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Preface

Much of a software architect’s life is spent designing software systems to meet a set of
quality requirements. General software quality attributes include scalability, security,
performance or reliability. Quality attribute requirements are part of an application’s
non-functional requirements, which capture the many facets of how the functional re-
quirements of an application are achieved. Understanding, modeling and continually
evaluating quality attributes throughout a project lifecycle are all complex engineering
tasks which continue to challenge the software engineering scientific community. While
we search for improved approaches, methods, formalisms and tools that are usable in
practice and can scale to large systems, the complexity of the applications that the soft-
ware industry is challenged to build is ever increasing. Thus, as a research community,
there is little opportunity for us to rest on our laurels, as our innovations that address
new aspects of system complexity must be deployed and validated.

To this end the 5th International Conference on the Quality of Software Architec-
tures (QoSA) 2009 focused on architectures for adaptive software systems. Modern
software systems must often reconfigure their structure and behavior to respond to con-
tinuous changes in requirements and in their execution environment. In these settings,
quality models are helpful at an architectural level to guide systematic model-driven
software development strategies by evaluating the impact of competing architectural
choices. At run time, quality models can play an important role in enabling calibration
and validation of a system model to accurately reflect the properties of the executing
system. This leads to the idea that architectural models should continue to exist at run
time to facilitate the necessary dynamic changes that can support self-adaptation of the
implemented system. In so doing, the conference continued QoSA’s tradition of using
software architectures to develop and evolve high-quality software systems.

In line with a broad interest, QoSA 2009 received 33 submissions. From these sub-
missions, 13 were accepted as long papers after a careful peer-review process followed
by an online Program Committee discussion. This resulted in an acceptance rate of
39%. The selected technical papers are published in this volume. For the third time,
QoSA 2009 was held as part of the conference series Federated Events on Component-
Based Software Engineering and Software Architecture (COMPARCH). The feder-
ated events were QoSA 2009, the 12th International Symposium on Component-Based
Software Engineering (CBSE 2009). Together with COMPARCH’s Industrial Experi-
ence Report Track and the co-located Workshop on Component-Oriented Programming
(WCOP 2009), COMPARCH provided a broad spectrum of events related to com-
ponents and architectures. By integrating QoSA’s and CBSE’s technical programs in
COMPARCH 2009, both conferences elaborated their successfull collaboration thus
demonstrating the close relationship between software architectures and their constitut-
ing software components.

Among the many people who contributed to the success of QoSA 2008, we would
like to thank the members of the Program Committees for their valuable work during
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the review process, as well as David Garlan and Kevin Sullivan for their COMPARCH
keynotes. Additionally, we thank Alfred Hofmann from Springer for his support in re-
viewing and publishing the proceedings volume.

April 2009 Ian Gorton
Raffaela Mirandola

Christine Hofmeister
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A Model-Based Framework to Design and Debug
Safe Component-Based Autonomic Systems�

Guillaume Waignier, Anne-Françoise Le Meur, and Laurence Duchien

Université Lille 1 - LIFL CNRS UMR 8022 - INRIA
59650 Villeneuve d’Ascq, France

{Guillaume.Waignier,Anne-Francoise.Le Meur,
Laurence.Duchien}@inria.fr

Abstract. Building autonomic applications, which are systems that must adapt
to their execution context, requires architects to calibrate and validate the adap-
tation rules by executing their applications in a realistic execution context. Un-
fortunately, existing works do not allow architects to monitor and visualize the
impact of their rules, nor that they let them adjust these rules easily.

This paper presents a model-based framework that enables architects to design
and debug autonomic systems in an iterative and uniformed process. At design-
time, architects can specify, using models, the application’s structure and prop-
erties, as well as the desired adaptation rules. At debugging-time, the running
application and the models coexist such that the models control the application
dynamic adaptation, thanks to a control loop that reified runtime events. Each
triggered adaptation is first tested at the model level to check that no application
property is broken. Furthermore, architects can at any time modify the models in
order to adjust the adaptation rules or even parts of the application. All changes at
the model level, if checked correct, are directly propagated to the running appli-
cation. Our solution is generic regarding the underlying platforms and we provide
a performance evaluation of our framework implementation.

1 Introduction

Being able to build autonomic systems [1] has become important in numerous applica-
tion domains such as ubiquitous applications. These systems need to adapt to resource
availability in their often changing executing environments. Furthermore they must be
robust and provide a satisfactory level of quality of service.

One approach that has been recognized to facilitate the development of complex
systems is proposed by the component-based paradigm [2], which promotes building
an application by assembling software components. Component assemblies are spec-
ified at design-time but many component-based platforms offer also the capability of
modifying assemblies at runtime, making these platforms interesting candidates to run
adaptive applications. It is thus not surprising that some component-based approaches
have proposed extensions to support the development of autonomic systems [3,4]. In
these works, the Architecture Description Language (ADL), which commonly enables
architects to describe the structure of their application at design-time, has been extended

� This work was partially funded by the French ANR TL FAROS project.

R. Mirandola, I. Gorton, and C. Hofmeister (Eds.): QoSA 2009, LNCS 5581, pp. 1–17, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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to also support the description of high-level adaptation rules that specify how the appli-
cation should evolve with respect to various execution context changes.

If some solutions to build autonomic applications have been proposed, several chal-
lenges remain to be addressed [5]. One of them is related to the design of autonomic
systems and more precisely to the design of the adaptation rules of an autonomic sys-
tem. Indeed, in [5] the author argues that the design of autonomic systems should sup-
port an iterative development process in order to allow adaptation rules to be adjusted
accordingly to the realist execution context of the system. This challenge calls thus for
means to facilitate the debugging and tuning of autonomic systems.

This paper presents an approach to design and debug autonomic component-based
systems. Our solution is a framework that relies on a strong coupling between the spec-
ifications of an application, expressed with models, and the application running on a
platform. This coupling is concretized by a control loop that enables events at the plat-
form level to be reified at the model level as inputs of adaptation rules. The rules are
evaluated and applied on the models in order to first check if the modifications do not
break the overall application properties. If no problem is detected, the modifications are
automatically propagated to the running application. Architects can thus visualize the
evolution of their applications at the model level and easily adjust the adaptation rules at
any time. By iteratively performing this debugging process, architects finely tune their
autonomic systems to better react to their realist execution context.

We have built our approach by extending and generalizing CALICO, a Component
AssembLy Interaction Control framewOrk that we have previously developed [6]. One
particularity of our framework is that it allows the specification of an application in-
dependently of any underlying runtime platform and maps this specification towards a
given platform implementation. We have carefully designed CALICO so that generic
concepts are factorized and platform-specific treatments are clearly separated. Con-
sequently, CALICO’s target platforms, which include Fractal [7], OpenCCM [8] and
OpenCOM [9], all benefit from our extensions for autonomic systems. Furthermore the
support of new runtime platforms and new context change events is largely facilitated.

We describe in this paper all CALICO’s extensions related to autonomic systems and
evaluate the performances of our framework. The rest of the paper is organized as fol-
lows. In Section 2 compares the debugging process in approaches such as [3,4] with the
one of CALICO. Section 3 gives an overview of our control loop and iterative debug-
ging process. Section 4 presents the specification models related to automatic systems
and Section 5 describes our framework runtime support. Section 6 gives implementa-
tion details and evaluates the performances of our approach. Finally, Section 7 provides
some related work and Section 8 concludes.

2 Comparison of Debugging Processes

In this section we compare Plastik [3] and DynamicAcme [4] with CALICO when
designing and debugging autonomic systems. We illustrate the various debugging pro-
cesses on an adaptation scenario of a subset of the French Personal Health Record
system (PHR) [10], shown in Figure 1. The goal of this system is to provide health-care
professionals with all patient medical information required to perform a diagnosis. This
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Fig. 1. Subset of the PHR architecture

system is composed of eight components and four hosts. Medical information, such as
radiographies or echographies, is stored in the component MedicalServer running on
the host DatabasesHost. The component FrontalAccess on the host Frontal au-
thenticates the health-care professional and controls the access to confidential informa-
tion. A health-care professional can consult medical data using a component Client,
which may be running on various devices, such as a laptop or a PDA. The compo-
nent DataConverter contained in the component Client is an image preprocessor
that adapts medical images to the device capabilities. In this example, we consider one
adaptation rule, which specifies that if a device is using more than 80% of its CPU
resources, the component DataConverter must be moved on the host Frontal.

With Plastik [3] (and similarly with DynamicAcme [4]), the architect defines the
structure of the application and the adaptation rules by writing an Acme ADL de-
scription file. Once the system is designed and the structural specifications have been
checked to be correct, the architect must deploy the system on the OpenCOM compo-
nent platform to debug it. If the system starts to behave inappropriately, the architect
has to detect the problem, modify the Acme description file accordingly and re-deploy
the whole system. The architect needs to replay all the execution context changes that
have led to the previous malfunction, and iters this whole debugging process until the
design resulting system is satisfactory.

With CALICO, the architect can use a graphical interface to specify the structure of
the PHR system, the application properties, e.g., QoS constraints, as well as the adapta-
tion rules. All of these specifications are independent of any underlying platform. Then
the architect can choose the target runtime platform, such as Fractal [7], OpenCCM [8]
or OpenCOM [9]. CALICO statically analyzes all the system specifications to check
if they are coherent, and deploys automatically the system in its real execution envi-
ronment. During the debugging process, a change in the execution context is reified at
the design view level and its associated adaptation rule is executed. Modifications are
first applied on the specifications, in order to notify the architect of any potential error.
If no problem is detected, the modifications are performed on the still running appli-
cation. Furthermore, if the architect decides to adjust the PHR adaptation rule so that
the component is moved when the CPU usage reaches 65%, he/she can simply update
the specification in the design view, no stop of the system is required. The architect
can design and visually debug the PHR system from the design view in an iterative and
uniformed process until the resulting system is satisfactory.
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3 Our Proposition to Design and Debug Autonomic Systems

This section presents the architecture of CALICO and focuses on the newly added fea-
tures to support the debugging of autonomic systems, which includes a QoS and Adap-
tation metamodels and the design of an autonomic control loop.

3.1 CALICO Architecture

CALICO is composed of two levels: a model level and a platform level (cf. Figure 2).
The model level is independent of any component-based or service-oriented platform.
It contains the CALICO Architecture Description (AD) metamodels that enable an ar-
chitect to describe the structure and the properties, i.e., structural, behavioral, dataflow
and QoS properties, of an application, as well as contextual adaptation rules, indepen-
dently of any platform. This level controls also the autonomic adaptation by analyzing
each reconfiguration and allows an architect to debug autonomic systems. The platform
level holds the running system on a target platform, such as Fractal [7], OpenCCM [8]
or OpenCOM [9].

3.2 CALICO Autonomic Control Loop

The support for the debug of autonomic system relies on an enhanced autonomic com-
puting control loop. The notion of control loop was initially composed of four steps [1]:
The monitoring of the execution context, the analysis of the situation, the planning of
the reconfiguration and the execution of the reconfiguration. In CALICO, we have more
finely decomposed this loop into six steps as shown in Figure 2:

(1) The running system reifies runtime context changes, as events, to the model level
which controls the autonomic adaptation. This step corresponds to the monitoring step.

(2) At the model level, the Adaptation tool analyzes the runtime events and if needed,
triggers the execution of the corresponding adaptation rules. This step corresponds to
the analysis of the context.

(3) The adaptation, expressed in the triggered adaptation rules, is performed on the
CALICO AD model. This step corresponds to the planning of the adaptation.

(4) The Interaction Analysis tool statically analyzes the AD models to check if the
specified application properties are respected. The platform specific constraints are also
included in the analysis to guarantee that the architecture respects the platform spec-
ifications and can be thus deployed on this platform. Each detected inconsistency is
notified to the architect and the adaptation is not propagated to the running system. This
allows the architect to correct the adaptation rules and guarantee that an adaptation can
never break the system. This step corresponds to the debugging of the adaptation.

(5) This step aims to fill the gap between the evaluation of the specification and the
monitoring of the context. The Code Instrumentation tool analyzes the updated AD
models to identify if and where sensors must be added or removed from the underlying
platform. This step relies on both code generation and code instrumentation using an
aspect weaving approach [11] to prepare the code that needs to be deployed on the
system.
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Fig. 2. CALICO autonomic control loop

(6) The Application Loader applies automatically the changes on the running system.
To do so, it compares the difference between the new AD models and the models of the
running system to identify the elementary actions to perform (e.g., adding/removing
components or bindings) and calls the platform specific API to modify accordingly the
running system. This step corresponds to the execution of the reconfiguration.

Overall, CALICO allows architects to visualize the evolution of this application at
the model level, which is kept synchronized with the running system. Our autonomic
control loop is not closed since it enables architects to dynamically debug their auto-
nomic systems and adjust the adaptation rules if needed. Furthermore, they can directly
modify the AD models to update their design to cope with an unexpected evolution of
the runtime context.

4 CALICO Metamodels to Support Autonomic Systems

The model level contains the AD metamodels to describe the application structure
and the structural [12], behavioral [13], dataflow and QoS properties of an applica-
tion. The system structure metamodel (cf. Figure 3) offers metaclasses to represent the
structure of a component-based system or a service-oriented architecture. It is com-
posed of common concepts: the Entity, which can be a component or a service, the
CommunicationPoint, i.e., generally called a port, and the Connector. These con-
cepts result from a domain analysis that we have performed on several component and
service platforms [14]. The behavioral metamodel describes the control flow paths of
the system, where the control flow operators are the sequence, the fork and the merge
of the control flow. The dataflow metamodel enables the architect to specify constraints
on the values of the data exchanged by the application. The architect can also describe,
using the Adaptation metamodel, the modification rules to perform on the application
when a given context change occurs. All the metamodels are independent of any run-
time platform. Details of the structural, behavioral and dataflow metamodels, as well
as of the static interaction analysis can be found in our previous work [6,14]. However
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package structure

CommunicationPoint

-external : Boolean

-name : String

-provided : Boolean

CommunicationPointType

-name : String

CommunicationElement

-name : String

-input : Boolean

Class

-name : String

-isAbstract : Boolean

CompositeEntityPrimitiveEntity Argument

-name : String

-input : Boolean

Entity

-name : String

Connector

-contains

*

-containedBy

1

-providedRoles 1..*

-requiredRole 1..*

-externals

*
-entity1

-internal

*

1

-elts
*

-communicationPoint1

-type

1

-type

1

-subEntities

*

-superEntities

1..*

-elements*

-arguments*

-communicationElement 1

-associated

0..1

1

Fig. 3. System structure metamodel

these details are not necessary to understand the rest of the paper. We now focus on the
autonomic-related metamodels, which include the QoS and Adaptation metamodels.

4.1 QoS Metamodel

QoS specifications are used by the architect to constraint the non-functional proper-
ties of a system, such as reliability, performance or timing. To express the QoS spec-
ifications in a generic way, we have extended our previous QoS metamodel [14] and
identified the common concepts existing in several QoS specification languages such
as QML [15], WSLA [16] and WS-agreement [17]. The result of this analysis has led
to the definition of the QoS metamodel shown in Figure 4. In this metamodel, a QoS
specification is represented by the QoSSpecification metaclass. It is composed of
Assumption and Guarantee terms. The assumption term defines QoS properties that
a client entity requires and the guarantee term defines QoS properties that a service en-
tity provides. For example, the architect can specify that the component Client of the
PHR system must receive medical information in less than 5 seconds and that the com-
ponent MedicalServer guarantees to always send medical data in less than 1 second.
The syntax of a QoS expression is similar to a QML expression, i.e., it is a boolean
expression manipulating real, integer and string values and the comparison operators
are <, >,≤,≥, =, �=.

In order to be extensible and allow the support of new QoS properties, we introduce
the concept of QoSType. Each QoS type corresponds to a kind of QoS property, such as
the CPU load in percentage or the available memory in Mb, and each QoS specification
is associated with a QoS type. In CALICO, we have defined a set of QoS types and a
QoS expert can add the support of new kinds of QoS property by defining new QoS
types. A QoS type is similar to the concept of contract type in QML.

The use of the Assumption and Guarantee terms allows CALICO static analysis
tool to compute the QoS contract over the control flow, to check if all QoS assumption
terms are respected based on the guarantee terms [14]. Each QoS type is defined with
its set of composition operators describing how QoS specifications must be composed
accordingly to the control flow operators, i.e., the sequence, the fork and the merge
of the control flow (cf. Figure 4). For example, let T be a QoS type corresponding to
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QoSContractpackage

ControlFlowOperatorType
(root.contract.behaviouralContract.expression)

BehaviouralOperator
(root.contract.behaviouralContract.expression)

Activity
(root.contract.behaviouralContract.expression)

CompositeQoSSpecification

QoSCompositionOperator

PrimitiveQoSSpecification

QoSSpecification

-name : String

-level : int

QoSContract

QoSType

-name : String

Assumption

-expr : String

Guarantee

-expr : String

-type

1

-specifications

1..*-contract

0..1

-controlFlowOperator

1

-from
1

-contains

1

-assumes

*

-spec
1

-guarantees

*

-spec
1

-compositionOperators*

-QoSType1

-type1

-associated
1

-QoSSpecifications

*

-on1

-QoSContract*

Fig. 4. QoS specification metamodel

Integrationpackage

QoSType
(root.contract.QoSContract)

Rule
(root.dynamic.Adaptation)

Instrumentation

-className : String

Entity
(root.structure)

Platform

-name : String

System

-instrumentations

*

-platform

1

-root

1

-rules

*

-platform1

Fig. 5. Integration metamodel

the maximal response time of an entity and T1 (resp. T2) the maximal response time
of an entity E1 (resp. E2). Thus the QoS composition operator of T for the parallel
control flow operator is the maximum because the maximal response time of the parallel
execution of E1 and E2 is max(T1,T2).

4.2 Link between QoS Specification and QoS Sensors

In CALICO, the design phase and the debugging phase are strongly coupled. This cou-
pling relies on the association between each QoS specification expressed at the model
level and the corresponding QoS sensors that is needed to monitor the evolution of the
quality properties in the application context. In our approach, this association is de-
scribed with the Integration metamodel (cf. Figure 5). Each QoSType is linked with
an Instrumentation metaclass that represents the CALICO plugin that is in charge
of adding the needed sensor in the platform. Furthermore, to be independent of any
platform, each Instrumentation metaclass is also linked with the Platform meta-
class, which represents a given underlying platform. This allows CALICO to load the
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right sensor depending on the QoS types used in the specifications and the underlying
platform.

Furthermore, the Integration metamodel (cf. Figure 5) is also used to associate the
adaptive System designed by the architect with the target platform represented by the
metaclass Platform. A System is composed of the description the architecture with its
properties (cf. the root Entity) and the set of adaptation rules (cf. the metaclass Rule).

Moreover, the Integration model is extensible and allows a QoS expert to define new
sensors by describing how the system must be instrumented, accordingly to the QoS
specifications expressed by the architect and the underlying platform. He/she describes
which type of event the sensor reifies and on which platform it can be applied, by
instantiating the Integration metamodel. OCL constrains are defined to guarantee the
consistency of the Integration model. For example the following OCL constraint checks
that there always exists at least one instrumentation sensor for each QoS type expressed
in the Adaptation model and for the underlying platform chosen by the architect:

context System
inv : self.rules->forAll(r:Rule | r.event.oclIsTypeOf(QoSEvent) implies
r.event.oclAsType(QoSEvent).type.instrumentations->exists(
i:Instrumentation|i.platform=self.platform))

These OCL constraints are included in the set of constraints verified by the Static Anal-
ysis tool. Consequently, if no sensor is provided for the underlying platform, CALICO
notifies the architect during the static analysis, before the system deployment, that this
adaptation rule will not be taken into account during the debugging phase.

Overall the Integration metamodel is the key element of CALICO to enable architects
to build autonomic systems in an iterative design process. It always keeps the link be-
tween the design specifications and the needed sensors in the platform. Moreover this
metamodel is flexible to support new QoS types and their QoS sensors for the different
platforms.

4.3 Adaptation Metamodel

We have defined an Adaptation metamodel to enable an architect to design the adap-
tation rules of a system independently of any reconfigurable underlying platform (cf.
Figure 6). The expression of a Rule is based on the Event Condition Action (ECA)
paradigm [18]. A Rule is composed of three parts: an Event, a Condition and an
Action. The Event represents a change in the runtime context such as the modifi-
cation of the CPU load. The Condition is a boolean expression on the value of the
event, such as checking if the CPU load is greater than 80%. The Action describes the
action to perform when the condition holds, such as moving CPU resource consuming
components on another host (cf. Section 2).

Events. To be generic, we have performed a domain analysis to identify events that
are common to several component-based platforms and service-oriented platforms. We
have found three categories of events : dataflow events, structural events and QoS
events, as shown in Figure 6. Dataflow events correspond to the reification of the values
data exchanged in the application. There are two dataflow events: MessageEnter and
MessageExit, which correspond respectively to the reception and sending of a new
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Fig. 6. Adaptation metamodel

message at a component or service port. Structural events express a structural modi-
fication of the running system. There are four structural events. Add (resp. Remove)
corresponds to the addition (resp. removing) of a component in the system or to the
publication (resp. unpublication) of a service in a registry. Bind (resp. Unbind) corre-
sponds to the addition (resp. removing) of a connector between two components or to
the addition (resp. removing) of a partnerLink in a service-oriented architecture. QoS
events reflect a modification in the application context. Each QoS event is associated
with one QoS type.

Condition. The syntax of a condition is a boolean expression as in QML. The variables
can be integers, reals or strings and the comparison operators are the same than the ones
used in the QoS expressions, i.e., <, >,≤,≥, =, �=.

Actions. The action part of the rule defines the kind of action to perform, independently
of any platform. The scope of the action is limited to the model level in order to avoid
the direct modification of the system on the platform level. This approach guarantees
that no action can break the running system because the modification is propagated on
the platform only if no application property is violated at the model level.

In our approach, contrary to several existing works [4,3], the actions are not limited
to structural modifications of the running application. Indeed in CALICO, the action
part is extensible and allows the architect to define new action types when needed. In
the current implementation, we have three predefined types of action. To debug the ap-
plication, the architect can use the action type Display to print the triggered rules at the
model level. This is useful, if an error occurs, to identify the model element that could
lead to a runtime problem and thus to fix the design accordingly. The action type Trace
enables the architect to visualize at the model level all messages exchanged during the
execution of the system in order to facilitate the understanding of the application behav-
ior. To specify an autonomic adaptation of the running system, the architect can use the
action type Update to specify the changes that must be performed on the AD models.
This action type is a script, expressed in a script language, such as EMFScript [19], that
modifies the AD models by adding/removing components and connectors.
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Overall, the genericity of the adaptation metamodel allows an architect to express
adaptation rules independently of any platform. Furthermore the adaptation rules can
be reused on different platforms, since in CALICO the adaptation concerns are clearly
separated from the business concerns.

5 CALICO Runtime Support for Autonomic Systems

The execution of an autonomic system requires tedious preparation: runtime events
must be reified, then analyzed by an autonomic computing control loop and the adapta-
tion rules must be launched accordingly. Usually, the developer must provide the sup-
port for all of these tasks. To reify runtime events, he/she must integrate the appropriate
sensors since few component or service platforms provide natively QoS sensors. He/she
must also implement the autonomic control loop. In CALICO, all these tasks are auto-
matically handled by the CALICO runtime support. This support relies on three tools:
the Code Instrumentation tool, the Application Loader tool and the Adaptation tool.

5.1 Code Instrumentation Tool

The Code Instrumentation tool instruments the application code to enable the running
system to reify runtime events. We focus on the support related to QoS events. In CAL-
ICO, the use of QoS sensors is transparent to the architect. CALICO is able to au-
tomatically identify the kind of sensors required to reify the type of events used in
the Adaptation model. The Code Instrumentation tool analyzes each rule expressed in
the Adaptation model (cf. Figure 6) and identifies the types of event, associated with
QoSType, that must be captured. By using the Integration model (cf. Figure 5), the tool
finds the Instrumentation plugin that must be applied to insert the appropriate sen-
sor in the platform, accordingly to the type of the event and the underlying platform.
The instrumentation plugin takes as input the Event that must be reified. It has access
to all CALICO AD models, which allows it to compute the location where the sensor
must be inserted, accordingly to this event. This enables CALICO to insert sensors so
that only the required events are reified, avoiding the overcost of sending useless events.

5.2 Application Loader Tool

The goal of the Application Loader tool is to deploy on a target platform the application
corresponding to the architecture design at the model level. This tool keeps the models
of the running system in order to perform incremental deployment. Indeed, when an
architect modifies his/her design to fix detected runtime errors, the Application Loader
tool computes the difference between the model of the running system and the new
model designed by the architect. Thanks to this analysis, it identifies the changes that
must be performed on the running system, i.e., adding/removing components and con-
nectors independently of any underlying platform. Furthermore, this tools always keeps
a link between each model element designed by the architect and the corresponding
running element in the platform.
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5.3 Adaptation Tool

The Adaptation tool controls the autonomic adaptations. The instrumented running sys-
tem submits the runtime event to the Adaptation tool, so that this tool can perform the
adaptation independently of any platform. It implements a rule-based engine that ana-
lyzes all the rules expressed in the Adaptation model and triggers the adaptations ac-
cordingly to the events. For each triggered action type, the Adaptation tool loads at the
model-level the necessary support to execute the action. For example, for the action
type Update, it launches the EMFScript interpreter. Thanks to this tool, the architect
can modify the rules at any time and the changes will be transparently taken into ac-
count by the whole autonomic system.

6 CALICO Prototype

This section gives some details on the implementation of CALICO1. Furthermore, we
evaluate to reactivity of CALICO to debug autonomic systems.

6.1 Implementation Status

The current implementation of CALICO is developed in Java. All CALICO metamodels
are implemented with the Eclipse Modeling Framework (EMF). A graphical editor,
implemented with the Graphical Modeling Framework (GMF), enables the architect to
edit the model during the debugging of the running autonomic system.

CALICO has been carefully designed to allow new extensions in terms of support
for new platforms, new QoS sensors and new kinds of adaptation action. For exam-
ple, to add the support for a new platform, the platform expert has to write two Java
classes: one class to generate the code skeleton of the architecture and one class to de-
ploy the architecture. The second class is a wrapper for the platform-specific API used
to add/remove components and connectors. The complexity and sizeof of this wrapper
depends on the platform API to add/remove new components in the platform. For ex-
ample, the OpenCOM wrapper contains 300 lines of code and the OpenCCM driver
contains 440 lines of code. The semantics of these two wrappers are the same, only
the platform API used changes. The current implementation of CALICO fully supports
three component-based platform: Fractal, OpenCCM and OpenCOM and we are cur-
rently working on the Service Component Architecture (SCA) [20].

To reify structural events, we plan to define aspects to instrument the platform code
so that the platform submits a structural event each time the API for adding/removing
components/connectors is called. To reify the QoS events, an existing extensible sensor
framework, called WildCAT [21], has been integrated. But other frameworks can be
integrated thanks to the Integration metamodel. We plan to integrate sensor frameworks
such as Lewys [22] and COSMOS [23]. The reification of the dataflow events is also
implemented [6].

CALICO is ready to support distributed component platforms since communications
between the platform and the model use the Remote Method Invocation (RMI). Nev-
ertheless, further supports will be needed, for example to propose solutions to handle
network failures or disconnections.

1 CALICO is freely available at http://calico.gforge.inria.fr
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6.2 Evaluation

We have evaluated the performances of CALICO to deploy a whole system, add new
components, analyze the structural and behavioral application properties, as well as to
reify runtime events. The benchmarks have been executed on a laptop with an Intel R©-
CoreTM2 Duo CPU processor at 1.33GHz and Java version 1.6.0 11.

The experimentation has been performed on an application deployed on the Fractal
component platform. The structure of this application is an hierarchical tree architec-
ture, where the top level is a composite component A containing a primitive component
connected with two composite components. Recursively, the structure of each compos-
ite component is similar to the structure of A.

Deployment. First, we have compared the time taken by the native Fractal ADL tool
and by CALICO to deploy the application on the Fractal platform (cf. Figure 7). For
Fractal ADL, the deployment includes the parsing of the Fractal ADL files and the
instantiation of the Fractal components in the platform. For CALICO, it includes the
parsing of the EMF description file and the instantiation of the Fractal components in
the platform. The benchmark shows that CALICO is as efficient as the native Fractal
ADL deployment tool. For an application with 3000 components, CALICO takes 14s
whereas Fractal ADL takes 23s.

Figure 8 represents the time it takes to add one component in the root composite
component based on the number of existing components in the running system. Up to
3000 components, the complexity is linear and the cost is reasonable for a debug mode:
CALICO takes 6s to compare the two models, to deploy and bind the new component.

Memory. Figure 9 represents the memory consumption of both CALICO and the run-
ning system based on the number of components. The reduction of the memory used
is caused by the launch of the Java garbage collector. The increase of the memory con-
sumption is linear. For 3000 components, the memory consumption is of 47 Mb, which
includes CALICO and the running system.

Static analysis. We have also measured the cost of the static analysis that checks if
the application properties expressed by the architect are respected. Figure 10 represents
the time taken to execute the structural and behavioral analyses based on the number
of components. The cost of the structural analysis is negligible, it takes 2.5s to check
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1500 components. However, the behavioral analysis takes 10s for 1500 components up
to several minutes for 10000 components. Nevertheless, this is not surprising since it
is well-known that behavioral analyses may be expensive, intrinsically to the complex-
ity of the algorithms. Moreover, the CALICO analysis tool is flexible and allows the
architect to select the kinds of static analysis to perform.

Event reification. Finally, to evaluate the cost of the reification of events from the
platform-level to the model-level, we have built a pipe and filter system composed of
one client component, one server component that performs an addition of two integers
and 500 filter components between the client and the server. We have measured the im-
pact of the reification of the messages that enter and go out from each filter component.
CALICO provides the architect with two modes to generate sensors: an external mode
and an inline mode. In the external mode, the sensors submit an event to the model level
and the condition is evaluated at the model level. In the inline mode, the condition is
generated in the sensor code so that the sensor submits an event only if an adaptation
is needed. In this case we have implemented a sensor as a component. Consequently,
reifying a message entering or leaving a filter component has required sensor compo-
nents to be added in front and behind the filter component. Figure 11 shows the time
taken by the method call based on the number of the sensors added in the system, for
both the external and inline modes. In this scenario, the worst case is reached when
600 sensors have been added in the system, the Java stack being unable to handle call
propagation through more than 500 filters and 600 sensor components.
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The impact of the inline mode is minor: the time taken by the method call is of 4ms
in the worst case with 600 sensors, and of 0.75ms without any sensor. Nevertheless,
in this mode, each time the architect adjusts the condition expression, CALICO must
regenerate the sensor code, recompile it and redeployed it on the platform.

With the external mode, the running system is slower due to the RMI communication
between the platform level and the model level. For example in the worst case, it takes
304ms (cf. Figure 11). Nevertheless, the architecture is greatly and quickly reconfig-
urable since a change of the condition expression at the model level is directly effective
at the platform level. Moreover, in practical experience, the maximal number of sensors
in a dataflow path is more around 10 than 600, which takes 6ms with the external mode
and makes thus the approach still usable.

The cost of the reification of the other QoS properties is directly dependent on the
efficiency of the reused existing QoS sensor frameworks [22]. CALICO introduces
an overcost due to the RMI communication between the sensors and the model-level,
which is nevertheless necessary in order to handle distributed systems.

Discussion. We have chosen to perform our benchmarks on test scenarios that push
our implementation of CALICO to its limits. The measures show that the performances
of CALICO make it usable for designing and debugging of autonomic systems up to
10000 components. Note that however that not all component platforms are able to
execute very large systems. For example, the Apache Tuscany Java version 1.3.2, the
reference implementation of SCA, can handle up to 6000 components. Thus it is more
likely that the number of components of an application will often be a lot less than
10000 components.

For very large systems, i.e., after 15000 components, the time taken by CALICO to
handle autonomic systems becomes exponential. To identify the source of the problem,
we have performed some experimentations in which we vary the amount of memory
of the Java Virtual Machine (JVM). We have noticed that the time to deploy a system
decreases when the amount of the JVM memory increases. For example, by increasing
the JVM memory, we gain 30s to deploy 12000 components. We believe that when the
available memory becomes very low, EMF puts in cache the model elements and thus
the time to process the elements increases greatly.

Overall, CALICO lets the architect choose between a rapid running system that is
slowly reconfigurable and a slower running system which is quickly reconfigurable.
This choice is however not so strict, the architect can choose more precisely which
parts of the architecture are highly reconfigurable and which parts are more static, de-
pending on the adaptation rules that need to be adjusted. At the end of debugging and
development activity, the framework CALICO is entirely removed and the adaptive ap-
plication is executed with a typical autonomic middleware. We plan to implement a
migration tool to generate automatically the various configuration files required by the
target autonomic middleware.

7 Related Work

To the best of our knowledge, few works address the challenge related to the design
and debug of autonomic systems. The work by King et al. [24] is the approach the
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closest to our work. They have enhanced the autonomic control loop to include a testing
step. During this step, their framework triggers runtime tests, such as Junit tests, and
the adaptation is propagated to the running system if the tests succeed. Nevertheless,
their framework can only be used on design object-oriented systems. Moreover, their
framework does not enable the architect to fix the problem when tests failed. Thus, there
is still a gap that remains between the design and the runtime debugging phases.

If few works have addressed the design and debug of autonomic systems, there are
however many works that have focused on the monitoring and planning steps of the
autonomic control loop.

With respect to monitoring, some works have proposed solutions to capture multidi-
mensional QoS properties, such as COSMOS [23], and thus go further than the current
approach offered by CALICO. The part of CALICO that captures and reifies runtime in-
formation is however designed so that new sensor frameworks can be easily integrated.
To do so, the multidimensional QoS adaptation metamodel of the existing sensor frame-
work must be included in the CALICO AD metamodels and the appropriate plugins of
the Code Instrumentation tool must be implemented to deploy the sensors accordingly
to the model.

With respect to planning, several works have defined complex adaptation paradigms,
such as the mathematical control theory paradigm used in [25,26]. For example, the
work of Li et al. [25] proposes a dynamically reconfigurable middleware to adapt mul-
timedia systems accordingly to QoS fluctuation in the surrounding environment. The
planning step is based on mathematical models: a linear model and a fuzzy model. Nev-
ertheless in this approach, the architect has to manually express the adaptation actions
to perform with respect to QoS variations, which is difficult and error prone. More-
over an error in the adaptation actions could lead to a system failure. The CALICO
approach has specifically been developed to address this situation. Indeed we have de-
signed CALICO to be extensible and thus new adaptation engines can be integrated and
directly benefit from the whole design and debugging support that CALICO offers.

Several approaches exist to express QoS specifications, such as QML [15] and
WSLA [16]. QML [15] is a generic QoS specification language and provides no de-
tails on how the specification must be implemented. Thus, the developer has to rewrite
the specification with a programming language and develop the QoS sensors. In CAL-
ICO, the platform is automatically instrumented to enable the QoS specifications to be
analyzed.

WSLA is a standard QoS specification for Web services [16]. These QoS speci-
fications are written in XML but the general concepts to describe QoS constraints
are similar to QML. Moreover, WSLA proposes that QoS specifications be handled
and evaluated at runtime. The WSLA specification explains how QoS sensors must be
added, how QoS events must be monitored and how QoS specifications must be eval-
uated. For example, QoS specifications must be evaluated by a Web service. When
needed, this Web service notifies the adaptation Web service, which is in charged of
performing the runtime adaptation. In CALICO, we have the same separation between
the sensors, the tool to evaluate the expression and the tool to adapt the architecture. But
our framework can be used with different component-based platforms. Finally, there is
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no verification on the adaptation in WSLA, whereas in CALICO, only safe adaptations
are applied.

8 Conclusion

We have presented a model-based framework to design and debug autonomic systems
using an uniform and iterative process. It provides metamodels to allow architects to
specify their system, the application properties and the adaptation rules. At debugging
time, the models are kept and architects can adjust at any time the models in order to
calibrate the adaptation rules or even update the application. Dynamic adaptations are
controlled by an autonomic control loop driven by the models.

Furthermore, our framework is generic and highly extensible. All metamodels for
specifying the structure, the application properties and the adaptation rules are inde-
pendent of any underlying platform. Moreover, CALICO allows the supports of new
underlying platforms and new QoS sensors. The current implementation supports three
different component-based platforms. Finally, our evaluations have shown that the per-
formance of our approach makes it usable for the debug of autonomic applications.

Future work includes several extensions. First, we plan to support more platforms,
such as SCA and Web service platforms, more analysis tools and more QoS sensor
frameworks. Then, we would like to add the support of high-level adaptation rules,
such as moving or replacing a component. These rules will be translated into elementary
modification actions, i.e., adding/removing components and connectors.
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7. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open component model
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Abstract. The quality of a software architecture for component1-based distri-
buted systems is defined not just by its source code but also by other systemic
artifacts, such as the assembly, deployment, and configuration of the application
components and their component middleware. In the context of distributed, real-
time, and embedded (DRE) component-based systems, bin packing algorithms
and schedulability analysis have been used to make deployment and configura-
tion decisions. However, these algorithms make only coarse-grained node assign-
ments but do not indicate how components are allocated to different middleware
containers on the node, which are known to impact runtime system performance
and resource consumption. This paper presents a model transformation-based al-
gorithm that combines user-specified quality of service (QoS) requirements with
the node assignments to provide a finer level of granularity and precision in the
deployment and configuration decisions. A beneficial side effect of our work lies
in how these decisions can be leveraged by additional backend performance opti-
mization techniques. We evaluate our approach and compare it against the exist-
ing state-of-the-art in the context of a representative DRE system.

Keywords: Model-driven engineering, Graph/model transformations,
component-based systems, deployment and configuration.

1 Introduction

Component-based software engineering (CBSE) has received much attention over the
past few years to develop distributed systems including distributed, real-time, and em-
bedded (DRE) systems, such as emergency response systems, aircraft navigation and
command supervisory systems, and total shipboard computing systems. CBSE provides
a simplified programming model and various mechanisms to separate functional and
non-functional concerns of the system being designed, which lends it to rapid prototyp-
ing, (re-) configuration, and easier maintenance of DRE systems.

DRE systems have stringent runtime quality of service (QoS) requirements includ-
ing predictable end-to-end latencies, reliability and security, among others. Naturally,
the software architecture of the DRE system plays an important role in ensuring that
the runtime QoS needs of DRE systems are met. In component-based DRE systems,
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1 Our use of the term component is specific to CORBA Component Model and refers to the

basic building block used to encapsulate an element of cohesive functionality.
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the software architecture is defined not just by the source code of the application func-
tionality but also by a wide range of systemic issues including the assembly of appli-
cation components, their deployment on the target nodes of the system and allocation
of resources such as the CPU, and the component middleware that hosts the application
components.

In component middleware, such as the CORBA Component Model (CCM) and
Enterprise Java Beans (EJB), a container is a central concept that hosts application
components. Containers hosting DRE system components provide a high degree of
configurability by allowing (1) the choice of the number of thread resources to be con-
figured for each component, their type (i.e., static or dynamic), and their attributes, such
as stacksize, etc., (2) control over asynchronous event communication, and event filter-
ing and delivery options, and (3) control over client request invocation priorities on
the server component. The configuration space – identified by all the mechanisms for
specifying system QoS and their appropriate values – becomes highly complex. Thus,
making the right configuration decisions is one key factor that determines the quality of
the DRE system software architecture.

Prior research in improving the quality of DRE systems software architectures has
focused on: (1) analysis-driven decomposition [1] of DRE system functionality into
reusable application components that can be assembled and deployed; (2) component-
to-node assignment [2] and resource allocations [3], and (3) schedulability and timing
analysis [4,5] to determine whether specified priority assignments are feasible for an ap-
plication or not, and in turn helping in partitioning the system resources and configuring
the middleware.

Despite these advances, key issues still remain unresolved in the deployment and
configuration problem space of DRE system software architectures. For example, al-
though bin packing algorithms [2] make effective decisions on component deployment,
and schedulability analysis determines whether priorities of components can be hon-
ored, both these decisions are at best coarse-grained since they determine only the nodes
on which the components must be deployed but do not indicate how they are deployed
within the containers of the component middleware. This lack of finer-grained deci-
sions often leads to suboptimal runtime QoS since these decisions are now left to ap-
plication developers who are domain experts but often lack detail understanding of the
middleware.

To address these limitations, this paper presents a heuristics-based algorithm imple-
mented within a model-transformation [6,7] framework that combines models of user-
specified QoS requirements, node assignment decisions, and priority values. It then
transforms the combined models into optimal middleware configurations thereby en-
hancing the quality of the DRE system software architecture. Our research prototype
has been implemented using the GReAT [8] model transformation framework for the
Lightweight CCM (LwCCM) [9] middleware.

Two significant benefits accrue from our approach. First, by realizing the heuristic-
based algorithm as an automated model transformation process, it can be seamlessly
reapplied and reused during the iterative DRE system development process. Second,
the configurations generated by our algorithm can be leveraged by additional backend
optimization tools and techniques, such as the Physical Assembly Mapper (PAM) [10]



20 A. Kavimandan and A. Gokhale

which reduces time and space overheads by merging collocated components at system
deployment-time.

This paper is organized as follows: Section 2 discusses the challenges developers
face in achieving optimal QoS configuration2 for DRE systems; Section 3 presents the
overall approach taken, the enabling technologies used in our technique, and the model
transformation algorithm we have developed; Section 4 empirically evaluates our ap-
proach in the context of a representative case study; Section 5 discusses the related work
in the area; Section 6 gives concluding remarks.

2 Impediments to the Quality of DRE System Software
Architectures

We now present the deployment and configuration-imposed impediments to the quality
of DRE systems software architectures. We focus on issues that are both innate to the
underlying middleware platforms as well as those that are accidental.

2.1 Overview of a Real-Time Component Middleware

To better articulate the challenges we address in this paper, we first present an overview
of a representative component middleware, which forms an integral part of a DRE sys-
tem software architecture. Note, however, that our solution approach is general and not
specific to the outlined middleware.

Figure 1 illustrates the Lightweight CORBA Component Middleware (LwCCM) [9]
architecture. DRE system developers can realize large-scale DRE systems by assem-
bling and deploying LwCCM components. The applications within these DRE systems
can use publish/subscribe communication semantics (by using the component event
source and sink ports) or request/response communication semantics (by using the facet
and receptacle ports).

In the context of component middleware platforms, such as LwCCM, a container
is an execution environment provided for hosting the components such that they can
access the capabilities of the hardware, networking and software (OS and middleware)
resources. In particular, containers act as a higher-level of abstraction for hosting the
components in which all the developer-specified QoS policies can be properly con-
figured. Components with similar QoS configuration specifications are hosted within
the same container so that all components in that container obtain the same QoS ca-
pabilities. Note that the bin packing algorithms described earlier cannot make these
fine-grained decisions.

LwCCM – and in particular its container – leverages Real-time CORBA (RTCO-
RBA) [11] to support the real-time QoS properties. RTCORBA in turn extends tradi-
tional CORBA artifacts, such as (a) the object request broker (ORB), which mediates
the request handling between clients and servers, (b) the portable object adapter (POA),
which manages the lifecycle of CORBA objects, (c) stubs and skeletons, which are

2 QoS configuration and QoS policy are used interchangeably throughout the remainder of the
paper.
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Fig. 1. Lightweight CORBA Component Model Architecture

generated by an interface definition language (IDL) compiler that hide the distribution
aspects from the communicating entities, with real-time policies and interfaces.

RTCORBA (and hence LwCCM) defines standard interfaces and QoS policies that
allow applications to configure and control (1) processor resources via thread pools,
priority mechanisms, intra-process mutexes, and a global scheduling service, (2) com-
munication resources via protocol properties and explicit bindings, and (3) memory
resources via buffering requests in queues and bounding the size of thread pools. For
example, the priority at which requests must be handled can be propagated from the
client to the server (the CLIENT_PROPAGATEDmodel) or declared by the server (the
SERVER_DECLARED model).

2.2 Inherent and Accidental Complexities in Deployment and Configuration

In the CBSE paradigm, application developers must determine how to deploy com-
ponents within the containers, and grapple with the multiple different configuration
options provided by the containers. In this context we outline two critical challenges
impeding the quality of DRE system software architectures.

Challenge 1: Inherent Challenges in Deployment and Configuration. The differ-
ent analyses techniques used in the development of DRE systems (e.g. schedulabil-
ity and timing analysis) and deployment and resource allocation decisions (e.g., where
each component resides in the available computing node farm) dictate what QoS con-
figurations are chosen for individual components of the application. For example, as
shown earlier, LwCCM provides configuration mechanisms to assign priorities to ev-
ery component, defines a fixed/variable priority request invocation and handling model
(PriorityModelPolicy), allows defining the number of thread resources, their
type (i.e., static or dynamic), and concurrency options (ThreadPool).
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For a component-based application, the mapping of the above analyses onto these
available policies results in a number of unique QoS configurations, and naturally, as
many containers. Unfortunately, the principles of separation of concerns in the design
of containers in component middleware architectures force service request invocations
between components hosted on different containers to go through the typical request
demultiplexing layers and marshaling/demarshaling and mechanisms even though they
may be hosted in the same address space of the application server. Therefore, such
invocations are considerably slower than the invocations between components that share
the same container [12].

Thus, in effect, components placed on different containers (which are in turn created
from unique QoS configurations) are unable to exploit the collocation optimizations
performed by the middleware.3 As such, the sub-optimal QoS configuration of the ap-
plication leads to increased average end-to-end latencies. Since DRE systems are made
up of hundreds of components, as the number of components in the system that are
sub-optimally configured increases, the adverse impact on end-to-end latencies can be
significant.

Challenge 2: Accidental Complexities in Deployment and Configuration. It may be
argued that the developers can keep track of the QoS configurations that are produced,
and depending on DRE system QoS needs, make decisions on how to minimize the
containers. Such a manual approach, however, introduces several non-trivial challenges
for the application developers:

• Large-scale DRE systems typically consist of hundreds of components spanning
multiple assemblies of components. Manually keeping track of all the configura-
tions (and potentially combining them to minimize the number of containers) in
such large-scale systems is very difficult and in some cases infeasible.
• Development of DRE systems is often an iterative process where new requirements

are added. Thus, the system configuration needs to evolve accordingly to cater to
new requirements, and the optimizations listed above need to be performed at the
end of each reconfiguration cycle.
• The configuration optimization activity forces the developers to have a detailed

knowledge of the middleware platform. Further, the activity itself is not central to
the development of application logic and may in fact be counter-productive to the
promise of CBSE.

Addressing both these challenges calls for automated tools and techniques to perform
the deployment and configuration optimizations so that the quality of the resulting DRE
system software architecture is enhanced.

3 Enhancing the Quality of DRE System Software Architectures

We now present our model transformation-based approach to address the impediments
to the quality of software architectures of component-based DRE systems stemming

3 Many middleware optimize the communication path for entities that reside in the same address
space.
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from suboptimal deployment and configuration decisions. We use a simple representa-
tive example to discuss our approach.

3.1 Representative Case Study

The Basic Single Processor (BasicSP) scenario shown in Figure 2 is a reusable compo-
nent assembly available in the Boeing Bold Stroke [13] component avionics computing
product line. BasicSP uses a publish/subscribe service for event-based communication
among its components, and has been developed using a component middleware plat-
form, such as LwCCM.

TIMER
20H

z

GPS NAV
DISPAIRFRAME

TIMER

20Hz

GPS NAV
DISPAIRFRAME

timeout data_avail

get_data ()

data_avail

get_data ()

Fig. 2. Basic Single Processor Component Assembly

A GPS device sends out periodic position updates to a GUI display that presents
these updates to a pilot. The desired data request and the display frequencies are at 20
Hz. The scenario shown in Figure 2 begins with the GPS component being invoked by
the Timer component. On receiving a pulse event from the Timer, the GPS component
generates its data and issues a data available event. The Airframe component retrieves
the data from the GPS component, updates its state, and issues a data available event.
Finally, the NavDisplay component retrieves the data from the Airframe and updates its
state and displays it to the pilot.

