

Process-Centric
Architecture for

Enterprise
Software Systems

In an initiative to promote authorship across the globe, Infosys Press and CRC Press have

entered into a collaboration to develop titles on leading edge topics in IT.

Infosys Press seeks to develop and publish a series of pragmatic books on software

engineering and information technologies, both current and emerging. Leveraging Infosys’

extensive global experience helping clients to implement those technologies successfully,

each book contains critical lessons learned and shows how to apply them in a real-world,

enterprise setting. This open-ended and broad-ranging series aims to brings readers practical

insight, specific guidance, and unique, informative examples not readily available elsewhere.

Published in the series

Process-Centric Architecture for enterprise software systems
Parameswaran Seshan

in PrePArAtion for the series

scrum software development
Jagdish Bhandarkar and J. Srinivas

software Vulnerabilities exposed
Sanjay Rawat, Ashutosh Saxena, and Ponnapalli K B Hari Gopal

Web-based outsourcing
Vivek Sharma, Rajasekaran K.S., and Varun Sharma

Parameswaran Seshan

Process-Centric
Architecture for

Enterprise
Software Systems

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC
Auerbach Publications is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-13: 978-1-4398-1629-5 (Ebook-PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

To my lovely children, Bhavya and Vivek, who are
 giving me abundant joy in my life

vii

Contents

Preface..xv
Acknowledgments..xvii
Author...xix

Part I  the process-centric architecture paradigm

1	 Introduction..3
1.1	 Objectives...3
1.2	 Enterprise Software Systems...3
1.3	 Architecture for Systems...4

1.3.1	 IT Architecture..4
1.3.2	 IT System Architecture..5
1.3.3	 Architectural Styles and Patterns...5

1.4	 Introduction to Business Processes...7
1.5	 Activities in Business Processes...8
1.6	 Types of Activities..9

1.6.1	 Manual..9
1.6.2	 System...10

1.7	 Importance of Business Processes to Enterprise................................10
1.7.1	 Processes Are Unique...12

1.7.1.1	 Work Culture..12
1.7.1.2	 Change..12
1.7.1.3	 Employees/People..12
1.7.1.4	 Systems..12
1.7.1.5	 Vision and Mission..13

1.7.2	 Processes Are Organization Wide..13
1.8	� Process-Centric Architecture—A Quick Introduction.....................13

1.8.1	 Background...13
1.8.2	 Concept...14
1.8.3	 Benefits..15

viii  ◾  Contents

1.8.4	 The Book...15
1.9	 Exercise Questions..15

2	 Evolution of IT Architecture...17
2.1	 Objectives...17
2.2	� Historical Perspective on Enterprise Computing Architectures........17

2.2.1	 The 1960s..18
2.2.2	 The 1970s..19
2.2.3	 The 1980s..20
2.2.4	 The 1990s..22
2.2.5	 The 2000s..25

2.3	 Traditional Ways of Supporting Business...27
2.4	 Workflows..29
2.5	 Packages...30
2.6	 Integration..31
2.7	 Business–IT Gap..33
2.8	 Exercise Questions..35

3	 Concept of Process-Centric Architecture..37
3.1	 Objectives...37
3.2	 The Case for a New Approach..37
3.3	 What Is Process-Centric Architecture?...38
3.4	 Process Logic Abstraction...39
3.5	 Qualities Addressed..43
3.6	 Structure... 44

3.6.1	 Business Process Model...45
3.6.2	 Process Layer...45
3.6.3	 Business Logic Elements..45
3.6.4	 UI Application Layer.. 46
3.6.5	 Clients.. 46
3.6.6	 Business Rules Layer... 46

3.7	 Dynamics...47
3.8	 Principles..48

3.8.1	 Business Process-Driven System..48
3.8.2	 Highly Abstracted Components..49
3.8.3	 Automated Processes...50
3.8.4	 Process Thinking Oriented..51
3.8.5	 Explicit Processes...52
3.8.6	 Flexible Processes...52
3.8.7	 Service-Based Activities...53
3.8.8	 Implementation-Isolated Processes......................................54
3.8.9	 Executable Process Specifications...55
3.8.10	 Interacting Processes..57

Contents  ◾  ix

3.8.11	 Business Controlled System...57
3.8.12	 Reusable Processes...57
3.8.13	 Mobile Processes..58
3.8.14	 Process-Level Programming..59

3.8.14.1	 New Programming Abstraction...........................59
3.8.14.2	 Minimized Coding..60

3.8.15	 Composable Processes...60
3.8.16	 Autonomous Processes...60

3.9	 Integration Concept as Handled in PCA..61
3.10	 Workflow in PCA...62
3.11	 Holistic View in Architecture...62
3.12	 Similar Approaches...63
3.13	 PCA in the Context of Other Architectures.....................................65
3.14	 Exercise Questions... 66

4	 Business Process Management..67
4.1	 Objectives...67
4.2	 What Is BPM?..67
4.3	 PCA and BPM..71
4.4	 Business Process Life Cycle...72

4.4.1	 Process Design...72
4.4.2	 Process Modeling..72
4.4.3	 Process Simulation...73
4.4.4	 Process Design-Time Optimization.....................................73
4.4.5	 Process Deployment..73
4.4.6	 Process Execution..74
4.4.7	 Process Monitoring..74
4.4.8	 Process Analysis...74
4.4.9	 Process Optimization..74

4.5	 Six Sigma..74
4.6	 Lean...75
4.7	 Process Redesign..76
4.8	 Process Automation... 77
4.9	 BPMS Products... 77
4.10	 BPM Landscape..78
4.11	 Exercise Questions..79

5	 Components of PCA..81
5.1	 Objectives...81
5.2	 The Business Process Model...81

5.2.1	 Structure...82
5.2.2	 Relationships.. 84

5.2.2.1	 Business Logic Elements..................................... 84

x  ◾  Contents

5.2.2.2	 The Process Layer... 84
5.2.3	 Properties of Processes...85
5.2.4	 Levels of Models..88

5.2.4.1	 High-Level Business Process Model.....................88
5.2.4.2	 Executable Process Model....................................89

5.3	 Process Layer..94
5.3.1	 Responsibilities..94
5.3.2	 Interrelationships...96

5.3.2.1	 Process Model..96
5.3.2.2	 Business Logic Elements......................................97
5.3.2.3	 UI Application Layer...97
5.3.2.4	 External Process Systems or Other Processes.......98

5.3.3	 Structure...98
5.4	 Business Logic Elements...99

5.4.1	 Principles...100
5.5	 User Interface Application Layer..101
5.6	 Exercise Questions..102

6	 Process Execution..105
6.1	 Objectives...105
6.2	 Deployment..105
6.3	 Execution...106

6.3.1	 System Participation..107
6.3.1.1	 Solicit–Response..107
6.3.1.2	 Notification...108
6.3.1.3	 Request–Response...108
6.3.1.4	 One-Way...109

6.3.2	 Critical Aspects at Run-Time.. 110
6.3.2.1	 Errors... 110
6.3.2.2	 Transactions..112
6.3.2.3	 Compensation... 115
6.3.2.4	 Correlation.. 116

6.3.3	 Human Participation... 117
6.3.3.1	 Allocation.. 118
6.3.3.2	 Execution.. 119
6.3.3.3	 Notification... 119

6.3.4	 Life-Cycle Stages...120
6.4	 Addressing Integration...121
6.5	 Workflow..124
6.6	 Business Rules..126
6.7	 Flows Handled in a Process..127
6.8	 Exercise Questions..128

Contents  ◾  xi

7	 Benefits of Process-Centric Architecture...129
7.1	 Objectives...129
7.2	 Business Benefits..129

7.2.1	 Business–IT Alignment...129
7.2.2	 Better Control for Business..130
7.2.3	 Reuse...130
7.2.4	 Central Store of Processes..131
7.2.5	 Process Management...131
7.2.6	 Mergers and Acquisitions...131

7.3	 Benefits to IT Systems..133
7.3.1	 Flexibility..133
7.3.2	 Agility...133
7.3.3	 Interoperability..133
7.3.4	 Scalability of the IT System Is Improved...........................134
7.3.5	 Maintainability..134

7.4	 Scalability of the PCA Style and Approach.....................................134
7.5	 Complexity versus Manageability...136
7.6	 Raised Level of Abstraction for the IT System................................137
7.7	 Exercise Questions..139

Part II � architecting IT systems, the process-centric
style (designing pca)

8	 The Approach..143
8.1	 Objectives...143
8.2	� A Typical Manifestation of Process-Centric Architecture...............143

8.2.1	 The Architecture..143
8.2.1.1	 Process Engine...145
8.2.1.2	 Process Repository...146
8.2.1.3	 Applications...146
8.2.1.4	 Application Server...147
8.2.1.5	 Adapter Layer..147
8.2.1.6	 Business Rules Engine.......................................148
8.2.1.7	 Web Server..148

8.2.2	 Legacy Components..149
8.3	 Architectural Design in PCA..150

8.3.1  When to Apply?..150
8.3.2  How to Apply?.. 151

8.3.2.1	 Modeling Business Processes—Prerequisites...... 151
8.3.2.2	 Top-Down Approach (or Leaned to Top

Approach).. 152

xii  ◾  Contents

8.3.3	 Levels of Models..156
8.3.3.1	 High-Level Business Process Modeling..............156
8.3.3.2	 Executable Business Process Modeling..............158

8.4	 Re-Architecting an Existing IT System for PCA............................160
8.4.1	 A Scenario...160
8.4.2	 Approach... 161

8.4.2.1	 Justification... 161
8.4.2.2	 Re-Architecture... 161

8.5	� Addition of an IT Subsystem to an Existing IT System..................162
8.6	 Exercise Questions..164

9	 SOA for Services..165
9.1	 Objectives...165
9.2	 Services...165
9.3	 Service-Oriented Architecture..166
9.4	 Bottom-Up Approach...167
9.5	 Need for SOA in PCA..168
9.6	� Complementary Approach to Architectural Design........................170

9.6.1	 Context...170
9.6.2	 Top-Down...170
9.6.3	 Design of Services in the Context of PCA.........................171
9.6.4	 Leverage What Is Available..172
9.6.5	 Binding...172
9.6.6	 Complementary...173

9.7	 Exercise Questions..173

10	 Standards and Technologies..175
10.1	 Objectives...175
10.2	 Standards..175
10.3	 Process Modeling Standards...176

10.3.1	 BPMN...176
10.3.2	 XPDL•...178

10.4	 Process Execution Standards..178
10.4.1	 WS-BPEL..179

10.4.1.1	 A Combination of Interoperability Standards....179
10.4.1.2	 Structure...179
10.4.1.3	 Bindings..183
10.4.1.4	 Extensions...183

10.4.2	 BPML..183
10.5	 Inter-Process Layer Interactions..187
10.6	 Business Logic Interaction Standards...187
10.7	 Technologies and Tools..188

10.7.1	 Process Component and Process Layer..............................188

Contents  ◾  xiii

10.7.2	 Adapter Layer or Collaboration Layer................................188
10.7.3	 Implementation of Business Logic.....................................188
10.7.4	 Server Components...189
10.7.5	 Design-Time Component..190
10.7.6	 Operations and Administration...190

10.8	 Implementation Options..190
10.9	 Exercise Questions..192

11	 Case Study—Architectural Design Applying PCA.............................193
11.1	 Objectives...193
11.2	 Case Study I...193

11.2.1	 Modeling of the Business Process......................................194
11.2.1.1	 Design Rationale...196

11.2.2	 Detail-Level Business Process Modeling............................197
11.2.3	 Logical Architecture... 226
11.2.4	 Services..232

11.3	 Case Study II..235
11.3.1	 The Process..236
11.3.2	 Background Context...236
11.3.3	 The Current System...236

11.3.3.1	 Applications...237
11.3.3.2	 Flow Support...238
11.3.3.3	 Issues...239

11.3.4	 The New System..239
11.3.4.1	 The Business Process Model..............................239
11.3.4.2	 Detailed Process Model.....................................242
11.3.4.3	 Services Design... 244
11.3.4.4	 User Activities...261
11.3.4.5	 Executable Process Definition............................263
11.3.4.6	 Embodiment...283

11.4	 Exercise Questions..283

12	 Implementation Considerations..285
12.1	 Objectives...285
12.2	 Types of Business Processes..285

12.2.1	 Rules-Centric... 286
12.2.2	 Workflow Oriented..287
12.2.3	 STP Oriented..287
12.2.4	 EAI Oriented...288

12.3	 Process Infrastructure...289
12.3.1	 Legacy BPMSs...289

12.3.1.1	 Application Server Legacy.................................290

xiv  ◾  Contents

12.3.1.2	 Workflow Legacy...290
12.3.1.3	 EAI Legacy..290
12.3.1.4	 Rule Engine Legacy...291
12.3.1.5	 DMS Legacy..291
12.3.1.6	 Package Legacy..291

12.3.2	 Pure-Play BPMSs...292
12.4	 Best Practices..292
12.5	 Practicalities in Architectural Design...295

12.5.1	 Some Common Situations...295
12.5.1.1	 Recurrent Tasks...295
12.5.1.2	 Making Task Nodes Work.................................296
12.5.1.3	 Audit Data Capture...297
12.5.1.4	 Batch Processing Platform.................................297
12.5.1.5	 Workflow Application.......................................298
12.5.1.6	 Third-Party Data Integration.............................299
12.5.1.7	 Business Activity Monitoring Application........ 300
12.5.1.8	� Splitting the Responsibilities between

the Specific Application and the Process
Layer/BPMS��� 300

12.5.1.9	 Existing System with a Process Engine..............301
12.5.2	 Anti-Patterns...302

12.5.2.1	 Screen Chaining..302
12.5.2.2	 Huge Data Transfer...303
12.5.2.3	 Batch Integration with Legacy.......................... 304

12.6	 Exercise Questions... 304

Bibliography...305

Index..309

xv

Preface

Information technology systems in enterprises are in the midst of an evolution that
impacts both business and technology. Business process management (BPM) is
increasingly getting adopted in enterprises the world over; software architects (and
programmers) are starting to leverage BPM-based software systems, and process-
centric architectures (PCA) are becoming more popular in the field. PCA is an
emerging trend in architecting enterprise systems.

This book is written with cognizance of the need of the technical and business
personnel to obtain a good understanding of the importance and the concept of
process-centric architecture in the context of IT systems in enterprises. Since it is
an emerging trend in an evolving field, architects and programmers need to learn to
architect their applications and systems based on process-centric architectures. This
book will provide readers with a solid foundation on PCA concepts, and help them
in their specific situations to architect and design their own IT systems and appli-
cations based on this architectural style. It also introduces readers to an IT system
architectural style and approach that is centered on the business processes of the
enterprise.

This book is primarily a product of my experience that includes

◾◾ Research in the BPM area, especially in BPM systems (BPMSs)
◾◾ Architecting and developing a BPMS from ground up
◾◾ Architecting and implementing IT systems and applications based on this

architecture concept

Apart from my experience, I have also benefited from the time spent in the library
reading various books in related areas. Each of the books has provided a differ-
ent perspective, making the resultant picture more comprehensive. Much of the
insights that I have been able to derive and the learning that I have obtained from
my experience as well as reading have gone into this book.

The book, in brief, introduces and explains the concept of PCA, which is an
architectural style and approach for designing the architecture of IT systems in
an enterprise, where the architecture is centered on the business processes of the

xvi  ◾  Preface

enterprise. It also lays down principles and describes techniques involved in archi-
tecting enterprise systems based on PCA. It shows how to design such an IT system
architecture by referring to a practical case study and by using examples.

The highlights of this book are

◾◾ Concepts of process-centric architectural style
◾◾ PCA approach to architecting enterprise IT systems
◾◾ Business process–driven applications and integration
◾◾ Services-oriented architecture in the context of process-centric architecture
◾◾ Standards, technologies, and infrastructure behind PCA
◾◾ Case study showing how to architect and design an enterprise application

based on PCA

The book is divided into two parts. Part I (Chapters 1 through 7) provides a con-
ceptual understanding of PCA. Part II (Chapters 8 through 12) focuses on how to
architect enterprise IT systems based on this approach. In this part, case studies
and examples are provided to explain the approach.

The book is primarily meant for

◾◾ Software architects
◾◾ Enterprise architects
◾◾ IT architects
◾◾ IT programmers
◾◾ BS/BE/ME/MS computer science/IT students
◾◾ IT managers with a focus on technology
◾◾ Faculty who teach software architecture as a course in academic institutions

and internal trainers at corporate houses
◾◾ Solution architects with a focus on new technologies

Even though this book is technically oriented, it will be useful for business manag-
ers and business analysts, who will benefit most from the first four chapters. All
product names and trademarks owned by the respective owners are acknowledged.

xvii

Acknowledgments

My heartfelt thanks go to Subrahmanya S.V. (Infosys Technologies Ltd.) for moti-
vating me to write this book and for the encouragement, support, and guidance he
provided in this effort—this book would not have been possible without him.

I would like to express my gratitude to a number of people who have been
helpful in bringing this book to life. I am indebted to my family—my wife
Uma, my lovely children Bhavya and Vivek, and my parents Sesha Iyer and Raji
(aka Subbalakshmi)—for standing by me and supporting me through the writing
of this book. Their encouragement and endurance saw me through this book. Uma,
Bhavya, and Vivek were patient with the long hours, which were rightfully their
time, that I spent away from them on the computer and the late nights toiling away
with book writing. This long project has been hard on them. I sincerely thank them
for their sacrifice.

I thank Dr. V.P. Kochikar (Infosys Technologies Ltd.) for being kind enough
to review the manuscript and for providing valuable comments. I am grateful to
N.S. Nagaraja (former employee, Infosys Technologies Ltd.) for initiating me into
the world of BPM, for giving me an opportunity to architect and build a BPMS,
and for giving me the freedom to pursue research in the area. The learning from
these experiences has been immensely helpful. I am thankful to Srinivas Thonse
(former employee, Infosys Technologies Ltd.) for the discussions on research per-
spectives in BPM and for the advice provided on BPM-related work. I express my
thanks to Khushnood Naqvi (former employee, Infosys Technologies Ltd.) for
the stimulating discussions we have had on process execution infrastructure, on
BPMS, and on programming in general. I would like to thank Siva K.R. (former
employee, Infosys Technologies Ltd.) for giving me an opportunity to imple-
ment BPMS in banking application products. My thanks also to Sachindran
K. (Infosys Technologies Ltd.) for presenting me with real-life business process
implementation issues, which kept prodding me to think deeply about BPMS
architectures.

I would like to express my gratitude to Paul Harmon (Business Process Trends)
for his insightful and balanced views on BPM (available at the BPTrends Web site,
http://www.bptrends.com). Reading his publications has helped me take a realistic

xviii  ◾  Acknowledgments

view with respect to BPM. I thank Howard Smith and Peter Fingar for their
powerful book on BPM, which convinced me and made me visualize the power
of process-thinking and the BPM philosophy for software systems for enterprises.

I am thankful to Christian Stefansen (PhD, University of Copenhagen,
Denmark), a wonderful researcher, for his views, thoughts, and inputs that trig-
gered my deep thinking into workflows and expressiveness of languages in the con-
text of workflows. I thank Sriram Rajamani (Microsoft Research) for the valuable
research mindset and the research rigor that he helped bring into the workflow
research we were pursuing together.

I thank Vishwanath Shenoy (Infosys Technologies Ltd.) for the discussions
centered on business process requirements while we were working together on
the development of a solutions-workbench tool. I thank Dr. T.S. Mohan (Infosys
Technologies Ltd.) for providing useful comments on my work in this area.
I would like to thank all my colleagues in the E-Comm Research Labs at Infosys
Technologies Ltd. for their valuable help during the writing of the book.

I would like to express my gratitude to Pradeep Kumar (American President
Lines Ltd., Oakland, California [APL Ltd.]) and Kathy Dimitruck (also from APL
Ltd.) for giving me the freedom to explore different technologies and for allowing
my relentless technical pursuits during my days at APL. I thank Giora Panigel and
K. Ramesh Babu of APL for the stimulating technical discussions related to distrib-
uted computing and IT architecture while I was at APL.

Thanks to Mohandas Pai and Srikantan Moorthy of Infosys Technologies
Ltd. for the encouragement and support of this initiative. At Taylor & Francis,
John Wyzalek, Deepa Jagdish, Amy Blalock, joette Lynch, Vedavalli Karunagaran
and team have helped make this book happen. I am grateful to them for all the help
and support provided, and for their patience.

Parameswaran Seshan

xix

Author

Parameswaran Seshan works as a principal (education and research) with Infosys
Technologies Ltd., Bangalore, India. At Infosys, he is part of E-Comm Research
Labs. He has more than 14 years of experience in the information technology
(IT) industry as a researcher, educator, architect, and programmer. Before joining
Infosys in 2001, he worked as an advisory systems analyst with American President
Lines Ltd. (APL), Oakland, California. He has also worked as a software engineer
with Case Consult (I) Pvt. Ltd., Thiruvananthapuram, India. His work in the IT
industry has involved research, teaching, programming, architecture, and design.
He received his BTech in computer science and engineering from the University of
Calicut, India, in 1995.

At Infosys, Parameswaran has been conducting research in the area of process-
centric architecture, business process management (BPM), software architecture,
and new computing models/paradigms. He has also been teaching architecture
and high-end technology courses there. He was the lead architect for the home-
grown business process management system (BPMS) from Infosys and was also
actively involved in its design and development. He has architected, designed, pro-
grammed, and supported a number of IT systems over the course of his career as a
software professional.

Parameswaran is an active researcher. He has published papers at international
conferences and other forums. He has worked on research projects in collabora-
tion with Microsoft Research, India, and with researchers from the University of
Copenhagen and the University of Melbourne in the areas of BPM and agent-
oriented software engineering.

Parameswaran has designed, developed, and supported IT systems involving
various technologies at APL, and has programmed system tools to automate opera-
tions. He has also led a team in software development and support projects at APL,
and has programmed system tools based on REXX to automate the conversion of
programs from one programming environment to another at Case Consult.

Parameswaran’s areas of research include software architecture, process-centric
architecture, new computing models, intelligent software agents, and intelligent
systems.

IThe Process-
Centric
Architecture
Paradigm

3

Chapter 1

Introduction

1.1 O bjectives
◾◾ To get an overview of IT system architecture
◾◾ To understand what business processes are, at a high level

1.2 E nterprise Software Systems
Enterprise software systems are software-intensive systems in an enterprise. They
support business functionalities for the enterprise by performing business func-
tions, and their scope is wider than a specific business function. They are also called
information technology (IT) systems in the enterprise. We will be using these
two terms (IT systems and enterprise software systems) interchangeably through-
out the book and they should be taken to mean the same. These systems can be
in-house developed ones or packaged software. The word enterprise as used here is
regardless of the size of the enterprise—the word applies equally to small, medium,
and large organizations.

An IT system comprises of applications, system software (including middle-
ware), data, and hardware. Examples of IT systems in enterprises include transac-
tion processing systems, supply chain management systems, manufacturing support
systems, management information systems, customer relationship management
systems, customer information management, billing, finance systems (or account-
ing systems), core banking systems, human resources (HR) management systems,
trading systems, office systems, decision support systems, online shopping, enterprise
resource planning systems, online payment processing, and knowledge management

4  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

systems. The term “IT system” has a bigger scope than the term “application”—
using the term we take a full system view of specific software such as a customer
relationship system.

An IT system may comprise more than one application in its scope.
Applications are software that support a specific business work or a user of the
software. They refer to the usage of computer by users and the use of computer
for various needs of the enterprise. Applications provide business functionality
and their focus is only on making use of the capabilities of the computer to per-
form a function for users. Examples are travel expense management, IT helpdesk,
word processors, web browsers, etc. Applications are written on top of system
software.

Data refers to all the business data associated with the various business func-
tions performed by the applications. Data is a separate entity since it has a separate
existence and varied use beyond the application that created it. Examples of data
are customer data, product data, employee data, sales data, etc.

Hardware is the physical aspect of the system or IT. Computing machines such
as computers, servers, and mainframes, and networks and equipments such as rout-
ers, storage disks, etc., are all part of the hardware for the IT system.

1.3 A rchitecture for Systems
Architecture is a term that is growing in relevance in the computer software world.
It has been a well-established concept in the civil engineering world though. While
there is no common agreement on its definition, as of today, the following defini-
tion from IEEE 1471 has been adopted by many—“Architecture is the fundamen-
tal organization of a system embodied in its components, their relationships to each
other and to the environment and the principles guiding its design and evolution.”
Here, the system can be an information technology (IT) system, an enterprise, a
division of an enterprise, and so on. In this book, we use the term “IT systems” to
inclusively refer to software and information technology systems.

1.3.1  IT Architecture
IT architecture is a term that has an enterprise-wide or a department-wide scope and
is associated with the organization. IT architecture is the architecture of IT in an
organization. It is also referred to as the enterprise IT architecture, in the case of an
enterprise scope. It is the structure of the enterprise organized purely in terms of
the various IT systems in the enterprise, how those IT systems relate to each other,
and how they relate to the business aspects of the enterprise. All the IT systems in
the enterprise structurally fit into the IT architecture of the enterprise. IT architec-
ture includes the structure of the data in the organization, both logical and physi-
cal, the infrastructure capabilities (such as hardware, middleware, networking,

Introduction  ◾  5

communications) that are required to support the various systems across the enter-
prise in a common and horizontal way.

1.3.2  IT System Architecture
IT system architecture is the architecture of an IT system. It is the organization of
the IT system as functionality components, infrastructure components, and data
components, their interactions with each other to realize the business objectives of
the system, and reflects the principles and design decisions made on the system as
a whole. It thus includes the data, infrastructure capability, and functionality parts
of the system. It defines the structure of the IT system as comprised of its compo-
nents, how they interact with each other, and the external properties they exhibit,
and enables inferencing on the quality exhibited by the IT system as a whole in its
behavior. It determines and specifies how multiple applications that are part of the
IT system are to work together—how they would interact with each other.

IT system architecture is the key to realizing the functional requirements and
quality attributes* of the system—it primarily determines whether and how well
the system meets its stated business functionality and quality goals. “Quality attri-
butes” are properties of the system such as usability, modifiability, maintainability,
interoperability, performance, reliability, and availability. The stakeholders† of the
system have different concerns related to the IT system, and these become the prop-
erties that the system needs to guarantee. Properties here can be functional and
quality based. The need of the system to meet or satisfy these properties primarily
influences the design of the architecture of the IT system.

The architecture of a system is described in multiple views, each one from a
different perspective. The views considered would need to cover the business per-
spective and the technical perspective of the IT system to make it more complete.

1.3.3  Architectural Styles and Patterns
An architect creating the architecture for an IT system is often faced with design
problems to address, forces to handle, or constraints acting upon the system; for
example, “how to ensure the system’s performance (time-efficiency)” or “how to
enable it to become scalable” are some architectural design problems. There are
patterns in the solutions to typical architectural design problems and they have
collectively become architectural patterns. The idea is to reuse the solutions that
have been applied in similar or other architectural design contexts and apply them
to solve the current architectural design problem at hand. Patterns are template

*	 “Quality attributes” are also referred to as nonfunctional requirements of the system by some.
†	 Various people interested in the IT system would be people such as customers, end users, sys-

tem developers, maintenance engineers, salespeople, project managers, operators, and opera-
tion managers.

6  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

solutions to repeating problems occurring in a different space. Patterns are not full
architectures of any system, but they are used in creating architectures for a system
by applying the pattern to the context of the system. For example, pipes and filters
is an architectural pattern that solves the problem of partitioning a big task to be
performed by a system into smaller tasks that are performed in a sequence—it
solves a partitioning problem. Publish and subscribe is another example of an archi-
tectural pattern—it solves a communication problem, that is, the communication
between components of a system.

Architectural styles are slightly different from patterns. An architectural style
is a predefined set of components or a set of elements of architecture with a set of
architectural design decisions, which can be applied to a scenario. This is created
by extracting a set of common elements and behavior from architectures that are
already available. The design decisions that come with a style, influence or con-
strain further design decisions in the architecture of the system.

An example of an architectural style is client–server architecture style where
the entire system is organized as client and server components. Yet another one is
the layered architecture style—here the system is primarily divided into layers that
depend on each other for specific functional needs. Each layer would make use of
services provided by one or more layers to complete its responsibility. Thus, when
applying the layered architecture style, all system elements would become part of
some layer or the other in the architecture and thereby their responsibilities get
associated with the responsibilities defined for the layer.

While patterns necessarily solve a generic problem, styles need not. A style is
more of a central organizing concept in the architecture. Also, according to some, a
pattern is described strictly as far as its constraints on the architectural components
go and is widespread in the software world, and an architectural pattern addresses
some aspect (problem) that is more concrete. A style is more leniently described:
though there can be constraints, the constraints are at an overall level and more
abstract—the structuring of the architecture is given more importance. It is less
concrete than a pattern in what it addresses (the scenario or the context for the
style). The architecture style dominates the overall architecture of the IT system
among all the patterns used in the architecture.

When creating architecture for an IT system,* reference architectures are some-
times used. Reference architecture is typically created by using an architectural
style or a pattern and mapping a set of components from a reference model to it.
Here, a reference model is a model with functionality components in a specific
business context. Its focus is business. On the other hand, the architecture style or
pattern is not specific to the business domain. The resulting reference architecture is
the architecture of a system for the specific business context. An example of a refer-
ence architecture is the IBM insurance application architecture—it is a reference
architecture that applies to the insurance domain.

*	 This is true for any software system and not just for systems in the enterprise.

Introduction  ◾  7

A common way to create architecture for a new system is by using relevant refer-
ence architecture and modifying it to suit the specificities of the problem at hand.
Patterns, styles, and reference architectures all help avoid reinventing the wheel.

1.4  Introduction to Business Processes
Business process is an ordered set of activities performed to achieve a business objec-
tive. Here, the activity is either a system or manual activity and the business process
is usually a mix of both. System activities are automatically performed by IT sys-
tems and manual activities are carried out by humans or, in other words, users. The
users typically have interactions with an IT system through its user interface (UI).

Some examples of business processes* are loans processing, purchase order
processing, customer account-opening process in a bank, credit card transaction
processing, order-to-cash processing, and insurance claims processing.

Business processes are the core assets of any enterprise. They define the enter-
prise and determine how well the enterprise performs in the market. The business
processes of an enterprise are unique to the enterprise and they differentiate the
enterprise from its competition.

They capture the way the enterprise works and how it goes about its business of
providing products and services to its customers.

Typically in an enterprise, there are some roles that are directly concerned with
the business processes. Business manager and business analyst are such roles. A busi-
ness manager (also called process manager) is a role that is primarily concerned
with the business processes that are in operation. This role monitors what is going
on with the process at any point of time and takes actions to address issues related
to the operation of the process, such as reassigning tasks to different users to man-
age load, taking decisions to scale up the process execution to meet extra load,
handling exceptions in the process, forceful termination of processes if required,
and resolving bottlenecks. A business analyst or a process analyst is an analyst role
that is primarily concerned with design of business processes and how well the busi-
ness processes have been performing or meeting their respective objectives. These
roles take a long-term perspective and focus on how to improve the processes in the
future by changing them or redesigning them.

Processes typically cut across departments in the organization. The enterprise
is constantly subjected to change induced by the business environment, forcing its
business processes to change as a response, and that too quickly. The pace of change
has only been increasing. When responding to a change, the business analyst or
manager would want to change the flow or order of activities, change conditions
governing the process flow, remove activities, and so on. All these fundamentally

*	 In this book, the term “business process” is interchangeably used with the term “process.”
Unless explicitly stated otherwise, “process” is to be taken to mean the business process.

8  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

indicate changes in the business process. Thus business processes in an enterprise
do not remain static; they need to be adaptable.

1.5 A ctivities in Business Processes
A business process is composed of a set of activities. Here, an activity refers to a
specific logical operation to be performed as part of the process. Each activity is a
step in the process. When the process is running, activities are performed in the
sequence specified in the process definition. Upon the process execution reaching
an activity, the action associated with the activity is performed, and upon the activ-
ity’s completion, the process progresses to the next step. Some examples of activi-
ties are “approve the loan request,” “validate the loan application.” Completion of
an activity results in a change of the state of the process. For example, upon the
completion of the “approve loan request” activity, which is part of loan process, the
process assumes approved status if the result of performing the activity is approval.
If the result of the activity is a reject, then the process state becomes rejected.

Thus, an activity ideally achieves a logically complete action in the process or
the primary object that the process (say a loan application) is acting upon. In this
sense, activities are atomic in nature, at the lowest level of granularity of the process.

Activities themselves could consist of a set of tasks, where each task is a step
while performing the activity. Thus, each activity could be expressed as a task flow
where the tasks of the activity are ordered based on the logical sequence. Task flow
for a specific activity in a process is a detailed graphical representation of that single
activity. It details out the flow involved among the steps within the activity. A task
flow is executed by a single user, and this granularity is what primarily contributes
to its atomicity property. The user here could be either a human or a system. An
example is the “place-order” activity in a purchase order process. Place-order activ-
ity can be expressed as the following ordered set of tasks:

	 1.	Select the option to place order.
	 2.	Select a product from the list of products.
	 3.	Enter the quantity.
	 4.	Validate the quantity entered.
	 5.	Validation failed?
		 Yes:
	 6.	Enter corrected quantity.
		 No:
	 7.	Confirm order.

A graphical representation of this task flow is given in Figure 1.1.
An activity in a process can be said to have been performed (or normally

completed) if and only if the tasks in the activity are completed in the correct

Introduction  ◾  9

logical sequence (from the start of the task flow to the end) by the user to which
the activity is assigned to.

1.6 T ypes of Activities
Depending on whether they are automatic or not, activities of processes can be
categorized either as manual activities or system activities.

1.6.1  Manual
Manual activities are performed by human beings. Examples include “approve the
order,” “verify the insurance claim,” and “review the application.” These activities
need manual intervention. Some of the manual activities might involve no system
interaction at all and the rest would involve some amount of system interaction
through a UI.

Manual activities are also referred to as user activities, since in today’s world
many of them involve the person performing the activity using a UI application.
The person becomes a user from that application’s perspective.

Select the option
to place order

1

4

9

10

Validation failed?
Display error

message

Enter corrected
quantity

Yes
No

5 6

7

8

2 3

Prompt the user to select
a product from the list

Prompt user to
enter quantity

Enter the quantity

Ask for user
confirmation

Confirm order

Validate the
quantity

Select a product

Figure 1.1 T ask flow for the place-order activity.

10  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Typically, a user activity would involve the user performing a set of tasks that
can be defined as a task flow. While carrying out the tasks, the user would move
from one screen to another performing the task in the respective screen, and finally
when the user completes action in the final screen of the activity, the activity is
considered as completed in the process. Till that point is reached, the activity sta-
tus is still considered as “in progress.” Once the activity is completed, the process
progresses to the next activity in the process flow.

1.6.2  System
System activities are fully automated activities. They are performed by a system or,
in other words, a computer program. These activities do not need human inter-
vention at any point of time. Examples are “Validate credit card,” “Debit money
from credit card,” “Send e-mail notification to customer,” and “Notify customer
by SMS.” A system activity is performed directly by the computing platform by
executing the specific computer application that is directly associated with this
activity, as soon as the process progression reaches this activity.

Another name for system activity is automated activity. Automated activities
are typically activities that are mundane and repetitive, which are efficiently and
speedily carried out by a computer rather than by a human being. This also allows
people to do more creative and challenging work.

As an example, if we consider credit card validation activity, this involves check-
ing of various details of the customer’s credit card for authenticity and matching
details with that of the credit card services provider. This is best done by a system,
where it takes the customer’s credit card information and connects to a credit card
validation service provider’s system through application programming interface
(API) and gets the credit card authenticated.

1.7  Importance of Business Processes to Enterprise
Any enterprise would have a set of business processes that it performs. Those processes
exist in reality irrespective of whether they have been

◾◾ Explicitly designed or just happened in the course of the company’s business
◾◾ Documented in any form
◾◾ Modeled in any approach
◾◾ Described in any format

In such cases where the business processes have not been documented in the enter-
prise, their presence can still be felt—from the way a specific product from the
company is built and offered to the customers or from the way a service is delivered

Introduction  ◾  11

by the enterprise to the customers. In many cases, the people that are involved in
the particular process would know partial flows of the processes. That is, each per-
son that is part of the process would know at least the following:

◾◾ What is the business function that he or she needs to perform.
◾◾ How he or she would get to know when he or she is required to carry out that

specific work.
◾◾ To whom he or she needs to hand off the work item after completing that

specific work.

The thing to note in such cases is that though each person knows the respective part
(his or her specific job or part) of the process, typically few people would be aware
of the entire process with its entire flow. Also, commonly, this process knowledge
(whether in part or in full) remains largely in people’s heads alone.

Business processes in any enterprise can be typically classified into core and
non-core.

Core processes make up the core competency of the business, and these are
processes that directly lead to products and services offered by the enterprise. Core
processes for a company are specific to the company or the industry that the com-
pany is part of. Let us take the example of a typical cargo transportation company.
Its core processes would be those processes such as cargo management, container
management, fleet management, and pickup and delivery.

Non-core processes are processes that support the core processes. They indi-
rectly contribute to the business of the enterprise. The processes such as finance
accounting, billing and payments, and human resources are non-core processes to
this cargo transportation company or enterprise; they are rather enabler processes.
Non-core* processes are typically not specific to any industry or company; they
are rather generic and apply to most enterprises. They are necessary to carry on the
business of the enterprise though they do not directly lead to a product or service.

Innovation activities such as research, generating new products, and strategies
come under the category of core processes because they are unique to the company.
They are important for the business’ future growth and, in many cases, its survival
itself.

How well the business processes of an enterprise run and what activities
the processes perform determines the success of the enterprise in the market.
Efficient business processes provide competitive differentiation to the enterprise
from the others competing in the same area.

Processes are thus the blueprint of how the enterprise conducts its business
and makes available its products and services to its customers.

When it comes to how the business processes are actually enabled in the
enterprise, IT plays a significant role. The IT systems that exist in the enterprise

*	 Non-core processes are also called background processes.

12  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

support the business processes of the enterprise—a business process is realized*
by the underlying applications that are part of the IT system.

1.7.1  Processes Are Unique
Factors that make processes unique in an enterprise are many. Some of the factors
are as follows.

1.7.1.1  Work Culture

If we take a set of companies involved in the same business and thus are competitors,
we can see that each company has its own way of going about the business. This derives
to a good extent from the work culture of the company, which has evolved over the
period of its existence. As the business grows bigger, this culture only gets reinforced
when more employees get added since they adapt to the prevailing culture as the cul-
ture is seen as an established one. Most often, the culture reveals itself to the employees
by statements such as “This is how things get done here…,” “This is how things happen
here…,” and “We have always done it this way…,” and the processes are not explicitly
documented and made available to people.

1.7.1.2  Change

As the business continues to exist in the market place, it is constantly challenged to
change. These forces include market forces, business environment, competition, and
technology advances. The result of this is the change in the way it serves its custom-
ers, which means changes in the business processes of the company, both core and
non-core. Each company addresses these challenges and brings about changes in its
ways of working in its own unique way. This makes the processes again unique for the
enterprise.

1.7.1.3  Employees/People

People that work for the organization play an important part in making the pro-
cesses unique. They bring with them their own individual strengths, specialties,
and working styles. This directly contributes to the way and the order in which the
business tasks are performed.

1.7.1.4  Systems

Though systems have been traditionally developed with the intention of serving the
business, advances in technologies, availability of heavy computation options, and
reducing costs of computing resources also influence how the business processes of

*	 Also means “made to manifest by,” “implemented by,” etc.

Introduction  ◾  13

companies evolve. The importance that the enterprise gives to usage of technology,
extent of automation, and leveraging of new technologies to serve customers bet-
ter or improve productivity, varies from company to company, and thus manifests
in the company’s business processes making the business processes unique to the
company.

1.7.1.5  Vision and Mission

Each enterprise’s vision and mission differs from others. They lay out the direction
for the business processes of the organization, contributing to their uniqueness.

Unique processes are the core assets of the enterprise. Thus, it is important to
take a process-oriented view when looking at an enterprise for improvements. If a
company wants to stay competitive, it needs to keep its processes in the best shape.
This is what the discipline of business process management (BPM) is focused on.

1.7.2  Processes Are Organization Wide
Typically, business processes cut across departments in the organization. Processes
are end-to-end rather than being specific to one group. They involve participants
from multiple departments working together as determined by the flow of the pro-
cess to achieve the business objective, whether a product or a service to the customer.

Processes, when connected together, also make the value chains in the enterprise
or the value chains that span enterprises. Value chains describe how the enter-
prise brings together its processes to offer value-added products or services to the
end customers.

1.8 � Process-Centric Architecture—A Quick
Introduction

1.8.1  Background
IT systems in the enterprise essentially support the business of the enterprise. This
means they support the business processes of the enterprise by both enabling the
business users to carry out business functions or tasks, and also performing specific
business functionalities by themselves. And toward enabling this better and better,
architectures for the systems have been evolving over the decades. Their architec-
tures have moved from monolithic to n-tier ones. Still, IT systems have been found
to be not as well-aligned to business as they should have been—the business–IT
system gap still exists. The systems still appear to be inflexible to support, effec-
tively and quickly, the changes that frequently occur in the business processes. This
has remained a perennial problem that software architects (or IT architects) have
been trying to address.

14  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Architectural styles or approaches for IT systems, such as component-based archi-
tecture (e.g., EJB•* in JEE• and business tier), and business rules-based architecture
have the objective of making the IT systems more agile and they have introduced
higher abstractions in the system architecture. The former abstracted out the business
logic of the application into a dedicated business tier in the architecture, while the lat-
ter abstracted out the business rules logic from the application into the rules engine (or
a business rules management system, BRMS). This made the business logic and rules
separately manageable from the other logic in the application. While they were in the
right direction, systems still exhibited inflexibility—the IT systems were not reflect-
ing the real business process of the enterprise faithfully. Other recent styles such as
services-oriented architecture (SOA) continued take the bottom-up approach to archi-
tecture by creating reusable services (from business components) that could be used
to support different business needs. While the concept of the services is valuable, the
approach is more strongly technique-driven (and technique-focused) than business-
driven, and thus by itself is not sufficient to bridge the business–IT gap in systems.

1.8.2  Concept
Process-centric architecture (PCA) is an architecture style that directly addresses this
problem by moving the abstraction level further up to the process logic and the
process tier. It provides an architecture for IT systems where the entire IT system
is conceptualized and centrally organized by the concept of the business process
that is supported by the system and the business process component is the central
component in the system.

Instead of the conventional architectural approaches for IT systems, where the
IT system was always just a derivative of the business process, in PCA the business
process becomes the driving force of the IT system in architecture as well as in the
implemented system. In the previous software design approaches, the system was
built bottom-up to meet the business specifications, and the business process as
captured by IT personnel† was coded (tightly/rigidly) into the IT system. Unlike
this, in PCA the business process definition specified by the business analyst or
manager directly becomes part of the architecture of the system and is a component
of the system itself. And this component directs the entire behavior of the system
at run-time. This makes the IT system more flexible to the frequent changes in
business processes and it allows those changes to be directly made into the system
by just changing the business process definition rather than requiring program-
mers to change code (in most cases). PCA owes its origins primarily to the ideas

*	 The concept of Enterprise Java Beans in the Java Enterprise Edition is based on business com-
ponents being explicitly designed and defined as part of an overall component-based architec-
ture for the system.

†	 This is used throughout the book to broadly refer to system analysts, programmers, software
architects, IT architects, system engineers, system maintainers, and so on.

Introduction  ◾  15

and outputs from research work in process-thinking and BPM. Process-thinking
brought in the formalism for business processes. BPM contributed the approach for
handling business processes and the rigor for that approach to make them effective.

1.8.3  Benefits
Here is a brief look at the benefits of PCA:

◾◾ Better business–IT alignment. The gap between the business process and the
IT system gets reduced.

◾◾ Better control for the business over the IT system and the supported business
process.

◾◾ Reuse of business processes, their steps, and business components of the
architecture across the enterprise.

◾◾ Enables a central store of business processes for the enterprise.
◾◾ Facilitates effective process management.
◾◾ Mergers and acquisitions (M&A)-related integrations are enabled.
◾◾ Much improved flexibility to the IT systems.
◾◾ Leads to agile IT.
◾◾ Interoperability of IT systems is enhanced.
◾◾ Better maintainability of IT systems.
◾◾ Scalability of the IT system is improved.

A more detailed list of benefits is given in Chapter 7.

1.8.4  The Book
The book explains PCA in detail. It draws upon the author’s research in the area and
his experience in architecting and implementing IT systems based on this concept.
It also picks from the author’s experience in architecting and developing technology
infrastructure in the area, especially a business process management system (BPMS).
As part of this, the book has drawn from the insights and learnings that have come
from the author’s deep experience in architecting, designing, and building a BPMS
process execution platform from scratch based on standards and process formal-
isms. The experience leveraged in the book also includes the author’s experience
with deploying the BPMS and implementing business processes on it for customers.

1.9 E xercise Questions
	 1.	What are some of the architectural patterns that you have come across?
	 2.	What are the unique aspects of some processes in your enterprise? Where do

you think that uniqueness has come from?

17

Chapter 2

Evolution of
IT Architecture

2.1 O bjectives
◾◾ To look at how architecture for IT systems have evolved
◾◾ To learn the need for applications to support business processes effectively
◾◾ To understand the issues with integration and the best way to support integration
◾◾ To appreciate the functions of workflows, EAI, business rules, ERP packages,

and their natural convergence

2.2 �H istorical Perspective on Enterprise
Computing Architectures

Architecture for enterprise IT systems has been evolving over the last five decades or
so. It would be worth now to take a chronological look at this evolution since this has
some significance on the current state of IT system architectures in the enterprise.

Prior to the 1960s, there was hardly any automation. Computers had just
arrived in the scene and they were really not looked at for doing business work then.
Computing has been continuously evolving, addressing more and more complex
business needs along the way (Figure 2.1). Here is an attempt to look at this evolu-
tion decade by decade.*

*	 Here, for the sake of classification, some amount of development overlap over some consecutive
decades has been ignored and the development is mentioned approximately under the decade
where it has had relatively more impact.

18  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

2.2.1  The 1960s
In the 1960s, with the increasing velocity and complexity of business, business
enterprises had a need to deploy increasing automation in business processes, and
companies such as IBM stepped in to meet this need. Computers were bought by
big corporations to help in their business operations and to serve more of their
business needs. The mainframe computer with its associated system software was
the computing platform. Architecture of the applications was influenced greatly by
this. They were architected as monolithic applications made up of huge-sized pro-
grams written in languages such as Assembler and COBOL. Structured program-
ming started becoming popular, though it was not uncommon to see unstructured
programming in the enterprise applications.

Data storage and retrieval was the primary business purpose of the software
developed to run in the computers. These applications’ primary responsibility was
to store business data of the enterprise in files and enable the users to retrieve the
data in a way easier than the old manual ways. Later in the decade, when databases
took birth (such as hierarchical and network database systems), it made data access
more fast. It separated data management concerns out from the application soft-
ware and put them into the database management system (DBMS). Some of the
popular databases used at the time were information management system (IMS•)
and integrated data management system (IDMS•).

Being monolithic in nature, the architecture made the user interface, business
logic, and data access parts all to be contained in a single application, and the appli-
cation ran entirely in mainframe. The scope of the applications was generally intrade-
partmental and the applications were owned and mainly used by the IT department.

1900 195019401930

Little automation

Mainframes:
Centralized processing,

data storage, data
access, monolithic

Minicomputers:
Data processing,

DBMS

Database servers:
Client-server,

distributed
computing,

business activities

Application servers:
Distributed objects,
n-tier architecture,
enterprise business

processes

BPMS/process servers:
Process-centric
architectures,

SOA,
end-to-end business

processes (inter-enterprise)

19901970 1980 20001960
Decades

So
ph

ist
ic

at
io

n

Figure 2.1 E volution of architecture.

Evolution of IT Architecture  ◾  19

2.2.2  The 1970s
During this decade, mainframe systems continued to be popular with businesses;
however, in the latter half, minicomputers came into being and began to enter
the business computing space. Applications were still being architected as mono-
lithic ones with users using dumb terminals to connect to the application running
on the mainframe or mini. All the processing got done by the program running on
the central computer (i.e., mainframe or mini). The objective of the application
was mainly to do data processing, where the program would store business data
in a DBMS, retrieve it later and process it, and display the processed results either
as reports or in a screen for the user. The entire set of applications was segregated
based on the function being supported and owned by the respective functional
group and its IT personnel.* During this time, relational database management
systems (RDBMS) started getting adopted for data storage and retrieval needs due
to the user-friendly (i.e., programmer at that time) abstraction it was providing for
data access, namely, structured query language (SQL).

Each application was typically serving the data processing needs of a particular
department (function) such as finance. And, it would be a few big programs that
made up the application, where the focus was on the data processing algorithm.
Depending on the nature of duration of the program’s execution, it was designed
to run as a batch job or an online task with character user interface (CUI)-based
screens. Batch processing allows the application to be executed in the background,
by the underlying system software, without any user’s interaction in between. Such
applications run as jobs that are either submitted by a user to the system or by the
system automatically based on a schedule or based on the dependency on another
job’s execution. Batch jobs typically run for hours or days. While architecting such
applications, the typical approach was to look at the entire function that an applica-
tion needs to do, say, reporting on the sales that happened in the last quarter, and
break the algorithm down into steps. Thus, the steps in this sales report would be

	 1.	Fetch all sales data from all the database structures (whether they are network
records or record-sets, or relational tables) and write the records into a file A,
where each record in file represents one sales transaction for a product.

	 2.	Sort the records in the file based on a field (say, product number) and write to
a new file B.

	 3.	Scan all the records in the file B, one by one, to check for errors and missing
data and write corrected data to file C.

	 4.	Compute report data from file C (involves aggregation, numerical computa-
tion, etc.) and write it into file D.

	 5.	Generate report from file D (involves formatting) and put in report file E.
	 6.	Print the report file E at the required location.

*	 Includes programmers and IT managers.

20  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Each step above of the application would be a program and each step becomes a
step in the batch job.

In the case of an online application, say entering sales data, the design used to
be having an online program that would present fields in a CUI screen for the user’s
input (by specifying their exact positions and lengths in the screen) and accept the
user’s inputs, edit the input data, and add/update the database records with the
data. It would also display to the user already stored data from the database for
viewing.

We can see that the architecture of such an application (batch or online) is tightly
coupled to the business data processing algorithm. There was very little modulariza-
tion within the applications. Here too, being monolithic in nature, the architecture
made the user interface, business logic, and data access part all to be contained in
a single application, and the application ran in mainframe or mini entirely. The
scope of the applications was only a department (such as sales) and that depart-
ment’s designated function of selling of products/services. And, the members of that
department used to be the users of the system.

These IT systems were dependent on the underlying software* provided by the
mainframe, which were proprietary. The network that connected various nodes in
the enterprise including mainframes, user terminals, system operators, databases,
offline storage systems, and output devices such as printers, was based on propri-
etary network protocols such as Systems Network Architecture (SNA). All these
characteristics made IT systems closed in nature. It also led to an indirect (direct in
some cases) lock-in to a specific computing platform that later came to be seen as
restricting the options for the enterprise IT.

2.2.3  The 1980s
Mini systems running the UNIX• operating system became popular with busi-
nesses. One of the factors that influenced this was the standardization efforts for
UNIX that made it more open. Also, personal computers (PC) arrived with the
basic notion of dedicated use of computer by just one user. The concept of servers
that would serve specific type of requests from multiple users connected to the
network gained fold. Relational databases became the dominant DBMS type and
SQL the accepted data query abstraction. Database servers were the early servers to
get established. They abstracted out all database management work from the appli-
cations and owned exclusive responsibility to serve any of those requests coming
from any application program or from database administrators. Some examples are
Oracle•, Sybase•, and Informix•.

*	 Essentially, system software such as S/360•, S/370•, MVS•, JES/JCL, IMS, TSO, and
CICS•.

Evolution of IT Architecture  ◾  21

Graphical user interfaces (GUI) made the applications more user-friendly,
especially to business managers and end users. Apple with Mac• computers and
Microsoft with Windows• operating system drove this development.

This was the time when the thinking on open* systems started. Open stan-
dards such as transmission control protocol/Internet protocol (TCP/IP) for net-
working, UNIX standards for UNIX operating systems standardization, and
SQL for data access in RDBMS became available that the enterprises adopted,
leading to efforts to realize the power and potential of computer networks in the
enterprise. The enterprise network based on TCP/IP enabled the IT systems in
the enterprise to be more open and allow IT architectures that could split the
application into parts that are front-end (i.e., the user end) focused and ones that
are back-end processing (i.e., server side) focused, where the two parts communi-
cated over the TCP/IP network.

These led to the client–server architecture becoming the predominant IT sys-
tem architecture, where the application essentially had two elements, the client
(front-end or user side) that took care of the processing related to user interface
(UI) presentation, formatting, input validations (editing), customizations, busi-
ness logic, etc., and the server (back-end) that was always up and waiting to receive
requests from multiple clients and serve those requests by doing processing on
the server machine. The server used to take care of the data, access to it, and its
management. In some cases, some part of the business logic used to be an ele-
ment running in the server machine. Servers in this architecture were databases
(RDBMS) running on UNIX servers and the clients were application elements
running on PCs. Running them on PCs is what enabled the clients to do their
processing. Clients that were GUI programs were typically developed and run
using specialized software or tools such as SQLWindows•, FoxBASE/FoxPro, and
PowerBuilder•.† These specialized run-time GUI environments (and development
environments) provided the support to programmers for developing GUI-based
user-friendly UI screens, connecting to database servers, and handling presenta-
tion requirements.

As far as the extent of automation is concerned, the IT systems grew up beyond
doing just data processing to help with performance of business activities that used
to be previously carried out manually. This meant automation of specific activi-
ties wherever feasible, including conversion of paper-based forms to online entry/
verification screens, business validations of data inputted, automation of numerical

*	 Software or hardware that has characteristics such as conformance to standards, open (clear
and transparent) specifications, and that enables interoperability. These are characteristics
opposite to that of proprietary.

†	 PowerBuilder actually entered the scene in 1990 and became popular in the first half of the
1990s.

22  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

calculations and complex business computations with business data, and genera-
tion (and printing) of periodic business reports.

The scope of the IT systems grew larger to also address interdepartmental inter-
actions such as transfer of business data from one department in the enterprise to
another—say from booking to finance (receivables) in the case of a transportation
company. Applications were still designed and developed based on the functional
view, that is, by making the application specifically programmed to perform only
the function of that department. Business personnel (users) of respective depart-
ments were not the only users of the IT systems any more. The top levels of manage-
ment, typically the set of senior business managers, also became business users of
the systems. However, the ownership of the systems was retained with the respective
functional department.

As we can see, over all these decades, data continued to remain the right abstrac-
tion level to manage for the systems. All the automation that happened was a way to
enable the definition and overall management (end-to-end life cycle management) of
business data by the system. This used to be done manually earlier.

2.2.4  The 1990s
The following computing trends dominated this decade:

Networking of computers and computing resources became widespread,
thanks to the success of TCP/IP. A special type of TCP/IP-based network, the
Internet, became hugely popular, changing the way applications got architected.
Paper-based communication between people was passé and e-mails took up this
role efficiently. Applications such as spreadsheets and document creators/editors
entered the business world to improve speed, reduce manual work, minimize
errors, etc. Digitization of paper documents, that is, the switch to electronic
documents from paper documents, was an important trend. Groupware applica-
tions (e.g., Lotus Notes•) helped users share notes and digital documents among
themselves for better collaboration and faster updates. The JAVA• programming
language (and its run-time environment) arrived in this decade leading to the
popularity of object-oriented programming systems (OOPS) that became a dominant
programming paradigm.

The architecture of IT systems evolved toward more and more separation of
concerns among the components of the applications. The evolution was also to dis-
tribution of the system into multiple distributed components that were physically
separated from each other at run-time (i.e., executed in physically separate run-time
environments) and which communicated with each other remotely during execu-
tion. Client–server based two-tier architecture got extended into an n-tier (multi-
tier) one, where higher abstractions created new tiers. More and more applications
became web applications that let users access the application features seamlessly by
using just an Internet browser as the client. The protocol that the client (browser)
and the server had to understand and use for communication was just the standard

Evolution of IT Architecture  ◾  23

HTTP* (and HTML† for the content). These were three-tier architectures based on
the Internet, where the client made up the first tier, the web server (server on the
Internet) that serves the application made the second tier, and the database server
became the third tier. The entire communication in this architecture is based on
the request–response model, where there is a user initiating a request that leads to
a response from the application and each transaction is a chain of such request–
response interactions.

Distributed computing architectures became established where it involved one
or more applications interacting with each other remotely, though they may have
been implemented in disparate technologies, say one application in JAVA and the
other in C++. In this architecture style, the application would be architected as a set
of business components, on the business logic side. These business components may
run physically separate or otherwise involve a remote invocation (call) mechanism
in the former case.

Common object request broker architecture (CORBA•) was developed by
object management group (OMG) as a standard for intercomponent interaction
and distributed computing, regardless of the underlying implementation technolo-
gies of the components, be it C++, Mainframe, JAVA, or others. This was a good
attempt and a clean approach by OMG to enable standardized application interac-
tions. CORBA’s focus was enabling application components to remotely call each
other in a standard way, overcoming barriers posed by disparate technologies. To
this end, CORBA provided a mechanism for application programming interfaces
(APIs) of individual applications/components to be defined in the CORBA stan-
dard way (through IDL•, expanded as Interface Definition Language), so that
any other application could invoke the API remotely. The remote invocation was
enabled by providing a run-time CORBA invocation layer, the ORB layer (middle
layer), over which the intercomponent communication would take place. These
CORBA API definitions would be transformed (mapped) into/from the API defini-
tion in the specific implementation technology’s parlance so that when the remote
call happens, the call is converted at both the ends (caller component and called
component) into a call specific to the component implementation technology plat-
form. CORBA is essentially based on remote procedure call (RPC) mechanisms
where a remote component could be invoked by another component as if it were a
local (meaning, in same run-time environment) call.‡

*	 Short for hypertext transfer protocol that became the ubiquitous protocol for transferring data
and communication in the World Wide Web (WWW).

†	 Stands for hypertext markup language that is popularly used to describe the content trans-
ferred over the WWW. The web servers typically serve HTTP pages/documents in response to
the request received from the client (Internet browser).

‡	 All the remote aspects of the call, including the network communication, the location address,
accessibility, and transformation of data, would be entirely abstracted out of the application
components (both sides) by the remote layer.

24  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

The popularity of model-view-controller (MVC) pattern-based architecture
meant an architecture where the IT system was separated into top-level compo-
nents based on their specific concerns. Here, the view component is responsible for
the presentation and formatting aspects, the model component takes care of all the
business logic and business data, and the controller component is concerned with
the control flow (routing) involved in each request–response interaction.

Initially, the web server ran all MVC components in itself except the database
part. At the next level, the model was moved out of the web tier (the web server) and
further split into business components that would offer specific business computing
functionalities. This provided more levels of abstractions for the business logic. The
common infrastructure requirements for all the business logic (model) such as trans-
action handling, messaging, security, remote invocation, availability, resource pooling
for performance, and component life cycle management was abstracted into a separate
component. All this introduced another important evolution in enterprise-distributed
computing architecture, the concept of application servers. The business components
that got abstracted out from the web tier were placed in a separate tier, namely the
application server. The application server implemented the infrastructure component
requirements mentioned above providing those services to all the business compo-
nents. In the JAVA world, this architecture got standardized with the release of the
J2EE• (JAVA Enterprise Edition)* and EJB (Enterprise JAVA Beans) specifications
(standards in other words) by Sun Micro systems. It is mandatory for all system ven-
dors providing application servers for JAVA to implement these specifications in full.

More and more of business came under the broadening automation umbrella
to improve business efficiency. Business rules and business processes within the
enterprise were supported by the IT systems. Many of the business rules (complex
ones included) such as insurance claim checks for approval; rules for computa-
tion of complex pricing, say for cargo transportation around the world; and airline
seat allocation rules were programmed in the IT system so that their performance
becomes consistent and efficient. IT systems now covered the enterprise business
processes by performing tasks automatically behind the scenes and supporting the
activities of the process through one or more application by involving the execution
of business components in the application server.

The scope of the systems was no longer the enterprise alone; it went beyond
that to handle inter-enterprise business functions too. Business models such as
business-to-business (B2B) and business-to-customer (B2C) began to be sup-
ported by systems through approaches such as dedicated business exchanges
(say, payment gateways and exchanges), data exchange, and electronic data
interchange (EDI). IT systems were now being also used by the business part-
ners of the enterprise, customers (directly), and, in a limited way, by suppli-
ers. The customers typically accessed the system facilities through the Internet.
Thus, the systems were supporting a wide range of users.

*	 Now this is commonly referred to as JEE.

Evolution of IT Architecture  ◾  25

2.2.5  The 2000s
In this decade, the IT systems have begun to bring business processes from end-to-
end under automation, which means the applications together directly support not just
the activities that make up a business process within its enterprise (or a portion of a
business process relevant to the enterprise), but also the automation of processes whose
steps go beyond the enterprise’s boundary by integrating the systems on both sides.
Automatically performing credit card validations using a third-party service provider’s
system by invoking it from within this enterprise’s system is an example here. Systems
have a much broader impact; they impact all the enterprises that the end-to-end pro-
cesses cover. Almost all business people are users of the systems in some way or the other.
This includes end customers (self-serve model) that directly access the services, business
partners that collaborate with the enterprise, end users within the enterprise, managers
at different levels of the enterprise, suppliers and vendors, and business/process analysts.

The level of abstraction in the architecture increased to handle the business
process logic as distinct entities separately from other business components. This
has resulted in a new layer namely process server. Business processes are directly
executed and managed by the process server.

Though conceptually very sound, strong, comprehensive, and pretty detailed,
CORBA, for various reasons, is generally seen as not that successful in distributed
computing architectures. The concept of distributed components, however, caught
on and an attempt was made to simplify remote invocation of components by piggy-
backing on already popular standards (HTTP and XML*) and the ubiquity of the
Internet (web). The business components of IT systems, irrespective of the technol-
ogy environment of their implementation, could be made to expose their respective
functionality over the web. This concept is called web services. In this, the business
component becomes a web service that could be invoked by any client component
(program) using the simple object access protocol (SOAP) for the communication
or in other words messaging (message protocol). This communication happens using
the transport protocol HTTP over the medium of web. Here, the service invoker
(client) and the web service exchange SOAP messages by sending these as content of
HTTP packets in the HTTP connection between their respective machines.

SOAP is fully based on XML and is a request–response based message protocol.
The invoker constructs a SOAP request message and sends it to the web service. The
web service sends back a SOAP response message in response to the invocation.
Once the invoker receives this response, the communication ends. Here, we can see
that SOAP rides on the stateless connection characteristic of HTTP.†

*	 Extended markup language—the current standard for describing data or a collection of data
where the data items are organized with descriptor tags wrapping them around, based on a
defined and standardized structure. HTML is based on XML.

†	 HTTP is inherently a stateless protocol. Each communication between two nodes ends with
the receipt of the http response and the http connection ends right away with this. The next
communication will involve opening of a new http connection.

26  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

There are two other XML-based standards web services description language
(WSDL) and universal description discovery and integration (UDDI) that support
web services. WSDL is the standard to describe the details of the web service such
as the parameters (and data type) that it expects as input (request) from the invoker,
the parameters (and data type) it will provide as output (response) to the invoker at
the end of processing, message protocol (e.g., SOAP) that the service uses, the pro-
tocol used for transport (e.g., HTTP), and the URI* for locating the web service.
UDDI provides a standard way to add to and look up a web service’s WSDL from
a universal† directory based on quickly searchable key logical data or meta-data.

Web services triggered a new architectural style, service-oriented architecture
(SOA) that has as its concept, “making software service-oriented.” SOA brings loca-
tion-transparent‡ service abstraction to software by raising the level of abstraction
of components (erstwhile) to business components that offer well-defined services.
A service is a self-contained software element that provides well-defined business
functionality and an interface that is abstracted out as separate from the imple-
mentation of functionality. Each service here is a business functionality, which is
logically fulfilled. Credit card validation, “check airline seat availability,” and “add
customer” are some examples for services. The service interface (i.e., API) for a
service is well-published by the service provider for potential consumers to look up
quickly and easily.

SOA inherently encourages and enables reuse of software; it views service as the
right abstraction for business-level reusable software elements. It does not enforce any
physical limitation (boundary) on the location of the service consumer; the potential
consumer of a service could be within the boundary of the service-providing enterprise
or outside the enterprise. This choice is left to the service provider.

Another principle SOA brings is location- and implementation-transparency
for a service. The service interface that is published to the world of potential service
consumers is independent of (transparent to) the implementation details of the ser-
vice (such as the technology platform, programming language, transport protocol,
and remote invocation application-level protocol). The service can have multiple
implementations, each one potentially in a different technology or language, but
the consumers are insulated from this as the service interface remains unchanged
and separate from this concrete fact.

For example, the credit card validation service could have been implemented
by one service provider as an EJB component in J2EE platform. Another service
provider could have implemented the same service as a COBOL program running

*	 Uniform resource identifier uniquely identifies and locates a resource. For example, the uni-
form resource locator (URL) http://www.infosys.com uniquely identifies and locates the web
server of Infosys Technologies Ltd.

†	 The term universal is relative to the context. It can mean an entire enterprise, an extended
enterprise, a conglomeration, or the entire world itself.

‡	 Here, “transparent” as used in the software architecture world. It means opaqueness.

Evolution of IT Architecture  ◾  27

in an IBM mainframe. Service interface, however, would state the implementation-
independent details such as the functionality method name, its input parameters
and output parameters (of course in XML standard). The service consumer (invoker)
would depend on this service interface alone for its program that has been imple-
mented in say, .NET•. It would then, at run-time, ideally look up the service in a
public directory based on UDDI and get the list of service providers implementing
this service. Then it can determine the right one for it among the list to invoke and
proceed with the invocation based on the suitable concrete binding details (such as
transport protocol, application invocation protocol).

It is advocated to use the WSDL standard to describe the service interface and
the UDDI standard for publishing it. Web services is one way of realizing SOA.*
And, web services is the most popular approach for SOA implementation as they
provide a standardized way of exposing and invoking services.

In this stage of evolution, the architecture of IT systems has moved into one
where the business process is at the center of the architectural design of the enter-
prise systems and is not a subordinate or a consequence of what the IT systems
can do together. In a sense, this is a paradigm shift in IT architecture as we will
see in more detail in the subsequent chapters. The business process is supported by
business services that are designed based on SOA, at the lower level of abstraction
below the process tier. In this decade, for automation, we have gone still higher up
in the abstraction by taking the business process as the entity to be managed at
the system abstraction level akin to business data of the earlier decades, and this
is a dramatic change for systems architecture. Automation now refers to overall
management (end-to-end life cycle management†) of business processes by systems.
These specialized systems are called business process management systems (BPMS).
The entity such systems would work with would be a business process similar to
what DBMSs did with business data in the previous decades.

2.3 T raditional Ways of Supporting Business
Traditionally, enterprises are organized along various functions such as sales,
finance, and billing. Each of them was a department that owned the specific func-
tion that it was supposed to do. This led to the creation of IT systems to support
those specific functions. Often, during the design of the application, a bigger pic-
ture view of how it would fit in with the other systems in the enterprise, including

*	 Many interpret SOA to be the same as web services (interchangeably so). This is an incor-
rect interpretation. SOA is the architectural style of designing the architecture of software as
composed of a set of services. It is not just web services. Web services are just one of the many
approaches to do SOA. CORBA, for example, is another way to realize SOA and services.

†	 Means full cycle, covering design, definition, deployment, run-time execution, monitoring,
analysis, and optimization.

28  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

its effects on them, was missing or given a very minimal concern. These applica-
tions continued to evolve independently as silos with their own independent data-
base schemas, procedures, technologies, etc. Though the applications got built this
way, business processes required these applications to interact with each other, in
some fashion, to achieve the business objective of the process.

It has been the case over these decades that enterprises have needed custom-made
applications or custom-changed software to meet their business needs because each
business is unique and the processes followed by the enterprise are unique to them-
selves. During the initial decades of automation at least, the various departments
within enterprises have given preference to custom-made or tailor-made applications to
suite their unique way of functioning. This has resulted in a huge number of in-house
developed applications. This is more true in large enterprises. On the other hand, these
in-house applications were built and run on the computing platform (and environ-
ment) the enterprise was already heavily invested in (say mainframe and the associated
run-time platforms from one technology vendor), leading to vendor and technology
lock-in that is, feature enhancements, new applications to be developed for functional-
ity that has some dependency (even small) on existing applications, had to be done in
the same platform. Also, the enterprise had to commit to and depend on that vendor
for all new (or enhanced) versions of the platform itself as they were proprietary, only
then they could leverage more out of the platform and offer justification.

Each department, with its own set of IT personnel, used to manage and evolve
these applications, largely considering the needs of that specific department’s func-
tion as key rather than considering the overall context of the enterprise or the busi-
ness requirements at the enterprise level. An enterprise level requirement, if at all
it came, was usually seen as just some extra requirement that the department’s
application should also support and thus was never core to the application. When
applications in each department evolved this way, the result was that the IT archi-
tecture ended up to be nothing but islands of silo applications running on disparate
technologies.

