
Lecture Notes in Computer Science 5569

Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Alfred Kobsa

University of California, Irvine, CA, USA

Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell

Stanford University, CA, USA

Moni Naor

Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland

C. Pandu Rangan

Indian Institute of Technology, Madras, India

Bernhard Steffen

University of Dortmund, Germany

Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos

University of California, Los Angeles, CA, USA

Doug Tygar

University of California, Berkeley, CA, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

Marco Bernardo Luca Padovani

Gianluigi Zavattaro (Eds.)

Formal Methods
for Web Services
9th International School on Formal Methods for the Design

of Computer, Communication, and Software Systems, SFM 2009

Bertinoro, Italy, June 1-6, 2009

Advanced Lectures

13

Volume Editors

Marco Bernardo
Università di Urbino "Carlo Bo"
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: bernardo@sti.uniurb.it

Luca Padovani
Università di Urbino "Carlo Bo"
Istituto di Scienze e Tecnologie dell’Informazione
Piazza della Repubblica 13, 61029 Urbino, Italy
E-mail: padovani@sti.uniurb.it

Gianluigi Zavattaro
Università di Bologna
Dipartimento di Scienze dell’Informazione
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: zavattar@cs.unibo.it

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2.4, H.3.5, D.3.1, F.4, H.3.5

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743

ISBN-10 3-642-01917-X Springer Berlin Heidelberg New York

ISBN-13 978-3-642-01917-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12676064 06/3180 5 4 3 2 1 0

Preface

This volume presents the set of papers accompanying the lectures of the 9th
International School on Formal Methods for the Design of Computer, Commu-
nication and Software Systems (SFM).

This series of schools addresses the use of formal methods in computer science
as a prominent approach to the rigorous design of computer, communication, and
software systems. The main aim of the SFM series is to offer a good spectrum
of current research in foundations as well as applications of formal methods,
which can be of help for graduate students and young researchers who intend to
approach the field.

SFM 2009 was devoted to formal methods for Web services and covered sev-
eral aspects including choreography, orchestration, description techniques, in-
teraction, synthesis, composition, session types, contracts, verification, security,
and performance.

This volume comprises eight articles. Bruni’s paper overviews some of the
most recently proposed abstractions in the setting of process calculi tailored to
the well-disciplined handling of issues such as long-running interactions, orches-
tration, and unexpected events. Van der Aalst, Mooij, Stahl, and Wolf provide
some foundational notions related to service interaction and address in a Petri
net setting challenges like how to expose a service, how to replace and refine
services, and how to generate service adapters. The paper by Marconi and Pi-
store presents a survey of existing approaches to the synthesis of Web service
compositions, a difficult and error-prone task that requires automated solutions.
Vasconcelos’s paper illustrates a reconstruction of session types in a linear π-
calculus where types are qualified as linear or unrestricted, together with an
algorithmic type-checking system. Carbone, Yoshida, and Honda explore two
extensions of session types to interactional exceptions and multiparty sessions
in the presence of asynchronous communications. Padovani’s paper discusses a
set-theoretic semantics of contracts, which is employed for defining a family of
equivalence relations that can be effectively used for discovering and adapting
Web services implementing specific contracts. The paper by Bravetti and Za-
vattaro also focusses on contracts by following the idea of designing a service
system through the description of the behavior of each of its participants and
then instantiating such participants by retrieving services exposing contracts
that conform to the given behaviors. Clark, Gilmore, and Tribastone introduce
quantitative methods for analyzing Web services with the goal of understanding
how they will perform under increased demand or when asked to serve a larger
pool of service subscribers.

We believe that this book offers a comprehensive view of what has been done
and what is going on worldwide in the field of formal methods for Web services.
We wish to thank all the speakers and all the participants for a lively and fruitful

VI Preface

school. We also wish to thank the entire staff of the University Residential Center
of Bertinoro for the organizational and administrative support. Finally, we are
very grateful to the University of Bologna, which kindly provided sponsorship
for this event under the International Summer School Program.

June 2009 Marco Bernardo
Luca Padovani

Gianluigi Zavattaro

Table of Contents

Calculi for Service-Oriented Computing . 1
Roberto Bruni

Service Interaction: Patterns, Formalization, and Analysis 42
Wil M.P. van der Aalst, Arjan J. Mooij, Christian Stahl, and

Karsten Wolf

Synthesis and Composition of Web Services . 89
Annapaola Marconi and Marco Pistore

Fundamentals of Session Types . 158
Vasco T. Vasconcelos

Asynchronous Session Types: Exceptions and Multiparty Interactions . . . 187
Marco Carbone, Nobuko Yoshida, and Kohei Honda

Contract-Based Discovery and Adaptation of Web Services 213
Luca Padovani

Contract-Based Discovery and Composition of Web Services 261
Mario Bravetti and Gianluigi Zavattaro

Quantitative Analysis of Web Services Using SRMC 296
Allan Clark, Stephen Gilmore, and Mirco Tribastone

Author Index . 341

Calculi for Service-Oriented Computing⋆

Roberto Bruni

Dipartimento di Informatica, Università di Pisa

bruni@di.unipi.it

Abstract. It is widely recognised that process calculi stay to concurrent

computing as lambda-calculus stays to sequential computing; in fact, they lay

abstract, rigorous foundations for the analysis of interactive, communicating sys-

tems. Nowadays, the increasing popularity of Service-Oriented Computing (SOC)

challenges the quest for novel abstractions tailored to the well-disciplined han-

dling of specific issues, like long running interactions, orchestration, and unex-

pected events. In fact, these features emerge neatly in most SOC applications

and need to be studied as first-class aspects, whereas they would be obfuscated

if dealt with by sophisticated encoding in traditional process calculi. This paper

overviews some of the most recent proposals emerged in the literature, point-

ing out their main characteristics and presents in more detail one such proposal,

called CaSPiS, by providing several examples to give evidence of its flexibility.

No prior acquaintance with process calculi is assumed, indeed a gentle introduc-

tion to their basics is provided before the more advanced material be presented.

1 Introduction

Service-oriented computing has been one of the latest trend in the IT community, find-

ing in Web Services (WS) technology its major realisation. Services are autonomous

computational entities, that are developed separately, loosely coupled, globally avail-

able over a widely distributed network in a platform-independent way, and not fully

reliable. Service computing consists of assembling services in well-engineered ways to

form complex open-ended applications, and this must be done in a highly dynamic way,

possibly on demand. To this aim, it is essential to find suitable abstractions to describe

services, the so-called service descriptors, to be published in public registries. Such

registries can be queried by other services and applications to locate those services that

best match certain requirements, yielding a brokering architecture. When satisfactory

matches are found, then the located services can be dynamically linked and invoked.

Therefore, service engineering has to do with the development of methodologies, tech-

niques, formal methods and tools able to guarantee a safe service composition, in the

sense of being able to provide some strong guarantees on such dynamic, open-ended

applications by applying some static or semi-static analysis.

WS technology has established de facto standards for naming schemes and service

access (URI, URL), service descriptors (WSDL and BPEL in UDDI registries), commu-

nication protocols (SOAP over HTTP, TCP/IP and SMTP) and message format (XML)

⋆ Research supported by the Project FET-GC II IST-2005-16004 S and by the Italian

FIRB Project T..

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 1–41, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

2 R. Bruni

over the web. Existing infrastructures already enable providers to describe web services

in terms of their interfaces, access policies and behaviour, and to combine simpler ser-

vices into more structured and complex ones. However, some research and solid founda-

tions are still needed to move WS technology from skilled handcrafting to an engineered

practice, a step where formal methods must play a fundamental role. For example, it has

been shown that the lack of unambiguous semantics of BPEL has led different BPEL

engines to exhibit different behaviours under the same circumstances [43].

Research on formal methods for SOC can be roughly separated in two main strands,

both equally worth the effort: one dedicated to establishing the missing theoretical foun-

dations of state-of-the-art technologies, so to fix rigorous semantic and logic frame-

works for the analysis and verification of SOC and WS systems; another one aimed to

rethink the design and development of next generation technology, by understanding

the key distinguishing features of SOC, assessing the necessary bits of theory for them

in technology agnostic terms, and paving the way to their well-disciplined engineering.

In both cases, the mathematical models and tools from the literature that seem to be

particularly suited are those coming from concurrency theory, ranging from workflow

like models like Petri nets, to Graph Transformation systems and process calculi.

As suggested by the title of this contribution, we shall focus on the use of process

calculi for modelling SOC systems. This choice is motivated by the more natural way

in which process calculi can accommodate for SOC features such as open-endedness,

dynamicity, compositionality, interaction and event handling w.r.t. the other afore men-

tioned models. Moreover, we shall favour the second strand of research outlined above,

trying to distill some key aspects of SOC together with a small set of primitives associ-

ated with them and to expose some of the main causes (motivation) and consequences

(benefits) of our approach.

Due to the particular nature of this volume, which contains the proceedings of a

summer school, and the audience to which this paper is oriented, which for the most we

assume to consist of young computer science researchers, we have decided to structure

this paper as a tutorial, so that no prior acquaintance with process calculi is assumed

on the reader. Being worried that the more expert readers can find some arguments of

our survey not dealt with at the sufficient levels of details for their taste, we added,

whenever necessary, suitable links to the more advanced papers and texts where the

technicalities are exposed in their full glory. Furthermore, we have put some efforts

in trying to accompany each calculus by original examples and modelling puzzles in

the hope they will provide an enjoyable reading experience by themselves, possibly

reusable as course material.

1.1 What You Will Not Find Here

The level of abstraction at which we intend to model SOC systems disregards the tech-

nologies and the implementation details, hence we are to some extent disconnected

from current WS standards. More precisely, we disregards those aspects related to the

so-called semantic web, like ontologies for classifying services, XML coding and stan-

dardisation issues. In fact these aspects can be superimposed later, on the concrete

realisation of our techniques.

Calculi for Service-Oriented Computing 3

For analogous reasons, we are not concerned with the exact ways in which services

and their descriptors are made public available, queried and located, even if some of

these issues can be reasonably encoded in the same formalisms we shall present. Instead

we handle service publication, discovery and linking in terms of name-handling á la pi-

calculus, i.e. the scope of certain service names can be restricted, new services can be

dynamically deployed and updated, their names can be communicated and extruded to

enlarge their scope, etc.

Moreover, we abstract away from non-functional aspects (like Quality of Service

and Service Level Agreement) and quantitative analysis, which also constitute them-

selves an active area of research. On the other hand, some preliminary ideas in this field

have already led to process calculi extensions that are compatible with the proposals

discussed here and we give relevant pointers to the related literature.

We also deliberately omit the exact formulation of many useful theorems (and any

proof sketch) from the literature, which we try to replace by more intuitive descriptions

of their underlying properties and consequences, at the informal level.

1.2 Aspects of Interest

The common trait of all issues we aim to encompass here is the handy, disciplined

composition of services. This includes: the possibility to extract service descriptors that

carry some behavioural information rather than mere syntactic information as those

found in WSDL documents; the possibility to carry long-running conversation between

the service caller and its callee, which are far more general than limited one-way and

request-response patterns of WS; suitable techniques for checking the behavioural con-

formance of the service to be invoked w.r.t. the application requirements; the way in

which service invocations and their outcomes can be orchestrated; the way in which the

system can foresee at the design time the actions to undergo in case some unexpected

event will happen during a conversation, like a peer abandoning a business transaction.

More precisely, we briefly discuss below different alternatives proposed in the literature

on the above topics, and outline our preferred design choices.

Orchestration and choreography: The terms orchestration and choreography were

coined to describe two different flavours of service compositions: orchestration is

about describing and executing a single view point model, while choreography is

about specifying and guiding a global model. Though the difference between the

two terms can be sometimes abused or blurred, substantially orchestration is usu-

ally associated with an executable flavour, for which a centralised orchestration

engine is responsible (although distributed engines can be also considered), as op-

posed to the fully distributed vision of choreography, usually associated with some

sort of protocol narration. Roughly, from a formal modelling viewpoint, orches-

tration is mainly concerned with governing the control and data flow between ser-

vices, while choreography is concerned with interaction protocols between single

and composite autonomous services. Our presentation shall privilege orchestration,

but out approach is compatible with the choreography perspective, as the type

systems defined to check the conformance of services w.r.t. the requirements of

the invoker share some similarities with the use of so-called contracts to express

choreographies.

4 R. Bruni

Interaction: Process calculi can exploit different forms of interactions, ranging from

shared data-space, to event-based (subscribe-notify), and message passing. We shall

rely on synchronous message passing, that is best suited for the level of abstraction

of this tutorial.

Sessions and correlation sets: When long-running conversation with services are es-

tablished, different instances of the same service can be running concurrently to

serve different requests. Therefore it is important to route interaction between the

correct pairs, avoiding any interference. Web service standards exploit the idea of

correlation sets, i.e., pre-defined subsets of the invocation parameters that are used

each time to choose the corresponding service instance (e.g., requests are routed

according to usernames). Though correlation sets offer a good expressiveness, we

argue that they might complicate static analysis, because all interactions rely on

data values. For example, applications can interfere with each other if they know (or

use by chance) the right values. A different school of thought advocates the notion

of a session as a more convenient abstraction mechanism for enclosing arbitrarily

complex interactions between peers. Session keys are data-independent and can be

created implicitly when the service is first invoked. This way, type systems can

be more easily developed to check properties like the presence of exactly one peer.

Session can come in different flavours: nested, interleaved, with delegation, used re-

cursively, dyadic, multy-party, mergeable, closeable, permeable, etc. We shall focus

on primitives for a well-disciplined use of nested, dyadic and closeable sessions.

Compensations and session handlers: Each service has full autonomy in denying a

request or abandoning a pending interaction. It is then important to rely on standard

mechanisms for programming such decisions and to handle their consequences in

a safe way. For example, the classical travel agency scenario may involve a com-

plex interaction between the customer and the travel agent, to let the service learn

the customer preferences, let the customer select one among available packages,

confirm or cancel the choice, and the service may need to invoke third-party ser-

vices to get, say, up-to-date flight or hotel information. By safe, we mean that, in

principle, the involved parties should always be able either to complete the inter-

action or to recover from errors that prevent its completion, like when a time-out

expires or when one of the third-party services unexpectedly abandon the conver-

sation because its server is overloaded. In the area of transactions, compensation

mechanisms have to do with the programming of suitable counter-actions that are

installed after a certain activity has been executed to compensate for its effects

in case the rest of the interaction cannot be completed successfully. Of course, it

is often the case that the previous actions cannot be simply undone (e.g., a sent

message cannot disappear, booking cancellation can require some fees) hence full

recovery is simply not possible. In the case of sessions, we shall consider a simple

built-in mechanism for the graceful closure of nested sessions upon the abandon

of a peer.

The outcome of the above consideration language was a new calculus, called CaSPiS

(Calculus of Sessions and Pipelines) [8], which is the main objective of this tutorial.

Calculi for Service-Oriented Computing 5

1.3 Related Work

CaSPiS has been developed inside the S project [57], as part of a larger research

effort aimed to develop core calculi for SOC at three different levels of abstraction:

(i) the service middleware level (close to current networking technologies to be directly

implementable, but sufficiently expressive to support service oriented applications),

(ii) the service description level (favouring more abstract formalisation of basic con-

cepts such as service definition, invocation, instantiation, and communication), and (iii)

the service composition level (with mechanisms for the modelling and analysis of qual-

itative and quantitative aspects of multiparty service compositions).

At the middleware level we find, e.g., the signal calculus (SC) [28]: it is based on a

flexible and dynamical reconfigurable network of components communicating via the

publish-subscribe message delivery paradigm. Sessions and message correlation are

supported through a type system [29]. This calculus revealed easily implementable (in

terms of a Java library) as well as expressive enough to support a high-level graphical

programming environment.

At the service composition level we find, e.g., λreq [3] and concurrent constraint

pi-calculus (cc-pi) [16]. The former has been exploited to support the development of

techniques for the analysis of service compositions (such as statical analysis of the

access to protected resources) within the so-called “call-by-contract” paradigm, while

the latter integrates name handling features with constraint semirings to deal more ef-

fectively with quantitative aspects of negotiations (such as the so-called service level

agreement).

CaSPiS lies at the service description level, where several other interesting proposals

are also present, which can roughly be divided in two families: correlation-based and

session-based.

The first group comprises COWS [42] (based on message-passing and stateless com-

ponents) and SOCK [17] (based on shared data spaces and stateful components). The

former can be seen as an extension of the pi-calculus with correlation-based commu-

nication mechanism and primitives for activity cancellation and preservation, while the

latter is closer to WS standards like BPEL and it includes an explicit modelling of

processes obtained as service instantiations, process memory, etc..

The second group comprises the so-called SCC-family of calculi [7, 8, 12, 20, 39],

spawned by a first proposal of a basic calculus with nested session, the Service Centred

Calculus SCC, later enriched and refined with different mechanisms for inter-session

communication, like data streaming [39], context-sensitive message passing [20], loca-

tions and dynamic multiparty sessions [12], and pipelines [8].

While the above calculi are closer to the orchestration perspective, the global calcu-

lus [21] is closer to the choreography perspective and allows for static multiparty ses-

sions, where session identifiers are modelled just as pi-calculus channel names (freshly

created and distributed to participants during the initialisation phase of the service pro-

tocol). In [6] multiparty sessions are considered, but they are required to include one

master endpoint and one or more slave endpoints, and direct communication is allowed

only between the master and any slave.

It is important to remark that communication mechanisms are somehow orthogo-

nal to sessions. In fact, while CCS-like communication [46] is the obvious choice

6 R. Bruni

when only two-party sessions are considered, in the presence of multiparty sessions

a more natural and more sophisticated alternative would be some variant of multicast

(like broadcast [27] or CSP-like interaction [33], or even some combination of different

policies [11]).

Behavioural type systems can also play a crucial measure for evaluating the various

proposals, because they offer a mean to establish the compatibility of peers [1, 6, 15, 21,

26, 30, 34, 35, 36, 39, 44]. In this sense, it is interesting to relate behavioural types and

the language independent approach based on contracts [9, 22] along the ideas in [40].

More generally, there are some interesting analogies between the way in which behav-

ioural types resemble orchestration mechanisms and contracts resemble choreography

descriptions.

1.4 Structure of the Paper

Section 2 gives some background on the basics mathematical ingredients of process

calculi, like labelled transition systems, operational semantics, structural congruence,

reduction systems, bisimilarity equivalences. We illustrate such concepts by simple and

detailed presentation of the main sources of inspiration for CaSPiS. Step by step, we go

from the basic interaction primitives of CCS, to the more advanced name handling fea-

tures of the pi-calculus, to the use of explicit sessions and to the orchestration primitives

of Orc. Section 3 introduces the main principles of CaSPiS, its syntax and reduction

semantics and some modelling examples. Section 4 relates CaSPiS with other well-

known formalisms by presenting several intuitive encoding. Some concluding remarks

are in Section 5.

2 Setting the Context on Interactive and Orchestrated Systems

2.1 CCS, Labelled Transition Systems and SOS Rules

An elementary action of a system represents the atomic (i.e., that cannot be interrupted

at the given level of granularity) abstract step of a computation that is performed by a

system to move from one state to the other.

Ordinary computational models like Turing machines, register machines, several

kinds of automata, the lambda-calculus and many imperative programming languages

all rely on basic activities like reading from or writing on some kind of (passive) storage

device or invoking a procedure with actual parameters.

Milner’s Calculus of Communicating Systems [46] (CCS) introduced a model whose

basic activities rely on some sort of handshake between two autonomous processes.

Hence, in the case of concurrent systems, actions represent activities such as sending

a message and receiving a message, exposing some alternatives and picking one alter-

native, producing a resource and consuming a resource, etc. On the one hand, when

studying one process in separation from the others it is important to observe the kind

of handshake it is willing to perform with other processes. On the other hand, when an

handshake is performed between two entities, it constitutes a special silent action that

has no further interaction capability.

Calculi for Service-Oriented Computing 7

To convince yourself about the ease of CCS in modelling concurrent systems and

communication protocols, try writing down the solution to the puzzle below, adapted

from [54], using first your favourite formalism, and then, after having learnt CCS ba-

sics, using CCS processes for modelling the various interacting entities (the light, the

special room, and the strategies followed by humans). We shall show later some bits of

the solution for the case where the light is initially on.

Exercise 1. 50 young, bright computer scientists are kept in Bertinoro until all exams

will be completed, each locked in her/his own room. Their chance to be released is

as follows: from time to time, one of them will be carried in a special room (in no

particular order, possibly multiple times consecutively, but with a fair schedule to avoid

infinite wait) and then back to her/his room. The special room is completely empty

except for a switch that can turn the light either on or off (the light is not visible from

outside and cannot be broken). At any time, if one of them truthfully asserts that all of

them have already entered the special room at least once, then they all pass the exam

and are released, but if she/he is wrong, then the chance ends and they will never pass

the exam. Before the challenge starts, they have the possibility to discuss together some

“protocol” to follow. Can you find a winning strategy when the initial state of the light

in the room is known? And if it is not?

In CCS, we assume given a set A of activities, ranged by a, and let A � { a | a ∈ A } be

the set of co-activities (disjoint from A), with a = a. The set of CCS labels is L� A∪A,

ranged by λ, and the set of CCS actions is Act � L∪{ τ }, ranged by α, where τ is the

special silent action. Then, a CCS processes P is composed via a number of primitives,

that we sketch below in an incremental way. Though the syntax may slightly vary in the

literature, we let CCS processes generated by the grammar:

P �
∑

i∈I αi.Pi | P[φ] | P1 |P2 | (νa)P | X | rec X.P

The meaning of each such process is given by a suitable Labelled Transition System

(LTS) defined by structural induction on the syntax of the process, following Plotkin’s

Structural Operational Semantics (SOS) scheme [51, 52, 53].

We recall that an LTS T = (S ,L,→) consists of: a set S of states, a set L of labels,

and a transition relation→ ⊆ S × L×S . Sometimes a distinguished initial state s0 ∈ S

is also considered. As usual, we shall write s
λ
−−→ s′ instead of (s,λ, s′) ∈→, with the

meaning that there is a transition leading from state s to state s′ and exposing label λ.

The label gives some abstract information about the nature of the evolution. For a given

label λ we denote by
λ
−−→ the binary relation { (s, s′) | s

λ
−−→ s′ } ⊆ S ×S .

Formally, in the case of CCS, the states of the LTS are CCS processes, the set of

labels is Act, and the transition relation is the least one satisfying all SOS inference

rules. When a particular process P is considered, then the initial state s0 of its LTS is P

itself and the LTS can be restricted just to the states reachable from P (after any number

of transitions). The elegance of SOS relies on the fact that few inference rules define

the LTS of any process that can ever be specified. Moreover, SOS rules allow for proofs

by structural induction, where the interaction of complex systems is defined in terms of

(the behaviour of) their components and proofs by rule induction, where a property can

8 R. Bruni

be proved to hold true for the whole LTS if whenever it holds for the premises of each

rule, it holds also for the conclusions.

The simplest process is the inactive process, written 0 and called nil: it is not capable

of performing any action. Trailing 0s are often omitted. No inference rule is needed for

0. Action prefix, written α.P, prefixes a process P by an action α: the process α.P can

perform α and then behave as P. The inference rule for action prefix is the axiom:

()
α.P

α
−−→ P

Non-deterministic choice, written P1+P2, composes two processes in mutual exclusion:

process P1+P2 can behave as either P1 or P2. The inference rules for choice are:

()
P1

α
−−→ P′1

P1+P2
α
−−→ P′1

()
P2

α
−−→ P′2

P1+P2
α
−−→ P′2

Sometimes guarded summation
∑

i∈I αi.Pi is preferred to choice, prefix (single sum)

and nil (empty sum). The corresponding inference rule is:

()
j ∈ I

∑

i∈I αi.Pi

α j

−−−→ P j

Renaming, written P[φ], renames any action α performed by P to φ(α), where φ : Act→

Act is any renaming function such that φ(λ) = φ(λ) and φ(τ) = τ. The corresponding

inference rule is:

()
P

a
−−→ P′

P[φ]
φ(a)
−−−−→ P′[φ]

Parallel composition, written P1 |P2, composes two processes in parallel: P1 and P2

evolve autonomously by interleaving their actions, but with the possibility to handshake

on complementary actions, in which case P1 |P2 performs a τ action. The corresponding

inference rules are:

()
P1

α
−−→ P′1

P1 |P2
α
−−→ P′1 |P2

()
P2

α
−−→ P′2

P1 |P2
α
−−→ P1 |P

′
2

()
P1

λ
−−→ P′1 P2

λ
−−→ P′2

P1|P2
τ
−−→ P′1 |P

′
2

Restriction, usually written P\a, but here written in pi-calculus style as (νa)P, restricts

the scope of activity a to process P: the process (νa)P is allowed to perform neither

action a nor a; however, if P comprises two parallel processes P1 and P2 that can

perform a and a, respectively, then they can still handshake on a “under” the restriction.

As usual, we abbreviate (νa1)(νa2)P by (νa1,a2)P (and similarly for three or more

consecutive restrictions). The corresponding inference rule is:

()
P
α
−−→ P′ α � { a,a }

(νa)P
α
−−→ (νa)P′

Calculi for Service-Oriented Computing 9

B1
0

in

��
B1

1

out
��

(a) LTS for B1
0

B2
0

in

��
B2

1

in

��

out
��

B2
2

out
��

(b) LTS for B2
0

B
1,1
0,0 in

�� B1,1
1,0

τ �� B1,1
0,1

in
��

out

��
B

1,1
1,1

out

��

(c) LTS for B
1,1
0,0

Fig. 1. Labelled transition systems associated with some simple buffers

It should be obvious that the above operators can define only finite behaviours. There

are several ways to introduce some form of interation and recursion. Replication, writ-

ten !P or also ∗P accounts for making an unlimited number of copies of P available.

Sometimes it is restricted to some guarded form, like !α.P or !
∑

i∈I αi.Pi. The usual

inference rule for replication is:

()
P | !P

α
−−→ P′

!P
α
−−→ P′

However, () has a couple of drawbacks: 1) it makes the transition relation not

image-finite, i.e. there are processes P that can reach infinitely many syntactically dif-

ferent processes by performing the same action α, 2) it disallows proofs by structural

induction, which is maybe a minor issue. If needed, rule () can be safely replaced

by the following two rules, that account for the possibility of one copy of P to evolve

alone, or for two copies of P to handshake:

(1)
P
α
−−→ P′

!P
α
−−→ P′ | !P

(2)
P
λ
−−→ P1 P

λ
−−→ P2

!P
α
−−→ P1 |P2 | !P

A more flexible alternative to replication is given by the recursion operator recX.P,

where X can appear as a process variable in P. The corresponding rule is:

()
P{rec X.P/X}

α
−−→ P′

rec X.P
α
−−→ P′

where {t/x} stands for the substitution of x by t. Alternatively, one can assume a set of

mutually recursive definitions ∆ = { Ai � Pi }i is available, that defines suitable constants

Ai. The corresponding rule is:

()
Ai � Pi ∈ ∆ Pi

α
−−→ P′

Ai
α
−−→ P′

To acquire some confidence with the notation, let us consider a classical and simple

example from CCS textbooks, namely the modelling of buffers with limited capacities.

Example 1. A process Bn modelling an initially empty buffer of capacity n can be de-

fined by letting:

Bn
0 � in.Bn

1

Bn
i � in.Bn

i+1+out.Bn
i−1 (0 < i < n)

Bn
n � out.Bn

n−1

10 R. Bruni

()

()

()

()

()

out.B1
0

out
−−−→ B1

0

B1
1

out
−−−→ B1

0

B1
1[φ1]

a
−−→ B1

0[φ1]

()

()

()

in.B1
1

in
−−→ B1

1

B1
0

in
−−→ B1

1

B1
0[φ2]

a
−−→ B1

1[φ2]

B1
1[φ1] |B1

0[φ2]
τ
−−→ B1

0[φ1] |B1
1[φ2]

(νa)
(

B1
1[φ1] |B1

0[φ2]
) τ
−−→ (νa)

(

B1
0[φ1] |B1

1[φ2]
)

Fig. 2. Proof of transition B
1,1
1,0

τ
−−→ B

1,1
0,1

taking Bn
� Bn

0
. The LTS for B1 is in Fig. 1(a) and for B2 in Fig. 1(b). A process P put in

parallel with Bn can handshake by performing actions in and out. If renaming φ1 maps

out to a and renaming φ2 maps in to a, then two buffers B1
0

could be composed in series

by writing the process (νa)
(

B1[φ1] |B1[φ2]
)

. The corresponding LTS is illustrated in

Fig. 1(c), where we write B
n,k
i, j = (νa)

(

Bn
i
[φ1] |Bk

j
[φ2]
)

for brevity. Figure 2 shows the

proof of transition B
1,1
1,0

τ
−−→ B

1,1
0,1

.

Exercise 2. Draw the LTS for the processes B1 |B1 and B
2,2
0,0

.

Coming back to the puzzle from Exercise 1, the light could be modelled as a buffer of

capacity one, where action in corresponds to “switch the light off” (it is initially on) and

action out to “switch the light off”. Then the scientists could agree to use the light as a

counter: 49 of them will switch the light on only the first time they enter the room and

find it off, while one distinguished scientist will count the number of times that she/he

finds the light on (and will switch it off). Since the light is initially on, the count can

start only after the distinguished scientist has switched the light off for the first time. A

first solution is therefore:

Bertinoro � (νswOff ,swOn) (LightON |C0 |S | · · · |S)

LightON � swOff .LightOFF

LightOFF � swOn.LightON

Ci � swOff .Ci+1 + swOn.swOff .Ci (0 ≤ i < 50)

C50 � freeAll.0

S � swOn.0+ swOff .swOn.S

where C0 models the counting scientist and S any other scientist. Note that a scientist

can wish to perform two consecutive interactions with the light just to leave its state

unchanged. Unfortunately, this way there is no guarantee that consecutive interactions

like swOff .swOn are executed atomically, therefore it is better to modify the protocols in

order to constrain the scientists to access the light in mutual exclusion. This can be done

by modelling the special room as a one-capacity buffer, where action in corresponds

to “enter the room” and action out to “leave the room”: only after the room has been

Calculi for Service-Oriented Computing 11

entered it is possible to interact with the light. To make the model more faithful, we also

introduce the process for representing a “waiting scientist”, i.e. a scientist who does not

need to interact any more with the light but can keep entering and leaving the room.

Bertinoro � (ν in,out,swOff ,swOn) (Room |LightON |C0 |S | · · · |S)

Room � B1

LightON � swOff .LightOFF

LightOFF � swOn.LightON

Ci � in.
(

swOff .out.Ci+1 + swOn.swOff .out.Ci

)

(0 ≤ i < 50)

C50 � freeAll.0

S � in.
(

swOn.out.WS + swOff .swOn.out.S
)

WS � in.τ.out.WS

We leave to the reader finding a solution for the case where the initial state of the

light is not known in advance, e.g. when the light is modelled as the process τ.LightON+

τ.LightOFF.

A vast literature on CCS has established different criteria for when two processes

should be considered as “equivalent”. Without entering into the details, we mention

two of the most widely used notion of equivalence, namely strong bisimilarity and

weak bisimilarity. Contrary to trace equivalence, bisimilarities can take into account the

branching structure of the transition systems, i.e. the points where choices are made. We

refer the interested reader to [31, 32] for a wider range of options.

Definition 1 (Strong Bisimilarity). A binary relation R over processes is a strong

bisimulation iff whenever (P,Q) ∈ R then for each α ∈ Act:

– if P
α
−−→ P′ then Q

α
−−→ Q′ for some Q′ such that (P′,Q′) ∈ R

– if Q
α
−−→ Q′ then P

α
−−→ P′ for some P′ such that (P′,Q′) ∈ R.

Two processes P and Q are strongly bisimilar, written P ∼ Q, iff there exists a strong

bisimulation R such that (P,Q) ∈ R, i.e. ∼�
⋃

{ R | R is a strong bisimulation }.

Strong bisimilarity is an equivalence relation and it is a congruence w.r.t. all CCS

operators, meaning that if we replace any subterm P′of P with a strongly bisimilar

term Q′ then the result is guaranteed to be strongly bisimilar to P. Notably, ∼ admits a

logical characterisation in terms of Hennessy-Milner logic, a modal logic of actions for

the analysis and verification of reactive systems [2].

Exercise 3. Prove that B2 ∼ B1 |B1 and B2 � B
1,1
0,0

.

Strong bisimilarity is coarser than LTS isomorphism, but it still distinguishes too

many processes that have essentially the same behaviour. In particular, it is often the

case that some additional silent transitions may arise or not depending on different

attitudes to modelling the same system. Weak bisimilarity, denoted by ≈, relaxes the

notion of strong equivalence by allowing to simulate a move also performing additional

12 R. Bruni

silent transitions beforehand and afterwards: roughly, letting →∗ denote the reflexive

and transitive closure of
τ
−−→ (i.e.→∗ is the relation such that P→∗ P′ iff P′ is reachable

from P via any number of consecutive silent transitions, possibly none), in the weak

case a step P
λ
−−→ P′ can be simulated via a sequence of steps Q→∗

λ
−−→→∗ Q′ and silent

transitions P
τ
−−→ P′ can be simulated via a possible empty sequence of silent steps

Q →∗ Q′. For example, B2 ≈ B
1,1
0,0

. Weak bisimilarity is an equivalence relation that

includes strong bisimilarity (in the sense that P ∼ Q implies P ≈ Q for any processes P

and Q), but it is not a congruence (because it is not preserved by the choice operator).

2.2 Pi-Calculus, Structural Congruence and Reduction Semantics

CCS is Turing powerful, and it can be used at several level of analysis, as a specification

language, as a programming language, as a description language, as a type language,

etc. However, when one wants to model interactive systems with dynamic changes in

connectivity, or networks where processes can move between physical or virtual loca-

tions, then the representation distance is quite increased and the modelling activity can

become cumbersome.

Milner, Parrow and Walker’s Calculus of Mobile Processes [48, 49, 56] (i.e., the π-

calculus or also pi-calculus) introduces a key ingredient: the possibility to communicate

channel names. This way, a process can acquire new communication links, pass its own

private channels to other processes, create fresh channels, and much more. Even if the

required extension to CCS syntax is to some extent minimal, it opened a still flourishing

research thread. Nowadays, there are many variants of π-calculus (monadic, polyadic,

synchronous, asynchronous, with mixed choice, higher-order, to name a few) each with

a consolidated theory on its own. To appreciate the key difference w.r.t. CCS, let us

consider the following puzzle, adapted from [24].

Exercise 4. 100 young, bright computer scientists are kept awake in Bertinoro until all

exams will be completed. Their chance to have some sleep is as follows: first each of

them is assigned a different id from 1 to 100 and a different room (assume rooms are

also numbered from 1 to 100); then the ids are randomly distributed one per room;

each scientist is given the possibility to open 50 rooms of her/his choice and look at

the ids contained there; if all scientists are able to find their own id, then they are all

given access to the rooms, otherwise (even if only one of them is not able to find her/his

own id) they will not be able to sleep until all exams have been given. Each scientist

is not allowed to look at the ids found in the rooms by her/his colleagues, and they are

not allowed to speak to each other once the procedure is started. Before the challenge

starts, they have the possibility to discuss together some “protocol” to follow. Can you

find an optimal strategy to let them have some sleep with highest probability?

The best possible strategy leaves almost 1/3 of probability to get some sleep. It is

based on a simple protocol, equal for all participants: the first room opened by scientist

with id i must be room i; at each stage, if an id k different from her/his own is found in a

room, then the next room to be opened is room k. The idea is that rooms and the id they

contain define a set of permutation cycles: the strategy is “winning” iff all such cycles

have length less than or equal to 50. As there can be at most one cycle of length greater

Calculi for Service-Oriented Computing 13

than 50, the probability to win coincides with the probability that such a long cycle is not

present. If modelled in CCS, the protocol should consider 100 different continuations

for each room, one for each possible id contained therein. Using pi-calculus instead, the

next room to open can be just communicated.

From the point of view of the syntax, the only primitives to be changed are action

prefixes. In the following we assume an infinite set of names N , ranged by x,y,z, is

available. The action prefixes of the pi-calculus represents either the sending x〈y〉 of a

name y along x, or the receiving x(y) of a name y along x, or the silent action τ. Some-

times the matching prefixes [x = y] and mismatching [x � y] are also considered: they

represent ordinary test for equality and inequality of names, and can be used to follow

different alternatives depending on the received names. The use of mismatch prefixes

is discouraged because their presence can violate useful monotonicity properties of

processes, like the fact that name-substitution does not decrease action capabilities of a

process.

Unfortunately, the inference rules of CCS cannot be smoothly extended to pi-calculus

and some additional care and machinery is needed. To see why, consider the straight

extensions of inference rules for action prefixes, where in the case of input one simply

guesses the name z that will be received:

()
x(y).P

xz
−−→ P{z/y}

()

x〈z〉.P
xz
−−→ P

Now we should decide which actions should be forbidden under restriction. Take the

process (νn)P and suppose P
xz
−−→ P′:

– if n � { x,z } then we can let (νn)P
xz
−−→ (νn)P′;

– if n = x then we must forbid the move;

– if n = z � x then we must forbid the move, because n is a private name that cannot

be received from the outside.

Now suppose P
xz
−−→ P′:

– if n � { x,z } then we can let (νn)P
xz
−−→ (νn)P′;

– if n = x then we must forbid the move;

– if n= z� x then what? If we forbid the move, then private names cannot be extruded

to other processes, which would be a severe limitation. If we allow the move, then

we would like to extrude the scope of n only to the processes that handshake on xn,

hence we should have (νn)P
xz
−−→ P′, where the restriction disappears from the tar-

get. On the other hand, when handshake is accomplished, we would like to restore

the restriction.

The so-called early operational semantics solves the problem by introducing dif-

ferent labels for the free output xz and the bound output x(z) (where the name z is

extruded). This in turn have several consequences on the rules for parallel composition:

some side conditions are needed in order to avoid that an extruded name captures a free

name of a process running in parallel, and two kinds of handshakes are possible, de-

pending on the kind of output that is considered: the handshake between actions xz and

14 R. Bruni

S +0 ≡ S S 1+S 2 ≡ S 2 +S 1 S 1 + (S 2+S 3) ≡ (S 1+S 2)+S 3 [a = a]π.P ≡ π.P

P |0 ≡ P P1 |P2 ≡ P2 |P1 P1 | (P2 |P3) ≡ (P1 |P2) |P3 P ≡ P | !P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P P | (νa)Q ≡ (νa)(P | Q) if a � fn(P)

Fig. 3. Structural congruence laws for the pi-calculus

xz is the ordinary one (as in CCS); the handshake between actions xz and x(z) move the

restriction (νz) on top of the parallel composition. In general, it emerges the necessity

to take into account which are the free names of a process (denoted by fn(P)) and which

are its bound names (denoted by bn(P)). In the case of pi-calculus, the only binders are

input prefix and restriction, i.e. in both x(y).P and (νy)P the name y is bound and its

scope is restricted to P. There are further consequences also on the definition of strong

bisimilarity, when the actions to be simulated depend on the free names of a process.

These caveats make the formal presentation of pi-calculus semantics more complicated

and less intuitive than CCS one, when encountered for the first time.

For the above reasons, a different style of presentation is sometimes preferred for

pi-calculus (and for many other calculi with name-handling features). It has two main

ingredients: a structural congruence relation, used to write processes in some canonical

form, easier to manipulate; a reduction relation that represents only completed interac-

tions, roughly the τ moves.

Let us consider the following syntax for pi-calculus processes:

(Processes) P � S | P1 |P2 | (ν x)P | !P

(Sums) S � 0 | π.P | S 1+S 2

(Prefixes) π � x〈y〉 | x(y) | τ | [x = y]π

The structural congruence ≡ of pi-calculus is the least congruence relation that sat-

isfies the equalities in Fig. 3 plus alpha-conversion of bound names.1 The structural

congruence allows one to rearrange the syntax of processes so that any two possible

interacting entities can be put side by side (in parallel composition). Note in partic-

ular that: the order in which we compose processes in sums should not matter; the

order in which we compose processes in parallel should not matter; the order in which

we restrict names should not matter. Moreover, the scope extrusion law (the rightmost

equality in the bottom row of Fig. 3) can broaden the scope of a restricted name before

it is communicated. It is not difficult to see that each π-calculus process P can be put in

a canonical form like P ≡ (νx1)...(νxk)
(

S 1 | ... |S n | !P1 | ... | !Pm

)

for some suitable names

x1, ..., xk, sums S 1, ...,S n, and processes P1, ...,Pm in canonical forms. Thus, all inter-

actions can now be expressed by considering only a small number of reductions over

canonical forms. Essentially there are two rules for basic reductions:

(R)
τ.P+S

τ
−−→ P

(R)
(x(y).P1+S 1) | (x〈z〉.P2 +S 2)

τ
−−→ P1{z/y} |P2

1 The laws for alpha-conversion allow for the arbitrary renaming of bound names, but avoiding

clashes with free names. In the case of pi-calculus, alpha-conversion means that for any process

P and any names x,y,z with z � fn(P) we have x(y).P ≡ x(z).(P{z/y}) and (νy).P ≡ (νz)(P{z/y}).

Calculi for Service-Oriented Computing 15

plus two rules for the so-called reactive contexts (restriction and parallel composition):

(R)
P1

τ
−−→ P′1

P1 |P2
τ
−−→ P′1 |P2

(R)
P
τ
−−→ P′

(ν x)P
τ
−−→ (ν x)P′

together with the (often implicit) rule for structural congruence:

(R)
P ≡ Q Q

τ
−−→ Q′ Q′ ≡ P′

P
τ
−−→ P′

The version we have presented is the so-called (synchronous) monadic pi-calculus.

In the polyadic case, messages can consist of (possibly empty) name tuples
y and com-

munication requires the number of transmitted values to match exactly the number of

received ones. In the case of empty tuples, input and output prefixes x() and x〈〉 are

sometimes written more concisely in CCS-like notation as x and x.

Coming back to the puzzle (Exercise 4), we consider names x1,..., x100, and model

the fact that room k contains id n by writing the process Rk �!xk〈xn〉. Then the strategy

S i of player i is defined as follows, where we use parametrised constants for simplicity:

S i � S 50
i (xi) (1 ≤ i ≤ 100)

S t
i(x) � x(y).

(

[y = xi]oki |S
t−1
i (y)

)

(1 ≤ i ≤ 100,1 < t ≤ 50)

S 1
i (x) � x(y).[y = xi]oki (1 ≤ i ≤ 100)

The guard for success can be written as G � ok1.ok2 . . .ok100.ok, and the whole

system as (ν x1, ..., x100,ok1, ...,ok100) (S 1 | · · · |S 100 |R1 | · · · |R100 |G): after finitely many

silent transitions the system will either be ready to handshake on ok, or it will deadlock

because some scientists have not been able to find their ids.

From the operational point of view, reduction semantics can be tightly reconciled

with LTS semantics, by the so-called Harmony Lemma [56]. From the observational

point of view, the situation is more complicated, because reduction semantics provides

no meaningful “observables”. Then, a meaningful abstract equivalence can be defined

in terms of some simple predicates, called barbs, which express the capabilities to emit

and receive on a given channel (but notably, neither the sent / received message nor

the target state are observed). By combining barbs and reductions (and closing under

contexts), we obtain strong and weak barbed congruences that can be shown to coincide

with the analogous congruences originated from the LTS semantics.

Example 2. We now provide evidence of the expressiveness of pi-calculus by showing

that functional programming can be recovered as a special flavour of interactive system.

This is done by encoding λ-calculus in pi-calculus [47].

We recall that λ-expressions M,N, ... can be either a variable x, the λ-abstraction

λx.M or the application M N, with obvious notions of free and bound variables. The

reduction rules (for the lazy semantics) are:

(β)
(λx.M)N→ M{N/x}

(µ)
M→ M′

M N→ M′N

16 R. Bruni

Roughly, processes can represent both “functions” and “arguments” which are com-

posed in parallel and interact to β-reduce. However, they interact by transmitting access

points to terms instead of terms themselves. The pi-calculus process that encodes a λ-

expression M is parametric w.r.t. the access point a for retrieving arguments, and it is

written �M�λ2πa . The encoding is shown in Fig. 4.

�x�λ2πa � x〈a〉

�λx.M�λ2πa � a(x,m).�M�λ2πm

�M N�λ2πa � (νm)
(

�M�λ2πm | (νb)(!b(n).�N�λ2πn |m〈b,a〉)
)

for b � fv(N)

Fig. 4. Encoding of λ-calculus in pi-calculus

In the case of a variable x, the corresponding processes sends the access point a to the

function available at x. In the case of a λ-abstraction, the process is waiting to receive

on a the argument x and the name of a further access point m for further arguments,

needed when evaluating M. In the case of application, a fresh server b is installed for

handling the requests to the argument N, together with a new access point m for the

argument of M, to which b and a are sent. The correspondence can be formalised by

showing that �(λx.M)N�λ2π and �M{x/N}�λ2π are related by the weak equivalence ≈.

Exercise 5. Write the pi-calculus processes �λx.x�λ2πa and �(λx.x)N�λ2πa . Then shows

that �(λx.x)N�λ2πa reduces after some steps to �N�λ2πa | (νb)!b(n).�N�λ2πn (which can be

shown strongly bisimilar to �N�λ2πa , as (νb)!b(n).P is clearly inert).

It is evident that pi-calculus provides a rather sophisticated framework for the study

of interaction. For example, Sangiorgi proved in his PhD thesis [55] that name mobility

can encode some sort of higher-order communication, in the sense of process mobility.

Nevertheless, the considered primitives and the overall framework are rather low-level.

As a main consequence, when the size of processes increases, it becomes harder to

acquire confidence in the correctness of the modelling. This fact opened a major re-

search strand on type systems for process calculi, where different kinds of types and

annotations are devised to offer static guarantees about the validity of certain proper-

ties, ranging from the absence of communication errors (e.g. receiving a message of

mismatched arity or type) to termination and deadlock avoidance. In particular, there

is now a renewed interest in the area of service oriented calculi around the notion of

session types, introduced about a decade ago by Honda, Kubo and Vasconcelos [35].

2.3 A Session Calculus

One of the problem with pi-calculus is that names are used to encode many different

behavioural aspects all in terms of communication. In principle, one should at least

distinguish between two different usages: the first one is concerned with some sort

of static sorting discipline, like establishing that all names transmitted on x must be

integers, or that all names transmitted on y must be names of channels where integers

can be sent, or that z can only be used for input; the second one has to do with dynamic

Calculi for Service-Oriented Computing 17

prescriptions, like protocol narrations for the peers of a session, establishing e.g. that

on channel z must first be sent an integer, then be received a name of a channel where

integers can be sent and finally be received another integer.

The idea in [35] is to structure the language so to guarantee that, at any time, each

session-like channel is shared between two peers only. This way, the protocol run on

one side can be more conveniently checked for compatibility w.r.t. the protocol on the

other side, as the two must be related by some form of duality. The key idea is to impose

a symmetric form of communication for opening a session.

Example 3. To see how it works, consider the specification of a server that repeatedly

receives values, computes some heavy scientific calculation f on it and then returns the

result to the caller. If it is written as S �!in(x).out〈 f (x)〉, then there is a big problem: if

two or more clients are around, they could intercept the result of other calculations. For

example:

S | in〈1〉.out(y1).P1 | in〈2〉.out(y2).P2
τ
−−→ S |out〈 f (1)〉 |out(y1).P1 | in〈2〉.out(y2).P2
τ
−−→ S |out〈 f (1)〉 |out〈 f (2)〉 |out(y1).P1 |out(y2).P2
τ
−−→ S |out〈 f (1)〉 |P1{ f (2)/y1} |out(y2).P2
τ
−−→ S |P1{ f (2)/y1} |P2{ f (1)/y2}

The typical way to solve this problem consists of receiving the result on a private

channel, freshly established at the moment of the call. The server is thus written like

S �!in(x,k).k〈 f (x)〉, so that each time the result will be sent to a channel specified by the

caller, which can, e.g., employ a fresh name for the goal, like in (νk)in〈1,k〉.k(y1).P1.

In the monadic case, k can be used both for sending the value and for receiving the

result: the server would become S �!in(k).k(x).k〈 f (x)〉 and the client would become

(νk)in〈k〉.k〈1〉.k(y1).P1. It can be seen that k plays the role of a session key, with dual

usages on the server and on the client. When the pattern (νk)in〈k〉.P is frequent, it can

be more conveniently written as a macro in(k).P, which is reminiscent of bound output

and is symmetric to ordinary input.

Conceptually, the calculus proposed in [35] exposes three different communication

pairs. The first consists of prefixes for session acceptance a(k) and session request a(k).

The corresponding reduction rule is:

()
a(k).P |a(k).Q

τ
−−→ P |Q

(note that alpha-conversion is exploited to choose the same name k on both sides before

applying the reduction).

Then there are ordinary input k?(x) and output k!〈x〉 on a session k (only the former

is a binder for x). The corresponding reduction rule is:

()
k?(x).P |k!〈y〉.Q

τ
−−→ P{y/x} |Q

18 R. Bruni

Finally there are primitives for delegation of a session key to a different process:

session receiving k?((k′)) and session sending k!〈〈k′〉〉 (only the former is a binder for

k′). The corresponding reduction rule is:

()
k?((x)).P |k!〈〈k′〉〉.Q

τ
−−→ P{k

′
/x} |Q

Note that after having sent k′ on k, process Q is no longer allowed to mention k′.

Sometimes a fourth communication pair is considered that involves label branching

over a finite set of predefined labels
∑

i k?li.Pi on one side and label selection k!l.P on

the opposite side. The corresponding reduction rule is:

()
j ∈ I

∑

i∈I k?li.Pi |k!l j.Q
τ
−−→ P j |Q

The remaining rules are the ordinary ones for parallel composition, restriction, struc-

tural congruence and recursion (considered in place of replication). Note that the same

sequential process can open different sessions and interleave activities within them.

Exercise 6. One young, bright computer scientists is given the possibility to pass the

exam if she is able to play chess twice against the state-of-the-art computer player

available on the web, without loosing both games. She has never played chess before.

Which strategy can she take?

The idea is essentially to let the computer AI play against itself. We can model the

web site as follows:

Chess � start(k). (Chess |k?black.B(k)+ k?white.W(k))

B(k) � recX.k?(m).k!〈m :: next(m)〉.X

W(k) � recX.k!〈next(ǫ)〉.k?(m).X

Thus, the web site let the human player choose the colour and then, depending on

such choice, either it waits for the first move of the human or it starts the game by

sending its first move. For simplicity we assume the game protocol consists of sending

and receiving the list of moves made so far. The AI will compute its best move by

exploiting some function next applied on the history of moves. Note that each game

runs in its own session k, to avoid mixing the games of different players.

The best strategy would be to open two gaming sessions, choosing to play holding

black pieces in one and white pieces in the other, and then always send on one game the

latest move performed by the computer player in the other game.

Human � start(k1).k1!black.start(k2).k2!white.P(k1,k2)

P(k1,k2) � rec X.k1?(m).k2!〈m〉.k2?(n).k1!〈n〉.X

The main advantage w.r.t. pi-calculus is that sophisticated typing disciplines can now

be defined by exploiting the different syntactic categories and primitives. To know more

on this topic see Vasconcelos’s contribution in this volume [58].

Calculi for Service-Oriented Computing 19

2.4 Orc

Quite independently from traditional process calculi as CCS and pi-calculus, where

control and data flow is always encoded in terms of interaction, Cook and Misra have

proposed a basic programming language for structured orchestration, called Orc [23,

37, 50], whose primitives meet simplicity with yet great generality. Orc neatly separates

orchestration from computation: Orc expressions e should be considered as scripts to

be invoked, e.g., within imperative programming languages using assignments such as

z :∈ e, where z is a variable and the Orc expression e can involve wide-area computa-

tion over multiple servers. The assignment symbol :∈ (due to Hoare) makes it explicit

that e can return zero or more results, one of which is assigned to z. Even if Orc looks

quite different from ordinary process calculi, it relies on hidden mechanisms for name

handling (creation and passing) and for atomic distributed termination. We recaps Orc

basics, borrowing definitions from [50]. Apart from minor differences w.r.t. the litera-

ture, we let Orc expressions be defined by the following grammar:

(Expressions) e � 0 | b | e1 |e2 | e1 > x > e2 | e2 where x :∈ e1

(Basic expr.) b � 〈p〉 | x〈
p〉 | s〈
p〉 | E〈
p〉 | ?k

where we assume given the following (pairwise disjoint) sets: a setV of values, ranged

by v, a set X of variables, ranged by x, a set S of sites, ranged by s, a set E � { Ei(
x) �

ei }i of defined expressions, ranged by E, and a set K of invocation keys, ranged by k.

Moreover, we let the set of parameters P �V∪S∪X, ranged by p. The expressions

e1 > x > e2 and e2 where x :∈ e1 bind the occurrences of x in e2. The occurrences of

non-bound variables are free and the set of free variables of an expression e is denoted

by fv(e). All defined expressions E(
x) � e are well-formed, in the sense that fv(e) ⊆
x.

Orc semantics is defined in the LTS style, via SOS rules. The basic expressions ?k

must be considered as run-time syntax: they denote response handlers for site invoca-

tions. The set of labels include action s〈
v〉@k for a site invocation to s with parameters

v and invocation key k, action v@k for the receipt of the value v in response to a site

invocation handled by k, action 〈v〉 for the local publication of value v, and the silent

action τ. We let o range over labels.

The basic computational entities orchestrated by Orc expressions are sites: a site

call can be thought of as an RMI, a call to a monitor procedure, to a function or to a

(web) service. Each invocation to site s elicits at most one value published by s. (Note

instead that, in principle, an Orc expression can publish any number of values.) Values

are published locally using the primitive let(v), here rendered just as 〈v〉 for brevity.

()
k globally fresh

s〈
v〉
s〈
v〉@k
−−−−−−→?k

()

?k
v@k
−−−−→ 〈v〉

()

〈v〉
〈v〉
−−−→ 0

While site call is strict, in the sense that actual parameters are evaluated before the

call, the evaluation of defined expressions is non-strict. The corresponding inference

rule is:

()
Ei(
x) � ei ∈ E

Ei〈
p〉
τ
−−→ ei{
p/
x}

20 R. Bruni

Orc has three composition principles. The first one is the ordinary parallel composi-

tion e1 |e2, here called symmetric parallel (e.g., the parallel composition of two site calls

can produce zero, one or many values). We remark that there is no interaction between

e1 and e2. The corresponding inference rules are:

()
e1

o
−−→ e′1

e1 |e2
o
−−→ e′1 |e2

()
e2

o
−−→ e′2

e1 |e2
o
−−→ e1 |e

′
2

The second composition principle is called sequencing and it takes inspiration from

universal quantification: in the sequential expression e1 > x > e2, a fresh copy e2{v/x}

of e2 is spawned for any value v published by e1, i.e., a sort of pipeline is established

between e1 and e2. When x � fv(e2), then we write e1 >> e2 as a shorthand for e1 > x> e2

(because x is inessential). The corresponding inference rules are:

()
e1

o
−−→ e′1 o � 〈v〉

e1 > x > e2
o
−−→ e′1 > x > e2

()
e1

〈v〉
−−−→ e′1

e1 > x > e2
τ
−−→ (e′1 > x > e2) |e2{v/x}

The third and last composition principle is called asymmetric parallel composition

and takes inspiration from existential quantification. The evaluation of the asymmetric

parallel expression e2 where x :∈ e1 (written as e2 < x < e1 in the latest papers on Orc)

is lazy: e1 and e2 start in parallel, but all sub-expressions of e2 that depend on the value

of x must wait for e1 to publish one value. When e1 produces a value it is assigned to x

and that side of the orchestration is cancelled. The corresponding inference rules are:

()
e2

o
−−→ e′2

e2 where x :∈ e1
o
−−→ e′2 where x :∈ e1

()
e1

o
−−→ e′1 o � 〈v〉

e2 where x :∈ e1
o
−−→ e2 where x :∈ e′1

()
e1

〈v〉
−−−→ e′1

e2 where x :∈ e1
τ
−−→ e2{v/x}

Although not evident from the operational semantics, the running implementation of

Orc assumes that all concurrent invocations are executed instantaneously and that the

asymmetric parallel operator picks the first value available, i.e. rules () and ()

have higher priorities than the remaining ones). We refer the interested reader to [59]

for more details.

Example 4. We borrow from [50] some simple examples of Orc declarations. In the

following we assume the existence of a site timer that receives an integer t and return

a void datum 〈〉 after t units of time, of two sites cnn and bbc to be invoked with a

date d as argument and that return selected news from date d, and of a site email that

requires two arguments m and a and sends an email containing message m to the address

a without returning any value. Moreover, we write v1 :: v2 to denote the concatenation

of two messages.

– Declaration MailTwice(a,d) � (cnn〈d〉|bbc〈d〉) > x > email〈x,a〉 specifies a service

for notifying all news from cnn and bbc in two different emails.

Calculi for Service-Oriented Computing 21

e1 | (e2 |e3) ∼ (e1 |e2) |e3 e1 > x > (e2 > y > e3) ∼ (e1 > x > e2) > y > e3 if x � fv(e3)

e1 |e2 ∼ e2 |e1 0 > x > e ∼ 0 (e1 |e2) > x > e ∼ (e1 > x > e) | (e2 > x > e)

e |0 ∼ e 0 where x :∈ 0 ∼ 0 (e2 |e3) where x :∈ e1 ∼ (e2 where x :∈ e1) |e3 if x � fv(e3)

(e3 where y :∈ e2) where x :∈ e1 ∼ (e3 where x :∈ e1) where y :∈ e2 if x � fv(e2) and y � fv(e1)

(e2 > y > e3) where x :∈ e1 ∼ (e2 where x :∈ e1) > y > e3 if x � fv(e3)

Fig. 5. Some strongly bisimilar Orc expressions

– Declaration MailOnce(a,d)� email〈x,a〉where x :∈ (cnn〈d〉|bbc〈d〉) specifies a ser-

vice that notifies address a with only one of the news selected either from cnn or

from bbc.

– Declaration

MailBoth(a,d) � (〈x1 :: x2〉 > x > email〈x,a〉) where x1 :∈ cnn〈d〉

where x2 :∈ bbc〈d〉

specifies a service that notifies address a with both news selected from cnn and

from bbc in a unique message.

– Declaration Delay(s,d, t) � timer〈t〉 >> 〈x〉 where x :∈ s〈d〉 specifies a service that

contact site s with argument d but delays the response up to t time units, in the sense

that even if the response is available before t time units then it will be published

only after the timer expires, while if it is available after the timer already expired,

then it is readily published. Note that the timer invocation does not depend on x and

therefore it is activated concurrently with the invocation to s.

– Declaration UnfairPick(s1, s2,d, t) � 〈x〉 where x :∈ (s1〈d〉 |Delay〈s2,d, t〉) speci-

fies a service that contact both sites s1 and s2 with argument d but privileges the

response from site s1, in the sense that if it arrives before t time units then the

response of s2, if any, is ignored. For example

UnfairMail(a,d) � UnfairPick〈cnn,bbc,d,20〉 > x > email〈x,a〉

specifies a service that notifies address a with only one of the news selected either

from cnn or from bbc, but preferably from cnn (that has 20 time units of advantage).

Exercise 7. A classic problem in non-strict evaluation is the so-called parallel-or. Sup-

pose there are two sites s1 and s2 that publish some booleans. Write an Orc expression

POR that publishes the value false only if both sites return false, the value true as soon

as either site returns true, and otherwise it never publishes a value. In the solution it can

be assumed: (1) the existence of a site ift(b) that receives a boolean value and returns

true if b is true, and otherwise it does not respond; (2) the existence of a site or(b1,b2)

that return the inclusive logical or of the two booleans received as arguments. Note that

POR must publish one result at most.

The abstract semantics of Orc can be defined in terms of strong and weak bisimilarities

and gives rise to interesting equivalences, some of which are in Fig. 5.

22 R. Bruni

3 A Calculus of Sessions and Pipelines

In the previous section we have seen different frameworks for the modelling of inter-

action, sessions, orchestration and cancellation of activities, each offering elegant and

flexible solutions to tackle specific issues. Starting from these premises, the objective

of a coordinated effort within the EU funded project S [57] was to synthesise

so-called core calculi for SOC, where all the above aspects are dealt with in a uniform

and structured way. One of the outcomes of the project is CaSPiS [8], a Calculus of

Sessions and Pipelines, which evolved as an improved refinement of SCC [7] (Service

Centred Calculus). CaSPiS exploits nested sessions and pipelines as natural tools for

structuring client-service communication and orchestration, respectively. Activity can-

cellation is built around the ability of peers to leave sessions and to program suitable

handlers for such cases. We discuss below the essential guidelines around the design of

CaSPiS, emphasising the differences w.r.t. the calculi in Section 2:

Interaction: Contrary to CCS and pi-calculus where the same form of communication

is used for different purposes, in CaSPiS a few forms of basic interactions are dis-

tinguished and regulated on their own. For example, services are globally available

and can be invoked independently from the surrounding context, while ordinary

input-output communication is context sensitive and implicitly driven.

Sessions: When CaSPiS is viewed as a programmable abstraction of SOC, the idea

is to relieve programmers from the burden of dealing with session keys. There-

fore the choice made in CaSPiS is to handle sessions as an implicit mechanism

for enclosing the communications between a caller and its callee, avoiding external

interferences. Like in Section 2.3, a name-scoping mechanism is used to handle

sessions, but contrary to the calculus in [35], each CaSPiS process has its own

implicit current session and it is possible neither to program interleaved commu-

nications in different sessions, nor session delegation. However, sessions can be

nested (e.g. when calling a service within a session, the interaction will take place

in a dedicated subsession) and it is allowed to pass values from nested sessions up.

Orchestration: As in Orc, orchestration is kept separate from interaction and pipelines

are seen as a convenient mechanism for modelling the flow of data between local

processes: it is more general than sequential composition, better suited w.r.t. con-

currency and does not require the explicit and improper use of channels for orches-

tration tasks. Here a more sophisticated form of pipeline is introduced, which is

well-integrated with the other features of CaSPiS, not considered in Orc.

Cancellation: Orc’s asymmetric parallel operator provides a convenient form of can-

cellation for pending activities, but whose effect is purely local: the operational

semantics is designed in such a way that if a site has been invoked, but the local

handler for its response is cancelled, then the response cannot show up. This is

maybe fine if only one-way or request-response interactions are considered, but not

in CaSPiS, where the cancellation of activities could leave some pending peers in

the middle of long-running interactions. Likewise signing a contract implies some

obligations, opening a session implies notifying the peer when leaving the session

before its conclusion. Also inspired by some recent work on process calculi for

Calculi for Service-Oriented Computing 23

modelling transactions [13, 14, 18, 19, 41], CaSPiS comprises a novel mechanism

for ensuring the notification of any activity cancellation, for which we are not aware

of any similar counterpart in the literature on process calculi.

Readability and typeability: To tackle the complexity of SOC systems, it should be

possible to structure complex processes in smaller parts tailored to specific issues

and it should be possible to guarantee the compliance of the whole process by

checking the compliance of its parts. Moreover, type checking and type inference

systems should be available that automatically detect protocol inconsistencies and

communication errors. For type systems to be effective, it is important that the ab-

straction distance w.r.t. the concrete formalism is not too large, so that any detected

type problem can be immediately explained, tracked and understood over the un-

derlying processes. Some preliminary investigation has shown that quite simple

type systems can be developed for CaSPiS that guarantee nice properties (com-

munication safety, client progress and deadlock freedom). A prototype tool, called

TypeSes2 for type inference is also available (see [45]).

3.1 A CaSPiS Walk-through

We introduce CaSPiS primitives in an incremental way. Let Nsrv and Nsess be two

disjoint countable sets, respectively of service names, ranged by s and of session names,

ranged by r. We assumeNsrv andNsess are included in a larger set of namesN , ranged

by n, and let x,y, ...,u,v... range overN \Nsess.

In the following we shall exploit the notion of a context, written C� ·�, i.e. a process

term with one hole � ·�. We write C�P� for the process where the hole is textually

replaced by process P. The contexts we are interested in are called static, and charac-

terised by the fact that the hole occurs in an actively running position and it is ready to

interact (e.g. it is not under a prefix). See Section 3.2 for the exact definition.

Service definition and invocation. Service definitions and invocations resemble CCS

prefixes. Thus s.P defines a service s and we write s.Q for invoking s. The similarity

with CCS is merely syntactical, because after the handshake P and Q are not quite

separate continuations, but rather protocols that will interact in a fresh, private session.

The name of the session is not to be mentioned in P and Q, and therefore it is handled

implicitly by the operational semantics rules. Each protocol can contain other service

definitions and invocations, which in turn can establish nested sessions with other peers.

Services are typically one-shot, in the sense that when invoked, a new instance serving

the request is created, but the service in no longer available. This choice facilitates

service updates. Replication (or recursion) can be used to specify persistent services,

like !s.P. Moreover, it is possible to have different definitions s.P1 and s.P2 available at

the same time for the same service name s.

Session sides. The handshake between s.P and s.Q leads to the creation of a fresh

session name r that can be viewed as a private, synchronous channel binding caller

and callee. Since client and service may be far apart, a session naturally comes with

two sides, written r⊲ P and r⊲ Q, with r bound somewhere above them. For example,

2 http://www.di.unipi.it/∼mezzina

http://www.di.unipi.it/~mezzina

24 R. Bruni

starting from R |C1� s.P� |C2� s.Q� we can arrive to R | (νr)(C1�r⊲ P� |C2�r⊲ Q�).

Similarly, starting from C1� s1.(P1 | s2.P2)� |C2� s1.Q� |C3� s2.R� we can arrive in two

steps to (νr1,r2)(C1�r1 ⊲ (P1 |r2 ⊲ P2)� |C2�r1 ⊲ Q� |C3�r2 ⊲ R�), where P1 interacts

with Q and P2 interacts with R. Sometimes, especially when type systems are consid-

ered, polarities + and − are attached to session sides in order to mark the caller and the

callee. In the example above, we should have written, e.g., (νr1,r2)(C1�r+
1
⊲ (P1 |r

−
2
⊲

P2)� |C2�r−
1
⊲ Q� |C3�r+

2
⊲R�)

Intra-session communication. Two peers P and Q running on opposite session sides

of r can exchange messages. Since the peer is uniquely determined, input and output

primitives are, respectively, abstraction prefixes (?
x)P or concretion prefixes 〈
v〉Q. For

example, C1�r⊲ 〈5〉P� |C2�r⊲ (?x)Q� can evolve to C1�r⊲ P� |C2�r⊲ Q{5/x}�.

If we now reconsider the service for scientific calculations from Example 3, then we

can write it just as S �!in.(?x)〈 f (x)〉. Then if two clients in.〈1〉(?y1)P1 and in.〈2〉(?y2)P2

are present, there is no risk of interference, because the two interactions are served

separately.