In its normal mode of operation, the Timer component generates pulse events at a
fixed priority level, although its real-time configuration can be easily changed such that
it can potentially support multiple priority levels.

It is necessary to carefully examine the end-to-end application critical path and con-
figure the system components correctly such that the display refresh rate of 20 Hz may
be satisfied. In particular, the latency between Timer and NavDisplay components needs
to be minimized to achieve the desired end goal. To this end, several characteristics of
the BasicSP components are important and must be taken into account in determining
the most appropriate QoS configuration space.

For example, the NavDisplay component receives update events only from the Air-
frame component and does not send messages back to the sender, i.e., it just plays the
role of a client. The Airframe component on the other hand communicates with both the
GPS and NavDisplay components thereby playing the role of a client as well as a server.
Various QoS options provided by the target middleware platform (in case of BasicSP,
it is LwCCM) must ensure that these application-level QoS requirements are satisfied.
For achieving the goal of reducing the latency between Timer and NavDisplay compo-
nents, it is crucial to carefully analyze the QoS options chosen for each component in
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BasicSP, and exploit opportunities to either reuse or combine them such that this goal
can be met.

The system is deployed on two physical nodes. Application developers of our case
study choose a modeling environment to model the BasicSP component assembly and
annotate its real-time requirements as shown in Figure 3. We have used the Generic
Modeling Environment (GME) [14] for modeling the DRE system. GME provides a
graphical user interface that can be used to define both modeling language semantics
and system models that conform to the languages defined in it. Model interpreters can
be developed using the generative capabilities in GME that parse and can be used to
generate deployment, and configuration artifacts for the modeled application.

The developers use the model interpreter plugins shown in the figure to automatically
synthesize deployment and configuration metadata that describes how the components
are assigned to nodes of the operating environment, and what configuration options of
the component middleware are to be used for each component. These model interpreters
encapsulate the bin packing and schedulability analyses algorithms alluded to earlier.

The generated metadata is usually in the form of XML, which is then parsed by
the underlying middleware’s deployment and configuration tool to deploy and config-
ure the DRE system before operationalizing it. As mentioned earlier, due to a lack of
finer-grained decisions, the generated XML metadata will often result in DRE system
software architectures that perform suboptimally.

3.2 Heuristics-Based Model-Transformation Algorithm

The model transformation algorithm we developed takes the following models and gener-
ated artifacts as its input: (1) DRE QoS requirements specification in the form of models
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as shown in Figure 3, and (2) the generated DRE system deployment plan indicating the
coarse-grained component-to-nodemapping and configuration options to be used for the
middleware. We assume that this mapping includes collocation groups, which are sets
that include the components that can be placed together on a node and that too in the
same address space. The objective of our algorithm is to improve the end-to-end laten-
cies in DRE system as well as reduce the memory footprint of the DRE system by virtue
of minimizing the number of containers needed to host the DRE system components.

The output of our algorithm is an enhanced QoS policy set4, which is incorporated
into the DRE system model. Our approach produces optimized QoS policy sets by em-
ploying novel ways of reusing and/or combining existing deployment and configuration
metadata and applying deployment heuristics in an application-specific manner.

We have used the Graph Rewriting And Transformation (GReAT) [8] language for
defining our transformation algorithms. GReAT, which is developed using GME, can
be used to define transformation rules using its visual language, and executing these
transformation rules for generating target models using the GReAT execution engine
(GR-Engine). The graph rewriting rules are defined in GReAT in terms of source and
target languages (i.e., metamodels).

Below we explain the individual steps in our transformation process.

Step I: Modeling Language used in the Transformation Algorithm: To demonstrate
our technique we required a modeling language to enable the developers to annotate
their QoS requirements on the DRE system models. A simplified UML QoS configura-
tion metamodel that we used is shown in Figure 4.

The metamodel defines the following elements corresponding to several LwCCM
real-time configuration mechanisms:

• Lane, which is a logical set of threads each one of which runs at lane_prio-
rity priority level. It is possible to configure the number of static threads (i.e.,
those that remain active till the system is running, and dynamic threads (i.e., those
threads that are created and destroyed as required) using Lane element.
• ThreadPool, which controls various settings of Lane elements, or a group there-

of. These settings include stacksize of threads, whether borrowing of threads
across two Lane elements is allowed, and maximum resources assigned to the
buffer requests that cannot be immediately serviced.
• PriorityModelPolicy, which controls the policy model that a particular
ThreadPool follows. It can be set to either CLIENT_PROPAGATED if the invoca-
tion priority is preserved, or SERVER_DECLARED if the server component changes
the priority of invocation.
• BandedConnections, which defines separate connections for individual (client)

service invocations. Thus, using BandedConnections, it is possible to define
a separate connection for each (range of) service invocation priorities of a client
component. The range can be defined usinglow_range andhigh_range option
values of BandedConnections.

4 QoS policy set is a group of configuration files that completely capture the DRE system QoS.
These files are used by the middleware to ultimately provision infrastructure resources such
that the QoS requirements can be met.
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RealTimeConfiguration

EnvironmentConf
-cmd_line_options : string
-service_conf : string

BandedConnections
-low_range : long
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-stacksize : long
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-max_buffered_requests : long
-max_buffer_size : long
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-static_threads : int
-lane_priority : int
-dynamic_threads : int

PriorityModelPolicy
-priority_model : Policy
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Fig. 4. Simplified UML Notation of QoS Configuration Meta-model in CQML

Step II: QoS Policy Optimization Algorithm Algorithm 1 depicts our heuristics-
based model-transformation algorithm, which uses the metamodel shown in Figure
4 as its source and target language, for optimizing the deployment and configuration
decisions.

The algorithm is executed for all the deployment plans specified for an applica-
tion and the policy optimizations are applied for each such plan as shown in Line 2.
In Line 5, all the components from a single collocation group are found.5 Based on
whether they have SERVER_DECLARED or CLIENT_PROPAGATED priority model, they
are grouped together in SCS and SCC as shown in Lines 7 and 9, respectively.

Finally, for each set of components above, the algorithm minimizes the number of
QoS policies in Line 12 subject to the condition in Line 13. This condition stipulates
that if QoS policies of two (sets of) components a and b each indicated in the Algorithm
by qpa and qpb, respectively, are similar (binary Boolean function∼= finds whether the
policies are similar), then they are combined (indicated by ��) leading to a reduction in
the size of SQ1.

For example, two policies would be similar if the lane borrowing feature of their
ThreadPool configuration option is same. Similarly, if the value of lane_prio-
rity in Lane configuration option matches, the two Lanes are similar and can be
combined. This test in the Algorithm is applied pairwise to all components in the set.
The Algorithm implements symmetric rules for CLIENT_PROPAGATED policy model.

In Line 21 the results from applying all the above rules to the DRE system model are
used to modify the current deployment plan, and the process is repeated for all the re-
maining plans of the DRE system until no more optimizations are feasible. The finalized
deployment plans are then fed to a deployment and configuration tool supplied with the
component middleware so that the components can be deployed and configured, and
the DRE system can be activated.

5 Note that this is a host-based collocation group.
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Algorithm 1. Transformation Algorithm for Optimizing Deployment and Con-
figuration Metadata
Input. set of deployment plans SP;
set of components SC, SCS (those that use server declared policy), SCC (those that use
client propagated policy);
component c, cp;
deployment plan p;
set of QoS policies SQ1, SQ2, qpa (QoS policy set of a specific component ’a’), qpb
(similarly for a component ’b’);
set of collocation groups SCG;
collocation group g
begin1

foreach p ∈ SP do2

SCG← collocationGroups(p);// collect all collocation groups in the deployment plan3

foreach g ∈ SCG do4

SC← SC +components(g); // Collect all components of a single collocation5

group

if c ∈ SC | c.priorityModel == SERV ER_DECLARED then6

SCS← SCS+c; // Collect all components using the server declared policy7

else if c ∈ SC | c.priorityModel == CLIENT _PROPAGATED then8

SCC← SCC +c; // Collect all components using the client propagated policy9

foreach c ∈ SCS do10

SQ1← SQ1 + c.QoSPolicy();11

minimize SQ112

subject to qpa �� qpb | qpa ∼= qpb;13

end14

foreach c ∈ SCC do15

SQ2← SQ2 + c.QoSPolicy();16

minimize SQ217

subject to qpa �� qpb | qpa ∼= qpb;18

end19

end20

modi f yDeploymentPlan(p,SQ1,SQ2); // modify the plan and repeat until no more21

optimizations are feasible

end22

end23

DRE developers can subsequently test their system, and can iterate through the de-
velopment lifecycle if the right end-to-end QoS is not observed or if other requirements
change.

3.3 Resolving the Challenges in Optimizing QoS Configurations

At the end of step I, the developers create the application model that capture the initial
QoS policies. The transformation algorithm shown in Algorithm 1 is applied in step II to
that DRE system model, which updates it and generates a modified QoS configuration
policies using the rules described in the algorithm.
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Our automated, model transformation-based approach resolves the challenges we
have discussed in Section 2 as follows: The inherent platform-specific complexities
in optimizing DRE system QoS configurations are encapsulated in the transformation
rules described in Section 3.2. The developers can thus focus on application business
logic, and use our approach to optimize the QoS configuration. Further, the model trans-
formation rules are reusable and can be applied repeatedly, during application develop-
ment, and maintenance thereby addressing the accidental complexities.

4 Evaluating the Merits of the Transformation Algorithm

This section evaluates our approach to optimizing the original deployment and config-
urations for component-based DRE systems. We claim that the quality of the resulting
software architecture is improved if it is able to demonstrate an improved performance.

We describe our results in the context of our case study explained in Section 3.1. We
show how the end-to-end latency results after applying our algorithm achieves consid-
erable improvement over the existing state-of-the-art. Moreover, we also demonstrate a
beneficial side effect of our solution by discussing how the algorithm can be combined
with additional backend optimization frameworks like the Physical Assembly Mapper
(PAM) [10].

4.1 Experimental Setup and Empirical Results

We have used ISISLab (www.dre.vanderbilt.edu/ISISlab) for evaluating
our approach. Each of the physical nodes used in our experiments was a 2.8 GHz In-
tel Xeon dual processor with 1 GB physical memory, 1 GHz network interface, and
40GB hard disks. Version 0.6 of our Real-time LwCCM middleware called CIAO was
used running on Redhat Fedora Core release 4 with real-time preemption patches. The
processes that hosted BasicSP components were run in the POSIX scheduling class
SCHED_FIFO, enabling first-in-first-out scheduling semantics based on the priority of
the process.

To showcase our results, we first modeled the BasicSP scenario and generated the
deployment and configuration metadata for each of its components. Note that the meta-
data is generated using the model interpreters that encapsulate appropriate bin packing
and schedulability analysis techniques. We collected the end-to-end latency metrics for
the BasicSP scenario using the initial deployment and configuration metadata.

We then applied the transformation algorithm 1 to our BasicSP model which resulted
in more fine-grained optimizations to the existing deployment and configuration meta-
data. The BasicSP scenario was then executed again with the updated QoS policies, and
the results were collected. For both these experiments, the results were obtained by re-
peating invocations for 100,000 iterations after 10,000 warmup iterations and averaging
them.

Figures 5 and 6 show the results of applying our approach to BasicSP scenario
comparing them to those derived from the original deployment and configurations. The
figure plots the average end-to-end latency and its standard deviation for the invocations
from Timer to NavDisplay components in BasicSP with and without our approach.
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As shown in Figure 5, the average latency improved by ∼70% when our technique
was used for optimizing BasicSP QoS configurations. The standard deviation on the
other hand, improved by ∼59% as plotted in Figure 6.
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Fig. 5. Average end-to-end Latency

Without our approach, the initial BasicSP QoS configuration contained separate poli-
cies for each of its four components. Out of the four components, only the Timer com-
ponent has SERVER_DECLARED priority model, while the rest of the components have
CLIENT_PROPAGATED priority model. Thus, as indicated on Lines 12 and 13, when Al-
gorithm 1 is applied to BasicSP, the QoS policy set is reduced to a size of two, one for
each kind of priority model. This reduction in the size of the QoS policy set leads to the
∼70% improvement in end-to-end latency between Timer and NavDisplay components.

The third graph in each figure indicates the additional improvements in end-to-end
latencies accrued as a result of leveraging backend optimization frameworks, such as
PAM [10]. PAM is a deployment-time technique that fuses a set of components collo-
cated in a container to reduce memory footprint and latency between service invocations.
Our approach simply indicates what components should be part of the same container,
however, individual components continue to require their own stubs and skeletons, and
other glue code, which continues to be a source of memory footprint overhead.

Approaches like PAM can then be used to eliminate this remaining overhead, and our
model-transformation technique can give hints to PAM on which components should be
part of the same container. Since PAM is essentially a model-driven tool, the modified
DRE system QoS configuration model resulting from applying our model transforma-
tion algorithm can directly be used to investigate fusion opportunities for the appli-
cation. As shown in Figures 5 and 6, when applied in conjunction with PAM, our
approach leads to a combined improvement of ∼83% in the end-to-end latency and
∼65% in the observed standard deviation in latency for BasicSP scenario.

4.2 Discussion

Our transformation algorithm described in Sections 3.2 relies on QoS configuration
analyses in a platform-specific manner. We specifically showed how it has been real-
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ized in the context of a LwCCM middleware implementation. Naturally to extend it to
other middleware platforms requires a careful study of the other platform’s configura-
tion space.

The results indicated an improvement of ∼70% in invocation latency between an
execution path consisting of four components (the execution path here refers to the
invocations from Timer, to GPS, to AirFrame, and finally to NavDisplay components
in BasicSP). Recall that the BasicSP is an assembly of components that is used in the
context of larger DRE system architectures. With increasing scale of the DRE system,
it becomes necessary to leverage every opportunity for optimizations.

We expect the improvements accrued using our approach to be even higher. This
is because the reduction in end-to-end latency is dependent upon how effectively the
QoS policy sets SQ1 and SQ2 in Algorithm 1 are minimized. Large-scale DRE systems
would have a number of QoS policies specified across their component assemblies, and
in general, would be expected to have more opportunities to combine and reuse these
policies leading to further latency improvements.

5 Related Work

Since the work presented in this paper results in performance optimizations to the un-
derlying middleware thereby improving the quality of the DRE system software archi-
tecture, we compare our work with synergistic works. Moreover, since our research is
applicable at design-time, we focus primarily on design- and deployment-time tech-
niques to compare our work against.

A significant amount of prior work has focused on estimating the performance of
software architectures via prediction techniques thereby allowing architects to weed
out bad architectural choices. In this paper we have not applied these techniques. We
assume that the architectures of the underlying middleware are sound. Our objective is
to optimize performance even further by combining similar QoS policies.
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Good software engineering principles argue for improving the functional cohesion
and decreasing functional decoupling in software systems. The work presented here is
similar in spirit. We strive to improve QoS cohesion by combining QoS policies that
are similar. In doing so we continue to preserve the functional cohesion and decoupling
provided by the container mechanisms in component middleware.

Design-time approaches to component middleware optimization include eliminating
the need for dynamic loading of component implementation shared libraries and es-
tablishing connections between components done at runtime, as described in the static
configuration of CIAO [15]. Our approach is different since it uses model transforma-
tions of configurations at design-time. Our approach is thus not restricted to optimizing
just the inter-connections between components. Moreover, the static configuration ap-
proach can be applied in combination with our approach.

Another approach to optimizing the middleware at design/development-time em-
ploys context-specific middleware specializations for product-line architectures [16].
This work is based on utilizing application-, middleware- and platform-level properties
that do not vary during the normal application execution in order to reduce the excessive
overhead caused by the generality of middleware platforms.

Some work has also been done in the area of Aspect-Oriented Programming (AOP)
techniques that rely essentially on automatically deriving subsets of middleware based
on the use-case requirements [17], and modifying applications to bypass middleware
layers using aspect-oriented extensions to CORBA Interface Definition Language (I-
DL) [18]. In addition, middleware has been synthesized in a “just-in-time” fashion by
integrating source code analysis, and inferring features and synthesizing implementa-
tions [19].

Contrary to the above approaches, our model transformation-based technique relies
only on (1) the specified QoS requirements specification and (2) the initial deploy-
ment plan, so that the QoS configurations can be optimized. Our approach does not
necessitate any modifications to the application, i.e., the application developer need not
design his/her application tuned for a specific deployment scenario. As our results in
Section 4.2 have indicated, our approach can be used in a complementary fashion to
any of the design/development-time approaches discussed above since there exist sev-
eral opportunities for QoS optimization at various stages in application development.

Deployment-time optimizations research includes BluePencil [20], which is a frame-
work for deployment-time optimization of web services. BluePencil focuses on
optimizing the client-server binding selection using a set of rules stored in a policy
repository and rewriting the application code to use the optimized binding. While con-
ceptually similar, our approach differs from BluePencil because it uses models of ap-
plication structure and application deployment to serve as the basis for the optimization
infrastructure.

BluePencil uses techniques such as configuration discovery that extract deployment
information from configuration files present in individual component packages. By op-
erating at the level of individual client-server combinations, the QoS optimizations
achieved in our transformation-based approach are non-trivial to perform in BluePen-
cil. BluePencil also relies on modification to the application source code to rewrite the
application code, while our approach is non-intrusive and does not require application
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source code modifications, and it only relies on the specified application policies and
deployment plans.

Research on approaches to optimizing middleware at runtime has focused on choos-
ing optimal component implementations from a set of available alternatives based on
the current execution context [21]. QuO [22] is a dynamic QoS framework that allows
dynamic adaptation of desired behavior specified in contracts, selected using proxy
objects called delegates with inputs from runtime monitoring of resources by system
condition objects. QuO has been integrated into component middleware technologies,
such as LwCCM.

Other aspects of runtime optimization of middleware include domain-specific mid-
dleware scheduling optimizations for DRE systems [23], using feedback control the-
ory to affect server resource allocation in Internet servers [24] as well as to perform
real-time scheduling in Real-time CORBA middleware [25]. Our work is targeted at
optimizing the middleware resources required to host composition of components in
the presence of a large number of components, whereas, the main focus of these related
efforts is to either build the middleware to satisfy certain performance guarantees, or
effect adaptations via the middleware depending upon changing conditions at runtime.

6 Concluding Remarks

The last few years have seen a significant increase in the popularity of component mid-
dleware platforms for developing distributed, real-time and embedded (DRE) systems,
such as emergency response systems, intelligent transportation systems, total shipboard
computing environment across a wide range of application domains. Its higher levels
of programming abstractions coupled with mechanisms that support sophisticated and
highly tunable infrastructure configuration are well suited for rapid development and/or
maintenance of such systems.

The generality of contemporary component middleware platforms, however, has in-
creased the complexity in properly configuring these platforms to meet application-level
QoS requirements. Automated solutions [26] are an attractive alternative to achieving
the QoS configuration of component-based systems, however, they incur excessive sys-
tem resource overheads often leading to sub-optimal system QoS.

In this paper, we discussed an automated, model transformation-based approach that
takes into account the component collocation heuristics to optimize application QoS
configuration thereby improving the quality of the software architecture. We discussed
the design of our approach, and the transformation algorithm used to optimize the QoS
configuration. We also evaluated our approach and compare it against the existing state-
of-the-art. The results demonstrated the effectiveness of our approach in optimizing
QoS configuration in the context of a representative DRE system reusable component
assembly.

The following are the lessons learned from our research:

• Optimal QoS configuration for component-based systems is a crucial research area
that has been unaddressed till date. As component middleware gains popularity, and
available resources become constrained, especially in the context of DRE systems,
it is critical to improve the overall quality of the DRE system software architectures.
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• Existing research in QoS configuration have focused largely on achieving locally op-
timized solutions, i.e., they are restricted to analyzing and modifying/manipulating
the middleware configuration space.
• Our approach showed that excessive overheads can be avoided by analyzing QoS

configurations in the context of other application characteristics such as its compo-
nent collocation/node placement heuristics.
• We have focused on combining the deployment decisions with the application

QoS specification. However, as our results have indicated, further optimizations are
possible by combining our technique with other design-, development-, run-time
techniques, which merits further investigation. Additional investigations are also
necessary to test our approach on larger DRE systems and different middleware
platforms.
• Our approach indicated improvements in latencies. Significant research remains to

done to see how other QoS metrics can be improved as well. When multiple QoS
metrics are considered together, simple heuristics may not work. Instead multi-
objective optimizations [27] may be necessary. Additionally, we have not demon-
strated the applicability of our work for ultra-large scale DRE systems. This will
form part of our future research.
• Our approach is not necessarily restricted to real-time systems. There may be op-

portunities for applying these arguments to other domains including high perfor-
mance computing and enterprise computing.
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Abstract. When software projects evolve their actual implementation
and their intended architecture may drift apart resulting in problems
for further maintenance. As a countermeasure it is good software engi-
neering practice to check the implementation against the architectural
description for consistency. In this work we check software developed by a
Model Driven Software Development (MDSD) process. This allows us to
completely automate consistency checking by deducing information from
implementation, design documents, and model transformations. We have
applied our approach on a Java project and found several inconsistencies
hinting at design problems. With our approach we can find inconsisten-
cies early, keep the artifacts of an MDSD process consistent, and, thus,
improve the maintainability and understandability of the software.

1 Introduction

In a typical software development project several artifacts are created and
changed independently, such as design documents and source code. Time pres-
sure often leads to unresolved divergences between these artifacts. As a result,
the system becomes harder to understand, making further maintenance tasks
more complicated and costly [26]. Perry and Wolf are among the first to name
and discuss this problem as architectural drift and architectural erosion [23]. New
development methodologies and techniques such as Model Driven Software De-
velopment (MDSD) and Model Driven Architecture (MDA) seem at first glance
to solve inconsistency problems. Typically, the development process starts with
the manual design of a high-level artifact which is subsequently automatically
transformed into a low-level artifact such as source code.

One might assume the transformation ensures that high-level artifacts are
consistently transformed into low-level artifacts. However, the transformations
do not create the entire set of low-level artifacts; they rather create skeletons
that need to be extended and completed manually. Due to this semi-automation,
projects developed with MDSD are also prone to the problem of architectural
drift; inconsistencies may be introduced for the following reasons:

Incorrect transformations. Data of high-level models may be lost or misin-
terpreted during transformation to low-level models.
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Manual additions. The implementation is usually not completely generated.
Developers need to add code into the generated skeletons. Sometimes even
new classes not even present in the high-level artifact need to be added. Thus
code in manual additions may diverge from design documents.

Synchronization. Design documents and implementation may get out of sync,
when the design documents are changed without subsequently generating the
source code.

The detection of inconsistencies is a first step towards fixing these problems.
Existing approaches [4,3] are general but semi-automated. We focus on software
developed by MDSD and this reduction of generality allows for a fully auto-
mated solution. We contribute with an approach for consistency checking that is
automated, thus requiring a minimum of user interaction and no additional user-
supplied data. Our approach is flexible regarding the languages of the artifacts
and the description of inconsistencies.

The remainder of this article is structured as follows: In section 2 we give a short
introduction to the technology supporting ourwork. In section3wedescribe our ap-
proach for automated architecture consistency checking. We perform a case study
with a Java software system and present the results in section 4. In section 5 we
briefly describe related work and evaluate if and how these approaches suit our
goals. We conclude with a summary and pointers to future work in section 6.

2 Terms and Technology

Model Driven Software Development (MDSD) is an approach for soft-
ware development using models as primary artifacts of a software system [25].
During development a series of such models is created, specified, refined and
transformed. Model transformations describe the relationship between models,
more specifically the mapping of information from one model to another one. In
this work we narrow the focus for software architecture consistency checking on
software that has been developed using MDSD.

In theory the developer creates a model and automatically transforms it into
an implementation, and, hence, never needs to touch the implementation. How-
ever, in practice the MDSD approach is semi-automated. Only parts of the im-
plementation are generated, other parts require manual work. Manually created
classes are not generated at all, but just added to the implementation. They can-
not be mapped directly to any corresponding high-level model element. Other
classes are only partly generated. The generated part is called skeleton, the man-
ually created part of the implementation is called manual addition.

Aspect-oriented Programming (AOP) attempts to support program-
mers in the separation of concerns: functionality can be partitioned in cross-
cutting concerns in an orthogonal way to the partitioning by modules [12].
Cross-cutting concerns, so-called aspects are selectively weaved into different
places (join points) inside one or several software modules. In this work AOP is
used for tracing in model-to-text transformations.
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The Software Reflexion Model is a manual process for re-engineering and
program understanding, designed to check a high-level, conceptual architecture
for consistency against the low-level, concrete architecture extracted from the
source code [17]. It checks the vertical consistency of artifacts on different stages
of the development process, i.e., design and implementation.1 Moreover, it checks
structural consistency, more specifically, architectural consistency, which is based
on the structure on an architectural level, i.e., modules and dependencies between
those modules.2

For a first try assume that two artifacts are architecturally consistent if cor-
responding high- and low-level entities also have corresponding dependencies.
Dependencies include relations like usage (access and invocation), aggregation,
and delegation. A high-level entity corresponds to the low-level entities gener-
ated from it in the MDSD process. Besides these directly mapped entities, the
corresponds also includes inheriting and auxiliary low-level entities. For an exact
definition of consistency we refer to section 3.3.

According to the Software Reflexion Model, the analyst first creates a hy-
pothesized high-level model based on information of the (architecture and de-
sign) documentation. Next, the analyst uses a fact extractor to create a low-level
model of the software from the source code. Both models are graphs with nodes
representing program entities and edges representing relations between them. To
link the two models, the analyst manually maps low-level entities to their cor-
responding high-level entities. The mapping connects the two graphs to a single
reflexion graph. Relational algebra is used to specify inconsistency rules between
the high-level and the low-level model. The software reflexion model has been
successfully used to perform design conformance tests [16]. A semi-automated
approach has been proposed which uses clustering techniques (see below) to sup-
port the user in the mapping activity [4,3]. In this work, we extend the Software
Reflexion Model to fully automate this process for MDSD applications.

Clustering for Architecture Recovery Clustering is a technique for find-
ing groups of similar data elements in a large set of data. Architecture recovery
attempts to reconstruct the high-level architecture of a software system based
on information extracted from low-level artifacts such as the source code. In gen-
eral, these approaches employ an abstract model of the structure of a software
system, which consists of its basic entities such as functions, classes or files and
relationships between them such as dependencies. Clustering is used to group
related entities of the software system into subsystem [28,1,27]. Algorithms try
to minimize the inter-cluster dependencies and maximizing the intra-cluster de-
pendencies. The idea is to optimize low coupling and high cohesion for good
subsystem decomposition [22]. The problem of finding an optimal decomposi-
tion is in NP-hard [10], and hence, heuristics are applied. In this work we use

1 In contrast, horizontal consistency, is concerned with the consistency of documents
of the same stage of a software development process, e.g., comparing UML sequence
and class diagrams.

2 In contrast, behavioral consistency compares two behavioral descriptions, for example
UML sequence diagrams and execution states.
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clustering for architecture recovery in order to group classes not generated under
the MDSD process for relating them to model entities automatically.

3 Approach

In this work we specialize in checking architecture consistency for software de-
veloped with MDSD. In contrast to traditional software development, MDSD
with its formalized process allows us to automate the checking for architectural
violations. The MDSD process supplies us with: (1) a high-level artifact such
as a UML class diagram, (2) a corresponding low-level artifact such as source
code classes and (3) a transformation that maps high-level entities to low-level
entities. Our solution is based on extending the Software Reflexion Model and
tailoring it for the analysis of MDSD projects so we can automate it. As dis-
cussed, the MDSD process provides us with three different information sources,
which can be associated with an input to the Software Reflexion Model: The
high-level view of the Software Reflexion Model corresponds to the UML dia-
grams of MDSD, low-level view of the Software Reflexion Model corresponds to
the source code of MDSD, and the mapping of the Software Reflexion Model
corresponds to the transformation of MDSD.

The major part of the information needed for automated consistency checking
can be extracted from the artifacts of the MDSD project. We can extract the
low-level and high-level views from a program’s source code and from the UML
model, respectively.

Moreover, we can partially extract the mapping from the model transforma-
tion. The mapping relation captures the correspondence between low-level and
high-level entities. This correspondence is established by the creation of the low-
level elements during software development. In MDSD, low-level elements are
created in two ways: (i) generation by a model transformation from a high-level
entity (ii) manual creation by a developer. In an MDSD project the majority
of the low-level entities are generated, manually created low-level entities are
the exception. The two different ways of creating low-level entities entail two
different approaches for automatic mapping creation. The mapping of gener-
ated low-level entities (i) is determined by the high-level entity it is transformed
from. In order to extract the relevant information from the transformation, we
have to study the type of the transformation and its properties. We describe
this approach in section 3.1. The remaining unmapped low-level entities (ii) are
manually created and there is no direct, explicit evidence about their mapping
available in the artifacts of the system. This is why we rely on clues and heuris-
tics to find their mapping. The clues are provided by the incomplete, extracted
mapping and the extracted low-level dependency graph. We combine these clues
to create a mapping by using a clustering technique for architecture recovery.
We describe this approach in section 3.2.

Input to the consistency checking process is simply the MDSD project con-
sisting of three parts: (1) A design document in form of a UML class diagram,
(2) the source code including both skeletons and manually added code and a (3)
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Fig. 1. Example of a complete analysis graph

model transformation, that generates parts of the source code from the design
document. The desired output of the consistency checking process is a list of
inconsistencies.

To get from the input to the output, we need to undertake three major steps:
In the first step, we build a data structure, called analysis graph, that contains
all the relevant information. We build the analysis graph according to the in-
formation contained in the MDSD project, cf. section 3.1. In the second step,
we use a clustering technique to complete the information of the analysis graph,
cf. section 3.2. In the third step, we use the complete analysis graph to find
inconsistencies, cf. section 3.3.

3.1 Analysis Graph Extraction

The analysis graph is the central data structure of our approach for checking
consistency, it is used in all major steps of the analysis process. The analysis
graph contains only information relevant for solving the problem of consistency
checking. It is a directed graph, consisting of two types of nodes and three types
of edges. Nodes are either high-level, corresponding to the entities in a high-level
design description such as UML class diagrams or low-level entities corresponding
to source entities like compilation units or classes. The different edge types are:
dependency edges representing references, hierarchical edges representing inheri-
tance relationships and mapping edges representing the correspondence between
high-level and low-level entities. Hierarchical and dependency edges only exist
between nodes of the same level. The analysis graph is complete, if all low-level
nodes are mapped to high-level nodes, i.e. the mapping function is defined over
the whole domain of low-level nodes.

We can split the analysis graph construction into the following subtasks:

Fact Extraction from High-level Artifacts. Our fact extractor reads UML
class diagrams from their XMI representation and delivers a high-level de-
pendency graph.

Mapping Creation by Tracing. We log the execution of the transformation
and find the mapping between high- and low-level model entities. Our AOP
approach adds tracing code to the transformation program. Under transfor-
mation execution, information about the high-level entities is added to the
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generated low-level entities in the form of annotations in the generated Java
code. These annotations are later processed by the low-level fact extractor.

Fact Extraction from Low-level Artifacts. The low-level program structure
is extracted from the Java source code. We reuse the existing fact extractor
based on the VizzAnalyzer API. We extend the fact extractor to read the an-
notations produced under transformation by the tracing aspect. As output,
the fact extractor delivers a low-level dependency graph partially mapped to
the high-level graph.

Fact Extraction from High-Level Artifacts. In this step, we extract the
relevant information from high-level artifacts. High-level artifacts such as design
documents are expressed in UML. Thus we create a fact extractor for UML class
diagrams. For the design of the UML fact extractor we set the following goals:
(1) reuse of existing infrastructure, (2) support for different XMI versions, and
(3) simple rules for fact extraction.

While standard fact extractors analyze the textual representation of a pro-
gram with specialized parsers, we use a model transformation approach for fact
extraction. Input of the transformation is a XMI representation of a UML class
diagram, the output is a GML3 description of the analysis graph. This approach
has several advantages regarding our goals for the UML fact extractor. It allows
us to reuse the UML reader of the model transformation tool (1). This third
party UML reader is mature, supporting different UML versions and different
XMI versions (2). In the transformation we simply define a mapping between
the UML elements as input and GML elements as output (3).

The UML diagrams we use as input contain more information than needed for
our analysis. Thus we need to lift the extracted information to an appropriate
level of abstraction, that only contains the relevant information used in later
analysis. The table below shows the relevant UML elements and their counterpart
in the analysis graph.

UML Element Analysis Graph
uml::class high-level node
uml::interface high-level node
uml::usage reference edge
uml::property reference edge
uml::dependency reference edge
uml::realization hierarchy edge
uml::generalization hierarchy edge

Mapping Creation by Tracing. Tracing keeps track of the relation between
source elements and the created target elements of a model transformation. The
result of tracing is a list of source and target element pairs of the transformation.
3 The Graph Modeling Language (GML) is a flexible and portable file format for

graphs [11]. We use GML as an interface between the fact extractors and the rest of
the analysis process. Thus the fact extractors can be exchanged easily.
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Current template-based model-to-text transformations do not have built-in sup-
port for tracing [5], so we need to develop our own tracing solution. The goals for
our tracing solution are automation and non-invasiveness. Automation of this
subtask for consistency checking allows automation of the complete consistency
checking process. Non-invasiveness ensures, that tracing does not change the
transformation and thereby alters the object under study. Non-invasiveness also
does not allow us to patch the transformation engine, so we are independent of
any particular transformation engine implementation.

Possible practical solutions for tracing in model-to-text transformations are
static analysis of the transformation code, instrumentation of the transformation
and manipulation of the transformation engine. Since we extract the mapping
from the trace of the transformation, our approach depends on the specific prop-
erties of the transformation: the transformation is (1) rule-based and (2) model-
to-text4. These properties can be seen as constraints for the solution. Since we
want our solution to be independent of the transformation engine, we regard the
transformation engine as black box, thus ruling out the solution requiring ma-
nipulation of the source code of the transformation engine. The transformation
code is rule-based (1), thus the static analysis of the transformation code is in-
sufficient for providing exact mapping information. The actual mapping depends
not only on the transformation rules, but also on the matching algorithm of the
rules and the input. Thus, we extract the mapping information during the execu-
tion of the transformation and not just by static analysis of the transformation.
To acquire this mapping information, we instrument the transformation code.
However, the instrumentation of the transformation code has to be automated.
The transformation is a model-to-text transformation (2). This means, that no
parsing information (e.g., an abstract syntax tree) about the generated code is
available during the execution of the transformation, even more so as we cannot
change the transformation engine.

We solve the problems induced by (1) by using AOP. The instrumentation of
the transformation with tracing code can be regarded as a cross-cutting concern,
that needs to be woven into each transformation rule. We build a tracing aspect
that contains code to log the transformation, i.e. it writes the name of the source
model element as a comment into the target output stream. The same aspect can
be applied automatically to arbitrary MDSD transformations without manually
changing the transformation code.

Problems induced by (2) are solved by splitting up the tracing process in two
phases: an annotation phase and a mapping extraction phase. The annotation
phase takes place during the execution of the transformation. It weaves aspect
code into every transformation rule. The aspect code writes the name of the cur-
rent high-level element as a proper comment of the target programming language
– Java in our case – into the output stream. In fact we use a Java Annotation as
comment. The mapping extraction phase is part of the Java fact extraction. In
this phase we read the annotations in the Java source code that were produced
by the annotation phase. We connect the name of the high-level entity in the

4 In contrast to model-to-model transformations.
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annotation to the closest low-level entity in the Java code. Since the source code
is parsed, the low-level entity is now available during Java fact extraction.

Fact Extraction from Low-Level Artifacts. To obtain the dependency
graph from the low-level artifacts we use a fact extractor for the appropriate
programming language. A fact extractor processes the artifacts of the software
system under study to obtain problem-relevant facts. These are stored in fact-
bases and used to determine particular views of the program.

We keep our overall approach flexible enough to support fact extractors for any
object-oriented programming language, the current implementation, however, is
limited to Java. We achieve this flexibility by a well-defined interface between
the fact extractor and the rest of the analysis. The interface is the file in GML
format containing the dependency graph.

The goals for the low-level fact extraction are: (1) reuse of existing libraries
for fact extraction, and (2) extensibility for the extraction of tracing informa-
tion and (3) compatibility with graphs from high-level fact extraction which are
represented in GML. A lot of fact extractors are available for the chosen imple-
mentation language Java. We choose the VizzAnalyzer fact extractor [14], since
it fulfills all of our goal criteria: We can reuse it (1), since the source code is
available, we can extend it (2), and it has export functions for GML (3).

The low-level fact extractor not only extracts the low-level dependency graph,
but also the mapping information from the annotated source code. As explained
before, annotations are inserted into the Java code whenever a transformation rule
is executed. The content of the annotation includes the name of the high-level
entity that is connected to this transformation rule. The full annotation consists
of a comment in the appropriate low-level language and the name of the high-level
entity. By putting the information in a comment, we ensure that the functionality
of the source code is not modified. The fact extractor processes the annotated Java
code and reads the tracing comments that are placed in front of each class. In this
way the name of the high-level element from the comment and the name of the
low-level element currently processed by the fact extractor are brought together
defining the mapping.

3.2 Analysis Graph Completion by Clustering

For consistency checking we need a correspondence between low-level and high-
level entities. This mapping needs to be complete, i.e. the mapping assigns a
high-level entity to each low-level entity in the system. The mapping creation by
tracing presented before can only provide such a complete mapping, if 100% of
the source code was generated, especially if no new classes were added manually
in the source code. In practice, only a fraction of the source code is generated,
the rest is created manually, either in form of manual additions inside generated
skeletons or completely manually developed classes. Manually created classes
have to be either (1) excluded from the analysis or (2) need to be mapped to a
high-level entity.

Option (1) circumvents the problem. We can configure the source code fact
extractor in such a way that it excludes classes from the analysis. However we
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only recommend this option for library code. All other source code elements
should be treated according to option (2), which aims at solving the problem.
We automatically map single, manually introduced source code classes to a high-
level entity, i.e., we assume that these classes are part of the implementation
of an abstract concept as defined with the high-level entity. Since information
about the mapping is not explicitly provided, we need to rely on clues. Under a
reasonable hypothesis, we then combine these clues to approximate the mapping
as intended by the system developers.

For the mapping completion we follow the hypothesis of Koschke et al. [4,3]:
Source code entities that are strongly dependent on each other form a module,
and all elements of a module are mapped to the same high-level entity.

For each unmapped source code element, we need to find a mapped source
code element that has a strong dependency relation to it. This is similar to the
problem of automated software modularization, so we can use the techniques
applied in this field, especially the ideas of clustering for architecture recovery
(see section 2).

In the following we describe our clustering algorithm. It is important to dis-
tinguish mapped and unmapped source code entities. Each mapped source code
entity is by definition related to a high-level entity; for unmapped source code
entities no such relation exists.

1. Initially we cluster the mapped source code entities. All mapped source code
entities with a mapping to the same high-level entity form a cluster.

2. We assign unmapped entities that have a mapped superclass to the same
cluster as their superclass. We apply this rule recursively for all unmapped
direct and indirect subclasses. Here we use inheritance information as clues
for the clustering and apply our hypothesis on the inheritance hierarchy.

3. We terminate if there are no unmapped entities. Otherwise, we assign the
still unmapped entities to one of the existing clusters. If several unmapped
entities are available, we begin with those that are at the root of the inheri-
tance tree. We choose their cluster based on the strength of the connection of
the unmapped entity to already mapped hence clustered entities. We assign
it to the cluster that has the strongest (accumulated over contained entities)
connection. A connection between two entities is established by a depen-
dency relation or reference. A connection between an entity and a cluster
is the accumulated connection between the entity and the member entities
of the cluster. The strength of a connection is determined by the number of
connections between the entity and the cluster. Here we use the dependency
relation as a clue and apply our hypothesis on the dependency relation.

4. When a new entity was mapped in step 3, we assign its unmapped subclasses
according to step 2 or, otherwise, we terminate if there are no unmapped
entities.

The above clustering algorithm assigns all source code entities to a cluster. Due
to step 1 all clusters have exactly one high-level element that some of their
elements are mapped to. We map all source code entities in the cluster to this
high-level element. As a result we get the complete analysis graph.
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3.3 Check Consistency Rules

Once the analysis graph is complete, we can perform consistency checks. A con-
sistency check searches the analysis graph for patterns of inconsistency. In this
section we discuss the chosen search mechanism and the search criteria. We refer
to these search criteria for inconsistency patterns as inconsistency rules.

Inconsistency Rules. First we need to transform the analysis graph into a
representation suitable for our search mechanism. For our relational algebra
approach we transform the analysis graph into a set of binary relations. Below
we list the types of relations representing facts from our analysis graph. Based
on these facts, we can check our inconsistency rules efficiently.

ll(X) ⇔ entity X is a low-level entity (e.g., extracted from Java)
hl(A) ⇔ entity A is a high-level entity (e.g., extracted from UML)

ref(A, B) ⇔ entity A references entity B
inherit(A, B) ⇔ entity A extends entity B

inherit∗(A, B) reflexive, transitive closure of inherit(A, B)
map(X, A) ⇔ low-level entity X is mapped to high-level entity A

In the following we explain the most common definition of inconsistency pat-
terns according to [13]: absence and divergence inconsistencies. An absence in-
consistency is defined as a subgraph consisting of a high-level reference with no
corresponding low-level reference. This can happen when a high-level model is
updated by adding a reference but the existing source code based on the pre-
vious model is kept and not newly generated after the update. A divergence
inconsistency is defined as a subgraph consisting of a low-level reference with
no corresponding high-level reference. This may happen when the source code is
changed without updating the model. Below we have formalized these informal
descriptions of the two types of inconsistency in relational algebra.

absence(A, B) ⇐ hl(A) ∧ hl(B) ∧ hlref(A, B) ∧ ¬llref(A, B)
divergence(A, B) ⇐ hl(A) ∧ hl(B) ∧ llref(A, B) ∧ ¬hlref(A, B)

We use hlref(A, B) as an auxiliary relation containing all pairs of high-level
entities A and B with direct dependencies or dependencies between inheriting
high-level entities. Similarly, llref(A, B) denotes all pairs of high-level entities
A and B where there is a corresponding low-level pair in a dependency relation:

hlref(A, B) ⇐ ∃A′, B′ : hl(A′) ∧ hl(B′) ∧
inherit∗(A, A′) ∧ inherit∗(B, B′) ∧ ref(A′, B′)

llref(A, B) ⇐ ∃A′, B′, X, Y : hl(A′) ∧ hl(B′) ∧ ll(X) ∧ ll(Y ) ∧ ref(X, Y ) ∧
map(X, A′) ∧ inherit∗(A, A′) ∧ map(Y, B′) ∧ inherit∗(B, B′)

The search criteria for inconsistency patterns may differ from project to project.
Some projects may require a stricter definition of consistency than others. This
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is why we required the inconsistency patterns to be user-definable. The incon-
sistency rules are kept separately and can be changed independently. The user
does not need to recompile the analyzer, if a change of the inconsistency rules
is necessary. A reasonable set of inconsistencies to check for is provided above.
Executing the check results in a list of inconsistencies containing the type of
inconsistency (absence or divergences) and the involved entities.

4 Evaluation

In this section we present a case study to demonstrate the feasibility of our
approach. We choose to analyze an academic MDSD project for a matrix frame-
work. The developers of this MDSD project are in house and can be consulted
for evaluating the results.

4.1 Matrix Framework

The Matrix Framework is an academic project for self-adaptive matrix ADTs
(abstract data types). The efficiency of matrix operations depends on the rep-
resentation of the matrix and the choice of algorithm for this operation. The

Fig. 2. UML Diagram of the Matrix Framework
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matrix framework is designed such that the representations and the algorithms
can be changed independently of each other. Automatically – using profiling –
the most efficient choice for representation and algorithm is found depending on
the actual problem size, density, and machine configuration.

The input to the consistency check is the matrix framework project, consisting
of a UML design document, the Java implementation and a model transforma-
tion. In the following we introduce each of the three parts separately. The UML
design document consists of a class diagram with 12 classes. It is written in UML
Version 2 and serialized as XMI 2.0. It is depicted in figure 2. The Java imple-
mentation contains 18 classes. The code skeletons have been manually extended
and new classes have been manually created. This allows us to see the mapping
completion of our approach. The project contains a model-to-text transforma-
tion that transforms the UML class diagram into a Java implementation. The
transformation consists of 11 rules written in the Xpand language of openAr-
chitectureWare. Additionally there are several meta-model extensions written in
the Xtend language of openArchitectureWare [6].

4.2 Execution

We have measured the runtime of the steps involved in checking for consistency.
The measurement system is a Intel Pentium M 1.7 GHz with 1.5 GB RAM
running Windows XP:

Process step Runtime (in ms)
Model transformation with tracing 2684
Java Fact Extraction 6887
UML Fact Extraction 1482
Clustering 1654
Rule Checking 572
Total Runtime 13279

To evaluate the overhead for tracing we have made a runtime measurementwith
and without tracing: The model transformation without tracing takes 2483 ms,
with tracing it takes 2684 ms, resulting in a tracing overhead of only 201 ms.

4.3 Results and Interpretation

In the following we discuss the results of our automated consistency check, in
particular the results of the clustering algorithm and the detected inconsistencies.

As described earlier, the project contains more Java than UML classes as
some classes have been manually created. For consistency checking, we need to
assign these Java classes to a high-level entity of the UML design document. The
clustering algorithm chooses this high-level entity based on hierarchy information
and dependency information. The classes VektorDense and VektorSparse are
not present in the UML class diagram. They are mapped to the high-level class
Vektor. This makes sense, since VektorDense and VektorSparse are subclasses
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of the class Vektor. The low-level Java classes BooleanQuasiRing, DoubleRing,
QuasiRing and Ring are mapped to the high-level UML class Factory. This
makes sense, since the Factory class heavily uses these representations.

The consistency check locates five inconsistencies in the case study. The first
three inconsistencies are similar: They are divergence inconsistencies between
ProductsQuasiRing and Factory, between ProductsStrassen and Factory,
between ProductsRecursive and Factory. Since all the product operations pro-
duce a result and put it into a new matrix, a reference to the Factory class is
actually required. The design does not reflect this and needs to be adapted.

We find another divergence inconsistency between Factory and Generator.
The implementation of Factory has a reference to the Generator, however this
reference is not present in the design documents. A closer look at the source code
reveals that the reference is actually never used. It is thus safe and advisable for
the sake of design clarity to remove the reference from the implementation.

The last discovered divergence inconsistency is between the Matrix and the
Generator. A closer look at the Generator class on implementation level reveals
that it contains functionality of two different purposes: (1) providing random-
ized input matrices for profiling and (2) providing the one element and the null
element of a matrix. In the design documents the Generator has purpose (1),
whereas in the implementation it has purpose (1) and (2). This may easily lead to
misunderstandings. Since the implementations of the two purposes do not share
any functionality or code, it is advisable to split up the Generator according to
the two purposes, resulting in a cleaner and easier to understand design.

The five inconsistencies our consistency check discovered exist due to manual
additions filling in the skeletons. All detected inconsistencies were inconsistencies
indeed. They hint at potential design problems that, according to the developers
of the matrix framework, need to be fixed.

5 Related Work

In this section we give an overview of existing techniques and approaches for
vertical architectural software consistency checking. We briefly describe the ap-
proaches found in the literature and evaluate them w.r.t. our objective of fully
automating the process. We acknowledged that there is orthogonal work on au-
tomated horizontal software consistency checking, e.g., [15,2], but exclude this
from our discussion.