Later (in the last couple of decades mostly), they also started to buy off-the-shelf
application packages and to customize/configure those to meet their specific needs.
Examples are SAP•, PeopleSoft•, and ORACLE applications just to name a few.
The idea was that they were getting to use and adopt standardized processes or
best practice business processes, especially for their non-core business processes and
that for the non-core processes (such as HR, ERP, Finance), given the cost (versus
benefit) of building and maintaining a custom one on their own it would not be
worth going for in-house applications. Also, the feeling was that, all on their own
they would find it hard to come up with software that can support the standard
processes and continuously evolve it, as well as the packages could; on the other
hand, they could rather focus on building applications to support their core busi-
ness. That said, vendor lock-in was a characteristic in the case of software packages
too since it was the vendor that decided when new versions would be released and
what business requirements it would meet.

Evolution of IT Architecture  ◾  29

Thus, a typical enterprise’s IT architecture looked more like something that
came to happen than being designed for: It had islands of applications that were
either developed in-house or packages procured from outside and run in het-
erogeneous technologies. The package usually brought with it its own database
schema and database separate from the existing database(s) in the IT architecture.
Redundancy, inconsistency, and errors in business data were common effects of
this. If business needs demanded combined functionality or data, then it meant
multiple individual applications had to work together to achieve that. Due to the
ownership and organization structure, this would make IT and business person-
nel that owned the respective applications to work together and do it as a software
project, spanning months if not years implementing the identified changes in the
applications involved.

In a way, this is inevitable in a large enterprise. There would be so many people,
a lot of divisions and departments, and each feeling they are in a separate company
of their own and end up doing lot of reinventing the wheel, creating the same
software that some other division has already created, and not have a process view.
Process view and process roles are more important than just function-based roles.

Thus, traditional IT systems were data focused—the most important entities
for them were data and information. Data being central to them, the architectural
design used to start by considering the information needs of the people involved in
the business.

2.4  Workflows
Another significant set of software that entered IT in the enterprises, in the last two
decades, is the genre of workflow systems. Their intent was to support workflows,
that is, work that involved multiple people performing different activities on a busi-
ness entity (say, a document) to take its processing to completion.

An example here would be the processing of a loan application. Here, the loan
application would first be received by a front desk clerk at the bank and then trans-
ferred to the officer in the loan department. The loan officer, after checking the
details in the application, enters the data into the loan system, maybe puts notes in
it and sends it to another officer who would verify the eligibility of the applicant.
This officer updates the system with the eligibility data and hands off the applica-
tion to a finance officer who is in charge of verifying the credit history (and assess-
ing the risk) of the applicant. The application is then handed off back to the loan
officer who now takes a decision on the loan application based on the information
available. If some criterion, say loan amount greater than US$20,000, requires the
loan department manager to approve the loan, the application is forwarded to the
manager. Once the manager approves, the loan officer completes the application
processing by ordering the system to generate the loan sanction letter. This is then
mailed to the applicant.

30  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Some of these software mainly helped with sharing of documents, collabora-
tion, and communication among employees/personnel (i.e., groups): groupware like
Lotus Notes, e-mail, etc. are examples of this type. The rest focused on automating
the flow of work from one person to another thereby automating manual hand-offs,
sending notifications to the persons concerned on their work items, and sharing of
the business document (say, the filled-up application); they also allowed updates to
document details and made the status of the work visible to everyone concerned,
which was previously a hard thing in the manual world. They were called workflow
management systems (WFMS) and enabled automation of paper-based processes to
an extent. Some of them also supported scanning of paper documents into digitized
documents and enabled automated document routing in the workflow. Filenet•,
Staffware•, DSP, etc., are examples of WFMS.

2.5  Packages
We discussed how packages developed by independent software vendors entered the
enterprise IT space, providing pre-built software for business. Application packages
typically support specific business processes, addressing them in a standardized
way. While some of them namely, enterprise resource planning (ERP) packages
typically support processes of HR, supply chain management (SCM), and inven-
tory, others packages support a specific business function in total, such as sales, and
customer relationship management (CRM). These packages picked up standard
practices in the respective business functions from across the world, including refer-
ence models, and incorporated those into the package so that enterprises (customer)
could buy it as standard business software.

Though packages provided ready-made business functionality, it took substan-
tial effort deploying (or implementing) them in the enterprise. Implementation
invariably included customizing the package (program changes, new program-
ming, configuration, etc.) to suit the specific needs of the enterprise (to suit the
way the business is done in the enterprise), making it a long drawn out software
project in itself. Packages appeared to be not flexible enough to easily incorpo-
rate the enterprise’s unique process needs into them as they offered a canned
business function with own database, schema, limited interfaces, technology
platform, and so forth. They were not primarily designed up front with coexis-
tence (fitting in the enterprise’s IT ecosystem with existing applications) as a key
philosophy (goal).

Implementation projects for medium-to-large enterprises often ran for years
overrunning cost/time estimates, with many, on hindsight, considering it as over-
spending for the business benefits brought in. In quite a few cases, the adoption of
packages led to changes in the existing business itself, where the business managers
ended up changing their processes to that of the standard business process offered
by the package or around the functionalities it could provide.

Evolution of IT Architecture  ◾  31

2.6  Integration
Enterprises have always had the need to integrate the various applications in their
IT ecosystem. This is due to various reasons. The company’s business keeps expand-
ing, making it serve newer markets and more customer bases. Its business environ-
ment and competition forces it to stay competitive by launching newer products
and services, cutting costs, reducing cycle times, and providing better quality to
the customer. It might get involved in mergers and acquisitions (M&A) with other
companies, creating a bigger enterprise in the process. Other enterprises might
partner with the company to deliver more value to customers in a virtual extended
enterprise mode. Technology changes rapidly with the arrival of new technologies
and platforms or evolution of existing ones. All of this would result in modifica-
tions in the existing applications including addition of new capabilities to support
new business requirements, creation of new applications to support new business
features and functionalities, rationalization of applications* to minimize redun-
dancy of functionalities, reusing existing applications from merging entities (in M&A
scenario), applications being changed or reengineered to use a different technology,
and supporting evolution of existing business function using a new application on a
modern technology that runs on top of the existing old application. That means
applications would be required to talk to other applications, and new applications
that serve bigger business goals could get developed by combining two or more
existing applications.

Though there has been strong business and technical needs for it, integration
of IT systems has been a hard task for enterprises as IT systems have evolved into
islands of automation in the enterprise, as we saw previously. Each one got cre-
ated as a silo and continued to evolve like one due to focus on functional thinking
behind their creation and evolution of technology, leading to applications both get-
ting built and run in disparate technologies. In a typical large enterprise that has
existed for some time, we would come across older mainframe-based applications
running on proprietary technologies, monolithic applications running on flavors of
UNIX, applications relying on communication based on SNA network protocol,
applications relying on communication based on TCP/IP network protocol, pack-
aged applications in different platforms, traditional client–server applications (such
as PowerBuilder–Oracle), web applications, JAVA-based applications, and so on,
just to name a few.

Each of these applications (though some may be legacy) would be considered
important to the enterprise in some way as it serves a business function and precious
money would have already been invested on it. In many cases, this business function
is all that is visible to the enterprise that indicates to it the application’s presence; its

*	 The merged enterprise would end up inheriting IT systems from both the merging entities.
Post M&A, it is likely that some applications are redundant (or duplicate), performing same or
similar business functionalities.

32  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

documentation (design or others) would typically be unavailable, its original pro-
grammers would often no longer be present in the enterprise. And these applications
cannot be gotten rid off. Application packages were well integrated within them-
selves, but were not found easily integrable with other software, whether in-house
applications or other packages. The more they were customized by the enterprise, the
more difficult integration became as it made the package even more complex.

When it came to integrating the various IT systems, integration was viewed as
just an interoperability problem. The problem of integration sounded more technical.
The efforts made were primarily to make one application somehow talk to another.
Technically, systems could not natively communicate with other. For example, a SNA
network-based application such as a mainframe COBOL program, cannot commu-
nicate with a COBOL application running on UNIX that is based on TCP/IP net-
work since the data packets in the respective networks speak different languages.
A COBOL/IDMS application running in mainframe could not communicate with
another COBOL/IDMS program even though it is running in the same mainframe,
if their database records were in different IDMS schemas (i.e., IDMS partition)
through IDMS is in the same mainframe. Another impediment was the proprietary
ways in which character encoding* was done in different technology platforms. IBM
mainframe-based systems used EBCDIC for encoding characters as bits whereas
ASCII was the encoding used by systems on minis and personal computers, though
ASCII later emerged as more popular. This means, systems integration by transfer-
ring just data between applications had to deal with the problem of encoding.

Broadly, there were four approaches followed for integration. One was where
the integration was data driven. Here, one application would transfer data directly
to another. This usually used to be done offline using batch processes/programs.
Another approach was messaging driven integration where applications send mes-
sages to each other. An example is using a product such as IBM MQseries•. Yet
another was API invocation (function-call)-based. Custom integration mechanisms
involving remote method calls with lower level method parameter transformations
over a common backbone (custom) to which all the applications exposed themselves
to, were also not uncommon. Both these were point-to-point integration solutions.
Enterprise Application Integration (EAI) tools appeared in the scene to solve this
interoperability problem, taking primarily a hub-spoke approach.

Figure 2.2 shows typical hub-spoke architecture used for integration, where
nine applications are integrated using an EAI tool as the broker sitting in the mid-
dle. Each application is connected to the hub by exactly one connector and this
connector is expected to be light.

EAI tool took upon the role of information broker in the architecture by medi-
ating in between the applications that needed to interact with each other. They

*	 It refers to representing characters (alphabets of natural language, numbers, symbols, etc.) of
text as a set of bits. Each character is converted to a predefined pattern of bits based on the
definition given by an encoding mechanism.

Evolution of IT Architecture  ◾  33

generally took care of the data transformations/message transformations, data
validations, transport, routing, delivery of messages, and the accessibility (from
outside the application) aspects of applications that are interfacing with each other.
Examples of such tools are TIBCO•, SeeBeyond•, Vitria•, and Biztalk•.

There are many fallouts to these integration approaches. Business data gets dupli-
cated leading to ambiguity and errors in data. A customer details record, for example,
may be available in more than one application in the application’s own database. It
may be present in an ERP package, in the finance system, and in the sales application.
But, for a single customer, each one may have conflicting or ambiguous information
and it would be hard to make out which one is the correct one. The approaches result
in tight coupling and increased dependencies between applications. Systems become
more inflexible to change. Post integration, if an application needs to be changed for
some requirement, it needs to be looked at as a bigger system now, with the systems it
integrates with also needing to be considered—they are likely to be impacted as well.
The automation appears as skewed automation since the systems lack the coexistence
philosophy in architecture thinking. Though they get integrated for enabling a busi-
ness process, the systems and the architecture lack transparency* for this business
process they jointly support. Whenever the process changes, the tightly done integration
also needs to change and it becomes complicated.

2.7  Business–IT Gap
The conventional architecting approaches resulted in the process logic and business
rules being hardwired and embedded in the application code. The systems, espe-
cially the earlier ones, were architected with a strong business function view that

*	 Here, “transparent” is used in the traditional sense, meaning clearly visible.

Application 1

Application 5

Application 7 Application 8 Application 9

Application 2

Data/message

Data/message
Integration hub

Data/message Data/message Data/message

Data/message

Data/messageData/messageData/message

Application 3 Application 4

Application 6

Figure 2.2 EA I tool-based integration—hub-spoke architecture.

34  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

did not directly serve the direct support of business processes; support for business
processes happened with only additional code in the application for flow and inte-
gration. If the business process flow had to be understood clearly, the application
programs required to be looked into closely. The code would tell which function
(i.e., application) is going to be invoked next (i.e., the next step in a process). In the
case of a batch job, the program step would indicate the order of flow of control in
a process (or part of the process mostly). In any case, it remained invisible to the
business. When the business process needed to change rapidly, changes had to be
made to the application and this could not be done easily or quickly. They do not
inherently provide the required flexibility to rapidly change the business process
and rules.

Changes to the applications to incorporate business process changes involved
efforts of long durations. The longer turnaround time for IT changes has been a
major concern for the business for a long time. By the time systems are changed
to meet the process change requirements, the business process would have further
changed leading to a perennial gap between business requirements (essentially busi-
ness processes) and IT.

As far as packages are concerned, they supported specific business processes, but
entirely within the application. This process was still implicit in the programs of
the application and not one available for quick changing. While they did so, they
lacked capability to support generic business processes beyond their own processes
that span across applications (and functions). And even if some of them did, they
were not optimized for handling generic processes. It would mean unreasonable
extension of those packages beyond their areas to make them applicable in areas
where they just do not naturally fit. Take, for example, a CRM package being
extended to make it support an order-to-cash process. As long as the business pro-
cesses remained buried, and not taken outside of the applications, the application
packages would remain inflexible to the enterprise’s business processes.

Another aspect of the earlier styles is that, since the process logic is implicit in
the application, the process logic becomes hidden from the business (business man-
agers, end users, business analysts, senior management). This gives no direct control
to the business over the business processes to modify or manage those as mandated
by business requirements. IT systems architected in conventional ways do not natu-
rally lend themselves to the needs of the business to monitor, analyze, and improve
business processes. This is a critical need if the enterprise has to stay competitive.
Business managers need to be able to measure performance of processes and take
corrective actions.

The systems, be they packages or in-house applications, do not support end-to-
end enablement of business processes where they have to support a process from the
start end step fully to the finish step. The best they could do was to automate to
some extent the parts of processes.

WFMS on the other hand supported (limited) some type of business processes;
they supported only those processes that had only manual activities. They were

Evolution of IT Architecture  ◾  35

found wanting as far as handling typical processes that had system activities too.
Some of them enhanced the core application functionality to also support work-
flow between users.

EAI, workflows, rules addresses specific parts of the problem. EAI tools enabled
integration between systems and this helped support business processes that had
system activities. Such processes heavily depended on integration capabilities as
activities could be part of different applications; however, they had to be part of
the process. However, EAI tools were not good for handling manual processes.
Business rules management systems (BRMSs) focused only on abstraction of busi-
ness rules into human-friendly specification, access, and execution. However, they
were not meeting business process logic or control flow requirements of processes.
All the three types of systems had to converge to address the problem as a whole.

The fact is that IT systems primarily exist to serve the business needs of the
enterprise. But, clearly there is a gap between business processes and the IT systems
supporting those. How to align IT systems well to the business processes and the
business managers has been a concern of the IT architects for long.

2.8 E xercise Questions
	 1.	What are the reasons for the natural convergence of EAI, workflows, and

rules?
	 2.	Think of at least three scenarios from your industry where integration of

disparate applications has always been an issue.
	 3.	What are the reasons for the gap between enterprise applications and the

business processes?
	 4.	Using off-the-shelf packages for supporting specific functions or business

processes is always a good idea since it would help the enterprise standardize
its operations. Do you agree or disagree with this statement? And why?

37

Chapter 3

Concept of Process-
Centric Architecture

3.1 O bjectives
◾◾ To appreciate the need for a new architectural approach for enterprise
◾◾ To understand the central philosophy behind process-centric architecture
◾◾ To know what PCA offers
◾◾ To appreciate the power of process definition and execution
◾◾ To see what is fundamentally behind this concept; the mathematical founda-

tions that it is rooted on

3.2 T he Case for a New Approach
We saw that there are major problems with the conventional architectural
approaches. Some of the causes for these are

◾◾ The process logic is implicit in the application code making the application
less flexible to change.

◾◾ The IT systems were not architected with business processes as their core.

Business processes in an enterprise constantly change, consequently changing
the business requirements for the IT system. Such changes often mean changes to the
process logic of the IT system. All these changes fundamentally indicate changes in
the business process that the IT system is supporting. Some of them are

38  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 1.	Changes to the flow of activities or order of
activities, including

	 a.	 Parallelization of activities
	 b.	 Rearrangement
	 c.	 Conditionally splitting the flow
	 d.	 Sequencing parallel flows into one flow
	 2.	Changes to the rules (conditions) that deter-

mine the control flow of the process
	 3.	Dropping some activities in the process that

are no longer relevant, or useful, or adding
value to the objective of the process

	 4.	Adding new activities to the process
	 5.	Replacing some activity with a more effective

one (or a set of activities) when the existing
activity is seen as dragging the performance
of the process

There is a clear need for a different type of archi-
tecture for business systems. And, we can see that
while architecting IT systems, two important
aspects, namely, business–IT alignment and IT systems flexibility, need much
attention. Figure 3.1 shows the gap that gets created between the business and the
IT system.

Given that the business process in an enterprise does not remain static,
the IT system supporting it needs to be adaptable to that. An architectural
approach that is focused on business processes of the enterprise can help enable
these qualities in the system and close the business–IT gap. Such an architec-
ture can enable the IT systems to support end-to-end processes and not just
process parts. Process-centric architecture is an architecture that takes care of
this well.

3.3  What Is Process-Centric Architecture?
Process-centric architecture (PCA) is an architectural style for software systems in
which the software system is organized around the central concept of business pro-
cess and the business process drives the behavior of the components in the system.
The objective of this style is to provide for the IT system, an architecture that suits
the support of business processes of an enterprise well.

Figure 3.2 illustrates the PCA architectural style. It divides the system into
the following components: the business process components, the business func-
tion (logic) components, the user interface (UI) application components, the process
database components, and the external processes/systems that communicate with this

Business process

Business requirements

Business management

Business

Gap

System requirements

Architecture

Design and code

IT team

IT system

Figure 3.1  Business–IT gap.

Concept of Process-Centric Architecture  ◾  39

system. This style separates the process logic from the business functionalities that
the system is supposed to deliver. Each business logic component is responsible for a
specific business function of the IT system’s business, while the process component
is responsible for the process logic and its being carried out. The UIs are responsible
for enabling the users to perform their specific actions.

This architectural style is focused on the business process of the enterprise. The
architecture ensures that the system faithfully implements the business process. In
this architecture, the business process occupies the central position, with the other
components organized around it. It is the business process component of the archi-
tecture that drives the other components.

Enterprise applications provide the right scenarios to apply this architectural
style, since they are so full of business processes. The architectures following
this style have clear separation of concerns among the components of the system
between the process logic, business logic, business rules, and UI logic.

3.4  Process Logic Abstraction
Figure 3.3 depicts the logic in a typical software system in the enterprise. A typical IT
system in the enterprise would have the following types of logic in its program code:

	 1.	User interaction logic that takes care of
	 a.	 The presentation, display to and enabling interaction of user with the system
	 b.	 Screen flow for a particular business function that the user would per-

form with the help of UI
	 2.	Database logic—that handles the storage, update, and retrieval using the

database.
	 3.	Business logic—achieves a specific business functionality or computation

that the software is expected to provide. For example, generating a report of
past due items, withdrawing money from a banking account, etc.

Business logic component

Business logic component

Process database

External system

Business logic component

User interface components

External system

Business logic component

External system

External process

External process

Business process

Figure 3.2  PCA illustrated.

40  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 4.	Process logic—this takes care of (or imple-
ments) the flow involved in the business pro-
cess that the system is supporting or part of.
This includes taking care of the flow of the
processing from one business function to
another, flow of control from one application
serving a business function to another one
serving another business function, executing
business functions in parallel, and branching
the flow of execution to one or more business
functions based on business conditions, so on
and so forth.

	 5.	Rule logic—This part of the code implements
the business rules that apply in the business
context of the system. Example, if the system
takes care of insurance claims processing, the
business rules related to checking claim eligi-
bility based on the various clauses applicable
to the insurance policy become part of the
code of the system as rule logic.

As we saw in the previous chapters, IT systems have conventionally been designed
and built in such a manner that, all of the above logic ends up getting intertwined
in the code of the implemented IT system. Each of the above logic is actually a
different concern and mixing them up together does not help make the system
more adaptable—they need to be addressed separately. And, that is one of the main
reasons for the IT system becoming inflexible to adapt to business changes. Over
the last three decades, we have seen the architecture going higher and higher up in
abstraction thereby introducing more separation of concerns (which is a key soft-
ware architecture principle) toward making the systems more flexible. This sepa-
ration of concerns also resulted in more tiering in the architecture with each tier
handling a specific concern.

At first, the database logic was separated out with the introduction of the data
tier and 4GLs (e.g., SQL). Then with the model-view-controller (MVC) architec-
ture pattern, the UI logic, the screen flow logic, and the business logic got separated
into different tiers advocating n-tier architectures for IT systems. With that the

◾◾ UI logic became part of the presentation tier.
◾◾ Screen flow logic and specific request–response flow logic became the control-

ler tier.
◾◾ Entire business logic became part of the business tier. They came to be called

business components.
◾◾ The data access logic or the database logic was part of the data tier.

Process logic

Rules logic

Business logic

User interaction logic

Database logic

IT system code

Figure 3.3 L ogic in IT
system.

Concept of Process-Centric Architecture  ◾  41

A good example of such business component based architecture is Enterprise Java
Beans (EJB). It was a realization of good separation of business concerns from the
presentation, controller, and data logic. This n-tier architecture model brought the
IT system changes closer to the business than before and thus even more flex-
ible. Still, the business–IT alignment remained a considerable gap to be addressed
because the business component (i.e., the business tier) code, instead of holding
only the business logic, buried the business process logic and business rules too in
it. This is less desirable since the business process that is most susceptible to change
and the most important aspect of the business–IT alignment, manifested as hard-
coded business logic, making the system less flexible than it could be and farther
from the business than it should be.

Continuing the evolution with abstractions in the architectures, business rules
were separated out from the business logic and made part of a separate tier named
business rules tier in the architecture. This allowed business rules to be manipu-
lated by business folks without forcing IT system changes or code changes.

The realization, that process logic is distinct from business logic and abstracting
out the process logic is an important element of making business–IT alignment
better and making systems more adaptable, gained ground. Thus in the next step of
evolution (which is where we are at present), the next higher abstraction introduced
was to separate the process logic out from the business logic (and business tier) and
move it closer to the business than ever before.

Figure 3.4 illustrates the different levels of abstraction made possible by this
evolution. The topmost layer is the closest to the business. The bottommost layer is
closest and most friendly to the machine (computer). The process layer, the business
rules layer, and the UI layer are at the business level of abstraction—the system is
specified, designed, and constructed at this level with business-friendly languages
and human-friendly languages. With PCA, a good part of system creation is done
at this level itself and it is expected to be done mostly by business itself. The top-
most in this is the process layer, and its specification has the biggest impact in the
creation of the system. Specifications made at these layers in the business level are
translated automatically (or manually in some cases) to the next lower level, that is
the technical-level abstraction specification. The technical-level abstraction is ori-
ented toward technical people such as software architects, programmers, and sys-
tems analysts. Here the specifications for the system are in high-level programming
languages and it covers the business logic and data logic. The specifications and the
languages used for specifications are closer in orientation to the system than busi-
ness. Some of them are human friendly though such as 4GLs for example. At this
level, the programmer adds code to implement mainly the business logic. In some
cases, the business logic might be implemented by the auto-translated code from
the business rules specifications itself, which is not modified by the programmer.

The specifications (the programs and code) from the technical level get con-
verted automatically to the specifications for the machine level. This is the lowest
level of abstraction and it is machine friendly. It is not comfortable for humans to

42  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Pr
oc

es
s l

ay
er

Bu
sin

es
s

Bu
sin

es
s-

fri
en

dl
y r

ul
es

-
de

�n
iti

on
 la

ng
ua

ge
s

Bu
sin

es
s-

fri
en

dl
y

gr
ap

hi
ca

l-
m

od
el

in
g

la
ng

ua
ge

s
Bu

sin
es

s n
ot

at
io

ns
Bu

sin
es

s p
ro

ce
ss

 m
od

el
s/

de
�n

iti
on

s

H
um

an
-fr

ie
nd

ly
 u

se
r-

in
te

rfa
ce

 sp
ec

i�
ca

tio
ns

H
TM

Ls
H

TM
L-

ba
se

d
Sc

re
en

 �
ow

s i
n

XM
L-

ba
se

d
sp

ec
s

A
lg

or
ith

m
s

Co
m

pu
ta

tio
n

lo
gi

c
Te

ch
ni

ca
l c

od
e i

n
hi

gh
-le

ve
l

pr
og

ra
m

m
in

g
la

ng
ua

ge
s

e.g
., J

av
a,

 C
#TM

La
ng

ua
ge

 ab
st

ra
ct

io
ns

su
ch

 as
 E

JB
s

Bu
sin

es
s e

nt
iti

es
 an

d
no

ta
tio

ns

U
se

r i
nt

er
fa

ce
 la

ye
r

U
se

r e
xp

er
ie

nc
e d

es
ig

ne
r

Bu
sin

es
s r

ul
es

 la
ye

r

Bu
sin

es
s-

le
ve

l

Te
ch

ni
ca

l-l
ev

el

M
ac

hi
ne

-le
ve

l

D
at

ab
as

e l
an

gu
ag

es
e.g

.,
SQ

Ls
Co

de
 in

 4
G

Ls
D

at
ab

as
es

, t
ab

le
s

Bu
sin

es
s l

og
ic

 la
ye

r

Pr
og

ra
m

m
er

D
at

a
lay

er

M
ac

hi
ne

 co
de

 la
ye

r
M

ac
hi

ne
 la

ng
ua

ge
pr

og
ra

m
s

M
ac

hi
ne

Fi
gu

re
 3

.4
 L

e
ve

ls
 o

f a
bs

tr
ac

ti
on

.

Concept of Process-Centric Architecture  ◾  43

work with. All the specifications at the machine code layer are programs in machine
language. With these levels of abstraction in the system, changes to the system are
expected to be made more and more at the business level itself, which is the most
comfortable to the business and eliminate (or minimize) the need for changing any
specification at the technical level or machine levels. This directly and positively
impacts flexibility and modifiability of the system.

This introduced a new tier to the n-tier architecture, namely the process tier.
The promise it brings is the ability for business folks to directly design, describe,
and change the business process that the IT system supports. This is the philoso-
phy behind the PCA architectural style. In this sense, PCA makes the system even
more flexible than the conventional architectures such as those described above, by
raising the abstraction of the IT system to a level closest to the business personnel’s
level of abstraction. The resulting architecture is also n-tier but with the additional
distinct tiers of process tier and the business rules tier in the architecture—with the
process tier playing the central role in the architecture, orchestrating, and managing
other tiers.

With PCA, the process layer now being distinct is also advantageous to the
business layer.

◾◾ In PCA, the business tier is purely concerned about business logic alone and
freed of the process logic and rule logic concerns.

◾◾ With this separation, the business tier can scale separately from other tiers to
meet increased load on business functionality execution as required.

◾◾ The business tier now becomes much more maintainable and manageable,
with it getting devoid of the process and rules logic.

3.5  Qualities Addressed
PCA enables the architecture to very naturally address some quality attributes
of the system. All the architectures following this style share this feature. These
qualities are

◾◾ Portability and specifically the adaptability quality sub-characteristics in
that—A system where this style has been applied, can work across operating
environments. The environments can be multiple, heterogeneous, and dispa-
rate. Business requirements of the system can change due to the changes in
the business processes and the system can handle it well. When the process
specification is changed, the system effectively adapts its behavior according
to that specification. A person tasked with enhancing the system would be
more able to extend the system to take care of additional process capabilities
or do additional processing, as required by the business. The run-time behav-
ior would happen seamlessly over multiple computing environments, in some

44  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

cases they would be working in parallel. The architecture focuses on a concept
of the system that is not dependent on any implementation environment.
Individual components of the architecture that are concerned with business
functionality can be replaced with other components serving the functionality
and are thus “plug and play mode” supporting ones.

◾◾ Functionality, including the suitability, accurateness, and interoperability
quality sub-characteristics under that—Business requirements and the IT
system are well aligned in this style. The business process specified drives the
system directly. The flow of control and data would be accurate to the busi-
ness process specified. It also aligns the thinking of business and technical
folks leading to a holistic business–IT alignment. Enabling the interaction of
other systems and components is a strong characteristic of this architecture.
This IT system can work with other systems in the course of its support of
the business process at a level of interaction and abstraction higher than the
common application level.

◾◾ Maintainability that includes the flexibility/changeability and analyzability quality
sub-characteristics under it—It makes the IT system very flexible to deal with
changes in the business. If the system has to be changed, it allows the change to
be done with minimal effort. Such changes, in many cases, involve no change
in the code (i.e., computer program). The system operation is readable because
the core is explicit and realized in a business-friendly specification. It is also
well modularized in the form of separating components logically based on their
concerns such as process logic, business logic, presentation, and process infra-
structure. Support of the IT system becomes easier since errors can be localized
within the individual components that have been clearly separated in terms of
their respective concerns. A person tasked with maintaining the system would
get better ability to analyze quickly and locate the root cause of a problem in
the case of error situations. One of the efficient ways de-bugging can be done is
to follow the trail provided by the process to the failure point.

This architectural style does not specifically address the following quality attributes:
Efficiency (performance), reliability (availability, recoverability), and security. If
these need to be met by the system, the architecture needs to be specifically enabled
to take care of them, by the architect. For the specific contexts of the IT systems,
the architect can apply relevant architectural patterns and either use or introduce
other layers in the architecture to support these qualities as well.

3.6 S tructure
Figure 3.5 shows the logical view of the architecture in PCA. This architecture is
composed of the following components and each has a specific role to play in the
system:

Concept of Process-Centric Architecture  ◾  45

3.6.1  Business Process Model
This is the core of the architecture. The entire process logic of the IT system is abstracted
out into this component. It is responsible for realization of process flow, process context
maintenance and availability, interaction with other processes, and any process-level
issue handling. It collaborates with all the components of the architecture.

This component acts as the single driver for the IT system’s business execu-
tion and invokes the components responsible for business functions during the
execution of the business process and ensures their participation. It takes part in
inter-process communication by interacting with other business processes and also
allowing them to initiate interactions with it. This component utilizes the services
of the process layer during the process execution. On the other hand, the process
model allows the process layer to invoke it to trigger the process execution and to
perform other process life-cycle-stage related operations, and to hand-over (to this
process) messages or transfer invocations received from other systems or processes.
It also interacts with the UI applications and allows them to send messages to it.

3.6.2  Process Layer
The process layer component provides the process infrastructure functionalities in
the architecture. It is a container for the process model component and manages the
life-cycle of the process. It provides generalized interfaces to the UI applications,
and clients of the process model to enable interaction with the process model.
It collaborates with the process model, clients of the process, and UI applications
for manual activities in the process. This layer’s objective is to support the process
model with its process execution.

3.6.3  Business Logic Elements
Business logic elements (BLE) provide specific business functionality that each step
in the process is required to provide in the IT system. They are concerned with

Process model UI application layer

Client
Process layerBusiness rules layer

Business logic element Business logic element Business logic element

+processInstanceId: string

+processes: list of processModel

Figure 3.5 L ogical view of the architecture.

46  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

only the business logic of the IT system that primarily include how a specific busi-
ness function (or a business operation) is performed by the system and strictly does
not include any process logic of the IT system. This is the computation logic for
the business function. The BLE encapsulates the algorithm of its specific business
operation, the business rules applied or considered in the business operation, and
full business data associated with the business operation. Then it provides interface
to the process model for the process model to invoke the business function and
separates the implementation of the business function from the interface. The busi-
ness logic would be executed in the context of the process, which is supplied by the
process model. Its only collaboration is with the process model when the process
model invokes it.

3.6.4  UI Application Layer
This element of the architecture has the UI applications that the users use to per-
form the manual activities in the process. It concerns itself with purely supporting
the user to help him or her carry out the function expected of that activity by pro-
viding interface screens and relevant information. It is responsible for owning and
maintaining the full business data that is input by the user. This element interacts
with the process model using the interfaces provided by the process layer. The pro-
cess model interacts with the UI application in some cases.

3.6.5  Clients
This refers to the external systems and other processes that initiate interactions with
this system. They invoke the process model using the services exposed by the process
layer. These communications can be messaging-oriented or real-time invocations. They
interact with the process model at relevant stages in the process execution including
start of the process execution. They communicate with the process layer to get process
model details, assigned user activities for process administration functions, etc. Ideally,
they represent an IT system entity that is separate from this IT system.

3.6.6  Business Rules Layer
We can abstract out the business rules part of the program logic and put it in a
separate component called the business rules layer. The business rules layer houses
the business rule and manages its entire life cycle. This design allows the rules to be
modified separately from the business process and the other components of the IT
system, without directly impacting them or their code. The business process inter-
acts with the business rules layer at the appropriate point in the process, which is
an activity. During this activity that corresponds to a rule, the process invokes the
rules layer to execute the business rule. The rules layer executes the rule and returns
the results of the rule execution to the process right away.

Concept of Process-Centric Architecture  ◾  47

While modeling the business process, business rules applicable in the busi-
ness context could explicitly be specified in a business-friendly manner. Out of
these, the rules that influence the business logic within an activity in the process,
for example in an insurance claims process, the claim approval activity typically
involves a complex set of business rules to be applied to verify the claim made
and approve it for subsequent processing. These are the rules that are defined and
housed in the rules layer.

3.7 D ynamics
At the IT system’s design time, the business process that the IT system is supposed
to support is modeled in the design-time component of the system, which is the
business process modeler. This process model becomes part of the run-time envi-
ronment as an executable system component that interacts with other components.
The design-time model is also the business specification of the business process
including all the control and data flow details and this alone determines the execu-
tion flow at the run-time for the IT system.

Let us take the scenario of a sales order processing system that processes sales
orders. The business process for the system is the sales order process. At run-time,
the execution starts with the customer placing an order for buying a set of items.
Let us say this is done by the customer by placing the order over the Internet. This
Internet application plays the role of the client of the IT system, and invokes the
process layer interface service to launch the execution of the sales order process for
this new order.

Figure 3.6 shows a dynamic view of the architecture as per PCA.

Client Process layer Process instance

User completes action

Business logic element UI application

Customer initiates process

Figure 3.6 D ynamic view of architecture.

48  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

The process layer creates a run-time instance of the process model and initiates
the process instance’s execution by invoking it. The process model component then
executes the activities in the sales order process one by one in the order. The first
activity, “review the order details,” is a manual activity to be performed by the order
clerk. So, the process component assigns the activity to a user by invoking the
services of the process layer. Then the process model awaits invocation indicating
completion of the activity from the UI application that the user uses to perform
the activity. The UI application invokes the process layer services to get details of the
user activity and after the user performs action for the activity notify the comple-
tion of the activity. Then, the process layer invokes the process instance to hand
over this notification to it. The process then continues execution on to the next
activity where the “inventory is checked.” This being a system activity, the pro-
cess invokes the business logic element corresponding to the activity, by invoking
the process layer interface provided for communication with other components, by
supplying the service details and invocation mechanism-relevant information. In
turn, the process layer actually connects with the BLE and invokes the business ser-
vice (corresponding to the activity) exposed by the BLE for this operation, taking
care of all the communication technical details such as protocols involved. Then
the process component executes the subsequent activities (“picking the products,”
“receive payment,” “shipping products to the customer”) in the process following
the specified order and completes the process.

3.8  Principles
Let us look at the key properties, characteristics, constraints, and principles of this
architectural style.

3.8.1  Business Process-Driven System
The entire execution in the IT system is driven by the business process. The
execution happens in a top-down mode, starting with the business process at the
top and down to the business logic elements at the bottom, with the process steer-
ing the control flow all through till the end. In conventional approaches, the IT
systems had a big role in how the processes worked or how the business happened.
Depending on the limitations of the IT systems or the alignment issues with busi-
ness, often business worked around the systems. IT systems were designed and
created specifically for business. On the other hand, in this new paradigm, the
business process itself is the driving force of the system and not a derivative or a
coincidental effect from the system or from its run-time behavior. That is, in PCA,
the business process itself creates and drives IT. For example, if we take an IT
system that supports the travel agency’s travel booking process, in PCA the travel
booking process model drives the system at run-time. It itself becomes an active,

Concept of Process-Centric Architecture  ◾  49

explicit, and changeable component of the system and invokes other components
that execute specific business responsibilities, such as creating itinerary, generating
a quotation for each itinerary, look up of reservation availabilities, payment, and
making reservations related to the entire selected itinerary.

Behavior the IT system exhibits in production is exactly as per the business
process specification in the process model. The business process is the single driver
when the IT system is architected, designed, and developed and that remains so
also at run-time. The business process changes the way the IT components are used
in the IT system. All the business components of the IT system including applications
become subservient to the business process.

3.8.2  Highly Abstracted Components
This architectural style raises the level of abstraction higher, to the business process
level. Previously, as far as business systems were concerned, the highest level of abstrac-
tion in the architecture was the business component. In those systems, the business
logic was abstracted out from the rest of the application (i.e., separated from the
infrastructure logic, presentation logic, data logic, and the controller logic of the IT
system) and separately put into the application server* layer as business components
that expose low-granular operations (often in a distributed way). The application con-
tainer takes care of the infrastructure logic that handles concerns such as persistence,
transactional integrity, and security in a standard way. The business component was
concerned with only the specific business problem. The specific ways in which those
business components performed their business operations were encapsulated by the
components and only the interface to the component was exposed to the other elements
such as the application server layer and controller layer.

Just as we had the business component abstraction, PCA takes the abstraction
still higher to the business process level (or concept). Here, the process logic is sepa-
rated (abstracted out) from the business logic (or application logic in a simple legacy
perspective†) and is put in a new architectural layer, the process layer, as the business
process component of the architecture. We put this process abstraction at the center
of the IT system and the business process as the IT system’s key component. The pro-
cess component will be primarily concerned with the process logic of the system. The
abstracted out business process component is housed and managed in a separate layer,
namely the process layer where the process-infrastructure needs of the process are
served. This style decouples the process logic and the application logic. Thus, process
models and the process layer are the most important parts of this architecture. Process
is the top-most layer in this architecture because of the abstraction.

*	 Also called application containers.
†	 We use the term application here for legacy reasons. An IT system based on PCA, can really

involve one or more applications in it, since it takes a business process view. Most likely, those
applications are preexisting.

50  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

In this paradigm, the business component (or the application that it is part of )
is no longer burdened with the process logic. It concerns itself with only the spe-
cific business functionality it has to deliver and no longer worries about which
applications (or business components) it should invoke or vice versa, unlike in the
conventional approach where it had to be aware of these. Business logic elements
are not aware of the process flow. They do not know to which business logic element
the control will go to after they relinquish control. This is unlike the conventional
architectures, where they would have been aware. The business components and
the application container layer (as in the previous abstraction) that houses them are
still useful in the new architecture; however, they are no longer the most important
parts of the architecture. They become more of implementation options for the
system architecture.

3.8.3  Automated Processes
This is a strong characteristic of the architecture. It automates the execution of
the system activities in the process and integrates the applications (or application
components) automatically along the way. System activities are activities in the
business process that can be automated and where there is no human involvement
and the execution of such steps happen without any human control.

In some situations, process automation means digitization of paper-based pro-
cesses where the employees work with computer-based forms and the computer
form details are flown automatically from employee to employee. Of course, value
comes from redesigning the process before its automation.

Depending on the triggers for the process and the timing for the activities
(schedule or as per the sequence and completion of the prior activities or events),
each system activity is automatically executed by the process when the time for
the activity comes. The process execution thus becomes system-controlled. With
process automation, the system assists the employees throughout the enterprise in
performing their actions in the process.

As an example here, let us take the mutual funds redemption process in a finan-
cial services company. The moment the customer places a request, through a broker
company for redemption of units of the mutual fund that the customer holds, the
process gets triggered. This process gets automatically executed in the mutual funds
company, following the steps in the process automatically—steps are selling the
stake in proportion to the units being redeemed; calculation of the amount taking
into account the exit load, applicable charges, taxes, and other obligations; updat-
ing the amounts; crediting the customer’s account with the amount received as
part of the redemption; crediting the tax amount applicable to the tax department
systems; and passing on the amount corresponding to broker charges to the bro-
ker company. All these steps are automatically executed and the entire redemption
process itself is automatically performed with no business user involved. Thus, it is

Concept of Process-Centric Architecture  ◾  51

a natural way to build automation in the enterprise, given that automation is about
enabling performance of business functionalities automatically with no interven-
tion by a human.

3.8.4  Process Thinking Oriented
Business process is the central concept in the IT system and is central to the
architecture. The most important aspect of the IT system is the enterprise busi-
ness process that the system is to support. As far as the system is concerned,
process centrality persists right from the requirements stage all the way into the
functioning system in production (through design, development, deployment,
operation, and support). Figure 3.7 illustrates the process centrality in the soft-
ware through its stages.

This is a shift away from the conventional functions thinking to the new process
thinking, where functions are only enablers to the process. Process performance
and overall optimization is more important than optimizing individual functions.
The philosophy is, “Think ‘processes’ instead of ‘functions’”—process thinking is
central. Process is the core of the system. An aspect of this thinking is the coherence

Business process

Influences Requirements elicitation
and capture

Stages in IT system creation

Architectural design

Design

Development (coding)

Deployment

Operations support

System maintenance

System enhancement

Influences

Influences

Influences

Influences

Influences

Influences

Influences

Figure 3.7  Process centrality in the system.

52  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

that this enables with the other components of the system especially the business
logic components.

The system is designed directly from the business process rather than being
designed for it. In this thinking, architecture comes from the strong view of what
the process needs and not from what all a system can provide (or support). What a
process needs is more important than anything else. In terms of work done by the
IT system also, process is the right abstraction for work. That is, processes are the
units of operations, handling, and manipulation as far as the system is concerned
when it works. Process is the unit-of-work for the system. For the system, the pri-
mary entities are the run-time occurrences of the process; a unit of work for the
system completed is the completion of one full process execution.

If the system is used for account opening in a bank, the account opening pro-
cess would be the central concept with which the architecture and the realized
system would work. The number of accounts opened would be the primary concern
of the system as far as entities are concerned and each account opening occurrence
would be considered as a separate unit of work.

3.8.5  Explicit Processes
Here the business process flow is taken out of the software code and made explicit.
Business process is explicitly defined and this forms the process component of the
system. The entire process logic is available in this process component. In the tra-
ditional styles, the process-flow control, rules, and process logic are implicit in the
software. The process model in the process-centric architecture would include the
flow control for the process, business rules, and the process flow per se. This logic is
clearly defined in the model.

Apart from being explicit, the process logic is also defined in a business-friendly
format. Both these allow the process to be easily managed. With explicitness, the pro-
cesses are discoverable from the IT system. Process discovery becomes a trivial task.

3.8.6  Flexible Processes
The key thing to note here is that the process logic is now decoupled from the
application and thus can be modified separately without necessarily touching
the application code to make changes in the process flow, or change rules associ-
ated with the branches (condition), or add new branching, or drop/add activities,
or make activities execute in parallel. This enables a rapid response to the changes
in the business.

Business processes are flexible; the architecture enables quick changes to busi-
ness processes. IT system is adaptable to the process changes. It has the capability
to adapt quickly to the business process change. To make changes, the business
process model is what is manipulated and this automatically results in a change in
the behavior of the IT system run-time since the process drives the execution.

Concept of Process-Centric Architecture  ◾  53

In this architecture, change is enabled naturally and this quality is inherent
in its design itself. It allows changes to be done at the business level itself. In the
real world, what changes is the business process, and the entity that changes is the
very entity being modeled and changed easily in this style rather than changes in
another entity such as code.

While the conventional approaches meant that any business changes would
necessitate an IT system change (program change) in the PCA concept when the
business changes, the change is done to the business process definition (i.e., the
process logic model) and not to the IT system code. It means no change to the code
or minimal changes to the code in the software. We can see this in Figure 3.4—it
shows the business process and rules logic as being specified (or coded) in business-
friendly languages by the business itself. This is a lot more flexible, less complicated,
and business friendly a change than making the IT systems change and that too the
business person being enabled to do this process model change himself or herself by
virtue of the process speaking his or her language.

3.8.7  Service-Based Activities
In this architecture paradigm, each activity in the process is seen as a service pro-
vided by a human or a system. In that way, the process is really an orchestration of
services. A service is a self-contained software element that provides well-defined
business functionality and an interface that is abstracted out and separate from
the implementation of functionality. It could also be referred to as a component
in some sense, provided the component performs a high-granular (logically com-
plete) business operation at a level appropriate for the process. In the case of a
system activity, the service is provided by the application and during execution
of the process, the process invokes the exposed interface defined for the service.
Such services (i.e., the ones associated with activities) are stateless in nature. They
just perform a high-granular (from the process perspective) business action and do
not recall any past actions performed. It is the process that provides the service the
context to operate in so that the action is performed in the context of the specific
occurrence of the business process at run-time. Services are offered by humans or
systems. These systems are implementations of the services. They need not neces-
sarily be applications within the IT system’s physical boundary or even within the
enterprise. They could very well be third-party service providers too and they are
only loosely coupled to the business process, making them replaceable at any point.

The services here follow the service oriented architecture (SOA) architectural
style. At the process component level, they are technology neutral as no assumption
is made about the technology underlying the application providing the service. The
implementation of the service involves lower level (low granular) business compo-
nents, layers or tiers, etc., that would together take care of the business logic for
the service. Let us take the example of the “check inventory” activity in the sales
order processing system. The application (or the system component), say inventory

54  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

application, that implements this service, would have low-granular business com-
ponents such as “get the inventory for the type of product,” “get inventory details
for an inventory,” and “check for stock threshold limit,” that it uses to realize the
check inventory service. The inventory application would thus offer a set of services
such as “check inventory” that are exposed to various business processes.

3.8.8  Implementation-Isolated Processes
Isolation is a property of processes in this architecture. The business process model
is isolated from its own implementation since there can be different options for the
run-time version of the process model component. This means, the manifestations
of the process at run-time (called the process instances) can be varied depending
on the run-time environment chosen for the system. For example, they can be
objects in a particular object-oriented programming environment such as JAVA
and .Net, or scripts or programs generated in a structured programming language
such as COBOL that become part of the overall code of the application (coexisting
with other programs), or chunks of human-friendly specification in formats such
as XML that are read and processed by other programs (when the process needs to
run) in the application or in the IT system. All of this can happen independent of
the process model and without affecting the process model.

Another aspect of isolation is that processes are loosely coupled with the business
logic elements, that is, the ones that support specific activities in the process. As
shown in Figure 3.8, the elements that support the service for the activity are loosely
coupled with the activity. A1 through A5 are activities in the process. C1 is a condi-
tional branch in the process flow. B1, B2, B3, and B4 are business components that
implement the service required by activity A4—all of them are service providers
implementing the same activity service; however they may have differences in the
implementation.

A5A1 A2

A3v1

v2

Loosely coupled Dynamically related

Implements

B1 B2

Implements Implements Implements

Discovered at run-time

A4

B3 B4

C1

Figure 3.8 A ctivity and the coupling to the business components.

Concept of Process-Centric Architecture  ◾  55

They can be detached and attached to the process as per the business need.
Conceptually, the process is loosely coupled with the providers of the business
functions involved in the business process. These providers could be third party
service providers too. Thus the business process in the IT system is isolated from
the implementations of the activities in the process. The implementation needs
to be discovered only at run-time—one of the implementing components or ser-
vice providers can be selected based on appropriateness to that particular process
instance and the activity then gets dynamically connected to that service imple-
menting element.

Process definitions can achieve another level of isolation when they are defined
as abstract process models rather than concrete ones. A process defined in abstract
form, leaves the implementation for the IT system to complete the essentials and
make it a concrete process definition.

3.8.9  Executable Process Specifications
Business processes are not just models on paper, but are executable in a computer
as code. The process models have the power of getting executed in a comput-
ing environment or platform. Run-time manifestations of the business process
model in the IT system are from computer-executable code translated from the
process model.

This is a key nature of business processes in this architecture and is the founda-
tion for the architecture’s realization. Process definitions are not just in business-
friendly form, but are also formal. The definition is formally defined so that it can
be translated or converted into computer-executable code. This means the processes
can be executed automatically at run-time by the system, faithfully following the
flow sequence as defined. The power for the process to direct the system’s execution
at run-time comes from this nature.

Formal representations have roots in process formalisms such as process alge-
bra, petri-nets, and pi-calculus. Such formalisms give process definitions the rigor
required by computing machines, including modeling of concurrent computation.

Executable processes also can exhibit concurrent execution behavior. Concurrent
computation is inherent in processes. More than one occurrence of the same busi-
ness process (say account opening process) can execute at the same time in the IT
system. Also, multiple business processes (say account opening process, account
closure process, account verification process, etc.) can execute concurrently in the
system. Each run-time occurrence of the business process is a physically separate
entity for the system. Figure 3.9 shows the concurrent behavior of executable pro-
cesses possible at a point of time in the run-time system supporting banking pro-
cesses in a bank. At that point of time, there are 12 process instances that are active
and executing at the same time. All are operating on different accounts and each
process instance is of a specific process model such as accounting opening, closure,
or verification.

56  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

A
cc

ou
nt

 o
pe

ni
ng

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 1
 a

nd
 c

us
to

m
er

 =
 A

	
A

cc
ou

nt
 v

er
ifi

ca
tio

n
pr

oc
es

s i
ns

ta
nc

e
ac

co
un

t =
 1

1
an

d
cu

st
om

er
 =

 A
	

A
cc

ou
nt

 c
lo

su
re

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 8
 a

nd
 c

us
to

m
er

 =
 Z

A
cc

ou
nt

 o
pe

ni
ng

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 2
 a

nd
 c

us
to

m
er

 =
 B

	
A

cc
ou

nt
 v

er
ifi

ca
tio

n
pr

oc
es

s i
ns

ta
nc

e
ac

co
un

t =
 1

4
an

d
cu

st
om

er
 =

 E
	

A
cc

ou
nt

 c
lo

su
re

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 2
2

an
d

cu
st

om
er

 =
 K

A
cc

ou
nt

 o
pe

ni
ng

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 4
 a

nd
 c

us
to

m
er

 =
 C

	
A

cc
ou

nt
 v

er
ifi

ca
tio

n
pr

oc
es

s i
ns

ta
nc

e
ac

co
un

t =
 1

5
an

d
cu

st
om

er
 =

 F
	

A
cc

ou
nt

 c
lo

su
re

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 2
3

an
d

cu
st

om
er

 =
 K

A
cc

ou
nt

 o
pe

ni
ng

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 5
 a

nd
 c

us
to

m
er

 =
 D

	
A

cc
ou

nt
 c

lo
su

re
 p

ro
ce

ss
 in

st
an

ce
ac

co
un

t =
 6

 a
nd

 c
us

to
m

er
 =

 H
	

A
cc

ou
nt

 c
lo

su
re

 p
ro

ce
ss

 in
st

an
ce

ac
co

un
t =

 2
4

an
d

cu
st

om
er

 =
 K

Sy
st

em
 ru

n-
tim

e
en

vi
ro

nm
en

t

Fi
gu

re
 3

.9
 

C
on

cu
rr

en
t

ex
ec

ut
ab

le
 p

ro
ce

ss
es

 in
 t

he
 s

ys
te

m
 r

un
-t

im
e

en
vi

ro
nm

en
t—

a
sn

ap
sh

ot
.

Concept of Process-Centric Architecture  ◾  57

3.8.10  Interacting Processes
This is about interacting processes—processes interact with each other. Two or more
processes can be interrelated. They communicate with each other at run-time while
they are in execution and this is a dynamic relationship. For example, a loan applica-
tion process, in the “check credit history” activity, could interact with the credit his-
tory process that has a set of activities to check the credit history of the loan applicant.
The credit history check process would have steps to check with a credit data services
provider, validate the customer’s internal credit history, status of the customer, etc.
The credit history would communicate back to the loan application process in the
activity subsequent to the “check credit history” activity, whether the credit check is
successful or not, the latter process would have been awaiting the reply message from
the credit history process. Figure 3.10 illustrates inter-process interactions.

3.8.11  Business Controlled System
The IT system here is controlled by the business folks and they are the ones primarily
expected to change and control it. When the business changes, the change is primar-
ily done to the business process definition, which takes care of the system and mini-
mizes changes required to the IT system code. This is done by someone from business
such as a business analyst or a business manager since the process definition is explicit
and in a business-friendly format, one that is closer to his or her language. They would
find this a less complex and a more business-friendly approach to change IT systems.

3.8.12  Reusable Processes
Reuse is another concept in this architecture. It is done at the highest level itself.
This architecture inherently encourages and enables software reuse at a higher level

Check application
details

Eligibility check Check credit history

Check internal
credit history

Check with external
credit data services

provider

Check status
of the customer

Approve loan

Reject loan

Loan application process

Check credit history process

ReturnInitiate

Figure 3.10  Inter-process interactions.

58  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

of abstraction. Processes themselves are reusable; they can be invoked from a step in
more than one process, where the reused process completes its process and returns
to the process that invoked it. For example, an inventory replenishment process
may be used by a sales order process, a periodic stock check process, and a “manage
production” process. Another way is reusing services across processes. A particular
activity in a process may be part of more than one process. For instance, the “Check
inventory” activity (and service) could be reused by any process that has a need
to do inventory checking and not just the sales order process. The context of that
process might be different however, from that of sales order process. Still the service
can work transparent to that because its job is to only check the inventory data and
return back the status or quantity info to the calling business process.

3.8.13  Mobile Processes
Mobility is a characteristic of processes. It refers to the behavioral aspect of a busi-
ness process. Regardless of the executing process’s location or the location of other
processes with which it communicates, the data they exchange between each other
is seen as being transferred in the same way as a data that is internal to the process
getting transferred from one data location of the process to another data location
in the same process, purely within the confines of the process.* The processes could
be executing in physically different environments, and communicating over a net-
work, or the Internet. This means multiple things, some of them are

	 1.	The channels of inter-process communication and channels the process uses
for communication with the BLEs (service implementers) are themselves
passed around between the communicating processes just like data instead
of any static consideration. To the process, the channel would just be as if it
is the value of one of its local variables and one that is identified by a name
(variable name). Communication is dynamic in nature.

	 2.	The data transferred by a process to another is, as if the data is moved as value
to a local variable in the process (i.e., a variable whose scope is only the pro-
cess). Again, the data destination and source are identified by names.

	 3.	References are used for processes that these can be exported to. Process identifiers
are used as unique logical references to processes, and they can be passed around.

	 4.	Structural changes to processes do not affect other processes. These can be
looked at in two ways:

	 a.	 Internal mobility for the process happens when irrespective of the changes
to what comes from the other communicating process as input to this pro-
cess, this process is free from any changes to itself. Even if the other process
sends a different data to this process, this process is internally not affected.

*	 Here for the process, we are drawing an analogy to a computer program that has variables and
data being moved between the variables as part of value assignment to variables.

Concept of Process-Centric Architecture  ◾  59

	 b.	 For a process, external mobility happens when no matter what changes
happen to the internal process (including data-related changes), that is any
changes happening internally to this process, there would be no changes
to the processes with which this process is communicating. The name that
is used to send data to the external process would remain the same.

	 5.	The relationships between processes (executing) are realized through establish-
ment of links between them, and these links are dynamic and they keep chang-
ing including they (existing ones) being broken and new ones being established.

	 6.	Communication between processes can be asynchronous in nature. The same
holds good for communication of process with the BLEs.

	 7.	Looked at in another way, the environments where processes execute and commu-
nicate with each other change in a dynamic manner. It however, does not affect
the process execution as process logic happens transparent to the environment.

An analogy that is often used is that of the cellular phone system. Two persons
communicating with each other using their respective cell phones do the following:
Start the communication (initiate), communicate with each other by sending voice,
and end the conversation. Now, each of these two persons could be on the move
while the conversation is on, moving out from one base station coverage area (or
cell phone tower coverage area) and moving into another. However, their conversa-
tion or communication is not disturbed at all. The protocol ensures the mobility.
The base station address and the cell tower address in use are handled dynamically
to suit mobility. These addresses would be used as just specific values to variables
(names) used in the protocol. They do not get hard bound to the process, that is, the
cell phone, the protocol and the communication. These values would keep chang-
ing automatically as the cell phone users move from one physical point to another.

Another analogy is that of an aircraft entering and exiting air traffic control
(ATC) station ranges in the course of its flight from the origin location to the
destination location. As soon as the aircraft enters an ATC range, its aircraft
communication would make use of that ATC. This is so till the aircraft leaves this
ATC zone. At the beginning of the flight it would be the ATC at the origin, then
it goes through various ATCs en route and the last one it would be in is the ATC
at the destination. One of the ways mobility is realized here is the aircraft picking
up and identifying signals transmitted by the ATC stations dynamically along
the way, instead of any binding to any of the ATC made in a hard mechanism.
The connections to the ATCs are made and then dropped as the flight progresses.

3.8.14  Process-Level Programming

3.8.14.1  New Programming Abstraction

It takes programming of the IT system to a different level, to the level of busi-
ness. The programming is done at the process level abstraction. Executable process

60  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

definition formats are used to define the process and this is a higher level of pro-
gramming. At this level, the entire process logic is described and this itself is a
computer program but at an abstraction much higher than that of the traditional
high-level programming languages such as Java. The control flow, decision point
and branching, process context properties value settings, finite loops, paralleliza-
tions, and synchronizations and so on are all defined explicitly in the executable
process definition. The process logic makes the major part of programming for the
IT system especially from the perspective of the flexibility of the IT system. Process
programming being at the business level, is done primarily by the business folks
such as process analysts and process managers. That is a major shift in the nature of
programming and is a paradigm change.

3.8.14.2  Minimized Coding

When seen from the flexibility of IT system perspective, coding as meant in the
traditional sense is minimal here. Only the specific algorithms that define the
individual activities in the process are programmed in a high-level programming
language (as part of the service implementation for the activity). This potentially
makes programming minimal in the applications because the major part of pro-
gramming (process logic) that impacts IT system flexibility is programmed using
process definitions done by business folks. Thus minimal code is programmed in
the IT system and that code is related only to the specific business functionality for
the activity.

3.8.15  Composable Processes
Processes are composable from other processes. A new process can be composed
from other processes by making the existing process an activity of the new process.
This contributes to the reuse capability. From the perspective of process design and
managing complexity of modeling, process logic segment that occurs (or can occur)
multiple times in the process can be taken out and modeled as a subprocess. The
main process then includes an activity that invokes the subprocess and that activity
appears as many times as the common process logic has to occur, in the process.
Thus a process can be composed of subprocesses.

3.8.16  Autonomous Processes
When each process executes in the run-time environment, it is independent in that
it drives its own execution and is not controlled by any other process. The execut-
ing process has its own identity and physical existence in the system as an entity.
Processes are thus autonomous. Each run-time occurrence is technically indepen-
dent and runs without interference from others except as part of defined interac-
tions it can have with other processes.

Concept of Process-Centric Architecture  ◾  61

3.9  Integration Concept as Handled in PCA
Integration is about making applications (especially if they are disparate) in the
enterprise work together. Previously, EAI tools and message brokers addressed this
as only system integration where it enables application-to-application (A2A) flow.
PCA takes a different approach to the integration of applications. The effective
solution to the application integration problem is process-driven integration where
the applications or application components are integrated with a business objective
that is determined by a higher level component. This is not one that enables just a
system-to-system technical interaction handling primarily technology-compatibility
issues. The objective of integration is much beyond simply making one application
A some how talk to another application B. To execute the business process seam-
lessly, the integration of the silos of applications in the enterprise is considered very
important. The process model integrates the applications here and is the only one
that drives the integration.

The business process provides the context for integration and the process
specifies how the human roles and the systems (applications) work together to
achieve the business objective for the process. It brings in the enterprise context
for integration which provides for the services, the semantics, granularity and
syntax that is appropriate to meet the needs of the enterprise. The individual
applications would perform the respective functions that are required in the sys-
tem activities of the process. They individually expose these functions as services
at a higher-level of granularity appropriate for processes (i.e., activities in the
process) and become BLEs in the architecture for the integrated IT system. At
run-time, the process component invokes these exposed services corresponding
to the system activities. If we take one such application that is integrated this
way, unlike previously, other applications would no longer invoke its services or
functionality interfaces. Nor will it invoke other applications as it used to earlier
because such process logic would have been moved out of the application’s code
into the process model. The integration now has a well-defined business mean-
ing. Traditional application interoperability issue is handled in a cleaner way by
letting the process definition and service invocations become loose-coupled from
the application or service implementations.

The applications are also loosely coupled from one another. Unlike a typical
EAI tool, the process layer not only integrates applications but also integrates
them with the human roles performing manual activities. The business process
that runs in the process layer executes automatically spanning services and user
activities.

Figure 3.11 shows how integration is realized in PCA. The applications A,
B, C, and D are integrated by the process, as part of the process flow specifica-
tion. The activity services corresponding to the system activities A1, A2, A4, and
A5 are provided by the business components B1, B2, B3, and B4, respectively.
Unlike in the conventional approaches, A, B, C, and D do not talk to each other

62  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

directly any more, nor are they aware of the next application or the previous
application in the flow. Thus they are loosely coupled with the process and with
each other.

3.10  Workflow in PCA
Workflows traditionally have meant a work item flowing from one user to another
in some order and it gets processed completely at the end of the flow. Workflows
involve heavy human involvement in the processing. For example, a customer ser-
vice call center operation, where a call is received from the customer and the cus-
tomer’s request becomes a new work item that needs to be processed. This item is
flown from one user to another involving hand-offs. WFMS is focused on support-
ing such flows.

PCA treats workflows in a broader way. The flows are seen as business processes
that have more human participation. This view allows automated activities also
to be included in the process. It not just supports the workflow steps by having
those steps as manual activities in the process, but also integrates system activities,
thereby supporting a broader flow. The process model drives the human integration
by routing the work to each user at the right time in the flow. Each new case or
request in the case of a call center process for example, becomes a new occurrence
of the process execution at run-time and thus a new work item.

3.11 H olistic View in Architecture
The process-centric architecture concept holistically addresses the portions of enter-
prise computing that previous technologies attempted to individually (and partially)

A5

Invokes

Implements

Application D

B4

Application C

B3

A4

A3 (user activity)v1

v2

Application B

B2B1

Application A

A1 A2 C1

Implements

Invokes Invokes

Invokes

Implements Implements

Process-driven integration

Figure 3.11  Integration realized through PCA.

Concept of Process-Centric Architecture  ◾  63

address. For example, EAI addressed only system integration where it enables A2A
process flow parts. WFMS looked essentially at flows involving humans or person-
to-person (P2P) flows in other words. Business rule engines addressed the abstrac-
tion of business rules at a level specifiable and manageable by business in natural
language (that is more business friendly than programming languages) so that they
can be changed easily with very minimal change in application code. They were
looking at different parts of the business process puzzle. EAI, WFMS, and Rules
engines have now converged under the umbrella of BPMS, which is the core layer of
IT systems based on PCA. We will see what a BPMS is in detail in the subsequent
chapter. It addresses business process support holistically by seeing the business
process as a whole consisting of P2P, A2A, and P2A flows, and the rules that gov-
ern the activities in the process. Figure 3.12 illustrates the convergence of work-
flows, EAI, and BRMS into the process layer or process infrastructure in PCA and
how they are viewed holistically. PCA moves business processes out of applications
(packages or in-house) into the infrastructure layer (a separate one at that) of IT sys-
tems where it is managed holistically and in a business-friendly fashion. It therefore
represents the next step in enterprise architecture evolution.

3.12 S imilar Approaches
PCA might appear similar to software development approaches such as model
driven architecture (MDA). PCA has some similarities in the way the business
process model defined at the beginning of the architecture work, gets translated
further directly into an executable version for the system, similar to the way a

P2P flows

Workflow systems EAI

Convergence

Process layer in PCA based IT system

Rule engines (BRMS)

Realize Realize Realize Realize

P2A flows A2A flows Externalized business rules

Business processes

Figure 3.12  Convergence of workflows, EAI, and BRMS.

64  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

higher level model in MDA gets translated to lower level models and finally to the
code. However, that is the key similarity between PCA and MDA.

Unlike in MDA, in PCA the business process definition actually becomes an
active run-time component in the final implemented IT system. And this compo-
nent drives the behavior and the execution flows of the IT system.

PCA does not advocate auto-generating the entire code for the IT system, that
is, all the code required for all the components that make up the system. When it
comes to the other components of the system (the business logic elements, that is), PCA
approach is different. The code for the implementation of the BLEs is not always
auto-generated, though in some cases it might technically be possible. In quite a
number of situations, the BLEs are preexisting services that are getting reused.
Integrating existing services or applications into the IT system being designed is
addressed and enabled by PCA. Often in PCA, the IT system is not entirely built
or rebuilt. The business services that are preexisting are used to support steps in the
process without typically rewriting their code. MDA does not appear to explicitly
address that—the approach is to build the entire system as new from the architecture
by generating code.

Next comes the complexity and manageability of the entire architecting exer-
cise and the implemented system—what really is being modeled, that finally results
in the system, is important for this than anything else. Here, PCA focuses on the
business process modeling and that is what is being modeled by the business. That
(business process) is a concept that the business community is already familiar
with; it is their own language and thus less complex to them. Complexity associated
with that is more manageable. On the other hand, in MDA, the modeling might
involve more complexity as the entire system is modeled and not just the process
flows. Even though domain-specific concepts and notations are directly used, it
still appears a daunting task to make the modeling complete. Consequently, the
system code generated and thus the system itself would be more complete only
when this modeling is complete. In practice, it could be very hard to achieve this
completeness.

Maintainability of the code for the system is another concern. MDA results
in lot of code being generated. In fact, the goal of MDA is to completely auto
generate code of the entire system directly from the higher level models created
without the programmer having to really change anything. History* shows that
such approaches are prone to making the resulting system hard to maintain. The
auto-generated code typically becomes hard to maintain because it totally depends
on the completeness of the higher level modeling abstractions in fully addressing
the needs of the system and reliable faithful translation of that into equivalent code.
Such modeling approaches have been found to be far from complete at least as of

*	 CASE tools are good case studies in this context.

Concept of Process-Centric Architecture  ◾  65

now, so this results in less than 100%* of the code being auto-generated. We have
also seen from history that the machine-generated code is typically not optimized
for performance, extensibility, and maintainability. One of the reasons is that the
auto-code-generation ends up creating extra code that a programmer hand-writing
it would judiciously avoid. A programmer also optimizes the program code as he
or she writes being conscious of the quality impact such as performance—the pro-
grammer can think of various code options for achieving the same business logic
and choose to follow or write the code accordingly unlike the machine that would
find doing this very hard and would typically generate the same lines of code for
the same business logic each time. Bug fixing also becomes a hard exercise. All these
make the MDA generated system code more complex to maintain.

If there are existing applications that are to be integrated to the system based on
MDA, there could be issues in the generation of interfaces and in linking the new
system code to the interface. PCA addresses this with a clean philosophy of loosely
coupled interfaces with the business services. The process of code generation in
MDA is smooth if the entire requirement is captured and they are captured accu-
rately and documented in the models accurately. PCA follows an iterative approach,
the requirements need not be complete and can be evolving.

3.13  PCA in the Context of Other Architectures
In the context of architecting IT systems, it is not uncommon to use multiple
architectural styles and patterns in combination. PCA can coexist with other
architectural styles and also has influences from some of them and vice versa.
Each of these architectures or styles will have a specific scope and focus in the
overall system’s architecture. As we will see in detail in Chapter 9, PCA and SOA
share a complementary relationship with each other when enterprise IT systems
are architected.

The layering approach in PCA comes from the layered architecture style—PCA
defines a set of layers and their responsibilities. Model-View-Controller (MVC)
architecture pattern can be used in combination with PCA for designing the UI
application and the UI layer. The UI applications involved in a process-centric
architecture can be partitioned into model, view, and controller components with
a clear separation of responsibilities. The UI applications can follow a request–
response model of interaction within themselves. Basically, the client-server archi-
tecture style is the common style applied for UI applications in this context.

PCA is also an instance of an n-tier architecture, and each tier in PCA has a
direct influence in the physical structuring of the IT system’s infrastructure. Some of
the tiers in PCA are BPMS, application server, web server, rules engine, and database

*	 Most of the current MDA approaches and implementations claim up to 80% (of total code)
code generation as the best case.

66  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

server. The implicit invocation (or event-driven architecture [EDA]) architecture
style can be one of the options in the architectural design of the process layer.

3.14 E xercise Questions
	 1.	What is different about PCA as opposed to the earlier technologies of EAI or

WFMS or rules engines?
	 2.	Recall two scenarios from your enterprise when P2A flows had to be handled.

How where they handled? Now, relook at those scenarios applying PCA con-
cept. What is the difference in the philosophy this time?

	 3.	Can PCA influence the way IT is organized?
	 4.	How is the business–IT gap being addressed by PCA? Does the concept cre-

ate a solution or preempt the problem itself? What are your thoughts?
	 5.	Do you think its mathematical foundations provide it strength or is it a

handicap?

67

Chapter 4

Business Process
Management

4.1 O bjectives
◾◾ To get introduced to BPM
◾◾ To understand the concepts of BPM
◾◾ To be aware of the various aspects of BPM
◾◾ To understand the business part of BPM
◾◾ To be aware of the life cycles of a business process
◾◾ To get the big picture of PCA
◾◾ To understand what a BPMS is

4.2  What Is BPM?
Business process management (BPM) is about business processes and their manage-
ment, to put it in simple words. There is a strong philosophy behind BPM, which
is that business processes are the core assets of enterprises. And, business processes
are central to any activity or exercise done with the objective of improving business
performance. BPM is also expanded by some as business process modeling. However,
let us stick to the term business process management in this book since we believe
this reflects a meaning that is more close to what it really covers.

BPM refers to holistic management of business processes throughout their life
cycle with the assistance of systems. It is the set of strategy, tools, and techniques
to design, deploy, and simulate processes to enable a rapid process change in the

68  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

organization, aligned to meeting organizational objectives. There is no standard
definition yet for BPM that is commonly agreed upon. In this book, however, let us
stick to the definition given above.

