m. Moreover, for the plume reach to be this large, the emerald ash borer 
must move with a small c.s.d. and not be highly active (fits only short run time of 
Fig. 4.12). Given that c.s.d. values of foraging insects can be larger than 6° and that 
these beetles are known to be active for hours on balmy days, it is highly probable 
that the plume reach of this hypothetical new trap was very short, meaning that it is 

Fig. 4.13   The y-intercepts of MAG plots of spTfer data for Weston movers displacing 1,000 steps 
of 1.0 and using differing c.s.d. values. Extending the run times diminished y-intercept values 
across all c.s.d. values
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not a great tool for detecting this pest. On the other hand, if the MAG plot slope from 
this hypothetical experiment proved to be 0.1 or 0.05, such a trap could be ranked as 
generating a plume of 40 m or more, which would be conducive to beetle detection.

The y-intercepts of MAG plots of spTfer data can also help estimate plume reach. 
Figure 4.13 demonstrates that graphical profiles of y-intercept vs. c.s.d. vary with 
the size of elliptical plumes. A y-intercept greater than 4 can be obtained only when 
the plume reach is small. Likewise, a y-intercept > 1.5 suggests that the movers gen-
erating those data displaced with a c.s.d. somewhere between 3 and 20°. Negative 
y-intercepts for MAG plots are associated with plumes that are very small.

The following chapter will provide actual examples of how plume reach can be 
estimated from spTfer data generated by real animals in the field. It will also demon-
strate how to estimate mover dispersive distance and absolute density for real rather 
than computer-simulated traps and movers.
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Chapter 5
Interpreting Catch in a Single Trap

© The Author(s) 2015
J. R. Miller et al., Trapping of Small Organisms Moving Randomly, 
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5.1 � A Simple Trapping Equation

Figure 2.5 and Eq. (2.1) of Chap. 2 suggested how catch in a trap can be computed 
when we know: (i) the number of movers ( M) present in each annulus of a trap-
ping area ( Mden), and (ii) the probability of catch for each annulus ( spTfer). Then, 
one sums across all annuli the spTfer value multiplied by Mden. However, a simpler 
trapping equation can be formulated if the average findability × efficiency × reten-
tiveness (abbreviated as Tfer) for the set of animals within the whole trapping area is 
known. Then, catch ( C) is given simply by:

� (5.1)

5.2 � Converting spTfer into Tfer

But, calculating Tfer from known spTfer values is less straightforward then it might 
first appear. Simply averaging the spTfer values for all annuli of a trapping area 
would overestimate Tfer. The flaw in doing so is that the area of the respective annuli 
increases with radius, albeit only with r and not r 2 as for area of a circle (Fig. 5.1). 
Therefore, the number of target organisms in each enlarging annulus also increases 
when the animals are distributed randomly across a trapping area. For example, a 
spTfer value for a Fig. 5.1 annulus with an r of 180 applies to threefold more ani-
mals then would be true for an annulus with an r of 60. Thus, the calculation of Tfer 
requires averaging weighted by the number of animals in each annulus, or by an-
nulus area when the number of animals is unknown. One approach for computing 
the weighted average is demonstrated in Table 5.1; it yields a Tfer of 0.12 for the 
experimental conditions of Table 5.1.1

1 An even simpler calculation yielding the same result is to use the total of spTfer × annulus area 
and divide by total trapping area.

C T Mfer den= ×
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� (5.2)

Equation (5.1) has been confirmed experimentally. One validation employed com-
puter simulations using the conditions of Table 5.1. However, movers were not 
released at prescribed distances from the trap. Rather, they were seeded randomly 

Mean AnnulusArea MeanAnnulusArea( ) /spT Tfer fer× =

Table 5.1   An example of how a set of spTfer values can be converted to Tfer. The data used were 
generated by Weston movers displacing 5,000 steps of 0.2 with a c.s.d. of 15°. The single trap was 
a disk of diameter 50. Annulus radius is given as the outer limit. No movers were caught at r of 
180.

Distance 
movers 
released from 
trap

Annulus area Proportion 
caught = spTfer

spTfer × annulus area

30 2,826 0.79 2,233
60 8,478 0.36 3,052
90 14,130 0.16 2,261

120 19,782 0.047 930
150 25,434 0.005 127

Mean for column 90 14,130 0.27 1,715
1,715/14,130 = 0.12 = Tfer

Fig. 5.1   Demonstration that the area of a disk’s annuli increases linearly with radius (r) while disk 
area increases by πr2. Annulus r was arbitrarily taken as the outer limit
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at known densities into a trapping area whose radius was determined by measuring 
maximum net displacement of a population of 100 movers under the same con-
ditions, but released from a single point. As Eq. (5.1) prescribes, catch increased 
linearly with Mden (Fig. 5.2 a). The consistent slope of 0.12 directly reveals Tfer and 
the exact match with the 0.12 value above validates the procedure of Eq. (5.2).

However, we actually discovered Eq.  (5.1) during earlier field experiments 
(Miller et  al. 2010) using codling moths released at set densities into large field 
cages, each covering 12 full-sized apple trees and containing a single sex phero-
mone-baited trap like that of Fig. 1.3. Catch accumulating over several days after 
release of laboratory-reared moths increased linearly with insect density (Fig. 5.2b) 
in accordance with Eq. (5.1)2. But, the Tfer revealed by the slope of the regression 
equation for caged codling moth catch was high (0.5) because the moths were not 
free to emigrate. Forced proximity of moths and the trap guaranteed high spTfer 
values for all moths within a cage, and thus an unusually high Tfer relative to values 
we shall encounter below for the open-field situation.

5.3 � From Where Does most of the Catch  
Accumulating in a Trap Originate?

One might surmise that most of the random walkers recovered from a trap origi-
nated very near that trap. However, such an assertion would be incorrect for movers 
distributed randomly throughout a trapping area. As introduced in Chap.  3, and 
reconfirmed in Fig. 5.3 under the experimental conditions generating the results 
of Table  5.1, spTfer for biological random-walkers initially falls nonlinearly but 
smoothly with distance of mover origin from a trap. However, when distances of 
origin are extended so far that few random walkers reach the trap within the run 
time of the experiment, MAG plots (Chap. 4) are not linear throughout; the depar-
ture from near-linearity is seen at the right side of Fig. 5.3b, while such a transition 
is undetectable in Fig. 5.3a. For this reason, only the linear portions of MAG plots 

2 For independent random movers under study here, the fundamental Equation (5.1) is provable 
mathematically for the expected C, which corresponds by the law of large numbers to the average 
value of C over many repeated trials, as in Section 5.5. Indeed, the probability that a particular 
mover is captured is just Tfer. It follows that the expected catch is simply

where as above Mden is the number of movers in the trapping area. This argument may make Equa-
tion (5.1) seem almost tautological. Yet, in the derivation we used in a critical way the fact that the 
capture events of distinct movers are “stochastically independent,” which is to say that the prob-
ability of a given mover being captured is not influenced in any way by the trajectories of the other 
movers. This is true by fiat for the Weston movers, but is not obvious for real biological movers. 
However, the validity of Equation (5.1) in the cage experiments of Miller et al. (2010) strongly 
supports the hypothesis of stochastic independence of capture events for codling moths.

denM

fer fer den
j=1

C = T = T xM∑
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Fig. 5.2   Demonstrations that capture increases linearly with the density of Weston movers intro-
duced into the trapping area of a single trap. (a) Results from computer-simulated random walkers, 
details in text above. (b) Results from large-cage experiments using codling moths (Miller et al. 
2010). Such research validates Eq. (5.1) and (5.2)
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Fig. 5.3   Nontransformed (a) and MAG plot (b) of catch probability as influenced by distance of 
mover origin from a trap as seen across the full range of distances resulting in any catch. These 
data were generated by the computer simulations used for Table 5.1. No catch was obtained when 
r exceeded 150. Error bars indicate S.E.M.
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should be used when estimating L values (Chap. 4). However, a wider range of r 
values, including those resulting in little catch, must be included when estimating 
the maximum for trapping radius or the favored zone of origin of the movers recov-
ered from a trap.

As documented in Fig. 5.1 above, the area of the annuli comprising a trapping 
disk rises linearly with r, while spTfer falls nonlinearly with increasing r (Fig. 5.3a). 
The zone producing the most catch can be identified as the maximum in a plot of 
( spTfer × annulus area) as a function of r (referred to hereafter as a Miller plot). For 
biological random walkers, the zone contributing the most catch lies just short of 
the middle of the trapping radius (Fig. 5.4). For example, 60 % of the catch for mov-
ers with a 15°c.s.d. was drawn from between radii 30 and 90 of a trapping radius 
whose limit was 150. The zone close to the trap yields little catch. Even though it 
experiences the highest probability for plume encounter, it comprises a very small 
portion of the total trapping area. The zone far from the trap, but yet within the trap-
ping area, yields little catch because spTfer is fast falling even though annulus area 
and thus number of movers experiencing that spTfer continues to rise. So, when just 
a few random walkers are captured in a trap, it is likely they originated from the 
mid-zone and not near the trap or from the perimeter of a trapping area.

Subsequent to our discovery of the “sweet-distance” phenomenon for trapping, 
a similar idea was found in Eq. (3) of Östrand and Anderbrant (2003) dealing with 
cumulative proportional catch (CPC). However, the importance and simplicity of 
this phenomenon seems to have gone unappreciated by the various researchers who 
cite this reference but do not mention CPC.

Catch of ballistic movers, on the other hand, remains constant across all zones 
throughout a trapping area (except for low catch near the trap) (Fig. 5.4) because 
spTfer is never reduced by backtracking. Rather, catch of ballistic movers abruptly 
drops only when their dispersive capacity is exceeded.

The Fig. 5.4 experiment provided further insight into the problem of optimizing 
c.s.d. when foraging for resources. When a single, modestly-sized object was pre-
sented at 5,000 steps from movers, those with c.s.d. values of 0 and 5° had the high-
est probability of finding the resource at the greater distances. However, the picture 
reverses when the resource happens to be close at hand. If the density of randomly 
distributed resources were high, some would be guaranteed to be close at hand. 
Then, a larger c.s.d. might suffice and could be favored. However, the smaller c.s.d. 
values would be favored under low resource densities, because larger net displace-
ments would be required. The tradeoffs encountered in this situation are obvious, 
further supporting the notion that, like other genetically-based traits, the c.s.d. val-
ues organisms display should be selectable upon resource density and distribution.

Some insect studies have shown that it can be advantageous for organisms to 
modulate c.s.d. values in accordance with how recently the forager has encountered 
a resource. For example, walking house flies foraging for invisible sugar depos-
its on a flat substrate use a particular default c.s.d. before encountering the first 
resource by chance (Bell 1991). After consuming that deposit, the flies displace 
with an opened c.s.d. promoting intense local search for other deposits that might 
be nearby as in a resource patch. When this tactic is no longer rewarding, the c.s.d. 
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reverts to the smaller default value, which sensibly facilitates searching at greater 
distances for other patches.

5.4 � Preparing to Put Eq. (5.1) to Work

The introductory chapter declared that establishing trapping methodologies to 
quickly, cheaply, and accurately estimate the absolute density of small animals dis-
persing randomly was the core applied goal of this investigation. Are we getting 
close to that goal? Can Eq. (5.1) do the job? And, what information must be in place 
to apply Eq. (5.1)?

Let’s address these questions in reverse order. Equation (5.1) ( C = Tfer × Mden) 
enables one to solve for any of its three variables when any two of them are known. 
In practice, catch C will always be known, because some number caught (be it zero 
or many) always results from any trapping research. Mden could be experimentally 
varied as per Fig. 5.2 and then Tfer calculated as:

Fig. 5.4   Graphs documenting the radii for greatest capture for a single trap of diameter 50 units 
as influenced by mover c.s.d. Movers displaced for 5,000 steps of 0.2 units. For this run time, the 
chosen radii exceeded the maximum dispersion for movers with c.s.d. 30 and 15°, but not 5 and 
0°. The maximal trapping radius occurs where descending graphs reach the x-axis. Annulus area is 
directly correlated with mover numbers when the mover population is distributed randomly across 
a trapping area. Therefore, the y-axis can be interpreted as relative numbers of movers caught. 
Large areas under segments of any curve equate to high catches. This type of graph is designated 
as a Miller plot. S.E.M. bars were < 20 % of the means
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� (5.3)

Alternatively, Mden can be solved for if Tfer and C are known, i.e.,

� (5.4)

However, in both the cases, one needs to know the trapping radius (or area) to asso-
ciate units of area to the catch. As noted in Chap. 1, pest managers harvest a plethora 
of catch numbers, but they do not know to what area those numbers apply.

Judged from the published literature and our above analyses, the most acces-
sible method for establishing trapping radius is to deploy a single trap, release 
known numbers of marked animals at set distances and directions from the trap (see 
Fig. 4.3), and then trap those animals to exhaustion. The untransformed spTfer data 
can then be plotted as in Fig. 5.3a above. A first approximation of trapping radius 
is offered by where catch drops to zero. However, a challenge to establishing the 
limit for trapping radius from a plot like Fig. 5.3a is accuracy in judging whether 
catch actually ceased, or whether it simply became undetectable because low sam-
pling power resulted in false negatives, i.e., catch would have occurred if more ani-
mals were released. This problem is particularly acute for ballistic or near-ballistic 
movers whose capture profiles approach zero catch very slowly. However, a Miller 
plot (Fig. 5.4) can sharpen judgments about the limit to trapping radius. A peak 
followed by a smooth down-turn in such a graph indicates that the movers are non-
ballistic and that the limit to trapping radius is indeed approaching. Again, that 
determination can be unacceptably arbitrary when using only a Fig. 5.3a plot. We 
also recommend against estimating sampling distance for a trap by extrapolating to 
zero catch after logarithmic transformation of the spTfer data. Although sometimes 
done, this procedure seems questionable when such log graphs cut the x-axis rather 
than approaching it asymptotically as would the more appropriate inverse function.