Most works follow a standard approach where an analyst first creates a high-
level model based on information from documentation. Next the analyst uses a
fact extractor to create a low-level model of the software based on the source
code. The analyst manually maps low-level entities to their corresponding high-
level entities, thus introducing new mapping edges. Relational algebra is used to
specify inconsistency rules between the high-level model and the low-level model.

The most prominent example is the Software Reflexion Model [17]. It has been
extended to support hierarchical models [13]. Another extension semi-automates
the mapping creation, where a partial, manually created mapping is completed
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by a clustering algorithm [4,3]. Postma et al. specialize in analyzing component
based systems [24]. Egyed et al. analyze systems created with an architecture
description language (ADL) [7,8,9]. The research of Paige et al. is targeted at
finding a new definition for model refinement by using consistency rules written
in OCL [21]. Our approach exploits the same correspondence between refining
model transformation and consistency. However, the goals are different and there
is no explicit consideration of the challenges of automation and the extraction
of the mapping from model transformations. Nentwich et al. use an XML-based
solution for checking consistency between arbitrary documents [20,19]. The ap-
proach of Muskens et al. nominates one of the two compared models as the gold
standard, the so-called prevailing view. It deduces architectural rules from it
and imposes these rules on the other model, the subordinate view [18]. Thus
no external consistency definition is required. However, nominating subordinate
and prevailing view requires manual work and cannot be automated. While all
of these approaches tackle the problem of software consistency checking, none of
them is automated completely as summarized in table below. The approaches
provide only a partial solution of our problem.

Approach Low-level High-level Mapping
Extraction Extraction Extraction

[17] × - -
[13] × - -
[4,3] × - semi-automated
[24] × × -
[7,8,9] × × -
[21] only in theory only in theory only in theory
[20,19] × × -
[18] × × -
Present paper × × ×

Moreover, in our literature survey, we have not found any approach specifically
designed for consistency checks of software developed by MDSD. Surely, the
approaches for traditionally developed software can be applied for analyzing
MDSD projects as well, but they do not use the advantageous possibilities for
consistency checking provided by MDSD. These advantages include the ability
to automate the high-level model extraction and the mapping extraction.

6 Conclusion

In this work we have developed the concept for a tool that automatically identi-
fies architectural inconsistencies between low-level and high-level artifacts of an
MDSD process. We were lead by two major realizations: (1) the major part of the
information needed for automated consistency checking can be extracted from
the artifacts of the MDSD project and (2) missing information can be completed
using heuristic approaches.
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We extract a low-level model from (Java) source code and a high-level model
from the UML model using language-dependent fact extractors. We can extract
a large part of the mapping from the model transformation using AOP-based
tracing. The remaining unmapped entities from the source code have been man-
ually created and we find a mapping for them using a heuristic. We collect the
information in an analysis graph and subsequently use it to search for patterns
of inconsistencies using relational algebra expressions.

We have demonstrated the practical use of our tool in a case-study. All de-
tected inconsistencies have been acknowledged by the developer of the case study.
The inconsistencies hint at actual design problems that need to be fixed.

The next step is to perform additional case studies and validating experiments
on a larger scale of MDSD projects and assess the number of false positives and
negatives found by our approach. This will show the accuracy of the clustering
and whether the heuristic needs to be improved.

Thus far we have looked only at inconsistencies due to creation of new code.
We plan to check for alternative types of inconsistencies, e.g. inconsistencies
created by modification or deletion of generated classes. We need to research the
robustness of our approach, especially the robustness of the mapping extraction
in these situations.
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Abstract. Software performance engineering provides techniques to analyze and
predict the performance (e.g., response time or resource utilization) of software
systems to avoid implementations with insufficient performance. These tech-
niques operate on models of software, often at an architectural level, to enable
early, design-time predictions for evaluating design alternatives. Current software
performance engineering approaches allow the prediction of performance at de-
sign time, but often provide cryptic results (e.g., lengths of queues). These predic-
tion results can be hardly mapped back to the software architecture by humans,
making it hard to derive the right design decisions. In this paper, we integrate
software cartography (a map technique) with software performance engineering
to overcome the limited interpretability of raw performance prediction results.
Our approach is based on model transformations and a general software visu-
alization approach. It provides an intuitive mapping of prediction results to the
software architecture which simplifies design decisions. We successfully evalu-
ated our approach in a quasi experiment involving 41 participants by comparing
the correctness of performance-improving design decisions and participants’ time
effort using our novel approach to an existing software performance visualization.

1 Introduction

Performance is a complex and cross-cutting property of every software system. If per-
formance targets (e.g., maximum response times) are not met, a redesign or even a reim-
plementation of the system is needed, which leads to significant costs. Model-based
software performance prediction approaches (cf. [1,31]) estimate the performance of
software architectures1 at design time, before fully implementing them. These appro-
aches are also referred to as Software Performance Engineering (SPE, [26]), and sev-
eral implementations of it exist. Making the correct design decisions using SPE requires
proper understanding and interpretation of the prediction results.

1 We will use the term architecture to capture static structure, behavior, and deployment of a
software.
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Nevertheless, many companies do not use SPE in software development [4]. Wood-
side et al. [31] highlight the limited interpretability in current SPE approaches: “Better
methods and tools for interpreting the results and diagnosing performance problems are
a future goal”. Mapping performance prediction results back to the analyzed software
architecture is difficult because the underlying concept’s abstract entities (e.g., places in
Petri Nets [15] or queue lengths in Layered Queuing Networks [8,23]) are not directly
linked to a software architecture. Also, performance prediction results are insufficiently
aggregated so that performance data is at a lower abstraction level than architectural el-
ements (e.g. only resource demands of single steps of behavior specifications are avail-
able, while reallocation decisions require resource demands at the component level).
Both aspects result in high time demands for the identification of performance prob-
lems like bottlenecks. For example, the SPE tool of [26] presents the resource demands
of single steps in the behavior specification (”software execution graph”) as well as the
overall demand of whole use cases or parts thereof (”scenarios”). Components are not
reflected in the models. Thus, for decisions like reallocation, one needs to manually
collect the results for all scenarios of the component.

The contribution of this paper is a novel integration of the approaches of software
performance engineering (SPE) and software cartography to support design decisions
by performance result visualizations at the level of software architectures. For SPE, our
approach uses Palladio [2], a representative state-of-the-art model-based performance
prediction approach. It is going to be integrated with software cartography [29], a scien-
tific discipline which reuses cartographic techniques for visualizing large applications,
i.e. software systems and their interconnections. Such a visualization technique is nec-
essary as large applications form highly complex and interdependent systems, which
are not easy to comprehend without graphical support. The visualizations are designed
according to the viewpoints of individual stakeholders2 to meet requirements of user
convenience and usability.

The targeted benefits of the presented approach are a more intuitive result interpre-
tation, a better usability, and thus the speedup of decision processes. These benefits are
achieved by assisting the software architect through visualization of performance pre-
diction results at an architectural level, which allows to map performance prediction
results to the elements of an architectural software model (cf. Fig. 2 / 5). Also, multiple
information layers are available to ease trade-off decisions and to help in identifying
crosscutting design impacts. Our solution overcomes the limited interpretability of per-
formance evaluation results as provided by Petri Nets, or Layered Queuing Networks.
It transforms an architectural model, a prediction result model, and graph description
models into a software architecture visualization which includes prediction results. The
generality of our visualization approach allows different kinds of viewpoints.

We successfully evaluated the approach in a quasi experiment involving both expe-
rienced software performance analysts and less experienced computer science students.
Our experiment shows an increased precision and effectiveness of design decisions pro-
cesses, making it more likely to choose the right design options. The approach is appli-
cable also for users with little experience in SPE.

2 The terms stakeholder and viewpoint are used here in accordance to their definitions in [13].
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In the remainder of this paper, Section 2 surveys related work, Section 3 describes
the foundations of software cartography and visualizations while Section 4 introduces
SPE. In Section 5, we present our novel integrated visualization approach, which is
evaluated in Section 6 in a quasi experiment, before Section 7 concludes the paper.

2 Related Work

Model-based software performance prediction is surveyed by Balsamo et al. in [1].
In this area, the existing approaches either support (i) result aggregation or (ii) links
to the software architecture, but no approach integrates both aspects, as described in
the following. The commercial SPE-ED [26] tool by Smith et al. highlights critical
actions in a behavioral model and highly utilized servers, and thus allows fast result
interpretation for software architects. Still, there is no support in SPE-ED for high-level
architectural constructs like composite components. In other commercial SPE tools like
“Performance Optimizer” or “Capacity Manager” from Hyperformix [12], visualiza-
tions are mostly table-based or bar charts to illustrate impacts of changing deployment,
but the visualizations are not connected to models of the software architecture. For Hy-
performix products, only little information on visualization techniques is available, and
the software itself is not freely available or affordable for universities to perform case
studies or experiments. Of the approaches surveyed in [1], those that do link perfor-
mance results back to architectural elements of the design model, like [30,14,5], still
do not provide aggregated information on an architectural level, e.g. for components.
The same is also true for similar newer approaches such as UML-Ψ [17].

Software model visualization in the field of software engineering is dominated
by the unified modeling language (UML) [21], which provides the common basis for
modeling single software systems. For performance modelling, the UML MARTE pro-
file [20] has been suggested, which introduces performance-related tagged values for
UML constructs. However, while the tagged values can be displayed in all UML dia-
gram types, they do not provide a specialized visualization of the performance results
(e.g. resource utilization visualization) to support fast insight and design decisions (e.g.
reallocation of components to spread the load). Furthermore, the creation of differ-
ent viewpoints according to the concerns of various stakeholders is not supported in
UML (cf. [19]).

Visualization approaches of arbitrary models like GMF (Graphical Modeling
Framework [6]) support the creation of graphical notations for arbitrary models (e.g.,
software or performance models), but put a special emphasis on creating graphical edi-
tors. In GMF, the user is granted a maximum amount of flexibility regarding the layout
of visualizations – means for specifying layout rules are limited in the GMF approach.
Also, GMF implies that the visualization of a specific concept uses a distinct unique
type of visualization – to add other graphical elements for the visualization, GMF needs
to create a new editor.

Other software performance visualization approaches [16,11,32,25,33] have al-
ready been proposed and they all support stakeholders in making design decisions to
improve software performance. However, none of theses approaches supports archi-
tectural design decisions by visualizations. Instead, they usually focus on parallel pro-
grams and often require executable implementations to monitor the software behaviour.
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All of these approaches have in common that their visualization is not empirically evalu-
ated. An additional limitation is that their outdated GUI techniques cannot be integrated
into modern IDEs like Eclipse. General performance evaluation tools (e.g. profilers or
performance monitors) are also implementation-centric and must execute the finished
application.

3 Software Cartography

Conventional cartography (making geographical maps; see e.g. [10]) provides tech-
niques well-suited for presenting complex information to a wide variety of people from
different educational backgrounds. These techniques range from color-coding accord-
ing to property values to the separation of the base map and layered additions.

Software cartography [29] re-uses cartographic techniques for visualitions of com-
plex interconnected systems, called software maps. These maps are stakeholder-specific
visualizations, especially designed as means for management support. In analogy to ur-
ban planning, a city and a software application landscape share a number of character-
istics [18]:

– They form networked, open systems with autonomous and active constituents.
– They are constantly evolving and (mostly) have no designated end of lifetime.
– Many people are involved as stakeholders, with different educational backgrounds.
– Different stakeholders have different concerns regarding the system, such that a

balance of interests has to be achieved.

Especially the people-centric characteristics motivate the idea of using cartographic
techniques for visualizing systems. Existing stakeholder-specific graphical notations
for certain aspects, e.g. the diagram types introduced in UML for the software develop-
ment process, are not widely known outside the respective domain – neither business
architects nor system administrators are likely to understand UML sufficiently. Map-
like visualization, although having no such well-defined semantics, can be more easily
understood by the various stakeholders.

One might argue that software maps do not provide a well-defined semantics, as the
same type of symbol (e.g. a rectangle) might have different meanings in different visu-
alizations (i.e. software maps). While this is true, the meaning of a specific symbol on
one software map is clarified using another cartographic technique, the legend. A leg-
end in conventional maps provides textual information on the meaning of the symbols
used in the map. Such information is also contained in a software map legend, which
also comprises information on the meaning of (relative) positioning, as different maps
can employ different positioning rules to express certain underlying information.

Relative positioning rules are especially of interest in the context of the base map,
leading to a distinction between different types of base maps – the so-called software
map types. There are three distinct basic types, of which one – a cluster map – is shown
in Figure 1 as an example. The cluster map uses the principle of clustering (i.e. nesting
of symbols into other symbols) to visualize relationships, preferably hierarchical ones.
On this map, a distance measure between the visualized concepts emerges from the
assignment of the concepts to parenting clusters – concepts in the same cluster are
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Fig. 1. Cluster map utilizing the layering principle

closer to each other than concepts in different clusters. Wittenburg [29] provides a more
in-depth introduction to the software map types.

Regarding the involvement of various stakeholders, as for example in the context of
performance predictions, the utilization of the so-called layering principle from carto-
graphy is especially beneficial. This concept allows the setup of a base map containing
the logical constituents of the system under consideration, further utilizing relative po-
sitioning of symbols to represent certain types of associations as spatial relationships,
which can be easily perceived. Additional information, only necessary for a certain
stakeholder group, can be presented on an additional layer, which can be displayed or
hidden on demand. Figure 1 illustrates this principle. In the context of software per-
formance predictions, especially the layers showing measures and interconnections are
of interest. The measures layer contains pie charts showing certain properties of the
system under consideration on an aggregated, e.g. business-relevant, level. The actual
interconnections, from which the properties of the system emerge, are contained in the
interconnections layer.

In this setting, a stakeholder from a business group can identify a certain system
based on the pie chart aggregation. Then the layer containing the interconnections can
be overlaid to achieve a link to underlying technical information. By the utilization of
the layering principle, it is ensured that the software system under consideration does
not change its graphical position between the different viewpoints, which would not
necessarily be the case, if stakeholder-specific visual notations were employed.

4 Software Performance Prediction and Visualization

It is significantly more expensive to deal with performance problems in an implemented
software system than to prevent performance problems before they occur [26]. Thus, it
is advantageous to detect performance deficiencies of a planned software system during
the design phase. As actual performance measurements of the system are not possible
during the design phase, the performance must be estimated (predicted) based on infor-
mation available at that moment.

Performance prediction is also needed in other scenarios where measurements are
impossible or cost too much effort. For example, to answer sizing questions on the
server to be used in relation to an expected workload, performance prediction can help
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to evaluate and to make design decisions (“is it more effective to buy server X or to
replace components C and D with ones having higher performance, but remaining on
an old server Y?”).

To answer such question on scalability, sizing etc., Software Performance Engineer-
ing (SPE [28]) is a systematic and well-studied approach for early estimation and pre-
diction of software performance. As input, SPE approaches take a system’s usage model
(i.e. workload and expected user behavior) and an architectural model (e.g. in UML)
which includes a static part (components and connectors), a behavioral part (e.g., a
strong abstraction of control and data flow), the resource environment (available server
and networks), and component allocation (a mapping between component and resource
environment). SPE is used to assess the feasibility of given performance requirements;
achieving the optimal performance is usually not an objective because of costs.

Visualization in SPE. The performance of an executed software application depends
on its usage of resources (e.g. CPU, HDD, network). Resource contention occurs when
competing requests to a shared resource have to wait. Resource contention leads to
a significant performance impact, which must be accounted for during performance
prediction. After transforming the architectural models into analysis models such as
Queueing Networks, SPE approaches analyze performance by employing simulation
or analytical solutions. In the analysis, the resources maintain queues, with resource
requests waiting if the resource is busy. Simulation or analytical solution of the modeled
resources allows to estimate performance metrics such as utilization, waiting time in the
queue, and response time. The length of such a queue allows to draw conclusions about
resource utilization over time, and to identify which resources are bottlenecks. To “feed
back” SPE results into their architecture, SPE users must be able to map SPE results
to the architectural models – but in practice, there is a significant gap between (usually
formal) analysis models of SPE (such as Queuing Networks and Petri Nets), and the
architectural models.

Furthermore, the results returned by SPE are often aggregated: the response time
for a coarse-grained application service does not allow to easily conclude which of the
used components is consuming the largest amount of CPU power. Similarly, the textual
output that reports the usage percentages of several CPUs still means that the SPE user
must manually map these results to the (usually graphical) deployment model. Finally,
to compare different design options, the respective SPE prediction results for them need
to be visualized so that the SPE user can comfortably compare them in a unified way.

Visualization Requirements. Thus, results that need to be visualized are not only “end-
user” performance metrics (e.g. service response time), but also “internal” metrics, such
as the utilization of a resource. Visualization should allow to detect performance prob-
lems and, based on this, to make the right design decisions. To increase software ar-
chitects’ effectiveness and correctness when designing with respect to performance, the
visualization must be easy to understand. Apart from presenting single, isolated results,
visualization of performance prediction results should consider architecture relation,
highlighting, correlation, and decomposition:

– The visualization should offer the software architect the same components as in the
design phase. Otherwise, the back-mapping of performance results gets ambiguous,
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error-prone and as our studies in Section 6 show, it leads to less correct and more
time-consuming design decisions. Consequently, results must be presented at the
architectural level.

– To make it easier to match the performance prediction results and the architecture
models, the aggregated results should be an overlay over the respective architecture
models; an overlay can be textual (e.g., a tooltip showing the median utilization),
or graphical (e.g., specific coloring of bottleneck resources).

– Visualizations that use multiple data dimensions (e.g., response times vs. more
powerful resources) must be supported to allow trade-off analyses (e.g., cost of
introducing cache vs. higher worst-case latency), and evaluation of cross-cutting
concerns (e.g., enabling time-consuming security features).

– Multiple viewpoints (e.g., static architecture viewpoint vs. deployment viewpoint)
of the same architectural prediction results should enable the stakeholder to delve
into details. The software architect can then analyze an architecture with different
focuses.

5 Integrated Approach

In our approach, we bring together visualizations from software cartography and per-
formance predictions at the level of software architecture. This combination promises
improved understanding of performance issues and the potential to easily optimize soft-
ware design.

Palladio [2] is a model-based state-of-the-art SPE approach that features an inte-
grated, Eclipse-based tool chain for modeling and evaluating software architectures.
Palladio will be used in the quasi experiment (cf. [24, p. 4]) of our approach because we
intend to study whether its visualization techniques must be enhanced, and which ben-
efits the enhancements would provide. Internally, Palladio uses Queueing Networks for
simulation-based performance prediction. Application models in Palladio are built on
the Palladio Component Metamodel (PCM), following the paradigms of model-driven
software development (MDSD).

In Palladio, raw performance prediction results are stored in a database. In the orig-
inal visualization, data is basically accumulated to depict pie charts, bar charts/histo-
grams, and line charts. However, the original visualization results are separated from
the architecture model (the prediction results were simply labeled with service names,
component names, and resource names). For example, the response time of a service is
visualized as a general probability distribution of response times (cf. Fig. 2).

5.1 Chosen Visualizations in the New Approach

With the new, extended visualization, software architecture and performance prediction
results are brought together in the visualization. For that, a new decorator model [9] an-
notates elements of a PCM model instance with prediction results. The decorator model
contains prediction results for each component, server node, and network connection.

To realize the requirements listed at the end of section 4, we used four basic view-
points to visualize performance results (these viewpoints are used in the evaluation
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Fig. 2. Original result visualization in Palladio: Histogram of a general distribution function of
service’s response time and a pie chart showing the utilization of a resource (top right)

discussed in Section 6, where the actual visualizations are also shown; cf. Fig. 5) in our
approach.

In the black-box resource environment viewpoint, server nodes and network con-
nections are visualized together with their utilization (i.e. percentage of busy and idle
times). In the visualization, strong network connections are thicker than slower ones.
For the utilization of a server node, we use the weighted average of the utilization of
its inner resources of one type (CPU, HDD, ...), weighting with their processing rate.
Thus, we obtain a measure relative to the overall processing rate of all resources of this
type. For passive resources such as thread pools, the utilization is analogously deter-
mined based on their capacity. If the server contains resources of different types (CPUs,
HDDs, and thread pools), the utilization of the resource type with the highest average
utilization is used, to allow fast bottleneck recognition.

In the white-box resource environment viewpoint, the first viewpoint is enhanced
by visualizing server nodes and nested hardware resources (such as CPUs, hard disks,
network connections, or thread pools) together with their respective utilization. Perfor-
mance metrics here also include the utilization per resource (e.g. CPU or HDD) of a
server node. In this viewpoint, also the average wait time (time for which requests are
waiting in a queue; relative to the wait time of all resources in the model) and the av-
erage demanded absolute time per resource can be visualized. The distinction between
server nodes and resources allows users to delve into details. If a server has multiple
CPUs, we can detect that, for example, only one CPU is under heavy load, while others
are idle. For scenarios in which scheduling can be influenced or where different types
of CPUs are used, one can then try to shift computations to another CPU.

In the white-box allocation viewpoint, the deployment of software components into
the execution environment is included into the visualization. In addition to server nodes
and network connections between them, also all components for each server, the con-
nection of components, their individual resource demands as well as the absolute re-
sponse time are visualized. The resource demand is shown relative to the summed-up
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resource demands of all components on this server node (for composite components,
also the internal resource demand is accumulated).

In the software component viewpoint, only software components, interfaces, and
connectors between components are displayed. For each component the absolute re-
sponse time is displayed.
Performance prediction result data is strongly aggregated with the intention to sup-
port understandability and to avoid overwhelming users with information. If the aggre-
gated data is not sufficient, software architects and performance analysts can still delve
into details using the original Palladio visualization, which provides access to specific
results like the response time of individual services of components.

To ease the interpretation and speed of recognition, coloring indicates potential bot-
tlenecks or critical architectural elements. Components with relative performance met-
rics (e.g., utilization) with more than 75% are colored red; while for resources, starting
from 75% orange and starting from 85% red is used. Beyond coloring, also multiple
data layers can be visualized for the same topology (same server nodes, network con-
nections, and component allocation). In our approach, we use the data layers to visualize
different usage scenarios to allow the estimation of impact for different usage scenar-
ios (e.g., resource utilization with few vs. many users). Compared to the visualization
requirements from Section 4, our visualization approach provides a) a relation between
architecture and performance prediction results, b) highlights critical architectural ele-
ments, c) eases correlation analysis through multiple layers, and d) enables decomposi-
tion by multiple viewpoints at different levels of detail. We will detail on visualizations
in the evaluation discussed in Section 6.

5.2 Applying the Software Cartography Approach to Visualizing Performance
Information

Software maps, as introduced in Section 3, are consistent visualizations of informa-
tion, i.e. a viewpoint on the information utilizing cartographic means. As creating these

Fig. 3. Basic principle behind the Syca transformation approach to visualization generation
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visualizations manually is both a time-consuming and error-prone process, an approach
for generating software maps from input information is presented in [7]. This approach
is based on object-oriented models of both the information and the visualization as
well as a model-to-model transformation, the so-called Syca transformation. The core
concepts of the approach are sketched in Figure 3 and lay the basis for the integra-
tion explained subsequently. Prior to details on the integration, the core models of the
visualization generation approach are introduced:

Information model. This (meta) model se ts up the language for describing the mod-
eling subject, i.e. it introduces the core concepts, which are used to create a model
of the subject’s reality. In the context of software performance prediction, the in-
formation model defines concepts such as components, connectors, and attributes
such as average utilization. The elements contained in an object-oriented informa-
tion model are classes, attributes, and relationships.

Semantic model. The semantic model contains instance data modeled according to the
respective information model, i.e. it contains information objects. In the context of
software performance prediction, these objects are instances of components and
interconnections, having assigned values for the attributes.

Visualization model. This (meta) model defines graphical concepts, either visual ones
– so called map symbols – or visualization rules, which describe graphical relation-
ships between the symbols. These rules can be used to specify relative positionings,
size, or the overall appearance of symbols at the level of graphical concepts without
having to supply all details of positioning or layout.

Symbolic model. This model contains visualization concept instances, i.e. map sym-
bols and visualization rules, modeled according to the respective visualization
model. By assigning visualization rules to the symbols, the relative positioning is
determined, although no absolute positions are specified.

All aforementioned models are described using the Meta Object Facility (MOF) [22].
This language therefore provides the common meta model for both information model
and visualization model.

The common meta model further lays the basis for expressing a mapping from
information model to visualization model concepts in terms of a model-to-model trans-
formation. This Syca transformation can be used to specify how a concept from the in-
formation model, e.g. a component, should be visualized, e.g. as a rectangle. Executing
the thus specified transformation, instances from the semantic model can be mapped
to instances in a symbolic model, which together describe a visualization. The trans-
formed symbolic model is subsequently handed over to a layouting component, which
computes the actual positions and sizes of the symbols in accordance with the respective
rules. For details on the layouting mechanism, see e.g. [7].

The above approach can handle arbitrary object-oriented information models and
corresponding instance data. Therefore, it is possible to apply it on the performance
prediction data (Result Decorator) as computed by the Palladio approach, which is also
represented in a decorated object-oriented model. The basic make-up of a respective
integration is sketched in Figure 4. Selected technical details of the integration are de-
scribed below.
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The model-transformation based approach for visualization generation has been im-
plemented in a prototypic Eclipse based tool, the SoCaTool [3]. It allows the technical
integration to the Palladio Bench, which is also realized based on the Eclipse platform.
In this integration, the decorated results from the performance prediction are read as se-
mantic models into the SoCaTool, which subsequently hands the data over to the Syca
transformation component. From this, a generated symbolic model is passed to the lay-
outer, which finally computes the absolute positioning of the symbols and thus creates a
visualization. Central cornerstone of the technical integration is hence the realization of
an appropriate Syca transformation. This transformation is built on the data contained
in the decorated resource model.

For this paper, the existing Palladio and SoCaTool have been extended by decorator
support, the Result Decorator itself, and the new Syca transformation. Screenshots of
the realized visualization approach are available online3.

6 Evaluation

To evaluate the chosen visualization of performance results, we conducted a quasi ex-
periment involving students and faculty members, all from the field of computer sci-
ence. Only about half of the faculty members was familiar with Palladio.

In the quasi experiment, we investigated four research questions:

Q1: Can participants make correct design decisions based on the visualization? To do
so, the participants need to correctly identify performance bottlenecks and be able
to solve performance issues (changing the architecture in the right way).

Q2: How long does it take the participants to evaluate a scenario?
Q3: How does the participants’ experience in software performance influence the above

metrics?
Q4: Do users of the new visualization perform better than users of the original Palladio

visualization?

To evaluate the quality of the improved visualization with respect to these ques-
tions, we conducted the experiment in two phases. In the first phase, we studied all four

3 http://sdqweb.ipd.uka.de/wiki/SoCa-Palladio



Improved Feedback for Architectural Performance Prediction 63

questions above on a mixed group of 21 participants, both faculty members and master
students.

The participants filled out a questionnaire with overall six different scenarios for
which they needed to choose one or more valid design decisions for optimizing a given
scenario. The scenario itself was roughly described in text, whereas the performance
results were present in the visualizations only. 14 of the participants used the original
Palladio visualization (P old), the remaining 7 participants used the new visualization
(C new). All participants needed to answer the same questionnaire, but were provided
with the different visualizations. Participants using the new visualization C new were
provided with result visualization as shown in Figure 5 and described in Section 6.1.
Participants using the original Palladio visualization P old were provided pie charts for
resource utilization, mean values and cumulated density functions for response time,
and/or behavior specifications of component internals for resource demands. Each vi-
sualization diagram provided a short legend.

The questionnaires provided multiple design options for each scenario. There were
correct and required design options (that would resolve the performance problems),
wrong design options (that would actually worsen the performance) and optional design
options (that might slightly improve performance or save cost). For each participant
and each scenario, we evaluated whether all correct and required design options and
no wrong design options were checked. In this case, the decision of the participant
for this scenario was considered correct. The optional design options had no influence
on this assessment. Thus, although we provided a multiple choice questionnaire, sheer
guessing would have led to very few correct decisions.

We asked the participants to self-assess their experience in software performance.
Based on the self-assessment, we can distinguish our results for participants with “low”
or “high” experience.

For the comparison (Q4), we performed statistical hypothesis testing on Q1 and Q2.
Our hypothesis were H11: “Participants using C new make in average more correct
design decisions over the evaluated scenarios than participants using P old” and H21:
“Participants using P old need longer for the questionnaire in average than participants
using C new”. We decide whether to reject the opposite null hypotheses H10 and H20

based on Welch’s t-test [27] and a significance level α = 0.05.
In the second phase, we studied how well participants totally untrained in both soft-

ware development and software performance can handle the new visualization for fur-
ther insight into Q3. We asked another 20 undergraduate students in their second year
to interpret the new visualization and also fill out the questionnaire described above.

We do not claim to have conducted a controlled experiment, in which we have con-
trolled all influencing factors (such as common knowledge of the participants). Rather,
our study allows an initial evaluation of the improved, new visualization C new.

6.1 Scenarios: Performance Design Decisions

To illustrate the possible visualizations, we created six different performance scenar-
ios in which changes in the software architecture design are required. All scenarios are
minimalistic and basic. More complex scenarios would be a combination of the visual-
ization of basic scenarios.
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Fig. 5. New visualizations

1) Server bottleneck. In the first scenario (cf. Fig. 5 A), two servers are connected by a
network connection. One of the servers is indicating a very high utilization (>=90%),
while the other has a normal utilization. In this case and at this level of information,
there are two basic alternatives for increasing the performance of the system: a) use
stronger server hardware for the highly utilized server, or b) consider changing compo-
nent allocations (see scenario 4). For this scenario it is crucial to allow fast bottleneck
recognition.
2) Network bottleneck. This scenario is comparable to the previous one (same topology;
similar to Fig. 5 A), beside the fact that another resource – the network connection – is
in an overload situation. Again, here two design alternatives are imaginable: a) increase
the bandwidth of the network connection, or b) change the component allocations such
that network traffic is reduced. Scenario 4 presents possible component relocations.
3) Replicated resources. If a single server has multiple CPUs or CPU cores, but just
one or few of them are utilized, a lack of parallelism is indicated (cf. Fig. 5 B). In
this case, a) other versions of utilized components with increased optimizations for
parallel execution can be used, or b) low utilized server nodes can be down-sized to
avoid wasting computational power, or c) further components can be allocated to the
same server (and possibly bound to single CPUs) to improve the utilization of unused
CPUs / cores. If the performance requirements are not fulfilled, also faster CPUs / cores
can be used to avoid a bottleneck.



Improved Feedback for Architectural Performance Prediction 65

4) Component’s resource demand. If server nodes are in an overload situation (cf.
Fig. 5 C), it is desirable to also examine the component’s allocation to server nodes for
gaining insight on the causes of load. Therefore, each component’s resource demand
must be known. If the resource demand is normalized per server node, one can easily
identify large demands which are likely to cause the overload: a) If at the same time
other server nodes have only little load, it is a possible alternative to move the compo-
nent with high resource demand to the other server nodes, b) if both, a server node and
also a connected network connection have a high load, one needs to rethink the com-
plete allocation and should also check whether for example the network connection
could be improved to support solution a), c) for the server node with high utilization,
also faster CPUs can be used.
5) Compatible components. In scenarios where two or more components offer the same
interface, they become exchangeable (cf. Fig. 5 D). This is the case for databases with
standardized interfaces, for example. By comparing the response times of exchangeable
components, the faster implementation should be easily selectable. Such component
selection decisions in general cannot be met, as component response time is sensible
for the usage profile. If for example, a database is optimized for read requests, but fed
with mostly writes, another database optimized for that purpose is much faster. Thus the
decision cannot be met in advance, instead performance results (here: response time)
must be visualized for a specific load situation.
6) Multiple usage profiles. As indicated in the previous case, components are subjected
to different usage profiles. Sometimes, also for a deployed component, the usage pro-
file still changes: Peak load situations, batch runs, or increasing users over time need
to be handled. To estimate the scalability and sensitivity of a software architecture for
changes in the usage profile, it is preferable to directly compare their impact on an ar-
chitecture level. If the architecture does not satisfy the requirements for different antic-
ipated load situations, the above scenarios 1-5 can be applied. Visualizations can apply
multiple data layers which can be interactively hidden / unhidden. In the experiment,
the participants compared two different usage profiles, each of which was visualized
similarly to figure 5 C.

6.2 Phase 1 Results

All participants completed the entire questionnaire with the above scenarios in an av-
erage of 26.43 minutes (new visualization C new) or 40.17 minutes (original Palladio
visualization P old).

Table 1 compares the results for question 1 (correctness) and question 2 (duration)
for the different levels of experience (question 3) and for the two visualizations (ques-
tion 4). Our first observation is that participants using the new visualization C new
were able to make better design decisions (92.8% correct vs. 72.7% correct for P old,
p-value = 0.007 < α, thus we reject H10). Both low and highly experienced partici-
pants performed similarly for their visualisation. It is remarkable that high experienced
participants using P old performed worse than low experienced. On the questionnaires
of some of these participants, we found manual calculations, which possibly lead to
wrong results. In column “total # of decisions”, we show the total number of decisions



66 K. Krogmann et al.

Table 1. Results for cartography (C new) and the original Palladio visualization (P old)

Experience % of correct deci-
sions

total number of de-
cisions

duration in min standard deviation
of duration

C new P old C new P old C new P old C new P old

low 91.7% 75.0% 24 36 28.25 37.00 15.44 4.24
high 94.5% 70.8% 18 48 24.00 41.75 13.08 12.45
total 92.8% 72.7% 42 84 26.43 40.17 13.46 10.13

made by all participants in the corresponding group: Each of the 8 participants evaluated
up to 6 scenarios.

For the duration, we again notice that participants using C new were able to finish
the decision process (including interpretation and the decision itself) more quickly (p-
value = 0.03 < α, thus we reject H20). Here, for low experienced participants using
C new, the standard deviation of the duration is three times higher than for P old.
Interestingly, more experienced participants needed longer than low experienced par-
ticipants for interpreting P old. Possibly, they tried to delve deeper in the information
available for P old, for example behavior specification (which did not lead to better
decisions).

Overall, C new performed significantly better with respect to both correctness and
duration. We can accept both hypotheses H11 and H21 stated above. The experience of
the participants (with at least basic knowledge in software engineering) does not seem
to have a strong impact on the results.

Table 2. Percentage of correct decisions for each scenario

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6
C new 100.0% 100.0% 100.0% 85.7% 85.7% 85.7%
P old 92.9% 92.9% 78.6% 35.7% 64.3% 71.4%
Average 95.2% 95.2% 85.7% 52.4% 71.4% 76.2%

Table 2 shows the percentage of correct decisions for each scenario and the two
visualizations. For the simpler scenarios 1 and 2, most subjects decided for the right
design options. For the more complex scenarios 3, 5, and 6, the ratio of correct decisions
is slightly lower for C new, whereas for P old, the ratio dropped about one quarter. For
scenario 4, the differences between C new and P old are most pronounced, as the P old
visualization seems to have been hard to interpret for most subjects: In P old, resource
environment and software architecture are split into two distinct views, which might
have been problematic to link. Here, most P old subjects could not correctly assess the
consequences of their proposed re-allocation decision.

6.3 Phase 2 Results

In phase 2, the 20 participants untrained on both software development and software
performance were able to make correct design decisions in 68.3% of a total number
of 99 completed scenarios (some participants only answered 3 or 4 scenarios). The
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duration was on average approx. 40 minutes. Thus, the new visualization C new seems
to have helped the participants, even though totally inexperienced, in gaining some
insight in the performance problems of the described scenarios. However, the lower
percentage of correct decisions shows that the visualization is probably not sufficient
to allow these totally inexperienced participants to make correct design decisions in
general and to reliably solve performance problems.

7 Conclusions

In this paper, we have presented an integrated approach for the visualization of software
performance at an architectural level. With visualization means from software cartog-
raphy, our approach depicts software performance prediction results in an software ar-
chitecture visualization. As our quasi experiment involving 41 participants shows, the
approach enables users with at least a basic level of experience in software develop-
ment to correctly derive design decisions from visualizations of performance predic-
tion. Compared to a reference group applying the original visualization of the Palladio
approach, participants performed more correctly and faster, independent of in-depth
experience with software performance prediction. Thus, our approach enables users to
map performance prediction results back to a software architecture model and lets them
decide for correct design alternatives.

Our approach meets demands of software cartography visualizations (cf. Section 4)
as it a) relates architecture and performance prediction results, b) highlights critical
architectural elements, c) eases correlation analysis through multiple layers, and d) en-
ables decomposition by multiple viewpoints at different levels of detail. Nevertheless,
our approach is not useful for completely untrained users, which have no experience
with software development and software performance engineering. Currently, our visu-
alizations are limited to four different views, although including support for an arbitrary
number of data layers.

For our future work, we plan to further push the automation of the integration of
the Palladio performance prediction approach with the SoCaTool software cartography.
Besides adding further views to the approach, we also would like to integrate other
quality attributes like reliability and maintainability. As our approach is not limited
to Palladio, it would be beneficial to use the proposed visualizations with other SPE
approaches.
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Abstract. Modern software systems are built to operate in an open
world setting. By this we mean software that is conceived as a dynami-
cally adaptable and evolvable aggregate of components that may change
at run time to respond to continuous changes in the external world.
Moreover, the software designer may have different degrees of ownership,
control, and visibility of the different parts that compose an application.
In this scenario, design-time assumptions may be based on knowledge
that may have different degrees of accuracy for the different parts of
the application and of the external world that interacts with the sys-
tem. Furthermore, even if initially accurate, they may later change after
the system is deployed and running. In this paper we investigate how
these characteristics influence the way engineers can deal with perfor-
mance attributes, such as response time. Following a model-driven ap-
proach, we discuss how to use at design time performance models based
on Queuing Networks to drive architectural reasoning. We also discuss
the possible use of keeping models alive at run time. This enables auto-
matic re-estimation of model parameters to reflect the real behavior of
the running system, re-execution of the model, and detection of possible
failure, which may trigger a reaction that generates suitable architec-
tural changes. We illustrate our contribution through a running example
and numerical simulations that show the effectiveness of the proposed
approach.

1 Introduction

In the past, software systems were mostly developed from scratch. The develop-
ment was managed by a single coordinating authority, which was responsible for
the overall quality of the resulting application. This authority had full ownership
of the application: every single piece was under its control and full visibility of the
process and product was possible. Component-based software development rep-
resented a major departure from this model. According to this paradigm, parts
of an application are developed, tested, and packaged by independent organi-
zations. The roles of the components developer and the components integrator
correspond to different degrees of ownership and visibility of the various parts
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that compose a componentized application. Today, however, service-oriented ar-
chitectures (SOAs) [26,27] are pushing this situation to an extreme case. SOAs
support the construction of systems whose parts may be discovered and changed
dynamically. Furthermore, services are components deployed and run by service
providers, while service integrators create new added-value services by simply
invoking existing external services. The lack of a global coordinating authority,
however, implies that the designers of an application that integrates external
services must take into account the chance that its components may evolve in-
dependently and unpredictably.

We often refer to this situation as open-world software [3]. The world in which
modern software applications are embedded is intrinsically open. It evolves con-
tinuously in terms of requirements to fulfill, properties and behaviors of the
domain (e.g., usage profiles), components that can be aggregated to form the
application, and bindings among these components. This situation is typical of
(business) services offered and invoked through the Internet, as in the case of
Web services. Pervasive computing applications are another typical case.

We investigate here how the open-world assumption affects the way applica-
tions are designed and constructed. Software modeling has long been advocated
as a crucial activity in designing complex software systems, which may affect
their overall quality. Modeling produces abstractions that represent particular
aspects of interest of a system and frees engineers from distracting details. By
reasoning on models, software architects can focus on specific system properties
and check, even automatically, if the system under design meets the desired re-
quirements. They can evaluate the effects of competing design alternatives on
requirements satisfaction. Architectural analysis can thus support anticipation
of flaws that could otherwise become manifest in later phases of the develop-
ment process, leading to unscheduled and costly activities of re-engineering and
corrective maintenance. Finally, according to a model-driven approach [24,25],
all steps of software development can be described as model-to-model transfor-
mations. Some transformations take a model as a source and transforms it into
another model as a target, which is more suitable for certain kinds of analy-
ses. As an example, an (annotated) UML Activity Diagram may be transformed
into a Markovian model to perform reliability analysis (see [16]). Model-to-model
correctness-preserving transformations may also provide generation of the target
system, which is thus generated rather than implemented.

The main goal of our research is to support model-driven development of
open-world applications. In particular, we focus on supporting software engi-
neers to evaluate the impact of their design decisions on non-functional quality
attributes of a composite application. By reasoning on architectural models, it is
possible to derive applications whose quality attributes can be analyzed and pre-
dicted at design time. For example, it is possible to predict certain performance
characteristics (such as response time) of the architecture of an application that
integrates a number of components, based on assumptions on the behavior of the
components and on the structure of the integrating workflow. One may change
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either the structure of the workflow or the expected behaviors of the components
and get different performance figures for the integrated application.

Open-world assumptions introduce some peculiar features in modeling. Con-
sider an application that is designed by composing a number of components,
orchestrated via some workflow. As an example, in the case of Web services, the
application may consist of a BPEL process that invokes a number of external
services. Some of the components (or services) are deployed and run by the owner
of the integrated application. Others instead are external components, deployed
and run by independent providers. Obviously, the precision and detail of the
model can be quite different for the two kinds of components. For instance, in
the latter case, components can be viewed as black boxes: all one can say about
them is what the component’s provider declares—what is published in registries,
in the case of Web services. In the former case, instead, a model is a white box,
and detailed information is available about its deployment platform.

Our on-going research is focusing on KAMI—a methodology and its support
tools—which aims at providing modeling support to open-world software over its
entire lifetime, from inception to operation. In a previous paper [15], we inves-
tigated the use of models to support design-time reasoning on reliability-related
properties, using Markovian models. This paper discusses another piece of the
KAMI puzzle, which focuses on the use of Queuing Networks (QNs) to support
analysis of performance attributes. We discuss how QNs can be used to model
the different kinds of components. Furthermore, we discuss the interplay between
design-time and run-time analysis, as we did in [15] for reliability attributes. In
an open-world setting, the parameters of the models of the various components
are likely to change at run time. They may change because the predicted val-
ues used at design time turn out to be inaccurate, or because of changes in the
components performed by their respective owners. Operational profiles of the ex-
pected use of the application are also likely to change over time. All such changes
can be detected by a monitoring component and detected changes may gener-
ate automatic updates of the values of the parameters. By keeping the updated
model alive at run time, it is possible to check whether requirements are still
met. In case of a violation, automatic, self-healing reactions may be triggered by
the model.

In the sequel, Section 2 describes our general framework for run-time model
evolution. Section 3 describes a systematic approach to modeling open systems
with QNs at run time. Section 4 describes a concrete running example with
numerical simulations that show the effectiveness of the approach. Section 5
discusses related works. Section 6 concludes the paper describing the current
limitations of our approach and future work.

2 Model Evolution with KAMI

The KAMI methodology starts at design time, when software architects build
models of their system. For example, they may want to assess the performance
of a particular architecture or they may want to compare two architectural alter-
natives for a component based system. To analyze and predict the performance
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of these competing solutions, they may build a QN model. Unfortunately, mod-
els for non-functional properties are characterized by and depend on numerical
parameters. In our example, QNs require several parameters: (1) Customer In-
terarrival Time Distribution (CITD), (2) Service Time Distribution (STD), and
(3) Routing Probabilities (RP), which are usually unknown at design time. Con-
sequently, model parameters depend on estimates provided by domain experts
or extracted by similar versions of the system under design.

Software architects reason on their models iteratively, refining them to meet
the desired requirements. Once a complete and satisfactory model is conceived
and validated with respect to requirements, an implementation based on the
model structure is built or generated. However, there is no guarantee that model
parameters used at design time are correct or still hold in the target environment
in which the system will be deployed. If they do not, the software may not
exhibit the predicted performance, leading to possible unsatisfactory behaviors
or failures.

KAMI addresses exactly this problem, which is crucial in the open-world
case. KAMI is fed with run-time data provided by a monitor, which are passed
to estimators that can produce new estimates of the numerical parameters of
the non-functional models, by updating the initial estimate with the a-posteriori
knowledge provided by run-time data. These continuous new estimates provide
increasingly more accurate values and enable continuous automatic check of the
desired requirements while the system is running. If the running system behaves
differently from the assumptions made at design time and violates a requirement
then a recovery action is triggered, aimed at managing the anomalous situation.
Ideally, KAMI could trigger self-repairing strategies, according to an autonomic
computing approach [17], which may synthesize an implementation that meets
the requirements.

Figure 2 illustrates our ongoing implementation of KAMI. KAMI is a plugin-
based software composed of: (1) Model Plugins, (2) System Models, (3) Input
Plugins. System Models are text files describing the models on which KAMI
operates. These files contain: (1) model descriptions, (2) the requirements the
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user is interested in, and (3) a set of exceptions to be raised when a requirement
is violated. For example, such file can contain a description of a QN and several
requirements (e.g., a threshold on average residence time or on average queue
length) with their associated exceptions aimed at managing the violations. Model
Plugins provide to KAMI the ability to handle different and new models, by
interpreting model files and their requirements. Finally, Input Plugins provide
to KAMI the ability to connect models with the run-time world in which the
implemented system is running. The purpose of such plugins is to handle different
input formats and protocols for run-time data (e.g, socket, RMI, etc.).

By supporting a feedback loop, which allows estimates of model parameters
to be tuned according to run-time data, models better capture real system be-
haviors. In addition, updated models evolve at run time following the changes in
the environment. Moreover, the more data we collect from the running instances
of the system, the more precise our models will be. Indeed, model parameters
will eventually converge to real values characterizing the modeled system. Con-
ceptually, KAMI establishes a feedback control loop between models and imple-
mentation, as shown in Figure 1.

3 Modeling with Queueing Networks in KAMI

In this section we discuss how QN models are incorporated in KAMI. We start
with a succint introduction to QNs, we then discuss modeling issues in the
context of open-world software, and finally we focus on parameter estimation.

3.1 Introduction to Queueing Networks

QNs [6,20] are a widely adopted modeling technique for performance analysis.
QNs are composed by a finite set of: (1) Service Centers, (2) Links, (3) Sources,
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and (4) Delay Centers.Service centers model system resources that process cus-
tomer requests. Each service center is composed by a Server and a Queue. Queues
can be characterized by finite or infinite length. In this paper we focuses on ser-
vice centers with infinite queues. Service centers are connected through Links
that form the network topology. Servers process jobs–hereafter we refer to re-
quests interchangeably with the term jobs–retrieved from their queue following
a specific policy (e.g., FIFO). Each processed request is then routed to another
service center though connections provided by links. More precisely, each server,
contained in a every service center, picks the next job from its queue (if not
empty), processes it, and selects one link that routes the processed request to
the queue of another service center. It is possible to specify a policy for the link
selection (e.g., probabilistic, round robin, etc.). The time spent in every server
by each request is modeled by continuous distributions such as exponential or
Poisson distributions. Jobs are generated by source nodes connected with links
to the rest of the QN. Source nodes are also characterized by continuous time dis-
tributions that model request interarrival times. Finally, delay centers are nodes
of the QN connected with links to the rest of the network exactly as service
centers, but they do not have an associated queue. Delay centers are described
only by a service time, with a continuous distribution, without an associated
queue. They correspond to service centers with infinite servers.

QNs may be solved analytically by evaluating a set of performance measures,
such as:

– Utilization: It is the ratio between the server’s busy time over the total time.
– Response Time: It is the interval between submission of a request into the

QN and output of results.
– Queue Length: It is the average queue length for a given service center.
– Throughput : It is the number of requests processed per unit of time.

The above measures are defined for a single service center, by they can also
apply to the whole network.