Figure 4.1 shows the evolution of IT from the perspective of business processes
and their improvements. BPM has been around for at least a 100 years. From the
early twentieth century, people have been looking at ways to improve their organi-
zation’s business processes. Some of the methods used were based on mechanization
(of certain shop floor work), quality control practices, optimizing specific business
functions (department), and business process reengineering (BPR). And, these have
been applied too with varying results. BPR was more drastic in terms of the changes
to the processes since its concept meant discarding the current process totally and
thinking afresh to create a new process from scratch. The new process was expected
to be free of all the limitations imposed by existing practices, people, and systems.
But this turned out to be too expensive for the enterprises and the results were not
too successful. An important reason was that the IT systems at that time were not
flexible enough to support the massive changes that it brought in.

However, in the last 10 years, especially with the technology changes, BPM has
meant a radically different approach to business process change and improvement
and this has been looking promising. In the 2000s, BPM has been recommending a
strong system-assisted approach to do continuous process improvement in an itera-
tive fashion. Simply put, this means

◾◾ Accepting that business processes keep changing.
◾◾ Making business processes flexible for change.
◾◾ Allowing change and managing the change of business processes with the

help of systems.
◾◾ Viewing business processes holistically from end-to-end.
◾◾ Working with business processes as units of work rather than business functions.
◾◾ Going through the full life cycle of the business process and management

covering all stages.

2000s Process-focused IT.
Technology support for process improvement.

1980s to 1990s Business process reengineering (manual).

1960s to 1980s Automation of parts of business processes.
IT as enablers.

1900 to 1960s Processes embedded in work practices.
No link to IT.

IT’s scope in business process

Figure 4.1  IT support for business processes–evolution.

Business Process Management  ◾  69

◾◾ Measuring process performance and optimizing processes in iterations. In
each iteration, the process shows improvement. Measure performance, rede-
sign, and deploy—do this continuously. There is no end to this because pro-
cesses keep changing.

◾◾ Considering relation of processes to other processes, levels of processes, and
connection to value-chains at the highest levels for process management.

◾◾ Business processes drive IT systems.

BPM focuses on the continuous improvement of the business process and not just
a one-time big improvement. BPM has two broad aspects: one is the management
part and the other is the technology part. Both are important and complementary
to each other and together they make BPM complete.

BPM takes an enterprise-wide view of business processes. It looks beyond the
individual functions or department units in the enterprise to address enterprise
processes holistically to improve process’ effectiveness and efficiency. Its view is
that what is important to the process is the overall optimization of the output of
the overall process and not the individual function’s optimization. Optimizing
functions within departments of an enterprise need not result in improvement of
the process as a whole. In some cases, optimizing a function could drag the per-
formance of the overall process since the subsequent functions (by other depart-
ments) in the process may be unable to handle the extra load and the work can
get unnecessarily queued up. BPM believes that taking a process scope view for
optimization is very important and discourages function-based thinking and
divisions from that.

Its approach with a business process is to start with modeling AS-IS pro-
cess, then analyze it, optimize the process—design the TO-BE process, model
the TO-BE process, simulate the TO-BE process, optimize the TO-BE process at
design-time, deploy the TO-BE process in production (implement), execute the
TO-BE process, monitor the TO-BE process for performance, and analyze it for
improvement. The AS-IS process model is the faithful capture of how the busi-
ness process functions right now in the enterprise and its usefulness is directly
related to how accurately it reflects the current process. The entire process life cycle
mentioned above is continuous and done iteratively over a number of iterations.
The change for a business process can be triggered by many reasons including
improving performance of existing business processes, changes in business/market
conditions, and launch of new services or products. BPM gives importance to the
use of technology (IT systems) in doing all the process management aspects given
above, including process execution. It also expects IT systems to help in process
automation where more and more activities are performed automatically by pro-
cesses using systems.

The management side of BPM includes business process architecture, process
improvement, process redesign, process optimization, process ownership, process
simulation, process monitoring/performance measurement, process analysis, lean,

70  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

quality methods such as six-sigma, process governance mechanisms, and linkage of
process performance metrics to enterprise strategy.

The technology side of BPM is the BPM system (BPMS)—it is the technology
part of BPM. BPMS is an architecture concept that takes a process-centric view of
applications to provide flexibility and business alignment to applications. It sup-
ports the full life cycle management of business processes by providing technology
capabilities to manage processes as basic and central entities. It assists the process
owner,* process analyst, end-users, and other roles with each stage in the process
life cycle. For example, a BPMS would allow the process owner or equivalent roles
to monitor executing processes in real time and take management decisions on pro-
cesses. BPMS would enable process analysts to do simulation of To-Be processes
to help optimization of the processes. Evolution-wise, BPMS is a convergence of
workflow, EAI, process modeling, and business rules. Due to some legacy-related
reasons, the words “workflow” and “BPM,” especially in the system context, are
used interchangeably by many. However, throughout the book, we shall just stick
to the term BPM to avoid any potential confusion. Another term that is commonly
used in this context is BPM suite—it is used to refer to a suite (combination) of tools,
products, and components in the context of BPM such as process modeling, user
interface handling, software requirements handling, rules management, workflow
management or engines, EAI; underlying platforms such as integrated development
environments (e.g., Eclipse•), .Net, Java; and technologies such as XML. BPM
suites typically are generic in nature, they do not address specific domains, verticals,
or provide canned frameworks for specific processes.

Process improvement can be approached in different ways. However, doing it
using BPMS would be the most effective way. BPMS is only a decade old as a con-
cept. Until this arrived, there was no system (including a run time) that was directly
supporting BPM and dedicated solely to BPM—this was a cause for the business
process–IT system gap and system rigidity. A BPMS assists human roles through
the entire life cycle of the business process. It gives the business community and
the IT architects a capability to work exclusively with the business process as an
entity, thereby helping to make process improvement and management more effec-
tive than ever before. For an IT architect, using a BPMS makes it easier to realize
system capabilities related to the process layer and the process model, in the IT
system. Without a BPMS, all this would have to be implemented in the application
by the IT team themselves and it might not finally be as comprehensive, exhaustive,
and effective as in a BPMS. And, without a BPMS, it also would mean more time
and effort (avoidable) spent on realizing these capabilities instead of better spending

*	 A “process owner” is a new business role. It is a role that is typically found in enterprises that
are organized around processes (more process-oriented) as opposed to the traditional function-
oriented organization style. A process owner has the full ownership and overall responsibility
of a business process through its entire life cycle.

Business Process Management  ◾  71

the same on the core focus of the IT system—which is the design of the specific
business process and the design (and implementation) of its individual activities.

4.3  PCA and BPM
Process-centric architecture’s roots are partially in BPM too. BPM gives the big
picture for PCA.

This influence comes from the technology side of BPM. PCA is a technical
perspective of the IT systems, strongly focused on their software architecture, in
the overall context of BPM. Though it has roots in process thinking and the BPM
movement, PCA is a purely architectural perspective of the enterprise IT systems. It
is not the same as BPM though it is under the BPM umbrella due to the importance
PCA gives to the business process.

PCA looks at how best to architect IT systems bringing the business process
into the center of the IT system’s architecture. This architecture ensures that the IT
system and the business are fully aligned to each other and it makes the IT system
flexible to changes in business process.

PCA’s focus is business process as the key architectural component and the
driver of the IT system and other components (business). It is not explicitly con-
cerned with process optimization or process improvement or process redesign or
process simulation, or process business performance. Its goal is to ensure that the
IT system fully reflects, realizes,* and supports the business process faithfully and
to allow quick and easy changes to the business process by business. The IT system
would be only as good as the business process modeled. This means, if the business
process is a process designed after analysis and optimization, the business process
would have a better chance of performing well and the IT system would also be
good to reflect that improvement. If the business process modeled is basically not
an efficient one, the IT system based on PCA would also not be efficient.

BPM, on the other hand, focuses on continuous management of busi-
ness processes and has a strong objective of improving the business processes.
Performance of business processes is of concern to BPM. By itself, PCA does not
necessarily improve business processes nor is its objective to improve business
processes. If a bad process is modeled, the IT system will still be faithful to that
model in PCA. But the business effect of the system would reflect only the qual-
ity of the process model that is subpar since the process is subpar.† If a flawed
AS-IS process is modeled, no positive difference can be expected to be found in
the process performance from the IT system. If a good process is modeled, in
PCA, the IT system will stay faithful to it as usual. However, now the business
effects of the IT system would be good because of the quality of the process.

*	 Here, we take it to mean that “it implements concretely.”
†	 The “garbage in garbage out” phrase perfectly applies here.

72  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Thus, one would ideally be required to apply BPM to improve processes.
Following the principles and practices of BPM makes the business process that the
PCA-based IT system needs to support a more effective one, which in turn makes
the IT system provide good business performance. Good business process work
should ideally precede applying PCA for the IT system’s architecture. That is, it is
strongly recommended that PCA be used in conjunction with BPM to gain maxi-
mum benefits from the PCA architectural style.

A very good (and recommended) way to realize an IT system architected along
PCA is to use BPMS, especially its process modeling and execution part. However,
BPMS is not a must for realizing PCA-based IT system. Capabilities of a BPMS
naturally fit into the core elements of the PCA.

4.4  Business Process Life Cycle
A business process goes through a set of stages in its life cycle. In BPM, that life
cycle consists of

◾◾ Process design
◾◾ Process modeling
◾◾ Process simulation
◾◾ Process design-time optimization
◾◾ Process deployment
◾◾ Process execution
◾◾ Process monitoring
◾◾ Process analysis
◾◾ Process optimization

4.4.1  Process Design
The stage is the beginning stage for a process. Typically, there is an existing process,
and after analyzing it, the process analyst designs the new process (or changed
process in other words). The analyst considers bringing in improvement into the
process model, based on the analyst’s analysis. Dependencies between activities and
extent of human and system participation are considered.

4.4.2  Process Modeling
In this stage, the process analyst models the designed process as an explicit process
model. This is typically done as a graphical model using a standard business pro-
cess modeling notation such as business process modeling notation (BPMN•).
This is really the expression of the design model in a concrete form. The analyst

Business Process Management  ◾  73

also performs some changes to optimize the process model, based on design-time
heuristics such as parallelization of activity executions wherever possible, reducing
bottlenecks.

4.4.3  Process Simulation
In this stage, the process analyst attempts to do some analysis on the process model
that would help the analyst to introduce design-time optimizations into the process
model to the extent possible. The process model is simulated in a design-time envi-
ronment where the analyst plays out “what-if” scenarios on the model. Data from
past process executions (process history data) is also made use of for simulation
data. The performance of the process model, in various scenarios, is studied and
analyzed. The cost of this stage is nothing since there is no impact on production;
this is a design-time stage. Simulation of the process is very helpful in studying the
process behavior at an earlier stage itself without waiting for the process to be live
in production. The latter is more expensive. The observations and the understand-
ing of behavior from process simulation act as inputs for the process analyst/process
designer* to improve the process model.

4.4.4  Process Design-Time Optimization
In this stage, the process is redesigned for possible optimization decided based on the
analysis during simulation of the process. The process model is modified by
the analyst for optimization. Some examples could be changing the branching
conditions to more realistic values to reduce bottlenecks, removing unnecessary
sequencing, etc.

Whether it is a totally new process or a refinement over the old one, the TO-BE
process is expected to get optimized (or improvised) to the extent possible at the
design stage itself. Optimizing it at process design stage is a more cost-effective way.
This is the preferred option than waiting for the process to be implemented and
deployed in production to analyze it, which is naturally more expensive.

4.4.5  Process Deployment
In this stage, the process model is deployed onto the run-time (production), typi-
cally a BPMS engine to enable it for execution. If this process already exists in
production, the new process model replaces it during deployment.

*	 A “process designer” is a business role that is concerned with the design of a business process
by taking into consideration its business objectives and automation possibilities.

74  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

4.4.6  Process Execution
This stage is about the BPMS automatically executing the process model based on
triggers to initiate process execution. The process runs in production, performing
the activities in it one after the other based on the order specified in the process
model involving human and system participants.

4.4.7  Process Monitoring
When the process is executing in production, in this stage, the process executions
are monitored by the process manager and/or analyst. The process performance is
measured using a useful set of metrics such as average turnaround time for a pro-
cess, number of processes completed in a unit of time, processes queued with users,
and activity completion times.

The process administrator* also gets involved in this stage to take administrative
actions on the processes, if required, such as restarting failed process executions.

4.4.8  Process Analysis
The process analyst analyzes the process metrics, the process model from pro-
duction in this stage. Performance-improvement opportunities are identified and
decided by the analyst.

4.4.9  Process Optimization
Here, the process analyst optimizes the process model based on the analysis done.
Process redesign is done and changed in the process model. For example, the pro-
cess logic is changed to reorder some activities, or change business rules, or drop
activities.

4.5 S ix Sigma
Six sigma comes from the quality control world. It is a management practice (and a
methodology) that focuses on business process performance in terms of its product
or service quality. It measures performance based on the defects found per collec-
tion of products. It was first implemented by Motorola. It is essentially a quality
management methodology.

*	 This is also a business role that is relevant in a process-aligned organization. A process admin-
istrator is concerned with administrating the business processes in operation at run-time. This
role monitors what is going on and takes actions such as forcefully terminating a process,
initiating specific process executions whenever required, deploying process definitions, mass
perform (or global) actions on processes including reassigning activities to a specific user, and
scheduling specific processes for execution.

Business Process Management  ◾  75

The term defect is used in a broader sense in six sigma; it is used to refer to
defects in manufactured products, problems faced by the customer accepting a
service from the business, a delay in receiving solution from the business, service
levels below customer’s expectations, or just about anything that makes a customer
unhappy with the business of the enterprise.

Six sigma is popularly applied in manufacturing, though it has, in recent decades,
been seen to be applicable to various types of business processes in enterprises.
It relies on data that is measured and verifiable by concrete means. It minimizes
assumptions in process metrics or data. Relentless measurement of performance
metrics and the pursuit of measurable improvement in metric is a characteristic of
this methodology. Six sigma uses statistical methods heavily to analyze the metrics
and defects data.

A key term used is six sigma quality that refers to a level of quality an enterprise
process has achieved with respect to its efficiency. If a business process produces
only less than 3.4 defects per a million units of products produced or services pro-
vided to its customers, then it is of six sigma quality. The efforts of six sigma proj-
ects in an enterprise that has undertaken this methodology would be to improve
their business process’s performance so that they reach this (or better) level of
quality.

The method consists of various steps that are performed by quality profes-
sionals and business managers. The steps include definition of business goals,
measurement of quality data, and analysis of the data for potential improvement
by identifying causes for performance issues; designing the changed process and
implementing it in production, controlling the process in production to catch and
act on deviations. BPM exercises in enterprises also involve six sigma methodolo-
gies for more successful BPM implementations.

4.6 L ean
There is a school of thought that focuses on reducing waste. It recommends doing
more with less. Lean is one process management practice that advocates this. It
comes from the manufacturing industry of Japan, where companies such as Toyota
adopted lean production systems and practices to improve quality.

As per lean practice, a common-sense-driven approach is to be used whereby
waste is identified and eliminated in the process. Any activity done in the process
that is not adding value to the customer is considered a waste as per lean and is to
be eliminated. It is in a sense reducing the flab from the process.

Some implementations of lean make the process flow smooth by following a
constant rate in production of items in the end-to-end process. They also manufac-
ture products to order rather than piling up supply. This inventory is just-in-time
(JIT). Nothing much is stocked for a future demand. Many implementations cut
wastage in the processes.

76  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

As per lean, there could be many types of wastages in processes. Some of them
are waiting at activities (considered as a waste because it only reduces the efficiency
and reduces value to the customer), overproduction of goods (since it leads to
increased inventory and thereby loss of value), and producing an item that is not as
per the customer’s needs. The practice analyses processes to get rid of these wastages
and fill the process with only value-adding activities. Lean has a very strong influ-
ence in reducing costs in processes.

Though it is applied more in production oriented processes or manufacturing
scenarios, it has been extended to other processes also including service processes
such as a BPO process. Lean demands a lot from the employees who are involved
in the process. They need to understand the concepts behind lean very well for
the process to really derive benefits from lean. Get it right first time is also a waste
reduction method as done in lean. Process analysts and process managers involved
in applying BPM to their processes can leverage the best of lean while redesigning
processes.

4.7  Process Redesign
It is also known as business process reengineering (BPR). It refers to the analysis
and redesign of existing business processes in the enterprise to achieve significant
improvements in the business process’s performance. Performance is measured and
compared in terms of standard business metrics for the organization. For example,
for a computer manufacturer, the measures could be the number of computers
sold per quarter, the average profit per computer, and so on. The redesign effort’s
objective is to gain remarkable improvements in these measures by changing the
process.

BPR is not essentially about incremental improvements in processes, it seeks to
drastically improve the process performance by radically redesigning it. Looking
at business processes from a “from the scratch” perspective and then designing the
processes, without any thinking limitations induced by system constraints or other
constraints, without any bias to improve the performance is the philosophy behind
BPR. For organizations, it means starting from a clean slate kind of approach. This
new design is then implemented in a way that helps the enterprise manage the tran-
sition to the new process smoothly. Implementation plays a big role in the success
of any BPR exercise. If the implementation is done properly, using proper methods,
BPR can result in significant gains for the enterprise. However, in the 1990s a num-
ber of its applications have been unsuccessful due to improper implementations.
Some of them have failed due to incorrect association of BPR with downsizing.

BPR was a strong movement in the 1990s. In the last 10 years, BPM has come
to be considered as succeeding BPR, with BPM bringing in technology support
business process change to achieve process performance improvement.

Business Process Management  ◾  77

4.8  Process Automation
BPM supports automation of processes to the extent possible. This means that the
old paper-based processes can be transformed to automated digital processes where
computer-based forms are used and work flows automatically from one participant
to another without any paper flowing between them. The idea is not to simply
automate the paper trail since that would mean importing all the inefficiencies of
the existing process as is too, but only gaining with respect to avoidance of paper
movement. Automation can do more here depending on how the process analyst
redesigns the business process. The concept is to redesign the process for more
effectiveness (optimization) and then automate execution of the process and its
steps for efficiency.

Processes describe, in an easily understandable way, the work done in enter-
prises. Typically, some of that work, which are activities in other words is per-
formed by humans and the others are automated by systems. Also, it would be
infeasible to think of automating some human tasks. BPM and any process auto-
mation done within its context would be more effective if (and when) it considers
both the activities that are/can be automated and the ones that are performed by
employees. Instead of looking at automation as a separate objective and proceeding
with achieving that, it would be more effective from the enterprise’s point of view
to enable automation within the BPM umbrella, including work/practices related
to business processes, such as BPR, Six sigma, redesigning, Lean, and design-time
optimization.

Let us take as an example, a credit card application form filled up by a customer.
The form is scanned and captured by the system first in the process. Then the sys-
tem extracts data from the form and allows the processing clerk to see all the details
in electronic forms in system screens. In the subsequent steps, the system could
do many automatic works such as validating certain details such as credit history,
sending automatic notification mails to the customer as confirmations, and notify-
ing participants. All these automations can be done to handle multiple credit card
applications or other service applications at the same time.

4.9  BPMS Products
Let us take a quick look at what some of the available BPMS suites in the mar-
ket are—the BPMS products. A BPMS supports BPM in all its activities covering
design-time as well as run-time (execution). Some examples, in no particular order,
are IBM WebSphere business process suite (WebSphere•, FileNet, Ilog•, MQ),
Intalio•, Oracle (with Fusion•, Collaxa•, BEA Weblogic•, and Aqualogic•, com-
bined), Pegasystems•, Metastorm•, Microsoft (BizTalk), K2•, SAP Netweaver•
(XI/PI), Savvion•, Lombardi•, Sterling Commerce•, and TIBCO-staffware•.

78  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

In the context of BPM, process automation refers to automating processes with
the use of BPMSs. Process analyst, process owners, business managers, and process
administrators all use the BPMS to leverage its capability to do process manage-
ment. Most of the BPMSs support process management functions to a great extent,
providing capabilities such as process simulation, process monitoring, and perfor-
mance measurement based on predefined metrics, and support process analysis
based on various methods including statistical methods. They maintain process
history data and provide querying capabilities for reporting and analysis. Querying
refers to retrieving specific information about processes from history data as well as
current data. People look at the use of BPMS in two perspectives:

The first one is to help analysts and managers to gain better understanding of
business processes and that understanding helps them in process analysis to poten-
tially improve the process. Here, the focus is not on whether the process is simple
or complex, but the value that they can bring from the process to the enterprise. In
this view, the BPMS is thus seen as a software tool that is used to comprehend the
process well.

The other is to use BPMS for automating processes. It is not necessarily about
eliminating human activities or replacing them with automated ones. The BPMS
can assist the users in performing their respective activities. It is also about BPMSs
executing the processes involving all participants. In this view, all the processes are
expected to be executable by the BPMS.

4.10  BPM Landscape
BPM work in an enterprise happens in various contexts. These contexts are shown
in Figure 4.2. Each one typically takes the form of a project. One set of BPM proj-
ects are strategic in nature. This work identifies and studies the business strategy of
the enterprise. This could be driven by contexts such as mergers and acquisitions,
and partnerships with other enterprises. What are the core business processes of the
enterprise, what are its support processes? These are questions addressed in such
projects.

Business strategies

Business process portfolio management

Business process performance management

Business process analysis and design

Business process management systems and implementation

Figure 4.2  BPM work—the context.

Business Process Management  ◾  79

Portfolio management for business processes is another set of projects. Here the
objective is to identify and catalog all the business processes in the enterprise and
take decisions on how they are to be managed. Typical concerns in this work are as
follows: what processes can be outsourced, which ones should be insourced, which
ones need changes/which ones do not, and which processes can be automated by
systems.

Process analysis and design is another context for BPM projects. Business pro-
cesses, especially the operational ones, are analyzed and redesigned for betterment.
This is the core part of process engineering. Processes are looked at hierarchically
with value chains (highest level processes) at the top, including supply chains, and
then they are broken down into processes at lower levels.

The next context for BPM work is business performance management. For
business processes, key performance indicators (KPI) and metrics are defined that
reflect their efficiency and effectiveness and help in process improvement efforts.
This set of projects also includes the change management effort when business pro-
cesses are changed for optimization and other reasons.

Implementing a business process using BPMS is another category of BPM
projects. These projects involve automation of business processes with the use of
BPMS, addressing the life cycle stages process design and execution. BPMS is used
to design, deploy, execute, and manage the processes.

4.11 E xercise Questions
	 1.	Do you think systems are a must for business process improvement? Think

of a few scenarios from your context where you think process management is
better done without involving IT systems.

	 2.	Are there things in BPM that sound too ambitious to you?
	 3.	Have you adopted any specific quality control practice in processes that you

are familiar with? How do those fit in a BPM exercise?

81

Chapter 5

Components of PCA

5.1 O bjectives
◾◾ To understand the components of PCA in detail
◾◾ To understand the concept of business process model and modeling in detail
◾◾ To appreciate the need for high-level business and extended technical level

business process modeling
◾◾ To differentiate between an abstract and a concrete business process model
◾◾ To learn the principles related to process modeling
◾◾ To learn the techniques related to process modeling
◾◾ To understand the relevance of process architecture
◾◾ To understand the concept of services
◾◾ To learn the principles behind making process definitions executable

5.2 T he Business Process Model
The process model is the core element of this architectural style. It is the abstraction
of the process logic for the system. As we discussed earlier, the IT system that is
being architected supports a specific business process of the enterprise. The process
model is a representation of what happens in that business process. In this repre-
sentation, the business process is explicitly defined. It defines (or holds) the system’s
business objective and purpose.

The process definition describes (encapsulates as a component) the process logic
such as control flow, data dependencies, and rules involved in the achievement of
the business objective that the specific process is set out for. In this architectural

82  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

style, the process model is given a well-defined role and place in the architecture
of the system. Its role is the primary role in the architecture. This component has
design-time (static) as well as run-time presence. It dictates the execution of the
business logic and the execution flow in the system.

The definition of the process is in a formal process definition language. This
is important to enable the model to become a run-time component in the system
and for it to get itself executed. The rigor of formalism makes sure that there are
well-defined ways of reducing the model to other forms. It is the process model that
determines how the IT system would achieve its business objective.

The process model’s objective is to direct the execution order and execution of
business logic elements of the IT system so that the business process is performed.
The flow of control it brings into effect across the business logic elements is as per
the process logic given in the process definition.

Specifically it has the following responsibilities:

◾◾ Carry out the intended flow of the business process.
◾◾ Coordinate the execution of and follow the order of the execution of various

related business functions as required by the business, including branching of
the flow based on rules and performance of steps in parallel.

◾◾ Maintain the state of the whole business process including its context.
◾◾ Handle error situations in the business process.
◾◾ Trigger the execution of steps in the process that in turn perform specific

business functions.
◾◾ Receive messages from processes external to this process and trigger the

execution of specific business functions (i.e., steps) corresponding to that. If
required, provide response message to the sender process.

◾◾ Connect and integrate human roles into relevant points in the flow so that
they can perform their respective business function in the context of the over-
all process.

It abstracts out the process logic for the other components of the IT system so that
they focus only on their specific business functions. This allows any changes to the
process to be contained within this component itself without impacting other com-
ponents. It also hides the implementation of the process logic from other elements.

5.2.1  Structure
It is composed of a set of activities, paths involving activities, branches, splits and paral-
lel paths, joins, business rules influencing the branch selections, and process parameters.

Each activity is associated with a specific business function and is considered
atomic, whereby the business function is a logically complete operation that typi-
cally changes the state of the business entity. An activity does not necessarily need
to change the state of an entity or do some update operation. An activity can also

Components of PCA  ◾  83

perform a non-update (does not affect state of any entity) function such as just an
information retrieval function or perform some rule check—check credit history,
get item availability etc. are all examples of such activities. The business function is
the action performed in the activity.

	 I.	For a user activity, typically the activity itself is composed of one or more
tasks that are performed in a sequence to realize the business function for the
activity. Each of the tasks is performed by the same user to whom the activ-
ity is assigned to. The user activity has specified in it the role of the user or a
work allocation specification that would let the activity be assigned to a user
at run-time.

	 II.	System activities can be categorized into two types based on the nature of
their execution by the system:

	 A.	 The first one is “send” type activities where the process executes the activ-
ity by invoking the service associated with the activity (activity-service).
The service provider for this service is one of the business logic elements
in the architecture. And, the service performs the action expected of this
activity. This business logic element may be external or internal to the
enterprise and is physically separate from the process.

	 B.	 The other is “receive” type activities, where the process receives invoca-
tion for the activity from outside of the process and the process performs
the action expected of the activity instead of any service provider (i.e.,
service) performing it. The invoker (caller) of the activity would typically
be another process and only upon this invocation the activity is carried out.
1.	 A receive type activity can further be synchronous or asynchronous.

It is synchronous when the process (from outside) invoking this activ-
ity waits for the execution of activity to get completed and the activity
to respond back to it with output data. It is asynchronous when there is
no data expected to be sent back to the invoker and the invoker does
not wait for the activity execution to complete.

Process parameters make up the context of the process. They are the business data
that are relevant to the process and that it deals with. They are also called process
properties. Their values keep getting updated while the process execution progresses.
The state of an active process is primarily defined by the values of process param-
eters at that point of time.

A branch causes the flow in a process path to branch into one or more of the
multiple paths ahead of it. In a conditional branch, the branching done is based on the
branching condition specified in the branch. Here, the condition is a business-friendly
relational expression* format or an arithmetic expression format or a general expression

*	 Expressions involving relational operators such as >, <, >=, <=, and, or, true, and false.
Relational expressions always result in a true or false value.

84  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

format that evaluates some value.* These expressions would make use of the process
parameters and their values at run-time. During process execution, based on the eval-
uated value, the matching path from the set of paths going out from the branch is
selected and executed.

The conditional expressions are business rules that influence the flow of the
process. These are rules whose scope is at process level. They influence the selection
of paths at a branch.

Forks and joins enable parallel execution within the process. Forks split a single
path into multiple paths that are executed simultaneously by the process. Joins
merge the parallel flows at a subsequent point in the process from where the single
path execution is further enabled. Joins also merge paths from branches.

To perform the process logic, the process model maintains a list of activities to be
performed, their order, and the individual parameters they respectively require. As and
when it runs the activities, and also during the course of their execution, it updates
their state and the process execution state. It tracks the process parameters for updates
from activity executions by synchronizing their updates with the activity executions.

It allows the process layer element in the architecture to carry out process func-
tions such as starting, resuming, and terminating processes by letting the latter
interact with it.

5.2.2  Relationships
The process model has interactions with the following elements of the architecture.

5.2.2.1  Business Logic Elements

During process execution, the process model interacts with the respective business
logic elements associated with the respective activities for executing the activities.
For a system activity, execution of the business logic element performs the business
function of the activity automatically, since it is the business logic element that
implements the activity. The process model becomes a director and the business
logic components become subservient to it. For a user activity, the process model
assigns the activity to be performed by a role or a specific user so that the activity
can be carried out by the user with the user performing the business function with
the help of GUI screens.

5.2.2.2  The Process Layer

The process model is housed in the process layer and the latter interacts with it for
the process execution and operations on the executing processes. This interaction

*	 They need to evaluate into some value at run-time during the process execution. For example,
“part amount * number of parts” can be an expression specified for branch.

Components of PCA  ◾  85

is enabled through interfaces provided by the process model to the process layer.
These interfaces allow the process layer to

◾◾ Trigger starting of the execution of a process
◾◾ Trigger resumption of a process that has been hibernated
◾◾ Handover to the process waiting for a message the message intended for it

coming from external sources such as other processes
◾◾ Indicate to the active process that the user activity that it is currently waiting

for has been completed by the user and provide the parameters supplied by
the user activity to the process

The process model also interacts with the process layer to assign user activities to
specific users or roles during process execution. It invokes the interfaces provided by
the process layer for this purpose. Process model uses the process layer services to
invoke the business logic elements corresponding to system activities in the process.

5.2.3  Properties of Processes
Let us look at the key properties, characteristics, constraints, and principles of pro-
cesses in this architectural style:

	 1.	Processes are executable—Process models have the power of getting executed
in a computing environment or platform. The process definition is thus virtu-
ally a computer-executable code. They are not just paper models.

	 2.	Formal language must be used for definition—Defined formally, process
definitions provide unambiguous understanding and are interoperable with
other processes. Reduction of the definition to other forms suitable for com-
puter execution is also helped by formal language use.

	 3.	Processes communicate (or interact) with other processes—A process can
be dynamically related to another process. At run-time, the former process
communicates with the latter process and this relationship manifests only
at the run-time. In other words, they are not bound to each other stati-
cally (i.e., during process modeling). Processes can also be composed of other
processes at least for managing process-model complexity and improving its
maintainability. The inner-level process is called a subprocess and the outer-level
composed process is called the parent-process. This composition can be recursive
with the subprocess itself being composed of further processes.

	 4.	Processes are mobile—Mobility refers to the ability of processes to commu-
nicate with other processes by sending and receiving data to/from them as if
those processes were internally part of the process’ own environment or of
the process itself. It also refers to the nature of the execution whereby at run-
time, a single process can execute across multiple machines or environments
seamlessly:

86  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 a.	 Different occurrences of executions of a single process can happen in
a different computing environment, that is, each time a new execution
of the same process model happens, that process execution can happen
in a machine different from the one where it happened for the previous
execution.

	 b.	 The communication channels used for inter-process communications are
themselves treated as data (being moved around within one program)
that is just communicated (moved or transferred) between the processes
and thus are not bound tight.

	 c.	 Unique identifiers are used for processes that are in execution for making
the processes mobile and these process identifiers are dynamically passed
around to other processes during run-time. Process identifier is a refer-
ence to the entire executing process.

	 5.	Execution of a process is triggered on occurrence of events such as
	 a.	 Request from a user to start
	 b.	 Auto-start based on a schedule set previously
	 c.	 Another process initiating the execution of this one
	 d.	 Arrival of a message from an external source (say an application received

by the system from a customer)
	 6.	The process identifier uniquely identifies an execution occurrence of a

process.
	 7.	Data flow—Any data flow involved between business logic components in a

process model must not be captured separately outside of the process model
in any form. The process logic formally includes this flow as well.

	 8.	Business rules applicable to decision points should be part of the process
model itself—Rules affecting the flow in the process should be explicitly
defined in the process model itself at the respective conditional branches and
not anywhere else.

	 9.	Business logic components must not directly interact with each other—They
should only interact with the process. Inter-business logic communication
should happen only through the process as directed by the process. A busi-
ness logic element would not know the next business logic element that is
to be executed. This is known only to the process model (and driven by the
process model alone); the business logic element just returns control back to
the process.

	 10.	Processes are loosely coupled with the activity service components of the
architecture—At the implementation level, the components implementing
the activity services are not bound to the process model. There is no hard cod-
ing of the concrete business logic elements in the process. In other words, the
business logic elements in the system can be dynamically changed without
any change to the process. At the design level, the activities themselves can be
rearranged within or dropped from the process.

Components of PCA  ◾  87

	 11.	Processes can work across enterprises and departments—Processes can involve
multiple departments within an enterprise or multiple enterprises in their scope.

	 12.	Processes have state—State of a process at a point of time includes the context
of the process and its execution status at that point of time. Context is the set
of business parameters defined for the process and their values at that time.
Each process instance is unique and has its own context and state that needs
to be maintained throughout. The state of each process instance is required to
be stored in the storage medium at logical points during the process execution
flow. Some categorize processes mainly from a technical (system) perspective
based on the state-related system behavior into the following processes:

◾◾ Stateful processes
		 These are business processes that persist their state in a secondary storage

medium while they are in execution. This way, stateful business processes
preserve their state during their execution by committing the process
state at each activity in the process—each activity becomes a different
transaction as far as the system is concerned.

◾◾ Stateless processes
		 These business processes do not persist their state in any secondary stor-

age during their execution. All the activities in the process are treated
as part of one single transaction as far as the system is concerned and
they are committed together or rolled-back together. If any activity fails
while the process is in execution, the effects of the entire process instance
is rolled-back. On the other hand, if the process successfully completes
execution through all the activities in the sequence, the effects of the
process instance is committed.

	 13.	The process context must not become a dump of all business data—Among
the business data applicable to the business functions of the IT system, only
those that are key and relevant for the process at the process level should be in
the context. All other business data are best confined to the respective busi-
ness logic elements.

	 14.	Each activity is atomic—Simple activities are atomic. When executed from the
process, they either complete total execution successfully or fail fully, rolling
back to the state they were in before their execution. Complex activities (activi-
ties that contain other activities under them that are to be performed) are not
assumed to be atomic. They are expected to take care through their compensa-
tion logic and fault handling, faults occurring in them. If any complex activity
fails and the state of the complex activity needs to be rolled back to its previous
state, the compensation logic should ideally take care of what is to be done.

	 15.	Processes can be hibernated and revived—When they are not active, pro-
cesses can be hibernated.* By persisting, the state of a process in a medium

*	 It is also called passivation.

88  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

enables resuming the process execution later from the point where it was
paused/stopped/hibernated. When the process resumes execution, the state
at the time of hibernation is maintained.

	 16.	Processes can have distinct duration characteristics—each business process
has a typical duration for its execution. Some of them are short-running pro-
cesses (also called short-lived processes). They typically run only for a few
seconds, or at the maximum, a few minutes—the entire process’ execution
gets completed within this very short duration. On the other hand, some pro-
cesses are long-running processes (also called long-lived processes). They have
activities that take a longer duration to complete execution, in the order of
minutes, hours, or even days. These processes typically involve user activities,
receive activities, or parallel flows. Long-running processes are always stateful
processes.

5.2.4  Levels of Models
There are two levels of the process model. Both are very relevant and required for
the process model to be complete.

5.2.4.1  High-Level Business Process Model

This is a graphical model where the activities of the processes are shown with their
ordering. This model is at a higher level of business abstraction and focuses on key
business aspects. It captures the control flow and business details of the activities
to be performed in the process. It need not have all the details sufficient to let the
process be executable in a computing platform. At the minimum, it would have the
outline of the process that includes

◾◾ The ordered set of activities with the flow details such as sequences, parallel
paths, and branches

◾◾ Higher level details of the activities such as name, whether the activity is
system or manual, the broad set of input business data (input parameters) it
needs, the broad set of output business data (output parameters) it provides,
and a small description of the business function of the activity, which typi-
cally exists as an annotation or property of the activity

◾◾ A user role or work allocation specification for user activities that would at
process execution cause the process to assign the user activity to a particular
user or a set of users for performing the action

◾◾ A set of business entities (process parameters) at the process level
◾◾ A rough sketch of compensation flow that gives which activities have to be

performed and in what order to compensate for the effects of the process
execution upon the occurrence of an error

◾◾ Business rules for conditional branches in the flow

Components of PCA  ◾  89

5.2.4.2  Executable Process Model

The executable process is the detailed level version of the high-level process model.
It is also called detailed business process model and when this term is used it refers
to the graphical version of the process definition. This model has the rigor and
required details to make the process model complete-for-execution by a comput-
ing platform. The language in which it is modeled would provide clear execution
semantics for it. In addition to what the higher-level process model has, details
would be available in the executable process model that would enable it to be exe-
cuted and managed by the run-time platform.

The high-level process model can be seen as an abstract model and the execut-
able process model as a concrete model. This is because the concerns related to the
execution of the process in computing systems are not addressed in the high-level
model; these aspects are specified in the executable process model. The semantics
required for execution need to be accurate and cannot have any ambiguity so that
the model can be faithfully reduced to computer instructions.

5.2.4.2.1  Block Structure

A programming language for computers is called a block-structured language if it
provides constructs for enclosing code segments within well-defined blocks so that
the computer program written using it is structured as a set of blocks of code.
Most of today’s programming languages are block structured. It is a specializa-
tion of structured programming. Some examples are the use of “parenthesis” in C
language and Java, “begin…end” in PASCAL, and so on. There can be more than
one construct in the language for defining blocks. Blocks can also be nested one
completely within another, and to multiple levels deep within the program. Also,
there can be multiple sections within a block with the use of one construct for each
section. One example is “if-then…else if…” in Java. Here, within the single block,
each keyword identifies a section and has a code within it.

A program in a block-structured language is easier for computers to understand
and operate. The block structure is more intuitive for a computer to execute as it is
well structured with no logic flow ambiguities.

5.2.4.2.2  Structural Aspects of Process Model

Executing the process model in a computer is easier if the process model is defined
in block-structured fashion. A block-structured process representation would be
similar in form to a computer program (in high-level programming language).
Unambiguous semantics provided by this structure helps the platform to easily
transform (translate) the model into system code for execution. Therefore, a block-
structured process model is the most preferred executable process model for busi-
ness process.

90  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

The block-structured process model has the following structural characteristics:

	 1.	The process would be a set of blocks. Each block is a segment of the process
where there are one or more fully defined activities.

	 2.	Blocks can be nested one within another to any level.
	 3.	The process must be well-formed. This means that
	 a.	 Every split in the process must be completed by an equivalent join. This

would ensure that when a path splits into multiple paths, all of them
would merge back into the original path at a subsequent point.

	 b.	 Every conditional branching must be completed by a join down the line
where the branches merge, to enable definition of the common path to
be followed after the unique path of each branch. This merge point also
marks the end point of the entire block for conditional branch.

	 c.	 The process must have a clear start step and all the end steps properly specified.
	 4.	Any block in the program must be closed before its enclosing block is closed.

A block cannot span across multiple blocks. A block must either be at the top
level of the process or fully enclosed within another block. Blocks cannot
cross other block boundaries, that is, a block cannot begin in the middle of
one block and end in the middle of another block.

	 5.	All parallel paths must merge at a subsequent point and continue as a single
main path.

	 6.	There cannot be any path in the process that is left dangling. No loose ends
in the paths. If a path does not join with the parent path, then it must com-
pulsorily have a “process end” step at its end.

	 7.	No infinite loops in the process. The high-level process model must have only
acyclic graphs. This would mean that in the graph, the activities cannot get
into a loop.

	 8.	Any decision making done in the process must be explicitly represented as a
conditional branch or a construct that represents finite repetitive execution of
activities.

5.2.4.2.3  Key Aspects of the Executable Process Model

Apart from the block-structure aspects, the executable process model would have
the following taken care of in it:

◾◾ Completion of the abstract process definition (also, refinement of the partial
process model). Addition of missing activities.

◾◾ Process parameters and types.
◾◾ Complete set of input and output parameters for each activity with their

types.
◾◾ Technical attributes.
◾◾ Service interface for each activity.

Components of PCA  ◾  91

◾◾ Bindings for activity services.
◾◾ Mapping GUI screen details.
◾◾ Ensuring atomicity of activities.
◾◾ Subprocess creation and mappings, synchronous subprocess invocations ver-

sus asynchronous subprocess invocation decisions.
◾◾ Completion of the opaque constructs.
◾◾ Process deployment details.
◾◾ Correlation details for each receive activity including manual activities.
◾◾ Process triggering (process execution start) details.
◾◾ Compensation flows for undoing effects of execution for failures.
◾◾ Fault handling (error handling) flows.
◾◾ Scope or context defined for a set of activities (as complex activity). A trans-

action scope defined for it that applies to all the activities in this complex
activity specifying the transaction protocol, the transaction context, and the
transaction manager details to be used by them.

◾◾ Unique name for the process definition (called process type) and key busi-
ness entity (such as order id) that would act as a unique business identifier for
reference to the run-time occurrence of the process from outside. This enables
mobility of process definitions and process instances.

◾◾ Mappings between activity and process parameters.
◾◾ Rule invocation details for rule activities such as rule identifier.

5.2.4.2.4  Run-Time Manifestation of Process

When a process execution is triggered at run-time, it is considered as an occurrence
of the process execution. This is called the process instance. Process instance exists
as a separate entity with respect to the process model element (process definition).
Thus, there can be multiple process instances corresponding to a single process
definition. Each process instance is assigned a unique process id that uniquely iden-
tifies the process instance from other instances. The process parameters are in the
form of business data variables of the process that have been defined of a data type.
They are actually variables in the executable process model, and as the process
execution keeps moving forward, their values undergo change depending on the
process logic.

5.2.4.2.5  System Activities

In the executable model, the activity needs to have more details specified in it.
Since each send type activity is performed by a service that is outside of the pro-
cess model, the service interface for the service would have to exist as a part of the
activity. The activity output parameters, which are the parameters that would be
sent to the service as input message, the activity input parameters, which are the
parameters that would be received from the service as output message from the

92  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

service, need to match with the input and output message in the service interface.
The service interface would also have the bindings for the service, for use by the
process model in invocation of the service, such as the communication protocols,
logical business port for the communication, and in some cases the concrete service
port address. The concrete bindings are best known and bound as soon as the con-
trol reaches the activity but just before the service invocation, for better mobility.

For receive type activities, it would have the input parameters and output
parameters that it would expect to receive from and send to the invoker (which is
outside this process), respectively. The receive type activity is thus a service offered
to processes (or systems) outside this process that they invoke based on their process
logic. The service interface for this service would have been made available to the
invoker. The output message described in that service interface would be the input
parameters for the activity, and the input message described in that interface would
be the output parameters from the activity.

In the case of synchronous receive activities, upon invocation, the activity could
be expected to perform some action before the control returns to the invoker. This
action is available in the receive activity as a set of system activities that are ordered.
In response to the invocation, the process performs these activities in the order and
it returns output to the invoker only after that. The invoker would have been wait-
ing to receive this control back till this time.

An important concept in the context of receive activities is correlation. It refers
to the idea of using a key business data to determine the right process instance from
among all live process instances, so that the incoming invocation message can be
handed over to the right receive activity. This key business data should uniquely
identify a process instance. For example, let us take “cancel order” receive activity
in the case of an order process. Let us say we have three instances of it running with
the process property “order number” value as 22, 33, and 44, respectively, for each
of them. When the customer’s process (or system) invokes this activity to cancel
the order number 33, the customer invokes the cancel order service provided by the
process model. This invocation needs to be rightly mapped to the process instance
corresponding to the order number 33 and not to the other instances (22 and 44).
The business data order number that would be one of the input parameters for the
activity is used for this correlation. This input parameter is identified as the correla-
tion parameter for this activity.

5.2.4.2.6  User Activities

Each user activity would have in it a logical mapping to the GUI screen of
the corresponding GUI application for the function to be performed by the user in
the activity. The output and input parameters from and to the activity, respectively,
would be the input and output parameters for the GUI application, respectively.
In this sense, the input parameters for the screen are the parameters used by the
GUI application to display business parameters to the user. Similarly, the output

Components of PCA  ◾  93

parameters from the GUI application are (or based on) the parameters that the user
inputs in the screen. Activity is still a service performed by a human role though;
therefore, the service interface for the service is also part of the activity. It would
have the bindings for the service, for use by the process model run-time, such as the
communication protocols, logical business port for the communication. Here too,
the concrete bindings to a GUI application’s uniform resource identifier (URI) are
best known and bound as soon as the process flow reaches the activity, for better
mobility.

5.2.4.2.7  Subprocesses

A process model may have subprocesses in its composition, which means that the
execution model would have the necessary details to be able to invoke the subpro-
cess and also ensure that the main process’ (parent process) context is shared with
the subprocess. There would be an activity (subprocess activity) in the parent process
to invoke the subprocess. Subprocess activity would contain the output and input
parameters to be provided to and received back from the subprocess. These would
in turn be the input and output parameters, respectively, in the subprocess’ process
model (and as input and output messages, respectively, in its service interface) and
like in send type activities, the service interface for the subprocess is included in the
subprocess activity of the main process. The subprocess activity should also have
the detail to identify if the subprocess is to be invoked synchronously (where the
subprocess activity in the main process would wait till the subprocess’ execution
is over) or asynchronously (where the subprocess activity just launches the execu-
tion of the subprocess as a separate execution and does not wait for the subprocess’
execution to get over). In the case of asynchronous subprocesses, there is no output
parameter from the subprocess to be received by the subprocess activity in the main
process.

5.2.4.2.8  Rules

Rule activities are activities that invoke business rules that are separately kept in
the business rules layer. An example of a business rule is “is claim eligible,” in an
insurance claim process. This business rule is a complex rule that is defined and
kept in the business rules layer for execution. Such a rule would have lots of checks
to be done, insurance policy clauses to be matched, company claim precedents to
be referred to, and based on all this the rule has to arrive at a decision whether this
claim qualifies for further processing.

Rule activity would have the output parameters and input parameters to be sent
to and received from the rule mapped to the input and output parameters, respec-
tively, of the rule. Bindings provide the activity with details of the rule invocation
such as the location and the protocol. For better mobility, concrete bindings are
ideally done dynamically as soon as the control reaches the activity.

94  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

5.3  Process Layer
Process layer is another key element of this architectural style. This is the architec-
tural layer where the process model is put and kept. It contains the process model
and the process instances of the process model. Process layer is the abstraction of
the process execution and process management infrastructure for the system. It
is the manager for the process model and it is the execution environment for the
process model where the process is executed.

5.3.1  Responsibilities
Process layer’s high-level responsibility is to manage the life cycle of process
instances in the system. As part of this, it performs various functions related to
processes.

Specifically, it has the following responsibilities:

	 1.	Trigger the execution of a process by creating and launching the process
instance. Do this upon the occurrence of process instantiation triggers, that
is, events requiring process instances to be created or conditions that cause
new process instances to be launched.

	 2.	Allow the process instance to execute by providing an execution environment
for the process instance, within which the process instance can execute its
own process logic.

	 3.	Be on the watch for the occurrence of process instantiation triggers, such as
	 a.	 Receipt of message from a source external to the system to start a process.

For example, an application for loan received from a customer.
	 b.	 Arrival of request from another process outside the system to start the

execution of a process of this system.
	 c.	 Invocation of a subprocess by its parent process in the system.
	 d.	 A user requesting the start of a process, say a leave request.
	 e.	 A time event such as a schedule set previously for starting a process execu-

tion. This is considered an auto-start trigger. For example, run the audit-
reporting process at the end of every month.

	 4.	Persist the state of each process instance in a persistent medium (storage
such as database) at regular logical intervals in the process execution such
as at the start of the process, before the execution of activities, and after
the execution of activities. As part of this, the process parameters (vari-
ables) and their values are captured—this is the process context. Activity
states are also captured along with the data items such as timestamps
(begin timestamp, end timestamp) that are relevant for process history.
The process state information is used by the process layer to faithfully
recover/restore and revive a process instance from an exception, or revive a
passivated process instance upon the arrival of the message it was waiting

Components of PCA  ◾  95

for, and so on, so that the process execution can continue from a logically
correct (valid) state.

	 5.	Hibernate a process instance when it is in a “waiting” state (it is not doing
anything) by persisting the entire process state in a persistent medium and
then removing the process instance from run-time. In a waiting state, the pro-
cess instance would not be doing anything other than waiting for a message
to come from outside the process. This happens when the process instance’s
execution is at a receive activity or a user activity.

	 6.	Revive a hibernated process instance, upon the receipt of the intended mes-
sage it was waiting for and resume the execution of the process instance from
that point in the flow where it was hibernated.

	 7.	Forcefully terminate a process instance if a request is received for premature
termination of the process instance.

	 8.	Once a message is received (invocation into a receive process activity), corre-
late the message to the right process instance. That is, identify which process
instance the message is intended for:

	 a.	 Then, hand over the message to this correlated process instance.
	 b.	 If the invocation received is synchronous, once the message is supplied to

the correlated process instance, wait for the corresponding receive type
activity in the process instance to complete its execution and return the
output parameters to it. And, return the output parameters to the invoker.

	 9.	Receive notification from a user that the user has completed performing the
user activity. Correlate it to the right process instance and pass on the input
message received in the notification to the process instance so that the mes-
sage reaches the waiting user activity.

	 10.	Provide services through interfaces to the process model to invoke the ser-
vices corresponding to the system activities (send type).

	 11.	Provide services to the process instance so that a user activity in the process
instance is assigned to the specific user or role that has been identified by the
work allocation logic of the user activity.

	 12.	Provide process instance/activity instance life cycle-related functions as ser-
vices to other systems. Some such services are

	 a.	 Trigger new process instance.
	 b.	 Lock a user activity to a user (in the case of user activities that are assigned

only to a role) when a user picks up the activity for performing action.
	 c.	 For a user to wait for the next activity that is assigned to the user in the

process, after completing the user’s current activity in the process. This is
relevant in processes that are of the case-handling pattern, where all the
activities are assigned to the same user.

	 d.	 For the GUI application to pull its input parameters from the user activity
in the process instance, when the user is ready to perform that user activity.

	 e.	 Reassign an already assigned user activity to another user.
	 f.	 Notify that the user activity has been completed.

96  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 13.	Provide process administration functions on process models and instances as
services to other systems. These are services such as

	 a.	 Deploy process models so that they are ready to be executed. The process
layer translates the process model into executable code.

	 b.	 Un-deploy process models so that they cannot be executed in the future.
The process layer totally removes the process model from the run-time
repository.

	 c.	 List of deployed processes.
	 d.	 Full detail of the process model in its entirety.
	 e.	 Forcefully terminate a process instance.
	 f.	 Resume or restart a system activity that has failed in a process instance.

Resume a failed process instance from the point of failure.
	 14.	Provide services for querying such as get the list of user activities assigned to

a specific user (or for a role) waiting for action, get process instances currently
alive* (meaning instances that have not completed their full execution yet),
and get process instances that have failed with some error.

5.3.2  Interrelationships
The process layer being the process execution environment, it interacts with almost
all the components of the architecture and vice versa. It is related to the other com-
ponents of the system in the ways mentioned below.

5.3.2.1  Process Model

The process layer has a “contains” relationship with the process model since the
process model is housed in the process layer. Process layer instantiates the process
model for execution and initiates the process instance’s execution. The entire life
cycle of the process instance is controlled and managed by the process layer. The
process layer interacts with the executing processes to perform operations such as
process hibernation, process resumption, and process and termination (forced). It
interacts with the process waiting to receive an external message in the case of a
system activity or a user notification message in the case of an active user activity.
In this interaction, the process layer hands over the message received to the process
through the interface provided.

The process layer provides services to the process model for different functions.
One is for assigning user activities to a user or role. After deciding which user or

*	 Throughout this book, the term “alive” or “active” processes is used to mean the process
instances that are currently in execution status. Apart from the process instances that are cur-
rently physically running in memory, this also includes the process instances that are currently
hibernated, and the ones that are currently down (failed) with error. This does not include the
processes that have completed their full execution (from start to end) and those that have been
forcefully terminated.

Components of PCA  ◾  97

role the user activity needs to be allocated to, the process model interacts with the
process layer to actually make that assignment. Another function the process layer
provides is invoking business logic elements for system activity services (send type).
When the process is at a send type system activity, the process model interacts with
the process layer to perform the invocation of the activity’s service. The process
layer knows how to invoke the business logic element that implements the service,
taking care of the communication protocols, service look-ups, transport mecha-
nisms, and data transformations involved in that.

Yet another interaction is when the process model executes the subprocess
activity. The process requests the process layer to trigger the instantiation and the
execution of the subprocess. Based on whether the subprocess is to be invoked syn-
chronously or asynchronously, the process model waits till the subprocess execution
is complete or not, respectively.

5.3.2.2  Business Logic Elements

The process layer interacts with the business logic elements for the system as part of it
carrying out the invocation of the activity services on behalf of the process instance.
This applies only to the send type activities. It invokes the API exposed by the business
logic element passing the output parameters from the activities in the form expected
by this API. If it is a synchronous invocation, it waits for the business logic element
to complete the operation and return back with the input parameters for the activity.

5.3.2.3  UI Application Layer

Interaction with this layer is applicable (or important? or relevant?) for the user activi-
ties in the process. The UI* application that supports the user activity interfaces with
the process layer to notify the process layer of the completion of the user’s action in
the user activity so that this information can be passed on to the process instance.

The UI application for the users also interacts with the process layer to get the
work items (list of user activities across process instances) assigned for a particular
user or the work items that are marked for a specific role. This list is displayed to
the user by the application, so that the user can pick up work items to perform and
complete the required action on it. For those work items that the user picks up that
were originally not assigned to any specific user, the UI application again interfaces
with the process layer to get that user activity locked to this user so that there is no
conflict with other users. As part of this, the UI application also fetches the output
parameters from the user activity of the process instance by interacting with the
process layer.

Interaction the other way round is possible too with certain types of user par-
ticipation models. Some such models are as follows: The process layer interacts with

*	 They are mostly graphical interfaces (GUI) today.

98  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

the UI application to push the user activity to the user as soon as in the process
instance, the user activity is ready for execution and assigned to the user.

5.3.2.4  External Process Systems or Other Processes

These include

◾◾ Systems external to the process
◾◾ Other processes running external to this process environment
◾◾ Other processes running in the same environment as this process, but are not

in a main process–subprocess relationship with this process

They interact with the process layer to trigger new process instances, or send
message (invoke) to a receive type system activity in an active process instance.
These interactions are enabled through the interfaces provided by the process layer
to the external systems and processes. An example is, in an order process, after
the order has processed the preliminary processing steps and before it proceeds
with the final processing, the customer’s system (external) might need to send an
order confirmation to the process instance to the receive activity “receive order
confirmation.”

5.3.3  Structure
Figure 5.1 shows the composition of the process layer.

It is composed of

◾◾ Process execution layer—concerned with the core execution of the process
instances after instantiating them.

◾◾ Adapter layer (collaboration layer)—takes care of entire invocation mecha-
nisms and technology aspects such as communication protocols, in the inter-
action of process layer with the business logic components. Also takes care of
the same aspects in the invocations received into the process instances from
systems or processes outside.

◾◾ Process persistence component—concerned with persisting the state of active
process instances in a nonvolatile medium.

◾◾ Process repository—this stores the process model and the process run-time
data such as full history for each process instance for active as well as com-
pleted process instances.

◾◾ Correlation component—takes care of correlating an incoming message
(invocation) to the matching process instance and activity.

◾◾ API layer (interface layer)—concerned with exposing interfaces to components
outside the process layer for the various functionalities the process layer offers.

Components of PCA  ◾  99

5.4  Business Logic Elements
Business logic elements (BLE) are concerned purely with their specific business
functionality and the business logic for that functionality. They are not supposed
to be looking into process logic, data flow, controller functions, or presentation
aspects. In the architecture, BLEs support the system activities that are invoked in
the process execution. They implement the services corresponding to the activities.
Their business logic or how they support the business functionality is purely inter-
nal to themselves and not visible to the process. For example, in a purchase order
process, the system activity “check inventory” is supported by the service “check
inventory” provided by the “inventory services” BLE.

Though a single BLE could provide one or more services, each activity-service
is supported by only one BLE and not by a mix of two or more of them. Internally,
each BLE is in turn composed of business subcomponents that together implement
the functionality expected to be delivered by the BLE. BLEs could be internal to
the organization or external. For example, in the purchase order process, the system
activity of “validate credit card” is provided by a BLE that is with a third party, the
credit card merchant (say Mastercard). Thus, this BLE is from an external organiza-
tion as far as the process is concerned.

Adapter layer
Receive

Receive

Invoke

Invoke

Invoke
Receive API layer

Correlation component

Process execution layer

Uses

Uses Uses

Process persistence layer

Process layer

Process
repository

Figure 5.1  Components of process layer.

100  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

During the run-time, the control comes to the BLE from the executing process
instance when the flow reaches the activity with which the service provided by this
BLE is associated. As part of this invocation, the BLE would then take in the input
parameters supplied by the activity in the process and perform its business logic. After
the completion of the business functionality, it returns the control to the process along
with it supplying the output parameters from the operation. In the case of the “vali-
date credit card” example, the service would be given the credit card number, card
expiry date, and the customer name as its input parameters. The service implementing
component would then check the details in the credit card system and validate the
credit card limits along with the card’s authenticity. Once this validation is complete,
it returns its output parameter “Card Validated OK” with true value or false value
depending on whether the card is valid or not, to the process with the control.

5.4.1  Principles
BLEs are an abstraction at the business logic level. At this level of abstraction,
they are loosely coupled to the activities in the process. The coupling is established
dynamically at the time of the execution of the activity and only for the duration of
that activity in that process instance.

The service interface for the activity-service should match with what is provided by
the BLE. The service interface would be the basis for the coupling between the activity
in the process and the BLEs. There can possibly be more than one BLE that implements
the service. The choice of the specific BLE is best made dynamically for each process
instance and for each occurrence of the activity. The implementation of the service in
the BLE and the subcomponents are dependent or based on a specific technology.

The control flow is always top-down from the process to the BLE. There is never
a direct relationship between one BLE with another.

The context for the operation of the BLE is provided by the process instance.
Each invocation to the service is stateless and it does not assume any specific state
or context. The context provided by the process instance is what it uses to oper-
ate within and this is lost by the BLE once the control is given back to the pro-
cess instance after the operation. For example, in the credit card validation service
provider BLE, the context includes the credit card number, customer name, and
expiry date. The entire validation function is performed fully within this context.
However, the BLE is free to use its own data repository for carrying out its opera-
tion. That data is purely internal to the BLE and not directly connected with any-
thing that the process is impacted with. For example, it could internally have and
use a repository of data (relevant business entities), such as credit card numbers,
bank details, transaction data, credit history, and overdue amount.

The granularity of the service would need to be at the level of the activity in the
process that is an atomic logically complete business function. Right-granularity is the
adjective here. This means the granularity of activity-services needs to be sufficiently
higher. “Credit amount to the account,” “check inventory,” “deduct from inventory,”

Components of PCA  ◾  101

or “create account” are some examples here, whereas “update customer record in data-
base,” “store line item in database,” and “get product name” are bad examples. The
bad examples are at lower levels of granularity than is appropriate for the activity.

A BLE offering services at the right-granularity to the activity can be composed
of lower-levels of granularity internally in its implementation. This is purely the
internal service composition where a right-granular service for a process activity is
composed from lower-granular services. And, each of the lower-level services are
expected not to be atomic individually. Together they complete the atomic business
operation. For example, if the activity-service is “create account,” it could be com-
posed of low granular components such as “check completeness of data,” “record
customer record in database,” “update account master record,” and “update inter-
national banking master.” They together achieve the customer account creation as
one atomic operation. Also, each of them could in turn be composed of still lower
granular services such as data services, for example, that just fetch a specific record
from a specific database table.

5.5 U ser Interface Application Layer
User interface (UI) applications are for enabling users to perform the user activities
in the process instance. If the user activity involves more than one task, the user
activity is logically associated with a taskflow. A taskflow is an ordered set of tasks
to be performed by this user to complete the action for this activity. The action
associated with the user activity is a specific business function, such as “verify appli-
cation form details” or “enter order details” for example. However, each task in the
taskflow would contribute toward that action. The action is completed when all
the tasks (as per the order) are performed by the user. As an example, “enter order
details,” might involve the user entering the purchase order details in three screens.
The first screen might be for the task of inputting the customer details, the second
one for product details being ordered, and the third one for the delivery details.

Each task is associated with a screen which in turn has a set of business data
fields displayed to the user or inputted by the user in the screen. The user moves
from one task to the other in the order of the taskflow, completing each task at the
same time by doing the actions on the respective screen for each task displayed to
the user. The process execution flow has to reach the activity in the process instance
for the user to be able to perform the activity. Also, the process flow waits at that
point until the user completes the user’s action.

The UI application totally concerns itself with the presentation aspects, support
for the taskflow, the business logic applicable to the tasks, business data that is rel-
evant only to the specific business functionality that the user needs to perform, and
persistence of business data inputted. This separation of the manual activity aspects
from other components makes the UI logic/support transparent to the process. The
UI application can receive the parameters from the process instance for display in

102  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

the screens. This is really the context data that the process supplies and what the
user activity is to be performed within. After the user completes all the tasks and
thereby completes the action, the parameters that have been input by the user that
are directly relevant for the process are passed to the process instance. Taskflow is
internal to the supporting UI application and the process is not concerned about it;
it is transparent to the process.

An example user activity specification in the process model for an order process
is shown in Figure 5.2. In this example, the shipping department ships the package
to the customer’s delivery address.

5.6 E xercise Questions
	 1.	Why is a pure high-level business process model not sufficient for making it a

system executable one?
	 2.	Model an end-to-end business process that you are familiar with in your

enterprise at an abstract level using any means you are comfortable with.
Study the process in some detail.

	 a.	 Are there decision points in it? Identify those.
	 b.	 How many branches are there in the process? Are the branches converg-

ing (joining) at some point in the flow?

Figure 5.2 A sample user activity.

Components of PCA  ◾  103

	 c.	 Do the branches from decision points merge at some point?
	 d.	 Does the process have multiple end-points?
	 3.	Think of what aspects you would need to specify to make this process enabled

for system execution. In other words, identify those details that you think
would be required if this process definition had to run in a process execution
platform.

105

Chapter 6

Process Execution

6.1 O bjectives
◾◾ To learn the principles of process deployment and execution
◾◾ To understand the dynamics of processes at run-time
◾◾ To understand inter-process communication aspects
◾◾ To understand how human participation is enabled in processes
◾◾ To be aware of the intricacies in enabling systems participants
◾◾ To learn the more detailed concepts of workflows, application integration,

and rules

6.2 D eployment
To make the process ready for execution, it needs to be put in the run-time pro-
cess layer. This procedure is called deployment. The entire process model, the service
interfaces for activities, bindings/binding policies for activity-services, the subprocess
process models, the new executable business logic elements, and the new UI applica-
tion components are part of the set of elements that is deployed. Existing BLEs and
the BLEs that are new but that belong to another organization are excluded from this
deployment. The latter ones would have to be deployed and made ready by the other
organization if its services are to be invocable by this process.

The process model, the service interfaces, and the binding details are deployed in
the process layer. The UI application (with taskflow and screens) is ideally deployed
in the run-time UI layer. The business logic elements are typically deployed in the
run-tier business logic tier.* The look up details for the business logic elements are

*	 The concrete realizations of this is given in Chapter 11.

106  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

kept in the business logic tier. The process model is persisted in a persistent medium
by the process layer. The process layer would fetch the model for execution from the
persistent storage.

Deployment ensures that all the references between the process model, the ser-
vices (including user activities), and to the process model itself (receive activities)
are in a resolvable state for execution. This means that the references to the services
to be invoked by the process or the receive activities that would get invoked from
outside are either available at the deployment time or would become available dur-
ing the course of the process execution but before the activity becomes active.

Deployment takes care of the static-time validations of the process models and
attachments. Validations include potential violations of the executable nature of
the processes, dependencies check, and completeness for flow and execution. The
dependencies between the various components of the system, such as the process,
services, UI layer, and supporting BLEs, are taken care of. During deployment, all
the bindings related to these dependencies are preferred to be addressed as “logical”
and not concrete. Concrete bindings are postponed (late) to a later stage at run-time
for each component individually.

The deployment concept is based on the concept of separation of concerns,
where each component of the IT system is housed in separate tiers where they are
managed through their run-time life cycles. The is similar to the concept of deploy-
ing business components of an application in a JEE application server as Enterprise
Java Beans (EJB).

The process model is translated into computer executable code with the deploy-
ment. The computer executable code is what is executed by the process layer when
process instances need to be launched. Each subprocess is also translated into
respective executable code.

Deployment is also a step that addresses the quality of system concerns of the
reliability (scalability) and efficiency (performance) of the processes by considering
the computing platform aspects such as the number, inter-connections, and sharing
and implementing of those decisions accordingly. For example, during deployment,
the processes might be so deployed that the process instances are run in a cluster
of process layers running in multiple computing machines. The load in this case
would be shared between these multiple process layers.

6.3 E xecution
If we look at the control flow in the IT system during run-time, the entire execution
flow is top-down, where the executing process is at the top and the activities are
down in the level. And the process drives the execution of the activities.

Process execution involves the participation of both the system participants and
the human participants in the process. The term “system participants” refers to the
systems that perform the system activities and “user participants” refers to the users

Process Execution  ◾  107

that perform the user activities of the process. The system participants take part
in the process automatically by the invocation of the executing process. Execution
is automatic in this case and no waiting is involved, unless the activity is a receive
activity. Whereas, the human participants participate on their own based on their
time availability and priority. The process instance waits for the user to participate
and complete the activity before it proceeds with the next activity in the order.

6.3.1  System Participation
We can let systems participate in processes in essentially four different patterns of
interaction based on who does the invocation and whether the invocation is syn-
chronous or not. They are solicit–response, notification, request–response, and one-way.

6.3.1.1  Solicit–Response

Upon the process execution flow reaching this system activity, the process instance
takes up the role of invoker and invokes the service* attached to this activity.
The process instance invokes the service with output parameters from the activ-
ity going to the service as input parameters as per the service interface the ser-
vice has provided. Here the process instance endpoint of the interaction solicits a
response from the service by sending an input to the service. The service performs
its expected business function and returns with a response to the process, which is
waiting for the call to return. The response received is the set of input parameters
for the activity, as per the service interface. The activity parameter ordering in
this pattern is always output parameters followed by input parameters. Figure 6.1
demonstrates this.

An example is a “make payment using credit card” activity in an order handling
process. The process instance while processing the order reaches this activity where
the customer payment needs to be accepted and invokes the service with the out-
put parameters credit card number, payment amount, customer name, card expiry
date, and customer authentication code. The service debits the amount from the

*	 In this book at most places the terms service and operation are not explicitly differentiated.
However, in some places in the book, where such distinction is important for the concept at
the place, the differentiation for these terms has been provided.

Invoke—output parameters

Return—input for process Service
Process instance activity

Figure 6.1 S olicit–response pattern.

108  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

credit card account balance and then returns to the activity with a transaction ID
and a success indicator code.

This pattern requires that the process instance and the service be synchronized
during the execution of the service. That means, at this activity, the process instance
needs to wait for the control to come back to it from the service before the process
instance can move ahead. Thus, it is a synchronous invocation.

6.3.1.2  Notification

This is similar to the solicit–response patterns in that the process instance is still the
invoker. However, the interaction ends as soon as the process sends the activity’s
output parameters to the service endpoint. The activity has only output parameters
and no input parameters. The process instance just notifies the service and does not
wait for any response. In fact, no response is expected from the service as per this
interaction model. The process instance immediately proceeds with the execution
of the process to the next activity in the order as soon as it sends the message to the
service. Figure 6.2 demonstrates this.

The service on its part executes its function asynchronously to the process instance.
Upon receiving the input message, the service proceeds independently of the process
instance. Thus, this pattern is called asynchronous invocation.

An example for this is an “alert inventory replenishment” activity in the pur-
chase order handling process. After the handling of its specific order, in the case
of inventory going below a reasonable threshold, the process instance simply
sends a message to the alert service of the inventory system with the “current
inventory value” output parameter of the activity and moves on. After receiving
the notification, the alert service proceeds independently to handle inventory
replenishment.

6.3.1.3  Request–Response

The invoker is an external system or another process here. The activity in this pro-
cess is the receiver of the invocation. Here, the order of the activity parameters
is input followed by the output parameters. The activity in the process instance
receives a request from an external source, performs a business function, and then

Invoke—output parameters

Service
Process instance activity

Figure 6.2 N otification pattern.

Process Execution  ◾  109

returns a response to the external source. That is, the activity first receives the input
parameters and then after performing its operation, sends the response back as
output parameters from it to the invoker. The external source keeps waiting for the
response to come from the activity before moving on with the rest of its execution.
Figure 6.3 demonstrates this.

As an example of this, let us consider the process of a computer parts sup-
plier that interacts with an inter-enterprise process of a computer manufacturer
that procures various parts from external suppliers. The supplier’s process, would
get triggered when the computer manufacturer’s process makes an invocation
to the supplier’s service to request a quote for the parts. The supplier process
sends a quote back (with a quotation number) to the manufacturer’s process and
then waits at the “receive order request” activity (which is a receive activity) for
the order to be received from the manufacturer. The manufacturer process then
places the order with the supplier by invoking this service “receive order request”
exposed by the supplier process. This invocation is done by supplying the same
quotation number as one of the invocation parameters, so that correlation to the
supplier process instance is enabled. The “receive order request” activity creates
an order in the supplier system and returns the order id as confirmation to the
manufacturer process. Thus, the “receive order request” activity here is an exam-
ple of the request–response pattern. The invoker in this case is the manufacturer’s
process.