We learned from Fig. 5.4 that, for biological random walkers expressing c.s.d. 
values greater than a few degrees, the most distant zone of the trapping area will 
have little impact on catch numbers because few movers from near the boundary of 
the trapping area arrive at the trap due to very low spTfer. But, the limit placed on 
trapping radius will always strongly influence the area to which any catch number 
applies. Thus, trapping radius must always be established with care.

It is instructive to consider the potential impacts of over- vs. underestimating 
trapping radius when using catch numbers and Eq. (5.4) to estimate absolute density 
of a pest population. Overestimating trapping radius is the more dangerous error. 
Then, a given catch number would be interpreted as applying to an incorrectly large 
area; thus, the density estimate assigned would be incorrectly low. A grower would 
be justifiably upset if, on this basis, he or she failed to spray a highly valuable crop 
that was actually destined to be lost to pests. The better scenario would be that trap-
ping radius is somewhat underestimated so that the absolute density estimate of the 
pest is not underestimated. Rather than emphasizing the absolute limit to trapping 
radius, pest managers might be better served by seeking a solid estimate of, e.g., 
75 % of the trapping radius, which could be abbreviated as the TR75.

T =C /Mfer den

M C Tden fer= /
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A similar argument can be made for estimates of Tfer destined to be used in pest 
management decisions. Here again, it would be better that the procedures used to 
establish Tfer produce under- rather than overestimates. Tfer occurs in the denomi-
nator of Eq. (5.4); thus, smaller values of Tfer will raise rather than lower the Mden 
estimate.

5.5 � Measures of Variation around Estimates  
of Absolute Animal Density Derived from Trapping

Measures of precision and accuracy are critical to any estimate of importance. This 
is certainly true for estimates of absolute pest density that will be used to make 
decisions of whether or not to execute control measures for serious pests. A starting 
point is assessment of the likelihood of obtaining a given catch number when the 
elapsed time for trapping runs is held constant across various densities of movers 
within a trapping area. To do so we used Weston movers displacing 1,000 steps of 
1.0 unit under a c.s.d. of 15°. We used 300, 1,000, and 3,000 such movers randomly 
seeded into an unbounded cyber arena to generate an average of 50, 170, and 500 
movers per trapping area (396,000 square units). If this trapping area is taken as 
equivalent to 20 ac (units relevant to US growers and area shown below to be real-
istic for locally searching flying insects), the seeded mover densities would be 3, 9, 
and 15 /ac, respectively. Deployed at the center of the trapping area was either one 
large (100 × 10 unit) or one small (10 × 1 unit) trap plume. Catch was tallied for 100 
runs under each condition and analyzed for count variation.

As is to be expected for a process as stochastic as trapping, variation in catch was 
appreciable across replicated trapping runs for a given set of conditions (Fig. 5.5). 
Some of this variation can be attributed to random seeding. Simply by chance, the 
zone around a trap may be populated with more or less movers. The lower the 
average density of movers, the greater will be the probability of empty zones. Varia-
tion in catch is then expanded by the irregularities in the tracks produced by each 
mover upon departure from its origin, as documented in Chap.  3. Nevertheless, 
meaningful confidence intervals can be drawn around any given catch number. For 
example, a catch of zero is plausible only for a population of Fig. 5.5 movers of < 9 /
ac when the plume reach is small. Provided the trap was functioning properly and 
the movers were active for the expected time, getting zero catch for a trap with 
a large plume when there are 3 animals/ac or greater is so unlikely that a grower 
could place this bet with supreme confidence. The bounds on the range for estimat-
ed Mden associated with various recorded catch categories are shown in Table 5.2. 
They demonstrate that the precision for these estimates improves substantially with 
plume reach. This knowledge suggests that, when the plume from a trap is found to 
have little reach, the precision of Mden estimates using it could be considerably tight-
ened by deploying multiple copies of this trap closely spaced in a given location to 
increase the overall amount of plume perimeter without increasing time demands 
to visit widely spaced sites to collect the data. The total catch for, e.g., four traps 
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could be used in place of the catch number for a single trap (see Fig. 5.6). But, the 
calibrations for trapping area and Tfer would then need to be established using the 
trap multiples.

5.6 � Examples of Eq. 5.1 at Work

We now offer four real-world examples that collectively demonstrate how these 
methods and Eq. (5.1) and its derivatives can be put to practical use. The first ex-
ample draws upon ongoing field research by author C. G. Adams for the codling 

Table 5.2   Translation of the catch probabilities of Fig. 5.5 into estimates of the plausible range for 
Mden as calculated for a small and large plume reach

Movers per acre
Catch 10 unit plume 100 unit plume
0 0–9 0
1–2 0–25 1–5
3–5 3–25 2–5
6–15 10–50 5–15
15–28 – 8–20

Fig. 5.5   Frequency histograms revealing variation in catch outcomes for a single trap when the 
duration of trapping runs was held constant. M = movers
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moth. A trap like that of Fig. 1.3 c baited with an optimized sex pheromone lure 
for males of this species was deployed at the center of a large, commercial apple 
orchard in Western Michigan presenting uniform conditions. Approximately 140 
laboratory-reared and reproductively sterilized males per site were released at 40, 
80, 120, 160, and 200 m in each of the four cardinal directions from the trap. Those 
for each distance were marked with a distinctively colored powder that fluoresced 
under UV light. Catch in the trap was recorded over the following week and the 
moths caught were identified by release distance. We determined what proportion 
of the released moths were actually capable of responding to pheromone and being 
caught in a trap by releasing a sample of several hundred moths into a 3 × 3 × 2 m 
field cage holding a single trap. This step was important because the below analy-
sis of plume reach requires knowing the proportion of responsive movers captured 
from each distance.

Most of the catch yielding the data of Table 5.3 accumulated on the first three 
nights after moth release. Although these given data are preliminary and the study 
is being replicated to arrive at central tendency, these results can be used to dem-
onstrate recommended procedures for analyzing such data. First, the spTfer data are 
plotted as per Fig. 5.7. Catch diminished with release distance and fell to a mere 

Fig. 5.6   Scatter plots of total catch per run for a single trap vs. total catch for four traps under 
various densities of randomly seeded Weston movers displacing 1,000 steps of 1.0 using a c.s.d. 
of 15°. Traps had elliptical plumes of 50 × 5 units and were separated by 70 units when deployed 
as multiples. Greater precision of the 4-trap metric is evidenced by a narrower range of possible 
seeding densities producing a given catch ( dashed double-headed arrows) and a higher R2 value 
for the regression line
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0.2 % by 200 m, suggesting that the limit to trapping radius was approaching. How-
ever, because zero catch was not yet reached, release distances must be expanded in 
further runs of this experiment.

The down-turn by 200 m in the Miller plot of these data (Fig. 5.7b) provides 
strong evidence that: (i) codling moth males dispersed by correlated random walks 
and not ballistically, and (ii) that the limit to trapping radius was ca. 225 m. If the 
sampling radius of this trap was taken at 225 m, the full trapping area would be 
16 ha. However, if the bulk of catch accumulates inside of 120 m, as suggested by 
Fig. 5.7b, the area over which this trap is most powerful would be closer to 8 ha. 
This finding suggests that deploying one trap every 20  ac may be sufficient for 
monitoring of codling moth populations using this trapping system.

Given that the trapping limit was nearly approached in the above test, we calcu-
lated Tfer using the method of Table 5.1 and Eq. (5.2); the value returned was 0.008 
(Table 5.3), suggesting that only 0.8 % of all the moths present in the full 16 ha of 
apples being sampled by the trap would be captured. Table 5.4 translates catch num-
bers for a single trap into densities scaled to units smaller than trapping area. Readers 
should recognize that variation similar to that documented in Table 5.2 is to be ex-
pected surrounding the listed mean values for Mden. Intriguingly, the number caught 
draws ever closer to the density number as the unit of area referenced shrinks. But, 
this effect is strictly an accounting phenomenon; it does not mean that trapping ef-
ficacy increased for smaller areas. For example, the ratio appears impressive when 
a catch of one in the trap is compared with the calculated 3 males/ac. However, that 
catch of one must be considered shared with all of the many other 1 ac zones within 
the full trapping area. It cannot be attributed to the males originating in one given 
acre. Here is a potential conceptual pitfall to be avoided as this knowledge is shared 
with practitioners.

Rather than using the maximal trapping radius to establish the units of area to 
which a given catch applies, we could follow the more conservative route and use 
the 75 % trapping radius ( TR75). Doing so translates into a trapping radius of 168 m 
rather than 225 m. The trapping area then becomes 9 ha and the estimates of abso-
lute moth density double those shown in Table 5.4. Again, using the TR75 rather than 
the full trapping radius would assure that the pest density is not underestimated.

As the sex ratio of codling moths is 1:1, the absolute density of female moths 
can be taken as identical to male density. The currently recommended threshold 

Table 5.3   Results of a preliminary single-trap, multiple-release field test with codling moth. 
Experimental details are given in the text above
Release distance (m) Annulus area (m2) spTfer spTfer × annulus area

40 5,024 0.039 197
80 15,072 0.014 215
120 25,120 0.013 314
160 35,168 0.005 188
200 45,216 0.002 81
Mean 25,120 0.015 199

Tfer = 199/25,120 = 0.008
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triggering sprays for codling moth in Michigan is 3 males/trap/wk. If catch were 
four, we see from Table 5.4 that about ten females would be present per ac. The 
following projections can then be made about maximal possible % apple infesta-

Fig. 5.7   Untransformed plot (a) and Miller plot (b) of codling moth trapping data from Table 5.2. 
The datum at 20 m in panel (a) came from a preliminary test and is included to show the shape of 
the curve as it extends back toward the trap. No error bars are included because only one replicate 
of this experiment is reported here
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tions based upon knowledge of this moth’s biology gathered by Michigan’s tree-
fruit extension specialists: each of the nine out of ten females successfully mating 
will scatter ca. 50 eggs individually near a developing apple for an estimated total of 
450 eggs; 40 % of these eggs are likely to produce larvae that successfully colonize 
apples for a total of 180 infested apples/ac. The average density of Michigan apple 
fruits/ac is about 150,000, thus, the estimated maximal infestation rate would be 
1.2/1,000 fruits when the permissible threshold is 1 infested fruit/200 apples (0.5 %). 
These calculations suggest that the current threshold triggering codling moth sprays 
is reasonable, but that it includes quite a wide safety margin. It is eye-opening to 
learn that Michigan growers spend about $ 60 to spray ten codling moth females 
per ac, or ca. $ 6 per female moth. Growers spraying whenever their monitoring 
traps register any catch at all are spending $ 10 per female or more. Our hope is 
that further field demonstrations of the validity of our trapping approach will enable 
growers to confidently withhold sprays when they are, in fact, not needed. Doing 
so will result in increased profits, enhanced levels of biological control, and greater 
lifespan for the valuable insecticides because of reduced selection pressure for re-
sistance development.

Finally, the reach of the pheromone plume from the standard monitoring trap 
used in this codling moth test can be estimated from the MAG plot (Fig. 5.8) slope 
generated for responsive test organisms. The slope returned from the near-linear 
portion of that plot was 0.68. Figure 4.12 can then be used to interpret this slope. 
The first step in doing so is to locate 0.68 on the x-axis of Fig. 4.12 and note what 
plume reaches could be attributed to this given MAG slope. If the c.s.d. used by 
foraging codling moth were as small as 6°, we observe that the plume reach could 
be about 10 m. However, if these moths use a c.s.d. of 15°or more, which we judge 
likely, the plume reach could be as small as only several m.

The y-intercept was 4.0 for the near-linear phase of the MAG plot of Fig. 5.8. It 
can be seen from the simulations of Fig.  4.13 that such a large y-intercept is associ-
ated with a small plume reach. Thus, both the slope and the y-intercept of the MAG 

Table 5.4   An example of how catches of animals in one standard monitoring trap might trans-
late to absolute densities scaled to differing units of area. Tfer for this codling moth example was 
taken at 0.008 and trapping radius 225 m as per the above analyses. Then male moth density was 
computed as density per trapping area = catch per one trap divided by Tfer. That density was then 
scaled to smaller units of area relevant to grower experience. Since the sex ratio for codling moth 
is 1:1, the number of females equals that of males. Warning: These numbers are preliminary and 
cannot safely be used for actual pest management decisions for codling moth or other such pests. 
These data are only instructive for how to apply the trapping approaches developed in this book
Catch per single 
monitoring trap

Males per trapping 
area (16.9 hectares)

Males per hectare Males per acre

1 125 8 3
3 375 23 9
10 1,250 80 30
30 3,750 230 90
100 12,500 800 300
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plot for codling moth argue for a small plume reach. Moreover, a previous investi-
gation (Grieshop et al. 2010), where marked codling moths were released directly 
downwind of a trap and then monitored for rapid appearance in the trap, suggested 
a plume reach of under 10 m for this standard codling moth monitoring trap. So, the 
evidence is mounting that the time-averaged plume reach for the standard codling 
moth trap is surprisingly small.