As we mentioned, QNs are characterized by several model parameters (CITD,
STD, RP). With specific values for these parameters it is possible to evaluate
the performance measures of interest by solving equations.
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Fig. 3. Queueing Network Example
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Figure 3 for example represents a QN with: (1) three service centers regulated
by exponential distributions with λ = 0.5, which corresponds to an average ser-
vice time equal to 1/λ = 2s, (2) a source node regulated by Poisson distribution
with λ = 5, which correspond to an average interarrival time equal to 5s, (3)
a delay center modeling an external component or service regulated by an ex-
ponential distribution with λ = 0.5, which corresponds to an average service
time equal to 1/λ = 2s and (4) routing probabilities as shown in the figure. A
complete description of QNs is beyond the scope of this paper and for a more
complete introduction the reader is referred to [2,7,8,19,20].

3.2 Queueing Networks for Open Systems

We decided to use QNs to evaluate performance of open systems because they
provide a good balance between a relative high accuracy in results and efficiency
[20]. However there is are pitfalls that software engineers must take into account
while modeling open systems with QNs. Hereafter we discuss and categorize the
most crucial ones.

In open systems, components may fall into different categories. First, they
may differ in the way they are used (use mode). Their use may be exclusive;
that is, the component is only used by the currently designed application. In
this case, the component may be modeled as a service center, since we have
full control of the flows of requests into its input queue. In other cases, the
component is shared among different applications, which we may not know,
although they concurrently access it. The component cannot be modeled as
service center because other jobs which we cannot control also can access the
service. In such a case, the component can be more simply—but less accurately—
modeled as a delay center.

As an example of these two cases, consider a component which provides func-
tionalities for video encoding and decoding. In case it is a component-off-the-shelf
(COTS), which is deployed within the current application and it is used exclu-
sively by it, then the designer has full control and visibility of its activations,
and thus it can be modeled by a service center. If, however, the tool is offered
by a provider as a Web service, it is potentially accessed by many clients, and
the designer has no control nor visibility of the queues of requests.

Another key factor that must be considered by the modeler is visibility of the
internals of the component. Both accuracy of and trust of of the component’s
performance characteristics depend on how detailed is the designer’s knowledge
of the component’s internals. If an accurate description of the component’s ar-
chitecture is available, its performance can be predicted quite accurately, for
example using a design-time tool like Palladio [4]. If instead the component is
a black-box, like in the case of Web services, the designer must rely on less
trustable figures published by the service provider or inferred by past observa-
tions. Note that visibility is often related to ownership. If one owns a component,
then normally one also has full access to its internals, and conversely. Further-
more, it is also related with stability. Whenever a component is owned, it only
evolves under control of the owner. If an accurate model of the component is
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available, there is no need to monitor the component at run time for possible
deviations and, consequently, update of the model. The above discussion leads
to the following main component categories:

– White-Box (WB) components. Their internal architecture is fully visible and
understood by the designer; for example, they have been developed in-house.
In addition, their use is exclusive by the current application.

– Grey-Box (GB) components. Their use is exclusive, but their internals are
not known; only the executable version of the component is available. COTS
are a typical example.

– White-Box Shared (WBS) components. The designer has full visibility of
the component, which however is not used exclusively within the application
being developed. An example is an in-house developed Web-service that is
used by the current application, but is also exported for use by others.

– Black-Box (BB) components. The designer has no visibility of the internals of
the component, whose use is shared with other unknown clients. An example
is an externally developed Web service developed by third parties that is
available on-line.

Table 1 summarizes the previous discussion by showing the main categories of
components, the choices we made for modeling them via QNs, and the graphical
notation we use.

Table 1. QN Notation for Open Systems

Notation Name Use Mode Visibility Description

White-Box (WB) exclusive yes service center

Grey-Box (GB) exclusive no service center

Source

White-Box Shared (WBS) shared yes
service center

with source node

Black-Box (BB) shared no delay center

3.3 Parameter Estimation and Run-Time Update

QN models are based on numerical parameters (STD, RP, CITD). The current
KAMI implementation supports QNs composed by service centers and delay
centers characterized by exponential distribution of service time. In this section
we review how the designer proceeds in KAMI to derive a model of the system at
design time. We then show how model parameters may be automatically updated
at run time to capture the possible run-time evolution of certain components or
usage profiles, or even inaccurate design-time estimates.
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At design time, the modeler specifies the exponential distribution for each
STD through its parameter λ, where 1/λ corresponds to the mean value of the
distribution and thus the average service time (the same applies for CITDs).
For WB components the STD parameter is extracted through design-time anal-
yses or simulations that produce the average service time. In the case of GB
or BB components, we assume that the value is published by the component
provider. For WBS components, besides the average service time (which is de-
rived as for WB components), engineers must also specify the expected arrival
rate of requests issued by external users. This value is equal to 1/λ where λ
is the parameter of the exponential distribution representing the CITD of such
requests. It is also necessary to specify CITD for the source nodes that represent
the requests issued by users of the system under design and RP. The values of
these parameters encode domain knowledge concerning usage profiles.

Let us now address the issue of how model parameters may be updated at
run time. Refined estimates of routing probabilities (RP) are handled in KAMI
through the Bayesian estimation technique illustrated in [15]. As for the other pa-
rameters, since KAMI supports exponential distributions to model service times
and arrival rates we could adopt the Maximum Likelihood Estimator (MLE). In
the case of exponential distribution it would be:

λ̂ =
1

∑N
i=1

ti

N

=
1
t̄

(1)

where ti is the ith execution time sampled at run-time over a total of N sam-
ples. By using this formula, it would be possible to estimate CITD and STD
parameters, given runtime data representing interarrival times of requests and
component execution times.

However, the MLE ignores the initial estimates provided by domain knowledge
or published in specifications by components providers (a-priori knowledge) and
considers only the information extracted by running instances of the system (a-
posteriori knowledge). Consequently, we propose a different approach that takes
into account both the contributions as shown in formula 2:

λ̂ = αλ0 + (1 − α)
1
t̄

(2)

where λ0 is the initial estimate and 0 ≤ α ≤ 1 is a parameter that the software
architects use to express their confidence with respect to initial estimates. A
reasonable value for α is 1

N which implies that for low values of N we trust more
the initial estimates than the ones computed by run-time data. Conversely, as N
becomes bigger our trust in estimates computed at run time grows consequently.
It is important to notice that the extreme values α = 0 and α = 1 respectively
correspond to ignoring a-priori knowledge and vice-versa.

4 A Running Example

This section illustrates an application of our approach to a concrete example,
which falls into the Web service scenario. The example represents a typical e-
commerce application that sells on-line goods to its users, by integrating the
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Fig. 4. Activity Diagram Example

following third-party services: a Payment Service and a Shipping Service. The
Payment Service provides a safe transactional payment service. The Shipping
Service handles shipping of goods to the customer’s address. It provides two
different operations: NrmShipping and ExpShipping. The former is a standard
shipping functionality while the latter represents a faster and more expensive
alternative. The integrated service also comprises several internal components,
such as: Search, Buy, CheckOut, Register, Login, and Logout, respectively in
charge of searching in the database of goods, managing the shopping cart, com-
puting the total cost of orders, managing user registration, authentication, and
logout. The Search component is built on top of an externally developed li-
brary (a COTS component) that optimizes queries over a database (e.g., [28]).
Figure 4 shows the workflow of the integrated service as an activity diagram.
CheckOut is implemented as a service, which is shared among other e-commerce
applications. It is managed by the same organization that is in charge of the cur-
rent application. We assume that the integrated system must satisfy a number
of performance requirements, such as:

– R1: “Average response time is ≤ 3s”
– R2: “Search component utilization ≤ 0.7”
– R3: “System throughput ≥ 1.8 job/s”

In order to analyze performance requirements of the integrated service, start-
ing from the activity diagram of Figure 4, we must build an analysis model
based on QNs. This is an example of a model-to-model transformation that will
be supported by KAMI; at this stage the environment only provides a tool that
transforms an activity diagram (source model) into a Continuos Time Markov
Chain as a target model, which is then used for reliability analysis. In this case,
model transformation is done manually and produces the QN in Figure 5 built
exploiting the taxonomy described in Section 3.2 as shown in Table 3.

Parameters of the model are then partly elicited from domain experts (about
usage profiles), partly estimated by looking into WB components by using such
tools as Palladio [4] or JMT [5], and partly obtained from external sources in
the case of components/services with external visibility. These are collectively
shown in Table 2. From estimated (or published) execution times and from
domain knowledge it straightforward to configure the exponential distributions
characterizing the QN.



80 C. Ghezzi and G. Tamburrelli

1 2

Search Buy

10

Logout

ExpShipping

8

Login

7

Register

0.4

0.6

0.2

0.3

0.7

0.3

0.7

Source
0 4

NrmShipping

Payment

0.8

Source
3

CheckOut

6

95

Fig. 5. Queuing Network Example

Table 2. Model Parameters

Usage Profile Value

% of users that choose an express shipping 40%
% of users that searches again after a buy operation 20%

Probability that an incoming user is a new user 0.3
Average Request Interarrival Time 0.8s

Average Request Interarrival Time for the CheckOut Web service 1.5s

Internal Components Expected Execution Time

Buy 0.15s
CheckOut 0.15s

Login 0.2s
Logout 0.2s
Register 0.2s

External Components Expected Execution Time

NrmShpping 0.5s
ExpShipping 0.5s

Payment 0.35s
Search 0.43s

Table 3. QN Model

Node Number Type Classification λ0

0 source node n/d 1.25
1 service center GB 2.326
2 service center WB 6.667
3 source node WBS source node 0.667
4 service center WBS service center 6.667
5 delay center BB 2
6 delay center BB 2
7 service center WB 5
8 service center WB 5
9 delay center BB 2.857
10 service center WB 5



Predicting Performance Properties for Open Systems with KAMI 81

(a) Estimation (b) Estimation Error

Fig. 6. Numerical Simulations

By running the resulting QN model, we obtain the following results, which
show that requirements are satisfied:

– “Average response time = 2.87s”
– “Search component utilization = 0.67”
– “System throughput = 1.92 job/s”

Suppose now that we are at run time. KAMI can calibrate the values of
model parameters by observing the real values at run time. Let us consider
requirement R1 and let us suppose that the actual average execution time for
Payment Service is 0.6s, which is higher than the published value (0.35s). If
we knew this actual value, we could deduce an average response time of 3.12s,
which violates requirement R1. KAMI can detect this violation thanks to its
capability to estimate the value of parameters. In fact, suppose that the following
trace of registered execution times for Payment Service has been observed: T =
(0.5, 0.5, 0.7, 0.6, 0.7), whose the average value is 0.6s. According to formula 2
(assuming α = 1

N ), KAMI estimates the CITD for the payment service with
λ̂ = 1.9, which produces a better approximation of the actual average response
time:

λ̂ =
1
5
λ0 + (1 − 1

5
)

1
∑5

i=1
ti

5

= 1.9

After updating the QN model with the new estimated value, KAMI discovers
at run time that the response time of the system is equal to 3.05s, which vio-
lates requirement R1. Having detected the failure, KAMI can activate a reaction
associated with the violated requirement, which can perform recovery actions.
Efficient and effective recovery strategies are still open issues that we plan to
investigate in our future work as stated in Section 6.

Figure 6(a) shows estimates produced by KAMI for the STD of the Pay-
ment Service. Notice that the estimate for λ initially corresponds to the a priori
knowledge provided by the service provider (i.e., λ0 = 1

0.35 = 2.857 and gradually
converges to the real value which is equal to 1

0.6 = 1.667. The effectiveness of the
approach can be measured considering the estimation error (E) computed as:
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E =
| estimated paramter-real parameter |

real parameter

Figure 6(b) shows the estimation error for the estimate in Figure 6(a). The ex-
ample illustrated in this section and its simulation were conceived for illustrative
purposes and do not represent a complete validation of the approach which is
beyond the scope of this paper and part of our future work.

5 Related Work

Many methods exist to support reasoning on non-functional properties of soft-
ware, based on models that are analyzed at design time. The approach investi-
gated by KAMI differs from these cases because it extends the lifetime of models
to also cover run time. By collecting run-time data, it is possible to estimate pa-
rameters and progressively improve the accuracy of the models. Calibrated mod-
els, in turn, may produce more accurate verification of the requirements. Only
few other similar approaches are described in the literature. For example, [32]
describes a methodology for estimation of model parameters through a Kalman
filter, which is fed with data produced by a monitor. This approach is similar to
our proposal since it combines new data with initial estimates, weighting them
by their confidence and it adapts to changes that occur in the modeled system
considering constant the system structure. Their approach is quite general and
effective, while in our proposal a specific statistical machinery has to be defined
for every supported model and developed in KAMI through plugins. Indeed, we
plan to integrate in KAMI a plugin for Kalman filtering, as described in [32].

A recent work [13] presents a framework for component reliability prediction
whose objective is to construct and solve a stochastic reliability model allowing
software architects to explore competing architectural designs. Specifically, the
authors tackle the definition of reliability models at architectural level and the
problems related to parameter estimation. The problem of correct parameter
estimation is also discussed in [18,30], where shortcomings of existing approaches
are identified and possible solutions are proposed.

Several approaches have been proposed in literature that deal with perfor-
mance aspects of open systems and in particular of web services and their com-
position. In particular, [23] describes a framework for composed service modeling
and QoS evaluation. Service composition is represented by a directed weighted
graphs where each node corresponds to service and edge weights represent the
transition probabilities of two subsequent tasks.

In [1], [11], [14], [21], and [22] queueing models have been used to identify
performance problems in web services or web applications. All these papers de-
scribes approaches that work only at design time. Simulation-based approaches
that analyze the performance of composite web services are described by [12],
[29], and [31]. Besides service time, they explicitly take into account communi-
cation latency, which in our approach is hidden and encapsulated within other
parameters. However these proposals rely on time-comsuming simulations that
are not suitable for run-time analysis.
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An approach that works at run time and monitors the execution to trigger
re-planning for composite Web services is proposed by [9]. This approach is
not based on QNs but on on a reduction-based mathematical model for QoS
computation (a similar approach is also described by Cardoso et al in [10]) and it
exploits genetic algorithms. Several current research efforts focus on performing
self-healing reactions at run time, to automatically adapt the software to changes
in the environment. These, however, are out of the scope of the work we described
here.

6 Conclusion and Future Work

KAMI aims at providing a comprehensive support to quality-driven and model-
driven development and operation of software systems that are situated in an
open world. In particular, it focuses on non-functional quality attributes. The
KAMI approach comes with estimation techniques that specifically support the
update at run time of several non-functional models. The initial results ob-
tained with the KAMI approach are described in [15], where a Discrete Time
Markov Chain (DTMC) is used to assess the reliability of service compositions.
A Bayesian technique is proposed by [15] for run-time estimation of the param-
eters of the model. This paper extended the approach to QNs, which may be
used to reason about performance properties.

The main goal of our future research is to integrate KAMI with other mod-
eling approaches that fit other kinds of analysis purposes. Different models may
in fact be used to reason about different quality attributes of a complex sys-
tem. They may provide complementary views which facilitate QoS analysis. The
crucial problem, however, is to guarantee that the different views are sound,
i.e., they do not contradict each other, so that the results of analysis can be
composed. We plan to do so by defining a set of predefined model-to-model
transformation rules. Moreover, we plan to enrich our current KAMI plugin for
QNs to support shared resources and multi-class and layered QNs. A complete
investigation and numerical validation of the approach described in this paper
and the investigation on how it deals with phase transitions–a common scenario
in modern software systems–is part of our future work. Finally, we plan to in-
vestigate effective and efficient recovery strategies aimed at closing the control
loop among the model and its implementation established through KAMI.
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Compositional Prediction of Timed Behaviour

for Process Control Architecture
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Abstract. The timing of properties is an essential consideration in the
design, implementation and maintenance of embedded software devel-
opment. In this paper, we present an approach to the prediction of
timed and probabilistic nonfunctional properties of process control ar-
chitectures. Our approach involves a novel compositional approach to
model checking of statements in Probabilistic Computational Tree Logic
(PCTL).

1 Introduction

The satisfaction of timing constraints is a central priority to the design, devel-
opment and maintenance of process control systems. While control theory is a
well understood branch of mathematics that enables us to determine timing re-
quirements for a system, the task of guaranteeing that architectures satisfy these
requirements is less understood. Furthermore, as process control systems become
dependent on component-based paradigm, there is an increased need for effective,
scalable, compositional tools and techniques for requirement verification.

This paper presents a methodology for predicting the likelihood of timed con-
straints holding over component-based process control software. We use Proba-
bilistic Computational Tree Logic (PCTL) as a formal language for specifying
required properties. PCTL enables a logic-based approach to specifying and ver-
ifying timed, probabilistic properties over dynamic models of system behaviour.
PCTL has been used effectively for verifying such properties over small systems,
as it provides a flexible language and is decidable. However, the model check-
ing algorithms for PCTL involve a form of Markov-chain analysis that quickly
results in state explosion for even moderately sized systems.

We solve this problem by developing a novel, compositional approach to veri-
fying PCTL properties over process control architectures. The key aspect of this
approach is the treatment of a component’s behaviour as parametrized over the
timing properties of a deployment context. The deployment context is described
in terms of PCTL formulae which are interpreted to give best, average and worst
case timing profiles for the component. Properties can then be checked over the
client’s behaviour instantiated by these profiles. If we are satisfied that a com-
ponent has the required properties, it can then be added to a larger context
within which other components may be analysed. When adding the component
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c© Springer-Verlag Berlin Heidelberg 2009
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to a larger context, we discard its behavioural information, apart from its PCTL
contracts, avoiding state explosion in future analysis. It is in this way that our
approach is compositional and scalable.

To the best of our knowledge, no existing approach has adapted PCTL to
compositional verification of component-based process control systems, nor on
relating compositional verification to runtime verification within the process con-
trol domain.

This paper is organized as follows:

– Section 2 discusses the aspects of process control systems that are of concern
to our methods.

– Section 3 describes the syntax and semantics of PCTL.
– Section 4 sketches our compositional approach to the verification of PCTL

constraints.
– Conclusions and related work are discussed in section 5.

2 Process Control Architectures

Process systems are typically built according to a hierarchical, bus-based archi-
tecture of the type depicted in Fig. 1. Process systems involve three layers. (1)
Field Management. Smart field devices perform some work related to the do-
main and also provide a wide range of information on the health of a device, its
configuration parameters, materials of construction, etc. Controller components
communicate with and coordinate field devices, typically through some kind of
field bus infrastructure. (2) Process Management. Distributed Control Systems
and SCADA systems are used to monitor and control overall processes, commu-
nicating to devices and controllers. (3) Business Management. The information
collected from the processes can be integrated into a wider business system that
might, for instance, manage the financial aspects of the manufacturing process.

Valve
Computer Handheld PDA

Pressure
measurement

Temperature
measurement

Positioner PD meters
common head

Analytical

Controller

Controller

Field
bus

Compound controller

Plant highway

Operator console Operator console

Fig. 1. A typical process system architecture
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Fig. 2. A simple process control architecture

Providing this information in a consistent manner to client applications mini-
mizes the effort required to provide this integration.

We are concerned the prediction of timing properties for a coarse grain view
of an overall process control system architecture. In particular, we are concerned
with verifying the timing properties of a client component operating at some level
of the process control hierarchy with respect to its server components. Such con-
cerns are key to developing controller software at the field management level and
to developing controller and operator software at the process management level.
This work is therefore in contrast to finer grain approaches to the development
of particular components in a process control system (for instance, the PECOS
methodology [3] is appropriate for developing component-based software for in-
dividual field devices). That work is complementary to ours, as we require that,
at the lowest level, basic field devices provide some contractual guarantee of
timing properties.

Example 1. Fig. 2 depicts a simple example of a lower level process control
architecture. (The example is based upon that given in [3, 9-11]. It consists of
two field devices, FlowReader and Valve. These devices are used by a process
control component, SimpleController, that ensures an even flow of liquid in a
pipe by controlling a valve. On detecting an deviation from the required flow
by reading the current flow value from the flow meter (achieved by sending a
signal to the meter’s provided port readFlow), the control component should
respond by altering the valves stem position by writing a new valve position to
the valve positioner (achieved by sending a signal to the valve’s provided port
changeVPos). This response must occur within a 10 seconds if the equipment at
the receiving end of the pipe is not to become overloaded.

Determining whether a component satisfies a required constraint will depend on
two factors. (1) The behavioural profile of the controller itself. The response may on
average involve quite a complex computation in order to calculate the new valve
angle. (2) The deployment context of the controller. The response will depend on
timing properties of the field components. As these components are typically built
from composition of third-party elements, detailed behavioural specifications may
not be known. However, the third-party vendors should provide some form of con-
tractual specification of their components’ timing behaviour. The combined effect
of both factors must be understood in order to verify component requirements.
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3 PCTL

Probabilistic Computational Tree Logic (PCTL) [4] enables us to specify require-
ments on the timing of when Boolean properties should hold over a system’s
execution. The language is probabilistic, in that requirements can be associated
with a likelihood of occurrence.

3.1 Syntax

PCTL formulae are built from atomic propositions, the usual logical connectives
(implication, conjunction and negation) and special operators for expressing time
and probabilities. We use the grammar of Fig. 3. B is basic boolean statements
T is timed statements and P are PCTL statements. The syntax is parametric
over a set of atomic propositions atom. int ranges over integers and float ranges
over reals between 0 and 1.

The informal meaning of formulae as a description of component behaviour is
understood with respect to the idea of a component that can execute a multiple
number of runs. Each run is invoked by an external call to the system from
a client. Each execution run is considered as a series of discrete states. The
transition from one state to another represents a discrete time step of some
length. The truth of a formula is determined according to the state of the system,
and, in the case of probabilistic formulae, the number of runs a system has had.

Propositional formulae B should be interpreted as statements about the sys-
tem that can be verified to be true or false at any state during an execution.1

Timed formulae T make statements about the way a run may evolve, given cer-
tain assumptions hold at a state. The informal meaning of the until statement
is as follows. The statement the statement A until B steps: s is true over the
execution of a component when, for some q ≤ s, assuming B is true at q, then
A is true at each time step k < q. The informal meaning of the leadsto state-
ment is as follows. The statement A leadsto B steps: s holds when, assuming A
is true at a state, B will become true within s steps. Probabilistic formulae P
are understood in terms of the probability of corresponding timing formulae be-
ing true for future runs. For instance, A until B steps: s prob: p is true over a
number of completed system runs, if the corresponding nonprobabilistic formula
A until B steps: s is likely to be true for the next run with a probability of p.
The case is similar for A leadsto B steps: s prob: p.

3.2 Formal Semantics

PCTL formulae are decidable over models of system behaviour described by
Probabilistic Kripke Frames. We describe how this is done.

We require the definition of a probabilistic deterministic finite state machine.

1 Our work can be trivially adapted to consider these as built using boolean predicates
over real valued system properties, but for reasons of space we will consider them as
purely atomic.
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B := atom | not B | B and B | B or B
T := B | B until T steps: int | F leadsto T steps: int
P := B | B until F steps: int prob: float | F leadsto F steps: int prob: float

Fig. 3. Our contractual specification language

Definition 1 (Probabilistic Deterministic Finite State Machine). A
Probabilistic Deterministic Finite State Machine (PFSM) is a tuple

D = 〈ZD, δD, initialD, f inalD〉
where ZD denotes the set of states. initialD ∈ ZD is a designated initial state,
while finalD ∈ P(ZD) is a set of final states. δD : ZD ×ZD → P is a total func-
tion, where P is the real numbers between 0 and 1. The sum of the probabilities
of transitions exiting from a state z in ZD is equal to 1.

Execution sequences are sequences of states (in terms of the component seman-
tics to follow, they arise as the result of transitions caused by the input of
events or the output of actions and the probabilities of the appropriate tran-
sition not failing). Given an execution sequence π = s1 . . . sn we write π(k)
for the k-th state of π, sk. Let PathPM denote the set of all the paths which
a PFSM D can take, and PathD(s) denote the set of all paths starting at
state s. We define Prob(∆) to be a probability measure over paths such that
1) If ∆ ⊆ {ω ∈ PathD(s0) | ω extends s1, . . . , sn} then

Prob(∆) = Prob(s0, s1, . . . , sk) = P (s0, s1) ∗ P (s1, s2) ∗ . . . ∗ P (sn−1, sn)

2) If ∆ ⊆ {ω ∈ PathD(s0) | ω extends s0} then Prob(∆) = 1, and
3) For any countable set {Xi}i∈I of disjoint subsets of PathD(s0),

Prob(
⋃

i∈I

Xi) = Σi∈IProb(Xi)

The semantics of our logic is given with respect to a Probabilistic Kripke
Frame, essentially a PFSM where atomic propositions are associated with states:

Definition 2 (Probabilistic Kripke Frame). A Probabilistic Kripke Frame
(PKF) for a PFSM is a tuple S = 〈DS , P ropS , hS〉 where DS is a PFSM, PropS

is a set of atomic propositions and h : ZDS → P(PropS).

The truth value of PCTL formulae can be computed for a given PKF K, yielding
the satisfaction relation

s |=K f

which says that the formula f is true at state s inside the structure K. The same
relation holds if f is path formula and s is a path inside the structure K.

Definition 3. The relation |=K is defined as follows, for arbitrary PCTL for-
mula f , state s and path π.
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– s |=K atom (atom ∈ PropK) iff atom ∈ h(s),
– s |=K not f iff s not |=K f ,
– s |=K f and g iff s |=K f and s |=K g,
– π |=K f until g steps: t iff there is an i ≤ t such that π(i) |=K g and π(j) |=K

f for all 0 ≤ j < i,
– π |=K f leadsto g steps: t iff, given π(0) |=K f , for some i ≤ t, π(i) |=K g.
– s |=K f until g steps: t prob: p iff

Prob{π ∈ Path(s) | π |=K f until g steps: t} ≥ p

– s |=K f leadsto g steps: t prob: p iff

Prob{π ∈ Path(s) | π |=K f leadsto g steps: t} ≥ p

The algorithms for deciding truth or falsity of PCTL statements against a
PKF are given in, for example, [4]. However, because the algorithms are essen-
tially based upon Markov chain analysis, the problem of checking PCTL formulae
against a system quickly becomes intangible for even medium sized systems. A
typical system description might consist of more than 500 states, which would
lead to a severe state explosion in the algorithms. This is why it is not useful
to employ PCTL as a requirements language if the architecture’s behaviour is
modelling using such a näıve approach.

4 Compositional Semantics

We propose a solution to this problem by means of a compositional approach to
PCTL evaluation. Essentially we evaluate PCTL formulae against behavioural
descriptions for individual components. We then discard the behavioural descrip-
tions themselves when composing these components with a client component. In
turn, we can evaluate PCTL formulae against a smaller behavioural description
of the client component – this description is formed from a behavioural profile
together with knowledge about the composed components obtained from their
contracts. We can then discard this description when compositing the client with
other clients, using only the PCTL formulae as contracts in this, and so on. At
any point in the process of composition, the behavioural description’s size should
be of a comparable scale to any other point. As a result, there is no state ex-
plosion in the model checking and the problem of verification becomes tangible
over larger architectures.

The approach is suited to coarse-grain process control style architectures, due
to their hierarchical nature: hierarchy means that controllers control field devices,
but field devices do not control controllers, and similarly for higher levels. The
approach is not as well suited for other domains, such as enterprise software
development, which generally requires a greater circularity of dependence.

Our approach to predicting properties about an architecture relies on con-
sidering two kinds of components: grey box components, which provide some
behavioural description outlining a behavioural profile and describing how the
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component calls other components via its required ports; and black box com-
ponents, that only provide PCTL statements as their behavioural description.
Our approach involves taking a grey-box description of a component and check-
ing required behaviour of its provided ports parametrized a deployment context,
consisting of black-box component descriptions.

4.1 Grey-Box Components

A grey-box component specification consists of provided and required interfaces
(given as a list of ports) and a p robabilistic behavioural semantics, defining
what happens when a provided port is invoked, calls to components connected
to the required ports.

A behavioural profile explains the relation between provided port invocations
and resulting calls to required ports.

Definition 4 (Behavioural profile). A behavioural profile is a tuple

D = 〈AD, ZD, P ropD, γD, initialD, f inalD, hD〉

satisfying the following conditions:

– AD is called the action alphabet and must include a unique element τ ,
– ZD denotes the set of states.
– initialD ∈ ZD is a designated initial state, while finalD ∈ P(ZD) is a set

of final states.
– PropD is a set of atomic proposition names.
– The transition function γD : ZD × Prop × AD × ZD → [0, 1] is total, such

that, for each t ∈ ZD, either of the following cases hold
• There is no s ∈ ZD such that γD(t, P, a, s) > 0 for P 	= true, and

Σs∈ZDγD(t, true, a, s) = 1.
• There is no s ∈ ZD such that γD(t, P, a, s) > 0, except for the cases

where, for some s1, s2 ∈ ZD, γD(t, P, τ, s1) = 1 and γD(t, not P, τ, s2) =
1 In this case, we call s a decision state. P is called the guard condition
for the decision state.

– h is a valuation function h : ZD → P(PropD).

A behavioural profile is essentially a PKF with binary guarded choice transitions.
Transitions specify three kinds of internal process, each taking one time step:
γ(s, P, a, s′) = p (a 	= τ) should be interpreted meaning that the component will,
with probability p call required port a to move from state s to s′, γ(s, P, τ, s′) =
p means that the component will, with probability p, perform some internal
computation to move from state s to s′, and γ(s, P, a, s′) = 1 means that, if
P is true for the component at state s (subject to deployment in a particular
context) then action a should be performed to go to state s′.

Definition 5 (Grey-box component). A grey-box component

〈P, R, U〉
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S1:
needUpdate 1.0:readFlow

S3:
gotUpdate
computing

[deviation]

0.8:

0.2:changeVPos

[not deviation]

[changed]

[not changed]

S2:
gotUpdate

S4:
attChange

Fig. 4. Visual representation of the behavioural profile for SimpleController.run

is a pair of provided and required port names, P and R, together with behavioural
profiles Up ∈ U for each provided port p ∈ P , such that the actions for Up are a
subset of the required ports R.

Example 2. The controller component SimpleController can be represented as
a grey-box component 〈{run}, {readFlow, changeVPos}, U , where U is the be-
havioural profile for SimpleController.run, depicted in Fig. 4. The initial state is
represented by two circles, decision states are represented as diamonds. A propo-
sition is shown inside the state if it is associated with the state according to the
valuation function. Transitions between non-decision states are represented by
arrows labelled by actions and probabilities.

In our ongoing example, we will interpret a transition as representing a 1 second
time step. In general, the timing interpretation of a transition depends on the
problem domain.

We will find the following operations useful in our modelling of component
composition. If S1, S2 and S are PKFs, p is a real number between 0 and 1
and f is a state, and U is a behavioural profile. 1) We define Join(S1, S2) to be
the PKF formed from taking the union of states from S1 and S2, retaining all
transitions, and adding a τ transition of probability 1 from any final state of S1

to the initial state of S2. 2) We define Join(S1, S2, p, f) to be the PKF formed
from taking the union of states from S1 and S2, retaining all transitions, and
adding a τ transition of probability p from any final state of S1 to the initial
state of S2, and a τ transition of probability 1 − p from any final state of S1 to
the state f . The final states of S2 become the final states of the new PKF.

Definition 6 (Joining PKFs). Take two PKFs

S1 = 〈〈A1, Z1, δ1, initial1, f inal1〉, P rop1, h1〉 and
S2 = 〈〈A2, Z2, δ2, initial2, f inal2〉, P rop2, h2〉
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Let p be a real number between 0 and 1 and f a set of state names. We define
Join(S1, S2, p, f) to be the PKF

Join(S1, S2, p) = 〈〈A1 ∪∗ A2, Z1 ∪∗ Z2 ∪ {f}, δ∗, initial1, f inal2〉,
P rop1 ∪ Prop2, h

∗〉

where

δ∗(s, a, s′) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ1(s, a, s′) if s, s′ ∈ Z1, a ∈ A1

δ2(s, a, s′) if s, s′ ∈ Z2, a ∈ A2

p if s ∈ final1, a = τ , s′ = initial2
1 − p if s ∈ final1, a = τ , s′ = f
0 otherwise

and

h∗(s) =

⎧
⎨

⎩

h1(s) if s ∈ Z1

h2(s) if s ∈ Z2

∅ otherwise

3) Insert(U, s, s′, S) is the behavioural profile formed from taking U and “in-
serting” the PKF S between s and s′ and “evaluating” any choices that can be
made if s′ is a decision state, by verifying truth of guards for transitions com-
ing from s′ against the final states of S. The operation involves “redirecting”
the transition between s and s′ to a behavioural profile transition of the same
probability and with guard true between s and the initial state of S. If s′ is a
decision state with a transitions to s2 and s3, guarded by propositions P and
not P respectively, then the new behavioural profile will set a final state f of

S to a behavioural profile transition with guard true to s2 if f � P and to s3 if
f � P . The full definition of Insert is slightly more involved but we omit it for
reasons of brevity.

4.2 Black-Box Components

A black-box context is meant to represent a (possibly compound) executable
component, without revealing details of its composition or dependencies. No dy-
namic behavioural information is provided about the effect of calling a provided
port, save that supplied by the port’s contract.

Definition 7 (Black-box component). A black-box component

B = 〈P, C〉

is a set of provided port names P a set of PCTL statements, C = {Cp|p ∈ P},
called the contracts of B.
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P BPKF (P )

any Boolean proposition The PKF

〈〈{τ}, {s}, δ, s, {s}〉, P rop, h〉
such that h(s) = {P} and δ is 0 over all argu-
ments.

A until B steps: t prob: p BPKF (B)

A leadsto B steps: t prob: p BPKF (B)

Fig. 5. Best case time PKF for a provided method contract P

The contract Cp is meant to specify how a call to port p will work:

– If Cp is a boolean proposition, then p will only require one state to perform
its computation, resulting in Cp being true.

– If Cp is of the form A until B steps: t prob: r, then, with a probability of r,
p will require at most t time steps to perform its computation, which will
terminate in B being true, with A holding until termination.

– If Cp is of the form A leadsto B steps: t prob: r, then, with a probability of
r, p will require at most t time steps to perform its computation, which will
begin with A being true, and will terminate in B being true.

Example 3. We will assume that our example field devices have known timing
that permit them to have the following representation as black-box components:

FlowReader = 〈{readFlow}, {true until deviation steps: 2 prob: 0.5}〉
and

Valve = 〈{changeVPos}, {true until changed steps: 6 prob: 0.99}〉
The idea is that a PCTL contract can be used to provide information about
how a black-box component is likely to behave when a provided port is invoked.
For our purposes, this information can be understood by obtaining “canonical”
PKFs that satisfy the contract. Given any contract, there are a range of possible
PKFs that will satisfy the contract, each with different timing. We define best-,
average- and worst-case timing PKFs for a contract C, BPKF (C), APKF (C)
and WPKF (C), respectively. The definition of APKF is given in Fig.6.

These provide a “spectrum” of possible response behaviours for the component.

Example 4. Fig. 7 (a) depicts

APKF (true until deviation steps: 2 prob: 0.5)

the APKF for the contract of FlowReader.readFlow and (b) the contract for
Valve.changeVPos,

APKF (true until changed steps: 6 prob: 0.99)
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P APKF (P )

any Boolean proposition The PKF
〈〈{τ}, {s}, δ, s, {s}〉, P rop, h〉

such that h(s) = {P} and δ is 0 over all arguments.
A until B steps: t prob: p The PKF Mk defined by the recursive equations

M0 = APKF (B)
M1 = Join(APKF (A)0, M0, p, {f})

Mi+1 = Join(APKF (A)i, Mi, 1, {}) 1 < i < k

where k = t/2 if t is even and (t+1)/2 if t is odd, APKF (A)i

is APKF (A) with all states renamed to be disjoint from Mi,
fa is the set of final states of APKF (A)i and f is a unique
stand disjoint from Join(APKF (A)i and Mi.

Fig. 6. Average time PKF for a provided method contract

0.5: deviation

0.5:

1.0: changed1.0: .99:

0.11

(a)

(b)

Fig. 7. Visual representation of APKFs for the black-box components’ contracts

Theorem 1. Given any PCTL formula A, if BK=BPKF (A), AK=APKF (A)
and WK = APKF (A) then initialBK �BK A, initialAK �AK A and
initialAK �WK A.

4.3 Component Deployment

Definition 8 (Deployment context). LetA be a grey-box component 〈P, R, U〉.
Then a deployment context for A, c, is a mapping from R to black-box components
of the form

c(r) = 〈Pc(r), Cc(r)〉
such that r ∈ P . The deployment contracts for A are defined to be

{Cc(r) | r ∈ R}
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For example, it should be clear that the two black-box representions of our
field components above form a deployment context for the SimpleController grey-
box component.

Given a grey-box client component and a deployment context, we can deter-
mine a PKF for the composition of the grey-box component with the context’s
black-box components. Essentially, this PKF is obtained by 1) inserting a be-
havioural description of a black-box component wherever its port was invoked
by an action call in the behavioural profile and 2) determining what transitions
must necessarily be made from a decision state, given the knowledge at that
state (that might be informed by previous black-box evaluation).

For example, in the behavioural profile for SimpleController, we need to add
the PKF that describes FlowReader.readFlow after the readFlow port has been
invoked. Similarly, if the result of the FlowReader device is that a deviation from
the norm has occurred, the controller must move to computation of the correct
valve position – but if the device does not detect a deviation, the controller must
return to its original state.

The development of the PKF depends on the choice of PKF used for the con-
text’s components: a best-case time will result in a faster PKF for the grey-box
component, worst-case will result in a slower PKF. Depending on the domain,
these three forms of PKF should be examined, in order to get a fair evaluation
of the architecture.2

The average-case time PKF for a deployed component is given below – the
cases for the other timings are similar.

Definition 9 (Average-case PKF for a deployed component). Let
A = 〈P, R, U〉 be a grey-box component, m ∈ P a provided method with profile
Um and let c be a deployment context for A with {Cc(r)|r ∈ R} the deployment
contracts for A. Assume the set of required ports used by A is R = {a1, . . . an}.

The average-case PKF for m in A deployed within C, APKF (A, p, C), is
defined as follows.

First we define the behavioural profile Mn recursively as follows.

1. Let M0 = Um.
2. Let {(sj , s

′
j)} (j = 0, . . . , ki) be the set of state pairs satisfying

γMi−1(sj , true, ai, s
′
j) > 0. Each pair consists of a state s′j that can be reached

from a non-decision state sj by sending a request to a required port ai. Then
let Mi be the result Nki of the following recursion:
(a) Define N0 = Insert(Mi−1, s0, s

′
0, APKF (Cc(ai))

∗).
(b) Nv = Insert(Nv, sv, s

′
v, APKF (Cc(ai))

v)
where APKF (Cc(ai))

∗ and APKF (Cc(ai))
v are APKF (Cc(ai)) with states

renamed to be disjoint from the states of Mi−1 and Nv respectively.

It can be shown that Mn does not contain any transitions involving actions other
than τ .
2 Other forms of PKF can be defined to give alternative estimations of how the black-

box components behave.
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needUpdate 1.0:readFlow gotUpdate
computing1.0:

0.8:

0.2:changeVPos

1.0:

1.0:

deviation gotUpdate
deviation

gotUpdate

1.0:

1.0:

1.0:1.0:0.99:changed
0.11:

attChange
changed

attChange1.0:

1.0:

1.0:

Fig. 8. Visual representation of APKF (SimpleController, fv)

Then,

APKF (A, m, c) = 〈〈ZMn , AMn , δ, initialMn, f inalMn〉, P ropMn , hMn〉

where δ is defined so that, for any s1, s2 ∈ ZMn, a ∈ AMn , δ(s1, a, s2) =
γ(s1, P, a, s2) for some P .

Theorem 2. Given any grey-box component A with provided port m and context
c, APKF (A, m, c) is a well defined PKF.

Proof. Using the definition of behavioural profile, by induction on C. �

Example 5. The architecture of Fig. 2 can be understood as an example of de-
ployment. The SimpleController component, as a grey-box component, is deployed
within a context fv defined

fv(readFlow) = FlowReader = 〈readFlow, true until deviation steps: 2 prob: 0.5〉

fv(changeVPos)Valve = 〈changeVPos, true until changed steps: 6 prob: 0.99〉
The context should be understood as prescribing the required ports of
SimpleController to be connected by a behavioural relation with the provided
ports of FlowReader. The resulting average-case PKF for A in this context is
depicted in Fig. 8.

4.4 Parametrized and Compositonal Verification

The approach to verifying required timing constraints against a grey-box com-
ponent C is then as follows.
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1. Take a constraint P that is required to hold after invoking provided method
p on C.

2. Choose a particular deployment environment D for the component.
3. Build BPKF (C, p, D), APKF (C, p, D) and WPKF (C, p, D).
4. The constraint P can then be verified against these PKFs to give a picture

of how the constraint applies to the system assuming the best, average and
worst case timing behaviour for components in the environment.

5. The acceptance or rejection of the component as satisfying the constraint
should be informed by these results, together with some domain-specific
heuristic.

Example 6. We require that, during a call to run, SimpleController enables a
change in valve position within 10 seconds of discovering a deviation in the
required flow. It is acceptable if this timing requirement is met 99% of the time.
This condition is formally specified as the PCTL statement:

true until deviation until attChange steps: 10 prob: .99 steps: 60 prob: 1

Assuming the deployment context described above, the statement is met by the
best case time PKF, but is not satisfied by the average or worst case time PKFs.
For this particular domain, we need at least average case time PKF to satisfy the
requirement. The architect therefore needs to make a decision to either improve
the timing of parts of the deployment context or else improve on the design of
the grey-box component.

Compositional verification of components within a hierarchy is as follows.
Take a grey-box component C whose provided ports P have all been accepted as
satisfying a set of constraints {CT } T ∈ P with respect to a deployment context
D within a particular architecture. The component can then be treated as a
black-box component 〈P, {CT }〉 and used as part of a new deployment context
over which a grey-box component higher up in the process control hierarchy can
be evaluated. This successive evaluation will not result in a state space explosion,
as the previous deployment context is not used.

5 Related Work and Conclusions

Most work involving PCTL for specification of systems involves static verifica-
tion of state transition designs. Younes and Simmons [9] consider probabilistic
verification that is model independent. They used Continuous Stochastic Logic
(CSL), which considers continuous time, in contrast to our use of PCTL with
discrete time. They used acceptance sampling – the approach also used upper
and lower bounds to decide if the formula truth value, which might could be a
useful addition to our approach.

PCTL has been used by Jayaputera, Schmidt and the current authors [2], as
a language for runtime verification of enterprise applications written in .NET
[5]. However, that work was not compositional – the larger the architecture, the
more difficult it became to do model checking.
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Our approach to contractual specification complements previous work pio-
neered by Reussner [6] that has since evolved to become the Palladio component
model [1]. That work also involves a parametrized approach to component reli-
ability models, where a component’s probabilistic finite state machine was de-
termined according to a behavioural profile that was parametrized according to
the behaviour of a deployment context. Markov chain analysis is used to arrive
at a reliability measure for a component that depends on the context. Schmidt’s
group at Monash University has also developed this approach further with the
idea of parametrized finite state machines, and had success in application of this
to embedded systems [7,8].

It is envisaged that compositional methods similar to these will become a
useful tool in coarse-grained process system design.

Our analysis becomes useful in the transition from design to implementation,
when used in conjunction with model-driven approaches to synthesize appropri-
ate monitoring infrastructure to check that our predictions hold in reality. This
idea is currently being developed by the Predictable Assembly Laboratory3 at
King’s College London.
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Abstract. The Architecture Analysis and Design Language (AADL) is
a popular language for architectural modeling and analysis of software
intensive systems in application domains such as automotive, avionics,
railway and medical systems. These systems often have stringent real-
time requirements. This paper presents an extension to AADL’s behavior
model using time annotations in order to improve the evaluation of tim-
ing properties in AADL. The translational semantics of this extension
is based on mappings to the Timed Abstract State Machines (TASM)
language. As a result, timing analysis with timed simulation or timed
model checking is possible. The translation is supported by an Eclipse-
based plug-in and the approach is validated with a case study of an
industrial production cell system.

Keywords: AADL, Behavior Annex, TASM, Translation.

1 Introduction

Time-critical embedded systems play a vital role in, e.g. aerospace, automotive,
air traffic control, railway, and medical applications. Designing such systems is
challenging, because the fulfillment of real-time requirements and resource con-
straints has to be proven in the development process. The architecture design
phase is of specific practical interest, as the timing behavior and resource con-
sumption of systems depend heavily on the architecture chosen for these systems.
Furthermore, architectural mistakes that cause a system not to fulfill certain real-
time requirements are hard to correct in later development phases. As a result,
a development process for time-critical embedded systems should include veri-
fication techniques in the architecture design phase to provide evidence that a
system architecture has the potential to fulfill its real-time requirements [1,2,3].
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In this paper, timed simulations are used for evaluating real-time require-
ments. The Architecture Analysis and Design Language (AADL) [4] has been
chosen, due to the sound specification language and its industrial use for the de-
velopment of embedded systems in the automotive and avionic area. To allow for
a specification of timing behavior in AADL, we have extended AADL’s behavior
annex [5] with time annotations that provide a minimum and maximum time for
each behavioral transition in the model. To provide a formal semantics of these
extensions, Timed Abstract State Machines (TASMs) [6] are used as the formal
foundation. In detail, this paper describes a translational semantic that maps
the extended behavior specifications of AADL into a network of timed abstract
state machines. As a result, existing evaluation and verification techniques, such
as timed simulations [7] and timed model checking [3] defined for the TASM
specification formalism could also be applied to extended AADL specifications.
The translation of time-extended AADL specifications into TASM is supported
by a tool called AADLtoTASM and the overall approach is validated with a case
study of an industrial production cell.

The rest of this paper is organized as follows: Section 2 introduces the running
example of a production cell system and gives an overview of the used specification
formalisms: AADL with its behavior annex as well as TASM. Section 3 presents
the time extension of AADL’s behavior annex. Furthermore, the translational se-
mantics and tool support are also presented in this section. The results of timed
simulations of the case study are presented in Section 4. Finally, in Section 5 the
approach is compared with related work and Section 6 concludes the paper and
gives an outlook to future work.

2 Background

2.1 The Production Cell - a Running Example

In order to explain and validate the approach of this paper, a running example of
a production cell system is used. This case study is based on an automated manu-
facturing system which models an industrial plant in Karlsruhe (Germany). The
industrial production cell system was first described by Lewerentz and Lindner
in [8]. Ouimet et al. defined it in TASM in [9] as depicted in Figure 1.

The overall purpose of the system is to attach two bolts to a metal block.
The system is not controlled by a central unit. Instead, the production cell
components communicate with each other through ports and bus connections.
The components work concurrently; when a component is ready to accept a new
block it notifies the preceding component, which in turn acknowledges that is has
loaded the block. There is also a signal acknowledging that the loading location
of the production cell component is free.

The system is composed of the robot arms Loader, BeltToPress (Arm A), and
PressToBelt (Arm B), the conveyer belts FeedBelt and DepositBelt as well as
the Press. The system input are sets of blocks arriving in crates and the output
are the same blocks with bolts attached to them. Once a block has been loaded,
it is ”dragged” through the system. See Figure 2 for a schematic description.
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Fig. 1. The Production Cell System as presented in [9]
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Fig. 2. Schematic Description of the Production Cell System

To describe the behavior of the production cell components let us look at the
loader. While waiting, it is parked at the crate with the magnet turned off. When
it receives a signal from the feed belt that it is ready to receive a new block, the
loader turns the magnet on, moves the arm onto the beginning of the feed belt,
turns the magnet off, and signals the feed belt that it has loaded a block. The
rest of the production cell components work in similar fashions.