S | in.〈1〉(?y1)P1 | in.〈2〉(?y2)P2
τ
−−→ (νr1)(S |r1⊲ (?x)〈 f (x)〉 |r1 ⊲ 〈1〉(?y1)P1 | in.〈2〉(?y2)P2)
τ
−−→ (νr1,r2)(S |r1⊲ (?x)〈 f (x)〉 |r2⊲ (?x)〈 f (x)〉 |r1⊲ 〈1〉(?y1)P1 |r2 ⊲ 〈2〉(?y2)P2)
τ
−−→ (νr1,r2)(S |r1⊲ 〈 f (1)〉 |r2⊲ (?x)〈 f (x)〉 |r1⊲ (?y1)P1 |r2 ⊲ 〈2〉(?y2)P2)
τ
−−→ (νr1,r2)(S |r1⊲ 〈 f (1)〉 |r2⊲ 〈 f (2)〉 |r1⊲ (?y1)P1 |r2 ⊲ (?y2)P2)
τ
−−→ (νr1,r2)(S |r1⊲ 0 |r2⊲ 〈 f (2)〉 |r1 ⊲ P1{ f (1)/y1} |r2 ⊲ (?y2)P2)
τ
−−→ (νr1,r2)(S |r1⊲ 0 |r2⊲ 0 |r1 ⊲ P1{ f (1)/y1} |r2 ⊲ P2{ f (2)/y2})

Note that the initial processes are much simpler than those considered in Example 3,

where session identifiers k should appear explicitly. Moreover, the session side construct

must be considered as run-time syntax, as all the more complex processes traversed by

the above computation.

Inter-session communication. It is quite useful to have the possibility to make the re-

sponses obtained upon some service invocation available to the parent session, e.g. to

collect the fares offered from different providers and compare them to choose the best

one. To this purpose, another prefix is available in CaSPiS, called return prefix, writ-

ten 〈
v 〉↑P, which can be seen as a concretion at the level of the parent session, i.e.

r⊲ 〈
v 〉↑P can be read as 〈
v〉 |r⊲ P, except for the fact that P cannot execute until
v has

been consumed.

Pipelining. CaSPiS exploits a generalised form of Orc sequencing operator, called

pipeline and written P > Q, which allows to feed Q with all values produced by P:

for each value, a fresh instance of Q will be activated, running in parallel with P > Q.

A pipeline can be seen as some sort of redirection for the concretions available in P:

instead of being available to the peer of the current session, they are given in input to

Q, which is typically guarded by some abstraction prefix. For example, Orc sequencing

operator can be written as P > (?x)Q.

Calculi for Service-Oriented Computing 25

Note that in a term like (r⊲ (P > Q)) |r⊲ R, process P can input from R and output

to Q. This is clearly different from ((r ⊲ P) > Q) |r ⊲ R, where P can input from R

and output to R, but can pass values to Q using return prefixes. In combination with

the return operator, pipeline allows to make the responses obtained upon some service

invocation available locally, to some suitable continuation. In the example of the service

for scientific calculations, a client such as in.〈1〉(?y1)P1 would run P1 in the session

established with S , i.e. it will reduce after some steps to r1 ⊲ P1{ f (1)/y1}. Instead the

client (in.〈1〉(?y1)〈y1 〉
↑) > (?y1)P1 will reduce, after some further steps, to (r1 ⊲ 0 >

(?y1)P1) |P1{ f (1)/y1}, which can be read as P1{ f (1)/y1}, because (r1 ⊲ 0 > (?y1)P1) is a

terminated process.

Cancellation. Processes must be able to abandon their current sessions in full auton-

omy. The command close is used to terminate the enclosing session side. A terminated

session enters the special state ◮ P that recursively terminates any other session side

nested in P. Note that the execution of a close can depend on some local choice as well

as be guarded by the input of some data from the opposite session side.

Closure notification. The distinguishing feature of CaSPiS is the presence of novel

primitives to handle (unexpected or programmed) session termination. In fact, even if

processes can abandon their current sessions, we would like sessions units to represent

a controlled and safe form interaction, and therefore their peers should be somehow

notified. The idea is that upon termination of a session side, the opposite session side

will be informed and take some proper counteraction, if needed. To this purpose, the

more general syntax for invocation is sk.Q: it mentions a name k at which the handler of

the client-side is listening. Symmetrically, the more general syntax for service definition

is sk.P, which mentions a name k at which the handler of the service-side is listening.

Upon creation of a session, a pair of names (k1,k2) is thus associated with the fresh

session r, identifying a pair of termination handlers, one for each side. The more general

syntax for sessions is thus r⊲k P where the subscript k refers to the termination handler

of the opposite side.

Then, after a close is executed, a notification †(k) is sent to the termination-handler

service k listening at the opposite side of the session to manage the appropriate actions.

The final ingredient is the possibility to define suitable termination listeners k ·P that

are used to handle termination signals †(k).

To sum up the above discussion: sk1
.P | sk2

.Q can evolve to (νr)(r ⊲k2
P |r ⊲k1

Q).

(Note that the handlers have been exchanged between the peers.) Then, if say P executes

close , the termination handler k2 of the caller will be activated, and vice versa, if Q

terminates, then k1 will be activated. For example: r⊲k2
(close |P) |r⊲k1

(Q |k2 · close)

can evolve to ◮ P | †(k2) |r⊲k1
(Q |k2 · close), then to ◮ P |r⊲k1

(Q |close) and finally to

◮ P | ◮ Q | †(k1). Note that the emitted notification †(k) is essentially asynchronous, i.e.,

we have no guarantee as to when the listener at the opposite side will catch †(k). For

example, before †(k) reaches its destination, the other side might in turn have entered

a closing state ◮ Q on its own, or be closed right away, as a result of the closing of a

parent session. While dangling †(k) cannot be avoided in general, simple patterns can

avoid the even worst situation of dangling session sides pending forever.

26 R. Bruni

Pattern matching and guarded choice. Last but not least, CaSPiS interactions is em-

powered by pattern-matching facilities that can be suited, e.g., to deal with XML-like

data typical of web service scenarios. Roughly, this is obtained by allowing: 1) out-

put and return prefixes whose values are structured, exploiting a signature Σ of con-

structors, ranged by f (each coming with a fixed arity); 2) input prefixes where plain

input variables ?x are generalised by patterns that exploit the constructors in Σ. To-

gether with ordinary prefix-guarded choices, the presence of patterns makes it possible

to manage and route messages on the basis of their contents. For example, a pipeline

like P > (pdf(?x))Q+ (ps(?x))R can be used to handle in different ways the documents

produced by P depending on whether they are in PDF (Portable Document Format) or

PS (PostScript) format.

3.2 Close-Free Fragment

We start presenting the fragment of CaSPiS without cancellation and closure notifica-

tion, whose syntax is in Fig. 6. The operators are listed in decreasing order of prece-

dence. Service definition s.� ·� and invocation s.� ·�, prefix πi� ·�, left-sided pipeline

P > � ·� and replication !� ·� are called dynamic operators, while the remaining opera-

tors are static.

As expected, in (νn)P, the restriction (νn) binds free occurrences of n in P, while in

(F)P any ?x in the pattern F binds the free occurrences of name x in P. We denote by

bn(F) the set of names x such that ?x occurs in F. The empty sum is denoted 0. Trailing

0’s will often be omitted. When the arguments of prefixes are void or inessential, we

abbreviate them as ()P, 〈〉P and 〈〉↑P.

The structural congruence relation ≡ is defined as the least congruence that includes

alpha-equivalence and the laws in Fig. 7. This set of laws comprises the structural rules

for parallel composition and restriction, plus the obvious extension of restriction’s scope

extrusion law to pipelines and sessions.

P,Q ::=
∑

i∈I πiPi Guarded Sum π ::= (F) Abstraction

| u.P Service Definition | 〈V〉 Concretion

| u.P Service Invocation | 〈V〉↑ Return

| r⊲ P Session

| P > Q Pipeline V ::= u | f (Ṽ) Value (f ∈ Σ)

| P |Q Parallel Composition

| (νn)P Restriction F ::= u | ?x | f (F̃) Pattern (f ∈ Σ)

| !P Replication

Fig. 6. Syntax of close-free CaSPiS

P |0 ≡ P (νn)0 ≡ 0 ((νn)P) > Q ≡ (νn)(P > Q) if n � fn(Q)

P |Q ≡ Q |P (νn)(νm)P ≡ (νm)(νn)P ((νn)P) |Q ≡ (νn)(P |Q) if n � fn(Q)

(P |Q) |R ≡ P | (Q |R) !P ≡ P | !P r⊲ (νn)P ≡ (νn)(r⊲ P) if r � n

Fig. 7. Structural congruence laws

Calculi for Service-Oriented Computing 27

The reduction semantics is given by exploiting suitable contexts surrounding the ac-

tive redexes. A context is static if its hole does not occur under a dynamic operator.

Moreover, we say that a context is session-immune if its hole does not occur under

a session operator, and pipeline-immune if its hole does not occur under a right-sided

pipeline operator. In the following we let C� ·� range over static contexts, S� ·� over sta-

tic session-immune contexts, and P� ·� over contexts that are static, session-immune and

pipeline-immune. Roughly, a static session-immune context S� ·� cannot “intercept”

abstraction and return prefixes, while a static, session-immune and pipeline-immune

context P� ·� cannot “intercept” concretion prefixes. Analogous definitions apply to the

case of two-holes contexts C� ·, ·�.

The first reduction regards the handshake between a service definition and a service

invocation.

()
r fresh for C� ·, ·�,P,Q

C� s.P, s.Q�
τ
−−→ (νr)C�r⊲ P,r⊲ Q�

The second reduction regards intra-session communication. Below we let Cr� ·, ·� be

a context of the form C�r⊲ P� ·�,r⊲ S� ·�� (for some P� ·� and S� ·�), which captures

the most general situation in which intra-session communication can happen. Pattern-

matching is accounted for by a substitution σ =match(F,V), defined as the (only) sub-

stitution such that dom(σ) = bn(F) and Fσ = V . Moreover, we implicitly require that

names in F and V are not bound by Cr� ·, ·�

(S)
σ =match(F,V)

Cr� 〈V〉P+
∑

iπiPi, (F)Q+
∑

jπ jQi �
τ
−−→ Cr�P,Qσ�

Intra-session communication can be triggered also by a return prefix in a subsession

of r. The corresponding rule is:

(SR)
σ =match(F,V)

Cr�r1 ⊲ S1� 〈V〉
↑P+
∑

i πiPi �, (F)Q+
∑

j π jQi �
τ
−−→ Cr�r1 ⊲ S1�P�,Qσ�

Finally, there are two more rules for pipeline orchestration, handling the “redirec-

tion” of concretions and returns.

(P)
Q ≡ S� (F)Q′+

∑

j π jQi � σ =match(F,V)

C�P� 〈V〉P+
∑

iπiPi � > Q�
τ
−−→ C�S�Q′σ� | (P�P� > Q)�

(PR)
Q ≡ S� (F)Q′+

∑

j π jQi � σ =match(F,V)

C�P�r⊲ S1� 〈V〉
↑P+
∑

i πiPi �� > Q�
τ
−−→ C�S�Q′σ� | (P�r⊲ S1�P�� > Q)�

The presence of contexts in the reduction rules accounts for the execution of silent

transitions under restriction, parallel composition, etc, while we omit deliberately the

obvious rule for structural congruence, which is the same as the rule (R) of pi-

calculus (see Section 2.2). The LTS semantics and the Lemma that reconciles the silent

transitions of the two semantics can be found in [8].

28 R. Bruni

Example 5. The one-way and request-response invocation patterns from web services

(to service s with argument V) can be easily encoded as s.〈V〉〈〉↑ and s.〈V〉(?x)〈x〉↑,

respectively. Note that in both cases a value is returned (possibly void) that can be used

to activate a suitable continuation, if any. The one-way pattern can also be rendered in

a fully asynchronous fashion by writing s.(〈V〉 | 〈〉↑).

The following e-shop example is adapted from [5], where it is used to illustrate a static

analysis machinery for the detection of logic flaws in service applications, i.e. to prevent

the so-called application logic attacks that exploit the vulnerabilities of the specific

functionality of the application (e.g., by violating the business logic) rather than the

ones of the underlying platform.

Example 6. We model a simple e-shop application S that exchanges information with
customers C and the data base D that stores item prices. The service price to retrieve
item prices is private to S and D. Essentially, a honest customer invokes service buy,
chooses an item, receives its price inside an order form and if interested in finalising the
order, must fill in a payment form with personal data and credit card information. In the
same form are reported: the transaction code, the chosen item, and the received price of
the purchase.

HC � buy.〈itemk〉(orderForm(?xcode, itemk,?xpricek
))〈payForm(xcode, itemk, xpricek

,name,cc)〉

However, a malicious user may try to finalise the transaction sending a forged copy
of the payment form, where the price field has been abusively discounted (like when
downloading a web order form associated with an e-shopping cart, editing some hidden
field outside the browser and resubmitting it in place of the original one).

MC � buy.〈itemk〉(orderForm(?xcode, itemk,?xpricek
))〈payForm(xcode, itemk,5cents,name,cc)〉

In the specification shown below, the application S exploits, for each item, two con-

current processes OFi and PFi, respectively for sending the order form to the customer

and for receiving the cancellation or the payment of the order. This way it cannot check

if the form sent by the costumer contains the right price.

ESHOP � (νprice)(D |S)

D � !price.
∑

i(itemi)〈pricei〉)

S � !buy.
∑

i(itemi)(νcode)(OFi |PFi)

OFi � price.〈itemi〉 (?xpricei
)〈orderForm(code, itemi, xpricei

)〉↑

PFi � (cancel)0+ (payForm(code, itemi,?ypricei
,?yname,?ycc))PAY

Then both the honest customer HC and the malicious customer MC shown above are

capable to interact with the application, each fulfilling their purposes.

Exercise 8. Redesign the e-shop application S in such a way that the price indicated by

the customer in the payment form is matched against the one provided by the data base.

We conclude by hinting at two important properties of CaSPiS processes P that do

not contain the session operator r⊲ � ·�. Let Q be any process reachable from P via any

Calculi for Service-Oriented Computing 29

P,Q ::=
∑

i∈I πiPi Guarded Sum

| sk.P Service Definition

| sk.P Service Invocation

| P > Q Pipeline

| close Close

| k ·P Listener

| †(k) Signal

| r⊲k P Session

| ◮ P Terminated Session

| P|Q Parallel Composition

| (νn)P Restriction

| !P Replication

Fig. 8. Syntax of full CaSPiS

r⊲k′ (†(k)|P) ≡ †(k)|r⊲k′ P (†(k)|P) > Q ≡ †(k)|(P > Q) ◮ †(k) ≡ †(k)

◮ r⊲k P ≡ ◮ r⊲k ◮ P ◮ (P > Q) ≡ (◮ P) > Q ◮◮ P ≡ ◮ P

◮ P|Q ≡ ◮ P| ◮ Q ◮ (νx)P ≡ (νx) ◮ P ◮ 0 ≡ 0

Fig. 9. Structural congruence rules for †(k) and ◮

number of reductions and let r any session in Q, then: 1) there are exactly two session

sides for r in Q (dyadic session), 2) it is never the case that one of the session side for r

is nested into the other (session acyclicity). We refer to [8] for the formal presentation

of such properties.

3.3 Full Calculus

We can now present the full syntax and semantics of CaSPiS. In what follows, we

assume a new countable set K of signal names, ranged by k, disjoint from session and

service names. The syntax of full CaSPiS is reported in Fig. 8. The difference w.r.t.

Fig. 6 is given by the extended primitives sk.P, sk.P and r⊲k P and the new primitives

close , †(k), ◮ P and k ·P. Like in the case of r⊲P, we reserve r⊲k P and ◮ P as run-time

syntax. When the handler k in sk.P is vacuous or inessential then we can safely omit it,

and the same for sk.P and r⊲k P.

The structural rules listed in Fig. 9 enrich the set of rules already introduced for

the close-free fragment. The law ◮ †(k) ≡ †(k) is motivated by subtle race conditions

on the order of closings due to the nesting of sessions (see [8] for an example). The

remaining rules serve the purpose of letting signals †(k) freely move within a term to

reach the corresponding listeners, and distributing the terminated session ◮ over static

operators. Note that, as usual, structural congruence can be exploited to move to top

level all restrictions that are not in the scope of a dynamic operator.

The reductions must be updated to take into account termination handlers. The only

significant change regards the handshake between a service definition and a service

invocation, where termination handlers must be annotated in the freshly created session

sides.

()
r fresh for C� ·, ·�,P,Q

C� sk1
.P, sk2

.Q�
τ
−−→ (νr)C�r⊲k2

P,r⊲k1
Q�

30 R. Bruni

Rule (P) is left unchanged, while we need to annotate the sessions appearing

in rules (S), (SR) and (PR) (and in the notation Cr� ·, ·�) with suitable

termination handlers k and k1.

Three new rules are needed to handle session cancellation. Two of them regards the

generation of notifications to be delivered on the opposite side, which may be due to

the execution of the close primitive

(S)
C�r⊲k S�close ��

τ
−−→ C�†(k) | ◮ S�0��

or to the termination of an enclosing session:

(T)
C�◮ (r⊲k P)�

τ
−−→ C�◮ P | †(k)�

The last rule models the handshake between a notification signal and its handler:

(T)
C�†(k) |k ·P�

τ
−−→ C�P�

The session closing primitives do not guarantee per se that forever-dangling, one-

sided sessions never arise, in the same way as deadlock can arise in pi-calculus processes

or sequential programs may diverge. However, many situations can be handled satisfac-

torily just by installing suitable termination handlers of the form k ·C�close � in the

bodies of client invocations and service definitions. Moreover, we can allow rather lib-

eral choices ofC� ·�, that may contain extra actions the termination handler may wish to

take upon invocation, e.g., further signalling to other listeners (a sort of compensation,

in the language of long-running transactions).

Again, the full technical details can be found in [8], here we just mention the main

constraints over CaSPiS processes that can guarantee the so-called graceful termina-

tion property. Informally, the key concept is that of a balanced term, roughly, a term

with only pairs of session-sides that balance with each other. Termination of one side

may lead to unbalanced terms. The graceful property guarantees that any possibly un-

balanced term reachable from a balanced term can get balanced in a finite number of

reductions.

For a process P that contains no session constructs, we require e.g. that for any

Q ≡ P and for each s and k: (a) sk. may only occur in Q in subterms of the form

sk.S1�k ·S2�close �� and analogously for sk.; (b) in Q there is at most one occurrence

of the listener for k.

For example, obvious “graceful” usages for service invocation and service defini-

tion are (νk1)sk1
.(P1|k1 · close) and (νk2)sk2

.(P2|k2 · close), respectively. The process

News from next example (adapted from [8]) also fits the requirements for the graceful

property.

Example 7. Let BBC and CNN be services that, upon invocation, return a possibly in-

finite sequence of values representing pieces of news (disregarding the identity of these

Calculi for Service-Oriented Computing 31

news, these services resemble !BBC.!(νn)〈n〉, etc.). Let us consider the process News

below that exposes a news collector service collect:

News � !(νk)collectk.
(

k · close | (νk1)BBCk1
.(!(?x)〈x〉↑ | k1 · (close | †(k)))

| (νk2)CNNk2
.(!(?x)〈x〉↑ | k2 · (close | †(k)))

)

The established session can be closed: either (i) by the client-side, when an action close

on the client’s side is performed, as this will yield a signal †(k) able to activate the cor-

responding service-side listener k · close ; or, (ii) when any of the three nested sessions

used for interacting with the news services is closed by peer, yielding the signal †(ki)

and hence †(k). The termination of the topmost session will in turn cause the termina-

tion of all (not yet terminated) nested news clients.

For example, after invoking collect, the client below receives all the news produced

by BBC and CNN (in some interleaved order):

HeavyReader � (νk′)collectk′ .(!(?y)〈y〉↑ |k′ · close)

Instead the client below receives only the first news produced either by BBC or CNN

and then abandons the session:

EasyReader � (νk′)collectk′ .((?y)〈y〉↑close |k′ · close)

It is worth mentioning that there are at least two obvious alternatives to the mecha-

nism we have chosen. One would be to use close as a primitive for terminating instan-

taneously both the client-side and service-side sessions. But this strategy violates the

principle that each party is in charge for the closing of its own session side. A second

alternative would be to use close as a synchronisation primitive, so that the client-side

and service-side sessions are terminated when close is encountered on one side and

close on the other side. This strategy conflicts with parties being able to decide au-

tonomously when to end their own sessions. The use of termination handlers looks a

reasonable compromise: each party can exit a session autonomously but it is obliged to

inform the other party.

3.4 Other Variants

Some variants of CaSPiS have been recently considered in recent literature, that intro-

duce suitable restrictions to favour analysis and verification of processes. We mention

a few significant works.

In [15], it is assumed that: (1) service definitions can only be present at the top level

and cannot dynamically deployed, (2) label-guarded sums and label-choice are consid-

ered instead of guarded sums and pattern-matching, (3) the pipeline is restricted to the

form P > (?
x)Q, i.e. to Orc sequencing, (4) conditional statements are introduced, (5)

session sides are polarised, (6) services are persistent and can be invoked recursively, but

general replication is not allowed. Under these requirements, a type system is developed

that guarantees that all session protocols are deadlock free, in the sense that well-typed

processes either reach a normal form or diverge by opening new nested sessions. In [1],

32 R. Bruni

under similar restrictions, it is shown that session names can be disregarded and a type

system is provided that guarantees client-progress property (i.e., client-side protocols

will not deadlock). The above results have then been extended in [45] by introducing

general recursion at the level of session protocols and using the type system to prevent

communication errors.

In [38] a security-oriented extension of the work in [15] is presented, where secu-

rity levels can be assigned to service definitions, clients and data. In order to invoke a

service, a client must be endowed with an appropriate clearance, and once the service

and client agree on the security level, the data exchanged in the initiated session will

not exceed this level. The main result is a type system that guarantees these security

properties.

Besides qualitative aspects, in SOC it is also important to consider phenomena re-

lated to performance and dependability to deal with issues related to Quality of Service.

They are particularly relevant for services running over congestioned networks, where

unpredictable delays and failures are more likely. In [25] a Markovian extension of

CaSPiS, called MarCaSPiS, has been studied, where: output activities are enriched

with rates (characterising random variables with exponential distributions) and input

activities are equipped with weights (characterising the relative selection probability).

Then continuous time Markov chains can be obtained from MarCaSPiS specifications

to perform quantitative analysis.

Some prototype implementations of CaSPiS have been proposed in [4, 10].

4 Application Examples

In this section we show a few intuitive encoding of paradigmatic calculi in CaSPiS and

of a simple fragment of CaSPiS in pi-calculus, but without proving any strong formal

correspondence.

4.1 From Lambda-Calculus to CaSPiS

We start by showing that the close-free fragment of CaSPiS is expressive enough to

encode λ-calculus, in a similar way as done, e.g., in pi-calculus (see Example 2).

The encoding is summarised in Fig. 10, where �M�λ2c
a denotes the CaSPiS process

modelling the λ-expression M with arguments retrieved through the service a. Notably

the encoding uses just monadic messaging without exploiting pipelines, choices, return

prefixes and pattern matching.

From the point of view of syntax, the main differences w.r.t. the pi-calculus encoding

are: (i) service definitions replace input prefixes; (ii) service invocations replace output

�x�λ2c
a � x.〈a〉

�λx.M�λ2c
a � a.(?x)(?m)�M�λ2c

m

�M N�λ2c
a � (νm)

(

�M�λ2c
m | (νb)(!b.(?n)�N�λ2c

n |m.〈b〉〈a〉)
)

for b � fv(N)

Fig. 10. Encoding of λ-calculus in CaSPiS

Calculi for Service-Oriented Computing 33

prefixes. From the point of view of semantics, the more important differences are: (i)

each service invocation opens a new session where the computation can progress; (ii)

the session can be nested at different levels of depth and are never closed.

Exercise 9. Write the CaSPiS processes �λx.x�λ2c
a and �(λx.x)N�λ2c

a . Then write all

reduction steps of �(λx.x)N�λ2c
a .

4.2 From Pi-Calculus to CaSPiS

Quite interestingly, choice-free pi-calculus can be encoded in the close-free fragment

of CaSPiS. In fact, pi-calculus communication primitives can be seen as services with

minimal protocols. Note however that encoding the pi-calculus process a(x).P as the

CaSPiS process a.(?x)C (for C the encoding of P) would unnecessarily run C in a

nested session. To avoid this problem, and to make the encoding more elegant, it suffices

to exploit pipelines and pattern-matching. For simplicity we focus on the monadic pi-

calculus without sum. The problem with choices is due to the fact that CaSPiS sums

can be applied only to abstraction, concretion and return prefixes, but not to service

definition and invocations.

The encoding of pi-calculus processes is defined rather straightforwardly in Fig. 11.

�0�π2c
� 0

�x(y).P�π2c
� x.(?y)〈y〉↑ > (?y)�P�π2c

�x〈y〉.P�π2c
� x.〈y〉〈〉↑ > ()�P�π2c

�τ.P�π2c
� 〈〉 > ()�P�π2c

�[x = y]π.P�π2c
� 〈x〉 > (y)�π.P�π2c

�P1 |P2�
π2c
� �P1�

π2c |�P2�
π2c

�(ν x)P�π2c
� (ν x)�P�π2c

�!P�π2c
� !�P�π2c

Fig. 11. Encoding of π-calculus in CaSPiS

Exercise 10. The encoding of λ-calculus in pi-calculus �M�λ2πa can be combined with

the above encoding of pi-calculus in CaSPiS to obtain an encoding �M�λ2π2c
a of λ-

calculus in CaSPiS. After giving the explicit definition of �x�λ2π2c
a , �λx.M�λ2π2c

a and

�MN�λ2π2c
a , compare the encoding with the one defined in Fig. 10 and explain the main

differences, if any.

Then, write the CaSPiS processes �λx.x�λ2π2c
a and �(λx.x)N�λ2π2c

a , together with all

reduction steps of �(λx.x)N�λ2π2c
a .

4.3 From Orc to CaSPiS

In [7] it was shown how to encode Orc in CaSPiS. Here we essentially rephrase (and

simplify) the translation using CaSPiS syntax. An Orc expression may depend on a

34 R. Bruni

�E(x) � e�o2c
� E.(?x)�e�o2c

�0�o2c
� 0

�〈p〉�o2c
� �p�v

�E(p)�o2c
� E.〈p〉!(?xr)〈xr〉

↑

�s(p)�o2c
� �p�v > (?xp)s.〈xp〉(?xr)〈xr〉

↑

�x(p)�o2c
� �x�v > (?s)�s(p)�o2c

�e1 |e2�
o2c
� �e1�

o2c |�e2�
o2c

�e1 > x > e2�
o2c
� �e1�

o2c > (?x)�e2�
o2c

�e2 where x :∈ e1�
o2c
� (νwh,re,k)(whk.(�e1�

o2c > (?x1)re.〈x1〉〈〉
↑ |k ·close) |

wh.()close | (ν x)(�e2�
o2c |re.(?x1)!x.〈x1〉))

Fig. 12. Encoding of Orc in CaSPiS

set of expression definitions, hence the encoding of an Orc expression comprises the

encoding of all expression definitions (as processes composed in parallel).

The encoding of Orc expressions is detailed in Fig. 12. A few points are worth some

comments. While the call of a site is strict (and thus the actual parameters must have

been evaluated), the evaluation of defined expressions is non-strict (and thus parameters

can be passed by name). Correspondingly, we define the call by value by letting:

�s�v � 〈s〉 �v�v � 〈v〉 �x�v � x.(?xr)〈xr〉
↑

Note that the evaluation of a variable x is encoded as a request for the current value

to the variable manager of x. Variable managers are created by both sequential compo-

sition and asymmetric parallel composition.

The most interesting part of the encoding regards the asymmetric parallel composi-

tion. Two fresh services wh and re are used, respectively, to enclose the evaluation of

e1 in a session that can be terminated and to receive the first value provided by e1 and

install the manager for variable x with that value. This is exemplified below, where we

omit all restriction to improve readability and write P1 and P2 in place of �e1�
o2c and

�e2�
o2c, respectively.

whk.(P1 > (?x1)re.〈x1〉〈〉
↑ |k · close) |wh.()close |P2 |re.(?x1)!x.〈x1〉

τ
−−→ rw ⊲ (P1 > (?x1)re.〈x1〉〈〉

↑ |k · close) |rw ⊲k ()close |P2 |re.(?x1)!x.〈x1〉

Note that �e2�
o2c is executed concurrently, but may rely on value requests to the

manager for x. When �e1�
o2c produces a concretion, it flows through the pipeline and

activates the invocation to re.

rw ⊲ (P1 > (?x1)re.〈x1〉〈〉
↑ |k · close) |rw⊲k ()close |P2 |re.(?x1)!x.〈x1〉

τ
−−→ rw ⊲ (re.〈8〉〈〉↑ | (P′

1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) |rw⊲k ()close |P2 |re.(?x1)!x.〈x1〉
τ
−−→ rw ⊲ (r⊲ 〈8〉〈〉↑ | (P′

1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) |rw ⊲k ()close |P2 |r⊲ (?x1)!x.〈x1〉

Calculi for Service-Oriented Computing 35

Note that the service definition for re is not replicated and thus only one request may

be issued. The value produced by �e1�
o2c is communicated by the client session side

of re to its peer session side, which in turn can install a persistent service definition for

variable x (its manager w.r.t. requests in �e2�
o2c). The void return prefix on the client

side instance or re is now available and can handshake with the void abstraction on the

service side instance of wh, enabling the execution of close .

rw ⊲ (r⊲ 〈8〉〈〉↑ | (P′
1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) |rw⊲k ()close |P2 |r⊲ (?x1)!x.〈x1〉
τ
−−→ rw ⊲ (r⊲ 〈〉↑ | (P′

1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) |rw⊲k ()close |P2 |r⊲!x.〈8〉
τ
−−→ rw ⊲ (r⊲ 0 | (P′

1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) |rw ⊲k close |P2 |r⊲!x.〈8〉

The effect of close is to terminate the enclosing session side and to notify the listener

k (within the client side instance of wh), which in turn will terminate the enclosing

session side.

rw ⊲ (r⊲ 0 | (P′
1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) |rw⊲k close |P2 |r⊲!x.〈8〉
τ
−−→ rw ⊲ (r⊲ 0 | (P′

1
> (?x1)re.〈x1〉〈〉

↑ |k · close)) | †(k) | ◮ 0 |P2 |r⊲!x.〈8〉

≡ rw ⊲ (r⊲ 0 | (P′
1
> (?x1)re.〈x1〉〈〉

↑ | †(k) |k · close)) |P2 |r⊲!x.〈8〉
τ
−−→ rw ⊲ (r⊲ 0 | (P′

1
> (?x1)re.〈x1〉〈〉

↑ |close)) |P2 |r⊲!x.〈8〉
τ
−−→ ◮ (r⊲ 0 | (P′

1
> (?x1)re.〈x1〉〈〉

↑)) |P2 |r⊲!x.〈8〉

Consequently, the nested session side of re is also terminated, but not its peer (be-

cause no termination handler was exchanged when the session was created). In fact the

manager for x is running inside that peer and we cannot terminate it.

◮ (r⊲ 0 | (P′
1
> (?x1)re.〈x1〉〈〉

↑)) |P2 |r⊲!x.〈8〉

≡ (◮ P′
1
> (?x1)re.〈x1〉〈〉

↑) |P2 |r⊲!x.〈8〉

→∗ (◮ 0 > (?x1)re.〈x1〉〈〉
↑) |P2 |r⊲!x.〈8〉

≡ (0 > (?x1)re.〈x1〉〈〉
↑) |P2 |r⊲!x.〈8〉

Note that this makes the process not well-balanced, as it contains a dangling session

side that cannot terminate, i.e., the encoding we have provided does not satisfy the

graceful closure property.

Exercise 11. Write the CaSPiS processes that encodes the Orc expressions 〈1〉 | 〈2〉 >

x > 〈x〉 and 〈x〉 where x :∈ 〈1〉 | 〈2〉. Then write all the CaSPiS processes that can be

reached from them via any number of reductions.

Exercise 12. Write the CaSPiS processes that encodes the Orc expression POR for the

parallel-or (see Exercise 7).

Exercise 13. Modify the encoding shown in Fig. 12 to guarantee the graceful termi-

nation property. Start by changing the way in which the manager of x is installed in

the encoding of asymmetric parallel composition. Then, remind that �e1�
o2c could have

36 R. Bruni

opened many other session sides before cancellation occurs and hence find suitable

policies for invoking sites, expression definitions and local services.

4.4 From Close-Free CaSPiS to Pi-Calculus

We conclude by sketching an encoding of a fragment of CaSPiS in pi-calculus. In par-

ticular we restrict to consider the close-free fragment, without pattern matching and

with a limited form of pipeline (which essentially coincides with Orc sequencing oper-

ator). Moreover we assume session sides are polarised r+ ⊲ P and r− ⊲Q.

The encoding of a CaSPiS process is dependent on its context. In particular, one

can imagine that each CaSPiS process has three dedicated channels: one for the in-

put associated with abstraction prefixes, one for output associated with concretion pre-

fixes and one for output associated with return prefixes. Correspondingly, our encoding

�P�c2π
in,out,ret

is parametric w.r.t. three names in, out and ret. The encoding is shown in

Fig. 13, where we write rp to denote the dual session of rp.

�
∑

i πiPi�
c2π
in,out,ret

�
∑

i�πiPi�
c2π
in,out,ret

�(?x)P�c2π
in,out,ret � in(x).�P�c2π

in,out,ret

�〈v〉P�c2π
in,out,ret � out〈v〉.�P�c2π

in,out,ret

�〈v〉↑P�c2π
in,out,ret � ret〈v〉.�P�c2π

in,out,ret

�u.P�c2π
in,out,ret � u(rp,rq).�P�c2π

rp,rq,out

�u.P�c2π
in,out,ret � (νr+,r−)u〈r+,r−〉.�P�c2π

r−,r+,out

�rp
⊲ P�c2π

in,out,ret � �P�
c2π
rp,rp,out

�P > (?x)Q�c2π
in,out,ret � (ν p)(�P�c2π

in,p,ret | !p(x).�Q�c2π
in,out,ret) for p � fn(P |Q)

�P1 |P2�
c2π
in,out,ret � �P1�

c2π
in,out,ret |�P2�

c2π
in,out,ret

�(νn)P�c2π
in,out,ret � (νn)�P�c2π

in,out,ret

�!P�c2π
in,out,ret � !�P�c2π

in,out,ret

Fig. 13. Encoding of CaSPiS in pi-calculus

The most interesting part of the encoding is concerned with service definition, ser-

vice invocation, session siding and pipeline. A service invocation is encoded by creating

two fresh names r+ and r− that will be used for intra-session communication: the ser-

vice side will use them for input and output, respectively; vice versa the client side will

use them for output and input, respectively. The presence of two names instead of just

one guarantees that two concurrent processes running on the same session side cannot

interact. Consequently, a session side rp uses the name rp for input and rp for output.

Note also the name for return in the nested session coincides with the name used for

output by its parent. Finally, a pipeline P > (?x)Q must intercept the output of P and use

it to spawn fresh copies of Q. This is achieved by creating a fresh name p that is used

Calculi for Service-Oriented Computing 37

for output by the encoding of P and that is used as input guard of a replicated process

that spawns the copies of (the encoding of) Q.

Exercise 14. The encoding of λ-calculus in CaSPiS �M�λ2c
a can be combined with

the above encoding of CaSPiS in pi-calculus to obtain an encoding �M�λ2c2π
a of λ-

calculus in pi-calculus. After giving the explicit definition of �x�λ2c2π
a , �λx.M�λ2c2π

a

and �MN�λ2c2π
a , compare the encoding with the one defined in Fig. 4 and explain the

main differences, if any.

Then, write the pi-calculus processes �λx.x�λ2c2π
a and �(λx.x)N�λ2c2π

a , together with

all reduction steps of �(λx.x)N�λ2c2π
a .

A type preserving encoding of (a variant of) CaSPiS in (a variant of) Honda, Vasconce-

los and Kubo’s session calculus has been recently defined in Leonardo Mezzina’s PhD

thesis [45].

5 Conclusion and Future Perspectives

In this tutorial we have tried to contribute along the following directions: (1) to outline

several key characteristics of Service-Oriented Computing systems, (2) to sketch the

basic principles, techniques and formal tools offered by the theory of process calculi,

(3) to show that process calculi can likely offer a convenient formalism for represent-

ing SOC systems, but they need to be empowered by novel modelling approaches, de-

veloped at the right level of abstraction, (4) to overview some existing proposals and

the different guidelines they are driven by, (5) to present in detail one such proposal,

namely CaSPiS, and explain the rationale around its design choices, (6) to show how

CaSPiS can be related w.r.t. other well-established formalisms, so that readers more

familiar with them can catch similarities and get a better understand of CaSPiS seman-

tics, (7) to show that CaSPiS mechanism of termination handlers is very expressive,

disciplined and flexible: even if it may look overcomplicated to use, we emphasise that,

up to our knowledge, this is the only proposal able to guarantee a disciplined termina-

tion of nested sessions. We conjecture that any mechanism of this kind would be very

complicated to handle in say pi-calculus.

We hope the quite informal level of presentation has been appreciated by readers not

familiar with process calculi and may serve as a valid basis to learn more, possibly with

the help of the many simple exercises populating the technical sections.

Regarding future work, there is still quite a lot of research to be done for refining and

consolidating the different process calculi proposed for SOC, for integrating them with

other more advanced aspects, like transactions and quality of service, for comparing

them and relating them in a formal way. In particular, for CaSPiS, the overall objective

is to have a rigorous theoretical framework, with some automatic tools available for

type checking, type inference, quantitative analysis and rapid prototyping. We would

like also to integrate other techniques, like those based on choreography, contracts, cor-

relation sets, and multiparty sessions, within CaSPiS, possibly finding seamless ways

to support such concepts on the existing machinery. Current work is also concerned

with graphical encoding and concurrent semantics for SOC calculi, using models based

38 R. Bruni

on hierarchical graphs (that best reflect the nesting of sessions and the possibility to op-

erate on the nested session sides as a whole, like when terminating atomically a session

side and all its descendants).

References

1. Acciai, L., Boreale, M.: A type system for client progress in a service-oriented calculus.

In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,

vol. 5065, pp. 642–658. Springer, Heidelberg (2008)

2. Aceto, L., Ingólfsdóttir, A., Larsen, K., Srba, J.: Reactive Systems: Modelling, Specification

and Verification. Cambridge University Press, Cambridge (2007)

3. Bartoletti, M., Degano, P., Ferrari, G., Zunino, R.: Types and effects for Resource Usage

Analysis. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 32–47. Springer, Heidel-

berg (2007)

4. Bettini, L., De Nicola, R., Loreti, M.: Implementing Session Centered Calculi. In: Lea, D.,

Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 17–32. Springer, Heidel-

berg (2008)

5. Bodei, C., Brodo, L., Bruni, R.: Static detection of logic flaws in service applications.

In: Proceedings of ARSPA-WITS 2009, Joint Workshop on Automated Reasoning for Se-

curity Protocol Analysis and Issues in the Theory of Security. LNCS. Springer, Heidelberg

(2009) (to appear)

6. Bonelli, E., Compagnoni, A.: Multisession session types for a distributed calculus. In:

Barthe, G., Fournet, C. (eds.) TGC 2007. LNCS, vol. 4912, pp. 240–256. Springer, Hei-

delberg (2008)

7. Boreale, M., Bruni, R., Caires, L., De Nicola, R., Lanese, I., Loreti, M., Martins, F., Monta-

nari, U., Ravara, A., Sangiorgi, D., Vasconcelos, V., Zavattaro, G.: SCC: a service centered

calculus. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,

pp. 38–57. Springer, Heidelberg (2006)

8. Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for structured ser-

vice programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,

pp. 19–38. Springer, Heidelberg (2008)

9. Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for Multi-party Service

Composition. Fundam. Inform. 89(4), 451–478 (2008)

10. Bruni, R., De Nicola, R., Loreti, M., Mezzina, L.: Provably correct implementations of

services. In: Kaklamanis, C., Nielson, F. (eds.) TGC 2008. LNCS, vol. 5474, pp. 69–86.

Springer, Heidelberg (2009)

11. Bruni, R., Lanese, I.: Parametric synchronizations in mobile nominal calculi. Theoretical

Computer Science 402(2-3), 102–119 (2008)

12. Bruni, R., Lanese, I., Melgratti, H., Tuosto, E.: Multiparty sessions in SOC. In: Lea, D., Za-

vattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 67–82. Springer, Heidelberg

(2008)

13. Bruni, R., Melgratti, H., Montanari, U.: Nested commits for mobile calculi: extending Join.

In: Lévy, J.-J., Mayr, E., Mitchell, J. (eds.) Proceedings of the 3rd IFIP-TCS 2004, 3rd IFIP

Intl. Conference on Theoretical Computer Science, pp. 569–582. Kluwer Academic Publish-

ers, Dordrecht (2004)

14. Bruni, R., Melgratti, H., Montanari, U.: Theoretical foundations for compensations in flow

composition languages. In: POPL 2005: Proceedings of the 32nd ACM SIGPLAN-SIGACT

sysposium on Principles of programming languages, pp. 209–220. ACM Press, New York

(2005)

Calculi for Service-Oriented Computing 39

15. Bruni, R., Mezzina, L.: Types and deadlock freedom in a calculus of services, sessions and

pipelines. In: Rosu, G., Meseguer, J. (eds.) AMAST 2008. LNCS, vol. 5140, pp. 100–115.

Springer, Heidelberg (2008)

16. Buscemi, M., Montanari, U.: CC-Pi: A Constraint-Based Language for Specifying Service

Level Agreements. In: Nicola, R.D. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 18–32. Springer,

Heidelberg (2007)

17. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and orchestration

conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION

2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

18. Butler, M., Bruni, R., Ferreira, C., Hoare, T., Melgratti, H., Montanari, U.: Comparing two

approaches to compensable flow composition. In: Abadi, M., de Alfaro, L. (eds.) CONCUR

2005. LNCS, vol. 3653, pp. 383–397. Springer, Heidelberg (2005)

19. Butler, M., Hoare, T., Ferreira, C.: A trace semantics for long-running transactions. In:

Abdallah, A., Sanders, J. (eds.) 25 Years Communicating Sequential Processes. LNCS,

vol. 3525, pp. 133–150. Springer, Heidelberg (2005)

20. Caires, L., Vieira, H.T., Seco, J.C.: The conversation calculus: A model of service ori-

ented computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960, pp. 269–283.

Springer, Heidelberg (2008)

21. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred programming for

web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,

Heidelberg (2007)

22. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services. In: Proceed-

ings of POPL 2008, pp. 261–272. ACM, New York (2008)

23. Cook, W.R., Patwardhan, S., Misra, J.: Workflow patterns in Orc. In: Ciancarini, P., Wiklicky,

H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 82–96. Springer, Heidelberg (2006)

24. Curtin, E., Warshauer, M.: The locker puzzle. The Mathematical Intelligencer 28(1), 28–31

(2006)

25. De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a markovian extension of a

calculus for services. In: Proceedings of SOS 2008. Elect. Notes in Th. Comput. Sci. (2008)

(to appear)

26. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopoulou, S.: A distributed object-

oriented language with session types. In: De Nicola, R., Sangiorgi, D. (eds.) TGC 2005.

LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

27. Ene, C., Muntean, T.: A broadcast-based calculus for communicating systems. In: Proc. of

IPDPS 2001. IEEE Computer Society, Los Alamitos (2001)

28. Ferrari, G., Guanciale, R., Strollo, D.: JSCL: A Middleware for Service Coordination.

In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS,

vol. 4229, pp. 46–60. Springer, Heidelberg (2006)

29. Ferrari, G., Guanciale, R., Strollo, D., Tuosto, E.: Coordination via types in an event-based

framework. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 66–80.

Springer, Heidelberg (2007)

30. Gay, S., Hole, M.: Types and subtypes for client-server interactions. In: Swierstra, S.D. (ed.)

ESOP 1999. LNCS, vol. 1576, pp. 74–90. Springer, Heidelberg (1999)

31. van Glabbeek, R.: The linear time – branching time spectrum II; the semantics of sequential

systems with silent moves (extended abstract). In: Best, E. (ed.) CONCUR 1993. LNCS,

vol. 715, pp. 66–81. Springer, Heidelberg (1993)

32. van Glabbeek, R.: The linear time – branching time spectrum I; the semantics of concrete,

sequential processes. In: Bergstra, J., Ponse, A., Smolka, S. (eds.) Handbook of Process

Algebra, ch. 1, pp. 3–99. Elsevier, Amsterdam (2001)

33. Hoare, C.: A model for communicating sequential processes. In: On the Construction of

Programs. Cambridge University Press, Cambridge (1980)

40 R. Bruni

34. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715,

pp. 509–523. Springer, Heidelberg (1993)

35. Honda, K., Vasconcelos, V., Kubo, M.: Language primitives and type disciplines for

structured communication-based programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,

vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

36. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL

2008, Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Priniciples of Pro-

gramming Languages, pp. 273–284. ACM Press, New York (2008)

37. Kitchin, D., Cook, W.R., Misra, J.: A language for task orchestration and its semantic prop-

erties. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 477–491.

Springer, Heidelberg (2006)

38. Kolundzija, M.: Security types for sessions and pipelines. In: Bruni, R., Wolf, K. (eds.)

WS-FM 2008. LNCS, vol. 5387, pp. 176–190. Springer, Heidelberg (2009)

39. Lanese, I., Vasconcelos, V., Martins, F., Ravara, A.: Disciplining orchestration and conversa-

tion in service-oriented computing. In: Proc. of SEFM 2007, Fifth IEEE International Con-

ference on Software Engineering and Formal Methods, pp. 305–314. IEEE Computer Society

Press, Los Alamitos (2007)

40. Laneve, C., Padovani, L.: The pairing of contracts and session types. In: Degano, P.,

De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065,

pp. 681–700. Springer, Heidelberg (2008)

41. Laneve, C., Zavattaro, G.: Foundations of web transactions. In: Sassone, V. (ed.) FOSSACS

2005. LNCS, vol. 3441, pp. 282–298. Springer, Heidelberg (2005)

42. Lapadula, A., Pugliese, R., Tiezzi, F.: A calculus for orchestration of web services. In: De

Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 33–47. Springer, Heidelberg (2007)

43. Lapadula, A., Pugliese, R., Tiezzi, F.: A formal account of WS-BPEL. In: Lea, D., Zavat-

taro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 199–215. Springer, Heidelberg

(2008)

44. Mezzina, L.: How to infer finite session types in a calculus of services and sessions. In: Lea,

D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 216–231. Springer,

Heidelberg (2008)

45. Mezzina, L.: Typing Services. Ph.D in Computer Science and Engineering, IMT Institute for

Advanced Studies, Lucca (2009)

46. Milner, R. (ed.): A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidel-

berg (1980)

47. Milner, R.: Functions as processes. Math. Struct. in Comput. Sci. 2(2), 119–141 (1992)

48. Milner, R.: Communicating and Mobile Systems: The pi-calculus. Cambridge University

Press, Cambridge (1997)

49. Milner, R., Parrow, J., Walker, J.: A calculus of mobile processes, I and II. Inform. and

Comput. 100(1), 1–77 (1992)

50. Misra, J., Cook, W.R.: Computation orchestration: A basis for wide-area computing. Journal

of Software and Systems Modeling 6(1), 83–110 (2007); A preliminary version of this paper

appeared in the Lecture Notes for NATO summer school, held at Marktoberdorf in August

2004

51. Plotkin, G.: A structural approach to operational semantics. Technical Report DAIMI FN-19,

Aarhus University, Computer Science Department (1981)

52. Plotkin, G.D.: The origins of structural operational semantics. Journal of Logic and Alge-

braic Programming 60-61, 3–15 (2004)

53. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Alge-

braic Programming 60-61, 17–139 (2004)

54. Rosaz, L.: Puzzle corner #70: The 50 prisoners. Bulletin of the European Association for

Theoretical Computer Science (EATCS) 86, 229 (2005)

Calculi for Service-Oriented Computing 41

55. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Par-

adigms. Ph.D thesis, LFCS, University of Edinburgh, CST-99-93 (also published as ECS-

LFCS-93-266) (1993)

56. Sangiorgi, D., Walker, D.: The pi-calculus: a theory of mobile processes. Cambridge Univer-

sity Press, Cambridge (2001)

57. Sensoria Project. Software Engineering for Service-Oriented Overlay Computers. Public

Web Site, http://sensoria.fast.de/

58. Vasconcelos, V.: Fundamentals of session types. In: Bernardo, M., Padovani, L., Zavattaro,

G. (eds.) SFM 2009. LNCS, vol. 5569, pp. 158–186. Springer, Heidelberg (2009)

59. Wehrman, I., Kitchin, D., Cook, W.R., Misra, J.: A timed semantics of Orc. Theoretical

Computer Science 402(2-3), 234–248 (2008)

http://sensoria.fast.de/

Service Interaction:

Patterns, Formalization, and Analysis

Wil M.P. van der Aalst1, Arjan J. Mooij1, Christian Stahl1,
and Karsten Wolf2

1 Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{W.M.P.v.d.Aalst,A.J.Mooij,C.Stahl}@tue.nl

2 Universität Rostock, Institut für Informatik
18051 Rostock, Germany

Karsten.Wolf@uni-rostock.de

Abstract. As systems become more service oriented and processes in-
creasingly cross organizational boundaries, interaction becomes more im-
portant. New technologies support the development of such systems.
However, the paradigm shift towards service orientation, requires a fun-
damentally different way of looking at processes. This survey aims to
provide some foundational notions related to service interaction. A set
of service interaction patterns is given to illustrate the challenges in this
domain. Moreover, key results are given for three of these challenges: (1)
How to expose a service?, (2) How to replace and refine services?, and (3)
How to generate service adapters? These challenges will be addressed in
a Petri net setting. However, the results extend to other languages used
in this domain.

Keywords: Service Orientation, Service Choreography, Open Nets, Ver-
ification, Service Interaction Patterns.

1 Introduction

Information technology has changed business processes within and between
enterprises. Traditionally, information technology was mainly used to support
individual tasks (“type a letter”) and to store information. However, today’s
business processes and their information systems are intertwined. Processes heav-
ily depend on information systems and information systems are driven by the
processes they support [1]. In the last decade, information systems have become
“process aware”, i.e., processes are taken as the starting point [1].

At the same time, there is an increasing acceptance of Service-Oriented Ar-
chitectures (SOA) as a paradigm for integrating software applications within
and across organizational boundaries [2]. XML-based standards like SOAP and
WSDL facilitate the realization of such loosely coupled architectures. Interest-
ingly, SOA and associated technologies have blurred the classical distinction be-
tween intra-organizational processes and inter-organizational processes. Whether

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 42–88, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Service Interaction: Patterns, Formalization, and Analysis 43

Fig. 1. An illustration showing the main terms used to describe services

work is subcontracted to an internal service or an external service, is no longer
relevant from a technological point of view.

However, the importance of interaction is increasing as more and more mono-
lithic systems are broken down into smaller services. The importance of inter-
action has been stressed by many authors [3,4,5,6,7,8]. Moreover, interaction is
also considered a first-class citizen in various industry standards. For example,
the Web Services Business Process Execution Language (BPEL) has primitive
activities such as invoke (invoking an operation on a web service), receive (wait-
ing for a message from an external source), and reply (replying to an external
source) [9]. Moreover, the pick construct that can be used for race conditions
based on external triggers is clearly inspired by the needs of service interaction.

Foundations. In this paper, we focus on the foundations of service interaction.
We will not review the industry standards and associated tools. Instead we focus
on fundamental concepts that are independent of a particular implementation
language.

We first present some of the terms we will be using. A service has a definition.
This definition describes the behavior and the interface of the service. A service
can be instantiated. An instance corresponds to an execution of a service, and
hence it can execute activities, and receive and send messages. Activities are the
atomic units of work in a service and are specified in the service definition. The
interface of a service consists of a set of ports. A pair of ports can be connected
using a channel, thus enabling the exchange of messages. Services can be com-
posed by connecting the interfaces. We use the term service choreography to refer
to a set of fully-connected service definitions. Figure 1 illustrates these terms.

In Sect. 2 we categorize some recurring service interactions in terms of a set
of service interaction patterns. Inspired by the Workflow Patterns Initiative (cf.
www.workflowpatterns.com), in particular the control-flow patterns [10] and
the set of interaction patterns [3] presented by Barros et al., we use a patterns-
based approach [10,3] to introduce the foundational concepts and challenges of
service interaction in a language and tool independent manner.

In Sect. 3 we introduce open nets [11] as a basic tool to explain and formalize
services. Open nets are a refinement of Petri nets [12,13,14] with interface places
for communication and designated initial and final markings. Open nets can

www.workflowpatterns.com

44 W.M.P. van der Aalst et al.

accept

cook

collect

p6

p7

p8

p5

place

eat

pay

p2

p3

p4

p1

order

food

money

order

money

food

(a) Two services: a guest service GS 1

and a friendly restaurant service RS1

place accept

cook

collect

p6

p7

p8

p5

p2

p3

p4

p1

order

food

money

order

money

food

eat

pay

(b) Two services: a guest service GS 1

and an unfriendly restaurant service RS2

Fig. 2. Two pairs of services: GS 1 ⊕ RS1 and GS 1 ⊕ RS2

be seen as a generalization of workflow nets [15], extended with communication
and a more relaxed net structure. A service definition is modeled as an open net.
Ports are modeled as interface places. Service definitions can be composed by
merging interface places into channel places. These channel places are internal
to the composed service. Messages correspond to tokens passed from one service
to another via interface places. A service choreography is the result of composing
a set of open nets such that all interface places become internal.

We define service composition in terms of open nets. The composition of ser-
vices may lead to all kinds of (behavioral) problems, e.g., deadlocks, livelocks,
inability to terminate, etc. Two or more services are compatible if their com-
position “behaves well”, but there exist several notions of compatibility in the
literature. Based on a particular compatibility notion, one can define controlla-
bility, i.e., “Does a service have a compatible service?”.

Examples. Let us look at some examples of open nets representing very sim-
ple “toy services”. Figure 2(a) shows two service definitions. The composition of
these two service definitions can be achieved by merging equally labeled interface
places (depicted on the frame). Each of the service definitions corresponds to an
open net and in the composition the interface places are fused. The open net on
the left (GS 1) represents a guest that first places an order, eats the food, and
finally pays. The three activities of this service, i.e., place, eat, and pay, are mod-
eled in terms of transitions. These activities are connected to the other service
via ports and channels. In our open-net representation these have been mapped
onto the places order, food, and money. In this toy example, real objects are
passed via the connecting places (e.g., food). In the context of web services, of
course only messages are exchanged via such places. The open net on the right-
hand side of Fig. 2(a) (RS 1) models the other service that consist of activities

Service Interaction: Patterns, Formalization, and Analysis 45

collect

get drunk

cook

accept

p6

p7

p8

p5

leave

place

p2

p3

p4

p1

pay

eat

order

food

money

order

money

food

(a) Two incompatible services GS2

and RS3

collect

accept

p5

p6

get drunk

cook

p7

p8

pay

leave

place

p2

p3

p4

p1

eat

order

food

money

song

order

money

food

song

(b) Two compatible services GS3 and
RS4

Fig. 3. Another two pairs of services: GS2 ⊕ RS3 and GS3 ⊕ RS4

accept, cook, and collect. This is the “friendly restaurant service” RS1, which
can be seen as the obvious counterpart of GS 1. The composition of GS 1 and
RS1, denoted by GS 1⊕RS1, has only one possible execution trace: place, accept,
cook, eat, pay, and collect. It seems obvious that the two services are compatible,
even without having a precise definition of compatibility in mind.

Consider Fig. 2(b) modeling two similar services consisting of the same activ-
ities. However, the restaurant service now is less friendly and requires the guest
to pay before preparing the food (i.e., collect should occur before cook). This
“unfriendly restaurant service” is named RS2. The composition GS 1 ⊕ RS2 al-
ways runs into a deadlock, i.e., after executing place and accept both services are
blocked waiting for one another. Clearly these two services are not compatible.

To illustrate the complexity and intricate subtleties of service interaction,
consider Fig. 3(a). This time the guest may leave without eating and paying
for the food. Moreover, the cook is an alcoholic and may get drunk instead
of cooking the food. The resulting service composition GS 2 ⊕ RS3 clearly has
problems. It may be the case that the customer leaves while the food has been
or will be delivered. One may wonder which service would be compatible with
RS3, as it is unclear for the outside whether the food will be delivered or not.
We will come back to this question in Sect. 3.

Figure 3(b) shows improved versions of the “potentially leaving guest service”
and the “drunk cook restaurant service”: GS 3 and RS4. In the new service
choreography the cook starts singing Irish folk songs when he gets drunk. As a
result, the customer knows when to leave. The composition GS 3⊕RS4 has only
two possible execution traces: (1) the original scenario: place, accept, cook, eat,
pay, and collect, and (2) an added scenario: place, accept, get drunk, and leave.
Hence these two services are compatible.

46 W.M.P. van der Aalst et al.

Challenges. In the second part of the paper, we discuss three main challenges
of service interaction in terms of open nets.

Exposing services (Sect. 4). In order to find compatible pairs of services, ser-
vices need to know each other (to some degree). Hence services need to be “ex-
posed” to cooperate in a meaningful way. For example, the guest should know
that he should leave when the cooks starts singing Irish folk songs. One com-
mon approach is where a service shows its own specification or implementation.
The drawback of this approach is that the environment starts using short-lived
particularities, or that sensitive information is shown without reason. Another,
less common, approach is to describe the class of compatible services. The chal-
lenge is to characterize a possibly infinite set of services in a compact manner.
Operating guidelines are a way of specifying the class of services a service can
work with, without exposing irrelevant or sensitive information.
Replacing and refining services (Sect. 5). One of the advantages of using an SOA
is that things can be changed more easily, i.e., one service may be replaced by
another service, or an unavailable service is replaced by several simpler services.
However, all of these changes may cause various errors that break the service
choreography. The challenge is to provide rules for replacing and refining services
while guaranteeing forward/backward compatibility. Note for example that RS 3

in Fig. 3(a) can be replaced by RS1 in Fig. 2(a), but not the other way around.
How to capture this in a generic rule?
Integrating services using adapters (Sect. 6). In reality, existing services need to
be composed to achieve a specific goal. However, services are often not compati-
ble. This triggers many questions, e.g., how to repair a service, how to diagnose
problems, etc. In Sect. 6 we focus on the challenge of adapter synthesis, i.e., the
(semi-)automatic generation of “glue logic” that makes incompatible services
compatible while achieving a given goal. For example, suppose that GS 4 is an
anorexic guest that just wants to order and pay without actually eating. It is
easy to make an adapter service AS that throws away the food such that the
service choreography GS4 ⊕ AS ⊕ RS1 functions without any problems.

After discussing these challenges and providing an overview of the known
results for these problems, we present tool support for these methods in Sect. 7.
Finally, Sect. 8 concludes the paper.

2 Service Interaction Patterns

Before formalizing service definitions and addressing the various challenges in
this domain, we provide some examples of service interaction patterns. The goal
is not to summarize the existing patterns or to present new ones. Instead vari-
ous service interaction patterns are presented informally using a notation close
to open nets. Since we do not aim to describe the patterns in any detail, we
do not use the typical patterns format describing various aspects of a pattern
(e.g., description, examples, forces, motivation, overview, context, implementa-
tion, issues, and solutions) like in [3,10,16,17,18,19]. Instead, we just show a
figure and provide a brief description for each pattern.

Service Interaction: Patterns, Formalization, and Analysis 47

2.1 Workflow Patterns Initiative

The use of patterns is very appealing for identifying functionality in a sys-
tem/language independent manner. The most well-known patterns collection in
the IT domain is the set of design patterns documented by Gamma, Helm, John-
son, and Vlissides [16]. This collection describes a set of problems and solutions
frequently encountered in object-oriented software design. This triggered many
patterns initiatives in the IT field, including the Workflow Patterns Initiative.
However, the idea to use a patterns-based approach originates from the work
of the architect Christopher Alexander. In [20], he provides rules and diagrams
describing methods for constructing buildings. The goal of the patterns docu-
mented by Alexander was to provide generic solutions for recurrent problems in
architectural design.

The work described in this section is part of the Workflow Patterns Initiative
(cf. www.workflowpatterns.com). This initiative is a joint effort of Eindhoven
University of Technology and Queensland University of Technology which started
in the late nineties. The aim of this initiative is to provide a conceptual basis
for process technology. In particular, the research provides a thorough exami-
nation of the various perspectives (control flow, data, resource, and exception
handling) that need to be supported by a workflow language or a business pro-
cess modeling language. The results can be used for examining the suitability
of a particular process language or process-aware information system, assessing
relative strengths and weaknesses of various approaches to process specification,
implementing certain business requirements in a particular system, and as a
basis for language and tool development.

Originally the workflow patterns focussed exclusively on the control-flow per-
spective [10]. The initial set of 20 patterns was later extended to a set of more
than 40 control-flow patterns [21]. In parallel, patterns were identified for the re-
source perspective [18], for the data perspective [19], and for exception handling
[22]. Especially the control-flow patterns have had a huge impact on the selection
of systems in practice and the definition of new standards. For example stan-
dardization efforts related to BPEL, XPDL, BPMN, etc. have been influenced
by these patterns.

In the context of the Workflow Patterns Initiative, several collections for
service interaction patterns have been collected. In [3], Barros, Dumas, and
Ter Hofstede document such patterns and divide them into several groups:
single-transmission bilateral interaction patterns (elementary interactions where
a party sends/receives a message, and as a result expects/sends a reply), single-
transmission non-routed patterns (also dealing with multi-lateral interactions),
multi-transmission interaction patterns (a party sends/receives more than one
message to/from the same logical party), and routed interaction patterns (in-
volving complex routing of messages through the network). These patterns were
described in an informal manner. In [4] some of these patterns are formalized
using both π-calculus and Petri nets. A more systematic approach for the identi-
fication of service interaction patterns was conducted in the PhD thesis of Mulyar
[17]. She identified five pattern families: multi-party multi-message request-reply

www.workflowpatterns.com

48 W.M.P. van der Aalst et al.

(a) SIP-1 Send pattern (b) SIP-2 Pre-Blocking
Send pattern

block

send

p

c1

c2

c3

(c) SIP-3 Post-Blocking
Send pattern

Fig. 4. Patterns related to sending a message

conversation [6], renewable subscription, message correlation, message media-
tion, and bipartite conversation correlation. Using a generative approach, more
than 1,500 service interaction patterns are documented in [17]. While the above
service interaction patterns have been developed in the context of the Workflow
Patterns Initiative, other relevant patterns have been identified in related do-
mains. A notable example is the collection of enterprise integration patterns by
Hophe and Woolf [5].

2.2 Basic Service Interaction Patterns

First, we describe the basic service interaction patterns. These patterns abstract
from correlation, i.e., at this stage we do not worry about routing a message to
a specific service or service instance.

The first pattern is the SIP-1 Send pattern. The basic idea is shown in
Fig. 4(a). Note that in this open net fragment, transition send represents an
activity with precondition c1 and postcondition c2, both modeled by a place.
Place p represents an output port. The dashed line separates the interface from
the rest of the service definition. In Fig. 2(a) and the other examples in the
introduction, this pattern was used multiple times, e.g., to place an order or to
pay money. Pattern SIP-2 Pre-Blocking Send shown in Fig. 4(b) is a variant of
the same idea. However, now the sender blocks if the previously sent message
was not yet consumed. This is modeled by a so-called inhibitor arc between block
and p, i.e., block can only be executed if p is empty. Pattern SIP-3 Post-Blocking
Send is another variant. Now the thread in the sender service blocks until the
message sent is consumed, cf. Fig. 4(c). After sending the message, transition
block waits until the message is removed from output port p. Note that SIP-2
and SIP-3 can be combined, i.e., the sender blocks before and after sending (if
necessary).

Figure 5 shows two basic patterns to receive messages. Pattern SIP-4 Receive
is the straightforward receipt of messages. The receiver blocks until the message
arrives. However, the message may arrive when the receiving service is not ex-
pecting it. In this scenario, the message waits until the receiver is ready, i.e., the

Service Interaction: Patterns, Formalization, and Analysis 49

(a) SIP-4 Receive pattern (b) SIP-5 Lossy Receive pattern

Fig. 5. Patterns related to receiving a message

message is queued in the channel connected to place p. If this is not possible, the
message may get lost as shown in Fig. 5(b). This is pattern SIP-5 Lossy Receive.
Note that transition remove has an inhibitor arc connected to the input place c1
of receive. Hence, it can only be executed if receive is not enabled. If receive has
multiple places, more remove transitions are needed (one for every input place).
These transitions may be considered as part of the channel.

Figure 6(a) shows pattern SIP-6 Concurrent Send and Fig. 6(b) shows pat-
tern SIP-7 Concurrent Receive. SIP-6 describes the pattern where a service can
send two messages in any order: one via p1 and one via p2. SIP-7 is the log-
ical counterpart and here the receiver can receive two messages in any order.
Note that SIP-6 and SIP-7 can be combined with services that receive and send
sequentially, i.e., from an interaction point these are quite “robust” unlike the
choice patterns described next.

Figure 7 shows three choice patterns: SIP-8 Sending Choice, SIP-9 Receiving
Choice, and SIP-10 Internal Choice. SIP-8 describes the situation where the
choice is made within the service and communicated to the environment. Note
that other services may be able to see which internal path is taken, e.g., a message
via p1 reveals that send1 is executed. This pattern is used in Fig. 3(b) where the
restaurant service communicates the choice to “cook” or “get drunk” by sending
the food or singing Irish folk songs. SIP-9 shown in Fig. 7(b) models the pattern
where the choice is influenced by the environment, i.e., the environment forces
the service to take one path or another. This pattern is used in Fig. 3(b) by the

(a) SIP-6 Concurrent Send pattern (b) SIP-7 Concurrent Receive pattern

Fig. 6. Patterns related to the concurrent sending or receiving of messages

50 W.M.P. van der Aalst et al.

(a) SIP-8 Sending
Choice pattern

(b) SIP-9 Receiving Choice
pattern

(c) SIP-10 Internal Choice
pattern

Fig. 7. Patterns related to choices in the presence or absence of communication

guest service. Pattern SIP-10 describes a third variant where the choice is not
enforced by the environment nor communicated (cf. Fig. 7(c)).

Figure 8 shows two patterns where a choice is followed by a subsequent message
exchange depending on the choice. SIP-11 Sending Choice Receiving Follow-Up
shown in Fig. 8(a) corresponds to the scenario where the service makes a choice
(SIP-8) followed by the receipt of a particular message depending on the initial
choice. Hence, the environment is expected to send a message via p3 if it received
a message via p1 and it is expected to send a message via p4 if it received a mes-
sage via p2. This is indicated by the dotted curves in Fig. 8(a). Figure 8(b) shows
the symmetrical case, i.e., pattern SIP-12 Receiving Choice Sending Follow-Up.
In this pattern the environment takes the lead and the service follows, e.g., when
receiving a message via p1, the service responds by sending a message via p3. Not
shown are the patterns SIP-13 Sending Choice Sending Follow-Up, SIP-14 Receiv-
ing Choice Receiving Follow-Up, and SIP-15 Internal Choice Sending Follow-Up.
However, given their names and the two earlier examples, their meaning is obvi-
ous. We do not consider situations where the follow-up is an internal step, because
this would not really be a follow-up related to the choice.