Our second example draws upon research (Whamsley et  al. 2006) conducted 
on the corn rootworm, a beetle whose larvae attack corn roots. This pest’s annual 
economic impact in the USA alone is estimated at over $ 1 billion in crop losses 
and control costs. These investigators collected thousands of adult beetles from a 
natural infestation in a Kansas corn field and brought them to the laboratory for 
several days to standardize their physiological condition by provision of abundant 
foodstuffs. One hundred beetles were then released back into a corn field at each of 
five distances on six equidistantly spaced spokes radiating from a single Trécé™ 
corn rootworm trap baited with an experimental lure releasing the plant volatiles 
eugenol and 4-methoxy cinnamaldehyde. Beetles at each distance were dusted with 
a distinctively colored powder. The total number of released beetles in this nonrep-
licated test was 3,000 for the setup receiving the baited trap and another 3,000 for a 
nearby setup receiving an unbaited trap. The test ran for 3 days after which captured 
beetles were examined under the microscope for powder color.

Fig. 5.8   MAG plot of the trapping data for the preliminary single-trap, multiple-release test with 
codling moth. Only the first three release distances were used because of up-turn evident in the 
MAG plot above and down-turn evident in the Miller plot (Fig. 5.5b). The corresponding plume 
reaches consistent with this slope of 0.68 can be read from the standard curve of Fig. 4.12
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No beetles were captured in the unbaited trap, while 80 beetles total (2.7 % of 
those released) were captured in the baited trap. Catch dropped smoothly with re-
lease distance (Fig. 5.9a) and reached zero by 60 m. The investigators rightly con-
cluded: (i) catch in this trap does not occur without bait, (ii) maximum trapping 

Fig. 5.9   Untransformed and Miller plot of data from a single-trap, multiple-release field study on 
corn rootworm conducted in a Kansas cornfield (Whamsley et al. 2006). No error bars are included 
because this test was not replicated
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radius for the 3-day test was < 60 m, and (iii) this trapping system had a short ra-
dius. However, this data set contains more information than the authors were able 
to harvest at the time. For example, the smoothly rising then falling Miller plot 
Fig. 5.9b demonstrates that these corn rootworm beetles dispersed by correlated 
random walks and not ballistically. A trapping radius of less than 60 m is also firmly 
supported, i.e., this conclusion is based on more than possible false negatives due 
to low sampling power. Given that the limit to the trapping radius was firm, Tfer for 
this test was calculated as per Table 5.5 at 0.006, a value remarkably similar to the 
0.008 for the codling moth study above. Table 5.6 demonstrates how this trap could 
be used to estimate corn rootworm densities from catch data, despite its short trap-
ping radius.

Finally, a MAG plot of the corn rootworm data (Fig. 5.10) yields an initial slope 
of 1.9. This slope is so steep as to be off the standard curve for interpreting plume 
reaches (Fig. 4.12). A firm conclusion can be drawn, however, that the plume for 
this trap was extraordinarily tiny (1 m or less). The very high y-intercept of Fig. 5.10 
also supports this conclusion. Indeed, it is likely that the plant volatiles released by 
the trap functioned only as arrestants of the beetles (caused them to land) (Miller 
et al. 2009) rather than attractants (steer upwind in the plume). Although such a 
trap would be ineffective as a detection or trap-out tool, it could function well in 
assessing absolute densities of corn rootworms when pest pressure was high and 
thus could serve as an important pest management tool.

A third example draws on research from Sweden (Östrand and Anderbrant 2003) 
on the European pine sawfly, a wasp whose larvae feed in groups on the needles of 

Table 5.5   Reinterpretation of results for the single-trap, multiple-release study on corn rootworm
Release distance 
(meters)

Annulus area (m2) spTfer spTfer × annulus area

3 28 0.085 2.4
15 678 0.032 21.5
30 2,120 0.012 24.7
45 3,533 0.005 17.7
Mean 2,261 0.027 13.3

Tfer = 13.3/2261 = 0.006

Table 5.6   Translation of capture numbers in a single corn rootworm trap into numbers per the 
0.5 ha trapping area or per acre when Tfer is taken as 0.006. Responders per trapping area was 
computed as catch in the trap divided by Tfer; then that density was scaled to the smaller unit of area

# caught #per 0.5 ha # per acre
1 167 67
3 500 200
10 1,667 667
30 5,000 2,000
100 16,667 6,667
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pine trees. Males of this pest are reported to respond from 50 m or more (Östrand 
et al. 2000) to a potent female-produced sex pheromone, and, catch in traps is well 
correlated with subsequent egg production and damage (Fig. 5.11). The design of 
this study was similar to that for the above examples, except that the intervals of 
release distance were enlarged with distance and not regular. This experiment was 
conducted in a large plantation of maturing Scots pine and is superior to the above 
examples because it was replicated four times. The trap was deployed at a height of 
2 m; thus, the plume would largely have been wafting through the understory where 
the foliage of this tree species becomes sparse in maturing stands. Less physical ob-
struction would have been presented to the plume from this trap than for the plumes 
of codling moth and corn rootworm.

Our interpretations of the results support and extend those of the original in-
vestigators. The spTfer values recorded declined smoothly with release distance 
(Fig. 5.12a). As the authors of this study were unaware that an inverse function was 
the more appropriate fit to their data on probability of catch vs. release distance, they 
used a log curve fit and then extrapolated to an estimated maximum trapping radius 
of 1,040 m. This step warrants reconsideration because the Miller plot of these data 
(Fig. 5.12b) shows no convincing decline in spTfer at the largest distances of release. 
The recorded profile does not rule out possible near-ballistic displacement by the 
pine sawfly males (compare Fig. 5.12b with Fig. 5.4 c.s.d. 0°). Here is a case where 

Fig. 5.10   MAG plot for corn rootworm trapping data from Fig. 5.7. Basing the slope on only two 
data points weakens the analysis for this case. However, the up-turn visible by 30 m and down-
turning profile of Fig. 5.9b beginning at 30 m supports not including more than two data points in 
the MAG slope analysis
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the evidence is unconvincing that the maximum trapping radius was approached by 
the chosen release distances for what must be a highly dispersive insect capable of 
appearing in a trap hundreds of meters away from the release point on the first day 
of the experiment. Clearly the trapping area for this insect is huge, e.g., it could have 
been as large as 700 ha if the trapping radius were guessed at 1,500 m, which from 
Fig. 5.12a is not out of the question. One wonders if the females disperse as far as 
males. The negative x-intercept of Fig. 5.11 suggests they may not.

Tfer for this sawfly experiment was calculated at 0.024 using the above methods. 
However, this value is likely inflated because the limit to trapping radius had not 
yet been reached; thus, Tfer was not reduced by spTfer × annulus area values for the 
untested larger distances of release. Translations into density estimates via Eq. (5.1) 
are given in Table 5.7, when trapping radius was taken at a conservative 1,200 m. 
Variation around the mean densities given in Table 5.7 is expected to be similar to 
that shown for the large plume of Table 5.2. The current analysis supports the earlier 
reports that this sawfly trapping system is extremely potent and would be excellent 
for pest detection. Capture of a single individual/trap equates to 0.1 insects/ha for 
pine sawfly, while it equates to 8 and 334 insects/ha for codling moth and corn 
rootworm, respectively. It is not surprising then that the plume reach for this pine 
sawfly trap, as estimated from the MAG plot slope (0.12 Fig. 5.13) and the standard 
curve of Fig. 4.12 was 50 m. In this case, it is appropriate to focus only on the low 
c.s.d. graph because the incomplete profile of Fig. 5.12b is consistent only with a 

Fig. 5.11   Relationship between catch of male pine sawflies in pheromone-baited traps and density 
of eggs deposited at those sites. Data re-plotted from Lyytikäinen-Saarenmaa et al. (2001)
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low c.s.d. value. The small y-intercept of 1.2 is also consistent with a large plume 
reach (Fig. 4.13). This estimate of plume reach agrees well with and refines that of 
up to 100 m arrived at by direct behavioral observations of sawflies released at vari-
ous distances downwind and perpendicular to a line of traps (Östrand et al. 2000).

Fig. 5.12   Untransformed (a) and Miller plot (b) of data for a single-trap, multiple-release trapping 
study of pine sawfly (Östrand and Anderbrant 2003)
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Our final detailed example comes from research (Brêthes et al. 1985) conducted 
on snow crabs in the Gulf of St. Lawrence, just east of Quebec, Canada. In this 
study, an anchor was attached to one end of a long line, and one standard com-
mercial snow crab trap (bait unspecified but probably some type of chopped fish) 
was attached 100 m up the line. Bags containing 15 snow crabs each, distinctively 
marked for each distance, were short-tied at intervals between the anchor and the 
trap. The array was carefully deployed from a research vessel in a straight line more 
than 100 m below sea level onto the sea bed. Ingeniously, the ties on the crab bags 
dissolved after about 30 min, releasing the crabs to forage freely. So in this case, 
only a single line of release points radiated away from the trap. Traps were recov-
ered and crabs counted after 24 h in one test and 48 h in another.

Table 5.7   Translation of capture numbers in a single pine sawfly trap into numbers per a 450 ha 
trapping area or per smaller areas within that trapping area. Trapping radius used was a conserva-
tive 120 m and the Tfer was 0.024

# caught # per 450 ha # per ha # per acre
1 42 0.1 0.04
3 125 0.3 0.11
10 417 0.9 0.37
30 1,250 2.8 1.11
100 4,167 9.3 3.70

Fig. 5.13   MAG plot of pine sawfly spTfer data. The lack of an up-turn is further evidence that the 
limit to trapping radius had not been reached
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Proportions of crabs caught in the 24 h test are graphed in Fig. 5.14a. The highest 
proportion (0.026) was caught at 5 m; catch fell from there, and no marked crabs 
were captured beyond 60 m. The profile of the Miller plot (Fig. 5.14b) suggests that 

Fig. 5.14   Untransformed (a) and Miller plots (b) of data from a single-trap, multiple-release test 
using snow crabs (Brêthes et al. 1985). The data for several close release points at the mid-range 
of release distances were averaged to keep the distance increments nearly regular. As only a single 
line of traps was used, annulus area was divided by four to yield a sector area
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the snow crabs displaced by correlated random walks rather than ballistically. Given 
that a maximum trapping radius of 60 m was evident, trapping area can be com-
puted at just over 1 ha; Tfer was computed at 0.007 by the above methods, with the 
exception that only one quarter of the annulus area was used because of the single 
line of release points. Using this Tfer value and the 1 ha trapping area, application of 
Eq. 5.4 suggests that catches of 1, 3, and 10 snow crabs in one such trap over this 
brief interval equate to 143, 430, and 1,430 crabs/ha, if their starting distribution 
across the sea floor were random.

Plume reach of a baited trap is of considerable interest to fishermen, as that 
knowledge helps gauge appropriate trap spacing for maximizing overall catch with 
a minimum of equipment and travel. Thus, the data of Fig. 5.15 will be important to 
snow crab fishermen. The MAG slope of 0.78, as interpreted using the calibration 
curve of Fig. 4.12, suggests the plume emanating from the trap was detectable for 
only ca. 10 m under the above conditions. Such an outcome suggests little concern 
is justified about fishing inefficiencies due to overlapping bait plumes, unless traps 
would be very densely packed. The suspiciously large y-intercept of 40 is also sug-
gestive of a small plume.

Fig. 5.15   MAG plot of spTfer data from a single-trap, multiple-release trapping study of snow 
crabs. This case is unusual in that only a single line of traps radiated from the trap, not multiple 
lines in various directions as is the more standard procedure for terrestrial studies

 

5.7 � Patterns in Tfer Values and Plume Reaches for Organisms …
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635.8 � This Single Trap Approach is Ready …

5.7 � Patterns in Tfer Values and Plume Reaches  
for Organisms Displacing Randomly

Across these four examples, it is the displacement of the responder that comprises 
the preponderance of trapping radius, not the plume reach. To be successful at find-
ing stationary traps or resources like food and mates, it appears that animals must 
move over a considerable area.

We located some additional studies from the literature that could be analyzed by 
the above methods for Tfer and plume reach. The expanded list appears in Table 5.8. 
Most of these studies yielded Tfer values higher than those of the experiments 
detailed above. The largest Tfer found (0.21) was for a click beetle attacking turf. 
However, like the pine sawfly test, none of these additional examples returning the 
higher Tfer values used release distances proven to approach or exceed the trapping 
radius as judged by up-turning MAG plots or down-turning Miller plots. Thus, these 
Tfer values must be taken as inflated over what would have been obtained over a full 
trapping area. Notably, the three Tfer values taken over the full trapping range and 
using relatively short run times (codling moth, corn rootworm, and snow crab) all 
fell just below 0.01. We anticipate that Tfer values may converge around 0.01 for 
various random walkers when spTfer measures include the full trapping radius. Tfer 
might reflect some sampling limit given the number of movers in play. This would 
be fortuitous, as Tfer would essentially become a constant. The number of movers 
in play could then be easily calculated via Eq.  (5.4). However, measurement of 
trapping radius and area would still be required for the attribution of units to this 
number as required for an estimate of absolute density.

The Tfer values of Table 5.8 appear positively correlated with both plume reach 
(Fig. 5.16a) and duration of the respective trapping experiment (Fig. 5.16b). These 
findings make sense, as both factors increase interactions of movers with the trap 
resulting in more intersections. However, such a conclusion must await accumula-
tion of a more robust set of representative Tfer values all measured using a complete 
set of release distances (some returning zero catch).