6.3.1.4  One-Way

One-way is similar to the request–response pattern in that the invoker is an external
source and the invocation comes into the activity. The difference is that there is no
output to be sent back to the invoker. The parameters for the activity are input only
and no output is expected to be sent from it.

Thus, it can be called the asynchronous receive model. An example for this pattern
is a “receive alert for inventory replenishment” activity in an inventory management
process. The external source simply sends the message to this process instance with
the “current inventory value” as an input parameter to the activity and the external
source moves on. After receiving the notification, the receive alert activity lets the
inventory replenishment process instance proceed with the subsequent activities to
handle inventory replenishment. Figure 6.4 demonstrates this.

Invoke—input for process

Return—output from process ServiceProcess instance activity

Figure 6.3 R equest–response pattern.

110  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

6.3.2  Critical Aspects at Run-Time
The execution of processes brings with it the run-time aspects that need to be handled.
Some of the important aspects of those are errors, transactions, compensation, monitoring,
and correlation.

6.3.2.1  Errors

A process model’s execution is considered to be normal execution flow when the
process instance executes fine from the start step of the process to its end step pass-
ing through one of the many possible logical paths in the process. And that is what
we have assumed so far in the discussion about the processes. However, a process
often faces situations that are exceptions to the normal during the execution of the
process instance. These could be business error conditions, an unexpected situation
for the IT system, a scenario undefined for the system, or an abnormal condition.
Such situation occurrences are called errors. The cause for an error could be system
related or business related and the error disrupts the normal flow of the steps in the
process.

Some examples of errors are as follows:

◾◾ In a purchase order process, a product is found to be out of stock.
◾◾ While ordering a book in a book order process, the book is found to be out

of print.
◾◾ While submitting a claims request in an insurance claims process, the claim

submission is found to be invalid since the claim form used was wrong.
◾◾ A service corresponding to a system activity is found to be not available at the

time when the process instance attempts the invocation.
◾◾ In a banking process, while withdrawing money, there is an error because of

an insufficient balance in the account.
◾◾ In a loan request process for an existing customer, the customer number

provided does not exist.

The process ideally needs to handle errors and take actions to cope with the situation
so that the process can reach a logically meaningful state or fail (or exit) gracefully.
This means, the process needs to detect the error situation, figure out what action to
take to deal with this occurrence, and perform the required action to recover.

Invoke—input for process

ServiceProcess instance activity

Figure 6.4 O ne-way pattern.

Process Execution  ◾  111

An error could occur at any level in the process; it could be within an activity,
in the process flow, within a subprocess, or in a conditional branch. Some examples
of errors in the process flow are as follows:

◾◾ Invalid data received by the process instance for a receive activity
◾◾ Unable to carry out invocation of a service for a send activity because sufficient

concrete invocation details are not available or wrong invocation details are given
◾◾ Infinite loops in the process at run-time
◾◾ An unexpected value (or invalid value) in a process parameter that causes a

condition branch to fail

The process is expected to handle the errors when they occur and if it does not han-
dle them, the process execution will fail crashing the IT system. Generally, process
crashes are not acceptable. Even if there is a failure, they are expected to fail gracefully.

6.3.2.1.1  System Handling the Errors

To handle errors, the process model would have error handler flows* in it that
specify the ordered set of activities to be performed to handle each specific error.
This prevents the process from failing and the IT system from crashing. The prin-
ciple here is that the error handler portion in the process handles error cases that are
recoverable. That is, those situations where the process can take a relevant action to
undo the effects of the unsuccessful step of the process where the error has occurred.
Some actions as part of the error handling could be business actions such as sending
a message to the external system indicating an inability to successfully complete the
business objective. In the case of unrecoverable cases, at a minimum, the process
fails gracefully. That is, its execution ends with nothing left hanging. Post the error-
handling action, once the error causing condition has been addressed, say stock for
the product has been replenished, we could restart the process to continue execu-
tion from the step where it encountered the error.

The errors discussed above are typically errors that are generated from within
the activities (services) and the process. Some of these could be system errors
encountered by the activity but are further transformed into business errors and
then raised to the process. Such errors are expected to be handled by the process.
However, there could be errors that are generated from outside this IT system in
the system environment that indicate serious problems and abnormal conditions
impacting this IT system and others. Ideally, the process is expected not to attempt
handling these types of errors. Some examples here are, the computing environ-
ment is in serious problem state or the system environment crashes. In such cases,
typically the process (or the process layer) itself has no way of catching the error
happening since the environment that contains it would have crashed and died.

*	 Also called exception flows or fault handling flows.

112  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

In the case of such errors, the overall system administrator would need to look into
the computing platform level issues to resolve them. Once those are resolved, and
after addressing any business inconsistencies, the processes could be restarted to
resume from a logical point,* which in most cases is the point of failure itself.

For example, let us say a travel booking process fails due to a system environ-
ment crash in the middle of the system activity “get quote from different airlines.”
The system administrators, after they fix the system issues and bring the system up,
need to restart the travel booking process instance from this activity “get quote from
different airlines.” This is because till the previous activity to this one in the process
flow, the process has completed execution and the logical point for restart is from
the beginning of the “get quote from different airlines” activity.

6.3.2.1.2  Manual Handling

So far we have discussed error situations where the error-handling is done by the
system. In some cases, the process would require manual intervention. That means
a business user handles the error and the carrying-out of the rest of the business
process logic. Here, outside of this process (in this IT system), the user corrects
the condition causing the error, say the business data, and bypassing the process
instance, the user takes over the process and manually performs the process steps
to fulfill the objective of the business process and completes it. For example, in the
case of bulk mutual funds transactions processing, let us assume that one of the
process instances failed with an error because of an invalid detail (say amount and
account number) in the process data. This is considered as a business exception and
is expected to be handled by a business user. The user would take over the execution
of the process, verify the details from the relevant sources including systems and
the customer, get the correct data, and carry out the entire transaction processing
manually. This would ensure that the mutual funds transaction is completed for
the customer.

6.3.2.2  Transactions

Transaction handling is a run-time aspect in an IT system that is process-centric.
Here, the term transaction† is used in its classical meaning as used in the software
application context, which is it is a single unit of business work. The transaction
is handled at the activity level. In the context of activities, transaction handling
ensures that the effects of the execution of an activity is seen by others only after
the execution of the activity is completed and at no point are any partial results seen
by other activities, process instances, or systems. If there is any failure in the activ-
ity, the transaction is rolled back causing all the changes made by the activity to be

*	 In some cases, this logical point could be a step before the point of failure or after it.
†	 With ACID properties being exhibited.

Process Execution  ◾  113

discarded. The objective of transaction handling in a process is to make sure that
the process instance does not end up in an inconsistent state in case of any failure.

6.3.2.2.1  Simple Activity

Each simple activity is generally considered to have atomic property. It is because
the activities in a process are at a high-level of granularity that it is just right for a
logical business function that can be carried out on its own and still bring about a
well-defined business state. This atomicity means that when the activity is executed,
the business function associated with it is either executed in its entirety or not
executed at all. If this function’s execution is successful, the activity (transaction) is
committed. If the function’s execution is not successful, the activity (transaction)
is rolled back. For the process instance, it would be as if this activity has not been
executed at all, thus in the restart the activity can be executed again. In the case of
a simple receive activity, the arrival of a message, the process instance performing
the activity, and the sending of the response message are all tied into one atomic
operation. That is, the input message is considered to have been received success-
fully only if the activity is successfully completed.

It is possible to have a simple activity that is nonatomic. In this case, its transac-
tion will get executed in a transaction context of another activity. Typically in such
cases, a set of consecutive simple activities are marked nonatomic and grouped to
be under one transaction context. This makes all of them execute their respective
transactions in the same transaction context and they are committed together or
rolled back together, depending on the success of all the activities or the failure of
even one activity in this group. In case of a failure, a restart of the process would
resume the execution from the first activity in this group all over again.

6.3.2.2.2  Complex Activity

Complex activities* are not expected to be atomic. Each activity “A” that is inside
the complex activity is in turn considered atomic if A is a simple activity. During
the execution of the complex activity, if there is a failure somewhere in the middle
of the set of activities, then all the activities (transactions) executed up to the failure
point would have been committed by the time this failing activity started execu-
tion; thus, only the failing activity transaction would be rolled-back. When the
process is restarted after failure, by default, the execution resumes from the activity
that failed inside the complex activity. If the restart (business need) requires the
complex activity to be executed fresh from its beginning, then at the time of fail-
ure, the complex activity would need to have a flow logic in it to handle the failure
and reverse the business effects of the execution of all the activities in the complex

*	 A complex activity can even be a block in the process model that contains a set of activities
within the block. In such a case, it is mainly used as a structuring element.

114  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

activity prior to the failed one. This is so that during the restart after failure, the
complex activity can begin as if it is has not been executed.

On the other hand, if the complex activity has atomic property, then all the
activities under this activity would be executed in the same transaction context and
as one transaction. That is, they are all committed together on the success or failure
of any one activity. Thus, the commit and roll back is synchronized across all these
activities inside the complex activity. In this case, the restart of the process after
failure would make the execution resume from the complex activity and it would
be a fresh execution of the complex activity from its beginning.

6.3.2.2.3  Subprocess Activity

A subprocess activity in the process instance is not normally considered to be atomic.
This activity invokes a subprocess. If the subprocess fails in the middle after execut-
ing some activities within it, these executed activities would have been committed as
and when the activity was completed, with them being individually atomic. A restart
of the process, by default, would cause the execution to resume from the failed activ-
ity in the subprocess. If the business requirement of the IT system requires that the
subprocess be able to be restarted from its beginning, then the subprocess is expected
to handle the failure and reverse the business effects of its execution to bring it back
to the initial state prior to the beginning of the start of the subprocess execution, so
that the subprocess activity can invoke this subprocess again.

If the subprocess activity is marked atomic, it commits all the activities inside
the subprocess together or rolls them back together, similar to the way an atomic
complex activity does, based on the success of all or a failure of one, respectively.

6.3.2.2.4  Choice

Thus having the transaction attribute specified in the process model at vari-
ous steps in the process is a good choice to handle transactions effectively. The
details would include items such as the transaction context, transaction span,
transaction protocols, and the transaction managers. The transaction details
for each activity would determine how its transaction would be handled in
the success or failure of the step itself or of other activities before the step. A
sound principle with respect to transactions is that atomic transactions should
be applied only for short running processes and activities. Short running pro-
cesses are expected to complete execution in a very short time and thus are
atomic, and such processes do not include the activities such as user activities
or receive activities that involve waiting. For long running processes, meaning
those processes that have activities that are expected to take a longer duration
to complete execution (e.g., minutes, hours, or days), transactions should not
be atomic for those activities. It would result in unacceptable delays due to the
time spent waiting for locked resources by activities executing in parallel and

Process Execution  ◾  115

would prevent an executing activity from completing before others have com-
pleted, even though this activity’s business operation may have been over.

6.3.2.3  Compensation

While transactions address the completion of a unit of work within a process,
compensation addresses the completion of a process in the case of errors or excep-
tional conditions occurring while the process instance is in execution. Let us call
them compensation triggers. Here, the exceptional conditions are situations such as
a cancel request arriving for the process and the process is unable to meet the physi-
cal constraints, say the time-limit. Compensation undoes the effects of the process
execution that has happened until that point. If an error or such an event has hap-
pened in an executing process and that condition prevents the process from com-
pleting its normal execution, then compensation gets activated to compensate for
the business effects that the process has brought about and abort the process after
that. Execution of the compensation logic for a failed process cancels out the entire
process so that for the system or user that initiated the process, it is as good as the
process instance having not been executed at all. That would allow the initiator of
the process to initiate a new process instance for the same request. As an example,
if an order process fails after payment but before shipping the product due to some
problem, the compensation for the process would send a refund to the customer of
the amount that was paid when initiating this order process instance.

As part of backing out the process, the compensation work takes care of revers-
ing the activities (undo their business impact) that have already been executed and
releasing all the resources the process instance is holding. This will enable other
processes to use those resources for their work. Since atomic activities, existing in
the flow until the point of execution where the compensation trigger arrived in the
process instance, would have been committed, and a roll-back in the transaction
sense of the word is not possible, the compensation needs to reverse its respective
work by compensating for what has already happened by invoking or performing
reversal business operations. The reversal business operations reverse the effect of
the execution of those already completed activities.

Compensation logic for a process is explicitly specified as a set of activities to
be performed (along with the flow) in the process model. The conditions in the
process instance under which this flow would get triggered are also specified in
the process model. The compensation flow gets triggered only when any of those
conditions occur during the process instance execution. Some of these conditions
could be error conditions and in such a case the trigger for the compensation flow
is specified in the fault handler for the error. A subprocess encountering an error
condition preventing it from completing can use compensation to undo itself and
bring itself back to its initial state so that it can be invoked again by having the
compensation flow triggered from within the fault handler for that error in the
subprocess’ process model.

116  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

6.3.2.4  Correlation

At any point in time, the process layer in the system would be running a num-
ber of process instances. If there are receive type activities in the process, external
systems or processes could be sending messages into the system to invoke these
receive activities. These invokers might invoke the same activity in multiple pro-
cess instances with which they interact. However, for each request, such invokers
cannot be expected to be aware of any specific technical attributes (including the
process instance ID) of the process instance that they need to interact with so
that they can include those attributes in their message (request) to address the spe-
cific process instance uniquely. If they were to do that, then the incoming message
would become very specifically bound to that system where the process instance is
running, which would no longer be a generic service (that can be invoked by any
invoking system and one that can be implemented and provided by other service
providers too), curtailing the freedom of the invokers to easily (and dynamically)
shift to other service providers providing the same service. If it were a generic ser-
vice, the invoker would not have needed to change the message type for the invoca-
tion message for each service provider.

We desire loose coupling between the invoking system/process and this pro-
cess instance containing the receive activity. Given all this, a very good option is to
use the business parameter(s) of the process for the process instance identification
purposes. Such a set of business parameters need to be able to uniquely identify
a process instance from among the many process instances that are active at any
point in time. This is regardless of where the process instance is currently execut-
ing or where the invoker is located. One key principle is that this set of business
parameters is key business data for the process (such as order number, request
number, application number, and customer account number), and this set is a
small set. A single parameter used for correlation is preferred; anything above
three is large and best avoided.

Correlation is the method of figuring out the right process instance that the
incoming message is really addressed to, from the business information provided
in the message. To do correlation, the process layer looks at the values of those
business parameters in the incoming message that have been identified as cor-
relation parameters in the process model. If these values match those of a process
instance, the message is correlated to that process instance by the process layer.
The message is then handed over to that process instance for the receive activity
to receive it.

As an example, let us take an order process that has a receive type activity for
confirmation of the order—a confirmation message is expected from the customer
that indicates the order is confirmed. The order process can proceed to completion
once the customer sends this message. Since there could be multiple order process
instances active in the system, the incoming message has a parameter named order
number with the value of the order that is being confirmed, say 22. This is the

Process Execution  ◾  117

correlation parameter defined in the process model as this uniquely identifies a
process instance. Since each instance of a order process would mean a new order
and consequently a new order number, the order number would uniquely identify
an order process instance. The other parameters in the incoming message such as
“confirmed by” and “confirmation date” are not correlation parameters, they are
input to the activity.

Systems and processes communicating with a process instance need correlation
to be able to address the specific process instance with which they are interacting.
In addition to the receive activities, correlation applies in the same way to user
activities when the UI application sends a notification to the process instance indi-
cating completion of the user activity by the user.

Correlation done this way means any invoker would simply continue to send
only business data in the message and not any technical attribute for identification
of the process instance. This allows it to dynamically go with other service provid-
ers and for this IT system to maintain a generic service interface that other service
invokers can also use. It also improves the mobility of the process since only the
business reference is used to refer to the process by the interacting processes. This
reference remains constant independent of where these processes and the interact-
ing processes are located for execution at that moment, which is an aspect that
keeps changing during the process executions.

6.3.3  Human Participation
User activities involve a human performing the activity. The process instance would
have to wait at the user activity until the user completes performing it. This wait
is similar to the wait in a receive activity and the status of the process instance
would be “waiting.” Let us take the example of the purchase order process. The
activity “approve order” is a user activity. When the execution reaches this activity,
it is given to the manager to perform. Until the manager completes the action, the
process instance would be in a waiting state.

A user activity may involve a set of tasks in the form of a taskflow where one
task corresponds to one screen in the UI application. Such a user activity is com-
pleted only when the user goes through the entire taskflow (one or more screens).
For example, the customer account creation activity in an account process may
involve a set of screens for capturing the customer information, account informa-
tion, confirmations, etc. In some cases, each task might be one page of a multipage
input. An example is a new member registration activity in a library. There may be
multiple pages that need to be filled with user input data one after the other. Each
such page is a task in the taskflow for the activity. The activity gets completed only
when the user reaches the last page (last task) and indicates submission of work on
that page. There are three aspects in human participation: allocation, execution,
and notification.

118  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

6.3.3.1  Allocation

Allocation refers to the identification of a user to do a user activity that is ready
to be performed and assigning that user activity to that user so that the user can
perform it. Once it is assigned, the activity becomes a work item for that user. The
work allocation specification for the activity in the process model specifies how
(and to whom) the allocation must be done by the process layer. Broadly, there are
two types: static allocation and dynamic allocation.

In static allocation, the activity is allocated to a role specified statically. During
the execution time, any user that performs that role picks it up as a work item and
acts on it. For example, in the case of an order process, the activity “pack and ship
items” may be allocated to the role “packing group.” Anyone who is part of the
packing group role performs it. This allocation is called role-based allocation.

In dynamic allocation, the user to whom the activity is to be allocated is decided at
run-time when the process execution reaches the activity. An example is the “approve
order” activity in the order process. It could be so specified that the activity must be
assigned to the person (user) that has been specified in the approver input field in the
previous activity “review order” by the user of the “review order” activity.

There are some common patterns that we come across in allocation:

◾◾ Deferred allocation—a user ID value is obtained from the process parameter.
◾◾ Separation of duties—the current activity should not be done by the person

who has done a previous activity in the same process instance. This typically
is used in review activities where the reviewer needs to be different from the
user who input the loan application.

◾◾ Case handling—the same person handling all activities in the process.
Allocations are implied or specified at the process level here. For example, a
customer service request in a bank or a call center process.

◾◾ Organizational allocation—this is relationship based; for example, approval
of the order has to be done by the manager of the person who performed the
order submission activity.

◾◾ Shortest queue—the ability to allocate a work item to the resource that has
the least number of work items allocated to it. This is relevant in business
process outsourcing scenarios.

◾◾ Capability-based allocation—the work is assigned based on skills either to
a person or a group. For example, in a financial data analysis process, the
context for a case to be analyzed is so complex that the person who has the
maximum experience is required to perform it.

◾◾ Round-robin allocation—work is allocated to each person in a group on a
cyclic basis.

◾◾ Retain familiar—assign the activity to the person who performed a specific
previous activity. For example, the person who performed the activity invoice
generation is the one that should perform the activity receive payment activity.

Process Execution  ◾  119

It is possible to specify soft goals for allocation by using soft constraints. Soft con-
straints allow more flexibility in work allocation. If there is a hard constraint, such
as “credit approval,” it must be performed by the role “manager.” We could add
an additional soft constraint saying “prefer a manager located in the same region
as the customer.” This soft constraint is only a goal that the process layer tries to
meet while doing the allocation; if it is possible, it is done. If no such manager is
available, then this soft constraint is not applied and the activity goes to the role
manager and any manger may be able to pick it up.

6.3.3.2  Execution

This is about how a user to whom the work (the activity) has been assigned performs
the actual work. There are two models of relevance here: the push and the pull.

6.3.3.2.1  Push Model

In this model, as soon as the process layer completes the work allocation for the
activity, it pushes the work item directly to the user. The business parameters
required as input (display) for the work item are also pushed along with the work
item. Here it is assumed that the user’s location (address) is known to the process
layer through some means. This push is to an agent on the user’s computing device.
The agent is typically a fat client here. The device at the user’s end could be a hand-
held device such as a cell phone. This agent brings the user interface to the user for
the activity and the user performs action on the screens provided to complete the
activity. This model does not work well for user activities that need users to input
a lot of information.

6.3.3.2.2  Pull Model

In this model, the process layer completes the work allocation for the activity and
expects the user to pull the activity (work item) from the process layer when the
user is ready for performing the activity. The user does it through a UI application
that lists the work items that the user is assigned or the ones, the user can pick up
for performing. Once the user selects the item to work on, he or she pulls the input
parameters (to be used for display) for the UI task from the process instance and
works on the tasks of the activity one by one.

6.3.3.3  Notification

Notification is about signaling the completion of activity by the user’s UI applica-
tion to the process layer through a message, once the user actually performs the user
activity and logically completes it. The notification message should contain the output
parameters (user inputted key parameters) from the user to the process. All along, the
process instance in the engine would have been in a waiting state until the user activity

120  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

is completed by the user. Whether it is the pull or the push model, for the entire dura-
tion of the user’s execution of the activity, the interaction of the user is with the UI
application and this is separate from the process layer. And, it is an off-line execution
as far as the process layer is concerned because it is not the one performing the action.
Upon receiving the notification, the engine correlates this message (the correlation is
based on a key business parameter(s) in the process) to the right process instance. The
engine then resumes the process execution from the next activity in the sequence.

In a way, a user activity’s execution can be considered as a combination of an asyn-
chronous invocation (notification pattern) to the user followed by an asynchronous
receive (one-way pattern) from the user.

6.3.4  Life-Cycle Stages
A process instance goes through a set of stages in its life cycle. Figure 6.5 shows
the life-cycle stages of a process instance. The instance is created when triggers for
process execution occur. During the creation, the instance is created by the process
layer from the process model and then it initializes the process parameters in the
instance. After that, the process layer launches the execution of the process instance
separately from other process instances in the environment.

The next stage is the executing stage. In this stage, the process instance executes
its activities one-by-one in the sequence given. The parallel paths are executed in
parallel. System activities are performed automatically and transactions are com-
mitted along the way as specified. As far as the normal flow is concerned, execution

Force-terminated

Process initiation trigger
Created Hibernated

Message arrives

User activity/receive activity
Waiting

Passivate/longer
wait duration

Executing

Execute activity

Execute activity

Error corrected-resume

Error/exception

End of process

Cancel/kill

CompletedFailed

Figure 6.5 L ife-cycle stages of a process instance.

Process Execution  ◾  121

proceeds until a user activity or a receive type activity is encountered. Once the user
activity or the receive activity is reached, the process instance enters into another
stage. It enters the “waiting” stage, where all it does is wait for the input message to
come from a user or an external system or process. This might take a longer time
(minutes, hours, or even days).

At this stage, the process instance can be hibernated by the process layer. In
hibernation, its entire state as of that point in time is persisted in a persistent
medium. The process instance would have a logically consistent state. The state
information also includes the full process context as of that point in time and the
process instance is removed from run-time.

The next stage is when the message for the waiting activity in the process
instance arrives in the process layer—the passivated process instance is revived
and made active in run-time. The process layer re-creates the process instance and
revives it to the same state that it was before it was hibernated. The process layer
indicates to the process instance to resume execution and hand over the incom-
ing message to the process instance. The process execution resumes, proceeds with
the current activity that received the message, and after completing it, the process
instance moves on executing subsequent activities.

The next stage in normal execution is the process instance reaching the last step
of the process during execution. At this point, the process reaches the end of the
process and the process instance successfully terminates its execution. This is the
last stage called “completed.”

If there are errors or exceptional conditions happening while the process instance is
executing, the process takes alternate flows (such as compensation flows, error handling
for recovery). Depending on these situations, the process state can be “Failed with error,”
“Forcefully terminated,” or “Canceled.” If a process instance is in error and the error
handler logic has recovered it to a consistent state, then the process could be restarted
to resume from the point of failure. The process layer does the restart of the process.

6.4 A ddressing Integration
In an IT system that is process-centric in its architecture, multiple applications
can come together to participate and perform in the process. The BLEs of the IT
system, which are the components that are invoked by the process instance, could
be one of the following at the time of architecting the IT system:

◾◾ New business components to implement the activity services
◾◾ Existing applications in the enterprise that provide activity services
◾◾ Existing applications in the enterprise that are service-enabled for the process
◾◾ Existing systems outside this enterprise that provide activity services
◾◾ New systems developed and owned by other enterprises that would provide

the services for activities

122  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Thus, each BLE could be a separate application. The already existing applications
among the above list could be as follows:

◾◾ Custom developed applications in the enterprise; they are also referred to as
in-house applications

◾◾ Legacy applications in the enterprise (example Mainframe applications,
Client–server applications on ORACLE-PowerBuilder, etc.)

◾◾ Application packages such as ERP packages; some examples are SAP, ORACLE
apps, CRM packages, SIEBEL•, and PeopleSoft; packaged-applications is
another term for these applications

◾◾ Content Management Systems (CMS)

Getting the multiple applications (regardless of their underlying technology envi-
ronments) to work together is called Enterprise Application Integration (EAI).
The focus of EAI is on the flows where predominantly applications (systems in
other words) are involved in interactions and there is no or minimal human inter-
vention; systems send messages to each other and complete business function.
For example, a mutual funds transaction process that happens totally without
any human intervention whose instances are typically executed in batch with
other mutual funds transaction process instances. The process-centric architec-
ture (PCA) integrates all of them (the systems) holistically in a process-driven
way where the process instance interacts with each of them through their links
to activities, with the context of the process. The objective of the integration is
to let the applications participate in the process by playing their individual roles
providing the service required by the activities—this leads to the achievement of
the business objective of the process.

Let us consider the example of an sales order process, where the order is placed
by the customer and the process gets completed when the payment is received.
As one of the initial activities of the process, if the customer is a new customer
(“check new customer” activity), the customer is created in the CRM applica-
tion (“create customer account” activity) and a customer ID is generated for the
customer. These two activities are performed by the CRM application when the
process instance invokes it. Then, in the “check inventory” activity, the inven-
tory is checked for the availability of the products ordered by the customer.
This activity is performed by the SAP application. If the inventory is short of
the products, the next activity “replenish inventory” is invoked by the process
instance, which is supported (performed) by the SAP application that triggers
the manufacturing application to manufacture the inventory threshold quantity
of products. When the process reaches the “make payment” activity, after tak-
ing in the customer’s validated credit card information, the activity processes the
payment in the account receivables application. This activity is performed by the
account receivables application, which is a custom-developed in-house application
in the enterprise. Then finally, the last activity in the process “schedule delivery

Process Execution  ◾  123

of products to customer,” is executed, which is performed by another application,
the SAP package itself (fulfillment application). In all of these cases, the respective
service for each activity is provided by a packaged-application. The activities were
executed with the process instance invoking the corresponding service provided
by the packaged-application.

In this way of integration, that is process-driven integration, these applications
are all part of the IT system that is as a whole process centric, but they play indi-
vidual roles in the process as individual applications providing specific business
services.

The applications become active only when they are invoked by the process
instance for performing a specific activity. They need to maintain all the busi-
ness data associated with the specific action they are performing and only that
business data—this data is hidden from the process and other applications. For
example, the inventory management packaged application would only maintain
inventory data and will not maintain other data such as customer information
and payable information for money owed to suppliers or partners. Such data are
respectively maintained only by the CRM application and the Financials (accounts
payable) applications, respectively. It does away with data redundancy. This model
of integration also does away with the need for a central data source that all the
applications in the enterprise feed their respective data to and the need for any
synchronization of redundant data between various disparate applications in the
enterprise. The context for execution is provided by the process instance to the
application that the application uses to understand the state of the business entities
and perform the application’s specific job, which is implementing the service for
the activity. As each application maintains and owns respective business data, there
is no room available for data inconsistencies, since other applications would not be
handling such data. The required business data for each service is provided from
the process context by the process instance to the service-implementing application
through the input invocation message that the application receives from the process
during execution. For example, the accounts receivable application that performs
the payment activity receives the customer account ID and name from the process
instance to carry out the payment.

The applications are connected and disconnected from the process instances
dynamically. Once the execution of the service is complete, that application is
disconnected from the process instance. The process model also statically is open
to change. The activities in the process, to which the applications are attached,
can also be dropped from or rearranged in the process to alter the process logic.
But, this does not cause any change in those applications. They get attached or
reattached without being aware. During the activity service invocations in pro-
cess execution, the process layer handles all communication mechanisms–related
responsibilities by decoupling the activity-service and the implementation of the
service by the application, be it packaged, in-house, or third-party and irrespective
of the technologies (heterogeneous) involved.

124  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

6.5  Workflow
Workflows in the traditional sense involved flows of work or a business entity (such
as a loan application, a customer complaint for the customer services department of a
company, a case that is handed in a BPO organization, etc.) from one person to another
where each person acts on the business entity (work item). The work item’s status
changes while it moves through the flow and eventually the item gets completed when
it reaches the last step in the flow. Hand-offs from one user to another user, of the work
item, is a key characteristic of workflows.

In PCA, the workflows are treated as processes where each user is a participant
who participates and performs action on the respective user activity using a UI appli-
cation. The process instance executes, moving control (the work item in other words)
from one user activity to the other. The process instance does the hand-off of the
work item from user to user until the end of the process. The key attributes of the
entity, such as application number, case number, complaint number, and complaint
date, are included as process parameters. The full details of the entity (or the entity
itself), such as the application form and complaint form, are stored and maintained
in the UI application itself and not the process layer. Typically, a reference to the
business entity, say the document ID of the document (application form) stored in a
document management system, is provided to the process instance and is available
as a process parameter serving as the key or reference to the entity itself. This key is
passed around in the process instance from one activity to the other.

In a workflow scenario, the PCA-based IT system would have the following:

◾◾ The process model reflecting the flow of work
◾◾ A user activity representing each step in the workflow
◾◾ At run-time, a person (user) assigned to perform each user activity, in

which the person plays a specific role that is relevant for the activity and
the work item

◾◾ A UI application corresponding to each user activity that the user uses to
perform the activity

◾◾ Multiple user activities can be supported by one UI application; thus, the IT
system would have one or more UI application

◾◾ The UI application would have a component to show to the user, a list of work
items from across process instances assigned to the user

The UI application can be a new UI application developed for this IT system or
it can be an existing UI application in the enterprise. It could also be a mobile
UI application in case the push model of user activities is followed. The bindings
for the user activities with the UI application(s) can be done late at run-time in a
dynamic way. This decouples the user activity from the technology and implemen-
tation details of the UI application. Technically, the UI application could be a JSP/
servlet application based on Java, a .Net application or a Java mobile application,

Process Execution  ◾  125

a mainframe application with a character user interface screen (CICS based for
example), or a PowerBuilder client application, and so on.

To understand the dynamics of workflow, let us the take the example of
a customer complaint process. The process is triggered when a complaint is
received from the customer by phone, e-mail, or other communication meth-
ods. The first step in the process is the user activity that captures the details
of the complaint and the generation of a complaint number. Now it becomes
a work item. This user activity is performed by a customer service representa-
tive (CSR). The e-mail or the written complaint if provided by a customer, is
scanned and stored in a document management system (DMS), and a unique
reference number is provided by the DMS. This upload to the DMS can be done
by the same user as part of the first activity using the UI application in which
the UI application invokes the DMS interface. Or preferably, storing in the
DMS can be the next system activity, where the DMS interface is invoked and
the document is stored.

The next activity is one in which the complaint is looked into by support per-
sonnel who get this work item after it was assigned to him or her by the process
layer or by the specification of the CSR. The UI application shows the complaint
details to this user, who studies the details and takes further action. Either this
user resolves the reported problem or reassigns the work item to another person
for deeper investigation. The next activity could be one where a technical engineer
gets the work item. This user updates the UI application with the investigation
results and changes the status to “resolved pending review” if the problem gets
resolved. The next activity would be the review activity, now the process instance
moves the work item from the engineer to the manager, who is the reviewer. The
manager uses the UI application, checks the details of the complaint and the
actions that have happened on the work item so far, and updates the work item
status as “resolved” if it is OK and the process ends successfully. If the review is
not OK, then the manager updates the status of the complaint to “needs rein-
vestigation” and assigns it to a technical expert to look into the problem. The
process instance now assigns the work item to the technical expert by assigning
the next user activity “expert investigation” to the user who performs this activ-
ity. The expert uses a UI application and provides investigation notes and updates
the status to “resolved” after resolving the work item. In this example, the UI
application used by all the users in the process is the same since all of them work
with the same details.

All along the process instance, the status of the work item (i.e., complaint
here) keeps changing from “registered” at the beginning, to “assigned,” to “in
progress,” to “escalated,” to “awaiting spare parts from supplier,” to “waiting for
confirmation from customer,” and finally “resolved.” All the details of the com-
plaint are stored and maintained by the UI application in a database attached
to it. These details include: the complaint number, the nature of the complaint,
the product or service that is the subject of the complaint, the customer name,

126  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

the customer account number, the customer’s contact details, the address for any
visit, a detailed description of the problem, the date when the problem occurred,
whether under warranty, the warranty period, whether under a maintenance con-
tract, the maintenance contract number, and the validity period. The process
would have only the key data, such as the complaint number, under warranty or
not flag, under contract or not flag, customer account number, and date of com-
plaint as process parameters.

6.6  Business Rules
Some applications abstract out the business rule part of the program logic and put
it in a separate component called rules layer. The rules layer houses the business
rule and manages its entire life cycle. This design allows the rules to be modified
separately from the application core components without directly impacting the
application code. At the appropriate point, the code in the application invokes
the business rule in the rule layer and the rule layer executes the rule and returns the
results of the rule execution to the application in the invocation itself.

In PCA, the business rule is expressed in a business-friendly way and the pro-
cess model brings the business rule execution into the process context so that the
rule, when it gets executed, always has the context provided by the process. In
PCA, the rule abstraction is taken another level higher. The process level that is
the highest abstraction incorporates those business rules or parts of business rules
that directly affect the process flow, as conditional branches. An example is shown
in Figure 6.6. In this example, the condition checks if the customer is a new cus-
tomer or not in the order process. Depending on the value of this expression, the
flow branches into the appropriate path.

The other business rules or parts are expressed in a business-friendly way and
are kept in the business rules layer for full management and they become rule
activities in the process.

At the rule activity in a process, the process instance invokes the rule residing
in the rules layer. A rule activity is associated with a specific business rule and it can
get results from the execution of the rule. The rule is invoked only by the process
instance and not by any other component. Business rules leverage all the services
provided by the rules layer, such as rule translation into executable code, run-time
rule instances, and isolation from other executing rule instances. For the invoca-
tion at the rules activity, the process instance communicates with the rules layer
providing it with the details of the rule to be executed including rule name (rule
definition identifier) and the input parameters for the rule, which are those process
parameters in the process context that are relevant for the business rule. Once the
business rules invocation is over, the process instance disconnects from the rule
layer and proceeds to execute the next activity in the sequence. Thus, the process
integrates business rules into the flow in an effective way.

Process Execution  ◾  127

6.7  Flows Handled in a Process
We saw a different nature of flows that can happen in processes including work-
flows, application integration, and rules; some of them involving human partici-
pants and some of them involving only system participants. PCA can handle the
processes various interaction possibilities between the participants and holistically.

These are as follows:

◾◾ P2P—person to person—Here the interactions are between humans and systems
and are almost not involved or involved very minimally. The process contains
user activities and the control flow is between them, involving multiple users. The
flow progresses from one person to the other in the context of the process.

◾◾ A2A—application to application—Here the interactions are between sys-
tems. Multiple applications interact with each other but in the context of the
business process and under the orchestration of the process. System receive
from and give control back to the process in the control flow of the process.
Unlike in human participants, no waiting is involved in the process since the
systems invoked return control immediately back to the process.

◾◾ P2A—person to application—Here the interactions involve humans and sys-
tems in any combination. The process, while executing, integrates each user
and system into the process flow. At any point in time in the process instance,
the control could be with a system or a user depending on the activity being
performed in the process at that time. Flow orchestration is totally managed
by the process model and the systems receive and release control.

Figure 6.6 A conditional branch.

128  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Thus, we see the integration achieved by a PCA-based system is holistic and com-
prehensive incorporating system participants, human participants, and rules rather
than addressing them in parts. The participants take part in the process instance
only when their contribution is required as determined by the process.

6.8 E xercise Questions
	 1.	In your organization, identify processes that span across applications. How

do they interact with each other today? How do they know of each other?
Identify the dependencies they have with each other.

	 2.	How do we ensure that our process does not have to change, if we move from
one third party service provider to another for a service?

	 3.	Think of some work allocation rules that you have seen in your organization
for processes that involve human participation. Which are the most complex
ones? Do you think there is some allocation in this list that a human would
address more effectively than a process-centric system? And, why is it so?

129

Chapter 7

Benefits of Process-
Centric Architecture

7.1 O bjectives
◾◾ To understand why an enterprise should go with process-centric archi-

tecture (PCA)
◾◾ To understand the benefits from the business perspective
◾◾ To understand the IT benefits

7.2  Business Benefits
There are significant benefits to the business from the PCA style of IT systems. These
provide compelling answers as to why PCA is a style worth applying to IT systems in
an enterprise. The key benefits are discussed in Sections 7.2.1 through 7.2.6.

7.2.1  Business–IT Alignment
Through the focus on and the centrality of the business process in the architecture,
business and IT systems align better in this architecture. The gap between the
business process/business specifications/requirements and the IT system is directly
confronted by this architecture and the architecture with its approach leaves mini-
mum scope for the gap to even exist in the first place—by avoiding the translation
(that has been largely manual), by the IT analyst/programmers, of business process
specifications captured by IT analysts to the system code.

130  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

It is the business process that drives the system architecture, design, and execu-
tion of the whole IT system. Business processes can be rapidly changed to meet
the change in business requirements involving zero or minimal changes to the
application(s) code. Typical changes that are necessitated in the IT system due to
changes in the business, such as changes to the process logic including changes in
process flow, flow of control, adding or removing steps in the flow, or changes
in business rules, can be done in the process layer itself without involving changes
to the code in the application. The application code would only need to be changed
if there is a change needed in the specific business functionality (this is the applica-
tion logic). The model-driven approach advocated by PCA, right from the concept
stage of the system, through the architecture stage and coding stage all the way to
the deployment stage provides better linkage between the business and business
artifacts with the IT system and artifacts in the IT system development.

The IT system code in this architectural style no longer has the potential to
evolve independently of the business process nor does the business process evolve
separately from the system. The process is actively pinned to the IT system pro-
grams through the business process model.

7.2.2  Better Control for Business
As should be the case, business gets more control over the business processes in
a PCA-based IT system. It enables them to quickly make changes to the process
when needed without necessarily involving IT changes all the time. In traditional
architectures, it often necessitates the involvement of an IT person and the IT per-
son making changes in the application code. This is made possible by making the
process visible to the business, allowing them to monitor the processes (executions)
at run-time, measure their metrics, and take action in real-time.

7.2.3  Reuse
The concept of services is strongly used with PCA. This promotes reuse of busi-
ness components in the architecture across processes. The processes themselves are
reusable entities. PCA, therefore, leverages all the reuse benefits brought by services
such as the reuse, interoperability, and utilization of existing system assets.

Whether processes or activities in processes are reused outside the enterprise or
even within the enterprise, the processes are not directly exposed—the processes
themselves or activities (if activities are being reused) are exposed as business ser-
vices through only the defined service interface. The service implementations for
the business services are not exposed to the external or internal processes/systems
using them. This is important from an intellectual property (IP) perspective for the
organization. As explained in Chapter 5, processes are defined as abstract and con-
crete (executable) processes. Concrete process definitions are associated as the IP

Benefits of Process-Centric Architecture  ◾  131

of the company and they are not exposed to other systems. An abstract definition
of the process is what is exposed and provided to the other enterprises and external
systems (and internal systems too) that are going to use the process. Abstract pro-
cesses by definition mask all IP and details of the process.

7.2.4  Central Store of Processes
When IT systems are architected based on PCA, the business process definitions
(process logic) are moved out of the applications scope and kept in the process layer.
This process layer would hold all the business processes of the enterprise making
this a centralized repository of business processes for the enterprise. From this, the
processes are used uniformly across the enterprise.

7.2.5  Process Management
PCA enables better management of business processes by allowing the managers
to take an overall process view that clearly conveys to them how well a process is
doing. PCA plays an important contributing role to the business process manage-
ment (BPM) exercises in the enterprise. PCA helps automate and optimize the end-
to-end processes such as “order to cash.”

7.2.6  Mergers and Acquisitions
A typical enterprise can go through efforts related to mergers and acquisitions
(M&A) where multiple enterprises join to become one. It could lead to big changes
in the business processes of the enterprise including the integration of processes and
systems across merging enterprises. IT systems based on PCA enable such integra-
tions to be smooth. Such IT systems can be quickly changed to integrate with other
systems based on process-driven integration.

In M&A, the business processes of the entities concerned in the operations
need to integrate. The combined business entity decides what the business processes
would look like for the resulting new organization (new entity). It is strongly rec-
ommended to use BPM in this exercise—the objective of the exercise is business
process consolidation and business process integration—for the best value. PCA is
to be used in conjunction with BPM in the architecture exercise for the IT systems
concerned with the business processes of the new entity. This typically involves the
following:

	 1.	Identify, list, and analyze the existing business processes of each entity.
	 2.	Decide on the new business processes that will apply for and run in the new

entity.

132  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 3.	Design the new business processes for the new entity with the activity details
(business operations).

	 4.	Identify the existing application portfolios of both the entities.
	 5.	For the new business processes designed, architect the IT systems required to

support them.
	 6.	While doing the architecture
	 a.	 Analyze the existing applications for suitability in the supporting steps of

the new process.
	 b.	 Do application rationalization to take care of application overlaps and

getting rid of duplicate and redundant applications.
	 c.	 In the exercise done in step (b), some applications from both the entities

may get eliminated. The result of the rationalization is the set of applica-
tions from both the entities that have been found to be useful in the new
context of the merged entity.

	 d.	 Map the applications and the steps of the business processes for support-
ing the process.

	 e.	 Even when there are no duplicates, some applications may get eliminated
(sunsetted) if they are not found suitable and appropriate for the new
context.

	 f.	 Identify the gaps in business processes, where the process steps do not
have existing applications supporting them.

	 g.	 Design the business logic components for the steps that have been
identified in step (d) above. These will need to be designed and imple-
mented anew.

	 7.	Implement the IT systems and the related business processes in a phased
manner ensuring a proper transition.

	 8.	During the transition period, the new IT system that has been architected in
the above mentioned steps based on PCA (for the new enterprise), as well as
the old IT system (that has been marked to be eliminated) may coexist and
support respective business processes (new and old, respectively). The old sys-
tems and consequently the associated business processes may get transitioned
out gradually.

	 9.	For the transition period, based on PCA, the new business processes can be
incrementally changed and implemented as an IT system. The new process
and the IT system thus architected progressively reaches the final new pro-
cess model instead of one big jump from the existing business process to the
expected final state business process.

PCA makes this whole exercise easier than other approaches by providing a clear
process-based integration approach rather than the conventional hard integration
approaches. The process-based approach is more flexible and more manageable
thereby helping the M&A complexities and the consequent transition.

Benefits of Process-Centric Architecture  ◾  133

7.3  Benefits to IT Systems
Just as PCA benefits business, PCA also provides great benefits to IT personnel
and to the implemented systems themselves. It makes the IT systems flexible, agile,
interoperable, scalable, and maintainable. The benefits are explained below.

7.3.1  Flexibility
In this architecture, the process logic is clearly separated from the business logic
so that as far as the components of the systems go, there is good separation of
concerns with respect to these. This makes the system more flexible. The process
components, the rules components, the business components, the user interaction
components, and the applications involved can be modified independently of the
other components. Each of these components are loosely-coupled to the others.

Also, contributing to this improved flexibility of the system is the fact that the
business process is made explicit and it is described in a formal specification.

7.3.2  Agility
PCA leads to agile IT systems—systems that can respond faster to the changes
necessitated in the business processes by the business environment, strategy, or
market conditions. The system adapts faster to the changes because a change to the
business process specification directly results in a change in the system’s behavior.

7.3.3  Interoperability
The architecture does not make any assumptions on the technical nature of the
applications that become part of the process in the PCA-based IT system. The
principle that it follows in the interactions of the process with the applications is
that the interactions are service-based. That is, the process would execute in the IT
system by invoking the services provided by the applications for specific steps in the
process. This enables interoperability in a great way since the applications that are
integrated into the process flow can be of any technological environment and het-
erogeneous. They can be external to the enterprise or belong within the enterprise.

For the integration of the applications, PCA offers a more effective process-
driven way of integration. This concept naturally helps overcome interoperability
problems with applications running on disparate technologies.

PCA encourages the collaboration between different applications by making
them work under the common context of the business process. The IT system
becomes more of an open system in this architecture because of the stress on clear
interface specifications by each application component for the service provided to
the process.

134  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

7.3.4  Scalability of the IT System Is Improved
The IT system becomes more scalable. The additional tiering in the architecture
that brings better separation of concerns enables this. New layers such as the pro-
cess layer and the business rules layer allow the process components and the rule
components of the system to be physically separated from the other components
(such as business components, presentation components, user interaction compo-
nents, and data components) and thus allow them to be scaled independently of
other components or applications.

7.3.5  Maintainability
In PCA, the business process underlying the system is made explicit and is formally
specified. The concerns of process logic are clearly separated out from the business
logic of the application components. This makes the IT system more easily main-
tainable. Changes to the process logic can be quickly done to the process model and
confined to the process model only. Changes to any business functionality can be
done confining it to only the application component that handles that functionality
without impacting any other component including the process model.

The clear separation that PCA brings can also be helpful to move certain
user-interface (UI)-based functionalities from a legacy application to a more user-
friendly UI application. An example would be a mainframe-based UI application
that may not be very user-friendly. It can be part of the process flow initially. Then
at a later point in time, the architecture would allow its replacement with one based
on more UI-friendly technology. All this is done without changing anything else in
other components of the architecture.

7.4 S calability of the PCA Style and Approach
PCA, being rooted in business process focus, is inherently scalable for addressing
the business processes of businesses of different sizes—be it a small-scale business,
a medium-sized business, or a large business enterprise. This architecture is not
constrained by the size of the organization or the complexity of the processes in a
large organization because the process layer is going to hold the process flow instead
of the hard-coded flow ingrained in the applications supporting the business pro-
cess in the conventional architecture. With respect to scalability for the run-time
system, process layer components and the business logic components being separate
concerns are physically independent of each other and they can scale up or scale out
separately as per the load.

For example, in the case of a full end-to-end process, such as order-to-cash in a
large transportation services company, the process layer would include the end-to-
end process model housed in it having the steps corresponding to various activities

Benefits of Process-Centric Architecture  ◾  135

such as sales, order placement, invoicing, payment, order fulfillment, and account-
ing entry. This process is typically decomposed as a set of subprocesses for each
distinct part of the process such as order creation, order fulfillment, and financial
processing. Each such subprocess is itself a process and may have another level
of decomposition, which is further composed as a subprocess. For example, the
finance process in the end-to-end process may be decomposed into activities related
to payment processing, making general ledger (G/L) entries, invoice account pay-
able to receivable matching/netting, providing receipts to the customers, etc. In the
PCA for this IT system, the end-to-end process exists in the run-time and so do
the process instances corresponding to each of the subprocesses that it is composed
of down to the lowest level subprocess—all of these process instances are executed
seamlessly and in the right sequence inside the process layer.

In the previous example, the entire process would interact with business logic
components supporting the various activities that are part of sales operations, order
creation, order processing, finance operations, and so on. These business logic com-
ponents may be supported by existing applications or new applications depending
on how well they provide the respective services to the process. The architecture
inherently enables the components to be scalable in such a large end-to-end pro-
cess in such a big enterprise. To handle a larger number of orders received by the
company, the process layer could be scaled up/out so that more process instances
are executed and load managed. Components that are supporting business func-
tionalities, such as payment processing, can also be separately scaled up if there are
more loads related to payments or finance work. The seamless integration of all the
applications involved in this end-to-end process is enabled by PCA, and this ensures
the scalability of the approach itself whether the process is a small one in a small
enterprise or is a complex large process in a large enterprise. The PCA approach sup-
ports them equally well.

There are essentially two types of processes in an enterprise: operational pro-
cesses and management processes. Though PCA supports both of them, opera-
tional processes are the best candidates for PCA as of now, because of their
direct involvement in the core operations of the business and they involve more
repetitive, well-defined activities that can be more amenable to be supported by
systems. Management processes involve a good amount of knowledge-intensive
work and activities that are more ambiguous, less structured, and abstract when
compared with other processes. Also included in this broad category are pro-
cesses such as product development, research and development related work, and
other strategic processes—these are knowledge-intensive processes. PCA may fit
IT systems supporting such processes to some extent. For example, reporting
processes or monitoring processes for managers could be architected as IT sys-
tems based on PCA. Computer systems have also been evolving to handle work
that is more abstract and knowledge-driven. As they become more and more
capable, PCA would scale to support knowledge-intensive processes (manage-
ment processes) too.

136  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

7.5  Complexity versus Manageability
While following the PCA style to architect an IT system, the unrelenting focus is
on the business process at hand. It can be an intra-department business process, say
a loan disbursement process that focuses on the activities to be done as part of a
service provided by a specific department—a relatively less complex process. Or, the
process can be an organization-wide end-to-end process say the order-to-cash pro-
cess that covers the entire scope of the enterprise. Such an enterprise-wide process
could appear complex to deal with especially since it would mean modeling most of
the activities of the value chain in the enterprise and involving multiple applications
or systems in the architecture—the entire process design and modeling itself could
be felt to be a daunting task.

This complexity can be well handled in the PCA approach while at the same
time keeping the architecture manageable. PCA provides the best manageability
and ability to address process-design complexity when it is applied in conjunction
with the BPM program in the enterprise. Organization-wide BPM implementa-
tions facilitate a structured approach to process improvement, process-design, and
process management. BPM greatly helps address complexities with respect to pro-
cess design and the architecture work for PCA. BPM implementations typically
happen over a period of time in the organization to address the complexity of mov-
ing the organization from a function-based to a process-aligned one.

When applying PCA to architect systems in the enterprise, especially the large-
and medium-sized businesses, it is more pragmatic to avoid going for a big-bang
approach—that is attempting to apply PCA for all the systems in the enterprise
overhauling the existing architecture. It would be more manageable to apply it first
to smaller-scope processes, say new IT systems, that need to be built for a new pro-
cess that is within a small department of the enterprise or to re-architect an existing
system supporting an intra-department process. An example here would be a new
mutual fund plan that could result in a new fund process. It is best to do one pilot
with a relatively smaller process and then use this learning experience to architect
more and more processes in an incremental way thereby gradually covering the
entire enterprise and end-to-end processes. Thus, it is suggested to start from one
IT system, apply PCA for its architecture, and then move to another IT system
(one process at a time in the initial projects) instead of attempting a big-bang. That
way it would be manageable.

Complexity associated with business process design is best managed by apply-
ing PCA together with BPM. If BPM is not already in place in the enterprise, it
would be worthwhile to move the enterprise processes toward BPM for better long-
term value. This is true especially for medium-to-large businesses.

Another method of dealing with complexity and making the whole architecture
and implementation work for the IT system is process modularization. Processes are
modularized into smaller processes or subprocesses. Since PCA supports process
composition and process hierarchy, complexity can be directly addressed with the

Benefits of Process-Centric Architecture  ◾  137

concept of abstraction. Even within the process layer that is an abstraction above
the business logic and user interface logic, more levels of abstractions are possible
at varying levels of granularity—the lowest level process will have relatively the
highest level of details. An end-to-end process that spans across the functions (and
departments) of the enterprise is broken down into subprocesses of lower-scope and
specific business objectives at each level. Each lower level is incrementally more
in detail and less in scope than the higher levels. What becomes more important
here in managing this process design complexity is the granularity of activities in
the process. Even at the lowest level of process abstraction, the granularity of each
activity in the process is ideally kept at the right level so as to keep the process
manageable and maintainable. The level of detail at this level of granularity for the
activity needs to be just right and it needs to avoid too many details—this level of
granularity for the activities in the process is called business service granularity.
At this level, the activity performs a logically complete business function that is
recognizable from the perspective of a business user or a business manager. Some
examples of activities (business services) at the right granularity are: adding a new
customer, updating an existing customer’s details, approving a loan request, with-
drawing money from an account, depositing money to an account, redeeming a
specified number of units from a mutual fund held by the customer, and placing an
order. Chapter 9, SOA for services, discusses the right granularity for the process
activities in more detail. These levels of process abstraction in the process help us
handle their complexity better, making them not difficult to manage and maintain.

Most enterprises would have some already existing means of managing their
business processes with an objective to improve them and the business processes
would have been getting managed based on those ways. And, process management
has been complex for most of the enterprises. Now with PCA, business managers
and IT personnel get more power and effectiveness in managing those very same
business processes and effect appropriate IT changes so that IT systems are bet-
ter aligned to business. As far as manageability and complexity are concerned,
the only thing that PCA (and BPM) introduces is a bit more formalism, a more
effective method for the business to impact IT behavior with the very similar kind
of process design and modeling the business is already used to. Thus, PCA will
be only as complex as, if not less than, the existing process design and modeling
approaches.

7.6 R aised Level of Abstraction for the IT System
Historically, programming and design for software-intensive systems have been
going higher and higher in abstraction. This movement in abstraction has been in
the direction toward the human (or the business user of the system or stakeholders
of the system) and away from the machine. With each higher abstraction, sys-
tems are becoming increasingly closer to the human than they were before—with

138  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

respect to the ability they provide to the human to build them, work with them,
understand them, change them, or fix problems in them.

Let us look at the programming-related abstractions. The first-generation
systems were programmed in machine languages—they were the closest to the
machine but the farthest from humans. Then assembly languages took the pro-
gramming abstraction a bit higher with the introduction of mnemonics replacing
machine instruction code—which made it a bit easier for programmers to program
(or change) the system, relative to the previous abstraction. After that came the
third-generation languages (3GLs) that took abstraction to the next higher level
with a jump with the name high-level programming languages—programming
was taken to a level of ease where more people could write programs and build sys-
tems with a syntax that was distinctly different from machines and more friendly to
humans. However, the people doing this were expected to be technically oriented
or programmers and it was clearly not for the business-oriented people. With the
advent of fourth-generation languages (4GLs), the level of abstraction went up still
higher where the programs, to a great extent, were expected to be written by busi-
ness folks themselves. Structured query language (SQL) is a good example of this.
4GLs provided the ability for people to store, retrieve, and update information from
databases in an easier way using a language they are more comfortable with than
high-level programming languages.

But, 4GLs are considered to be a failure by some because business folks still did
not find 4GLs that easy to use or very friendly to program. This is mainly because
it still involved programming business logic, which is beyond just data access, into
the systems. This still required the use of 3GLs. And, more importantly the abstrac-
tion was an abstraction only at the programming level and not at the system archi-
tecture level.

Given this history, it is reasonable to be concerned about whether PCA, by
moving the abstraction of the system to the business process level, would still be
effective as far as the friendliness to and use by business folks goes. The abstraction
PCA introduces is unlikely to be a failure given the following:

◾◾ It is an architectural abstraction. It has raised the architecture abstraction
from the current business-logic or component level to the business process
level that is closer to the way business folks see the systems.

◾◾ It allows the business folks to directly drive the architecture by specifying,
all on their own, the business process (this avoids all lost-in-translation gaps
from business requirements to the system design/implementation) that would
become the center of the architecture of the system and that would drive the
behavior of the system. The previous level of abstraction allowed them to
only specify business requirements that merely became (and remained) pas-
sive documents later as far as the system’s architecture was concerned.

◾◾ It allows businesses to change the behavior of the system by changing its
architecture through the business process model. They can directly change

Benefits of Process-Centric Architecture  ◾  139

the business process of the system. PCA takes the abstraction closer to the
WYSIWYG (what-you-see-is-what-you-get) philosophy, where the business
process that the business folks design and specify is the business process that
the system actually runs and is based on.

◾◾ PCA does not expect the business folks to learn any new programming para-
digm or any new programming oriented method. For architecting the system,
it lets them directly use the terms and notations that they normally use in
their day-to-day parlance and also lets them see the system in the same way.
They can now relate well to the architecture of the system and the concepts in
it. All this means businesses also do the architecture work for the system; that
makes it very different from and more powerful than the earlier abstractions.

7.7 E xercise Questions
	 1.	What process would you to pick in your organization to demonstrate the

benefits of PCA?
	 2.	Pick up a business process that you are familiar with and visualize the benefits

that would come if that is architected on PCA. Do those benefits justify the
decision to architect it this way?

IIaRCHITECTING
it sYSTEMS, THE
pROCESS-CEnTRIC
STYLE (dESIGNING PCA)

143

Chapter 8

The Approach

8.1 O bjectives
◾◾ To understand how the architecture of an IT system looks in the process-

centric style
◾◾ To appreciate the different components and their roles in the architecture
◾◾ To be introduced to the architectural design behind process-centric architec-

ture (PCA)

8.2 �A Typical Manifestation of Process-Centric
Architecture

8.2.1  The Architecture
Let us take a look at an architecture that embodies the PCA style. This example
involves order processing.

Figure 8.1 shows the process model of an order process. The static and dynamic
views of the architecture are shown in Figures 8.2 and 8.3.

In this manifestation, we have the following components. The process engine
of a business process management system (BPMS), the process model inside the
process engine, the application components that support the business, the applica-
tion server (JEE), the web server, the web application, an application package, the
process repository, and the business rules engine. This is one possible manifestation
of the architecture for the business process.

144  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Sa
le

s
Cu

sto
m

er
en

qu
iry

Ca
lc

ul
at

e
ra

te
Ye

s

N
o

Cr
ea

te
cu

st
om

er
ac

co
un

t

Su
bm

it
bu

y o
rd

er

Re
vi

ew
or

de
r

N
o

Ye
s

Ye
s

Ye
s

Ye
s

N
o

N
o

N
oBu

ild

Cr
ed

it
cu

st
om

er
?

Re
ce

iv
e

pa
ym

en
t

Ch
ec

k
in

ve
nt

or
y

Pr
od

uc
ts

re
ad

y

Pi
ck

Pa
ck

ag
e

Sh
ip

N
ew

cu
st

om
er

?
A

m
ou

nt
>

$1
00

0?

Co
n�

rm
or

de
r

Pr
ov

id
e

qu
ot

e
Cu

sto
m

er
pl

ac
es

 o
rd

er

Sy
st

em

O
rd

er
 cl

er
k

M
an

ag
er

Pa
ck

ag
in

g

Sh
ip

pi
ng

M
an

uf
ac

tu
-

rin
g

Re
ce

ive
pa

ym
en

t

In
st

oc
k?

Cr
ed

it
cu

st
om

er
?

Fi
gu

re
 8

.1
 A

 m

an
if

es
ta

ti
on

 o
f P

C
A

—
th

e
bu

si
ne

ss
 p

ro
ce

ss
 m

od
el

.

The Approach  ◾  145

8.2.1.1  Process Engine

The process server (also called process engine) is the embodiment of the process
layer in the architecture. It is provided by a BPMS here. Its role is to implement
all the services and functionalities of the process layer including creating process
instances, initiating their execution, and managing their life cycle. It houses the
process model and provides the environment for the process model to execute.

The process server is at the center of this architecture and it holds the IT sys-
tem’s core component, the business process, for example, the handle order process.
Run-time manifestations of the process are also created by the process server. It is a
layer separate from the application server.

It implements the entire infrastructure required for process deployments and
executions. It takes care of the needs of the executing process instances including
receiving messages and invocations to the business components seamlessly across
technologies and communication protocols.

Sales order process

Process engine Client

Manufacturing application Order component Pricing application

UI application_order management

+Process instanceId: string

+Processes: list of process model

UI application_dispatch application

Receive web service

Inventory application

Figure 8.2 A manifestation of PCA—static view.

Client Process engine Sales order instance Application component Order management UI app

User completes action

Customer initiates process

Figure 8.3 A manifestation of PCA—dynamic view.

146  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

8.2.1.2  Process Repository

The process repository is the database for all the process data, both static and run-
time. The static data it stores are the business process definitions with their versions.
It includes both the high-level business process model and the executable process
definition. In this example, these are for the order fulfillment process.

When the process is executed by the process engine, the run-time process data
for all the process instances are exclusively stored in the process repository. This data
includes the status of the process execution, process instance start and completion
times, start time and end times for each activity, all the process properties and values
(process parameters), and messages received by the process instances. Process hiberna-
tion and process resumption are carried out using the data from the process repository.

The process engine owns the process repository and is the one that updates it
as the process instances move along with their executions. The process repository
is not expected to store any business function specific data, that data is expected to
be stored and managed by the individual applications involved in the IT system. It
stores only process-related data. The process repository is provided by the BPMS in
this architecture.

8.2.1.3  Applications

Applications implement the various activity-services that are part of the business
process. They are the business logic elements (BLEs) for the IT system. Each appli-
cation supports one or more services through respective business components that
implement the services. They include in-house applications, application packages
(commercial off-the-shelf [COTS] packages), legacy applications, and third-party
service providers. For example, the inventory application, pricing application, order
management application, and CRM package.

Each application implements the services that are in the business scope of its
specific area, say inventory. And it maintains and manages all the business data
related to that area in the application database. The application database stores
the application data and is used by all the applications. This database is separate
from the process repository. The application database is owned by the applications
and access to it is only through the applications. Only the applications or business
reporting applications directly access this data.

The business components in some of those applications are Enterprise Java Beans
(EJB) components; for example, inventory application services, order management
application services, and pricing services. Each of the services is implemented by an
EJB component (high-granular) that in turn uses other EJB components that are
low-granular business components right down to the level of business entities, such
as the EJB component for order entity (in the database).

Some of the business components that implement services could be web ser-
vice implementations (not shown here in this example) that use SOAP over HTTP.

The Approach  ◾  147

Another application that is part of this IT system is the customer relationship
management (CRM) application package. That application implements the cus-
tomer information and management related activity-services for the process in this
IT system; for example, the prepare shipment for deliver activity. A legacy application
could also be part of the process by implementing an activity-service in the process.

All these service implementing application components are invoked by the pro-
cess instance executing in the process engine at the right points in the process.

8.2.1.4  Application Server

The applications with the EJB components are kept in a JEE application server in
this manifestation. The application components are managed by the application
server. The service implementing the EJB components of the inventory application,
pricing application, and order management application are the ones hosted by the
application server. It concerns itself totally with supporting the life cycle of these
business components and providing them with a system infrastructure for carrying
out their business logic. Some of the infrastructure services offered are transaction
management, database access, application level security, redundancy, performance
related support, etc.

It enables access to the application database for the individual applications
through a separate data abstraction layer within it. The process engine interacts
with the application server to execute the EJB components that implement the
activity-service in the process during the process execution.

8.2.1.5  Adapter Layer

The adapter layer is a part of the process server. It is concerned with handling all
communication-related aspects of the interaction of process instances with the busi-
ness logic components. This includes communication protocols, transport/network
protocols, technologies, data transformations, character encodings (EBCDIC,
ASCII), and so on that are involved in the invocation of the activity-services and
the invocations received into the system. It enables the process server to invoke the
services corresponding to the system activities. This adapter layer would be capable
of interfacing with a wide variety of systems spanning across disparate technologies.

The adapter layer takes care of the invocation of different types of services
including web services (standard), EJB components, legacy application, pack-
aged applications (such as SAP, ERP, CRM), etc. by taking care of the necessary
interoperability requirements. In this example, the business components of order
management, pricing, and inventory applications are EJB components in the appli-
cation server. It would perform the necessary EJB look ups and the invocation on
the remote interface. In the case of the package application, it would connect to the
service exposed by the package or the wrapper created to expose the package ser-
vices, then performs necessary data transformations from the format that the process

148  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

instance uses to the format that the package requires, then invokes the service, and
after that it performs reverse transformation of the data received from the package to
one that the process uses. It does a similar thing with legacy, for example mainframe,
applications. Also, it would use the gateways provided by a mainframe to access the
mainframe applications.

The adapter layer would most effortlessly invoke services that are based on stan-
dards-based protocols such as web services based on SOAP over HTTP and in XML,
as they are inherently non-technology specific. Such services are naturally preferred
for the services and their invocation. The adapter layer can be an Enterprise Service
Bus (ESB) that is either part of the BPMS or a separate entity such as Mule.

8.2.1.6  Business Rules Engine

The business rules engine houses the explicitly defined business rules that govern the
business functionality of individual activities (e.g., claims approval rules). By invok-
ing the rules engine, the process server gets the rules executed by the rules engine.
For example, the “calculate rate” activity shown in Figure 8.1 can be realized as a
business rule and be deployed in the rules engine. All the rules that are applicable
in calculating the effective price of the items in the customer’s order is defined in
this business rule. During the process execution, this rule is then invoked from the
process when the process reaches the “calculate rate” activity step.

The process server uses its adapter layer to handle the technical concerns of the
rules invocation such as data transformations. A rules engine allows the business rule
to be defined in a business-friendly format using business terms and to be deployed
in it with a unique rule identifier. The rule identifier is used by the process to invoke
the rule during execution. The input arguments it requires and the output arguments
that it returns are specified in the rule. The process engine interacts with the rules
engine. For example, the “calculate rate” activity shown in Figure 8.1 can be realized
as a business rule and be deployed in the rules engine. All the rules that are applicable
in calculating the effective price of the items in the customer’s order is defined in this
business rule. During the process execution, this rule is then invoked from the process
when the process reaches the “calculate rate” activity step.

8.2.1.7  Web Server

The web server realizes the user interface (UI) application layer of the architecture.
It uses the HTTP protocol and serves HTML pages. The web UI applications
for the manual activities in the process are housed on this server. The users perform
all the manual activities (such as reviewing orders, delivering to customers) using
the web-based user interfaces providing the web UI applications. The UI applica-
tion runs in the web server and shows HTML pages on the user’s workstation.

The user participation portal is the web-based UI application that the BPMS
provides, which also runs on the web server to enable the user to see the activities

The Approach  ◾  149

that he or she needs to take part in at any point in time. The user may have to take
part in more than one order fulfillment process instance or more than one type of
process itself (say a loan process too). All this is shown in the user portal for the
user’s convenience. The actual functionality corresponding to the user activity is
handled by the user interacting with the web UI application itself (e.g., order
management application as shown).

The process monitoring portal is a component that is provided by the BPMS.
It allows process managers and business managers to monitor the details of the
executing processes and take any action required on them including forceful termi-
nation of a process instance if there is a problem. It can show data from the process
repository including the process history for executed processes.

8.2.2  Legacy Components
These are applications that have already existed in the enterprise for a long time
but serve useful business functions. They are typically developed in-house. These
applications have complex business logic coded in them (implicit) and are difficult to
rewrite or replace. It often makes more sense to reuse them as they have been serving
the business functions well rather than replacing or rewriting them. Documentation
would be absent or minimally available. Logic is implicit in the code; it requires code
to be read to understand the business logic. All these are their key characteristics.

Some system activities in the process could be performed by the legacy applica-
tion. They are service-enabled so that their business functionalities could be invoked
by the process. Invocations are handled by the adapter layer of the process server.

One example of a legacy component is a mainframe application. The applica-
tion would typically be a CICS/COBOL application or a COBOL based applica-
tion. The business logic of the CICS application is separated from the presentation
(CICS maps) of it and is made as invocable separately outside of the CICS screen
environment as a screen-less CICS transaction. Using the CICS gateway provided
by the mainframe is one of the ways to achieve this invocation from the adapter
layer by invoking it as an external business interface. Another way is to expose the
CICS application’s business functionality as a service using the SOAP gateway pro-
vided by the CICS server on the mainframe (SOAP engine running on mainframe).
Here, the services are invocable by the adapter layer using SOAP over HTTP.

A plain COBOL application in the mainframe can be invoked by exposing it
as a service on the mainframe using the SOAP engine on the mainframe. It would
be an external business interface to the COBOL application’s business logic for the
benefit of outside systems.

Whether the mainframe application is an online CICS or a batch COBOL
application, the application can be modularized to separate the business logic into
a COBOL subroutine. The COBOL subroutine can be invoked from the existing
CICS application as well as the batch application (that is the job). This subrou-
tine can be service enabled to be invoked from outside via gateways to CICS, for

150  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

example. Another option is to use a Java Transaction Adapter (JTA•) to bridge
its invocation from an EJB component in the application server to the mainframe
COBOL subroutine. In this procedure, the copy books are converted to equivalent
JAVA objects and vice versa during the invocation.

8.3 A rchitectural Design in PCA
8.3.1  When to Apply?
PCA is applicable only to IT systems in the enterprise. An enterprise could be a
corporation or a government agency. Whenever flexibility of the business processes
and business–IT alignment are overriding concerns for the system, PCA is the right
architecture style. Here are some of the right scenarios where PCA can be applied:

◾◾ Architecting new systems in the enterprise to support new business process(es).
Example, a new service is being launched by the enterprise.

◾◾ Architecting new systems in the enterprise to support existing business
process(es). Here the entire system is architected and built new. For example,
the existing loan application processing system in a bank is being scrapped
and it is going to be designed newly from scratch. The architectural approach
here would proceed as if a new system has to be designed from scratch—the
existing applications concerned with the loan process do not get considered
and thereby do not influence the design.