Figure 9(a) shows a so-called anti-pattern: AP-1 Internal Choice Receiving
Follow-Up. Anti-patterns describe undesirable constructs that may introduce
errors or inefficiencies. In AP-1 an internal choice is followed by a receive which

(a) SIP-11 Sending Choice Receiv-
ing Follow-Up pattern

(b) SIP-12 Receiving Choice Send-
ing Follow-Up pattern

Fig. 8. Choice with a follow-up patterns

Service Interaction: Patterns, Formalization, and Analysis 51

(a) AP-1 Internal Choice Receiving
Follow-Up anti-pattern

(b) Another variant of the anti-
pattern

Fig. 9. Two examples showing that “choices that matter” need to be communicated

should depend on the internal choice. Sometimes the service expects a message
via p1 and sometimes via p2. However, the environment has no way of telling
what to do, because the choice was never communicated. If one compares this
with the two patterns shown in Fig. 8, it is good to see that the essential dif-
ference is that in AP-1 the environment has no way of determining an adequate
strategy. By not sending a message via p1 the receiving service may deadlock
and by sending a message via p1 the message may get stuck in the channel.
Figure 9(b) shows a variant of the same anti-pattern. The choice to execute skip
is not communicated, so the environment does not know whether it should send
a message via p2 or wait forever for a message to arrive via p1.

Note that the problem in Fig. 3(a) is similar to AP-1. The restaurant service
never communicates that the cook decided to get drunk, so the guest does not
know whether to leave or not.

2.3 Correlation Patterns

The patterns presented thus far abstract from correlation, i.e., when sending a
message via a channel it is assumed that it is routed to the appropriate service
instance. For example, in Fig. 2(a) it is assumed that the “food message” is
routed to the right instance of the guest service. If there are multiple guests,
there will be multiple instances of GS 1 and RS 1. The “food message” needs
to the related to the “order message” (i.e., the right dish is cooked), and the
“money message” needs to be related to the two previous messages, because
the price probably depends on the dish that was ordered. In this paper we
define correlation as establishing a relationship between a service instance and a
message.

Correlation is a neglected topic in service interaction. Yet correlation is om-
nipresent. Consider for example the booking of a trip, ordering a book, reviewing
papers, requesting a lab test, etc. In each of these examples multiple parties are
involved while there may be many concurrent instances. To be able to link mes-
sages to service instances, so-called correlation identifiers are used. For example,

52 W.M.P. van der Aalst et al.

(a) Sending (b) Receiving

Fig. 10. Notation used to explain basic correlation patterns

(a) SIP-16 Leading Cor-
related Send pattern

(b) SIP-17 Following
Correlated Send pattern

(c) AP-2 Uncorrelated
Send anti-pattern

Fig. 11. Correlation patterns related to sending a message

when booking a trip a booking reference is given by the travel agency. In a hos-
pital the patient identifier is used to route lab tests to the right department.
Therefore, languages such as BPEL provide explicit mechanisms for correlation.
For example, BPEL supports the concept of “correlation sets” [9]. When a mes-
sage arrives for a web service which has been implemented using BPEL, the
message must be delivered somewhere: either to a new or an existing instance of
the BPEL process. The task of determining to which conversation (i.e., service
instance) a message belongs, is supported by correlation sets. To use a correlation
set, a BPEL program defines the set by enumerating the properties which com-
prise it, and then refers to that set from receive, reply, invoke, or pick activities
(i.e., all BPEL activities involving interaction).

To illustrate the basics of correlation, consider Fig. 10. In this figure me refers
to the identity of the service instance and you refers to the identity of some
other service instance. Messages are described by the triplet (from,to,content).
from refers to the sender of the message, to refers to the intended recipient of the
message, and content refers to the message body. The variables me, you, from,
and to refer to service instances and may be used for correlation. We replace
me, you, from, and to by the symbol * when the variable has no value or the
value does not matter. Figure 10(a) shows the notation for sending a message
(from,to,content) by a service instance described by (me,you). Figure 10(b) shows
the receiving counterpart. These notations will be used to illustrate correlation
patterns.

Figure 11 shows two correlation patterns and one anti-pattern. All refer to
sending a message. Pattern SIP-16 Leading Correlated Send depicted in Fig. 11(a)

Service Interaction: Patterns, Formalization, and Analysis 53

describes the situation where a message (from,*,content) is sent. This implies
that the sender expects the other party to use the sender’s identification (i.e.,
from = me). Therefore, we say that the sender is “leading” in SIP-16. Note that
the you and to variables shown in Fig. 10(a) are all replaced by * to denote that
they are irrelevant or missing. The assignment [from:=me] attached to transi-
tion send makes sure that the sender instance reveals itself appropriately. Pattern
SIP-17 Following Correlated Send shown in Fig. 11(b) assumes that the sender
is “following” and uses a correlation id set by the other party. Here the tu-
ple (*,to,content) is sent. Therefore, the sender needs to know the identity of
the receiver instance (i.e., to:=you). Figure 11(c) shows the anti-pattern AP-
2 Uncorrelated Send. This anti-pattern refers to the situation where no explicit
correlation information is given when sending the message. Other than the con-
tent of the message, there is no way in which the environment can correlate the
message (*,*,content) to the instance me.

Figure 12 shows four correlation patterns and one anti-pattern. Pattern SIP-
18 Leading Correlated Receive is the logical counterpart of SIP-17, i.e., the sender
uses the correlation id of the receiver. Figure 12(a) shows the type of message
(*,to,content) received and the guard [me=to] making sure that the message
is routed to the right instance. Pattern SIP-19 Following Correlated Receive
depicted in Fig. 12(b) shows the situation where the receiver “follows” the sender
and needs to know its identity you. Pattern SIP-20 Learning Correlated Receive
depicted in Fig. 12(c) shows yet another variant. Here the receiver does not know
the identity of the sender, but learns this from the incoming message. Note that
the service instance is denoted by (me,you) after receiving the message while
before it was denoted by (me,*). Pattern SIP-21 Creating Correlated Receive

(a) SIP-18 Leading
Correlated Receive
pattern

(b) SIP-19 Following
Correlated Receive
pattern

(c) SIP-20 Learning Cor-
related Receive pattern

(d) SIP-21 Creating Cor-
related Receive pattern

(e) AP-3 Uncorrelated Re-
ceive anti-pattern

Fig. 12. Correlation patterns related to receiving a message

54 W.M.P. van der Aalst et al.

Fig. 13. SIP-22 Correlation Swap pattern

shown in Fig. 12(d) is similar to SIP-19 but now a new instance is created. Note
that some languages provide a combination of SIP-19 and SIP-21, i.e., if the
message can be correlated to an existing instance, then this is done, otherwise a
new instance is created. Figure 12(e) shows the anti-pattern AP-3 Uncorrelated
Receive. Although the sender reveals its identity, the receiver has no possibility to
correlate properly (without analyzing the content of the message for “clues”). In
the example of the restaurant this would correspond to preparing a dish without
knowing which guest has ordered it.

Figures 11 and 12 show some of the basic correlation patterns. Clearly these
can be combined to identify more complex patterns. We do not aim at providing
a complete overview of such patterns. We refer to [3] for some example patterns
where correlation plays a prominent role and to [17] where a more complete clas-
sification of correlation patterns is given. Moreover, to illustrate the challenges
related to correlation, we show two more patterns.

Figure 13 shows the SIP-22 Correlation Swap pattern. Here we use the same
notations as before, so the figure should be self-explanatory. The core idea of
the pattern is that in the first message the correlation id of the left service
instance is used while in the last message the correlation id of the right service
is used. The message in the middle helps the left service instance to build up
knowledge to be able to use the other party’s correlation id in later interactions.
Seen from the viewpoint of the left service, SIP-22 uses three basic patterns: SIP-
16 (for sending the first message in a “leading role”), SIP-20 (for learning the
other instance’s id from the second message), and SIP-17 (for sending the third
message in a “following role”). As shown in Fig. 13, the first message creates a
service instance (i.e., SIP-21 is used).

Pattern SIP-23 Correlation Broker shown in Fig. 14 is an example of a pattern
involving three services. The service in the middle acts as a mediator and is
instantiated for any connection between a service instance on the right and
a service instance on the left. As a result, two services can interact without
knowing each other’s identity. Note that place db holds a token for each pair of

Service Interaction: Patterns, Formalization, and Analysis 55

send1

(from1,*,content1)

(me1,*)

(me1,*)

[from1:=me1]
relay1

(x,y)

[to1:=y]
[x=from1]

receive2

[me1=to2]

(*,to1,content1)

receive1

(me2,*)

[me2=to1]

[from2:=me2]

send2

(from2,*,content2)(*,to2,content2) (x,y)

relay2

[y=from2]
[to2:=x]

db

(me2,*)

(me2,*)(me1,*)

Fig. 14. SIP-23 Correlation Broker pattern

service instances (we assume that there is a one-to-one correspondence). The first
message is relayed to the appropriate service instance using this information. The
return message is relayed in a similar way without exposing the sending service.

2.4 More Advanced Correlation Patterns

As indicated before, correlation is of the utmost importance and the patterns
shown thus far only scratch the surface. For example, the patterns shown in
this paper use the identity of the sending or receiving instance as a correlation
id. Of course, both parties can also agree on a more neutral correlation id. Also
note that languages like BPEL support multiple correlation sets [9]. The topic of
correlation has many aspects and based on [3,5,17] we mention two dimensions
showing the broad scope of this problem.

SIP-23 is the only correlation pattern considering multilateral interaction.
All other correlation patterns consider just bilateral interactions. In realistic
service choreographies multilateral correlation is needed. Consider for example
the booking of a trip involving two flights, three hotels nights, two train trips, and
a rental car. This requires a network of service instances involving non-binary
dependencies (e.g., the hotel should be canceled if the flight is not possible and
the pick-up time of the car depends on the flight data).

Another dimension is related to multiple instances inside a service instance
or message. Thus far we assumed activities and messages to be atomic. This is
often not the case. For example, consider a service handling customer orders that
may consist of multiple order lines. This service needs to deal with messages and
activities at the level of a customer order and at the level of individual order lines.
For example, a customer places one order that is decomposed in smaller orders
for specific suppliers. Moreover, for a single order line there may be multiple
potential suppliers. Another example, is the organization of a conference. One
instance of a conference involves multiple authors, PC members, and reviewers.
There may be many papers, each paper requires multiple reviews, and papers are
ranked and compared based on their reviews. One reviewer may submit multiple
reviews and each paper has multiple reviews, authors, etc. This example, shows
that various types of instances interact in a complex manner.

56 W.M.P. van der Aalst et al.

In [5] the authors identify a patterns called Scatter-Gather. This is an example
of a pattern that involves a variable number of service instances. The goal of the
patterns is to “maintain the overall message flow when a message needs to be
sent to multiple recipients, each of which may send a reply” [5]. The Scatter-
Gather pattern broadcasts a message to multiple recipients and re-aggregates
the responses back into a single message. For example, one may ask a dozen car
rental companies for a quote, then select the best quote, and continue interacting
with the cheapest rental company.

The data intensive patterns referred to in this subsection are outside the scope
of this paper. In the remainder, we abstract from correlation and restrict the
scope to the patterns presented in Sect. 2.2. For analysis purposes we typically
look at one instance or conversation in isolation. We will show that this is often
a valid abstraction. Nevertheless, we presented several correlation patterns to
stress the importance of correlation.

3 Specifying Services

Petri nets have proven to be successful for the modeling of business processes and
workflows (see the work of Van der Aalst [15,23], for instance). In this section
we introduce our modeling formalism for services, viz., open nets, which is a
refinement of Petri nets. In terms of the patterns we introduced in the previous
section the focus is on the basic patterns (cf. Sect. 2.2), i.e., we only consider a
single instance of each service and no correlation. We focus on service interaction,
and abstract from non-functional properties, semantical information and data.
We introduce the concept of open net composition and also formalize the notion
of compatibility. As the formalism of open nets refines classical place/transition
Petri nets, we first provide the basic definitions on Petri nets.

3.1 Basic Definitions on Petri Nets

Petri nets [12,13,14] consists of two kinds of nodes, places and transitions, and a
flow relation on nodes. Graphically, a place is represented by a circle, a transition
by a box, and the flow relation by directed arcs between them. Whilst transitions
represent dynamic elements, for example an activity in a service, places represent
static elements, such as causality between activities or an interface port. A state
of the Petri net is represented by a marking, which is a distribution of tokens
over the places. Graphically, a token is depicted by a black dot.

Definition 1 (Petri net). A Petri net N = [P, T, F, m0] consists of

– two finite and disjoint sets P and T of places and transitions,
– a flow relation F ⊆ (P × T) ∪ (T × P), and
– an initial marking m0, where a marking is a mapping m : P −→ �.

When referring to several Petri nets we use indices, to distinguish the con-
stituents of different Petri nets, for example, PN refers to the set of places of
Petri net N .

Service Interaction: Patterns, Formalization, and Analysis 57

For the flow relation of a Petri net N we introduce the following notation to
denote the pre-set and the post-set of places and transitions. Let x ∈ P ∪ T be
a node of N . Then, •x = {y | [y, x] ∈ F} denotes the pre-set of x (i.e. all nodes
y that have an arc to x) and x• = {y | [x, y] ∈ F} denotes the post-set of x (i.e.
all nodes y with an arc from x to y).

Consider the Petri net of the guest service GS1 in Fig. 2(a) and ignore for
the moment the interface places and its adjacent arcs. This Petri net consists
of the four places p1, . . . , p4 and the three transitions place, eat, pay. Its initial
marking is m0 = [p1]. For example, we have •p2 = {place} and p2• = {eat}.

The dynamics of a Petri net N is defined by the firing rule. The firing rule de-
fines enabledness of Petri net transitions and their effects. A transition t is enabled
at a marking m if there is a token on every place in its pre-set. The firing of an
enabled transition t yields a new marking m′, which is derived from its predeces-
sor marking m by consuming (i.e. removing) a token from each place of t’s pre-set
and producing (i.e. adding) a token on each place of t’s post-set. The described

firing relation is denoted m
t
−→ m′. Thereby m

t
−→ m′ is a step of N .

The behavior of a Petri net N can be enhanced from single steps to potentially

infinite transition sequences, called runs. A finite or infinite sequence m0
t1−→

m1
t2−→ m2

t3−→ . . . is a run of N if and only if, for all i, mi
ti−→ mi+1 is a step of

N . Let m and m′ be markings of N . Then, m′ is reachable from m if and only

if there exists a finite run m0
t0−→ m1

t1−→ . . .
tk−2

−−−→ mk−1
tk−1

−−−→ mk with m = m0

and mk = m′. We denote this reflexive transitive closure of the firing rule by
m

∗
−→ m′. With RN (m) = {m′ | m

∗
−→ m′} we denote the set of all markings that

can be reached from m by firing any number of transitions.
The set RN (m0) of reachable markings of a Petri net N contains all markings

that are reachable from the initial marking m0. That way, RN (m0) spans a graph
that has the set of reachable markings as its states and the transitions between
these markings as its edges. This graph is known as the reachability graph, which
can be represented by a transition system.

Consider again GS 1 in Fig. 2(a) without the interface places and their adja-
cent arcs. In its initial marking, [p1], only transition place is enabled. Firing of
transition place yields marking [p2]. There is only one firing sequence and four

reachable markings: [p1]
place
−−−→ [p2]

eat
−−→ [p3]

pay
−−→ [p4].

3.2 Open Nets

A service consists of a control structure describing its behavior and an interface
to communicate asynchronously with other services. Thereby an interface con-
sists of a set of (input and output) ports. In order that two services can interact
with each other, an input port of the one service has to be connected with an
output port of the other service. These connected ports then form a channel.
Asynchronous message passing means that communication is non-blocking, i.e.,
after a service has sent a message it can continue its execution and does not have

58 W.M.P. van der Aalst et al.

to wait until this message is received. Furthermore, messages can ‘overtake’ each
other, i.e., the order in which the messages are sent is not necessarily the order
in which they are received.

We model services as open nets which have been introduced as ‘open workflow
nets’ in [24]. An open net is a Petri net as defined in the previous section and thus
it can adequately model the control structure of a service. The set of final states
of a service, i.e., the states in which it may successfully terminate, is modeled
by a set of final markings. The service interface is reflected by two disjoint sets
of input and output places. Thereby, each interface place corresponds to a port.
An input place has an empty pre-set and is used for receiving messages from
a distinguished channel whereas an output place has an empty post-set and is
used for sending messages via a distinguished channel.

Definition 2 (Open net). An open net N = [P, T, F, I, O, m0, Ω] consists of
a Petri net [P, T, F, m0] together with

– an interface (I∪O) ⊆ P defined as two disjoint sets I of input places and O
of output places such that •p = ∅ for any p ∈ I and p• = ∅ for any p ∈ O,
and

– a set Ω of final markings.

We further require that in the initial and the final markings the interface places
are not marked, i.e., for all m ∈ Ω ∪ {m0} we have m(p) = 0, for all p ∈ I ∪O.

Graphically, we represent an open net like a Petri net with a dashed frame
around it. The interface places are depicted on the frame. Final markings have
to be described separately.

We refer to an open net with an empty interface as a closed net. A closed net
can be used to model a service choreography, for instance.

Definition 3 (Closed net). An open net N with an empty interface, i.e., IN =
∅ and ON = ∅, is a closed net.

The seven nets in Figs. 2 and 3 are open nets. For example, the open net GS 1 in
Fig. 2(a) has I = {food} and O = {order, money}. We define the final marking
Ω = {[p4]}.

A closed net has finitely many states if it is bounded, i.e., no place can contain
infinitely many tokens in any reachable marking.

Definition 4 (Boundedness). A closed net N is k-bounded if there exists a
k ∈ � such that for each reachable marking m ∈ R(N)(m0), m(p) ≤ k, for all
p ∈ PN .

3.3 Composing Open Nets

The general idea of SOA is to use services as building blocks for designing com-
plex services. To this end, services have to be composed, i.e., pairs of input and
output ports of these services are connected using a channel. Communication

Service Interaction: Patterns, Formalization, and Analysis 59

between these services takes place by exchanging messages via these channels.
Composing two open nets is modeled by fusing pairwise equally labeled input
and output places. Such a fused interface place models a channel and a token on
such a place corresponds to a pending message in the respective channel.

For the composition of open nets, we assume that all constituents (except for
the interfaces) are pairwise disjoint. This can be achieved easily by renaming. In
contrast, the interfaces intentionally overlap. For a reasonable concept of compo-
sition of open nets, however, it is convenient to require that all communication
is bilateral and directed, i.e., every interface place p ∈ I ∪ O has only one open
net that sends into p and one open net that receives from p. Thereby the sending
open net has the output place and the receiving open net has the corresponding
equally labeled input place. We refer to open nets that fulfill these properties as
interface compatible.

Definition 5 (Interface compatible open nets). Let N1, N2 be two open
nets with pairwise disjoint constituents except for the interfaces. If only input
places of one open net overlap with output places of the other open net, i.e.,
I1 ∩ I2 = ∅ and O1 ∩ O2 = ∅, then N1 and N2 are interface compatible.

As an example, each of the four pairs of open nets depicted in Figs. 2 and 3 are
interface compatible open nets.

Composing two open nets means to merge their respective shared constituents.
As we only define composition for interface compatible open nets, the only shared
constituents are the interface places. In other words, composition corresponds
to place fusion which is well-known in the theory of Petri nets.

Definition 6 (Composition of open nets). Let N1 and N2 be two interface
compatible open nets. The composition N = N1 ⊕ N2 is the open net with the
following constituents:

– P = P1 ∪ P2,
– T = T1 ∪ T2,
– F = F1 ∪ F2,
– I = (I1 ∪ I2) \ (O1 ∪ O2),
– O = (O1 ∪ O2) \ (I1 ∪ I2),
– m0 = m01 ⊕ m02, and
– Ω = {m1 ⊕ m2 | m1 ∈ Ω1, m2 ∈ Ω2}.

For markings m1 of N1 and m2 of N2 which do not mark the interface places,
their composition m = m1⊕m2 is defined by m(p) = mi(p) if p ∈ Pi, for i = 1, 2.

Composition of two open nets M and N results in an open net again. Compos-
ing M and N means merging input places of M with equally labeled output
places of N (and vice versa). Therein, bilateral and directed communication
between the components is guaranteed. The initial marking of the composition
is the sum of the initial markings of M and N , and the set of final markings
of the composition is the Cartesian product of the sets of final markings of M

60 W.M.P. van der Aalst et al.

and N . This is reasonable, because Definition 2 ensures that the only shared
constituents of M and N , the interface places, are not marked in the initial or
final markings.

As an example, all pairs of open nets in Sect. 1 are interface compatible. Thus
we can compose them by merging equally labeled interface places. Each resulting
composition is a closed net.

To apply composition to an arbitrary number of open nets, we require these
open nets to be pairwise interface compatible. This ensures bilateral commu-
nication as for a third open net N3, a communication taking place inside the
composition of open nets N1 and N2 is internal matter.

Open net composition is commutative and associative, i.e., for interface com-
patible open nets N1, N2 and N3 holds N1⊕N2 = N2⊕N1 and (N1⊕N2)⊕N3 =
N1 ⊕ (N2 ⊕ N3). Thus, composition of a set of open nets can be broken into re-
cursive pairwise composition.

3.4 Behavioral Properties

We want the composition of a set of services to be compatible. Obviously, there
is no unique definition of compatibility. A minimal requirement is, however,
the absence of deadlocks in a service. A stronger criterion is the possibility
of a service to terminate from every reachable state. This criterion excludes
deadlocks and in addition livelocks, where a livelock is a set of reachable states
of a service from which neither a deadlock nor a final state is reachable. Besides
deadlocks and livelocks one may also want to exclude the existence of dead
activities in a service. This criterion of compatibility coincides with the soundness
notion for workflows [15]. Obviously, compatibility is only of interest for a service
choreography which is modeled by a closed net, i.e., an open net with an empty
interface.

In this paper we say that a closed net is compatible if it is deadlock-free,
but most of the techniques can also be used for other notions of compatibility.
Thereby a deadlock is a reachable, non-final marking m in N in which the open
net N gets stuck, i.e., no transition is enabled in m.

Definition 7 (Deadlock). Let N = [P, T, F, I, O, m0, Ω] be a closed net. A
reachable marking m ∈ RN (m0) is a deadlock in N iff m /∈ Ω and no transition
t ∈ T is enabled in m. If no such m exists in N , then N is deadlock-free.

This definition of a deadlock differs from the standard definition in the literature,
as we discriminate between terminating (final) states and non-terminating states
(i.e., deadlocks).

If we assume Ω = {[p4, p8]} for all compositions in Figs. 2 and 3, then GS1 ⊕
RS2 has a deadlock ([p2, p6]) and GS 2⊕RS3 has also a deadlock ([p4, food, p7]).
The other two compositions, GS 1 ⊕ RS1 and GS 3 ⊕ RS4, are deadlock-free.

Given an open net N we are interested in those open nets M such that their
composition M ⊕ N is a deadlock-free closed net.

Service Interaction: Patterns, Formalization, and Analysis 61

Definition 8 (Strategy, controllability). Let M , N be two open nets such
that IM = ON and OM = IN . Then, M is a strategy for N iff M ⊕ N is
deadlock-free. With Strat(N) we denote the set of all strategies for N . N is
controllable iff its set of strategies is nonempty.

If N is not controllable, then it is fundamentally ill-designed, because it cannot
properly interact with any other open net.

In our examples, GS1 is a strategy for RS1 and vice versa, for instance. Hence,
both open nets are controllable. Moreover, each of the seven open nets in Figs. 2
and 3 is controllable. For GS 2 and RS 3 this might be surprising at first sight.
However, a restaurant service that only receives the order and then terminates is
a strategy for GS 2, thus forcing the customer to leave. A strategy for RS3 must
be aware that after having ordered the cook may get drunk, in which case no food
will be served. Nevertheless, the guest cannot be sure, and hence he must stay in
the restaurant in order to eat the food in case it is served. This can be modeled
by open net GS 1 with final markings Ω = {[p2], [p4]}, i.e., after having ordered,
the guest does not need to eat, but if food is served, he will eat and pay.

4 Exposing Services

For automatically selecting and composing services in a well-behaved manner,
information about the services has to be exposed. In particular, this information
must be sufficient to decide whether the composition of any service R with any
service S is compatible. Usually, the information about some services S is stored
in a repository. Selecting a service means to find for a given service R (whose
behavior is given) a compatible service S in the repository. There are two ways
of exposing services.

In the first approach, the behavior of S is exposed. Well-behavior of the com-
position of R and S can be verified using standard state space verification tech-
niques [25]. However, organizations usually want to hide the trade secrets of
their services and thus need to find a proper abstraction of S which is published
instead of S.

The second approach does not expose the behavior of S, but a class of services
R that is compatible with S, e.g., the set Strat(S). Then the composition of R
and S is compatible if Strat(S) contains R. From the set of strategies it is in
general not possible to derive the original service.

However, Strat(S) is in general an infinite set of services. Hence, the challenge
is to find a compact representation of this set. To this end, operating guidelines
can be used.

In this section we only consider the latter approach of exposing services and
thus recapitulate the concept of an operating guidelines [26,27]. The operating
guidelines OG(N) of an open net N is a (finite) automaton enhanced with some
annotations. It represents the set Strat(N) of all strategies for N .

Strictly speaking, OG(N) does not characterize a set of open nets, but the
behavior of these nets, because two (structurally) different open nets may have
the same behavior. So we continue by first defining the behavior of an open net,
which is a labeled transition system, and then introducing operating guidelines.

62 W.M.P. van der Aalst et al.

4.1 Behavior of Open Nets

The behavior of an open net N is basically the reachability graph of the inner
subnet inner(N) of N , which defines the Petri net that results from removing
the interface places and the adjacent arcs from N . Obviously, inner(N) and N
coincide if N is a closed net.

Definition 9 (Inner subnet). Let N = [P, T, F, I, O, m0, Ω] be an open net
and let P ′ = P \ (I ∪ O) be the set of internal places of N . Then, inner(N) =
[P ′, T, F ∩ ((P ′ × T) ∪ (T × P ′)), ∅, ∅, m0, Ω] is the inner subnet of N .

Often we restrict ourselves to open nets where every transition is connected to
at most one interface place. We refer to such open nets as elementary com-
municating open nets. This restriction is not significant, as every open net can
be transformed to an equivalent elementary communicating open net [27]. All
examples shown in Sect. 1 are elementary communicating open nets.

For elementary communicating open nets we define a mapping that assigns a
label to each transition. We use these labels to represent the transition system
of an open net N .

Definition 10 (Transition label of open nets). Let N =[P, T, F, I, O, m0, Ω]
be an elementary communicating open net. The transition labels for N are de-
fined by the mapping l : T → I ∪O∪{τ} (τ
∈ I ∪O) such that l(t) is the unique
interface place adjacent to t ∈ T if one exists, and l(t) = τ if t is not adjacent
to any interface place.

In the examples we add a preceding question mark, ‘?’, to each label of a transition
connected to an input place and a preceding exclamation mark, ‘!’, to each label of
a transition connected to an output place. For example, the inner subnet of GS 2

has the labels l(place) = !order, l(eat) = ?food, l(pay) = !money, l(leave) = τ .
The behavior of an open net N can now be defined by the reachability graph

of the inner structure of N , where the transitions are labeled using the mapping
l defined in Definition 10. Notice, the transition labels represent actions on an
asynchronous channel.

Definition 11 (Behavior of open nets). The behavior of an open net N =
[P, T, F, I, O, m0, Ω] is defined by the transition system TS (N) = [Q, l, δ, q0, QF],
where

– Q = Rinner (N)(m0) is the (nonempty) set of reachable markings of inner(N),
– l is the labeling function,

– [m, l(t), m′] ∈ δ iff m
t
−→ m′, for t ∈ T , is the transition relation,

– q0 = m0 is the initial state, and
– QF = Ω is the set of final states.

Figures 15(a) and 15(b) show the behavior of open nets GS 1 and GS 2, respec-
tively. States r4 and r8 denote final states. In Fig. 15(a) the states r1, r2, r3 and
r4 correspond to the markings [p1], [p2], [p3], and [p4] in GS1, respectively.

Service Interaction: Patterns, Formalization, and Analysis 63

!order

!money

?food

r1

r2

r3

r4

(a) TS(GS1)

!order

!money

?food

r5

r6

r7

r8

(b) TS(GS2)

s1: !order !money

s2: !order

s4: ?food

s6: final

s3: !money ?food

s5: !money

!order!money

!order !money ?food

?food
!money

(c) OG(RS1)

q1: !order

q2: (?food final)

q3: !money

q4: final

!order

!money

?food

(d) OG(RS3)

Fig. 15. Behavior of open nets GS1 and GS2 and operating guidelines (guaranteeing
1-boundedness) of open nets RS1 and RS3

To relate different service behaviors, we introduce the well-known weak simu-
lation relation [28]. Weak simulation is defined for (labeled) transition systems.
Since we can compute the behavior of any open net in terms of a transition sys-
tem, weak simulation is also well-defined for open nets. Let τ∗ denote a (possible
empty) sequence of τ transitions.

Definition 12 (Weak simulation relation). Let P and R be transition sys-
tems and let â stand for τ∗ if transition label a is τ , and a otherwise. A binary
relation ̺P,R ⊆ QP × QR is a weak simulation relation of P by R iff for every
[qP , qR] ∈ ̺P,R, such that there is a transition [qP , a, q′P] ∈ δP in P , there is a
transition [qR, â, q′R] ∈ δR in R and [q′P , q′R] ∈ ̺P,R. R weakly simulates P iff
there is a weak simulation relation ̺P,R of P by R such that [q0P

, q0R
] ∈ ̺P,R.

Consider again Figs. 15(a) and 15(b). TS (GS 2) weakly simulates TS (GS 1) us-
ing the relation ̺TS(GS2),TS(GS1) = {[r1, r5], [r2, r6], [r3, r7], [r4, r8]}. TS (GS 1)
also weakly simulates TS (GS 2) using the relation ̺TS(GS1),TS(GS2) = {[r5, r1],
[r6, r2], [r7, r3], [r8, r4], [r8, r2]}. So the final states do not matter for weak
simulation.

4.2 Operating Guidelines

For an open net N we have the set Strat(N) of all strategies for N . Since the set
Strat(N) is in general infinite, we need to construct a compact characterization
of this set. To this end, we introduce operating guidelines, a (automaton-based)
representation of Strat(N).

An operating guidelines OG(N) of an open net N characterizes the set
Match(OG(N)) = {TS (M) | M ∈ Strat(N)}, i.e., the behaviors of all strategies
for N and thus the set Strat(N). The set Match(OG(N)) contains a transition

64 W.M.P. van der Aalst et al.

system, say TS (M∗), that has the least restrictions [29] and any open net M∗

is called a most permissive strategy for N . More precisely, TS (M∗) weakly sim-
ulates the behavior TS (M) of each strategy M for N . The transition system
TS (M∗) is the first ingredient of OG(N). As an example, ignore the annota-
tions inside the states of Fig. 15(d). Apart from the final states the automaton
of Fig. 15(d) is the most permissive strategy for the open net RS3.

Unfortunately, TS (M∗) also weakly simulates some transition systems, for
which the corresponding open net is not a strategy for N . For example, TS (GS 1)
(cf. Fig. 15(a)) is weakly simulated by the most permissive strategy for RS 3 (cf.
Fig. 15(d)), but GS 1 is not a strategy for RS3. In order to exclude such transition
systems, we need to specify which restrictions of the structure of TS (M∗) are
behaviors of strategies for N . This can be achieved by specifying which edges of
TS (M∗) have to be present in the weak simulation between TS (M∗) and any
TS (M), for any strategy M for N . To this end, every state q of TS (M∗) is
annotated with a Boolean formula Φ(q), the second ingredient of OG(N).

A literal of our Boolean formulae Φ is an element of the set MP of transition
labels of M∗ (MP stands for message ports) or one of the special literals τ and
final (representing an internal transition and a final state, respectively). With
MP+ we denote the set MP ∪ {final , τ}. As Boolean connectors, we only need
∨ (Boolean or) and ∧ (Boolean and). Let BF be the set of all such Boolean
formulae over MP+.

Thus, an operating guidelines OG(N) = BΦ is a Boolean annotated service
automaton that consists of a deterministic automaton B and a Boolean anno-
tation Φ. Thereby B is the behavior TS (M∗) of the most permissive strategy
for N .

Definition 13 (Boolean annotated service automaton). A Boolean anno-
tated service automaton (BSA) BΦ = [Q,MP , δ, q0, Φ] consists of

– a nonempty set Q of states,
– a set MP of transition labels such that final , τ /∈ MP,
– a deterministic transition relation δ ⊆ Q × MP × Q,
– an initial state q0, and
– a Boolean annotation function Φ : Q → BF.

Figures 15(c) and 15(d) show two BSAs. For example, the BSA in Fig. 15(d)
has four states q1, . . . , q4. The initial state is q1. The annotations are !order∨ τ
in state q1, (!food ∧ final) ∨ τ in state q2, etc.

We use Boolean annotated service automata to represent the behavior of a set
of open nets. Therefore, we take a BSA BΦ and define when a service described in
terms of an open net M matches with BΦ. A (Boolean) assignment is a mapping
β : MP+ → {true, false} assigning to each literal a truth value. Furthermore,
an assignment β satisfies a Boolean formula φ ∈ BF , denoted by β |= φ, if
φ evaluates to true using standard propositional logic semantics. Open net M
matches with BΦ if

Service Interaction: Patterns, Formalization, and Analysis 65

1. its behavior TS (M) is weakly simulated by BΦ and

2. for every state qm of TS (M) that is weakly simulated by a state q of BΦ,
the transitions leaving qm and the fact whether qm is a final state of TS (M)
constitute a satisfying assignment for Φ(q).

Definition 14 (Assignment). Let MP be a set of message ports. An assign-
ment of the behavior TS (M) = [Q, l, δ, q0, QF] of an open net M assigns to each
state q ∈ Q a Boolean assignment βTS(M)(q) : MP+ → {true, false} defined by:

βTS(M)(q)(x) =

⎧

⎪

⎨

⎪

⎩

true, if x
= final and there is a state q′ with [q, x, q′] ∈ δ,

true, if x = final and q ∈ QF ,

false, otherwise.

As an example, TS (GS 2) (see Fig. 15(b)) assigns in state r5 true to !order, in
state r6 true to ?food and τ , in state r7 true to !money and in state r8 true to
final. To all other literals in each state false is assigned.

With the help of the Boolean assignment β matching of an open net with a
BSA can be defined as follows.

Definition 15 (Matching). Let TS (M) be the behavior of an open net M
and let BΦ be a BSA such that TS (M) and B have the same transition labels.
Then M matches with BΦ iff B weakly simulates TS (M) using a relation ̺ ⊆
QTS(M) × QB such that for each [qM , qB] ∈ ̺: βTS(M)(qM) |= Φ(qB). Let
Match(BΦ) denote the set of all open nets that match with BΦ.

Consider again Fig. 15. TS (GS 1) matches with the BSA in Fig. 15(c), i.e.,
Fig. 15(c) weakly simulates TS (GS 1) and in each pair of states of the weak
simulation relation the assignment β assigns true to sufficiently many literals
such that the formula holds. As a counterexample, TS (GS 1) does not match
with the BSA in Fig. 15(d). Observe the existence of a weak simulation relation.
But being in related states [r2, q2], r2 assigns only true to ?food yielding (true∧
false)∨false which is false. TS (GS 2) matches with none of these BSAs. In case of
Fig. 15(c), being in related states [r6, s3], a τ transition is possible in r6 yielding
related states [r8, s3] in the weak simulation (note that by Definition 12 the
BSA may execute the empty τ sequence). However, in this pair of states the
annotation of s3 is violated, because r8 only assigns true to final. For the same
reason TS (GS 2) does not match with the BSA in Fig. 15(d). There is a pair
of states [r8, q2] in the weak simulation relation, where the annotation of q2 is
violated (TS (GS 2) can neither receive a message food being in its final marking
nor perform a τ -labeled transition).

An operating guidelines of an open net N is a BSA such that every matching
service M is a strategy for N and every strategy for N matches with BΦ. In
other words, the sets Match(Bφ) and Strat(N) must be equal.

Definition 16 (Operating guidelines, OG). The operating guidelines
OG(N) of an open net N is a BSA such that Match(OG(N)) = Strat(N).

66 W.M.P. van der Aalst et al.

For uncontrollable open nets N (i.e., Strat(N) = ∅) the OG consists of a sin-
gle state that is annotated with false, assuring that no open net matches with
this OG.

Figures 15(c) and 15(d) depict the operating guidelines of RS 1 and RS3. Since
TS (GS 1) matches with OG(RS1), we conclude that GS 1 is a strategy for RS1.
TS (GS 1) does not match with OG(RS 3), and thus GS1 is not a strategy for
RS3. For the same reason GS 2 is not a strategy for RS 1 nor for RS3.

For every controllable open net N , there exists a most permissive strategy,
i.e., a strategy M that has the least restrictions of all strategies [29]. Thus,
the behavior TS (M) of M corresponds exactly to the transition system of the
underlying automaton of OG(N). The final states of TS (M) are the states of
OG(N) with final in their annotation.

Definition 17 (Most permissive strategy). Let OG(N) = [Q,MP , δ, q0, Φ]
be the operating guidelines for a controllable open net N . Then, an open net
M is the most permissive strategy for N iff TS (M) = [Q,MP , δ, q0, Ω], where
Ω = {q | final occurs in Φ(q)}.

So removing the annotations in the states of OG(RS 1) and OG(RS 3) and adding
all states that contain a literal final to the set of final states yields the most
permissive strategy for RS1 and RS 3, respectively.

It is worthwhile mentioning that for each open net there exists an operating
guidelines that only requires negation-free annotations and a deterministic struc-
ture [27]. This eases the implementation of the matching procedure. In spite of
these restrictions, an operating guidelines is able to characterize even nondeter-
ministic service models. To this end, each Boolean annotation has a disjunct τ
(see Fig. 15, for instance) as otherwise a state of a transition system that can
only perform a τ transition cannot satisfy the annotation of the respective state
in the operating guidelines.

5 Replacing and Refining Services

In this section we consider another important application in an SOA: service
replacement and service refinement. We define an accordance relation on any
two services S and S′ that ensures that every compatible service for S is also
compatible with S′, and hence S can be replaced by S. To decide accordance
we present a sufficient criterion based on projection inheritance and a precise
criterion based on operating guidelines. Finally, we show how to derive a service
S′ from a service S by using accordance-preserving transformation rules.

5.1 A Notion of Accordance

Given an open net N , it might be necessary to change or add some functionality
of N by replacing it by a new version N ′. Because we assume that N does not
know each service that uses N , N ′ must support each compatible service for N ,
i.e., all elements in Strat(N). With accordance we demand that every compatible

Service Interaction: Patterns, Formalization, and Analysis 67

service for N is compatible with N ′ as well. An application for accordance is the
upgrade of a web shop which should not affect any client. This motivates the
following notion of accordance between open nets N and N ′. To this end, N and
N ′ must be interface equivalent open nets.

Definition 18 (Interface equivalent open nets). Two open nets M and N
are interface equivalent iff IM = IN and OM = ON .

Definition 19 (Accordance). Let N and N ′ be two interface equivalent open
nets. N ′ can replace N under accordance (N ′ accords with N , for short) iff
Strat(N) ⊆ Strat(N ′).

Accordance guarantees that every strategy for N is a strategy for N ′ as well. In
addition, accordance allows N ′ to have more compatible services. Accordance is
a pre-order, i.e., it is reflexive and transitive.

As an example, the open nets RS1 and RS3 in Figs. 2(b) and 3(a) are interface
equivalent and RS1 accords with RS3. In the next subsection we present a
method to prove this.

Many different accordance notions—often called conformance—exists in the
literature, but there are always some differences to accordance. Vogler [30] pre-
sents a deadlock-preserving equivalence for Petri nets with an interface, but he
does not distinguish between deadlocks and final markings. Fournet et al. [31]
also formalize the absence of deadlocks, but their pre-order is coarser than ac-
cordance (see [32]). The approaches of [33,34] formalize a stronger termination
criterion, namely the absence of deadlocks and livelocks. In addition, [34] de-
mands only the environment to terminate, but not the service itself.

5.2 Deciding Accordance

Deciding accordance of two open nets N and N ′ is a nontrivial problem, because
we have to compare the two possible infinite sets of strategies Strat(N) and
Strat(N ′). We introduce two approaches for deciding accordance. One approach,
projection inheritance, decides accordance on the net structure of N and N ′.
The second approach uses the operating guidelines OG(N) and OG(N ′), i.e.,
the compact characterizations of Strat(N) and Strat(N ′), to decide accordance.

Projection Inheritance. Inheritance is one of the key concepts of object-
orientation. In object-oriented design, inheritance is typically restricted to the
static aspects (e.g., data and methods) of an object class. In many cases, how-
ever, the dynamics is of prime importance. Therefore, projection inheritance [35]
focuses on the dynamics. Projection inheritance compares process models by es-
tablishing a subclass-superclass relationship. The subclass process is indeed a
subclass if it inherits particular dynamic properties of its superclass.

Projection inheritance is based on branching bisimulation [36] (to compare the
processes) and abstraction (to hide tasks). The assumption is that the subclass
adds tasks to the superclass such that after hiding the additional tasks both
are equivalent. The basic idea of projection inheritance can be characterized as
follows:

68 W.M.P. van der Aalst et al.

“If it is not possible to distinguish the behaviors of x and y when arbi-
trary methods of x are executed, but when only the effects of methods
that are also present in y are considered, then x is a subclass of y” [35].

Projection inheritance was defined for workflow nets in [35], but in this defi-
nition projection inheritance refers to “methods” rather than the “sending and
receiving of messages”. In [37] projection inheritance has been reformulated for
open nets by the following mapping: A transition that is connected to an inter-
face place presents a method present in both the superclass and the subclass.

We continue by defining branching bisimulation for transition systems (and
hence also for open nets). In order to apply this equivalence notion in our setting,
branching bisimulation should guarantee that, for each final state of TS , there
exists a final state in TS ′ and both states are related by branching bisimulation.

Definition 20 (Branching bisimulation). Two labeled transition systems TS
and TS ′ are branching bisimular iff there exists a symmetric relation ̺bb such
that [q0, q

′
0] ∈ ̺bb and, for all q1, q′1 holds: If [q1, q

′
1] ∈ ̺bb and q1

α
−→ q2, then

either

– α = τ and [q2, q
′
1] ∈ ̺bb or

– there are q′2, q
′
3 such that q′1

τ∗

−→ q′2
α
−→ q′3, [q1, q

′
2] ∈ ̺bb, and [q2, q

′
3] ∈ ̺bb.

Furthermore, for each final marking q ∈ QF holds: if [q, q′] ∈ ̺bb, then either
q′ ∈ Q′

F or there exists a transition sequence τ∗ starting from q′ that contains a
state q′1 ∈ Q′

F with [q, q′1] ∈ ̺bb.

To decide whether two open nets are related by projection inheritance, it is
sufficient to check if their behaviors are branching bisimular. In contrast to [35],
we do not need to define an abstraction operator. In our mapping, the comparison
of the two open nets is restricted to the transitions that are connected to an
interface place. We abstract from all other transitions by labeling them with τ .
The labeling, however, is fixed in Definition 10 (transition label) and thus no
additional definition of an abstraction is necessary. Consequently, we can define
projection inheritance of two open nets as follows.

Definition 21 (Projection inheritance). Two open nets N and N ′ are re-
lated by projection inheritance iff their behaviors are branching bisimular.

Note that projection inheritance is an equivalence.
As an example, consider TS (GS 1) and TS (GS 2) in Figs. 15(a) and 15(b), re-

spectively. Although TS (GS 2) simulates TS (GS 1) they are not branching bisim-
ular. The reason is that the τ transition in state r6 yields a relation between states
r2 and r8 which obviously violates branching bisimulation. Thus, GS 1 and GS 2

are not related under projection inheritance.
In [37] we have proven that the accordance notion is more liberal than pro-

jection inheritance, i.e., projection inheritance implies accordance (in both di-
rections). This gives a sufficient criterion for deciding accordance.

Service Interaction: Patterns, Formalization, and Analysis 69

Theorem 1 (Projection inheritance implies accordance [37]). Let N and
N ′ be two open nets. If N and N ′ are related by projection inheritance, then N ′

accords with N and N accords with N ′.

Although the notion of projection inheritance preserves all strategies, it turns out
that in practice it is too restrictive. In other words, N accords with N ′ and N ′

accords with N does in general not imply that N and N ′ are related by projection
inheritance. This is mainly caused by the fact that projection inheritance looks
at the structure of the nets rather than the exchange of messages. For example,
when messages are sent, their order does not really matter. This is caused by
the fact that we consider asynchronous message passing, i.e., messages may be
consumed in a different order than they were produced. Nevertheless, projection
inheritance will differentiate between different orderings of sending messages. As
another example, open nets RS1 and RS3 are not branching bisimular, but RS 1

accords with RS3.

Checking Accordance with Operating Guidelines. We consider now a
more liberal refinement notion that is necessary and sufficient.

Remember that we need to compare the sets Strat(N) and Strat(N ′) in or-
der to decide accordance of N and N ′. The problem is that the set Strat may
correspond to an infinite set of open nets. With the operating guidelines of N
and N ′ we have, however, a compact representation of Strat(N) and Strat(N ′)
which can be used to decide accordance. To this end, we define a refinement
relation ⊑ for operating guidelines. Informally, OG(N) ⊑ OG(N ′), i.e., OG(N ′)
refines OG(N), if and only if there is a simulation relation between the states
of OG(N) and OG(N ′) such that the annotations in OG(N) imply the an-
notations in OG(N ′). Here we need a (strong) simulation relation. However,
operating guidelines are deterministic (see Definition 13) and for deterministic
transition systems the notions of (strong) and weak simulation are equivalent.

Definition 22 (Refinement of OGs). Let N and N ′ be interface equivalent
open nets and let OG(N) = [Q,MP , δ, q0, Φ] and OG(N ′) = [Q′,MP ′, δ′, q′0, Φ

′] be
the corresponding operating guidelines. Then, OG(N) ⊑ OG(N ′) (i.e., OG(N ′)
refines OG(N)) iff there is a simulation relation ξ ⊆ Q × Q′ such that for all
[q, q′] ∈ ξ, the formula Φ(q) ⇒ Φ′(q′) is a tautology.

As an example, consider the two operating guidelines OG(RS1) and OG(RS3) in
Fig. 15. RS1 and RS3 are interface equivalent and OG(RS 1) simulates OG(RS3),
i.e., each step in OG(RS 3) can be mimicked in OG(RS1). Furthermore, the anno-
tations of OG(RS 3) imply the annotations in OG(RS 1). For example, !order∨ τ
implies !order∨!money∨τ in [q1, s1] ∈ ξ, (?food∧final)∨τ implies !money∨?food∨τ
in [q2, s3] ∈ ξ, etc. Consequently, we have OG(RS3) ⊑ OG(RS1). It is easy to
observe that OG(RS 1) ⊑ OG(RS3) does not hold, because OG(RS3) does not
simulate OG(RS 1).

The relation ⊑ is a pre-order. With the help of the next theorem we show
that OG(N ′) refines OG(N) iff N ′ accords with N and thus it can be used to

70 W.M.P. van der Aalst et al.

decide accordance of N and N ′. This result has been first introduced in [37] for
acyclic open nets and has been extended to cyclic open nets in [32].

Theorem 2 (Checking accordance [32]). Let N and N ′ be two open nets
and let OG(N) and OG(N ′) be the corresponding operating guidelines. Then,
OG(N) ⊑ OG(N ′) iff Strat(N) ⊆ Strat(N ′).

Based on the above consideration we conclude that Strat(RS3) ⊆ Strat(RS1),
and hence RS1 accords with RS3.

The value of Theorem 1 and Theorem 2 is that accordance can be checked
independently of the services that use N , and only N and N ′ have to be known
to decide accordance.

5.3 Refining Services

In the previous section we have presented an algorithm to decide for two given
open nets N and N ′ whether N ′ accords with N and thus can replace N without
violating any strategy for N . However, designing N ′ is a nontrivial and error-
prone task even for experienced service designers. In order to support service
designers, we introduce an approach to refine open nets. Given an open net
N we want to incrementally transform N to an open net N ′ such that every
transformation step preserves accordance. To this end, fragments of N are in-
crementally replaced by other fragments. In this approach, a fragment M of N is
replaced by another fragment M ′ yielding the open net N ′. We prove that if M ′

accords with M , then N ′ accords with N . The results we are going to present
in this section have been published in [37].

An open net M is a fragment of an open net N if there is an open net Nrest and
the composition of M and Nrest is the open net N . The set of interface places of
M is divided into two sets: some interface places of N and some internal places
R∪S of N . We use R to denote these input places and S to denote these output
places. For technical reasons we require that the initial marking of M is the
empty marking and the set of final markings is the singleton set with the empty
marking.

Definition 23 (Fragment). Let M be an open net with m0 = 0 and Ω = {0}.
Open net M is a fragment of an open net N iff there exists an open net Nrest

such that N = M ⊕ Nrest .

As an example, consider the open net GS 1 in Fig. 2(a). A possible fragment M
would be the open net with PM = {p2, p3, food}, TM = {eat} and the adjacent
arcs. In this case RM = {p2} and SM = {p3}.

The next theorem states that if an open net N has a fragment M and there is
another fragment M ′ that accords with M , then we can replace M by M ′ without
affecting any strategy for N . Such transformations can be applied incrementally
and thus refine a service specification to an implementation by applying trans-
formation steps. The resulting implementation is correct by construction, i.e., it
preserves all strategies of the specification.

Service Interaction: Patterns, Formalization, and Analysis 71

Theorem 3 (Justification of transformation rules [37]). Let N1 ⊕ N2 be
a deadlock-free open net composition. Let M be a fragment of N1, and let Nrest

be an open net such that N1 = M ⊕ Nrest . For any open net M ′ that accords
with M , the composition (M ′ ⊕ Nrest) ⊕ N2 is deadlock-free.

Inheritance-preserving Transformation Rules. Based on the notion of pro-
jection inheritance, three inheritance-preserving transformation rules have been
defined in [35]. These rules correspond to design patterns for extending a su-
perclass to incorporate new behavior: (1) adding an internal loop (2) put a new
internal transition in parallel with existing transitions, and (3) insert an internal
transition in-between existing transitions.

We exemplify these rules in Fig. 16. Figure 16(a) represents a fragment M0 of
an open net N . M0 contains transitions a, b and c. By Definition 23, there are
no other connections of a, b, c, p1 and p2 than those shown in Fig. 16(a). Each
transition is connected to an input and an output place. However, as indicated
by the capital letters, each interface place may correspond to a set of places.
Note that Ai, Ao, Bi, Bo, Ci, Co do not need to be disjoint. Places R and S denote
the input and output places to N . Again, R and S may be sets of places. Similar
remarks hold for the other three fragments M1, M2 and M3. For example, M1

is obtained by adding transition d to M0.

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

(a) M0.

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(b) M1: Adding a
loop to M0.

p4

p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(c) M2: Putting transi-
tion d in parallel to b.

p3

Ai

Ao

Bi

Bo

Co

Ci

S

R

p2

p1

c

b

a

d

(d) M3: Inserting transi-
tion d in-between a and b.

Fig. 16. Accordance-preserving transformation rules based on projection inheritance

If one considers the behavior of these open nets, then M0, M1, M2 and M3 are
branching bisimular. Hence each pair of these four fragments is related by pro-
jection inheritance. From Theorem 1 we conclude that the three transformation
rules depicted in Fig. 16 preserve accordance in both directions.

Inheritance-preserving transformation rules only change internal transitions
of an open net. Next we present transformation rules that affect transitions that
are adjacent to an interface place.

72 W.M.P. van der Aalst et al.

a

b

S

R

p

t2

t1 a

b

S

R

t12

M4 M5

(a) Rule 1: Strat(M4) = Strat(M5)

a

b

S

R

p

t2

t1 a

b

S

R

t12

M6 M7

(b) Rule 2: Strat(M6) = Strat(M7)

Fig. 17. Rule 1 and Rule 2

Accordance-preserving Transformation Rules. We present five accordance-
preserving transformation rules. Four of these rules preserve accordance in both
directions and one rule preserves accordance only in one direction. Although
these transformation rules are sufficient, they are not complete, meaning they
do not cover all possible service implementations. Given an open net N , each
transformation rule specifies a fragment M of N (see Definition 23) which can
be replaced by another open net M ′ yielding an implementation of N . Theo-
rem 3 justifies that this replacement preserves all strategies for N . As in case
of the inheritance-preserving transformation rules, the rules are only informally
described and illustrated by help of some figures.

Rule 1 is depicted in Fig. 17(a) and specifies that a sequence of receiving
transitions can be merged, and the messages can be sent simultaneously. Rule 1
preserves accordance in both directions. Thus, we can derive that a sequence
of receiving transitions can also be reordered or can be executed concurrently.
Reordering of receiving transitions and executing receiving transitions concur-
rently preserve accordance in both directions. The same holds for a sequence of
sending transitions. The corresponding rule (Rule 2) is depicted in Fig. 17(b).

Rule 3 in Fig. 18(a) combines sending and receiving transitions. A receiving
transition followed by a sending transition can be executed simultaneously while
preserving accordance in both directions. Due to Rules 1 and 2, Rule 3 can
be generalized to a sequence of receiving transitions followed by a sequence of
sending transitions.

So far, we excluded the possibility that a sending transitions is followed by a
receiving transitions. Rule 4, depicted in Fig. 18(b), specifies that first sending
and then receiving a message can also be executed concurrently and vice versa.
Rule 4 preserves accordance in both directions, too.

Figure 19(a) shows that first sending and then receiving cannot be reordered
in general: M10 does not accord with M8 and M8 does not accord with M10.
Suppose the final markings to be equivalent to the singleton set with the empty
marking. Then, the open net depicted in Fig. 19(b) is a strategy for M10, but
no strategy for M8, and the open net depicted in Fig. 19(c) is a strategy for M8

but not for M10.

Service Interaction: Patterns, Formalization, and Analysis 73

a

b

S

R

p

t2

t1 a

b

S

R

t12

M8 M9

(a) Rule 3: Strat(M8) = Strat(M9)

p1

p3

t4

a

b

S

R

p

t2

t1

M10

a

b

S

R

p2

t3

t1

M11

t2

p4

(b) Rule 4: Strat(M10) = Strat(M11)

Fig. 18. Rule 3 and Rule 4

Figure 19(a) can be seen as an anti-pattern, however, not in the sense of the
anti-patterns mentioned in Sect. 2. The main difference is that Fig. 19(a) refers
to a problematic modification while the earlier anti-patterns refer to problematic
service definitions.

From the anti-pattern shown in Figure 19(a) it follows that first receiving
and then sending (cf. M8) cannot be transformed to a fragment that sends
and receives concurrently (M11), because we could transform the latter net to
M10 by applying Rule 4. Consequently, first receiving then sending does not
accord to sending and receiving concurrently and vice versa. Analogously, first

a

b

S

R

p

t2

t1

M8

a

b

S

R

p

t2

t1

M10

(a) Anti-pattern: Strat(M8)
�= Strat(M10)

b

a

p3

t5

t4

S

p4

t6

R

p1

t3

p2

(b) Strategy for M10

but not for M8.

a

b

p3

t5

t4

S

p4

t6

R

p1

t3

p2

p5

t7

(c) Strategy for M8

but not for M10.

Fig. 19. Counterexamples

74 W.M.P. van der Aalst et al.

p4

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

b

d

p2

t4

t2

S

at1

p1

p3

t3

R

c

t5

e

t6

M12 M13

f

t7

f

Fig. 20. Rule 5 (adding an alternative branch): Strat(M12) ⊆ Strat(M13)

sending then receiving (M10) cannot be transformed to sending and receiving
simultaneously (M9), because the latter can be transformed to M8 by applying
Rule 3. Thus, first sending then receiving does not accord with sending and
receiving simultaneously and vice versa.

Rule 5 specifies a way to add an alternative branch to a fragment M12 depicted
on the left hand side of Fig. 20. The fragment M12 first receives a and then enters
either the left or the right branch. In the left (right) branch, message b (c) is
sent, and then message d (e) is received. The fragment M12 can be transformed
to M13 by adding an alternative branch. In this branch, d is received, and then a
message f is sent. Afterwards, this branch can be arbitrary, i.e., there can be any
continuation (including direct continuation in S) of this net as illustrated by the
ellipse. Rule 5 preserves accordance in one direction only. The intuition behind
this rule is that a strategy of M12 has to wait for the decision of M12 which
branch it will enter. Otherwise, it could happen that an environment sends d,
but M12 enters the left branch and waits for message e.

Refinement of Petri nets has been addressed by many researchers. However,
most of the results require restricted Petri net classes or Petri nets without inter-
faces. The Murata rules [13] (known for general Petri nets) also maintain accor-
dance, if we consider every input place as a place with some additional incoming
arcs, and every output place as a place with some additional outgoing arcs. Re-
finement of places and transitions in Petri nets that preserves compatibility of the
whole net is studied in [30]. These results could be applied in our setting.

6 Integrating Services Using Adapters

Service-oriented computing aims to create complex services by composing less-
complex services. As services are often developed independently, upon compo-
sition they may turn out to be incompatible. In this section we discuss some
sources of incompatibility and some ways to resolve them. This section is
primarily based on [38].

Service Interaction: Patterns, Formalization, and Analysis 75

tFood

tMoney

(a) Tourist

tFood

tMoney

cOrder

cFood

cMoney

(b) Adapter

cOrder

cFood

cMoney

(c) Cook

tFood

tMoney

cOrder

cFood

cMoney

(d) Adapter?

Fig. 21. Running example for adapter generation

Figure 21 contains the running example for this section. The tourist mod-
eled in Fig. 21(a) enters a restaurant in a foreign country. The tourist noticed
something like a special offer on the door, but he does not understand the local
language. So he just places the required fee on the table and waits for food. The
local cook modeled in Fig. 21(c), however, insists on an order before preparing
any meal. Moreover, if the cook already gets some money before serving the
food, he may immediately stop cooking.

When integrating some services that have been developed independently, some
typical kinds of incompatibilities are:

– names of the message types;
– encoding of similar message types;
– semantics of similar message types;
– order in which messages are expected or transmitted.

It is clear that the open nets in Fig. 21(a) and Fig. 21(c) have different sets of
interface places, even if we ignore the ‘t’ and ‘c’ prefixes. Moreover, if we try to
compose them by fusing the obvious combinations of interface places, and hide
(i.e., make them internal) the other interface places, then the result contains a
deadlock: the cook waits for an order, while the tourist gives some money and
waits for food.

In this section we focus on the last kind of incompatibility, which we call
behavioral incompatibility; however, we will not ignore the other ones. For sim-
plicity reasons, we assume that the name of each message port coincides with
the name of the message type that can be transmitted over the channel.

If the services to be composed are incompatible, there are a few options:

– replace some of the services by similar services that are compatible;
– change the implementation of some of the services;
– introduce an adapter service that bridges the incompatibilities.

76 W.M.P. van der Aalst et al.

In terms of the running example, these options can correspond to, respec-
tively, going to another restaurant with tourist-friendly personnel, attending a
language-and-culture course, or hiring a tour guide.

In this section we focus on the situation where the services have already been
selected, and their implementation cannot be changed; in this case, adapters are
the most obvious solution. To be able to discuss adapters as an additional service
in between the given services, we assume that the interfaces of the given services
are disjoint; this can be achieved by renaming. In the running example this has
been achieved through the ‘t’ and ‘c’ prefixes for the names of the interface
places.

In the remainder of this section, we first discuss the ingredients of an adapter
specification, and a specific language for it. Then we show how it can be used to
automatically generate an adapter, including a discussion on some of the design
decisions to be made.

6.1 Adapter Specification

In this section we discuss the contents of an adapter specification. Behavioral
incompatibilities typically manifest itself in deadlocks of the composed system.
Therefore the first ingredient of the adapter specification is a behavioral property,
in our case deadlock freedom, on the composed system (which, by definition,
guarantees that the composed system is closed). To be able to check whether
an adapter establishes deadlock freedom, the adapter specification should also
include models of the given services, say, open nets N1 and N2. For simplicity
reasons, we only discuss the integration of two given services, although it can
easily be scaled up to any number of services.

For the running example, an adapter service that establishes deadlock freedom
is modeled in Fig. 21(b). It gives a default order to the cook, and then passes
on the food when it arrives. In the mean time it accepts the money from the
tourist, but it only forwards the money once the cook has actually served the
food. The composition of Fig. 21(a), Fig. 21(b) and Fig. 21(c) is indeed a closed
net and it is deadlock-free.

On the other hand, the service from Fig. 21(d) also establishes this property,
but is this a proper adapter? Such an example illustrates that the specification so
far admits adapters that are the composition of two unconnected components A1

and A2 such that both N1⊕A1 and N2⊕A2 are deadlock-free, but independently
of each other. Hence it admits adapters that can arbitrarily create and delete
messages, including real goods like food and money, which is not very realistic.

Apart from the requirement on the composed system, a requirement on the
internals of the adapter is needed such that it can actually be implemented. To
this end, we extend the adapter specification with the set of elementary activities
(from a semantical perspective) that can be used in the adapter.

Thus the adapter specification consist of the following three parts:

– models of the services to be composed;
– behavioral property to be established by the composed system;
– elementary activities for the adapter.

Service Interaction: Patterns, Formalization, and Analysis 77

6.2 Elementary Adapter Activities

In this section we explore the typical elementary activities for an adapter, and
we describe a way to specify them. As the given services have an asynchronous
communication interface, the basic activities of an adapter are receiving a mes-
sage from an interface port, and sending a message to an interface port. As these
are separate tasks, it also possible to delay the forwarding of messages.

Internally, the activities of an adapter include ways to deal with messages;
thus reflecting semantic dependencies between certain message types. Most ap-
proaches [39,40,41,42,43,44] agree that the activities of an adapter should include
the following activities:

– Create a message: This is possible for simple control messages, and mes-
sages with a default value. However, it is impossible for messages containing
important data such as passwords, and personal data of a user.

– Copy a message: This is possible for most electronic messages, although
it could be inappropriate for single-use data such as transaction numbers. It
is also inappropriate for messages that represent real goods.

– Delete a message: This is possible for most electronic data, while it is
inappropriate for real goods.

– Transform/Split/Merge some messages: This is possible if the under-
lying transformation routine is provided, e.g., calculating a metric measure
from an imperial one, or deriving a city name from a zip code.

Based on these example activities, it becomes clear that the applicability of an
activity to particular message types strongly depends on semantic considerations
that depend on the message types. As a result, we conclude that the possible
activities of an adapter must be specified per message type.

We specify the capabilities of an adapter using a Specification of the Ele-
mentary Activities (SEA). Given a set of message types MT , an SEA is a set
of transformation rules on these message types. The set MT contains at least
the names of the interface ports of the given services, but it may also contain
auxiliary message types.

Definition 24 (Specification of the Elementary Activities (SEA)). Given
a set of message types MT. An SEA over the message types MT is a set of trans-
formation rules of the shape

X
Z
�→ Y

where X and Y are bags (multi sets) over the set MT, and where Z is a total
function from messages of the types X to messages of the types Y .

Such a rule denotes that, using the transformation Z, a message of each type in
X is consumed, and a message of each type in Y is produced. After receiving
some messages, the adapter can apply several transformations to the internally
available messages before sending any messages. Synthesizing an adapter then
boils down to applying these rules in a right order, and sending and receiving
messages to and from the interface at a right moment.

78 W.M.P. van der Aalst et al.

Table 1. Examples of elementary activities in terms of transformation rules

Elementary activity Possible transformation rule

Create a �→ a
Copy a a �→ a, a
Delete a a �→
Transform a, b, c into d, e a, b, c �→ d, e or a, b, c �→ a, b, c, d, e
Split a into b, c, d a �→ b, c, d or a �→ a, b, c, d
Merge a, b, c into d a, b, c �→ d or a, b, c �→ a, b, c, d

For the synthesis of an adapter, we can largely abstract from the actual data
transformations Z. Therefore we often omit Z in the transformation rules, but
in Sect. 7 we will discuss how Z can be integrated in the synthesized adapters.

Table 1 shows some examples of activities in terms of transformation rules.
For some rules, we give two versions: one for real items and one for electronic
items. Some more-complicated patterns would require multiple rules: a typical
“collapse” pattern, where an arbitrary series of a messages has to be merged
into one message b, could be modeled using the two rules �→ b (create an empty
‘b’) and a, b �→ b (add a single ‘a’ to an existing ‘b’).

Many languages have been proposed that are similar to the SEA rules, but
there are subtle but essential differences. Languages like in [43,44] do not sup-
port multiple alternative rules, like two SEA rules A �→ B and A �→ C that
specify that at any time the adapter can choose which rule to apply. The rules
in languages like in [39,40,41] have no direction [45], while the SEA rules are
asymmetric.

As an SEA represents semantical dependencies, it may be possible to use
techniques related to semantic web and ontologies to construct an SEA. As
these are research areas on their own, we only focus on using a given SEA. The
approach of [44] is interesting as it presents an interactive approach to find and
refine SEA-like specifications for adapters using mismatch trees.

For the running example, a possible SEA is the one in Table 2. Note that
the adapter from Fig. 21(d) can violate the last two transformation rules. The
adapter in Fig. 21(b) obeys the rules; moreover, it uses each rule exactly once,
but this is a coincidence (see, e.g., the running example from [38]).

Table 2. Running example: SEA

�→ cOrder
cFood �→ tFood
tMoney �→ cMoney

6.3 Adapter Generation

In this section we discuss how to generate an adapter. The adapter specification
consists of the given open nets N1 and N2, the deadlock-freedom property, and

Service Interaction: Patterns, Formalization, and Analysis 79

N1 E

C

N2
`

Fig. 22. Conceptual structure

an SEA. An adapter is an open net such that its composition with the given
open nets N1 and N2 is closed and deadlock-free. Furthermore, to ensure imple-
mentability, an adapter may only be constructed from the elementary activities
described by the SEA.

Adapter generation without SEA. Let us first ignore the SEA, and explore
the basic construction of an adapter. Such an adapter is defined as an open
net A such that (N1 ⊕ N2) ⊕ A is deadlock-free. That is, A is a strategy for
the composition N1 ⊕ N2. Such an adapter can be computed as a witness for
controllability of N1 ⊕ N2.

Adapter generation with an SEA. The SEA imposes additional restrictions
on the adapter. Most approaches to adapter generation modify the computation
of a strategy with (on-the-fly) removal of the branches that violate this require-
ment. The result is typically a complex custom algorithm [39,40,41]. In [46,47] it
is shown that there exists a dual approach that first integrates the SEA restric-
tions with the given open nets, such that afterwards every computed strategy is
an adapter.