5.8 � This Single Trap Approach is Ready  
for Testing and Implementation Where  
Proven Reliable

Hopefully, the explanations and examples above have clearly demonstrated how 
Eq. (5.1) and its derivatives can be used to estimate absolute density of animals via 
trapping. If robust field tests across a geographical region show that trapping radius 
and Tfer are quite constant through time for given animals and trapping systems, use 
of Eq. (5.1) and generation of tables for catch interpretation like those above is now 
possible and justified. Improved pest management decisions and savings for grow-
ers will hopefully follow.
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Fig. 5.16   Demonstration of positive correlations between Tfer values from Table 5.8 and plume 
reach (a) as well as the duration of the respective trapping tests (b). The data for Douglas fir and 
southern pine beetles could not be included in (b) because the durations of trapping were not 
reported. Note: Most of the larger Tfer values are artificially inflated because release distances 
for the respective single-trap, multiple-release experiment did not extend to the limit of sampling 
radius for the trap
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Implementing this approach to quantifying absolute pest density requires col-
lection or rearing of goodly numbers of pests so that robust single-trap, multiple 
release experiments can be conducted to establish Tfer for particular growing re-
gions. Perhaps the various private companies specializing in rearing small animals 
like biological control agents could fill this niche in collaboration with university 
researchers.

Alternatively, government agencies could facilitate laying this foundation. It will 
be the role of applied researchers and extension agents to understand the principles 
and procedures for this approach, to set protocols for how monitoring traps are de-
ployed to maximize constancy in trapping radius and Tfer, and to generate the tables 
for translating catch into absolute pest density. Then, the connection must be made 
between estimated pest density and the probability of damage. For example, the 
translation of pest density to projected percent injury will need to be informed by 
reliable knowledge of pest fecundity and survivorship, as well as measures of total 
crop mass available to the estimated number of pests. The good news is that many 
pest managers are already doing a good job of integrating these factors without 
having a firm grip on absolute pest density. So, even better pest management deci-
sions should be possible when inexpensive, quick, and accurate estimates of pest 
density become available through the use of the above tools of trapping. It is likely 
that growers will follow resultant extension recommendations when properly taught 
how to set a monitoring trap, tend it for the required time, and interpret the resulting 
catch. The costs in trapping materials and time will also matter, but not as much 
as being guaranteed good pest control and increased overall profits from applying 
controls only when actually needed.

5.9 � A Caveat

Trapping radius and Tfer might vary with the activity level of the target animals. 
Using values of trapping radius and Tfer established under ideal environmental con-
ditions for estimating Mden from catch data collected under inclement conditions 
could lead to underestimates of Mden. Linking catches with recorded environmental 
conditions (now commonplace in agriculture) should be helpful in avoiding such 
over-reaches. The following chapter explores how this limitation might be over-
come by use of a set of competing traps to obtain estimates of trapping radius and 
Mden simultaneously from a single set of capture data.
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Chapter 6
Competing Traps

© The Author(s) 2015
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6.1 � Definition of Trap Competition

We define traps as competing when the presence of one or more traps reduces the 
catch in a given trap below what would have been measured if the additional trap 
or traps were not present. This effect has been sometimes labeled as interference 
or poaching. Wall and Perry (1978, 1980) were the first to investigate this phe-
nomenon for attractive insect traps. Until now, the kinetics of trap competition has 
received surprisingly little attention.

6.2 � Complete Competition

The most easily understood case of competition occurs when identical traps are 
deployed so closely that their plumes overlap completely without influencing each 
other’s effective size. Under these hypothetical conditions, the number of movers 
arriving at the set of traps equals those arriving at a single trap. However, the catch 
would be split evenly between them under ample replication. If we designate some 
number ( Tden) of focal traps T and some number ( tden) of competing traps t, then the 
probability of catch in the focal traps ( PT) for movers arriving at the set of com-
pletely competing traps is given by:

� (6.1)

This situation is analogous to drawing cards from a randomized deck. Imagine that 
we have 1 T and 4 t in the deck, or Tden = 1 and tden = 4. The probability of drawing T 
on a single draw from the randomized deck is then 1/5 or 0.2; and, the cumulative 
catch in the one T ( CT) with multiple draws followed by replacement is:

P T T tT den den den= +( )  / .
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� (6.2)

Transitioning from cards fully back to trapping, the number of draws becomes the 
number of movers arriving at the set of fully competing traps (arriving M), or:

� (6.3)

Since the density of T in this situation is one, Eq. (6.3) reduces to:

� (6.4)

We learned in Chap. 5 that only a small fraction (designated Tfer) of the total random 
walkers (designated Mden) present in a large trapping area find, get caught in, and are 
retained by the trap. Under no competition, CT = TferMden (Eq. 5.1). The number of 
movers from the full trapping area that get caught in the focal trap under complete 
competition becomes:

� (6.5)

Finally, the brackets identifying PT per arriving mover can be removed to yield:

� (6.6)

6.3 � Test for Whether or Not Competition is Complete

Plotting tden on the x-axis vs. 1/CT on the y-axis (designated Miller-Gut plot (Miller 
et  al. 2006a,b)) can test whether the trap competition was actually complete. As 
demonstrated in Fig. 6.1, such graphs generate straight lines whose x-intercept is 
negative 1.0 when competition is complete, indicating that the catch in T will be 
halved by one competing trap (Eq.  6.4). An x-intercept of − 2.0 (inverse = − 0.5) 
would indicate that each t suppressed catch in the focal trap T by only half of what 
would be expected for a fully competing trap. Figure  6.2 offers the mathemati-
cal justification for this test of competition completeness and establishes that for a 
Miller-Gut plot of data from traps competing fully:
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Fig. 6.1   Graphical outputs of Eq. (6.6) for several Tfer and Mden values when tden is plotted vs. 1/C, 
Miller-Gut plot (Miller et al. 2006 a,b). The x-intercept and its inverse return − 1.0 under complete 
competition

 

Fig. 6.2   Mathematics explaining why the Fig. 6.1 graphs yield straight lines and why the inverse 
of the x-intercepts must be − 1.0 when competition between T and t is complete
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� (6.7)

Therefore:

� (6.8)

6.4 � Incomplete Competition

Things become a bit more complex when the plumes from competing traps do not 
overlap completely or at all. For example, a catch of 73 ± 4 (S.E.M.) movers was 
realized when a trap having an elliptical plume of 100 × 10 units was deployed at the 
center of a large cyber space containing 5,000 uniformly distributed Weston movers 
operating with a c.s.d. of 15° and displacing for 1,000 steps of 1 unit. Catch in such 
a trap was reduced (Fig. 6.3) when two identical traps were deployed closely in 
this unbounded arena. When the plumes of the two traps were fully superimposed, 
catch was halved. As the interplume distance increased for two plumes arranged so 
that their long axes fell on the same straight line, captures in the competing traps 
increased in two distinct linear phases: 1 and 2 (Fig. 6.3). A steeper rise in catch 
was recorded over the first 100 units of trap separation (Fig. 6.3, Phase 1), whose 

Slope = 1
T Mfer den

.

M
Tden

fer

= 1
Slope

.

Fig. 6.3   Capture of computer-simulated random walkers as influenced by distance separating two 
competing traps. Twenty replicates were run for each datum; error bars = S.E.M

 



716.4 � Incomplete Competition�

span matched the plume reach. Then, the captures increased in Phase 2 at about half 
the rate for Phase 1, until no competition was detectable at or beyond 215 units of 
separation (Phase 3).

The sampling radius for this trap interacting with these movers was measured 
by releasing (at varying distances) sets of 100 Weston movers in a ring centered 
on one end of the 100 × 10 plume and then rendering the capture data as a Miller 
plot. Figure 6.4b reveals that the trapping radius was ca. 450 units. Thus, our initial 
hypothesis that the threshold distance for measurable trap competition would match 
that for trapping radius was falsified. Rather, the radius for detectable trap competi-
tion (Fig. 6.3) was less than half of the measured trapping radius.

Understanding the above outcome requires consideration of the behavior of in-
dividual movers. The mismatch between measured trapping radius and competition 
radius suggests that more is required for measurable trap competition beyond the 
availability of some movers with the capacity to reach one trap or the other, or sim-
ply with theoretical capacity to reach both traps. Measurable competition requires 
a detectable reduction in catch relative to that for a trap operating alone. Thus, 
no competition would be measured unless Trap 2 captured movers destined to be 
caught in Trap 1, had Trap 2 not been present, and vice versa. Captures by Trap 2 
of movers not catchable by Trap 1 cannot suppress catch of Trap 1, and vice versa. 
Therefore, realized competition of traps requires not only capacity of some movers 
to reach both traps, but also certainty that either trap would have caught any mover 
gone “missing.”

The latter stipulation explains why the measurable competition radius proved 
smaller than the trapping radius. For example, the probability of a visit by a mover 
originating 300 units from a space that could have been occupied by one plume can 
be read from Fig. 6.4a as ca. 0.02. Requiring that the same mover, having arrived 
at this first plume, then visit another plume now 300 units away would likewise 
be probable at 0.02. Multiplying these individual probabilities gives the combined 
probability that one mover will visit both Trap 2 and Trap 1, i.e., 0.0004. This prob-
ability was apparently too tiny for an actual event to be realized given the sample 
sizes and power of the Fig. 6.4 experiment where no catches were registered below 
a probability of 0.001. However, if the distances were reduced to 200 units, the 
probability of visiting one trap is ca. 0.06 (Fig. 6.2 A) and that for visiting two traps 
in the same run would have been 0.0036, making the competition detectable in this 
experiment at 200 but not 300 units of plume separation.

The hypothesis that realized trap competition requires that a given mover would 
actually have visited the space potentially occupied by both plumes is further sup-
ported by the data in Fig. 6.5. In this experiment, individual Fig. 6.3 movers were 
released equidistantly from two Fig. 6.3 plumes placed at set separation distances 
onto the computer screen, but where neither of the plumes were endowed with the 
capacity to arrest movers. The individual tracks (n = 50 for each distance) laid down 
by the simulation program during runs of 1,000 steps were scored for whether the 
mover visited the areas under both, one, or no plumes. Obtaining a straight line be-
yond a separation distance of 100 units (plume reach) with an x-intercept (210) very 
similar to the detectable competition threshold of Fig. 6.3 (215) supports the idea 
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that the trap competition measured in Fig. 6.3 resulted only from the events where 
there was certainty that the plumes from both competing traps would have been 
contacted had the competitor not been present.

Fig. 6.4   Untransformed (a) and Miller plot (b) of data for Weston movers having a c.s.d. of 15° 
and displacing for 1,000 steps of 1.0. These data support a trapping radius of 450 units; and, they 
returned a Tfer value of 0.047 computed as per Chap. 5
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6.5 � Trapping Radius Does Not Equate to Competition 
Threshold

The above result demonstrates that using the competition threshold to estimate 
trapping radius would badly underestimate the latter and particularly trapping area 
which increases by π r 2. Rather, trapping radius for biological random walkers can 
exceed competition radius by a factor of two. This fact was not recognized in previ-
ous studies of trap competition (e.g., Wall and Perry 1978, 1980) and will require a 
revision of some previous measures of trapping radius taken as equivalent to com-
petition radius.

6.6 � Equation for Incompletely Competing Traps

We conducted simulation experiments like the following to determine how Eq. (6.6) 
fitting completely competing traps must be modified to fit data from incompletely 
competing traps. The conditions were those of the Fig. 6.3 experiment, except that 
either 1, 2, 3, or 4 trap plumes were deployed singly, one horizontal plume above 
another (2 traps), three horizontal plumes arranged vertically (3 traps), or as a 2 × 2 
grid (4 traps). Plume centers were spaced 110 units apart. Each trap density was run 

Fig. 6.5   Graph of the proportion of runs Fig. 6.1 movers contacted both competing plumes as a 
function of plume separation distance. The shape of this profile and its limit of 210 units is a good 
match to the Phase 2 result of Fig. 6.1
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for 300, 1,000, 2,000, 3,000, 4,500, and 6,000 steps of 1.0 unit (10 replicates of each 
condition). We also measured maximum net dispersive distance for each runtime 
for these Weston movers operating with a c.s.d. of 15° after releasing 300 movers 
from a point at the edge of the computer screen. Trapping radius and area could 
then be computed. Numbers of randomly seeded movers per trapping area were 
then counted for computations of Tfer for each run time. Results of a typical run are 
shown in Fig. 6.6. All such plots yielded straight lines suggesting that the equation 
fitting incomplete competition had a form similar to that of Eq. (6.6), as explained 
in Fig. 6.2. The inverse of all x-intercepts was well less than −1.0, as expected, when 
traps experienced no plume overlaps. For example, the absolute value of the inverse 
of the x-intercept for Fig. 6.6 was 0.28, indicating that the level of competition per 
t was only 28 % of that for a completely overlapping trap. It became evident by 
inspection that Eq. (6.6) needed only the below modification to fit these data for 
incomplete trap competition:

� (6.9)

Nevertheless, a mechanistic explanation for this relationship was desired—what 
phenomenon did an inverse of x-intercept value like 0.28 from Fig. 6.6 actually 
represent? One approach to this puzzle was exploration of how the inverse of x-
intercept varied with duration of trapping runs. As shown in Fig. 6.7a, the inverse 
of x-intercept rose according to the number of steps raised to the power of 0.74. 
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Fig. 6.6   Miller-Gut plot of data for runs of 6,000 steps using 1, 2, 3, and 4 traps where one of 
these traps was considered the focal trap T and the remainder were considered competing traps t
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In light of Fig. 3.4, such an outcome suggested that the inverse of x-intercept was 
closely tied to the maximum net dispersion of movers; this match was confirmed in 
Fig. 6.7b and solidified by Fig. 6.8.