◾◾ The current IT system(s) or the set of applications in the enterprise do not
link up well to the business processes that they are intended to support. There
are business process–IT alignment issues. Therefore, the IT system needs to
be re-architected. For example, the auto insurance claim process in an insur-
ance company is supported by an application and is found to be less flexible to
adapt to changes in the process. Some of the existing application components
might get reused in some form in the new architecture.

◾◾ BPM exercise (or BPM project(s)) is going on in the enterprise and business
processes are being re-designed or changed as part of that. The IT systems
concerned in the enterprise will then need to be architected or re-architected
to support the new business processes. The scope of the BPM program can
be the process architecture for the entire enterprise. Or, the scope can be a
specific business process or a set of processes taken up for improvement. PCA
applies directly (of course at the system level) in the context of any BPM
effort in the organization—be it process monitoring, process measurement,
performance management, or analysis.

◾◾ In the application at hand, there is a flow of work involved between human
roles or systems, or both. These flows might cover multiple business functions
or just one business function.

The Approach  ◾  151

◾◾ Processes within the enterprise need to be integrated. This also involves appli-
cations getting integrated.

◾◾ Processes need to be automated.
◾◾ Processes to be supported are inter-enterprise processes. There are inter-

process relationships—processes might interact with each other.

In short, in the context of the enterprise, when we have the need to architect sys-
tems where the scope is a business process, PCA can be applied—this means it
applies to almost all the systems in an enterprise because they will all be involved in
the context of some business process or the other.

8.3.2  How to Apply?
Let us now look at how to apply PCA and design the architecture of the IT sys-
tem. The approach to target the architecture development is primarily top-down.
The architecture work starts with the modeling of the business process and then it
proceeds down to the design of the components of the architecture. The business
process that the system to be created needs to support may be one that already exists
in the enterprise or a new one required for it.

For an existing process, the current state needs to be analyzed. Process mod-
els or architecture assets for the existing process may not exist or may be little.
However, the current state process analysis is often done bottom-up because the
process models need to be re-created from the study of the tasks that happen in the
context of the process and the functions (workings) of the applications that cur-
rently exist. This is the baseline description of the architecture. Working assump-
tions are made about the top-level architecture for the existing process and it is
refined as more ground evidence comes in.

8.3.2.1  Modeling Business Processes—Prerequisites

As far as the business process for the IT system is concerned, it could be a new
process if the enterprise is entering a new business by launching a new service or
product. In this case, what is described is only the TO-BE process model.

In the other case, the business process is typically being modified, reengineered,
or tailored for improvement, optimization, and efficiency.

The AS-IS process is important in this situation. The process as it is currently
performed is modeled first and this is called the AS-IS process. The AS-IS process
modeling is a faithful capture of how the business process functions right now and
its usefulness is directly related to how accurately it reflects the current process.

The AS-IS process is then used as the basis for understanding the existing
business, activities, and work. This leads to an analysis of the AS-IS process for
potential improvement and optimization. It is strongly recommended to follow the
BPM practices and approach for this optimization. The practices applied include

152  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Six sigma, lean, and business process reengineering. Otherwise, the value from the
business process implementation through this architecture would not be signifi-
cant. The architecture would be only as good as the quality of the business process
specified.

The business analyst then creates and models the TO-BE process as an improved
process over the one before. Among the things that the analyst considers for process
optimization are design heuristics, such as identification and the possible removal
of potential bottlenecks based on dependency analysis, improving parallelization of
activities in the process, increasing automation, changing the ordering of activities,
and relooking at business rules governing the process flow to potentially change
them to effect optimal flows. At this point, one additional analysis and optimiza-
tion method that the analyst can use is simulation. They can do simulations with
the process model to study the behavior of the process model in various scenarios
and come up with further optimizations on the process.

Whether it is a totally new process or a refinement over the old one, the TO-BE
process is expected to have been optimized (or improvised) to the extent possi-
ble at the design stage itself. This is the preferred option rather than waiting for
the process to be implemented and deployed in production to analyze it, which is
more expensive. The process modeling and improvement is primarily done by the
process analyst.

8.3.2.2  Top-Down Approach (or Leaned to Top Approach)

The architectural design follows a top-down approach when applying the PCA
style. We always start at the top, with the business process to be supported (to-be
process). The steps involved in this architecture creation are performed by the pro-
cess analyst and the system architect(s). The business process focus remains through
system implementation, deployment, run-time execution, and monitoring stages.
This is irrespective of whether IT systems are already available and running or not.

	 1.	The to-be business process would have been arrived at after analyzing the
as-is process for optimization. The to-be process could also be a totally new
process.

	 2.	Model the business process graphically with all the paths and decision points.
	 3.	Capture the rule for each decision point as specified by the business.
	 4.	Consider the activities that the process is composed of.
	 5.	For each system activity, associate with it the service that provides the logical

business functionality of the activity. The service supports the activity. If the
service is not already available in the enterprise, consider consuming it from
a third-party service provider or create the service.

	 6.	Describe the service interface in a standard format such as WSDL.
	 7.	For each service, identify the application that provides the service or could be

enhanced or created to provide the service.

The Approach  ◾  153

	 8.	Service enable the application if it does not provide the service in the standard
business format; for example, legacy service enablement.

	 9.	Consider reusability characteristics of services and take actions to improve
reusability. The context of business process driven SOA or the process driving
the services provides opportunities to improve reusability. For example, the
business analyst makes the call that the credit card validation step will pass
credit card number, customer name, expiry date, CVV number, and billing
address of the customer to the credit card validation service and not just
credit card number and expiry date. If there is a service already available in
the enterprise that takes only these two as inputs, then the business process
would lead the analyst to decide that this service is to be extended to take in
the additional parameters or that a new service be created to take all the five
parameters as inputs.

	 10.	Keep the following things in mind while identifying the services:
	 a.	 Reusability is of prime concern and essence; that would allow more lever-

age from IT systems.
	 b.	 Be flexible with the service interface (in/out parameters) requirements

of the activity especially if a service is already available; otherwise, it
becomes just another procedural programming.

	 c.	 Be willing to tailor the interfacing parameters list of the activity if the
service is already available and has good potential for fitment here.

	 d.	 Refrain from creating new services on impulse due to the over-focus on
the need for perfect process orchestration.

	 e.	 Consider the use of object-oriented programming system (OOPS) poly-
morphism principles in creating redundant service interfaces supported
by single service implementation to encourage the maximum number of
activities to reuse the same service, and they need not request for a new
service just because the service interface does not match exactly though
the service functionality matches fine. Only the parameters listed in the
service interfaces would be different.

	 f.	 Merge the concepts of OOPS and procedure-oriented programming.
	 g.	 It would be best to survey a set of business processes in the same domain

to identify if there are standardized services (for standardized activi-
ties). If standardized services are available, attempt and intend to stick
with that standard service definition and tweak the activity parameters
to match the same. Refrain from nonstandardizing behavior as much as
possible. Do it easily for non-core processes.

	 11.	If feasible, identify and extract common process flows from a set of processes
in the enterprise that have some overlapping set of steps or actions and make
the common process flow into a new process. This new process can be used
as a sub-process by other processes that need its functionality. For example,
if the flow for approval is common across processes such as travel, expense
settlement, leave, order form processing, and timesheets, then it can be made

154  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

into a new process named approval that can then be invoked as a sub-process
from these processes mentioned above.

	 12.	While working on one process and identifying services for that process, con-
sider the set of business processes in the enterprise that could be related in
some way. Look for overlapping activities. Standardize the service that all of
them require to one service where all these activities, after some tweaking in
their definition, can use this single service rather than creating a new service
for each of them. This step actually suggests a way to identify potential for
reuse. Reuse potential identification needs some bit of bottom-up approach,
where you look at all the components already built with an objective of reuse
across the organization.

	 13.	The danger in not doing this reuse identification is that it can take the enter-
prise IT back to the problems in the old days, where each department or func-
tion created programs and routines they wanted just because the program
they wanted did not exactly match the function signature of their program in
an existing program in another department.

	 14.	For a new service, design the business logic components (based on the plat-
form of choice) that will together deliver the business function. Implement
the service based on the components.

	 15.	Each component needs to be designed to perform the algorithm associated
with the business functionality it is supposed to take care of.

	 16.	If complex business rules are involved, implement the component on a busi-
ness rule engine as a rule.

	 17.	Define the rules in a business-friendly language in a rules engine and host the
rules on the rules engine.

	 18.	The rules are made invocable by the rules engine at run-time.
	 19.	Specify the rules invocation identification (rule ID) in the activity of the

process for invocation by the process layer or invoke the rule from the service
implementation component.

	 20.	If the service is one that is going to be provided by a third party, identify
the quality of service requirements (SLA) for the run-time service provider
selection.

	 21.	For each user activity, specify the user role that is expected to provide that
service by performing the business function of the activity.

	 22.	Specify the work allocation rules for the activity so that at run-time, the
activity gets assigned to a specific user.

	 23.	Identify an existing GUI application that provides support for the user
function.

	 a.	 The screens of the application correspond to each different task of the
activity.

	 b.	 Chain the begin and end application screens to the activity in the process
if the application functionality is multipage.

The Approach  ◾  155

	 c.	 Otherwise, chain the application screen page to the activity in the pro-
cess, if single-page.

	 d.	 Modify the application screen logic on the last page to send a notification
to the process indicating the completion of the activity.

	 24.	If an existing GUI application is not available or not suited, design a new one.
	 a.	 Design the GUI screens for the activity tasks, one for each task, for exam-

ple, HTML/JSP pages.
	 b.	 Design the task level flow logic to move from one screen to next.
	 c.	 Implement the task flow as a screen flow specified in the controller part

of the GUI application, say Java servlets and a screen flow control frame-
work, such as Struts•.

	 25.	Another aspect is the granularity of the processes or the levels of processes.
Processes can have a hierarchical relationship to each other and this means
there can be multiple levels of processes. An activity in a process that is at
a higher level of granularity may be a lower-level process itself, i.e., it is a
subprocess of the former process. This is recursive and can go on and on. At
the lowest level of granularity, the activities are all specific logical business
functions and not subprocesses. The right number for the levels of processes
is something to be decided and determined based on the context of the enter-
prise. To not make it too complicated (to manage), a hierarchy, four or five
levels of granularity, is considered appropriate and effective.

If a top-down approach is not followed, the enterprise IT can end up with thou-
sands of services designed and implemented, but the business processes might need
only some hundreds of them. The rest of the services would just be a waste. And, a
huge investment would already have been made on them.

There is a downside and this might sound contradictory. To ensure maximum reus-
ability, we need to have business people who know about most (if not all) of the busi-
ness processes in the enterprise and they would need to scan the entire set of processes
in the company to identify which functions are common and so reusable. In a way, this
would mean that all these processes are modeled first. Services are mapped to activities
next. Looking at it realistically, such people are hard to find in the organization.

One rule of thumb is to go with standards or best practice services wherever
possible. That will open up more reuse from not only within the enterprise but also
from outside through third-party services or partner services.

A guiding principle is to strike a bit of middle path with strong leaning towards
the processes and top-level, eventhough the architectural design always starts
from the top. It cannot be totally bottom-up driven nor can it be totally top-
down driven since both are extremes. Some flexibility and adaptability is required
from both sides whereby the process activities consider the need for reuse as also
important and trade some interface customization (but not functionality) for this.
SOA, on the other hand, needs to be more oriented to the needs of the process

156  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

and not remain very strict on perfect reusability up to the point of matching the
functionality and the parameters and their data type 100% perfectly. With this
flexibility, we can achieve substantial benefit (maybe 80% as a rule of thumb) of
business IT alignment and IT flexibility but not a perfect world of 100% business
IT alignment where each service is perfectly reused and each activity perfectly fits
the service. So, there is a need to be realistic about the alignment aspect. It is caused
or it comes from the basic trade-off of customizability versus maintainability and
reusability. That cannot simply be wished away. Take the analogy of the reliability
and security quality goals for a system that are inversely related to each other and
the trade-off is classical. To make it more reliable, we improve the availability by
adding redundancy but this inversely affects the security of the system as there are
now more points of security vulnerability, and instead of an attack coming from a
single point of entry (which is easy to make secure), now it can come from multiple
redundancy points.

A mix of standard-mindedness, pragmatism, core versus non-core differen-
tiation, harmonization across geographies, forward thought, long-term oriented
thinking, and strong business need focus is preferable during the architecture stage.

Earlier applications were centered on data and information. It was assumed
that data and information were central to the application’s architecture. Now it is
acknowledged that the business process is central to IT systems and their architec-
ture and not data. So, the business process should be given the first importance in
architecture. Entities related to data should be considered only later. Process pre-
cedes information in the new paradigm.

8.3.3  Levels of Models
While modeling the TO-BE business processes, there are two levels of modeling
performed. One is the higher-level business process and the other is the executable
process definition.

8.3.3.1  High-Level Business Process Modeling

In the high-level modeling, the process analyst or the process designer defines the
business process by graphically modeling the business process as a set of activi-
ties chained together in the order that determines the achievement of the business
objective of the process. The activity construct is used to model the activities and
for each of the activities, a business label or name is specified. Typically, the name
of the activity (or the identity of the activity) is a verb such as “purchase spares.”
It (the verb) indicates the action taken in the activity; it is the intent of the activ-
ity. Additionally, a small description of the business function of the activity is also
specified as an annotation or as a property of the activity.

Identifying each activity in a TO-BE process is an important step in the
modeling. Here, the analyst looks at which business functions achieve logically

The Approach  ◾  157

complete business operations and each of those functions becomes an activity
in the process. The decision related to the right granularity of each activity and
the breakdown of the activity into tasks (especially the user activities) is taken by
the process analyst. Each activity is considered to be atomic. As an example, in a
purchase order process, the state of the process is changed to “order verified” on
completion of the “verify order” activity. For each activity, the analyst mentions
on the activity construct if it is a manual activity or a system activity. For manual
activities, the role that is expected to perform the activity is also specified in the
activity details.

Parallel flows (or concurrent flows in other words) are identified and modeled
by a “fork” construct that splits the main process path into multiple parallel flows.
The parallel flows are merged at a subsequent point using the “join” construct.
Parallel flows allow activities to be performed in parallel. That is, they can be exe-
cuted simultaneously.

One key thing that determines the extent of the parallelization of process
flows is the potential dependency between the activities. For example, the activity
“Review purchase order” depends on the business data output from another activ-
ity “Prepare purchase order” and thus they cannot be performed in parallel. The
dependency here is a data dependency. Another possible dependency between activ-
ities is control dependency where one activity does not depend on any data to be
produced by another activity, but is still dependent on the completion of the other
for the control flow. For example, the activity “reserve the room” can be completed
without requiring any data from the “receive payment from customer” activity. But,
the “reserve the room” activity can be performed only after the “receive payment
from customer” activity is completed, which is a control dependency.

The analyst models conditional branching constructs to indicate branches in
the process flow or in any of the parallel flows. Analysts specify the condition for a
branch in a business-friendly relational expression format, an arithmetic expression
format, or a general expression format that evaluates to some value and also specify
the possible values for the expression and marks them on the branches (paths) going
out of the condition. These expressions would make use of the process parameters
of the process.

At this point, the analyst and the IT architect together may introduce some
programming-driven thinking to chunk and separate process parts to manage the
complexity of the overall process. In some cases, the process calls another process.
An example is, the sales order process calling a purchase parts process that is under
some other department in the organization.

In some cases, the business process may be complex or just too huge to man-
age in its modeling. Some parts of the process, those that may get repeated or that
are logical chunks, are removed from the process and made subprocesses. This is
more for structuring the processes for handling complexity and to make it more
modular, readable, and maintainable, similar to coding best practices in high-level
programming. The subprocess activity in the process represents the invocation of

158  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

the process associated with the subprocess. The subprocess, of course, needs to be
defined as a separate process model that is a self-contained process in itself with its
own set of activities. In a graphical process model, the usage of subprocesses leads
to the de-cluttering of the process to make it more readable.

The subprocess may itself be nested, whereby it is composed of further levels of
subprocesses. Refer to Figure 8.1 for a sample higher-level business process model.

During the high-level business process design, it is important not to be influ-
enced by any implementation considerations or constraints whether those are tech-
nology related or not. Rather, the focus of the business process design would best
be in describing the process, the parts it is composed of, and the connections (i.e.,
sequencing) between the parts.

There could be two types of high-level diagrams. One is called process archi-
tecture, where the processes in the organization are listed out with their interre-
lationships and hierarchy. The other is the process model where each process is
individually detailed out as an activity chain; some activities may involve interac-
tion with another process.

But the goal of the process model is not primarily the representation of interac-
tions with other processes; it is in the flow of activities. The goal of process architec-
ture is to clearly show a view of the enterprise business processes where we can see
how the processes are interrelated. It is an enterprise-wide view and is important for
enterprise-wide business process improvements.

The process analyst or process owner specifies the details of how the errors and
special conditions (exceptional conditions) in the process are to be handled at a
high-level. Flows are modeled for handling these conditions. Compensation flows
are modeled at a high-level.

Identify similar business sub-functions, though the processes may be different.
For example, be it the loan application process or the purchase order process, the
user credentials validation and the creation of fulfillment request are common. The
submission of fulfillment request and entitlements check activities are similar in
both the processes.

Approving an order fulfillment request or forwarding an order fulfillment
request is also similar in the case of other processes, such as the leave application
process. The approvers are different, though, in these two processes. For this, the
activity can have specified the role (the manager of the employee applying for leave)
that performs the approval. In the loans process, the approver role is a guarantor
and this is specified in the activity in the process model.

8.3.3.2  Executable Business Process Modeling

A detailed process model is derived from the high-level process model. This model
is the executable process model that has the required details (technical too) to
make the process model executable by a computer system. To the high-level process

The Approach  ◾  159

model, technical details are specified that would enable the process to be executed
and managed by the run-time process execution platform.

Here, the IT architect is primarily involved and each activity is seen as a ser-
vice being offered by a human or a system. The architect performs the following
functions:

	 1.	For each activity, he or she
	 a.	 Completes the input and output parameters with their data types
	 b.	 Specifies the service interface for the activity in a format such as

WSDL
	 c.	 Specifies the bindings in the WSDL for the service endpoints (service

providers) wherever possible and includes concrete bindings for the ser-
vices if possible

	 2.	Ensures the process definition is block structured
	 3.	Specifies and completes the input and output parameters for the

subprocesses
	 4.	Ensures the correctness of the conditional expressions specified for the

branches, iterations
	 5.	For each user activity, provides the mappings to the UI application that

includes the starting screen’s URL (servlet URL) or a logical name mapped
to the starting screen’s URL

	 6.	For each user activity, take care that only those parameters that are required
by the UI corresponding to the activity are specified as output parameters in
the activity. These parameters are the key parameters that the UI would use
to pull up data from the UI application’s database, for populating its screen
display fields. That is, ideally the activity should not supply data for each field
in the UI screen—if it did, that would make the process take up a responsi-
bility that is not actually the UI application’s and make the process unnec-
essarily bloated in memory at runtime. The data displayed in the screens
by the UI application should be kept and fetched from the UI application’s
database. For example, in the user activity for approval in a travel book-
ing process, the approval activity would have travel request id, employee id,
travel date, and project code as output parameters. The UI application for
this activity, would fetch all the travel request data such as travel purpose,
travel legs, origin, destination, duration, employee name, and address details
from its own application database and display them in the screen fields of the
“approval” UI screen.

	 7.	For each user activity, verifies the correlation parameters specified and
ensures their uniqueness property for the process; specifies them if not already
specified

	 8.	For each receive type activity, identifies the correlation parameters ensuring
their uniqueness for the process and specifies them

160  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 9.	For synchronous receive type activities, specifies the set of activities (actions)
that are required to be performed as part of the receipt of the message to this
activity

	 10.	Verifies the correctness and the completeness of the error handling flows,
compensation flows, and exception handling flows; completes them as
required if incomplete

	 11.	For each activity, specifies the transaction attributes including the transaction
nature (atomic or not), transaction protocol, the transaction context, and the
transaction manager

8.4 R e-Architecting an Existing IT System for PCA
The previous section talked about how to architect a new IT system based on the
PCA style, such as, for example, a new loan processing system or a new mutual
fund processing system. However, it is common to find IT systems already existing
in the enterprise. They would have architectures different from PCA. This would,
therefore, involve re-architecting the IT system based on PCA.

8.4.1  A Scenario
For example, the enterprise (a bank) could have an existing banking application
that has been taking care of its core banking operations for quite some time, say
a decade. This system might have been architected based on a conventional archi-
tecture style, such as a client–server, where there is a tight coupling of the elements
such as screens and their flow, or between the functionality elements on the server
side. Some of the existing problems with the system are as follows:

◾◾ Due to the tight coupling between the screens, it becomes very hard to cus-
tomize it for a change of task flow. Any new presentation layer or new GUI
screens for the system cannot be adapted to the system easily. Integration
with new screens also becomes hard. The system is not flexible enough and
not easily maintainable.

◾◾ An employee working on a banking related request would need to move, as
part of the request processing flow, from one screen to another manually or
in some cases it is taken care of automatically in the form of some hard-coded
screen-dependent scripting. Due to this inflexibility of the system, extensibil-
ity suffers.

◾◾ Depending on the geographical location or the region, the banking operation
flows have variations and the screens involved could also be slightly different.
The agility of the system becomes an issue. It takes lot of effort to make the
system meet the demands to support variant flows and flexible request flows
for region-based support.

The Approach  ◾  161

8.4.2  Approach
It is important to consider what is involved in transitioning that IT system from the
old architecture to an architecture that is based on PCA.

8.4.2.1  Justification

In such a context, it is most pertinent to see if the effort (and thus the investment)
that needs to go into this migration is justified by the potential benefits that arise
from the PCA-based architecture.

In this example scenario of the banking application, there are great benefits to be
gained from moving its architecture to PCA. Some of these are as follows:

◾◾ Configurability—the workflows related to banking operations become
flexible and easily configurable; they can be changed to support different
types of banking processes and banking workflows tailored for regions

◾◾ Better agility and flexibility
◾◾ Better maintainability of the system—the flows are not hard-coded in the

screen code any more
◾◾ Improved portability—the system would now integrate and adapt easily with

other systems in the bank including applications specific to a region; it can
easily accept new screens without having to change the code

◾◾ Better manageability of the banking processes; this will enable continuous
process improvement

8.4.2.2  Re-Architecture

Once this cost–benefit justification is made, then the next step is to do the re-
architecture for the system. The existing system’s architecture needs to be process-
enabled. This involves the following steps:

	 1.	Analyze the existing process flow (AS-IS) with the help of available documen-
tation and with the business manager/end-user support and also by extracting
the flows hard-coded in the application that are already existing in the form
of screen scripts or program code.

	 2.	Model the AS-IS process flow for the processes currently supported by the
system.

	 3.	Identify the existing application parts or components that currently support
parts (steps) of the process.

	 4.	Clean up the user interface modules—separate out the presentation logic
from the business and process logic.

162  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 a.	 Make sure each UI element has only the presentation logic specified.
	 b.	 Make sure all the business logic is removed from the UI element and is

made into a business element that is invocable by other elements in the
application.

	 c.	 Make sure that at no point does the UI element call any business func-
tion not directly associated with it. It may call the business function in
the business logic module that is directly relevant to the specific business
function that the UI element is expected to perform. This includes data
access modules—to fetch application specific business data to be shown
in the screen and also to update the business data entered by the user—
that are connected with the data items being worked with in the screen.

	 5.	Introduce tiered architecture.
	 a.	 Separate business components of the application from any other responsi-

bilities and make them easily invocable business components with appro-
priate interfaces defined and exposed; make them into separate modules
called business function modules.

	 b.	 Separate all data-access and data manipulation program elements out of
the existing system and make them a separate data module that is used
only for data and database operations and is invoked by business modules.

	 c.	 Introduce the process tier; put the process models in this tier.
	 6.	Convert each business function component in the business function modules

into an invocable business service. If necessary, such a service may be formed
by grouping together more than one low-granular business function to make
it a reusable process-level service. Make sure that the business service is not
tied to any other business service in any way; that means, there should be no
invocation from this service to any other business service.

	 7.	Map each user activity in the process to the appropriate screen. If there are
a set of screens for the activity, map the first screen to the user activity and
ensure the last screen for this activity does an invocation to the process layer
to indicate that the activity is complete.

	 8.	Map each system activity in the process to the appropriate business service
created in the above steps.

	 9.	As far as possible, have the business functions only get invoked from the pro-
cess in the process layer as business services and not directly from the UI code.

8.5 �A ddition of an IT Subsystem
to an Existing IT System

It is common to find, as part of acquisitions, that an IT subsystem or product
may get acquired and then get added to the existing IT system of the acquiring
company. Following PCA here means that the architecture of the existing system

The Approach  ◾  163

(let us call it “System A”) in the acquiring company integrates into it the new IT
subsystem (let us call it “System B”) coming from outside. This integration is still
done in a top-down manner. Let us assume System A is already architected in
the lines of PCA—there would be a business process model (say “Process A”) that
would have been driving the system. There could be the following scenarios here
with respect to System B:

	 1.	There may be steps in Process A that are currently being supported by some
existing BLEs, and those steps could be supported by System B if System B
has been analyzed and found to be a better option for those steps. The inte-
gration now involves one or more of the following:

	 a.	 System B might need to be extended to expose the service interfaces
expected by those process steps.

	 b.	 A service-wrapper for System B might need to be implemented to busi-
ness service-enable it.

	 c.	 No re-architecture for System A is needed.
	 d.	 Leaving open the option of using System B services or the current services

for supporting the same steps in the process. This decision could be left to
be taken at run-time. Those particular steps in the process could be made
dynamically to use at run-time, either the business service exposed by
System B or the ones exposed by the existing BLEs. The executing process
can decide this based on various factors such as cost, efficiency required,
and customer requirements.

	 e.	 Of all the steps in the process that System B can potentially support, a
subset of those (partial steps) could be made to be supported by System B
if it provides better support of those steps compared with the current
System A.

	 2.	System B may be supporting business functionalities that are separate from
(or outside of) the current System A. Those functions are extra to the exist-
ing process, but nevertheless, it might be beneficial to make use of them. In
this case,

	 a.	 The business process of System A can get extended with the addition
of extra steps that enhances the business process—resulting in a new
extended business process. This could provide a better overall and
enhanced experience to the customer and the business.

	 b.	 The process model of System A would need to change a little—new activi-
ties related to the functions in System B would get introduced, a potential
reordering of existing activities could be done, and new decision points
might get introduced in the process model to direct the flow to functions
supported by System B.

In all of the above scenarios, System B may not need to undergo a total re-architecture
to make its architecture a PCA-based one. It would only need to get enabled to be

164  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

invocable as business services from the process in System A. All the integration-related
changes mentioned above are easily enabled by PCA as it follows business process-
driven integration and not hard integration. Here, PCA makes the entire integrated
system (System A and B combined) a more flexible system, even for the future changes
with respect to the integration of System A and System B.

8.6 E xercise Questions
	 1.	Do you agree that process redesign/optimization is a must before architecting

the IT system based on PCA? Why?
	 2.	If you disagree with 1 above, why?
	 3.	What is the role of an IT architect in the architecture creation process here?

What are the differences between an architect’s conventional role and what is
done here?

165

Chapter 9

SOA for Services

9.1 O bjectives
◾◾ To understand the concept of services and SOA
◾◾ To appreciate the role for SOA in process-centric architecture

9.2 S ervices
The concept of services is an important aspect of the process-centric architecture.
A service is a software element that is reusable by other software. Each service has a
well-published interface and the service provides a well-defined functionality to the
service requesters (clients or service consumers). The service interface is abstracted
out and separated from the design and implementation of the functionality of the
service. Service implementations of a service are not exposed to the invokers of the
service. Service interface is the only public aspect of the service and acts as the bind-
ing contract between the service requester and the service provider.

Some examples of services are validate credit card service, get stock quote ser-
vice, payment gateway service, and funds transfer service. In each of these cases,
the service provides a well-defined function to the service-invoking system such as
validation of a credit card based on the details provided.

The service interface of a service lists the operations it would perform, the input
parameters that it expects to be supplied by the caller, the output parameters that
the service would return to the caller after completing the operation, the protocols
to be used for communication, etc. The implementations of a service are those
systems that provide/support the service and expose the service to the potential

166  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

invokers. There can be more than one system that exposes the same service to the
invokers. However, their implementations of the service on the back end would be
different, not just in the business logic or algorithm but also in the technology used
for implementation. For example, a credit card validation service could be imple-
mented by one service provider, say a bank 1, by using a JAVA application and by
using an algorithm internal to bank 1. Another service provider bank 2 could also
implement the same service by using another algorithm and it could realize as a
mainframe program(s) in COBOL. This is shielded from the invoker. The invoker
would only be relying on the service interface for the invocation.

9.3 S ervice-Oriented Architecture
SOA is an architectural pattern that promotes the design of software as a set of
elements where each software element is a service. The service provider and the
service consumer are loosely coupled with each other. This makes them detachable,
removable, and replaceable.

SOA-based architecture makes IT systems agile by allowing applications or
components to loosely couple to each other through the service interfaces. It allows
the concept of composite application, where the application is created quickly by
chaining together such services to service a business need. The service invocations
are orchestrated at run-time. SOA offers a value proposition of assembling an IT
system from a set of available services as opposed to writing much code for the
system. Of course, if the services are not preexisting, code needs to be written for
implementing the service at the service provider component end.

Such services whether they are new or preexisting become available to the entire
enterprise and some of them even to the external world to customers, partners, or suppli-
ers. A service would have service legal agreements (SLAs) that it needs to adhere to while
providing the service to the consumer. Examples for such SLAs could be the service
should complete the operation in sub-second time, and the service should be available
24 × 5 and 99.9% of the time. Services thus also need to be managed and supported
to ensure that they adhere to the committed SLAs. Service management also includes
managing the evolution of the service and the implementation, typically including ver-
sion management, etc., and without impacting the consumers of the service.

SOA is based on certain principles:

◾◾ Reusability of services
◾◾ Services can be at various levels of granularity
◾◾ Services are composable; a service is composable from other services
◾◾ Interoperability of services
◾◾ Stress on standards
◾◾ Service interaction is based on contract

SOA for Services  ◾  167

9.4  Bottom-Up Approach
SOA follows a bottom-up approach in architecture. The
view of the architecture is bottom up. Looking at what
the business functions and technical functions are that
can be exposed as services for reuse and consumption by
all systems commonly is where the focus of the architec-
ture work lies.

Figure 9.1 shows the different layers in the SOA-
based architecture. The topmost layer is the enterprise
service layer that directly exposes services for use at the
enterprise level and intra-department level. The layer
lower to it is the domain service layer that consists of
services that are applicable within a domain, say sales.
The lowest layer is the application service layer that pro-
vides services usable within a particular application.

While designing services in SOA, the services are organized (or composed)
in a service hierarchy. Each level is a layer, where the services in a layer reuse
services from the lower layer. The level of granularity reduces as we go down the
layers. At the lowest level are those services that are application-specific services
or technical services. These are typically reused within the scope of only a spe-
cific application. An example is reusable infrastructure service such as logging
service that provides an architectural function. Another example is a data access
service that connects to the application’s database and gets specific information
from the database tables such as a customer details when given a customer ID
as input.

At the middle level, the services are composed from the lowest layer. The
scope of the services at this level is the domain or a business area (department/
function), and they can be called domain services and the layer the domain layer.
Within the context of the domain, the services would be reused across the appli-
cations. As an example within the finance domain, a general ledger check service
can be reused by the accounts receivable application as well as the accounts pay-
able application.

The highest level is the enterprise layer. Services at this level are composed
of services from the domain layer. The scope of this layer is enterprise-wide; the
service can be reused within the scope of the entire enterprise across domains
and applications. Their granularity is the highest and purely at a logical business
function level. Hence, their identification and interface contract design would
be influenced by procedures spanning departments. An example is the deposit
money into bank account service. This can be used by an account opening pro-
cedure as well as a purchase procedure. Some of the services can also be wrapper
services to service-enable a legacy functionality.

Enterprise service layer

Uses

Uses

Domain service layer

Application service layer

Figure 9.1 L ayers in
SOA architecture.

168  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

9.5 N eed for SOA in PCA
PCA provides a high-level abstraction named the process layer for architecting
and building IT systems. When seen from the perspective of business, the level
in the system at which the business can more effectively participate in the cre-
ation and evolution of the IT system is the process layer. This is because the
process layer is at the business’ abstraction level itself and its embodiment is
business-friendly.

In PCA, the activities in the business process are expected to be componentized,
high-granular services (can also be called coarse-grained) that perform a complete
business operation that is atomic. They are called activity services in this architec-
ture. The system activities among them are the ones expected to be supported by
business components following the SOA pattern.

As an example, let us take the account opening process in a bank. One of the
system activities that are part of this process is the “deposit money into account”
activity. This activity needs to be performed by a system component and the process
needs it in the form of a service provided to the process. Thus, the activity is associ-
ated with (or linked to) the service in the process model where the operation of the
service is to update the amount in the customer account maintained in the system.
This service is expected to perform the complete business function expected of the
activity by the process. For example, here the service needs to perform the following
logic as part of deposit money service:

	 1.	Perform required validations such as
	 a.	 Account status
	 b.	 Applicability of differential interest rates
	 2.	Make the customer’s account reflect the money deposited by updating

the data

Since this is business logic, the activity in the process is not concerned with the way
the operation is carried out, on the other hand the process expects the service to
be concerned with this logic, the exact manner in which it is performed, the lower
level components involved, and so on. The process would be the client for these
business services and needs them to be exposed to it so that it can consume the
services as part of the orchestration of the activities in the business process flow.

Figure 9.2 shows the business process involving activity services, they in turn
use the domain services that in turn use the lower-level application-specific services
at the resources platform level: DB, legacy app, etc.

SOA plays the service provider role to the core element of this architecture. It is
the underlying model enabling the activities in the process. It is direct in the case
of system activities. For manual activities, the concept of SOA still applies in the
identification/design of manual activities; however, the only difference is that the
service is provided by a human playing an appropriate role.

SOA for Services  ◾  169

Another reason why PCA needs SOA is in the aspect of reuse. Since the activ-
ity services are at a high level of granularity, they are reusable at the process level.
Across processes, the same activity service can be applicable if the same business
function needs to be performed in those processes as well. The deposit money into
account service in the above example can be reused in another process, say man-
age customer account process or funds transfer process. These two processes also
involve the money deposit business operation, though their contexts are different
from the account opening process. For this, the architecture needs to have the
business components supporting the activities to be decoupled from the specific
objective of the process or the context of the process and operate as stateless. To
truly enable such reusable components, PCA relies on the underpinnings of SOA
and the concept of services that SOA advocates. This reusability framework can be
provided by SOA to the architecture so that the activity services (or the activities
themselves to put directly) in a particular business process can get reused easily in
other processes instead of having to implement them as functions that are bound to
one process’ specific context and business requirements alone.

Another reuse characteristic in PCA it helps to enable is process reuse. SOA
lets the process on the whole be viewed as a service that can be used by other pro-
cesses. This is very important for inter-process interactions and thus for relationship
between processes. Through SOA, the process is exposed as a service, where the
details of how this process achieves its business objective are not exposed to the

Business process in the process engine

Invoke activity services

Houses activity servicesEnterprise service layer

Domain service layer

Application service layer

Uses

Uses

Application database

Figure 9.2  Platform view.

170  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

invoking process that consumes this reused process. Those details are internal and
encapsulated in the reused process; the reused process becomes an activity in the
other process.

If the invoking process is at a higher level of process granularity than the reused
process, then the reused process is treated as a subprocess leading to process hier-
archy. The process exposed as a service can be provided as external service to other
processes such as in business to business (B2B) or business to customer (B2C) inte-
gration scenarios. In this case, the process as an external service is invoked by the
processes of customers, suppliers, or partners to achieve integration.

Loose-coupling of the activities to the process is helped by the SOA approach.
PCA takes a process-driven integration approach to addressing integration of appli-
cations and it does away with hard-coupling between applications. SOA lets this be
realized through the applications exposing their core business functions as services.
The order in which they are orchestrated at run-time is determined by the process
and this makes the chaining highly flexible. Though the order of invocation can
change in the process, the applications involved do not get impacted.

9.6 � Complementary Approach
to Architectural Design

9.6.1  Context
In PCA, the macro context needed by the business services (activity services) for
their execution is provided by the business process at run-time, as specified by the
business analysts or managers formally during the design-time. This context pres-
ents and dictates the way these services are to be chained together to deliver value.
And, the process maintains the state of the interactions with the services involved
in it. The true value of a service is realized when a client (it is the process here in
PCA) orchestrates its invocation with other services; that is, how the services serve
its business need. And, without the context provided by the process, its existence
would not have much meaning.

9.6.2  Top-Down
When seen purely from the SOA perspective, services need to be built first.
However, when we view at an enterprise-wide scope and attempt to visualize all
the services that would be required by applications in the enterprise and then build
those services, it turns out to be neither a feasible approach nor a cost-effective
effort. There are some reasons for this. Functionality to be supported by a service
is best determined by the business based on what the business thinks the business
process must be doing. It comes from the business requirements for the IT systems.
But, these business requirements keep evolving and consequently the expectations

SOA for Services  ◾  171

from the functionalities of the system also change. And thus the services identified
would be subject to continuous change. It stresses more on commonality among
available functions (reuse and leverage what is already available) than on looking at
what the business processes need, because ultimately the users of services are busi-
ness processes.

A more feasible approach instead is

	 1.	Let the business design the business processes according to the business need.
	 2.	Let the business determine the activity services for the process, looking at

each activity identified for the process.
	 3.	Identify the reusability potential of the activity services across processes. The

business needs to involve here with visualizing the various different process
contexts where the same business functionality at the same high granularity
is required.

	 4.	Services identified thus are reusable across processes.

This means a top-down approach that PCA uses would provide more value out of
SOA. The number of such business services thus identified and to be implemented
subsequently would only be small especially when we compare it to what we would
have ended up having had we identified the services from bottom-up. It is obvi-
ously cost-effective, designing them top down as opposed to creating the full set of
services from bottom-up approach and often ending up using only a small number
of them in the systems.

The key message is, when embarking on architecting IT systems, sound rede-
sign of the as-is business process should precede the design of business services. This
would ensure that the SOA part of the architecture effort does not get wasted in
attempting to support flawed as-is processes (or wrong processes).

9.6.3  Design of Services in the Context of PCA
The services need to be designed and implemented based on SOA principles. Each
activity service (i.e., a business service) can be composed from low-granular ser-
vices. What is mapped to the activities in the process as activity services are busi-
ness services in the services hierarchy. It is best to follow the top-down approach
further down too to design the activity service. It can be designed by breaking the
coarse-grained activity service down to a set of finer grained business tasks that are
again services. Reusability across activity services in the domain would be a major
consideration while doing this. The finer-grained domain services can further
be designed as a set of still finer granular (low granular) services with reusability
within the level in mind. The low-granular services might make use of technology
services such as infrastructure services and data access services. In some cases, it
would make sense to design some lower-level services in a bottom-up way rather
than totally top down. To achieve reuse and time-to-market benefits at minimal

172  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

cost, horizontal services that can be commonly used enterprise-wide as utilities are
better designed bottom-up. Examples of such utility services are currency conver-
sion, zip code lookup/check, address validation, etc. Also, following the bottom-up
fashion, some legacy functions are service-enabled through the use of wrappers
on them so that their existing functions are reused and exposed as services. Being
legacy, the existing application might not offer much flexibility to change; however,
its functionality could still be really useful in the context of the business process.

9.6.4  Leverage What Is Available
A principle that would be useful is to leverage existing applications in the enter-
prise wherever possible, irrespective of whether they are legacy, application
packages, or custom built in-house applications—it would bring cost gains.
This means, at the lower level of services, include wrapper services that wrap
legacy functionalities to service-enable them. Wrappers might also be required to
service-enable the packages or in-house applications. The wrapper services can be
used by the higher granular services or coarse-grained business services to imple-
ment their function.

Maintaining a single point of truth for business information is another impor-
tant principle. This primarily applies to data-access services. Along with single
point of truth, uniform semantics must be used and maintained for all business
data (entities). As an example, the customer profile information should ideally be
made available through a single data-access service. This service should access it
only from one data source, and the customer data that it provides (comes back
with) should mean the same customer when viewed throughout the enterprise
regardless of which departmental function’s context the system is performing in.
Simply put, this means that when the accounts receivables application refers to
a customer name and address, and the sales system also is referring to the same
customer for its operation, they both should be working with the same customer
name and address.

9.6.5  Binding
At run-time, the executable process model needs to have concrete bindings* to the
activity services, at least at the time of invoking the service as part of the process
orchestration. The process model may have abstract bindings for activity services at
design-time or even till some point at run-time. Loose coupling is at its best when
the concrete binding is as late as possible. At run-time, the process may get the
concrete binding for an activity service dynamically from the execution of prior

*	 Binding means tying the location of a service provider with the consumer of the service. When
it is concrete, the binding gives full locational details of the service provider so that the con-
sumer can directly connect with the service.

SOA for Services  ◾  173

services in the order as provided by one of those service providers involved. Or, the
process takes the help of the process layer to use the details provided in the abstract
binding to discover, negotiate, and select the right service provider for an activity
service that it is ready to invoke. For this purpose, the process layer could also use
an infrastructure such as an enterprise service bus (ESB) for the same if that is avail-
able in the architecture. Once this is done, the process activity binds concretely to
the selected service provider and invokes the activity service. The binding is released
after the invocation or retained, depending on the preference of the process.

9.6.6  Complementary
Any software application can be architected and built using SOA; however, the best
use-case for SOA is in process-centric architectures. SOA has become an increas-
ingly popular approach to connect the activities in business processes to systems
implementing them in the form of services.

Thus, PCA and SOA enable each other and provide the best value realization
when combined together and approached holistically. SOA delivers a reusable ser-
vice foundation that the process component and layer in the architecture should
leverage, so that the IT system delivers a more effective business process with busi-
ness value. Services delivered through SOA must be flexible enough to enable pro-
cess changes to support business needs. SOA and PCA are complementary in this
architecture.

9.7 E xercise Questions
	 1.	Identify the set of services that a process you are familiar with needs.
	 2.	Come up with a hierarchy of services for these services.
	 3.	What are the considerations you made to decide on the reuse of some of those

services?
	 4.	What are the key things that made you decide the right level of granularity

for each service?
	 5.	Have you used any technology services in the above hierarchy? If yes, why?

175

Chapter 10

Standards and
Technologies

10.1 O bjectives
◾◾ To be aware of the standards in the area
◾◾ To be aware of the technologies involved in the implementation of the architecture
◾◾ To get introduced to the various standards and their role in the realization of

the architecture

10.2 S tandards
A specific way of performing some action or communicating (whether between
humans or systems), that has been agreed upon by all,* results in a standard. An
Internet communication protocol HTTP is one example of a popularly followed
standard.

In PCA, standards help in the implementation of the architecture. Following
these standards helps make the IT system

◾◾ More open
◾◾ Interoperable, compatible with other systems
◾◾ Handle interoperable processes with more ease
◾◾ Executing environment uniform

*	 In practice, it means a majority of people have agreed to it.

176  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

◾◾ Frees the IT system from being locked in to a specific vendor and minimizes
the risk of vendor failures

◾◾ Enables reuse
◾◾ Provides implementation options for the IT system without affecting the

architecture

In the context of PCA, there are a host of standards that are applicable and can
be used. These are at various levels of the architecture and also pertain to specific
aspects of the architecture and the process life cycle. We shall look at some of the
more popular ones here. Figure 10.1 shows the stack of standards in the BPM area.
Most of these standards are applicable in the context of PCA.

10.3  Process Modeling Standards
There are standards that address the modeling of business processes—specifically
they show how each part of the process is to be visually represented and what the
semantics of each such representation construct are. These are also called notation
standards. While realizing PCA, these standards (one of them) are used to specify
the business process. It becomes the manifestation of the process model component
of the architecture and will sit in the process layer.

10.3.1  BPMN
Business Process Modeling Notation (BPMN) is a popular standard for modeling
business processes graphically. It helps the business processes to be interoperable
at the human level where the process can be understood by any person whether
business or technical; thus the process definition can be communicated between

BPMN
Business process modeling notation

BPDM
Business process definition metamodel

WS-BPEL
Business process execution language

Web services standards
SOAP, WSDL, UDDI

BP-TXN
Business process

transaction

Wf-XML
Workflow XML

BPQLTM

Business process query language

WS-CDL
Web services choreography description language

WS-TXN
Web services
transaction

WS-Security
Web services

security

XPDL
XML process definition language

BPML
Business process modeling

language

Figure 10.1 S tandards stack for BPM.

Standards and Technologies  ◾  177

various people. It provides graphical constructs or notations for specific aspects
of the process such as the start of the process, activities, subprocesses, conditional
branches, splits, joins, and the end of process that can be used while modeling the
process. The BPMN process definition is a graphical process modeling notation
where the entire process is modeled as a graph and the result is a formal Business
Process Diagram (BPD) that is the representation of the process. BPMN is from
the Object Management Group (OMG) and the OMG supports its evolution.
A sample BPMN process is given in Figure 10.2.

BPMN provides a set of basic flow elements in the form of events, activities, and
gateways. The process model would have the flow elements connected using con-
necting objects. The artifacts are used for capturing extra information about the pro-
cess such as annotations (free text notes for information), the business data entities
(called data objects) involved in the process, and grouping (as groups) of a set of flow
objects or other elements of the BPD. BPMS provides swim lanes in the diagram for
each specific participating role in the process. That is, the users, roles, departments,
or systems that perform activities in the process are identified in their respective
swimlanes. Activities that each user or role is expected to perform are organized into
one group and shown in the swim lane corresponding to that role. Directed edges
show the order of the activities or the control flow in the process. The process looks
like a network of objects (that are activities) and is similar to a flowchart diagram.
Activities are rectangular graphic elements (rounded corners). There are separate
symbols provided to represent types of activities such as timer activities (timed or
scheduled activities), a task, or a subprocess. Conditional branches (or decisions) are
diamond-shaped elements. These are called gateways. Gateways are used to specify
decision points in the flow, forking, and merging. Events are used to represent mes-
sage arrivals or such events happening in the duration of the process.

BPMN process model can be translated into an executable process definition
such as WS-BPEL• so that the process becomes executable in the system. Mappings
are defined between the symbols of BPMN and the constructs of WS-BPEL.
BPMN is extensible by modelers to add nonstandard elements for specific needs,
say unique requirements of a domain such as finance.

Documents
to be

reviewed

Wednesday
at 10 A.M. Indian

standard time

Review
meeting

Capture review
comments

Review comments

Review
complete?

Yes

No

Agenda

Add to agenda
for next meeting

Figure 10.2 S ample BPMN process.

178  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

10.3.2  XPDL™
XPDL is another process notation standard. It is expanded as the XML
Process Definition Language (XPDL). This is a standard from the Workflow
Management Coalition (WfMC) aimed at enabling transferability of process
definitions from one system to another. It provides a predefined XML schema
using which the business process definition’s graphic aspects such as the posi-
tions and the semantic aspects such as the control flow and activity execution
details, can be captured. This definition can then be exchanged with another
system. The XPDL definition is purely XML based, which is yet another stan-
dard for interoperability at the data level. Strictly speaking, it is also an execu-
tion notation standard.

10.4  Process Execution Standards
There are standards at the level of process execution. They address executable
process definitions and impact the process layer of the architecture. Process defi-
nitions made in these standard languages are executable in computers. Some
also call them integration standards since they integrate the process model to
the execution platform. These are languages that can be used to define business
processes formally. One of these languages is used to realize the executable pro-
cess definition, in PCA. The process model defined in the graphical modeling
standard such as BPMN is translated into the equivalent executable process defi-
nition in the executable process language standard. At runtime, this executable
process definition sits in the process layer and manifests as multiple runtime
components for process executions after the process layer parses the definition
into executable code.

These standard languages have been optimized, right from their design, for
the computation in computers and for the interoperability among such systems.
Some of them such as BPML•, WS-BPEL are rooted in formal mathematical
models for systems such as the pi-calculus. These mathematical underpinnings
enable their execution capability in today’s computers since they can be reduced
to executable chunks in the system. However, what is intuitive for a computer
might not be intuitive for a human. So, often these definitions are auto-gener-
ated from their equivalent graphical process models which have been defined in
a standard modeling notation such as BPMN. The executable process definition
thus auto-generated is transparent to the business designer that modeled the
BPMN process.*

*	An analogy is of a program coded in high-level programming language such as COBOL
and the compiler-generated machine code equivalent of that program. What finally runs
in the computer is the machine code. What the programmer works with is the COBOL
program.

Standards and Technologies  ◾  179

10.4.1  WS-BPEL
Web services Business Process Execution Language (WS-BPEL) is the de facto
standard and a popular one for defining executable business process definitions.
WS-BPEL is from OASIS.

WS-BPEL is a language based on XML, using which the behavior of a business
process can be described based on the interaction of the process with the partici-
pants of the process to achieve the business goal of the process. The interactions are
described in the form of service interactions, assuming web service interfaces.

10.4.1.1  A Combination of Interoperability Standards

In simpler terms, in WS-BPEL, each activity in the process is described as a service
to be invoked from the process (invoke action in the WS-BPEL). Thus, the activities
are client end points of web services. Any step in the process where there is invo-
cation into the process is a service provided by the process and thus is described
as a receive activity. Thus, these steps are service end points of web services. Each
service, whether it invokes or receives from the process perspective is described
using web services description language (WSDL) standard. Associated standard of
Universal Description, Discovery, and Integration (UDDI) is used for the discov-
ery of the services (and publishing) and invocation from/into the process. Other
standards used in conjunction with WS-BPEL are XML Schema 1.0, XPath 1.0,
and XSLT 1.0.

The entire process definition made in WS-BPEL would be an XML document.
Expressions related to branch conditions in the process, assignments of values to
parameters in the process are all recommended to be made based on XPath. Any
transformation to be applied on data as part of assignments is recommended to be
done by using XSLT.

10.4.1.2  Structure

WS-BPEL is a block-structured language and thus suits computer execution very
well. It includes only executable operations in the business process definition. The
graph part of the process model is irrelevant for execution in such a language and
thus is not contained in the WS-BPEL definition of the process. It provides an
XML schema for the language that includes the elements such as <sequence>,
<flow>, <receive>, <reply>, <invoke>, <switch>, <assign>,
<faulthandlers>, and <partnerlinks>. The process definition is struc-
tured as an XML document composed of sections, one for the variables (process
parameters) in the process, one for the process flow definition itself, one for the par-
ties that interact with the process at various activities, and one for the process logic
that handles faults happening in the process. A sample WS-BPEL process definition
is given in Figure 10.3.

180  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

<process name=”purchaseOrderProcess”
 targetNamespace=”http://example.com/ws-bp/purchase”
 xmlns=”http://docs.oasis-open.org/wsbpel/2.0/process/executable”
 xmlns:lns=”http://manufacturing.org/wsdl/purchase”>

 <documentation xml:lang=”EN”>
 A simple example of a WS-BPEL process for handling a purchase
 order.
 </documentation>

 <partnerLinks>
 <partnerLink name=”purchasing”
 partnerLinkType=”lns:purchasingLT” myRole=”purchaseService” />
 <partnerLink name=”invoicing” partnerLinkType=”lns:invoicingLT”
 myRole=”invoiceRequester” partnerRole=”invoiceService” />
 <partnerLink name=”shipping” partnerLinkType=”lns:shippingLT”
 myRole=”shippingRequester” partnerRole=”shippingService” />
 <partnerLink name=”scheduling”
 partnerLinkType=”lns:schedulingLT”
 partnerRole=”schedulingService” />
 </partnerLinks>

 <variables>
 <variable name=”PO” messageType=”lns:POMessage” />
 <variable name=”Invoice” messageType=”lns:InvMessage” />
 <variable name=”shippingRequest”
 messageType=”lns:shippingRequestMessage” />
 <variable name=”shippingInfo”
 messageType=”lns:shippingInfoMessage” />
 <variable name=”shippingSchedule”
 messageType=”lns:scheduleMessage” />
 </variables>

 <faultHandlers>
 <catch faultName=”lns:cannotCompleteOrder”
 faultVariable=”POFault”
 faultMessageType=”lns:orderFaultType”>
 <reply partnerLink=”purchasing”
 portType=”lns:purchaseOrderPT”
 operation=”sendPurchaseOrder” variable=”POFault”
 faultName=”cannotCompleteOrder” />
 </catch>
 </faultHandlers>

 <sequence>
 <receive partnerLink=”purchasing” portType=”lns:purchaseOrderPT”
 operation=”sendPurchaseOrder” variable=”PO”
 createInstance=”yes”>
 <documentation>Receive Purchase Order</documentation>
 </receive>

Figure 10.3 A sample WS-BPEL process definition. (from WS-BPEL documentation.
Copyright © OASIS® 1993–2007.)

Standards and Technologies  ◾  181

 <flow>
 <documentation>
 A parallel flow to handle shipping, invoicing and
 scheduling
 </documentation>
 <links>
 <link name=”ship-to-invoice” />
 <link name=”ship-to-scheduling” />
 </links>
 <sequence>
 <assign>
 <copy>
 <from>$PO.customerInfo</from>
 <to>$shippingRequest.customerInfo</to>
 </copy>
 </assign>
 <invoke partnerLink=”shipping” portType=”lns:shippingPT”
 operation=”requestShipping”
 inputVariable=”shippingRequest”
 outputVariable=”shippingInfo”>
 <documentation>Decide On Shipper</documentation>
 <sources>
 <source linkName=”ship-to-invoice” />
 </sources>
 </invoke>
 <receive partnerLink=”shipping”
 portType=”lns:shippingCallbackPT”
 operation=”sendSchedule” variable=”shippingSchedule”>
 <documentation>Arrange Logistics</documentation>
 <sources>
 <source linkName=”ship-to-scheduling” />
 </sources>
 </receive>
 </sequence>
 <sequence>
 <invoke partnerLink=”invoicing”
 portType=”lns:computePricePT”
 operation=”initiatePriceCalculation”
 inputVariable=”PO”>
 <documentation>
 Initial Price Calculation
 </documentation>
 </invoke>
 <invoke partnerLink=”invoicing”
 portType=”lns:computePricePT”
 operation=”sendShippingPrice”
 inputVariable=”shippingInfo”>
 <documentation>
 Complete Price Calculation
 </documentation>

Figure 10.3 (continued)
(continued)

182  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Each activity in the process becomes an invoke element or a receive element
depending on whether it is a send-type activity or receive-type activity, respectively.
A <reply> element always is associated with an inbound invocation activity such
as a <receive> that happened before it; together a receive–reply combination
can signify a receive-type activity in the process that is a complex activity contain-
ing the set of activities to be performed before returning to the caller (synchronous).
It could also mean a combination (asynchronous) of a one-way receive-type activity
and followed by a notification operation that is invoked after performing a set of
activities in between the <receive> and the <reply>.

 <targets>
 <target linkName=”ship-to-invoice” />
 </targets>
 </invoke>
 <receive partnerLink=”invoicing”
 portType=”lns:invoiceCallbackPT”
 operation=”sendInvoice” variable=”Invoice” />
 </sequence>
 <sequence>
 <invoke partnerLink=”scheduling”
 portType=”lns:schedulingPT”
 operation=”requestProductionScheduling”
 inputVariable=”PO”>
 <documentation>
 Initiate Production Scheduling
 </documentation>
 </invoke>
 <invoke partnerLink=”scheduling”
 portType=”lns:schedulingPT”
 operation=”sendShippingSchedule”
 inputVariable=”shippingSchedule”>
 <documentation>
 Complete Production Scheduling
 </documentation>
 <targets>
 <target linkName=”ship-to-scheduling” />
 </targets>
 </invoke>
 </sequence>
 </flow>
 <reply partnerLink=”purchasing” portType=”lns:purchaseOrderPT”
 operation=”sendPurchaseOrder” variable=”Invoice”>
 <documentation>Invoice Processing</documentation>
 </reply>
 </sequence>

</process>

Figure 10.3 (continued)

Standards and Technologies  ◾  183

10.4.1.3  Bindings

Each activity is bound to a service using the definition provided in the WSDL document
for the service, referencing its <operation>, <porttype>, <message> from the
WSDL. These are still abstract bindings providing the definition independence from a
specific actual service provider. A sample WSDL is shown in Figure 10.4.

Though the name suggests web services, any implementation of the service is
possible for the service. For example, the service could be implemented as a web ser-
vice involving HTTP/SOAP, or a Java EJB involving the EJB protocol and RMI•,
or mail service involving SOAP and SMTP, or a SOAP over Java messaging service
(JMS) or a .NET service, and so on. This invocation mechanism detail comes from
concrete bindings. Concrete bindings are best avoided at the process definition
stage and postponed to runtime. In WS-BPEL, to enable resolution of bindings at
runtime, partner links are used to refer to partners of this process, i.e., the service
providers that are invoked by the process and the service consumers that invoke the
process activities. They have an abstract part and a concrete part. The abstract part
of a partner link only refers to the abstract part of the WSDL for the service (mes-
sage, operation, and porttype). Concrete part of a partner link at runtime refers to
a concrete binding to the location (including the message protocol such as SOAP,
the transport protocol such as HTTP, and the URL address of the partner (ser-
vice provider or consumer)) for that particular service. Setting of this concrete part
of a partner link is preferably postponed to the runtime (late binding) and made
dynamic and handled by the process layer.

10.4.1.4  Extensions

WS-BPEL allows optional extensibility to the language by implementations to take
care of specific needs. Manual activities are not explicitly supported in WS-BPEL.
Implementations typically support manual activities, with extension; some may
add new elements to the WS-BPEL set, others may add new attributes to existing
<invoke> or <receive> elements. These attributes capture the user activity
specific details such as location details and work allocation specification.

10.4.2  BPML
Business Process Modeling Language (BPML) is another standard language for
executable process definitions. This came from BPMI.org, which is now a part of
OMG. This standard does not officially exist anymore since BPMI.org and OMG
has endorsed WS-BPEL as the de facto standard. Still, it is worth getting an idea of
BPML since it explicitly supports some concepts such as process instances, nested
processes, process packages, calling and spawning of subprocesses, transactions and
atomic activities, and signals. These concepts are very relevant and useful in the IT
system’s context.

184  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

<wsdl:definitions
 targetNamespace=”http://manufacturing.org/wsdl/purchase”
 xmlns:sns=”http://manufacturing.org/xsd/purchase”
 xmlns:pos=”http://manufacturing.org/wsdl/purchase”
 xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
 xmlns:plnk=”http://docs.oasis-open.org/wsbpel/2.0/plnktype”
 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

 <wsdl:types>
 <xsd:schema>
 �<xsd:import namespace=”http://manufacturing.org/xsd/purchase”
 �schemaLocation=”http://manufacturing.org/xsd/purchase.xsd” />
 </xsd:schema>
 </wsdl:types>

 <wsdl:message name=”POMessage”>
 �<wsdl:part name=”customerInfo” type=”sns:customerInfoType” />
 �<wsdl:part name=”purchaseOrder” type=”sns:purchaseOrderType” />
 </wsdl:message>
 <wsdl:message name=”InvMessage”>
 <wsdl:part name=”IVC” type=”sns:InvoiceType” />
 </wsdl:message>
 <wsdl:message name=”orderFaultType”>
 <wsdl:part name=”problemInfo” element=”sns:OrderFault “ />
 </wsdl:message>
 <wsdl:message name=”shippingRequestMessage”>
 <wsdl:part name=”customerInfo” element=”sns:customerInfo” />
 </wsdl:message>
 <wsdl:message name=”shippingInfoMessage”>
 <wsdl:part name=”shippingInfo” element=”sns:shippingInfo” />
 </wsdl:message>
 <wsdl:message name=”scheduleMessage”>
 <wsdl:part name=”schedule” element=”sns:scheduleInfo” />
 </wsdl:message>

 <!-- portTypes supported by the purchase order process -->
 <wsdl:portType name=”purchaseOrderPT”>
 <wsdl:operation name=”sendPurchaseOrder”>
 <wsdl:input message=”pos:POMessage” />
 <wsdl:output message=”pos:InvMessage” />
 <wsdl:fault name=”cannotCompleteOrder”
 message=”pos:orderFaultType” />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:portType name=”invoiceCallbackPT”>
 <wsdl:operation name=”sendInvoice”>
 <wsdl:input message=”pos:InvMessage” />
 </wsdl:operation>
 </wsdl:portType>

Figure 10.4 S ample WSDL. (From WS-BPEL specifications. Copyright © OASIS®
1993–2007.)

Standards and Technologies  ◾  185

 <wsdl:portType name=”shippingCallbackPT”>
 <wsdl:operation name=”sendSchedule”>
 <wsdl:input message=”pos:scheduleMessage” />
 </wsdl:operation>
 </wsdl:portType>

 <!-- portType supported by the invoice services -->
 <wsdl:portType name=”computePricePT”>
 <wsdl:operation name=”initiatePriceCalculation”>
 <wsdl:input message=”pos:POMessage” />
 </wsdl:operation>
 <wsdl:operation name=”sendShippingPrice”>
 <wsdl:input message=”pos:shippingInfoMessage” />
 </wsdl:operation>
 </wsdl:portType>

 <!-- portType supported by the shipping service -->
 <wsdl:portType name=”shippingPT”>
 <wsdl:operation name=”requestShipping”>
 <wsdl:input message=”pos:shippingRequestMessage” />
 <wsdl:output message=”pos:shippingInfoMessage” />
 <wsdl:fault name=”cannotCompleteOrder”
 message=”pos:orderFaultType” />
 </wsdl:operation>
 </wsdl:portType>

 <!-- portType supported by the production scheduling process -->
 <wsdl:portType name=”schedulingPT”>
 <wsdl:operation name=”requestProductionScheduling”>
 <wsdl:input message=”pos:POMessage” />
 </wsdl:operation>
 <wsdl:operation name=”sendShippingSchedule”>
 <wsdl:input message=”pos:scheduleMessage” />
 </wsdl:operation>
 </wsdl:portType>

 <plnk:partnerLinkType name=”purchasingLT”>
 <plnk:role name=”purchaseService”
 portType=”pos:purchaseOrderPT” />
 </plnk:partnerLinkType>

 <plnk:partnerLinkType name=”invoicingLT”>
 <plnk:role name=”invoiceService”
 portType=”pos:computePricePT” />
 <plnk:role name=”invoiceRequester”
 portType=”pos:invoiceCallbackPT” />
 </plnk:partnerLinkType>

Figure 10.4 (continued)
(continued)

186  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

BPML also follows the XML standard and is defined based on an XML-Schema.
The process definitions have to be well-formed XML documents based on this schema.
BPML also uses associated specification standards such as WSDL and XPath. The
entire executable process model is a package comprising of the BPML process defini-
tion, and WSDL files corresponding to the activity-services in the process (and to
other related processes).

Here too, each activity is an <activity> element in the process definition
with linkages to a service interface described as a WSDL with the abstract bind-
ings. A process can be nested with other processes (called subprocesses) within it
to any number of levels. The subprocess is also defined as a separate BPML process
definition and this is invoked by the main process using the “call” activity that
synchronously invokes the subprocess at runtime. In the case of call activity, the
subprocess executes in the same context as the main process, and thus has access
to the properties of the main process. Its execution will be thus dependent on the
main process and vice-versa. The subprocess also can be asynchronously invoked
(the main process does not wait for the subprocess to complete), using the “spawn”
activity of BPML. In the case of spawn, the subprocess is launched for execution
separate from the main process and it executes in a totally new context, indepen-
dent of the main process.

A good feature of BPML is the “signal” concept, which allows a set of activities
in the same executing process to synchronize execution of activities in the process
within the context (scope) of the activities. This is relevant for those activities that
are in parallel paths and have execution dependencies between some of them.

In BPML, each execution occurrence of a process definition at runtime is a
process instance. And, the process instance identifier is a parameter that has unique
value for each process instance. This is used to uniquely identify a process instance
at runtime. BPML advocates persistence of processes where the process state is
preserved in a nonvolatile medium for later process instance reconstruction and
resumption. Process instance identifier plays a role in identifying the instances

 <plnk:partnerLinkType name=”shippingLT”>
 <plnk:role name=”shippingService”
 portType=”pos:shippingPT” />
 <plnk:role name=”shippingRequester”
 portType=”pos:shippingCallbackPT” />
 </plnk:partnerLinkType>

 <plnk:partnerLinkType name=”schedulingLT”>
 <plnk:role name=”schedulingService”
 portType=”pos:schedulingPT” />
 </plnk:partnerLinkType>

</wsdl:definitions>

Figure 10.4 (continued)

Standards and Technologies  ◾  187

in this. It plays an important role in the semantics of some process functions (called
instance functions) that can be used in the process definition.

Process definitions are organized in the form of packages similar to the way
high-level programming languages allow the programmers to organize the programs
to achieve modularization. A package organizes a set of related process definitions.
A process is statically identified along with the name of the package it belongs to.

BPML addresses the handling of transactions in activities by allowing transac-
tion scopes (transaction context) to be indicated. It supports the notion of atomic-
ity in activities. A transaction completing across a group of non-activities is also
supported; these activities commit together or rollback together. BPML, however,
does not mandate that any particular transaction protocol be used in the pro-
cess. The process layer is left to leverage any existing transaction protocols such as
WS-Transaction, X/Open XA, BTP, and OTS.

10.5  Inter-Process Layer Interactions
This is to address the possibility that multiple IT systems could have their
respective process layer implementations supporting different executable process
definition notations (including competing standards) and that they may want
to interact with each other in the course of process executions and especially
when the participants in the same enterprise need to take part in processes that
together involve multiple process layer implementations. The Wf-XML standard
from WfMC addresses this. It is for BPM systems (or workflow systems) interop-
erability. It defines a set of common interfaces that each BPM system needs to
implement for enabling interactions between process engines.

10.6  Business Logic Interaction Standards
There are a number of standards available that can be used in the interaction and
implementation of the business logic elements in the process-centric architecture.
Web services are a very popular standard for implementing the activity-services.
This includes the HTTP, SOAP, WSDL, and UDDI standards. Each business logic
component in the process-centric architecture is implemented as a web service.
SOAP is used as the application communication protocol and HTTP is used as
the transport protocol between the process layer and the business logic element.
The process layer also exposes its services to the external systems and processes as
web services that are invoked using SOAP over HTTP. In the case of asynchronous
invocations, SOAP is still preferred as the application protocol and some intra-
technology standards such as JMS are used for the transport.

User interface applications supporting the user activities can also be implemented
based on standards. The standards popularly used in this are the web application

188  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

related ones such as HTML, HTTP, and SOAP. Typically, the users perform the
user activities through web UI applications. The web UI application interacts with
the process layer using the web services exposed by the process layer implementation.

10.7 T echnologies and Tools
There are various tools and technologies that can be used and applied in the imple-
mentation of process-centric architecture. They apply for different aspects of the
architecture. Let us glance through some of the popular ones.

10.7.1  Process Component and Process Layer
BPMS is a technology that directly applies for realizing the process layer and the
process component. The process layer is realized as a process server or a process exe-
cution engine (or simple process engine) that is part of a typical BPMS. The process
execution engine is a runtime component and a key part of the BPMS. It concerns
itself with execution of processes. There are various products (called BPM products)
that provide this technology. Some of them are Appian•, IBM Websphere business
process suite (WebSphere, FileNet, Ilog, and MQ), Intalio, Oracle (with Fusion,
Collaxa, BEA Weblogic, and Aqualogic, combined), Pegasystems, Metastorm,
Microsoft (BizTalk), K2, SAP Netweaver (XI/PI), Savvion, Lombardi, Sterling
Commerce, and TIBCO-staffware. This is not necessarily in any specific order.
Some prefer to call these products BPM suites.

10.7.2  Adapter Layer or Collaboration Layer
This can be implemented using enterprise service bus (ESB) technologies. Examples
of products are Mule•, OpenESB, etc. Since this layer is part of the process layer in
the architecture, this layer is also part of many BPMS products. They can do the job
that EAI tools used to do previously. Activity-services that the process needs to invoke
are invoked through the ESB, where the product performs service lookup, service
selection, data transformation, and service invocation on behalf of the process layer.
If the activity-services are implemented by other technologies such as a mainframe
component, for example, then the process engine connects to the mainframe using
appropriate technologies (e.g., CICS gateways) and invokes the mainframe compo-
nent and gets the result back and transforms the data to the process’ format.

10.7.3  Implementation of Business Logic
The activity-services are implemented by the BLEs. The BLE can be realized as business
components in a specific technology platform. One example is implementing them as
EJBs in the JEE (JAVA technology) platform. Either the process engine may call this

Standards and Technologies  ◾  189

component natively using JAVA invocation mechanisms (RMI and EJB) or use XML,
SOAP, HTTP web services for the communication between the process layer and the
component, that is, the web service implementation for the BLE actually invokes the
EJB component to realize the service. Another example is implementing them as .NET
business components in Microsoft .NET platform. The process engine may natively
invoke this in the .NET environment or can use web services mechanism. While
designing and programming the BLEs, an application framework such as Spring,
for example, can be used to handle system/infrastructural services in a common
way across multiple BLEs and save effort. For addressing specific concerns such as
data access (that includes object-relational table mapping), for example, a frame-
work such as Hibernate can be looked at.

10.7.4  Server Components
The components in the architecture that are server-style can be realized through
appropriate technologies. We saw about the process engine.

A rule engine realizes the rules layer of the architecture. It implements all the
rules functionality and houses the business rule for execution. Some examples are
rule engine products such as Drools• and Ilog. The rule engines provide interfaces
that can be invoked by the process engine. Some BPMSs support business rules very
natively with their own rule engine; an example is Pega•. In such cases, the rule
engine provided by the BPMS is used for housing the rules.