2.2 The Architecture Analysis and Design Language

AADL (aadl.info) is a language intended for the design of system hardware and
software. It is a Society of Automotive Engineers (www.sae.org) standard based
on MetaH [10] and UML 2.0 [11,12].
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The AADL standard [4] includes runtime semantics for mechanisms of exchange
and control of data, including message passing, event passing, synchronized access
to shared data, thread scheduling protocols, and timing requirements.

AADL can be used to model and analyze systems already in use as well as to
design new systems. AADL can also be used in the analysis of partially defined ar-
chitectural patterns. Moreover, AADL supports the early prediction and analysis
of critical system qualities, such as performance, schedulability, and reliability.

In AADL, a model consists of syntactical elements. There are three categories
of elements. The first category is the application software:

– Thread. A thread can execute concurrently and be organized into thread
groups.

– Thread Group. A thread group is a component abstraction for logically
organizing threads or thread groups within a process.

– Process. A process is a protected address space whose boundaries are en-
forced at runtime.

– Data. A data component models types as well as static data.
– Subprogram. A subprogram models a callable block of source code.

The second category is the execution platform (the hardware):

– Processor. A processor schedules and executes threads.
– Memory. A memory component is used to store code and data.
– Device. A device represents sensors and actuators that interface with the

external environment.
– Bus. A bus interconnects processors, memory, and devices.

The third category contains only one element: the system components. System
components can consist of software and hardware components as well as other
systems.

Component definitions are divided into types holding the public (visible to
other components) features, and implementations that define the non-public
parts of the component.

The components interact through defined interfaces, which consist of direc-
tional flows through event and data ports. It is possible to define physical port-
to-port connections as well as logical flows through chains of ports.

Listing 1 shows the AADL ProductionCell system of section 2.1 (in AADL,
two hyphens introduce a comment).

2.3 The Timed Abstract State Machines

TASM is specification language for reactive real-time systems. It has been devel-
oped at the Embedded Systems Laboratory (esl.mit.edu) at the Massachusetts
Institute of Technology as a part of the Hi-Five project [13].

Formally, a TASM specification is a pair < E, ASM > [14] where E is the en-
vironment, which is a pair E =< EV, TU > where EV denotes the environment
variables (a set of typed variables) and TU is the type universe, a set of types
that includes real numbers, integer, boolean constants, and user-defined types.
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Listing 1. The ProductionCell System

system Product ionCe l l
end Product ionCe l l ;

system implementation Product ionCe l l . impl
subcomponents

l o ade r : system Loader ;
f e edBe l t : system FeedBelt ;
robot : system Robot ;
p r e s s : system Press ;
d epos i tBe l t : system Depos i tBe l t ;

connections
event port f e edBe l t . FeedBeltReady −> l o ade r . FeedBeltReady ;
event port l o ade r . BlockDropped −> f e edBe l t . BlockDropped ;
event port f e edBe l t . BlockPicked −> l o ade r . BlockPicked ;
−− . . .

end Product ionCe l l . impl ;

ASM is the machine, which is a triple < MV, CV, R > where MV is the set
of read-only monitored variables, CV is the set of controlled variables (both MC
and CV are subsets of EV ) and R is the set of rules (n, r) where n is a name and
r is a rule of the form ”if C then A” where C is an expression that evaluates
to an element in BV U and A is an action. It is also possible to attach an else
rule on the form ”else A”.

Technically, a TASM specification is made up of machines. A specification
must hold at least one main machine with its set of rules. Beside main ma-
chines, it is also possible to define sub machines and function machines. A sub
machine accesses1 the variables of the model and work as a procedure in a
programming language, with the difference that it does not accept parameters.
A function machine is equivalent to a function in a programming language; it
accepts parameters and returns a value. However, it cannot access the global
variables of the model.

A transition between two states in a TASM machine can be annotated by a
time interval defining the minimal and maximal time to perform the transition.

The TASM Toolset [14] is an integrated development environment, composed
of a project manager, an editor, an interpreter, and a simulator. The specification
machines can be simulated in the Toolset.

3 Time Extension of the AADL Behavior Annex

3.1 The AADL Behavior Annex Extension

In order to increase the expressiveness of AADL, it is possible to add annexes.
One of them is the Behavior Annex [15] that models an abstract state ma-
chine [16].

Each component of the model describes its logic by defining a behavior model,
which consists of three parts [5]:

1 The term access is a comprehensive term for inspect and modifiy.
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– States. The states of the machine, one of them is the initial state.
– Transitions. The condition for a transition from one state to another (or

the same state) is determined by a guard: an expression that evaluates to
true or false. It is also possible to attach a set of actions to be executed
when the transition is performed.

– State Variables with Initializations. The variables are similar to variables
in programming languages. They can be initialized, inspected, and assigned.

In this paper, we add the concept of time to the transitions. In addition to
the guard, each transition also has a time interval defining the minimal and
maximal time for the transition performance. The grammar of the extended
behavior model is given in Table 3, with the extensions underlined. The time
annotations can be an interval, a single integer value representing both the lower
and upper limit of an interval, or the word null, representing the absence of a
time annotation.

Listing 2 defines the behavior model of the ProductionCell system that has
been described earlier in Listing 1. The model is extended in relation to the
standard in two ways:

– Channel Initialization. When the model starts to execute, a trigger mes-
sage is sent to the OutBlockReady channel.

– Time. When the transitions occur, a time period is recorded. It is one time
unit in all four transitions of Listing 2.

Listing 2. The Behavior Model of the ProductionCell System

annex Product ionCe l l {∗∗
state variables

LoadedBlocks : i n t e g e r ;
StoredBlocks : i n t e g e r ;

i n i t i a l
OutBlockReady ! ;
LoadedBlocks := 0 ;
StoredBlocks := 0 ;

states
Waiting : i n i t i a l state ;
Sending , Rece iv ing : state ;

transitions
Waiting −[( LoadedBlocks < 10) and InBlockReady ? , 1]−> Sending

{ InBlockLoaded ! ; }
Sending −[ InBlockPicked ? , 1]−> Waiting

{LoadedBlocks := LoadedBlocks + 1;}
Waiting −[OutBlockLoaded? , 1]−> Rece iv ing

{OutBlockPicked ! ; }
Rece iv ing −[true , 1]−> Waiting

{OutBlockReady ! ; StoredBlocks := StoredBlocks + 1;}
∗∗} ;

3.2 Translation Semantics

The translation to TASM has two phases: analysis and generation. The analysis
phase follows the syntax of Table 3 to achieve a full coverage of the language.
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The aim of this phase is to translate an extended AADL specification into a tuple
consisting of a state variable map, a state variable set, a set of state variables
to become initialized, the state set, the initial state (it can only be one), and
the transaction set. The generation phase takes the tuple defined in the analysis
phase as an input and returns for each transition (if present) a time specification
and an if-statement testing the current state together with the guard expression
and updating the new state value as well as the action list. See Tables 1 and
2 for pseudo code samples describing the analysis of an AADL behavior model
and the generation of the corresponding TASM main machine, respectively.

In plain English the translation steps can be described as follows:

– For each model, its states are translated into an enumeration type that has
the states as its possible values. Moreover, for each model, its states are also
translated into a global variable of the enumeration type above. The variable
is initialized with the enumeration value corresponding to the model’s initial
state. For the production cell system of Section 2.1, the generated types
and variables is shown in Listing 3 (ProductionCellStateSet is the type and
ProductionCellState is the variable).

Listing 3. The AADL behavior annex states of Listing 2 translated into TASM
global type and variable.

Product ionCe l lStateSet := {Waiting , Sending , Rece iv ing } ;
Product ionCe l lStateSet Product ionCe l lState := Waiting ;

– Each state variable (please note the difference between state variables and
states as described above) is translated to a global variable with the instance
name attached to the variable name in order to avoid name clashes. The vari-
ables are initialized with the values given in the initial part of the model.
Since a variable must be initialized in TASM, it must also be initialized in
the model. Even though TASM supports the possibility to add variables lo-
cal to a single machine, we do not use that option due to the fact that global
variables are visible during simulation, local variables are not, consequently
it would become more difficult to simulate the model with local variables.
In the production cell system of Section 2.1, the behavior annex of the Pro-
ductionCell system has two state variables LoadedBlocks and StoredBlocks,
see Listing 2. They are translated into global TASM variables as shown in
Listing 4.

Listing 4. The AADL behavior annex state variables of Listing 2 translated
into TASM global variables.

Integer Product ionCe l l LoadedBlocks := 0 ;
Integer Product ionCe l l StoredBlocks := 0 ;
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– For each connection between two subcomponent instance ports, a boolean
variable representing the connection between the ports is defined. When a
signal is sent through the output port, the boolean variable is set to true.
The reception of the signal occurs when the boolean variable is read. After it
is read, the variable is set to false, so that a new signal can be sent again. In
the production cell system of Section 2.1, the behavior annex of the Produc-
tionCell system has several connections, see Listing 2. They are translated
into global boolean TASM variables as shown in Listing 5 (in TASM, two
slashes introduce a comment). The first boolean variable is initialized to true
since the signal is trigged in Listing 2.

Listing 5. The AADL connections of Listing 1 translated into TASM boolean
global variables.

Boolean Loader InBlockReady to InBlockReady := true ;
Boolean InBlockLoaded to Loader InBlockLoaded := fa l se ;
Boolean Loader InBlockPicked to InBlockPicked := fa l se ;
// . . .

– For each subcomponent in the AADL system, a main machine with the sub-
component’s name is created in the TASM environment. Since the machines
are generated from subcomponent instances, one component can be trans-
lated into several machines. Then the rules regarding time annotation are
applied:
• The timed feature of the transition is translated into the assignment of

the predefined TASM variable t.
• Each transition of the behavior models is translated into a TASM rule

in its main machine. The rule is translated into an if-statement with
an expression that is a logical conjunction between two subexpressions.
The first subexpression tests whether the machine is in the source state,
and the second expression is the guard of the transition (omitted if it
consists solely of the value true). The actions of the rule is the action list
connected to the transition. However, the first action is the assignment
of the state variable to the target state. Moreover, if port signals are
received in the guard, their matching boolean variables are set to false
at the end of the action list.

• A machine in TASM is active as long as one of its rule is satisfied,
otherwise it becomes terminated. In order to keep the machine active
even though no rule is satisfied, an else-rule in accordance with Section
2.3 is added.

In the production cell system of Section 2.1, the behavior annex of the Pro-
ductionCell system has several transitions, see Listing 2. They are translated
into TASM rules as shown in Listing 6. The if-statement transacts the ma-
chine state from Waiting to Sending if the number of loaded blocks is less
than ten and it receives the InBlockReady signal see Figure 2. Note that the
signal is set to false, so that is can be received again in the future.
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Listing 6. The AADL behavior model of the ProductionCell of Listing 2 trans-
lated into TASM rules.

R1 :
{

t := 1 ;
i f ( Product ionCe l lState = Waiting ) and

( ( Product ionCe l l LoadedBlocks < 10) and
Loader InBlockReady to InBlockReady ) then

Product ionCe l lState := Sending ;
InBlockLoaded to Loader InBlockLoaded := true ;
Loader InBlockReady to InBlockReady := fa l se ;

}

// . . .

R5 :
{

t := next ;
else then

skip ;
}

The main translation rule is that each AADL subcomponent is translated into
a TASM instance. However, there is an additional rule. In many cases, when
the subcomponents are translated into TASM machines, it required to establish
an environment. Therefore, if a component has subcomponents and a behavior
model of its own, it is assumed to hold the system’s environment and initializa-
tion information, and an instance of the model is translated into a TASM main
machine. The two rules fulfill different purposes. The main rule generates the
components of the system, and the additional generates its initialization.

3.3 Tool Support

There is a number of tools developed for AADL. One of them is the Open Source
AADL Tool Environment (OSATE, aadl.info), which is a plug-in for the Eclipse
environment (www.eclipse.org).

AADLtoTASM2, a contribution of this paper, is an OSATE plug-in that ana-
lyzes an AADL model and generates the equivalent TASM specification. It reads
the subsystems, ports, and connections of each component as well as its behavior
model. The model is parsed in accordance with the grammar of Table 3 with the
extension of Section 3.1. Moreover, due to the fact that uninitialized variables
are not allowed in TASM, all state variables in the AADL behavior model have
to be initialized. In order to properly initialize the TASM variables representing
the AADL behavior model states, each model must have exactly one initial state.

AADLtoTASM translates an AADL model extended with time annotations
into a TASM model, in order for the model to be simulated in the TASM Toolset
Simulation environment. However, the tool does not perform any analysis in
addition to the translation.

2 The tool is available for download, please contact one of the authors.
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Table 1. AnalyseModelParts: Input ⇒ Map × Set × Set × State × Set

/* Empty */ ⇒ return (emptyMap, emptySet, emptySet, null, transSet);
featureList name : type ; ⇒

(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(featureList);
return (varMap ∪ (name, type), initSet, stateSet, initState, transSet);

featureList name ! ; ⇒
(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(features);
return (varMap, initSet ∪ (name, send), stateSet, initState, transSet);

featureList name : state ; ⇒
(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(features);
return (varMap, initSet, stateSet ∪ name, initState, transSet);

featureList name : initial state ; ⇒
(varMap, initSet, stateSet, , transSet) = AnalyseModelParts(features);
return (varMap, initSet, stateSet ∪ name, name, transSet);

featureList source -[ guard, time, ]→ target { actionList } ⇒
(varMap, initSet, stateSet, initState, transSet) = AnalyseModelParts(features);
return (varMap, initSet, stateSet, initState, transSet ∪ (source, guard, time, target, action-

List);

Table 2. GenerateModelParts: Set ⇒ Output

/* Empty */ ⇒ generate(””);
transitionSet transition ⇒
GenerateModelParts(transitionSet);

(if tr.time != null then generate(”t := ” + tr.time + ”;”);
(generate(”if (” + modelName + ”State = ” + tr.source + ”) and (” + tr.guard + ”) then”);
(generate(” ” + modelName + ”State := ” + tr.target + ”;”);
(generate(” ” + tr.actionList”);
(generate(” ” + extractPorts(tr.guard));

4 Simulation

As the ProductionCell system of Section 2.1 has the subcomponents Loader,
FeedBelt, BeltToPress, Press, PressToBelt, and DepositBelt, TASM main ma-
chines with the same names are generated for each of the subcomponents. Due
to the additional rule of Section 3.2, an instance of the ProductionCell is trans-
lated into an TASM main machine with the same name. See Listing 3 for the
definition of the states and state variables of the production cell system behavior
model.

Furthermore, see Listing 2 for the behavior model of the ProductionCell.
Extracts of the translated TASM machines are shown in Listings 3, 4, 5, and
6. The system that we want to investigate loads three (the number three is
just chosen as an example) blocks into the system and picks three processed
blocks from the system. Note, that the signals of input ports are received with
the question mark (?) operator and the output ports signals are sent with the
exclamation mark (!) operator. Even though it is possible to send data through
the ports, only trigger signals are used in this case study. Each transition has a
guard as well as a time interval.

In order to evaluate an architecture and find its minimal and maximal time,
the production cell system was translated from AADL to TASM by the tool
as described above. The minimal and maximal time for each production cell
component of the system are defined in Table 4.
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Table 3. The Extended Behavior Annex Grammar

annex specification ⇒ optional state variables optional initialization
optional states optional transitions

optional state variables ⇒ state variables variable declaration list | /* Empty. */
variable declaration list ⇒ variable declaration | variable declaration list variable declaration
variable declaration ⇒ identifier list : variable type ;
identifier list ⇒ identifier | identifier list , identifier
variable type ⇒ { identifier list } | integer | boolean
optional initialization ⇒ initial initial list | /* Empty. */
initial list ⇒ send ; | assignment ; | initial list send ; | initial list assignment ;
send ⇒ identifier ! ;
assignment ⇒ identifier := expression
interval ⇒ [ integer constant , integer constant ]

optional states ⇒ states state list | /* Empty. */
state list ⇒ state | state list state
state ⇒ identifier list : optional initial state ;
optional initial ⇒ initial | /* Empty. */
optional transitions ⇒ transitions transition list | /* Empty. */
transition list ⇒ transition | transition list transition
transition ⇒ identifier - [ expression , time ] →

identifier optional action list
time ⇒ null | integer constant | interval
optional action list ⇒ ; | {} | { action list }
action list ⇒ expression ; | action list expression ;
expression ⇒ expression binary operator expression | not expression

| ( expression ) | constant | assignment | send
| identifier | identifier ?

binary operator ⇒ or and + - * / = != < <= > >=
constant ⇒ integer constant | boolean constant | real constant

| character constant | string constant

Table 4. Transition Time

System Transition Minimum Maximum
Time Time

ProductionCell Sending 1 1
Receiving 1 1
Waiting 1 1

Loader Magnet On 1 1
BeltToPress Rotating Arm Forwards 3 6
PressToBelt Magnet Off 1 1

Rotating Arm Backward 3 6
FeedBelt Receiving Block 1 1
DepositBelt Moving Block 4 8

Leaving Block 1 1
Press Move Block to Press Position 1 2

Pressing 5 10
Move Block from Press Position 1 2

Furthermore, the process was simulated one hundred times with random time
intervals. Figure 3 describes the results of this simulations. It is also possible to
analyze the best and worst case performance by setting the simulator to use the
minimum or maximum time, respectively, of each interval. With this method, we
could conclude that the minimum time to put three blocks through the system
was 72 units and the maximum time was 131 units.

The TASM Toolset does also have the capability to perform a number of
different kinds of analysis, such as average time consumption and minimal and
maximal time consumption regarding a specific rule. However, due to limited
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Fig. 3. Simulation of the Generated TASM Model

space, we do not describe them in detail in this paper. For further timing analysis
of TASM we refer to [14].

The simulation of the case study shows based on the AADL behavior annex
extension and the translator AADLtoTASM automatic reasoning about timing
behavior of AADL models is possible. As the simulation of the machines are
executed in parallel, it would be difficult to perform such simulations manu-
ally. Another benefit is that the TASM model can be further translated into a
UPPAAL [17] model, where timed model checking can be performed.

5 Related Work

Due to the importance of real-time systems, a considerable number of languages
have been formally extended to tackle the problem of verifying real-time require-
ments and properties. Consequently, in the following we would like to compare
the specific contributions of this paper, namely (a) the extension of the AADL
notation and its behavior model with timing annotation and (b) the transition
of timed AADL models into timed abstract state machines to allow for tool
automated simulation of the model with related approaches.

A majority of the related approaches focuses on timed extensions of visual
specification formalisms. Known examples are timed Automata [18,19], Timed
Petri Nets [20] and Timed Behavior Trees [21,22,23]. Timed specification for-
malisms come with a variety of tools and methods to correctly specify a system
and to verify its timing requirements and properties. An example of approaches
that help with the correct specification is based on the recently proposed timed
patterns [24]. The verification focuses on timed model checking [1] with tools
like UPPAAL [17] and KRONOS [25].

Since the use of these model checking tools is also possible for the timed
AADL extension as TASM has been chosen as the underlying formal specification
formalism in the presented approach. In [26], a formal transition from TASM to
timed automata, especially UPPAAL automata, is introduced.
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There are also textual notations that have timed extensions, e.g. timed CSP
[27], and timed versions of Object-Z [28,29]. However, the specification of a sys-
tem in these languages requires expert knowledge in formal methods and practi-
tioners are often discouraged by the strict mathematical formalism. In contrast,
the foundation for the approach presented in this paper is with AADL, a well
accepted specification language [4]. Furthermore, we argue that the introduced
concepts and syntax elements are easy to understand and do not require a mas-
sive amount of training for the practitioners that are already familiar with AADL
and its behavior model.

Beside the timed extension described in this paper and the use of timed simu-
lations of the underlying TASM model, AADL currently also supports scheduling
analysis [30,31] as a second type of real-time analysis. This scheduling analysis
assumes different scheduling strategies (e.g. rate monotonic scheduling) and al-
lows verifying schedulability and end-to-end deadlines. The approach described
in this papers is based on a fully concurrent implementation of the architectural
elements. Consequently, both approaches are complementary, but we believe that
an integration of the two approaches is an interesting topic for future research.

6 Conclusions and Further Work

The main contribution of this paper is an extension of AADL’s behavior model
to allow for the specification of timed behavior. This extension if based on the
formal language of timed abstract state machines (TASM) and consequently
techniques like time simulations could be performed to check if an architecture
specification meets its real-time requirements and resource constraints.

This paper has furthermore presented a novel tool called AADLtoTASM for
transition from AADL with its behavior annex to TASM. OSATE is an Eclipse
plug-in and the tool is an OSATE plug-in that reads an AADL file (including
its behavior models) and generates the corresponding TASM file.

To evaluate the approach, the production cell case study has been translated
from AADL into TASM. This shows that the tool works and that it seems to be
valuable when reasoning about AADL models.

There are some features that can be changed in the future. One of them is the
stopping criteria for the simulation could be improved. One possible approach
could be confidence intervals.

One possible extension of this work is to further translate the TASM model
into UPPAAL [17] in order to perform timed model checking. In that case, it
would be possible to, in detail, formally define best-case and worst-case time
behavior of the AADL model.

Furthermore, an extension to specify probabilistic behavior in AADL’s behav-
ior annex, jointly with the specification of the AADL Error Annex [32], would be
interesting. As a result also the probabilistic behavior (e.g. probabilistic safety
properties [33]) could be analyzed. As an example, Monte Carlo simulation could
be performed on these models.
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Abstract. L.L.Bean is a large retail organization whose development processes 
must be agile in order to allow rapid enhancement and maintenance of its 
technology infrastructure. Over the past decade L.L.Bean’s software code-base 
had become brittle and difficult to evolve. An effort was launched to identify 
and develop new approaches to software development that would enable 
ongoing agility to support the ever-increasing demands of a successful business. 
This paper recounts L.L.Bean’s effort in restructuring its code-base and 
adoption of process improvements that support an architecture-based agile 
approach to development, governance, and maintenance. Unlike traditional 
refactoring, this effort was guided by an architectural blueprint that was created 
in a Dependency Structure Matrix where the refactoring was first prototyped 
before being applied to the actual code base. 

Keywords: architecture, dependency, agility. 

1   Introduction 

This paper reports on L.L. Bean, Inc.’s experience in infusing new life to its evolving 
software systems through the increased visibility into its system’s architecture 
through the extraction and abstraction of code dependencies. Over years of software 
development the information technology infrastructure at L.L. Bean had become 
difficult to maintain and evolve. It has long been claimed that visibility of 
architectural dependencies could help an organization in L.L. Bean’s position 
[9][12][17]. In this paper we provide support for these claims and demonstrate the 
value of applying these emerging technologies to a large, commercial code-base. We 
explore the strengths and weaknesses of the application of the Dependence Structure 
Matrix (DSM) as implemented in the Lattix LDM [16], to improve the agility of the 
L.L. Bean code base, and propose avenues for follow-on research to further improve 
tool support for architecture-based refactoring in support of software agility. 
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L.L.Bean has been a trusted source for quality apparel, reliable outdoor equipment 
and expert advice for nearly 100 years1.  L.L.Bean’s software is used to manage its 
sales, which include retail, mail-order catalog, as well as on-line sales, inventory, and 
human resources.  More than a 100 architects, engineers, and developers work on 
continual improvement and enhancement of the company’s information technology 
infrastructure, which for the last 8 years, has suffered the typical problems associated 
with rapid evolution such as increased fragility and decreased intellectual control 
resulting in increased difficulty in building the system. While the company’s software 
development processes have long included a number of good practices and coding 
rules to help avoid these issues, in the end the speed of evolution overwhelmed the 
development teams and maintenance and evolution of the software infrastructure were 
recognized as chief concerns by upper management of the company.  Investigation 
into the core cause of the problems pointed to the fact that the code had become a 
complex entanglement of interdependencies.  It was decided that the code must be 
restructured and software engineering process must be enhanced to prevent the web of 
dependencies from recurring in the future.  

Refactoring, as described by Fowler et al. [4] and others in the object community is 
a disciplined technique for restructuring an existing body of code, altering its internal 
structure without changing its external behavior.  Refactoring is generally practiced as 
a series of small changes to classes and collections of classes that modify the structure 
in a way that improves the code or moves it in an intended direction so that the code 
is better structured for future enhancements, improved comprehensibility, easier unit 
testing etc. There are a number of tools that provide support for refactoring (e.g. 
Eclipse and Intellij). These tools provide a variety of capabilities such as generating 
‘getters/setters’ and ‘constructors’ etc that simplify code modifications. However, the 
approach of localized modifications was too limited and L.L.Bean recognized the 
need to approach solving the problem from a global perspective.  

Because the software architecture of a system is a model of software elements and 
their interconnections that provides a global view of the system it allows an 
organization to maintain intellectual control over the software and provides support 
for communication among stakeholders [2][18]. As such, it seemed an architectural 
approach to “refactoring” L.L.Bean’s code base would be appropriate. A variety 
of approaches for exploring architectural visibility were explored. Ultimately, an 
approach based on a Dependency Structure Matrix (DSM) [15] representation was 
selected because of its innate ability to scale and the ease with which alternative 
architectural organizations could be explored. 

L.L.Bean’s strategic approach to refactoring required few code changes but rather 
a code consolidation followed by a series of structural modifications. Unlike current 
approaches to refactoring, L.L.Bean’s method is driven by overall visibility of the 
architecture and includes five steps: define the problem, visualize the current 
architecture, model the desired architecture in terms of current elements, consolidate 
and repackage the code base, and automate governance of the architecture through 
continuous integration. 

This approach to software development employs the Lattix Architecture 
Management System as the primary tool for architectural analysis and management. It 

                                                           
1 http://www.llbean.com 
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also uses custom tools developed at L.L. Bean for automating changes to the code 
organization, and for maintaining visibility of the state of evolving dependencies on a 
continuing basis. 

The remainder of the paper recounts the L.L. Bean experience in “refactoring” and 
describes the architecture-based approach to software development that has been 
created and adopted as an organizational standard at L.L. Bean. The new standard was 
welcomed by all development teams and provides a mechanism for continuous 
improvement as the technology infrastructure evolves to meet ever-growing business 
demands of this increasingly popular brand. 

We begin our report with a description of the problem facing L.L. Bean’s software 
developers.  This is followed by a recounting of research toward identifying a viable 
solution and the basis for the decision to apply an approach based on a Dependency 
Structure Matrix.  We then provide an overview of this approach in enough detail to 
support the reader’s understanding of this report, and follow that with description of 
our experience using and extending the Lattix tools at L.L. Bean. We then summarize 
lessons learned through this experience and propose avenues for future research in 
providing additional mechanisms to maintain architecture-based agility. 

2   Background 

2.1   IT Infrastructure 

A significant part of L.L. Bean’s information technology infrastructure is written in 
Java and runs on Windows, UNIX, or Linux based servers. The system has gone 
through a rapid evolution over the last eight years due to several massive development 
efforts undertaken in response to increased demand from multiple business units. New 
front-end systems, strategic web site updates, regular infrastructure improvements, 
external product integration, and security have been among the key drivers. 

L.L. Bean develops software primarily in Java and follows object oriented 
programming principles and patterns [5]. Development teams normally consist of ten 
or fewer developers grouped by business domains such as product, order capture, 
human resources, and IT infrastructure. Package names are chosen to represent 
behavior and/or responsibility of groups of Java classes within the package. Aligning 
development structure with naming conventions facilitates reuse and helps avoid 
duplication of effort by increasing visibility. Although it does not address 
interdependencies among modules, this alignment was an important contributor to the 
success of this project.  

The current system has more than one million lines of code assembled into more than 
a 100 jar files. In turn, the actual code is organized into nearly 1,000 Java packages and 
more than 3,000 Java classes. Despite the use of good software development practices 
and standards, normal code evolution created a complex entanglement of 
interdependencies, increasing software development and maintenance costs, and 
decreasing reuse potential. Multiple code bases diverged over time, which increased 
complexity significantly. 

Initially, ad-hoc approaches were tried to deal with these problems. 
Interdependency issues were mainly identified by configuration managers while 
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attempting to compile and assemble applications for deployment. These were then 
fixed one dependency entanglement at a time. The process was slow and correcting 
one problem often led to a different set of problems. One significant effort for 
resolving core dependency entanglements consumed three man weeks of effort and 
was not entirely successful. Moreover, there was nothing to prevent entanglements 
from recurring. 

Business needs continued to drive new development, and interdependency 
entanglements continued to grow. Software development and configuration 
management costs increased in stride. IT management understood the economic 
significance of reuse and created a small team of software engineers focused on 
creating and implementing a comprehensive packaging and reuse strategy. This team 
quickly identified the following key issues: 

• Too many interdependencies increased testing and maintenance costs 
• Multiple Code Bases (segmented somewhat by channel) resulted from the rapid 

evolution and could not be merged. A goal of the effort was to consolidate into 
a single code base and transition the development life cycle to a 
producer/consumer paradigm. 

• Architecture was not visible and no person or group in the organization 
maintained intellectual control over the software 

• There was no mechanism to govern system evolution 

A solution was needed that supported immediate needs while providing the 
framework for refactoring the architecture to prevent costly entanglements from 
recurring. 

2.2   Preliminary Research and Tool Selection 

There were two key tasks. First, research the abstract nature of software packaging 
from various viewpoints. Second, create a clear and detailed understanding of the 
existing static dependencies in L.L. Bean’s Java code base. What dependencies 
actually existed? Were there patterns to these dependencies? 

In addition to the major goals of eliminating undesirable dependencies and 
governing packaging of future software development, the resulting packaging 
structure needed to accomplish other goals. First, provide a single, consolidated code 
base to support a producer/consumer paradigm (where development teams consume 
compiled code instead of merging source code into their development streams) while 
helping to define code ownership and responsibility. Next, dynamically generate a 
view of the interdependencies of deliverable software assets. Last, minimize the cost 
and effort required to compile and assemble deliverable software assets. An unstated 
goal held by the team was to increase the level of reuse by fostering a Java 
development community and increase communication between development teams. 

It was important to build confidence in the new strategy. The business, and more 
specifically the development teams supporting the various business domains, would 
not entertain undertaking a restructuring effort without evidence of the soundness of 
the strategy. The team understood that the way to earn this trust was through research, 
communication and prototyping.  
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Literature Search 

As a starting point, the team sought articles and academic papers primarily through 
the Internet. Managing dependencies is not a new problem, and considerable research 
and analysis on a wide range of concepts and approaches was available to the strategy 
development team [3][6][7][10][11][14][15][17]. Another effort was underway at 
L.L.Bean to create a strategy for reuse metrics; there was overlap between these two 
efforts [7][8][13][14]. Much of the research suggested that code packaging in domain-
oriented software could promote reuse and facilitate metrics. Exploring these metrics, 
and tools to support them, provided additional focus. Transition of research into 
practice would happen more quickly with increased effort on both sides to bridge the 
researcher/practitioner communication chasm. 

Analysis Tools 

There are many tools available for detecting and modeling dependencies in Java. The 
team wanted to find the most comprehensive and easy to understand tool. Initially, 
open-source tools were selected for evaluation. These included Dependency Finder2 
and JDepend3 (output visualized through Graphviz4), among others5,6. Each of these 
tools were useful in understanding the state of dependencies, but none of them offered 
the comprehensive, easy to understand, global view needed nor did they provide 
support for restructuring or communication among various stakeholders, which 
included IT managers, architects, and developers. 

Graphing the analysis was cumbersome, requiring the use of a combination of tools 
to produce illustrations of problem spaces. One solution was to use JDepend to 
analyze the code base, which outputs XML. This output was then transformed into the 
format required by Graphviz for generating directed graphs. The process was 
computationally intensive, and there was a limit to the amount of code that could be 
analyzed collectively in this fashion.. Furthermore, when this view was generated it 
was nearly incomprehensible and of little practical value in either communicating or 
managing the architecture. Using these tools was inefficient and less effective than 
had been anticipated. After a problem was identified, it was necessary to code or 
compile a potential solution and then repeat the entire analysis to illustrate the real 
impact. Given the extent of the interdependency entanglement, identifying and fixing 
problems through this approach was found to be too cumbersome to be practical.  

L.L.Bean’s research identified the Lattix matrix-based dependency analysis tool as 
promising and, through experience, found it to be effective in that it offered a 
comprehensive easy to understand interface as well as mechanisms for prototyping 
and applying architecture rules, and supporting “what if” analysis without code 
modification. 

                                                           
2 http://depfind.sourceforge.net/ 
3 http://clarkware.com/software/JDepend.html  
4 http://www.graphviz.org/ 
5 http://java-source.net/open-source/code-analyzers/byecycle 
6 http://java-source.net/open-source/code-analyzers/classycle 
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The Lattix Architecture Management System 

Lattix has pioneered an approach using system interdependencies to create an 
accurate blueprint of software applications, databases and systems. To build the initial 
Lattix model, the LDM tool is pointed at a set of Java jar files. Within minutes, the 
tool creates a “dependency structure matrix” (DSM)7

 that shows the static 
dependencies in the code base. Lattix generated DSMs have a hierarchical structure, 
where the default hierarchy reflects the jar and the package structure.   

This approach to visualization also overcomes the scaling problems that L.L.Bean 
encountered with directed graphs. Furthermore, Lattix allows users to edit system 
structures to run what-if scenarios and to specify design rules to formalize, 
communicate, and enforce architectural constraints. This means that an alternate 
structure, which represents the desired architectural intent, can be manipulated and 
maintained even if the code structure is not immediately a true reflection. Once an 
architecture is specified Lattix allows that architecture be monitored in batch mode 
and key stakeholders are notified of the results. 

The Lattix DSM also offers partitioning algorithms to group and re-order 
subsystems. The result of this analysis shows the layering of the subsystems as well as 
the grouping of subsystems that are coupled through cyclic dependencies. 

3   Refactoring the Architecture 

With tool support and good development practices in place, L.L.Bean created a five-
step approach to architecture-based maintenance that increased the agility of our 
software development process. 

STEP 1:   Mapping the Initial State 

The first step in the architecture-based refactoring process was to illuminate the state 
of the code base. An initial DSM was created by loading all Java jars into a Lattix 
LDM.  Then the subsystems in the DSM were organized into layers [1]. The 
magnitude of the problem became apparent once this DSM was created. It was 
possible to see numerous undesirable dependencies where application code was being 
referenced by frameworks and utility functions. The example shown in Fig. 1 
illustrates a highly complex and cyclic dependency grouping. 

A DSM is a square matrix with each subsystem being represented by a row and 
column. The rows and columns are numbered for ease of reference and to reduce 
clutter. The results of DSM partitioning, the goal of which is to group subsystems 
together in layers, can be evidenced by the lower triangular nature of the upper left-
hand portion of the matrix shown in Fig. 1. Each layer in turn is composed of 
subsystems that are either strongly connected or independent of each other. In this 
figure, the presence of dependencies above the diagonal in the lower right-hand 
grouping shows us that subsystems 30..37 are circularly connected. For instance, if 
you look down column 31, you will see that subsystem 31 depends on subsystem 30 
with strength of ‘3’. Going further down column 31, we also note that subsystem 31 
depends on subsystems 33 and 34 with strengths of ‘16’ and ‘85’, respectively. By 
                                                           
7 http://www.dsmweb.org 
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Fig. 1. Using Lattix LDM to Reveal Layering 

clicking on an individual cell one can see the complete list of dependencies in an 
attached context sensitive display panel. The DSM view of the L.L.Bean system 
immediately shed light on the sources of maintenance problems. 

STEP 2:   Modeling the Desired Architecture 

L.L. Bean’s Java packaging strategy is a layered architecture [1] that leverages the 
earlier successes of the package naming approach, adding high-level organizational 
constructs and rules to govern static dependencies. The Java classes could be grouped 
into three categories: domain independent, domain specific, and application specific. 
These classes can be organized into common layers according to their specificity with 
the most generalized layers at the bottom and the most specific layers at the top. 

A layered packaging architecture has several benefits. It is intuitive enough to be 
understood by a wide range of stakeholders, from software developers and engineers 
to those with only a limited technical understanding of software development, 
facilitating discussions between IT managers, project leaders, domain architects, 
configuration engineers, and software developers. 

As the L.L.Bean development organization grew larger and more diverse, increasing 
communication and coordination across software development efforts also became more 
difficult. It was hoped that a cohesive and layered architecture would simplify 
development and improve communication. Clearly communicated and implemented 
architectural intent would allow teams to develop software components, services and 
applications without creating undesirable dependencies. Moreover, it would allow 
development teams to focus on their problem domain and areas of expertise. 

A layered architecture such as that shown Fig. 2, governed by rules, minimizes the 
development of complex dependencies and allows for simplified configuration and 
assembly strategies. Each layer in L.L. Bean’s strategy has well-defined responsibility. 
Organized in a hierarchy of generality/specificity, each layer is governed by the principle 
that members of a given layer can only depend on other members in the same level, or in 
layers below it. Each layer, or smaller subset within a layer, is assembled in a cohesive 
unit, often referred to as a program library or subsystem. In L.L. Bean’s case, these 
cohesive units are Java jar files. This approach produces a set of independent consumable 
components that are not coupled by complex dependencies, and creates a solid foundation 
for the producer/consumer paradigm. 
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Fig. 2. Example Layered Architecture 

STEP 3:   Validating the Architecture 

The next step was prototyping and transforming the current state into the intended 
architecture. 

First, subsystem containers were created at the root level of the model for each of 
the high-level organizational layers defined in the architecture; initially these were the 
familiar domain-independent, domain-specific, and application-specific layers. The 
next step was to examine each jar file, and move them into one of the defined layers. 

Here, the benefits of L.L.Bean’s early package naming approach became clear; 
behavior and responsibility were built into package naming clarifying the appropriate 
layer in most cases. In a small set of specialized cases, developers with in-depth 
knowledge of the code were consulted. Here again, the well defined and documented 
layered architecture facilitated communication with software engineers and simplified the 
process of deciding on the appropriate layer. With the architecture already well 
understood, it took only two working days to successfully transform the initial model into 
the intended architecture, simply by prototypically moving Java classes to their 
appropriate package according to both their generality/specificity and their 
behavior/responsibility. At the end of that time, we were surprised to observe that nearly 
all undesirable dependencies at the top level had been eliminated. The DSM shown in 
Fig. 3 captures the state of the prototyping model near the end of the two-day session. The 
lower triangular nature of the DSM shows the absence of any top-level cycle. 

 

Fig. 3. DSM of layered architecture, no top-level cycles present 
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STEP 4:   Identifying Sources of Architecture Violation 

Three key packaging anti-patterns were identified that were at the core of the 
interdependency entanglement. This is illustrated by the following examples (note: 
the arrows in the figures show “uses” dependencies [2]): 

Misplaced Common Types: Many types (i.e. Value Object Pattern, Data Transfer 
Object Pattern, etc.) were packaged at the same hierarchical level as the session layer 
(Session Façade) to which they related. This approach widely scattered dependencies 
creating a high degree of complexity, and a high number of cyclic dependencies. This 
issue was resolved as shown in Fig. 4, by moving many of these common types from 
their current package to an appropriate lower layer. This resolved an astounding 75% 
of existing circular dependencies. 

Customer Product

Order Inventory

Customer ProductOrder Inventory

Common Types

before after  

Fig. 4. Repackaging Common Types 

Misplaced Inheritable Concrete Class: When a concrete class is created by 
extending an abstract class, it is packaged according to its behavior. However, when a 
new concrete class is created by extending this class it then creates a coupling 
between components that were normally expected to be independent. Moving the 
concrete class to the shared layer where its parent was located solved the problem as 
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Fig. 5. Moving Descendants into Ancestor's Package 



 Achieving Agility through Architecture Visibility 125 

shown in Fig. 5. This also supports the notion that concrete classes should not be 
extended [19]. Instead, whenever the need arises to extend a concrete class, the code 
should be refactored to create a new abstract class, which is then used as a base class 
for the different concrete classes. This problem also illustrates that as code bases 
evolve it is necessary to continuously analyze and restructure the code. 

Catchall Subsystems: The behavior/responsibility focus of the early package 
naming approach produced a subsystem dedicated to IT infrastructure. This became a 
disproportionately large “catch-all” subsystem that represented a broad array of 
mostly unrelated concepts. It also included a small set of highly used classes 
supporting L.L.Bean exception handling. It generated a large number of dependencies 
making it brittle and costly to maintain. To manage this problem, the exception 
classes were moved into their own subsystem and the remaining parts were 
reorganized into multiple subsystems of related concepts as shown in Fig. 6. This 
problem also illustrates how analyzing usage can be used to identify and group 
reusable assets. 

Customer OrderProduct Inventory

Shared Layer

Infra-
structure

Other 
Domains

Customer OrderProduct Inventory

Shared Layer

Exception 
Handling

Other 
Domains

Infra-
structure

E

 

Fig. 6. Breaking up Catchall Subsystems 

STEP 5:  Refactoring the Code 

With the right tools and a well-defined architecture, prototyping packaging change 
was relatively simple. Fortunately, L.L. Bean’s code restructuring effort was 
primarily limited to changing packages (e.g. Java package and import statements), 
and did not affect code at a method level. 

The initial goal was to take a “big bang” approach by re-architecting the entire 
system at once. The large commitment to cut over to a consolidated and restructured 
code base in one step proved costly and did not mesh with the various iterative 
development cycles across development teams. Instead, an incremental approach is 
being used where new development and refactored code are packaged according to 
the principles of the layered architecture. Development teams and configuration 
engineers use DSM models to analyze static dependencies as well as to prototype new 
packages and package changes during the normal development cycle. This has proven 
to be a sustainable approach for continuous improvement of the code base. 

A few key standards in place at L.L. Bean have helped facilitate this approach. 
First, using a standard IDE, developers can easily organize import statements such 
that fully qualified class names are not embedded within methods. Second, wildcards 
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are not allowed in import statements. Automated configuration management 
processes enforce standards8. As a result, there existed a relatively consistent state of 
package and import statements. The last important standard here is unit tests. L.L. 
Bean standards require a unit tests for every class, and most software development 
teams employ test-first development methodologies9. After restructuring, each unit 
test is exercised, providing an immediate window into the impact of the changes. 

4   Evolving and Improving the Architecture 

A software engineering process was needed that would prevent architectural drift and 
the need for large scale refactoring in the future. A set of rules were created that could 
be applied to any of L.L. Bean’s DSM models, and visibility of maintenance 
processes was increased. 

4.1   Rules 

Design rules are the cornerstone of architecture management. L.L. Bean developed a 
simple set of architecture enforcement rules. These rules enforce a layered 
architecture and essentially state that members of a given layer may only depend on 
other members in the same level, or in layers below it. 

Rules also help software engineers identify reuse candidates. When violations 
occur, the nature of the dependencies and the specific behavior of the Java code are 
closely analyzed. If there are multiple dependencies on a single resource that break an 
allowed dependency rule, then the target resource is a candidate for repackaging. The 
analysis is followed by a discussion with the appropriate project manager, architect or 
software developer. 

Governance reduces software maintenance cost, improves quality, and increases 
agility, by enabling architectural remediation during ongoing development. 

4.2   Maintaining Visibility 

Architectural governance offers several benefits. A DSM model provides consistent 
visibility and supports on-going communication between development teams, 
configuration engineers and project leaders. It also facilitates change impact analysis. 
L.L.Bean creates DSM models at different organizational levels from application-
specific to a comprehensive “master model”. Application modeling during normal 
development cycles enables configuration engineers to determine what dependencies 
are missing, what dependencies are using an outdated version, whether unused 
component libraries that are included should be removed, and to report on changes 
between development iterations. As of the writing of this paper, this analysis and on-
going communication have resulted in a 10% reduction in the number of Java jar files 
being versioned and dramatically improved understanding about the true 
dependencies of the applications and the jars they consume. 

                                                           
8 http://pmd.sourceforge.net/ 
9 http://ww.junit.org/index.htm 
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L.L.Bean creates multiple dependency structure matrices for various purposes. One 
is designated as “master model”, which maintains visibility to the current state of the 
overall architecture as new development continually introduces new dependencies. 
The master model is integrated with and updated through automated configuration 
management processes, and is designed to support dependency governance. Each time 
a new version of a software element is created, the master model is updated, design 
rules are applied and when violations are detected, they are reported to the appropriate 
stakeholders (project managers, configuration managers, architects, and reuse 
engineers) who determine whether each violation is a programming error or reflect 
change in architectural intent. Violations also “break the build”, forcing software 
development teams to correct problems before the new version is permitted to move 
forward in its lifecycle. 

For additional analysis, L.L.Bean created an analysis and configuration tool 
leveraging DSM metadata designed to address two long-standing questions. First, 
given a class, which jar file contains that class? Second, given a jar file which other 
jar files does it depend upon? This information is then stored in query optimized 
database tables that are refreshed with each update. The query operation is exposed as 
a service for use with automated configuration management processes. For example, 
dependent components defined in build scripts are updated with new dependencies, 
including the order of those dependencies as code is modified during the course of 
normal development. 

5   Lessons Learned 

L.L. Bean’s experience has been successful in demonstrating the value of using an 
architecture dependency analysis based approach to improve software agility. There 
were several lessons learned along the way that should be kept in mind. 

While good tool support is essential, without good development practices, use of 
established coding standards, active configuration management, and consistent unit 
testing, tool use would be much more time-consuming and less effective. 

Dependency information must be visible to be managed, but that alone is not 
enough to reduce maintenance costs and effort. It must be supported by the ability to 
try “what if” scenarios and creating prototypes to explore change impact. 

Business drives requirements and ultimately the need to be agile. The “big bang” 
approach wasn’t viable in an environment with multiple development teams that had 
various and, often, conflicting development cycles, each with different business 
drivers. Moreover, it became evident that the difficult and costly attempt at using a 
“big bang” approach was not necessary. Following the incremental approach 
described in Section 3 development teams remain agile and refactor to use the layered 
architecture as part of their normal development cycles. 

Beyond consolidating and repackaging code, there are often implications with 
respect to external (non-Java) component coupling. In some cases fully qualified Java 
packages were specified in scripts and property files. In other cases, Java classes 
referenced external components, which presented issues when consolidating code. 
The lesson learned was that change impact is often greater than what is originally 
estimated. 
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6   Limitations and Future Work 

While it is believed that DSMs can be applied to systems implemented in other 
languages and databases, the L.L.Bean experience is only with Java based software. 
Therefore, the results of this experience may not generalize to other types of systems. 

While the experience reported here has made a substantial impact on L.L. Bean’s 
ability to maintain its code-base, we believe this is just one of many benefits that 
architecture analysis can provide.  This report validates the DSM’s support for 
evolvability, we are continuing to explore the potential for extracting other 
relationships from code, in particular run-time relationships, which can be used to 
identify the existence of Component and Connector (run-time) architectural styles and 
the application of the DSM to support analysis of a variety of run-time quality 
attributes. 

7   Summary 

The key to L.L. Bean’s code restructuring success was increasing visibility of both 
system’s architecture and the process. L.L. Bean has found that increasing the 
visibility of architecture greatly reduces architectural drift as the system evolves and 
at the same time reduces ongoing maintenance costs. Architectural visibility provides 
guidance for large-scale refactoring. 

L.L. Bean also discovered that changing the structure of the system can sometimes 
be achieved without substantial code modifications and that large scale re-
organization is a complex process that, when done with proper tool support and in a 
disciplined software development environment, can be effective.  

The results of this experience demonstrate that architecture-based analysis can 
improve the productivity of software development. It is hoped that future research and 
practice will produce continued advancement in architectural support for improved 
software quality. 
 
Acknowledgements. Sincere thanks to Doug Leland of L.L. Bean for his skillful 
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Abstract. This paper presents the analysis and key findings of a survey on archi-
tectural knowledge sharing. The responses of 97 architects working in the Dutch
IT Industry were analyzed by correlating practices and challenges with project
size and success. Impact mechanisms between project size, project success, and
architectural knowledge sharing practices and challenges were deduced based on
reasoning, experience and literature. We find that architects run into numerous
and diverse challenges sharing architectural knowledge, but that the only chal-
lenges that have a significant impact are the emotional challenges related to in-
terpersonal relationships. Thus, architects should be careful when dealing with
emotions in knowledge sharing.