Based on the findings of Chap. 5, we reasoned that the parameter likely to vary 
most dramatically (at least initially) with run time of a trapping experiment was Tfer. 

Fig. 6.7   Demonstration using Fig. 6.3 movers and plumes that the inverse of x-intercept. (a) Max-
imum net displacement of movers. (b) Both rise with the number of steps raised to the 0.7 power
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For the current experimental conditions, Tfer initially dropped precipitously with in-
creasing run time (Fig. 6.9a) and then stabilized upon approaching 0.05. A graph of 
1/Tfer vs. run time (Fig. 6.9b) bore a striking resemblance to Fig. 6.7a and returned 
an exponent of 0.70 that we take as matching the exponent of 0.74 for 1/x-intercept 
vs. run time (Fig. 6.7a). This match led to the hypothesis that:

� (6.10)

We then sought to identify an unknown parameter whose numerical value might 
provide hints for a mechanism leading to the above quantitative relationships. To 
this end, the expression unknown parameter/Tfer was substituted for 1/x-intercept 
in Eq. (6.9) and then solved for after plugging in all other terms, each known from 
experimental measurements detailed above. The solution returned for unknown pa-
rameter for all run times with t densities > 0 turned out to be a value close to 0.02. 
Further inspection of this data set revealed that the product of 0.02 × Mden for the 
trapping area associated with each respective run time nearly matched the differ-
ence between catch in a trap under no competition and catch under competition 
from one t. We concluded that this unknown parameter (hereafter designated Pt) 
is the proportion of all movers populating a trapping area that will be captured per 
competing trap t that otherwise would have appeared as part of the catch in the fo-
cal trap T. The inverse of the x-intercept for a Miller-Gut plot can then be taken as:

� (6.11)
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Fig. 6.8   Proof that the inverse of x-intercept was well correlated with maximum net displacement 
of movers
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The number of movers approaching T from the trapping area is given by:

� (6.12)Movers approaching    T T Mfer den= ×

Fig. 6.9   Tfer (a) and 1/Tfer (b) as a function of run time for Weston movers with a c.s.d. of 15° and 
a trap having elliptical plume dimensions of 100 × 10 computer units
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and the number of approaching movers pilfered by t is given by:

� (6.13)

It follows that:

� (6.14)

Here, then is the first-principles explanation for the inverse of x-intercept: it is the 
proportion of movers incoming to T that are intercepted and pilfered by one t. De-
ploying competing traps near the focal trap screens T from some but not all ap-
proaching movers (Fig. 6.10). Packing additional competing traps around the cen-
tral T of Fig. 6.10 translates into more movers pilfered. However, the inverse of 
x-intercept quantifies the proportion of movers incoming to T that are pilfered per 
t. Values for Pt shifted only from 0.017 to 0.023 across simulation runs of duration 
200–5,000 steps.

Now an equation fitting incompletely competing traps can be offered with terms 
precisely defined. When: T = one focal trap; t = a trap placed close by so as to com-
pete with T; Mden = number of entities per trapping area; Tfer = proportion of all mov-
ers in a trapping area caught by T when under no competition; Pt = proportion of all 
movers in the trapping area caught by t while on their way to T and that otherwise 
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Fig. 6.10   Tracks of Weston movers displacing for 1,000 steps of 1.0 with c.s.d. 15° in the vicinity 
of a trap under no competition (a) and when competing incompletely (b). The small solid circles 
indicate the starting points for randomly seeded movers. Any intersection of a track with the dark 
elliptical plume yielded a capture. Note that captures were fewer on the sides of plumes that were 
shielded from incoming movers by a competing trap. The shielding effect of each trap operating 
under these given conditions reduced catch in a focal trap by about 20 % on average and yielded 
a Pt value of 0.017
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would have been caught by T; and CT = cumulative catch in the focal trap T per trap-
ping interval; then:

� (6.15)

Equation (6.15) can be viewed as the general equation for all trap competitions; 
Eq. (6.6) for complete competition becomes a special case where Pt = Tfer and Pt

/Tfer 
thus becomes invisible because it is 1.0.

6.7 � Estimating Mover Numbers and Trapping Area 
Simultaneously by Competitive Trapping

A central goal of this book is development of quick, inexpensive, but valid method-
ologies for accurately estimating absolute density of random walkers from trapping 
data. A possible limitation of the methods outlined in Chap. 5 is that the experimen-
tal conditions extant for a particular trapping run might not always match those in 
effect when Tfer and trapping area were established using the single-trap, multiple-
release technique. For example, inclement weather might truncate animal activity 
to yield a smaller than expected trapping area and a larger than expected Tfer. The 
resulting Mden estimate would then be falsely low. The ideal situation would be to 
obtain a measure of trapping area and Tfer concurrently while collecting a catch 
number from which the Mden would be calculated.

Equation (6.15) could be the gateway to such procedures. We suggest that a 
small array of traps (e.g., Fig. 6.11) could be deployed simultaneously to compete 
incompletely at multiple strengths of competition. If an appropriate tden value could 
be assigned to the strengths of competition for respective trap positions in the grid, 
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Fig. 6.11   One suggested array of incompletely competing traps that could serve to simultaneously 
estimate trapping area and Mden via Eq.  (6.13). The level of competition as influenced by trap 
position (corner, mid-edge, and center) is suggested by the boldness of each respective imaginary 
symbol drawn around the elongated elliptical plumes emanating from each competing trap t
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those values plotted on the x-axis against 1/CT on the y-axis will yield a straight line 
and an x-intercept, the magnitude of whose inverse would be pivotal to assigning 
a trapping area. As demonstrated in Fig. 6.7a, values for 1/x-intercept can serve as 
proxy for elapsed time of the trapping run. In that experiment, values of 0.05 vs. 
0.3 for 1/x-intercept indicate very short and long trapping runs, respectively. Thus, 
1/x-intercept can function as a clock for trapping runs. Importantly, this clock oper-
ates independently of Mden. The inverse of x-intercept correlates well with trapping 
area as demonstrated in Fig. 6.12. After such experimental calibrations, an experi-
menter would be able to calculate trapping area via a regression equation like that of 
Fig. 6.12, but unique to the given set of plume and mover characteristics.

The Tfer value for a given competitive-trapping experiment can be obtained when 
the relationship between x-intercept and Tfer has been calibrated as in Fig. 6.13 for 
the Fig. 6.7 experiment using 100 × 10 plumes. Once Tfer and trapping area are es-
timated for a competitive trapping run, Mden can be found by using Eq. (6.18) or 
(6.19) offered in Fig.  6.14 showing equations derivable from Eq.  (6.13) and its 
graphical outputs. We anticipate that the competitive-trapping method of estimating 
Mden will prove more robust than always relying on Eq. 5.1 and an historically es-
tablished estimate of trapping area and Tfer.

Fig. 6.12   Demonstration that values for trapping area recorded in the experiment of Fig. 6.7 cor-
relate well with 1/x-intercept
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Fig. 6.13   Demonstration that Tfer is well correlated with the x-intercept of a plot of tden on the 
x-axis vs. 1/CT on the y-axis

 

Fig. 6.14   Equations derivable from Eq.  (6.15) enabling calculation of Mden from experimental 
data once x-intercept, Tfer is measured, and trapping area are estimated
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6.8 � Computer Simulations Demonstrating How Absolute 
Density of Biological Random Walkers Can Be 
Estimated by Competitive Trapping under Variable 
Run Times

This example builds upon the foundation laid thus far in this chapter for traps hav-
ing 100 × 10 elliptical plumes and movers taking steps of 1.0 while executing a 
15° c.s.d. The competing-trap array utilized was the 3 × 3 grid of Fig. 6.11 under a 
trap spacing of 110 units. The last piece of groundwork needed is calibration of the 
appropriate tden value to assign to traps at the corner, mid-edge, and center of the 
array (Fig. 6.11) such that tden values to be plotted on the x-axis occurred in incre-
ments of one t against 1/CT. To this end, mean captures in corner, mid-edge, and 
center traps were recorded after 6,000 steps for 10 replicate runs of the 3 × 3 grid of 
traps deployed in a field of 5,000 randomly seeded Weston movers as above. Then, 
the regression equation of Fig. 6.6 was used to solve for the tden corresponding to 
the catch recorded for each trap position. The corner, mid-edge, and center traps 
returned tden values of 3.3, 8.2, and 20.9, respectively. A tden value of about 3 is un-
derstandable for a corner trap, because two competing traps lie at right angles and 
a third occurs diagonally between these two competitors. However, as additional 
competing traps were added into the array their competitive effect became more 
than additive. For example, a mid-edge trap in a 3 × 3 array is surrounded by only 
five competing traps, yet the tden value for this configuration was slightly above 8. 
A center trap is surrounded by eight competing traps and returned a tden value of 
over 20. As competing traps increasingly surround a focal trap, they apparently 
interact to choke off an increasing proportion of the overall access to the focal trap. 
But, once understood and accounted for, this lack of linearity is no impediment to 
competitive trapping.

With this background information in place, we  randomly seeded various densi-
ties of movers into an unbounded cyberspace and determined Mden after various run 
times between 300 and 6,000 steps. The steps of this analysis were:

1.	 For a given run using a 3 × 3 trapping grid, record the mean catch for corner 
traps, mid-edge traps, as well as the single value for the central trap.

2.	 Plot the inverse of catch on the y-axis against the tden values of 3.3, 8.2, and 20.9 
for corner, mid-edge, and center traps, respectively.

3.	 Compute the x-intercept for the graph by dividing the y-intercept by the slope.
4.	 Compute 1/x-intercept.
5.	 Use the regression equation of Fig. 6.12 to compute trapping area.
6.	 Use the regression equation of Fig. 6.13 to compute Tfer.
7.	 Use Eq. 6.18 to compute M per trapping area.
8.	 Scale all outcomes to a common area (one computer screen) to facilitate 

comparisons.
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Estimated Mden values for both short (2,000 steps) and long (6,000 steps) run times 
proved to be linearly related to the actual values (Fig. 6.15). Precision was a bit 
better for longer vs. shorter run time, as evidenced by values for shorter runs usu-
ally bracketing those for longer runs for a given seeded Mden (Fig. 6.15). Encour-
agingly, precision and accuracy of the method did not rapidly degrade under low 
numbers of randomly seeded movers. However, evidence for a lower limit to the 
utility of this method was noted. Zero catch was recorded for the center trap in three 
of ten instances when the number of seeded movers was 1,000 or less. This meant 
that the analysis could proceed only using the data for corner and mid-edge traps, 
which was not a problem. However, in 4 out of the 50 determinations comprising 
Fig. 6.15, nonsense values resulted primarily for the lowest mover densities, usu-
ally because the x-intercept returned a positive rather than a negative value. In one 
case, the slope of the Miller-Gut plot was negative rather than positive. Such out-
comes are not unexpected when the catch numbers for corner traps fall to less than 
ten per trap. Nonsense values were easy to identify among a majority of reliable 
values. Overall, this method shows real potential. Indeed, the potential problem of 
unknown run time effects can be overcome by competitive trapping.

Fig. 6.15   Results from computer simulations estimating Mden of Weston movers (using a c.s.d. 
of 15° and steps of 1.0 unit) via competitive trapping using a 3 × 3 trapping grid and plumes of 
100 × 10 units. Each datum is the outcome from a single run of designated duration for the indi-
cated seeding density. Five valid replicate runs are shown for each condition
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6.9 � Suggested Plan for Employing Competitive  
Trapping Under Field Conditions

Although now recommended for basic research studies, it is unlikely that growers 
could afford to deploy nine traps as per Fig. 6.11 to estimate pest density at one 
given location. Instead, we recommend that growers deploy their monitoring traps 
singly or in small multiples to increase accuracy by increasing overall plume reach 
as explained in Chap. 5. Rather than relying only on historically established esti-
mates of trapping area and Tfer to derive Mden, we envision that a few competitive 
trapping tests could be ongoing under the care of extension personnel responsible 
for a growing region. Growers could use the historical values to compute Mden from 
their catch numbers as per Chap.  5 unless alerted to more appropriate real-time 
estimates arising from the ongoing and rapidly shared competitive-trapping assays 
for the region.