A conceptually simpler approach [38] is to immediately translate the SEA
rules into a new open net that is part of the adapter. We call this part of
the adapter the engine, and the remainder of the adapter the controller. This
results in a two-piece adapter that separates data (implementability) and control
(behavioral property).

The engine E is an open net that encodes all the elementary activities from
the SEA. It has an interface with the given open nets N1 and N2, and hence it
can ensure that all outgoing messages are obtained from the incoming messages
using the SEA rules only. The engine E has an additional interface to a controller
C. This interface allows the controller to decide in which order the elementary
activities are performed. Figure 22 shows a schematic representation of this
structure.

Before showing an example encoding of an SEA in terms of an engine, we first
determine how it can be used to generate an adapter. Formally, given an engine E
for the SEA, we want to construct a controller C such that (N1⊕N2) ⊕ (E⊕C) is
deadlock-free. Such a controller can be computed as a witness for controllability
of (N1 ⊕ N2) ⊕ E. As every C yields an SEA-based open net E ⊕ C, every
witness C for controllability of the open net (N1 ⊕ N2) ⊕ E, yields an SEA-
based adapter E ⊕ C. So deadlock freedom is guaranteed independently of any
specifics of the used engine.

80 W.M.P. van der Aalst et al.

Lemma 1 (Two-piece behavioral adapter [38]). Given any open nets N1,
N2, and E. For every strategy C for the composed open net (N1 ⊕ N2) ⊕ E,
the composed open net E ⊕ C is an adapter for the open nets N1 and N2.

So, at a conceptual level, this adapter-synthesis approach consists of the fol-
lowing steps, given the open nets N1 and N2 and an SEA:

1. generate an engine E from the SEA and the interface of the open net N1⊕N2;
2. synthesize a controller C as a strategy for the open net (N1 ⊕ N2) ⊕ E;
3. compose engine E and controller C to obtain the final adapter A = E ⊕ C.

Note that the engine is used twice: for generating a controller, and as part of
the final adapter. The constraint-oriented approach from [48,49] uses a “Store”
that contains part of the functionality of an engine, but it is not part of the final
adapter.

Regarding the running example, the adapter from Fig. 21(b) has been gener-
ated in this way. In what follows we first discuss the encoding of an engine and
then the selection of a controller.

6.4 Encoding an SEA as an Engine

In this section we show how an SEA can be encoded as an engine E modeled by
an open net. For simplicity of presentation, we assume that for each SEA rule,
the bags before and after the �→ are sets; the general case follows analogously
using open nets with arc multiplicities.

Let N be the composition N1 ⊕ N2. Let IN and ON denote the (disjoint sets
of) input and output places, respectively, of N . Let K be a set such that the
SEA consists of the rules Xk �→ Yk, for any k ∈ K. Let MT be a set of message
types, containing (the types of) the sets of places IN and ON , and the set of
message types used in K. The SEA may contain auxiliary message types (ones
that do not occur in the given open nets), and hence we have IN ∪ON ⊆ MT .

For defining the open net E, we use names from the space (MT ∪ K) ×
{e, n, c, r, s}, where e, n, c, r, and s denote fresh names that do not occur in the
given open nets. Moreover, we assume that the sets MT and K are disjoint.

The interface of open net E consists of output places IN , input places ON

(i.e., the interfaces of the given open nets in opposite orientation), and an inter-
face (defined later on) for interaction with the controller (cf. Fig. 22). For each
message type m ∈ MT , we introduce in the open net E an internal place (m, c),
where c refers to “conceptual”. In the initial and final markings, the internal
places are empty.

The open net E has three kinds of transitions. For every input place o ∈ ON ,
there is a transition (o, r), where r refers to “receive”, to move arriving messages
from interface place o to their internal place (o, c). For every transformation
rule Xk �→ Yk, where k ∈ K, there is a transition (k, c) to perform the actual
transformation in terms of the internal places. Finally, for every output place
i ∈ IN , there is a transition (i, s), where s refers to “send”, to move messages
from their internal place (i, c) to interface place i.

Service Interaction: Patterns, Formalization, and Analysis 81

tFood

tMoney

cOrder

cFood

cMoney

(tFood,c) (cFood,c)

(cOrder,c)

(cMoney,c)(tMoney,c)(tMoney,r) (cMoney,s)(money,c)

(tFood,s) (cFood,r)

(cOrder,s)(order,c)

(food,c)

(tFood,e) (tMoney,n) (food,e) (food,n) (order,e) (order,n) (money,e) (money,n) (cFood,n) (cOrder,e) (cMoney,e)

Fig. 23. Running example: engine

What remains is to describe the interface of the engine E with the controller
C. For every transition (o, r), where o ∈ ON , there is an output place (o, n) that
notifies an arrived message o. For every transition (k, c), where k ∈ K, there is an
input place (k, e) that enables transformation rule k, and an output place (k, n)
that notifies an execution of transformation rule k. Finally, for every transition
(i, s), where i ∈ IN , there is an input place (i, e) that enables the delivery of a
message i. Thus this engine is formally defined as:

Definition 25 (Engine). Let I, O,MT , K be as introduced before. The engine
E is defined as an open net with the following constituents:

P = (MT × {c}) ∪ I ∪ O; m0 = 0; Ω = {0};
I = ON ∪ (K × {e}) ∪ (IN × {e}); O = IN ∪ (K × {n}) ∪ (ON × {n});
T = (ON × {r}) ∪ (K × {c}) ∪ (IN × {s});

F = Fr ∪ Fc ∪ Fs;
Fr =

⋃

o∈ON
{ [o, (o, r)], [(o, r), (o, n)], [(o, r), (o, c)] };

Fc =
⋃

k∈K ({[(m, c), (k, c)] | m : m ∈ Xk} ∪ {[(k, e), (k, c)]} ∪
{[(k, c), (k, n)]} ∪ {[(k, c), (m, c)] | m : m ∈ Yk});

Fs =
⋃

i∈IN
{ [(i, c), (i, s)], [(i, e), (i, s)], [(i, s), i] }.

Figure 23 models the engine for the running example. The left and the right
interfaces are for the tourist and the cook, respectively, while the top inter-
face is for a controller; in this figure we use simplified names for the interface
with the controller. As far as the transfer of money is concerned, the engine
looks as follows. When there is a token on the interface place tMoney, transition
(tMoney,r) transfers it to the internal place (tMoney,c) and sends a notification
to the controller. Afterwards, transition (money,c) can transform a token from
place (tMoney,c) into a token in place (cMoney,c); this is only possible if the
controller has enabled this transition, and then the controller is notified. Fi-
nally, transition (cMoney,s) transfers a token from internal place (cMoney,c) to
interface place cMoney, but only if the controller has enabled this transition.

82 W.M.P. van der Aalst et al.

So, each internal place (and each interface place with the given open nets) is
associated with a particular message type. In terms of these places, each single
transition either follows the SEA rules, or transfers tokens from places that are
associated with the same message type. The interface places with the controller
only restrict the order in which the transitions of the engine can fire. Thus the
engine guarantees that the generated adapter adheres to the SEA, independently
of any specifics of the controller.

However, engines are not unique. For example, in some cases some of the
interface places between the engine and the controller can be removed without
changing the adapters that can be generated. In [46] techniques are presented
to compare different engines in terms of the resulting adapters.

6.5 Selecting a Controller

In this section we consider the selection of a controller for a two-piece adapter. In
general, the open net (N1 ⊕N2) ⊕ E has several strategies, and every strategy
can be used as a controller for an adapter (see Lemma 1).

A particularly interesting strategy is the most-permissive strategy (see Defini-
tion 17), as it represents somehow the largest behavior that can enforce the be-
havioral property to be established. In this way, it causes the smallest constraints
on the interface of the controller. A potential drawback of a most-permissive
strategy is its size, but it exhibits a tremendous amount of non-determinism,
which, in many cases, results in nice concurrency in terms of open nets.

On the other hand, there are usually many strategies that are smaller than
the most-permissive one. Such strategies often restrict the interaction with the
given open nets, and, in particular, reduce concurrency.

To sum up, both most-permissive strategies and arbitrary small strategies
have specific advantages and disadvantages which more or less complement each
other. This gives an opportunity to make a trade-off between the complexity of
adapter synthesis and the quality of the resulting adapter (in terms of its size
and run-time behavior).

This is also related to two kinds of application scenario’s for adapters. In the
first one, a set of services is carefully selected, and then as a final engineering
step an adapter is calculated. In the second one, a user at run-time selects some
services, and an adapter is required to make these services work together. In the
first scenario’s larger run-times are permissable than in the second scenario, but
also a higher quality is expected.

7 Tool Support

In this section we sketch how the techniques from the previous sections have
been implemented in research tools. All described tools are available at

http://www.service-technology.org/tools/

http://www.service-technology.org/tools/

Service Interaction: Patterns, Formalization, and Analysis 83

7.1 Translating Services to Open Nets

In practice, services are not modeled by formalisms such as Petri nets. Instead, a
number of service description languages have been proposed by several industrial
consortiums. The most-prominent language is BPEL.

For BPEL, there exists a feature-complete open net semantics [50] and a com-
piler, BPEL2oWFN, to translate a BPEL process to an open net. This semantics
is feature-complete in the sense that it supports all concepts of BPEL includ-
ing control flow, data flow, message flow, exception handling, and compensation
handling.

Since there is also a tool, oWFN2BPEL, to translate open nets to BPEL
(using abstract processes) [51], a complete tool chain for translations between
BPEL and open nets is available. Hence, all analysis methods for open nets can
be used for BPEL processes.

7.2 Operating Guidelines

In Sect. 4 we have introduced the notion of operating guidelines as a compact
characterization of all strategies for an open net N . Since the algorithm to com-
pute operating guidelines explores all reachable states of N , in an implementation
we have to restrict ourselves to finite state services. Such services can still have
infinitely many strategies.

On the modeling level an open net has finitely many states if its inner structure
inner(N) is bounded. The composition of two bounded open nets may, however,
result in an unbounded open net, because tokens may accumulate on the former
interface places. To achieve a bounded open net composition, we have to restrict
the number of tokens at those interface places. To this end, we need a notion of
boundedness for interface places, which has been introduced in [27] as k-limited
communication.

For unbounded open nets, controllability has been proven to be undecid-
able [52]. For the implementation of our algorithms we require open nets to
be bounded and to satisfy k-limited communication, for some k. Since services
in practice are finite-state services, this restriction does not harm our approach.

In [27] an algorithm has been presented to compute an operating guidelines
of a bounded open net. The OG construction algorithm first computes the most
permissive strategy. Therefore, it starts with an over-approximation of compati-
ble behavior of any strategy and then iteratively removes all states which cause
violations of the deadlock-freedom property. Finally, the annotations are derived
from information collected during the computation. If the service is uncontrol-
lable, the algorithm eventually removes all states. The algorithm is implemented
in the service analysis tool Fiona [50].

Besides computing the operating guidelines of an open net, Fiona can also be
used to

– decide matching of an open net with an operating guidelines;
– decide accordance of two open nets using Theorem 2;
– compute some strategy of an open net.

84 W.M.P. van der Aalst et al.

2,3: Fiona

1: pre−processing

controller (TS)

services

engine

SEA

adapter5: post−processing

4: Petrify

controller

Fig. 24. Tool chain for adapter generation

7.3 Adapter Generation

In this section we discuss a Fiona-based implementation [38] of the adapter
generation approach described in Sect. 6. It turns out that in the engine, the
activities for message creation can easily lead to unbounded places, including
interface places. To be able to compute an operating guidelines, we impose ar-
tificial bounds on these places. Using the techniques in [46], it can be shown
that the resulting adapter is also an adapter for the given services without the
artificial bounds. Moreover, every finite-state adapter can be synthesized if the
bounds are chosen sufficiently large.

We use the tool-chain described in Fig. 24. The inputs are an open net model
of each given service, and an SEA; the output is an open net model of the
adapter. In what follows we briefly describe the various steps:

1. Create an engine model from the SEA. The procedure as described in
Sect. 6.4, including the required bounds, has been implemented in Fiona. By
construction, all outputs to the given services have been obtained from the
inputs of these services using the SEA transformation rules only.

2. Compose the service models and the engine model. The composition
of service models is supported by Fiona. Afterwards we apply structural
Petri-net reduction, which consists of local graph-transformations in an open
net. It preserves the interface behavior of the transformed net, but it may
significantly reduce the number of reachable internal states. It is inspired
by classical Petri-net reduction (like [13]). We apply it for the purpose of
reducing complexity in subsequent steps.

3. Synthesize a controller as a transition system. A controller is a strat-
egy, and strategy synthesis is the core functionality of Fiona. The resulting
controller is represented as a transition system rather than an open net.

4. Transform this transition system into an open net. Petrify [53] is an
external tool that translates a transition system into an equivalent Petri net.
The resulting Petri net tends to exhibit a large degree of concurrency, and
tends to be significantly more compact than the original transition system.

5. Compose the engine and the controller into an adapter. Like before,
the composition is supported by Fiona, and we apply structural Petri-net

Service Interaction: Patterns, Formalization, and Analysis 85

reduction afterwards. However, this time the reduction aims at simplify-
ing the resulting structures, thus leading to a more compact Petri-net. In
particular, the reduction may iron-out dead parts in the adapter (like SEA
transitions that are not used) or collapse a sequence of transitions into a
single transition. As such a sequence may consist of a transition that stems
from the controller and another one that stems from the engine, the interface
between them may become invisible in the resulting adapter.

An optional last step is to translate the open net for the adapter into an
executable language. The tool oWFN2BPEL can generate an abstract BPEL
process that includes an opaque activity for each transition of the open net.
Remembering that SEA rules can be annotated with actual transformations (for
instance in XSL), and SEA rules correspond to transitions in the engine, we
can fill the opaque activities with actual code and turn them into executable
activities.

Currently, we are developing engines with a synchronous interface to the con-
troller, for which the first results show that these are more efficient. A most-
permissive strategy as controller for a synchronous engine turns out to perform
better than an arbitrary strategy (or a most-permissive strategy) as controller
for an asynchronous engine. This applies to both the run-time of the adapter
generator, and the size of the generated adapter in terms of open nets. The
example adapter in Fig. 21(b) was actually generated in this way.

8 Conclusions

The shift towards service orientation was initially intended to mainly support
cross-organizational processes. However, the wide adoption of service-oriented
architectures shows that this paradigm shift is also important for intra-organiza-
tional processes. Monolithic information systems can now be decomposed into
several smaller services. Service orientation leads to systems that can be viewed
as interacting services. Therefore, it is vital to understand service interaction in
all its aspects.

This paper studies service interaction from various angles. First of all, the
paper provides a collection of service interaction patterns. This provides an
overview of the challenges in this domain and aids in a better understanding
of the important concepts. Moreover, by presenting a few anti-patterns we re-
veal typical pitfalls in the design of services.

Secondly, the paper formalizes essential concepts such as strategies, controlla-
bility, and accordance. This is done in the setting of open nets. Finally, the core
of the paper focusses on three important challenges: Exposing services (Sect. 4),
Replacing and refining services (Sect. 5), and Integrating services using adapters
(Sect. 6). These challenges are non-trivial. However, the body of work centering
around open nets provides a solid basis for addressing these challenges. This is
illustrated by the availability of analysis tools that support all three challenges
and that can also work with industrial languages such as BPEL.

86 W.M.P. van der Aalst et al.

Acknowledgements

Van der Aalst and Mooij participate in the Poseidon project at Thales under
the responsibilities of the Embedded Systems Institute (ESI). This project is
partially supported by the Dutch Ministry of Economic Affairs under the BSIK
program.

References

1. Dumas, M., van der Aalst, W., ter Hofstede, A.: Process-Aware Information Sys-
tems: Bridging People and Software through Process Technology. Wiley & Sons,
Chichester (2005)

2. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services Concepts, Archi-
tectures and Applications. Springer, Berlin (2004)

3. Barros, A., Dumas, M., ter Hofstede, A.: Service Interaction Patterns. In: van
der Aalst, W., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

4. Decker, G., Puhlmann, F., Weske, M.: Formalizing Service Interactions. In: Dust-
dar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 414–419.
Springer, Heidelberg (2006)

5. Hohpe, G., Woolf, B.: Enterprise Integration Patterns. Addison-Wesley Profes-
sional, Reading (2003)

6. Mulyar, N., Aldred, L., van der Aalst, W.: The Conceptualization of a Configurable
Multi-party Multi-message Request-Reply Conversation. In: Meersman, R., Tari,
Z. (eds.) OTM 2007, Part I. LNCS, vol. 4803, pp. 735–753. Springer, Heidelberg
(2007)

7. Wegner, P.: Why interaction is more powerful than algorithms. Communications
of the ACM 40(5), 80–91 (1997)

8. Zaha, J., Dumas, M., ter Hofstede, A., Barros, A., Decker, G.: Service Interac-
tion Modeling: Bridging Global and Local Views. In: International Enterprise Dis-
tributed Object Computing Conference (EDOC 2006), pp. 45–55. IEEE Computer
Society Press, Los Alamitos (2006)

9. Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford, M.,
Goland, Y., Gúızar, A., Kartha, N., Liu, C., Khalaf, R., Koenig, D., Marin, M.,
Mehta, V., Thatte, S., Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Pro-
cess Execution Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS
(2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

10. van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow Pat-
terns. Distributed and Parallel Databases 14(1), 5–51 (2003)

11. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

12. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

13. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

14. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs in Theoretical Com-
puter Science, vol. 4. Springer, Berlin (1985)

15. van der Aalst, W.: The Application of Petri Nets to Workflow Management. The
Journal of Circuits, Systems and Computers 8(1), 21–66 (1998)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Service Interaction: Patterns, Formalization, and Analysis 87

16. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Professional Computing Series. Addison Wes-
ley, Reading (1995)

17. Mulyar, N.: Patterns for Process-Aware Information Systems: An Approach Based
on Colored Petri Nets. Ph.D thesis, Eindhoven University of Technology, Eindhoven
(2009)

18. Russell, N., van der Aalst, W., ter Hofstede, A., Edmond, D.: Workflow Resource
Patterns: Identification, Representation and Tool Support. In: Pastor, Ó., Falcão e
Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer, Heidelberg
(2005)

19. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Data
Patterns: Identification, Representation and Tool Support. In: Delcambre, L.M.L.,
Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716,
pp. 353–368. Springer, Heidelberg (2005)

20. Alexander, C.: A Pattern Language: Towns, Building and Construction. Oxford
University Press, Oxford (1977)

21. Russell, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow Control-Flow
Patterns: A Revised View. BPM Center Report BPM-06-22, BPMcenter.org (2006)

22. Russell, N., van der Aalst, W., ter Hofstede, A.: Workflow Exception Patterns. In:
Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer,
Heidelberg (2006)

23. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and
Systems. MIT Press, Cambridge (2004)

24. Massuthe, P., Reisig, W., Schmidt, K.: An Operating Guideline Approach to the
SOA. In: Proceedings of the 2nd South-East European Workshop on Formal Meth-
ods 2005 (SEEFM 2005), Ohrid, Republic of Macedonia (2005)

25. Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press, Cambridge
(1999)

26. Massuthe, P., Schmidt, K.: Operating Guidelines - an Automata-Theoretic Foun-
dation for the Service-Oriented Architecture. In: Cai, K.Y., Ohnishi, A., Lau, M.F.
(eds.) Proceedings of the Fifth International Conference on Quality Software (QSIC
2005), Melbourne, Australia, pp. 452–457. IEEE Computer Society, Los Alamitos
(2005)

27. Lohmann, N., Massuthe, P., Wolf, K.: Operating guidelines for finite-state ser-
vices. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546,
pp. 321–341. Springer, Heidelberg (2007)

28. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Englewood Cliffs
(1989)

29. Wolf, K.: Does my service have partners? In: Jensen, K., van der Aalst, W.M.P.
(eds.) ToPNoC II 2008. LNCS, vol. 5460, pp. 152–171. Springer, Heidelberg (2008)

30. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)

31. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer,
Heidelberg (2004)

32. Stahl, C., Massuthe, P., Bretschneider, J.: Deciding substitutability of services with
operating guidelines. In: Jensen, K., van der Aalst, W.M.P. (eds.) ToPNoC II 2008.
LNCS, vol. 5460, pp. 172–191. Springer, Heidelberg (2008)

33. Bravetti, M., Zavattaro, G.: Contract Based Multi-party Service Composition.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222.
Springer, Heidelberg (2007)

88 W.M.P. van der Aalst et al.

34. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
SIGPLAN Not. 43(1), 261–272 (2008)

35. Basten, T., van der Aalst, W.: Inheritance of Behavior. Journal of Logic and Al-
gebraic Programming 47(2), 47–145 (2001)

36. van Glabbeek, R., Weijland, W.: Branching Time and Abstraction in Bisimulation
Semantics. Journal of the ACM 43(3), 555–600 (1996)

37. van der Aalst, W., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: From Public
Views to Private Views: Correctness-by-Design for Services. In: Dumas, M., Heckel,
H. (eds.) WS-FM 2007. LNCS, vol. 4937, pp. 139–153. Springer, Heidelberg (2008)

38. Gierds, C., Mooij, A., Wolf, K.: Specifying and generating behavioral service
adapters based on transformation rules. Preprints CS-02-08, Institut fur Infor-
matik, Universitat Rostock (2008)

39. Benatallah, B., Casati, F., Grigori, D., Motahari Nezhad, H.R., Toumani, F.: De-
veloping Adapters for Web Services Integration. In: Pastor, Ó., Falcão e Cunha, J.
(eds.) CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

40. Bracciali, A., Brogi, A., Canal, C.: A formal approach to component adaptation.
Journal of Systems and Software 74(1), 45–54 (2005)

41. Brogi, A., Canal, C., Pimentel, E., Vallecillo, A.: Formalizing Web Service Chore-
ographies. Electr. Notes Theor. Comput. Sci. 105, 73–94 (2004)

42. Brogi, A., Popescu, R.: Automated Generation of BPEL Adapters. In: Dan, A.,
Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 27–39. Springer, Heidel-
berg (2006)

43. Dumas, M., Spork, M., Wang, K.: Adapt or Perish: Algebra and Visual Notation
for Service Interface Adaptation. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.)
BPM 2006. LNCS, vol. 4102, pp. 65–80. Springer, Heidelberg (2006)

44. Motahari Nezhad, H., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-
automated adaptation of service interactions. In: Proc. WWW, pp. 993–1002 (2007)

45. Brogi, A., Canal, C., Pimentel, E.: On the semantics of software adaptation. Science
of Computer Programming 61, 136–151 (2006)

46. Mooij, A., Voorhoeve, M.: Proof techniques for adapter generation. In: Proc. WS-
FM (2008)

47. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral constraints for services.
In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 271–287. Springer, Heidelberg (2007)

48. Canal, C., Poizat, P., Salaün, G.: Model-based adaptation of behavioral
mismatching components. IEEE Transactions on Software Engineering 34(4),
546–563 (2008)

49. Mateescu, R., Poizat, P., Salaün, G.: Adaptation of service protocols using process
algebra and on-the-fly reduction techniques. In: Proc. ICSOC, pp. 84–99 (2008)

50. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing interacting WS-
BPEL processes using flexible model generation. Data & Knowledge Engineer-
ing 64(1), 38–54 (2008)

51. Lohmann, N., Kleine, J.: Fully-automatic Translation of Open Workflow Net Mod-
els into Human-readable Abstract BPEL Processes. In: Proc. Modellierung. Lecture
Notes in Informatics (LNI), vol. P-127, pp. 57–72 (2008)

52. Massuthe, P., Serebrenik, A., Sidorova, N., Wolf, K.: Can I find a partner? Unde-
cidablity of partner existence for open nets. Information Processing Letters 108(6),
374–378 (2008)

53. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic
synthesis of asynchronous controllers and interfaces. In: Advanced Microelectron-
ics. Springer, Heidelberg (2002)

Synthesis and Composition of Web Services

Annapaola Marconi and Marco Pistore

Fondazione Bruno Kessler

Service Oriented Applications Group

Via Sommarive 18

38100 Trento – Italy

{marconi,pistore}@fbk.eu

Abstract. One of the key ideas underlying Web services is that of allowing the

combination of existing services published on the Web into a new service that

achieves some higher-level functionality and satisfies some business goals. As

the manual development of the new composite service is recognized as a difficult

and error-prone task, the automated synthesis of the composition is considered

one of the key challenges in the field of Web services.

In this paper, we will present a survey of existing approaches for the synthe-

sis of Web service compositions. We will then focus on a specific approach, the

ASTRO approach, which has been shown to support complex composition re-

quirements and to be applicable in real domains. In the paper, we will present

the formal framework behind the ASTRO approach; we will present the imple-

mentation of the framework and its integration within a commercial toolkit for

developing Web services; we will finally evaluate the approach on a real-world

composition domain.

1 Introduction

One of the key ideas underlying Web services is that of allowing the combination of ex-

isting services published on the Web into a new service that achieves some higher-level

functionality and satisfies some business goals. The manual development of the new

composite service is a difficult and error-prone task, because human domain experts

have to take care about all possible situations during the service execution process. The

ability to automatically compose Web services is an essential step to cut development

time and costs.

With automated synthesis of the Web service composition — or automated composi-

tion for short — we mean the generation of an executable implementation of the new

composite service. This implementation satisfies the composition requirements by in-

voking in a suitable way the set of existing Web services. It is widely recognised that

solving this problem in practice is far from trivial. The component services are usually

stateful processes whose interactions are long-running and asynchronous, and which

exhibit complex, nondeterministic behaviours that are only partially controllable by the

service consumer. Moreover, in order to cope with real world scenarios, there is the need

to specify complex composition requirements constraining both the behaviour (control

flow) and the data manipulation and exchange (data flow) for the new composite service.

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 89–157, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

90 A. Marconi and M. Pistore

A wide variety of approach has been proposed in the scientific literature for address-

ing the problem of Web service composition — we will provide a survey in this paper.

Here we will focus on a specific approach to Web service composition, namely the

ASTRO approach (see http://www.astroproject.org). This approach starts

from the observation that, in most real-life scenarios, services are stateful and realize

complex protocols (e.g., a multi-phase booking procedure includes search, selection,

and checkout tasks); their behaviour may be non-deterministic (the search may provide

no result, checkout may fail), and they may exchange messages asynchronously. The

synthesis of a Web service composition in this setting consists in understanding how to

orchestrate the interactions among the component services, so that their protocols are

respected, all non-deterministic outcomes are covered, and the composition requirement

is achieved.

More precisely, in this paper we present a formal framework for the automated com-

position of Web services that is able to cope with complex control and data flows, i.e.,

with Web services exposing complex protocols and exchanging structured data, and

with composition requirements expressing constraints not only on the service interac-

tions but also on the exchanged data. The framework is based on a model for Web

services that is able to overcome the limitations of the existing approaches and to cap-

ture the complex protocols and data structures of services in real domains. For what

concerns the specification of composition requirements, the framework provides ad-

vanced formal languages for specifying constraints both on the control flow and on the

data flow. The framework is implemented and integrated in a toolkit that allows for au-

tomatically composing Web services. In the paper, we will also describe the toolkit and

its application on a on real-world composition domains.

The structure of the paper is as follows. Section 2 provides a survey of the existing

approaches for the composition of Web services. Section 3 illustrates the problem of

synthesising the composition of stateful Web services through a simple example based

on a Virtual Travel Agency. Section 4 introduces the formal model for Web service

compositions; this model allows for specifying stateful component services, as well as

composition requirements on the control-flow and on the data-flow. Section 5 shows

how the synthesis of the service composition can be achieved by exploiting an existing

approach for planning in asynchronous domains. Section 6 introduces a tool for Web

service composition which implements the model and the automated synthesis approach

described in the previous sections. Section 7 evaluates the approach on a real problem of

service composition, which is based on the Amazon shopping services and the payment

services of an Italian bank. Finally, Section 8 ends the paper with some concluding

remarks.

2 Composing Web Services

Service composition [44] is one of the most promising ideas underlying Web services:

composite Web services perform new functionalities by interacting with pre-existing

services, called component Web services. Service composition has the potential to

reduce development time and effort for new applications by re-using published services,

Synthesis and Composition of Web Services 91

thus allowing reusabilty and extensibility. In general, “service composition” can be de-

fined as creating a composite service, obtained by combining available component ser-

vices. It is used in situations where a client request cannot be satisfied by any single

available service, but by a combination thereof [15].

The manual implementation of a service composition is a very difficult, time con-

suming, and error prone task; efficient automated support is needed to achieve cost ef-

fective, practically exploitable Web service composition. With automated synthesis of a

composition of Web services — or automated composition for short — we mean auto-

matically compose a set of existing services in order to satisfy some given composition

requirements.

It is widely recognized that solving this problem in practice, by scaling up to realistic

descriptions of Web services, is far from trivial [42,45,56,68]. As defined in [11] service

composition concern the specification of both the control and data flow based on the

elementary services or other composite services. This means that (1) since component

services can be themselves composite, there is the need to handle complex workflows

as components, (2) the data flow is a central aspect of composition that must be handled

properly.

Web services cannot be simply modeled as atomic components, but as stateful pro-

cesses whose interactions are intrinsically asynchronous. Moreover, this problem re-

quire to deal with nondeterminism (since the behavior of external services cannot be

foreseen a priori), partial observability (since their status is opaque to the composed

service), and complex composition requirements (since realistic requirements specify

complex expected behaviors). Finally, in order to achieve correct coordination among

component services, the composite service should handle the flow of data (values) and

control.

Several methods and techniques have been proposed to solve this problem (e.g.

[16,42,56,68,70]) and a comprehensive and fair comparison is quite difficult since they

address different flavors of the same composition problem.

One of the main distinction to be done is between centralized (or mediated, orches-

trated) composition methods and distributed (or peer-to-peer) methods. The difference

lies in the automated composition result: the former aim at synthesizing a new service

(mediator) that orchestrates the component services by properly exchanging messages,

while in the latter the execution of the composition is distributed among all the com-

ponent services. However, there exists several approaches, mostly based on program

partitioning techniques, that allow to obtain a peer to peer composition from a cen-

tralized orchestrator. In [10] the approach consists in analyzing the service mediator

through graph transformation techniques on the basis of a set of predefined transfor-

mation rules. This approach focuses on the problem of synchronizing the execution of

the components while it doesn’t address the problem of distributing data among the

peers. In [60] the authors exploit program decentralization techniques to automatically

distribute the execution of a WS-BPEL process. This method requires a deep analysis

on the dependencies and precedences among the activities of the centralized process,

involving both synchronization aspects and data management aspects. In [73] the de-

pendency and precedence analysis is performed in a structural way on the graph re-

sulting from the encoding of the process code, and the output is a set of synchronized

92 A. Marconi and M. Pistore

graphs modeling the distributed execution of the composition. Anther approach, based

on similar techniques, is the one proposed in [84,85]. The advantage of this approach

is that it can deal with executable WS-BPEL processes and it clearly identifies points of

choices where different approaches can be considered for the distribution of data and it

allows to eliminate portions of the centralized program that can be excluded from the

distribution without affecting the overall composition (Dead Path Elimination).

Another important aspect concerns the specification of the requirements that the com-

posed services must satisfy. Since these requirements model the characteristics of the

composition, as for the description of the components there is the need to specify con-

straints on the execution of the composition (e.g. termination conditions, handling fail-

ures, transactional issues), as well as to rule the flow and manipulation of messages

within the composition and to specify other quality of service constraints (e.g. security,

reliability).

Moreover, we can distinguish between automated techniques addressing a static

composition problem, where the services to be composed are decided at design time,

from those addressing a dynamic composition problem, where components are selected

at run time. Similarly we can distinguish design-time and run-time automated compo-

sition methods. The latter allow to monitor the execution and to re-compose and adapt

the composition at run-time as a reaction to unforeseen events.

In the rest of this section we will give an overview of most relevant works address-

ing the automated composition problem, focusing in particular on the kind of composi-

tion (mediated, peer to peer, data-aware), the modeling of component services (atomic,

structured, semantically annotated), and the kind of composition requirements (termi-

nation conditions, data flow requirements, preferences, QoS).

2.1 Logic-Based Approaches

In [15,16,13] Berardi et al. describe all available component services as well as the

request as finite state machines. Their goal is to find a composition of offered services

that permits the requested interaction protocol. In particular, when approaching a com-

position problem through this approach, one has to specify the desired service, i.e., as

a tree of actions, finitely represented as finite state machine. Given a set of available

services and the requested protocol (all of them represented as finite state machine), the

algorithm finds a labeling of the tree associated to the client request, such that each ac-

tion is labeled with (i.e., delegated to) available services and each possible sequence of

actions on the labeled tree corresponds to possible sequences of actions of the available

services, suitably interleaved. By using DPDL (Deterministic Propositional Dynamic

Logic) the problem of service composition is reduced to the problem of satisfiability of

a constructed formula.

In [14] the approach has been extended to handle data. In particular, the authors

present Colombo, a framework that models Web services in terms of the operations

they offer and their impact on the ’real world’ (a relational database).

A similar approach is presented in [26,42] where Hull et al. propose a formal

framework for composing e-services from behavioral descriptions given in terms of

automata. This work focuses on the theoretical foundations, without providing practical

Synthesis and Composition of Web Services 93

implementations. Moreover, the considered e-composition problem it is seen as the

problem of coordinating the executions of a given set of available services. No con-

crete and executable processes can be generated with this approach.

2.2 Rule-Based Approaches

In the approach proposed in [70], by Ponnekanti et al., component services are defined

in terms of their inputs and outputs; given the inputs and outputs of the service, a rule is

then defined which indicates which outputs can be obtained by the service given which

inputs. When a developer wishes to create and deploy a new composite service, he

specifies the inputs and outputs of the composite service and submits it to the system,

which determines if the composite service can be realized using the existing services.

This rule based approach can be adopted exclusively for modeling simple composition

problems, where component services are atomic and deterministic.

2.3 AI Planning-Based Approaches

Planning is one of the most promising techniques for the automated composition of Web

services. Several approaches (e.g. [61,74,45,83,68]) have investigated the potentials and

boundaries of applying AI planning techniques to the problem of automated Web ser-

vice composition. In these works, automated composition is described as a planning

problem: existing services can be used to construct the planning domain, composition

requirements can be formalized as planning goals, and planning algorithms can be used

to generate plans that compose the published services.

The semantic Web community has used automated planning techniques to address

the problem of the automated discovery and composition of semantic Web services, e.g.,

based on OWL-S descriptions of input/outputs and of preconditions/postconditions

(see, e.g, [57]).

Mc Ilraith et al. in [57,61] developed a markup and automated reasoning technique

to describe, simulate, compose, test, and verify the compositions of Web services. The

starting point was the DARBA Agent Markup Language-Services (DAML-S) ([7])

ontology to provide a semantic markup of the content and capabilities of Web services.

The approach in [61] is based on a translation of DAML-S to situation calculus and

Golog. The Golog (alGOL in LOGic) ([48]) language is a high-level programming

language particularly designed for the specification and execution of complex actions

in dynamic domains. Golog is based on the situation calculus ([55]) which is often

used as a means for providing a formal account of dynamic systems. ConGolog is a

variant of Golog capable of dealing with concurrency (Concurrent Golog) ([40]). In

[57] the ConGolog interpreter is extended with the ability to include customized user

constraints. The Web service composition problem, according to this approach, would

then be to find an execution of a Golog program that does satisfy the properties defined

in the goal. These results are based on the idea of sequentially composing the available

Web services, which are considered as black boxes, and hence atomically executed.

Hierarchical Task Network (HTN) planning (see [72,36,37]) provides hierar-

chical abstraction, a powerful strategy to deal with the complexity of large and

94 A. Marconi and M. Pistore

complicated real world planning domains. A variant of HTN planning which received

much attention recently is ordered task decomposition planning. Planners based on that

principle, like SHOP (Simple Hierarchical Ordered Planner) ([63]) recursively decom-

poses the desired task into a set of sub-tasks until the resulting set of tasks consists only

of primitive tasks, which can be executed directly by invoking atomic operations. Dur-

ing each round of task decomposition, it is tested whether certain given conditions are

violated. The planning problem is successfully solved if the desired complex task is de-

composed into a set of primitive tasks without violating any of the given conditions. An

approach of using HTN planning in the realm of Web services is proposed in [74,83] by

Wu, Sirin, et al. exploiting the SHOP2 system ([62]). This work present a transforma-

tion method of OWL-S processes into a hierarchical task network. OWL-S processes

are, like HTN task networks, pre-defined descriptions of actions to be carried out to get

a certain task done, which makes the transformation rather natural. The advantage of

the approach is its ability to deal with very large problem domains; however, the need

to explicitly provide the planner with a task it needs to accomplish may be seen as a

disadvantage.

In [68] Pistore et al. present a formal framework for the automated composition of

Web services which is based on planning as model checking. The planning as model

checking approach was first proposed in [29,30]. In planning as model checking, the

planning domain is formalized as a nondeterministic state-transition system, where an

action is a transition that may bring the system from one state to a set of possible suc-

cessor states. As in other planning approaches, planning goals may be expressed as

constraints about a desired goal state (reachability goal); additionally, goals may be ex-

tended by statements about properties about the plan itself, e.g. by CTL (Computational

Tree Logic) temporal formulas ([35]) or using the Eagle ([32]) language. Since real-

world problems involve models that may contain very large numbers of states, practical

implementations of these algorithm ([31]) usually adopt Symbolic Model Checking

techniques ([27]). In Symbolic Model Checking the sets of possible states of a Kripke-

structure and the transition relations between states are represented symbolically, usu-

ally using vectors of variables that represent the truth value of propositions in states,

allowing for a more concise representation of states and for an efficient application of

set-theoretic and logical operations. Planning is performed by searching through sets of

states, rather then individual states. The practical implementation of the representation

and the reasoning techniques of Symbolic Model Checking is often carried out using

Binary Decision Diagrams (BDDs) ([25]). Systems like MBP (Model Based Planner)

([20]) have been designed to leverage a key advantage of model checking, which is to

deal with nondeterministic environments: MBP can deal with uncertainty on the initial

situation, on the action effects and on the state in which the actions are executed.

In [68,69] the authors extend the planning as model checking approach in order

to handle asynchronous, message-based interaction between the domain (encoding the

component services) and the plan (encoding the composite service). The resulting auto-

mated composition approach can deal with composition problems where the component

services are non deterministic complex processes and where control flow composition

requirements are complex conditions on the behavior of the process.

Synthesis and Composition of Web Services 95

2.4 Other Approaches

In [24] Brogi et al. propose a methodology which, given a set of component ser-

vices, tries to construct an aggregation of such services. Service protocols include a

description of the service behaviour expressed by a YAWL ([81]) workflow, as well

as an (ontology-annotated) signature. YAWL is a workflow/business processing sys-

tem, which supports a workflow language and handles complex data, transformations

and Web service integration. YAWL extends Petri Nets by introducing some workflow

patterns (for multiple instances, complex synchronizations, and cancellation) that are

not easy to express using (high-level) Petri Nets. A thorough analysis of how to trans-

form WS-BPEL specifications into workflow patterns can be found in [82]. The core ag-

gregation process basically performs a control-flow and an (ontology-aware) data-flow

analysis of a set of YAWL workflows to build the contract of an aggregated service.

Technically, this approach exploits ontology-matching mechanisms to derive data-flow

information linking operations of (possibly) different services (matching requested in-

puts with offered outputs).

A semantic-based Web service composition system supporting both the modeling

of components as well as service composition is proposed in [39] by Fujii and Suda.

The system comprises three sub-systems: Component Service Model with Semantic

(COSMOS), Component Runtime Environment (CORE), and Semantic Graph based

Service Composition (SEGSEC). COSMOS allows to model both the semantic and

functional information of a component with a single semantic graph representation.

CORE is responsible of converting different component implementations into the CoS-

MoS representation. SEGSEC is a semantic-based service composition mechanism that

allows users to request a service using a natural language sentence and generate the ex-

ecution path of the requested service. The major disadvantage of this approach is that

the set of queries that can be used as composition requirements is quite restricted and

due to this the approach can be used to solve very limited scenarios.

In [77,78,79] Ambite, Knoblock and Takkar propose data integration techniques

to dynamically compose atomic services. The composition algorithm takes in input the

set of available services modeled as data-sources, and a user query, expressed in terms

of inputs provided by the user and requested outputs. The output is a new, composite

service that can execute an integration plan for a template query, so that all the user

queries that differ only for intensional input values can be answered by the same (com-

posite) service. They adopt a mediator based framework. First, the specific user query

is generalized, associating each specific user input (parameter) with its class: this is

done by exploiting attribute level ontologies. In order to reformulate the generalized

user query into the source queries, the mediator constructs an integration plan consist-

ing of a sequence of source queries and taking binding pattern into account. In [79]

the integration plan is generated with a forward chaining algorithm; in [78] the authors

implement an extension of the Inverse Rule Algorithm and map the produced datalog

program into the integration plan. Then, the mediator optimizes the integration plan

using a data flow analysis algorithm, to remove unnecessary source queries from the

generated plan. Finally, the mediator utilizes source constraints and other services pro-

viding sensing functionalities to filter out the data at the tuple level, that do not meet the

source constraints.

96 A. Marconi and M. Pistore

Benatallah et al. in [12] present SELF-SERV: a framework for dynamic and peer-

to-peer provisioning of Web services. In SELF-SERV, Web services are declaratively

composed, and the resulting composite services are executed in a decentralized way

within a dynamic environment. The framework uses and adapts the state-charts as a

visual declarative language. The significant advantage of SELF-SERV is the peer-to-

peer service execution model, whereby the responsibility of coordinating the execution

of a composite service is distributed across several peer software components called co-

ordinators. Nevertheless, this system supports the manual development of service com-

positions but it does not provide a method to automatically synthesize a composition.

2.5 Comparison of Existing Approaches

In this section we compare those composition approaches that are closer to the one

presented in this paper.

Comparing automated composition techniques is far from trivial. An exhaustive

complete comparison should take into account several aspects: from the specific kind

of composition problem tackled, to the techniques used, and the applicability of the

approaches both in terms of scalability and usability.

A number of surveys on service composition exist ([11,34,46,58,66,71]). Surpris-

ingly none of these covers all the aspects presented above.

Rao et al. [71] provide a quite comprehensive overview categorized according to

the technique used, i.e. workflow techniques and various AI planning methods. An-

other survey solely centered around AI planning is [66]. In a more general overview

Benatallah et al. [11] focus on workflow-based approaches for Web service integration.

Some of the considered approaches are abstracted in the form of software design pat-

terns. Another survey on Web service composition platforms is [34]. Milanovic et al.

[58] provide an overview of different approaches for modelling composite services that

are evaluated against a number of requirements to service composition modelling. The

comparison in [46] is really interesting since it is structured around a classification of

different applications of service composition and furthermore specifically focuses on

automatic service composition.

The comparison presented here, without any claim to be thorough, focuses on the

characteristics of the composition problems that the different approaches can deal with.

Most of the approaches presented in previous section (e.g. [57,61,70,75]) can han-

dle composition problems where the component services are atomic (with atomic we

mean that a service is described in terms of its input/output activities and, possibly, pre-

conditions and effects). This is the case of the works in [70,75], which support forms of

compositions starting from WSDL-like specifications of Web services. Other approaches

that do not take into account behavioral descriptions of the component services are those

proposed by the semantic Web community: in [57,56] the authors use automated plan-

ning techniques to address the problem of the automated discovery and composition

of atomic semantic Web services, e.g., based on OWL-S; in [61], the authors propose

an approach to the simulation, verification, and automated composition of Web services

based on a translation of DAML-S to situation calculus and Petri Nets. More interesting

are automated composition approaches where the component services can be stateful

and complex business processes (see e.g. [15,42,67,68,69]).

Synthesis and Composition of Web Services 97

Within the process-based methods, we should distinguish those addressing an or-

chestration problem from those addressing a real automated composition one. The for-

mer requires to fully specify the process model of the composite service (usually a

set of tasks and data dependencies) and then automatically selects the component ser-

vices that can fulfill the different requested tasks. The latter (sometimes referred to as

dynamic composition) requires the specification of the requirements that the new com-

posite process should satisfy and then both automatically synthesizes the composite

process model and selects the components to be invoked. The work in [42] presents a

formal framework for coordinating the execution of available services in such a way

that their interaction satisfies a fully specified behavioral description (given in terms

of automata). This work addresses an orchestration problem, rather then a composi-

tion one. The same considerations can be made also for the work described in [15,16].

The framework proposed in [68,69] addresses a dynamic composition problem since it

automatically synthesizes an executable composite service that, interacting with a set

of existing services, satisfies the given composition requirements. Moreover, it differs

from other planning approaches since Web services are modeled with nondeterminis-

tic and partially observable behaviors and it assumes an asynchronous, message-based

interaction between the domain (encoding the component services) and the plan (en-

coding the composite service).

For what concerns the formal specification of the requirements that the new compos-

ite service should satisfy, most of the existing approaches specify them as reachability

conditions (e.g. [61]). In fact, when dealing with real world composition scenarios,

there is the need to specify complex conditions on the behavior of the new process,

and not only on its final state. A remarkable exception is the work described in [68,69]

where they formalize the composition requirements using EAGLE [32], a language for

extended goals. EAGLE operators are similar to Computational Tree Logic (CTL [35])

operators, but their semantics, formally defined in [32], take into account the notion

of preference among subgoals and the handling of failure when subgoals cannot be

achieved.

Most of the works that address the problem of the automated synthesis of process-

level compositions do not take into account data flow specifications. This is the case

of the work that address the problem of the automated synthesis of compositions with

techniques based on automata theory [15,42], and this is also the case of extensions that

model data in exchanges of messages [16]. The same can be said for work within the

semantic Web community, see, e.g., [57]. An exception is the work described in [24],

which proposes an approach to service aggregation that takes into account data flow

requirements. However, data flow requirements express direct identity routings of data

among processes, and do not allow for manipulations of data.

Finally, all existing composition approaches either fully specify the workflow of the

composite process (e.g. [15,42]), or completely specify the interface (control and data

flow) that the new composite service exports to its client. This is the case of the work

presented in [68,69], where they expect the client interface of the new service to be

completely specified and then consider it as another component service in the compo-

sition problem. The exhaustive specification of the client communication protocol re-

quires a deep analysis of the component service behaviors to take into account all their

98 A. Marconi and M. Pistore

possible evolutions (e.g. cancellation, exceptions); in realistic composition domains,

such a description can be as time-consuming and error prone as the specification of

the new composite process itself. A more convenient approach would require the spec-

ification of the static client interface (WSDL-like operations and messages) and of the

relevant data flow, control flow and termination requirements presented before. More-

over, Web services composition can not be seen as a one-shot plan synthesis problem

but rather as a continual process of manipulating complex workflows, which requires

to solve synthesis, execution, optimization, and maintenance problems [76]; in such a

dynamic scenario, a fundamental quality is the ability to easily modify, refine and adapt

the composition requirements.

3 Automated Composition: Example Scenario

With automated synthesis of a composition of Web Services we mean the generation

of a new composite service that interacts with a set of existing component services in

order to achieve given composition requirements. Consider for instance the following

composition scenario (see also Figure 1), which we will use as a reference example

throughout this paper.

Example 1 (Virtual Travel Agency). Our reference example consists in providing a vir-

tual travel agency service, say the VTA service, which offers holiday packages to poten-

tial customers, by combining three separate existing services: a flight booking service

Flight, a hotel booking service Hotel, and a service that provides maps AllMaps. The

idea is that of combining these three services so that the customer may directly interact

with the composed service VTA to organize and possibly book his holiday package.

When addressing a Web service composition problem, the (manual or automatic) devel-

opment of the new composite Web service must be driven by the analysis of published

process specifications of component services (i.e. the Hotel, Flight and AllMaps ser-

vices in the VTA example) and by requirements and constraints the composite service

has to satisfy.

We assume that the interaction protocols of the component services are described as

WS-BPEL [6] processes, even if the described approach does not depend on the specific

...
...

...

... VTA

Protocol

Flight

Protocol

Hotel

Protocol

AllMaps

Protocol

VTA

Process

Customer

Fig. 1. The VTA Scenario

Synthesis and Composition of Web Services 99

aspects of the WS-BPEL language. WS-BPEL is an industrial language for the specifi-

cation and execution of business processes made available through Web services. WS-

BPEL provides an operational description of the (stateful) behavior of Web services

on top of the service interfaces defined in their Web Services Description Language

(WSDL) specifications [28].

There are two flavors of WS-BPEL, namely abstract WS-BPEL specifications, which

allow to publish the interaction protocol with external Web services without revealing

internal implementation details, and executable WS-BPEL processes, that are used to

implement the process defining a service. Executable WS-BPEL programs can be exe-

cuted by standard engines, such as the Active BPEL Open Engine or the Oracle BPEL

Process Manager [1,64].

The automated composition problem can therefore be described as follows: given a

set of abstract WS-BPEL specifications describing the (interactions with) the component

services, and given some composition requirements that describes the desired function-

alities of a composed service, automatically synthesize the executable WS-BPEL that

implements an orchestrator service that, when executed, satisfies the requirements.

Component Service Protocols. WSDL is used to define the functional description of

a Web Service. A WSDL file describes the set of operations offered by the service, in-

going and out-going messages, and data types used by the service (defined in terms

of XML Schemas). Concrete protocol bindings and physical address port specifica-

tions complete a service description, supplying a mechanism to locate the Web Service.

WSDL defines what the service does, not how it does it: it characterizes the service only

in terms of its interface, without providing any behavioral description.

A WS-BPEL document describes a particular business process. The process defini-

tion consists of several parts describing partner links, process variables, correlation sets,

main process workflow, the fault and compensation handling activities. The partner link

declarations are used to define the relation between the process and its partners. In par-

ticular, it defines the role of the process in this relation (consumer or provider of an

interface), and the interfaces used/provided by that role. The interfaces, operations, as

well as their parameters and types, are those specified in the corresponding WSDL doc-

uments. The process variables are used to represent the state of the business process,

they contain the information received from or sent to the partners of the process. The

variables may be of primitive data types (e.g., strings, boolean, integers) or of some

complex types defined in a WSDL document. The correlation sets define the parts of

message data that are used to associate and route a particular message to a particular

instance of the business process. Such information tokens uniquely identify the instance

of the business process. The process flow is defined by a set of process activities. They

specify the operations to be performed, their ordering, conditional logic, reactive rules,

etc. We distinguish the following groups of activities: basic activities, structured ac-

tivities, and the specific operational blocks, namely fault, exception and compensation

handlers.

Basic activities represent primitive operations performed by the process, such as

message emission/reception (invoke, receive, and reply activities), data mod-

ification (assign), process termination (terminate), waiting for a certain period of

time (wait), or doing nothing (empty).

100 A. Marconi and M. Pistore

Structured activities define the order in which a collection of activities occurs. They

compose the basic activities into structures that express the control flow patterns. The

structured WS-BPEL activities include sequence, switch, and while that model

traditional control constructs; pick that models nondeterministic choice based on ex-

ternal events (i.e., message reception or timeout); flow activity that models parallel

execution of the nested activities. Structured activities can be recursively nested and

combined. Fault handling in WS-BPEL is thought of as a mode switch from the normal

processing. It is interpreted as “reverse work”, since it aims at undoing the unsuccessful

work. The fault may arise on reception of the fault message, or on explicit invocation

of the throw activity. The fault handler declaration specify the activities to be

performed when a fault arises. The compensation handlers are used to reverse the ef-

fect of some unit of work that has completed with a fault. The compensation is always

initiated within a fault handler, and it is used to compensate some nested, previously

successful, and completed, activities. A compensation handler is always associated with

a work unit (WS-BPEL scope), and is invoked (explicitly or implicitly) using the WS-

BPELcompensate activity. Event handlers are used to deal with events (reception of

messages or timeouts) that happen independent of, and asynchronously to, the execu-

tion of the program.

Example 2 (Flight Booking WS Protocol). Let us consider a WS-BPEL process that de-

scribes the Flight Booking Service, a component of the Virtual Travel Agency case

switch

pick

CallbackPT

CallPT

request
date
location

offer
cost
schedule

cancel

notAvail

info
booked

abs WS−BPELWSDL

FLIGHT WS protocol

confirm

receive

request(req)

off.schedule:=getSched(req.date,req.location)
off.cost:=costOf(req.date,req.location)

assign

offer(off)

invoke

invoke

booked(bkd)

on message on message

notAvail()

invoke

confirm()cancel()

Fig. 2. The Flight Booking WS Protocol: a compact representation

Synthesis and Composition of Web Services 101

types

element name="dateT" type="xsd:date"

element name="locationT" type="xsd:string"

element name="costT" type="xsd:int"

element name="scheduleT" type="tns:schedType"

element name="infoT" type="tns:InfoType"

...

complexType name="schedType"

sequence

element name="dep_date" type="xsd:date"

element name="dep_airport" type="xsd:string"

element name="arr_date" type="xsd:date"

element name="arr_airport" type="xsd:string"

message name="requestMsg"

part name="date" element="tns:dateT"

part name="location" element="tns:locationT"

part name="corrKey" type="xsd:string"

message name="cancelMsg"

part name="corrKey" type="xsd:string"

message name="confirmMsg"

part name="corrKey" type="xsd:string"

message name="notAvailMsg"

part name="corrKey" type="xsd:string"

message name="offerMsg"

part name="cost" element="tns:costT"

part name="schedule" element="tns:scheduleT"

part name="corrKey" type="xsd:string"

message name="bookedMsg"

part name="info" element="tns:infoT"

part name="corrKey" type="xsd:string"

message name="cancelMsg"

part name="corrKey" type="xsd:string"

portType name="CallPT"

operation name="request"

input message="tns:requestMsg"

operation name="cancel"

input message="tns:cancelMsg"

operation name="confirm"

input message="tns:confirmMsg"

portType name="CallbackPT"

operation name="notAvail"

input message="tns:notAvailMsg"

operation name="offer"

input message="tns:offerMsg"

operation name="booked"

input message="tns:bookedMsg"

partnerLinkType name="FlightPLT"

role name="provider"

portType name="tns:CallPT"

role name="client"

portType name="tns:CallbackPT"

property name="key" type="xsd:string"

propertyAlias propertyname="tns:key"

messageType="tns:requestMsg"

part="corrKey"

...

propertyAlias propertyname="tns:key"

messageType="tns:cancel"

part="corrKey"

Fig. 3. The Flight Booking WS Protocol: WSDL file

study. A compact representation of the process, describing both its interface and its

workflow, is represented in Figure 2. The Flight service receives requests for booking

flights for a given date and location. If there are available flights, it sends an offer with a

cost and a flight schedule. The client can either accept or refuse the offer. If he decides

to accept, the Flight will book the flight and provide additional information such as an

electronic ticket.

The complete WSDL and WS-BPEL specification of the Flight service is presented in

Figure 3 and Figure 4 respectively.

In the following example we briefly describe the protocols of the other component ser-

vices of which we give a compact representation in Figure 5 and in Figure 6.

Example 3 (VTA Component Protocols). In the following, we describe informally the

Hotel Booking Service and the All Maps Service available services, whose interac-

tion protocols are depicted respectively in Figure 5 and in Figure 6.

Hotel accepts requests for providing information on available hotels for a given date

and a given location. If there are hotels available, it chooses a particular hotel and return

an offer with a cost and other hotel information. This offer can be accepted or refused

by the external service that has invoked the Hotel. In case of acceptance, the Hotel
proceeds with the booking and sends a confirmation message to the client.

The AllMaps service receives requests with two locations and provides a digital map

depicting distance information.

102 A. Marconi and M. Pistore

process name="F"

partnerLinks

partnerLink name="FlightPL" partnerLinkType="FlightPLT"

myRole="provider" partnerRole="client"

variables

variable name="req" messageType="requestMsg"

variable name="canc" messageType="cancelMsg"

variable name="conf" messageType="confirmMsg"

variable name="navail" messageType="notAvailMsg"

variable name="off" messageType="offerMsg"

variable name="book" messageType="bookedMsg"

variable name="available" type="xsd:boolean"

correlationSet name="CS" properties="key"

sequence

receive partnerLink="FlightPL" portType="CallPT" operation="request" variable="req"

correlation set="CS" initiate="yes"

assign

copy

from opaque="yes" to variable="available"

switch

case condition="available"

sequence

assign

copy

from opaque="yes" to variable="off" part="corrKey"

copy

from expression="CostOf(req.date,req.location)" to variable="off" part="cost"

copy

from expression="getSched(req.date,req.location)"

to variable="off" part="schedule"

invoke partnerLink="FlightPL" portType="CallbackPT"

operation="offer" variable="off"

correlation set="CS" initiate="no"

pick

onMessage partnerLink="FlightPL" portType="CallPT"

operation="confirm" variable="conf"

correlation set="CS" initiate="no"

...

onMessage partnerLink="FlightPL" portType="CallPT"

operation="cancel" variable="canc"

correlation set="CS" initiate="no"

...

otherwise

sequence

assign

copy

from opaque="yes" to variable="navail" part="corrKey"

invoke partnerLink="FlightPL" portType="CallbackPT"

operation="notAvail" variable="nav"

correlation set="CS" initiate="no"

Fig. 4. The Flight Booking WS Protocol: abstract WS-BPEL file

The aim of the composition task is the development of a new process that will offer new

functionalities and publish them through a Web Service interface. Due to this another

important task of the composition is the specification of the protocol that the new com-

posite service will expose to its clients. The protocol, as for the other components, is

described through WSDL and abstract WS-BPEL.

Synthesis and Composition of Web Services 103

pick

switch

CallbackPT

confirm

CallPT

request
date
location

offer
cost
info

cancel

notAvail

abs WS−BPELWSDL

HOTEL WS protocol

booked

assign

offer(off)

invoke

invoke

receive

on messageon message

off.cost:=costOf(req.date,req.location)

off.info:=getInfo(req.date,req.location)

request(req)

notAvail()

invoke

cancel() confirm()

booked()

Fig. 5. The Hotel Booking WS Protocol

info
map

CallbackPT

request
from
to

WSDL

ALLMAPS WS protocol

abs WS−BPEL

CallPT

request(req)

assign

receive

inf.map:=getMap(req.from,req.to)

invoke

info(inf)

Fig. 6. The All Maps WS Protocols

Example 4 (VTA Customer Interaction Protocol). Intuitively, the VTA service should

try to satisfy a given customer request by providing information on available flights and

hotels (e.g., holiday cost, flight schedule, hotel description and a map showing distance

from the airport) and book the holiday according to customer final decision.

104 A. Marconi and M. Pistore

offerF
cost
schedule

booked
cost
info

confirmF

confirmH

pick

pick

switch

switch

abs WS−BPELWSDL

notAvailF

notAvailH

offerH
cost
hotel
map

CallbackPT

CallPT

request
date
location

cancel

VTA Customer WS protocol

invoke invoke

on message on message

invoke invoke

receive

booked(bkd)

invoke

on message

offerF(offF)

on message

confirmF() cancel()

notAvailH()

confirmH() cancel()

offerH(offH)

notAvailF()

request(req)

Fig. 7. The VTA Customer Interface

Figure 7 presents a compact view of a possible protocol that the VTA could expose

to the customer. According to it, the customer sends a request for an holiday, then, if

there is an available flight, it receives a flight offer. If the customer agrees on the flight

schedule and cost and there is an available hotel, he receives an hotel offer consisting of

the hotel cost, the distance of the hotel from the airport and other information about the

hotel. The customer can either decide to accept the offer or to terminate the interaction

with the VTA. If he decides to accept, he receives the booking confirmation with the

overall holiday cost and other information about the chosen hotel and flight.

Composition Requirements. Given the description of the component services and of

the customer interaction protocol, the next step towards the definition of the automated

composition domain is the formal specification of the composition requirements. As

we will see from the examples presented in the rest of this section, even for simple case

studies we need a way to express requirements that define complex conditions, both

for what concerns the control flow and for the data exchanged among the component

services.

Synthesis and Composition of Web Services 105

Example 5 (Control-flow requirements). The VTA service main goal is to “sell holiday

packages”. This means we want the VTA to reach a situation where the customer has

accepted the offer and a flight and a hotel have been booked.

However, it may be the case that there are no available flights (or no available ho-

tels) satisfying the customer request, or that the customer doesn’t like the flight or the

hotel offer and thus cancels the booking. We cannot avoid these situations, therefore we

cannot ask the composite service to guarantee this requirement.

In case this requirement cannot be satisfied, we do not want the VTA to book a flight

(nor a hotel) without being sure that our customer accepted the offer, as well as we

do not want displeased customers that have booked holidays for which there are no

available flights or hotels. Our control flow requirements would therefore be something

like:

if it is possible “sell holiday packages”;

upon failure,

do “never a single commitment”.

Notice that the secondary requirement (“never a single commit”) has a different

strength w.r.t. the primary one (“sell holiday packages”). We write “do” satisfy, rather

than “try” to satisfy. Indeed, in the case the primary requirement is not satisfied, we

want the secondary requirement to be guaranteed.

Intuitively, we need a way to take into account the transactional aspects of the com-

ponent services and of the composite one. In particular, as shown in Example 5, these

conditions will talk about the final outcomes of the component services.

This termination requirement is only a partial specification of the constraints that the

composition should satisfy. In particular, control requirements abstract completely from

the relationship between the different data exchanged between the component services

and the composite service.

This crucial aspect is taken in charge by data requirements. In particular, data re-

quirements concern the specification of how incoming messages must be used by the

composite service to obtain outgoing messages.

Example 6 (Data-flow requirements). In order to provide consistent information, the

VTA service needs to exchange data with the components and its customer in an

appropriate way. For instance, when invoking the Flight service, the information about

the location and date of the flight must be the same ones that the VTA received in the

customer request; similarly, the information sent to the customer about the distance

between the proposed hotel and the airport must be those obtained from the interaction

with the AllMaps service; and such a service must receive the information on the

airport and hotel location according to the offer proposed by the Flight and Hotel

service. In particular, the VTA must obtain the airport location from the flight schedule

offered by the Flight service and must obtain the hotel location from the information

received in the Hotel offer. Moreover, the cost proposed to the customer for the holi-

day package must be the sum of the hotel and flight cost plus some additional fee for the

106 A. Marconi and M. Pistore

travel agency service; thus the cost offered to the customer must be computed by means

of a function internal to the VTA service. And so on.

The example shows that, even for apparently simple composition problems, we need

a way to express complex data flow requirements: from simple data links between in-

coming and outgoing message parts (e.g., forwarding the information received by the

customer about the location to the Flight service) to the specification of complex data

manipulation (e.g., when computing the holiday package cost or obtaining the airport

and hotel locations).

4 Formal Model of Web Service Composition

In this section we describe a formal model that allows for the representation of Web

service compositions. In particular, we define a single service as a service graph that

properly describes the service both in terms of behavior and of data flow. A formal

model for the composition, the orchestrated transition system, models the evolution of

the component services when controlled by an orchestrator service.

4.1 Modeling Web Services

The formal model we use as a basis for the automated composition techniques consists

of two parts, namely the data model and the behavioral model. The data model provides

a formalization of the data manipulated by the services and is used to reason on the data

flow of the compositions. The control flow is defined by the behavioral model, used to

represent the behavior of the services.

Data Model. We represent data, operations on data, and data flow of the system exe-

cution using a ground model.

Definition 1 (Ground Context)

A ground context C is a tuple 〈T ,V ,F〉 where:

– T is a set of infinite or enumerative types;

– V is a set of typed variables;

– F is a set of typed functions.

We denote the type of the variable x as T(x). Similarly, given that A(f) denotes the arity

of function f , we denote the type of the i-th parameter of f as T(f)[i], where T(f)[0] is

the type of the return parameter.

A ground state is characterized by a complete assignment over the set of typed vari-

ables V and by the function interpreter If.

Definition 2 (Ground State)

Given a ground context 〈T ,V ,F〉, we define a ground state g as a pair 〈Iv, If〉 where:

– Ivis a set of pairs 〈x, v〉 such that for all x ∈ V there exists a unique 〈x, v〉 ∈ Iv

where v ∈ T(x);

Synthesis and Composition of Web Services 107

– If is the function that given a typed function f ∈ F and a set of values v1, . . . , vn,

with n ≥ 0, returns the result of the computation of f(v1, . . . , vn).

We distinguish functions with fixed interpretation FS ⊆ F , i.e.

∀f ∈ FS , ∀If , I ′
f∀v1, . . . , vn, If (f, v1, . . . , vn) = I ′

f (f, v1, . . . , vn);

(typed) constants FC ⊆ F as functions with zero parameters, and functions with arbi-

trary interpretation FU ⊆ F . Notice that two different applications of some function

f ∈ FU may produce different values even for the same input in different ground

states. These functions are used for the non-deterministic modelling of internal service

calculations that depend on some ”hidden” information.

Let e denote an expression and E a set of expressions. Let t denote a term and let T
denote a set of terms. We use x to denote a variable in V ar. The syntax of expression

is as follows:

– E ≡ (t1 = t2) | ¬e | (e1 ∨ e2), that is equality between terms, negation or

disjunction of expressions;

– T ≡ x | f(t1, . . . , tn), that is a variable or a function call.

An atomic term is a variable or a non-nested function call. An atomic expression is

an equality between atomic terms. A literal is an atomic expression or its negation.

A condition φ is an expression of the form presented above. We denote with ΦC the

set of all conditions of context C. An assignment ω has the form (x := t). The set of

assignments defined on context C is denoted with ΩC , moreover we denote with ω̄ an

ordered sequence (ω1, . . . , ωn) of assignments.

Definition 3 (Evaluation Function)

We define the evaluation function Γg as the function that given a term t or an expression

e returns the result of its computation with respect to a ground state g = 〈Iv, If 〉:

– Γg(x) = v, where x ∈ V and 〈x, v〉 ∈ Iv;

– Γg(f(t1, . . . , tn)) = v, where v = If (f, Γg(t1), . . . , Γg(tn));
– Γg(t1 = t2) = true if Γg(t1) = Γg(t2);
– Γg(¬e) = ¬Γg(e);
– Γg(e1 ∨ e2) = Γg(e1) ∨ Γg(e2).

We say that a ground state g satisfies a condition φ, written as g |= φ, if Γg(φ) = true.

Definition 4 (Ground Update)

The update of a ground state g with an assignment ω = (x := t), denoted as

update(g, ω), is the state g′ s.t.

∀x′ ∈ V , Γg′(x) =

{

Γg(x
′), if x′
= x

Γg(t), if x′ = x

We denote with update(g, ω̄) the update of a ground state g with an ordered sequence

of assignments ω̄.

108 A. Marconi and M. Pistore

Behavioral Model. We encode the behavior of a Web service as a service graph. A

service graph describes a dynamic system that can be in one of its possible locations

(some of which are marked as initial) and can evolve to new locations as a result of per-

forming some actions. This evolution is defined by the transition relation. The relation

defines also the condition under which the action can be performed and the effects of

its execution.