Keywords: Software Architecture, Architecture Knowledge, Software Project
Management.

1 Introduction

In recent years, Architectural Knowledge (AK), including architecture design decisions,
has become a topic of considerable research interest. Management and sharing of AK
are considered to be important practices in good architecting [10, 17, 5]. There has not
been, however, much published research into the usage of AK related practices in in-
dustry.

In the beginning of 2008, the members of the architecture community of practice
in a major Dutch IT services company1 were surveyed. The main reason for this sur-
vey was to establish a baseline of current practice in Architectural Knowledge Sharing
(AKS), and to gain insight into the mechanisms around AKS and related challenges in
projects. The ABC company was interested in these mechanisms because they saw Ar-
chitectural Knowledge management as a way to improve IT project performance. The
architects were asked about the content, manner, reasons and timing of the AK sharing
they did in their latest project; both obtaining and sharing knowledge towards others.
They were also asked about the challenges they faced. Furthermore, they were asked
to identify various properties of their latest project’s context, such as project size and
success factors.

1 In this paper, this company will be identified as ABC.

R. Mirandola, I. Gorton, and C. Hofmeister (Eds.): QoSA 2009, LNCS 5581, pp. 130–145, 2009.
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Even though the architects surveyed all work for the same IT services company,
according to the survey 64% of them is doing so mostly at customers’ sites. As a conse-
quence, the survey results represent a mix of AK sharing practices in ABC and in ABC’s
customer base, which includes major Dutch companies and government institutions.

2 Survey Description

The invitation to participate in the survey was sent out by e-mail to 360 members of the
Netherlands (NL) Architecture Community of Practice (ACoP) of the ABC company.
The ACoP consists of experienced professionals practicing architecture at various levels
(business, enterprize, IT, software, and systems architecture) in project or consultancy
assignments. The survey was closed after 3 weeks. By that time, 142 responses were
collected. 97 respondents had answered the majority of the questions (93 had answered
all). The other 45 responses were discarded because no questions about AK sharing had
been answered. The survey consisted of 37 questions: 20 directly related to AK sharing,
and 17 related to the context in which the AK sharing took place.

3 Analysis

The analysis of the 97 valid survey responses was performed in three phases: first, the
current state of AK practice and challenges was established by comparing the respon-
dents’ answers to the 20 AK related questions. The analysis of four of these questions
is presented in section 3.1 of this paper: three questions about AK practices and one
about challenges in AK sharing. In phase one, we examined the responses by ordering
and grouping them.

Second, the relationship between the AK practices and challenges and their context
was analyzed by determining significant correlations between the AK-related responses
and some of the 17 context-related questions. In this paper, the two context factors of
project success and project size are analyzed systematically in section 3.2. The result
of phase two is a set of statistically significant correlations between responses to AK
related questions, and the size and success of the projects they pertained to.

In the third phase of the analysis, we reasoned and discussed about the results from
the first two phases. Two of the authors have been practicing architects in the ABC
company for more than a decade. Based on reasoning, literature and their experience
we deduced causality and impact mechanisms from the correlations, leading to an ob-
served impact model that is presented in section 3.3. Further discussions are presented
in section 4.

3.1 State of AK Sharing Practice

In this section, the responses to four of the AK related questions are analyzed, present-
ing the results of phase 1 of the analysis.

The four questions are:

– What type of architectural knowledge have you provided to or acquired from ABC
in your latest assignment?

– Why did you share architectural knowledge to your colleagues in ABC?
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Fig. 1. Architectural Knowledge Types

– When did you share architectural knowledge in your latest assignment?
– What challenges in architectural knowledge sharing did you experience in your

latest assignment?

Each question was provided with a set of predefined responses, determined in con-
sultation between two experienced architects and two researchers. There was also the
possibility for open text for missing answers. Respondents were asked to signify the
applicability of those responses on a 5-point Likert scale. Table 1 lists the predefined
responses to the questions, sorted by their average response values, which are listed in
the third column. Each question is further analyzed in the following subsections. The
two rightmost columns in the table list the Spearman’s rho correlations between the re-
sponses and the project context factors, which will be analyzed in section 3.2 below. We
will start with the analysis of the responses without taking into account their contexts.

Architectural Knowledge Types What type of architectural knowledge have you pro-
vided to or acquired from ABC in your latest assignment?

The distribution of the response values is visualized in Fig. 1.2 With the exception of
reference architectures and legal knowledge, all types of architectural knowledge appear
to be shared more or less equally. The least shared type of AK is legal knowledge: over
75% indicate they do not or hardly share it with ABC.

AK Sharing Motivation Why did you share architectural knowledge to your col-
leagues in ABC? The distribution of the response values is visualized in Fig. 2. These
data tell us that most architects are either impartial to or agree with almost all motivation
responses.

2 The figures in this paper use the codified response IDs of the ID column in Table 1.
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Fig. 2. AK Sharing Motivation

The only motivation that more architects disagree with (38%) than agree with (17%)
is salary. A related finding is the unpopularity of management expectation as a motiva-
tor: 65% of respondents are at most impartial to this motivator.

AK Sharing Timing When did you share architectural knowledge in your latest as-
signment?

The distribution of the response values is visualized in Fig. 3. By far the most popular
times to share AK are when problems occur, at the end of projects and when asked
by colleagues (other than managers); these three timings are all used often or very
often by over 50% of the architects. Almost 30% of architects indicate they never share
AK ”when management asks me to do so”. We assume this is because in those cases
management does not ask - an assumption supported by the observation that there is no
lack of willingness to share (see Fig. 4). This fortifies our previous observation about
management expectation as a motivator.

AK Sharing Challenges What challenges in architectural knowledge sharing did you
experience in your latest assignment?

The distribution of the response values is visualized in Fig. 4. The ordering of the
challenges by average response value in Table 1 allows an interesting categorization of
challenges with descending response values:

s chl requnders, s chl stkhpart, s chl custdiv Difficulty to achieve common under-
standing of requirements, participation from relevant stakeholders, and diversity
in customer culture and business are all related to communication issues on group
level (as opposed to personal level); this is the category of challenges that most
architects consider relevant in their latest projects.
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Table 1. AK related responses, average values and correlations

Architectural knowledge types ID avg prj succ rho prj size rho
Standards; principles and guidelines s akt std 2.95 -0.062 0.012
Tools and methods s akt tlsmeth 2.80 -0.096 .234*
Known and proven practices s akt prctc 2.71 0.135 -0.017
Product and vendor knowledge s akt prodkn 2.71 0.187 -.244*
Requirements s akt req 2.71 0.178 -0.113
Design Decisions including alternatives; assumptions; rationale s akt dd 2.69 0.1 -0.025
Business knowledge s akt buskn 2.61 0.082 -0.023
Patterns and tactics s akt ptrn 2.46 0.044 0.011
Reference architectures s akt ra 2.28 0.074 -0.014
Legal knowledge s akt legal 1.79 0.097 0.03
AK Sharing Motivation ID avg prj succ rho prj size rho
To build up my professional network s akw bldnetw 3.89 -0.116 -0.009
I just like to share my knowledge s akw like 3.84 0.115 -0.107
Personal relation with colleague(s) s akw persrel 3.81 -.230* 0.037
We all work for the same company s akw samecomp 3.77 0.109 -0.147
To enhance my professional reputation s akw reput 3.59 0.042 0.022
To contribute to the company’s business goals s akw compbusgls 3.53 0.054 -0.014
I hope the favour will be returned some day s akw return 3.39 -.204* 0.147
I will be recognised as a contributor s akw recog 3.32 0.018 -0.107
I have received useful information from him/her s akw reciproc 3.32 -.223* -0.019
My management expects me to s akw mgtexpect 3.09 .275** -0.091
This may work in my favour at my next salary review s akw salary 2.69 0.002 0.037
AK Sharing Timing ID avg prj succ rho prj size rho
Whenever needed to solve problems s akh problems 3.48 0.153 -0.035
At the end of the project s akh prjend 3.41 0.027 0.002
When colleagues ask me to do so s akh collask 3.39 0.048 -0.066
When management ask me to do so s akh mgtask 2.59 0.177 -0.052
Whenever I have time s akh freetime 2.57 -0.025 0.065
In the evening s akh evening 2.53 0.012 -0.008
Continuously during the project s akh prjcnt 2.34 .205* -0.133
AK Sharing Challenges ID avg prj succ rho prj size rho
Difficulty to achieve common understanding of requirements s chl requnders 3.82 -0.146 0.055
Difficulty to achieve appropriate participation from relevant stakeholders s chl stkhpart 3.66 -0.165 0.017
Diversity in customer culture and business s chl custdiv 3.61 -0.102 0.051
Poor quality of information s chl infqual 3.42 -0.11 0.071
Lack of information s chl inflack 3.31 -0.086 0.12
Inconsistency in information obtained from different sources s chl infincons 3.26 -0.114 0.088
Lack of time s chl time 3.25 0.06 -0.017
Delays in delivery s chl delays 3.24 -0.167 0.194
Difficulty of obtaining the appropriate skills within the project s chl skills 3.24 -0.115 0.11
Conflicts and differences of opinion s chl conflict 3.19 -.214* 0.156
Difficulty to organise effective meetings s chl effmeet 3.09 -0.153 0.17
Lack of informal communication s chl lackinformal 3.01 -0.204 .226*
Inaccessibility of technical facilities s chl tinacc 2.99 -0.183 .272**
Growing and shrinking of project population s chl growshrink 2.82 -0.117 .317**
Lack of trust between the project locations s chl sitetrust 2.77 -.272** .244*
Project personnel turnover s chl persto 2.67 -0.116 .270**
No appreciation from (project or competence) management s chl mgtappr 2.60 -0.125 .241*
No willingness to share knowledge s chl nowill 2.39 -.224* .245*

* Correlation is significant at the 0.05 level (2-tailed).
** Correlation is significant at the 0.01 level (2-tailed).

s chl infqual, s chl inflack, s chl infincons Poor quality, inconsistency or lack of in-
formation are about issues with quality or absence of codified AK; this is the second
most commonly relevant category of challenges.

s chl time, s chl delays Lack of time and delays in delivery are related to planning;
this is the third most commonly relevant category of challenges.

other challenges all less commonly relevant than the three categories mentioned above,
are related to obtaining resources, interpersonal issues, teaming, continuity and
management.
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Fig. 3. AK Sharing Timing

Fig. 4. AK Sharing Challenges

In discussions about challenges in knowledge sharing, ”knowledge is power” [2] is
often cited as a reason for professionals not to want to share knowledge. In our survey
however, lack of willingness to share knowledge emerges as the least relevant challenge,
which the majority of architects find irrelevant, and which only 18% find relevant. The
next least relevant challenge is lack of management appreciation, which only 21% find
relevant. The unpopularity of this response suggests that, even though we have seen
in section 3.1 that both salary and management expectations are at the bottom of the
list of reasons to share AK, architects are not actively discouraged by their manage-
ment’s apparent disinterest. Seeing that 65% of respondents are at most impartial to
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management as a motivator (Fig. 2) and almost 80% are at most impartial to manage-
ment as a challenge (Fig. 4), one might conclude that architects do not see management
as an important factor in Architectural Knowledge Sharing. As we will see later on,
they might be wrong about this.

3.2 AK Practices in Context

In this section, we analyze the relationship between the AK practices and challenges
and their project context, by examining significant correlations between the AK-related
responses and some of the context-related questions. The two context factors analyzed
here are project success and project size.

The first context factor analyzed is project success, as perceived by the architects.
Perceived project success3 is determined by asking the architects how they rated seven
aspects of project success on a 5-point Likert scale from Poor to Excellent. The aspects
they rated are: Sticking to budget, Delivery in time, Client satisfaction, Management
support, Personnel turnover, Solution quality and Team satisfaction. The combined an-
swers of these seven aspects were subsequently averaged to obtain a quantification
of overall project success per case. Cronbach’s alpha test for internal consistency [6]
was used to verify that these seven responses measure the same construct of success
(alpha = 0.82).

The second context factor analyzed is project size. Projects were assigned an expo-
nential size category between 1 and 5, based on the number of project members: 10
or less became category 1, 11 through 30 category 2, 31 through 100 category 3, 101
through 300 category 4, and over 300 category 5.

Table 1 shows the Spearman’s rho correlations between project success and the AK
practice related responses in column prj succ rho. Correlations between project size
category and the AK practice related responses are in column prj size rho.

Correlations with a positive or negative slope of over 0.2 and a significance level of
under .05 (indicated by one or two asterisks) are considered significant and discussed
here. In the discussion of the correlations, some speculation is presented as to the un-
derlying mechanisms, based on the experience of the practicing architects among the
authors.

Cause and Effect One of the objectives of this survey was to gain insight into mech-
anisms around architectural knowledge sharing in projects. In other words, we were
looking for ways in which Architectural Knowledge Sharing impacts projects and vice
versa - questions of cause and effect.

When analyzing correlations like the ones found in this survey, the question of
causality between the correlated measurements deserves careful consideration. The
mere presence of a correlation by itself does not imply a causal relationship. In or-
der to determine potential causality, we resorted to three additional means: reasoning,
literature and the experience of two of the authors as practicing architects in ABC.

The four categories of measurements we are correlating here are:

3 In this paper, we use the terms ”project success” and ”perceived project success” interchange-
ably, always meaning the success as perceived by the architects and reported in the survey.
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AKS Practices the responses related to the type, motivation and timing of architectural
knowledge sharing

AKS Challenges the responses to the question: ”What challenges in architectural
knowledge sharing did you experience in your latest assignment?”

Project Success the perceived success of the respondents’ latest project
Project Size the size of the respondents’ latest project (category based on number of

project members)

There are six possible correlations between these four categories. We are not ana-
lyzing correlations between AKS Practices and Challenges. Fig. 5 visualizes potential
causality arrows for the five remaining possible correlations. In this figure and Fig. 8, a
causality arrow from A to B symbolizes that A has impact on B, implying that making
changes to A would cause related changes in B. The arrows are based on the following
reasoning:

Project Size ↔ Project Success Project size is well known to influence project suc-
cess in many ways, both in literature [8,9] and experience, so the primary arrow of
causality is from Size to Success

Project Size ↔ AKS Practices Experience indicates that mechanisms determining
project size are only marginally impacted by architectural knowledge sharing; on
the other hand, project size determines factors like organizational and physical dis-
tance between project members, which are obvious factors in AKS. We conclude
that any correlation found means that project size impacts AKS, and not the other
way around.

Project Size ↔ AKS Challenges Like with AKS Practices, project size causes AKS
challenges. There are some challenges that may in time conversely influence project
size: for example, difficulty to obtain the appropriate skills may either lead to a
smaller project because there is no staff available, or to a larger project because
the lower skill level is compensated by adding more staff. We conclude that there
is a primary causal arrow from project size to AKS challenges, and a potential
secondary reverse arrow.

Project Success ↔ AKS Practices Examples of causality in both directions are ex-
perienced: e.g., a more successful project may lead to a better atmosphere caus-
ing more knowledge to be exchanged, or conversely more knowledge sharing may
contribute to a more successful project. We conclude that we cannot a priori attach
causality direction to correlations found between project success and AKS prac-
tices.

Project Success ↔ AKS Challenges The word challenge is used here as a synonym
for obstacle, which can be defined as something that makes achieving one’s ob-
jectives more difficult. Since the objective here is a successful project, the primary
arrow of causality is by definition from Challenge to Success. There is also a pos-
sibility of reverse causality here: challenges may be exacerbated or caused by (lack
of) project success, e.g. the atmosphere in an unsuccessful project may lead to lack
of trust.

The causality arrows between the four categories of measurements as visualized in
Fig. 5 will be elaborated at the end of this section, based on correlations measured.
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Fig. 5. Causality as deduced from reasoning, literature and experience

Correlation with project success We now discuss the correlations between architec-
tural practices and challenges and project success. In column 4 of Table 1, we find 8
significant correlations. Summarizing:

In more successful projects, architects tend to:

– be less motivated to share AK for interpersonal relationship reasons, but are more
motivated by their management’s expectations

– face less challenges related to interpersonal relationships

We find no correlation between project success and the type of the Architectural
Knowledge shared.

Motivation: s akw persrel, s akw return, s akw reciproc Personal relation with
colleagues, or because I have received or hope to receive information from the
other: remarkably, all motivation responses that are related to one-to-one relation-
ships between colleagues show a significant negative correlation with project suc-
cess. Fig. 6(a) visualizes this relationship, showing a clearly downward slanting
cluster: the x-axis represents the individual architects’ average mark given to these
three responses.4 There are many possible explanations, but in view of our findings
about AK sharing challenges a few items further down, the most plausible one ap-
pears to be related to trust. Problems in projects tend to reduce trust, which might
cause architects to place more value on interpersonal motives.

Motivation: s akw mgtexpect My management expects me to: even though manage-
ment expectations are considered one of the least important motivations for sharing
AK by the architects, it is the only motivation that has a positive correlation with
project success. The explanation may also be related to trust levels: architects work-
ing on successful projects have more confidence in their management, and hence
are more inspired or motivated by them.

Timing: s akh prjcnt Continuously during the project: the only AK sharing timing
response that has a correlation with project success. However, visual inspection of
Fig. 6(b) suggests that this is a spurious effect.

Challenges: s chl conflict, s chl sitetrust and s chl nowill Conflicts and differences
of opinion, Lack of trust between the project locations, and No willingness to share
knowledge. Since there is by definition a causality between AKS challenges and

4 The lines in the scatter plots in this section represent linear regression fit lines and their 95%
confidence interval.
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(a) Motivation: interpersonal relationships (b) Continuous AKS

(c) Interpersonal challenges (d) Project Size vs Success

Fig. 6. Various AKS parameters plotted against project success

project success, we expect to find correlations. Remarkably, only three challenges
are significantly correlated with project success. These three challenges, all with a
very clear negative correlation, have in common that they are related to interper-
sonal relationships and emotion: conflicts, trust and willingness. We have plotted
the correlation between project success and the individual architects’ average mark
given to these three responses related to interpersonal challenges in Fig. 6(c). As
for the other challenges, finding no correlation indicates one of two things: either
the challenge is so insignificant that the correlation is too small to be measured in
a sample this size, or the challenge is somehow neutralized.

From these correlations, we can draw the following conclusion: the only significant
AKS challenges that are not neutralized in projects are those related to emotion and
interpersonal relationships. In less successful projects, there is less trust and willingness
to share AK, and more conflict. This appears not to affect the type of AK shared. It
does, however, have a significant effect on architects’ motivation to share architectural
knowledge: in more successful projects, they are more motivated by management and
less by interpersonal relationships between colleagues.
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Correlation with project size We proceed to discuss the correlations between architec-
tural practices and challenges and project size, as documented in column 5 of Table 1.
We find 9 significant correlations. Summarizing:

In larger projects, architects tend to:

– face significantly more challenges of multiple kinds
– share more knowledge about tools and methods, but less about products and ven-

dors

Project size has no effect on AK sharing motivation or timing.

s akt tlsmeth Architects in larger projects share slightly more information related to
tools and methods than architects in smaller projects. This is likely due to the fact
that there are simply more developers to educate on tools and methods.

s akt prodkn Architects in some smaller projects tend to share more knowledge re-
lated to products and vendors. We suspect that this is due to the fact that in larger
projects, decisions about products and vendors are often made on a higher (man-
agement) level, whereas smaller project architects are more likely to be involved in
these decisions, and hence have to share more knowledge related to products and
vendors.

AKS challenges Table 1 shows that out of the 18 types of challenges surveyed, 7 are
significantly correlated to project size. We have also calculated the aggregated AKS
challenge level as the average of each architect’s challenge-related responses. It
turns out this aggregated AKS challenge level is correlated to project size with a
correlation coefficient of 0.356 at a 0.001 significance level. The seven challenges
at the bottom of Table 1 are the only ones that are also individually correlated
to project size. Apparently, some challenges are universal, and others are consid-
ered less relevant in smaller projects, bringing down their average response value.
We have illustrated this by plotting the average response values of both the seven
least commonly relevant and the eleven most commonly relevant challenges against
project size in Fig.7. The figure confirms that there is indeed a clear upward trend,
and that it is steeper for the less commonly relevant challenges.

Based on the fact that larger projects are likely to include more distinct depart-
ments or locations, and the well-known issue of tension between departments, we
would expect larger projects to suffer more from emotion-related challenges. We
do indeed find correlations between project size and lack of both willingness (.245)
and trust (.244), but no significant correlation with the challenge of conflicts and
differences of opinion.

3.3 Refined Model of Causality

We now use the correlations observed in the previous section to obtain a more detailed
picture of causality. Fig. 8 shows the causality arrows between the four categories of
measurements as visualized in Fig. 5, but the AKS category boxes have been replaced
with more specific subcategories corresponding to the responses that showed correla-
tions. Additional symbols show whether correlations are positive or negative. Specifi-
cally, we have:
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Fig. 7. AKS Challenges versus project size

– replaced the generic box AKS Challenges with a box Less common AKS Challenges,
representing the seven least common AKS challenges that have significant positive
correlations with project size

– created a box Interpersonal challenges inside the Less common AKS Challenges
box, representing the three challenges related to willingness, trust and conflict that
are negatively correlated with project success

– replaced the generic AKS Practices box with four specific boxes representing the
practices that we have found to be correlated with either project size or project
success

– added + and - symbols to the causality arrows representing the sign of the observed
correlations

There is one correlation that we had not discussed yet: that between project size and
perceived project success. Fig. 6(d) displays a very clear relationship between project
size and perceived project success. Perceived project success and the logarithmic project
size category described above show a negative Spearman’s rho correlation coefficient
of -0.449, with a significance of 0.000. This is in line with results found by [9], and
conversely provides some additional validation that our input data behave according
to known properties of IT projects. Brooks [8] gives a clear explanation of one of the
mechanisms that cause this correlation. Surprisingly, a more recent survey [7] does not
find this correlation.

Fig. 8 summarizes in one picture the combined mechanisms in the interplay between
AKS and project size and success. We see how project size impacts some challenges,
and which challenges impact project success. We also see that project size impacts the
type of knowledge shared, and we observe a relationship between AKS motivation and
project success, a relationship with an as yet undetermined arrow of causality.
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Fig. 8. Causality as observed

4 Discussion and Related Work

In this section, we further discuss the results found above and threats to validity, and we
relate them to additional related material found in literature.

4.1 Threats to Validity

These results are based on a survey of architects in one IT services company in one
country. This limitation is somewhat softened by the fact that 64% of respondents work
mostly at customers’ sites, but the results are certainly influenced by cultural aspects of
both the ABC company and the Netherlands location. It would be very interesting to
repeat the survey in other companies and locations.

The ordering of the responses in Table 1 and the response value distribution bar
charts is based on average response values. The meaning of the average number itself
is not clear, since the Likert-scale is not equidistant. An alternative ordering quantity
would be the percentile responses of e.g. the two most positive Likert values. This
would have the advantage of being able to say exactly what the ordering quantity means,
but the disadvantage of ignoring the information inherent in the detailed distribution of
responses. Visual inspection of the bar charts shows that, with the exception of Fig. 1,
the order of the responses would not be that much different, specifically in those cases
where we have based reasoning on the response ordering. As an example: the ”seven
least commonly relevant challenges” in Fig. 4 that we have discussed above would also
be the seven bottom-most challenges if ordered by percentile of respondents answering
”Relevant” or ”Very Relevant”.

There is a weakness in the four questions analyzed in section 3.1, in that they all
appear to have slightly different scopes for AK sharing: two of the questions are about
sharing towards or from ABC, one is explicitly about sharing with colleagues, and two
are explicitly from the perspective of the originator. These scope differences are ignored
in the analysis, since they cannot be remedied without redoing the survey.

A final threat is caused by our approach of doing multiple statistical tests, and de-
riving our model from significant statistical results found in those tests. This approach
implies a risk of introducing spurious statistical results in the model. We have mitigated
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this risk by using reasoning, experience and literature, but it would be interesting to
further validate the model by using it to predict results in other surveys.

4.2 Project Success in Literature

Project success has long been an active research topic. Traditionally, project success is
defined in terms of meeting time, cost and quality objectives [14]. These correspond to
the first three of the seven project success criteria used in our survey. More recently, it
has been observed that projects can be successful in ways that cannot be measured by
these traditional criteria. Based on these insights, Baccarini et al. [1] have constructed
a conceptual framework for project success. Baccarini’s framework distinguishes be-
tween Project Management Success, which includes the three traditional criteria of
time, cost and process quality, and Product Success, which adds criteria related to the
product in a more strategic way, involving the product’s goal and purpose and product
satisfaction. In Baccarini’s framework, our criteria would all fall in the Project Man-
agement Success category, with the exception of Solution Quality. Team Satisfaction in
Baccarini’s framework can relate to both project and product; in our experience, this is
especially true for architects, who derive a large part of their job satisfaction from prod-
uct quality. This observation is confirmed by research by Linberg et al. [11] and more
recently by Procaccino et al. [15], who observe that developers’ perception of project
success often deviates significantly from the traditional criteria. Developers (including
architects) tend to judge success by criteria that extend beyond the project, sometimes
even to the extent that even canceled projects can be successful in their eyes.

4.3 Motivation and Emotion in Architectural Knowledge Sharing

An interesting finding about motivation in this survey is the observed shift in motivation
source from colleagues to management in more successful projects. Could there be an
either/or effect, in the sense that the 1-on-1 motivation by colleagues and motivation
by management are somehow mutually exclusive? In that case, one would expect a
negative correlation between these two motivation sources, which we did not measure
(Spearman’s rho = 0.107 with a two-tailed significance of 0.295). We conclude that
the mechanisms causing these shifts are independent. The finding does, however, cause
one to wonder about architects’ apparent indifference to management expectations as
either a motivator or a challenge. The well-known Chaos Reports [16] already showed
empirical evidence for management attention being a key project success factor.

Markus already identified the importance of being aware of one’s motivation long
before the term architect was used in the context of system design: ”Self-examination
of interests, motives, payoffs, and power bases will lend much to the implementor’s
ability to understand other people’s reactions to the systems the implementor is design-
ing...” [12]. In literature, motivation is reported to have the single largest impact on
developer productivity [4, 13]. Moreover, in system development, the architecture rep-
resents the system’s earliest design decisions with the highest impact on success [3].
Combining these facts, it is only to be expected that the motivation to share Architec-
tural Knowledge is correlated with project success. Our results not only point to the
importance of motivation and its source, but also shed some light on the mechanisms
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through which motivation and emotion impact project success through Architectural
Knowledge management.

Finally, some words on the topic of emotion, a term that we introduced in section 3.2
as the common element between the three only challenges that have a significant nega-
tive correlation with project success: Conflicts and differences of opinion, Lack of trust
between the project locations and No willingness to share knowledge. During the analy-
sis, we often wondered how it was possible that we did not find any significant correla-
tion between the other challenges in AKS and Project Success. Consider, for example,
the most commonly encountered challenge: Difficulty to achieve common understand-
ing of requirements. How can a project be successful without common understanding
of requirements? As stated above, the only plausible explanation is that all of these
other challenges are apparently neutralized. With neutralize we mean that if these chal-
lenges occur, there are other factors that prevent them from having a significant impact
on project success. In the case of our example, these could be compensating activi-
ties to promote the common understanding of requirements, such as client meetings. In
the end, the only challenges that are not neutralized are those related to lack of trust,
willingness, conflicts and differences of opinion: all issues in interpersonal relation-
ships that have a strong negative emotional connotation. Apparently, it is harder for
architects to neutralize challenges when such negative emotions are involved. This is
a phenomenon that the practicing architects among the authors have often observed in
real life, and it should be no surprise, given that architects are human beings. The signif-
icant finding here is that these emotional challenges are not neutralized where all other
challenges are, and hence they merit extra attention, leading to the warning in our title:
Beware of Emotions.

We conclude:
FOR ARCHITECTS, TO UNDERSTAND THEIR MOTIVATION AND DEAL WITH EMO-

TIONS ARE CRUCIAL KNOWLEDGE SHARING SKILLS.

5 Conclusions

We set out on this survey with two goals, which were both achieved: to establish the
current state of architectural knowledge sharing in the ABC company and its customers,
and to gain insight into the mechanisms around architectural knowledge sharing in
projects. In order to gain this insight, we looked at architects’ responses to four ques-
tions about AK sharing, and the correlations between these responses and their latest
projects’ success and size, and we reasoned about impact mechanisms and causality.

The analysis revealed the following mechanisms:

– Architects face many challenges sharing architectural knowledge in projects;
– these challenges are more numerous and diverse in larger projects than in smaller

ones.
– The most common of these challenges are related to group level communication

issues, the quality of codified knowledge and planning issues;
– however, these common challenges are not correlated with project success, so ap-

parently they are generally neutralized somehow.
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– The only challenges that are correlated with project success are the ones related to
interpersonal relationships: conflicts, trust and willingness to share knowledge.

– Architects’ motivation to share knowledge is more personal in less successful
projects.

– Architects do not see management as an important factor in Architectural Knowl-
edge Sharing, but those architects that are motivated by management tend to work
in more successful projects.

Our final conclusion is that dealing with emotions is a crucial factor in how archi-
tectural knowledge sharing leads to successful projects. It is important for architects to
understand their motivation, and they should be careful when dealing with emotions
when sharing knowledge.
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Abstract. An architectural bad smell is a commonly (although not al-
ways intentionally) used set of architectural design decisions that neg-
atively impacts system lifecycle properties, such as understandability,
testability, extensibility, and reusability. In our previous short paper, we
introduced the notion of architectural bad smells and outlined a few com-
mon smells. In this paper, we significantly expand upon that work. In
particular, we describe in detail four representative architectural smells
that emerged from reverse-engineering and re-engineering two large in-
dustrial systems and from our search through case studies in research
literature. For each of the four architectural smells, we provide illustra-
tive examples and demonstrate the smell’s impact on system lifecycle
properties. Our experiences indicate the need to identify and catalog ar-
chitectural smells so that software architects can discover and eliminate
them from system designs.

1 Introduction

As the cost of developing software increases, so does the incentive to evolve and
adapt existing systems to meet new requirements, rather than building entirely
new systems. Today, it is not uncommon for a software application family to be
maintained and upgraded over a span of five years, ten years, or longer. However,
in order to successfully modify a legacy application to support new functionality,
run on new platforms, or integrate with new systems, evolution must be carefully
managed and executed. Frequently, it is necessary to refactor [1], or restructure
the design of a system, so that new requirements can be supported in an efficient
and reliable manner.

The most commonly used way to determine how to refactor is to identify
code bad smells [2] [1]. Code smells are implementation structures that neg-
atively affect system lifecycle properties, such as understandability, testability,
extensibility, and reusability; that is, code smells ultimately result in maintain-
ability problems. Common examples of code smells include very long param-
eter lists and duplicated code (i.e., clones). Code smells are defined in terms
of implementation-level constructs, such as methods, classes, parameters, and
statements. Consequently, refactoring methods to correct code smells also oper-
ate at the implementation level (e.g., moving a method from one class to another,
adding a new class, or altering the class inheritance hierarchy).

While detection and correction of code smells is one way to improve system
maintainability, some maintainability issues originate from poor use of software
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architecture-level abstractions — components, connectors, styles, and so on —
rather than implementation constructs. In our previous work [3], we introduced
the notion of architectural bad smells and identified four representative smells.
Architectural bad smells are combinations of architectural constructs that induce
reductions in system maintainability. Architectural smells are analogous to code
smells because they both represent common “solutions” that are not necessarily
faulty or errant, but still negatively impact software quality. In this paper, we
expand upon the four smells identified in our previous work by describing them
in detail and illustrating their occurence in case studies from research literature
and our own architectural recovery [4] [5] and industrial maintenance efforts.

The remainder of this paper is organized as follows. Section 2 explains the
characteristics and significance of architectural smells. Section 3 summarizes re-
search efforts in related topics. Section 4 introduces two long-term software main-
tenance efforts on industrial systems and case studies from research literature
that we use to illustrate our four representative architectural smells. Section 5
describes our four architectural smells in detail, and illustrates the impact of
each smell through concrete examples drawn from the systems mentioned in
Section 4. Finally, Section 6 provides closing discussion and insights.

2 Definition

In this section, we define what constitutes an architectural smell and discuss the
important properties of architectural smells.

We define a software system’s architecture as “the set of principal design
decisions governing a system” [6]. The system stakeholders determine which
aspects are deemed to be “principal.” In practice, this usually includes (but is
not limited to) how the system is organized into subsystems and components,
how functionality is allocated to components, and how components interact with
each other and their execution environment.

The term architectural smell was originally used in [7]. The authors of [7] de-
fine an architectural smell as a bad smell, an indication of an underlying problem,
that occurs at a higher level of a system’s granularity than a code smell. How-
ever, we found that this definition of architectural smell does not recognize that
both code and architectural smells specifically affect lifecycle qualities, not just
any system quality. Therefore, we define architectural smells as a commonly used
architectural decision that negatively impacts system lifecycle qualities. Archi-
tectural smells may be caused by applying a design solution in an inappropriate
context, mixing combinations of design abstractions that have undesirable emer-
gent behaviors, or applying design abstractions at the wrong level of granularity.
Architectural smells must affect lifecycle properties, such as understandability,
testability, extensibility, and reusability, but they may also have harmful side
effects on other quality properties like performance and reliability. Architectural
smells are remedied by altering the internal structure of the system and the be-
haviors of internal system elements without changing the external behavior of
the system. Besides defining architectural smells explicitly in terms of lifecycle
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properties, we extend, in three ways, the definition of architectural smell found
in [7].

Our first extension to the definition is our explicit capture of architectural
smells as design instances that are independent from the engineering processes
that created the design. That is, human organizations and processes are orthog-
onal to the definition and impact of a specific architectural smell. In practical
terms, this means that the detection and correction of architectural smells is not
dependent on an understanding of the history of a software system. For example,
an independent analyst should be able to audit a documented architecture and
indicate possible smells without knowing about the development organization,
management, or processes.

For our second extension to the definition, we do not differentiate between
architectural smells that are part of an intended design (e.g., a set of UML
specifications for a system that has not yet been built) as opposed to an imple-
mented design (e.g., the implicit architecture of an executing system). Further-
more, we do not consider the non-conformance of an implemented architecture
to an intended architecture, by itself, to be an architectural smell because an
implemented architecture may improve maintainability by violating its intended
design. For example, it is possible for an intended architecture of a system to
include poor design elements, while the (non-conforming) implemented architec-
ture replaces those elements with better solutions.

For our last extension, we attempt to facilitate the detection of architectural
smells through specific, concrete definitions captured in terms of standard ar-
chitectural building blocks — components, connectors, interfaces, and configu-
rations. Increasingly, software engineers reason about their systems in terms of
these concepts [8,6], so in order to be readily applicable and maximally effec-
tive, our architectural smell definitions similarly utilize these abstractions (see
Section 5). The definition in [7] does not utilize explicit architectural interfaces
or first-class connectors in their smells.

In many contexts, a design that exhibits a smell will be justified by other
concerns. Architectural smells always involve a trade-off between different prop-
erties, and the system architects must determine whether action to correct the
smell will result in a net benefit. Furthermore, refactoring to reduce or eliminate
an architectural smell may involve risk and almost always requires investment
of developer effort.

3 Related Work

In this section, we provide an overview of four topics that are directly related to
architectural smells: code smells, architectural antipatterns, architectural mis-
matches, and defects.

The term code smells was introduced by Beck and Fowler [2] for code struc-
tures that intuitively appear as bad solutions and indicate possibilities for code
improvements. For most code smells, refactoring solutions that result in higher
quality software are known. Although bad smells were originally based on sub-
jective intuitions of bad code practice, recent work has developed ways to detect
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code smells based on metrics [9] and has investigated the impact of bad smells
using historical information [10]. As noted in Section 1, code smells only apply
to implementation issues (e.g., a class with too many or too few methods), and
do not guide software architects towards higher-level design improvements.

Closely related to code smells are antipatterns [11]. An antipattern describes
a recurring situation that has a negative impact on a software project. Antipat-
terns include wide-ranging concerns related to project management, architecture,
and development, and generally indicate organizational and process difficulties
(e.g., design-by-committee) rather than design problems. Architectural smells,
on the other hand, focus on design problems that are independent of process
and organizational concerns, and concretely address the internal structure and
behavior of systems. The general definition of antipatterns allows both code
and architectural smells to be classified as antipatterns. However, antipatterns
that specifically pertain to architectural issues typically capture the causes and
characteristics of poor design from a system-wide viewpoint (e.g., stove-piped
systems). Therefore, not all architectural antipatterns are defined in terms of
standard architectural building blocks (e.g., vendor lock-in). Defining architec-
tural smells in terms of standard architectural building blocks makes it possi-
ble to audit documented or recovered architecture for possible smells without
needing to understand the history of a software system. Furthermore, architec-
tural antipatterns can negatively affect any system quality, while architectural
smells must affect lifecycle properties.

Another concept similar to architectural smells is architectural mismatch [12].
Architectural mismatch is the set of conflicting assumptions architectural ele-
ments may make about the system in which they are used. In turn, these con-
flicting assumptions may prevent the integration of an architectural element
into a system. Work conducted in [13] and [14] has resulted in a set of concep-
tual features used to define architectural designs in order to detect architectural
mismatch. While instructive to our work, architectural mismatch research has
focused heavily on the functional properties of a system without considering the
effects on lifecycle properties.

Finally, defects are similar to architectural smells. A defect is a manifestation
of an error in a system [15]. An error is a mental mistake made by a designer
or developer [15]. In other words, a defect is an error that is manifested in
either a requirements, design, or implemented system that is undesired or unin-
tended [16]. Defects are never desirable in a software system, while smells may
be desirable if a designer or developer prefers the reduction in certain lifecycle
properties for a gain in other properties, such as performance.

4 Systems under Discussion

Our experience with two long-term software projects brought us to the realiza-
tion that some commonly-used design structures adversely affect system main-
tainability. In this section, we introduce these projects by summarizing their
context and objectives. Later in the paper, we utilize specific examples from
these projects to illustrate the impact of architectural bad smells.
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Maintenance of large-scale software systems includes both architectural re-
covery and refactoring activities. Architectural recovery is necessary when a
system’s conceptual architecture is unknown or undocumented. Architectural
refactoring is required when a system’s architecture is determined to be unsatis-
factory and must be altered. We discovered architectural bad smells during both
an architectural recovery effort (summarized in Section 4.1) and an architectural
refactoring effort (summarized in Section 4.2). To substantiate our observations,
we found further examples of architectural bad smells that appear in recovery
and refactoring efforts published in the research literature.

4.1 Grid Architecture Recovery

An extensive study of grid system [17] implementations contributed to our collec-
tion and insights of architectural smells. Grid technologies allow heterogeneous
organizations to solve complex problems using shared computing resources. Four
years ago, we conducted a pilot study [18] in which we extracted and studied
the architecture of five widely-used grid technologies and compared their ar-
chitectures to the published grid reference architecture [17]. We subsequently
completed a more comprehensive grid architecture recovery project and recently
published a report [5] on the architectures of eighteen grid technologies, includ-
ing a new reference architecture for the grid. The examined grid systems were
developed in C, C++, or Java and contained up to 2.2 million SLOC (Source
Lines of Code). Many of these systems included similar design elements that
have a negative effect on quality properties.

Figure 1 shows the identified reference architecture for the grid. A grid sys-
tem is composed of four subsystem types: Application, Collective, Resource, and

Fig. 1. Structural View of the Grid Reference Architecture
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Fabric. Each subsystem type is usually instantiated multiple times. An Appli-
cation can be any client that needs grid services and is able to use an API
that interfaces with Collective or Resource components. The components in the
Collective subsystem are used to orchestrate and distribute data and grid jobs
to the various available resources in a manner consistent with the security and
trust policies specified by the institutions within a grid system (i.e., the virtual
organization). The Resource subsystem contains components that perform indi-
vidual operations required by a grid system by leveraging available lower-level
Fabric components. Fabric components offer access capabilities to computational
and data resources on an individual node (e.g., access to file-system operations).
Each subsystem type uses different interaction mechanisms to communicate with
other subsystems types, as noted in Figure 1. The interaction mechanisms are
described in [5].

4.2 MIDAS Architecture Refactoring

In collaboration with an industrial partner, for the last three years we have been
developing a lightweight middleware platform, called MIDAS, for distributed
sensor applications [19] [20]. Over ten software engineers in three geographi-
cally distributed locations contributed to MIDAS in multiple development cycles
to address changing and growing requirements. In its current version, MIDAS
implements many high-level services (e.g., transparent fault-tolerance through
component replication) that were not anticipated at the commencement of the
project. Additionally, MIDAS was ported to a new operating system (Linux) and
programming language (C++), and capabilities tailored for a new domain (mo-
bile robotics) were added. As a consequence, the MIDAS architecture was forced
to evolve in unanticipated ways, and the system’s complexity grew substantially.
In its current version, the MIDAS middleware platform consists of approximately

Fig. 2. System Stack Layers in MIDAS
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100 KSLOC in C++ and Java. The iterative development of MIDAS eventu-
ally caused several architectural elements to lose conceptual coherence (e.g., by
providing multiple services). As a consequence, we recently spent three person-
months refactoring the system to achieve better modularity, understandability,
and adaptability. While performing the refactoring, we again encountered archi-
tectural structures that negatively affected system lifecycle properties.

Figure 2 shows a layered view of the MIDAS middleware platform. The bot-
tom of the MIDAS architecture is a virtual machine layer that allows the mid-
dleware to be deployed on heterogeneous OS and hardware platforms efficiently.
The host abstraction facilities provided by the virtual machine are leveraged
by the middleware’s architectural constructs at the layer above. These archi-
tectural constructs enable a software organization to directly map its system’s
architecture to the system’s implementation. Finally, these constructs are used
to implement advanced distributed services such as fault-tolerance and resource
discovery.

4.3 Studies from Research Literature

Given the above experiences, we examined the work in architectural recovery
and refactoring published in research literature [4] [21] [22] [23], which helped us
to understand architectural design challenges and common bad smells. In this
paper, we refer to examples from a case study that extracted and analyzed the
architecture of Linux [4]. In this study, Bowman et al. created a conceptual archi-
tecture of the Linux kernel based on available documentation and then extracted
the architectural dependencies within the kernel source code (800 KSLOC). They
concluded that the kernel contained a number of design problems, such as un-
necessary and unintended dependencies.

5 Architectural Smells

This section describes four architectural smells in detail. We define each architec-
tural smell in terms of participating architectural elements — components, con-
nectors, interfaces, and configurations. Components are computational elements
that implement application functionality in a software system [24]. Connectors
provide application-independent interaction facilities, such as transfer of data
and control [25]. Interfaces are the interaction points between components and
connectors. Finally, configurations represent the set of associations and relation-
ships between components and/or connectors. We provide a generic schematic
view of each smell captured in one or more UML diagrams. Architects can use
diagrams such as these to inspect their own designs for architectural smells.

5.1 Connector Envy

Description. Components with Connector Envy encompass extensive intera-
ction-related functionality that should be delegated to a connector. Connectors
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ComponentA

Communication
Library

<<import>>

ProcessingInterfaceA

ProcessingInterfaceB

ComponentB

process
+ process(Type P)
-  convert(Type P)

PublicInterface

process(Type P){
  b = new CoreClassB();
  b.processCoreConcern
         (convert(P));
}

+ processCoreConcern 
   (ConcernType P)

CoreClassB

a b

Fig. 3. The top diagram depicts Connector Envy involving communication and facil-
itation services. The bottom diagram shows Connector Envy involving a conversion
service.

provide the following types of interaction services: communication, coordination,
conversion, and facilitation [25]. Communication concerns the transfer of data
(e.g., messages, computational results, etc.) between architectural elements. Co-
ordination concerns the transfer of control (e.g., the passing of thread execution)
between architectural elements. Conversion is concerned with the translation of
differing interaction services between architectural elements (e.g., conversion of
data formats, types, protocols, etc). Facilitation describes the mediation, opti-
mization, and streamlining of interaction (e.g., load balancing, monitoring, and
fault tolerance). Components that extensively utilize functionality from one or
more of these four categories suffer from the Connector Envy smell.

Figure 3a shows a schematic view of one Connector Envy smell, where
ComponentA implements communication and facilitation services. ComponentA
imports a communication library, which implies that it manages the low-level
networking facilities used to implement remote communication. The naming,
delivery and routing services handled by remote communication are a type of
facilitation service.

Figure 3b depicts another Connector Envy smell, where ComponentB per-
forms a conversion as part of its processing. The interface of ComponentB called
process is implemented by the PublicInterface class of ComponentB. PublicInter-
face implements its process method by calling a conversion method that trans-
forms a parameter of type Type into a ConcernType.

Quality Impact and Trade-offs. Coupling connector capabilities with compo-
nent functionality reduces reusability, understandability, and testability. Reusab-
ility is reduced by the creation of dependencies between interaction services and
application-specific services, which make it difficult to reuse either type of service
without including the other. The overall understandability of the component de-
creases because disparate concerns are commingled. Lastly, testability is affected
by Connector Envy because application functionality and interaction function-
ality cannot be separately tested. If a test fails, either the application logic or
the interaction mechanism could be the source of the error.

As an example, consider a MapDisplay component that draws a map of the
route followed by a robot through its environment. The component expects po-
sition data to arrive as Cartesian coordinates and converts that data to a screen
coordinate system that uses only positive x and y values. The MapDisplay suffers
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from Connector Envy because it performs conversion of data formats between
the robot controller and the user interface. If the MapDisplay is used in a new,
simulated robot whose controller represents the world in screen coordinates,
the conversion mechanism becomes superfluous, yet the MapDisplay cannot be
reused intact without it. Errors in the displayed location of the robot could arise
from incorrect data conversion or some other part of the MapDisplay, yet the
encapsulation of the adapter within the MapDisplay makes it difficult to test
and verify in isolation.

The Connector Envy smell may be acceptable when performance is of higher
priority than maintainability. More specifically, explicitly separating the inter-
action mechanism from the application-specific code creates an extra level of
indirection. In some cases, it may also require the creation of additional threads
or processes. Highly resource-constrained applications that use simple interac-
tion mechanisms without rich semantics may benefit from retaining this smell.
However, making such a trade-off simply for efficiency reasons, without consid-
ering the maintainability implications of the smell, can have a disastrous cumu-
lative effect as multiple incompatible connector types are placed within multiple
components that are used in the same system.

Example from Industrial Systems. The Gfarm Filesystem Daemon (gfsd)
from a grid technology called Grid Datafarm [26] is a concrete example of a
component with Connector Envy that follows the form described in Figure 3.
The gfsd is a Resource component and runs on a Resource node as depicted in
Figure 1. The gfsd imports a library that is used to build the lightweight remote
procedure call (RPC) mechanism within the gfsd. This built-in RPC mechanism
provides no interfaces to other components and, thus, is used solely by the gfsd.
While the general schematic in Figure 3 shows only an instance of communication
and facilitation, this instance of the smell also introduces coordination services
by implementing a procedure call mechanism. The interfaces of the gfsd provide
remote file operations, file replication, user authentication and node resource
status monitoring. These interfaces and the gfsd ’s RPC mechanism enable the
notification, request, and P2P interactions shown in Figure 1 that occur across
Resource nodes in Grid Datafarm.