6.10 � Summary

This chapter has established that, although the outcomes of trap competition can 
be somewhat counter-intuitive, their kinetics can be captured in a few relatively 
simple equations. This knowledge provided an opportunity for the development of 
competitive trapping, a novel method for computing Mden from capture data that is 
unencumbered by unknown time of the trapping run. Competitive trapping can be 
accomplished only after the following background information has been laid for a 
given pest and trapping system: (1) plume reach must be estimated via results from 
a single-trap, multiple-release experiment (as per Chap.  5); (2) the c.s.d. for the 
given pest should be estimated (upcoming in Chap. 7), and if this is not possible, 
c.s.d. can be reasonably guessed at approximately 15–20° (Chap. 5); (3) computer 
simulations of trapping under various run times would be conducted as demonstrat-
ed in this chapter so as to establish the quantitative relationships among x-intercept, 
trapping area, and Tfer; (4) the relationships arising from step 3 would be tested by 
further computer simulations to ascertain precision and accuracy of Mden determina-
tions from a trapping grid; and (5) the simulation results would be corroborated by 
actual field tests using the given pest. The authors were recently funded by the U.S. 
National Science Foundation to accomplish this step for codling moths.
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Chapter 7
Experimental Method for Indirect  
Estimation of c.s.d. for Random Walkers  
via a Trapping Grid

© The Author(s) 2015  
J. R. Miller et al., Trapping of Small Organisms Moving Randomly,  
SpringerBriefs in Ecology, DOI 10.1007/978-3-319-12994-5_7

7.1 � The Idea

The research of Chap. 6 with grids of traps suggested a means for experimental 
measurement of the circular standard deviation (c.s.d.) being used by random-
walkers before they encounter the plume from a trap. For example, the c.s.d. of a 
population of movers released at one point outside of a regular grid of traps might 
be obtained via analysis of the pattern in resultant catch across the array. Figure 7.1 
shows one such trap configuration we explored in some depth for that purpose. As 
demonstrated in Fig. 7.2, movers executing a small c.s.d. populate edge traps more 
evenly and penetrate the grid more deeply than those using a large c.s.d.

The next step was converting capture data from across the grid into an objective 
dependent variable for constructing a standard curve for c.s.d. such that it could 
be back-calculated once the dependent variable was measured experimentally. 
This was not difficult. It required use of only the data for the traps labeled 1–5 in 
Fig. 7.3a. Catch for traps in a given position was first normalized (this step optional) 
to catch in Trap 1—the corner trap nearest the release point for 100 movers. Plots 
of mean catch for a given trap position against a trap position number on the x-axis 
(Fig. 7.3b) proved a better fit to an exponential curve than any other model exam-
ined. Conveniently, the magnitude of the decay constant returned for graphical plots 
resulting from a given combination of plume reach, plume spacing, mover popula-
tion, and run time for the simulation proved to be linearly correlated with c.s.d. 
(Fig. 7.4) to generate a useful standard curve with no need for transformations.
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7.2 � Translation of the Idea to Field Tests with Real 
Organisms

We suggest that this trapping-grid approach could be used by field researchers to es-
timate the c.s.d. for real biological random walkers. The plume reach and maximum 
dispersive radius must first be estimated for a given organism using the single-trap, 
multiple-release, and associated techniques of Chap. 5. Spacing of traps in a 5 × 5 
grid would then be set to at 1.5 times plume reach so that the standard curves of 
Fig. 7.4 can be utilized. The elapsed time for the trapping run would be kept short 
to capture mainly the initial flux of movers through the grid. The techniques of 
Fig. 7.3 would be used to obtain the decay constant from the trapping outcomes. 

Fig. 7.2   Visual demonstra-
tion of differences in penetra-
tion of a 5 × 5 grid of traps by 
100 Weston movers displac-
ing for 1,000 steps of 1 unit 
while executing various c.s.d. 
values. The setup and release 
point was that of Fig. 7.1. 
Plume reach was only 5 
units so as to mimic that for 
codling moth and intertrap 
distance was 30 units

 

Fig. 7.1   One of various 
possible configurations of 
traps explored for potential to 
estimate random-walker c.s.d. 
via the resultant pattern in 
catch across an array of traps
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Finally, the standard curves of Fig. 7.4 having the appropriate plume reach would 
be used to translate decay constant into a measure of c.s.d. At least five replicate 
runs of such an experiment would be required to produce error bars as tight as those 
of Fig. 7.4. If sufficient numbers of test organisms are available, simultaneous re-

Fig. 7.3   (a) Numbering system for positions of traps whose capture data were analyzed to produce 
a dependent variable well-correlated with c.s.d. (b) Plot of capture results 1,000 steps after a single 
corner release of 100 Weston movers taking steps of 1.0 unit and operating with a c.s.d. of 10°. The 
negative exponent in the regression equation above ( decay constant) served as a suitable measure 
for generating a standard curve for back-calculating c.s.d. from experimental data
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leases bearing distinctive marks could be made at all four corners of the grid both 
to improve statistical power and to assess whether there was any directional effects 
during the trapping run.

We believe this approach has the potential to reveal important data on c.s.d. 
never previously harvested because of the difficulty in directly observing small for-
aging animals, some of which fly at night. An experiment currently underway with 
codling moth in Michigan apple orchards using the 5 × 5 array of traps on a 15 m 
spacing has revealed that the relationship between catch and distance of release is 
indeed a negative exponential. It also suggests that this insect forages with a c.s.d. 
of ca. 30–40°, which is somewhat above the theoretical optimum for a resource 
with a plume having an average reach of less than 10 m (Chap. 5). Perhaps being 
forced to fly around the many obstructions offered by the branches and foliage of 
apple trees elevates the realized c.s.d. over the theoretical value measured by our 
computer simulations under no obstructions.

Fig. 7.4   Standard curves for c.s.d. determinations when elapsed time for the trapping simulations 
was short (1,000 steps) and trap spacing in a 5 × 5 grid was 1.5 times the plume length. The decay 
constants came from the exponents of regression equations like that shown in Fig. 7.3. Error bars 
reveal S.E.M. values when n = 5 for each treatment combination. Additional simulations estab-
lished that the slopes of graphs for the respective plume reaches diminished slightly as run times 
increased and movers had appreciable time to double back upon the trapping grid. For this reason, 
such experiments should be brief
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Chapter 8
Trapping to Achieve Pest Control Directly
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8.1 � The Idea

As noted in Chap. 2, traps are sometimes explored as instruments to reduce pest 
populations to tolerable levels without additional control measures. In the field 
of entomology, this tactic goes by various names (Knipling 1979; El-Sayed et al. 
2006), e.g., mass trapping (the term we will use); trap out; and trap-and-remove. 
Such insect traps are usually baited with an attractant to improve their findability, 
but some like an electrically charged bug-zapper operate without bait. The core idea 
is to quickly remove the pest from the environment where it has appeared and begun 
causing damage by e.g., feeding, inoculating a host with a disease agent, or mating 
and producing damaging progeny. The lure-and-kill approach operates similarly 
(El-Sayed et al. 2006); however, the pest is enticed to carry away a lethal dose of 
poison without requiring capture in a trap per se. Nevertheless, the dynamics of 
such a system match those of mass trapping.

8.2 � Time-Dependency and Dynamics of Mass Trapping

Crop damage is influenced by the time a pest interacts with its environment (Miller 
and Cowles 1990); or:

� (8.1)

It follows that equivalent damage can be done by few pests active for a prolonged 
time or many pests active briefly. Thus, the speed with which pests are removed 
matters for pest control. Pesticides usually act very quickly and kill a high propor-
tion of all individuals in the system. The elapsed time the few survivors are active 
after treatment typically becomes inconsequential for conventional pesticides. Their 

Damage Pest Timeden∝ ×
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efficacy is then said to be pest-density-independent, which is a highly desirable trait 
for any control tactic. However, behavioral controls usually require time to take ef-
fect. Byers (1993) conducted pioneering research on the dynamics of mass trapping 
using computer simulations similar to the Weston simulations featured in this book. 
As first documented by Byers and redemonstrated in Fig. 8.1 for our Weston mov-
ers, the proportion of simulated movers removed by a trap deployed for a constant 
time in a closed arena representing a crop field from which they do not depart is 
independent of Mden; thus, the proportion of individuals removed by a trap is pest-
density-independent. However, the time required for a trap to lower the pest density 
to a level that would be nondamaging rises with Mden (Byers 1993; and Fig. 8.2). As 
seen in Fig. 8.3, the level of interaction of pest and crop, and thus damage shown by 
amount of coloration per panel, rises nearly linearly with pest abundance. It follows 
that control by mass trapping or other similar behavioral tactics requiring apprecia-
ble time to take effect becomes pest-density-dependent once elapsed time to remove 
the pests is considered in addition to the proportion of the population removed.

It has long been understood (e.g., Knipling 1979) that behavioral control tactics, 
such as mass trapping or mating disruption using sex attractant pheromones (Thack-
er 2002), are best-suited for suppressing the growth of pest populations once they 
are already reduced by a pest-density-independent means like a pesticide. More-
over, some authors (El-Sayed et al. 2006) suggest that mass trapping and mating 
disruption are well-suited for eradicating low-density pest populations because their 
efficacy increases as pest density approaches zero.

8.3 � Damage Suppression as Influenced by Trap Number 
and Spacing: Simulations

As a starting point for exploring how best to deploy traps for direct pest control, we 
used computer simulations to quantify what impact a single trap can have on dam-
age when deployed in a crop under high pest pressure. For this heuristic exercise, 
satisfactory control was arbitrarily taken as a reduction in cumulative track density 
to the level equal to or less than the track density seen in the Fig. 8.3 panel for 16 
movers. As shown in Fig. 8.4, where the panel for one trap should be compared to 
the panel for zero traps, a single trap under high pest density provided no control, 
as evidenced by only a few flecks of white around the trap and no noticeable dimi-
nution in the intensity of blue throughout the arena. The single trap removed only 
3 % of the movers from the overall population and the area around it was continu-
ously inundated by movers from all directions. Such a result is consistent with the 
experience of some homeowners who use Japanese beetle traps baited with sex 
pheromone and floral odors (Potter and Held 2002) in an attempt to protect their 
landscape plantings. Although these traps may capture hundreds or sometimes thou-
sands of beetles, it is difficult to show that they actually protect nearby plants. Some 
authors warn that use of the Japanese beetle trap may actually increase damage by 
attracting more insects than are caught. Clearly, deploying a single trap into a space 
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Fig. 8.1   Number (a) and proportion (b) of movers caught when varying numbers of randomly 
seeded Weston movers displaced for 5,000 steps of 1.0 and c.s.d. 15° in a 500 × 300 unit bounded 
arena. Movers were reflected back into the arena when encountering a wall. Trap plumes measured 
either 10 × 2 or 100 × 10 units
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where the trap plume will occupy only a small fraction of the area from which a 
mobile pest is being recruited is not a fruitful approach.

The same conclusion holds for deploying a pair of traps in close proximity 
(Fig. 8.4). However, now one sees the first hint that deploying multiple traps near 
one another may lead to synergism, i.e., the number of white flecks around two traps 
is slightly greater than twice the number around a single trap. But, control improved 
dramatically when traps were arranged as a grid (Fig. 8.4). A 3 × 3 grid of traps 
generated a small patch of control at its center that approached our target of tracks 
no more dense than for 16 movers in Fig. 8.3. Then that area of acceptable control 
expanded with the size of trapping grids maintaining the same spacing. But, control 
as defined by this example could never be complete, because some of the randomly 
seeded pests always originated within the trapping grid.

These simulation results suggest that two important and complementary effects 
are at play when traps are arrayed as a large and close grid. First, the interior of the 
grid is rapidly cleared of movers. Then, the traps on the perimeter shield the interior 
(also documented in Chap. 7) from recolonization so that the cleared interior is held. 
Single traps, a tiny grid of traps, or traps spaced more than two plume reaches apart 
(Fig. 8.5) fail to thoroughly clear any areas and fail to prohibit repopulation of the 
grid interior by immigrants. Each widely spaced trap functions as a stationary soli-
tary soldier. Each is unable to effectively clear any area of the enemy, and no soldier 
is close enough to effectively guard another’s back. The parallels between the mass 
trapping problem and the soldier-survival problem are obvious and suggest that the 

Fig. 8.2  Relationship between the number of steps (time) required to catch all but two movers in 
one trap with a 100 × 10 plume as influenced by number of randomly seeded movers under condi-
tions very similar to those of Fig. 8.1
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Fig. 8.3   Demonstration of the amount of interaction ( cumulative tracks shown in blue) simulated 
movers accumulated in a 1,000 × 600 unit plot of crop during 2,000 steps of 1.0 unit and c.s.d. 15° 
as influenced by number of randomly seeded movers

Fig. 8.4   Demonstration of 
the amount and location of 
damage protection ( clear 
zones) as influenced by the 
number and placement of 
traps. These computer simu-
lations used 300 randomly 
seeded Weston movers 
displacing for 5,000 steps 
of 1.0 and c.s.d. of 15° in an 
enclosed 1,000 × 600 unit 
arena. The black ellipses 
represent 50 × 5 unit trap 
plumes. Traps were spaced 
at 80 units. Intensity of blue 
equates to intensity of accu-
mulated mover tracks and can 
be interpreted as likelihood 
of damage
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rich history of military experience may inform the optimal deployment and use of 
traps for direct pest control. “Clear-and-hold” is a well-recognized counter-insur-
gency tactic (http://en.wikipedia.org/wiki/Clear_and_hold; Marston and Malkasian 
2008) heavily used in current and recent wars. It is the best tactic we have found to 
date for simulated mass trapping using stationary traps.

Byers (1993) demonstrated that the exact placement of traps for mass trapping 
may be of little consequence, so long as they are spread out and their plumes do 
not overlap. For example, randomly seeded traps produced mass-trapping results 
nearly as good as an evenly spaced trapping grid. Nevertheless, we suggest that a 
trapping grid is sensible and may be easier to deploy in row crops than some more 
irregular design. Our simulations indicate that the optimal trap spacing for control 
by a mass trapping grid will be ca. 1.5 times the elliptical plume reach of the given 
trap. Thus, it will be important that pest managers use the tools for determining 
plume reach as developed in Chaps. 4 and 5. In contrast to the report that c.s.d. has 
negligible impact on mass trapping outcomes (Byers 1993), we found that mass 
trapping efficacy does degrade somewhat when the c.s.d. of movers departs from 
ca. 20°, (Fig. 8.6) the zone where gain (Chap. 4) was maximal for the plume sizes 
encountered for typical insects. Fortunately, the selective pressures that maximize 
the foraging efficiency of pests for plumes from potential mates will likewise have 
optimized foraging efficiency for plumes from traps.