We distinguish external actions representing service interactions, and internal ac-

tions, which are used to represent evolutions of the system that do not involve interac-

tions with the external services. We denote an internal action as τ . External actions are

distinguished in input actions I, which represent the reception of messages, and out-

put actions O, which represent the sending of messages to external services. The send

action is denoted as −→µ (x̄), where µ is a service operation, or message type, and x̄ is a

vector of service variables from which the message content is populated. The receive

operation is denoted as ←−µ (x̄), where the message content is assigned to the variables

in x̄. We chose to model input and output actions instantiated on service variables since

this encoding perfectly reflects the modeling choice in most service behavior descrip-

tion languages (e.g. WS-BPEL [6], OWL-S [65]).

We denote with A the set of all the internal and external actions of the service,

formally A = I ∪ O ∪ {τ}.

Definition 5 (Service Graph)

A service graph is a tuple 〈L, L0, C,A, T 〉 where

– L is a set of locations and L0 ⊆ L is the set of initial locations;

– C is a ground context;

– A is a set of actions;

– T ⊆ L × ΦC ×A× Ω∗
C × L is the transition relation.

A transition t = (l, φ, α, ω̄, l′) ∈ T changes the location from l to l′, fires action α ∈ A,

and makes an ordered sequence of assignments ω̄ = (ω1, . . . , ωn) where each ωi ∈ ΩC .

The transition guard has the form φ ∈ ΦC . Due to the nature of Web services, where in-

put and output actions are not ruled by conditions and consists in the sending/receiving

of messages, input and output transitions of a service graph do not have conditions nor

assignments.

4.2 WS-BPEL Processes as Service Graphs

We have implemented a translation that associates a service graph to each component

service, starting from its WSDL and abstract WS-BPEL specification.

For the moment, the translation is restricted to a significant subset of the WS-BPEL

languages. More precisely, we support all WS-BPEL basic and structured activities, like

invoke, receive, sequence, switch, while, pick (without timeouts), and flow (without

links). Moreover we support restricted forms of assignments (specifically, we restrict

the expressions that can appear in the from part of the copy statements) and of cor-

relations. The translation does not deal at the moment with WS-BPEL constructs like

scopes, fault, event and compensation handlers. However, we found the consid-

ered subset expressive enough for describing services as business processes in several

applications in different domains.

Synthesis and Composition of Web Services 109

The WSDL document and the declarative part of the WS-BPEL document is used to

define the context of the process, i.e., the data types, functions, and data variables, and

the input/output actions.

In particular, in the WS-BPEL document we distinguish variables associated to mes-

sage types (those used by the process to store input/output messages) from those used

to store internal information. We define a service graph variable for each internal WS-

BPEL variable and for each message part of ’input/output’ variables.

The types of the message parts and variables, obtained from the WSDL file, are used

to define the data types of the service graph. In particular, enumerative and boolean

types in the WS-BPEL process are mapped to enumerative types in the service graph,

while all the other (complex or simple) WS-BPEL types are mapped to abstract types

with infinite domains1. Similarly, from the functions used in the assignments within the

WS-BPEL document, we obtain the service graph functions.

From the input/output actions in the WSDL document and their calls in the WS-BPEL

file, we define the input/output actions of the service graph.

The translation of the process workflow (see also [43]) consists of the recursive trans-

lation of the process activities. In the rest of this Section we give an intuitive and infor-

mal description of the translation of WS-BPEL basic and structured activities.

We use the following notations to represent this translation. We denote the ser-

vice graph location, where the activity starts, as lb, and the location, where the ac-

tivity (normally) ends, as le. Note that an activity may have several final locations. We

write lb
α

−→ le to denote the (recursive) mapping of the (structured or basic) activity

α with le and lb being an initial and final locations of the activity. In the descrip-

tion of the mapping we specify the explored locations, transitions, actions, and their

parameters.

The examples of the basic activities and the corresponding STS transitions are rep-

resented in Table 1.

The interaction activities are described with the receive/reply/invoke activities. We

handle both synchronous and asynchronous interactions.

The receive activity defines the reception of the message. It specifies an operation,

an interface, and a variable to be populated from the message content. The reply activity

defines the message being sent to the partner in response in a synchronous invocation. It

also specifies an operation, an interface, while the variable is used to specify the value

of the message to be sent. The invoke activity defines a one-way or a synchronous

request-response invocation. In the first form the activity defines a message emission

without waiting for a response (used in asynchronous interactions or in one-way inter-

actions). The following information is specified: an operation and an interface of the

invoked partner, variable used to specify the transmitted value. The second form of the

invoke activity is used to define an invocation followed by the reply from the partner

(two-way synchronous invocation). In this case, also the output variable is specified to

store the value of the received message. The message emission part is mapped to the

corresponding output transition, followed by the reception transitions.

1 We adopt this simple translation for service variables and types to make the formalization

more understandable, extending the model to more sophisticated data translation, e.g. handling

complex types, it is straightforward.

110 A. Marconi and M. Pistore

Table 1. Mapping basic WS-BPEL activities to Service Graph transitions

WS-BPEL activity Service Graph transitions

receive

operation="op"

variable="x"

(l b, true,←−op(x p1, . . . , x pn), ∅, le)

reply

operation="op"

variable="x"

(lb, true,−−−−→rep op(x p1, . . . , x pn), ∅, le)

invoke

operation="op"

inputVariable="x"

(lb, true,−→op(x p1, . . . , x pn), ∅, le)

invoke

operation="op"

inputVariable="x1"

outputVariable="x2"

(lb, true,←−op(x1 p1, . . . , x1 pn), ∅, l′)

(l′, true,
−−−−−→
reply op(x2 p1, . . . , x2 pm)), ∅, le)

assign

copy from variable="x1"

part="p1"

to variable="x2"

part="p2"

(lb, true, τ, x2 p2 := x1 p1, le)

assign

copy from

expression="term"

to variable="x" part="p"

(lb, true, τ, x p := term, le)

empty (lb, true, τ, ∅, le)

terminate (lb, true, τ, ∅, le)

There are three basic activity types that are mapped to the internal service graph

transitions, namely copy in assign activities, empty, and terminate.

Each copy in an assign reads a value from a source data element and writes it to

another data element. The source may be any term, i.e., a literal value, a variable, or a

function call. Due to the simplified approach adopted for variables and types translation,

we require copy source elements to be variable parts or (nested or simple) functions

on variable parts, and restrict target elements to variable parts. For each of this copy

activities we define an internal τ transition performing the corresponding assignment ω.

All opaque assignments in copy activities are modeled as internal τ transitions without

any associated assignment.

Synthesis and Composition of Web Services 111

The empty is used to model a no-op activity of the process. terminate activity can

be used to immediately terminate the behavior of a business process instance within

which the terminate activity is performed. Both activities are modeled as internal τ
transitions. By construction, the terminate activity ends in a location from which there

are no outgoing transitions.

Table 2. Mapping structured WS-BPEL activities to Service Graph transitions

WS-BPEL activity Service Graph transitions

sequence

activity a1

activity a2

activity a3

lb
a1−→ l1, l1

a2−→ l2, l2
a3−→ le

switch

case condition="c1"

activity a1

case condition="c2"

activity a2

otherwise

activity a3

(lb, c1, τ, ∅, l1)
(lb,¬c1 ∧ c2, τ, ∅, l2)
(lb,¬c1 ∧ ¬c2, τ, ∅, l3)

l1
a1−→ le, l2

a2−→ le, l3
a3−→ le

while condition="c"

activity a

(lb, c, τ, ∅, l′)
(lb,¬c, τ, ∅, le)

l′
a

−→ lb

pick

onMessage

operation="op1"

variable="var1"

activity a1

onMessage

operation="op2"

variable="var2"

activity a2

(lb, true,
←−
op1(x1 p1, . . . , x1 pn), ∅, l1)

(lb, true,
←−
op2(x2 p1, . . . , x2 pm), ∅, l2)

l1
a1
−→ le, l2

a2
−→ le

flow

activity a1

activity a2

lb
a1
−→ l1, l1

a2
−→ le

lb
a2
−→ l1, l1

a1
−→ le

The mapping of the structured activities is presented in Table 2.

The sequence activity defines an ordered list of activities that must be executed in

the order in which they appear.

The switch activity defines the conditional choice. It consists of an ordered list of

branches, defined by case elements, followed optionally by an otherwise branch. The

112 A. Marconi and M. Pistore

branches are considered in the order in which they appear: the first branch whose con-

dition holds true is taken. If no branch with a condition is taken, then the otherwise

branch is taken.

The while activity supports repeated performance of a specified iterative activity.

The loop terminates when the condition evaluates to false.

The pick activity awaits the occurrence of one of a set of events and then performs the

associated activity. If more than one of the events occurs simultaneously then the choice

is nondeterministic. The form of pick is a set of branches of the form event/activity, and

exactly one of the branches will be selected based on the occurrence of the associated

event. We restrict the possible events to the arrival of some message (we do not handle

timeout events).

In order to specify that the activities are to be executed in parallel, the flow activity

is used. The activity completes when all the nested activities complete. The parallel

execution is represented as a structure where all the activities are interleaved.

Figure 8 shows the service graph for the abstract WS-BPEL process of the Flight (see

Figure 4), represented in the internal language that is used by the WS-BPEL to service

graph translator.

Similarly, we have defined a translation from service graphs to executable WS-BPEL.

This translation is used to obtain the new WS-BPEL process which implements the re-

quired composition starting from the orchestrator service graph. The translation is con-

ceptually simple. Intuitively, the declarative part of the process is already defined in its

WSDL description, that, together with the abstract WS-BPEL, is part of the inputs to the

composition problem. Input/output actions in the service graph model an interaction of

the composite service with one of the component services, while internal actions in the

service graph correspond to manipulations of data by means of XPath expressions and

assignments.

4.3 Formal Model of Web Service Orchestration

We now give a formal model and semantics of a Web service orchestration. In this

model the composition is represented as a set of service graphs corresponding to the

participating services that interact with a service graph corresponding to the orchestra-

tor. The role of the orchestrator, also referenced as controller, is to rule the execution of

the components through the exchange of messages.

The composition model is built from the set of n service graphs W i =
〈Li, Li

0, C
i,Ai, T i〉 representing the abstract description of the component Web ser-

vices and a service graph W c = 〈Lc, Lc
0, C

c,Ac, T c〉 representing the composite Web

service (orchestrator).

We require that the inputs of a controller coincide with the outputs of the component

services, and vice versa.

Moreover, our definition requires that the actions of the component services are dis-

joint. This means that the component services may not communicate directly with each

other. While an extension to the case where such component services may directly com-

municate is possible, we will not consider it, since in our scenario, we intend to compose

independent existing services, which we assume not to be aware of each other.

Synthesis and Composition of Web Services 113

SERVICE Flight

TYPES

dateT: ABSTRACT

locationT: ABSTRACT

costT: ABSTRACT

scheduleT: ABSTRACT

...

boolean: {T,F}

VARIABLES

req_date: dateT

req_location: locationT

off_cost: costT

off_schedule: scheduleT

...

available: boolean

FUNCTIONS

costOf: (dateT,locationT): costT

getSched: (dateT,locationT): scheduleT

INPUTS

request(req_date,req_location)

cancel()

confirm()

...

OUTPUTS

offer(off_cost,off_schedule)

...

LOCATIONS

pc: {l1,l2,l3,....}

TRANSITIONS

pc=l1 -[INPUT request(req_date,req_location)]-> pc:=l2

pc=l2 -[TAU]-> pc:=l3

pc=l3 & available=T -[TAU]-> pc:=l4

...

pc=l7 -[OUTPUT offer(off_cost,off_schedule)]-> pc:=l8

pc=l8 -[INPUT cancel()]-> pc:=l9

...

pc=l8 -[INPUT confirm()]-> pc:=l10

...

Fig. 8. The Service Graph modeling the Flight Booking Service

A global state of the composition at a particular execution point is defined by the

locations of all the participants, i.e. component services and orchestrator, and by the

values of their variables. We call such a description a configuration of the composition.

More formally, a configuration γ of the composition is a tuple 〈l̄, ḡ〉, where l̄ is

a global location, i.e. a combination of the locations of all the participants, and ḡ is a

global ground state that represents the values of all the local variables of the participants

V =
⋃

i V
i∪Vc. A global location is a vector l̄ = 〈lc, l1, . . . , ln〉 where lc is the location

of the orchestrator and li is the location of the ith service graph. We denote with l̄[l′i/li]
a vector with location li updated to l′i. We denote with l̄(W i) the location of the service

graph W i in global location l̄.
The formal model of a Web service orchestration is defined as an orchestrated tran-

sition system that defines how a set of component services evolve when controlled by

an orchestrator.

114 A. Marconi and M. Pistore

Definition 6 (Orchestrated Transition System)

An Orchestrated Transition System (OTS) W c ⊲ W 1, . . . , Wn, that represents the exe-

cution of n service graphs W 1, . . . , Wn controlled by a service graph W c, is a tuple

〈Γ, Γ0,A,−→
c
〉 where Γ is a set of configurations, Γ0 ⊆ Γ is a set of initial configura-

tions, A = Ac is a set of actions, and −→
c
⊆ Γ × A × Γ is a transition relation such

that:

– (〈l̄, ḡ〉,−→µ (x̄), 〈l̄[l′i/li][l
′
c/lc], ḡ

′〉) ∈−→
c

if

- for some i, (li, true,←−µ (ȳ), ∅, l′i) ∈ T i;

- (lc, true,−→µ (x̄), ∅, l′c) ∈ T c;

- ḡ′ = update(ḡ, ω̄) where ω̄ = (y0 := x0, . . . , yn := xn).
– (〈l̄, ḡ〉,←−µ (x̄), 〈l̄[l′i/li][l

′
c/lc], ḡ

′〉) ∈−→
c

if

- for some i, (li, true,−→µ (ȳ), ∅, l′i) ∈ T i;

- (lc, true,←−µ (x̄), ∅, l′c) ∈ T c;

- ḡ′ = update(ḡ, ω̄) where ω̄ = (x0 := y0, . . . , xn := yn).
– (〈l̄, ḡ〉, τ, 〈l̄[l′c/lc], ḡ

′〉) ∈−→
c

if

- (lc, φc, τ, ω̄c, l
′
c) ∈ T c;

- ḡ |= φc;

- ḡ′ = update(ḡ, ω̄c).
– (〈l̄, ḡ〉, τ, 〈l̄[l′i/li], ḡ

′〉) ∈−→
c

if

- for some i, (li, φ, τ, ω̄, l′i) ∈ T i;

- ḡ |= φ;

- ḡ′ = update(ḡ, ω̄);
– no other transition belongs to −→

c
.

Intuitively, the evolution of each component service is synchronized on input and out-

put actions with the orchestrator, while each service evolves autonomously when it

performs internal actions. The global ground state, modeling the content of all the local

variables, evolves according to the performed operations.

Composition Behavior. A run ω of an OTS is a sequence γ0, α0, γ1, α1, . . . such that

γ0 ∈ Γ0 and (γi, αi, γi+1) ∈−→
c

. A configuration γ ∈ Γ is said to be reachable if there

exists a run ω = γ0, α0, . . . , γn, αn, . . . such that for some i, γi = γ. We will denote

with Reachable(W c ⊲ W 1, . . . , Wn) ⊆ Γ the set of reachable configurations of the

OTS W c ⊲ W 1, . . . , Wn.

A configuration γ ∈ Γ is final if it is reachable and there is no transition leaving γ
(formally, for each (γi, α, γi+1) ∈−→

c
, γi
= γ).

A ground event models a change in a ground state. In particular, we define a ground

event e as a couple 〈x, v〉, where x is a variable and v a value belonging to x type. A

ground execution, denoted with ε, is a sequence of ground events.

Given a run ω = γ0, α0, γ1, α1, . . . of an OTS W c ⊲W 1, . . . , Wn, with γi = 〈l̄i, ḡi〉,
the corresponding ground execution ε is a sequence ε0, ε1, . . . where each εi is the

sequence of events 〈xi0, vi0〉, . . . , 〈xik, vik〉 modeling the changes of the variable values

from ground state ḡi to state ḡi+1 (formally, 〈xij , vij〉 ∈ εi if Γḡi+1
(xij) = vij and

Γḡi
(xij)
= vij).

Synthesis and Composition of Web Services 115

The ground behavior of an OTS W c⊲W 1, . . . , Wn is defined by the set of its ground

executions.

Deadlock-free Orchestrator. A controller W c may not be adequate to control a set

of component services. In particular, in order to avoid deadlocks, we need to guarantee

that whenever W c performs an output transition then the component service export-

ing the corresponding input action is able to accept it, and vice versa. Moreover, for

sake of generality, we need to do so in a way which is independent from low-level

engine-dependent implementation details, and in particular from the way I/O queuing

mechanisms are realized. This requires a careful, conservative approach: we need to

rule out any cases where the presence of a queuing mechanism is essential to the avoid-

ance of deadlock situations, and where critical runs exist that affect the outcomes of

the control. We define a deadlock-freedom condition that relies on the assumption that

messages are associated to a buffer, but does not rely on the existence of any message

queuing/buffering mechanism. This corresponds to the minimal requirement that al-

lows for asynchronous execution of WS-BPEL services, and as such is guaranteed to be

supported by any Web-service execution engine.

In particular, we assume that a service in a location l can accept a message −→µ (ȳ)
if there is some successor l′ ∈ L of l, reachable from l through a chain of internal (τ)

transitions, and the service from location l′ can perform an input transition labelled with
←−µ (x̄). Vice versa, if location l has no such successor l′, and message −→µ (ȳ) is sent, then

a deadlock situation is reached.

In the following definition, and in the rest of the paper, we denote by τ -closureW (l)
the set of locations reachable from l through a sequence of τ transitions.

Definition 7 (τ -closureW)

Let W = 〈L, L0, C,A, T 〉 be a service graph, and l ∈ L. Then τ -closureW (l) = {l′ :
there exist l0, l1, . . . , ln s.t. l = l0, l

′ = ln, and (li, φ, τ, ω̄, li+1) ∈ T }.

Definition 8 (Deadlock-Free Orchestrator)

Let W c = 〈Lc, Lc
0, C

c,Ac, T c〉 be an orchestrator for service graphs W 1, . . ., Wn,

where each W i = 〈Li, Li
0, C

i,Ai, T i〉. W c is deadlock free for W 1, . . . , Wn if each

configuration γ = 〈〈lc, l1, . . . , ln〉, ḡ〉 ∈ Reachable(W c ⊲ W 1, . . . , Wn) satisfies the

following conditions:

1. if, for some i, (li, true,−→µ (x̄), ∅, l′i) ∈ T i then there is some l′c ∈ τ -closureW (lc)
such that (l′c, true,←−µ (ȳ), ∅, l′′c) ∈ T c for some l′′c ∈ Lc;

2. if (lc, true,−→µ (x̄), ∅, l′c) ∈ T c then, for some i, there is some l′i ∈ τ -closureW (li)
such that (l′i, true,←−µ (ȳ), ∅, l′′i) ∈ T i for some l′′i ∈ Li;

We can now formally characterize a Web service composition problem.

Definition 9 (Web Service Composition Problem)

Let W 1, . . . , Wn be a set of service graphs, and let r be a composition requirement. The

composition problem for W 1, . . . , Wn and r is the problem of finding a deadlock-free

service graph W c such that W c ⊲ W 1, . . . , Wn satisfies r.

What needs to be done in the following is to define the requirements. We start from

control flow requirements.

116 A. Marconi and M. Pistore

4.4 Control Flow Requirements

As shown in Example 5, in the control flow requirements we need to express conditions

on the termination of the component services.

In particular, we must specify that, in case all services are available and the final

user accepts, they should all terminate in a ’successful’ state, i.e. a state where the final

agreement to book or sell has been achieved with the VTA. Otherwise, each service must

either remain inactive, or terminate in a ’failure’ state where the service is aware of the

impossibility to agree on the book/sell and any commitment to buy or sell has been

withdrawn. In other words, our global termination requirement must take into account

the transactionality of each component service within the overall composition.

In the specification of each service abstract WS-BPEL protocol we require (see

Figure 9) to mark some states as successful (symbol �) and others as failing (sym-

bol ×).

Example 7. Consider for instance the Flight service. When it receives an acknowledge

message confirming the acceptance of the offer these means that a booking has been

defined and the protocol terminates with success. While it terminates with failure in the

case of unavailability of a flight or of refusal of the flight offer.

As shown by the following example, these annotations are used to specify the transac-

tional requirements of the composition problem.

Example 8. If we consider the VTA scenario, the control flow requirements specifica-

tion is the following.

Flight Hotel VTA

Primary � � �

Secondary × × ×

The specification distinguishes two different requirements: a primary and a sec-

ondary one. The primary requirement is to reach a situation where all the services are

in a successful state (in our case it models the condition “sell holiday packages”). The

secondary requirement (modeling the condition “no single commitments”) is to reach a

situation where all the services are in a failing state.

We do not need this kind of semantic annotations for the AllMaps service since its

protocol doesn’t present any possibility of failure.

Notice that, while specifying control flow requirements, the developer models also the

transactional nature of the new composite service. In particular, in the VTA example we

are saying that the composite service is in a successful state if the customer has accepted

the offer and the holiday package has been booked, while the VTA is in a failing state

when either some service is not available or the customer has refused the offer.

If we consider real-world composition scenarios, we can have more complex trans-

actional requirements. For instance it can be the case that the failure of a component

service doesn’t affect the success of the overall composition: the other components and

the composite service can still be in a successful state.

Synthesis and Composition of Web Services 117

pick

switch

request(r)

assign

receive

i.map:=getMap(r.from,r.to)

invoke

info(i)

ENDED

offerF(offF)

on message

switchFNAVAIL

HNAVAIL

HCANCELED

BOOKED

pick

pick

switch

notAvail()

invoke

ALLmaps

Virtual Travel Agency

receive

request(req)

off.schedule:=getSched(req.date,req.location)
off.cost:=costOf(req.date,req.location)

assign

offer(off)

invoke

invoke

booked(book)

BOOKED

CANCELED

NAVAIL

FLIGHT Booking

HOTEL Booking

assign

offer(o)

invoke

invoke

request(r)

receive

on messageon message

o.cost:=costOf(r.date,r.location)

o.info:=getInfo(r.date,r.location)

BOOKED

CANCELED

NAVAIL

START

request(req)

invoke invoke

on message

offerH(offH)

on message

invoke invoke

receive

booked(bkd)

invoke

FCANCELED

switch

on message

cancel()

pick

on message

confirm()

on message

invoke

notAvailF()

confirmF() cancel()

notAvailH()

confirmH() cancel()

notAvail()

cancel() confirm()

booked()

Fig. 9. VTA Composition Scenario: semantically annotated WS-BPEL protocols

Our approach thus provides the developer with the ability to specify with a simple

tabular notation control-flow requirements that are then automatically translated into a

formal internal notation that is hidden to the developer.

This kind of requirements can be formally expressed in several ways. In the fol-

lowing, we present a well-known approach, which consists in expressing control flow

requirements as conditions on the final execution configurations.

118 A. Marconi and M. Pistore

Encoding the control flow requirements of Example 8 as a condition on final config-

urations, means being able to formalize that:

”Either all the services are in a successful state,

or none of them must be in a successful state.”

To express this kind of requirements we exploit the semantic annotations in the de-

scription of the component services that specify whether a termination state is failing

or successful.

Example 9. The formalization of the requirement in Example 8 as a condition of final

configurations is the following.

(HOTEL.� ∧ FLIGHT.� ∧ VTA.�)

∨

(HOTEL. × ∧FLIGHT. × ∧VTA.×)

Where HOTEL.� stays for HOTEL.BOOKED, and HOTEL.× stays for

HOTEL.NAVAIL ∨ HOTEL.CANCELED ∨ HOTEL.START.

And similarly for the other components.

Control flow requirements rc are thus formalized as a disjunction of termination

conditions, formally rc =
∨

k rk
l . Each termination condition rk

l express a condition

on the locations of the component services. The syntax of termination conditions is as

follows:

– rl ≡ W.l|(rl ∨ rl)|(rl ∧ rl)

where W is a service graph and l is a location.

In the following we define when an orchestrated transition system W c⊲W 1, . . . , Wn

satisfies a given control flow requirements rc.

We start defining when a global location l̄ satisfies a termination condition rl:

– l̄ |= W.l if l̄(W) = l;
– l̄ |= r1

l ∨ r2
l if l̄ |= r1

l or l̄ |= r2
l ;

– l̄ |= r1
l ∧ r2

l if l̄ |= r1
l and l̄ |= r2

l .

A configuration γ = 〈l̄, ḡ〉 satisfies rc =
∨

k rk
l , denoted with γ |= rc, if for some k,

l̄ |= rk
l .

Definition 10 (Control Flow Requirements Satisfiability)

Let rc be a control flow requirements and W c ⊲W 1, . . . , Wn an orchestrated transition

system. We say that W c ⊲W 1, . . . , Wn satisfies rc, denoted with W c ⊲W 1, . . . , Wn |=
rc, if every final configuration γf of W c ⊲ W 1, . . . , Wn is such that γf |= rc.

Synthesis and Composition of Web Services 119

4.5 Data Flow Requirements

The exchange and management of business data in service compositions using XML-

based standards is one of the most important capabilities of the Web service technology.

In data-intensive applications the data flow is as critical for the composition problem as

the control flow, since the service execution is driven by the manipulated information.

In this section, we describe a technique to deal with data requirements in Web service

composition.

We propose to separate the specification of data-flow requirements from that of

control-flow requirements, and to specify requirements on the data flow through a set of

constraints that explicitly define the valid routings and manipulations of messages that

the composed service can perform. These constraints can be described in a graphical

way, as a data net, i.e., as a graph where the input/output ports of the existing services

are modeled as nodes, the paths in the graph define the possible routes of the messages,

and the arcs define basic manipulations of these messages performed by the composed

service.

We now provide a formal definition of data flow requirements as data nets and de-

scribe its graphical representation.

Data Net Formal Model. Data flow requirements specify explicitly how output mes-

sages (messages sent to component services) must be obtained from input messages

(messages received from component services). All these requirements are collected in

a hypergraph called data net, whose nodes represent variables used to store data and

whose hyperarcs represent flow and manipulation of data.

Hypergraphs, a generalization of graphs, have been widely and deeply studied (see

[17,18]), and quite often have proved to be a successful tool to represent and model con-

cepts and structures in various areas of Computer Science and Discrete Mathematics.

Here we deal with directed hypergraphs. Sometimes with different names such as ”la-

belled graphs” and ”And-Or graphs”, directed hypergraphs have been introduced in the

literature as a way to deal with particular problems arising in Computer Science and in

Combinatorial Optimization (see, for example, [23], [41], [49], [54]). In the following

we recall some basic definitions concerning hypergraphs.

Definition 11 (Directed Hypergraph)

A hypergraph H is a pair 〈N, E〉 where:

– N is the set of nodes;

– E ⊆ P(N) × P(N) is the set of hyperarcs.

Given an hyperarc e = 〈X, Y 〉, the set X of nodes is the tail of e, while the set

Y of nodes is its head; in the following we denote them with head(e) and tail(e)
respectively. A backward hyperarc, or simply B-arc, is a hyperarc e with |head(e)| = 1.

A forward hyperarc, or simply F-arc, is a hyperarc e with |tail(e)| = 1. An arc is a

hyperarc e with |head(e)| = |tail(e)| = 1. Given a node n, we denote with FS(n) its

Forward Star, that is the set of all its outgoing hyperarcs (formally FS(n) = {e ∈ E :
n ∈ tail(e)}). Similarly, we denote with BS(n) the Backward Star of a node n, that is

the set of all its incoming hyperarcs (formally, BS(n) = {e ∈ E : n ∈ head(e)}).

120 A. Marconi and M. Pistore

A data net is characterized by a set of typed nodes N , a set of hyperarcs E, also called

data-flow arcs, where each arc corresponds to a specific type of data net operator, and

a set of typed functions F .

There are three different kinds of nodes:

– input nodes, external connection nodes associated to input ports, that represent

sources of data to the data net and thus can have only outgoing data-flow arcs.

Given a set of nodes N we denote with N I
ext its subset of input nodes.

– output nodes, external connection nodes associated to output actions, that represent

target of data for the data net and thus can have only incoming data-flow arcs. Given

a set of nodes N we denote with NO
ext its subset of output nodes.

– and internal nodes, that represent internal storage of data used to hold data manip-

ulation results, and that can have both incoming and outgoing data-flow arcs. Given

a set of nodes N we denote with Nint its subset of internal nodes.

We denote with Next the set of all external connection nodes (formally, Next = N I
ext ∪

NO
ext).

In the following we describe the data-flow arcs provided by the language, show

how they can be composed to obtain complex expressions, and provide an intuitive

semantics.

– Identity data-flow arc

It is connected to one node in input and one node in output. The requirement states

that data received from the tail node should be forwarded to the head node. The

graphical notation for the data-flow identity arc id(a)(b), with head node a and tail

node b, is the following:

a b

!

– Operation data-flow arc

It is related to a function definition; its tail has as many nodes as the number of

function parameters and its head has only one node corresponding to the function

result. The requirement states that, when data is received from all the nodes in the

tail, the result of the operation should be forwarded to the head node. The graphical

notation for the data-flow operation arc oper[f](a, b)(c) characterizing function f,

with tail nodes a and b and head node c, is the following:

f
c

a

b

– Fork data-flow arc

Its tail has a single node and its head can have as many nodes as needed. It forwards

data received on the tail node to all the nodes in the head. The graphical notation

for the data-flow fork arc fork(a)(b, c), with tail node a and head nodes b and c,

is the following:

Synthesis and Composition of Web Services 121

b

c

a

– Merge data-flow arc

It can have as many nodes an needed in the tail and can have only one node as head.

It forwards data received on some node in the tail to the head node. It preserves the

temporal order of data arriving on tail nodes (if it receives data on two or more tail

nodes at the same time, the order is nondeterministic). We represent the data-flow

merge arc merge(a, b)(c), with tail nodes a and b and head node c as:

b

c

a

– Cloner data-flow arc

Its tail and its head can have only one node each. It forwards, as many times as

needed (min 1), to the head node the data received from the tail node. The data-

flow cloner arc clone(a)(b), with tail node a and head node b is represented as:

+
a b

– Filter data-flow arc

It has only one node in the tail and only one node in the head. When it receives data

on the tail node, it either forwards it to the head node or discards it. We represent

the data-flow filter arc filt(a)(b), having tail node a and head node b as:

a b

?

– Last data-flow arc

It has only one node in the tail and only one node in the head. It requires that at

most one data is forwarded to the head node: the last data received on the tail node.

All other previously received data are discarded. The graphical notation for the

data-flow last arc last(a)(b), with tail node a and head node b, is the following:

a b
L

Definition 12 (Data Net)

A data net D is a tuple 〈H, T ,F ,LT ,LF 〉 where:

– H = 〈N, E〉 is a directed hypergraph;

– LT : E → T is a function associating to each hyperarc its type, where T =
{identity, operation, fork, merge, cloner, filter, last};

122 A. Marconi and M. Pistore

– LF : EF → F is a function associating to each operation hyperarc the corre-

sponding function, where EF = {e ∈ E : LT (e) = operation};

– for all n ∈ N I
ext, |FS(n)| = 1 and |BS(n)| = 0;

– for all n ∈ NO
ext, |FS(n)| = 0 and |BS(n)| = 1;

– for all n ∈ Nint, |FS(n)| = |BS(n)| = 1;

– for all e ∈ E
• if LT (e) ∈ {identity, cloner, filter, last} then e is an arc;

• if LT (e) = fork then e is a F-arc;

• if LT (e) ∈ {operation, merge} then e is a B-arc;

– for all e ∈ E
• if LT (e) = operation, e = oper[f](n1, . . . , nk)(n), then T(n) = T(f)[0],

A(f) = k, and T(ni) = T(f)[i], where 1 ≤ i ≤ A(LF (e));
• otherwise, for each possible ni, nj ∈ head(e) ∪ tail(e), T(ni) = T(nj).

In the following examples we show how data flow arcs can be composed to obtain

complex data flow requirements.

Example 10. Let’s consider the VTA composition scenario. Suppose we want to model

that the new composite process must use the information on the cost of the Hotel both

to obtain the hotel offer for the Customer, and, combining it with the cost offered by

the Flight, to prepare the final cost for the Customer.

The following picture shows how we can specify this data flow requirements by com-

posing fork and operation data flow arcs, and appropriately linking them to external

nodes.

F.offer.cost

C.h_offer.cost

C.booked.cost

H.offer.cost

prepareCost

Example 11. In Figure 10 we represent the data-net requirements for the VTA scenario

presented in Section 3 (see also [50]): they describe the constraints on the data ex-

changed among a Customer, a Flight booking service, a Hotel booking service and a

AllMap service in the set-up of a vacation package.

When the VTA receives a request from the Customer, it must forward the date
information to the Flight and the loc information both to the Flight and to the Hotel.

The VTA must forward the cost received in the offer from the Hotel to the Customer

through the hOffer.cost message. Similarly, the VTA must forward the cost received in

the offer from the Flight to the Customer through the fOffer.cost message. Moreover,

the new composite service must combine both costs offered by the Flight and by the

Hotel, by means of its internal function prepareCost, to obtain the cost to be sent in

the booked message to the Customer.

The VTA must obtain the date information that it sends in the request to the Hotel
by computing its internal function getDate on the schedule received in the offer of

the Flight. The schedule received in the offer of the Flight is also forwarded to the

Synthesis and Composition of Web Services 123

!

!

CallbackPT

confirm

CallPT

offer

cancel

notAvail

booked

requestdate

location

cost

info

WSDL H
O

T
E

L
 W

S
 IN

T
E

R
F

A
C

E

schedule

getDate

getLocation

prepareInfo

CallPT

CallbackPT

WSDL

info

request

A
L

L
M

A
P

S
 W

S
 I

N
T

E
R

F
A

C
E

from

to

map

confirmF

confirmH

map

cost

CallbackPT

CallPT

offer

cancel

notAvail

booked

confirm

request

location

date

cost

info

WSDL F
L

IG
H

T
 W

S
 IN

T
E

R
F

A
C

E

getAirport

notAvailF

notAvailH

offerH

CallbackPT

CallPT

cancel

request

V
T

A
 W

S
 I

N
T

E
R

F
A

C
E

WSDL

offerF

booked

date

location

cost

schedule

cost

hotel

info

prepareCost

Fig. 10. The data net for a Travel Agency scenario

client, as part of the f offer message. Moreover, the VTA exploits the internal function

getAirport on the flight schedule to obtain the from information to be sent to the

AllMaps service.

Similarly, all outgoing message parts are obtained by properly aggregating, manipu-

lating, or simply forwarding incoming message parts by means of data flow arcs.

Each operation data flow arc in the data net (e.g. getDate in the VTA example) refers

to an internal function that the new composite service uses to manipulate data. Since

our aim is to automatically generate the executable WS-BPEL code implementing the

composite service, the specification of each internal function is given as an XML Path

Language [19] (XPath from now on) expression, which is the standard language used in

WS-BPEL assignments. XPath is an expression language for addressing portions of an

XML document, or for computing values (strings, numbers, or boolean values) based

on the content of an XML document.

124 A. Marconi and M. Pistore

Example 12 (Specifying Internal Functions)

Consider for instance the function getDate used in the data net of Figure 10 to obtain

the arrival date to be sent in the Hotel request from the flight schedule received in the

Flight offer message.

The XPath specification of getDate is the following:

getDate = “/nsFlight:schedule/nsFlight:arr date”

and it defines how to obtain the arrival date by navigating through the XML complex

structure of the schedule part in the Flight offer message (see the Flight WSDL speci-

fication in Figure 3).

We now formalize the semantics of the data flow modeling language.

Definition 13 (Data Net Execution)

Let D = 〈〈N, E〉, T ,F ,LT ,LF 〉 be a data net. An event e on D is a couple 〈n, v〉,
where n ∈ N and v ∈ T(n), which models the fact that the data value v passes through

the connection node n.

An execution of D, denoted with εD, is a finite sequence of events e0, ..en on D.

Given an execution εD we define its projection on a set of connection nodes N ′ ⊆ N ,

and denote it with ΠN ′(εD), the ordered sequence e′0, ..., e
′
m representing the events in

εD which correspond to nodes in N ′.

We formally define the semantics of our language in terms of accepted executions

of a data net D. In the following definition, we exploit regular expressions to define the

accepted execution. We use notation Σv∈V to express alternatives that range over all the

possible values v ∈ V that can flow through the net.

Definition 14 (Data Net Accepting Execution)

An execution εD is accepted by a data net D = 〈〈N, E〉, T ,F ,LT ,LF 〉 if it satisfies

all the following properties:

– for each identity arc id(a)(b) in D:

Π{a,b}(εD) =

⎛

⎝

∑

v∈T(a)

〈a, v〉 · 〈b, v〉

⎞

⎠

∗

– for each operation arc oper[f](a, b)(c) in D:

Π{a,b,c}(εD) =
⎛

⎝

∑

v∈T(a),w∈T(b)

(〈a, v〉 · 〈b, w〉 + 〈b, w〉 · 〈a, v〉) · 〈c, f(v, w)〉

⎞

⎠

∗

Synthesis and Composition of Web Services 125

– for each fork arc fork(a)(b, c) in D:

Π{a,b,c}(εD) =
⎛

⎝

∑

v∈T(a)

〈a, v〉 · (〈b, v〉 · 〈c, v〉 + 〈c, v〉 · 〈b, v〉)

⎞

⎠

∗

– for each merge arc merge(a, b)(c) in D:

Π{a,b,c}(εD) =

⎛

⎝

∑

v∈T(a)

(〈a, v〉 · 〈c, v〉 + 〈b, v〉 · 〈c, v〉)

⎞

⎠

∗

– for each cloner arc clone(a)(b) in D:

Π{a,b}(εD) =

⎛

⎝

∑

v∈T(a)

〈a, v〉 · 〈b, v〉 · 〈b, v〉∗

⎞

⎠

∗

– for each filter arc filt(a)(b) in D:

Π{a,b}(εD) =

⎛

⎝

∑

v∈T(a)

〈a, v〉 · (〈b, v〉 + ǫ)

⎞

⎠

∗

– for each last arc last(a)(b) in D:

Π{a,b}(εD) =

⎛

⎝

∑

v∈T(a)

〈a, v〉

⎞

⎠

∗

·

⎛

⎝

∑

v∈T(a)

〈a, v〉 · 〈b, v〉

⎞

⎠ + ǫ

Given a data net D, we denote with ED the set of all the executions accepted by D.

Notice that this definition considers data net arcs connecting at most two input/output

nodes, however it can easily be extended to handle arcs of the data net connecting more

input/output nodes.

As defined in Section 4.3, the ground behavior of a service composition can be de-

fined as a set of executions E on the set of all variables. The composition satisfies the

requirements in the data net D if all the executions of the composition are accepted

by D.

Definition 15 (Data Net Satisfiability)

An orchestrated transition system W c ⊲ W 1, . . . , Wn satisfies a data net D, written

as W c ⊲ W 1, . . . , Wn
DN

|= D, if each execution ε of W c ⊲ W 1, . . . , Wn is such that

ε ∈ ED.

126 A. Marconi and M. Pistore

Given this definition and Definition 9, we have that an orchestrator service graph W c is

a solution for a data net composition problem with component services W 1, . . . , Wn,

control flow requirements rc, and data flow requirements rd = D, if W c is deadlock

free, W c⊲W 1, . . . , Wn |= rc, and each execution ε of W c⊲W 1, . . . , Wn is an accepted

execution of D.

5 Automated Synthesis of a Web Service Composition

In this section we describe the approach for solving the composition problem described

in the previous section. The approach is based on state-of-the-art techniques for plan-

ning in asynchronous domains [68], which we will now introduce.

5.1 Planning in Asynchronous Domains

The work in [68] presents a formal framework for the automated synthesis of a com-

position of Web services which is based on planning techniques: component services

define the planning domain, composition requirements are formalized as planning goal,

and planning algorithms are used to generate the composite service.

Due to the nature of Web services, the resulting planning domain is nondeterministic

and partially observable. It differs from other planning frameworks since it assumes an

asynchronous, message-based interaction between the domain (encoding the compo-

nent services) and the plan (encoding the composite service).

More precisely, the planning domain is modeled as a state transition system (STS

from now on) that can be in one of its possible states (a subset of which are initial) and

can evolve to new states as a result of performing some actions.

In particular, input actions represent messages sent to the component services, while

output actions are messages received from the component services. Private actions are

actions that the composite service can perform internally, without interacting with the

services.2 Conversely, the special action τ is used to model internal evolutions of the

component services which are not visible to the composite service. Finally, a labeling

function associates to each state the set of properties Prop holding in that state.

Definition 16 (state transition system (STS))

A state transition system Σ is a tuple 〈S,S0, I,O,A,R,L〉 where:

– S is the finite set of states;

– S0 ⊆ S is the set of initial states;

– I is a finite set of input actions;

– O is a finite set of output actions;

– A is a finite set of private actions;

– R ⊆ S × (I ∪ O ∪ A ∪ {τ}) × S is the transition relation;

– L : S → 2Prop is the labeling function.

2 Private actions do not appear in [68], as they are specific of the approaches presented here. The

extension of the theory of [68] to private actions is straightforward.

Synthesis and Composition of Web Services 127

Some standard definitions on STS are now in order. We denote with A the set of all

actions of the STS, formally A = I ∪ O ∪A ∪ {τ}
We say that an action a ∈ A is applicable on a state s ∈ S, denoted with Appl(a, s),

if there exists a state s′ ∈ S s.t. (s, a, s′) ∈ R. A state of an STS is final if no action

a ∈ A is applicable in s, i.e., if there is no transition leaving s.

The behavior of an STS is represented by its set of possible runs, i.e., of sequences

s0, a0, s1, a1, . . . such that s0 ∈ S0 and (si, ai, si+1) ∈ R. In general, such runs may be

finite or infinite. A run σ is said to be completed if it is finite, and if its last state is final.

A state s ∈ S will be said reachable if there exists a run σ = s0, a0, . . . , an−1, sn, . . .
such that sn = s. We will denote with Reachable(Σ) ⊆ S the set of reachable states

of Σ.

Given a run σ = s0, a0, s1, a1, . . ., we define its projection on a set of actions A′ ⊆
A, and denote it with ΠA′(σ), the ordered sequence a′

0, ..., a
′
m representing the actions

in σ which are in A′.

In a composition problem, the composite service is defined as a “controller” Σc (also

described as a STS), which interacts with the domain Σ, orchestrating the component

services. We now recall the formal definition of the behavior of a STS Σ when con-

trolled by Σc.

Definition 17 (controlled system)

Let Σ = 〈S,S0, I,O,A,R,L〉 and Σc = 〈Sc,S0
c ,O, I,A,Rc,L∅〉 be two state

transition systems, where L∅(sc) = ∅ for all sc ∈ Sc. The STS Σc ⊲ Σ, describing the

behaviors of system Σ when controlled by Σc, is defined as:

Σc ⊲ Σ = 〈Sc × S,S0
c × S0, I,O,A,Rc ⊲ R,L〉

where:

– 〈(sc, s), τ, (s
′
c, s)〉 ∈ (Rc ⊲ R) if 〈sc, τ, s

′
c〉 ∈ Rc;

– 〈(sc, s), τ, (sc, s
′)〉 ∈ (Rc ⊲ R) if 〈s, τ, s′〉 ∈ R;

– 〈(sc, s), a, (s′c, s
′)〉 ∈ (Rc ⊲ R), with a
= τ , if

〈sc, a, s′c〉 ∈ Rc and 〈s, a, s′〉 ∈ R.

Due to the asynchronous nature of Web service interactions, and in order to guarantee a

correct behavior of the composite service, we need to rule out explicitly the cases where

the sender is ready to send a message that the receiver is not able to accept. According

to [68], a state s is able to accept a message a if there exists some successor s′ of s,

reachable from s through a (possibly empty) sequence of τ transitions, such that an

input transition labeled with a can be performed in s′. This intuition is captured in the

following definition, where we denote by τ -closureΣ(s) the set of states reachable from

s through a chain of τ transitions.

Definition 18 (deadlock-free controller)

Let Σ = 〈S,S0, I,O,A,R,L〉 be a STS and Σc = 〈Sc,S
0
c ,O, I,A,Rc,L∅〉 be a

controller for Σ. Σc is said to be deadlock free for Σ if all states (sc, s) ∈ Sc × S that

are reachable from the initial states of Σc ⊲ Σ satisfy the following conditions:

– if 〈s, a, s′〉 ∈ R with a ∈ O then there is some s′c ∈ τ -closureΣ(sc) such that

〈s′c, a, s′′c 〉 ∈ Rc for some s′′c ∈ Sc;

128 A. Marconi and M. Pistore

– if 〈sc, a, s′c〉 ∈ Rc with a ∈ I then there is some s′ ∈ τ -closureΣ(s) such that

〈s′, a, s′′〉 ∈ R for some s′′ ∈ S;

– if 〈sc, a, s′c〉 ∈ Rc with a ∈ A then there is some s′ ∈ τ -closureΣ(s) such that

〈s′, a, s′′〉 ∈ R for some s′′ ∈ S.

In [68], the composition problem for domain Σ and composition goal ρ consists in

generating a STS Σc that controls Σ so that its behavior satisfy the requirement ρ
(according to a formal notion of requirement satisfaction).

Intuitively, a controller is a solution for a requirement ρ if it guarantees that ρ is

achieved. We can formally express this by requiring that every run σ of the controlled

system Σc ⊲ Σ‖ ends up in a state where ρ holds.

Definition 19 (Satisfiability)

Let ρ be a propositional formula and Σ a STS. We say that Σ satisfies ρ, denoted with

Σ |=f ρ, if

– every final state sf of Σ satisfies ρ according to the standard notion of satisfaction

of a propositional formula on a state.

Definition 20 (Solution controller)

A controller Σc is a solution for goal ρ and planning domain Σ if Σc ⊲ Σ |= ρ and Σc

is deadlock free for Σ.

To solve this problem, in [68] they show how to adapt the “Planning as Model Check-

ing” approach of [21,22,31], which can deal with the fact that the component services

model nondeterministic, partially observable behaviors. In [68], they exploit the MBP

platform (see [20]) that implements such approach.

Even if here we are assuming that planning goal are expressed as reachability goals,

this planning framework is able to deal with more complex requirements. In particular,

it can deal with planning goals expressed in EAGLE, a requirement language whose

operators are similar to CTL operators, but their semantics, formally defined in [32],

take into account the notion of preference and the handling of failure when subgoals

cannot be achieved.

5.2 Automated Synthesis through Planning in Asynchronous Domains

In this Section we give an overview of the proposed automated synthesis approach. The

main idea is to exploit and extend the planning techniques presented in Section 5.1 in

order to define a comprehensive Web service automated composition framework that

covers all the phases of the composition process, from requirements specification to

composite process run. An overview of the framework is given in Figure 11.

The composition domain is characterized by the description of the protocols of the

component services and by some composition requirements. As already mentioned,

we assume that the component service protocols are specified as abstract WS-BPEL

processes. For what concerns the composition requirements, they consist of control

flow requirements rc and of data flow requirements rd; the latter are described as data

nets. The output of the synthesis is an executable WS-BPEL process that implements the

Web service composition.

Synthesis and Composition of Web Services 129

C
o
m

p
o
n
e
n
t

S
e
rv

ic
e
s

R
e

q
u
ir
e

m
e

n
ts

C
o
m

p
o
s
it
io

n

rc

rd
B

P
E

L
2
S

G
T

R
A

N
S

L
A

T
O

R

Service
Graphs

C
O

N
S

T
R

U
C

T
IO

N
G

O
A

L

ρ

Goal
Planning

Abstract
WS−BPEL
Protocol

T
R

A
N

S
L
A

T
O

R
S

G
2
S

T
S

STS

P
L
A

N
N

E
R Plan

T
R

A
N

S
L
A

T
O

R
S

T
S

2
S

G

T
R

A
N

S
L
A

T
O

R
S

G
2
B

P
E

L

Composite
ServiceOrchestrator

Domain
Planning

STS

STS Service
Graph

Executable
WS−BPEL
Process

DataNet2STS

Fig. 11. The general automated composition framework

The first step in the framework is to model WS-BPEL specification using the service

graph formalism presented in Section 4.1. The behaviour of the translation which asso-

ciates a service graph to each WS-BPEL component service protocol (module “BPEL2SG

Translator” of Figure 11) has been already presented in details in Section 4.2.

The second step is to transform a composition problem in a planning problem that

can be solved by applying the techniques for planning in asynchronous domains pro-

posed in Section 5.1. From each of the service graphs modeling the component services,

an STS is then extracted (module “SG2STS Translator”), as described in Section 5.3.

Also the data net requirements are transformed into an STS (module “DataNet2STS”),

see Section 5.4. All the STS are then combined in a single STS through a synchronized

product; this STS defines the domain for the planner. The goal of the planner is obtained

by extending the control flow part of the composition requirements with additional con-

straints on the data net (module “Goal Construction”), as we will see in Section 5.5.

Once the composition problem has been encoded as a planning problem, we apply

the techniques in Section 5.1 to obtain a deadlock free controller STS that interacts with

the planning domain in such a way to satisfy the planning goal.

Then, from the controller STS, we obtain the service graph modeling the orchestrator

(module “STS2SG Translator”), which is then translated into executable WS-BPEL to

obtain the new composite process that implements the required composition.

5.3 Service Graphs as STS

The following definition describes the encoding of a service graph W , modeling a com-

ponent service, with an STS Σ.

Definition 21 (Service Graph as STS)

Let W = 〈L, L0, C,A, T 〉 be a component service graph and let Cc =
〈T c,Vc,Fc〉 be the ground context of the controller. The corresponding STS Σ =
〈S,S0, I,O, ∅,R,L∅〉 is obtained as follows:

– the set of states S are all the possible service locations L;

– S0 ⊆ S is the set of initial locations L0;

130 A. Marconi and M. Pistore

Table 3. STS encoding of data net elements

−>a*a−>b

* *

* * −>b −>a

 −>b

f(a,b)−>c

 −>a

id(a)(b) oper[f](a, b)(c)

* * −>b −>a

b−>c a−>c

*

a−>c

a−>c a−>b

a−>b

 −>a

merge(a, b)(c) fork(a)(b, c)

*a−>b

a−>b

−>a

*

*

a−>b −>a

 −>a
*

* −>a

a−>b

 −>a

clone(a)(b) filt(a)(b) last(a)(b)

– I is the set of input actions ←−µ (x̄) s. t. ←−µ (ȳ) ∈ A and x1, . . . , xn ∈ Vc;

– O is the set of output actions −→µ (x̄) s. t. −→µ (ȳ) ∈ A and x1, . . . , xn ∈ Vc;

– R is the transition relation defined as follows:

• (l,−→µ (x̄), l′) ∈ R if (l, true,−→µ (ȳ), ∅, l′) ∈ T ;

• (l,←−µ (x̄), l′) ∈ R if (l, true,←−µ (ȳ), ∅, l′) ∈ T ;

• (l, τ, l′) ∈ R if (l, φ, τ, ω̄, l′) ∈ T ;

• no other transition belong to R.

Intuitively, input actions of the STS represent messages received by the component

service, output actions are messages sent by the component service, internal τ actions

Synthesis and Composition of Web Services 131

model non-observable evolutions of the component service, and the transition relation

models the internal evolution of the service.

5.4 Data Nets as STS

As we have seen in previous sections, a data net D of a particular composition problem

specifies how messages received from the component services can be used by the new

composite process to obtain outgoing messages. Therefore, the idea of representing D
as an STS ΣD, which models the allowed data flow actions (constraining the possible

operations that the composite process can perform on its variables), is quite intuitive.

In particular, input actions in this STS represent messages received by the component

services, output actions represent messages sent by the component services and inter-

nal actions represent assignments that the composite process performs on its internal

variables. Variables associated to external connection nodes are those used by the new

composite process to store received messages and to prepare the messages to be sent,

while variables associated to internal connection nodes are those used to manipulate

messages by means of internal functions and assignments.

A nice feature of our approach is that the encoding of the data net D can be done

compositionally, i.e., a “small” automaton can be associated to each hyperarc of the

data net, and the STS ΣD is obtained as the synchronized product of all these small

automata.

Table 3 shows the STS defined for each data-flow element of the data net. We use

∗ -> a to denote all the operations that affect the value of variable a. So for instance,

if a is an input node modeling the variable used to store a part of message −→µ (x̄), then

∗ -> a is instantied with action −→µ (x̄); if a is an internal node, then∗ -> a denotes

all internal actions copying any variable/expression x to variable a. Finally, accepting

states are marked with an internal circle.

Example 13. Consider for instance the identity arc of the data net in Figure 10 con-

necting the input node C.request.date to the output node F.request.date. Its resulting

STS encoding is the following:

C_request(C.request.date,C.request.loc)

C.request.date−>F.request.date

Moreover, for each output node of the data net connected to some data net element,

we define a STS modeling the fact that the corresponding message can be sent only if

the message part has been properly assigned.

Example 14. For the external output node F.request.date of the data net in Figure 10

we define the following STS:

132 A. Marconi and M. Pistore

−>F.request.date*

F_request(F.request.date,F.request.loc)

The STS ΣD, modeling the data net D, is the synchronized product of all the STSs

corresponding to connected output nodes and to data-flow elements of D. As formally

stated by the following definition, the synchronized product Σ1 ‖ Σ2 models the fact

that the systems Σ1 and Σ2 evolve simultaneously on common actions and indepen-

dently on actions belonging to a single system.

Definition 22 (STS Synchronized Product)

Let Σ1 = 〈S1,S0
1 , I1,O1,A1,R1,L1〉 and Σ2 = 〈S2,S0

2 , I2,O2,A2,R2,L1〉 be two

state transition systems s.t. (I1 ∪ I2) ∩ (O1 ∪ O2) ∩ (A1 ∪ A2) = ∅.

Their synchronized product Σ1 ‖ Σ2 is defined as:

Σ1 ‖ Σ2 = 〈S1 × S2,S0
1 × S0

2 , I1 ∪ I2,O1 ∪ O2,A1 ∪ A2,R1 ‖ R2,L1 ‖ L2〉
where:

– 〈(s1, s2), a, (s′1, s
′
2)〉 ∈ R1 ‖ R2 iff 〈s1, a, s′1〉 ∈ R1 and 〈s2, a, s′2〉 ∈ R2;

– 〈(s1, s2), a, (s′1, s2)〉 ∈ R1 ‖ R2 iff 〈s1, a, s′1〉 ∈ R1 and a /∈ A2;

– 〈(s1, s2), a, (s1, s
′
2)〉 ∈ R1 ‖ R2 iff 〈s2, a, s′2〉 ∈ R2 and a /∈ A1;

– L1 ‖ L2 is the labeling function associating to each state (s1, s2) the correspond-

ing set of propositions L1(s1) ∪ L2(s2).

Let s = (s1, . . . , sn) be a state of the STS Σ = Σ1 ‖ . . . ‖ Σn, we denote with s[Σi]
the function returning the state si of Σi in s. A state s = (s1, . . . , sn) of the STS ΣD

is an accepting state of ΣD if each state s[Σi] is an accepting state of the STS Σi.

5.5 Generating the Composite Service

Given n service graphs W1, ..Wn, modeling the component services, and a data net D,

modeling the data-flow composition requirements, we have shown how to encode each

component service Wi as a STS Σi and the data net D as a STS ΣD .

We are ready to show how we can exploit the planning approach presented in

Section 5.1.

The planning domain Σ for the automated composition problem is the synchronized

product of all these STSs. Formally, Σ = ΣD ‖ Σ1 ‖ .. ‖ Σn. The planning goal ρ
is the formalization of the composition termination requirements as a reachability goal

(see Section 4.4). We enrich ρ by requiring that the STS ΣD encoding the data net is in

an accepting state.

Given the domain Σ and the planning goal ρ we can apply the approach recalled in

Section 5.1, to generate a controller Σc, which is such that Σc ⊲ Σ |= ρ.

The final step is to extract a service graph W c corresponding to the controller of the

composition.

Synthesis and Composition of Web Services 133

From the data net D = 〈〈N, E〉, T ,F ,LT ,LF 〉 we directly obtain the ground con-

text of the controller Cc = 〈T c,Vc,Fc〉, where T c = T , Vc = N , and Fc = F .

The other elements of the service graph are obtained from Σc. The behavior of the

synthesized controller Σc is structured and complex, but its elementary actions model

communication with the component services (sending and receiving of messages) and

manipulation of goal variables through assignments; given this, it is straightforward to

obtain the service graph W c.

Definition 23 (Obtaining the data net controller service graph)

Let Σc = 〈Sc,S0
c , I,O,A,Rc,L∅〉 be a solution for a planning domain Σ and a

planning goal ρ, and let Cc = 〈T c,Vc,Fc〉 be the ground context of the controller. The

corresponding orchestrator service graph W c = 〈Lc, Lc
0, C

c,Ac, T c〉 is obtained as

follows:

– Lc is the set of all controller states (Lc = Sc) and Lc
0 is the set of initial states

(Lc
0 = S0

c);

– Ac = I ∪ O ∪ {τ}
– T c is the transition relation defined as follows:

• (s, true,←−µ (x̄), ∅, s′) ∈ T c if (s,←−µ (x̄), s′) ∈ Rc

• (s, true,−→µ (x̄), ∅, s′) ∈ T c if (s,−→µ (x̄), s′) ∈ Rc

• (s, true, τ, (x := t), s′) ∈ T c if (s, t -> x, s′) ∈ Rc

• (s, true, τ, ∅, s′) ∈ T c if (s, τ, s′) ∈ Rc

• no other transition belongs to T c.

In the following we state the correctness of the proposed approach. In particular, we

will show that the controller service graph W c, modeling the new executable composite

service, satisfies the data flow requirements in D. To do so, according to Definition 15,

we have to prove that each execution of W c ⊲ W 1, . . . , Wn is an accepting executions

of D.

Theorem 1 (Correctness of the Data Net Approach)

Let W c be the solution for the composition problem with set of service graphs

W 1, . . . , Wn, control requirements rc and datanet D = 〈〈N, E〉, T ,F ,LT ,LF 〉.
Then:

1. W c is deadlock free for W 1, . . . , Wn;

2. W c ⊲ W 1, . . . , Wn |= rc; and

3. W c ⊲ W 1, . . . , Wn
DN

|= D.

The proof of this theorem can be found in [53].

6 The ASTRO WS-Compose Tool

The automated composition techniques and approaches presented in previous section

were implemented as a prototype toolkit, namely WS-Compose. The toolkit was real-

ized within the project ASTRO [9] and is available as part of the ASTRO Toolset.

134 A. Marconi and M. Pistore

Fig. 12. WS-Req: Selection of the Component Services

The toolset has been designed as an extension of ActiveBPEL WebFlow De-

signer [33], a commercial software for designing and developing WS-BPEL processes

which is based on the Eclipse platform. ActiveBPEL Designer also provides an open-

source WS-BPEL execution engine, called ActiveBPEL [1]. Thanks to its integration

within Active WebFlow, the advanced functionalities of the ASTRO Toolset can be

combined with the “standard” functionalities provided by Active WebFlow; thus it is

possible to inspect WS-BPEL code, write or modify business processes, deploy them

and execute them. This way, the ASTRO Toolset is an integral part of the life cycle of

business process design and execution.

The ASTRO Toolset covers several aspects of the Web service composition pro-

cess by providing tools and techniques supporting the analyst in the different phases:

tools that allow for detecting problems at design time (WS-Verify), tools supporting

the automated synthesis of new services (WS-Compose), and tools that allow to de-

tect conditions or violation of properties at run-time (WS-Mon).

For what concerns the automated synthesis of new services, WS-Compose supports

all the phases of Web service automated composition: from the specification of control-

flow and data-flow requirements by means of graphical tools for drawing data net dia-

grams and specifying control-flow requirements (WS-Req), to the automatic synthesis

of the desired service (WS-Synth), to the deployment, simulation (WS-Animator), and

execution of the new composite service.

Synthesis and Composition of Web Services 135

Fig. 13. WS-Req: Specification of Control Flow Requirements

In the rest of this Section we describe a nominal execution of WS-Compose and

then explain in details the WS-Synth tool. For further details on the other tools of the

ASTRO Toolset, please refer to the project official Web site [9].

6.1 WS-Compose: A Nominal Execution

In the following we describe the phases of a typical execution of the WS-Compose

tool:

1. The user, through the WS-Req front-end integrated within Active WebFlow,

selects the projects that participate to the composition (see Figure 12). These

projects contain the WSDL and abstract WS-BPEL files describing the interfaces of

the component Web services. The information necessary to retrieve these WSDL

and WS-BPEL description is added to a file defining the composition problem

(choreography file).

2. The developer defines the control flow composition requirements (termination con-

ditions and transactional issues) through an intuitive tabular notation provided by

the WS-Req front-end (see Figure 13).

3. Then the data net diagram is drawn through the data net editor provided by WS-

Req (see Figure 14). The editor shows the input/output ports (message parts) of

136 A. Marconi and M. Pistore

Fig. 14. WS-Req: Specification of Data Flow Requirements

the existing services and allows to connect them through data net arcs in order to

define the routes ad manipulation of data within the composition.

4. WS-Synth is invoked and the front-end presents some information about the gener-

ation procedure (see Figure 15). The composed process has already been deployed

on the ActiveBPEL engine.

5. To test the generated service it is possible to use WS-Animator (see Figure 16).

This tool simulates the execution of the component services, while the composite

process is executed on the engine. This configuration gives the possibility to test all

the execution paths (failures, exceptions, ..) of the generated service controlling the

execution of the partner processes.

6. The developer, on the basis of the test results and of the inspection of the new pro-

cess code, can modify and gradually refine composition requirements (WS-Req)

and automatically re-generate the composite service (WS-Synth).

As can be noticed from the presented execution scenario, although solving an auto-

mated composition problem involves several different modules and tools, thanks to the

integration of the ASTRO Toolset within Active WebFlow, this is completely hidden

to the developer, that perceives the whole process as a continuous and natural sequence

of steps.

Synthesis and Composition of Web Services 137

Fig. 15. WS-Synth: Generating the Composite Service

6.2 WS-Synth: An Overview of the Tool

WS-Synth is implemented as a Java API and extends the facilities of the ASTRO
Toolset with the automated synthesis techniques presented in this paper.

WS-Synth takes in input a set of files describing the component Web services, and

the files specifying control flow and data flow requirements and return as output the

implementation of the composite service that is a solution of the composition problem.

As can be seen from Figure 17, the WS-Synth tool consists of four modules: a

module responsible of the translation from WSDL and WS-BPEL specifications to service

graph specifications (Input2SG), a module whose aim is to obtain the planning problem

from the composition problem (Compose2Planning), a module responsible of solving

planning problems in asynchronous domains (Planner), and a module (Controller) that

coordinates the execution of the other modules according to the kind of composition

problem to be solved.

Input2SG provides functionalities for translating service descriptions in standard

languages to the service graphs internal notation, and vice-versa. The module supports

different input languages, among which the standard WSDL and WS-BPEL description

languages that we use in the Web service automated composition problem. The de-

scription of the translation that associates a service graph to each component service,

starting from its WSDL and abstract WS-BPEL specification can be found in Section 4.2.

138 A. Marconi and M. Pistore

The functionalities provided by this module are not strictly related to the composition

problem, as a matter of fact, Input2SG is used in many other tools of the ASTRO

Toolset (e.g. WS-Verify, WS-Mon).

Compose2Planning is the main contribution to the ASTRO Toolset. As a mat-

ter of fact, this module is responsible of transforming a Web service composition

problem in an AI planning problem, implementing the automated composition tech-

niques presented in Section 5, and of translating a planning problem solution (plan

ΣC) to the service graph WC encoding the solution for the composition problem.

Compose2Planning takes in input the set of service graphs modeling the component

services and the formal specification of the control flow and data flow composition

requirements and returns the planning goal and the planning domain encoding (an ab-

straction of) the composition domain. As we have seen in a Section 5.5, the planning

domain Σ is obtained as the synchronized product of all the STSs encoding the compo-

nent service graphs and the data net.

Fig. 16. WS-Animator: Simulating and Testing the Composition

Finally, the Planner module implements the AI planning algorithms described in

[68] that are able to work in non-deterministic, partially observable, asynchronous do-

mains by properly extending MBP (Model Based Planner) ([20]), an efficient planner

based on planning as symbolic model checking techniques.

Synthesis and Composition of Web Services 139

W
1

W
n

rc

rd

SERVICE

GRAPH PROBLEM

PLANNING

PROBLEM

COMPOSE

WSDL

BPEL

WSDL

BPEL

COMP

REQS

WSDL

BPEL

CONTROLLER

CMDs

user

W
C

..
.

P
L

A
N

N
E

R

ρ

Σ

Σ
C

INPUT

CMDs CMDs CMDs
..
.

C
o
m

p
o
si

te
C

o
m

p
o
n
en

ts

WS−SYNTH

Fig. 17. The logical architecture of the WS-Synth tool

7 The Amazon-MPS Case Study

In this section we evaluate the feasibility and efficiency of the proposed approach to au-

tomating the composition task on a real scenario that entails a high level of complexity

(see also [51,52]).

The considered scenario requires the composition of two real services, namely

the Amazon E-Commerce Services [4] and the e-payment service offered by Banks

of Monte dei Paschi di Siena Group (MPS), an important Italian financial Group

(http://www.mps.it/). The goal of the composition is to generate an e-Bookstore

application that allows to order books and buy them via a secure credit card payment

transaction. This composition scenario is particularly challenging since all component

services export complex interaction protocols and handle structured data in messages.

As a consequence, developing by hand the composite service that orchestrates the com-

ponents, e.g., in terms of a WS-BPEL process, is a complex, time consuming and error

prone task.

7.1 The Amazon-MPS Composition Domain

In this section we analyze in depth the e-Bookstore (eBS) case study. The idea is to

automatically synthesize a composite process that allows potential customers to search

for books, add them to a virtual cart, checkout the order and monitor the credit card

payment process.

140 A. Marconi and M. Pistore

To accomplish its task, the eBS interacts with three separate, independent, and ex-

isting services: a service that allows to search books on Amazon.com catalog, a service

that handles virtual carts, and a credit card payment service 3.

We suppose that the behavior of each component service is specified through its

WSDL [28] and abstract WS-BPEL [6] descriptions. The WSDL file describes the set

of operations offered by the service, in-going and out-going messages, and data types

(defined in terms of XML Schemas). The abstract WS-BPEL file provides an operational

description of the interaction protocol of the Web service on top of the service interfaces

defined in its WSDL specifications.

The Amazon Cart and Book Search Services

Amazon E-Commerce Service (ECS) exposes Amazon’s product data and e-

commerce functionality: from retrieving information about products in the

Amazon.com catalog, to handling customer shopping cart, to inspecting content from

customers (e.g. reviews, wish lists, listmania lists) and vendors (e.g. customer feed-

back). ECS follows the standard Web services model: users of the service request data

through XML over HTTP (REST) or SOAP and data is returned by the service as an

XML- formatted stream of text. ECS publishes a WSDL document [3] that defines all

the available ECS operations, their messages, and the data structure of each message.

Together with the WSDL description, Amazon provides several documents (see e.g. [4])

describing in details how to submit requests to ECS and the data that is returned by the

service, as well as how to handle errors.