Reusability, modifiability, and understandability are adversely affected by the
Connector Envy smell in the gfsd. The reusability effects of Connector Envy can
be seen in a situation where a new Resource component, called Gfarm work-
flow system daemon (gwsd), that provides workflow-based services is added to
Grid Datafarm. The RPC mechanism within the gfsd is built without interfaces
that can be made available to other components, hence the RPC mechanism
cannot be used with the gwsd. Understandability is reduced by the unneces-
sary dependencies between the gfsd ’s application-specific functionality (e.g., file
replication, local file operations, etc.) and RPC mechanism. The combination
of application-specific functionality and interaction mechanisms throughout the
functions of the gfsd enlarge the component in terms of function size, number
of functions, and shared variables. Both modifiability and understandability are
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adversely affected by having the overwhelming majority of the gfsd ’s functions
involve the use or construction of Grid Datafarm’s RPC mechanism.

It is possible that since grid technologies need to be efficient, the creators of
Grid Datafarm may have intentionally built a gfsd with Connector Envy in order
to avoid the performance effects of the indirection required for a fully separated
connector. Another fact to consider is that Grid Datafarm has been in use for at
least seven years and has undergone a significant number of updates that have
expanded the gfsd ’s functionality. This has likely resulted in further commingling
of connector-functionality with application-specific functionality.

5.2 Scattered Parasitic Functionality

Description. Scattered Parasitic Functionality describes a system where mul-
tiple components are responsible for realizing the same high-level concern and,
additionally, some of those components are responsible for orthogonal concerns.
This smell violates the principle of separation of concerns in two ways. First, this
smell scatters a single concern across multiple components. Secondly, at least one
component addresses multiple orthogonal concerns. In other words, the scattered
concern infects a component with another orthogonal concern, akin to a parasite.
Combining all components involved creates a large component that encompasses
orthogonal concerns. Scattered Parasitic Functionality may be caused by cross-
cutting concerns that are not addressed properly. Note that, while similar on the
surface, this architectural smell differs from the shotgun surgery code smell [2]
because the code smell is agnostic to orthogonal concerns.

Figure 4 depicts three components that are each responsible for the same
high-level concern called SharedConcern, while ComponentB and ComponentC
are responsible for orthogonal concerns. The three components in Figure 4 can-
not be combined without creating a component that deals with more than one
clearly-defined concern. ComponentB and ComponentC violate the principle of
separation of concerns since they are both responsible for multiple orthogonal
concerns.

Quality Impact and Trade-offs. The Scattered Parasitic Functionality smell
adversely affects modifiability, understandability, testability, and reusability. Us-
ing the concrete illustration from Figure 4, modifiability, testability, and under-
standability of the system are reduced because when SharedConcern needs to be

access

ComponentA

+ SharedConcern
ClassA

ComponentB

+ SharedConcern
+ ConcernB

ClassB

ComponentC

+ SharedConcern
+ ConcernC

ClassC

Fig. 4. The Scattered Parasitic Functionality occurring across three components
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changed, there are three possible places where SharedConcern can be updated
and tested. Another facet reducing understandability is that both ComponentB
and ComponentC also deal with orthogonal concerns. Designers cannot reuse the
implementation of SharedConcern depicted in Figure 4 without using all three
components in the figure.

One situation where scattered functionality is acceptable is when the Shared-
Concern needs to be provided by multiple off-the-shelf (OTS) components whose
internals are not available for modification.

Example from Industrial Systems. Bowman et al.’s study [4] illustrates an
occurrence of Scattered Parasitic Functionality in the widely used Linux oper-
ating system. The case study reveals that Linux’s status reporting of execution
processes is actually implemented throughout the kernel, even though Linux’s
conceptual architecture indicates that status reporting should be implemented
in the PROC file system component. Consequently, the status reporting func-
tionality is scattered across components in the system. This instance of the smell
resulted in two unintended dependencies on the PROC file system, namely, the
Network Interface and Process Scheduler components became dependent on the
PROC file system.

The PROC file system example suffers from the same diminished lifecycle
properties as the notional system described in the schematic in Figure 4. Mod-
ifiability and testability are reduced because updates to status reporting func-
tionality result in multiple places throughout the kernel that can be tested or
changed. Furthermore, understandability is decreased by the additional associ-
ations created by Scattered Parasitic Functionality among components.

The developers of Linux may have implemented the operating system in this
manner since status reporting of different components may be assigned to each
one of those components. Although it may at first glance make sense to distribute
such functionality across components, more maintainable solutions exist, such
as implementing a monitoring connector to exchange status reporting data or
creating an aspect [27] for status reporting.

5.3 Ambiguous Interfaces

Description. Ambiguous Interfaces are interfaces that offer only a single, gen-
eral entry-point into a component. This smell appears especially in event-based
publish-subscribe systems, where interactions are not explicitly modeled and
multiple components exchange event messages via a shared event bus. In this
class of systems, Ambiguous Interfaces undermine static dependency analysis for
determining execution flows among the components. They also appear in systems
where components use general types such as strings or integers to perform dy-
namic dispatch. Unlike other constructs that reduce static analyzability, such as
function pointers and polymorphism, Ambiguous Interfaces are not programming
language constructs; rather, Ambiguous Interfaces reduce static analyzability at
the architectural level and can occur independently of the implementation-level
constructs that realize them.
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ComponentA process

+ process(GeneralType P)

PublicInterface

process(GeneralType P){
  if (P.type == TypeA) {...}
  if (P.type == TypeB) {...}
  ...

Fig. 5. An Ambiguous Interface is implemented using a single public method with a
generic type as a parameter

Two criteria define the Ambiguous Interface smell depicted in Figure 5. First,
an Ambiguous Interface offers only one public service or method, although its
component offers and processes multiple services. The component accepts all
invocation requests through this single entry-point and internally dispatches to
other services or methods. Second, since the interface only offers one entry-
point, the accepted type is consequently overly general. Therefore, a component
implementing this interface claims to handle more types of parameters than it
will actually process by accepting the parameter P of generic type GeneralType.
The decision whether the component filters or accepts an incoming event is part
of the component implementation and usually hidden to other elements in the
system.

Quality Impact and Trade-offs. Ambiguous Interfaces reduce a system’s
analyzability and understandability because an Ambiguous Interface does not
reveal which services a component is offering. A user of this component has to
inspect the component’s implementation before using its services. Additionally,
in an event-based system, Ambiguous Interfaces cause a static analysis to over-
generalize potential dependencies. They indicate that all subscribers attached
to an event bus are dependent on all publishers attached to that same bus.
Therefore, the system seems to be more widely coupled than what is actually
manifested at run-time. Even though systems utilizing the event-based style
typically have Ambiguous Interfaces, components utilizing direct invocation may
also suffer from Ambiguous Interfaces. Although dependencies between these
components are statically recoverable, the particular service being invoked by
the calling component may not be if the called component contains a single
interface that is an entry point to multiple services.

The following example helps to illustrate the negative effect of the wide cou-
pling. Consider an event-based system containing n components, where all com-
ponents are connected to a shared event bus. Each component can publish events
and subscribes to all events. A change to one publisher service of a component
could impact (n− 1) components, since all components appear to be subscribed
to the event, even if they immediately discard this event. A more precise in-
terface would increase understandability by narrowing the number of possible
subscribers to the publishing service. Continuing with the above example, if each
component would list its detailed subscriptions, a maintenance engineer could
see which m components (m ≤ n) would be affected by changing the specific
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publisher service. Therefore, the engineer would only have to inspect the change
effect on m components instead of n − 1. Often times, components exchange
events in long interactions sequences; in these cases, the Ambiguous Interface
smell forces an architect to repeatedly determine component dependencies for
each step in the interaction sequence.

Example from Industrial Systems. A significant number of event-based mid-
dleware systems suffer from the form of Ambiguous Interface smell depicted in
Figure 5. An example of a widely used system that follows this design is the
Java Messaging Service (JMS) [28]. Consumers in JMS receive generic Message
objects through a single receive method. The message objects are typically cast
to specific message types before any one of them is to be processed. Another
event-based system that acts in this manner is the Information Bus [29]. In this
system, publishers mark the events they send with subjects and consumers can
subscribe to a particular subject. Consumers may subscribe to events using a
partially specified subject or through wild-cards, which encourage programmers
to subscribe to more events then they actually process.

The event-based mechanism used by MIDAS conforms to the diagram in
Figure 5. In the manner described above, MIDAS is able to easily achieve dy-
namic adaptation. Through the use of DLLs, MIDAS can add, remove, and
replace components during run-time, even in a highly resource-constrained sen-
sor network system. As mentioned in Section 4.2, we have recently spent three
person-months refactoring the system to achieve better modularity, understand-
ability, and adaptability. During the refactoring, determining dependencies and
causality of events in the system was difficult due to the issues of over-generalized
potential dependencies described above. An extensive amount of recovery needed
to be done to determine which dependencies occur in what context.

5.4 Extraneous Adjacent Connector

Description. The Extraneous Adjacent Connector smell occurs when two con-
nectors of different types are used to link a pair of components. Eight types
of connectors have been identified and classified in the literature [25]. In this
paper, we focus primarily on the impact of combining two particular types of
connectors, procedure call and event connectors, but this smell applies to other
connector types as well. Figure 6 shows a schematic view of two components
that communicate using both a procedure call connector and an event-based
connector.

In an event-based communication model, components transmit messages,
called events, to other components asynchronously and possibly anonymously.
In Figure 6, ComponentA and ComponentB communicate by sending events to
the SoftwareEventBus, which dispatches the event to the recipient. Procedure
calls transfer data and control through the direct invocation of a service interface
provided by a component. As shown in Figure 6, an object of type ClassB in
ComponentB communicates with ComponentA using a direct method call.
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ComponentB

+ operation()
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+ operation()
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...
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a.operation();
...

send

receive receive

send

<<call>>

Fig. 6. The connector SoftwareEventBus is accompanied by a direct method invocation
between two components

Quality Impact and Trade-offs. An architect’s choice of connector types may
affect particular lifecycle properties. For example, procedure calls have a positive
affect on understandability, since direct method invocations make the transfer
of control explicit and, as a result, control dependencies become easily trace-
able. On the other hand, event connectors increase reusability and adaptability
because senders and receivers of events are usually unaware of each other and,
therefore, can more easily be replaced or updated. However, having two archi-
tectural elements that communicate over different connector types in parallel
carries the danger that the beneficial effects of each individual connector may
cancel each other out.

While method calls increase understandability, using an additional event-
based connector reduces this benefit because it is unclear whether and under
what circumstances additional communication occurs between ComponentA and
ComponentB. For example, it is not evident whether ComponentA functionality
needs to invoke services in ComponentB. Furthermore, while an event connec-
tor can enforce an ordered delivery of events (e.g., using a FIFO policy), the
procedure call might bypass this ordering. Consequently, understandability is
affected, because a software maintenance engineer has to consider the (often un-
foreseen and even unforeseeable) side effects the connector types may have on
one another.

On the other hand, the direct method invocation potentially cancels the pos-
itive impact of the event connector on adaptability and reusability. In cases
where only an event connector is used, components can be replaced during sys-
tem runtime or redeployed onto different hosts. In the scenario in Figure 6,
ComponentA’s implementation cannot be replaced, moved or updated during
runtime without invalidating the direct reference ComponentB has on ClassA.

This smell may be acceptable in certain cases. For example, standalone desk-
top applications often use both connector types to handle user input via a GUI.
In these cases, event connectors are not used for adaptability benefits, but to
enable asynchronous handling of GUI events from the user.

Example from Industrial Systems. In the MIDAS system, shown in
Figure 2, the primary method of communication is through event-based connec-
tors provided by the underlying architectural framework. All high-level services
of MIDAS, such as resource discovery and fault-tolerance were also



160 J. Garcia et al.

implemented using event-based communication. While refactoring as described
in Section 4.2, we observed an instance of the Extraneous Adjacent Connector
smell. We identified that the Service Discovery Engine, which contains resource
discovery logic, was directly accessing the Service Registry component using
procedure calls. During the refactoring an additional event-based connector for
routing had to be placed between these two components, because the Fault Tol-
erance Engine, which contains the fault tolerance logic, also needed access to the
Service Registry. However, the existing procedure call connector increased the
coupling between those two components and prevented dynamic adaptation of
both components.

This smell was accidentally introduced in MIDAS to solve another challenge
encountered during the implementation. In the original design, the Service Dis-
covery Engine was broadcasting its events to all attached connectors. One of
these connectors enabled the Service Discovery Engine to access peers over a
UDP/IP network. This instance of the Extraneous Adjacent Connector smell
was introduced so that the Service Discovery Engine could directly access the
Service Registry, avoiding unnecessary network traffic. However, as discussed,
the introduced smell instance caused the adaptability of the system to decrease.

6 Conclusion

Code smells have helped developers identify when and where source code needs
to be refactored [2]. Analogously, architectural smells tell architects when and
where to refactor their architectures. Architectural smells manifest themselves
as violations of traditional software engineering principles, such as isolation of
change and separation of concerns, but they go beyond these general principles
by providing specific repeatable forms that have the potential to be automati-
cally detected. The notion of architectural smells can be applied to large, complex
systems by revealing opportunities for smaller, local changes within the architec-
ture that cumulatively add up to improved system quality. Therefore, architects
can use the concept (and emerging catalogue) of smells to analyze the most rel-
evant parts of an architecture without needing to deal with the intractability of
analyzing the system as a whole.

Future work on architectural smells includes a categorization of architectural
smells, architectural smell detection and correction processes, and tool support
to aid in those processes. A categorization of architectural smells would include
an extensive list of smells and an analysis of the impact, origins, and ways
to correct the smells. Architectural smells may be captured in an architectural
description language, which would allow conceptual architectures to be analyzed
for smells before they are implemented. Correction of smells would include the
inception of a set of architectural refactoring operations and the provision of tools
to help recommend particular operations for detected smells. In attempting to
repair architectures of widely-used systems, the authors of [23] identified a set
of operations that can be used as a starting point for determining a complete
set of architectural refactoring operations. By trying to correct some of the
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architectural smells we found in both our own and others’ experiences, such as
[4] [21] [22] [23], we hope to identify other architectural refactoring operations
and determine which operations are relevant to particular smells.
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Abstract. We address the data-center consolidation problem: given a
working data-center, the goal of the problem is to choose which software
applications must be deployed on which servers in order to minimize
the number of servers to use while avoiding the overloading of system
resources and satisfying availability constraints. This in order to tradeoff
between quality of service issues and data-center costs. The problem is
approached through a robust model of the data-center which exploits
queueing networks theory. Then, we propose two mixed integer linear
programming formulations of the problem able to capture novel aspects
such as workload partitioning (load-balancing) and availability issues.
A simple heuristic is proposed to compute solutions in a short time.
Experimental results illustrate the impact of our approach with respect
to a real-world consolidation project.

1 Introduction

As the complexity of information technology (IT) infrastructures increases due
to mergers or acquisitions, new challenging problems arise in the design and
management of the resulting computer systems. In fact, they are often costly,
non-flexible, yielding under-utilized servers and energy wastings. To reduce con-
flicts among the offered services, many enterprise data-centers host most of their
services on dedicated servers without taking into account the possibility of de-
ploying multiple services on a single server. Therefore, many servers are not used
at their maximum capabilities and, in turn, expensive hardware investments are
often required. Nowadays companies search for IT solutions able to significantly
drop data-centers costs, e.g., energy consumption, space costs, and obtain a flex-
ible system satisfying customer demand.

In this framework, the consolidation of data-center resources is a current so-
lution adopted by many industries. The objective of consolidation problems is to
reduce the complexity of computer systems while guaranteeing some performance
and availability constraints. This is usually achieved by searching for the best
mapping between software applications and servers which minimizes data-center
costs. The main issues taken into account by a data-center consolidation solution
are i) to reduce the complexity of the IT infrastructure, ii) to increase system
performance, iii) to obtain a flexible system, iv) to reduce data-center costs, and

R. Mirandola, I. Gorton, and C. Hofmeister (Eds.): QoSA 2009, LNCS 5581, pp. 163–176, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



164 J. Anselmi, P. Cremonesi, and E. Amaldi

v) to improve operational efficiencies of business processes. The current chal-
lenge characterizing a consolidation is finding an optimal allocation of services
to target servers able to meet the above issues while satisfying performance and
availability requirements. This results in new capacity planning problems which
we address in this work. An important example of performance index is given
by the response time, i.e., the time interval between the submission of a job
into a system and its receipt. Such variable is strictly related to the servers
utilizations, i.e., the proportion of time in which a server is used. In fact, the
higher the servers utilizations, the higher the resulting response time. Therefore,
constraints on the maximum utilization of each server are important to

1. avoid the saturation of physical resources letting the system handle unex-
pected workload peaks,

2. guarantee a low sensitivity of data-center response time in front of small
workload variations (it is well-known, e.g., [6], that the response time curve
grows to infinity according to a hyperbole when the utilization of a server
approaches unity),

3. increase the data-center reliability because if a failure occurs on a server, then
the associated applications can be moved on different servers preventing a
drastic growth of data-center response time.

Constraints on the maximum response time are very often used in many ap-
plications for ensuring some quality of service (see, e.g., [4],[1]). The solution of
such problem is aimed to yield a data-center configuration able to satisfy the
above issues while minimizing costs.

1.1 Related Work

During the last decades, the resource management problem has been analyzed in
depth by many researchers in many frameworks and several works are available in
the literature. However, little appeared in the literature for the recent problem of
data-center consolidation with performance constraints even though it attracted
the attention of many IT companies.

Rolia et al. [12] analyze the consolidation problem with a dynamic approach
taking into account the workloads seasonal behavior to estimate the server de-
mands. Their consolidation problem limits the overall utilization of each server
and it assumed that each application is deployed on a single server. An inte-
ger linear program formulation and a genetic algorithm are proposed to solve
the problem and a case study with 41 servers is presented. Bichler et al. [3]
present a similar dynamic approach tailored for virtualized systems. The main
difference of their approach is that the optimization problem is solved exploit-
ing multi-dimensional bin-packing approximate algorithms [8]. In the context
of virtualized servers, an example of how to consolidate servers is also shown
in [9],[10]. Our previous work [1] tackles the data-center consolidation problem
exploiting queueing networks theory. Linear and non-linear optimization prob-
lems are provided as well as accurate and efficient heuristics. However, such
work is essentially based on the assumption that one software application must
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be deployed on exactly one server. Furthermore, it is assumed that the service
demands of the queueing networks model are known.

1.2 Our Contribution

In the present work, we again tackle the data-center consolidation through an
optimization problem extending our previous work [1]. The proposed formulation
now takes into account the capability to handle the workload partitioning (or
load-balancing) of applications, i.e., the fact that one application can be deployed
on many servers. This is clearly related to availability issues. The estimates of
performance indices are again obtained by exploiting queueing networks (QN)
theory (see, e.g., [6]) because it provides versatile and robust models for predict-
ing performance. However, this is achieved through a new, innovative approach.
In fact, the standard theory underlying QN models assumes that a number of
input parameters, e.g., arrival rates and service demands, must be known in
advance to obtain performance estimates. Unfortunately, in practice these pa-
rameters can be very difficult to obtain for a variety of reasons (see, e.g., [7]).
Therefore, we adopt a new, robust methodology to estimate performance which
is only based on the observable variables which are usually easy to measure. As
a matter of fact, in real-world scenarios a working infrastructure exists before
starting a performance evaluation and a measurement phase can be carried out.
In the context of IT systems, common experience reveals that server utilizations
and speed-ups possess such requirements. Our analysis assumes the knowledge of
only these two latter parameters, i.e., standard input parameters such as arrival
rates and service times are not part of our approach. We then propose a number
of linear optimization models related to the data-center consolidation. Given
that the computational effort needed by standard exact solution algorithm is
expensive, an heuristic is shown to efficiently solve the optimization problems
in an approximate manner. The computational effort and the accuracy of such
heuristic is evaluated with respect to a real-world consolidation project with 38
servers and 311 web applications. We then present several minor extensions of
practical interest to the above issues, e.g., the case in which applications require
storage.

This work is organized as follows. In Section 2, we discuss the parameters char-
acterizing the data center and define the associated QN model. In Section 3, we
present our main formulation of the consolidation problem proposing a heuristic
for its efficient solution. Section 4 is devoted to experimental results on a real-
world consolidation project. Finally, Section 5 draws the conclusions of our work
and outlines further research.

2 Data-Center Queueing Network Model

2.1 Data-Center Description

The data center is composed of M heterogeneous servers. The cost of using
server j, which comprises energy consumption, maintainability costs, etc., is
denoted by cj , j = 1, . . . , M .
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The speed-up of server j is denoted by ρj and it is understood as its relative
processing capacity obtained by the execution of suitable benchmarks with re-
spect to a reference server (say server 1), i.e., the ratio between the processing
speeds of server j and 1.

The data center hosts R different applications (or services) and each applica-
tion is deployed on multiple tiers (e.g., web-server tier, application-server tier,
etc.). Application r sequentially spans Lr tiers, r = 1, . . . , R, and when an appli-
cation r job (or client) joins the data center, it initially executes tier 1 on some
server, then it proceeds to tier 2 and so on till the Lr-th. For application r jobs,
when the Lr-th tier is reached, the request is forwarded back to the (Lr − 1)-th
for some further processing and so on till the first one. It is well-known that this
behavior agrees with standard multi-tiered architectures. We denote by

L =
R∑

r=1

Lr (1)

the total number of application tiers. More than one application tier can be
deployed on a given server and each tier of each application can be deployed on
multiple servers.

The deployment of a given application on multiple tiers is usually referred
to as vertical scalability and it is important to provide a better performance
handling larger workloads and to solve possible conflicts among different layers
(different application tiers may use different technologies). On the other hand,
the deployment of a given application tier on multiple servers is usually referred
to as horizontal scalability and lets us deal with load-balancing issues. The hori-
zontal scalability is also important to guarantee availability constraints: in fact,
if a given application tier is deployed on multiple servers, then a failure on a
single server does not prevent the availability of the application because the
workload can be rearranged among the available servers.

To reduce management costs and to increase the data-center availability, we
assume that each application tier must be deployed on a number of servers rang-
ing between two fixed values. Therefore, we denote by mr,l and nr,l, respectively,
the maximum and the minimum number of servers in which tier l of application r
must be deployed.

Another source of lack of data-center availability is the deployment of several
tiers on a same server. Therefore, we assume that a maximum number of vj

application tiers can be deployed on server j. This assumption is also meant
to avoid the modeling of non-negligible overheads in service times estimates
(usually referred to as virtualization overhead) which would be introduced by
the middleware management if the number of virtual machines running on a
single server is large.

In agreement with the notation of basic queueing networks theory [6], we de-
note by Dj,r,l the mean service demand (time units) required by a job executing
tier l of application r on server j when the network contains no other job.

If not specified, indices j, r and l will implicitly range, respectively, in sets
{1, . . . , M}, {1, . . . , R} and {1, . . . , Lr} indexing servers, applications and tiers.
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2.2 QN Model

QN models are a popular tool for evaluating the performance of computer sys-
tems and, in the mathematical formulation of the data-center consolidation prob-
lem, they let us deal with simple analytical expressions of performance indices.
The class of queueing network models we consider goes beyond the popular class
of product-form (or separable) queueing networks [2],[6],[11]. In fact, we consider
those queueing networks satisfying the utilization law, e.g., [6] (it is well-known
that this is a much larger class). This is simply due to the fact that the perfor-
mance indices we consider are server utilizations only. Therefore, this lets our
approach rely on wide assumptions and be widely applicable and robust.

Since the data center hosts different applications (characterized by different
service demands) and an arriving job can execute only one of them, the model
we build is multiclass. For convenience, a job requesting the execution of appli-
cation r is referred to as a class-r job. Since the number of jobs populating the
data center is not constant, the model we build is open and we denote by λr

the mean workload (arrival rate) of class-r jobs, r = 1, . . . , R. Jobs circulate in
the network visiting a number of stations and eventually leave the network. The
stations of the QN model the data center servers and, in the following, we use
the term station when we refer to the QN and the term server when we refer to
the data-center.

Let Dj,r be the mean service demand [6] of class-r jobs at station j, i.e., the
total average time required by a class-r job to station j during the execution of
all its tiers and when the network contains no other job. Within this standard
definition, we underline that the service demands include the processing times
of jobs at servers when they visit stations passing from the first tier to the last
one and returning back from the last tier to the first one. This notion of service
demand also takes into account that it is possible to deploy more tiers of a given
application on the same server. For instance, assuming that only tiers from 1 to
lr ≤ Lr of application r are deployed on server j, we have

Dj,r =
lr∑

l=1

Dj,r,l. (2)

The time interval needed by a server to transfer a job to an other server is
assumed to be negligible.

Within this queueing network model of the data center, we recall that the
average utilization of station j due to class-r jobs, i.e., the busy time proportion
of server j due to class-r jobs, is given by

Uj,r = Uj,r(λr) = λrDj,r. (3)

Formula (3) is known as the utilization law [6]. Clearly, the total average uti-
lization of server j is given by

Uj = Uj(λ1, · · · , λR) =
R∑

r=1

Uj,r < 1. (4)
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Since we deal with the averages of utilizations, when referring to an index we
will drop the word average.

We now show a simple example to illustrate the queueing network model
underlying the data center. Let us consider the case of two applications, i.e.,
R = 2, having both three tiers, i.e., L1 = L2 = 3 and M = 5 available servers,
and let us also suppose that the application tiers are deployed on the servers
as indicated in Table I. For instance, we have that tier 2 of application 2 is
deployed on server 3. We notice that server 5 is not used. Since each tier of each
application is deployed on exactly one server, all service demands are given by
the sum of service times as in (2).

Table 1. Deployment scheme of the example

Tier Class 1 Class 2

1 1 2
2 1 3
3 2 4

The QN model underlying the deployment scheme of Table I is such that the
stations service demands are given by Table II.

Table 2. Service demands of the deployment scheme in Table I

Station Class 1 Class 2

1 D1,1,1 + D1,1,2 0
2 D2,1,3 D2,2,1

3 0 D3,2,2

4 0 D4,2,3

5 0 0

Within this example, each application tier is deployed on a single server and
server 5 is not used. We also note that the QN model of the data-center does not
explicitly take into account the notion of tier which is embedded in the notion
of service demands.

Within the definition of speed-up given in Section 2.1, the following relation
must hold

Di,r,l

ρi
=

Dj,r,l

ρj
(5)

for all i, j, r, l, which implies

Di,r

ρi
=

Dj,r

ρj
. (6)
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3 Formulation and Algorithm

The objective of the data-center consolidation problem is to exploit the avail-
able servers in order to obtain a configuration able to satisfy, in the average,
performance constraints on utilizations and data-center response times while
minimizing the sum of servers costs.

The decision variables we include in our optimization models are

xj,r,l =

⎧
⎨

⎩

1 if tier l of application r is deployed
on server j,

0 otherwise,
(7)

yj =
{

1 if server j is used
0 otherwise, (8)

and

zj,r,l ≥ 0 (9)

denoting the proportion of application r and tier l workload assigned to server j.
Let a configuration be a possible assignment of variables xj,r,l satisfying the

issues discussed in Section 2.1, i.e., a feasible deployment scheme. A configuration
can be interpreted as a function f mapping tier l of application r to a subset of
M, i.e., a subset of the set of stations. The goal of the optimization problem is
to find the configuration of minimum cost which satisfies constraints on server
utilizations and constraints on data-center structural properties such as the fact
that each application tier must be deployed on at least nr,l and at most mr,l

servers. We refer to this latter property as workload partitioning and it is an
innovative aspect of our formulation. The deployment of an application tier on
multiple servers is known to increase its availability.

We assume that the data-center has an initial configuration f and that the
per-class utilizations of such configuration are known. This reflects a common
real-world scenario because in practice a data-center consolidation is performed
on a working infrastructure and, within this framework, server utilizations are
usually easy to measure and robust. Therefore, we assume the knowledge of
per-class utilizations Uf(r,l),r,l for all r and l. Considering (3) and (5), we have

Uj,r,l =
ρj

ρf(r,l)
Uf(r,l),r,l, ∀j, r, l (10)

which expresses, in a robust manner, the per-class utilization of tier l of appli-
cation r if it would be deployed on server j as a function of measured data and
known parameters.
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3.1 Formulation of the Consolidation Problem

Let Ûj denote the value of the maximum utilization that server j is allowed to
have. We formulate the consolidation problem through the following ILP problem

P : min
M∑

j=1

cjyj (11)

subject to:
M∑

j=1

zj,r,l = 1, ∀r, l (12)

R∑

r=1

Lr∑

l=1

Uf(r,l),r,l
ρj

ρf(r,l)
zj,r,l ≤ Ûjyj , ∀j (13)

zj,r,l ≥ xj,r,l

mr,l
, ∀j, r, l (14)

zj,r,l ≤ xj,r,l

nr,l
, ∀j, r, l (15)

R∑

r=1

Lr∑

l=1

xj,r,l ≤ vj , ∀j (16)

zj,r,l ≥ 0, ∀j, r, l (17)
xj,r,l ∈ {0, 1}, ∀j, r, l (18)
yj ∈ {0, 1}, ∀j (19)

Clearly, the objective function (11) minimizes the weighted sum of server costs.
Constraints (12) ensure that variable zj,r,l represents proportions of the work-

load of tier l of application r to forward to server j.
Constraints (13) limit the overall utilization of j by means of relation (10).
Constraints (14) and (15) model, respectively, the fact that the workload of

tier l of application r must be allocated on at most mr,l and at least nr,l servers.
These constraints ensure the avoidance of very unbalanced workloads which may
yield situations where most of the workload of an application tier is assigned
to a particular server (this is ensured by (14)), and the avoidance of splitting
the workload among a very large number of servers which may result in main-
tainability cost and inefficiencies (this is ensured by (15)). Both constraints (14)
and (15) imply that xj,r,l = 1 if and only if zj,r,l > 0. This can be easily seen if
we rewrite (14) and (15) as follows

xj,r,l

mr,l
≤ zj,r,l ≤ xj,r,l

nr,l
, ∀j, r, l (20)

where we see that if xj,r,l = 0 (respectively xj,r,l = 1) then zj,r,l is forced to be
zero (strictly positive).

Finally, constraints (16) limit the number of application tiers to deploy on j.
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3.2 Heuristic Solution

The number of binary variables adopted by P is M + ML. Since large-scale
data-centers are composed of hundreds of servers and applications, i.e., several
thousands of variables xj,r,l, the exact solution of P through standard techniques
(e.g., branch and cut) requires a strong computational effort. Therefore, we now
provide a simple heuristic aiming to find a good solution in a shorter time.

The heuristic we propose initially guesses the set of servers which yields the con-
figuration of minimum cost and, with respect to this set only, checkswhether or not
a feasible configuration exists. If such configuration does not exist, then the guess
is iteratively refined by adding the best server until a feasible solution is found.

Algorithm 1 is the heuristic we propose for the efficient solution of P .

Algorithm 1. Heuristic solution for P
1: Solve the relaxation of P when xj,r,l are continuous between 0 and 1, and yj are

binary;
2: Y := {j ∈ {1, . . . , M} : yj = 1};
3: Ỹ := Y ;
4: for k = 1, . . . , M − |Y | do
5: Let P ′ be problem P where

–the objective function (11) is removed,

–variables yj are fixed to 1 for all j ∈ Ỹ , and

–variables yj and xj,r,l, for all r, l, j /∈ Ỹ are
removed;

6: Solve P ′;
7: if a feasible solution of P ′ exists then
8: break;
9: end if

10: Let P ′′ be problem P where variables

–yj are fixed to 1 for all j ∈ Y , and
–xj,r,l are binary if j ∈ Y , otherwise

continuous between 0 and 1,

and the following constraint is included

M∑

j=1

yj ≤ |Y | + k; (21)

11: Solve P ′′;
12: Ỹ := {j ∈ {1, . . . , M} : yj = 1};
13: end for
14: return variables xj,r,l;

We initially solve P assuming that variables xj,r,l are continuous. Therefore,
the number of binary variables drops from M +ML to M . The optimum of this



172 J. Anselmi, P. Cremonesi, and E. Amaldi

problem requires a significantly smaller computational effort and the optimal
configuration found must be a lower bound on the configuration of minimum
cost. We note that a feasible solution of this problem always exists because we
assumed that the data-center initially has a working configuration. Then, we
define set Y as the set of servers chosen by the optimal configuration of the
relaxed problem and P ′ which takes into account the servers belonging to Y
only. P ′ is thus composed of much fewer variables and constraints than P . We
then search for a feasible solution of problem P ′ (Line 4). If this problem is
feasible then a solution is found and the algorithm ends. Otherwise, through
problem P ′′ we augment the space of feasible solutions by adding to Y a server
not included in the configuration computed by the relaxed problem in Line 1.
Then, we iteratively check for the feasibility of P ′ until a feasible configuration
exists. We remark that such configuration eventually exists because we initially
assume a working configuration.

Given that the optimum of the relaxed problem defined in Line 1 is a lower
bound on the solution of P , if the condition in the loop holds at its first eval-
uation, then Algorithm 1 provides the optimum. In general, if n is the number
of iterations performed by the algorithm, then n is an upper bound on the dif-
ference between the number of servers identified by the optimal solution of P
and by the proposed heuristic. This holds because we add a server to Y at each
iteration and because the objective function value corresponding to the optimal
configuration of P cannot be less than the one obtained in the relaxation of
Line 1.

3.3 Minor Extensions

We now propose minor extensions of practical interest related to the formulation
above.

1. Consider the case in which tiers l1, . . . , lK of application r1 must be deployed
on single but different servers, which implies nr1,l1 = mr1,l1 = nr1,l2 = . . . =
mr1,lK = 1. This need can be due to operating systems incompatibilities, e.g.,
Windows software on Linux servers. In this case, the constraint is given by

K∑

k=1

zj,r1,lk ≤ 1, ∀j. (22)

We note that (22) is expressed in terms of continuous variables zj,r1,lk (in-
stead of xj,r1,lk). It is known that this yields a more efficient formulation.
Analogously, we can avoid the deployment of particular application tiers on
some servers by simply imposing zj,r,l = 0 for some j, r and l.

2. Consider the opposite case where tiers l1, . . . , lK of application r1 must be
deployed on the same (single) server, which implies nr1,l1 = mr1,l1 = nr1,l2 =
. . . = mr1,lK = 1. In this case, we add the constraints
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zj,r1,l1 = zj,r1,l2 , ∀j
zj,r1,l2 = zj,r1,l3 , ∀j

. . .
zj,r1,lK−1 = zj,r1,lK , ∀j.

(23)

3. In many practical cases, some applications must be deployed only on a given
subset of servers. This situation can arise for security issues where some
critical applications must be deployed in virtual private networks. Let S
denote the subset of set {1, . . . , M} containing the indices of the data-center
servers which are able to execute the tiers of application r1. In this case, the
constraints are given by

xj,r1,l = 0, ∀j /∈ S, t, (24)

which reduce the size of the problem because many binary variables become
constants.

4 Experimental Results

In this section, we present experimental results in order to evaluate the accuracy
and the computational requirements of our approach. Experimental analyses
have been performed by running the Ilog Cplex v10.0.0 optimization solver on
a 2.80GHz Intel Xeon CPU with hyperthreading technology. Algorithm 1 has
been implemented in the AMPL language [5].

We apply Algorithm 1 to a real consolidation project within the data-center
of one of the largest European telecommunication companies. The portion of
the data-center involved in the consolidation project consists of 311 single-tier
applications running on 311 dedicated servers. The applications were originally
consolidated with a manual mapping between the applications and 38 brand-new
systems. For each system, the mapping required to keep overall utilization below
a 70% threshold. Figure 1 shows the CPU utilizations for the manually consol-
idated servers. The applications were consolidated using VMWare ESX Server
3.5. The systems used for the consolidation were HP ProLiant BL680c G5 blade
servers and ProLiant DL58x servers. Most of the servers have 8 CPUs, but the
blade systems have up to 80 processors (see Figure 2). The total computational
power of the selected systems exceeds 1.6 THz.

We applied Algorithm 1 to the above data-center configuration in order to
find a better consolidation strategy. Before running the algorithm, systems and
applications have been monitored for a one-month period in order to measure,
for each application, the average CPU utilization. Moreover, for each server, con-
figuration information have been collected, describing processing power (MHz)
and number of CPUs. Such metrics have been used to derive the relative speed-
ups between systems. Algorithm 1 has been applied by varying the utilization
thresholds in the range between 0.3 and 0.7, with step 0.1. In Figure 3.a, we
show the number of servers identified by our approach. When the target maxi-
mum server utilization of 0.7 is considered, we show that it is possible to obtain
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a configuration which adopts only 6 servers. With respect to the 38 servers cho-
sen by the initial configuration, this has a drastic impact on data-center costs.
We notice that the number of servers identified by our approach decreases as
the maximum server utilization increases. This is obviously due to the fact that
more applications can be deployed on a single server as its maximum utilization
increases. In all cases, the number of iterations performed in the loop of the
algorithm was zero. This implies that an optimal configuration has been always
found. With our heuristic, all experiments terminated within 3 seconds. This
because the relaxation in Line 1 of Algorithm 1 identifies a very small set of
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Fig. 3. Number of servers identified by the proposed heuristic by varying the utilization
thresholds (on the left). Number of servers identified by the proposed heuristic assuming
nr,t = 2 and mr,t = 4 and varying v (on the right).

servers which significantly yields to reduce the total number of binary variables
xj,r,l.

We now consider the case where each application must be deployed on at least
2 and at most 4 servers. Assuming 0.7 as maximum utilization thresholds, we
vary the maximum number of applications to deploy on a given server from 30
to 100 with step 10 and show the number of servers identified by Algorithm 1
(see Figure 3.b). Even in this case, the number of iterations performed in the
loop of the algorithm was zero. In the figure, we see the price we have to pay
for load-balancing applications among multiple servers. In fact, in this case the
optimal configuration is composed of 9 servers.

5 Conclusions

In this paper, we addressed the problem of finding an optimal data-center con-
figuration able to satisfy performance and availability constraints. Recently, this
problem received a lot of attention by industries. We built a queueing network
model of the data-center and imposed constraints on server utilizations, a critical
parameter strictly related to data-center stability. Then, we tackled the problem
as an optimization problem and proposed new mixed integer linear program-
ming formulations able to take into account innovative aspects. These include
the possibility of deploying a given software applications on a number of servers
between two given thresholds in a controlled, load-balanced manner. Given that
the computational effort needed by standard exact solution algorithm is expen-
sive, an heuristic is proposed to efficiently solve the optimization problem in an
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approximate manner. The approach is robust because servers utilizations are de-
rived without taking into account the standard input parameters characterizing
queueing models, e.g., arrival rates and service demands. In fact, the expressions
of server utilizations have been obtained within the observable variables which,
in data-centers, are usually easy to measure and robust. Experimental results
on a real consolidation project revealed that the heuristic is able to compute
optimal configuration in very short time. We leave as future work the extension
of our formulation which takes into account resources profiles, i.e., the possibility
of having different workload demands at different time intervals.
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Abstract. Industrial software applications have high requirements on
performance, availability, and maintainability. Additionally, diverse ap-
plication landscapes of large corporate companies require systematic
planning for reuse, which can be fostered by a software product-line
approach. Analyses at the software architecture level can help improving
the structure of the systems to account for extra-functional requirements
and reuse. This paper reports a case study of product-line development
for ABB’s robotics PC software. We analysed the software architectures
of three existing robotics applications and identified their core assets.
As a result, we designed a new product-line architecture, which targets
at fulfilling various extra-functional requirements. This paper describes
experiences and lessons learned during the project.

1 Introduction

The high requirements for extra-functional properties, such as performance,
availability, and maintainability, in industrial software applications demand care-
fully designed software architectures. Industrial software applications control
complex machines and have to respond to user requests or other external stim-
uli within strict time constraints to avoid failures and harm to human beings.
They have to exhibit a high availability with very limited down-time to provide
maximal benefit for customers. Internally, they should be structured to allow
for efficient maintenance and long-term evolution. All these features should be
enforced by the underlying software architecture.

Large corporate companies, which serve multiple application domains, have
to deal with diverse software application landscapes that complicate fulfilling
all extra-functional requirements. In our context, we analyzed the situation for
the robotics software at ABB. There are more than 100 software applications in
the robotics domain from ABB. These applications have been developed by dis-
tributed development teams with limited centralized planning and coordination.
This situation has accounted for a high functional overlap in the applications,
which has lead to high and unnecessary development and maintenance costs.

A common solution for this problem is the introduction of a software product-
line [1], which systematically targets at bundling common assets and building
customized applications from reusable software components. Many companies,
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such as Nokia, Philips, and Bosch have successfully introduced software product
lines. While several studies have been reported (e.g. [2,3,4]), which aim at de-
riving product-line architecture from existing software application, no cookbook
solution can be applied for industrial software applications so far.

In this paper, we report our experiences from 3 year running project at ABB
Research reconstructing and evolving the software architectures of three robotics
PC applications from ABB. We analyzed the different applications for their
shared functionalities and special advantages. We identified core assets and bun-
dled common functionality into reusable software components. We designed new
interfaces and ultimately developed a software product-line architecture to sys-
tematize reuse among the applications. During the course of the project, we
learned several lessons, which could be interesting both for other software archi-
tects and researchers.

The contribution of this paper is a case study on architecture evolution and
software product-line design in the industrial application domain. The case study
includes experiences and findings, which could stimulate further research. We
used and assessed different methods from research for the benefits in our domain.

This paper is organized as follows: Section 2 reports on a survey of ABB
robotics software, which revealed a significant functional overlap and little reuse.
The application domain and the three applications we analyzed are described in
more detail in Section 3. Section 4 elaborates on the three phases of our architec-
ture evolution and product-line development project. Section 5 summarizes our
lessons learned, and Section 6 surveys related work. Finally, Section 7 concludes
the paper and sketches future work.

2 The Challenge: Functional Overlap

A comprehensive survey on ABB’s robotics software was conducted in 2006 and
motivated our project. The software application landscape within ABB Robotics
is diverse and scattered with over 120 applications developed in 8 different coun-
tries (mainly Sweden and Norway) by 10 different organizations. The software
supports a large number of robot application domains, such as arc welding, spot
welding, press automation, painting, sealing, material handling, etc.

The used programming languages include C, C++, C#, VB, and JavaScript.
Furthermore, a Pascal-like imperative language called RAPID is used by many
applications for implementing robot programming logic for ABB’s main robot
controller called IRC5. Several applications target the Windows operating sys-
tem, while other applications run directly on robot controllers using the VxWorks
real-time operating system. The code complexity of the applications ranges from
small tools with 1 KLOC to large applications with more than 600 KLOC.

The survey analysed 58 ABB robotics applications in detail. Fig. 1 shows a
high-level overview of the application landscape. The 58 applications depend on
13 base elements, which provide functionality for example for remote communica-
tion and graphical user interfaces. The applications themselves provide different
extension interfaces to allow user-specific customization. However, apart from
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the base elements there is very few reuse among the applications as depicted by
the low number of dependencies between the applications in Fig. 1.

Fig. 1. Application Landscape of ABB’s
Robotics Software (schematic view,
anonymised)

Therefore, the survey broke down
the functionalities of the applications
in detail and categorized them into
30 different functions. Each applica-
tion developer group was asked what
functionality their tool implemented.
Fig. 2 shows a condensed view of the
results. The left-hand side depicts the
number of applications implementing
the same function. For example, func-
tion 1 was implemented repeatedly in
11 different applications.

It could be argued that the low
amount of reuse results from the
distinct robot application domains,
where software applications are im-
plemented without regard of other
application domains. Therefore, the
right-hand side of Fig. 2 shows the
number of functions, which where im-
plemented multiple times within a sin-
gle application domain. For example,
in domain 1 developers have imple-
mented 161 functions multiple times
in different applications.

The low level of reuse among the
applications contributes to the high
maintenance costs for the applica-
tions, which the survey found to be
in the range of several million US-
dollars per year. As expected, the
most complex applications have the
highest maintenance costs. However,
the survey also identified some out-
lier applications with unproportion-
ally high maintenance costs despite a
small amount of code.

There are several reasons for the undesirable functional overlap within ABB
Robotics applications. The organisational structure of the software development
units has no central unit coordinating and organizing systematic reuse. Several
company acquisitions into the corporate body have contributed to the situation.
The software is created by a large number of development teams, sometimes
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Fig. 2. Functional Overlap in ABB Robotics Software

consisting only of 2-3 developers. The communication among the teams is limited
within and across application domains and organizational units.

Because of the large size of the application landscape, no developer can follow
which applications are developed in other units and where reuse potential might
be high. Some applications are small and tailored for very specific functions
and thus exhibit limited reuse potential. Other applications are large, but their
software architecture is documented only in a limited way, so that it is not easy
to isolate certain functions in the code.

The amount of functional overlap bears high potential for sharing code (i.e.,
reusable components) among the applications. To decrease maintenance costs
and time-to-market, the survey suggests to bundle more common functional-
ity into reusable software components (e.g., COM components or .NET com-
ponents). More communication among the development units is needed and a
central organization for planning systematic reuse would be desirable.

Notice that the survey did not involve all ABB robotics software, therefore
the potential for reuse might be even higher. We believe that this situation
of functional overlap is not specific to ABB, but common for large corporate
companies, which serve different applications domains and rely on distributed
development teams. More research should be devoted to documenting, analysing,
and redesigning complex application landscapes (cf. [5]).

3 Systems under Study

With the challenge of functional overlap in mind, we started an architecture re-
design project in 2006 focussing on ABB robotics PC applications. Applications
running on embedded devices were out of scope for our project. This section
first briefly describes the robotics PC application domain (Section 3.1) to let the
reader understand the extra-functional requirements for these systems. Then,
it sketches the high-level software architectures of three PC applications, which
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were the basis for our project (Section 3.2), and lists the extra functional re-
quirements (Section 3.3).

3.1 Application Domain

Fig. 3 depicts a typical industrial robot system. It may involve a single robot
for a specific task or a whole robot line consisting of several robots arranged in
subsequent order.

One or several robot controllers handle movements of the robot arms. This
involves path planning and robot axis control. Mustapic et al. [6] have detailed
on the open platform architecture of ABB’s robot controller. It is an embedded
system consisting of ca. 2500 KLOC in C divided into 400-500 classes. The
controller kernel provides special support for implementing application specific
extensions. The robot controller has an attached teach pendant, a small handheld
device for manual control and supervision of a robot. The robot controller and
its extensions typically run on a embedded operating system such as VxWorks
or Windows CE.

The robot system can include a number of external sensors, such as cameras
for scanning items to be processed or automatic scales for weighting items. Mul-
tiple conveyor belts may feed the robots with items and forward the processed
items. In larger robot systems, operators supervise the whole process supported
by an arbitrary number of PC workstations, which for example visualize scanned
items or allow manipulating robot configurations.

The following coarse functionalities are carried out by PC applications in such
a robot system:

– Engineering: deals with offline robot programming on an office PC, which is
decoupled from robot production. It allows configuring and preparing robot
programs in advance without interfering with robot production. Modern
robot engineering tools offer 3D visualizations of robots systems to assist
path planning.

Fig. 3. Exemplary Industrial Robotics System for Packaging: Overview
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– Simulation: allows testing the robot installations and programs (i.e., RAPID
code) created during engineering. This functionality is similar to program de-
bugging, as it allows to set break points and execute the programs step-by-
step. It targets identifying robot collisions and analysing robot reachability.

– Supervision: lets operators monitor and control the robot system. This
includes consolidating logs from different robot controllers and visualizing
the data collected from different robot controllers.

– Job Control: manages a job queue and controls the execution of jobs from
the queue. A job captures a task the robot system shall execute, for example
painting a car or picking and placing a certain amount of goods. Control-
ling the job queue may involve simply executing RAPID code on the robot
controllers, or, in more complex cases, collecting and analysing data from
external sensors and distributing item coordinates to different robot con-
trollers.

– Job Coordination: coordinates jobs running on multiple job controllers
during production. Job coordination for example allows synchronizing dif-
ferent jobs in a robot system, so that subsequent jobs execute with minimal
delay, or switching jobs on multiple controllers in a coordinated way (e.g., a
new color for painting the next car has been chosen and all involved robots
have to adjust accordingly).