We close this section with a clear demonstration of the extent to which pest con-
trol by a behavioral tactic like mass trapping is pest density-dependent. In the simu-
lations of Fig. 8.7, we used the optimal spacing (1.5 × plume reach) for a trapping 
grid as arrived at from Fig. 8.5. Then we varied only pest density. By the standard 

Fig. 8.5   Influence of trap 
grid spacing on control by 
mass trapping. Numbers 
above panels indicate trap 
spacing in computer units. 
In these simulations, plumes 
( black ellipses) measured 
30 × 5 to make them visible. 
Other conditions were as for 
Fig. 8.4
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of cumulative tracks no denser than the panel for 16 movers in Fig. 8.3, control by 
mass trapping was possible for a population density at or below (but not above) 300 
movers/arena (Fig. 8.7). Efficacy of mass trapping or mating disruption is usually 
judged by the suppression of catch in one standard monitoring trap placed within 
the treated crop plot relative to one trap in an equivalent but untreated plot. It may 
startle some readers to see that the percent suppression of catch was virtually identi-
cal for all panels in Fig. 8.7; yet, control was certainly not identical. Incongruence 
between percent catch suppression and control has been the bane of mating disrup-
tion research since its inception 40 years ago and could be equally confusing when 
judging efficacy of mass trapping. To our knowledge, the cause of this troublesome 
mismatch has never been clearly identified. It occurs because the ratio of catch for 
one trap operating alone vs. one trap operating within the grid of traps is time-
independent and thus pest density-independent. However, damage is pest density-
dependent as shown above. A time-independent measure of efficacy (percent catch 
suppression) will not correlate well with a time-dependent (percent infestation) 
measure of efficacy across a wide range of pest densities. Expecting a good match 
between these efficacy measures is a misconception that needs to be laid to rest.

Figures 8.8 and 8.9 offer insight into how percent crop infestation varies with 
time of interaction with pests. This relationship is not linear. Percent infestation 
initially rises rapidly with elapsed time; but then the rate of increase slows and only 
asymptotically approaches 100 % infestation. These two factors are related in much 
the same way as are the number of movers in an arena and the time it takes for most 
of them to be removed by traps (Fig. 8.2). In both cases, the object being sought is 
in diminishing supply. The severity of the bow in the curves of Fig. 8.9 diminishes 
with pest density. Yet, plots of crop under behavioral controls that modestly reduce 
pest density relative to untreated control plots can, over long-running experiments, 
register similar high levels of damage as the damage curve for the former eventually 
catches up with that of the latter. Such outcomes have perplexed many investigators 
who found little difference in percent infestations while simultaneously recording 
pronounced differences in percent catch suppression. Such incongruence is most 
pronounced under high pest populations, as seen in Fig. 8.9.

Fig. 8.6   Control by a mass 
trapping grid as influenced by 
c.s.d. of movers. Conditions 
as per Fig. 8.4. Note: the 
density of tracks for c.s.d. 
zero is reduced because these 
ballistic movers accumulated 
at the field border not shown 
at this magnification
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Fig. 8.7   Control ( white zones) of an optimized mass trapping grid as influenced by the density of 
simulated pests in the crop. Conditions for these simulations match those of Fig. 8.4. Percent catch 
suppression is computed as (1 − (catch of a trap inside the 49 T/catch by a single trap operating in 
an untreated plot)) × 100

Fig. 8.8   Proportion of crop visited ( blue) vs. unvisited ( white) as influenced by elapsed time of 
the simulation run measured in number of steps taken. The number of movers randomly seeded 
was 500 and no traps were deployed; other conditions were identical to those of Fig. 8.4
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8.4 � Examples of Successful Pest Control by Mass 
Trapping

Such examples remain few. El-Sayed et al. (2006) aptly summarized the best cases 
for insects. They emerge where: (i) pest densities are low, (ii) reproductive capac-
ity of the pest is not extraordinarily high, (iii) the plants or animals to be protected 
are at least somewhat isolated from sites generating new immigrants, (iv) potent 
attractants exist for the pest species and their chemistry is well elucidated both 
qualitatively and quantitatively, (v) lures and traps are not terribly costly and are 
effective for months, (vi) traps experience high findability, efficiency, and reten-
tion (cannot saturate), (vii) pests are sufficiently mobile to rapidly find the plumes 
of nearby traps, but not so mobile that they rain down upon a crop from elevations 
where they would not encounter a perimeter of traps, and (viii) cheap labor is avail-
able for trap manufacture, deployment, and servicing. In fact, the cost/benefit ratio 
has everything to do with the feasibility of mass trapping. It is not surprising, then, 
that examples of effective and economical mass trapping (El-Sayed et  al. 2006) 
have been reported from locations where labor in inexpensive, i.e., pink bollworm, 
Pectinophora gossypiella, in Brazilian cotton: certain weevil pests of palm trees 
in the Middle East and in Central America: and the West Indian cane weevil. A 
recent study (Samson and Kirk 2013) on control of western flower thrips, Frankli-
niella occidentalis, concluded that use of pheromone-baited blue sticky traps will be 
economical for control of this pest in isolated locations producing cut flowers and 

Fig. 8.9   Simulation results showing the proportion of a crop plot infested vs. elapsed time mea-
sured as number of steps taken in the simulation. The measure of proportion of crop infested was 
taken as the proportion of traps (20 × 2 unit plumes) out of a 7 × 7 trapping grid ( widely spaced in a 
1,000 × 600 arena) that were visited when movers were not arrested by the traps



98 8  Trapping to Achieve Pest Control Directly

vegetables, where insecticide residues are highly undesirable. Mass trapping is also 
expected to find a viable niche in control of stored food pests (Phillips 1994) where 
pesticide use is restricted. Mass trapping will likely be a viable option for manage-
ment of some insect pests in organic agriculture.

Large sums of money are justified if mass trapping or lure-and-kill formula-
tions can eradicate a serious new invasive pest, as has been accomplished for the 
Mediterranean fruit fly, Ceratitis capitata, in California (Myers et al. 2000) using a 
lure-and-kill approach where malathion was widely sprayed with a sugar bait. Here, 
the up-front costs pale in light of the long-term savings.

Mass trapping is also a viable pest control option for some vertebrate pests. The 
following examples deal with pests whose foraging behaviors may not conform 
fully to the patterns described for biological random walkers in earlier chapters 
of this book. Nevertheless, it is informative to consider the similarities and dif-
ferences in mass trapping outcomes between such movers and random walkers. 
Trapping of mice invading houses, businesses, etc. seems to be the hallmark of suc-
cessful pest control by mass trapping, as judged by user satisfaction, profits reaped 
by trap suppliers, and longevity of this market. Dagg (2011) elegantly traced the 
history of the modern mouse trap while using it as an example for addressing prin-
ciples of cultural evolution pertaining to the controversy of intelligent design. As 
evidenced by pictographs, human use of mouse- and rat-traps predates the Bronze 
Age. Thereafter, interest in “the better mousetrap” never subsided. Between 1996 
and the inception of the US Patent Office in 1,838, 4,400 mousetrap patents were 
awarded (Jackson 2011). This number sets the all-time record for patents surround-
ing any single US technology. Although thousands of designs have competed for 
a share in an estimated 50 million unit annual international market, the designs 
retaining more than 60 % of the market are only slight variants of that shown in 
Fig. 8.10. This design was apparently converged upon simultaneously at the turn 
of the twentieth century by John Mast of Lancaster, PA, USA, and James Atkinson 
of Leeds, Yorkshire, England. Such traps were originally priced at just pennies per 
copy but have now inflated to about a dollar or substantially more if the trip pedal is 
made from plastic infused with a long-lasting attractive odorant. The senior author 
can personally attest that investment in traps like that of Fig. 8.10 is well worth the 
benefits of restored domestic tranquility each fall when cold weather drives mice 
indoors. The number of traps required for effective mass trapping in this particular 

Fig. 8.10   An example of 
the dominant design of traps 
sold across the globe for 
mass trapping of mice in 
homes and businesses. Key 
features are labeled. This trap 
based on the Mast patent is 
manufactured by Woodstream 
Corp. of Lititz, PA, USA
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Michigan farmhouse over ca. 4 weeks is 4–6 and the annual harvest is ca. 12 mice. 
Our threshold for control is zero mice or mouse droppings. And, each trap lasts for 
years. This is an example of unequivocally successful mass trapping.

Larger traps like that in Fig. 8.10 have played an important role for many years in 
mass trapping of rats around businesses like farms. And they were recently investi-
gated as agents for protecting Hawaiian crops of macadamia nuts from roof rat dam-
age (Tobin et al. 1993). Some 40 ha of nut trees received traps in a grid pattern (trap 
every 4th tree) at 40 traps/ha. Traps were baited with coconut and deployed on low 
horizontal branches where the rats were known to be most active. The layout and 
spacing of traps appeared to approach the clear and hold standards detailed above 
from computer simulations. More than 1,700 rats were captured in the 1,600 traps 
in 1 year of this study. Satisfyingly, rat damage to the crop was reduced from ca. 4 
to 1 %. But, it remains to be seen whether this method will be adopted when the pro-
gram costs approached $ 250/ha. Another concern was that the traps injured birds.

By contrast, trapping of bandicoot rats for control of deepwater rice in Bangla-
desh is reported to be highly effective and practical (Islam and Karim 1995). Here, 
live traps worked better than snap traps and each one was deployed on a floating 
platform among the deeply flooded rice stems. Rats swimming among the flooded 
rice plants tired and were attracted to the floating platforms holding the traps. Thus, 
the drawing power to each trap was much increased over random encounter as was 
likely for the macadamia nut mass trapping research.

Trapping of vertebrate pests such as raccoons, skunks, and ground moles re-
mains an important component of wildlife pest control in the home and garden set-
ting (Salmon et al. 2006). It is also an important source of income for pest control 
companies. Having one skunk in the back yard is no small problem when one’s dog 
is released from the back door to relieve himself and he bolts off into the night. 
Trapping of this sort is rarely referred to as mass trapping because relatively few 
traps are used per site. Instead the elapsed time that a pest is subjected to trapping 
is extended until it is no longer productive. Nevertheless, the goal is the same—re-
duce the pest problem to acceptable levels by traps alone (rather than e.g., poisons). 
In many cases, live traps are employed that do not harm the wildlife. But, as some 
of us can attest when a pest control company traps our lawns for ground moles, 
one reevaluates the threshold for acceptable pest density as the bill for this service 
mounts over the weeks or months when eradication clearly has not been attained. 
The standards for humane treatment of animals by homeowners and vertebrate pest 
control operators are appropriately rising through time (Fall and Jackson 1998).

Mass trapping using large cage traps contributes to successful management of 
the sea lamprey, Petromyzon marinus, an eel-like parasite of sport fish species 
throughout the Great Lakes (McLaughlin et al. 2007). Although not nearly as effec-
tive as lampricides directed against the worm-like immature sea lamprey develop-
ing as sedentary feeders in stream beds leading into the lakes, mass trapping helps 
reduce the density of spawner runs recolonizing streams each spring. The hope that 
synthetic sex pheromones (in this case released from the gills of males preparing 
nests) would greatly increase captures of female lamprey over unbaited traps as they 
do for male insects, unfortunately, has not been fulfilled (Johnson et al. 2013). To 
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date, baiting traps with pheromone increases lamprey capture by less than twofold. 
The current hypothesis is that the pheromone is increasing trap entry (raising trap 
efficiency) but not findability. Nevertheless, the benefit of modestly increased cap-
tures is tentatively considered worth the cost of the rather expensive pheromone. 
Mass trapping is an especially appealing approach in the lamprey system having a 
great advantage that the pests are forced to follow stream channels; thus traps can 
be deployed so that their targets must repeatedly pass them before reaching the 
spawning grounds. Only then can damage result by the production of offspring. 
However, this advantage is offset by the disadvantage that this species is an extreme 
r-strategist. Each female produces tens of thousands of eggs. Thus, the proportion of 
spawners that must be removed by mass trapping to reduce final larval populations 
in the limited zones of suitable larval habitat must be extremely high. So, this is yet 
another case where mass trapping is not a stand-alone pest management tactic. As 
in most other cases, trapping is considered a component of an overall IPM program 
for sea lamprey.

8.5 � New Approaches to Mass Trapping

An impediment to the practical development of mass trapping for insects has been 
that standard monitoring traps are frequently used for mass trapping research. Each 
of these traps is designed to collect dozens of insects without saturating, and there-
fore their trapping surface must be large. However, if mass trapping is conducted 
under low pest densities and dozens of traps will be used per ha, large trap size is 
wasteful because large traps will never saturate. They represent design overkill. This 
realization prompted the Michigan State University team of Reinke et al. (2012) to 
develop a small trap more appropriate to a mass trapping role for codling moth. 
This patented MicroTrap (Fig. 8.11) is an enclosed cube measuring only 4 cm on a 

Fig. 8.11   Michigan State 
University’s patented Micro-
Trap developed for mass 
trapping of small moth pests 
of fruit like codling moth 
and perhaps extendable to 
other insect pests. This trap 
measures only 4 cm on a side, 
while a standard monitoring 
trap (Fig. 1.3) is nearly 30 cm 
long
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side. A sex pheromone lure is contained inside the trap whose inner walls are coated 
with nonodorous glue that does not inhibit insect entry. Twelve-mm diam holes on 
cube faces permit airflow through the trap, ample release of pheromone, and quick 
entry of male moths into the trap interior where they are permanently ensnared. Mi-
croTraps caught similarly to the standard codling moth monitoring trap and, when 
mass-produced, will cost far less per copy than the standard monitoring trap.