As one can see from its WSDL description, all ECS operations are synchronous

atomic (request-response) Web service invocations. However, in order to actually work,

these operations must be invoked in a precise sequence of steps. In practice, they be-

long to specific business workflows. In the Amazon ECS Developer Guide [4] these

workflows are described informally.

For instance, the shopping cart flow, as well as other workflows, is described using

natural language and flow charts. If we consider the description of the shopping cart

workflow (see Figure 18), we have that first of all the cart must be created, then other

items can be added to the cart, and finally the shopping cart can be checked out. The

informal picture in Figure 18 describes only the workflow in its nominal case, while

other operations are provided to modify the cart and get or clear its content.

In order to make the workflow explicit and formally defined, we modeled the abstract

WS-BPEL specification of the Amazon Book-Search (ABS) and the Amazon Virtual-Cart

(AVC) services starting from the descriptions in [4]. Both component services are speci-

fied on top of the original Amazon ECS WSDL specification. In order to precisely model

the workflows we introduced asynchronicity in the operations: our component services

implement for each ECS operation two callback operations modeling the sending of the

3 Amazon allows on-line vendors to expose Amazon products and manage shopping carts. When

the customer checkout the order, the vendor simply transfer the shopping cart to Amazon to

complete the sale transaction. We decided to introduce an external bank handling the payment

procedure to make the scenario more flexible (e.g. by providing alternative payment methods

such as bank transfers with safe completion).

Synthesis and Composition of Web Services 141

Fig. 18. The workflow of the Amazon Virtual Cart service (taken from [4])

Fig. 19. The internal data structure of message cartCreateResp in the Amazon Virtual Cart

service

operation result (in case of a successful interaction with ECS) or the sending of an error

message. The structure of the messages and their complexity are preserved.

In the following examples we show in details the obtained abstract WS-BPEL speci-

fications of the AVC and ABS services.

142 A. Marconi and M. Pistore

Fig. 20. The Amazon Virtual Cart abstract WS-BPEL description

Synthesis and Composition of Web Services 143

switch

pick

on message

cartGet()

on message

cartAdd(a)

errorcase

switch

invoke

cartAddResponse(ar)

invoke

cartAddErr(e)

assign

error:= opaque

errorcase
switch

pick

on message

nop()

on message

clear()

receive

cartCreate(c)

START

error:= opaque

assign

checkout:= false

cartAdd

cartCreate body

body

cartCreateErr

cartAddErr

cartAddResponse

cartGetErr

cartGetResponse

cartCreateResponse body

error

body

error

body

error

INPUT

MSG PART

ACTION MSG PART

OUTPUT

ACTION

while
CREATE_ERR

cartCreateResponse(cr)

invokeinvoke

cartCreateErr(e)

otherwise

checkout

assign

checkout:= true

otherwise

invokeinvoke

cartGetResponse(gr) cartGetErr(e)

GET_ERR

NOT_EMPTYSUCC

Amazon Virtual Cart WS Interface

Fig. 21. The Amazon Virtual Cart service

Example 15 (The Amazon Virtual Cart interface). Figure 20 represents the graphical

view in ActiveBPEL Designer [33] of the abstract WS-BPEL protocol of the AVC. Ac-

cording to this process, once the AVC receives a request to create a new cart and the

operation is successful, the client can start to add items and eventually checkout its

shopping cart. If the checkout is successful, the client can either clear the cart or keep

its content for future use. In all these interactions if something goes wrong the AVC

sends an error message describing the reason of the fault.

144 A. Marconi and M. Pistore

Figure 21 shows a more compact representation of the protocol and a description

of all message parts. Moreover the final states of the protocols are marked either as

successful (symbol �) or as failing (symbol ×) states. These minimal “semantic” an-

notations are necessary to distinguish those executions that lead to a successful com-

pletion of the interaction from those that are failed. As explained in Section 4.4, this

information will be exploited in the definition of the composition requirements.

It is important to notice that each message part (i.e. part body of message cartCre-

ate, part error of message cartCreateErr, and body of message cartCreateRe-
sponse in Figure 21) has a complex structure. The precise definition of each complex

data type can be found in the ECS WSDL specification (see [3]). As an example, the

internal data structure of part body in cartCreateResp, considering only those infor-

mation which are relevant when searching for books, is presented in Figure 19.

CartId and HMAC are assigned by Amazon when creating a new virtual cart and

are used to uniquely identify it; the Cart part contains information about the content of

the cart: the information about each item is given in the CartItems element, while the

SubTotal element contains the cart total amount.

Example 16 (The Amazon Book Search interface). Figure 22 contains the compact rep-

resentation of the abstract WS-BPEL specification of the ABS service. The ABS pro-

tocol is pretty simple: the client sends its identification information through the login

request and, if the authentication is successful, he can repeatedly send search requests

or logout from the service. In the ABS, as well as for the AVC, the data type of each

message part is a complex XML Schema type and its definition can be found in [3].

We remark that obtaining the WS-BPEL specification of these protocols from the in-

formal description of [4] has been a very time consuming task, since natural language

specifications are disseminated throughout the document and it is not always obvious

to integrate specifications regarding the main workflow, with those regarding data (e.g.

mandatory vs optional data vary according to the kind of item purchased) and those

describing possible errors and exceptions.

It is important to notice that the abstract WS-BPEL specification of the service is a

very effective, compact, and formal way of describing the service interaction protocol

(especially if compared to natural language descriptions). It allows to describe both the

nominal scenario and to model all exceptions, as well as to specify the data involved in

each interaction. The semantic annotations on states, modeling the different outcomes

of the protocol, on the one hand allow to effectively understand the workflow and on

the other hand to apply automated techniques.

The MPS Virtual POS Service

The Virtual Point of Sale service (VPOS) models a real on-line payment procedure of-

fered by an Italian bank (Monte dei Paschi di Siena). Such a process handles several pos-

sible failures: it checks both the validity of the target bank account (the e-Bookstore’s

one in our case), the validity of the credit card on international circuits, the credit ca-

pacity and limits, and so on. The next example describes the interaction protocol that

the VPOS expects online shops to follow when using the service.

Synthesis and Composition of Web Services 145

switch
errorcase

pick

switch

invoke

itemSearchErr(e)

invoke

itemSearchResponse(sr)

on message

logout()

SUCC

customerId

Amazon Book Search WS Interface

while

invokeinvoke

otherwise

logout

loginErr(e) loginAck()

FAIL

itemSearchRequest(r)

on message

assign

logout:= true

receive

START

login(l)

assign

error:= opaque

logout:= false

INPUT

MSG PART

ACTION MSG PART

OUTPUT

ACTION

itemSearchResponse

itemSearchError

itemSearchRequest body

login

body

error

Fig. 22. The Amazon Book Search service

Example 17 (The Virtual POS interface) When the VPOS receives the request to start

a new payment procedure, it checks the correctness of the request (identity of the on-

line shop) and either sends an error message or a message carrying the information

about the URL (part paymentURL of message startTransactionAck) that the shop

must communicate to its customer. This information will be used by the customer to

communicate its payment data (identification information and credit card number) di-

rectly to the bank. Notice that this protocol is such that the online shop never has direct

information on the customer sensitive data.

Once the interaction between the bank and the customer has occurred, the VPOS
notifies the online shop the outcome. At this point, the online shop can either confirm

or cancel the payment transaction. If confirmed, the transaction is executed by the bank

and the outcome (carrying all transaction details if successful) is sent to the online shop.

The e-Bookstore Customer Interface

In addition to the descriptions of the two Amazon services and of the MPS service, we

need to define as input to the composition problem the interaction protocol that the eBS

exposes to its customers.

146 A. Marconi and M. Pistore

switch
errorcase

CREATE_ERR

invokeinvoke

startTransErr(e)

otherwise

startTransAck(sa)

error:= opaque

assign

error:= opaque

assign

switch
errorcase

pick

on message

cancel()

CREATE_ERR

assign

error:= opaque

errorcase
switch

SUCC

startTrans amount

shopEmail
shopID

requestSubmitted

requestNotAvail

confirmAck
transTime
transAuthorization

errorDesc

startTransAck

startTransErr errorDesc

paymentURL

transID

errorDesc

transDate

confirmErr

ACTION MSG PART

INPUT

ACTION MSG PART

OUTPUT

receive

startTrans(s)

START

invoke

otherwise

requestSubmitted(rs)requestNotAvail(e)

invoke

on message

confirm()

CANCELED

otherwise

invokeinvoke

confirmAck(ca) confirmErr(e)

COMMIT_ERR

MPS Virtual POS WS Interface

Fig. 23. The Virtual POS service

Example 18 (The e-Bookstore customer interface). As a first step (see Figure 24), the

customer is required to login using its unique identification code. Once his identity

has been verified, he can start interacting with the eBS searching for book offers and

adding them to his virtual cart. The search can be done using a combination of different

parameters: the book title, author, publisher, and/or some keywords. If the search is

successful, the customer gets a message carrying all the information about the offer (e.g.

book title, author, publisher, ISBN, offer price, the offer identification code ASIN, the

detailPageURL where he can see further details, etc.), otherwise he receives an error

message describing the fault (e.g. no results matching his search, unavailability of the

book in the warehouse, etc.). The operations the customer can perform with his virtual

cart are pretty limited: he can add new items to the cart, specifying the item ASIN

and the quantity, or checkout the shopping cart to conclude the order. After sending

an add request, the customer either gets a message carrying the information about the

total price of the items in the cart (subTotal) or an error message. Similarly, when he

sends a checkout request he can either receive the information about the total amount of

Synthesis and Composition of Web Services 147

pick

checkout logout)(

while

switch

assign

s:=opaque

invoke

search(s)

pick

on message

addErr(ae)

on message

addAck(ar)

invoke

logout()

logout:=true

assign

invoke

checkout()

assign

checkout:=true

pick

on message

searchErr(se)

add(a)

invoke

assign

a:=opaque

switch

LOGOUT

pick

on message

checkoutAck(c)

GET_ERR

checkoutErr(ce)

on message

pick

SUCC

logoutcheckout

PAY_ERR

on messageon message

confirmErr(coe)sent(r)

customerIdlogin

keyword

author

publisher

title

search

ASIN

quantity

add

numItems

ASIN

detailPageURL

author

title

publisher

ISBN

price

sent transDate

transTime

transAuthorization

INPUT

ACTION MSG PART

searchResult

searchErr error

addErr error

addAck subTotal

checkoutErr error

checkoutAck subTotal
paymentURL

confirmErr error

ACTION MSG PART

OUTPUT

START

login(l)

invoke

on message on message

loginAck()loginErr()

LOGIN_ERR
assign

checkout:= false
logout:= false

on message

searchRes(sr)

e−Bookstore Customer WS Interface

Fig. 24. The e-Bookstore customer interface

the order (subTotal) and an URL to visit to conclude the payment (paymentURL), or a

message describing the error. Finally, when the customer attests the payment by sending

the transaction information (transID), the e-Bookstore can either send a confirmation

of the order, carrying all the details of the payment transaction, or an error message.

7.2 The Amazon-MPS Composition Requirements

Given the description (i.e. the WSDL and abstract WS-BPEL) of the component services

(ABS, AVC, and VPOS) and of the customer interface (eBS), the next step is

the formal specification of the composition requirements. As we will see in the rest

148 A. Marconi and M. Pistore

of this section we use the simple tabular notation presented in Section 4.4 to specify

control requirements and the data net language (see Section 4.5) to specify data flow

requirements.

Control Flow Requirements

The eBS service main goal is to “sell books”. This means we want the eBS to reach a

situation where the customer has filled his virtual cart, confirmed the order and payed

through the online payment procedure. However, it may be the case that there are no

available books satisfying the customer search, or that the customer doesn’t conclude

the order, or that the payment transaction fails. We cannot avoid these situations, there-

fore we cannot ask the composite service to guarantee this requirement. In case this

requirement cannot be satisfied, we do not want the eBS to confirm order of books

without being sure that our customer accepted the offer and that the payment proce-

dure was successful, as well as we do not want displeased customers that have payed

books that are not available. Thus, our global termination requirement must take into

account the transactionality of each component service within the overall composition.

The control-flow requirement should be something like: do whatever is possible to “sell

books” and if something goes wrong guarantee that there are “no single commitments”.

The following example describes the control-flow requirements specification for the

eBS composition problem.

Example 19 (e-Bookstore control-flow requirements). In the specification of each ser-

vice interaction protocol (see Figures 21, 22, 23, and 24) some states are marked as

successful (symbol �) and others as failing (symbol ×). These annotations are used to

specify the transactional requirements of the composition problem. In particular, if we

consider the eBS scenario, the specification is the following:

((¬eBS.logout ∧ ABS.error ∧ AVC.error ∧ VPOS.error) →

(eBS.� ∧ ABS.� ∧ AVC.� ∧ VPOS.�))

∧

(NOT (¬eBS.logout ∧ ABS.error ∧ AVC.error ∧ VPOS.error) →

(eBS. × ∧(ABS.� ∨ ABS.×) ∧ AVC. × ∧VPOS.×))

Where eBS.� stays for eBS.SUCC, and eBS.× stays for

eBS.LOGIN ERR ∨ eBS.LOGOUT ∨ eBS.GET ERR ∨ eBS.PAY ERR.

And similarly for the other components.

Notice that in case of failure of some service the ABS service can either be in a

successful or failing state, this depends on the fact that such a service, unlike credit

card payment or cart handling, doesn’t need transactionality: we do not care whether

the search is successful in case of failure of the other services.

Synthesis and Composition of Web Services 149

Data Flow Requirements

In order to provide consistent information, the eBS service needs to exchange data with

the components and its customer in an appropriate way. For instance, when invoking

the ABS service, the information about the customer login must be the same ones that

the eBS received in the customer login request; similarly, every time the customer

sends a search request, the eBS must use the book search information to prepare the

itemSearchRequest message for the ABS service. When the customer sends an add

request to the eBS, the composite service can either use this information to prepare a

cartCreate message (if the a cart hasn’t been created yet) or a cartAdd message to be

sent to the AVC service. And so on.

The specification of the data net for the e-Bookstore example is presented in Fig-

ure 25, which we will (partially) explain in the following example.

Example 20 (e-Bookstore data-flow requirements). When the eBS receives a login re-

quest from the customer, it must forward the customerId information to the ABS ser-

vice. To obtain the body to be sent in the itemSearchRequest to the ABS, the eBS

must apply its internal function createItemSearch to manipulate the data received in

the search message from the customer. The eBS must obtain the error information that

it sends in the searchError message to the customer by computing its internal function

getError on the body of the itemSearchError message received from the ABS. The

quantity and ASIN information received in the add message from the customer can

either be used to prepare the cartCreate message (through the createCartCreate op-

eration) or to prepare the cartAdd message (through the createCartAdd operation)

to be sent to the AVC. The eBS exploits the internal functions getShopId to obtain

the shopId information in the startTransaction message to be sent to the VPOS (and

similarly for the shopEmail data).

Each operation arc in the datanet in Figure 25 refers to an internal function that the new

composite service uses to manipulate data. Since our aim is to automatically generate

the executable WS-BPEL code implementing the composite service, we require that the

specification of each internal function is given as an XPath [19] expression, which is

the standard language used in WS-BPEL assignments.

Example 21 (Specifying Internal Functions). Consider for instance the function get-

SubTotal used in the datanet of Figure 25 to obtain the C.addAck.subTotal message

part from the AVC.cartCreateResponse.body part received from the AVC service.

The XPath specification of getSubTotal, defining how to obtain the total cost navigat-

ing the XML tree structure of part body, is the following:

getSubTotal=

/nsAVC:CartCreateResponse/nsAVC:Cart/

nsAVC:SubTotal/nsAVC:FormattedPrice

Similarly, the function getError, used to obtain the C.searchError.error message part

from the ABS.searchErr.body part received from the ABS service, has the following

XPath specification:

1
5
0

A
.

M
arco

n
i

an
d

M
.

P
isto

re

OUTPUT
MESSAGE

INPUT

MESSAGE

cartCreate

cartAdd

cartCreateResponse

cartGetResponse

cartAddErr

cartAddResponse

cartCreateErr

cartGetErr

Amazon Virtual Cart

startTransamount

shopID

shopEmail

INPUT

MESSAGE

startTransAck

startTransErr

requestNotAvail

confirmAck

confirmErr

MESSAGE
OUTPUT

MPS Virtual POS

sent

OUTPUT

MESSAGE

searchResult

searchErr

addErr

addAck

checkoutErr

paymentURL

subTotal

confirmErr

checkoutAck

INPUT

MESSAGE

login

search

add

e−Bookstore Client

createItemSearch

createResult

getError

createCartCreate

X

getError1

getSubTotal

getSubTotal

getShopId

getError

itemSearchResponse

INPUT

MESSAGE

OUTPUT

MESSAGE

Amazon Book Search

itemSearchRequest

login

itemSearchError

createCartAdd

getShopEmail

F
ig

.2
5
.

T
h
e

d
ata

fl
o
w

req
u
irem

en
ts

fo
r

th
e

e-B
o
o
k
sto

re
co

m
p
o
sitio

n
p
ro

b
lem

Synthesis and Composition of Web Services 151

getError=

/nsABS:ItemSearchResponse/nsABS:Items/

nsABS:Request/nsABS:Errors/nsABS:Error/nsABS:Message

We remark that the data net of Figure 25 has been specified by hand, starting from

the input and output messages of the component services. However, if the specifica-

tions of these messages and of the data types contain semantic information (e.g., if the

WSDL specifications are extended to SA-WSDL [38] specification), then it is possible to

derive (part of) the data net diagram automatically, using standard semantic matching

techniques.

7.3 Generating the e-Bookstore Executable Process

The following table shows the results of the e-Bookstore automated com-

position problem, whose resulting executable WS-BPEL can be found at

http://astroproject.org/e-Bookstore.zip.

Time (Sec.) WS-BPEL

model composition complex

construction & emission activities

e-Bookstore 2.7 605.2 177

The composition times have been obtained on a Pentium Centrino 1.6 GHz with

512 Mb RAM of memory running Linux. We distinguish between model construction

time and composition time. The former is the time required to obtain the composition

domain, i.e., to translate the WS-BPEL component services into STS and to encode the

composition goal. The latter is the time required to synthesize the controller and to emit

the corresponding eBS executable WS-BPEL process.

We have asked one of our experienced programmers to develop manually the WS-

BPEL program for the e-Bookstore case. The task of manually encoding and testing the

composition required several hours of work (more or less 20 hours). While, assuming

to have the abstract WS-BPEL specification of the component services, the specification

of the control-flow and data-flow requirements took no more than one hour.

The complexity of the composition problem derives from several aspects. First of all

this scenario requires a high degree of interleaving between components: in order to

satisfy the transactional requirements it is necessary to carry out interactions with all

component services in an interleaved way (e.g. implementing the checkout of the cart

is really complex since it requires to interact with the AVC, the VPOS and the eBS
customer in such a way to guarantee a transactionally correct evolution of all these ser-

vices). Moreover, when developing the composite service, the developer must take into

account both the control-flow requirements and the requirements on data manipulation

and exchange, which in this case are really elaborate. Thus, another advantage of our

approach is a clear separation between the data-flow and control-flow aspects.

152 A. Marconi and M. Pistore

The complexity of the composition task can also be deduced from the size of the new

composite WS-BPEL process, which in the e-Bookstore scenario consists of 177 activi-

ties. We remark that we report the number of WS-BPEL basic activities (e.g. invoke,

receive, reply, assign, onMessage) and do not count the WS-BPEL struc-

tured activities that are used to aggregate basic activities (e.g. sequence, switch,

while). Indeed, the former activities are a better measure of the complexity of the

generated process, while the latter are more dependent on the coding style used in the

composite WS-BPEL process.

Another important aspect is the quality of the generated WS-BPEL processes. To

evaluate this aspect, we compared the automatically generated and the hand-written

solutions. As a result, we discovered that the two solutions implement the same strategy

and have a similar structure.

Finally, the separation of control and data flow requirements, and of technical details

(e.g. XPath functions) from high level requirements, allows us to easily adapt the com-

position to changes in the component services specifications (e.g. if something changes

in the data structure, it is sufficient to modify the data net diagram, or the XPath specifi-

cation, and re-perform the automated composition). Manually modifying the executable

WS-BPEL, expecially when dealing with complex processes as the e-Bookstore, is diffi-

cult and error prone, since it requires to take into account all the possible consequences

of the update.

8 Concluding Remarks

Several works address the problem of the composition of stateful services, see, e.g.,

[15,16,24,42,69,68,67,80]. However, the key problem of the practical applicability of

these approaches in real composition scenarios is still open. Addressing this problem

requires to answer questions such as how to specify the stateful behavior of the compo-

nent services, how to specify the requirements that define the goal of the composition,

and whether the composition techniques are powerful enough to scale to scenarios of

realistic size.

In this paper, we provided a solution towards addressing this problem by defining a

framework for service composition that — besides being based on powerful automated

synthesis techniques, and besides providing the possibility of expressing complex com-

position requirements — is integrated within a commercial platform for developing

WS-BPEL services. Moreover, we have been evaluating the feasibility and efficiency of

our proposed approach and prototype tool to automating the composition task on a real

scenario that entails a high level of complexity, such as the generation of an e-Bookstore

composite service interacting with Amazon E-Commerce Services and the e-payment

service offered by Banks of Monte dei Paschi di Siena.

In particular, we show that the features offered by our composition framework —

in terms of expressiveness of requirements and of automated synthesis techniques —

are adequate for this composition scenario, providing a first positive answer to the

question of the practical applicability of automated composition techniques. We show

that the approach reduces dramatically the effort for the composition task by automat-

ically generating a complex executable WS-BPEL process in few minutes starting from

Synthesis and Composition of Web Services 153

composition requirements that can be easily specified thanks to their intuitive graphical

notation and the user friendly-editors provided by the ASTRO Toolset.

There is a wide range of future research directions to be investigated in order to

extend the approach presented in the paper. Here, we just discuss two of them.

In this paper we concentrate on the centralized approach to the Web service compo-

sition and discuss the corresponding automated techniques and methods. An interesting

feature to be investigated in the future would be to extend the approach in order to han-

dle peer-to-peer automated composition problems. The main difference with respect to

the proposed centralized approach reside in the automated composition outcome. Medi-

ated methods aim at synthesizing a new centralized service (mediator) that orchestrates

the component services by properly exchanging messages, while in peer-to-peer com-

position methods the execution of the composition is distributed among all the compo-

nent services. The approach we are following is to obtain a peer to peer composition

from a centralized orchestrator by exploiting program partitioning techniques, similarly

to what is proposed in [84,85].

With respect to the specification of data flow requirements, future work will consider

the possibility to automatically derive (part of) the data net specification. The idea,

similarly to what is done in [5,2,47], is to add semantic annotations to the data used in

the component services (e.g. through SAWSDL [38]) and then apply semantic matching

and reasoning techniques to automatically derive the data links between message parts

in order to obtain a first version of the data net diagram that can then be refined by hand.

Moreover, one could think about applying semantic data mediation techniques as those

in [59] to automatically derive the data net operation arcs that can be used to solve data

heterogeneity problems between the messages exchanged by Web services. Moreover,

adding semantic annotations concerning both control (e.g. OWL-S [65]) and data (e.g.

SAWSDL [38]), to the description of the component services, would allow to extend our

approach with existing methods to dynamically select, among a set of existing services,

those that best match composition requirements (see [86,8,74]). This would allow us

to evolve from static to dynamic composition, where the set of component services is

automatically derived.

References

1. ActiveBPEL. The Open Source BPEL Engine, http://www.activebpel.org

2. Akkiraju, R., Srivastava, B., Ivan, A., Goodwin, R., Syeda-Mahmood, T.: Semaplan: Com-

bining planning with semantic matching to achieve web service composition. In: Proc. of

IEEE International Conference on Web Services, ICWS 2006 (2006)

3. Amazon Services. AWSECommerceService WSDL Specification (2006),

http://aws.amazon.com/

4. Amazon Services. Amazon E-Commerce Service - Developer Guide (2007),

http://developer.amazonwebservices.com/

5. Ambite, J.L., Kapoor, D.: Argos: a framework for automatically generating data process-

ing workflows. In: Proc. of the 8th annual international conference on Digital government

research, dg.o 2007 (2007)

6. Andrews, T., Curbera, F., Dolakia, H., Goland, J., Klein, J., Leymann, F., Liu, K., Roller, D.,

Smith, D., Thatte, S., Trickovic, I., Weeravarana, S.: Business Process Execution Language

for Web Services, version 1.1 (2003)

http://www.activebpel.org
http://aws.amazon.com/
http://developer.amazonwebservices.com/

154 A. Marconi and M. Pistore

7. Ankolekar, A., Burstein, M., Hobbs, J., Lassila, O., Martin, D., Mcllraith, S., Narayanan, S.:

DAML-S: semantic markup for web services. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002.

LNCS, vol. 2342, p. 348. Springer, Heidelberg (2002)

8. Ardagna, D., Pernici, B.: Dynamic web service composition with QoS constraints. Interna-

tional Journal of Business Process Integration and Management 1(4), 233–243 (2006)

9. ASTRO. Project ASTRO: Supporting the Composition of Distributed Business Processes,

http://astroproject.org

10. Baresi, L., Maurino, A., Modalfieri, S.: Workflow partitioning in mobile information systems.

In: Proc. of IFIP TC8 Working Conference on Mobile Systems (2004)

11. Benatallah, B., Dumas, M., Fauvet, M., Rabhi, F.: Towards patterns of web services compo-

sition (2002)

12. Benatallah, B., Dumas, M., Sheng, Q., Ngu, A.: Declarative composition and peer-to-peer

provisioning of dynamic web services. In: Proc. of the International Conference on Data

Engineering, ICDE 2002 (2002)

13. Berardi, D.: Automatic Service Composition: Models, Techniques and Tools. Ph.D Thesis

(2005)

14. Berardi, D., Calvanese, D., De Giacomo, G., Hull, R., Mecella, M.: Automatic Composition

of Transition-based Semantic Web Services with Messaging. In: Proc. of the 31st VLDB

Conference, VLDB 2005 (2005)

15. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic com-

position of E-Services that export their behaviour. In: Orlowska, M.E., Weerawarana, S.,

Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Hei-

delberg (2003)

16. Berardi, D., Calvanese, D., De Giacomo, G., Mecella, M.: Composition of Services with

Nondeterministic Observable Behaviour. In: Benatallah, B., Casati, F., Traverso, P. (eds.)

ICSOC 2005. LNCS, vol. 3826, pp. 520–526. Springer, Heidelberg (2005)

17. Berge, C.: Graphs and Hypergraphs. North-Holland, Amsterdam (1973)

18. Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North-Holland, Amsterdam (1989)

19. Berglund, A., Boag, S., Chamberlin, D., Ferndez, M.F., Kay, M., Robie, J., Siméon, J.: XML

Path Language, XPath 2.0 (2007), http://www.w3.org/TR/xpath20/

20. Bertoli, P., Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: MBP: a Model Based Planner.

In: Proc. of IJCAI 2001 workshop on Planning under Uncertainty and Incomplete Informa-

tion (2001)

21. Bertoli, P., Cimatti, A., Pistore, M., Traverso, P.: A Framework for Planning with Extended

Goals under Partial Observability. In: Proc. ICAPS 2003 (2003)

22. Bertoli, P., Cimatti, A., Roveri, M., Traverso, P.: Planning in Nondeterministic Domains un-

der Partial Observability via Symbolic Model Checking. In: Proc. IJCAI 2001 (2001)

23. Boley, H.: Directed recursive labelnode hypergraphs: a new representation language. Artifi-

cial Intelligence 9, 49–85 (1977)

24. Brogi, A., Popescu, R.: Towards Semi-automated Workflow-Based Aggregation of Web Ser-

vices. In: Benatallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp.

214–227. Springer, Heidelberg (2005)

25. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers 8(C-35), 677–691 (1986)

26. Bultan, T., Fu, X., Hull, R., Su, J.: Conversation specification: a new approach to design and

analysis of e-service composition. In: In Proc. of the 12th international conference on World

Wide Web (WWW 2003), pp. 403–410 (2003)

27. Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model check-

ing: 1020 states and beyond. In: Proc. of Symp. Logic in Computer Science, pp. 428–439

(1990)

http://astroproject.org
http://www.w3.org/TR/xpath20/

Synthesis and Composition of Web Services 155

28. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Service Description Lan-

guage (WSDL), version 1.1 (2001)

29. Cimatti, A., Giunchiglia, F., Giunchiglia, E., Traverso, P.: Planning via model checking:

A decision procedure for ar. In: Steel, S. (ed.) ECP 1997. LNCS, vol. 1348, pp. 130–142.

Springer, Heidelberg (1997)

30. Cimatti, A., Giunchiglia, F., Giunchiglia, E., Traverso, P.: Planning as model checking. In:

Proc. of ECP, pp. 1–20 (1999)

31. Cimatti, A., Pistore, M., Roveri, M., Traverso, P.: Weak, Strong, and Strong Cyclic Planning

via Symbolic Model Checking. Artificial Intelligence 147(1-2), 35–84 (2003)

32. Dal Lago, U., Pistore, M., Traverso, P.: Planning with a Language for Extended Goals. In:

Proc. AAAI 2002 (2002)

33. ActiveBPEL Designer. The Active Endpoints BPEL Designer,

http://www.active-endpoints.com

34. Dustdar, S., Schreiner, W.: A survey on web services composition.. Int. J. Web and Grid

Services 1, 1–30 (2005)

35. Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoreti-

cal Computer Science. Formal Models and Semantics, vol. B. Elsevier, Amsterdam (1990)

36. Erol, K., Hendler, J., Nau, D.: Semantics for HTN planning (1994)

37. Erol, K., Hendler, J., Nau, D.: UMCP: A sound and complete procedure for hierarchical

task-network planning. In: Proc. Artificial Intelligence Planning Systems Symposium, pp.

249–254 (1994)

38. W3C Semantic Annotations for Web Service Description Language Working Group. Seman-

tic Annotations for WSDL and XML Schema, SAWSDL (2007),

http://www.w3.org/TR/sawsdl/

39. Fujii, K., Suda, T.: Dynamic service composition using semantic information. In: Proc. of

International Conference on Service Oriented Computing, ICSOC 2004 (2004)

40. De Giacomo, G., Lesperance, Y., Levesque, H.J.: Congolog, a concurrent programming lan-

guage based on the situation calculus. Artificial Intelligence 121(1-2), 109–169 (2000)

41. Gnesi, S., Montanari, U., Martelli, A.: Dynamic programming as graph searching: an alge-

braic approach. J. Assoc. Comp. Mach. 28, 737–751 (1981)

42. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-Services: A Look Behind the Curtain. In:

Proc. PODS 2003 (2003)

43. Kazhamiakin, R.: Formal Analysis of Web Service Compositions. Ph.D Thesis (2007)

44. Khalaf, R., Mukhi, N., Weerawarana, S.: Service Oriented Composition in BPEL4WS. In:

Proc. WWW 2003 (2003)

45. Koehler, J., Srivastava, B.: Web Service Composition: Current Solutions and Open Problems.

In: Proc. of ICAPS 2003 Workshop on Planning for Web Services (2003)

46. Kuster, U., Stern, M., Konig-Ries, B.: A classification of issures and approaches in service

composition. In: Workshop Proc. First International Workshop on Engineering Service Com-

positions, WESC 2005 (2005)

47. Lecue, F., Delteil, A., Leger, A.: Applying abduction in semantic web service composition.

In: Proc. of IEEE International Conference on Web Services, ICWS 2007 (2007)

48. Levesque, H.J., Reiter, R., Lesperance, Y., Lin, F., Scherl, R.B.: GOLOG: A logic program-

ming language for dynamic domains. Journal of Logic Programming 31, 59–83 (1997)

49. Levi, G., Sirovich, F.: Generalized And/Or graphs. Artificial Intelligence 7, 243–259 (1976)

50. Marconi, A., Pistore, M., Traverso, P.: Specifying Data-Flow Requirements for the Auto-

mated Composition of Web Services. In: Proc. of Fourth IEEE International Conference on

Software Engineering and Formal Methods, SEFM 2006 (2006)

51. Marconi, A., Pistore, M., Traverso, P.: Automated Web Service Composition at Work: the

Amazon/MPS Case Study. In: Proc. of IEEE International Conference on Web Services,

ICWS 2007 (2007)

http://www.active-endpoints.com
http://www.w3.org/TR/sawsdl/

156 A. Marconi and M. Pistore

52. Marconi, A., Pistore, M., Traverso, P.: Automated Web Service Composition in Practice:

from Composition Requirements Specification to Process Run. In: Proc. of 2nd European

Young Researchers Workshop on Service Oriented Computing, YRSOC 2007 (2007)

53. Marconi, A.: Automated Process-level Composition of Web Services: from Requirements

Specification to Process Run. Ph.D thesis, Univerity of Trento (2008)

54. Martelli, A., Montanari, U.: Additive AND/OR graphs. In: Proc. IJCAI, vol. 3 (1973)

55. McCarthy, J.: Situations, actions and causal laws (1968)

56. McIlraith, S., Fadel, R.: Planning with Complex Actions. In: Proc. NMR 2002 (2002)

57. McIlraith, S., Son, S.: Adapting Golog for Composition of Semantic Web Services. In: Proc.

of the Eighth International Conference on Knowledge Representation and Reasoning, KR

2002 (2002)

58. Milanovic, N., Malek, M.: Current solutions for web service composition. IEEE Internet

Computing 8(6), 51–59 (2004)

59. Nagarajan, M., Verma, K., Sheth, A.P., Miller, J.A., Lathem, J.: Semantic interoperability of

web services - challenges and experiences. In: Proc. of IEEE International Conference on

Web Services, ICWS 2006 (2006)

60. Nanda, M.G., Chandra, S., Sarkar, V.: Decentralizing execution of composite web services.

In: Proc. of 19th ACM SIGPLAN Conference on Object-Oriented Programming, Systems,

Languages, and Applications, OOPSLA (2004)

61. Narayanan, S., McIlraith, S.: Simulation, Verification and Automated Composition of Web

Services. In: Proc. of the Eleventh International Conference on World Wide Web, WWW

2002 (2002)

62. Nau, D., Au, T., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An HTN

planning system. Journal of Artificial Intelligence Research 20, 379–404 (2003)

63. Nau, D., Cao, Y., Lotem, A., Muroz-Avila, H.: Shop: Simple hierarchical ordered planner. In:

Proc. of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 1999

(1999)

64. Oracle. Oracle BPEL Process Manager,

http://www.oracle.com/appserver/bpel_home.html

65. OWL-S. OWL-S: Semantic Markup for Web Services (OWL-S version 1.0) (2003)

66. Peer, J.: Web service composition as AI planning - a survey (2005)

67. Pistore, M., Marconi, A., Traverso, P., Bertoli, P.: Automated Composition of Web Services

by Planning at the Knowledge Level. In: Proc. IJCAI 2005 (2005)

68. Pistore, M., Traverso, P., Bertoli, P.: Automated Composition of Web Services by Planning

in Asynchronous Domains. In: Proc. ICAPS 2005 (2005)

69. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated Synthesis of Composite

BPEL4WS Web Services. In: Proc. of IEEE International Conference on Web Services,

ICWS 2005 (2005)

70. Ponnekanti, S., Fox, A.: SWORD: A Developer Toolkit for Web Service Composition. In:

Proc. WWW 2002 (2002)

71. Rao, J., Su, X.: A survey of automated web service composition methods. In: Cardoso, J.,

Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 43–54. Springer, Heidelberg (2005)

72. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. In: Proc. of the Third Interna-

tional Joint Conference on Artificial Intelligence, IJCAI 1973 (1973)

73. Sadiq, W., Sadiq, S., Schulz, K.: Model-driven distribution of collaborative business pro-

cesses. In: Proc. of IEEE International Conference on Services Computing, SCC (2006)

74. Sirin, E., Hendler, J., Parsia, B.: Semi automatic composition of web services using semantic

descriptions. In: Proc. ICEIS 2003 Workshop on Web Services: Modeling, Architecture and

Infrastructure (2003)

75. Skogan, D., Gronmo, R., Solheim, I.: Web Service Composition in UML. In: Proc. EDOC

2004 (2004)

http://www.oracle.com/appserver/bpel_home.html

Synthesis and Composition of Web Services 157

76. Srivastava, B., Koehler, J.: Planning with Workflows - An Emerging Paradigm for Web Ser-

vice Composition. In: Proc. of ICAPS 2004 Workshop on Planning and Scheduling for Web

and Grid Services (2004)

77. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A view integration approach to dynamic compo-

sition of web services. In: Proc. of the 1st ICAPS International Workshop on Planning for

Web Services, P4WS 2003 (2003)

78. Thakkar, S., Ambite, J.L., Knoblock, C.A.: A data integration approach to automatically

composing and optimizing web services. In: Proc. of the 2nd ICAPS International Workshop

on Planning and Scheduling for Web and Grid Services (2004)

79. Thakkar, S., Ambite, J.L., Knoblock, C.A., Shahabi, C.: Dynamically composing web ser-

vices from on-line sources. In: Proc. of 2002 AAAI Workshop on Intelligent Service Inte-

gration (2002)

80. Trainotti, M., Pistore, M., Calabrese, G., Zacco, G., Lucchese, G., Barbon, F., Bertoli, P.,

Traverso, P.: ASTRO: supporting the Composition and Execution of Web Services. In: Be-

natallah, B., Casati, F., Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 495–501.

Springer, Heidelberg (2005)

81. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language

(2003)

82. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of Web Ser-

vices Composition Languages: The Case of BPEL4WS. In: Proc. of the 22nd International

Conference on Conceptual Modeling (2003)

83. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.: Automating DAML-S Web Services Com-

position using SHOP2. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS,

vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

84. Yildiz, U., Godart, C.: Centralized versus decentralized conversation-based orchestrations.

In: Proc. of 4th IEEE International Conference on Enterprise Computing, E-Commerce and

E-Services, CEC-EEE 2007 (2007)

85. Yildiz, U., Godart, C.: Information flow control with decentralized service composition. In:

Proc. of IEEE International Conference on Web Services, ICWS 2007 (2007)

86. Zeng, L.: Dynamic web services composition. Ph.D Thesis (2003)

Fundamentals of Session Types

Vasco T. Vasconcelos

University of Lisbon

Abstract. We present a reconstruction of session types in a linear pi
calculus where types are qualified as linear or unrestricted. Linearly qual-
ified communication channels are guaranteed to occur in exactly one
thread, possibly multiple times. In our language each channel is char-
acterised by two distinct variables, one used for reading, the other for
writing; scope restriction binds together two variables, thus establishing
the correspondence between the two ends of a same channel. This mech-
anism allows a precise control of resources via a linear type system. We
build the language gradually, starting from simple input/output, then
adding choice, recursive types, replication and finally subtyping. We also
present an algorithmic type checking system.

1 Introduction

In complex concurrent interactions partners often exchange a large number of
messages as part of a pre-established protocol. The nature and order of this mes-
sages are a natural candidate for structuring interactions themselves. It is in this
context that session types make their contribute by allowing a concise description
of the continuous interactions among partners in a concurrent computation.

For example, consider a simplified distributed auction system with three kinds
of players: sellers that want to sell items, auctioneers that sell items on their
behalf, and bidders that bid for an item being auctioned. The protocol for sellers
is simple: there is only one operation that sellers may invoke on an auctioneer—
selling—where they provide the auctioneer with a description of the item to be
sold (a string), and the minimum price they are willing to sell the item for. The
protocol starts as follows, where ⊕ introduces the choices available to the seller,
and ! the output of a value.

⊕{selling : !String.!Price . . . }

Sellers then wait on the outcome of their request. Two things can happen: either
the item was sold (in which case the seller gets the price the item was sold for), or
the item was not sold. The protocol then continues as below, where & denotes
the range of alternatives offered by the seller at this point, and ? represents
input.

&{sold : ?Price . . . ,notSold : . . . }

In either case the protocols halts; we indicate that with the e n d mark. The
complete protocol as seen by the seller can be concisely described.

⊕{selling : !String.!Price.&{sold : ?Price.end,notSold : end}}

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 158–186, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Fundamentals of Session Types 159

The protocol for auctioneers is slightly more complex, for they must interact
not only with sellers but with bidders as well. Starting with the interaction with
sellers, we know that auctioneers must offer a selling alternative, and if such
alternative is taken, then they must accept a string (the item be sold) followed
by the price the seller is asking.

&{selling : ?String.?Price . . . }

The auctioneer then puts the item on sale, and gets back to the seller with one
of the possible outcomes: sold or notSold.

⊕{sold : !Price . . . ,notSold : . . . }

Putting everything together we have two session types, the first for the seller,
the second for the auctioneer.

⊕{selling : !String.!Price.&{sold : ?Price.end,notSold : end}}

&{selling : ?String.?Price.⊕{sold : !Price.end,notSold : end}}

The description implies that sellers should be able to safely interact with
auctioneers; the session types for the two partners make this clear: when the seller
selects the selling choice, the auctioneer offers that exact choice, and conversely
for choices sold and notSold. Furthermore, when the seller outputs a value, the
auctioneer inputs a value of the same type, and when the seller ends the protocol,
so does the auctioneer. We say that the two types are dual, a notion central to
session types.

But the auctioneer should also interact with bidders. Bidders start by reg-
istering themselves, then enter an interactive bidding session, and eventually
unregister, thus leaving the protocol. The auctioneer offers a second option—
register—to be used by bidders.

&{selling . . . , register : . . . }

Bidders on the other hand must follow a protocol of the form ⊕{register : . . . },
dual to that of the corresponding branch in the auctioneer. In summary we have
the following situation

auctioneer: &{selling . . . , register : . . . }

seller : ⊕{selling : . . . }

bidder : ⊕{register : . . . }

but now the protocol of the auctioneer is not dual to neither that of seller nor
that of the bidder. Subtyping allows to specialize the type of the auctioneer to
that of the seller, as in &{selling . . . }, or to that of the bidder, &{register . . . },
as required by duality.

This chapter introduces a reconstruction of session types based on the ideas
of linear type systems. Session types describe communication channels in the

160 V.T. Vasconcelos

pi calculus, both linear and shared (or unrestricted). The various concepts usu-
ally associated to session types are introduced piecewise. We start by studying
a language with input, output, parallel composition, and scope restriction. We
then incorporate choice in the form of branching (external choice) and selection
(internal choice). Even though the required machinery is in place, the particu-
lar form of types does not allow to type useful unrestricted channels—recursive
types provide such a facility. Up to this point the language does not allow de-
scribing unbounded computations—we introduce replication for the effect. The
next step is to introduce subtyping, thus enlarging the class of typable programs.
The last step in the development of our language introduces an algorithmic type
checking system. The closing section includes references to the sources of this
chapter and discusses related work.

2 Syntax

Figure 1 presents the syntax of our language. There is one base set only: variables.
When writing processes, any lower case roman-letter except u and v represents
a variable. Depending on the context we also use the word channel to denote a
variable.

In interactive behavior variables come in pairs, called co-variables. The best
way to understand co-variables is to think of them as representing the two ends
of a communication channel—one party writes on one end, others read from the
other end. Interacting threads do not share variables for communication; since
a channel is represented as a pair of co-variables, each thread owns its variable.
This mechanism allows a precise control of resources via a linear type system.

The constructors of the language are those of the pi calculus with boolean
values, except for a small difference in scope restriction. The output process x v.P
writes value v on variable x and continues as P . Conversely, the input process
y(z).P receives on variable y a value it uses to substitute the bound variable z
before continuing with the execution of process P . The parallel composition

P ::= Processes:

x v.P output

x(x).P input

P |P parallel composition

if v then P else P conditional

0 inaction

(νxx)P scope restriction

v ::= Values:

x variable

true | false boolean values

Fig. 1. The syntax of processes

Fundamentals of Session Types 161

P | Q allows processes P and Q to proceed concurrently. The conditional process
executes P or Q depending on the boolean value v. The terminated process, or
inaction, is denoted by 0. The particular form of scope restriction (νxy)P is the
novelty with respect to the pi calculus—not only it hides two variables, but it
also establishes x and y as two co-variables, allowing communication to happen
in process P , between a thread writing on x and another thread reading from y.
It should be stressed that (νxy)P is not a short form for (νx)(νy)P ; instead it
binds two co-variables together.

3 Typing

The syntax of types is described in Figure 2. Type qualifiers annotate pretypes.
For pretypes we have bool, the type of the boolean values. Pretype end may
be used to represent a co-variable on which no further interaction is possible.
Pretypes !T.U and ?T.U describe channels ready to send or to receive a value of
type T and then continuing its interaction as prescribed by type U .

Linearly qualified types describe variables that occur in exactly one thread, a
thread being any process not comprising parallel composition. The unrestricted
qualifier indicates that the value can occur in multiple threads. A type lin bool

represents a boolean value that can be tested exactly once, whereas un bool de-
scribes a boolean value that can be tested a variable number of times. Similarly
a type lin !T.U represents a channel that can be used once for sending a value of
type T before becoming a channel that behaves as U . A channel un !T.U can be
used multiple types to send values of type T . Typing contexts, also introduced
in Figure 2, gather type information on variables.

q ::= Qualifiers:

lin linear

un unrestricted

p ::= Pretypes:

bool booleans

end termination

?T.T receive

!T.T send

T ::= Types:

q p qualified pretype

Γ ::= Contexts:

∅ empty context

Γ, x : T assumption

Fig. 2. The syntax of types

162 V.T. Vasconcelos

q ?T.U = q !T.U q !T.U = q ?T.U q end = q end

Fig. 3. The dual function

To lighten the syntax in examples, we adopt a few abbreviations. First, we
omit all unrestricted qualifiers and only annotate linear types. Second we omit
the trailing 0 in processes. Third, we omit the trailing un end in types. In examples
involving communication we also assume that co-variables are annotated with
subscripts 1 and 2, for example (x1, x2) and (y1, y2).

If x is a variable of an arbitrarily qualified type, a is a variable of an unre-
stricted type and c a variable of a linear type, then the first two processes are
well formed, whereas the last one is not.

x true.x(y) :-)

a true | a true | a false :-)

c true | c false :-(

Type duality plays a central role in the theory, ensuring that communication
on co-variables proceeds smoothly. Intuitively, the dual of output is input and
the dual of input is output. In particular if U is dual of T , then q?S.U is dual of
q!S.T . Pretype end is dual of itself; duality is not defined for the bool type. The
definition is in Figure 3.

Based on duality, we would like to accept the first two processes, but not the
last two.

x1 true | x2(z) :-)

x1 true.x1(w) | x2(z).x2 false :-)

x1 true | x2 false :-(

x1 true.x1(w) | x2(z).x2(t) :-(

One might expect duality to affect the parameter of the sent and the received
type, e.g., q ?T.U = q !T .U . That would be unsound as the example below shows.
Consider the process:

x1 y2 | x2(z).z true | y1 false :-(

The following context is expected to type the process, where the argument
y2 : !bool of the send operation on x1 is dual of parameter z : ?bool in the re-
ceive operation on x2.

x1 : !(!bool), x2 : ?(?bool), y1 : !bool, y2 : !bool

Yet the process reduces to an illegal process, where y1 and y2 are not dual.

y2 true | y1 false :-(

Fundamentals of Session Types 163

∅ · ∅ = ∅
Γ = Γ1 · Γ2 un(T)

Γ, x : T = (Γ1, x : T) · (Γ2, x : T)

Γ = Γ1 · Γ2 lin(T)

Γ, x : T = (Γ1, x : T) · Γ2

Γ = Γ1 · Γ2 lin(T)

Γ, x : T = Γ1 · (Γ2, x : T)

Fig. 4. Context splitting

Typing rules for values

un(Γ)

Γ ⊢ false, true : bool

un(Γ1, Γ2)

Γ1, x : T, Γ2 ⊢ x : T
[T-Bool] [T-Var]

Typing rules for processes

un(Γ)

Γ ⊢ 0

Γ1 ⊢ P Γ2 ⊢ Q

Γ1 · Γ2 ⊢ P | Q
[T-Inact] [T-Par]

Γ1 ⊢ v : q bool Γ2 ⊢ P Γ2 ⊢ Q

Γ1 · Γ2 ⊢ if v then P else Q

Γ, x1 : T, x2 : T ⊢ P

Γ ⊢ (νx1x2)P
[T-If] [T-Res]

Γ1 ⊢ x : q ?T.U (Γ2, y : T) · x : U ⊢ P

Γ1 · Γ2 ⊢ x(y).P
[T-In]

Γ1 ⊢ x : q !T.U Γ2 ⊢ v : T Γ3 · x : U ⊢ P

Γ1 · Γ2 · Γ3 ⊢ x v.P
[T-Out]

Fig. 5. Typing rules

We maintain the linearity invariant through the standard linear context split
operation. When type checking processes with two sub-processes we pass the
unrestricted part of the context to both processes, while splitting the linear part
in two and passing a different part to each process. In this way, if x is a linear
variable then the process x true | x true is not typable, since x can only occur in
one of the parts, allowing to type one but not both processes. Figure 4 defines
the context splitting relation Γ = Γ1 · Γ2. Notice that in the third rule, x is not
in Γ2 since it is not in Γ = Γ1 · Γ2, and similarly for the last rule and Γ1.

For each qualifier q we define a predicate also named q which is true of types
qp and also of contexts x1 : qp1, . . . , xn : qpn. Equipped with the notions of con-
text splitting and type duality we are ready to introduce the typing rules. We
distinguish typing rules for values with judgments of the form Γ ⊢ v : T , from
those for processes with judgments Γ ⊢ P . The rules are in Figure 5.

Our type system maintains the following invariants.

– Linear channels occur in exactly one thread;
– Co-variables have dual types.

We want to make sure that linear variables are not discarded without being
used; the base cases of the type system check that there is no linear variable
in the context. In particular, in rules [T-Var] and [T-Bool] for values and
[T-Inact] for processes, we check that Γ is unrestricted. Notice that this does

164 V.T. Vasconcelos

not preclude type T itself from being linear in rule [T-Var]. The typing rules
for values are those one finds in the linear lambda calculus—boolean values have
type bool, variables have the type prescribed by the context. Rule [T-Var] allows
variable x to occur anywhere in the context, as opposed to just at the beginning
or at the end.

Rule [T-Par] uses context splitting to partition linear variables between the
two processes: the incoming context is split into Γ1 and Γ2, and we use the former
to type check process P and the latter to type check process Q. Rule [T-If] for
the conditional process splits the incoming context in two parts: one used to
check the condition, the other to check both branches. The same context for the
two branches is justified by the fact that only one of P or Q will be executed.
The qualifier of the boolean value is unimportant.

For rule [T-Res] we add to the context two extra hypotheses for the newly
introduced variables, at dual types. The rule captures the essence of co-variables:
they must have dual types.

Similarly to the rule for parallel composition, rule [T-In] splits the context into
two parts: one to type check variable x, the other to type check continuation P .
If x is of type ?T.U , we know that the bound variable y is of type T , and we
type check P under the extra assumption y : T . Equally important is the fact
that the continuation uses variable x at continuation type U , that is, process
x(y).P uses variable x at type ?T.U whereas P may use the same variable this
time at type U . If x is a linear variable then it is certainly not in Γ2 because it
is in Γ1. If, on the other hand, x is unrestricted then context splitting is only
defined when U is equal to q?T.U , which will become possible in Section 6.

The rule for sending a value, [T-Out], splits the context in three parts, one to
check x, another to check v and the last to check continuation P . Similarly to the
rule for reception, the continuation process uses variable x at the continuation
type, that is, x v.P uses x at type q!T.U , whereas P uses the same variable at
type U .

The dual function is not total: it is not defined on bool, nor on any type
“terminating” in bool, such as ?bool.bool. Had we incorporated other base types
in our language (integers for example), duality would not be defined on them
as well. Duality is a function defined on session types only: input, output, and
the terminated session end. Imagine that we set bool = bool; we would be able to
type process

(νxy)if x then 0 else 0

or any process reducing to it.
There are many interesting pi calculus processes that our type system fails to

check, including x true | x true. In order to type this process we seek a context
associating an unrestricted type to x, as in x : !bool.T . Then the third premise of
rule [T-Out] reads (x : !bool.T) · (x : T) which cannot be fulfilled by any type T
built from the syntax in Figure 2. Clearly, so far, we are dealing with a language
of linear channels only.

The following structural property of the type system is useful in the proof of
preservation (Theorem 1).

Fundamentals of Session Types 165

Lemma 1 (Unrestricted weakening). If Γ ⊢ P then Γ, x : lin p ⊢ P .

Proof. The proof follows by induction on the structure of the derivation. We
need to establish a similar result for values, whose proof is a simple case analysis
on the two applicable typing rules. The hypothesis un(Γ) in rule [T-Inact]
establishes the base case. ⊓⊔

4 Operational Semantics

In our language parenthesis represent bindings—variable y occurs bound in
x(y).P and in (νxy)P ; variable x occurs bound in (νxy)P . A variable that
occurs in a non-bound position within a process is said to be free. The set
of free variables in a process P , denoted by fv(P), is defined accordingly, and
so is alpha-conversion, as well as the capture-free substitution of variable x by
value v in process P , denoted by P [v/x]. We work up to alpha-conversion and
follow Barendregt’s variable convention, whereby all variables in binding occur-
rences in any mathematical context are pairwise distinct and distinct from the
free variables.

To evaluate processes we use a small step operational semantics. As usual in
the pi calculus, we factor out a structural congruence relation on processes al-
lowing the syntactic rearrangement of these, thus contributing for a more concise
presentation of the reduction relation.

Structural congruence, ≡, is the smallest congruence relation on processes that
satisfies the axioms in Figure 6. The axioms are standard in pi calculus. The first
three say that parallel composition is commutative, associative and contains the
terminated process 0 for neutral. The first rule on the second line is called scope
extrusion, and allows the scope of a ν-binder to extend to a new process Q or
to retract from this, as needed. Notice that the proviso “x, y not free in Q” is
redundant in face of the variable convention, for x occurring bound in (νxy)P
cannot occur free in Q. The last two rules allow to collect unused restrictions
and to exchange the order of bindings.

The operational semantics is defined in Figure 7. In rule [R-Com], a process
willing to send a value v on variable x, in parallel with another process ready to
receive on variable y, engages in communication only if x, y are two co-channels,
that is if the two processes are underneath a restriction (νxy). In that case,
both prefixes are consumed and v replaces the bound variable z in the receiving
party. The binding (νxy) persists, in order to potentiate further interactions in
the resulting process. Process R witnesses reduction on unrestricted channels; it
may represent the terminated process 0 on reduction on linear channels. A direct

P | Q ≡ Q | P (P | Q) | R ≡ P | (Q | R) P | 0 ≡ P

(νxy)P | Q ≡ (νxy)(P | Q) (νxy)0 ≡ 0 (νwz)(νxy)P ≡ (νxy)(νwz)P

Fig. 6. Structural congruence

166 V.T. Vasconcelos

(νxy)(xv.P | y(z).Q | R) → (νxy)(P | Q[v/z] | R) [R-Com]

if true then P else Q → P [R-IfT]

if false then P else Q → Q [R-IfF]

P → Q

(νxy)P → (νxy)Q
[R-Res]

P → Q

P | R → Q | R
[R-Par]

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q
[R-Struct]

Fig. 7. Operational semantics

consequence of this rule is that communication cannot happen on free variables
for there is no way to tell what the co-variables are.

Rules [R-IfT] and [R-IfF] replace a conditional process with the then branch
or with the else branch, depending on the value of the condition. Rules [R-Res]
and [R-Par] allow reduction to happen underneath scope restriction and par-
allel composition, respectively. Finally, rule [R-Struct] incorporates structural
congruence in the reduction relation.

Unlike the linear lambda calculus, our type system offers no guarantee of
progress. If fact processes can deadlock quite easily, it suffices to create two
sessions that read and write in the “wrong” order.

x1 true.y1 false | y2(x).x2(w) :-)

Even though one finds processes prefixed at any of the four linear variables, and
the types are dual, the order by which the two threads order these prefixes is
not conducting to reduction. An even more crafty process, uses channel passing
to end up with a cycle including a single thread.

x1 y1 | x2(z).z true.y2(w) :-)

The rest of this section is dedicated to the proof of the main results of our
language.

Equipped with the notion of free variables and substitution we can prove two
important results of our type system. Strengthening allows to remove extraneous
entries from the context, but only when the variable does not occur free in the
process. Clearly we have x : ?bool ⊢ x(y), but not ⊢ x(y). Also, linear variables
occur in the context only if free in the process, e.g., x : lin?bool ⊢ 0 is not a valid
judgement.

Lemma 2 (Strengthening). If Γ, x : T ⊢ P and x �∈ fv(P) then Γ ⊢ P and

un(T).

Proof. The proof is by induction on the structure of the derivation. The hypoth-
esis un(Γ) in rule [T-Inact] establishes the base case. ⊓⊔

Fundamentals of Session Types 167

The following result related judgments Γ ⊢ P and the free variables of P .

Lemma 3 (Free variables)

– If Γ ⊢ P and x ∈ fv(P) then x ∈ Γ .

– If Γ, x : lin p ⊢ P then x ∈ fv(P).

Proof The proofs are by induction on the derivations. ⊓⊔

The Substitution Lemma plays a central role in proof of type preservation
(Theorem 1).

Lemma 4 (Substitution). If Γ1 ⊢ v : T and Γ2, x : T ⊢ P and Γ1 ·Γ2 is defined

then Γ1 · Γ2 ⊢ P [v/x].

Proof. The proof is by induction on the typing derivation and uses Strengthen-
ing and Weakening and Free variables (Lemmas 1, 2, and 3). This is the most
elaborate proof in this section. We start with the simple observation that if
Γ1 ⊢ v : T then either v = true and un(Γ) or v is a variable and Γ = Γ1, v : T, Γ2

and un(Γ1, Γ2). For the base case (rule [T-Inact]), we know that un(Γ2) and
un(T). The result follows by Strengthening and Weakening. For each inductive
case we prove two situations separately: lin(T) and un(T). ⊓⊔

The next lemma states that structural equivalent processes can be typed
under the same contexts, and is used in the [R-Struct] case of the proof of
preservation.

Lemma 5 (Preservation for ≡). If Γ ⊢ P and P ≡ Q then Γ ⊢ Q.

Proof. The proof is by a simple analysis of derivations for each member of each
axiom. We use Weakening, Strengthening, and Free variables (Lemmas 1, 2,
and 3), and must not forget to check the two directions of each axiom.

A representative case is scope restriction. To show that, if Γ ⊢ (νxy)P | Q
then Γ ⊢ (νxy)(P | Q), we start by building a derivation for Γ ⊢ (νxy)P |
Q, to conclude that Γ must be of the form Γ1 · Γ2, that Γ1, x : T, y : T ⊢ P ,
and that Γ2 ⊢ Q. To build a derivation for the conclusion we start with Γ2 ⊢
Q and distinguish two cases. If T is linear, then (Γ1, x : T, y : T) · Γ2 = Γ1 ·
Γ2, x : T, y : T ; otherwise use Weakening to conclude that Γ2, x : T, y : T ⊢ Q and
(Γ1, x : T, y : T) · (Γ2, x : T, y : T) = Γ1 · Γ2, x : T, y : T . In either case complete
the proof with rules [T-Res] and [T-Par].

In the reverse direction, to show that if Γ ⊢ (νxy)(P | Q) then Γ ⊢ (νxy)P |
Q, we consider two cases, depending on whether rule [T-Res] introduces an un-
restricted or a linear type. For the former, applying rules [T-Res] and [T-Par]
from the conclusion Γ ⊢ (νxy)(P | Q), we know that Γ = Γ1 · Γ2, that
Γ1, x : T, y : T ⊢ P and that Γ2, x : T, y : T ⊢ Q. To build a derivation for the
conclusion, we apply Strengthening to the hypothesis on Q to obtain Γ2 ⊢ Q,
and then apply [T-Res] and [T-Par] as required.

If on the other hand T is linear, by Free variables there is one only way to
split Γ1 · Γ2, x : T, y : T ; we have Γ1, x : T, y : T ⊢ P and Γ2 ⊢ Q and we conclude
the proof using rules [T-Res] and [T-Par]. ⊓⊔

168 V.T. Vasconcelos

Theorem 1 (Preservation). If Γ ⊢ P and P → Q then Γ ⊢ Q.

Proof. The proof is by induction on the reduction derivation, and uses Weaken-
ing and Substitution (Lemmas 1 and 4). The inductive cases are straightforward;
we use Lemma 5 in case [R-Struct].

The most interesting case is when the derivation of the reduction step ends
with rule [R-Com]. Suppose that [T-Res] introduces x : q!T.U, y : q?T.U . Build-
ing the tree for the hypothesis, we know that Γ = Γ1 ·Γ2 ·Γ3 ·Γ4 where Γ3 ⊢ R. At
this point we distinguish two cases depending on nature of qualifier q. If linear
then we have Γ1, x : U ⊢ P and Γ2, z : T, x : U ⊢ Q and Γ4 ⊢ v : T . From Γ4 ⊢ v : T
and Γ2, z : T, x : U ⊢ Q we use Substitution to obtain Γ4 · Γ2, x : U ⊢ Q[v/z]. We
then conclude the proof with rules [T-Par], [T-Par], [T-Res].

If q is unrestricted, we have (Γ1, x : q!T.U)·x : U ⊢ P , and (Γ2, y : q?T.U, z : T)·
y : U ⊢ Q and Γ4, x : q!T.U ⊢ v : T . The first context splitting operation is defined
only when q!T.U is U , and the second when q?T.U is U . Then we use Weakening
four times: to go from Γ1, x : U ⊢ P to Γ1, x : U, y : U ⊢ P , from Γ2, z : T, y : U ⊢
Q to Γ2, z : T, x : U, y : U ⊢ Q, from Γ3 ⊢ R to Γ3, x : U, y : U ⊢ R, and from
Γ4, x : U ⊢ v : T to Γ4, x : U, y : U ⊢ v : T . Using Substitution, we conclude the
proof as in the case of q linear. ⊓⊔

We now look at the guarantees offered by typable processes. To study what can
go wrong with our machine, we look at the syntax of processes (Figure 1) and
the reduction relation (Figure 7), and try to figure out in which cases can the
machine get stuck, that is, not able to proceed because of ill-formed processes.
There is an obvious case: the value in the condition is neither t r ue nor false in
rules [R-IfT] and [R-IfF].

But there are other processes that even though do not prevent the machine
from advancing, we would like to dismiss as badly formed. These include pro-
cesses with two threads sharing a variable, but using it with distinct interaction
patterns, and two threads each possessing a co-variable, but using them in non-
dual patterns.

a true | a(z) :-(

(νx1x2)(x1 true | x2 true) :-(

(νx1x2)(x1(z) | x2(w)) :-(

In order to define what we mean by a non well-formed process, we need two
notions. An x-prefixed process is a process of the form x v.P or x(y).P . Given
two variables x and y, a xy-redex is a process of the form x v.P | y(z).Q. We say
that a process is non well-formed if it can be written as (νx̃ỹ)(P | Q | R) up to
structural congruence, and one of the following happens.

1. P is of the form if v then P ′
else P ′′ and v �= true, false; or

2. P is of the from x v.P ′ and Q is x(z).Q′, or conversely; or

3. P is a xi-prefixed process and Q is a yi-prefixed process, but P | Q is not a
xiyi-redex.

Fundamentals of Session Types 169

Typable processes are in general not well-formed. The process if x then 0 else 0
is typable under context x : bool, yet we consider it an error. But if P is closed
(hence typable under the empty context, by Strengthening, lemma 2) then x
must be bound by a (νxy) binder. Rule [T-Res] introduces two dual types in
the context, x : T, y : T , where T is necessarily different from bool, for duality
would not be defined otherwise.

Theorem 2. If ⊢ P , then P is well formed.

Proof. The proof is by contradiction. We build the derivation for ⊢ (νx̃ỹ)(P1 |
P2 | P3); in each of the three cases a simple analysis of the hypothesis shows
that P is not typable. ⊓⊔

5 Choice

Choice allows processes to offer a fixed range of alternatives and clients to select
among the variety offered. We extend the syntax of our language with support
for offering alternatives, called branching, and to choose among the alternatives,
called selection. The details are in Figure 8, where we add to our repertoire
another base set—labels. Lower case letters l and m are used to denote labels.

New syntactic forms

P ::= . . . Processes:

x ⊳ l.P selection

x ⊲ {li : Pi}i∈I branching

p ::= . . . Pretypes:

⊕{li : Ti}i∈I select

&{li : Ti}i∈I branch

New duality rules

q ⊕{li : Ti}i∈I = q &{li : Ti}i∈I q &{li : Ti}i∈I = q ⊕ {li : Ti}i∈I

New typing rules

Γ2 ⊢ x : q ⊕{li : Ti}i∈I Γ2 · x : Tj ⊢ P j ∈ I

Γ1 · Γ2 ⊢ x ⊳ lj .P
[T-Sel]

Γ1 ⊢ x : q &{li : Ti}i∈I Γ2 · x : Ti ⊢ Pi ∀i ∈ I

Γ1 · Γ2 ⊢ x ⊲ {li : Pi}i∈I

[T-Branch]

New reduction rules

j ∈ I

(νxy)(x ⊳ lj .P | y ⊲ {li : Qi}i∈I | R) → (νxy)(P | Qj | R)
[R-Case]

Fig. 8. Choice

170 V.T. Vasconcelos

A process of the form x ⊳ l.P selects one of the options offered by a process
prefixed at the co-variable. Conversely, a process x ⊲ {li : Pi}i∈I offers a range
of options, each labelled with a different label in the set {li}i∈I . Such a process
handles a selection at label lj by executing process Pj .

Imagine a data structure mapping elements from a given type Key to a type
Value. Among its various operations one finds put and get. To put key k associ-
ated to a value v one writes:

map ⊳ put.map k.map v

To get a value from a map one sends a key and expects a value back, but only
if the key is in the data structure. If not then we should be notified of the fact.
We use labels some and none to denote the result of the get operation. Further,
if the key is in the map, we expect a value as well. Here is a client that runs
process P if the key is in the map, and runs Q otherwise.

map ⊳ get.map k.map ⊲ {some : map(x).P,none : Q}

Types for the new constructors are ⊕{li : Ti}i∈I and &{li : Ti}i∈I , representing
channels ready to select or to offer li options. In either case type Tj describes
the continuation once label lj has been chosen. Select types are akin to labelled
variants in sequential languages, whereas branching types can be compared to
labelled records. The new type structures are interpreted as non-ordered records;
we do not distinguish &{l : T, m : U} from &{m : U, l : T }.

The type of the map, as seen from the side of the client, that is the type of
variable map, is as follows.