Application servers such as a JEE server or Microsoft Biz Talk server realize the
infrastructure part for the business logic components. The business logic components
are housed in these servers. They make sure that the EJB component or the .Net com-
ponent gets all the required infrastructure support including support for quality of
system attributes such as reliability, performance, security, and transaction support.

Web servers realize the user interface application layer. Examples are Apache
Tomcat•, IIS•, etc. When using the web servers, the UI applications are implemented
as web UI applications using a language platform such as Java (JSP•/Servlets•/
HTML). The taskflow within a user activity can further be realized using a technology
such as Struts that lets the taskflow be defined in the form of actions and the order for
the actions. Techniques such as Ajax and frameworks such as JSF•, for example, can
be used to make the UI more richer and effective for the individual screens for taskflows
within the user activities.

A document management system (DMS) or content management system
(CMS) may be used for managing documents that are involved as key entities in a
process. Example, as part of a credit card application process, the credit card appli-
cation form paper version can be scanned and put into a DMS such as FileNet for
maintaining and managing the document. The process typically uses a reference to
the document (a document id) as a process parameter that can be used to refer
to the document any time in the activities instead of carrying the entire document
in the process as a value.

190  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

10.7.5  Design-Time Component
During design-time, the process modeler tool of a BPMS product can be used for
the process modeling. Unified modeling language (UML) and UML tools can be
used for the detailed design of the business logic components. For programming
of the BLE, an Integrated Development Environment (IDE) such as Eclipse or
Microsoft Visual Studio• (VSTS) can be used.

10.7.6  Operations and Administration
At run-time, the system administrators would need to monitor the health and needs
of the system. BPMS products provide tools (configurators, consoles) to allow the
administrator to configure the system (process servers) for various quality aspects
such as scalability, performance, and reliability. For the process administrators, the
objective is to manage the operations with respect to the business process such as
deploying processes into BPMS to make them go live, taking actions on processes
including terminating them forcefully, restarting processes as part of error/excep-
tion handling, and undeploying processes. All these are supported by BPMS prod-
ucts through specific tools with appropriate user interfaces. Typically, they provide
administration portals for this purpose. Process managers also use these portals to
monitor execution of processes as part of their business activity monitoring (BAM)
work. During error situations, debugging is a critical activity for the administra-
tor and IT support team. PCA based systems require debugging to start at the
process-level itself. Identifying which process instance failed and tracing the execu-
tion trail of the process including the branches taken in the process flow, to check
if the prior steps in the sequence have completed properly, is part of process-level
debugging. Also, process-level debugging involves, the person debugging needing
to figure out which prior activity in the sequence caused this error—the activity
that has failed with error could be different from the activity that actually caused it.
Troubleshooting utilities provided by the BPMS help in process-level debugging—
they provide visibility into what has happened with the process in its execution.

10.8  Implementation Options
A process-centric architecture can be implemented in various ways. Some of the
options for designing the process layer include the following:

◾◾ The process layer is realized as a stand-alone process server. In this case it
exists independently in physically separate hardware (machines) and supports
different business processes and IT systems related to those processes.

◾◾ The process layer is designed as a software component (process engine) that
can be embedded in the application realizing the business process. The

Standards and Technologies  ◾  191

process engine is really lightweight in this option and will live within the
physical confines of the application embedding it, by sharing the run-time
memory (RAM/virtual memory) of the application and with a low memory
footprint. It will become just another component of the embedding appli-
cation. Examples are applications where using a full scale process server
(BPMS) might not be feasible—the application might be one that has been
developed in traditional approach as a single system. Here, cost of changes,
resource consumption, etc., can work against going for a full scale BPMS.
Thus, embedding the process layer as an application component inside the
application is more feasible.

◾◾ A software component that implements the process layer and the process
model can be auto-generated in the native language (programming language)
of the application that realizes the business process, from the process def-
inition in a standard execution language such as WS-BPEL. This process
component then becomes a component of the application. This is especially
relevant when we are looking at a legacy application (with its own system
environment) that is not easy to change, but in which we still want to gain the
benefits of process-centricity. For example, a mainframe COBOL application
(AR) that takes care of an account reconciliation process can have this pro-
cess logic defined in WS-BPEL. Now, instead of having to use technologies
from a different environment (say JAVA) for the process layer, the code for
the process can be generated from the WS-BPEL definition automatically in
COBOL language which is native to the AR application and specifically for
the target Mainframe platform. This COBOL process component will reside
with the native AR application executing the process logic, and all the process
step invocations would become native subroutine calls in COBOL. This can
also be done in the case of a platform neutral programming language such as
Java to create process layer implementations that can work irrespective of the
operating system.

Though there are a host of different ways by which activity invocations may be
implemented, the most popular way is the use of the web services standard for all
the activity-services invocation and client-to-process layer interactions. This means,
all the activity services (and the services that the process layer provides to clients
such as initiation of the process) are designed as web services. Here, the activity web
services could be standard web services that are SOAP-based (we call them SOAP
Web Services) or they could be RESTful (REpresentational State Transfer) web
services. In the case of SOAP web services, the service implementations use a SOAP
engine, which, after parsing the SOAP message (XML), invokes the business logic
implementing component for this service such as an EJB. In the case of RESTful
web services, web services are implemented in a simpler manner—using princi-
ples of REST and thereby see the service as providing basic HTTP method-based
operations (get, put, post, delete) on resources (e.g., customer or other business

192  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

entities in the enterprise). RESTful web services use only HTTP and do not use
XML. Wherever their use is applicable, they might give a performance benefit
over SOAP web services due to avoidance of the SOAP/XML processing overload.
However, RESTful web services do not have any official standard yet. In the case
of RESTful web service for an activity service, the implementation code in the
web service would invoke the business logic implementing component directly or
would itself implement the business logic required. When it comes to the applica-
tions that implement the services, services can be implemented in various ways with
trade-offs. We can have one big application providing interfaces for and supporting
each service as a specific functionality. Or, a set of applications can come together
exposing their functionalities as these services. Yet another way is to have all the
services implemented by components on purely one technology such as Java EJB or
mainframe—this is relevant in situations where the enterprise predominantly uses
a particular technology environment.

In the case of some business processes, performance could be an important
concern to be met by the system. This is seen in transaction-oriented processes,
such as banking and trading, and processes where invocation of activity services
or other processes are synchronous. When such activity services are implemented,
options such as web services or even an adapter based invocation (e.g., ESB) may
not work well for performance. XML processing (parsing, marshaling, unmarshal-
ing), SOAP processing (handling SOAP specific elements), transportation protocol
related processing, processing related to data (or message) transformations done
by the adapters, and processing for routing and version resolution, all become sig-
nificant performance overheads. In such cases, giving performance concerns a high
priority, the service is implemented as a plain remote call in the native run-time
environment (or if feasible as a local call in the run-time environment itself). For
example, say the activity service “Credit amount to account” can be implemented
as a Java RMI (remote method invocation) method that is invoked natively from
the process in the process layer, assuming that the process layer is implemented in
the Java run-time environment. This gives a better performance due to minimal
processing overheads, this being just a native Java call. However, in situations where
web services or other XML-based invocation options have to be chosen due to vari-
ous reasons, using accelerators such as XML accelerators to speed up the processing
may help reduce the performance overheads.

10.9 E xercise Questions
	 1.	Are these standards exhaustively helpful for the PCA IT system realization in

your view?
	 2.	What are other implementation technology options that you can think of?

List their pros and cons.

193

Chapter 11

Case Study—
Architectural Design
Applying PCA

11.1 O bjectives
◾◾ To understand how to apply PCA
◾◾ To learn how to design the architecture of an IT system using PCA
◾◾ To learn how to design the components of IT system
◾◾ To learn how to implement the IT system, the PCA way

11.2  Case Study I
As the first case study let us consider the case of a fictitious product company
named “Sysinfo electronics” that manufactures and sells electronic goods. This case
study is a purely hypothetical one, though it is closer to what typically happens in
a real-life process.

Let us take the sales order processing in Sysinfo electronics as our example here.
The objective of this case study is to demonstrate the application of process-centric
architecture style in architecting an IT system. Here, we specifically architect the
IT system (“sales order processing system”) that supports the sales order process in
Sysinfo electronics. The assumption here is that this is a totally new system, so the
entire system is architected and would be built from scratch.

194  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

11.2.1  Modeling of the Business Process
First the business analyst in Sysinfo electronics models the high-level process model
of the process. This is shown in Figure 11.1. The process goes as follows:

◾◾ It begins when a customer enquires about items the customer wishes to buy.
This is through a phone call to the sales representative of Sysinfo electron-
ics. A sales representative takes the call, and collects the details from the
customer such as the products and their quantity. Examples of products sold
by Sysinfo electronics are cell phones, cordless phone sets, television sets, and
DVD players. The sales representative also indicates whether the customer is
a new one or an existing customer. A quotation is then initiated.

◾◾ The system automatically computes the price of the items and generates a
quotation for the customer. A new quotation number is generated, the price
for each item is computed based on the defined rates, applicable discounts are
applied, and shipping charges are computed and included in the quotation.
The quotation price also includes the applicable taxes such as the sales tax and
VAT based on the geographic location. For the rates of items, any surcharges
that are applicable are also included in the quotation price.

◾◾ The sales representative provides the generated quotation to the customer.
◾◾ The customer then places an order through phone and provides the quota-

tion number for the quotation the customer received as reference. The sales
representative handles the call and initiates the order in the system. The call
is then transferred to an order clerk who does the order entry.

◾◾ If the customer is a new customer for Sysinfo electronics, that is, the customer
has not transacted with Sysinfo electronics at all previously, then a customer
account needs to be created in the system.

◾◾ The order clerk enters the customer details in the system to create an account
for the new customer. Details such as customer name, billing address, pre-
ferred delivery address, phone numbers, and e-mail addresses are entered in
the customer account details and a customer account is created in the system.

◾◾ The order clerk then enters the order details and submits the order. He enters
all the required information for the order in the system such as items ordered
and quantity, billing address, delivery address (if different from that in the
customer account details), and phone number. Some customer details may
require modification in the order details. The order is then submitted by the
order clerk for further processing.

◾◾ If the total amount calculated for the order is above $1000, the group man-
ager needs to review the order. The manager reviews the details of the order,
the correctness of the rates, applied discounts, applied surcharges, etc. The
manager also corrects the order details if required.

◾◾ The order clerk then confirms the order after discussing with the customer.
The status of the order becomes “confirmed.”

Case Study—Architectural Design Applying PCA  ◾  195

Sa
le

s
Cu

st
om

er
en

qu
iry

Cu
st

om
er

pl
ac

es
 o

rd
er

Ca
lc

ul
at

e
ra

te
Ye

s

Ye
s

Pi
ck

Pa
ck

ag
e

Sh
ip

Ye
s

Ye
s

Ye
s

N
o

N
o Re

vi
ew

or
de

r

Co
nf

irm
or

de
r

Su
bm

it
bu

y o
rd

er

N
o

Re
ce

iv
e

pa
ym

en
t

Re
ce

iv
e

pa
ym

en
t

Pr
od

uc
ts

re
ad

y

In
st

oc
k?

N
o

N
o

Bu
ild

Ch
ec

k
in

ve
nt

or
y

Cr
ed

it
cu

st
om

er
?

Cr
ed

it
cu

st
om

er
?

Cr
ea

te
cu

st
om

er
ac

co
un

t

N
ew

cu
st

om
er

?
A

m
ou

nt
 >

$1
00

0?

Pr
ov

id
e

qu
ot

e

Sy
st

em

O
rd

er
 cl

er
k

M
an

ag
er

Pa
ck

ag
in

g

Sh
ip

pi
ng

M
an

uf
ac

tu
rin

g

Fi
gu

re
 1

1.
1 H

ig

h-
le

ve
l p

ro
ce

ss
 m

od
el

.

196  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

◾◾ If the customer is not a credit customer (i.e., cash customer), he is expected
to pay the full amount for the products ordered before the order is processed.
The order clerk receives the payment for the order from the customer. He then
enters the payment details such as check number, check date, bank details,
and amount paid, and records these in the system.

◾◾ Credit customers can pay the amount after the delivery of the items.
◾◾ The system checks if the items ordered are available or not. If they are not,

build is initiated in the manufacturing department. This is another system
that takes care of the build activity.

◾◾ The process then waits for the products to be built and are ready for picking.
Once they are ready, the processing moves on to the packaging department.

◾◾ The packaging department picks the items from the warehouse. They pack-
age the products for shipping specifying the delivery address of the customer.

◾◾ The shipping department then ships the package with the products to the
customer’s delivery address.

◾◾ If the customer is a credit customer, the process waits until it receives the pay-
ment from the customer.

◾◾ The order clerk collects the payment from the customer and records the
details of the payment into the system.

◾◾ The process then ends.

This process has been designed as composing the activities shown in Figure 11.1.
The activities “calculate rate,” “check inventory,” and “build” are system activities.
They are performed by the system automatically.

Others are user activities. “Customer enquiry,” “provide quote,” and “customer
places order” are activities performed by the sales representative. The order clerk
performs the “create customer account,” “submit buy order,” “confirm order,” and
“receive payment” activities. The manager in the order-processing group performs
the “review order” activity. “Pick” and “package” activities are carried out by the
packaging department. The “ship” activity is performed by the shipping department.

11.2.1.1  Design Rationale

Each activity in the process, as can be seen, is at a high granular level and this is
appropriate for the process definition. Just to help clarify this: If we had the two
activities “enter order details” followed by “submit order” in place of the “submit
buy order” activity, the granularity would have been lower and inappropriate for
this process. Entering the order details in the order entry screens and then submit-
ting the order is actually one complete logical business operation. Doing just order
entry and not submission would make it only a partial operation.

Some of the thoughts that have driven granularity-related decisions are scope,
ownership, potential applicability contexts, and reusability of the business function
being performed. For example, the calculate rate activity could very well have been

Case Study—Architectural Design Applying PCA  ◾  197

part of the customer enquiry activity since it could be seen as the response part
of the enquiry in the UI application supporting the customer enquiry function.
However, when we look at applicability, the calculate rate business function has a
wider applicability—it is also applicable in contexts other than where a sales rep-
resentative requests a rate calculation on behalf of the customer; for example, one
such context would be when a customer goes online and does a direct enquiry. In yet
another context, the customer’s enquiry could also be received offline through an
e-mail and the sales representative may not need to respond to it instantly. Instead,
the rate calculation could be performed by the system as a physically separate sys-
tem action and then the sales representative could get back to the customer with
the quote as the next activity named “provide quote,” which is a physically separate
action. Also, depending on the amount of time involved in the rate calculation, it
is possible that a different sales representative perform the provide quote action—
sales representative availability and their load can also be factors in this—leading
us to define the scope of these actions clearly and separately from each other. So,
the ownership of the calculate rate activity could be seen as with the system and not
the sales representative or the customer, and the scope of the activity is strictly lim-
ited only to the calculation of the rate given a set of inputs such as item, quantity,
and where the delivery is to be made. And, the calculate rate activity can be reused
as is in those processes easily. Thus, the scope of the specific business function of
the sales representative, as part of the enquiry activity, ends as soon as the enquiry
details are collected and submitted to the process for subsequent processing.

The rule “amount >$1000” is a business rule that affects the flow of the pro-
cess. Thus, it is defined in the conditional branch. The same is the case with the
“new customer?,” “credit customer?,” and “in stock?” conditions in the conditional
branches. They are explicitly defined here and could be changed in the future if the
business so demands.

The “check inventory” system activity can potentially be reused in another pro-
cess, say the periodic inventory monitoring process or a routing stock check process.
Its reuse is at a business process level and not at a technical function level.

11.2.2  Detail-Level Business Process Modeling
Now we create the executable process model from the high-level process model. For
this, we come up with the detailed process model shown in Figure 11.2.

In this example, the technical architect supports each manual activity by a web
UI application. The calculate rate system activity is specified as a service provided
by an EJB component housed in the application server. This component is part of
the pricing application and it has to do job-costing as part of the business logic for
rate calculation. The check inventory and build activities are services invoked as web
services by the process. These web services are supported by business components
of the order application and the manufacturing application, respectively. “Products
ready” is a system activity that is a receive-type activity. This is exposed as a web

198  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Sa
le

s r
ep

Cu
st

om
er

 en
qu

iry

Ca
lc

ul
at

e r
at

e
Tr

ue

Fa
lse

Fa
lse

Tr
ue

Re
vi

ew
 o

rd
er

Co
nf

irm
 o

rd
er

Re
ce

iv
e p

ay
m

en
t

Pi
ck

Pa
ck

ag
e

Sh
ip

Fa
lse

Fa
lse

Fa
lse

In
st

oc
k?

Bu
ild

Pr
od

uc
ts

 re
ad

y

Re
ce

iv
e p

ay
m

en
t

Tr
ue

Tr
ue

Tr
ue

J

J

Ch
ec

k
in

ve
nt

or
y

Cr
ed

it
cu

st
om

er
?

Cr
ed

it
cu

st
om

er
?

J

J

Cr
ea

te
 cu

st
om

er
 ac

co
un

t
Cr

ea
te

 b
uy

 o
rd

er

N
ew

cu
st

om
er

?
A

m
ou

nt
 >

$1
00

0
?

Pr
ov

id
e q

uo
te

Su
bm

it
or

de
r r

eq
ue

st

Sy
st

em

O
rd

er
 cl

er
k

M
an

ag
er

Pa
ck

ag
in

g

Sh
ip

pi
ng

M
an

uf
ac

tu
rin

g
ap

pl
ica

tio
n

Fi
gu

re
 1

1.
2 D

et

ai
le

d
pr

oc
es

s
m

od
el

.

Case Study—Architectural Design Applying PCA  ◾  199

service by the process so that the manufacturing application can invoke it when the
products are ready after the build. This process definition is a block-structured one.

Parameters are specified for the process at the process level. Some of these are
“quotationNumber,” “salesOrderNumber,” “orderDate,” “expectedDelivery date,”
“orderAmount,” “customer ID,” “customerName,” “creditCustomerFlag,” and
“orderStatus.” This is shown in Figure 11.3. These are the business data that are
relevant to most of the activities in the process.

For each system activity, the service interface and details are supplied. (See Figure
11.4 for the calculate rate activity and Figure 11.5 for the check inventory activity.) The
first one is an EJB component that implements the activity service, so its invocation
details are specified. The input parameters to the EJB and output parameters from the
EJB are specified here. The second one, check inventory, is a web service. The service
details such as the port type, and input and output parameters are specified in this.

Figure 11.6 shows the product ready activity’s service specifications. This is a
receive activity and is of the notification interaction type as far as the client of this
activity is concerned. It is an asynchronous receive operation. This activity service
is invoked by the manufacturing application after completing the manufactur-
ing of the products. Since this is an asynchronous activity, the transport chosen
is Java messaging service (JMS). This service is exposed by the order processing
system at run-time when the process instance is in execution. Sales order number
parameter is used as the correlation parameter to correlate the invocation to the
process instance corresponding to the order number for which the manufacturing
has been completed. This parameter is chosen because it is unique for each order

Figure 11.3  Process parameters.

200  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Figure 11.4  Calculate rate user activity.

Figure 11.5  Check inventory activity.

Case Study—Architectural Design Applying PCA  ◾  201

process instance and thus can help the system or humans identify the matching
process instance correctly.

Similarly Figure 11.7 shows the build activity details. This is a web service that
is a one-way invocation and is asynchronous. The transport used is thus JMS.

Figure 11.8 shows the details of the customer places order user activity. This is
designed as a web UI activity (i.e., it is supported by a web application with the user
using the Internet browser) and the URL value is used to construct the actual and
full URL at run-time. The display and submit parameters represent the parameters
sent to (or pulled by) the web UI application and received by the process from the
web UI application, respectively. It is specified that the sales representative would
perform the activity. Other user activities in the process also follow a similar con-
vention in the details—they are also designed as user interfaces provided through
the Internet browser by the web application.

For this process, the executable process definition is created in the WS-BPEL
language. An important point to note here is that though it provides a number of
standard constructs, WS-BPEL, at the moment, does not explicitly support some
aspects of a business process such as user activities (or activities that involve user
interaction). WS-BPEL specification allows the implementations of the language to
support such aspects by allowing them to extend WS-BPEL. This allows the imple-
mentation to introduce elements and attributes that are needed to support aspects
not explicitly supported by WS-BPEL—they are introduced as extension elements

Figure 11.6  Products ready activity.

202  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Figure 11.8 S ubmit order request activity.

Figure 11.7  Build activity.

Case Study—Architectural Design Applying PCA  ◾  203

and attributes. In our example here, we have used some extensions such as “mode,”
“role,” “actType,” “allocationScheme,” “locate,” “wsdlfilename,” and so on.

The executable process definition in WS-BPEL for this detailed process model
is as follows:

<?xml version=”1.0” encoding=”UTF-8”?>
<process abstractProcess=”no” enableInstanceCompensation=”no”
  expressionLanguage=”http://www.w3.org/TR/1999/
  REC-xpath-19991116”
  name=”SalesOrderProcess” sie:appName=”SalesOrder” sie:
   sie:queryLanguage=”http://www.w3.org/TR/1999/
   REC-xpath-19991116”
  supressJoinFailure=”no”
  targetNamespace=”http://www.onlinesieservices.com/BPEL/
  ordertocash”
  xmlns=”http://docs.oasis-open.org/wsbpel/2.0/process/
  executable”
  xmlns:bpws=”http://docs.oasis-open.org/wsbpel/2.0/process/
  executable”
  xmlns:inst=”http://www.onlinesieservices.com/BPEL/
  extensions/inst”
  xmlns:java=”http://www.onlinesieservices.com/java”
  xmlns:sie=”http://www.onlinesieservices.com/BPEL/extensions”
  xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
  xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
  <extensions>
   <extension
namespace=”http://www.onlinesieservices.com/BPEL/extensions/
inst” mustUnderstand=”yes” />
   <extension
namespace=”http://www.onlinesieservices.com/BPEL/extensions”
mustUnderstand=”no” />
  </extensions>
  <correlationSets/>
  <variables>
   <variable name=”inst:endprocess” type=”xsd:boolean”/>
   <variable name=”quotationNumber” type=”xsd:string”/>
   <variable name=”salesOrderNumber” type=”xsd:string”/>
   <variable name=”orderDate” type=”xsd:string”/>
   �<variable name=”expectedDeliveryDate” type=”xsd:string”/>
   <variable name=”orderAmount” type=”xsd:integer”/>
   <variable name=”customerID” type=”xsd:string”/>
   <variable name=”customerName” type=”xsd:string”/>
   �<variable name=”creditCustomerFlag” type=”xsd:boolean”/>
   <variable name=”orderStatus” type=”xsd:string”/>
  </variables>
  <scope>

204  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

   <variables>
    <variable messageType=”CustomerEnquiryOutParams”
name=”CustomerEnquiry.OutParam”/>
    <variable messageType=”ProvideQuoteInParams”
name=”ProvideQuote.InParam”/>
    <variable messageType=”SubmitOrderRequestInParams”
name=”SubmitOrderRequest.InParam”/>
    <variable messageType=”SubmitOrderRequestOutParams”
name=”SubmitOrderRequest.OutParam”/>
    <variable messageType=”calculateRateRequest”
name=”CalculateRate.InParam”/>
    <variable messageType=”calculateRateResponse”
name=”CalculateRate.OutParam”/>
    <variable messageType=”CreateCustomerAccountInParams”
name=”CreateCustomerAccount.InParam”/>
    <variable messageType=”CreateCustomerAccountOutParams”
name=”CreateCustomerAccount.OutParam”/>
    <variable messageType=”CreateBuyOrderInParams”
name=”CreateBuyOrder.InParam”/>
    <variable messageType=”CreateBuyOrderOutParams”
name=”CreateBuyOrder.OutParam”/>
    <variable messageType=”ReviewOrderInParams”
name=”ReviewOrder.InParam”/>
    <variable messageType=”ReviewOrderOutParams”
name=”ReviewOrder.OutParam”/>
    <variable messageType=”ConfirmOrderInParams”
name=”ConfirmOrder.InParam”/>
    <variable messageType=”ConfirmOrderOutParams”
name=”ConfirmOrder.OutParam”/>
    <variable messageType=”ReceivePaymentInParams”
name=”ReceivePayment.InParam”/>
    <variable messageType=”ReceivePaymentOutParams”
name=”ReceivePayment.OutParam”/>
    <variable messageType=”checkInventoryRequest”
name=”CheckInventory.InParam”/>
    <variable messageType=”checkInventoryResponse”
name=”CheckInventory.OutParam”/>
    <variable messageType=”buildProductRequest”
name=”Build.InParam”/>
    <variable messageType=”ProductsReadyOutParams”
name=”ProductsReady.OutParam”/>
    <variable messageType=”PickInParams”
name=”Pick.InParam”/>
    <variable messageType=”PickOutParams”
name=”Pick.OutParam”/>
    <variable messageType=”PackageInParams”
name=”Package.InParam”/>
    <variable messageType=”PackageOutParams”
name=”Package.OutParam”/>

Case Study—Architectural Design Applying PCA  ◾  205

    <variable messageType=”ShipInParams” name=”Ship.InParam”/>
    <variable messageType=”ShipOutParams” name=”Ship.OutParam”/>
   </variables>
   <correlationSets>
    <correlationSet name=”ProductsReady”
properties=”salesOrderNumber”/>
   </correlationSets>
   <sequence>
   � <receive createInstance=”yes” name=”start_

SalesOrderProcess”
     operation=”start_SalesOrderProcess”
portType=”start_SalesOrderProcessPT” />
    <assign>
     <copy>
      <from>false</from>
      <to part=”inst:endprocess” variable=”inst:endprocess”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”inst:processidentifier”/>
      <to part=”processid”
variable=”SalesOrderProcess.response”/>
     </copy>
    </assign>
    <reply name=”start_SalesOrderProcess”
           operation=”start_SalesOrderProcess”
portType=”start_SalesOrderProcessPT”
variable=”SalesOrderProcess.response”/>

    <invoke locate=”sie/orders/Cust_Enq”
     sie:mode=”Manual” name=”CustomerEnquiry”
operation=”customerEnquiry”
     outputVariable=”CustomerEnquiry.OutParam”
      sei:acttype=”webUI:Activity”
    � sie:userAllocationScheme=””

portType=”OrdersUserActionsPT”>
     <sie:roles sie:allocationScheme=”default”>
      <sie:role>SalesRep</sie:role>
     </sie:roles>
    </invoke>
    <assign>
     <copy>
      <from part=”item” variable=”CustomerEnquiry.OutParam”/>
      <to part=”itemCode” variable=”CalculateRate.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>

206  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      <from part=”quantity”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”quantity” variable=”CalculateRate.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”deliveryLocationCode”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”deliveryLocationCode”
variable=”CalculateRate.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”CalculateRate.InParam”
locate=”ejb:/className=pricing.calculateRateHome&jndiName=
pricing/CalculateRate”
     name=”CalculateRate”
     operation=”calculateRate”
     outputVariable=”CalculateRate.OutParam”
     sie:portname=”PricingPort”
     sie:wsdlfilename=”CalculateRate.wsdl”
     sei:acttype=”EJB:Activity”				
     portType=”PricingPT” />
    <assign>
     <copy>
      <from part=”quotationNumber”
variable=”CalculateRate.OutParam”/>
      <to variable=”quotationNumber”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”orderAmount”
variable=”CalculateRate.OutParam”/> <to variable=”orderAmount”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”pricePerUnit”
      variable=”CalculateRate.OutParam”/>
      <to part=”price” variable=”ProvideQuote.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”item” variable=”CustomerEnquiry.OutParam”/>
      <to part=”itemCode” variable=”ProvideQuote.InParam”/>
     </copy>
    </assign>

Case Study—Architectural Design Applying PCA  ◾  207

    <assign>
     <copy>
      <from part=”quantity”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”quantity” variable=”ProvideQuote.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”quotationNumber”/>
      <to part=”quotationNumber”
variable=”ProvideQuote.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”orderAmount”/>
      <to part=”orderAmount” variable=”ProvideQuote.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”ProvideQuote.InParam”
     locate=”sie/orders/Quote” sie:mode=”Manual”
     name=”ProvideQuote” operation=”provideQuote”
  	 sei:acttype=”webUI:Activity”
    � sie:userAllocationScheme=””

portType=”OrdersUserActionsPT”>
     <sie:roles sie:allocationScheme=”default”>
      <sie:role>SalesRep</sie:role>
     </sie:roles>
    </invoke>
    <assign>
     <copy>
     � <from part=”item” variable=”CustomerEnquiry.

OutParam”/>
      <to part=”itemCode”
variable=”SubmitOrderRequest.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”quantity”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”quantity”
variable=”SubmitOrderRequest.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”pricePerUnit”

208  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

variable=”CalculateRate.OutParam”/>
      <to part=”pricePerUnit”
variable=”SubmitOrderRequest.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”deliveryLocationCode”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”deliveryLocation”
variable=”SubmitOrderRequest.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”quotationNumber”/>
      <to part=”quotationNumber”
variable=”SubmitOrderRequest.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”orderAmount”/>
      <to part=”orderAmount”
variable=”SubmitOrderRequest.InParam”/>
     </copy>
    </assign>
    <invoke
     inputVariable=”SubmitOrderRequest.InParam”
     locate=”sie/orders/SubmitOrderRequest” sie:mode=”Manual”
     name=”SubmitOrderRequest” operation=”submitOrderRequest”
     outputVariable=”SubmitOrderRequest.OutParam”
  	 sei:acttype=”webUI:Activity”
     sie:userAllocationScheme=”” portType=”OrdersUserActionsPT”>
     <sie:roles sie:allocationScheme=”default”>
      <sie:role>SalesRep</sie:role>
     </sie:roles>
    </invoke>
    <assign>
     <copy>
      <from part=”orderDate”
variable=”SubmitOrderRequest.OutParam”/>
      <to variable=”orderDate”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”orderStatus”
variable=”SubmitOrderRequest.OutParam”/>

Case Study—Architectural Design Applying PCA  ◾  209

      <to variable=”orderStatus”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”orderAmount”
variable=”SubmitOrderRequest.OutParam”/>
      <to variable=”orderAmount”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”customerID”
variable=”SubmitOrderRequest.OutParam”/>
      <to variable=”customerID”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”customerName”
variable=”SubmitOrderRequest.OutParam”/>
      <to variable=”customerName”/>
     </copy>
    </assign>
    <switch name=”New Customer?”>
     <case
sie:conditionExpression=”java:( (sievar:(SubmitOrderRequest.
OutParam.newCustomerFlag)) == true)”>
      <assign>
       <copy>
        <from variable=”customerName”/>
        <to part=”customerName”
variable=”CreateCustomerAccount.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”deliveryAddress”
variable=”SubmitOrderRequest.OutParam”/>
        <to part=”delivery address”
variable=”CreateCustomerAccount.InParam”/>
       </copy>
      </assign>
      <invoke
       inputVariable=”CreateCustomerAccount.InParam”
      � locate=”sie/orders/CreateCustomer”

sie:mode=”Manual”
       name=”CreateCustomerAccount”
operation=”createCustomerAccount”

210  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

       outputVariable=”CreateCustomerAccount.OutParam”
  	 sei:acttype=”webUI:Activity”
       sie:userAllocationScheme=””
portType=”OrdersUserActionsPT”>
       <sie:roles sie:allocationScheme=”default”>
        <sie:role>Order Clerk</sie:role>
       </sie:roles>
      </invoke>
      <assign>
       <copy>
        <from part=”customerID”
variable=”CreateCustomerAccount.OutParam”/>
        <to variable=”customerID”/>
       </copy>
      </assign>
     </case>
     <case
sie:conditionExpression=”java:( (sievar:(SubmitOrderRequest.
OutParam.newCustomerFlag) ) == false)”/>
    </switch>
    <assign>
     <copy>
      <from variable=”quotationNumber”/>
      <to part=”quotationNumber”
variable=”CreateBuyOrder.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”customerID”/>
      <to part=”customerID” variable=”CreateBuyOrder.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”orderStatus”/>
      <to part=”orderStatus”
variable=”CreateBuyOrder.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”CreateBuyOrder.InParam”
      locate=”sie/orders/CreateBuyOrder” sie:mode=”Manual”
      name=”CreateBuyOrder” operation=”createBuyOrder”
      outputVariable=”CreateBuyOrder.OutParam”
  	 sei:acttype=”webUI:Activity”
      sie:userAllocationScheme=””
      portType=”OrdersUserActionsPT”>
      <sie:roles sie:allocationScheme=”default”>
       <sie:role>OrderClerk</sie:role>

Case Study—Architectural Design Applying PCA  ◾  211

      </sie:roles>
      <correlations>
       <correlation initiate=”yes” pattern=”in”
set=”ProductsReady”/>
      </correlations>
     </invoke>
     <assign>
      <copy>
       <from part=”salesOrderNumber”
variable=”CreateBuyOrder.OutParam”/>
  <to variable=”salesOrderNumber”/>
      </copy>
     </assign>
  <assign>
      <copy>
       <from part=”orderStatus”
variable=”CreateBuyOrder.OutParam”/>
       <to variable=”orderStatus”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”orderAmount”
variable=”CreateBuyOrder.OutParam”/>
       <to variable=”orderAmount”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”orderDate”
variable=”CreateBuyOrder.OutParam”/>
       <to variable=”orderDate”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”creditCustomerFlag”
variable=”CreateBuyOrder.OutParam”/>
       <to variable=”creditCustomerFlag”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”expectedDeliveryDate”
variable=”CreateBuyOrder.OutParam”/>
       <to variable=”expectedDeliveryDate”/>
      </copy>
     </assign>
     <switch name=”Amount > $1000 ?”>

212  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      <case
sie:conditionExpression=”java:( (sievar:(orderAmount)>1000)
== false)”/>
      <case
sie:conditionExpression=”java:( (sievar:(orderAmount)>1000)
== true)”>
       <assign>
        <copy>
         <from variable=”salesOrderNumber”/>
         <to part=”salesOrderNumber”
variable=”ReviewOrder.InParam”/>
        </copy>
       </assign>
       <invoke
        inputVariable=”ReviewOrder.InParam”
        locate=”sie/orders/ReviewOrder” sie:mode=”Manual”
        name=”ReviewOrder” operation=”reviewOrder”
        outputVariable=”ReviewOrder.OutParam”
  	 sei:acttype=”webUI:Activity”
        sie:userAllocationScheme=””
portType=”OrdersUserActionsPT”>
        <sie:roles sie:allocationScheme=”default”>
         <sie:role>Manager</sie:role>
        </sie:roles>
       </invoke>
       <assign>
        <copy>
         <from part=”orderStatus”
variable=”ReviewOrder.OutParam”/>
         <to variable=”orderStatus”/>
        </copy>
       </assign>
      </case>
     </switch>
     <assign>
      <copy>
       <from variable=”salesOrderNumber”/>
       <to part=”salesOrderNumber”
variable=”ConfirmOrder.InParam”/>
      </copy>
     </assign>
     <invoke inputVariable=”ConfirmOrder.InParam”
      locate=”sie/orders/ConfirmOrder” sie:mode=”Manual”
      name=”ConfirmOrder” operation=”confirmOrder”
      outputVariable=”ConfirmOrder.OutParam”
  	 sei:acttype=”webUI:Activity”
      sie:userAllocationScheme=””
      portType=”OrdersUserActionsPT”>
      <sie:roles sie:allocationScheme=”default”>

Case Study—Architectural Design Applying PCA  ◾  213

       <sie:role>OrderClerk</sie:role>
      </sie:roles>
     </invoke>
     <assign>
      <copy>
       <from part=”orderStatus”
variable=”ConfirmOrder.OutParam”/>
       <to variable=”orderStatus”/>
      </copy>
     </assign>
     <switch name=”Credit Customer?”>
      <case
sie:conditionExpression=”java:( (sievar:(creditCustomerFlag) )
== false)”>
       <assign>
       <copy>
        <from variable=”salesOrderNumber”/>
        <to part=”salesOrderNumber”
variable=”ReceivePayment.InParam”/>
       </copy>
      </assign>
      <invoke
       inputVariable=”ReceivePayment.InParam”
       locate=”sie/orders/ReceivePayment” sie:mode=”Manual”
       name=”ReceivePayment” operation=”receivePayment”
       outputVariable=”ReceivePayment.OutParam”
  	 sei:acttype=”webUI:Activity”
       sie:userAllocationScheme=””
portType=”OrdersUserActionsPT”>
       <sie:roles sie:allocationScheme=”default”>
        <sie:role>OrderClerk</sie:role>
       </sie:roles>
      </invoke>
      <assign>
       <copy>
        <from part=”orderStatus”
variable=”ReceivePayment.OutParam”/>
        <to variable=”orderStatus”/>
       </copy>
      </assign>
     </case>
     <case
sie:conditionExpression=”java:( (sievar:(creditCustomerFlag) )
== true)”/>
    </switch>
    <assign>
     <copy>
      <from part=”itemCode”
variable=”SubmitOrderRequest.OutParam”/>

214  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      <to part=”itemID” variable=”CheckInventory.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”quantity”
variable=”SubmitOrderRequest.OutParam”/>
      <to part=”quantity” variable=”CheckInventory.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”CheckInventory.InParam”
locate=”http://internalsysinfoservices/inventorysvcs/
checkInventory”
     name=”CheckInventory”
     operation=”checkInventory”
     outputVariable=”CheckInventory.OutParam”
     sie:portname=”InventoryPort”
     sie:wsdlfilename=”CheckInventory.wsdl”
  	 sei:acttype=”SOAPHTTPDOC:Activity”
     portType=”InventoryPT” />
    <switch name=”In Stock?”>
     <case
sie:conditionExpression=”java:( (sievar:(CheckInventory.
OutParam.inStock) ) == false)”>
      <assign>
       <copy>
        <from part=”itemCode”
variable=”SubmitOrderRequest.OutParam”/>
        <to part=”itemID” variable=”Build.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”quantity”
variable=”SubmitOrderRequest.OutParam”/>
        <to part=”quantity” variable=”Build.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”salesOrderNumber”/>
        <to part=”salesOrderNumber”
variable=”Build.InParam”/>
       </copy>
      </assign>
      <invoke inputVariable=”Build.InParam”
locate=”jms:/queue?connectionFactory=JmsQueueConnectionFactory
&destination=manufacturingsvcs/buildQueue”
       name=”Build”

Case Study—Architectural Design Applying PCA  ◾  215

       operation=”buildProduct”
       sie:portname=”ManufacturingPort”
       sie:wsdlfilename=”Build.wsdl”
  	 sei:acttype=”SOAPJMSDOC:Activity”
       portType=”ManufacturingPT” />
      <receive createInstance=”no”
       name=”ProductsReady”
       operation=”ProductsReady”
  	 sei:acttype=”SOAPJMSDOC:Receive”
       portType=”OrdersPT”
variable=”ProductsReady.OutParam”>
       <correlations>
        <correlation initiate=”no” set=”ProductsReady”/>
       </correlations>
      </receive>
     </case>
     <case
sie:conditionExpression=”java:( (sievar:(CheckInventory.
OutParam.inStock) ) == true)”/>
    </switch>
    <assign>
     <copy>
      <from variable=”salesOrderNumber”/>
      <to part=”salesOrderNumber” variable=”Pick.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”Pick.InParam”
      locate=”sie/orders/Pick” sie:mode=”Manual” name=”Pick”
      operation=”pick” outputVariable=”Pick.OutParam”
  	 sei:acttype=”webUI:Activity”
      sie:userAllocationScheme=””
      portType=”OrdersUserActionsPT”>
      <sie:roles sie:allocationScheme=”default”>
       <sie:role>Packaging</sie:role>
      </sie:roles>
     </invoke>
     <assign>
      <copy>
       <from part=”orderStatus” variable=”Pick.OutParam”/>
       <to variable=”orderStatus”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”deliveryLocation”
variable=”SubmitOrderRequest.OutParam”/>
       <to part=”deliveryLocation” variable=”Package.InParam”/>
      </copy>
     </assign>

216  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

     <assign>
      <copy>
       <from part=”deliveryAddress”
variable=”SubmitOrderRequest.OutParam”/>
       <to part=”deliveryAddress” variable=”Package.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”salesOrderNumber”/>
       <to part=”salesOrderNumber” variable=”Package.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”customerName”/>
       <to part=”customerName” variable=”Package.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”expectedDeliveryDate”/>
       <to part=”expectedDeliveryDate”
variable=”Package.InParam”/>
      </copy>
     </assign>
     <invoke inputVariable=”Package.InParam”
      locate=”sie/orders/Package” sie:mode=”Manual”
      name=”Package”
     operation=”package” outputVariable=”Package.OutParam”
  	 sei:acttype=”webUI:Activity”
     sie:userAllocationScheme=”” portType=”OrdersUserActionsPT”>
     <sie:roles sie:allocationScheme=”default”>
      <sie:role>Packaging</sie:role>
     </sie:roles>
    </invoke>
    <assign>
     <copy>
      <from part=”orderStatus” variable=”Package.OutParam”/>
      <to variable=”orderStatus”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”deliveryAddress”
variable=”SubmitOrderRequest.OutParam”/>
      <to part=”deliveryAddress” variable=”Ship.InParam”/>
     </copy>
    </assign>

Case Study—Architectural Design Applying PCA  ◾  217

    <assign>
     <copy>
      <from variable=”salesOrderNumber”/>
      <to part=”salesOrderNumber” variable=”Ship.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”customerName”/>
      <to part=”customerName” variable=”Ship.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”expectedDeliveryDate”/>
      <to part=”expectedDeliveryDate” variable=”Ship.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”Ship.InParam”
     locate=”sie/orders/Ship” sie:mode=”Manual” name=”Ship”
     operation=”ship” outputVariable=”Ship.OutParam”
  	 sei:acttype=”webUI:Activity”
     sie:userAllocationScheme=”” portType=”OrdersUserActionsPT”>
     <sie:roles sie:allocationScheme=”default”>
      <sie:role>Shipping</sie:role>
     </sie:roles>
    </invoke>
    <assign>
     <copy>
      <from part=”orderStatus” variable=”Ship.OutParam”/>
      <to variable=”orderStatus”/>
     </copy>
    </assign>
    <switch name=”Credit Customer?”>
     <case
sie:conditionExpression=”java:( (sievar:(creditCustomerFlag) )
  == true)”>
      <assign>
       <copy>
        <from variable=”salesOrderNumber”/>
        <to part=”salesOrderNumber”
variable=”ReceivePayment.InParam”/>
       </copy>
      </assign>
      <invoke
       inputVariable=”ReceivePayment.InParam”
       locate=”sie/orders/ReceivePayment” sie:mode=”Manual”
       name=”ReceivePayment” operation=”receivePayment”
       outputVariable=”ReceivePayment.OutParam”

218  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

  	 sei:acttype=”webUI:Activity”
       sie:userAllocationScheme=””
portType=”OrdersUserActionsPT”>
       <sie:roles sie:allocationScheme=”default”>
        <sie:role>OrderClerk</sie:role>
       </sie:roles>
      </invoke>
      <assign>
       <copy>
        <from part=”orderStatus”
variable=”ReceivePayment.OutParam”/>
        <to variable=”orderStatus”/>
       </copy>
      </assign>
     </case>
     <case
sie:conditionExpression=”java:( (sievar:(creditCustomerFlag) )
  == false)”/>
    </switch>
    <assign>
     <copy>
      <from>true</from>
      <to part=”inst:endprocess” variable=”inst:endprocess”/>
     </copy>
    </assign>
   </sequence>
  </scope>
</process>

The WSDL definition for the entire process is given in the below listing:
UserActions.wsdl:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions
  targetNamespace=”http://www.onlinesieservices.com/BPEL/
  salesorder”
  xmlns=”http://www.onlinesieservices.com/BPEL/extensions”
  xmlns:bpws=”http://docs.oasis-open.org/wsbpel/2.0/process/
  executable”
  xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
  xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
  xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://schemas.xmlsoap.org/wsdl/wsdl.xml”>
  <bpws:property name=”sales order number” type=”xsd:string”/>
  <bpws:propertyAlias messageType=”CreateBuyOrderOutParams”
   part=”sales order number” propertyName=”sales order number”/>
  <bpws:propertyAlias messageType=”ProductsReadyOutParams”
   part=”salesOrderNum” propertyName=”sales order number”/>
  <wsdl:message name=”CustomerEnquiryInParams”/>

Case Study—Architectural Design Applying PCA  ◾  219

  <wsdl:message name=”CustomerEnquiryOutParams”>
   <wsdl:part name=”item” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
   <wsdl:part name=”deliveryLocationCode” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ProvideQuoteInParams”>
   <wsdl:part name=”price” type=”xsd:float”/>
   <wsdl:part name=”itemCode” type=”xsd:string”/>
   <wsdl:part name=”quotatioNumber” type=”xsd:string”/>
   <wsdl:part name=”orderAmount” type=”xsd:integer”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
  </wsdl:message>
  <wsdl:message name=”ProvideQuoteOutParams”/>
  <wsdl:message name=”SubmitOrderRequestInParams”>
   <wsdl:part name=”quotationNumber” type=”xsd:string”/>
   <wsdl:part name=”itemCode” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
   <wsdl:part name=”pricePerUnit” type=”xsd:float”/>
   <wsdl:part name=”orderAmount” type=”xsd:integer”/>
   <wsdl:part name=”deliveryLocation” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”SubmitOrderRequestOutParams”>
   <wsdl:part name=”itemCode” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
   <wsdl:part name=”newCustomerFlag” type=”xsd:boolean”/>
   <wsdl:part name=”orderDate” type=”xsd:string”/>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>
   <wsdl:part name=”orderAmount” type=”xsd:integer”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”deliveryLocation” type=”xsd:string”/>
   <wsdl:part name=”customerName” type=”xsd:string”/>
   <wsdl:part name=”deliveryAddress” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”CreateCustomerAccountInParams”>
   <wsdl:part name=”customerName” type=”xsd:string”/>
   <wsdl:part name=”billingAddress” type=”xsd:string”/>
   <wsdl:part name=”deliveryAddress” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”CreateCustomerAccountOutParams”>
   <wsdl:part name=”customerID” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”CreateBuyOrderInParams”>
   <wsdl:part name=”quotationNumber” type=”xsd:string”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”CreateBuyOrderOutParams”>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>

220  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

   <wsdl:part name=”orderAmount” type=”xsd:integer”/>
   <wsdl:part name=”orderDate” type=”xsd:string”/>
   <wsdl:part name=”creditCustomerFlag” type=”xsd:boolean”/>
   <wsdl:part name=”expectedDeliveryDate” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReviewOrderInParams”>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReviewOrderOutParams”>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ConfirmOrderInParams”>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ConfirmOrderOutParams”>
   <wsdl:part name=” orderStatus “ type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReceivePaymentInParams”>
   <wsdl:part name=”salesOrderNumber “ type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReceivePaymentOutParams”>
   <wsdl:part name=”paymentType” type=”xsd:string”/>
   <wsdl:part name=”paymentDetail” type=”xsd:string”/>
   <wsdl:part name=”paymentAmount” type=”xsd:float”/>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”PickInParams”>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”PickOutParams”>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”PackageInParams”>
   <wsdl:part name=”deliveryLocation” type=”xsd:string”/>
   <wsdl:part name=”deliveryAddress” type=”xsd:string”/>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
   <wsdl:part name=”customerName” type=”xsd:string”/>
   <wsdl:part name=”expectedDeliveryDate” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”PackageOutParams”>
   <wsdl:part name=”orderStatus” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ShipInParams”>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
   <wsdl:part name=”customerName” type=”xsd:string”/>
   <wsdl:part name=”deliveryAddress” type=”xsd:string”/>
   <wsdl:part name=”expectedDeliveryDate” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ShipOutParams”>

Case Study—Architectural Design Applying PCA  ◾  221

   <wsdl:part name=”orderStatus” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”OrdersUserActionsPT”>
   <wsdl:operation name=”CustomerEnquiry”>
    <wsdl:input message=”CustomerEnquiryInParams”/>
    <wsdl:output message=”CustomerEnquiryOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”ProvideQuote”>
    <wsdl:input message=”ProvideQuoteInParams”/>
    <wsdl:output message=”ProvideQuoteOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”SubmitOrderRequest”>
    <wsdl:input message=”SubmitOrderRequestInParams”/>
    <wsdl:output message=”SubmitOrderRequestOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”CreateCustomerAccount”>
    <wsdl:input message=”CreateCustomerAccountInParams”/>
    <wsdl:output message=”CreateCustomerAccountOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”CreateBuyOrder”>
    <wsdl:input message=”CreateBuyOrderInParams”/>
    <wsdl:output message=”CreateBuyOrderOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”ReviewOrder”>
    <wsdl:input message=”ReviewOrderInParams”/>
    <wsdl:output message=”ReviewOrderOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”ConfirmOrder”>
    <wsdl:input message=”ConfirmOrderInParams”/>
    <wsdl:output message=”ConfirmOrderOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”ReceivePayment”>
    <wsdl:input message=”ReceivePaymentInParams”/>
    <wsdl:output message=”ReceivePaymentOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”Pick”>
    <wsdl:input message=”PickInParams”/>
    <wsdl:output message=”PickOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”Package”>
    <wsdl:input message=”PackageInParams”/>
    <wsdl:output message=”PackageOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”Ship”>
    <wsdl:input message=”ShipInParams”/>
    <wsdl:output message=”ShipOutParams”/>
   </wsdl:operation>
  </wsdl:portType>
</wsdl:definitions>

222  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

CalculateRate.wsdl:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”PricingPort”
targetNamespace=”http://www.onlinesieservices.com/BPEL/
salesorder”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinesieservices.com/BPEL/extensions”
xmlns:jms=”http://schemas.xmlsoap.org/wsdl/jms/”
xmlns:ejb=”http://schemas.xmlsoap.org/wsdl/ejb/”
xmlns:format=”http://schemas.xmlsoap.org/wsdl/formatbinding/” >
  <wsdl:message name=”calculateRateResponse”>
   <wsdl:part name=”quotationNumber” type=”xsd:string”/>
   <wsdl:part name=”orderAmount” type=”xsd:integer”/>
   <wsdl:part name=”pricePerUnit” type=”xsd:float”/>
  </wsdl:message>
  <wsdl:message name=”calculateRateRequest”>
   <wsdl:part name=”itemCode” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
   <wsdl:part name=”deliveryLocationCode” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”PricingPT”>
   <wsdl:operation name=”calculateRate”
    parameterOrder=”itemCode quantity deliveryLocationCode”>
    <wsdl:input name=”calculateRateRequest”
message=”calculateRateRequest”/>
    <wsdl:output name=”calculateRateResponse”
message=”calculateRateResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”PricingPortBinding” type=”PricingPT”>
    <ejb:binding/>
     <format:typeMapping style=”Java” encoding=”Java”>
      <format:typeMap typeName=”xsd:string”
formatType=”java.lang.String”/>
     </format:typeMapping>
  <wsdl:operation name=”calculateRate”>
   <ejb:operation methodName=”calculateRate”
interface=”remote”
  parameterOrder=”itemCode quantity deliveryLocationCode”/>
   <wsdl:input name=”calculateRateRequest”>
   </wsdl:input>
   <wsdl:output name=”calculateRateResponse”>
   </wsdl:output>
   </wsdl:operation>
   </wsdl:binding>

Case Study—Architectural Design Applying PCA  ◾  223

   <wsdl:service name=”CalculateRate”>
   <wsdl:port name=”PricingPort” binding=”PricingPortBinding”>
    <ejb:address className=”pricing.calculateRateHome”
jndiName=”pricing/CalculateRate”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

CheckInventory.wsdl:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”InventoryPort”
targetNamespace=”http://www.onlinesieservices.com/BPEL/
salesorder”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinesieservices.com/BPEL/extensions”
xmlns:jms=”http://schemas.xmlsoap.org/wsdl/jms/”>
  <wsdl:message name=”checkInventoryResponse”>
   <wsdl:part name=”inStock” type=”xsd:boolean”/>
  </wsdl:message>
  <wsdl:message name=”checkInventoryRequest”>
   <wsdl:part name=”itemID” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
  </wsdl:message>
  <wsdl:portType name=”InventoryPT”>
   <wsdl:operation name=”checkInventory”>
    <wsdl:input name=”checkInventoryRequest”
message=”checkInventoryRequest”/>
    <wsdl:output name=”checkInventoryResponse”
message=”checkInventoryResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”InventoryPortBinding”
   type=”InventoryPT”>
  <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
  <wsdl:operation name=”checkInventory”>
   <soap:operation soapAction=””/>
   <wsdl:input name=”checkInventoryRequest”>
   <soap:body use=”literal”/>
   </wsdl:input>
   <wsdl:output name=”checkInventoryResponse”>
    <soap:body use=”literal”/>
   </wsdl:output>
  </wsdl:operation>
  </wsdl:binding>

224  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

  <wsdl:service name=”CheckInventory”>
   <wsdl:port name=”InventoryPort”
   binding=”InventoryPortBinding”>
   <soap:address
location=”http://internalsysinfoservices/inventorysvcs/
checkInventory”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

Build.wsdl:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”ManufacturingPort”
targetNamespace=”http://www.onlinesieservices.com/BPEL/salesorder”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinesieservices.com/BPEL/extensions”
xmlns:jms=”http://schemas.xmlsoap.org/wsdl/jms/”>
  <wsdl:message name=”buildProductRequest”>
   <wsdl:part name=”salesOrderNumber” type=”xsd:string”/>
   <wsdl:part name=”itemID” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
  </wsdl:message>
  <wsdl:portType name=”ManufacturingPT”>
   <wsdl:operation name=”buildProduct”>
    <wsdl:input name=”buildProductRequest”
     message=”buildProductRequest”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”ManufacturingPortBinding”
  type=”ManufacturingPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/jms”/>
   <wsdl:operation name=”buildProduct”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”buildProductRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”Build”>
   <wsdl:port name=”ManufacturingPort”
   binding=”ManufacturingPortBinding”>
    <jms:address destinationStyle=”queue”
jndiConnectionFactoryName=”JmsQueueConnectionFactory”
jndiDestinationName=”manufacturingsvcs/buildQueue”>

Case Study—Architectural Design Applying PCA  ◾  225

</jms:address>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

ReceiveActions.wsdl:

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”SalesOrderProcess”
targetNamespace=”http://www.onlinesieservices.com/BPEL/
salesorder”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:prefix=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:jms=”http://schemas.xmlsoap.org/wsdl/jms/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinesieservices.com/BPEL/extensions” >
  <wsdl:message name=”start_SalesOrderProcessRequest”>
  </wsdl:message>
  <wsdl:message name=”ProductsReadyRequest”>
   <wsdl:part name=”salesOrderNum” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”start_SalesOrderProcessResponse”>
   <wsdl:part name=”processid” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”start_SalesOrderProcessPT”>
   <wsdl:operation name=”start_SalesOrderProcess”>
    <wsdl:output name=”start_SalesOrderProcessResponse”
message=”start_SalesOrderProcessResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:portType name=”OrdersPT”>
   <wsdl:operation name=”ProductsReady”>
    <wsdl:input name=”ProductsReadyRequest”
message=”ProductsReadyRequest”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”start_SalesOrderProcessBinding”
type=”start_SalesOrderProcessPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”start_SalesOrderProcess”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”start_SalesOrderProcessRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
    <wsdl:output name=”start_SalesOrderProcessResponse”>
     <soap:body use=”literal”/>

226  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

    </wsdl:output>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:binding name=”ProductsReadyBinding” type=”OrdersPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/jms”/>
   <wsdl:operation name=”ProductsReady”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”ProductsReadyRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
    <wsdl:output name=”ProductsReadyResponse”>
     <soap:body use=”literal”/>
    </wsdl:output>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”start_SalesOrderProcess”>
   <wsdl:port name=”start_SalesOrderProcess”
binding=”start_SalesOrderProcessBinding”>
    <soap:address
location=”http://internalsysinfoservices/ordersvcs/
SalesOrderProcess”/>
   </wsdl:port>
  </wsdl:service>
  <wsdl:service name=”ProductsReady”>
   <wsdl:port name=”ProductsReady”
    binding=”ProductsReadyBinding”>
    <jms:address destinationStyle=”queue”
jndiConnectionFactoryName=”JmsQueueConnectionFactory”
jndiDestinationName=”ordersvcs/productsReadyQueue”>
</jms:address>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

The logical expression for the condition defined for the amount check branch is
shown in Figure 11.9, while that for “in stock?” check branch is shown in Figure
11.10. The other branch conditions are also defined in the same way.

Figures 11.11 and 11.12 show the specifications for the user activities “receive
payment” and “pick,” respectively. These are performed by different roles as can be
seen in the specification and the process definition.

11.2.3  Logical Architecture
Let us now look at the logical architecture for this system, as shown in Figure 11.13.
As per the process design, the activities can be broadly grouped into the following
business function categories—this is a logical grouping. Each category is referred

Case Study—Architectural Design Applying PCA  ◾  227

Figure 11.9  Conditional expression.

Figure 11.10  Conditional expression—instock.

228  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

to as an application, and each of these applications provides a collection of business
services that support respective activities in the process:

◾◾ Orders—customer enquiry, provide quote, submit order request, create cus-
tomer account, create buy order, review order, confirm order, products ready,
and receive payment are the activities that would come under this category as
they are business functions that correspond to handling the order life cycle,
especially the front-desk (front-end) aspects of order processing. They are
thus handled typically by a team that focuses on front-end orders such as the
sales representatives, order clerks, and their managers. This category would
hold the order details data for all the orders.

◾◾ Pricing—the activity calculate rate is part of this group. This group includes
data and functions related to the various products, their descriptions, their
rates, other charges involved, taxes, duties applicable, and all other price-related
information (e.g., discounts). Another factor influencing this grouping is that
the pricing team comprising of raters, credit assessment personnel, and contract
negotiators/managers, take care of these business functions as focused work.

◾◾ Inventory—the activity check inventory is part of this category. This category
is responsible for the inventory data and related functions such as stock levels
replenishment, checking, periodic reporting, etc.

Figure 11.11 R eceive payment—user activity.

Case Study—Architectural Design Applying PCA  ◾  229

◾◾ Manufacturing—build activity is in this group. All the business operations
and functions associated with making the products that would be sold as
part of future orders or the products sold for the current order, as requested,
are included in this group. The data relevant to manufacturing is kept and
maintained by this group.

◾◾ Dispatch—pick, package, and ship are activities related to order processing
that are back-end facing. These are part of dispatching the products ordered
to the customer. These operations are performed by the packaging and ship-
ping teams, which deal with physically carrying out the order.

Thus, we have multiple applications that work together in this IT system—inven-
tory application, the manufacturing application, order management application,
pricing application, and the dispatch application. All these components make the
business logic elements (BLEs) of the order-processing system.

Apart from providing invocable services that perform specific business func-
tions, some of them also provide a web-based UI application so that they can sup-
port user activities too—order management application and dispatch application
provides web-based UI.

Figure 11.12  Pick—user activity.

230  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Us
er

 p
ar

tic
ip

at
io

n
po

rta
l

O
rd

er
 cl

er
k,

 m
an

ag
er

,
sa

le
s r

ep
., p

ac
ka

gi
ng

 d
ep

t.,
sh

ip
pi

ng
 d

ep
t.

Cl
ie

nt
w

or
ks

ta
tio

ns
(U

I)

U
I-o

rd
er

 m
an

ag
em

en
t a

pp
lic

at
io

n

U
I-

di
sp

at
ch

 ap
pl

ic
at

io
n W

eb
 se

rv
er

Ap
pl

ic
at

io
n

se
rv

er

Ad
ap

te
r l

ay
er

 fo
r s

er
vi

ce
 in

te
ra

ct
io

n

BP
M

S
(p

ro
ce

ss
 se

rv
er

)

Sa
le

s o
rd

er
pr

oc
es

s d
e�

ni
tio

n
an

d
sa

le
s o

rd
er

pr
oc

es
s i

ns
ta

nc
e

da
ta SA

P
pa

ck
ag

e—
m

an
uf

ac
tu

rin
g

ap
pl

ic
at

io
n

Ap
pl

ic
at

io
n

da
ta

ba
se

O
rd

er
 co

m
po

ne
nt

s
Pr

ic
in

g
ap

pl
ic

at
io

n
In

ve
nt

or
y

ap
pl

ic
at

io
n

W
eb

 se
rv

ic
es

 fo
r “

pr
od

uc
ts

 re
ad

y”
an

d
“s

ta
rt

 sa
le

s o
rd

er
 p

ro
ce

ss
”

Pr
oc

es
s r

ep
os

ito
ry

Pr
oc

es
s m

od
el

er
(B

PM
S)

Pr
oc

es
s m

on
ito

rin
g

po
rt

al
 (B

PM
S)

Fi
gu

re
 1

1.
13

 L
o

gi
ca

l v
ie

w
.

Case Study—Architectural Design Applying PCA  ◾  231

The process layer is realized in the form of a run-time process engine (process
server) provided by a BPMS. It provides the implementation of the entire process
layer. Sales order process instances are created and managed in the process engine.
The design-level component for creating process definition is realized through the
process modeler provided by a BPMS. Sales order process definitions thus created
are housed in the process repository and managed by the process server once they
are deployed onto the process server.

Components for order management, pricing application, and inventory appli-
cation are housed as business components in an application container. These are
invoked from the process layer. The services that the process offers, the receive
activity “products ready” and the process triggering itself are services exposed as
web services. These web services are implemented by the process in the web layer,
which then invokes the process layer to pass on the message received in the process
ready activity service.

Manufacturing application is an application package. It exposes a service (as
web service) that other components can invoke to trigger manufacturing of the
products.

The order management web application supports the user activities involving
front-desk processing for orders that include customer enquiry, provide quote, sub-
mit order request, create customer account, create buy order, review order, confirm
order, and receive payment.

The pick, package, and ship user activities are supported by the dispatch web
application and this will be used by the packaging and shipping departments while
carrying out the backend processing.

There are two separate logical databases in this system. One is the process repos-
itory and the other is the application database. The process repository houses all the
process-related data—run-time data as well as design-time data. All the process-
state data for the sales order process instances and data relevant to the execution of
the process instances go here including the process parameters (such as order status,
sales order number), process execution time details, and process execution history.
This database is used only by the process server and the process modeler, which are
the manifestations of the process layer.

The application database is used by the applications that perform the activ-
ity-specific business operations. Example data in the application database include
inventory data, full order detail, manufacturing/production data, and pricing
information. This database is not referred to by the process layer explicitly and the
data here is owned and managed by the respective application—pricing data is
accessed and maintained by the pricing application, for example.

The adapter layer brides the connection gap between the process layer and the
BLEs by enabling the process layer to invoke different types of services, such as
HTTP/SOAP-based web services, exposed by the BLEs and vice versa. It is respon-
sible for performing necessary data format transformations, service provider look-
ups, and concrete invocations. Practically, it is part of the BPMS process server.

232  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

11.2.4  Services
Each activity in the sales order process is designed as a business service and this is how
the services are primarily identified for the system to be exposed by the BLEs in the
sales order processing system. SOA is applied at this level in the architectural design.
At this level, the process is seen as an interplay of the business services in a predefined
order. Services required for this process are defined as per the principles of SOA as
self-contained stateless services that clearly separate their service interface from the
service implementation. The process would depend on the well-defined service inter-
faces for these services and not on their implementations. Implementations of the
services are hidden by the applications involved and made transparent to the process.

The business services corresponding to the user activities are performed by users
playing the appropriate role—for example, the submit order request activity is per-
formed by a sales representative speaking to the customer. Service implementation is
purely dependent on how the user performs the set of tasks as part of the business func-
tion concerned, say submit order. Service definitions for them are created in WSDL as
shown in the code listing above under the name “process_Sales order process.wsdl.”

The following business services are identified for the system activities in the process:
Check inventory, calculate rate, build, and products ready. As we can see their

granularity is decided top-down from the process definition. Their service inter-
faces are defined next as given in WSDL definitions shown above in the code list-
ing: “Build.wsdl,” “Calculate rate.wsdl,” and “Check Inventory.wsdl.”

The check inventory service corresponds to the check inventory activity in the
process. As per the design, this service is a service provided by the inventory appli-
cation—this application is responsible for the stock-control logic. Input and output
parameters for this service are

  <wsdl:message name=”checkInventoryResponse”>
   <wsdl:part name=”inStock” type=”xsd:boolean”/>
  </wsdl:message>
  <wsdl:message name=”checkInventoryRequest”>
   <wsdl:part name=”itemID” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
  </wsdl:message>

The operation or the service it provides is “checkInventory”:

  <wsdl:portType name=”InventoryPT”>
   <wsdl:operation name=”checkInventory”>
    <wsdl:input name=”checkInventoryRequest”
message=”checkInventoryRequest”/>
    <wsdl:output name=”checkInventoryResponse”
message=”checkInventoryResponse”/>
   </wsdl:operation>
  </wsdl:portType>

Case Study—Architectural Design Applying PCA  ◾  233

They together make up the abstract part of the service definition. The operation is
a request–response operation.

This service takes the item and quantity details as input and checks if the item is
in stock or not. The service logic might have to go through a set of checks to finally
confirm if the items are indeed available in the inventory. The business logic for
this service is implemented in the inventory application in the form of a business
component and this implementation is independent of the process. The concrete
bindings for the service, that is, the wsdl:binding, wsdl:port, and wsdl:port speci-
fications in the wsdl are figured out at run-time by the process layer. One possible
set of values for these can be

  <wsdl:binding name=”InventoryPortBinding” type=”InventoryPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”checkInventory”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”checkInventoryRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
    <wsdl:output name=”checkInventoryResponse”>
     <soap:body use=”literal”/>
    </wsdl:output>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”CheckInventory”>
   <wsdl:port name=”InventoryPort”
   binding=”InventoryPortBinding”>
   <soap:address
location=”http://internalsysinfoservices/inventorysvcs/
checkInventory”/>
   </wsdl:port>
  </wsdl:service>

In this concrete binding the service is a web service, invoked using SOAP as the
application protocol and http as the transport protocol. The location for the service
is given in the soap:address element as http://internalsysinfoservices/inventorysvcs/
checkInventory.

At run-time, the process engine connects to this location to invoke the check
inventory service. The design of the component that is going to implement this
service is taken care of only in the next stage, which is the design stage of the sales
order processing system. The design stage involves the detailed design of all these
components that are supposed to implement the services, the business logic for
them, and the technology dependencies for them such as the run-time environ-
ment, programming language, and platforms.

234  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

In the case of the above service, one of the ways the web service can be imple-
mented is by using a platform such as Java, and a SOAP engine such as Axis. The
service URL above can be mapped to a Java Servlet in the web server. An EJB
component can be defined and designed with the business logic for check inven-
tory. It can then be deployed on to the JEE application server. The servlet in turn
can invoke this EJB for carrying out the check inventory function when the web
service is invoked.

In the case of the build service that corresponds to the build activity in the pro-
cess, the service is asynchronous and the operation is a one-way operation—It has
only a request message and no response message:

  <wsdl:message name=”buildProductRequest”>
   <wsdl:part name=”sales order number” type=”xsd:string”/>
   <wsdl:part name=”itemID” type=”xsd:string”/>
   <wsdl:part name=”quantity” type=”xsd:integer”/>
  </wsdl:message>
  <wsdl:portType name=”ManufacturingPT”>
   <wsdl:operation name=”buildProduct”>
    <wsdl:input name=”buildProductRequest”
    message=”buildProductRequest”/>
   </wsdl:operation>
  </wsdl:portType>

This is realized as a service invoked using the JMS transport protocol (that is asyn-
chronous) and SOAP for the application protocol. We chose JMS here as the trans-
port technology implementation option as opposed to SMTP or http because this
service is an internal service as far as this enterprise is concerned and the manufac-
turing application package supports a JEE environment in place so this component
can be invoked by other systems with maximum ease. Also, JMS provides better
reliability for the request processing—we need to make sure that the manufactur-
ing application reliably receives the request for build from the order process and
initiates the production of products ordered.

  <wsdl:binding name=”ManufacturingPortBinding”
   type=”ManufacturingPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/jms”/>
   <wsdl:operation name=”buildProduct”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”buildProductRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”Build”>
   <wsdl:port name=”ManufacturingPort”

Case Study—Architectural Design Applying PCA  ◾  235

    binding=”ManufacturingPortBinding”>
    <jms:address destinationStyle=”queue”
jndiConnectionFactoryName=”JmsQueueConnectionFactory”
jndiDestinationName=”manufacturingsvcs/buildQueue”>
</jms:address>
   </wsdl:port>
  </wsdl:service>

The EJB component that provides the calculate rate system activity needs to be
designed in detail in the subsequent design stage. The algorithm for calculating the
rate, the other business logic (e.g., job-costing) involved in the rate calculation opera-
tion are all specified or figured out only in the design stage of the EJB. This would be
become part of the design of the pricing application. It needs to then be deployed onto
the JEE application server. The choice of EJB as the implementation option for the
service is just one of the many implementation options possible. One of the assump-
tions here is that JEE application server and the Java platform is already in use in this
enterprise and thus it is an intuitive decision to go for implementing the component
leveraging the quality of system features enabled by JEE. Also, this service is expected
to be invoked primarily from within the enterprise, so we can minimize overheads
associated with http/XML processing by opting not to implement it as a web service.

Similarly, products ready service is designed as a web service supported through
JMS as the transport. It is a notification operation. This is a service exposed by the
process and the process engine exposes it dynamically by defining the queue in the
JMS provider and initiating a listener Java component on that queue. The listener
component is generic and once the manufacturing application makes a call to the
products ready service by sending a notification to the JMS queue, it hands over
the message to the process instance in the process engine. Such features to support
a receive activity are typically provided by the process engine itself. So, unlike the
invoke type activities, receive activities might not need any further design beyond
what we have done in the architecture stage.