In a test (Reinke et al. 2012) conducted using 0.2 ha plots of apple and a grid of 
traps spaced at 4 m, mass trapping with MicroTraps yielded 92 % catch suppression 
of codling moth males that was superior to the best mating disruption product on 
the market (71 %). Mass trapping of the obliquebanded leafroller, Choristoneura 
rosaceana, under similar conditions also suppressed catch in monitoring traps more 
strongly (85 %) than did mating disruption (58 %) (Reinke et al. 2012). Moreover, 
damage of this pest to young shoots was reduced to 1 % by mass trapping relative 
to 4 % measured in control plots. We therefore conclude that mass trapping is more 
efficacious than mating disruption when the mechanism of disruption is competitive 
(Miller et al. 2006a, 2010)—point sources act as false females attracting the males.

We suggest that the mass trapping tactic has substantially more to offer to pest 
control than has been realized to date because the fundamentals of the method (like 
reach of attractive plumes and required spacing based on plume reach) are only now 
being uncovered. With more effort on research and development, it is likely that the 
costs of small traps used for insects could drop substantially. If mass trapping is to 
be adopted in developed countries, the high labor costs associated with trap deploy-
ment will need to be solved by automating deployment. For example, the Tangler® 
(http://www.goodfruit.com/the-tangler/) bolas technique (patent pending by Ridge-
Quest) shows great promise as a method for securing small devices launched by 
pressurized gas into tree canopies. Commercial opportunities remain wide open 
to entrepreneurs who grasp the science behind effective trapping, are sufficiently 
creative to invent, engineer, and manufacture effective trap designs and deployment 
techniques, and who can develop effective marketing and servicing networks.
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9.1 � Need for Such Systems

Crop production in the global economy is highly competitive. Profit margins have 
become remarkably thin and are likely to remain so indefinitely. Market forces drive 
agriculture to adopt economies of scale and to cut costs wherever possible. Labor 
is one segment of the cost equation being squeezed to its minimum. Thus, it is not 
surprising that growers and pest management consultants question whether they can 
afford the time it takes them or their employees to deploy the recommended den-
sity of monitoring traps for pests and to visit all of them at recommended intervals 
to collect the data. This dissatisfaction combined with the availability of powerful 
new information technologies that are becoming ever cheaper makes it sensible 
and inevitable that trapping, reporting, and analysis of data will become automated.

9.2 � History of Insect Trap Automation

With the invention of the first light trap for insects in 1927 (http://wwwrci.rutgers.
edu/~insects/njtrap.htm), entomologists became interested in when during the diel 
cycle insects were responding. Such studies initially required investigators to tend 
their experiments continuously for 24 h to change collecting jars under traps at reg-
ular intervals to record when catch began, peaked, and ceased. Clever minds soon 
devised machinery for doing this sleep-depriving job. In 1934, Seamans and Gray 
developed a turntable that automatically switched the collecting vessels at regular 
intervals. Many publications on that theme followed.

When sex pheromones became available in the 1970s for baiting insect traps, the 
turnabout idea was again soon utilized for assessing the timing of responses. One 
such device (Comeau 1971) simply mounted a large pizza pan to the hour hand of a 
large wind-up mechanical clock so that it made one revolution every 12 h. A cutout 
equivalent to 1 h of travel over a sticky disk permitted moths to become ensnared 
after approaching a sex pheromone lure mounted immediately over the opening. 
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Such devices conveniently permitted investigators to graph activity level over time, 
including a full day with one clock switch.

In the mid-1980s, insect trap automation advanced beyond simple mechanical 
technology when Hendricks (1985) incorporated a portable infrared (IR) detector 
into an inverted cone trap baited with sex pheromones targeting the medium-sized 
moth pests of cotton in South Texas, tobacco budworm ( Heliothis virescens), and 
cabbage looper ( Trichoplusia ni). The traps were powered by an ordinary lantern 
battery and operated in remote open fields subject to ambient wind, rain, fog, and 
dust. The records of moth transit into the trap reservoir were translated into ink 
dots deposited on a time-stamped revolving paper disk. The results were excel-
lent; captures in the automated traps were 95 % correlated with those recorded from 
nonautomated traps. No serious problems were experienced with the electronics or 
mechanics of this trap.

Recognizing the great potential of automated traps and apparently permitting his 
inventions to remain in the public domain, Hendricks (1989) quickly proceeded to 
use a portable computer to receive the tone-coded radio frequency pulses emitted by 
the traps upon moth entry. Count data could then be provided in easily understood 
format to a farm manager. This system was 92 % accurate in counting moths and 
100 % accurate in reporting the detection of single moths as a first event each night. 
Again, the system proved highly robust under the full range of field conditions.

Other researchers (Schouest and Miller 1994), working with the cotton pest pink 
bollworm ( Pectinophora gossypiella), extended this effort by linking various com-
puters to receive trapping data from multiple sites and then transmit the cumulative 
data over phone lines to a central location where it could be analyzed and poten-
tially translated into control decisions appropriate to each field.

Tseng et al. (2006) used a high-voltage electrocution system to record visits of 
Taiwanese diamondback, Plutella xylostella, moths to traps baited with sex phero-
mone. But the notable advancement was the demonstration that the global system 
for mobile communication (GSM) and short message service (SMS) could success-
fully transmit the collected data over long distances to a central location where data 
could be processed for pest management decisions. Based on performance testing 
on over 915 data transmissions, the one-way SMS transmission time for a field 
monitoring platform to a host-control platform was reported to be 10–15 s, while 
the average transmission time of a field monitoring platform to host-control com-
mand was about 30 s, both tolerable time delays. The correctness of the data sent by 
the GSM-SMS system was judged at 100 %. The rate of data loss was about 1 % and 
that was entirely due to the service quality of the commercial telecommunication 
company used. Notably, this system simultaneously collected and transmitted en-
vironmental data along with the capture data from the monitoring traps, a develop-
ment that will appropriately facilitate integration of weather with capture data. Two 
years later, this research group demonstrated (Jiang et al. 2008) that a similar system 
worked well for collecting and transmitting trapping data for the oriental fruit fly, 
Bactrocera dorsalis. In this case, an optical sensor was used to count flies entering 
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the trap. Moreover, this trap employed a pneumatic “inhaler” that overcame a previ-
ous problem of multiple counts of the same arriving fly.

Reports of other kinds of automated traps, some also simultaneously collect-
ing environmental data, are appearing in the literature (Beerwinkle 2001; Tabuchi 
et al. 2006; Tobin et al. 2009). Such a trap has been developed by the United States 
Department of Agriculture (USDA) Animal and Plant Health Inspection Service for 
gypsy the moth, Lymantria dispar, a devastating forest pest toward which the US 
Forest Service has directed much research and management effort. This modified 
milk carton trap (Fig. 9.1) baited with (+) disparlure counts male gypsy moths via a 
piezoelectric counter interfaced with an event data logger giving each capture a time 
and date stamp. The trap also contains a HOBO TidbiT temperature data logger. 
However, this trap lacks any capacity to transmit data. Researchers must visit each 
trap and physically download the data from the respective recorders onto a portable 
computer for transport and analysis. Nevertheless, the accuracy of this automated 
gypsy moth trap shows great promise (Figs. 9.2 and 9.3).

Another promising technology for automatically recording insect appearance in 
traps is digital photography. Kondo et al. (1994) demonstrated that this technique al-
lowed accurate counts of arrivals into traps of the Asiatic rice stemborer, Chilo sup-
pressalis, and the Oriental leafworm moth, Spodoptera litura. Guarnieri et al. (2011) 
improved the method by incorporating a smartphone into a pheromone-baited trap 

Fig. 9.1   Design of the milk 
carton trap modified for auto-
mated recording of captures 
of male gypsy moths (Tobin 
et al. 2009). As they pass 
through the tube toward the 
source of the sex pheromone, 
moths displace the piezo-
electric counter for which the 
date–time stamp is recorded 
by an event data logger
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Fig. 9.2   Data from Tobin et al. (2009) demonstrating that the number of captures recorded by the 
automated gypsy moth trap is very well correlated with the actual catch recorded by visual inspec-
tion. The solid diagonal line indicates a 1:1 relationship

       

Fig. 9.3   Remarkably consistent pattern in diel responsiveness of male gypsy moths to sex 
pheromone as measured by the automated gypsy moth trap (Tobin et al. 2009)
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for codling moth, Cydia pomonella, and programmed to wirelessly transmit updated 
images to any location for processing (Fig. 9.4). The battery pack used permitted 
the system to operate continuously for 20 days. Image resolution was sufficient to 
guarantee that only codling moths were counted. Moreover, use of a highly species-
specific pheromone and the trap design make catches of nontarget organisms highly 
improbable.

9.3 � Recent Developments and Future Prospects

Capture and transmission of visual images from traps is becoming the favored meth-
od for automated data flow as judged by recent publications (López et al. 2012). 
Rapid advances are being made in reducing the power (and thus cost) required 
to run these systems and increasing the speed and reliability of data transmission. 
Smart traps using visual imaging are becoming commercially available. The model 
shown in Fig. 9.5a is sold by Trapview (http://www.trapview.com/en). It is manu-
factured by EFOS informacijske resitve d.o.o. of Slovenia, a company specializ-
ing in software and technologies advancing environmental and food safety. Spensa 
Technologies of West Lafayette, IN (USA) also offers a smart trap (Fig. 9.5b) along 
with a complete analysis system. The speed with which such automated trapping 
systems are adopted by pest managers and growers remains to be seen and will be 
highly influenced by pricing. We predict that smart traps will remove much of the 
labor costs associated with pest monitoring and a few inexpensive versions will 
inevitably sweep the market in developed countries. Evidence is mounting that the 
marketing strategy of companies promoting this technology is to bundle the traps 
and transmission systems with data storage (already includes cloud storage and re-
trieval) and analysis systems.

Fig. 9.4   Design of the 
codling moth trap incorporat-
ing a smartphone to snap and 
periodically transmit images 
of the sticky liner. Redrawn 
from Guarnieri et al. (2011)
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No peer-reviewed publications were found on smart trap technologies for ar-
thropods such as lobsters and crabs. However, they are soon to arrive. A web article 
(http://www.halfbakery.com/idea/smart_20shrimp_20crab_20pots) reports at-
tachment of an underwater camera to a crab or shrimp pot. A floating data cable 
delivered images to an radio frequency (RF) transmitter attached to a buoy that 
periodically transmitted the images to a base-station where the images were used 
to determine whether or not to visit the trap for collecting the harvest and/or rebait-
ing. Smart mouse traps are currently available. Some models even send the tender 
a text message or an email notifying them that the trap has caught and needs to be 
serviced.

To our knowledge, the possible benefits of mobile vs. stationary monitoring traps 
for pests have not yet been explored, probably because costs for achieving trap 
mobility are thought to be prohibitive. However, our preliminary explorations using 
computer simulations show that capture rate of a single trap moving in a circular 
orbit in a field of insectlike Weston movers rises approximately linearly with trap 
speed for any plume reach. Intersections of movers with plumes can rise substan-
tially when trap speed exceeds the movers’ net speed such that the plume sweeps 
over the movers in addition to having the movers fly into the passing plume. In es-
sence, the trap then becomes a mobile rather than sit-and-wait predator. Encounter 
rates of mobile predators with prey are well known to be substantially higher than 
those for stationary predators (see Gurarie and Ovaskainen 2013, and references 
therein). In today’s world where increasingly inexpensive and reliable unmanned 
aircraft are becoming available for civil uses (Nonami 2007), it seems appropriate 
that mobile monitoring traps receive their due attention, because they could offer 
decided advantages in pest detection and sampling efficiency.

Fig. 9.5   Smart traps purchasable from Trapview (a) and Spensa Technologies (b). Both companies 
offer analysis systems or services. (Images and permission to use theme here were provided by the 
respective companies)
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9.4 � Wrap-Up

Our hope is that the principles of trapping set forth in this book will become an 
integral part of modern trapping systems. Clearly, companies selling traps and pest 
managers will want to know the plume reaches and trapping radii of their traps so 
as to optimize deployment spacing. Conversion of catch numbers into absolute pest 
density will surely become a key part of any sophisticated analysis system. Smart 
traps will be a boon to collection, speed of analysis, and sharing of competitive trap-
ping data (Chap. 7) so as to simultaneously measure trapping area as well as catch. 
Such information, combined with other data streams on past and future weather 
conditions, crop loads, and projected prices attainable for the developing crop, will 
all become part of an overall decision system that will increasingly become au-
tomated and centralized. In the end, software and computer systems, rather than 
pencil-pushing humans, will be crunching the numbers and suggesting optimized 
actions and their timing. Considerable efficiency will be gained in this process. 
Hopefully, those gains will translate into a safer, less expensive, and sustainable 
food supply.

9.4 � Wrap-Up�
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