⊕{put : !Key.!Value, get : !Key.&{some : ?Value.end,none : end}}

The two new pretypes are dual to each other. In the third example below x
is obviously unrestricted.

x1 ⊳ l | x2 ⊲ {l : 0} :-)

x1 ⊳ l | x2 ⊲ {l : 0, m : 0} :-)

x1 ⊳ l | x1 ⊳ m | x1 ⊳ m | x2 ⊲ {l : 0, m : 0} :-)

x1 true | x2 ⊲ {l : 0} :-(

x1 ⊳ l | x2(z) :-(

x1 ⊳ l | x2 ⊲ {m : 0} :-(

To type check a branching process prefixed by x at type &{li : Ti}i∈I we have
to check each of the possible continuations Pi at x : Ti. We use the exact same
Γ2 in all cases for only one of the Pi will be executed, similarly to rule for
the conditional process. If rule [T-Branch] introduces an external choice type
&{li : Ti}i∈I , rule [T-Sel] eliminates the dual, internal choice type ⊕{li : Ti}i∈I .
To type check a process selecting label lj at name x at type ⊕{li : Ti}i∈I , we
have to type check the continuation process at the correspondent type x : Tj. In

Fundamentals of Session Types 171

both cases, and similarly to the rules for output and input in Figure 5, context
splitting Γ · x : T must be defined.

The operational semantics is extended with rule [R-Case]. The rule follows
the pattern of [R-Com]: the two processes engaging in reduction must be under-
neath a prefix that puts the two co-variables in correspondence. The selecting
party continues with process P , the branching party with the body of the selected
choice, Pj .

Exercise 1. Sketch a proof of type preservation for the new language.

Exercise 2. What are the new errors associated with the constructs for branching
and selection? Redefine the notion of well formed processes. Sketch a proof for
the type safety result.

6 Recursive Types

The typing rule for the output process (rule [T-Out] in Figure 5) does not allow
to type check a process x v.P with x unrestricted, for it requires the continu-
ation T of type un!T.U to be equal to un!T.U itself. We would like to consider
as a type the regular infinite tree solution to the equation U = un!T.U . A finite
notation for such a type uses the µ-notation, as in µa.un!T.a.

Figure 9 includes recursive types in the syntax of types, where we rely on
one more base set, that of type variables. Recursive types are required to be
contractive, i.e., containing no subexpression of the form µa1 . . . µan.a1. The µ
operator is a binder, giving rise, in the standard way, to notions of bound and
free variables and alpha-equivalence. We denote by T [U/a] the capture-avoiding
substitution of a by U in T . Rather than defining type equivalence directly, we
rely on the definition of subtyping discussed in Section 8. In any case, types
are understood up to type equivalence, so that, for example, in any mathemat-
ical context, types µa.T and T [µa.T/a] can be used interchangeably, effectively
adopting the equi-recursive approach.

The dual function descends a µ-type and leaves type variables unchanged. To
check that a given type T is dual of another type U , we first build the type T
and then use the definition above. For example, to show that µa.?bool.!bool.a

New syntactic forms

T ::= . . . Types:

a type variable

µa.T recursive type

New duality rules

µa.T = µa.T a = a

Fig. 9. Recursive types

172 V.T. Vasconcelos

is dual of !bool.µb.?bool.!bool.b, we build µa.?bool.!bool.a = µa.!bool.?bool.a, and
then show that µa.!bool.?bool.a = !bool.µb.?bool.!bool.b.

The new type constructors are not qualified, instead µa.T takes the qualifier
of the underneath type T . Contractivity ensures that types can be interpreted
as regular infinite trees; it also ensures that we can always find out what the
qualifier of a type is. Since not all type constructors are qualified anymore, we
have to adjust the un and the lin predicates on types. Predicate q is true of types
qp as before; and is now true of type µa.T if it is true of type T .

Unlike the linear lambda calculus where unrestricted data structures may not
contain linear data structures, unrestricted channels can carry both unrestricted
and linear channels. Consider the type ?(lin!bool).T of an unrestricted channel
that receives a linear channel capable of outputting a boolean value. The follow-
ing sequent is easy to establish,

x2 : ?(lin!bool).T ⊢ x2(z).z true | x2(w).w false :-)

but only for an appropriate type T . We have seen that it must be equivalent to
?(lin!bool).T , that is T must be µa.?(lin!bool).a. This form of types is so common
that we introduce a short form for them, simply writing ∗?(lin!bool).

Our language does not include tuple passing as a primitive construct, rather
it can only send or receive a single value at a time. Fortunately, tuple passing is
easy to encode. To send a pair of values u, v of types T, U over a linear channel x,
we just send the values, one at a time; no interference is possible due to the linear
nature of the carrier channel.

x 〈u, v〉.P = x1 u.x1 v.P

If the tuple is to be passed on a unrestricted channel, then we must protect
the receiving operations from interference, creating a new lin?T. lin?U channel to
carry the values. The standard encoding for the binary sending and the receiving
operations are as follows.

x1 〈u, v〉.P = (νy1y2)x1 y2.y1 u.y1 v.P

x2(w, t).P = x2(z).z(w).z(t).P

The encodings are typable in our language, if we choose variable y1 of appro-
priate linear type, lin!T.lin!U , and dually for y2. Variable x1 is then of type
∗!(lin?T.lin?U), and dually for x2. We abbreviate the type of channel that sends
a pair of values of types T and U to ∗!〈T, U〉, and dually for a channel that
receives a pair of values, ∗?〈T, U〉.

Here is another example on passing linear tuples on unrestricted channels.
Below is a process that writes two boolean values on a given channel z and then
returns the channel (on a given channel w) so that it can be further used.

p1(z, w).z true.z true.w z :-)

A process that calls p1 to read two boolean values and then writes a third on
channel x can be written as

p2 〈c, x1〉 | x2(z).z false :-)

Fundamentals of Session Types 173

where p1 is typed at ∗?〈lin!bool.lin!bool.lin?bool, lin?bool〉.
A once linear channel can become unrestricted, we just have to get the right

types. For example, type T = lin!bool.∗?bool describes a channel that behaves
linearly in the first interaction and unrestricted thereafter. Suppose that x1 is
of type T and x2 of type T .

x1 true.(x1(y) | x1(z)) | x2(x).(x2 true | x2 false | x2 true) :-)

x1 true.x1(y).x1(y) | x2(z) :-)

x1 true.x1(y) | x2(y).x2 true | x2(w).x2 true :-(

So now we know that a traditional pi calculus channel that can be used an
unbounded number of times for outputting boolean values is of type ∗!bool, that
is, µa.!bool.a. Conversely, a channel that can be used for reading an unbounded
number of boolean values is of type ∗!bool = µb.?bool.b. What about a channel
that can we used both for reading and for writing? There is no such thing in this
theory; the channel is in reality a pair of co-variables, one to read, the other to
write.

Equipped with the equi-recursive notion of types, typing rules (in Figure 5)
remain unchanged. More importantly, the preservation theorem holds as before,
and we do not even need to touch the proof.

7 Replication

Up until now our language is strongly normalizing—each reduction step strictly
decreases the number of symbols that compose the processes involved. To provide
for unbounded behavior we introduce a special form of receptor that remains
after reduction, called replication. The details are in Figure 10.

The reduction rule [R-Repl] for a replicated process ∗x(y).P is similar to
that of a simple receptor (rule [R-Com] in Figure 7) in all respects except that
process ∗x(y).P persists in the resulting process. The typing rule for replication
[T-Repl] is exactly that of a single receptor (rule [T-In] in Figure 5) except
for two things: channel x must be unrestricted, and the context that types the
body P of the replicated process is must be unrestricted as well.

As an example, consider an iterator of boolean values—a process that offers
operations hasNext and next repeatedly until hasNext returns “no”. Further
suppose that the iterator accepts requests at x2. A client that reads and discards
every value from the iterator can be written as follows.

∗ loop(y).y ⊳ hasNext.y ⊲ {yes : y ⊳ next.y(z).loop y,no : 0} | loop x2 (1)

Clearly, the communication pattern of the iterator, as seen by the client at
variable x2, is of the form

⊕{hasNext : &{no : end, yes : ⊕ {next : !bool. ⊕ {hasNext : &{. . . }}}}}

which can be written in finite form as follows.

µa. ⊕ {hasNext : &{no : end, yes : ⊕ {next : !bool.a}}} (2)

174 V.T. Vasconcelos

New syntactic forms

P ::= . . . Processes:

∗ x(x).P replication

New typing rules

Γ1 ⊢ x : un ?T.U (Γ2, y : T) · x : U ⊢ P un(Γ2)

Γ1 · Γ2 ⊢ ∗x(y).P
[T-Repl]

New reduction rules

(νxy)(xv.P | ∗y(z).Q | R) → (νxy)(P | Q[v/z] | ∗y(z).Q | R) [R-Repl]

Fig. 10. Replication

Notice that the type in equation 2 is equivalent to the following,

⊕{hasNext : µb.&{no : end, yes : ⊕ {next : !bool. ⊕ {hasNext : b}}}} (3)

and that the two types can never be made syntactically equal by finite expansion
alone, yet we would not like to distinguish them, for they have the same infinite
expansion.

To understand what would happen if we relax the un(Γ2) restriction in rule
[T-Repl], consider the following process

∗x2(z).c true | x1 true | x1 false :-(

where we would like c to be typed at lin!bool. The process reduces in two steps
to ∗x2(z).c true | c true | c true, invalid given the sought linearity for channel c.
Instead, procedures that use linear values must receive them as parameters,
thus allowing the type system to check possible value duplications. If we pass
channel c as parameter,

∗x2(z).z true :-)

then the procedure can no longer be used by process x1 c | x1 c, because rule
[T-Par] precludes splitting any context in two parts both containing a channel c
of a linear type.

Exercise 3. A general replicated process ∗P , can be simulated by the following
process,

(νx1x2)(x1 true | ∗x2(y).(P | x1 true))

where x1, x2 and y do not occur free in P . Devise an admissible rule for the new
construct. Why would general replication be uninteresting as a primitive in our
language?

Exercise 4. Prove that type preservation still holds for the language with
replication.

Fundamentals of Session Types 175

Exercise 5. In this section we made the input process persistent by using replica-
tion. Branching, introduced in Section 5, can be made persistent as well. Devise
a typing and a reduction rule for a replicated branching process ∗x ⊲ {li : Pi}i∈I .
Sketch the proof of the corresponding case in the type preservation theorem.

8 Subtyping

Subtyping brings extra flexibility to our type system. The insistence that ar-
guments in output processes exactly match input parameters in correspond-
ing receivers leads to the rejection of programs that will never go wrong when
executed.

One example can be found in the introduction. For another, the iterator dis-
cussed in Section 6 imposes a strict discipline on its clients: they must alternate
between operations hasNext and next, as long as hasNext returns yes. A more
liberal server would allow clients to call, after the first hasNext, not only next

but also and again hasNext.

&{hasNext : µb. ⊕ {no : end, yes : &{next : !bool.&{hasNext : b}, hasNext : b}}}
(4)

Now imagine the situation where we have typed both the iterator (prefixed at
x1) and its client (at x2) in context x2 : T, x1 : T , where T is the type in equa-
tion 2, and we now replace the iterator to conform to the type U in equation 4.
Operationally there should be no problem. Below are two snapshots of the sys-
tem where the client is about to ask next, first to the old iterator, and then to
the new.

(νx2x1)(x2 ⊳ next.x2(y).loop x2 | x1 ⊲ {next : P} | R) (5)

(νx2x1)(x2 ⊳ next.x2(y).loop x2 | x1 ⊲ {next : P, hasNext : Q} | R)

The types for the client and the server are dual in the first case, but not in
the second. The client at x2 asks ⊕{next : . . . } whereas the iterator at x1 offers
&{next : . . . , hasNext : . . . }. One solution to the problem allows the server to
“forget” options, thus obtaining a type &{next : . . . }, which is now dual to that
of the client.

Subtyping has in our language the generally accepted meaning, where T <: U
indicating that any variable of type T can be safely used in a context where a
variable of type U is expected, or “every variable described by T is also described
by U”. The new rule is in Figure 11.

New typing rule

Γ ⊢ v : T T <: U

Γ ⊢ v : U
[T-Sub]

Fig. 11. Subtyping

176 V.T. Vasconcelos

To feel how the subsumption rule works we build a derivation for the parallel
composition of the the new iterator and its client. Let

T = &{next : T ′}

U = &{next : T ′, hasNext : U ′}

Γ1 = Γ ′
1, x1 : T

Γ2 = Γ ′
2, x2 : T

P1 = x1 ⊲ {next : P, hasNext : Q}

P2 = x2 ⊳ next.x1(y).loop x2

in

Γ1 ⊢ x1 : T T <: U
[T-Sub]

Γ1 ⊢ x1 : U

·
·
·

Γ1, x1 : T ′ ⊢ P

·
·
·

Γ1, x1 : U ′ ⊢ Q

Γ1 ⊢ P1

·
·
·

Γ2 ⊢ P2

Γ1 · Γ2 ⊢ P1 | P2

So here is our first rule of finite subtyping.

I ⊆ J Ti <: Ui ∀i ∈ I

&{li : Ti}i∈I <: &{lj : Uj}j∈J

[S-BranchFin]

Conversly, we can fix the mismatch between the new iterator and its client by
allowing the client to select more options.

I ⊇ J Tj <: Uj ∀j ∈ J

⊕{li : Ti}i∈I <: ⊕{lj : Uj}j∈J

[S-SelFin]

To understand why we have T <: U in the hypothesis of rule [S-BranchFin],
remember that type S in &{next : S} of the iterator above (equation 2) contains
multiple (infinite, in fact) nested copies of &{next : S} itself, and we want each
of them to be a subtype of the larger type &{next : . . . , hasNext : . . . }. A similar
reason conducts to the exactly same conclusion in the case of [S-SelFin]. For this
reason, in all four session-type constructors, continuations are always co-variant.

There remains to study the input and output operations. Suppose the client
delegates its variable just before selecting operation next. Towards this end, the
client uses another channel (another pair of co-variables, y1, y2) and sends its
variable x1 on y1. The receiver gets it in y2 and calls the pending next operation
on the iterator. The code for the receiver, the recipient of delegation, is as follows,

y2(z).z ⊳ next

where y2 is naturally typed at ?(lin ⊕ {next : . . . }). When the new iterator enters
operation, the recipient of delegation can call hasNext (as well as next), and thus
rewrites its code to become:

y2(z).z ⊳ hasNext

Fundamentals of Session Types 177

where y2 is now typed at ?(lin ⊕ {next : . . . , hasNext : . . . }). We have seen that
⊕{next : . . . , hasNext : . . . } <: ⊕{next : . . . }. If we make

?⊕{next : . . . , hasNext : . . . } <: ?⊕{next : . . . }

then the piece of code y2(z).z ⊳ hasNext typed at the subtype can also be used
where the supertype is expected.

The example allows us to conclude that input is co-variant. A similar reasoning
on the iterator side would allow to conclude that output is contra-variant.

T ′ <: T U <: U ′

!T.U <: !T ′.U ′

T <: T ′ U <: U ′

?T.U <: ?T ′.U ′
[S-SendFin],[S-RcvFin]

In summary:

– Input operations (?, &) are co-variant; output operations (!,⊕) contra-variant;
– Continuations are always co-variant.

Subtyping in the pi calculus is reversed with respect to that found in the
lambda calculus. The notion of co-variable helps in understanding the phe-
nomenon. Our understanding of T <: U is that x1 of type T can be safely
used in a context where a type U is expected. Then it must be the case that the
context uses, not x1, but x2 the co-channel, hence U must offer more choices, so
that it may be used by x2 : U that selects more choices.

Because of recursive types we use a co-inductive definition, rather than an
inductive definition based on the rules we have sketched above.

Definition 1 (Subtyping). Define the operator F ∈ P(T × T) → P(T × T)
as follows.

F (R) = {(end, end), (bool, bool)}

∪ {(?T.U, ?T ′.U ′) | (T, T ′), (U, U ′) ∈ R}

∪ {(!T.U, !T ′.U ′) | (T ′, T), (U, U ′) ∈ R}

∪ {(&{li : Ti}i∈I , &{lj : T ′
j}j∈J) | I ⊆ J, (Ti, T

′
i) ∈ R, ∀i ∈ I}

∪ {(⊕{li : Ti}i∈I ,⊕{lj : T ′
j}j∈J) | I ⊇ J, (Tj , T

′
j) ∈ R, ∀j ∈ J}

∪ {(µa.T, T ′) | (T [µa.T/a], T ′) ∈ R}

∪ {(T, µa.T ′) | (T, T ′[µa.T ′/a]) ∈ R}

Contractivity ensures that F is monotone. By the Knaster-Tarski theorem, F has

least and greatest fixed points; we take the greatest fixed point to be the subtyping

relation, writing T <: U if the pair (T, U) is in the relation.

Lemma 6. Subtyping is a pre-order.

As mentioned in Section 6 type equivalence is defined on top of subtyping: we
say that types T and U are equivalent when T <: U and U <: T .

The interested reader may have notice that there is already a flavor of sub-
typing in rule [T-Sel], Figure 8, where given label lj in a program, we guess the

178 V.T. Vasconcelos

remaining labels in the ⊕-type. In fact equipped with subtyping, the rule can be
simplified avoiding mentioning extraneous labels.

Γ1 ⊢ x : q ⊕ {l : T } Γ2 · x : T ⊢ P

Γ1 · Γ2 ⊢ x ⊳ l.P
[T-SelSimple]

9 Algorithmic Type Checking

The typing rules provided in the previous sections give a concise specification
of what we understand by well formed programs. They cannot however be im-
plemented directly for two main reasons. One is the difficulty of implementing
the non-deterministic splitting operation, Γ = Γ1 · Γ2, for we must guess how to
split an incoming context Γ in two parts. The other is the problem of guessing
the types to include in the context when in presence of scope restriction.

To solve the first problem, we restructure the type checking rules to avoid
having to guess context splitting. To address the second difficulty we seek the
help of programmers by requiring explicit annotations in the scope restriction
constructor. We now write (νxy : T)P , where x is supposed to be of type T and y
of type T in scope P . Changes are in Figure 12.

We have introduced our language piecewise. To simplify the exposition, we
address in this section the language formed by the basics in Figure 5, extended
with recursive types in Figure 9 and replication in Figure 10. We assume that
type equivalence is decidable. We also need an extra operation on contexts: Γ\x
removes from Γ the assumption for x, if it exists.

The central idea of the new type checking system is that, rather than splitting
the input context into two (or three) parts before checking a complex process,
we pass the entire context to the first subprocess and have it return the unused
part. This output is then passed to the second subprocess, which in turn returns
the unused portion of the context, and so on. The output of the last subprocess
is then the output of the process under consideration. Sequents are now of forms
Γ1 ⊢ v : T ; Γ2 for values and Γ1 ⊢ P : Γ2 for processes, with the understanding
that Γ1 is the input to the algorithm and T and Γ2 is the output.

The main change in the re-engineered type system is the treatment of linear
variables, which as moved from the axioms (and rule[T-Repl]) to the rules that
introduce assumptions in the context, [A-Res], [A-In], [A-Repl]. The base cases
for variables and constants allow any context to pass through the judgement,
even with linear types. Two rules, [A-VarUn] and [A-VarLin], replace the
single rule for variables [T-Var] in Figure 5. The former keeps the entry x : T
in the returned context, the latter removes the entry.

Notation U(Γ) and L(Γ) refers to the set of unrestricted and linear assump-
tions in Γ respectively. Notation domS represents the set of variables in the set
of assumptions S. The assumptions for unrestricted types are never consumed,
as the following example shows.

x : ∗!bool ⊢ x true : (x : ∗!bool)

Fundamentals of Session Types 179

New syntactic forms

P ::= . . . Processes:

(νxy : T)P annotated scope restriction

Context difference

∅\x = ∅ (Γ, x : T)\x = Γ
Γ \x = Γ1

(Γ, y : T)\x = Γ1, y : T

Typing rules for values

Γ ⊢ true, false : bool; Γ Γ1, x : lin p, Γ2 ⊢ x : lin p; Γ1, Γ2 [A-Bool] [A-VarLin]

Γ1, x : un p, Γ2 ⊢ x : un p; Γ1, x : un p, Γ2 [A-VarUn]

Typing rules for processes

Γ ⊢ 0 : Γ
Γ1 ⊢ v : q bool; Γ2 Γ2 ⊢ P : Γ3 Γ2 ⊢ Q : Γ3

Γ1 ⊢ if v then P else Q : Γ3

[A-Inact] [A-If]

Γ1 ⊢ P : Γ2 Γ2 \ (domU(Γ2) \ domU(Γ1)) ⊢ Q : Γ3

Γ1 ⊢ P | Q : Γ3

[A-Par]

Γ1, x1 : T, x2 : T ⊢ P : Γ2 xi : U ∈ Γ2 ⇒ un(U)

Γ1 ⊢ (νx1x2 : T)P : Γ2\x1x2

[A-Res]

Γ1 ⊢ x : q!T.U ; Γ2 Γ2 ⊢ v : T ; Γ3 Γ3 · x : U ⊢ P : Γ4

Γ1 ⊢ x v.P : Γ4

[A-Out]

Γ1 ⊢ x : q?T.U ; Γ2 (Γ2, y : T) · x : U ⊢ P : Γ3 y : V ∈ Γ3 ⇒ un(V)

Γ1 ⊢ x(y).P : Γ3\y
[A-In]

Γ1 ⊢ x : un ?T.U ; Γ2 (Γ2, y : T) · x : U ⊢ P : Γ3 y : V ∈ Γ3 ⇒ un(V) un(Γ2)

Γ1 ⊢ ∗x(y).P : Γ3\y
[A-Repl]

Fig. 12. Algorithmic type checking

For linear assumptions three things can happen: they may remain, they may
disappear altogether or they may become unrestricted. But if they remain, then
they keep their types.

x : lin !bool ⊢ 0 : (x : lin !bool)

x : lin !bool, y : ∗!(lin !bool) ⊢ y x : (y : ∗!(lin !bool))

x : lin !bool ⊢ x true : (x : end)

The above examples motivates rule [A-Par]. The output of the first sub-
process P cannot be directly passed to the second subprocess Q; a rule of the
form

Γ1 ⊢ P : Γ2 Γ2 ⊢ Q : Γ3

Γ1 ⊢ P | Q : Γ3

would allow to derive

x : lin !bool, y : !end ⊢ x true | y x : (x : end, y : !end) :-(

180 V.T. Vasconcelos

but we know that x : lin !bool, y : !end �⊢ x true | y x. In rule [A-Par], operation
Γ2 \ (domU(Γ2)\domU(Γ1)) removes from Γ2 the linear assumptions in Γ1 that
where used in P to become unrestricted in Γ2.

Rule [A-Res] is an example of a rule that introduces assumptions in the
context. We read the types for x and y from the process, extend the incoming
context Γ1 with entries x : T, y : T , and pass it to subprocess P . If variables x
and y are initially linear, then either they are delegated in P or else they remain
in Γ2 but with the initial linear part consumed. The assumptions for x and y, if
existent, are then removed from the output context.

The rule [A-Out] process looks in the incoming context Γ1 for the assumption
for variable x. We then use Γ2, the remaining portion of Γ1, to type check value
v, to obtain a type T (which must match the input part of the type for x) and
a context Γ3. This context is then enriched with a new assumption for x at the
continuation type U , and passed to the subprocess P . Similarly to rule [T-Out]
in Figure 5, when q = lin then x is not in Γ3 and a new assumption for x is
introduced in the context; else when q = un we must have q!T.U = U .

Rule [A-In] should be easy to understand based on the description of rules
[A-Res] and [A-Out]. Similarly to [A-Out] we look in the input context for
the type of x. We then pass to subprocess P the unused portion together with
two new assumptions, for x and for y. In the end, if y remains in the context
then it must be unrestricted. The rule for replication is similar, but incorporates
an extra check on Γ2 to match that in rule [T-Repl], Figure 5.

Each rule in the algorithm is syntax directed. Furthermore all auxiliary func-
tions, including context membership, context equality, context difference and the
context predicates q, are computable. We still need to check that this system is
equivalent to the more elegant system introduced in the previous sections.

The proof of equivalence can be broken in two standard parts, soundness

and completeness of the algorithm with respect to the declarative system. No-
tice however that the two type systems talk about different languages, languages
that differ in the annotation in the scope restriction constructor. To obtain a non-
annotated process from an annotated one, we use function erase(P) that removes
all types from an annotated process P . Function erase is a homomorphism ev-
erywhere, except at scope restriction where erase((νxy : T)P) = (νxy) erase(P).

Lemma 7 (Algorithmic monotonicity). If Γ1 ⊢ P : Γ2 then L(Γ2) ⊆ L(Γ1)
and U(Γ1) = U(Γ2) \ domL(Γ1).

Lemma 8 (Algorithmic weakening). If Γ1 ⊢ P : Γ2 then Γ1, x : T ⊢
P : Γ2, x : T .

Proof. The proofs for the two results follow by induction on the structure of the
appropriate derivation. In each case we must establish the corresponding result
for values, each of which follows by a simple case analysis. ⊓⊔

Lemma 9 (Algorithmic linear strengthening). If Γ1, x : T ⊢ P : Γ2, x : T
and lin(T) then Γ1 ⊢ P : Γ2.

Fundamentals of Session Types 181

Proof. The proof follows by induction on the structure of the derivation. We
must establish the corresponding result for values, which follows by a simple
case analysis. The inductive cases use Monotonicity, lemma 7. For example, for
the parallel composition P | Q, we have that Γ2 ⊢ Q : Γ3, x : T with lin(T)
and Monotonicity tells us that Γ2 is of the form Γ4, x : T , which allows to use
induction for Γ1, x : T ⊢ P : Γ4, x : T . ⊓⊔

Theorem 3 (Algorithmic soundness). If Γ1 ⊢ P : Γ2 and un(Γ2) then Γ1 ⊢
erase(P).

Proof. The proof follows by induction on the structure of derivation of the
hypothesis, using Algorithmic monotonicity and Algorithmic linear strength-
ening, lemmas 7 and 9. The interesting case is parallel composition. We have
Γ1 ⊢ P : Γ2 and Γ2 \ (domU(Γ2) \ domU(Γ1)) ⊢ Q : Γ3 and un(Γ3). Using Mono-
tonicity we know that Γ1 = Γ4, Γ5, Γ6, Γ7 and that Γ2 = Γ5, Γ

′
6, Γ7, where

Γ2 \ (domU(Γ2) \ domU(Γ1)) = Γ5, Γ7 and Γ ′
6, Γ7 are unrestricted and the

remaining gammas linear. We apply Strengthening followed by induction on
the hypothesis for P to obtain Γ4, Γ6, Γ7 ⊢ erase(P). On the branch for Q we
know that Γ5, Γ7 ⊢ Q : Γ3, and by induction Γ5, Γ7 ⊢ erase(Q). Noticing that
(Γ4, Γ6, Γ7) · (Γ5, Γ7) = Γ1 we use rule [T-Par] to conclude the proof. ⊓⊔

Theorem 4 (Algorithmic completeness). If Γ1 ⊢ erase(P) then Γ1 ⊢ P : Γ2

and un(Γ2).

Proof. The proof follows by induction on the structure of derivation of the hy-
pothesis, using Algorithmic monotonicity and Algorithmic weakening, lemmas 7
and 8. Once again, the interesting case is parallel composition. If Γ1 = Γ2 ·Γ3, we
know by rule [T-Par] that Γ2 ⊢ erase(P) and Γ3 ⊢ erase(Q). By induction and
Monotonicity we have Γ2 ⊢ P : Γ4, Γ6 and Γ3 ⊢ Q : Γ4, Γ8, where Γ2 = Γ4, Γ5 and
Γ3 = Γ4, Γ7 where Γ4, Γ6, Γ8 are unrestricted and the remaining gammas linear.
Then we use Weakening on P to obtain Γ1 ⊢ P : Γ3, Γ6, and conclude the proof
with rule [A-Par], noticing that (Γ3, Γ6) \ (dom(Γ4, Γ6) \ domΓ4) = Γ3. ⊓⊔

10 Notes

Session types for the pi calculus. Work on session types goes back to Honda
and its colleagues at Keio University—Kubo, Takeuchi, and Vasconcelos—first
centering on the type structure, then introducing the notion of channel, and
finally extending the ideas into a more general setting [18,19,28]. The original
work introduces session types, describing chained continuous interactions com-
posed of communication (input and output) and binary choice [18]. The central
notion of session types, duality, is also introduced in this work. The subsequent
work proposes, at the language level, the concept of channels distinct from pi
calculus conventional names—channels (linear variables in our terminology) con-
duct a pattern of interaction between exactly two partners, names (unrestricted
variables in this paper) are used by multiple participants to create channels.

182 V.T. Vasconcelos

The language is constructed around a pair of operations, accept and request,
synchronizing on a common name and establishing a new channel. Channels
are endowed with operations to send and receive base values (including names)
and to perform choices based on labels, as opposed to the binary choice in [18].
The language in reference [19] takes the idea further, allowing channels to be
passed on channels—often called session delegation—thus including two more
operations on channels: to send and to receive a channel.

In reference [19], channel passing embodies a technique similar to internal
mobility [27] whereby the sender and the receiver must agree on the exact channel
being handed over, prior to communication itself. Using the notation of this
paper and forgoing the variable convention, if x and y are linear co-variables,
the rule for communicating a linear variable z is of the following form where z
is both free in x z.P and bound y(z).Q,

x z.P | y(z).Q → P | Q

with the understanding that if the receiving process happens to look like y(w).Q
then the bound variable w is renamed as z prior to reduction, if possible.

Gay and Hole proposed a variant to this work by introducing two novelties:
they work directly on the pi calculus and use free session passing [14]. Their
language is similar to the that in this paper, except for two small details: it in-
cludes general replication !P , as opposed to the more expressive input replication
∗x(y).P in this work (cf. exercise 3) or to recursion in [19,28], and it annotates
variables with polarities +,−. The new reduction rule for session passing is a pi
calculus conventional communication rule (x and y are co-variables).

x v.P | y(z).Q → P | Q[v/z]

Rather than using distinct identifiers x, y that are made co-variables at binding
time (νxy)P , they use one identifier only (x) with polarity annotations (x+, x−)
that is bound as a single variable in process (νx)P . The relation that associates
x+ to x− is left implicit in reduction. In either case, the reason behind the
need for syntactically distinguishing the two ends of a same channel comes from
free session passing: the same thread may end up possessing the two ends of a
channel, as in x+ true.x−(z). After typing x−(z) we are left with a context where
the types for x+ and x− are not dual. They will eventually become dual after
typing the output process, and should be dual when the derivation reaches scope
restriction for x.

Instead we work with two completely unrelated variables x, y that are made
co-variables at binding time only. But there is a fundamental difference between
the polarity notation and the co-variable technique used in this paper. In [14], po-
larity annotated variables are associated to channels; names use non-annotated
variables. As such, there are two communication rules: for channels, on processes
of the form x+ v.P | x−(z).Q, and for names on processes x v.P | x(z).Q. We
work with co-variables in all cases, using a single communication rule for pro-
cesses of the form x v.P | y(z).Q where x and y are co-variables. If needed the
distinction between channels and names is made by the type qualifiers associated
to variables x and y, linear or unrestricted.

Fundamentals of Session Types 183

Yoshida and Vasconcelos use the polarity technique to endow the language
in [19] with free session passing [34]. All the aforementioned works carefully
manage the typing context in order to maintain the invariant where each channel
is used exactly in one or two threads, with a technique similar to context splitting.
Interesting enough, channel polarities were used in [28], then dropped in [19],
and finally recovered in [14].

The technique of binding the two ends of a channel together is due to Gay
and Vasconcelos [16], working on a buffered semantics where it makes all the
sense to distinguish the two ends of a channel, for each has its own queue for
incoming messages. The same idea is explored by Giunti el al. [17] to show that
the language in [34] equipped with the type system in [19] is type safe even
though it does not satisfy type preservation.

Typing and subtyping. Due to delegation [19], types are usually stratified into
two categories: one for sessions, the other for names. Types for channels include
constructors for input, output, branching, and selection. Those for names in-
clude the standard pi calculus types. The separation of the two universes leads
to duplication (recursion, input/output) and omissions (there is no choice on
names). We take a different approach, starting from pretypes comprising all the
basic types and required constructors, and then using a linear or unrestricted
qualifier depending on the intended usage for the variable, channel or name.

Subtyping as presented in this paper was first introduced by Gay and Hole [14],
co-inductively given the presence of recursive types. Rather than using a separate
subsumption rule, Gay and Hole distribute the possible occurrences of subtyping
by the relevant typing rules. They further present an algorithm for checking the
subtyping relation, used for type checking their language. A proof for Lemma 6
in Section 8 can be found in reference [14].

Gay introduces a notion of bounded polymorphism for the pi calculus with
session types [13] where polymorphism is associated with labels in branching
processes, in such a way that clients selecting a particular branch also instanti-
ate the polymorphic variable with some type. Capecchi, Dezani-Ciancaglini et al.
propose a variant of session types for object-oriented languages where choice is
provided, based not on labels, but on classes [2,4]. Castagna, Dezani-Ciancaglini
et al. propose a set-theoretic semantics for session types based on a labelled
transition system and on a coinductively-defined notion of duality [6]. The se-
mantics yields a notion of subtyping and they present an algorithm for deciding
the relation. The session types considered in the paper generalize those found in
this work by replacing constructors for branching with boolean expressions.

Linear type systems. A linear type system for the pi calculus was studied by
Kobayashi, Pierce and Turner [21]. There, as in the lambda calculus, a linear
channel is understood as resource that should be used only once. The exactly-
once nature of linear values is at odds with the idea of session types capturing
continuous sequences of interactions, and therefore naturally occurring more
than once in a thread. Instead, a linear channel in this work is understood
as occurring in a single thread, possibly multiple times. The machinery used

184 V.T. Vasconcelos

here, linear and unrestricted type qualifiers and context splitting, is inspired by
Walker’s substructural type systems [33].

Session types in functional languages. Session types emerged in conjunction with
process calculi. Gradually, the notion was adapted to other paradigms, including
functional languages, object-oriented languages and service-oriented computing.
Together, Gay, Ravara, and Vasconcelos proposed the first functional language
with session types [16,30,32]. Neubauer and Thiemann [25] took a different ap-
proach, embedding session types within the type system of Haskell. Similarly to
this chapter, the language in reference [16] works within the standard framework
the linear lambda calculus, treating session types as linear in order to guarantee
that each co-channel is owned by a unique thread. For example, the type of the
receive operation is ?T.U → T ⊗ U so that the channel, with its new type U , is
returned together with the received value T .

Session types in object-oriented languages. The area of session types for object-
oriented languages has attracted a lot of attention. The work by Vallecillo,
Vasconcelos, and Ravara [29] shows how to type the behavior of objects in com-
ponent models, Corba in particular (the example in the introduction is taken
from this work). Starting with the work by Dezani-Ciancaglini, Yoshida et al. [11]
that incorporates channel-based communication in a Java-like language, many
have followed, including [2,4,7,9,10,20]. A characteristic of these works is that a
channel is always created and completely used within a single method call, or
else delegated to another method which will have to use the channel to the end.
Mostrous and Yoshida [23] add sessions to Abadi and Cardelli’s object calcu-
lus [1]. Vasconcelos, Gay, et al. use session types to describe the evolving visible
interface of an object, according to the object’s state [31].

Session types in service-oriented computing. The natural ability of session types
to describe protocols have been explored in the realm of service-oriented calculi.
Works like [3,5,8,22], to cite a few, use session types to discipline the interaction
between service providers and clients.

Buffered semantics for session types. Neubauer and Thiemann first proposed
an asynchronous, buffered semantics, allowing two communicating partners to
proceed at distinct rates [26]. The idea is to associate to each co-variable a
buffer to hold both values and labels—readers (input and branching processes)
read from their own buffer; writers (output and selecting processes) write on
the co-channel buffer. Gay and Vasconcelos propose a simpler buffered seman-
tics [15,16]; Fähndrich et al. [12] also use buffered communication but have not
published a formal semantics.

An interesting application of session types for buffered communication is that
buffer size can be predicted from the session type that describes the channel,
thus ensuring that well-typed programs do not overflow their buffers. This fact
is observed in [12] and proved in [16], where it is shown that static type informa-
tion can be used to decrease the runtime buffer size and ultimately deallocate
the buffer. Another application explores optimisations by exchanging the order
by which certain communications are performed, allowing for a large transfer to

Fundamentals of Session Types 185

proceed in front of other lighter transfers [24]. The valid communication ex-
changes are captured by a subtyping relation.

Multi-party session types. The language of this chapter disciplines the interac-
tion between two threads; sessions types to describe interaction among multiple
partners is the object another chapter in this book.

Acknowledgments. The author was partially supported by the EU IST proac-
tive initiative FET-Global Computing (project Sensoria, IST–2005–16004). He
thanks Marco Giunti and Francisco Martins for advice and suggestions.

References

1. Abadi, M., Cardelli, L.: A Theory of Objects. Springer, Heidelberg (1996)
2. Bettini, L., Capecchi, S., Dezani-Ciancaglini, M., Giachino, E., Venneri, B.: Session

and union types for object oriented programming. In: Degano, P., De Nicola, R.,
Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 659–
680. Springer, Heidelberg (2008)

3. Boreale, M., Bruni, R., Nicola, R., Loreti, M.: Sessions and pipelines for structured
service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS,
vol. 5051, pp. 19–38. Springer, Heidelberg (2008)

4. Capecchi, S., Coppo, M., Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E.:
Amalgamating sessions and methods in object-oriented languages with generics.
Theoretical Computer Science 410(2-3), 142–167 (2009)

5. Carbone, M., Honda, K., Yoshida, N.: Structured communication-centred program-
ming for web services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
2–17. Springer, Heidelberg (2007)

6. Castagna, G., Dezani-Ciancaglini, M., Giachino, E., Padovani, L.: Foundation of
session types (unpublished) (2009)

7. Coppo, M., Dezani-Ciancaglini, M., Yoshida, N.: Asynchronous session types and
progress for object-oriented languages. In: Bonsangue, M.M., Johnsen, E.B. (eds.)
FMOODS 2007. LNCS, vol. 4468, pp. 1–31. Springer, Heidelberg (2007)

8. Cruz-Filipe, L., Lanese, I., Martins, F., Ravara, A., Vasconcelos, V.T.: Behavioural
theory at work: program transformations in a service-centred calculus. In: Barthe,
G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 59–77. Springer,
Heidelberg (2008)

9. Dezani-Ciancaglini, M., Drossopoulou, S., Giachino, E., Yoshida, N.: Bounded ses-
sion types for object-oriented languages. In: de Boer, F.S., Bonsangue, M.M., Graf,
S., de Roever, W.-P. (eds.) FMCO 2006. LNCS, vol. 4709, pp. 207–245. Springer,
Heidelberg (2007)

10. Dezani-Ciancaglini, M., Mostrous, D., Yoshida, N., Drossopolou, S.: Session types
for object-oriented languages. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067,
pp. 328–352. Springer, Heidelberg (2006)

11. Dezani-Ciancaglini, M., Yoshida, N., Ahern, A., Drossopolou, S.: A distributed
object-oriented language with session types. In: De Nicola, R., Sangiorgi, D. (eds.)
TGC 2005. LNCS, vol. 3705, pp. 299–318. Springer, Heidelberg (2005)

12. Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G., Larus, J.R., Levi,
S.: Language support for fast and reliable message-based communication in Singu-
larity OS. SIGOPS Operating Systems Review 40(4), 177–190 (2006)

13. Gay, S.J.: Bounded polymorphism in session types. Mathematical Structures in
Computer Science 18(5), 895–930 (2008)

186 V.T. Vasconcelos

14. Gay, S.J., Hole, M.J.: Subtyping for session types in the pi calculus. Acta Infor-
matica 42(2/3), 191–225 (2005)

15. Gay, S.J., Vasconcelos, V.T.: Asynchronous functional session types. TR 2007–251,
Department of Computing, University of Glasgow (May 2007)

16. Gay, S.J., Vasconcelos, V.T.: Linear type theory for asynchronous session types
(2008) (submitted)

17. Giunti, M., Honda, K., Vasconcelos, V.T., Yoshida, N.: Session-based type disci-
pline for pi calculus with matching. In: PLACES 2009 (2009)

18. Honda, K.: Types for dyadic interaction. In: Best, E. (ed.) CONCUR 1993. LNCS,
vol. 715, pp. 509–523. Springer, Heidelberg (1993)

19. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

20. Hu, R., Yoshida, N., Honda, K.: Session-based distributed programming in Java. In:
Vitek, J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg
(2008)

21. Kobayashi, N., Pierce, B.C., Turner, D.N.: Linearity and the pi-calculus. ACM
Transactions on Programming Languages and Systems 21(5), 914–947 (1999)

22. Lanese, I., Vasconcelos, V.T., Martins, F., Ravara, A.: Disciplining orchestration
and conversation in service-oriented computing. In: Proceedings of SEFM 2007,
pp. 305–314. IEEE Computer Society Press, Los Alamitos (2007)

23. Mostrous, D., Yoshida, N.: A session object calculus for structured communication-
based programming (unpublished) (2008)

24. Mostrous, D., Yoshida, N., Honda, K.: Global principal typing in partially commu-
tative asynchronous sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502,
pp. 316–332. Springer, Heidelberg (2009)

25. Neubauer, M., Thiemann, P.: An implementation of session types. In: Jayaraman,
B. (ed.) PADL 2004. LNCS, vol. 3057, pp. 56–70. Springer, Heidelberg (2004)

26. Neubauer, M., Thiemann, P.: Session types for asynchronous communication (un-
published) (2004)

27. Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. Theoretical
Computer Science 167(1,2), 235–274 (1996)

28. Takeuchi, K., Honda, K., Kubo, M.: An interaction-based language and its typ-
ing system. In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.)
PARLE 1994. LNCS, vol. 817, pp. 398–413. Springer, Heidelberg (1994)

29. Vallecillo, A., Vasconcelos, V.T., Ravara, A.: Typing the behavior of objects and
components using session types. Fundamenta Informaticæ 73(4), 583–598 (2006)

30. Vasconcelos, V.T., Gay, S.J., Ravara, A.: Typechecking a multithreaded functional
language with session types. Theoretical Computer Science 368(1–2), 64–87 (2006)

31. Vasconcelos, V.T., Gay, S.J., Ravara, A., Gesbert, N., Caldeira, A.Z.: Dynamic
interfaces. In: FOOL 2009 (2009)

32. Vasconcelos, V.T., Ravara, A., Gay, S.J.: Session types for functional multi-
threading. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170,
pp. 497–511. Springer, Heidelberg (2004)

33. Walker, D.: Substructural Type Systems. In: Advanced Topics in Types and Pro-
gramming Languages. MIT Press, Cambridge (2005)

34. Yoshida, N., Vasconcelos, V.T.: Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order
session communication. In: Proceedings of SecReT 2007. ENTCS, vol. 171(4),
pp. 73–93. Elsevier Science, Amsterdam (2007)

Asynchronous Session Types:

Exceptions and Multiparty Interactions

Marco Carbone1, Nobuko Yoshida2, and Kohei Honda3

1 IT University of Copenhagen
2 Imperial College London

3 Queen Mary, University of London

Abstract. Session types are a formalism for structuring communication based

on the notion of session: the structure of a conversation is abstracted as a type

which is then used as a basis of validating programs through an associated type

discipline. While standard session types have proven to be able to capture many

real scenarios, there are cases where they are not powerful enough for describ-

ing and validating interactions involving more complex scenarios. In this note,

we shall explore two extensions of session types to interactional exceptions and

multiparty session in presence of asynchronous communication.

1 Introduction

Recent years have seen the emergence of a new style of distributed software system,

called web services, designed to support interoperable machine-to-machine interaction

over a network, using the infrastructure of the world-wide web. These interactions can

make up a sophisticated application whose major mode of computation is commu-

nication among distributed computing entities. The advent of web services, together

with other trends such as the emergence of multi-core processors and ubiquitous com-

puting, is contributing to a shift in the software development paradigm, where com-

munication and concurrency are a norm rather than exceptions. This new paradigm

however still lacks a mature programming methodology. Programming communication

and concurrency is harder than sequential programming, as it exposes programmers and

designers to the new level of complexity including composition of communication be-

haviours, deadlock, livelock, and diverse forms of partial failure. Thus, web services

pose major technical challenges in programming methodologies. At one of the most

basic level, these challenges may be summarised as follows: i) we should be able to

describe communication-centred behaviour clearly, accurately and in a modular way;

ii) we should be able to validate and detect critical properties of programs with respect

to their communication behaviour; and iii) we should be able to control run-time be-

haviour of programs including their composition.

Session types [8,16] are types for structuring communication and have been studied

over the last decade for a wide range of process calculi and programming languages.

In session types, the notion of session becomes central: communication-centred ap-

plications exhibit a highly structured sequence of interactions involving, for example,

branching and recursion, which as a whole form a natural unit of conversation, or

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 187–212, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

188 M. Carbone, N. Yoshida, and K. Honda

session. The structure of a conversation is abstracted as a type which is then used as

a basis of validating programs through an associated type discipline.

While original session types have proven to be very simple and concise and able

to capture many real scenarios, there are cases where they are not powerful enough for

describing and validating interactions involving more complex conversation patterns or,

they are just too complex to use, making the design stage harder than it should be.

In this lecture note, we shall explore two extensions of the foregoing theories

on session types to (1) interactional exceptions [5] and (2) multiparty sessions [1,2,10]

in an asynchronous setting which often arise in practical communication-centred

applications.

1. Interactional exceptions, an interactional asynchronous generalisation of structured

exceptions, allow communicating peers to asynchronously and collaboratively es-

cape from the middle of a dialogue (session) and reach another in a coordinated

fashion. New exception types guarantee communication safety and offer a precise

type-abstraction of advanced conversation patterns found in practice.

2. Multiparty sessions extend binary sessions to multiparty, asynchronous sessions.

In multiparty sessions, interactions involve multiple peers which are directly ab-

stracted, at type level, as a global scenario. Global types retain the friendly type

syntax of binary session types while capturing complex causal chains of multiparty

asynchronous interactions. The fundamental properties of the session type disci-

pline such as communication safety, progress and session fidelity hold for general

n-party asynchronous interactions.

The remainder of this paper is structured as follows: Section 2 gives the common

notation for the following sections; Section 3 introduces an extension of standard ses-

sion types to an exception mechanism similar to the one of imperative programming

languages; Section 4 addresses an extension of binary session types to multiparty; and

Section 5 contains some concluding remarks.

2 Notation

Works on session types tend to adopt different notation depending on the specific prob-

lem modelled. Due to the nature of this lecture note which addresses two extensions

of session types to asynchronous interactional exceptions and multiparty sessions, we

shall set some common notation, trying not to deviate from the original one used in [8].

Shared channels represent those names/channel that are public i.e. known by any

process in the modelled system. Shared channels are also known as public or service

channels and are denoted by a, b, c,

A session can be seen as a conversation between some parties which share common

session identifiers (or channel names) used for communicating values. Session channels

are denoted by k (as in the original work on session types [8]) or s, t, r

Session channels can also be polarised (s+, s−) i.e. a polarity is assigned to the chan-

nel in order to identify the side of the (binary) session [6]. We shall use polarised chan-

nels when implementing asynchronous exceptions for telling from/to who an exception

has been raised.

Asynchronous Session Types: Exceptions and Multiparty Interactions 189

Table 1. Notation on Session Types

Term Symbol Note

Public channels (or shared or service channels) a, b, . . .

Session channels k, s, t, r . . .

Polarised Session channels κ, λ κ ∈ {s+, s−}

Variables x, y, z

Process Term Variables X,Y

Public channel or Variable u, u′, . . .

Formally, sp is a polarised session channel with p ranging over polarities {+,−}. We

define the dual of a polarised channel sp as s+ = s− and s− = s+. Polarised channels are

denoted by Greek letters κ and λ.
The letters x, y, z denote variables while X, X′, . . . are term variables.

Table 1 resumes the notation used in this lecture note.

3 Interactional Exceptions in Session Types

3.1 Preview on Interactional Exceptions

According to a Wikipedia entry, an exception (handler) is

“. . . a programming language construct [. . .] designed to handle the occur-

rence of a condition that changes the normal flow of execution” [18].

Structured exceptions in modern programming languages such as Java and C♯ allow

a thread of control in a block (often designated as “try block”) to get transferred to

another block (exception handler, “catch block”), when a system or user raises an

exception. Their central merit is to enable a dynamic escape from a block of code to

another (like goto), but in a controlled and structured way (unlike goto). They are

useful not only for error-handling but, as suggested by the citation above, also for a

flexible control flow while preserving well-structured description and type-safety.

In this section, we address the notion of structured exceptions for distributed, con-

current, asynchronously communicating programs based on session types motivated by

collaboration with industry partners in web services [17] and financial protocols [12].

These two application domains contain a wealth of structured conversation patterns

arising from practical needs [9], and many of these patterns crucially rely on dynamic

escape: a conversation is interrupted by a special communication action, after which

all peers move to a different stage. Hence, an exception affects not only a sequential

thread but also a collection of parallel processes; and an escape needs to move into

another dialogue in a concerted manner. The distinguishing feature of these exceptions

in comparison with their traditional counterpart is that they demand not only local but

also coordinated actions among communicating peers. We call such exceptions, inter-

actional exceptions.

Example 1 (Asynchronous and Nested Escapes). We conclude this preview, with an

example scenario based on financial protocols. Suppose a seller Seller wishes to sell a

product to a buyer Buyer such that:

190 M. Carbone, N. Yoshida, and K. Honda

1. Seller repeats sending quotes without waiting for an acknowledgement;

2. if Buyer accepts one of the quotes, the loop terminates and the conversation

moves to another stage for completing the transaction.

The conversation pattern above contains an asynchronous escape from one part of a

conversation to another: after Buyer aborts, both participants should move together to

another part of the conversation. The protocol can become more complex, involving

other parties e.g. Buyer and Seller negotiate the price through a broker Broker:

1. Buyer initiates a conversation with Broker;

2. as a result, Broker initiates a conversation with Seller, and starts

brokering between Buyer and Seller, to reach a successful transaction;

3. if an exceptional situation arises between steps 1 and 2 (e.g. a legal issue),

Buyer or Broker aborts and they together move to a quitting dialogue;

4. on the other hand, if there is an exceptional circumstance during 2, then

there is an exception dialogue involving all of Broker, Seller and Buyer.

Above, an exception handling at Broker is nested, whose later, or inner, exception han-

dling (4, involving all three parties) supersedes the earlier, or outer, one (3, involving

only Broker and Seller). As a conversation evolves, more communication peers may be

involved, making it necessary to coordinate more parties when an exception is raised.

3.2 The π-Calculus with Asynchronous Sessions and Interactional Exceptions

Syntax. The syntax of (static) processes (denoted by P,Q,R, . . .) written by program-

mers is given by the following grammar:

P ::= ∗ c(λ)[P,Q] (accept) | c(λ)[κ̃, P,Q] (request)

| κ?(x). P (input) | κ!〈e〉. P (output)

| κ ⊲ {li : Pi}i∈I (branch) | κ ⊳ l. P (select)

| P | Q (par) | if e then P else P (cond)

| 0 (inact) | (νa) P (resServ)

| X (termVar) | μX. P (recursion)

| throw (throw)

e ::= a | tt | ff | e and e | ¬e | . . . c ::= a | x κ, λ ::= sp

Above, the accept term ∗a(λ)[P,Q] is a replicated process with shared channel a, po-

larised session channel κ, default process P and exception handler Q. The term denotes

a service a which, when invoked, establishes a fresh session channel κ and behaves as

process P, possibly followed by Q if an exception takes place. Service a is replicated

(available in many copies) according to the Service Channel Principle (SCP) [4]:

Definition 1 (Service Channel Principle (SCP)). Invocation channels are always

available. Therefore, they can be shared and invoked repeatedly.

Asynchronous Session Types: Exceptions and Multiparty Interactions 191

Dually, a request c(λ)[κ̃, P,Q] interacts with a service via c and establishes a fresh ses-

sion λ, with its default process P and handler Q. Because shared channels can be passed,

we allow for c to be a variable e.g. it could be bound by a prefixing input.

The session channels κ̃, containing already established sessions which the handler Q

gets associated with, have a pivotal rôle: in the case P raises an exception, any other

handler belonging to an embedding accept ∗c′(λ′)[P′,Q′] or request c′(λ′)[κ̃′, P′,Q′]
(c(λ)[κ̃, P,Q] is in P′), such that t̃′ ⊆ t̃, must be discarded. We call vector t̃ a refinement

in the sense that channels t̃′ in t̃ are refined i.e. a new handler Q replaces the old Q′. We

require λ itself to be included in κ̃ which is convenient for typing. As an example, in the

process:

a(κ)[κ, b(λ)[(κ, λ), P,Q] ,Q′]

the term b(λ)[(κ, λ), P,Q] is a refinement of κ in the sense that once session b is initiated

Q becomes the handler for κ and Q′ can be discarded.

Process throw denotes the throwing of an exception and it usually occurs inside

try-catch blokcs. All other constructs are from [4,8].

Free/bound (term) variables/channels and α-equivalence are standard. fsc(P), fn(P)

and fv(P) respectively denote the sets of free session channels, shared channels, and

variables in P. We call program a process which does not contain free variables or free

session channels. We often omit the tailing 0.

Syntactic Assumptions. In order to have consistent operational semantics, we stipulate

the following syntactic constraints:

1. (Consistent Refinement) given c(λ)[κ̃, P,Q], for each c′(λ′)[κ̃′, P′,Q′] occurring in

P and any κi ∈ κ̃, we have κi ∈ κ̃
′ implies κ̃ ⊆ κ̃′ (for consistent refinement). Further,

such a refinement never occurs inside a handler (otherwise we have ambiguity when

launching a handler);

2. recursions is guarded, i.e. P in µX. P is prefixed by an input, output, branch, select

or conditional; moreover, a free term variable never occurs free in c(λ)[κ̃, P,Q];

3. the term (accept) never occurs under an input/output/recursion prefix nor inside a

default process or handler thus protecting its availability from exceptions;

4. throw never occurs inside a handler hence preventing a handler from throwing a

further exception in the same session.

The above restrictions could be enforced with the typing system but have been separated

for the sake of presentation.

Example 2 (Asynchronous Escape). We can write the first part of the example in
Section 3.1 as:

Buyer = chSeller(s+)[s+, Seller = ∗chSeller(s−)[

µX. s+?(y). if ok(y) throw else X, µX. s−!〈quote〉. X ,

s+!〈card〉. s+?(z)] s−?(y2). s−!〈time〉]

Buyer keeps on reading messages on s+ until condition ok(y) is met and then it throws

an exception. Seller, instead, is in an infinite loop where it persistently sends a quote

over channel s− (we assume quote changes over time). When the exception is raised

the handlers are run: Buyer will send the credit card details card and Seller will ac-

knowledge on channel s− with the current time.

192 M. Carbone, N. Yoshida, and K. Honda

Example 3 (Nested Escapes). The second part of Example 1, can be represented in

the calculus as (Seller remains unchanged):

Buyer= chBroker(t+)[t+, Broker= ∗chBroker(t−)[t−,

t+!〈id〉. t−?(x). if bad(x) then throw else

chSeller(s+)[(s+, t−),

μX. t+?(y). if ok(y) throw else X, μX. s+?(x). t−!〈x + 10%〉. X,

t− ⊳ l1. t
−?(y2). s+!〈y2〉.

t+ ⊲ { l1 : t+!〈card〉. t+?(z), s+?(y3). t−!〈y3〉],

l2 : Pabort}] t− ⊳ l2. Rabort]

Buyer first sends its identity id and then Broker throws an exception or proceeds

by invoking Seller based on bad(id). In the first case, process t− ⊳ l2. Rabort in the

outermost handler selects the l2 branch on Buyer’s handler and proceeds with abortion

(conversation between Pabort and Rabort). In the other case, Seller is invoked and the

protocol proceeds as in Example 2 with Broker forwarding messages and increasing

quotes by 10%. When Buyer decides to accept a quote, the innermost handler is run by

Broker which selects the l1 conversation in Buyer’s handler and forwards the exception

to Seller. Then Broker forwards messages, successfully completing the transaction.

Semantics. We shall now define the semantics of asynchronous sessions [3,5,7,10]

with exception handling and exception propagation. Further we ensure that processes

always carry out their conversation at properly matching levels (for example when a

default process sends a message, a receiving peer may throw an exception before the

message arrives, making it no longer relevant), by annotating message queues, hence in

effect messages in them, with exception levels.
In order to implement asynchrony of communication (both for messages and ex-

ception propagation), we need to extend the grammar of programs with extra syntactic
terms called runtime processes [3,7,10,5]:

P ::= . . . | (νs) P (resSess) | κ ֒→φ κ : L (queue)

| try{ P } catch { κ̃ : Q } (try-catch) | κ̃{[P]} (wrap)

L ::= ǫ | h :: L h ::= l | a | tt | ff | †

The try-catch block try{ P } catch { κ̃ : Q } is the runtime presentation of a default

process and a handler: the default process P in the try-block is running during which an

exception on channels κ̃ can be thrown, which terminates P and launches the handler Q

in the catch-block. When this Q is launched, it becomes a wrapped process (or, simply,

a wrap) κ̃{[Q]}, making Q immune to an exception notification at the same or upper

levels (note such notifications can come due to asynchrony).

In order to formalise order-preserving asynchronous message passing, we use a di-

rected message queue κ →֒φ κ : L [3,7,5,10], where κ (source) and κ (target) are two

dual polarised session channels. φ ranges over natural numbers, describing the level of

the exception at which messages in the queue are to be delivered (e.g. to a try-block or a

wrap). This will also be relative to the current position of the queue, which is allowed to

Asynchronous Session Types: Exceptions and Multiparty Interactions 193

Table 2. Rules for Meta Reduction

(MT) P� (P′, S) ⇒ try{ P } catch { κ̃ : Q }�

{

(P′, S) if κ̃ ⊆ S

(κ̃{[Q]} | P′, S ∪ κ̃) otherwise

(MW) κ̃{[Q]} � (κ̃{[Q]},∅)

(MP) P � (P′, S 1) and Q � (Q′, S 2) ⇒ P | Q � (P′ | Q′, S 1 ∪ S 2)

(MN) R � (0, ∅) if R ∈

{

(inact),(request), (input), (output), (branch),

(select), (cond), (recursion), (throw)

}

move inside/outside try-catch blocks and wraps. We do not need to consider the level of

a sender, since this level is recorded by the number of the exception messages † inside

a queue. We often write κ →֒ κ : L for κ →֒0 κ : L. The list L :: h is obtained by

extending L with an extra tail element h. Given the list L = L′ :: h′, we stipulate that

inserting a message h in L will result into h :: L while removing an element from L will

result into L′.

Session restriction (νs) P is standard. Free variables and channels are extended to

run-time processes.

Meta Reduction. We introduce an extra relation on processes called meta reduction,

for dearling with sudden termination of try-blocks due to the throwing of an exception.

Meta reduction

1. erases the remaining activity of the default process in the try-block;

2. propagates exceptions to the try-catch blocks inside the try-block; and

3. leaves wrapped processes as they are.

In traditional structured exceptions as found in Java or C++, an exception completely

erases the try-block and lets the handler run in the same state. In our calculus, con-

currently running threads inside a try-block may have conversations (sessions) with

other agents. Erasing them would make conversations inconsistent, thus an exception is

thrown in each of them.

Meta reduction � is the minimum relation satisfying the rules given in Table 2.

A reduction P � (P′, S) says that the initial process P is transformed into process

P′, the result of erasing and wrapping; and S denotes session channels via which we

should communicate that the exception takes place including the ones of nested try-

catch blocks. Rule (MT) propagates the exception to a nested try-catch block. If the

try-block meta reduces to some P′ with some set S then try{ P } catch { κ̃ : Q } will

reduce either to (i) P′ itself or to (ii) the parallel composition of P′ and κ̃{[Q]} with

the new set S ∪ κ̃ ensuring that also channels κ̃ will be notified with an exception.

Case (i) discards handler Q when another handler for κ̃ is already in P while case (ii)

happens when there is no refinement of κ̃ in P. The mechanism is sound because of the

assumption that κi are always refined together (cf. syntax). Note that, if the try-block

is single-threaded, the meta reduction mechanism is identical to the one of standard

exception handling.

194 M. Carbone, N. Yoshida, and K. Honda

Table 3. Reduction Semantics

(I) ∗a(s−)[P,Q] | C[a(s+)[κ̃, P′,Q′]] −→

∗a(s−)[P,Q] | (νs)

(

try{ P } catch { s− : Q } |

C[try{ P′ } catch { κ̃ : Q′ }] |

s− ֒→0 s+ : ǫ |

s+ ֒→0 s− : ǫ

)

(O) κ!〈e〉. P | κ ֒→φ κ : L −→ P | κ ֒→φ κ : (v :: L) (e ↓ v)

(I) κ?(x). P | κ ֒→0 κ : (L :: v) −→ P{v/x} | κ ֒→0 κ : L

(S) κ ⊳ l. P | κ ֒→φ κ : L −→ P | κ ֒→φ κ : (l :: L)

(B) κ ⊲ {li : Pi}i∈I | κ ֒→0 κ : (L :: l j) −→ P j | κ ֒→0 κ : L (j ∈ I)

(C) P −→ Q ⇒ C[P] −→ C[Q]

(I) if e then P else Q −→ P (e ↓ tt) if e then P else Q −→ Q (e ↓ ff)

(S) P ≡ P′ and P′ −→ Q′ and Q′ ≡ Q ⇒ P −→ Q

(T) try{ P } catch { κ̃ : Q }� (R, S) ⇒

try{ throw | P } catch { κ̃ : Q } | Πκ∈S κ ֒→φκ κ : Lκ −→ R | Πκ∈S κ ֒→φκ κ : († :: Lκ)

(RT) try{ P } catch { κ̃ : Q }� (R, S) ⇒

try{ P } catch { κ̃ : Q } | κ j ֒→0 κ j : (L :: †) | Πκ∈S κ ֒→φκ κ : Lκ
−→ R | κ j ֒→1 κ j : L | Πκ∈S κ ֒→φκ κ : († :: Lκ)

(WV) κ̃{[Q]} | κi ֒→0 κi : (L :: v) −→ κ̃{[Q]} | κi ֒→0 κi : L

(WT) κ̃{[Q]} | κi ֒→0 κi : (L :: †) −→ κ̃{[Q]} | κi ֒→1 κi : L

(C) P� (R, S), (λ ∈ κ̃, † ∈ L) ⇒

try{ P | λ ֒→φ λ : L } catch { κ̃ : Q̃ } | Πκ∈S κ ֒→φκ κ : Lκ

−→ R | λ ֒→φ λ : L | Πκ∈S κ ֒→φκ κ : († :: Lκ)

Reduction. We now introduce the main reduction rules. Due to the nesting of wraps
and try-catch blocks, the reduction is defined using the following reduction contexts:

C ::= try{C } catch { κ̃ : Q } | P | C | κ̃{[C]} | (νs) C | (νa) C | −

Given a context C and a process P, the process C[P] denotes the new process obtained

by replacing the whole − in C with P.

The reduction −→ is the smallest relation generated by the rules in Table 3. (I)

gives the semantics of session initiation, generating two fresh dual session channels,

the associated two empty queues (ǫ denotes the empty string) and the two try-catch

blocks try{ P } catch { s− : Q } and try{ P′ } catch { κ̃ : Q′ }. Note that ∗a(s−)[P,Q] is

not in a context. This is because we have assumed that services never appear nested in

a try- or a catch-block as we do not want them to be terminated (following SCP).

(O) and (S) enqueue, respectively, a value and a label at the head of the queue

for κ. Symmetrically, (I) and (B) dequeue from the tail of the queue. The exception

level in the latter two rules is 0, indicating the level of an actual receiver. The exception

level of a queue ensures that a message is sent and received at the same level, guarantee-

ing consistency of communication. This depends on the invariance that the sum of the

level of the queue and the number of †’s in the queue before a specific message, deter-

mines the depth (the number of wraps) at which the message enqueueing is performed.

Asynchronous Session Types: Exceptions and Multiparty Interactions 195

These rules say that a sending action is never blocked (asynchrony) and that two mes-

sages from the same sender to the same channel arrive in the sending order (order

preservation).

In (O,I), e ↓ v says that expression e evaluates to value v. (C,S) are standard.

(T) and (RT) represent the firing of an exception. (T) is when throw appears

top-level in the try-block, i.e. exception is thrown locally; while (RT) is when a re-

mote exception is received as † in the queue. Eventually, all peers will be notified of the

exception by sending † via channels in S generated from P as well as κ̃.
(WV) describes the case when messages at the default level meet a wrapped

process and are drained into a sink (i.e. get dequeued but ignored). In (WT), † meets

a wrap and the exception level of the queue is incremented, allowing the queue to enter

the wrap. In (C), † in the queue reveals the presence of a refinement in P which has

now become a wrap due to a local throw. Meta reduction propagates the exception to

each parallel process in P and the try-catch block is discarded.

This last step is formally defined by the structural congruence ≡ which plays a key

role in treating exceptions and, in particular, moving queues while maintaining their

exception levels.

Definition 2 (Structural Congruence). ≡ is the least congruence relation on

processes such that (P, |) is a commutative monoid and includes the standard rules

for restriction (such as scope extrusion) and recursion and:

1) try{ P | λ ֒→φ λ : L } catch { κ̃ : Q } ≡ try{P } catch { κ̃ : Q } | λ ֒→φ λ : L (λ ∈ κ̃⇒ † � L)

2) κ̃{[P | λ ֒→φ λ : L]} ≡ κ̃{[P]} | λ ֒→φ λ : L (λ � κ̃)

3) κ̃{[P]} | κi ֒→φ κi : L ≡ κ̃{[P | κi ֒→φ−1 κi : L]}

4) try{ (νa) P } catch { κ̃ : Q } ≡ (νa) try{ P } catch { κ̃ : Q } (a � fn(Q))

5) κ̃{[(νa) P]} ≡ (νa) κ̃{[P]}

The first and second rules allow a queue to move into a try-catch block and a wrap

respectively. The third rule is applicable when the receiving side of the queue is in κ̃:
when entering the wrap, φ is decreased so that the process inside the wrap can read the

value if the level after the decrement is 0. The last two rules open the scope.

Example 4. To illustrate how queue levels work, we consider the following process:

P = try{ throw | κ!〈5〉 } catch { κ : κ!〈tt〉 } | κ ֒→0 κ : ǫ |

try{ throw | κ?(x) } catch { κ : κ?(x) } | κ ֒→0 κ : ǫ

Process P can reduce to P′ = κ{[0]} | κ{[0]} | κ →֒0 κ : ǫ | κ →֒0 κ : ǫ in different ways.

P −→≡ κ{[κ!〈tt〉]} | κ ֒→0 κ : † | try{ throw | κ?(x) } catch { κ : κ?(x) } | κ ֒→0 κ : ǫ

−→≡ κ{[0]} | κ ֒→0 κ : (tt :: †) | try{ throw | κ?(x) } catch { κ : κ?(x) } | κ ֒→0 κ : ǫ

−→≡ κ{[0]} | κ ֒→1 κ : tt | κ{[κ?(x)]} | κ ֒→0 κ : †

−→≡ κ{[0]} | κ ֒→1 κ : ǫ | κ ֒→1 κ : tt | κ{[κ?(x)]} −→≡ P′

In this case, an exception and then tt are sent over κ. Finally the exception is delivered

to κ before delivering tt. But we can also have:

P −→−→≡ try{ throw } catch { κ : κ!〈tt〉 } | κ ֒→0 κ : 5 | κ{[κ?(x)]} | κ ֒→0 κ : †

−→≡ κ{[κ!〈tt〉]} | κ ֒→0 κ : († :: 5) | κ{[κ?(x)]} | κ ֒→1 κ : ǫ −→−→−→≡ P′

196 M. Carbone, N. Yoshida, and K. Honda

Above, 5 is sent over κ and an exception is thrown on κ. In this situation, the system

will ignore 5 (discarded by (WV)), and deliver tt inside the wrap.