For all the above services, the concrete bindings we have given (EJB, web services,
JMS, etc.) are just some of the implementation options we have chosen. These can be
dynamic by allowing the process engine to dynamically pick up a service implementa-
tion and associated binding at run-time from the options made available to it in non-
code means such as selecting from a set of WSDLs for the same service, or specifying as
a configuration entry to the process engine through file and other data-sharing means.

11.3  Case Study II
Let us now look at another case study. Here, let us consider the case of a ficti-
tious shipping company named Best Express Shipping (BES) that provides services
such as express delivery, courier services, and shipping services through multimodal
transport including air, sea, rail, and road.

236  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

11.3.1  The Process
The example we shall take here is the case of order-to-cash process where the cus-
tomer places a shipping order with BES, which then carries out the shipping, deliv-
ers the shipment to the recipient (consignee), and collects the cash for the shipment
thus completing the process.

This involves the following steps:

◾◾ Customer enquiry—the customer (shipper) enquires with BES about the
rate for shipping customer’s package and BES provides a quotation in
return

◾◾ Booking—the shipper places a shipping order with BES, providing the pack-
age for shipment

◾◾ Documentation—the waybill (e.g., airwaybill) is prepared and other related
documents are prepared

◾◾ Invoicing—the invoice for the shipment charges is prepared
◾◾ Payment—the invoice is paid by the customer
◾◾ Deliver package—the package is shipped and delivered to the recipient

11.3.2  Background Context
There is an existing set of applications and systems that jointly take care of this
process currently. Some of these are custom-in-house-developed legacy applications
that have been around for decades; some others are application packages (legacy as
well as modern), and yet others are in-house-developed relatively modern applica-
tions involving the latest technologies.

There have been various issues with these current IT systems with regard to the
flexibility and agility that is constantly being demanded of them by the business
process. It has motivated the decision makers to decide that, for supporting this
process better, the system (as a whole) needs a re-architecture based on the PCA
style.*

11.3.3  The Current System
Let us look at some of the salient features of the architecture of the current system
(the set of applications) that supports the order-to-cash business process. This is
shown in Figure 11.14.

*	 Here, we chose not to go into too much detail into the problems with the existing setup and
the related justifications for taking the decision to re-architect this system for the sake of stick-
ing to the focus of this chapter, which is the re-architecting work. We have discussed in the
earlier chapters the motivation for arriving at decisions related to re-architecting an existing IT
system to the PCA style considering the business justifications.

Case Study—Architectural Design Applying PCA  ◾  237

Each arrow in the diagram indicates the direction of information flow in the
interaction between the respective systems involved. As we can see, the follow-
ing applications are involved in supporting the process: Sales, pricing, customer
system, booking and planning management (BAP), documentation, operations,
receivables, general ledger (G/L), and the external systems. These applications have
been conceived, modeled, and created based on the various functions (depart-
ments or groups) in the organization and how those departments do their specific
business work.

11.3.3.1  Applications

The BAP system has a major role in the architecture since it takes the shipment
request and creates the shipment booking (or the shipment order). It is also in
charge of planning the transport and delivery of the shipment. It maintains all
shipment booking–related information such as the shipper/consignee details, com-
modity details, package details, origin/destination details, schedule details for this
shipment, waybill details, and location-related data for BES.

Pricing system supports rate enquiry and quotation for the shipment. It main-
tains all the transportation-related rates, surcharges, policies, and rules governing
the applicability of charges, taxes, customs, duties, and legal costs—these are what
BES would charge the customer. These also include the rates agreed upon with the
customer and then signed as contracts.

The documentation system assists with preparing the necessary documents
for the shipment such as the airwaybill, commercial invoice, documents related to
compliance with laws/regulations/rules, and exportation documents.

The operations system takes care of the actual physical transportation of the
package from the origin to the destination, including the final delivery, through
various modes such as air, rail, and road using equipment such as trucks, aircrafts,
and containers. It maintains all data related to carriers, equipments, cargo, ports,

Pricing

Customer system

Sales Documentation

Operations External systems

Receivables

Finance—general ledger

Booking and planning
management

Figure 11.14 A rchitecture of the existing system.

238  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

terminals, etc. It also keeps all schedule, route, and cost information involving vari-
ous carriers and equipment.

The receivables application is concerned with invoicing, receiving the payment,
and processing the payment. It handles the entire accounts receivables function of
finance in BES.

G/L is the finance system where all the financial data is captured and main-
tained. Accounting and bookkeeping for the entire BES is done based on the data
in this system. It would have ledgers and various journals such as cash receipts jour-
nal, sales journal, purchase journal, and cash disbursement journal.

The customer application holds and manages the customer information and
provides customer directory. The information about BES customers—they could
be shippers or forwarders or consignees—is kept here. This information includes
profiles, customer account information, specific requirements, and directory infor-
mation (customer detail codes).

11.3.3.2  Flow Support

Currently, the process is supported in a disorganized way and the process looks
disjointed. Quoting part is separately done for the customer. The quotation number
and details are not integrated with the booking. While doing the actual booking, it
might involve a fresh lookup of the rates from the pricing application.

There is a lot of batch data transfer and processing involved in the flow and the
integration has been designed primarily based on batch-driven data-flows. The BAP
system periodically (several times a day) sends the booking data (order data) for mul-
tiple shipments (batched up) to the receivables system. Subsequently, invoices are cre-
ated in the receivables system based on this data, again in batch processing. When
payments are received from the customer for the shipments, the receivables application
informs the BAP system so that the package is cleared for delivery to the recipient.

As part of quotation and booking, the customer data from the customer appli-
cation of BES is received by pricing and BAP applications. The documentation
system also gets all the order data that is relevant for creating waybills and other
documentation in a mix of batch/online data-sharing modes—batch is the domi-
nant mode, however. The planned delivery date, planned schedules, package/freight
to carriage equipments mappings data, and legs planned for the shipments are sent
by BAP to the operations application in batches. The operations application then
uses this to carry out the transportation and freight handling, from the origin to
the destination.

The BAP system periodically sends the shipment order data to the sales system
for data analysis as part of warehousing. For all the shipments, receivables applica-
tion sends the invoice data and payment received data periodically in batches to the
G/L for further accounting. BAP also sends shipment data to external systems such
as customs for those systems to issue clearances for the shipments. This is also done
in batches. Also, the external systems such as customs send batch data to BAP for

Case Study—Architectural Design Applying PCA  ◾  239

actions such as shipments-hold or shipments-release. External systems also include
customer systems (systems belonging to customers of BES) for actions such as deliv-
ery/arrival notifications.

Whenever new customers are on-boarded, that is, via sales, the sales system pro-
vides the customer-specific data to the customer application for adding the customer
to BES and to the pricing for capturing the rates for the customer based on contract.

11.3.3.3  Issues

Briefly, the key issues with the existing system architecture are

◾◾ Disjointed process flow.
◾◾ Flow is not real-time as far a specific shipment order is concerned.
◾◾ For the customers, visibility to the shipment through this process is poor and

is supported largely manually.
◾◾ Control of the process is manual and there is a lot of scope for automation

here to improve the efficiencies.
◾◾ There is much paperwork involved.
◾◾ Customer sales representatives (CSR) presently spend significant time on reg-

ular, repetitive, and low-value actions that could ideally be done by systems
automatically. It leaves them with less time to focus on work such as excep-
tion handling.

◾◾ There is significant rework involved.
◾◾ Integrity of information is an issue. There are multiple applications involved,

redundant data and heavy data flows, especially in batch mode, that leads to
this.

◾◾ For the management and CSR team, there is little visibility to what is hap-
pening with specific customer’s shipments, reducing their effectiveness in
assisting customers.

11.3.4  The New System
Our goal is to architect the new IT system that would support this order-to-cash
process end-to-end from the customer’s perspective. That is, the process scope is
defined thus—it begins when BES engages with the customer for a specific ship-
ment request of the customer’s and it ends when BES disengages with the customer.

11.3.4.1  The Business Process Model

First, we model the order-to-cash business process. The high-level business process
model for this process is given in Figure 11.15 and the subprocess for the payment
is detailed out in Figure 11.16 as the high-level process model.

240  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Cu
st

om
er

se
rv

ic
e

re
pr

es
en

ta
tiv

e

D
oc

um
en

ta
tio

n
ra

te
r

Cu
sto

m
er

 in
qu

iry
Q

uo
ta

tio
n

Sh
ip

pi
ng

 ra
te

 ca
lc

ul
at

io
n

G
en

er
at

e t
ra

ns
po

rt
at

io
n

pl
an

G
en

er
at

e i
nv

oi
ce

Re
ce

iv
e s

hi
pm

en
t

Bo
ok

in
g

Pr
ep

ar
e d

oc
um

en
ta

tio
n

Re
ce

iv
e p

ay
m

en
t

Co
ns

ig
ne

e t
o

pa
y ?

Tr
an

sp
or

ta
tio

nSe
nd

 sh
ip

m
en

t
da

ta
 to

 cu
st

om
s

Re
ce

iv
e c

us
to

m
s

cl
ea

ra
nc

e
Se

nd
 ar

riv
al

no
tic

e

Re
ce

iv
e p

ay
m

en
t

D
eli

ve
r s

hi
pm

en
t

N
o

Ye
s

Su
bp

ro
ce

ss

Sy
st

em

O
pe

ra
tio

ns

Fi
gu

re
 1

1.
15

 O

rd
er

-t
o-

ca
sh

 h
ig

h-
le

ve
l p

ro
ce

ss
 m

od
el

.

Case Study—Architectural Design Applying PCA  ◾  241

While doing this process design, it is important not to get influenced by the
functionalities currently being provided by the existing applications. It is best to
design the process as if it is a new one—from scratch. We identify the follow-
ing user activities: customer enquiry, quotation, booking, prepare documentation,
receive shipment, transportation, receive payment, and deliver shipment. We also
identify the roles performing them: customer service representative, documentation
rater, cashier, and operations. To identify the user activities, we follow the same
approach as that was taken in the first case study.

We come up with the following system activities: shipment rate calculation,
generate transportation plan, generate invoice, send shipment data to customs,
receive customs clearance, send arrival notice, make GL entries, and update sales.

The activity names for all the activities in the process are self-explanatory and
thus give an idea of the business function/operation that is performed as part of
carrying out the activity.

Receiving payment from the customer involves a set of activities and this has
been made a subprocess and it is being invoked from the order-to-call process at
appropriate points. The philosophy behind this decision is as follows:

◾◾ Payment is not a single activity since it involves multiple distinct business
functions such as collecting the payment, and accounting/bookkeeping
activities associated with the transaction. Also, in this enterprise, sales would
like to be appraised of and capture the details from the perspective of that
specific customer. Therefore, this is also part of the payment procedure. It can
technically thus be a process on its own.

◾◾ Payment is a procedure that is relevant to not just the order-to-cash process
alone. It can very well apply or be used in other processes that involve any
kind of collection work. For example, there could be a periodic process to
collect amounts related to open items (outstanding amounts) from custom-
ers. As part of such a process, one step could be this payment procedure. BES
may have other services that it provides to customers, such as “collect export
item value from consignee on delivery,” “logistics services for retailers,” and
“container leasing services” to name a few. Each of them is ideally a separate

Cashier
Receive payment

Make GL entries Update sales

System

Figure 11.16 R eceive payment high-level process model.

242  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

process and they would all involve the payment step. Thus, payment is a sepa-
rate process by itself and we are enabling it be reused by other processes by
making it an independent process that can be invoked from other processes
as a subprocess in the form of a service invocation.

◾◾ Making it a subprocess improves modularity of the order to cash process and
make its model more readable. The process definition therefore becomes more
manageable with respect to handling its modeling complexity. More so, since
the payment step occurs in the process at multiple points and repeating the
entire set of steps belonging to payment at each of these points would make
the process model cluttered.

The process involves a rule check that determines the flow of the process. If the
shipment charges are to be collected from the consignee and not from the shipper,
then the package is shipped and delivered to the consignee before the payment is
collected from the consignee. Instead, if the shipper pays the shipping charges, then
the charges are collected by BES before the package is transported.

After sending the information on the shipment to the customs, the process flow
will wait at the receive activity named receive customs clearance to receive the clear-
ance from customs for the goods in this package. This activity completes only when
the notification arrives from the customs system allowing the goods/package to be
released for final delivery to the consignee.

This process also involves parallelization of activity executions at some points.
After generating the transportation plan, the process flow can be split into two
paths that can be executed in parallel (simultaneously)—these are the prepare doc-
umentation and the receive shipment steps. This is possible in the design because
the two activities have no dependencies on each other and at that point their depen-
dencies on the prior activities have already been satisfied so that they are ready
to run. While the documentation rater prepares documentation, the operations
team can go ahead with physically collecting the package (either pickup or receive)
for shipment from the shipper. Operations need not wait for the documentation
work to get over before picking up the package—both can be done concurrently.
Generation of invoice step also belongs to the first of the parallel paths (the path
that starts with prepare documentation) because it is also independent of the receive
shipment activity.

11.3.4.2  Detailed Process Model

Figures 11.17 and 11.18 give the detailed level process model for the order-to-cash
process. For each of the activities we define the corresponding business service that
would perform the business function associated with the activity, specifying the
input and output parameters for the service and the invocation pattern (invoke or
receive) applicable for that activity. At this time too, we do not consider the existence
of the current applications and the functions and services that they currently provide.

Case Study—Architectural Design Applying PCA  ◾  243

Cu
st

om
er

se
rv

ic
e

re
pr

es
en

ta
tiv

e

D
oc

um
en

ta
tio

n
ra

te
r

Cu
st

om
er

 en
qu

iry
Q

uo
ta

tio
n

Bo
ok

in
g

Pr
ep

ar
e d

oc
um

en
ta

tio
n

Su
bp

ro
ce

ss

Sy
st

em

O
pe

ra
tio

ns

Sh
ip

pi
ng

 ra
te

 ca
lc

ul
at

io
n

G
en

er
at

e t
ra

ns
po

rt
at

io
n

pl
an

F
J

N

Y
J

Tr
an

sp
or

ta
tio

nSe
nd

 sh
ip

m
en

t d
at

a t
o

cu
st

om
s

Re
ce

iv
e c

us
to

m
s c

le
ar

an
ce

Se
nd

 ar
riv

al
 n

ot
ic

e
Co

ns
ig

ne
e t

o
pa

y?

Y

J

D
el

iv
er

 sh
ip

m
en

t

N
G

en
er

at
e i

nv
oi

ce

Re
ce

iv
e p

ay
m

en
t

Re
ce

iv
e p

ay
m

en
t

Co
ns

ig
ne

e t
o

pa
y?

Re
ce

iv
e s

hi
pm

en
t

Fi
gu

re
 1

1.
17

 O

rd
er

-t
o-

ca
sh

 d
et

ai
le

d-
le

ve
l p

ro
ce

ss
 m

od
el

.

244  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

We define the process parameters. The shipment tracking number will be the
unique business parameter that would identify each order-to-cash process instance
uniquely. Each time a shipment order is made by the customer, a new process
instance is created in the system and a new shipment tracking number is generated
and associated with this process instance.

We define the expressions for the conditional branches. We define the subpro-
cess invocation activity parameters and map this activity to the payment process
definition.

11.3.4.3  Services Design

The business services required by the process are identified through the system
activities in the detailed process definition. Through that we list the following
services: shipment rate calculation service, transportation plan generation service,
customs service for shipment data, customs clearance receipt service, arrival notice
sending service, invoice generation service, GL entry service, and sales updating
service. We apply SOA principles here for each service design by explicitly specify-
ing the service interface separately from the implementation details. The guiding
principle in this example is to leverage existing system assets (read applications) to
the maximum extent possible.

For each of the services, we look in the existing applications such as pricing,
sales, and others to see if they already provide, in some form, the business function
associated with the service. That is, we see if those applications already expose the
same service or, if not, at least similar services that perform similar business func-
tion that matches our service.

Another principle followed, especially for service interface definition, is to only
specify those parameters as input and output that are relevant to the particular
service’s particular business function rather than providing all the data required
by the function as input and, as far as possible, use the key business data of the
process (such as shipment tracking number) that are available as process param-
eters as input to the service operation. The service implementation logic can get all

Cashier

Receive_payment

Make GL entries Update sales

System

Figure 11.18 R eceive payment detailed-level process model.

Case Study—Architectural Design Applying PCA  ◾  245

the other related business data related to this specific business function from the
application database. Parameters that are relevant to the specific business func-
tion and that are really data items can come only from other activities in the
process (since they are mapped to application or business functions belonging to
a different function group) should be defined as input parameters to the service.
For example, origin and destination, which are business data coming from the
customer enquiry activity, are defined as input parameters for the shipping rate
calculation activity. This is because these two are separate business functions and
thus share data through only the process. Whereas on the other hand, the receive
payment user activity needs only the invoice number (a key process parameter)
as input parameter and not all the invoice details such as the amount due or due
date, because the activity is part of the receivables function and the activity that
generated the invoice is also part of the receivables function group, and therefore
all the details related to the invoice is available (for access) to the receive payment
activity from the receivables data in the application database. The process need not
be used as a conduit for data sharing here.

11.3.4.3.1  Shipping Rate Calculation Service

Since calculate rate is a pricing-related business function, we look at the pricing sys-
tem. We find that it already exposes this function through an EJB component for
the use of a web application, though the pricing system is basically a legacy appli-
cation. We simply map the shipping rate calculation service in the process to this
calculateRate EJB component (class name pricing.CalculateRateHome) belonging
to the pricing application and its method named calculateRate (so the operation
we associate with this service is calculateRate) after matching the input and output
parameters of the service in the process with that of the EJB. The calculate rate
operation takes in the origin, destination, commodity to be shipped, its weight,
and the customer ID as the parameters and performs the rate calculation utilizing
the data (such as rates, surcharges, and contracts) available in the pricing applica-
tion database and also generates a quotation number for this since this is a quote
request. These inputs will be supplied by the activity in the process. The opera-
tion then returns the price data as output through the parameters, transportation
charge, other charges, quotation number, and the total amount to be paid. This is
mentioned in the wsdl, ShippingRateCalculation.wsdl in Listing 11.1.

Listing 11.1

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”PricingPort”
xmlns:ejb=”http://schemas.xmlsoap.org/wsdl/ejb/”
xmlns:format=”http://schemas.xmlsoap.org/wsdl/formatbinding/”
targetNamespace=”http://www.onlinebesservices.com/BPEL/
ordertocash”

246  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”calculateRateResponse”>
   <wsdl:part name=”transportationCharge” type=”xsd:float”/>
   <wsdl:part name=”otherCharges” type=”xsd:float”/>
   <wsdl:part name=”quotationNumber” type=”xsd:string”/>
   <wsdl:part name=”totalAmount” type=”xsd:float”/>
  </wsdl:message>
  <wsdl:message name=”calculateRateRequest”>
   <wsdl:part name=”origin” type=”xsd:string”/>
   <wsdl:part name=”destination” type=”xsd:string”/>
   <wsdl:part name=”commodity” type=”xsd:string”/>
   <wsdl:part name=”weight” type=”xsd:integer”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”PricingPortPT”>
   <wsdl:operation name=”calculateRate” parameterOrder=”origin
   destination commodity weight customerID”>
    <wsdl:input name=”calculateRateRequest”
message=”calculateRateRequest”/>
    <wsdl:output name=”calculateRateResponse”
message=”calculateRateResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”PricingPortBinding” type=”PricingPortPT”>
    <ejb:binding/>
     <format:typeMapping style=”Java” encoding=”Java”>
      <format:typeMap typeName=”xsd:string”
formatType=”java.lang.String”/>
     </format:typeMapping>
   <wsdl:operation name=”calculateRate”>
    <ejb:operation methodName=”calculateRate” interface=”remote”
parameterOrder=”origin destination commodity weight customerID”/>
    <wsdl:input name=”calculateRateRequest”>
    </wsdl:input>
    <wsdl:output name=”calculateRateResponse”>
    </wsdl:output>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”ShippingRateCalculation”>
   <wsdl:port name=”PricingPort” binding=”PricingPortBinding”>
    <ejb:address className=”pricing.CalculateRateHome”
jndiName=”pricing/CalculateRate”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

Case Study—Architectural Design Applying PCA  ◾  247

11.3.4.3.2  Generate Transportation Plan Service

This service is expected to execute logic that would come up with a transportation
plan for the package after considering the equipment (carriers) data such as trucks,
cargo trains, containers, aircrafts, ships data, the available/defined routes, equipment
schedules, costs related to the routes and equipments, and data about points such as
ports and terminals. It takes in just the shipment tracking number, which would help
it uniquely identify a shipment order and get the relevant details from it such as the
origin, destination, and item as input and returns the plan for transportation including
the number of legs, planned delivery date (estimated), routing information, and pack-
age to carrier mapping. Another way would have been to expect origin, destination,
package size, weight, and shipment item as input for the service operation and define it
that way. Here, we go with the tracking number input instead, because this service is in
the context of booking functionality and so with this number all other details related to
the shipment can be got by the service implementation from the application database.

This is a booking-related business function and so we look in the BAP system for
this service since this system has been responsible for bookings management. It is a
legacy system based on mainframe. We find that it indeed supports this business func-
tion; however, it is accessed internally from the legacy screen and the logic is coupled to
the legacy screens. Thus, it is not exposed to other applications right now. We decide to
define this as a new service and implement it as a component (EJB) since the enterprise
already has a JEE environment in place, which is being made use of by the current
web application. This booking EJB component for generating the transportation plan
would make use of Java Connector Architecture (JCA) for integrating with the main-
frame BAP application. On the mainframe side of BAP, we design a new program that
would hold the logic for using all the relevant data and compute the transportation
plan. As part of implementation, this mainframe program would be a new program
that will involve development; however, we can reuse a good amount of code (though
in pieces as the logic is currently intertwined in different programs) from the existing
BAP programs that support this function. It needs to be made sure that we explicitly
remove or avoid adding any code that takes care of process logic—for example, send-
ing data to another application or a different business function through any means, or
relinquishing control to other systems (of other departments especially), say receivables
or coordinating function calls to multiple applications for multiple business functions.

The WSDL for the service is given in Listing 11.2.

Listing 11.2

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”BookingPort”
xmlns:ejb=”http://schemas.xmlsoap.org/wsdl/ejb/”
xmlns:format=”http://schemas.xmlsoap.org/wsdl/formatbinding/”
targetNamespace=”http://www.onlinebesservices.com/BPEL/
ordertocash”

248  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”generateTransportPlanResponse”>
   <wsdl:part name=”numOfLegs” type=”xsd:integer”/>
   <wsdl:part name=”plannedDeliveryDate” type=”xsd:string”/>
   <wsdl:part name=”routing” type=”xsd:string”/>
   <wsdl:part name=”packageToCarriageMappings”
    type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”generateTransportPlanRequest”>
   <wsdl:part name=”shipmentTrackingNumber”
    type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”BookingPortPT”>
   <wsdl:operation name=”generateTransportPlan”
parameterOrder=”shipmentTrackingNumber”>
    <wsdl:input name=”generateTransportPlanRequest”
message=”generateTransportPlanRequest”/>
    <wsdl:output name=”generateTransportPlanResponse”
message=”generateTransportPlanResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”BookingPortBinding” type=”BookingPortPT”>
    <ejb:binding/>
     <format:typeMapping style=”Java” encoding=”Java”>
      <format:typeMap typeName=”xsd:string”
formatType=”java.lang.String”/>
     </format:typeMapping>
   <wsdl:operation name=”generateTransportPlan”>
    <ejb:operation methodName=”generateTransportPlan”
     interface=”remote”
parameterOrder=”shipmentTrackingNumber”/>
    <wsdl:input name=”generateTransportPlanRequest”>
    </wsdl:input>
    <wsdl:output name=”generateTransportPlanResponse”>
    </wsdl:output>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”GenerateTransportationPlan”>
   <wsdl:port name=”BookingPort” binding=”BookingPortBinding”>
    <ejb:address className=”booking.GenerateTransportPlanHome”
jndiName=”booking/generateTransportPlan”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

Case Study—Architectural Design Applying PCA  ◾  249

11.3.4.3.3  Send Shipment Data to Customs Service

This involves an external service—the service provided by the customs department.
So here, we pick up the service that is exposed by the customs department for the
purpose of informing customs of arrival of the shipment package to the destination
country entry port.

The WSDL for the service is given in Listing 11.3 as imagined to be pro-
vided by customs (this WSDL is only a hypothetical one just to serve as an
example in the case study and is not to be taken as the real WSDL for customs
operations). We then make the input/output activity parameters aligned to
the input/output parameters defined for the inform Customs operation in the
service definition.

Listing 11.3

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”CustomsPort”
targetNamespace=”http://www.onlinebesservices.com/BPEL/
ordertocash”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”informCustomsRequest”>
   <wsdl:part name=”shipper” type=”xsd:string”/>
   <wsdl:part name=”consignee” type=”xsd:string”/>
   <wsdl:part name=”totalShipmentValueForCustoms”
   type=”xsd:float”/>
   <wsdl:part name=”shipmentInfo” type=”xsd:string”/>
   <wsdl:part name=”mainfest” type=”xsd:string”/>
   <wsdl:part name=”shipmentRefereneForCustoms”
   type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”CustomsPortPT”>
   <wsdl:operation name=”informCustoms”>
    <wsdl:input name=”informCustomsRequest”
message=”informCustomsRequest”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”CustomsPortBinding”
  type=”CustomsPortPT”>
   <soap:binding style=”document”
  transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”informCustoms”>
    <soap:operation soapAction=””/>

250  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

    <wsdl:input name=”informCustomsRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”SendShipmentDataToCustoms”>
   <wsdl:port name=”CustomsPort” binding=”CustomsPortBinding”>
    <soap:address
location=”http://www.onlinecustomsservices.com/
InformCustoms”/>
    </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

This service operation is a one-way invocation pattern (asynchronous)—the activ-
ity invokes the service by passing the informCustomsRequest input parameter data
that includes shipper/consignee names, total declared shipment value for customs
purposes, information about the shipment/package/cargo, the manifest prepared
for the customs perusal, and the reference data (e.g., shipment tracking number)
that is associated with the shipment that the customs system can later use to send
back in response for identifying this particular shipment. As we can see, this service
is exposed as a web service by the customs department system. An easily under-
standable decision since multiple systems from different transportation service pro-
viders such as BES would be expected to invoke this service and they may all be in
disparate technologies. Therefore, web services, which is a standard, better fits here.

11.3.4.3.4  Receive Customs Clearance Service

This is a service the process (read our new order-to-cash system) provides to the
external systems (the customs department system in this case) to notify it in case
of customs clearance for the package. It is a receive type activity and follows the
notification pattern of integration. The moment the control comes to this activity
in the process, the activity just waits for the notification message to come from
the customs. It would take as input the reference number (which is actually the
same shipment tracking number that was sent to customs in the send shipment
data to customs activity of this process instance) and customs cleared flag that
indicates that customs has cleared the shipment. This reference number parameter
is used by the order-to-cash system to correlate the notification message to the
process instance that has the same shipment tracking number value as that in
the reference number parameter. The activity hands over this input data to the
process and gets completed right away with no further function. The process flow
then proceeds to the next activity in the order. This service does not return any
parameter to the invoker (the customs system). The WSDL for the service is given
in Listing 11.4.

Case Study—Architectural Design Applying PCA  ◾  251

Listing 11.4

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”OrderToCash”
targetNamespace=”http://www.onlinebesservices.com/BPEL/
ordertocash”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:prefix=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:jms=”http://schemas.xmlsoap.org/wsdl/jms/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”start_OrderToCashRequest”>
  </wsdl:message>
  <wsdl:message name=”ReceiveCustomsClearanceRequest”>
   <wsdl:part name=”customsCleared” type=”xsd:boolean”/>
   <wsdl:part name=”shipmentTrackingNum” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”start_OrderToCashResponse”>
   <wsdl:part name=”processid” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”ReceiveCustomsClearancePT”>
   <wsdl:operation name=”ReceiveCustomsClearance”>
     <wsdl:input name=”ReceiveCustomsClearanceRequest”
message=”ReceiveCustomsClearanceRequest”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:portType name=”start_OrderToCashPT”>
   <wsdl:operation name=”start_OrderToCash”>
    <wsdl:output name=”start_OrderToCashResponse”
message=”start_OrderToCashResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”start_OrderToCashBinding”
  type=”start_OrderToCashPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”start_OrderToCash”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”start_OrderToCashRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
    <wsdl:output name=”start_OrderToCashResponse”>
     <soap:body use=”literal”/>
    </wsdl:output>
    </wsdl:operation>
  </wsdl:binding>
  <wsdl:binding name=”ReceiveCustomsClearanceBinding”

252  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

type=”ReceiveCustomsClearancePT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”ReceiveCustomsClearance”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”ReceiveCustomsClearanceRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”start_OrderToCash”>
   <wsdl:port name=”start_OrderToCash”
   binding=”start_OrderToCashBinding”>
    <soap:address
location=”http://internalbesservices/shipmentsvcs/
start_OrderToCash”/>
   </wsdl:port>
  </wsdl:service>
  <wsdl:service name=”ReceiveCustomsClearance”>
   <wsdl:port name=”ReceiveCustomsClearance”
binding=”ReceiveCustomsClearanceBinding”>
    <soap:address
location=”http://www.onlinebesservices.com/shipmentsvcs/
ReceiveCustomsClearance”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

This service is implemented by the order-to-cash system as an http/SOAP-based
web service since this is invoked by external systems and we do not have any control
over the technology platform used by those systems. Thus, a standard protocol in
the form of web services suits the invocation better with good isolation from tech-
nology changes on both sides.

11.3.4.3.5  Make GL Entries Service

This service is a finance bookkeeping-related service. Thus, it is part of the finance
function group. It updates the general ledger with the entries for the payment trans-
action for this shipment. The service is a generic service that the finance G/L system
provides for capturing any financial transaction in BES for accounting. Order-to-
cash is just one of the processes in BES that would invoke this service. The opera-
tion takes as input transaction details such as transaction number, date, amount,
and the type (e.g., “payment” since this transaction is a payment transaction) and
records this in the G/L with appropriate entries and enables further accounting. It
is a one-way type invocation pattern operation (asynchronous) and so there are no
parameters returned by the service to the caller.

The WSDL is shown in Listing 11.5.

Case Study—Architectural Design Applying PCA  ◾  253

Listing 11.5

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”GLPort”
targetNamespace=”http://www.onlinebesservices.com/BPEL/
ordertocash”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”makeGLEntryRequest”>
   <wsdl:part name=”transactionNumber” type=”xsd:string”/>
   <wsdl:part name=”transactionDate” type=”xsd:string”/>
   <wsdl:part name=”transactionAmount” type=”xsd:string”/>
   <wsdl:part name=”transactionType” type=”xsd:string”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”reference” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”GLPortPT”>
   <wsdl:operation name=”makeGLEntry”>
    <wsdl:input name=”makeGLEntryRequest”
    message=”makeGLEntryRequest”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”GLPortBinding” type=”GLPortPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”makeGLEntry”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”makeGLEntryRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”MakeGLEntries”>
   <wsdl:port name=”GLPort” binding=”GLPortBinding”>
    <soap:address location=”http://internalbesservices/GL/
     MakeGLEntries”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

This being a finance function, we expect this service to be provided by the G/L
system. The G/L system in BES is an application package that is based on its own
technology platform. It currently provides a native API that performs the G/L
entry functionality. Also, the parameters it uses do not directly match fully with
the service definition we have come up with above (which is a generic definition

254  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

that can apply in other contexts also), data format wise as well as quantum of
information wise. We design a new service component to service-enable this API
and it should be also one that accepts these parameters so that the service is reus-
able in different processes of BES. We implement it as a web service for better
interoperability with other systems/processes and use HTTP as transport protocol
and SOAP as the message protocol. The new component is built on top of the G/L
system by extending it and using its existing APIs. The component (G/L comp)
can be designed as a program implemented in the same technology as the pack-
age using the package’s own extension mechanisms. It would have the necessary
business logic coded to invoke the appropriate APIs of the G/L in the required
order and transform parameter data into the formats expected by the package. We
can implement the web service in the form of a JAVA servlet running in the web
server and the servlet can be made to invoke the new G/L comp for the service
execution.

11.3.4.3.6  Update Sales Service

This sales service involves the business function of capturing the sales information
for the customer placing the shipping order and for further sales-related processing
that is involved. The operation here is enter sales data and it takes sales data such
as customer id, amount of sales (shipping charges paid), date, shipment tracking
number, and payment date as input. This is also a one-way operation (asynchronous)—
does not return any parameters. The WSDL is given in Listing 11.6.

Listing 11.6

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”SalesPort”
targetNamespace=”http://www.onlinebesservices.com/BPEL/
ordertocash”
xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”enterSalesDataRequest”>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”salesAmount” type=”xsd:string”/>
   <wsdl:part name=”salesDate” type=”xsd:string”/>
   <wsdl:part name=”shipmentNumber” type=”xsd:string”/>
   <wsdl:part name=”paymentReceivedDate” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”SalesPT”>
   <wsdl:operation name=”enterSalesData”>
    <wsdl:input name=”enterSalesDataRequest”

Case Study—Architectural Design Applying PCA  ◾  255

message=”enterSalesDataRequest”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”SalesPortBinding” type=”SalesPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”enterSalesData”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”enterSalesDataRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”UpdateSales”>
   <wsdl:port name=”SalesPort” binding=”SalesPortBinding”>
    <soap:address location=”http://internalbesservices/Sales/
     UpdateSales”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

We look in the sales application to see if such a service is available. It is a legacy
system built in-house on top of Oracle and PowerBuilder. We find that it already
provides the function through a legacy API. To make it more interoperable, we
decide to service-enable this legacy system and thereby expose the API as a new
service. Since the technology involved is different, we rely on standards to ease
the invocation and loose-couple it by exposing the new service as a web service on
HTTP/SOAP protocols. We implement the web service as a Java servlet, design a
service wrapper to wrap the legacy API, and expose it as an invocable service using
XML for the data interchange. The only development effort involved here would be
to write the minimal code for the servlet and to write a small Java component that
would act as a wrapper for the legacy API. The business functionality would still
continue to be provided by the sales system’s legacy API.

11.3.4.3.7  Generate Invoice Service

This service automatically generates invoice for the shipment booking made. It is
designed to take as input shipment tracking number and details such as whom to be
billed, waybill number, amount to be paid, and different charges included in the amount
as input to generate the invoice. It outputs the invoice generated with a unique invoice
number. This is a receivables function and so we look in the receivables system to see
if such a service exists. The receivables application is an in-house developed application
based on Java. It has a web application (as JSPs, Java Servlets, and plain Java code) part
that is client–server based. There are, currently, batch programs that perform a major
portion of invoicing function. So, we decide to design a POJO (Plain Old Java Object)

256  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

kind of Java class bes.receivables.Invoicing that would perform the invoicing function
as a java service. We get the existing code from the batch programs and the web applica-
tion Java code extracted and reuse it in the new POJO service object to quickly create it.
This service is associated with the generate invoice activity in the process.

The WSDL for the service is shown as part of Listing 11.7. The operation name
is GenerateInvoice.

Listing 11.7

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions
  targetNamespace=”http://www.onlinebesservices.com/BPEL/
  ordertocash”
  xmlns=”http://www.onlinebesservices.com/BPEL/extensions”
  xmlns:bpws=”http://docs.oasis-open.org/wsbpel/2.0/process/
  executable”
  xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
  xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
  xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://schemas.xmlsoap.org/wsdl/wsdl.xml”>
  <bpws:property name=”shipmentTrackingNumber” type=”xsd:string”/>
  <bpws:propertyAlias messageType=”BookingOutParams”
   part=”shipmentTrackingNumber”
   propertyName=”shipmentTrackingNumber”/>
  <bpws:propertyAlias messageType=”ReceiveCustomsClearanceOut
   Params”
   part=”shipmentTrackingNum”
   propertyName=”shipmentTrackingNumber”/>
  <wsdl:message name=”ReceivePaymentInParams”>
   <wsdl:part name=”invoiceNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReceivePaymentOutParams”>
   <wsdl:part name=”paymentReceived” type=”xsd:boolean”/>
  </wsdl:message>
  <wsdl:message name=”CustomerEnquiryOutParams”>
   <wsdl:part name=”origin” type=”xsd:string”/>
   <wsdl:part name=”destination” type=”xsd:string”/>
   <wsdl:part name=”commodity” type=”xsd:string”/>
   <wsdl:part name=”weight” type=”xsd:integer”/>
  <wsdl:part name=”customerID” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”QuotationInParams”>
   <wsdl:part name=”quotationNumber” type=”xsd:string”/>
   <wsdl:part name=”totalAmount” type=”xsd:float”/>
  </wsdl:message>
  <wsdl:message name=”QuotationOutParams”/>
  <wsdl:message name=”BookingInParams”>

Case Study—Architectural Design Applying PCA  ◾  257

   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”quotationNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”BookingOutParams”>
   <wsdl:part name=”shipper” type=”xsd:string”/>
   <wsdl:part name=”recipient” type=”xsd:string”/>
   <wsdl:part name=”billTherecipient” type=”xsd:boolean”/>
   <wsdl:part name=”shipmentInfo” type=”xsd:string”/>
   <wsdl:part name=”valueForCustoms” type=”xsd:float”/>
   <wsdl:part name=”shippersReference” type=”xsd:string”/>
   <wsdl:part name=”customersInternalBillingReference”
type=”xsd:string”/>
   <wsdl:part name=”shipmentTrackingNumber”
   type=”xsd:string”/>
   <wsdl:part name=”shipperAddress” type=”xsd:string”/>
   <wsdl:part name=”recipientAddress” type=”xsd:string”/>
   <wsdl:part name=”shipperEmail” type=”xsd:string”/>
   <wsdl:part name=”recipientEmail” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”PrepareDocumentationInParams”>
   <wsdl:part name=”shipmentTrackingNumber” type=”xsd:string”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”shipper” type=”xsd:string”/>
   <wsdl:part name=”recipient” type=”xsd:string”/>
   <wsdl:part name=”shipmentDetails” type=”xsd:string”/>
   <wsdl:part name=”billTherecipient” type=”xsd:boolean”/>
   <wsdl:part name=”shippersReference” type=”xsd:string”/>
   <wsdl:part name=”shippersInternalReference”
   type=”xsd:string”/>
   <wsdl:part name=”origin” type=”xsd:string”/>
   <wsdl:part name=”destination” type=”xsd:string”/>
   <wsdl:part name=”routing” type=”xsd:string”/>
   <wsdl:part name=”shipperAddress” type=”xsd:string”/>
   <wsdl:part name=”recipientAddress” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”PrepareDocumentationOutParams”>
   <wsdl:part name=”wayBillNumber” type=”xsd:string”/>
   <wsdl:part name=”wayBillDate” type=”xsd:string”/>
   <wsdl:part name=”otherDocumentationAttached”
   type=”xsd:string”/>
   <wsdl:part name=”customsManifestData” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”GenerateInvoiceInParams”>
   <wsdl:part name=”shipmentTrackingNumber”
   type=”xsd:string”/>
   <wsdl:part name=”billTherecipient” type=”xsd:boolean”/>
   <wsdl:part name=”wayBillNumber” type=”xsd:string”/>
   <wsdl:part name=”plannedDeliveryDate” type=”xsd:string”/>

258  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

   <wsdl:part name=”totalAmount” type=”xsd:float”/>
   <wsdl:part name=”transportationCharge” type=”xsd:float”/>
   <wsdl:part name=”otherCharges” type=”xsd:float”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”GenerateInvoiceOutParams”>
   <wsdl:part name=”invoiceNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReceiveShipmentInParams”>
   <wsdl:part name=”shipmentTrackingNumber”
   type=”xsd:string”/>
   <wsdl:part name=”shipmentInfo” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”ReceiveShipmentOutParams”>
   <wsdl:part name=”packageReceivedForShipping”
   type=”xsd:boolean”/>
  </wsdl:message>
  <wsdl:message name=”TransportationInParams”>
   <wsdl:part name=”shipmentTrackingNumber”
   type=”xsd:string”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”recipientAddress” type=”xsd:string”/>
   <wsdl:part name=”legs” type=”xsd:integer”/>
   <wsdl:part name=”routing” type=”xsd:string”/>
   <wsdl:part name=”plannedDeliveryDate” type=”xsd:string”/>
   <wsdl:part name=”packageToCarriageMappings”
   type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”TransportationOutParams”/>
  <wsdl:message name=”SendMailInParams”>
   <wsdl:part name=”To” type=”xsd:string”/>
   <wsdl:part name=”Cc” type=”xsd:string”/>
   <wsdl:part name=”Bcc” type=”xsd:string”/>
   <wsdl:part name=”Subject” type=”xsd:string”/>
   <wsdl:part name=”Body” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”DeliverShipmentInParams”>
   <wsdl:part name=”shipmentTrackingNumber”
   type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”OrderToCashUserActionsPT”>
   <wsdl:operation name=”customerEnquiry”>
    <wsdl:input message=”CustomerEnquiryInParams”/>
    <wsdl:output message=”CustomerEnquiryOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”shippingRateCalculation”>
    <wsdl:input message=”ShippingRateCalculationInParams”/>
    <wsdl:output message=”ShippingRateCalculationOutParams”/>
   </wsdl:operation>

Case Study—Architectural Design Applying PCA  ◾  259

   <wsdl:operation name=”quotation”>
    <wsdl:input message=”QuotationInParams”/>
    <wsdl:output message=”QuotationOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”booking”>
    <wsdl:input message=”BookingInParams”/>
    <wsdl:output message=”BookingOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”PrepareDocumentation”>
    <wsdl:input message=”PrepareDocumentationInParams”/>
    <wsdl:output message=”PrepareDocumentationOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”ReceiveShipment”>
    <wsdl:input message=”ReceiveShipmentInParams”/>
    <wsdl:output message=”ReceiveShipmentOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”Transportation”>
    <wsdl:input message=”TransportationInParams”/>
    <wsdl:output message=”TransportationOutParams”/>
   </wsdl:operation>
   <wsdl:operation name=”DeliverShipment”>
    <wsdl:input message=”DeliverShipmentInParams”/>
    <wsdl:output message=”DeliverShipmentOutParams”/>
   </wsdl:operation>
  </wsdl:portType>
   <wsdl:portType name=”ReceivablesPT”>
    <wsdl:operation name=”GenerateInvoice”>
     <wsdl:input message=”GenerateInvoiceInParams”/>
     <wsdl:output message=”GenerateInvoiceOutParams”/>
    </wsdl:operation>
   </wsdl:portType>
   <wsdl:portType name=”EmailPortPT”>
  	 <wsdl:operation name=”sendMail”>
  		 <wsdl:input message=”SendMailInParams”/>
  	 </wsdl:operation>
   </wsdl:portType>
</wsdl:definitions>
<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions
  targetNamespace=”http://www.onlinebesservices.com/BPEL/
  ordertocash”
  xmlns=”http://www.onlinebesservices.com/BPEL/extensions”
  xmlns:bpws=”http://docs.oasis-open.org/wsbpel/2.0/process/
  executable”
  xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
  xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
  xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://schemas.xmlsoap.org/wsdl/wsdl.xml”>
  <wsdl:message name=”Receive_PaymentInParams”>

260  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

   <wsdl:part name=”invoiceNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”Receive_PaymentOutParams”>
   <wsdl:part name=”totalPymtAmount” type=”xsd:string”/>
   <wsdl:part name=”payorName” type=”xsd:string”/>
   <wsdl:part name=”paymentDate” type=”xsd:string”/>
   <wsdl:part name=”paymentNumber” type=”xsd:string”/>
   <wsdl:part name=”customerID” type=”xsd:string”/>
   <wsdl:part name=”shipmentTrackingNumber”
   type=”xsd:string”/>
   <wsdl:part name=”shippingOrderDate” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:portType name=”ReceivePaymentUserActionsPT”>
   <wsdl:operation name=”Receive_Payment”>
    <wsdl:input message=”Receive_PaymentInParams”/>
    <wsdl:output message=”Receive_PaymentOutParams”/>
   </wsdl:operation>
  </wsdl:portType>
</wsdl:definitions>

11.3.4.3.8  Send Arrival Notice Service

Sending arrival notice is a one-way operation (asynchronous) that involves send-
ing mail to the consignee alerting them of the arrival of the shipped package. The
service is a generic e-mail service that is reusable in any process context where
e-mails have to be sent automatically. It takes the recipient e-mail address, cc e-mail
address, bcc e-mail address, subject of mail, and body of mail as input and sends the
mail. In this activity, we map the consignee e-mail address to the recipient address,
shipper e-mail address to the cc, and put arrival-related text in the subject and the
body. Since this is a generic service, it would exist as part of the infrastructure layer
of the architecture.

The WSDL is shown in Listing 11.7, the operation is sendMail.

11.3.4.3.9  Receive Payment Subprocess Call

The subprocess activity named “receive payment,” in the order-to-cash pro-
cess invokes the subprocess as a service just like any other service. The WSDL
for the receive payment process service is given in Listing 11.8. The operation is
start_ReceivePayment.

Listing 11.8

<?xml version=”1.0” encoding=”UTF-8”?>
<wsdl:definitions name=”ReceivePayment”
   targetNamespace=”http://www.onlinebesservices.com/BPEL/
   ordertocash”

Case Study—Architectural Design Applying PCA  ◾  261

xmlns:soapenc=”http://schemas.xmlsoap.org/soap/encoding/”
   xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:prefix=”http://www.w3.org/2001/XMLSchema”
   xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:jms=”http://schemas.xmlsoap.org/wsdl/jms/”
   xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
xmlns=”http://www.onlinebesservices.com/BPEL/extensions”>
  <wsdl:message name=”start_ReceivePaymentRequest”>
   <wsdl:part name=”invoiceNumber” type=”xsd:string”/>
  </wsdl:message>
  <wsdl:message name=”start_ReceivePaymentResponse”>
   <wsdl:part name=”paymentReceived” type=”xsd:boolean”/>
  </wsdl:message>
  <wsdl:portType name=”ReceivablesPT”>
   <wsdl:operation name=”start_ReceivePayment”
parameterOrder=”invoiceNumber”>
    <wsdl:input message=”start_ReceivePaymentRequest”/>
    <wsdl:output message=”start_ReceivePaymentResponse”/>
   </wsdl:operation>
  </wsdl:portType>
  <wsdl:binding name=”start_ReceivePaymentBinding”
  type=”ReceivablesPT”>
   <soap:binding style=”document”
transport=”http://schemas.xmlsoap.org/soap/http”/>
   <wsdl:operation name=”start_ReceivePayment”>
    <soap:operation soapAction=””/>
    <wsdl:input name=”start_ReceivePaymentRequest”>
     <soap:body use=”literal”/>
    </wsdl:input>
    <wsdl:output name=”start_ReceivePaymentResponse”>
     <soap:body use=”literal”/>
    </wsdl:output>
   </wsdl:operation>
  </wsdl:binding>
  <wsdl:service name=”start_ReceivePayment”>
   <wsdl:port name=”start_ReceivePayment”
binding=”start_ReceivePaymentBinding”>
     <soap:address
location=”http://internalbesservices/receivablessvcs/
start_ReceivePayment”/>
   </wsdl:port>
  </wsdl:service>
</wsdl:definitions>

11.3.4.4  User Activities

User activities for the process are defined in the form of WSDL-based services. It is
listed in WSDL code Listing 11.7.

262  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

To some extent similar to the architecture philosophy used above for system
activity-services, we see which existing applications already provide or can support
these business functions. Given that the future direction as far as the technology
environment is concerned in BES is Java and web, we decide to let all the user
activities be supported by web-based UI applications. In some cases, with exist-
ing applications such as receivables, there is not much effort involved in mapping
these activities in the process to the respective UI screens, since those applications
are already web-based UI applications. So, receive payment and quotation user
activities can be easily mapped to existing web UI applications’ URLs provided by
receivables and pricing applications, respectively.

With the other user activities, the applications being legacy their user interfaces
are also based on legacy screens that are not best suited to the new process-centric
order-to-cash system that is based on web. Therefore, for supporting these user
activities, we take the decision to create new web screens and thus new web applica-
tions based on JSP/Java Servlets deployed on web servers and EJB business compo-
nents (if there is a business logic that needs to be performed for the user activity) for
those web applications on the JEE application server. Those web applications would
have only minimal code just to display a set of data relevant to the activity and allow
the user to perform actions. Once the user clicks on the submission button on the
last web page associated with a particular user activity such as booking, the associ-
ated Java servlet needs to have a line of code to invoke an API of the process layer to
indicate completion of this user activity along with providing the output parameters
required of the activity-service. This invoke would result in the process instance that
has been waiting at that user activity to receive control and move forward with the
process execution. The API for this is provided by the implementation of the process
layer (in our case, it would be the BPMS process server). For example, the busi-
ness logic for the booking user activity, would have an EJB to create the shipment
booking in the system and generate (and associate with it) the shipment tracking
number. The logic in the EJB would store the entire shipment data for the booking
in the application database. We might not need to write the business logic code for
this EJB from scratch—we can leverage the existing application code.

The prepare documentation activity is supported by the web UI application,
documentation application. It is a distinct business function performed by the
documentation rater and it expects inputs such as tracking number, customer id,
shipper details, recipient details, shipment details (package contents/good descrip-
tion, weight, etc.), whether to bill the recipient or not, reference number from the
shipper, internal reference number from the shipper to be put in the invoice, origin,
destination, and routing information (which ports are touched). These inputs need
to come from the process since these are parameters coming from the previous
activities and the documentation application would not ideally have the data in
its database nor would it be a good design to get it from other applications such as
booking by making calls (that would mean conventional integration approach and
not process-centricity). So, we map these input parameters from the parameters

Case Study—Architectural Design Applying PCA  ◾  263

of prior activities. The UI application helps the documentation rater in generating
the documentation such as waybill (airwaybill), commercial invoice, and customs
manifest among others. The waybill number, date, and customs manifest data are
output parameters from this activity that is for further use in the process.

11.3.4.5  Executable Process Definition

Finally, we get the executable process definition for the order-to-cash process in
WS-BPEL as shown in Listing 11.9.

Listing 11.9

<?xml version=”1.0” encoding=”UTF-8”?>
<process abstractProcess=”no” enableInstanceCompensation=”no”
  expressionLanguage=”http://www.w3.org/TR/1999/
  REC-xpath-19991116”
  name=”OrderToCash” bes:appName=”OrderToCash”
   bes:queryLanguage=”http://www.w3.org/TR/1999/
   REC-xpath-19991116”
  supressJoinFailure=”no”
  targetNamespace=”http://www.onlinebesservices.com/BPEL/
  ordertocash”
  xmlns=”http://docs.oasis-open.org/wsbpel/2.0/process/executable”
  xmlns:bpws=”http://docs.oasis-open.org/wsbpel/2.0/process/
  executable”
  xmlns:inst=”http://www.onlinebesservices.com/BPEL/
  extensions/inst”
  xmlns:java=”http://www.onlinebesservices.com/java”
  xmlns:bes=”http://www.onlinebesservices.com/BPEL/extensions”
  xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
  xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
  <extensions>
  	 <extension
namespace=”http://www.onlinebesservices.com/BPEL/extensions/
inst” mustUnderstand=”yes” />
   <extension
namespace=”http://www.onlinebesservices.com/BPEL/extensions”
mustUnderstand=”no” />
   </extensions>
   <correlationSets/>
  <variables>
   <variable name=”OrderToCash.response”
messageType=”start_OrderToCashResponse”/>
   <variable name=”inst:endprocess” type=”xsd:boolean”/>
   <variable name=”inst:processidentifier” type=”xsd:string”/>
   <variable name=”shipmentTrackingNumber” type=”xsd:string”/>

264  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

   <variable name=”billTherecipient” type=”xsd:boolean”/>
   <variable name=”totalAmount” type=”xsd:float”/>
   <variable name=”customerID” type=”xsd:string”/>
   <variable name=”shipperEmail” type=”xsd:string”/>
   <variable name=”recipientEmail” type=”xsd:string”/>
  </variables>
  <scope>
   <variables>
    <variable messageType=”start_ReceivePaymentRequest”
name=”ReceivePayment.InParam”/>
    <variable messageType=”start_ReceivePaymentResponse”
name=”ReceivePayment.OutParam”/>
    <variable messageType=”CustomerEnquiryOutParams”
name=”CustomerEnquiry.OutParam”/>
    <variable messageType=”calculateRateRequest”
name=”ShippingRateCalculation.InParam”/>
    <variable messageType=”calculateRateResponse”
name=”ShippingRateCalculation.OutParam”/>
    <variable messageType=”QuotationInParams”
name=”Quotation.InParam”/>
    <variable messageType=”BookingInParams” name=”Booking.
    InParam”/>
    <variable messageType=”BookingOutParams”
name=”Booking.OutParam”/>
    <variable messageType=”generateTransportPlanRequest”
name=”GenerateTransportationPlan.InParam”/>
    <variable messageType=”generateTransportPlanResponse”
name=”GenerateTransportationPlan.OutParam”/>
    <variable messageType=”PrepareDocumentationInParams”
name=”PrepareDocumentation.InParam”/>
    <variable messageType=”PrepareDocumentationOutParams”
name=”PrepareDocumentation.OutParam”/>
    <variable messageType=”GenerateInvoiceInParams”
name=”GenerateInvoice.InParam”/>
    <variable messageType=”GenerateInvoiceOutParams”
name=”GenerateInvoice.OutParam”/>
    <variable messageType=”ReceiveShipmentInParams”
name=”ReceiveShipment.InParam”/>
    <variable messageType=”ReceiveShipmentOutParams”
name=”ReceiveShipment.OutParam”/>
    <variable messageType=”TransportationInParams”
name=”Transportation.InParam”/>
    <variable messageType=”SendShipmentDataToCustomsInParams”
name=”SendShipmentDataToCustoms.InParam”/>
    <variable messageType=”ReceiveCustomsClearanceOutParams”
name=”ReceiveCustomsClearance.OutParam”/>
    <variable messageType=”SendMailInParams”
name=”SendMail.InParam”/>

Case Study—Architectural Design Applying PCA  ◾  265

    <variable messageType=”DeliverShipmentInParams”
name=”DeliverShipment.InParam”/>
   </variables>
   <correlationSets>
    <correlationSet name=”ReceiveCustomsClearance”
properties=”shipmentTrackingNumber”/>
   </correlationSets>
   <sequence>
     <receive createInstance=”yes” name=”start_OrderToCash”
     operation=”start_OrderToCash”
portType=”start_OrderToCashPT”/>
    <assign>
     <copy>
      <from>false</from>
      <to variable=”inst:endprocess”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”inst:processidentifier”/>
      <to part=”processid” variable=”OrderToCash.response”/>
     </copy>
    </assign>
    <reply name=”start_OrderToCash” operation=”start_OrderToCash”
    portType=”start_OrderToCashPT”
variable=”OrderToCash.response”/>
    <invoke bes:locate=”bes/CustomerEnquiry”
    bes:mode=”Manual” name=”CustomerEnquiry”
operation=”customerEnquiry”
     outputVariable=”CustomerEnquiry.OutParam”
  	 bes:acttype=”webUI:Activity”
     bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
     <bes:roles bes:allocationScheme=”default”>
      <bes:role>CustomerServiceRepresentative</bes:role>
     </bes:roles>
    </invoke>
    <assign>
     <copy>
      <from part=”customerID”
variable=”CustomerEnquiry.OutParam”/>
      <to variable=”customerID”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”origin”
      variable=”CustomerEnquiry.OutParam”/>

266  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      <to part=”origin”
variable=”ShippingRateCalculation.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”destination”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”destination”
variable=”ShippingRateCalculation.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”commodity”
variable=”CustomerEnquiry.OutParam”/>
      <to part=”commodity”
variable=”ShippingRateCalculation.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”weight” variable=”CustomerEnquiry.OutParam”/>
      <to part=”weight”
variable=”ShippingRateCalculation.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”customerID”/>
      <to part=”customerID”
variable=”ShippingRateCalculation.InParam”/>
     </copy>
    </assign>
    <invoke
     inputVariable=”ShippingRateCalculation.InParam”
bes:locate=”ejb:/className=pricing.CalculateRateHome&
jndiName=pricing/CalculateRate”
     name=”ShippingRateCalculation”
     operation=”calculateRate”
     outputVariable=”ShippingRateCalculation.OutParam”
     bes:portname=”PricingPort”
     bes:wsdlfilename=”ShippingRateCalculation.wsdl”
     bes:acttype=”EJB:Activity”
     portType=”PricingPortPT” />
    <assign>
     <copy>
       <from part=”totalAmount”
variable=”ShippingRateCalculation.OutParam”/>

Case Study—Architectural Design Applying PCA  ◾  267

       <to variable=”totalAmount”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”quotationNumber”
variable=”ShippingRateCalculation.OutParam”/>
      <to part=”quotationNumber” variable=”Quotation.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”totalAmount”/>
      <to part=”totalAmount” variable=”Quotation.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”Quotation.InParam”
     bes:locate=”bes/Quotation” bes:mode=”Manual”
     name=”Quotation”
  	 bes:acttype=”webUI:Activity”
     operation=”quotation” bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
     <bes:roles bes:allocationScheme=”default”>
      <bes:role>CustomerServiceRepresentative</bes:role>
     </bes:roles>
    </invoke>
    <assign>
     <copy>
      <from variable=”customerID”/>
      <to part=”customerID” variable=”Booking.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”quotationNumber”
variable=”ShippingRateCalculation.OutParam”/>
      <to part=”quotationNumber” variable=”Booking.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”Booking.InParam”
     bes:locate=”bes/Booking” bes:mode=”Manual” name=”Booking”
  	 bes:acttype=”webUI:Activity”
     operation=”booking” outputVariable=”Booking.OutParam”
     bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
     <bes:roles bes:allocationScheme=”default”>
      <bes:role>CustomerServiceRepresentative</bes:role>
     </bes:roles>
     <correlations>

268  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      <correlation initiate=”yes” pattern=”in”
set=”ReceiveCustomsClearance”/>
     </correlations>
    </invoke>
    <assign>
     <copy>
      <from part=”shipmentTrackingNumber”
variable=”Booking.OutParam”/>
      <to variable=”shipmentTrackingNumber”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”shipperEmail” variable=”Booking.OutParam”/>
      <to variable=”shipperEmail”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”recipientEmail” variable=”Booking.OutParam”/>
      <to variable=”recipientEmail”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”shipmentTrackingNumber”/>
      <to part=”shipmentTrackingNumber”
variable=”GenerateTransportationPlan.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”GenerateTransportationPlan.InParam”
  	 bes:locate=”ejb:/className=booking.GenerateTransportPlan
     Home&jndiName=booking/generateTransportPlan”
     name=”GenerateTransportationPlan”
     operation=”generateTransportPlan”
     outputVariable=”GenerateTransportationPlan.OutParam”
     bes:portname=”BookingPort”
     bes:wsdlfilename=”GenerateTransportationPlan.wsdl”
     bes:acttype=”EJB:Activity”
     portType=”BookingPortPT” />
    <flow>
     <sequence>
      <assign>
       <copy>
        <from part=”shipper”
variable=”Booking.OutParam”/>
        <to part=”shipper”
variable=”PrepareDocumentation.InParam”/>
       </copy>

Case Study—Architectural Design Applying PCA  ◾  269

      </assign>
      <assign>
       <copy>
        <from part=”recipient”
variable=”Booking.OutParam”/>
        <to part=”recipient”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”shipmentInfo”
variable=”Booking.OutParam”/>
        <to part=”shipmentDetails”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”shippersReference”
variable=”Booking.OutParam”/>
        <to part=”shippersReference”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from
        part=”customersInternalBillingReference”
variable=”Booking.OutParam”/>
        <to part=”shippersInternalReference”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”origin”
variable=”CustomerEnquiry.OutParam”/>
        <to part=”origin”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”destination”
variable=”CustomerEnquiry.OutParam”/>
        <to part=”destination”
variable=”PrepareDocumentation.InParam”/>
       </copy>

270  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      </assign>
      <assign>
       <copy>
        <from part=”routing”
variable=”GenerateTransportationPlan.OutParam”/>
        <to part=”routing”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”shipperAddress”
variable=”Booking.OutParam”/>
        <to part=”shipperAddress”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”recipientAddress”
variable=”Booking.OutParam”/>
        <to part=”recipientAddress”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”shipmentTrackingNumber”/>
        <to part=”shipmentTrackingNumber”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”customerID”/>
        <to part=”customerID”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”billTherecipient”/>
        <to part=”billTherecipient”
variable=”PrepareDocumentation.InParam”/>
       </copy>
      </assign>
      <invoke
       inputVariable=”PrepareDocumentation.InParam”

Case Study—Architectural Design Applying PCA  ◾  271

       bes:locate=”bes/PrepareDocumentation”
bes:mode=”Manual”
       name=”PrepareDocumentation”
operation=”prepareDocumentation”
       outputVariable=”PrepareDocumentation.OutParam”
  	 bes:acttype=”webUI:Activity”
       bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
       <bes:roles bes:allocationScheme=”default”>
        <bes:role>DocumentationRater</bes:role>
       </bes:roles>
      </invoke>
      <assign>
       <copy>
        <from part=”wayBillNumber”
variable=”PrepareDocumentation.OutParam”/>
        <to part=”wayBillNumber”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”plannedDeliveryDate”
variable=”GenerateTransportationPlan.OutParam”/>
        <to part=”plannedDeliveryDate”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”transportationCharge”
variable=”ShippingRateCalculation.OutParam”/>
       <to part=”transportationCharge”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from part=”otherCharges”
variable=”ShippingRateCalculation.OutParam”/>
        <to part=”otherCharges”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”shipmentTrackingNumber”/>
        <to part=”shipmentTrackingNumber”
variable=”GenerateInvoice.InParam”/>

272  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”billTherecipient”/>
        <to part=”billTherecipient”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”totalAmount”/>
        <to part=”totalAmount”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <assign>
       <copy>
        <from variable=”customerID”/>
        <to part=”customerID”
variable=”GenerateInvoice.InParam”/>
       </copy>
      </assign>
      <invoke inputVariable=”GenerateInvoice.InParam”
       bes:locate=”bes.receivables.invoicing”
       bes:acttype=”java:invokeActivity”
       outputVariable=”GenerateInvoice.OutParam”
       operation=”generateInvoice”
  	 portType=”ReceivablesPT”/>
      </sequence>
      <sequence>
       <assign>
        <copy>
         <from part=”shipmentInfo”
variable=”Booking.OutParam”/>
         <to part=”shipmentInfo”
variable=”ReceiveShipment.InParam”/>
        </copy>
       </assign>
       <assign>
        <copy>
         <from variable=”shipmentTrackingNumber”/>
         <to part=”shipmentTrackingNumber”
variable=”ReceiveShipment.InParam”/>
        </copy>
       </assign>
       <invoke
        inputVariable=”ReceiveShipment.InParam”
        bes:locate=”bes/ReceiveShipment” bes:mode=”Manual”

Case Study—Architectural Design Applying PCA  ◾  273

       � name=”ReceiveShipment”
operation=”receiveShipment”

        outputVariable=”ReceiveShipment.OutParam”
  	 bes:acttype=”webUI:Activity”
	 bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
        <bes:roles bes:allocationScheme=”default”>
         <bes:role>Operations</bes:role>
        </bes:roles>
       </invoke>
      </sequence>
     </flow>
     <switch name=”ConsgineeToPay?”>
      <case
bes:conditionExpression=”java:( (besvar:(billTherecipient) ) ==
false)”>
       <assign>
        <copy>
         <from part=”invoiceNumber”
variable=”GenerateInvoice.OutParam”/>
         <to part=”invoiceNumber”
variable=”ReceivePayment.InParam”/>
        </copy>
       </assign>
  	 <invoke
	 inputVariable=”ReceivePayment.InParam”
	 outputVariable=”ReceivePayment.
OutParam”
  							
      bes:locate=”http://internalbesservices/receivablessvcs/
start_ReceivePayment”
	 name=”ReceivePayment”
	 operation=”informCustoms”
   bes:wsdlfilename=”ReceivePayment_ReceiveActivities.wsdl”
	 portType=”ReceivablesPT”
	 bes:portName=”start_ReceivePayment”
	 bes:acttype=”SOAPHTTPDOC:Activity” />
      </case>
      <case
bes:conditionExpression=”java:( (besvar:(billTherecipient) ) ==
true)”/>
     </switch>
     <assign>
      <copy>
       <from part=”recipientAddress”
variable=”Booking.OutParam”/>
       <to part=”recipientAddress”
variable=”Transportation.InParam”/>
      </copy>

274  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

     </assign>
     <assign>
      <copy>
       <from part=”numOfLegs”
variable=”GenerateTransportationPlan.OutParam”/>
      � <to part=”legs” variable=”Transportation.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”routing”
variable=”GenerateTransportationPlan.OutParam”/>
       <to part=”routing”
variable=”Transportation.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”plannedDeliveryDate”
variable=”GenerateTransportationPlan.OutParam”/>
       <to part=”plannedDeliveryDate”
variable=”Transportation.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”packageToCarriageMappings”
variable=”GenerateTransportationPlan.OutParam”/>
       <to part=”packageToCarriageMappings”
variable=”Transportation.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”shipmentTrackingNumber”/>
       <to part=”shipmentTrackingNumber”
variable=”Transportation.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”customerID”/>
       <to part=”customerID”
  variable=”Transportation.InParam”/>
      </copy>
     </assign>
     <invoke inputVariable=”Transportation.InParam”
      bes:locate=”bes/Transportation” bes:mode=”Manual”

Case Study—Architectural Design Applying PCA  ◾  275

      name=”Transportation” operation=”transportation”
  	 bes:acttype=”webUI:Activity”
      bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
      <bes:roles bes:allocationScheme=”default”>
       <bes:role>Operations</bes:role>
      </bes:roles>
     </invoke>
     <assign>
      <copy>
       <from part=”shipper” variable=”Booking.OutParam”/>
       <to part=”shipper”
variable=”SendShipmentDataToCustoms.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”recipient” variable=”Booking.OutParam”/>
       <to part=”consignee”
variable=”SendShipmentDataToCustoms.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”valueForCustoms”
variable=”Booking.OutParam”/>
       <to part=”totalShipmentValueForCustoms”
variable=”SendShipmentDataToCustoms.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”shipmentInfo” variable=”Booking.OutParam”/>
       <to part=”shipmentInfo”
       variable=”SendShipmentDataToCustoms.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from part=”customsManifestData”
variable=”PrepareDocumentation.OutParam”/>
       <to part=”mainfest”
variable=”SendShipmentDataToCustoms.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”shipmentTrackingNumber”/>

276  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

       <to part=”shipmentRefereneForCustoms”
variable=”SendShipmentDataToCustoms.InParam”/>
      </copy>
     </assign>
     <invoke
      inputVariable=”SendShipmentDataToCustoms.InParam”
      bes:locate=”http://www.onlinecustomsservices.com/
      InformCustoms”
      name=”SendShipmentDataToCustoms”
      operation=”informCustoms” bes:portname=”CustomsPort”
      bes:wsdlfilename=”SendShipmentDataToCustoms.wsdl”
      portType=”CustomsPortPT”
      bes:acttype=”SOAPHTTPDOC:Activity” />
  <receive createInstance=”no”
      name=”ReceiveCustomsClearance”
      operation=”ReceiveCustomsClearance”
      portType=”ReceiveCustomsClearancePT”
variable=”ReceiveCustomsClearance.OutParam”>
      bes:acttype=”SOAPHTTPDOC:Receive”>
      <correlations>
       <correlation initiate=”no”
set=”ReceiveCustomsClearance”/>
      </correlations>
     </receive>
     <assign>
      <copy>
       <from variable=”recipientEmail”/>
       <to part=”To” variable=”SendMail.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from variable=”shipperEmail”/>
       <to part=”Cc” variable=”SendMail.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from expression=”concat("Shipment addressed to
you with shipment number ",$shipmentTrackingNumber,"
has arrived")”/>
       <to part=”Subject” variable=”SendMail.InParam”/>
      </copy>
     </assign>
     <assign>
      <copy>
       <from expression=”The shipment addressed to you is
ready for delivery and will be delivered to you by the end of
today.”/>

Case Study—Architectural Design Applying PCA  ◾  277

       <to part=”Body” variable=”SendMail.InParam”/>
      </copy>
     </assign>
     <invoke
      inputVariable=”SendMail.InParam”
  	 bes:locate=”bes.messagingservices.Email”
      name=”SendArrivalNotice”
      operation=”sendMail”
      portType=”EmailPortPT”
      bes:acttype=”mail:Activity” />
     <switch name=”ConsigneeToPay?”>
     <case
bes:conditionExpression=”java:( (besvar:(billTherecipient) ) ==
true)”>
        <assign>
         <copy>
          <from part=”invoiceNumber”
variable=”GenerateInvoice.OutParam”/>
          <to part=”invoiceNumber”
variable=”ReceivePayment.InParam”/>
         </copy>
        </assign>
             <invoke
               inputVariable=”ReceivePayment.InParam”
                outputVariable=”ReceivePayment.OutParam”
   bes:locate=”http://internalbesservices/receivablessvcs/
start_ReceivePayment”
	 name=”ReceivePayment”
	 operation=”informCustoms”
   bes:wsdlfilename=”ReceivePayment_ReceiveActivities.wsdl”
	 portType=”ReceivablesPT”
	 bes:portName=”start_ReceivePayment”
   bes:acttype=”SOAPHTTPDOC:Activity” />
       </case>
      <case
bes:conditionExpression=”java:( (besvar:(billTherecipient) ) ==
  false)”/>
     </switch>
     <assign>
      <copy>
       <from variable=”shipmentTrackingNumber”/>
       <to part=”shipmentTrackingNumber”
variable=”DeliverShipment.InParam”/>
      </copy>
     </assign>
     <invoke inputVariable=”DeliverShipment.InParam”
      bes:locate=”bes/DeliverShipment” bes:mode=”Manual”
      name=”DeliverShipment” operation=”deliverShipment”
	 bes:acttype=”webUI:Activity”

278  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      bes:userAllocationScheme=””
portType=”OrderToCashUserActionsPT”>
      <bes:roles bes:allocationScheme=”default”>
       <bes:role>Operations</bes:role>
      </bes:roles>
     </invoke>
     <assign>
      <copy>
       <from>true</from>
       <to variable=”inst:endprocess”/>
      </copy>
     </assign>
    </sequence>
   </scope>
</process>

The executable process definition for the receive payment process in WS-BPEL as
shown in Listing 11.10.