Additionally, attached programmable logic controllers (PLC) are used for co-
ordinating the robot system within the context of superordinated systems. For
example, information from ERP systems or other production systems can be
used to direct robot execution.

3.2 Initial Architectures

We analyzed three different PC applications, each one targeting a specific ap-
plication domain. These applications were chosen because of their considerable
value to ABB business and their perceived similarities. The picking/packing ap-
plication supports high speed packing of small goods. The painting application
for the automotive industry supports colouring cars. The palletizing applica-
tion supports piling and unpiling goods onto pallets. The three applications
have been implemented by different development teams and only exhibit limited
reuse among each other.

Fig. 4 shows the high-level software architectures of the three applications in
a component-and-connector view. The functionalities described in Section 3.1
have been implemented differently in the the different applications.

The picking/packing application combines engineering, supervision, and job
control in a single software tool. In this case, the job control functions involve
scanning captured camera images for item positions and distributing the item po-
sitions to different robot controllers. The tool is a typical Win32 application with
a graphical user interface. It communicates with plant interaction controllers via
a remote interface and with the robot controllers via the controller API. For this
application, the robot controller features a special picking extension. Simulation
is not supported for this type of application.
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Fig. 4. High-Level Software Architecture for three ABB Robotics PC Applications

The painting application includes two distinct tools for supervision and en-
gineering/simulation. It does not have additional job control functionality. The
engineering and simulation tool has an attached painting plug-in, which tailors
the tools for the application domain. The supervision tool communicates with
the plant interaction controller via OPC DA (OLE for Process Control Data
Access). The supervision tool features a rich and customizable graphical user
interface. Additionally, there is a controller extension with special support for
painting applications.

The palletizing application mainly provides engineering functionality to set
up palletizing jobs. Supervision has to be carried out using the teach pendants
or programming the plant interaction controller. There is also no additional job
control or simulation functionality. However, there is a robot controller extension
specifically for the palletizing domain.

3.3 Extra-Functional Requirements

Designing a quality software architecture for robotics PC applications is chal-
lenging because of the high extra-functional requirements:

– Availability: Usually, a robot line is part of a larger production process, where
a failure of the robots can result in substantial costs. As a particular example,
for the picking/packaging application, the job controller functionality must
run without interruption. Otherwise, no more targets for the robot controller
might be available, which stops the whole production process.

– Scalability: Robot systems are sold to a large variety of customers. Some
customers operate small robot cells with single controllers and robots, while
other customers run large distributed robot lines with dozens of robots. The



184 H. Koziolek, R. Weiss, and J. Doppelhamer

architecture must support adapting the application for different installation
sizes.

– Maintainability: High maintenance costs should be avoided to keep the ap-
plications profitable. Redundant maintenance effort for functionality imple-
mented in multiple applications should be avoided at any costs.

– Time-to-Market: The applications should be adaptable so that new appli-
cation domains can be supported in a short amount of time. Therefore, re-
usability of existing assets for new application domains is highly desirable.

– Sustainability: As the robot systems have an expected operation time of
more than 10 years, the applications should be ready to cope with technology
changes in the future.

– Security: Remotely accessible robot systems need user authentications to
avoid being compromised.

– Performance: Once in production, the picking/packing application has to
deliver the coordinate batches to the robot controller in time. If the im-
age analysis takes too long, the conveyor tracking mechanism skips item
coordinates, which means that items get not processed. Distributing the co-
ordinate batches onto multiple robots and controllers also happens in real
time. Static and dynamic load balancing mechanisms must not slow down
the robot controllers so that it cannot handle the timing constraints.

– Usability: A common look-and-feel for all ABB Robotics PC applications is
desirable so that users can quickly orient themselves when using tools from
different application domains.

4 The Solution: Step-Wise Evolution

Our project consisted of three phases: reconstructing and documenting the de-
tailed architecture of the picking/placing application (Section 4.1), designing a
new remote interface for communication within the architecture (Section 4.2),
and finally, designing a new product-line architecture based on identified reusable
components from the architecture reconstruction and also including the new re-
mote interface (Section 4.3).

4.1 Architecture Reconstruction and Documentation

As already indicated in Fig. 4, the picking/placing application was perceived as
bundling much functionality with limited separation of concerns, which hampered
introducing reuse. Therefore, we analysed the architecture of this application in
detail in the first phase. Initially, there was no architectural documentation and
only limited design documents. First, we reconstructed the architecture, then we
documented it, and finally we made suggestions for improvements.

For architecture reconstruction, we looked at the application both externally
(running different test cases) and internally (analysing the source code). We
browsed the code manually to find out how the coarse functionalities listed in
Section 3.1 were spread among the code. Furthermore, we used source code
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Fig. 5. Picking/Packing Application - Layered Architecture and Code Metrics

analysis tools, such as SourceMonitor [7], Doxygen [8], and SISSy [9] to visualize
the static structure and to derive code metrics.

As a result, we recovered a layered architecture as depicted on a high abstrac-
tion level in Fig. 5. There are engineering user interfaces and logic as well as
runtime user interfaces and logic, the latter including both supervision and and
job control functionality. All modules rely on a common object model, which
is based on several elementary data types and supports persistency via XML
serialization. In total, the application consists of more than 300 KLOC in more
than 600 files. Technologically, it is a Win32 application written in C++ with
dependencies to Microsoft’s Foundation Classes (MFC) and several third-party
components.

While the tools we applied for source code analysis are useful to derive lay-
ered structures and bad smells in the code, they provide only limited support
for identifying reusable components. Up to now, this is still mainly a manual
tasks. Similar tools in this area are Dali, Lattix, or Sotograph. While they can
analyse package structures and class dependencies, it is still difficult to locate
common functionality spread among multiple packages with these tools. Reverse
engineering tools require a more strict software component definition with pro-
vided and required interfaces, which are distinct from classes or modules. This
way higher level structures could be identified to make components replaceable.
A preliminary example for analysing Java code has been presented in [10].

For architecture documentation, we used annotated UML diagrams as well as
textual descriptions. We used component and package diagrams for a static view
on the architecture, as well as sequence diagrams for a dynamic view. Besides
the high-level architecture depicted in Fig. 5, we also documented the structure
and behaviour on lower levels (e.g., we decomposed included composite com-
ponents into smaller structures). Our UML models do not directly map to the
code structure, but instead visualize higher level structures. In our application
domain, UML models are still only used for documentation, not for code gener-
ation or analysis of extra-functional properties.

Our suggestions for architectural improvements mainly targeted the extra
functional requirements modifiability and sustainability. Modifiability requires
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isolating separated concerns, so that parts of the application become replaceable.
It is an important prerequisite for introducing a software product-line approach.
Sustainability is especially critical for industrial software application with life-
times often longer than typical IT technology life-times.

To improve modifiability and maintainability, we suggested to enforce the
layered structure of the architecture more on the code-level. Modifiability tac-
tics [11], such as localizing modifications by maintaining semantic coherence in
the different components and layers were presented. We suggested to factor out
more base types from the object model, to restructure the central system pack-
age from the source code to adhere to the layered structure, and to isolate UI
functionality from the object model, which was not fully decoupled from the
higher layers. Additionally, the SISSy tool revealed several problem patterns on
the design and implementation level, such as dead imports, cyclic dependencies,
god classes, permissive visibility of attributes or methods, or violation of data
encapsulation.

To improve sustainability, we suggested a step-wise migration of the code-base
to the .NET framework. Such a technology change shall result in higher devel-
oper productivity due to the higher level APIs of the framework and a modern
programming language with C#. The application could reuse .NET platform
features, such as the frameworks for user interfaces and persistency. Reliability
and security shall be improved via type safe code and a new user authentication
mechanism. Besides using newer technologies, this change also prepares the ap-
plication to incorporate third party components off-the-shelf (COTS), as third
party vendors are migrating or have already migrated to the new platform.
Therefore, we suggested to replace the number of dependencies to the MFC
framework with dependencies to the .NET framework to make the application
more portable.

4.2 Extending a Remote Interface

The goal of the second phase of the project was to extend the remote interface
of the picking/placing application to allow for more application level services,
such as tuning sensor parameters during runtime and remote robot control. The
existing remoting interface (called RIS) of the application was mainly used by
low-level devices, such as PLCs. The new version of the interface should support
higher-level systems such as distributed control systems or customer HMIs. Fur-
thermore, it was required that the interface was compliant to interface standards
such as OPC, and regulations by the Organization for Machine Automation and
Control (OMAC), which for example requires user authentication.

To formulate the functionality provided by the extended interface, we used
UML use cases with textual descriptions. Additionally, we used quality attribute
scenarios [11] to specify the extra-functional requirements, such as performance,
reliability, and security for the extended interface. They describe the source of a
scenario, a stimulus initiating the scenario, the artifact touched by the scenario,
environmental conditions, as well as expected responses and response measures.
Fig. 6 shows an example for a security scenario of the interface.
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Fig. 6. Security Scenario for the new Remote Interface

We soon realized that we could not incorporate access by low-level devices and
high-level systems into a single interface. Therefore, we subsumed the high-level
application services in a new interface called Remote Production Services (RPS),
and left the old remote interface intact. The new interface was implemented as
a web service based on the Windows Communication Framework (WCF). Addi-
tionally, it can be provided as an OPC interface. It allows various functionalities,
such as controller management, job management, robot management, user man-
agement, logging, and parameter hot tuning. The remoting capabilities of RPS
allow external clients to access and control the robot system with an interface
at the application level, beyond a generic robot controller interface.

The quality attribute scenarios were helpful in discussions with the stake-
holder. We got a better understanding of the application domain because of
the quality attribute scenarios. Furthermore, the scenarios helped to define the
priorities of the stakeholders, as it was discovered that certain extra-functional
properties were only secondary to them. As a result, quality attribute scenarios
are currently also used for the specification of a new software architecture.

Later, the new remote interface was an important part of the newly designed
product-line architecture.

4.3 Designing a Product-Line Architecture

The goal of the third phase of our project was to design a sustainable software
product line architecture based on the applications described in Section 3.2. The
design incorporated both the architectural documentation of the picking/placing
application from phase 1 and the the newly designed remote interface RPS from
phase 2. The main requirements for the product-line were separating different
concerns in the applications, increasing reuse, providing a common look-and-feel,
and improving maintainability. Additionally the extra-functional requirements
stated in Section 3.3 had to be addressed.

Fig. 7 depicts a high-level static view of the new product-line software archi-
tecture incorporating all identified core assets. The three existing applications
can be deduced as instances from this product-line. New applications for different
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Fig. 7. Product-Line Architecture

domains shall be deducible with limited effort. Common functionality has been
bundled. For example, there is a single engineering tool with attached application-
specific plugins providing a common look-and-feel for engineering. Furthermore,
all applications use the same tool for supervision. The extensions for the robot con-
troller have been left untouched. The architecture enables simulation functionality
to become available for different domain-specific applications.

For sensor data analysis and item position generation of picking/placing tasks
an additional GUI-less job controller component has been extracted from the for-
mer picking/placing application. It is an optional component not present in the
instances for painting and palletizing applications. We had to align and compare
concepts present in the existing applications. For example one application called
a configured and running robot application a ”project”, another one called it
a ”job” with slightly different properties. Harmonizing the concepts allowed for
more reuse and a common look-and-feel of the applications.

The architecture features a new job coordinator component based on .NET
technology. It allows coordinating multiple, possibly concurrently running jobs
during production. For some custom robot system installations, this functional-
ity had been implemented using PLCs. Opposed to that, the new job coordinator
component is based on .NET technology and shall run on Windows nodes. With
a special extension API and the .NET framework, it allows users to easily im-
plement customized coordination logic.

Bundling common functionality into reusable components was enabled by
the architecture reconstruction and documentation from phase 1. The engi-
neering layer was replaced by the Engineering/Simulation tools based on .NET
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technology, while the supervision layer was replaced by the Supervision tool. We
incorporated the new high-level remote interface RPS from phase 2 into the ar-
chitecture. It provides a new way of accessing the robot controller with high-level
services instead of former low-level commands.

The architecture addresses the extra-functional requirements listed in Sec-
tion 3.3 as follows:

– Availability: For picking/placing applications, the architecture allows for
multiple job controllers to analyse sensor data and produce item positions for
the robot controller. Formerly, this was a single point-of-failure, as a whole
robot line had to stop production once the job controller functionality failed.

– Scalability: The architecture can be flexibly adapted for small and large cus-
tomers. Small systems might not incorporate the optional job coordinator
for synchronizing different jobs. Large systems may additionally attach cus-
tomer HMIs, which can make use of the RPS interface. They may also use
multiple job controllers or even run combined picking/placing and palletizing
robot lines.

– Maintainability: As common functionality has been bundled into reusable
components, the future maintenance effort for the application should de-
crease. It is no more necessary to test the same functionality multiple times.
Critical functionality, such as the picking/placing job controller has been iso-
lated, so that it can be tested more thoroughly. Using common programming
languages and frameworks in the architecture is beneficial to distribute the
maintenance tasks to different teams.

– Time-to-market: The product-line architecture features an engineering tool
and robot controller, which can be quickly adapted to new application do-
mains via plug-ins. New applications do not have to reprogram basic func-
tionality provided by both platforms (e.g., basic user interfaces and robot
control logic).

– Sustainability: The product-line architecture features new components based
on the .NET framework, which is expected to ease the impact on technology
changes over the course of the robot system life-cycle.

– Security: The RPS interface provides services for user authentication to pre-
vent unwanted remote accesses to a robot system.

– Performance: In case of the picking/placing application, concepts for dis-
tributing the sensor data analysis and item position generation to multiple
job controller instances have been discussed. This should allow to balance the
workload on the available hardware better and enable very large robot lines
with vast amounts of sensor data, which were formerly difficult to handle.

– Usability: Through the common engineering tool and the common supervi-
sion tool, the look-and-feel of the robotics PC applications for engineers and
operators is similar across application domains. With the aligned concepts
of the different applications, users can quickly learn the new applications.
Furthermore, developers are provided with a common remote interface and
several extension APIs, which enable user-customizations with limited de-
velopment effort.
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5 Lessons Learned

While the design of the architecture is specific for the robotics domain and
ABB, we have learned some general lessons during the course of the projects.
These lessons could stimulate further research from the software architecture
community and are thus reported in the following.

On the technical side, we learned that in our case no common low-level in-
terfaces both for PLC and PC applications could be provided with reasonable
effort. Therefore we split the remote interface for the robot applications to a
low-level interface (RIS) to be accessed by controllers and a high-level interface
(RPS) with different services on the application level to be accessed by DCSs
or ERPs.

Reverse engineering techniques to analyse legacy source code could be im-
proved to better identify common functionality spread within the code of a
object-oriented application. While existing source code analysis tools are helpful
in capturing the structure of a system, they are limited for identifying reusable
functionality to be isolated and bundled into components, if this had not been
intended by the architecture beforehand.

Unifying some concepts within the different products (e.g., job and robot line
concepts) by introducing small changes gave all stakeholders a better under-
standing of the different application domains. We found that such a step is an
important prerequisite when designing a product-line from legacy applications.

From a methodological view point, we found quality attribute scenario and
attribute-driven design helpful in determining priorities for different extra-func-
tional properties together with the customers. Both methods helped finding focus
when designing the RPS interface and the product-line architecture. Further-
more, we found through a business analysis that the benefits from the architec-
ture investigation in terms of saved future development and maintenance costs
largely outweigh its costs.

Some social aspects could also be learned from the project. During the design
of the product-line architecture, we worked closely with the three development
teams of the applications. The existing products and known customer installa-
tions had a major impact on our PLA design. The stakeholders of the architec-
ture desired to incorporate all relevant product set-ups into the PLA. A survey
of existing products and user customizations was essential to ensure stakeholder
support in the PLA.

The development teams were initially hesitant towards the redesign of their
applications into a PLA. The emotional bindings towards their established prod-
ucts was an obstacle to get their commitment. We resolved their reluctance by
getting the different teams into dialogue and emphasizing their individual bene-
fits from the PLA approach (e.g., more focus on core functionality, less mainte-
nance effort).

Development of a PLA should be aligned with the future plans and devel-
opment cycles of the individual development teams to ensure their support
and make the architecture sustainable. With multiple stakeholders having equal
rights to the project, the proposal for the architectural design needed more
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argumentation and an iterative approach. A champion advocating the benefits
of a PLA can speed-up the design process.

6 Related Work

Basic literature on software product-line development has been provided by
Clements and Northop [1]. Bass et al. [11] described foundations on software
architectures in practise with a special focus on extra-functional requirements.
Many industrial case studies as in this paper have been included in the book.
Another book on software product-lines has been published by Pohl et al. [12].

In the context of ABB, Mustapic et al. [6] described the software product line
architecture of ABB’s robotics controller. As described in this paper, it is an
open platform, which allows to extend the controller with application specific
functionality. The architectural design accounts for fault tolerance and there are
methods and tools to assess the real-time properties of different instances of
the architecture. Furthermore, Kettu et al. [13] from ABB proposed a holistic
approach for architectural analysis of complex industrial software systems, which
relies on static and dynamic analysis as well as incorporating documentation,
developer interviews, and configuration management data.

In the area of software product line engineering Stoermer et al. [2] pre-
sented the MAP approach for mining legacy architecture to derive product lines.
O’Brien et al. [3] reports on a case study in this direction using the Dali work-
bench and reverse engineering techniques to identify components for a product
line. Smith et al. [4] describe a method with systematic, architecture-centric
means for mining existing components for a product-line.

Numerous software product-lines from the industry have been reported and
incorporated into SEI’s product-line hall of fame [14]. It includes for exam-
ple product lines from Bosch for a gasoline system [15] or from Philips for a
telecommunication switching system [16]. Hetrick et al. [17] reported on the the
incremental return on investment for the transition to a software product-line
for Engenio’s embedded RAID controller firmware. Deelstra et al. [18] pointed
out that deriving individual products from shared software assets in more time-
consuming and expensive than expected.

7 Conclusions

Motivated by a survey on ABB robotics software, which found high functional
overlap and maintenance costs, we have documented in this paper how we
evolved three existing robotics PC applications into a software product line archi-
tecture. The PLA addresses various extra-functional properties, such as avail-
ability, scalability, performance, and maintainability. The paper has reported
several lessons learned from the project, which could stimulate further research.

As next steps, we plan to model the product-line in a formal way and conduct
model-driven predictions for extra-functional properties, such as performance,
reliability, and maintainability. Creating such models suitable for extrapolating
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the extra-functional properties to answer sizing and capacity question requires
static as well as dynamic analyses techniques. We will assess whether we can
predict the impact of system updates or changes based on the models without
implementing these changes. These activities shall be conducted in context of
the EU FP7 project Q-IMPRESS [19].
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Abstract. Component interfaces, as advanced by the Common Compo-
nent Architecture (CCA), enable easy access to complex software pack-
ages for high-performance scientific computing. A recent focus has been
incorporating support for computational quality of service (CQoS), or
the automatic composition, substitution, and dynamic reconfiguration
of component applications. Several leading quantum chemistry packages
have achieved interoperability by adopting CCA components. Running
these computations on diverse computing platforms requires selection
among many algorithmic and hardware configuration parameters; typ-
ical educated guesses or trial and error can result in unexpectedly low
performance. Motivated by the need for faster runtimes and increased
productivity for chemists, we present a flexible CQoS approach for quan-
tum chemistry that uses a generic CQoS database component to create a
training database with timing results and metadata for a range of calcu-
lations. The database then interacts with a chemistry CQoS component
and other infrastructure to facilitate adaptive application composition
for new calculations.

1 Introduction

As computational science progresses toward ever more realistic multiphysics ap-
plications, no single research group can effectively select or tune all components
of a given application, and no solution strategy can seamlessly span the entire
spectrum of configurations efficiently. Common component interfaces, along with
programming language interoperability and dynamic composability, are key fea-
tures of component technology that enable easy access to suites of independently
developed algorithms and implementations. By means of the Common Compo-
nent Architecture (CCA) [1,2], such capabilities are now making inroads in sci-
entific computing. The challenge then becomes how to make the best choices for
reliability, accuracy, and performance, both when initially composing and con-
figuring a component application, and when dynamically adapting to respond
to continuous changes in component requirements and execution environments.
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Computational quantum chemistry is a mature domain of scientific comput-
ing populated by numerous software packages offering a range of theoretical
methods with a variety of implementation approaches. These packages provide
a vast array of tools to be employed by practitioners who are often not develop-
ers or knowledgeable about the implementation details of these packages. The
existence of certain methods as well as their performance on various types of
hardware varies greatly within these packages, and the optimal configuration of
these calculations is often a matter of trial and error, at least until a great deal
of experience is accumulated with each package. For example, as the number
of cores increases on commodity processors, memory bandwidth limitations will
likely limit the number of cores that can be used effectively per socket to signifi-
cantly fewer than the number available. Furthermore, predicting runtime can be
useful for planning and queue management when running unfamiliar job types.

The challenges of efficiently employing and configuring quantum chemistry
packages, faced also in combustion, fusion, and accelerator modeling [3], moti-
vate the design and implementation of generic support for computational quality
of service (CQoS) [4], or the automatic composition, substitution, and dynamic
reconfiguration of components to suit a particular computational purpose and
environment. CQoS embodies the familiar concept of quality of service in net-
working as well as the ability to specify and manage characteristics of the appli-
cation in a way that adapts to the changing (computational) environment. CQoS
expands on traditional QoS ideas by considering application-specific metrics, or
metadata, which enable the annotation and characterization of component per-
formance. Before automating the selection of component instances, however, one
must be able to collect and analyze performance information and related meta-
data. The two main facets of CQoS tools, therefore, are measurement and analy-
sis infrastructure and control infrastructure for dynamic component replacement
and domain-specific decision making. This paper focuses on the performance and
metadata management and analysis support in CQoS infrastructure.

We present in this paper recent work by members of the CCA Forum and the
Quantum Chemistry Science Application Partnership (QCSAP) [5], which in-
cludes developers of several leading high-performance quantum chemistry codes
(GAMESS [6], MPQC [7], and NWChem [8]), to utilize the new CQoS infras-
tructure to guide adaptive runtime composition and performance optimization of
component-based parallel quantum chemistry applications. Parallel application
configuration has driven the initial development and integration of CQoS infras-
tructure in the QCSAP, laying the groundwork for more sophisticated analysis
to configure algorithmic parameters for particular molecular targets, calculation
approaches, and hardware environments.

The remainder of this paper is organized as follows. Section 2 provides an
overview of related work; Section 3 highlights key features of the Common
Component Architecture and its use in high-performance quantum chemistry.
Section 4 introduces our CQoS approach for quantum chemistry, and Section 5
reports on some preliminary experiments. Section 6 provides concluding remarks
and discussion of future work.
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2 Related Work

Adaptive software architecture is an area of emerging research, as evidenced by
numerous recent projects and related work [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21]. Many approaches to addressing different aspects of adaptive execution
are represented in these projects, from compiler-based techniques to performance
model-based engineering approaches and development of new adaptive numerical
algorithms.

Unlike these efforts, our approach specifically targets large-scale parallel com-
putations and support of interoperability among scientific packages. In designing
our CQoS database interfaces and middleware components, we rely on the ex-
isting high-performance infrastructure provided by the CCA, in which multiple
component implementations conforming to the same external interface standard
are interoperable, and the runtime system ensures that the overhead of compo-
nent substitution is negligible.

A large number of tools for performance analysis exist, including TAU [22],
Prophesy [23], and SvPablo [24]. Each tool defines its own performance data rep-
resentation and storage, from custom ASCII representations or XML to SQL,
DB2, or Oracle databases. Efforts are under way to define common data rep-
resentations for performance data; however, we expect that the standardization
will take some time and it will be longer before tools implement mappings from
their native formats to the standard one. Thus, we have focused on defining inter-
faces for querying and manipulating the data, which can then be implemented as
components mapping to different representations. To our knowledge, the research
discussed in this paper is the first attempt to provide language-independent com-
ponent interfaces and corresponding implementations for performance database
manipulation, specifically targeting parallel scientific applications. This approach
supports multiple underlying representations and does not preclude the use of
non-component performance analysis tools.

A rich set of performance tools [25,26,27], including PerfExplorer [28], aim to
improve the execution behavior of a program based on information on its current
or previous runtime behavior. The tools, however, use low-level compiler-based
techniques or are restricted to specific parallel computer systems or application
domains. In contrast, we integrate PerfExplorer into the CCA infrastructure to
support adaptation in generic parallel scientific applications.

3 Common Component Architecture and Quantum
Chemistry

CCA Overview. This work leverages the component standard for scientific
computing under development by the CCA Forum. Component technology (see,
e.g., [29]), which is now widely used in mainstream computing but has only re-
cently begun to make inroads in high-performance computing (HPC), extends
the benefits of object-oriented design by providing coding methodologies and
supporting infrastructure to improve software’s extensibility, maintainability,
and reliability.
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Fig. 1. Left: CCA component approach for a quantum chemistry application. Right:
Isoprene HF/6-311G(2df,2pd) parallel speedup in MPQC-based CCA simulations of
molecular geometry; the plot shows nearly linear speedup on 1 through 64 proces-
sors both when using MPQC alone and when using external numerical optimization
components in TAO.

The CCA Forum is addressing productivity challenges of diverse scientific re-
search teams by developing tools for plug-and-play composition of applications
in parallel and distributed computing. The core of this work is a component
model and reference implementation [2] tailored to the needs of high-end sci-
entific computing. Key features are language-neutral specification of common
component interfaces, interoperability for software written in programming lan-
guages important to scientific computing, and dynamic composability, all with
minimal runtime overhead.

The specification of the Common Component Architecture defines the rights,
responsibilities, and relationships among the various elements of the model.
Briefly, the elements of the CCA model are as follows:

– Components are units of software functionality that can be composed to-
gether to form applications. Components encapsulate much of the complexity
of the software inside a black box and expose only well-defined interfaces.

– Ports are the interfaces through which components interact. Components
may provide ports, meaning that they implement the functionality expressed
in a port (called provides ports), or they may use ports, meaning that they
make calls on a port provided by another component (called uses ports).

– Frameworks manage CCA components as they are assembled into applica-
tions and executed. The framework is responsible for connecting uses and
provides ports.

Quantum Chemistry Components. The QCSAP has adopted a component
architecture based on the CCA. Both coarse-grain componentization (where a
component encompasses a task such as energy, gradient, or Hessian evaluation)
and fine-grain componentization (where a component computes only integrals)
are incorporated [30,31]. The left-hand side of Figure 1 illustrates how common
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component interfaces for molecules, models, basis sets, and integral evaluation
facilitate the sharing of code among these three chemistry teams.

The component approach also enables the chemistry teams to leverage ex-
ternal capabilities in the wider scientific community. For example, as shown in
the right-hand side of Figure 1, chemists have achieved scalable performance in
MPQC-based CCA simulations for molecular shape determination using parallel
components from the Toolkit for Advanced Optimization (TAO) [30].

4 CQoS Infrastructure and Its Application in
High-Performance Quantum Chemistry

Scientific computations often require the specification of many options and pa-
rameters. Quantum chemical options, for instance, include the basic selection of
methods, expansion basis, and convergence criteria, as well as low level details
such as hardware configuration and algorithmic parameters. The initial focus
of CQoS tools is parallel application configuration to effectively exploit high-
performance architectures. The difficulty of configuring parallel computations is
compounded by the proliferation of multicore processors, resulting in three lev-
els of processing elements (nodes, processors/sockets, and processor cores), and
the variety of hardware environments, ranging from networks of workstations for
development to massively parallel machines for production runs.

A key aspect of CQoS research is generating and collecting meaningful data
for storage in a database and subsequent analysis by performance tools. Full
automation of the processes of collecting and managing performance data and
metadata, building a performance model, and conducting detailed evaluation is
beyond the scope of this paper. We focus on coarse-grain computations, where we
select several major parameters that can affect the performance of scientific codes
and then use the performance data to enable adaptive application configuration.

While motivated by adaptivity in different problems (quantum chemistry,
combustion, fusion, and accelerator simulations), we believe that the infrastruc-
ture for analyzing and characterizing the problems and determining and invoking
solution strategies will indeed be similar for such large-scale scientific simula-
tions. We introduce nonfunctional properties and application-specific informa-
tion, or metadata, into performance analysis and decision-making. Metadata
include algorithm or application parameters, such as problem size and physi-
cal constants, compiler optimization options, and execution information, such
as hardware and operating system information. Ideally, for each application
execution, the metadata should provide enough information to be able to re-
peat the run. The metadata can help classify performance measurements and
provide clues for tuning performance. CQoS infrastructure, therefore, includes
database components that manage performance data and associated metadata,
comparator components that support query and extraction of data, and analysis
components that conduct performance analysis to suggest adaptation strate-
gies. Figure 2 illustrates the utilization of the CQoS components (described in
more detail in Sections 4.2 and 4.3) in an adaptive quantum chemistry applica-
tion. Thanks to our uniform quantum chemistry interfaces, the capabilities for
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Fig. 2. Components and parameter tuning flow in a CQoS-enabled quantum chemistry
application

automated adaptive configuration shown in Figure 2 are available to all three
QCSAP quantum chemistry codes (GAMESS, MPQC, and NWChem), as well
as any other applications that adopt these interfaces in the future.

As shown in Figure 2, our CQoS approach to automating parallel application
configuration involves three phases: collection of performance data in a training
database, performance analysis, and adaptive application composition based on
this information. The training data for quantum chemistry contains timing re-
sults for calculations spanning a range of molecular characteristics and hardware
configurations. The intermediate chemistry CQoS component bridges domain-
specific chemistry components and generic CQoS tools. It uses the general CQoS
database component interfaces to store and query performance and associated
metadata, which in this case consist of the application’s parallel configuration
parameters. Once this database is populated on a target machine, users can re-
quest an appropriate configuration for a new molecule and calculation type from
the chemistry CQoS component. Furthermore, we have defined comparator com-
ponents that serve as filters when searching for appropriate parameter settings in
the database. An analysis component based on PerfExplorer [28] provides offline
performance analysis to identify sources of parallel inefficiency and determine
appropriate parameters for a given configuration. The remainder of this section
discusses these phases in more detail.

4.1 Training Data Collection for Scientific Components

The granularity of a component can significantly affect the usefulness of the per-
formance data collected. Without detailed data, such as time spent in I/O or
communication, the component-level performance data from a coarse-grain com-
ponentized computation may not provide insights into why the component does
not scale well under some circumstances. This situation may create difficulties
in developing adaptive CQoS strategies.
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Generating and collecting meaningful data for subsequent analysis by perfor-
mance tools is not as straightforward as one might expect, however, and the task
is especially challenging for high-performance scientific applications like quan-
tum chemistry. Many parameters in quantum chemistry computations can affect
the efficiency and accuracy of a computation; moreover, it is not always obvious
how to quantify some of these parameters. The complexity of modern HPC ar-
chitectures only exacerbates the difficulty of finding appropriate parameters to
achieve the best results (or tradeoff between accuracy and efficiency).

In order to acquire more detailed performance data for CQoS research, some
supporting tools have been developed that facilitate data collection and man-
agement [32]. In addition, CCA-compliant TAU-based performance monitoring
components [33] can be employed to collect performance data for computational
components.

4.2 Database Components and Their Usage in Data Training

Fig. 3. UML diagram of CQoS
database component interfaces and
methods

The database component interface design
is intended to support the management
and analysis of performance and application
metadata, so that the mapping of a problem
to a solution that can potentially yield the
best performance can be accomplished stat-
ically or at runtime. The UML diagram in
Figure 3 shows the main interfaces and some
of their methods.

We introduce two types of components
for storing and querying CQoS performance
data and metadata. The database compo-
nent provides general-purpose interfaces for
storing and accessing data in a physical
database. The comparator interfaces com-
pare and/or match properties of two prob-
lems under user-specified conditions.

Comparator Components. Three sets of
interfaces are associated with a comparator
component: Parameter, ParameterSet, and
Comparator. A Parameter captures a sin-
gle property of a problem, for example, the
count of a specific atom type in a molecule.
A Parameter, which is described by its name,
data type, and value, is associated with a table in the physical database. The
Parameter interfaces also support comparisons against another peer parameter
under user-specified conditions. A ParameterSet represents a group of related
parameters, for example, a set of parameters that characterizes a molecule or
a set of scalar or Boolean linear system properties. Using the ParameterSet in-
terfaces, users can create and manage parameter set members. When selecting
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a solution method, time-dependent problem or system properties are described
as one or more ParameterSets. The user or an automated adaptive heuristic can
then match the formatted parameter sets to a database to determine the best
solution method or configuration. A Comparator defines the rules to compare
two sets of parameters. For instance, a Comparator can determine the closeness
of two sets of parameters (i.e., whether they are within ε of each other).

Database Components. There are two classes of interfaces associated with a
database component, DB and Outcome. The application connects to a database
component by using the DB port, which handles (potentially remote) database
connections, queries, and storage and retrieval of parameters and parameter sets.
The DB interface also supports the query of experimental runs having parameter
sets that satisfy user-specified conditions (e.g., limiting the parameter set to a
range of values). The Outcome interface supports transformation of database
results returned from a DB query to user-readable format, as well as access to
the individual data elements.

During the training phase of the CQoS process for quantum chemistry, per-
formance statistics and application metadata for selected problem instances are
added into the database. This training data can then be used for future perfor-
mance analysis and solution method matches, as further discussed in Section 4.3.
Before the execution of an application, application-specific Comparator imple-
mentations help match the initial problem properties and system states against
historical information to find a good initial solution method. During runtime,
time-dependent application and system characteristics are captured in metadata
parameter sets. At runtime the Comparator implementation can dynamically
match the metadata against a lightweight runtime database to determine the
best-known method corresponding to the current application state.

4.3 Performance Analysis

We incorporated PerfExplorer [28] into CQoS infrastructure to support per-
formance analysis and decison-making for runtime adaptivity. PerfExplorer, a
framework for parallel performance data mining and knowledge discovery in the
TAU performance system, was developed to facilitate analysis on large collec-
tions of experimental performance data. The framework architecture enables
the development and integration of data-mining operations that can be ap-
plied to parallel performance profiles. The data repository for PerfExplorer is
PerfDMF [34], a performance data management framework that integrates and
interfaces to many common database management systems, including the CQoS
training database. PerfExplorer is designed to make the process of analyzing
large numbers of parallel performance profiles manageable. Dimension reduction
methods such as clustering and correlation allow meaningful analysis of large
data sets. PerfExplorer does not directly implement these techniques; rather,
it is integrated with existing analysis toolkits (e.g., Weka [35]) and provides
for extensions using those toolkits. One such extension is to use classification
capabilities in the Weka data-mining package to construct a runtime parameter
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Fig. 4. PerfExplorer classifier construction

recommendation system. Classification systems are a type of machine learning in
which training data is input into a decision tree or space partitioning algorithm
to construct a classifier. Classifiers belong a particular class of machine learning
known as supervised learning, in which vetted training data with pre-selected
attributes and known class types are used to train the classifier. In contrast, for
exploratory, unsupervised learning methods such as clustering, class identifica-
tions are not known ahead of time. With a trained classifier, new test data can
be identified as belonging to one of the identified classes. Classifiers can also be
used to perform numerical prediction.

Figure 4 shows how a classifier for runtime recommendation is constructed
and used. Training data for analysis is generated by executing the application
multiple times, varying key parameters that have an effect on the total runtime.
After the performance data and associated metadata for a set of training runs
have been stored in the performance database, PerfExplorer loads the data and
classifies it. A classifier is constructed using a simple Python script interface
in which the application developer specifies independent application parameters
and the dependent parameter, or class. Within the Python script, the classifi-
cation method is also selected. Supported methods include alternating decision
trees, support vector machines, and multilayer perceptrons (neural networks).
Unique tuples of each combination of parameter values are found, and the best
performing execution for each unique tuple is selected to represent that class.
Optionally, Principle Components Analysis can be used to reduce the param-
eters to those that have the most influence over the variance in the data set.
All classification is performed offline, as it can be a time intensive process. The
results of the classification are stored in the form of a serialized Java object. This
process can be performed either through PerfExplorer’s GUI, the command line
interface, or by using a CCA component wrapping PerfExplorer.

For production application runs, the classifier is loaded into a CCA compo-
nent. The best parameter setting (class) is obtained by querying the classifier
with the current values of the application-specific metadata. These values are
matched to the classification properties to find the best class selection for the
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parameters. The runtime overhead of this step is minimal because it does not
require access to the performance data database.

4.4 Adaptive Application Composition and Configuration

In application domains in which multiple software packages implement standard
interfaces, we are able to capitalize on the CCA component approach and pro-
vide a single domain-specific CQoS component that manages interaction between
generic CQoS infrastructure and various domain-specific implementations (in
this case, GAMESS, MPQC, and NWChem), thereby reducing and simplifying
the CQoS management code required in the domain-specific packages themselves.
In Figure 5 a snapshot from the GUI of the Ccaffeine framework [36] illustrates
the composition of a QCSAP quantum chemistry package (MPQC) and generic
CQoS infrastructure components through a chemistry-specific CQoS component.
The left-hand side of the figure shows the palette that contains available tem-
plate components. In the wiring diagram on the right-hand side, a chemistry
application instantiates both chemistry and CQoS components and connects so-
called uses ports, as introduced in Section 3, and provides ports between related
components.

The training driver component, Driver, manages chemistry model objects
(e.g., MPQCFactory in Figure 5), acquires metadata from the model objects,
and serializes interactions with the chemistry CQoS component, CQoS. During
the training phase (see Section 4.2), the Driver populates a CCA type map,
or dictionary, with metadata obtained from MPQCFactory describing algorith-
mic parameterization, hardware configuration, and application performance. For

Fig. 5. Component wiring diagram for quantum chemistry showing usage of CQoS
database components
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each training run, this metadata container is passed, along with a molecule de-
scriptor class, to the chemistry CQoS interfaces, CQoS. The CQoS derives the
metadata and handles the actual calls to the database component, MyDB, to
store the metadata in the CQoS database.

For production runs, the CQoS passes metadata that describes a new cal-
culation to the comparator component, MyComparator, to map the data to an
application configuration that can potentially yield the best performance. Ad-
ditionally, the CQoS infrastructure components can leverage the classification
capabilities provided within the TAU package to obtain recommended config-
urations for calculations. The proposed production calculations are related to
training calculations based on similarities in molecular properties and the re-
sulting work load. Performance metrics associated with the training runs allow
the TAU classifiers to recommend parameters, such as hardware configuration
or algorithmic parameters, which aim to achieve properties such as good al-
gorithmic performance (e.g., minimum iterations to solution), minimal time to
solution, or maximum parallel efficiency. Once the TAU classifier has been con-
structed using training performance data and metadata, we do not need to build
it again as the execution proceeds. Therefore the cost of training the classifier
can be amortized by using it in many application runs.

The CQoS infrastructure can be used either for dynamic reconfiguration of an
application during execution to respond to changing computing environments or
for selection of initial parameters, with the goal of detemining how to maximize
performance before the application runs. For runtime adaptation, the driver code
checkpoints, collects the metadata describing the current computing state, and
passes it to the TAU classifier. After the classifier suggests an optimal configu-
ration, the driver can resume the execution by replacing with the recommended
parameters. The period for checkpointing can be variable depending on the com-
puting resource demand and program semantics. In an application where good
initial parameter settings are essential for overall performance, we can use the
CQoS infrastructure to determine appropriate initial parameter values based on
the training or historical data. We expect that the predicted values will perform
better than random values or at least as well as the values adopted by other
researchers when performing experiments. We have partially evaluated this ap-
proach in experiments presented in the next section.

5 Experimental Results

As discussed in Section 1, computational chemistry applications rely on numer-
ous software packages offering a range of theoretical methods and implementa-
tions. Our CQoS approach aims to automatically adapt these packages under
these challenging situations, simplifying the tasks for end users.

5.1 MPQC

As an initial demonstration of the previously described CQoS architecture, the
MPQC model was connected to the chemistry CQoS infrastructure and used to
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generate a small training data set. Hartree Fock energies were computed for five
molecular structures obtained from the G2 neutral test set, which is commonly
used for benchmarking. The five molecules selected were sulfur dioxide, disilane,
vinyl chloride, acetic acid, and pyridine. For each molecule, the Hartree Fock
energy was calculated using two selected basis sets, cc-pVTZ and aug-cc-pVQZ,
with node counts ranging from 1 to 32 (as powers of 2) on the Catalyst cluster
at Sandia Livermore (2-way Pentium 4 nodes with an Infiniband interconnec-
tion network). For these smaller calculations that cannot support high parallel
efficiency at large scales, these node counts span from 100% parallel efficiency
at low node counts to severe degradation of efficiency at larger node counts.

To demonstrate the potential for efficiency savings in this software environ-
ment, a Hartree Fock energy for the nitromethane molecule using the cc-pVTZ
basis was chosen as a sample target calculation. We employed a very simple
node count selection algorithm: selecting the training calculation with the near-
est basis function count as the target calculation and then choosing the highest
node count with parallel efficiency greater than 90% for that training calculation.
Using this simplistic algorithm, the nitromethane target calculation achieves a
parallel efficiency of 84%, which is 8% greater parallel efficiency than the next
larger power of 2 node count. While these small sample calculations will not
support efficient execution at large scales of parallelism, increasing the problem
size only pushes these effects to larger node counts; the shapes of the efficiency
curves and the potential efficiency gains using CQoS approaches will remain.
With current environmental and energy efficiency concerns and yearly power
budgets for modern HPC installations running into the millions of dollars, it
seems clear that CQoS approaches should be a part of HPC efforts.

5.2 GAMESS

GAMESS, another application that computes Hartree Fock energies, has many
options for solving the properties of the wavefunctions. There are two imple-
mentations for the energy solution, conventional and direct. The conventional
implementation was written first but can be too resource intensive in terms
of disk space and file I/O requirements on some systems. The direct version
was developed to avoid storing intermediate integrals on disk, thus requiring
some redundant computations, and in serial executions, is typically two to three
times slower than the conventional. However, in parallel environments at higher
processor counts, the direct method outperforms the conventional method due
to excessive parallel and I/O overhead. The actual point where it makes sense
to change methods depends on the wavefunction solution method, the input
molecule or atom, the basis set, and the hardware. In addition, at one stage of
the algorithm, a second-order Møller-Plesset correction (MP2 [37]) can be used
to take into account the so-called “electron correlation.” The MP2 method con-
sumes more memory and disk space. With regard to the GAMESS application,
one goal of the recommender system is to suggest whether to use the direct or
conventional method, given the other parameter selections.
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bz(114) np(180) AT(321)

bz-dimer(228) np-dimer(360) GC(316)

C60(840)

Fig. 6. Test cases: Benzene (bz) and its dimer, Naphthalene (np) and its dimer,
Adenine-Thymine DNA base pair (AT), Guanine-Cytosine DNA base pair (GC), Buck-
minsterfullerene (C60). In parentheses are the numbers of basis functions when using
cc-pVDZ basis.

The initial set of molecules used for performance analysis is shown in Figure 6.
Indicated numbers of basis functions (in parentheses) roughly correlate with re-
source demand of the corresponding computations: the greater the number of basis
functions, the more demanding the computation is expected to be. The choice of
molecules was based on their importance in chemistry and biology as well as on
characteristic types of chemical interactions they represent; also, computations of
molecules of a similar size (that is, with similar number of atoms and basis func-
tions) are routine in contemporary quantum chemistry. The benzene and naph-
thalene molecules (labeled “bz” and “np” on the figure) represent fundamental
aromatic systems. Their dimers (labeled “bz-dimer” and “np-dimer”) represent
models for π-π interactions believed to determine DNA stacking, protein folding,
and other phenomena of great importance for biochemistry and chemistry. The
pairs of DNA bases (labeled “AT” and “GC”) are examples of hydrogen bond-
ing; the interaction between the bases defines the double-helix structure of DNA.
Finally, a molecule of buckminsterfullerene (labeled C60) is taken as a represen-
tative of a large, highly symmetrical chemical structure, characteristic of carbon
nanomaterials.

Hartree Fock energy was computed for each of these molecules, with and
without MP2 correction, with various basis sets, and with varying numbers of
nodes (up to 16) and processes per node (up to 8). The runs were computed on
Bassi, an IBM p575 POWER5 system at the National Energy Research Scientific
Computing Center (NERSC). Bassi has 111 compute nodes with 8 processors and
32 GB of memory per node. This training data was used to construct a classifier
in order to recommend whether to use the conventional or direct method to
compute the energy. The independent parameters used to construct the classifier
are shown in Table 1. There were 561 potential training instances, of which 150 of
the best performing unique tuples were selected as the training set. The method
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Fig. 7. Anthracene empirical results: Number of nodes vs. wall-clock time. Times are
in seconds; less time indicates faster performance.

Table 1. Parameters used for classifier construction

Property Training Values Anthracene

# Cartesian Atomic Orbitals 120, 190, 240, 335, 340, 380, 470, 830 640
# Occupied Orbitals 21, 34, 42, 68 47
# Processes per Node 2, 4, 8 8
# Nodes 1, 2, 4, 8, 16 1,2,4,8,16
Second-order Møller-Plesset disabled (MP0), enabled (MP2) MP0, MP2

(conventional or direct) used to generate the best performing tuple was used
as the class for each training instance. A multilayer perceptron classifier was
constructed using these instances.

An eighth molecule, anthracene, was used to test the classifier. The test values
for the parameters are also shown in Table 1. When used at runtime, the classifier
recommended using the conventional method for the 1, 2, and 4 node runs (8,
16, and 32 processes, respectively), and using the direct method for the 8 and
16 node runs (64 and 128 processes). The empirical results from anthracene are
shown in Figure 7. The classifier was correct in classifying 9 out of 10 instances
− the 4 node direct MP2 run outperformed the conventional MP2 run, but only
barely (300 seconds compared to 306 seconds). In all of the other configurations,
the recommender correctly identified the method to use in order to achieve the
fastest time to completion.

6 Conclusion and Future Work

This paper introduced a CQoS approach for quantum chemistry that lever-
ages the CCA component environment to address new challenges being faced
by applications teams when dynamically composing and configuring codes in
high-performance computing environments. We have built prototype database
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components for managing performance data and associated metadata for high-
performance component applications. These components are part of a larger
CQoS infrastructure, which has the goal of enabling automated component se-
lection and configuration of component-based scientific codes to respond to con-
tinuous changes in component requirements and their execution environments.
We integrated performance analysis capabilities of PerfExplorer into the gen-
eral CQoS infrastructure to classify performance and meta-information and then
suggested appropriate configurations for new problem instances. The usage of
the CQoS infrastructure components in quantum chemistry applications demon-
strates our initial success in adaptive parallel application configuration.

Our next steps in the quantum chemistry-specific part of this research in-
clude predicting, in addition to the runtime, the accuracy of the computations
(with respect to energy or other properties). We will employ other classes of
widely-used quantum chemical methods, starting with density functional theory
and coupled clusters approaches. We will also incorporate new metadata fields
whose values will be collected along with performance data, for example, param-
eters representing molecular symmetry. Furthermore, we plan to venture into the
(rather unexplored) area of quantification of similarity between molecules. More
generally, future work includes enhancing the CQoS infrastructure to support so-
phisticated analysis for (re)configuring algorithmic parameters and component
instances during runtime, developing application-specific performance models,
and incorporating the training CQoS phase into empirical experiment design.

We are also employing the new CQoS infrastructure to facilitate dynamic
adaptivity of long-running simulations in other application domains, including
parallel mesh partitioning in combustion and efficient solution of large-scale lin-
ear systems in fusion and accelerator models [3]. Our long-term goals are to
define a comprehensive architecture for enabling CQoS in scientific simulations,
consisting of general-purpose performance monitoring, analysis, and database
middleware components, which can then be combined with easy-to-write domain-
specific components for defining quality metrics and adaptation strategies.
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