Listing 11.10

<?xml version=”1.0” encoding=”UTF-8”?>
<process abstractProcess=”no” enableInstanceCompensation=”no”
  expressionLanguage=”http://www.w3.org/TR/1999/
  REC-xpath-19991116”
  name=”ReceivePayment” bes:appName=”Payment”
   bes:queryLanguage=”http://www.w3.org/TR/1999/
   REC-xpath-19991116”
  supressJoinFailure=”no”
  targetNamespace=”http://www.onlinebesservices.com/BPEL/
  ordertocash”
  xmlns=”http://docs.oasis-open.org/wsbpel/2.0/process/executable”
  xmlns:bpws=”http://docs.oasis-open.org/wsbpel/2.0/process/
executable”
  xmlns:inst=”http://www.onlinebesservices.com/BPEL/
extensions/inst”
  xmlns:java=”http://www.onlinebesservices.com/java”
  xmlns:bes=”http://www.onlinebesservices.com/BPEL/extensions”
  xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
  xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>
  <correlationSets/>
   <extensions>
    <extension
namespace=”http://www.onlinebesservices.com/BPEL/extensions/
inst” mustUnderstand=”yes” />
    <extension
namespace=”http://www.onlinebesservices.com/BPEL/extensions”
mustUnderstand=”no” />

Case Study—Architectural Design Applying PCA  ◾  279

   </extensions>
  <variables>
   <variable name=”inst:endprocess” type=”xsd:boolean”/>
   <variable name=”invoiceNumber” type=”xsd:string”/>
   <variable messageType=”start_ReceivePaymentRequest”
name=”ReceivePayment.StartParam”/>
   <variable messageType=”start_ReceivePaymentResponse”
name=”ReceivePayment.EndParam”/>
  </variables>
  <scope>
   <variables>
    <variable messageType=”Receive_PaymentInParams”
name=”Receive_Payment.InParam”/>
    <variable messageType=”Receive_PaymentOutParams”
name=”Receive_Payment.OutParam”/>
    <variable messageType=”MakeGLEntriesInParams”
name=”MakeGLEntries.InParam”/>
    <variable messageType=”UpdateSalesInParams”
name=”UpdateSales.InParam”/>
   </variables>
   <correlationSets/>
   <sequence>
    <receive createInstance=”yes” name=”start_ReceivePayment”
     operation=”start_ReceivePayment” portType=”ReceivablesPT”
variable=”ReceivePayment.StartParam”/>
    <assign>
     <copy>
      <from>false</from>
      <to variable=”inst:endprocess”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”invoiceNumber”
variable=”ReceivePayment.StartParam”/>
      <to variable=”invoiceNumber”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from variable=”invoiceNumber”/>
      <to part=”invoiceNumber”
variable=”Receive_Payment.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”Receive_Payment.InParam”
     bes:locate=”bes/Receive_Payment” mode=”Manual”
     name=”Receive_Payment” operation=”Receive_Payment”
     outputVariable=”Receive_Payment.OutParam”

280  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 bes:acttype=”webUI:Activity”
     bes:userAllocationScheme=””
portType=”ReceivePaymentUserActionsPT”>
     <bes:roles bes:allocationScheme=”default”>
      <bes:role>Cashier</bes:role>
     </bes:roles>
    </invoke>
    <assign>
     <copy>
      <from part=”paymentNumber”
variable=”Receive_Payment.OutParam”/>
      <to part=”transactionNumber”
variable=”MakeGLEntries.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”paymentDate”
variable=”Receive_Payment.OutParam”/>
      <to part=”transactionDate”
variable=”MakeGLEntries.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”totalPymtAmount”
variable=”Receive_Payment.OutParam”/>
      <to part=”transactionAmount”
variable=”MakeGLEntries.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from expression=”"Payment"”/>
      <to part=”transactionType”
variable=”MakeGLEntries.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”customerID”
variable=”Receive_Payment.OutParam”/>
      <to part=”customerID”
variable=”MakeGLEntries.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>

Case Study—Architectural Design Applying PCA  ◾  281

      <from variable=”invoiceNumber”/>
      <to part=”reference”
variable=”MakeGLEntries.InParam”/>
     </copy>
    </assign>
    <invoke
     <invoke inputVariable=”MakeGLEntries.InParam”
    � bes:locate=”http://internalbesservices/GL/

MakeGLEntries”
     name=”MakeGLEntries”
     operation=”makeGLEntry” bes:portname=”GLPort”
     bes:wsdlfilename=”MakeGLEntries.wsdl”
     portType=”GLPortPT”
     bes:acttype=”SOAPHTTPDOC:Activity” />
    <assign>
     <copy>
      <from part=”customerID”
variable=”Receive_Payment.OutParam”/>
      <to part=”customerID” variable=”UpdateSales.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”totalPymtAmount”
variable=”Receive_Payment.OutParam”/>
      <to part=”salesAmount”
      variable=”UpdateSales.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”shippingOrderDate”
variable=”Receive_Payment.OutParam”/>
      <to part=”salesDate” variable=”UpdateSales.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”shipmentTrackingNumber”
variable=”Receive_Payment.OutParam”/>
      <to part=”shipmentNumber”
variable=”UpdateSales.InParam”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from part=”paymentDate”
variable=”Receive_Payment.OutParam”/>

282  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

      <to part=”paymentReceivedDate”
variable=”UpdateSales.InParam”/>
     </copy>
    </assign>
    <invoke inputVariable=”UpdateSales.InParam”
     bes:locate=”http://internalbesservices/Sales/UpdateSales”
     name=”UpdateSales”
     operation=”enterSalesData” bes:portname=”SalesPort”
     bes:wsdlfilename=”UpdateSales.wsdl”
     portType=”SalesPT”
     bes:acttype=”SOAPHTTPDOC:Activity” />
    <assign>
     <copy>
      <from>true</from>
      <to variable=”inst:endprocess”/>
     </copy>
    </assign>
    <assign>
     <copy>
      <from>true</from>
      <to part=”paymentReceived”
variable=”ReceivePayment.EndParam”/>
     </copy>
    </assign>
    <reply name=”start_ReceivePayment” operation=”
     start_ReceivePayment”
     portType=”ReceivablesPT” variable=”ReceivePayment.
     EndParam”/>
    </sequence>
   </scope>
</process>

Order-to-cash process

Pricing

Supports Supports

Mainframe Web server JEE application server Oracle/
PowerBuilder

System infrastructure services

Booking and
planning Documentation Receivables Operations Finance-G/L Sales Customs

Supports

BPMS process server

Figure 11.19 O rder-to-cash logical view.

Case Study—Architectural Design Applying PCA  ◾  283

11.3.4.6  Embodiment

In this architecture for the order-to-cash system, we use a BPMS process engine
for realizing the process layer (run-time), a BPMS process modeler for the design-
time, JEE application server for hosting the EJB components, and Java-enabled
web servers for the web applications and web service implementations. The services
such as POJO services and Send mail services would be automatically provided by
the BPMS process engine. Figure 11.19 shows the logical view of the architecture
for the new system. The process needs to be deployed into the run-time environ-
ment. As part of the deployment, the package containing all the WS-BPEL files, all
the WSDL files is deployed onto the BPMS process engine using the deployment
mechanism provided by the BPMS. All the EJBs are deployed as beans into the JEE
application server. The web services and web applications are deployed on to the
web servers with servlet containers.

11.4 E xercise Questions
	 1.	What are the various options you can think of to realize the user activities in

a process that you are familiar with?
	 2.	What are the ways in which you would like to service-enable legacy applica-

tions in your enterprise?
	 3.	What are the scenarios you have come across where the separation of con-

cerns between the activities associated with different functions/applications
become hard to achieve clearly and cleanly?

	 4.	What would be your approach for the scenarios in question 3 and what would
be the architectural philosophy behind your decisions?

285

Chapter 12

Implementation
Considerations

12.1 O bjectives
◾◾ To appreciate the different types of business processes in real life and their

infrastructure-related requirements
◾◾ To understand which tools and technologies suit different process types
◾◾ To be aware of some practical issues/situations faced in process-centric

architectural design and some anti-patterns to avoid

12.2 T ypes of Business Processes
In the real world, different business processes are of different nature. They can be
thus grouped into categories (or process types) based on their key nature. Processes
within each type exhibit some common characteristics and have automation needs
that are a bit different from other types. They have evolved to become so, based on
the kind of domain they address, the nature of activities that happen in the process,
and legacy needs. The process infrastructure thus required by each type is different.
Some process servers are more suited to address certain types of processes better
than others.

The BPMS products space is still maturing and there are a plethora of options
available today for the architecture implementation. As of now, no BPMS prod-
uct can be said to be supporting all the process requirements. The products will

286  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

continue to evolve. Of course, in the future, they will increasingly become more
complete capability-wise, for BPM support. Therefore, right now, it is important
to keep this in mind while realizing the architecture of the IT system. During the
implementation of a process-centric architecture, it makes sense to consider this
and choose the appropriate process infrastructure based on the business process
being handled.

12.2.1  Rules-Centric
These types of business processes are business rules oriented. Processes belong-
ing to this category are so centered on business rules that other activities in
the process become less significant. The common characteristics such processes
exhibit are

◾◾ They are invariably heavy on business rule-activities. The rule-activities are
the most important activities of the process. Results of the rule-activities
determine the direction of the process flow.

◾◾ Rules appear in the process model as decision points in the process defi-
nition and also as rule-activities that are kept separated from the process
model.

◾◾ Business rules involved in these processes are often complex. Each rule is
similar to a program rather than being just a few lines. Reasoning of these
rules (inferencing) may involve multiple reasoning approaches such as for-
ward inferencing, backward inferencing, or a combination of inferencing
approaches. The specification and reasoning of these rules require better sup-
port from the infrastructure.

One example for this type of process is the insurance claims process. In this sce-
nario, when a claim is filed by the customer and processed by the insurance com-
pany, complex rules are applied at different stages. Some of them are to check if
the claim fulfills all the mandatory criteria for insurance claims and then decide
whether the claim is eligible for approval or not. Insurance policies typically have a
lot of clauses that need to be satisfied by the filed claim before it is approved. Some
of the clauses are exclusive in nature and are conditions that exclude the claim sce-
nario from being covered. Some of them are inclusive; they specify conditions that
are covered by the insurance.

Another example is the price calculation in the quote process in the case of a
transportation or a shipping company that operates globally under varying taxation
regimes, port charges, etc. and not just based on flat per-distance unit rate. The cal-
culated price and quote would typically have a set of line items (such as surcharges)
in addition to the basic freight charge.

Rules-centric processes are better handled by a BPMS that is strong in handling
business rules, and that too natively. Such a BPMS would provide capabilities that

Implementation Considerations  ◾  287

allow business to easily specify the business rules in a business-like language. It
manages rules, carries out inferencing of the rules, and executes them upon request
from the process engine.

12.2.2  Workflow Oriented
Some business processes are workflow intensive. These processes are mainly about
flows involving people and less of systems participating in the flow. The common
characteristics are

◾◾ The processes mostly consist of manual activities. There is more emphasis on
humans performing activities than systems.

◾◾ As far as participant involvement is concerned, the processes involve heavy
amounts of human interaction. Most of the activities are performed by
humans and each such activity is composed of a set of tasks that a person
performs on a business entity (or entities).

◾◾ They involve a control flow where a work item flows from one user or role to
another. As the work item flows through the users, its state changes and there
is a progress in the processing of the business entity. The flows in real life are
often back and forth. The same person may get the task back for repeated
processing or further work.

Account opening process in a typical bank is a good example of this type of pro-
cesses. The application or request placed by the customer goes through multiple
verifications and approvals by various users and roles. Each user may do some
work or processing on the request for the account. A higher authority such as
the branch manager makes the final call as to whether the account should be
opened or not.

Those BPMS that are strongly rooted in managing workflows would suit such
processes. This can provide a process server that would let users take part in the
process easily, across a number of such workflows. Users get to view the list of
work items that they have been assigned to work on along with the step in the
workflow that they are to perform. They can manage the order of items, prioritize
them, and see all relevant details about the item including its processing stage.
Reassigning work and routing the item to other users, are all enabled by workflow-
based BPMSs. They excel in providing and supporting such capabilities.

12.2.3  STP Oriented
There are processes that are of straight through process (STP) nature. These pro-
cesses run in huge volumes and involve a great deal of system participation in the
process. From one end to the other end, the work (or the work item) passes straight
through with no human intervention.

288  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

They share the following traits:

◾◾ Processes are short running in duration. They complete quickly. They typi-
cally run for seconds, or at the maximum, for a few minutes.

◾◾ The process is transaction oriented and involves only synchronous operations.
Completion of the process means processing of a business transaction; the
unit of work is generally small sized.

◾◾ There are only system activities in the process. These system activities together
complete the transaction.

◾◾ Processes are fully automated. They get triggered and executed automatically
without human intervention.

◾◾ Volumes of such processes are high. A high number of process instances run
at the same time.

An example of STP is the transaction processing of mutual funds in a financial
services company. Typically the mutual funds transactions involve short business
transactions such as redemption of funds, purchase of funds, and swap of funds.
These become system activities in the STP business process and the entire process
runs with no user intervention. Per hour, a number of instances of this process
runs and complete. Each process instance (mutual funds transaction) completes in
seconds.

Another example of a systems-only process is trade processing in an investment
bank. This involves the system receiving files with trade data from multiple sources;
various operations are performed on the data in sequence such as validation, addi-
tion of more data to make it more comprehensive, and routing to a further process.
All these operations are individual activities in the process and they are system
activities (i.e., automated). Process execution is triggered automatically once the
trade files arrive.

STP business processes need a BPMS process engine that strongly supports
automation, enables application integration. The process engine also needs to be
able to handle transaction processing well and is required to handle large volumes
of processes. It would need the process engine to support efficiency qualities of very
high performance and scalability. The expected throughput of transactions per unit
of time (minute) and time taken for one transaction would be very demanding. An
automation-centric or system-centric BPMS fits STP processes well.

12.2.4  EAI Oriented
These processes primarily involve enterprise application integration (EAI). Multiple
applications in the enterprise take part in the process and they are often disparate
including legacy systems, application packages, and new applications. Such pro-
cesses are EAI focused and are end-to-end in scope covering multiple departments
of the enterprise.

Implementation Considerations  ◾  289

The characteristics of these processes are:

◾◾ They contain primarily system activities. The manual activities present in the
process are minimal or zero.

◾◾ Process spans across multiple applications, with each application performing
at least one system activity in it. Application may be running in heteroge-
neous technologies. They may be a combination of legacy, packages, COTS
package, and in house systems.

◾◾ Duration-wise, the processes may be either a short-lived or long-running.
The long-running processes may run in hours, or even in days. Process may
involve some asynchronous activities in it. This means at some steps, waiting
would be involved during the process execution.

Sales order processing is an example of a process in this category. Multiple applica-
tions such as sales system, order management system, inventory system, and pro-
duction system work together in the process, supporting the steps in the process
such as validating the order details, checking the inventory, and triggering manu-
facture of the product. They together complete the process. Some of the activities
may be asynchronous activities where the process receives messages from external
systems and processes. For example, on completion of manufacturing of the goods,
the sales order process instance may receive a message from the inventory system
indicating that the production is complete and the product is ready.

BPMSs, which natively support EAI and are strong in EAI, suit or support this
category of process. They would have the natural capabilities in integrating applica-
tions across technologies, and handling required data transformations.

12.3  Process Infrastructure
Process infrastructure is the infrastructure that supports business processes, in the
IT system. It realizes the process layer component of the IT system. The software
that makes up the process infrastructure is the BPMS. Enabling process manage-
ment fully through the life cycle of the business processes is the primary concern
of a BPMS. There are various BPMS products available in the industry. They can
be broadly categorized into two: legacy and pure-play. The sections below explain
the types.

12.3.1  Legacy BPMSs
These BPMS products have some legacy in them and they carry that along even as
they continue to evolve to address BPM requirements. In some cases, the legacy
comes handy, especially to address processes of a certain nature. In other cases,
this legacy becomes a burden forcing the implementation to take a circuitous path

290  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

involving extra effort instead of a simple direct approach. The legacy each product has
may be different from the others. The product may have originally been addressing
a particular function but would have evolved or moved up to support BPM, and
would have later come to be known as a BPMS product. predominantly, the following
legacies are seen in BPMS products and thus they make a categorization for the
BPMS products:

12.3.1.1  Application Server Legacy

There are BPMS products that were once application servers, either as J2EE serv-
ers providing J2EE containers, or .NET application servers providing services for
.NET components. Some examples are IBM Web Sphere, Web Logic Integrator of
BEA (now part of ORACLE), and ORACLE application server.

They have evolved into BPMSs and now support business process management
in addition to supporting business components of the application in their applica-
tion containers. Such a BPMS typically supports both A2A and P2P flows. It has
adaptors to integrate with various applications; it might use the application server’s
adaptor capabilities (e.g., JTA). It can connect with identity management systems
such as LDAP servers to integrate authentication and authorization functions with
that of the BPMS. It provides a solid Integrated Development Environment (IDE)
for programming the components of the IT system post their architectural design.
Such BPMS products, are good in providing messaging, and asynchronous com-
munication mechanisms (JMS, MQ), since these are already well supported in the
application servers.

12.3.1.2  Workflow Legacy

BPMS products with this legacy were once workflow systems (or workflow man-
agement systems) or WFMS for short. WFMS have been traditionally used in sce-
narios where flow of work item among humans was common. An example of such
a BPMS product is Staffware (now TIBCO-Staffware).

They support P2P flows naturally and are strong in supporting human interac-
tion. They generate and present work lists to each user according to what the user
has to work on. Work assignment, routing, rerouting of work items are natively
supported. They are not considered strong in integration of systems. WFMS have
been in existence since the early 1990s and thus some of their core components are
legacy, having been built in a structured programming language such as C. Due to
this baggage, they may be less flexible to changes related to BPM features.

12.3.1.3  EAI Legacy

These systems are BPMS products that have evolved from their EAI tool versions.
They were EAI tools used in the domain of application integration in enterprises.
Examples are TIBCO, and Biz Talk.

Implementation Considerations  ◾  291

As BPMS products, integrating systems in processes is their native capability
and strength. In their previous roles EAI tools used to allow definition of control
flows involving various applications, though in a limited way, in association with
capabilities to define data mappings between disparate applications—the context
was EAI though. A2A flows are well supported. Naturally, integrating human par-
ticipants in the process is not a strong area for these BPMSs.

12.3.1.4  Rule Engine Legacy

BPMSs with legacy of rule engines belong to this category. Pega is an example. The
BPMS would have been once a rule engine and later evolved into a BPMS product
with the extension for supporting BPM requirements.

The meta-model such BPMS products use is business rules. This translates into
a view of business process where rules dominate the perspective. This is a baggage
they carry into their BPMS versions as well. They are very capable of supporting
pretty complex business rules in the process and are sophisticated in that. A2A
flows are not their strong points. When it comes to BPM related standards, such
BPMSs need to grow more in standards-support.

12.3.1.5  DMS Legacy

Some BPMS products come from document management systems (DMS) or con-
tent management system (CMS) products background. One example is FileNet
(now part of IBM). These products carry the document management legacy and
the model.

The processes or works are viewed from a document-centric angle, as the flow
of documents through users and also systems to some extent. Strengths of these
BPMS products lie in document handling, scanning of paper documents and
digitizing them, capabilities of imaging system components, and linking of the
documents to the business process. They natively support any flow that involves
document flow.

12.3.1.6  Package Legacy

Application packages have also evolved to support BPM and they have become
BPMS products by adding those capabilities. They would have been ERP packages
or CRM or Sales packages before. Examples are SAP Netweaver, and Chordiant•.

Most of them have enabled business process view and explicit business process
support (abstraction) for business processes coming within their application domain
(or vertical)—for example, business processes such as customer on-boarding process
within CRM, and manufacturing process under ERP. Some of them also have made
their products ready-built BPM solutions for specific vertical, such as finance. Such
solutions would provide all the business processes in that domain (e.g., finance) and

292  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

enable the process to be offered at a higher-level of abstraction and allows it to be
customized. These BPM products are strong in their specific domain. However, they
need to support integration with other processes in the enterprise better. Supporting
processes outside their domain is not a strong area for them.

12.3.2  Pure-Play BPMSs
These BPMSs do not have any legacy and therefore no baggage to carry or support.
They are purely for BPM. They have been designed and built ground-up, for serving
BPM needs alone, and only with the support of business processes in mind. They
arrived in the scene only with the arrival of the concepts of BPM. Some examples
are Savion, Intalio, and Skelta•.

Pure-play BPMSs support process-centric standards (and BPM standards) the
best. These products are also not tied to any particular domain or any industry
vertical and thus are flexible to support wide varieties of business processes. The
IT systems built with this type of BPMSs for process infrastructure support, can
be built as process-centric all through. This is since, any architectural work, design
work, or development work done would be guided by process principles and real-
ized fully in terms of that. There would not be a need to use a different meta-model
to the process model, for example. Thus, there is a sense of purity (process purity)
in the IT system; it can be seen as a clean process-centric IT system.

BPMS products of the pure category do not have application infrastructure ser-
vices as a strong area. This includes services such as transaction handling, messaging,
and security. Some of the products may rely on application servers for this. That is,
they may work along with an application server to enable these capabilities. These
products would have to keep building more capabilities in supporting human par-
ticipants in the process better.

12.4  Best Practices
Given below are some best practices for architecting IT systems based on PCA.
Many of them are also the critical success factors for PCA in the enterprise. Some
of these, especially the ones involving organizational change, would become chal-
lenges in the PCA approach.

	 1.	Organization level change—Organizations need to have process thinking
embedded within. This plays an important role in the success of process cen-
tric architectures. Process-thinking needs to be encouraged and it should
become part of the work culture. This will also gradually lead the enterprise to
be organized along processes instead of functions. Siloed thinking and busi-
ness function–oriented thinking needs to be discouraged. Process-oriented
roles (such as process owners) need to be created and supported.

Implementation Considerations  ◾  293

	 2.	BPM—The architecture effort and implementation is best done under the
overall context of BPM. It should go hand in hand with BPM program for
more effectiveness and impact. In the context of BPM, enterprise needs to
create an organizational structure to support BPM and process-centric
approach. This includes aspects such as skills and training, culture, decision-
making, reward systems, creation of teams (cross-functional), collaboration,
and governance.

	 3.	Process governance—This is very important to ensure consistency of system
architecture efforts. The governance board that is established will direct the
vision of the architecture. The specific process-centric architecture will be
part of a larger enterprise process architecture vision. The work needs to be
driven by business and be actively supported by top management, especially
since business processes are cross functional in nature.

	 4.	Responsibilities and roles—Create roles that would take up different respon-
sibilities at the process level. There ideally needs to be a process owner role
that owns the overall responsibility for a business process. The process owner
owns the process and is accountable for the process throughout its life-cycle
and its performance goals. A process manager would be another important
operations role. This role would have the responsibility for the day-to-day
operation of the business process—this includes monitoring the process exe-
cutions and taking actions at the process levels such as work assignment.

	 5.	Change in work style and culture—At a business operation level, this means
thinking differently about how work should be carried out. Conventional
batch mode of work where business operations in a process are always per-
formed in batch might not work well for process performance. For example,
a bunch of purchase orders are being processed together, where the orders
are piped through each step in the process where a specific action is taken on
them (this action could be enrichment of order with more data, evaluation,
review, correction of error data, and so on). Each purchase order waits for
getting processed along with others at each step, though it could have been
processed independently of the others. A complex order, for example, could
hold up another order that is simple for no fault of the simple order. Batch-
mode work styles like these create (often) unnecessary dependencies between
process instances (i.e., trades, orders, requests, applications, etc.) and form
avoidable processing bottlenecks. Often batch mode working style is justified
by giving scalability and productivity benefits as reasons—It might appear
efficient from the specific business operation’s (step) perspective, but in the
end-to-end process view, the overall process might actually become very inef-
ficient and suboptimal. It is best to optimize the overall process and have
the processes run in parallel. It is important to have an end-to-end focus on
processes and the relation the specific process has to other processes in the
enterprise.

294  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

	 6.	Scope—As far as the scope of the work is concerned, it is recommended to
not go for a big-bang approach, where the work covers all the lines of busi-
ness at one go. Going for a big-bang approach would have a bigger impact
on the organization and would become very difficult to manage. If PCA is
being adopted for the first time in the enterprise, it is best to start small with
a single business process that is related to say one product or service or line
of business of the enterprise. This can even be a pilot project. Once the IT
system for that specific process is architected and implemented, the lessons
learnt and the benefits demonstrated can help in further architecting and
implementation of iterations, where an increasing number of processes can be
covered. PCA need not always be done as a full enterprise level exercise. It can
even be applied to a relatively small application in the enterprise such as for
example, an aged open items report generation application or intranet pub-
lication approval application (e.g., for putting up content on the company’s
intranet, for knowledge sharing documents produced internally). The small
application also gains the benefits of process-centricity and it can integrate
with other processes in the enterprise as required in the future without under-
going many changes.

	 7.	Process design—It is very important to get the process design right. That
would directly determine how well the business process would perform.
Business roles (such as process analyst and business analyst) must drive the
process design activity. Business process design principles should be applied
during process design for arriving at sound process models. In this context,
it often makes sense to consider best practice business process models from
industry or other bodies. While looking for reference models, it is important
to differentiate between standard process models and best-practice process
models. What we want to use are best-practice processes and not necessarily
standard processes. Standard process models for industries can get created
by extracting common practices from across enterprises within the industry
to act as a reference for the industry—they do not really have to be best
practices.
	 Process definitions should be done based on standards and tools that sup-
port process modeling standards should be used. The IT system’s architect
should also get involved in the process design, however, only in a secondary
role—the business role is the primary one in process design.

	 8.	Activities—While designing the business process, much attention must be
paid to the granularity of the activities. Activities must be at the right level of
granularity for the process. This would give maximum benefits. The design
should always be top-down starting from the top level business process.

	 9.	Infrastructure—The system needs to get the right infrastructure in place.
That is important to enable other qualities that might be relevant for
the system such as efficiency and reliability. As much as possible, known
solutions and architectural patterns should be used to meet these quality

Implementation Considerations  ◾  295

requirements. Using a BPMS product along with its own or a separate
application server would help in this and is recommended. Throughout
the architectural design, detailed design, programming, and testing stages
of the IT system, it needs to be confirmed that the quality requirements
are being met. Process deployment in production should happen only after
thorough testing for this.

			 If any packaged application is being used in the IT system, it should be
loosely coupled by creating an XML based interface on top of the APIs
provided by the package to provide a level of abstraction. This interface can
also be a web service or an adapter that is available off-the-shelf or even cre-
ated locally. The interface will act as a wrapper. This same approach can be
applied to a legacy application too. In the future, the application (whether
legacy or package) can be replaced with another one without impacting the
business process.

	 10.	Testing—As part of the implementation of the PCA architecture, system
testing needs to be expanded to cover the process level abstraction too. The
services corresponding to the individual activities in the process should be
tested involving their individual modules. This is to ensure that within the
module, the service works as per its specific defined requirements and per-
forms its specific business function. Integration testing should then be done
integrating these services. This involves testing the entire process flow, mak-
ing the process execution go through different paths defined in the process,
and covering all the possible paths the process can take at run-time. In the
process testing, branching conditions, branches, parallel paths, and joins
should be tested for functionality. The overall process should then get tested
for the quality attribute requirements such as performance that the system is
expected to satisfy.

12.5  Practicalities in Architectural Design
Here, we discuss some of the practical issues faced while designing archi
tecture of IT systems especially based on PCA and the appropriate ways to
address them.

12.5.1  Some Common Situations

12.5.1.1  Recurrent Tasks

The design situation may be something like this:
Users require an application that is essentially for scheduling tasks, for work by

users, and for tracking the progress of those tasks. The tasks can be iterative too and
each iteration is one separate instance.

296  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

Approach
Such situations may be relevant in organizations where the nature of work is more
human intensive, for example, in a business process outsourcing (BPO) company
that provides outsourced services to customers. The effective approach is to go
above the task specificity in the requirement and think process support. There is a
need to resist the temptation to: design this system specifically as an application for
managing tasks, or simply directly use a scheduler product and build the applica-
tion around it, though that is what it might appear to be.

Architect the system for the processes that those tasks are part of. Use a
BPMS for implementation of the system. Implement the entire task scheduling
as scheduled activities in the process, implement iteration as iterative activities.
These are natively and generically supported by the BPMS. Creating process
instances, task instances for user (i.e., activity instances), recurrence of tasks
(timed activities or scheduled activities, and iteration), and tracking of the tasks
(activities in process instances) are all easily and naturally taken care of by
the BPMS.

12.5.1.2  Making Task Nodes Work

The design situation may be something like this:
This new application (NewApp) involves workflow and another existing web

application. How do we let a user see his UI from the web application when the
time for the user’s carrying out of the activity in the workflow comes, that they are
responsible to perform?

Approach
Use a BPMS. Architect the application starting with the process component.
Specify the process logic and the branch conditions in the process model.
Specify the user tasks as user activities in the process. In the process modeler,
map the user activities to their respective UI screen identifiers. For example,
for a user activity named “approve customer application” the page might be
at http://myapplicationdomain/approve.jsp, if we assume a JAVA environment.
Mention an identifier to that UI, say approve.jsp, in the user activity in the pro-
cess model. When the user logs in to the web application, provide the user with
a list of tasks the user has to perform. This will be a set of process instances that
are currently at the approve activity. NewApp can present this list by querying
the BPMS process engine (use BPMS provided API for that) for the process
instances having activities (tasks) assigned to this specific user or unassigned to
any one but assigned to their role. In this work list, against each item, provide
a link to the web application (existing) page for that action, http://myapplica-
tiondomain/approve.jsp here. This can be got from the previous querying for
the work list itself. Or, NewApp can also maintain a configuration of mappings
between the UI identifier and the full URL (at least the domain part of the URL
and the first few levels in it, e.g., http://myapplicationdomain) for the existing

Implementation Considerations  ◾  297

application page corresponding to that UI. Now, when the process instance is at
the approval activity, the user’s work list will show this in the NewApp screen/
page and the user can click on the link shown in the list against this specific
instance and that will bring up the web application screen for approval where
the user can perform the approval action.

12.5.1.3  Audit Data Capture

The design situation may be something like this:
The business manager wants the transactional details from an existing applica-

tion be captured in a database that would be later used for audit reporting.

Approach
Instead of changing the code in all the points of the application where the busi-
ness entity is updated, consider re-architecting the application as a process-
centric one using a BPMS for the process layer. It will serve two purposes. One,
the audit data would automatically become available from the process repository
automatically maintained by the process engine. This will contain all informa-
tion about each step in each process instance, including when it started and when
it completed and who performed the action. This data can easily be queried by
the audit reporting application any time. Second, the application becomes now
more flexible to business changes in the future. It would be better aligned to the
business process.

12.5.1.4  Batch Processing Platform

The design situation may be something like this:
A new platform is required for heavy batch processing of trade data in a bro-

kerage firm. Trade data might come from different sources including external
systems, in heavy volumes. Processing is rules-heavy and it involves, receiving
the documents (or files) with data, checking the data and validating it, accepting/
rejecting for further processing, adding all other relevant data required to do
transactions, and sending them to a different system for back-end transaction
operations. Validation work and other work are heavily based on rules—some of
them are generic, in that the rules apply to all the trade records received in the
input file, while some other rules are specific to only some type of records or to
only specific data items (e.g., from a type of customer). There are rules that apply
before the system decides to accept or reject a trade record. What is the best suitable
architectural approach here?

Approach
Looking at the explicit requirements we might be inclined to think in a rules-focused
way, since this is a rules-heavy computation. And, it is intuitive to suggest a rules
engine centered architecture for the trade platform. However, a process-centric
approach suits this scenario better because: There is a clear and well-defined process

298  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

that the platform is required to perform; there is a strong A2A flow involved; this
platform needs to be flexible to accommodate changes to the process in the future
depending on new trades introduced or changes in nature of trades; it involves down-
the-line processing by other systems in the enterprise and so it needs to direct (route)
the trade to the right system based on logic that can be variant; the subsequent sys-
tems involved here also take part in the process and thus can be included in the
process scope, process flow, and flow management; it needs to be able to handle huge
volumes of trades and for that it is more appropriate to have concurrent process-
ing utilized than processing a set of records sequentially in batches, one step at a
time; while most of the trade records would get processed automatically, there may be
exceptions related to processing of some trades and a brokerage clerk would have to
handle those trades manually.

A rule engine is very much recommended here, still consider seeing this from
the process perspective first and define the process. This would be a STP type
process—it will have only system activities and will be fully automatic. Define
exception flows to the process where any particular trade that faces an exception in
the execution of the process is routed automatically to an appropriate user for man-
ual handling. Define each step of processing as an activity and associate the activity
with the appropriate rule in the rule engine. Define all the rule logic in business
friendly notation for each of them (e.g., validation rules, accept/reject rules, data
addition) as a separate rule in the rules engine (one rule for each of these steps) and
maintain them there. Rule engine gives the flexibility for the rules. Include activi-
ties into this process for the transactions to be done by other back-end systems and
define the flow including that. Specify the routing logic as process level rules (deci-
sion points) in the process to take care of routing the trade being processed to the
right back-end system activity for transaction processing. All this makes the process
flexible and explicit in the new trade platform. This also enables reuse of the process
in some ways for other processing services of the brokerage firm.

Make the process get triggered upon the arrival of each file with trade data
from the external system. Use a BPMS for handling the processes. There can be an
overall process instance initiated for a batch of trades (one file) and one individual
process instance for each trade record in the file—thus the trades can be processed
concurrently by running these individual process instances concurrently in the
BPMS process engine. This improves the efficiency (performance) of the system,
given the volumes to be handled. As an add-on benefit, the system would also sup-
port easy monitoring of the process by managers because of the process-centricity
and usage of BPMS.

12.5.1.5  Workflow Application

The design situation may be something like this:
A new workflow application needs to be built. Or it may read “build a task

approval and/or reject workflow for business users with a dashboard”

Implementation Considerations  ◾  299

Approach
Consider this as a requirement for a process-centric architecture-based system and
not just a web application that would support a specific workflow. The difference
in philosophy here is, while we are going to use the new system to support the spe-
cific workflow at hand, the architecture and the components might come useful for
other processes as well. And, this change of philosophy does not mean overheads, or
additional effort or trading off any thing. The best approach would be: to pick up a
suitable BPMS; understand the workflow and model a business process for it while
also considering any P2A or A2P flows that are part of it; design activity services
such that thought is also given to the potential reuse (applicability) of them in other
processes—some part flows, such as application/document submission and approval
could very well be common across multiple workflows; provide the right granularity
to the activities so that the process does not reduce to just a taskflow that goes screen
by screen; let the process run on the BPMS and allow the BPMS to take care of
routing work from one user to another as per the process definition; you can use the
BPMS provided user interfaces (user dashboard) for letting the users see their work
items and work on those; alerts and notifications related to assigned work items are
typically supported by BPMS directly; let the BPMS integrate with the identity
management systems (user directories such as LDAP, active directory to name a few)
for authentication related to user working on their work items through this system.

12.5.1.6  Third-Party Data Integration

The design situation may be something like this:
To enable business collaboration between your enterprise and its business part-

ners there is a requirement for data sharing.

Approach
One of the options readily thought of is to integrate the data of these two organiza-
tions by exchanging data from one to another. For this, data integration approaches
such as FTP, EDI, or domain specific standard transfer mechanisms are explored,
that primarily focus on batch data transfer. The better approach instead, in this
situation is to explore a process-centric solution and through that a real-time inte-
gration. We are actually integrating not data but the business processes of two
enterprises here. Explore if the partner enterprise can expose (or already exposes) a
service (for the partner’s process) based on SOA principles that can be invoked by
your enterprise for interacting with the partner’s business process. The service can
be realized by the partner as a web service for interoperability. Then, have the busi-
ness process of your enterprise supported by systems based on PCA. In that process,
have an activity, at the right point in the flow that would invoke the service exposed
by the partner. And, if your process demands, have another activity down the line
to receive the message from the partner that the partner sends after the partner
process is completed.

300  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

12.5.1.7  Business Activity Monitoring Application

The design situation may be something like this:
Your enterprise requires a business activity monitoring (BAM) tool (build or buy)

that would provide management with snapshot of the business. There are a number
of applications (say 20) in the enterprise and the tool would need to be used by all
the applications to enable their business activity to be available for management view.

Approach
One way is to build or buy such a tool and then change all the applications to
send their business information to the tool following the tool’s requirements. This
amounts to huge data transfer and could result in redundancy and inconsistency
in data. Moreover, the information displayed to the management in the dashboard
may not be real time and not correlated properly to processes but rather to func-
tions alone. Another way, which is more effective, is to adopt BPM and move the
applications in a phased manner to PCA. Use a BPMS as the process platform for
the business processes associated with the applications. As and when applications
get migrated to BPM, use BAM capabilities provided by the BPMS for displaying
the data to management in the formats they prefer, for those applications too. This
would be a more holistic process-based view of the business activities of the enter-
prise and the BAM component of the BPMS can also send alerts based on events
that need attention of the management such as slippages in process deadlines. All
the data would not need to be specially sent by the applications to the BAM com-
ponent—so there is no code change required in them for this purpose. The BPMS
automatically would have the required data since it drives the execution of processes.

12.5.1.8 � Splitting the Responsibilities between the Specific
Application and the Process Layer/BPMS

The design situation may be something like this:
You are using a BPMS and want to realize a process through an application to

be architected on PCA. How would you take the design decision of which of the
activities in the process are to be performed by the specific application that you are
going to build and which ones need to be performed by the BPMS? The process
we have at hand is the leave application where an employee applies for leave, their
manager logs in and gets the list of leave applications to approve, the manager
then approves or rejects the particular leave application, status of the leave applica-
tion changes to approved or rejected, for an approved leave application appropriate
number days get deducted from the leave balance for the employee.

Approach
The best way to split the responsibilities between BPMS and the specific application is
to take a process focused view and use the BPMS as a technology enabler of that. Lay
out the process concerned with the sequence of activities. From the activities of the
process, identify the ones that are manual (i.e., those that are performed by humans

Implementation Considerations  ◾  301

with the use of an application provided user interface (GUI)) and ones that system
(i.e., those that are performed by system without any manual intervention). In this
case, the possible manual activities are: Employee applying for leave, and manager
approving leave. The system activities would be: Deduct number of leaves from the
employees leave balance. Changing status to approved or rejected with reasons are not
system activities or separate activities and they are part of the approve activity of the
manager. That activity should update the status and the reason.

Then for each manual activity, one or more GUI screens would need to be
designed and an application that would be providing these screens needs to
be designed if not already there. We need not have one GUI application for each
manual activity. One GUI application for leave that can present the user screen to
the employee and the approval screen to the manger is fine in this case as the manual
activities still fall within the business functionality scope of the leave application.

For each system activity, consider the activity as supported by a service. For
example, deducting from leave balance can be seen by us as one service, provided
by a leave service package. In other words, deducting from leave balance would be
one operation provided by the leave service package. Design the service interface to
take in the leave details like employee number, number of days leave requested, etc.
as input and return “OK” as return parameter. Implement the service as a business
component (ideally as a web service or EJB or .Net component). Map the values
from the previous activities to the input parameters of this service. For example,
number of leave days requested parameter value comes from the first manual activ-
ity’s (apply leave) output. Map this parameter to the input parameter number of
days leave requested of the system activity. Specify the service details in the process
in the BPMS, and the BPMS would invoke the service automatically at runtime.

The other BPM functionalities, such as assigning to the manager, would be
typically performed by the BPMS itself and not our specific application.

12.5.1.9  Existing System with a Process Engine

The design situation is as follows:
For your customer, you are required to design an IT system to support a busi-

ness process P1. However, there is an existing packaged ERP system (bought off-
the-shelf) that has a process engine (BPEL engine) with it. The process P1 has
some steps in it that involve business functions provided by this ERP system. What
options would you consider for the realization of the process infrastructure?

Approach
First, the process P1 needs to be designed keeping in mind only its own business
objectives and key performance indicators. Then for those activities in the process
that perform the business functions that the ERP system provides, design the ser-
vice interface as a wrapper over the APIs provided by the ERP system for those
business functions, since the customer has already made investments in the ERP

302  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

system. It is best to evaluate the process engine that is part of the ERP system to
see if it can suit process P1. That is, can it support the process flows defined in P1?
Does it suit the needs of the process P1 such as process monitoring, inter-process
communication, executing activities that invoke services exposed by other applica-
tions in the enterprise that might be in heterogeneous technologies? Will it support
the performance and reliability requirements of this process P1? Also ask questions
related to the IT strategy and vision—Does the organization have a vision of using
a single BPMS product for the entire enterprise (i.e., all the processes)? Does it have
a good number of packaged applications in the ecosystem? Do those applications
have own BPM engines? Or is the vision one that accommodates the coexistence of
multiple BPM engines in the enterprise, given that there might be varying process
requirements across the enterprise? What are the cost considerations?

If this evaluation gives right justification, choose to implement the process P1 using
the BPEL engine provided by it. Deploy it onto that BPEL engine and let the BPEL
engine orchestrate and manage the process. The invocation of the business functions
that the ERP system provides would now become native calls in the process.

If the customer’s IT strategy mandates the use of the BPEL engine provided
in the ERP system, then depending on this evaluation above (suitability for P1),
modify the process P1 definition (and design) appropriately to suit the support
possible in the BPEL engine provided by ERP system. This might also necessitate
changing the service interfaces or creating custom interfaces for other activities in
P1 to suit invocation from the ERP system’s BPEL engine. All this might involve
time, effort, and cost. Selecting this option could also mean slightly reduced agility
since there is dependency on the capabilities of this BPEL engine.

Depending on the evaluation, one option could be deciding to go for a separate
BPMS product that can generically support the needs of a variety of processes and
this can coexist with the BPM engine of the ERP system.

On the other hand, in new enterprises (assuming they would be smaller in size),
the best option would be to decide to go with a single BPMS for all the processes in
the whole enterprise. This would be beneficial for the future when the organization
keeps growing. This option is feasible since everything is being set up from scratch
in the organization and the impact of change is less.

12.5.2  Anti-Patterns
Here are some problem situations that are best avoided from getting created.

12.5.2.1  Screen Chaining

Situation
The process is designed and modeled at a wrong level of granularity for the activities.
Here process-centric architecture concept is wrongly applied to just achieve chaining
of screens from one application or others. Each screen (page) for the user is made

Implementation Considerations  ◾  303

a user activity in the business process model. Many of those screens would be just
single tasks that are to be performed in combination with other tasks (screens for
those tasks) within the same user activity. That is, the screen is a task and it is part
of a task flow that is defined for a specific user activity. Task flow being at a level of
granularity lower than process activities, should not ideally be made a process itself.
Using a BPMS or a process-centric infrastructure for only such a mere screen flow
chaining within an application could result in performance overheads, and would
provide only minimal benefits related to process-centricity that would not justify the
initiative put in.

The right approach here would be to look at a higher level of granularity and
model the process with user activities where each user activity is a full logical opera-
tion performed by one user in the context of the process. Model the user activity
separately as a taskflow. As part of this user activity, the user may be presented with
one or more screens that correspond to a task flow. Each screen would correspond
to one task in the task flow. The entire activity gets committed in the database only
when the user completes action on all the screens for the activity.

12.5.2.2  Huge Data Transfer

Situation
A situation arises when there is a decision taken for creating a new web services
application that is to be implemented using JEE. This service is supposed to receive
a huge file, as an attachment having a minimum size of 200 MB, from its invokers
which could be applications based on any technology platform. This would not be
a sound decision and appears to be taken with a very narrow view.

The right approach would be to look beyond the given details. Transferring
huge data like this in service calls should ring a bell in the architect’s mind. The
architect needs to look beyond this specific requirement and ask the question, what
is the real motivation for such a mechanism. The answer could most likely be, this
application is supposed to be a central place (data store) for all the data belonging to
a specific domain or function. And now, that data is spread across other applications
and is also redundantly stored in other applications. This service may be meant for
transferring this data from the other applications.

Once this is revealed, the architect can design this as a process-centric appli-
cation by considering the business process involved here. By clear separation
of concerns of process logic and application logic, each application would only
be expected to own and maintain the business data for its domain. Thus no
two applications would end up storing the same business entity’s data and there
would therefore be no need for huge data transfer between the applications. The
process would integrate the application in the context of the process and only
the key business data would be used in the process context avoiding any data
duplication. For example, in the case of a travel booking process, the book-
ing information can be with the booking application alone and the customer

304  ◾  Process-Centric Architecture for Enterprise Software Systems﻿

information can be stored and maintained in the customer application (say a
CRM package) alone.

12.5.2.3  Batch Integration with Legacy

Situation
In enterprises where there are a good number of legacy systems, especially
mainframe-based ones, it is not atypical to find some new applications created for
similar (but slightly different) business functions that are otherwise hard to support
using legacy systems alone, one of the reasons being the need to use latest technolo-
gies to achieve the function. These new systems are built on new technologies but
they get all the business data downloaded from the legacy system in batch mode as
huge files—either through periodic batch jobs or request-triggered batch jobs run-
ning in the mainframe, extracting the data from back-end database managed by
the mainframe. This data is read by the new system and stored in its own database,
thus resulting in the existence of two parallel systems for the same/similar business
function. Other problems with this approach are: applications become redundant;
maintenance becomes a major issue—repetitive logic in multiple places; data
redundancy and inconsistency, heavy load on the system resources; and time-lag
for data visibility in the multiple applications.

Process-driven integration advocated by PCA merits consideration in such situ-
ations and helps avoid the problems with batch integration. It would make the busi-
ness function that needs the data from legacy application get it by invoking a service
exposed by the legacy application, as part of an activity in the process. The service
can be a service-enabling wrapper over the legacy application, for example. This
data will be real-time data, and only that is relevant for the process instance in
question—there is no heavy data transfer involved here because this is not batch pro-
cessing. In the subsequent activity, the associated business component would use the
retrieved data and perform the required business logic on it. Also, this retrieved data
is not stored in the database separately—it is available just in the process instance.
The data remains in only one place—in the legacy system’s database.

12.6 E xercise Questions
	 1.	What are some process types that you have come across?
	 2.	Which tools would be best for implementing such processes? And why?
	 3.	Would there be a reason to go with one BPMS for the process layer for the

entire enterprise? Identify some of those scenarios.

305

Bibliography

Abrahams, P. 2004. Business process execution language in brief. IT Analysis. http://www.
it-analysis.com/content.php?cid=7086 (accessed August 17, 2008).

Allison, L. Block structured programming languages. Department of Computer Science,
University of Western Australia, Western Australia, Australia, and Department of
Computer Science, Monash University, Melbourne, Australia. http://www.csse.
monash.edu.au/∼lloyd/tildeProgLang/PL-Block/ (accessed August 15, 2008).

Arkin, A. 2002. Business process modeling language (BPML). Specification version
1.0. Business Process Management Initiative (BPMI.org). http://www.bpmn.org/
Documents/BPML-2003.pdf (accessed August 15, 2008).

Article. 2008. Architectural styles, patterns, and metaphors. Shaping Software. http://shap-
ingsoftware.com/2008/08/10/architectural-styles-patterns-and-metaphors/ (accessed
August 15, 2008).

Article. 2009. A quick look at architectural styles and patterns. InfoQ. http://www.infoq.
com/news/2009/02/Architectural-Styles-Patterns (accessed August 15, 2008).

Bass, L., Clements, P., and R. Kazman. 2003. Software Architecture in Practice. Pearson
Education, London, U.K.

Beck, K., Joseph, J., and G. Goldszmidt. 2005. Learn business process modeling basics for
the analyst. developerWorks, IBM. https://www.ibm.com/developerworks/library/
ws‑bpm4analyst/ (accessed August 15, 2008).

BPM. 2007 Conference material. 2007. Accepted papers and material. QUT, BPM 2007.
http://bpm07.fit.qut.edu.au/program/index.jsp (accessed August 15, 2008).

BPMI.org, OMG. 2009. BPMN version 1.2. http://www.omg.org/spec/BPMN/1.2/
(accessed March 15, 2009).

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and M. Stal. 1999. Pattern-
Oriented Software Architecture, Volume 1: A System of Patterns. Wiley, Chichester, U.K.

Fasbinder, M. 2007. Why model business processes? developerWorks, IBM. http://www.
ibm.com/developerworks/websphere/library/techarticles/0705_fasbinder/0705_
fasbinder.html (accessed August 15, 2008).

Fielding, R.T. 2000. Architectural styles and the design of network-based software archi-
tectures. PhD dissertation, University of California, Irvine, CA. http://www.ics.uci.
edu/∼fielding/pubs/dissertation/software_arch.htm (accessed August 15, 2008).

Gallagher, B.P. 2000. Using the architecture tradeoff analysis method to evaluate a reference
architecture: A case study. Technical Note, SEI, Carnegie Mellon University, Pittsburgh,
PA. http://www.sei.cmu.edu/library/abstracts/reports/00tn007.cfm (accessed August
15, 2008).

306  ◾  Bibliography

Green, J. 2008. An implementor’s guide to SOA. Westminster Promotions. http://www.
soaguidebook.com/chapters.html (accessed December 29, 2008).

Gruchman, G.B. 2009. The process-based view of a company—Principles and applications.
Publications, Business Process Trends. http://www.bptrends.com/deliver_file.cfm?file
Type=publication&fileName=01-09-ART-Process-BasedViewOfCompany-Guchman.
doc-final.pdf (accessed March 3, 2009).

Hall, C. and P. Harmon. 2007. The 2007 enterprise architecture, process modeling and
simulation tools report—Version 2.1. A BPT report, Business Process Trends.
http://www.bptrends.com/reports_toc_02.cfm (accessed December 17, 2008).

Harmon, P. 2003. Business Process Change: A Manager’s Guide to Improving, Redesigning,
and Automating Processes. Morgan Kaufmann Publishers, Amsterdam, the
Netherlands.

Harmon, P. 2003 through 2008. BPTrends Advisors. Publications, Business Process
Trends. http://www.bptrends.com/resources_publications.cfm?publicationtypeID=
DFFB3CC2-1031-D522-39E0E13C84A1F076 (accessed August 15, 2008).

Havey, M. 2005. Essential Business Process Modeling. O’Reilly Media, Sebastopol, CA.
IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. 2002. Business process execution

language (WS-BPEL) specs v 1.1. developerWorks, IBM. http://www.ibm.com/
developerworks/library/specification/ws-bpel/ (accessed August 15, 2008).

Information Age Feature. 2006. The assimilation of BPM. Information Age. http://www.
information-age.com/channels/business-applications/features/287051/the-assimila-
tion-of-bpm.thtml (accessed December 17, 2008).

Jeston, J. and J. Nelis. 2006. Business Process Management: Practical Guidelines to Successful
Implementations. Elsevier Limited, Oxford, U.K.

Khan, R.N. 2004. Business Process Management: A Practical Guide. Meghan-Kiffer Press,
Tampa, FL.

Kopp, O., Martin, D., Wutke, D., and F. Leymann. 2008. On the choice between graph-
based and block-structured business process modeling languages. Lecture Notes in
Informatics (LNI), Choice08:59–72. http://www.iaas.uni-stuttgart.de/institut/mitarbe-
iter/kopp/INPROC-2008-92%20-%20graph-based-vs-block-structured-modeling–
mobis08.pdf (accessed August 15, 2008).

Lublinsky, B. and M. Rosen. 2005. Enterprise integration architecture and web services.
Cutter Consortium Enterprise Architecture Executive Report 5:11.

Meservy, T.O. and K.D. Fenstermacher. 2005. Transforming software development: An
MDA roadmap. IEEE Computer 38:52–58.

Miers, D., Harmon, P., and C. Hall. 2007. The 2007 BPM suites report—Version 2.1. A
BPT report, Business Process Trends. http://www.bptrends.com/reports_toc_01.cfm
(accessed December 17, 2008).

Milner, R. 1999. Communicating and Mobile Systems: The Pi-Calculus. Cambridge University
Press, Cambridge, U.K.

Muehlen, M.Z. 2007. BPM standards tutorial. BPM Research. http://www.bpm-research.
com/2007/09/27/bpm-standards-tutorial/ (accessed August 15, 2008).

Muller, G. 2008. A reference architecture primer. Gaudí project. http://www.gaudisite.nl/
ReferenceArchitecturePrimerPaper.pdf (accessed August 15, 2008).

OASIS WSBPEL TC. 2007. Web services business process execution language (WS-BPEL).
Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (accessed
August 15, 2008).

Bibliography  ◾  307

OMG. 2006. The OMG and service oriented architecture. Object Management Group.
http://www.omg.org/attachments/pdf/OMG-and-the-SOA.pdf (accessed December
17, 2008).

Ould, M.A. 2005. Business Process Management: A Rigorous Approach. The British Computer
Society, Meghan-Kiffer Press, Tampa, FL.

Pucella, R. 2000. Review of communicating and mobile systems: The π-calculus. Northeastern’s
College of Computer and Information Science, Boston, MA. http://www.ccs.neu.edu/
home/riccardo/papers/milner-pi-calc.pdf (accessed August 15, 2008).

Rosen, M. 2006a. BPM and SOA: What kind of service does a business process need?
Business Process Trends. http://www.bptrends.com/deliver_file.cfm?fileType=publicat
ion&fileName=07%2D06COL%2DWhatServiceDoesABPNeed%2DRosen%2Epdf
(accessed December 17, 2008).

Rosen, M. 2006b. BPM and SOA: Where does one end and the other begin? Business
Process Trends. http://www.bptrends.com/deliver_file.cfm?fileType=publication&
fileName=01%2D06%20COL%20SOA%20%2DWhere%20Does%20One%20
End%20%2D%20Rosen%2Epdf (accessed December 17, 2008).

Russell, N., ter Hofstede, A.H.M., Edmond, D., and W.M.P. van der Aalst. 2004. Workflow
resource patterns. Workflow Patterns Site. http://www.workflowpatterns.com/patterns/
resource/ (accessed August 15, 2008).

Schmidt, D., Stal, M., Rohnert, H., and F. Buschmann. 2000. Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Networked Objects. Wiley, Chichester,
U.K.

Schreiner, W. 1997. Languages with contexts I: A block-structured language. Research
Institute for Symbolic Computation, Johannes Kepler University, Linz, Austria. http://
www.risc.uni-linz.ac.at/education/courses/ws97/densem/context1/ (accessed August
15, 2008).

Seshan, P. 2006a. SOA and BPM: Complementary concepts for agility. SETLabs Briefings.
http://www.infosys.com/research/publications/SETLabs-briefings-SOA.pdf (accessed
August 15, 2008).

Seshan, P. 2006b. A generic JMS listener for Apache Axis 1.x. Java Developer Journal. http://
java.sys-con.com/node/260046 (accessed August 15, 2008).

Seshan, P. and S. Goel. 2006a. Web services integration patterns for Java applications using
open source frameworks, Part 1: Implementing invoke patterns. developerWorks,
IBM. http://www.ibm.com/developerworks/java/library/ws-pattern-open1.html
(accessed August 15, 2008).

Seshan, P. and S. Goel. 2006b. Web services integration patterns for Java applications using
open source frameworks, Part 2: Implementing receive patterns. developerWorks,
IBM. http://www.ibm.com/developerworks/webservices/library/ws-pattern-open2.
html (accessed August 15, 2008).

Silver, B. 2005a. BPMS Watch: BPM and SOA: One technology, two communities. BPM
Institute. http://www.bpminstitute.org/articles/article/article/bpms-watch-bpm-and-
soa-one-technology-two-communities.html (accessed December 17, 2008).

Silver, B. 2005b. Standards and the process lifecycle. BPM Institute. http://www.bpmin-
stitute.org/articles/article/article/standards-and-the-process-lifecycle (accessed August
15, 2008).

Smith, H. and P. Fingar. 2003. Business Process Management—The Third Wave. Meghan-Kiffer
Press, Tampa, FL.

308  ◾  Bibliography

Stefansen, C., Rajamani, S.K., and P. Seshan. 2008a. A work allocation language with soft
constraints. CAiSE Forum 2008: 85–88.

Stefansen, C., Rajamani, S.K., and P. Seshan. 2008b. SoftAlloc: A work allocation language
with soft constraints. ICWS 2008: 441–448.

Web document. 2008. ISO 9126 Software Quality Characteristics. http://www.sqa.net/
iso9126.html (accessed August 15, 2008).

Weske, M. 2007. Business Process Management: Concepts, Languages, Architectures. Springer,
Berlin, Germany.

White, S.A. 2009. Introduction to BPMN. OMG. http://www.bpmn.org/Documents/
Introduction%20to%20BPMN.pdf (accessed March 15, 2009).

309

Index

A

A2A flow, see Application to application flow
Abstraction levels, 39–43, 137–139
Abstraction of process logic, 39–43, 49–50
Activities, 8–10

complex, 87, 113
manual, 9–10
simple, 87, 113
system, 10

Activity service, see Services
Adapter layer, 98–99, 147–149, 188
Adapters, see Adapter layer
Adding IT system to PCA based IT system,

162–164
Administration, 46, 74, 112, 190
Administrators, see Process administrators
Agility, 133, 160–161, 236
Allocation, 118–119, 290
Anti-patterns in PCA, 302–304
Application, 3–4, 32, 34
Application integration, see Integration
Application packages, 30
Application server, 49, 65, 147, 189, 282
Application to application flow, 63, 127,

290–291
Applications in PCA, 146–147, 160–162
Applications in PCA, example, 226–229
Applying PCA, see Approach
Approach, 150–164; see also Case study
Architecting a new system, 193–235
Architectural design, see Approach
Architectural pattern, 5–7
Architectural style, 5–7
Architecture, 4–7
As-is process, 69, 151–152, 161, 171

Asynchronous activities, 83, 92–93, 107–109
Atomicity, 8, 87, 100–101; see also Transaction
Automation, 25, 27, 50–51, 77
Automated activity, see System activities
Autonomy, 60–61

B

Benefits of PCA, 15, 129–139
Best practices, 292–295
Binding, 27, 91–93, 105–106, 172–173
BLE, see Business logic element
Block-structure, 89–90, 159, 179
Bottom-up approach, 167
BPEL engine, see BPMS
BPEL, see WS-BPEL
BPM, see Business process management;

Business process modeling
BPMS, see Business process management

systems
BRMS, see Business rules management

systems
Business activity monitoring (BAM), 190, 300;

see also Process monitoring
Business–IT alignment, 15, 38, 41, 44,

129–130
Business–IT gap, 33–35
Business logic, 14, 20–24, 39–43; see also BLE
Business logic element (BLE), 45–46, 48,

99–101
Business process architecture, 69, 150,

158, 293
Business process life cycle, 72–74
Business process management (BPM), 67–79
Business process management systems (BPMS),

27, 62–63, 70, 72

310  ◾  Index

Business process management systems (BPMS)
products, 77–78, 188

Business process modeling language (BPML),
176, 178, 183–187

Business process modeling notation (BPMN),
72, 176–178

Business process, 7–10
Business process model, 45, 81–93
Business rules, 14, 24, 39–43, 93, 126–127
Business rules layer, 46–47, 93, 126–127, 189
Business rules management systems (BRMS), 14,

35, 63, 65, 148, 154, 189, 291, 298

C

Case study, 193–283
Challenges, 292–294
Changeability, see Maintainability
Clients, 46–48, 168
Common scenarios, some, 295–302
Compensation, 87–88, 115
Complementariness, 170–173
Complexity, 60, 64, 85, 136–137
Components of PCA, see Elements of PCA
Composable processes, 60, 85, 93
Context, see State
Contexts for applying PCA, 150–151
Control for business, 130
Correlation, 92, 99, 116–117
Commercial off-the-shelf (COTS) packages, see

Application packages
Critical success factors, 292–295

D

Debugging, 190; see also Testing
Deciding to chose PCA, 150–151
Definition of PCA, 38–39
Dependencies between activities, 72, 81, 152,

157, 186
Deployment, 73, 96, 105–106
Design, see Implementing architecture
Detailed-level process modeling, 197–226,

242–244
Detailed level process model, see Executable

process model
Dynamic view, 47–48, 145

E

EAI type processes, 288–289
Enterprise application integration (EAI), see

Integration

Event-driven architecture (EDA), 66
Enterprise JAVA Beans (EJB), 24, 41–42,

146–147, 183
Elements of PCA, 81–101
Embodiment of PCA, 143–150, 282–283
Enterprise software systems, 3–5; see also

IT systems
Error handling, 110–112
Enterprise service bus (ESB), 148, 173,

188, 192
Evolution of IT architecture, 17–35
Example, see Case study
Exception handling, see Error handling
Executable process, 55–57, 59–60, 85
Executable process model, 89–91, 158– 160,

242–244; see also Detailed-level
process modeling

Execution, 74, 106–121
Existing system, see Re-architecting, existing

system
External systems, 38–39, 46, 98

F

Flexibility, see Maintainability
Flexibility of processes, 52–53

G

Governance, process, 70, 293,
Granularity, 100–101, 137, 155–157, 196–197,

294
Granularity, SOA, 162, 167–172

H

High-level business process model, 88, 156–158
Hibernation, 87–88, 95, 121, 146
Hierarchy, see Process hierarchy
Human participation in processes, 117–120,

290; see also User activities

I

Identity management, 290, 299
Implementation considerations, 285–304
Implementing architecture, 50, 145–147,

171–172, 190–192; see also Case study
Implementing business logic, 188–189; see also

BLE; Case study
Infrastructure, 188–190, 289–292; see also

Implementation considerations

Index  ◾  311

Information technology (IT) architecture, 4
application server, 24
batch processing, 19
client–server, 21
CORBA, 23
database management system (DBMS), 18
data processing, 18–20
distributed computing, 23–24
mainframes, 18–19
mini systems, 20
model-view-controller, (MVC), 24, 40
open systems, 21

Information technology (IT) system
architecture 5–7

Information technology systems (IT systems),
3–6

Instance, see Process instance
Integration, 31–33
Integration in the context of PCA, 61–63,

121–123, 127, 131–133, 162–164
Interaction between processes, 57, 85
Interaction between process layers, 187
Interaction patterns, services, 107–110
Interoperability, 32, 44, 61, 133
Isolation, 54–55
IT systems, see Information technology systems

J

Java messaging service (JMS), 183, 187, 199,
201, 234

L

Layers, 6, 41–43, 65–66
Lean, 75–76
Legacy, 31, 122, 149–150, 172
Legacy applications, see Legacy
Legacy components, see Legacy
Life-cycle stages for a process instance, 120–121
Logical view, 44–47
Long-lived processes, see Long-running

processes
Long-running processes, 88, 289

M

Maintainability, 44, 64–65, 85, 134, 156, 161
Management processes, 135
Manifestation of PCA, see Embodiment of PCA
Manual activities, see User activities
Mobility, 58–59, 85–86, 91–93, 117

Modeling in PCA, 151–160, 194–203,
239–244

Mergers and acquisitions (M&A), 131–132
Model driven architecture (MDA), 63–65
Model-view-controller (MVC) and PCA,

65–66

N

New system, see Architecting a new system
Nonfunctional requirements, see Quality

attributes
n-Tier, 22–24, 40–43, 65

O

Operational processes, 79, 135
Operations, see Administration

P

P2A flow, see Person to application flow
Packaged applications, see Application

packages
Packages, see Application packages
PCA, see Process-centric architecture
Person to application flow, 63, 127, 299
Person to person flow, 63, 127, 290
P2P flow, see Person to person flow
Process-centric architecture (PCA)

benefits, 129–139
BPM, 71–72
concept, 37–65
handling application packages, 122, 146,

172, 236, 288–289, 291–292
introduction, 13–15
motivation, 37–38 (see also Evolution of IT

architecture)
Practical aspects, 295–304
Principles of PCA, 48–60
Process administrators, 74, 78; see also

Administration
Process analysis, 69, 74
Process analyst, 7, 25, 60, 70, 72–74
Process analyst and modeling, 152, 156–158,

294
Process as a service, 169–170
Process definition, 53, 55, 81–82, 89–91
Process design, 72–73, 136–137, 156–158
Process-driven integration, 61–62, 123, 170,

304; see also Integration in the
context of PCA

312  ◾  Index

Process engine, 73, 143–145; see also BPMS;
Process server

Process hierarchy, 136, 155, 158; see also
Business process architecture

Process improvement, 69–71, 74–76
Process instance, 47–48, 54–56, 87, 91–92
Process layer, 41–43, 45, 48, 94–99
Process manager, 60, 74, 76, 149, 190, 293
Process mobility, see Mobility
Process model, see Business process model
Process monitoring, 69, 74, 110, 149, 190
Process optimization, 69, 73–74, 151–152
Process owner, 70, 78, 158, 292–293
Process parameter, 82–84, 88, 91, 94
Process programming, 59–60
Process properties, see Process parameter
Process redesign, 69, 76
Process repository, 98–99, 146
Process server, 25, 145, 147–148, 188, 231,

285–292
Process simulation, 69–70, 73, 152
Process thinking, 15, 51–52, 71, 292
Pure-play BPMS, 292

Q

Quality attributes, 5, 43–44, 294–295

R

Realizing the architecture, see Implementing
architecture

Re-architecting a system, case study,
235–283

Re-architecting, existing system, 160–162;
see also Re-architecting a system, case
study

Receive activities, 83, 91–92, 98, 116–118
Receive type activity; see Receive activities
Repository, see Process repository
RESTful web services, 191–192
Reuse, 26, 57–58, 60, 130–131
Roles, 61, 70, 82–85, 88, 93; see also

Allocation
Rule activity, 93, 126–127; see also Business

rules
Rule engine, see BRMS
Rules-centric processes, 286–287
Rules, see Business rules
Run-time, see Execution

S

Scalability of approach, 134–135
Services, 53–54, 58, 83, 86, 90–93; see also

BLE; SOA
Services identification, 152–153, 171–172,

244–261
Short-lived processes, see Short-running

processes
Short-running processes, 88, 114, 288–289
Six sigma, 74–75
Service-oriented architecture (SOA)

activities, for, 53–54
introduction, 26–27, 166
PCA, relationship, 65, 153, 155, 165–173
web services, relation, 27

SOA, see Service-oriented architecture
Simple object access protocol (SOAP), 25–26,

146, 148–149, 176, 183, 187, 191–192
Standards, 175–188
State, 83–84, 87–88
Stateful, 87
Stateless, 87
Straight through process (STP), 287–288
Structure, 44–47
Struts, 155, 189
Sub process, 60, 85, 93, 97
Supporting business using IT, traditional,

27–29
Synchronous activities, 83, 92–93, 107–109
System activities, 9–10, 35, 83, 91–92

T

Technologies, 188–192
Testing, 295
To-be process, 69–70, 73, 151–152, 156
Tools, see Technologies
Top-down design, 152–156
Transactions, 87, 91, 112–115, 187; see also

Compensation
Types of business processes, 285–289

U

UI layer, see User interface
Unified modeling language (UML), 190
Uniqueness of processes, 12–13
Universal description discovery and integration

(UDDI), 26–27, 179, 187

Index  ◾  313

User activities, 9–10, 34, 83–85, 92–93, 101
User interface (UI) layer, 7, 9, 21, 38–39, 46,

101–102
User participation in processes, see Human

participation in processes
Users, see Roles

W

Web server, 23–24, 148–149, 189
Web services, 25–27, 176, 179, 187–189,

191–192, 231
Web services business process execution

language (WS-BPEL), 176–177,
179–183

Web services description language (WSDL),
26, 152, 159, 176, 179

Work allocation, see Allocation
Workflow oriented processes, 287
Workflows, 29–30, 35, 70, 124–126; see also

BPM
PCA in, 62, 287, 290, 298–299
workflow management systems (WFMS),

30, 34–35, 63, 290
Workflow XML (Wf-XML), 176, 187

X

XML process definition language (XPDL),
176, 178

	Front cover
	Part I: The Process-Centric ArchitectureParadigm
	Chapter 1: Introduction
	Chapter 2: Evolution of IT Architecture
	Chapter 3: Concept of Process-Centric Architecture
	Chapter 4: Business Process Management
	Chapter 5: Components of PCA
	Chapter 6: Process Execution
	Chapter 7: Benefits of Process-Centric Architecture
	Part II: Architecting IT Systems, The Process-Centric Style (Designing PCA)
	Chapter 8: The Approach
	Chapter 9: SOA for Services
	Chapter 10: Standards andTechnologies
	Chapter 11: Case Study—Architectural Design Applying PCA
	Chapter 12: Implementation Considerations
	Bibliography
	Back cover