Example 5. The following example shows how refinement of an existing exception is

handled:

R = try{ try{ throw } catch { (κ, λ) : Q1 } } catch { κ : Q2 } | κ ֒→0 κ : † | κ ֒→0 κ : L

Process R either throws an exception in the inner try-catch block (by (T)) or receives
a remote exception (by (RT)). By applying (T), (C) and (WT) in the first
case or by (RT) in the second case, we have (omitting some queues):

R −→≡ try{ (κ, λ){[Q1]} | κ ֒→0 κ : † :: L } catch { κ : Q2 } | κ ֒→0 κ : † −→

(κ, λ){[Q1]} | κ ֒→0 κ : † :: L | κ ֒→0 κ : † −→ (κ, λ){[Q1]} | κ ֒→0 κ : † :: L | κ ֒→1 κ : ǫ

3.3 Session Types with Interactional Exceptions

In this subsection, we show how to extend the standard type discipline for sessions

with interactional exceptions. In comparison with the standard session types, the central

difference is the shape of a type itself, which now consists of the abstraction of the

default behaviour (the “try” part) and that of the handler behaviour (the “catch” part).

This simple extension, combined with the use of levels, allows to establish basic typing

properties, guaranteeing that messages are always delivered at proper levels at proper

timings in the presence of nested asynchronous escapes, testifying consistency of the

operational semantics introduced above.

Type Syntax. The grammar of types extends the standard session types (new parts
highlighted with a box):

α, β ::= ↓ (θ). α | ↑ (θ). α | ⊕ {li : αi}i∈I | &{li : αi}i∈I | α{[β]} | end | µt. α | t

θ ::= 〈α{[β]}〉 | bool | . . .

α and θ are respectively called session types and service types. The new type α{[β]}
(called try-catch type) is an abstraction of a try-catch block: in α{[β]}, α denotes the type

of the try-block and β the catch block. A session type α is plain if it does not use a

try-catch type (except in a service type it carries). We stipulate α and β are both plain in

α{[β]}. This is to prevent a try-catch on κ to occur nested in a catch-block of λ if κ = λ.
The dual of a type α, written α, inverts inputs and outputs [8]. The dual of the

try-catch type is defined as α{[β]} = α{[β]}: the other cases are standard. For exam-

ple, by exchanging input and output, the dual of ↓ (string).end{[↑ (bool).end]} is

↑ (string).end{[↓ (bool).end]}.

Environments. Typing judgements for processes and expressions have the forms Γ ⊢
P ⊲ ∆ and Γ ⊢ e : θ respectively where Γ is a service typing, which typically maps

service (public) channels to service types and ∆ is a session typing which typically maps

session channels to session types. For (n ∈ {0, 1} and ρ ∈ {p, u}), typings are defined as

(Session Typing) ∆ ::= ∅ | ∆, κ :α | ∆, (κ, κ) :α | ∆, (κ, κ) :⊥

(Service Typing) Γ ::= ∅ | Γ, c :〈α{[β]}〉 | c :bool | Γ, X :∆

Asynchronous Session Types: Exceptions and Multiparty Interactions 197

Table 4. Typing System for Programs

(N) Γ, a : 〈α〉 ⊢ a : 〈α〉 (B) Γ ⊢ tt, ff : bool (O)
Γ ⊢ ei : bool

Γ ⊢ e1 or e2 : bool

(TR)

Γ ⊢ P ⊲
∏

i κi : αi{[βi]}

Γ′ ⊢ Q ⊲
∏

i κi : βi s+ = κ j

Γ ⊢ c : 〈α j{[β j]}〉 Γ′ ⊆ Γ, fv(Γ′) = ∅

Γ ⊢ c(s+)[κ̃, P,Q] ⊲
∏

i� j κi : αi{[βi]}
(TS)

Γ ⊢ P ⊲ s− : α{[β]}

Γ ⊢ Q ⊲ s− : β fv(Γ) = ∅

Γ, a : 〈α{[β]}〉 ⊢ ∗a(s−)[P,Q] ⊲ ∅

(TT)
fv(Γ) = ∅

Γ ⊢ throw ⊲
∏

i κi : αi

(TP)
Γ ⊢ Pi ⊲ Δi (i = 1, 2) Δ1 ≍ Δ2

Γ ⊢ P1 | P2 ⊲ Δ1 ∪ Δ2

(TO)
Γ ⊢ e : θ Γ ⊢ P ⊲ Δ · κ : α

Γ ⊢ κ!〈e〉. P ⊲ Δ · κ : ↑ (θ). α
(TI)

Γ, x : θ ⊢ P ⊲ Δ · κ : α

Γ ⊢ κ?(x). P ⊲ Δ · κ : ↓ (θ). α

(TS)
Γ ⊢ P ⊲ Δ · κ : α j

Γ ⊢ κ ⊳ l j. P ⊲ Δ · κ : ⊕{li : αi}i∈I
(TR)

Γ, a : 〈α{[β]}〉 ⊢ P ⊲ Δ

Γ ⊢ (νa) P ⊲ Δ

(TB)
Γ ⊢ Pi ⊲ Δ · κ : αi ∀i ∈ I

Γ ⊢ κ ⊲ {li : Pi}i∈I ⊲ Δ · κ : &{li : αi}i∈I
(TI)

Γ ⊢ e : bool

Γ ⊢ P ⊲ Δ Γ ⊢ Q ⊲ Δ

Γ ⊢ if e then P else Q ⊲ Δ

(TI)
fv(Γ) = ∅ αi ∈ {end, end{[βi]}}

Γ ⊢ 0 ⊲
∏

i κi : αi

(TR)
Γ, X : Δ ⊢ P ⊲ Δ

Γ ⊢ μX. P ⊲ Δ
(TV)

Γ, X : Δ ⊢ X ⊲ Δ

In session typings, κ : α says that: at a polarised session channel κ, there is a session of

type α. In the service typing, c either has type α{[β]} (a service using a session channel

with default behaviour of type α and with a handler of type β) or an atomic type such

as bool. Typing X : ∆ is used for recursion as in [4].

Typing System for Programs. We show the typing system by which the programmer

can check whether her program is error free or not, especially w.r.t. its exception usage.

A complete list of typing rules is reported in Table 4.

(TR) types a request on service channel c whose type, according to Γ, is α j{[β j]}.

Condition s+ = κ j makes sure that the fresh name s+ will also be in the try-catch after

reduction. Session s+ has type α j{[β j]}, the dual of c’s type. This rule checks that each

κi in Q (exception handler) has type βi (note βi must be plain) whereas in P it has type

αi{[βi]} where each βi may come from a refinement of κi in P. Finally, Γ′ is a subset of Γ
without free variables for service channels (otherwise the queue may store open terms

at run-time). In (TS), because of SCP, services should never be prefixed therefore

the only visible (free) session in P and Q should be s−.

For (TO), in ↑ (θ). α, the prefixing of a type is read as (↑ (θ). α′){[β]} whenever

α has the form α′{[β]}. Throwing an exception interrupts any conversation, thus (TT)

allows to type throw with any κ : α. (TI) allows to start from end{[β]} if we are

typing in a try-block, while we may want to start from end in a catch-block.

198 M. Carbone, N. Yoshida, and K. Honda

(TP) requires the coherence relation ≍. Formally, we say ∆1 and ∆2 are compatible,

written ∆1 ≍ ∆2, if and only if fsc(∆1) ∩ fsc(∆2) = ∅.

Example 6 (Typing Asynchronous and Nested Escapes). The processes in Exam-

ples 2 is typable: channel chSeller in both examples has type µt. ↑ (int). t{[↓ (int). ↑

(time)]}.

In Example 3, channel chBroker has type (↓ (int). µt. ↑ (int). t){[⊕{l1 :↓ (int). ↑

(time), l2 : α}]} for some α.

On Run-Time Processes and Subject Reduction. The ultimate goal of the typing

system is to show that errors do not occur (type and communication safety). These re-

sults are based on subject reduction i.e. typable process remain typable after reductions.

However, the typing system introduced above only provides rules for checking (sta-

tic) programs. In order to have subject reduction, we also need to provide typing rules

for run-time processes namely try-catch blocks, wraps, session restriction and queues.

Given the purpose of this lecture note, we shall not address the technical details on how

to type run-time processes but take an informal approach instead. We redirect the eager

reader to [5].

The basic idea for typing try-catch blocks (and wraps) is to assign a try-catch type

α{[β]} to channels such that α abstracts the channel usage in the try-block and β the

usage in the catch-block. The typing of session restriction is standard. However, the

treatment of queues is a little peculiar and the following example will give an intuitive

explanation. The process

try{ κ!〈”Hi”〉. P } catch { κ : κ!〈5〉 } | κ →֒ κ : ǫ (1)

is such that κ :↑ (string){[↑ (int)]}. Now, after a reduction step to process

try{ P } catch { κ : κ!〈5〉 } | κ →֒ κ : ”Hi” (2)

does the type of κ change? Processes (1) and (2) are identical, except that an output

prefix in (1) changes its place to the queue. Thus we can go back from (2) to (1) by

placing ”Hi” on the top of the process. A key idea is to carry out this rollback of a

message in typing, using a local type with a hole (a type context) for typing a queue.

For example, we type the queue in (2) as the type context ↑ (string)[−] where [−]

indicates a hole. Now, we can cover the type end{[↑ (int)]} with such a type context,

obtaining the original type ↑ (string){[↑ (int)]}.

In general, we need to be extra careful when dealing with exception propagation.

Queues may contain † which can be preceded and/or followed by other messages. In

such cases, all messages sent before the throwing of the exception can be ignored. As

an example, if P throws and then outputs 5, (2) reduces to (for some P′):

P′ | κ{[0]} | κ →֒ κ : (5 :: † :: ”Hi”)

Above, process κ{[0]} can be typed with the try-catch type ↑ (string){[end]} (in

general the try part can be guessed) and, therefore, the composition with the queue

Asynchronous Session Types: Exceptions and Multiparty Interactions 199

type ↑ (int)[−] will finally yield ↑ (string){[↑ (int)]}. Note that, when applying the

queue type to ↑ (string){[end]}, we must know that it has to cover the catch part: this

can be obviously told by the † in the queue.

In the following Theorem, −→∗ denotes the reflexive and transitive closure of −→.

Theorem 3 (Subject Reduction). Let P be a program such that Γ ⊢ P ⊲ ∅. If P −→∗ Q

then Γ ⊢ Q ⊲ ∅.

As a corollary, the typing system also satisfies type safety and communication safety

including communication-error freedom and linearity [10, Theorem 5.5].

4 Multiparty Asynchronous Session Types

4.1 Preview on Multiparty Interactions

In general, session types do not allow to abstract from inter-session causality which

could be useful at a designing stage. As an example, let us consider a simple refinement

of the Buyer-Seller protocol [4]: consider two buyers, Buyer1 and Buyer2, wish to buy

an expensive product, say a book, from Seller by combining their money:

1. Buyer1 sends the title of the book to Seller;

2. Seller sends to both Buyer1 and Buyer2 its quote;

3. Buyer1 tells Buyer2 how much she can pay, and Buyer2 either

accepts or rejects the quote by notifying Seller.

It is extremely awkward (if logically possible) to decompose this scenario into three

binary sessions, between Buyer1 and Seller, between Buyer2 and Seller, and between

Buyer1 and Buyer2. Abstracting this protocol as three separate session types also means

that our type abstraction loses essential sequencing information in this interaction sce-

nario: for instance, we may want to guarantee that Buyer2 accepts only after Seller has

sent a quote to Buyer1. For validating this conversation scenario as a whole, therefore,

the conversation structure should be represented as a single session.

Many existing business protocols including financial protocols are written as a col-

laboration of several peers. Typical message-passing parallel algorithms also frequently

demand distribution of a request to, and collection of the results from, many peers. All

these usecases are most naturally abstracted as a single session. In this section, we

adress a generalisation of the foregoing binary session types to multiparty asynchro-

nous sessions [10,1,2,14].

4.2 The π-Calculus with Multiparty Asynchronous Session Types

Syntax. In the sequel, we shall keep the same notation as the one introduced for interac-

tional exceptions. Let e be the set of expression defined as in Section 3. Then processes

(programs) are given by the following grammar:

200 M. Carbone, N. Yoshida, and K. Honda

P ::= a[p] (s̃). P (accept) | a[2..n] (s̃). P (request)

| s?(x̃). P (input) | s!〈ẽ〉. P (output)

| s?((s̃)). P (session reception) | s!〈〈s̃〉〉. P (delegation)

| s ⊲ {li : Pi}i∈I (branch) | s ⊳ l. P (select)

| P | Q (par) | if e then P else Q (cond)

| 0 (inact) | (νa) P (resServ)

| X (termVar) | µX. P (recursion)

Most of the primitives above are identical to the ones we saw for interactional excep-

tions except from (accept), (request), (delegation) and (session reception). The prefix

a[2..n] (s̃). P initiates a new session through a, by distributing a vector of freshly gener-

ated session channels s̃ to the remaining n−1 participants, each of shape a[p] (s̃). Qp for

2 ≤ p ≤ n. All receive s̃, over which the actual session communications can now take

place among the n parties. p, q,... range over natural numbers called participants of a

session.

Session communications are performed using the primitives we saw for interactional

exceptions but also allowing for session delegation. In delegation, the capability to par-

ticipate in a session is delegated to the session receiver by passing the whole channels

associated with the session. Note that session communication is polyadic (apart from

branch/select).

The notions of bound and free identifiers, channels, alpha equivalence ≡α and sub-

stitution are standardly adapted to the calculus with multuparty sessions.

Example 7 (Two Buyer Protocol). The Two Buyer protocol can be represented by the

following diagram:

Above, Buyer1 sends a book title to Seller, then Seller sends back a quote to Buyer1/2;
Buyer1 now tells Buyer2 how much she can contribute, and Buyer2 notifies Seller if it
accepts the quote or not. We now describe the behaviour of Buyer1 as a process:

Buyer1
def
= a[2, 3] (b1, b2, b

′
2, s1, s2). s1!〈“War and Peace”〉.

b1?(quote). b′2!〈quote div 2〉. P1

Asynchronous Session Types: Exceptions and Multiparty Interactions 201

Channel b1 is for Buyer1 to receive messages: b2 and b′
2

for Buyer2 and s1 and s2 for
Seller. Buyer1 above is willing to contribute to half of the quote. In P1, Buyer1 may
perform the remaining transactions with Seller and Buyer2. The remaining participants
follow.

Buyer2
def
= a[2] (b1, b2, b

′
2, s1, s2). b2?(quote). b′2?(contrib).

if (quote − contrib ≤ 99)

then s2 ⊳ ok. s2! 〈address〉; b2?(x). P2

else s2 ⊳ quit. 0

Seller
def
= a[3] (b1, b2, b

′
2, s1, s2). s1?(title). b1, b2!〈quote〉.

s2 ⊲ {ok : s2?(x). b2! 〈date〉; Q , quit : 0}

Above b1, b2!〈v〉. P stands for b1!〈v〉. . b2!〈v〉. P, assuming b1, b2 are distinct: due to

asynchrony there is in effect no order among the sending actions at b1, b2. Note that

Buyer2 needs to use two input channels, b2 and b′
2

while, for Seller, s1 and s2 are not

necessary. The first input (for quote) is from Seller, while the second one (for contrib)

is from Buyer1. Hence there is no guarantee that they arrive in a fixed order, as can be

easily seen by analysing reduction paths (this is Lamport’s principle [13]). Thus if we

were to use b2 for both actions, the two messages can be confused, losing linear usage

of a channel. Later we shall show our type discipline can avoid such an error.

Example 8 (A Streaming Protocol). We next consider a simple protocol for the stan-

dard stream cipher [15].

Data Producer and Key Producer continuously send a data stream and a key stream

respectively to Kernel. Kernel calculates their XOR and sends the result to Consumer.
Assuming streams are sent block by block (say as large arrays), we can realise this

protocol as communicating processes. We only focus on communication behaviour. The
kernel initiates a session:

Kernel
def
= a[2, 3,4] (d, k, c). µX. d?(x). k?(y). c!〈x xor y〉. X

The channels d and k are used for Kernel to receive data and keys from Data Producer
and Key Producer, respectively, while c is used for Consumer to receive the encrypted
data from Kernel. Data Producer and Consumer can be given as:

DataProducer
def
= a[2] (d, k, c). µY . d!〈data〉. Y Consumer

def
= a[3] (d, k, c). µZ. c?(data). Z

Key Producer is identical to Data Producer except it outputs at k instead of d. When

three processes are composed, we can verify that, although processes repeatedly send

and receive data using the same channels, messages are always consumed in the order

they are produced, an essential requirement for correctness of the protocol. This is be-

cause each channel is used by exactly one sender. We shall show how this argument can

be cleanly represented and validated through session types.

202 M. Carbone, N. Yoshida, and K. Honda

Table 5. Reduction

Reduction Semantics. Because of asynchrony, similarly to the case of exceptions, we
need to introduce a run-time syntax1:

P ::= . . . | (νs) P (resSess) | s : L (queue)

L ::= ǫ | h :: L h ::= l | ṽ | s̃ v ::= a | tt | ff

The run-time syntax is almost identical to the interactional exceptions case exept from

the queues. In this case, queues are not polarised (we have no polarised channels) and

one message in transit can carry a tuple of values or session names. In the sequel, the

term (νs1) . . . (νsk) P may be denoted by (νs̃) P.

The semantics has a standard structural congruence relation which is defined as the

smallest congruence relation on processes such that (P, |) is a commutative monoid and

includes the standard rules for restriction (such as scope extrusion) and recursion.

The reduction semantics is given by the reduction relation, defined as the smallest

relation on processes generated by the rules in Table 5. (I) describes a session initia-

tion among n-parties through synchronisation, generating m fresh session channels and

the associated m empty queues. As a result n participants now share the newly gener-

ated m channels, hence their queues. Note that, in general, the number of threads (n)

can be different from that of session channels (m), giving flexibility in channel usage.

Similarly to Section 3, (O), (D) and (S) respectively enqueue values, chan-

nels and a label in the queue for s. (I), (SR) and (B) dequeue values, channels and

a label. (B) further selects the corresponding branch. Other rules are standard.

4.3 Types for Multiparty Sessions

Developing programs for multiparty sessions demands a clear formal design as to how

multiple participants communicate and synchronise with each other. To program indi-

vidual participants without such a design and hope they somehow realise a meaningful

and error-free conversation is hardly practical, especially for team programming. In bi-

nary session types the type for an endpoint also served as the description of the whole

1 Note we do not need contexts because there are no nesting operators.

Asynchronous Session Types: Exceptions and Multiparty Interactions 203

conversation, but this is no longer possible for multiparty sessions. This is why we need

the type abstraction which describes global conversation scenarios of multiparty ses-

sions. This is achieved by defining global types, a multiparty session abstraction based

on the notion of choreography [4]: a type no longer describe the usage of a channel

from a one participant viewpoint, but will give a vantage perspective of the whole ses-

sion (and its session channels). An intuitive example is given by the diagram in the two

buyer protocol which gives us a global view, or choreography, of how the session would

run. However, having a global description may be useful at designing stage, but needs a

correspondent description of the local behaviour of each participant in the session. The

process of generating each participant local behaviour (or local session type) is called

end-point projection (EPP) or, simply, projection [4]. For instance, the EPP of Buyer1’s

behaviour from the diagram in the two buyer protocol would be a sequence of an output

(book title), an input (quote) and, finally, an output (quote halved).

Once we are capable of projecting global descriptions into end-point behaviour, we

can consider the following development steps for programs with multiparty sessions:

1. A programmer describes an intended interaction scenario as a global type G;

2. she develops code, one for each participant, incrementally validating its confor-

mance to the projection of G onto each participant by efficient type-checking.

When programs are executed, their interactions are guaranteed to follow the stipulated

scenario. The type specification also serves as a basis for maintenance and upgrade.

Global Types. A global session type, or global type, denoted G,G′, . . ., is given by the
following grammar:

G ::= p→ p′ : k 〈θ〉.G′ (values)

| p→ p′ : k {l j : G j} j∈J (branching)

| G,G′ (parallel)

| µt.G (recursive)

| t (variable)

| end (end)

θ ::= S̃ | α@p S ::= bool | nat | ... | 〈G〉

Type p → p′ : k 〈θ〉.G′ says that participant p sends a message of type θ to channel

k (represented as a finite natural number) received by participant p′ and interactions

described in G′ take place. We assume that in each prefix from p to p′ we have p � p′,

i.e. we prohibit reflexive interaction. θ ranges over value types S̃ or local types α paired

with participant names. Each value type is a vector of types for shared names called

sorts. A local type α, whose details will be addressed in the next subsection, may hereby

used for delegation of session channels. Type p → p′ : k {l j : G j} j∈J says participant p

sends one of the labels to channel k which is then received by participant p′. If l j is sent,

interactions described in G j take place.

Type G,G′ represents concurrent run of interactions specified by G and G′. Type

µt.G is a recursive type for recurring conversation structures, assuming type variables

(t, t′, . . .) are guarded in the standard way, i.e. type variables only appear under the pre-

fixes. As in standard session types, we take an equi-recursive view, not distinguishing

204 M. Carbone, N. Yoshida, and K. Honda

between µt.G and its unfolding G[µt.G/t]. We assume that 〈G〉 in the grammar of sorts

is closed, i.e. without type variables. Type end represents the termination of the session.

We identify “G, end” and “end,G” with G.

We stipulate that, in a global type G, each channel can only be used, one or more

times, among two fixed parties, one party using it for input/session reception/branching

while the other party for output/delegation/selection. This condition is not restrictive

and dispenses with the need for linearity check to ensure well-formedness of global

types found in [10] (see [2] for details).

Example 9 (A Global Type for the Two Buyer Protocol). We write principals and
channels with legible symbols though they are actually numbers: Bi = i, S = 3, b1= 1,
b2 = 2, b′

2
= 3, s1 = 4 and s2 = 5. The following is a global type for the two buyer

protocol:

B1 → S : s1〈string〉. S→ B1 : b1〈int〉. S→ B2 : b2〈int〉. B1 → B2 : b′
2
〈int〉.

B2→ S : s2

{

ok : B2→ S : s2 〈string〉.S→ B2 : b2 〈date〉.end,

quit : end}

}

The type gives a vantage view of the whole conversation scenario.

Example 10 (A Global Type for the Streaming Protocol). In this example, we
present the global type of the simple streaming protocol. Below we unfold its recur-
sion once, and set: d = 1, k = 2, c = 3, K = 1, DP = 2, C = 3 and KP = 4.

µt. DP → K : d 〈bool〉. KP→ K : k 〈bool〉. K→ C : c 〈bool〉.

DP→ K : d 〈bool〉. KP→ K : k 〈bool〉. K→ C : c 〈bool〉.t

Local Types. Local session types or local types, ranged over by α, β, .., are types for lo-
cal behaviour of processes in a multiparty session, acting as a link between global types
and processes (they have many analogies to standard session types) and are defined by
the following grammar:

α ::= k! 〈θ〉. α | k? 〈θ〉. α | k ⊕ {li : αi}i∈I | k & {li : αi}i∈I | µt. α | t | end

All constructs come from standard binary session types except from the following major

changes for multiparty interactions:

– Since a session now uses multiple channels, a session type needs to record the

identity (number) of a session channel it uses at each action type as found in [4].

– Since a type is inferred for each participant, we use the notation α@p (located type)

representing a local type α assigned to participant p. A located type is also used for

delegation.

Type k? 〈θ〉. α represents the behaviour of inputting values of type θ while k! 〈θ〉. α is

for sending. Types k & {li : αi}i∈I and k ⊕ {li : αi}i∈I are respectively for branching and

select at k. The rest is the same as the global types, demanding type variables occur

guarded by a prefix and taking an equi-recursive approach for recursive types. Note

local types α do not contain parallel composition like in [4].

Asynchronous Session Types: Exceptions and Multiparty Interactions 205

Projection. In the introduction to this section, we have discussed the need for a projec-

tion of global types into local behaviour. The following is the formal definition of such

a projection:

Definition 4 (Projection). Let G be linear. Then the projection of G onto p, written
G ↾p, is inductively given as:

(p1 → p2 : k 〈θ〉.G′)↾p =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

k! 〈θ〉.(G′ ↾p) if p = p1 � p2

k? 〈θ〉.(G′ ↾p) if p = p2 � p1

(G′ ↾p) if p � p2 ∧ p � p1

(p1 → p2 : k {l j : G j} j∈J)↾p =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

k ⊕ {l j : (G j ↾p)} j∈J if p = p1 � p2

k&{l j : (G j ↾p)} j∈J if p = p2 � p1

(
⊔

i∈I Gi ↾p) if p � p2 ∧ p � p1

and ∀i, j ∈ I.Gi ↾p ⋊⋉ G j ↾p

(G1,G2)↾p =

{

Gi ↾p if p ∈ Gi and p � G j, i � j ∈ {1, 2}

end if p � G1 and p � G2

(µt.G)↾p = µt.(G ↾p) t↾p = t end ↾p = end

Whenever the projection is defined, G is said to be projectable.

The mapping is intuitive. We regard the map to act on the syntax of global types. In
parallel composition, p should be contained in at most a single type, ensuring each type
is single-threaded. In the branching, all projections should generate an identical local
type (otherwise undefined) up to mergeability ⋊⋉. Mergeability [4], not present in the
original work on multiparty session types [10], is the smallest equivalence over local
types closed under all type contexts and the rule:

∀i ∈ (I ∩ J). αi ⋊⋉ βi ∀i ∈ I\J. ∀ j ∈ J\I. li � l j

k & {li : αi}i∈I ⋊⋉ k & {l j : β j} j∈J

Intuitively, the mergeability condition requires two local types to be identical except

from branches &, where branches with different labels may be different.

The projection of branching is then defined as the merging ⊔ of the projections of

the branches. Formally, α ⊔ β is a partial commutative operator over local types which

is well-defined iff α ⋊⋉ β and is an isomorphism except from the following case:

k & {li : αi}i∈I ⊔ k & {l j : β j} j∈J = k&({li : αi ⊔ βi}i∈I∩J ∪ {li : αi}i∈I ∪ {l j : β j} j∈J)

Using the merging operator above allows for more global types to have a projection. In

fact, we can also write global types where, for instance, in a binary branching from p1 to

p2, a third participant p3 can behave differently depending on the selection made by p1.

This is only allowed when p3 can be projected with branching local type: each branch

corresponds to a branch in the global type and may be selected by p2 (or some other

causally notified participant) according to p1’s selection. The following is an example

of projection and clarifies the usefulness of merging.

206 M. Carbone, N. Yoshida, and K. Honda

Example 11. Consider the following global type:

p1 → p2 : k {

ok : p2 → p3 : k′ {paymore : . . .},

quit : p2 → p3 : k′ {refund : . . .}

}

Above, p1 selects, over k, ok or quit. Based on this selection p2 will either select pay-
more or refund. The projection of p1 is the local type k⊕ {ok : . . . , quit : . . . , } while p2
is projected as:

k&{ ok : k′ ⊕ {paymore : . . .}, quit : k′ ⊕ {reject : . . .} }

However, the projection of p3 on the ok branch is k′&{paymore : . . .} whereas, on the
quit branch, it is k′&{refund : . . .}. Such a projection is not allowed in [10], however,
we can easily merge the two local types, yielding:

k′&{ paymore : . . . , refund : . . . }

Example 12. The following global type is not projectable:

A→ B : k{ok : C→ D : k′〈bool〉, quit : C→ D : k′〈nat〉}

Intuitively, when we project this type onto C or D, regardless of the choice made by
A, they should behave in the same way: participants C and D should be independent
threads. If we change the above nat to bool as: A → B : k{ok : C → D : k′〈bool〉, quit :
C→ D : k′〈bool〉}, we can define the coherent projection as follows:

{ k ⊕ {ok : end, quit : end}@A, k&{ok : end, quit : end}@B, k′!〈bool〉@C, k′?〈bool〉@D }

Environments. Assuming global types are projectable, judgements are shaped like the
ones for interactional exception:

Γ ::= ∅ | Γ, u : S | Γ, X : ∆

∆ ::= ∅ | ∆ · s̃ : {α@p}p∈I

The service environment (also called sorting) Γ is a finite map from names to sorts

and from process variables to session environment. A session environment ∆ records

linear usage of session channels. In the binary sessions, it assigned a type to a single

channel; now it assigns a family of located types to a vector of session channels. We

write s̃ : α@p for a singleton typing s̃ : {α@p}.

Therefore, judgements have the shape Γ ⊢ P⊲∆ which reads: “under the environment

Γ, process P has typing ∆”.

Typing System for Programs. The type system for programs is given in Table 6. Note

that if we set |s̃| = 1 and n = 2, and delete p from located type, the shape of rules is

essentially identical with the original binary session typing [19].

We shall now comment the rules that differ from standard binary session typing.

In (TR), the rule for the session request, the type for s̃ is the first projection of the

declared global type for a in Γ. Similarly, when typing session accept with (TA), we

take the p-th projection. The local type (G ↾p)@pmeans that the participant p has G ↾p,

Asynchronous Session Types: Exceptions and Multiparty Interactions 207

Table 6. Typing System for Expressions and Processes

which is the projection of G onto p, as its local type. The condition |s̃| = max(sid(G))

ensures the number of session channels meets those in G. The typing s̃ : α@p (which

stands for s̃ : {α@p}) ensures each prefix does not contain parallel threads sharing s̃.

Both rules, (TR) and (TA), are applicable whenever G is projectable.

(TO) and (T) are the rules for sending and receiving values. Since the k-th name

sk of s̃ is used as the subject, we record the number k. In both rules, “p” in α@p ensures

that P is (being inferred as) the behaviour for participant p, and its domain should be

s̃. Then the relevant type prefixes (k!〈S̃ 〉 for the output and k?〈S̃ 〉 for the input) are

composed in the conclusion’s session environment.

(TD) and (TSR) are the rules for delegation of a session and its dual (not

present in Section 3). Delegation of a multiparty session passes the whole capability

to participate in a multiparty session: thus operationally we send the whole vector of

session channels. The carried type α′ is located, making sure that the behaviour by

the receiver at the passed channels takes the role of a specific participant (here p′) in

the delegated multiparty session. The rest follows the standard delegation rule [19],

observing (TD) says that t̃ : α′@p′ does not appear in P symmetrically to (TSR)

which uses the channels in P.

208 M. Carbone, N. Yoshida, and K. Honda

(TS) is the rule for selection, and identical with the one used for interactional ex-

ceptions. In (TB), the type may have less branches than the actual ones occurring

in the process: this still ensures that a selection is never made on a branch that does

not exist [4]. This change in the rule was made to allow merging. The original work on

multiparty session types [10] adopts a rule like the one we used for exceptions.

(TP) uses ≍ to ensure well-formedness of the session typing, taking a the disjoint

union of each local type. The partial operator ◦ is defined as:

{αp@p}p∈I ◦ {α
′
p′@p

′}p′∈J = {αp@p}p∈I ∪ {α
′
p′@p

′}p′∈J

if I ∩ J = ∅. Then we say ∆1 and ∆2 are compatible, written ∆1 ∼ ∆2, if for all s̃i ∈

dom(∆i) such that s̃1 ∩ s̃2 � ∅, s̃ = s̃1 = s̃2 and ∆1(s̃) ◦ ∆2(s̃) is defined. When ∆1 ∼ ∆2,

the composition of ∆1 and ∆2, written ∆1 ◦ ∆2, is given as:

∆1 ◦ ∆2 = {∆1(s̃) ◦ ∆2(s̃) |s̃ ∈ dom(∆1) ∩ dom(∆2)}

∪∆1 \ dom(∆2) ∪ ∆2 \ dom(∆1)

In (TI) and (TV), “end only” means ∆ only contains end as session types.

Example 13 (Two Buyer Protocol). In the two buyer protocol, write Buyer1 as

process a[2, 3] (b1, b2, b
′
2
, s1, s2). Q1 and Buyer2 as a[2] (b1, b2, b

′
2
, s1, s2). Q2. Then Q1

and Q2 have the following typing under Γ = {a : 〈G〉} where G is given in the corre-

sponding example in pag. 204, letting Bi = i, S = 3, b1 = 1, b2 = 2, b′
2
= 3, s1 = 4 and

s2 = 5 and assuming P1, P2,Q are 0:

Γ ⊢ Q1 ⊲ s̃ : s1! 〈string〉. b1? 〈int〉. b′
2
! 〈int〉@B1

Γ ⊢ Q2 ⊲ s̃ : b2? 〈int〉. b′
2
? 〈int〉. s2 ⊕ {ok : s2! 〈string〉. b2? 〈date〉. end, quit : end}@B2

Similarly for Seller. After prefixing at a, we can compose all three by (TP).

Example 14 (The Streaming Protocol). We let Γ = {a : 〈G′〉} where G′ is given in

Example 9. Let d = 1, k = 2, c = 3, K = 1, DP = 2, C = 3 and KP = 4. Write R1,

R2, R3 and R4 for the processes which are under the initial prefix (at the shared name)

of Kernel, DataProducer, Consumer and KeyProducer, respectively. Then we can type

each agent as:

Γ ⊢ R1 ⊲ dkc : µt.d? 〈bool〉; k? 〈bool〉; c! 〈bool〉; t@K

Γ ⊢ R2 ⊲ dkc : µt.d! 〈bool〉; t@DP Γ ⊢ R4 ⊲ dkc : µt.c? 〈bool〉; t@C

(R4 is similar as R2). Note these types correspond to the projection of G′ onto respec-

tive participants: thus Kernel, DataProducer, Consumer and KeyProducer are typable

programs, which can be composed to make the initial configuration.

Example 15 (An Example of Delegation). One source of the expressiveness of the
session types comes from a facility of delegation (often called higher-order session
passing). We will type and see the relationship with global and local types. Consider
the following three participants:

Alice
def
= a[2] (t1, t2). b[2, 3] (s1, s2). t1!〈〈s1, s2〉〉. 0

Bob
def
= a[2] (t1, t2). b[1] (s1, s2). t1?((s1, s2)). s1! 〈1〉; 0

Carol
def
= b[2] (s1, s2). s1?(x); P

Asynchronous Session Types: Exceptions and Multiparty Interactions 209

where Alice delegates its capability to Bob. Since there are two multicasting, there are
two global specifications, one for a and another for b as follows:

Ga = A→ B : t1 〈s1! 〈int〉@A〉.end

Gb = A→ C : s1 〈int〉.end

where the type s1! 〈int〉@A means the capability to send an integer from participant A

via channel s1. This capability is passed to B so that B behaves as A. However, since two

specifications are independent, C does not have to know who would pass the capability.

Example 16 (Addition Protocol [1]). In this protocol, a client Client sends two natural
numbers n and m to a server Addition and waits for a reply containing the sum n + m.
Addition reacts to Client’s messages as follows: if the second operand is 0 then it sends
the first operand n back to Client as a result, otherwise it sends n and m to a third
participant called SuccPred which will reply with n + 1 and m − 1 and then send a
looping message to Client. This behaviour is repeated until the second operand becomes
0. Starting from the global type G, we have:

Client → Addition : k1 〈int〉. Client → Addition : k1 〈int〉.

µt. Addition → SuccPred : k2

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

tt : Addition → Client : k3 {ok : Addition → Client : k3 〈int〉.end}

ff : Addition → SuccPred : k2 〈int, int〉.SuccPred → Addition : k4 〈int, int〉.

Addition → Client : k3 {wait : t}

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

The projection of G generates the following local types:

G ↾Client = k1! 〈int〉. k1! 〈int〉. µt. k3&{ok : k3? 〈int〉. end, wait : t}

G ↾Addition = k1? 〈int〉. k1? 〈int〉. µt. k2 ⊕

{

tt : k3 ⊕ {ok : k3! 〈int〉.end},

ff : k2! 〈int, int〉.k4? 〈int, int〉.k3 ⊕ {wait : t}

}

G ↾SuccPred = µt. k2&{tt : end, ff : k2? 〈int, int〉.k4! 〈int, int〉.t}

and, finally, the protocol can be implemented as:

Client = a[2, 3] (k1, k2, k3, k4). k1!〈n〉. k1!〈m〉. µX. k3 ⊲ {ok : k3?(x), wait : X}

Addition = a[2] (k1, k2, k3, k4). k1?(x1). k1?(x2).

µX. if x2 = 0

then k2 ⊳ tt. k3 ⊳ ok. k3!〈x1〉

else k2 ⊳ ff. k2!〈x1, x2〉. k4?(x1, x2). k3 ⊳ wait. X

SuccPred = a[3] (k1, k2, k3, k4). µX. k2 ⊲ {tt : 0, ff : k2?(x, y). k4!〈x + 1, y − 1〉}

where a is the shared name for the protocol, Client = 1, Addition = 2 and SuccPred =

3. Note that we had to introduce a synchronisation between Addition and Client at each

iteration. This avoids the case when Client waits forever in case of negative m hence

violating safety (in such case the global type would not be projectable).

210 M. Carbone, N. Yoshida, and K. Honda

On Run-Time Processes and Subject Reduction. Similarly to what we have dis-

cussed for asynchronous exceptions, also multiparty session types enjoy a subject re-

duction property.

Informally, we need to extend the typing rules to include those for runtime processes

which involve message queues in a fashion similar to what discussed for asynchronous

interactional exceptions. .

Theorem 5 (Subject Reduction). Γ ⊢ P ⊲ ∅ and P→ P′ imply Γ ⊢ P′ ⊲ ∅.

By the correspondence between local types and global types, these results guarantee that

interactions between typed processes exactly follow the conversation scenario specified

in a global type. Also in this case, safety and session fidelity follow. Also, under a certain

condition we can also have progress [10].

5 Discussion

5.1 Interactional Exceptions

Comparing to the original work in [5], we have omitted the typing of run-time processes

which, although important, is only used as a technique for proving type safety. The orig-

inal work also addresses the problem of termination for try-catch blocks. For instance,

suppose there are two (and only two) processes in a configuration, which are try-catch

blocks and which are communicating in a session. If each party’s default process be-

comes the inaction process, it is natural to reduce each try-catch block to the inaction,

freeing up the resources for its handler. This garbage collection is essential when we

consider integration of interactional exceptions into the standard imperative program-

ming languages with sequential composition since in this case launching a handler de-

pends on whether a process reduces to the inaction or not. In [5], it is shown that a

well-typed process satisfies a liveness condition with such a garbage collector.

As discussed in [5], programs can be extended such that in the session initialisation

processes ∗c(λ)[P,Q] and c(λ)[κ̃, P,Q], the handler Q may contain another try-catch

at the same λ (currently, try-catch is only used at run-time). Such an extension of the

formalism would allow a process to “try” again after an exception has been thrown

(cascading exceptions). For this purpose, try-catch types should be extended such that

in α{[β]} the type α is always plain while β can be either plain or a try-catch type. With

essentially the same operational semantics, this generalised calculus satisfies the subject

reduction and liveness properties.

The key idea of the presented operational semantics is the use of exception levels in

queues and their interplay with wrapped processes. In implementation, the queue level

can be recorded in a header of each message which its receiver can check efficiently. The

wrapping level can be a part of a process state, recording its exception depth. Various

optimisations are possible, for example dispensing with most coordination protocols

when the handler type is trivial, obtaining essentially the same level of efficiency as

local exception.

Session delegations are not allowed in [5] but can be formulated by storing frozen

processes in queues. The type soundness holds by extending the typing rules with those

in [8].

Asynchronous Session Types: Exceptions and Multiparty Interactions 211

A further generalisation to multiparty session types for flexible multicast exception

propagation is currently being investigated.

5.2 Multiparty Session Types

Multiparty session types have been further investigated since the original work in [10].

The theory presented in this lecture note mainly differs from [10] in two points: (i)

session channels can only be used between two fixed parties (in one direction), first

discovered in [2] and (ii) the introduction of the merging operator for allowing a broader

set of projectable global types (first proposed here).

Bejleri and Yoshida [1] have studied multiparty synchronous session types, a variant

where communication is synchronous (no queues) as in [8]. They introduce multicast-

ing, higher-order communication via multi-polarity labels and an alternative definition

of delegation in global types. The work in [2] develops a type system (built up on the

original one) for global progress in multiparty sessions: well typed terms guarantee the

absence of deadlock. A very recent work, [14], introduces communication subtyping,

which allows for partial commutativity of actions, providing flexibility and safe optimi-

sation. The authors propose an algorithm for the subtyping relation, which can calculate

conformance of end-point processes to an agreed global specification. Moreover, they

introduce an algorithm for abstracting a global specification from end-point processes

allowing programmer to choose between a top-down and a bottom-up style of commu-

nication programming.

There are several significant future topics on the theory and applications of multi-

party session types. This generalised session type structure is currently being used as

one of the formal foundations of the next version of a web service description language,

WS-CDL from W3C [17] and a message scheme for financial protocols, UNIFI from

ISO [12]. Another topic is the use of this theory as a basis of communication-centred

extensions of general purpose programming languages [11]. Others include tools assis-

tance for the design and elaboration of global types; and integration of the type disci-

pline with diverse specification concerns including security and assertional methods.

References

1. Bejleri, A., Yoshida, N.: Synchronous multiparty session types. In: Proceedings of Pro-

gramming Languages Approaches to Concurrency and Communication-Centric Software,

PLACES 2008 (2008)

2. Bettini, L., Coppo, M., D’Antoni, L., Luca, M.D., Dezani-Ciancaglini, M., Yoshida, N.:

Global progress in dynamically interleaved multiparty sessions. In: van Breugel, F., Chechik,

M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 418–433. Springer, Heidelberg (2008)

3. Bonelli, E., Compagnoni, A.: Multipoint Session Types for a Distributed Calculus. In: Barthe,

G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS, vol. 4912, pp. 240–256. Springer,

Heidelberg (2008)

4. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Programming for

Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 2–17. Springer,

Heidelberg (2007)

5. Carbone, M., Honda, K., Yoshida, N.: Structured interactional exceptions for session types.

In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 402–417.

Springer, Heidelberg (2008)

212 M. Carbone, N. Yoshida, and K. Honda

6. Gay, S., Hole, M.: Subtyping for Session Types in the Pi-Calculus. Acta Informatica 42(2/3),

191–225 (2005)

7. Gay, S., Vasconcelos, V.T.: Asynchronous functional session types. TR 2007–251, University

of Glasgow (May 2007)

8. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Disciplines for

Structured Communication-based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,

vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

9. Honda, K., Yoshida, N., Carbone, M.: Web Services, Mobile Processes and Types. The Bul-

letin of the European Association for Theoretical Computer Science 91, 165–185 (2007)

10. Honda, K., Yoshida, N., Carbone, M.: Multiparty Asynchronous Session Types. In: POPL

2008, pp. 273–284. ACM, New York (2008)

11. Hu, R., Yoshida, N., Honda, K.: Session-Based Distributed Programming in Java. In: Vitek,

J. (ed.) ECOOP 2008. LNCS, vol. 5142, pp. 516–541. Springer, Heidelberg (2008)

12. International Organization for Standardization ISO 20022 UNIversal Financial Industry mes-

sage scheme,

http://www.iso20022.org/index.cfm?item id=56664#interest

13. Lamport, L.: Time, clocks and the ordering of events in a distributed system. Communica-

tions of the ACM 21(7), 558–564 (1978)

14. Mostrous, D., Yoshida, N., Honda, K.: Global Principal Typing in Partially Commutative

Asynchronous Sessions. In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 316–332.

Springer, Heidelberg (2009)

15. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C. John

Wiley & Sons, Inc., Chichester (1993)

16. Takeuchi, K., Honda, K., Kubo, M.: An Interaction-based Language and its Typing System.

In: Halatsis, C., Philokyprou, G., Maritsas, D., Theodoridis, S. (eds.) PARLE 1994. LNCS,

vol. 817, pp. 398–413. Springer, Heidelberg (1994)

17. Web Services Choreography Working Group, http://www.w3.org/2002/ws/chor/

18. Wikipedia. Exception handling (2009),

http://en.wikipedia.org/wiki/Exception handling

19. Yoshida, N., Vasconcelos, V.T.: Language primitives and type disciplines for structured

communication-based programming revisit. ENTCS 171(4), 73–93 (2007)

http://www.iso20022.org/index.cfm?item_id=56664#interest
http://www.w3.org/2002/ws/chor/
http://en.wikipedia.org/wiki/Exception_handling

Contract-Based Discovery and Adaptation

of Web Services

Luca Padovani

Istituto di Scienze e Tecnologie dell’Informazione – Università di Urbino

padovani@sti.uniurb.it

Abstract. A contract describes the observable behavior of a Web service. When

looking for Web services providing specific capabilities, the contract can be used

as an important search key. This calls for a notion of contract equivalence that

goes beyond nominal or structural equivalence.

In this paper we define a simple, yet expressive formal language for describing

Web service contracts. We provide a natural, set-theoretic semantics of contracts

and we use it for defining a family of equivalence relations that can be effectively

used for discovering and adapting Web services implementing a specific contract.

1 Introduction

Web services are distributed processes equipped with a public description of their inter-

face. Such description typically includes the type – or schema – of messages exchanged

with the service, the operations provided by the service [12], and also the behavior – or

contract – supported by the service [1,3].

As an example, Figure 1 shows (a streamlined fragment of) the WS-BPEL document

describing the behavior of a Web service that waits for purchase orders from a client,

verifies that the client has enough credit for the purchase, and arranges the delivery of

the ordered items with the deposit if the ordered item is available. The receive oper-

ation (line 3) waits for the order from the client, and stores the order information into a

local variable Request. The flow activity (lines 4–9) invokes the credit and deposit

services in parallel, and waits for the answer from both invocations. Then, the switch

activity (lines 10–23) checks the responses from the credit and deposit services. If both

responses are positive, namely if the client has enough credit and if the ordered item is

available from the deposit (lines 11–12), the service sends a shipment notification to the

deposit (line 13) and a confirmation to the client (line 14). If the item is not available,

but the client does have enough credit (line 16), then the service issues a refund to the

client (line 17) and notifies the client that the order was unsuccessful (line 18). In the

remaining cases (lines 20–22) the service simply notifies the client of the unsuccessful

transaction (line 21).

A service is advertised by registering its description in one or more Web service

repositories [4,6,13,31] that can be queried for discovering services satisfying a partic-

ular client. This calls for a formalization of the contract language and of a notion of

client satisfaction.

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 213–260, 2009.

c© Springer-Verlag Berlin Heidelberg 2009

214 L. Padovani

1 <process>

2 <sequence>

3 <receive operation="Order" variable="Request"/>

4 <flow>

5 <invoke operation="Deposit" inputVariable="Request"

6 outputVariable="Deposit"/>

7 <invoke operation="Credit" inputVariable="Request"

8 outputVariable="Credit"/>

9 </flow>

10 <switch>

11 <case condition="getVariableData(Deposit) == true

12 && getVariableData(Credit) == true)">

13 <invoke operation="Ship" inputVariable="Request"/>

14 <reply operation="Order" value="OK"/>

15 </case>

16 <case condition="getVariableData(Credit) == true)">

17 <invoke operation="Refund" inputVariable="Request"/>

18 <reply operation="Order" value="NO"/>

19 </case>

20 <otherwise>

21 <reply operation="Order" value="NO"/>

22 </otherwise>

23 </switch>

24 </sequence>

25 </process>

Fig. 1. WS-BPEL description of ordering service

The contract language. As regards the formalization of the contract language, we will

focus on the observable behavior of services by abstracting every detail that is specific

to a particular implementation. For example, by looking at Figure 1, we realize that one

possible abstraction is given by the actions O, D, C, S, and R (which we use for the sake of

brevity in place of the more verbose Order, Deposit, Credit, Ship, and Refund

in Figure 1) that are performed by the service. The fact, for example, that the service

declares a local variable Request is not interesting, as far as the observable behavior

is concerned. However, this abstraction of the service behavior is too weak, because it

does not say anything about the order in which those actions are (or can be) executed

by the service. A more precise abstraction of the service behavior is to consider the set

of traces of actions that can be performed by the service. In the example of Figure 1 we

have 6 possible traces, namely

{ODCSO,OCDSO,ODCRO,OCDRO,ODCO,OCDO}

which are obtained by considering the 3 outcomes of the transaction (successful, un-

successful because the item is not available, all the remaining cases) times the possible

interleaving of the actions D and C in the flow activity (lines 5–10). In practice, we are

approximating the behavior of two activities occurring in parallel with all the possible

permutations of these actions (interleaving semantics).

Contract-Based Discovery and Adaptation of Web Services 215

This is without doubt a more precise description of the service, but still it has a major

shortcoming in that it confuses two very different choices. On one hand, the simultane-

ous presence of traces of the form ODs and traces of the form OCs must be interpreted

as the fact that the service does not mandate which of the two actions D and C should

occur first. More technically, this is an external choice between the actions D and C. It

is the environment in which the service operates, and not the service itself, that decides

which of the two actions to perform. On the other hand, the simultaneous presence of

traces such as sSO, sRO, and sO must be interpreted as the fact that the service decides

whether the order is successful, in which case an S action is performed followed by the

notification to the client, or unsuccessful because the item is unavailable, in which case

a R action is performed followed by the notification to the client, or only a notification

is sent. More technically, this is an internal choice between the actions S, R, and O,

each one followed by a corresponding continuation. It is the service that autonomously

decides, depending on its internal state, which of these actions to perform.

In summary, the contract of a service is a structured term that describes the actions

performed, the order in which these actions are performed, and the branching points

(corresponding to external and internal choices) in the service behavior. Additionally,

we will distinguish actions denoting incoming messages received by the service, from

actions denoting outgoing messages that correspond to invocations to other services

or to responses to the client of the service. This distinction will be essential for deter-

mining possible causal dependencies between actions, as we will see in a later section.

More technically, we express contracts using a fragment of CCS [16] with two choice

operators (+ for external choice and ⊕ for internal choice) without relabeling, restric-

tion, and parallel composition. For example, the service in Figure 1 can be described by

the term

O.(D.C.D.C.(S.O⊕R.O⊕O)+C.D.D.C.(S.O⊕R.O⊕O))

where we have distinguished the requests D and C from the corresponding responses D

and C.1

The subcontract relation. As regards the formalization of the satisfaction relation be-

tween a client and a service, the intuition is that a client is compliant with (or satisfied

by) a service if every possible interaction between the client and the service leads the

client into a successful state. If we represent the behavior of the client by means of a

contract ρ and σ is the contract of the service, we denote this fact by writing ρ ⊣ σ . The

definition of compliance calls for two more notions: that of interaction between client

and service, and that of successful state for a client. We will postpone the exact defini-

tion of these two notions to a later section. For the time being, we observe that a formal

notions of compliance may be used for implementing contract-based query engines.

The query for services that satisfy ρ is answered with the set Q(ρ) = {σ | ρ ⊣ σ}.

A major drawback of this approach is that the complexity of running a query grows

with the number of services registered in the repository, independently of the fact that

many registered services may actually be equivalent, in terms of the clients they satisfy.

1 We have deliberately chosen to read the response from the deposit service first, followed by

the response from the credit service. This is not restrictive since the service cannot proceed

until both responses are received.

216 L. Padovani

In fact, it makes sense to relax this equivalence relation into a subcontract relation:

we say that σ is a subcontract of τ , notation σ � τ , if every client satisfied by σ is

also satisfied by τ . In this sense, any service with contract τ (or greater, according

to �) can appear in the answer of a query for a service σ if σ � τ . Now, if we are

able to compute the canonical service that satisfies ρ , namely the smallest (according

to �) contract ρ⊥ such that ρ ⊣ ρ⊥, then we can answer the above query with the set

Q(ρ) = {σ | ρ⊥ � σ}. The advantage of this approach is that the � relation between

services can be precomputed as services are registered in the repository, and the query

engine needs only scan through the �-minimal contracts. Furthermore, the definition

of a formal theory of contracts and of a notion of contract equivalence finds useful

applications also outside the scope of Web service discovery: it may help and drive the

development of new Web services, as well as supporting maintenance and refactoring

of existing ones.

Technical issues aside, it is possible to argue about some of the properties that we

expect from the subcontract relation. For example, it is reasonable to expect that σ ⊕τ �
σ , namely that it is possible to use a service with contract σ in place of a service that

internally decides to behave according to either σ or τ . The larger service is more

deterministic than the smaller one. In general, we expect � to reduce nondeterminism.

In a dual manner, it is also reasonable to expect that σ �σ +τ , namely that it is possible

to use a service that externally offers more possible behaviors in place of a service that

offers a subset of them. Unfortunately, this relation is much more subtle, and it does

not hold in general because the additional behavior τ may cause interferences with σ
and also with clients of the smaller service. We will see that it is possible to partially

guarantee this desirable property if we assume that the interaction between the client

and a service is mediated by a suitable orchestrator. In a context where a third process,

the orchestrator, helps client and service to interact smoothly, other relations become

feasible. For example, it would be reasonable to expect that a.b.σ � b.a.σ , namely

that the order in which subsequent input actions are performed by the service should

be irrelevant and similarly for sequences of output actions. In general, it should be

possible to replace a service with contract a.b.σ with another one with contract b.a.σ ,

since the latter is able to send the b message without needing an a message from the

client. Conversely, it should not be possible to replace a service with contract a.b.σ with

another one with contract b.a.σ , since a client of the first service may need the content

of the a message before being able to send b to the service.

The aim of this tutorial is the definition of a subcontract relation that can be effec-

tively used for the discovery of all and only those Web services that can satisfy a given

client. Here, “only” means that Web services whose contracts are deemed equivalent

should be compatible, namely they should satisfy the same clients; “all” means that the

equivalence relation should be as coarse as possible, so a to maximize the search space

and favor Web service reuse; “can” means that we should tolerate a certain amount of

incompatibility between Web services whose contracts are deemed equivalent, provided

that there is a sufficiently simple (i.e. automatic) way of avoiding such incompatibilities.

Structure of the paper. In §2 we define syntax and semantics of the contract language

and we define strong variants of the compliance and subcontract relations. We will

see that these relations enjoy nice properties, but are too strict for the purposes of Web

Contract-Based Discovery and Adaptation of Web Services 217

service discovery. In §3 we define weak variants of compliance and subcontract relation,

corresponding to the scenario where client and services interact while being mediated

by a simple orchestrator that blocks some actions and permits others. We proceed by

studying simple orchestrators and the fundamental properties of the weak relations they

induce, including their connection with the corresponding strong variants and a sound

and complete deduction system for the weak subcontract relation. In §4 we give or-

chestrators the ability of buffering messages from the client of from the service, and of

delivering them at later stages in the interaction. We will go through a similar round

of properties and results as we did for the simple orchestrators in §3. §5 shows how to

compute the principal dual contract ρ⊥ of a client contract ρ . In §6 we argue that all

the definitions and results from previous sections can be naturally extended to the case

of potentially infinite behaviors. We will do so by departing from standard process-

algebraic techniques and by adopting a more basic, yet elegant approach. In §7 we

devise an algorithm for the subcontract relation defined in §4, which includes the ones

in §2 and in §3. The algorithm is proved to be sound and complete. §8 provides a some-

what more extensive example of application of the theory to an adaptation of the dining

philosophers problem in the Web service setting. §9 concludes the paper with a survey

of some closely related work and a sketch of possible tracks of future research. Long

proofs and auxiliary results have been moved to the appendix for improving readability.

2 A Theory of Contracts

2.1 Contracts: Syntax and Semantics

Let us begin by fixing some notation. The syntax of contracts makes use of a denumer-

able set N of names ranged over by a,b, . . . ; we write N for the set of co-names a,

where a ∈N . Names represent input actions, while co-names represent output actions;

we let α,β , . . . range over actions, namely elements of N ∪N ; we let ϕ ,ϕ ′, . . . range

over strings of actions, ε being the empty string as usual; we let R,S, . . . range over

finite sets of actions; we let α = α and R = {α | α ∈ R} and ϕ be the sequence obtained

by changing every action α in ϕ with its corresponding co-action α . The meaning

of names is left unspecified: they can stand for ports, operations, message types, and

so forth.

Definition 1 (contract syntax). Contracts are ranged over by ρ ,σ ,τ, . . . and their syn-

tax is given by the following grammar:

σ ::= contract

0 (null)

| α.σ (action prefix)

| σ + σ (external choice)

| σ ⊕σ (internal choice)

α ::= action

a (input)

| a (output)

The null contract 0 describes the idle process that offers no action; the contract α.σ
describes a process that offers the action α and then behaves as σ ; the contract σ + τ is

218 L. Padovani

the external choice of σ and τ and describes a process that can either behave as σ or as

τ depending on the party it is interacting with; the contract σ ⊕ τ is the internal choice

of σ and τ and describes a process that autonomously decides to behave as either σ or

τ . For the sake of brevity we will omit trailing 0’s, so for instance we will write a.b in

place of a.b.0.

We proceed by giving contracts an operational semantics that describes how they

evolve over time and which actions they offer. In this chapter, we will blur the dis-

tinction between processes and contracts so that whenever we speak of a contract that

emits or offers an action or exhibits a certain behavior, what we really mean is that

the process respecting the contract emits or offers the same action or exhibits the same

behavior.

Definition 2 (operational semantics of contracts). The operational semantics of con-

tracts is described by the rules below

α.σ
α

−→ σ σ ⊕ τ −→ σ
σ

α
−→ σ ′

σ + τ
α

−→ σ ′

σ −→ σ ′

σ + τ −→ σ ′ + τ

plus the symmetric of the last three rules.

The relation −→ denotes internal, invisible transitions, while
α

−→ denotes visible tran-

sitions labeled with an action α . The first rule states that a contract α.σ may offer an

action α and evolve to the residual contract σ . The second rule states that a contract

σ ⊕ τ may evolve to σ (or to τ) by means of an invisible, internal transition. The third

rule states that a contract σ + τ offers all the actions that are offered by either σ or

τ . Finally, the last rule states that + is a truly external choice: the internal transition

σ −→ σ ′ does not preempt the τ branch.2 We write =⇒ for the reflexive, transitive

closure of −→; let
α

=⇒ be =⇒
α

−→=⇒; we write σ
α

−→ if there exists σ ′ such that

σ
α

−→ σ ′, and similarly for σ
α

=⇒; let init(σ)
def
= {α | σ

α
=⇒}.

We now have all the technical instruments for defining how a client and a service

interact and what it means for a client to be in a successful state. As regards the lat-

ter notion, we reserve a special action e (for “end”) that we assume to occur in client

contracts only and we say that a client ρ is satisfied if ρ
e

−→, namely if it has the imme-

diate possibility of offering an e action. Observe that, by the last rule in Definition 2, if

ρ
e

−→, then ρ ′ e

−→ for every residual ρ ′ such that ρ =⇒ ρ ′. In general, once an action

is offered externally by a contract, it cannot be revoked by means of internal moves of

the same contract.

Definition 3 (strong compliance). A system is a pair ρ ‖σ of a (client) contract ρ and

a (service) contract σ interacting with each other. Let −→ be the least relation between

systems inductively defined as follows:

ρ −→ ρ ′

ρ ‖σ −→ ρ ′ ‖σ

σ −→ σ ′

ρ ‖σ −→ ρ ‖σ ′

ρ
α

−→ ρ ′ σ
α

−→ σ ′

ρ ‖σ −→ ρ ′ ‖σ ′

2 The transition relation of contracts is the same as that of CCS without τ’s [16].

Contract-Based Discovery and Adaptation of Web Services 219

We write =⇒ for the reflexive, transitive closure of −→; we write ρ ‖σ �−→ if there

exist no ρ ′ and σ ′ such that ρ ‖σ −→ ρ ′ ‖σ ′. We say that (the client contract) ρ is

strongly compliant with (the service contract) σ , notation ρ ⊣σ , if ρ ‖σ =⇒ ρ ′‖σ ′ �−→

implies ρ ′ e

−→.

The first two rules in the definition of −→ for systems indicate that client and service

may evolve autonomously by means of internal moves. The last rule describes a syn-

chronization between client and service performing complementary actions. A client ρ
is strongly compliant with a service σ if every computation of the system ρ ‖σ reaching

a stable state ρ ′ ‖σ ′ is such that ρ ′ e

−→, which denotes the satisfaction of the client. For

instance a.e+ b.e ⊣ a⊕ b and a.e⊕ b.e ⊣ a + b, but a.e⊕ b.e �⊣ a⊕ b because of the

computation a.e⊕b.e‖ a⊕b =⇒ a.e‖ b �−→.

Observe that compliance is an asymmetric relation as it only concerns the client’s

satisfaction. Also, compliance is preserved by system reduction. Namely, if ρ ⊣ σ and

ρ ‖σ =⇒ ρ ′ ‖σ ′, then ρ ′ ⊣ σ ′.

The (strong) compliance relation provides us with the most natural equivalence for

comparing services: the (service) contract σ is “smaller than” the (service) contract τ if

every client that is compliant with σ is also compliant with τ .

Definition 4 (strong subcontract relation). Let �σ�s def
= {ρ | ρ ⊣ σ}. We say that σ

is a subcontract of τ , notation σ ⊑ τ , if �σ�s ⊆ �τ�s. We write ≃ for the equivalence

relation induced by ⊑, namely ≃ = ⊑∩⊒.

For instance, we have a⊕ b ⊑ a because every client that is satisfied by a service that

may decide to offer either a or b is also satisfied by a service that systematically offers

a. On the other hand a.(b+d) �⊑ a.b+a.d since a.b.e ⊣ a.(b+d) but a.b.e �⊣ a.b+a.d
because of the computation a.b.e‖a.b+a.d −→ b.e‖d �−→. In the last example a client

of a.(b + d) can decide whether to receive b or d after sending a, whereas in a.b+ a.d
only one of these actions is available, according to the branch taken by the service. In

fact it is possible to prove that a.b+ a.d ≃ a.(b⊕d).

2.2 Alternative Characterization

The set-theoretic definition of the subcontract relation above embeds the notion of safe-

substitutability by its own definition, but gives little insight on the properties of ⊑ and

is also hard to use in proofs. For these reasons it is desirable to define an alternative

characterization of ⊑, which is also propedeutic to the alternative characterizations of

the weak subcontract relations in §3 and in §4. In order to define it we need two auxiliary

notions, that of contract continuation and of ready set.

The transition relation of contracts describes the evolution of a contract from the

point of view of the process exposing, or implementing, the contract. The notion of

contract continuation, which we are to define next, considers the point of view of the

process it is interacting with.

Definition 5 (contract continuation). Let σ
α

=⇒. The continuation of σ with respect

to α , notation σ(α), is defined as σ(α)
def
=

⊕

σ=⇒
α

−→σ ′ σ
′. We generalize the notion of

continuation to finite sequences of actions so that σ(ε) = σ and σ(αϕ) = σ(α)(ϕ).

220 L. Padovani

For example, a.b+ a.d
a

−→ b (the process knows which branch has been taken after an

action a) but (a.b+a.d)(a) = b⊕d (the party interacting with a.b+a.d does not know

which branch has been taken after seeing an a action, hence it considers both).

The ready sets of a contract tell us about its internal nondeterminism.

Definition 6 (ready set). We say that σ has ready set R, written σ ⇓ R, if σ =⇒ σ ′ �−→
and R = init(σ ′).

Intuitively, σ ⇓ R means that σ can independently evolve, by means of internal transi-

tions, to a stable contract σ ′ which only offers the actions in R. For example, {a,b} is

the only ready set of a + b (both a and b are always available), whereas the ready sets

of a⊕ b are {a} and {b} (the contract a⊕ b may evolve into a state where only a is

available, or into a state where only b is available). Similarly, a+(b⊕ c) has two ready

sets {a,b} and {a,c}. Namely, the availability of action a is always guaranteed (it can

be chosen externally, see “+” in the contract), but only one of b or c will be available

(the choice of which is made internally, see “⊕” in the contract).

We are now ready to define an alternative characterization of ⊑.

Definition 7 (coinductive strong subcontract). We say that S is a coinductive strong

subcontract relation if (σ ,τ) ∈ S implies

1. τ ⇓ S implies σ ⇓ R and R ⊆ S for some R, and

2. τ
α

=⇒ implies σ
α

=⇒ and (σ(α),τ(α)) ∈ S .

Condition (1) requires τ to be more deterministic than σ (every ready set of τ has a

corresponding one of σ that offers fewer actions). Condition (2) requires τ to offer no

more actions than those offered by σ , and every continuation after an action offered by

both σ and τ to be in the subcontract relation.

The next results proves that Definition 7 is indeed a sound and complete characteri-

zation of ⊑.

Theorem 1. ⊑ is the largest coinductive subcontract relation.

2.3 Properties of the Strong Subcontract Relation

The alternative characterization of ⊑ allows us to prove some interesting properties of

the strong subcontract relation. First of all, we have now formal evidence that σ ⊕τ ⊑ σ
holds for every σ and τ . Indeed, the ready sets of σ are a subset of the ready sets of

σ ⊕τ , hence both conditions in Definition 7 are trivially satisfied. However, ⊑ turns out

to be rather restrictive, at least if compared to the hypothetical subcontract relation � we

have informally used in the introduction. In particular, we have a �⊑ a+b, because a+b

can offer a b action that is not offered by a, thus violating condition (2). For example,

the client ρ
def
= a.e+ b is such that ρ ⊣ a, but ρ �⊣ a + b. Obviously, permutation of

actions is also unsupported by ⊑. Nonetheless, ⊑ enjoys other fundamental properties,

and it is at the core of the weak subcontract relations we will define in later sections.

Contract-Based Discovery and Adaptation of Web Services 221

Proposition 1. The following properties hold:

1. ⊑ coincides with the must preorder [16,15,21] for strongly convergent processes;
2. ⊑ is a precongruence with respect to all the operators of the contract language.

Property (1) connects ⊑ with the well-known must testing preorder. This result is not

entirely obvious because the notion of “satisfied client” we use for comparing services

differs from that of “passing a test” used for comparing processes in the standard testing

framework (see [24] for more details).

Property (2) states that ⊑ is well behaved and that it can be used for modular refine-

ment. Namely, we can refine parts of a contract separately, with the guarantee that the

resulting contract is a refinement of the original one. The weak variants of the subcon-

tract relation that we will define in the following sections do not enjoy this property in

general, but not without reason as we will see.

Further insight on ⊑ can be gained by giving a sound and complete axiomatization of

the subcontract relation. This consists of a finite set of laws that express the fundamental

properties of � and that can be used for proving every relation σ ⊑ τ .

Table 1. Axiomatization for ⊑

(E1) σ +σ = σ
(E2) σ + τ = τ +σ
(E3) σ +(σ ′ +σ ′′) = (σ +σ ′)+σ ′′

(E4) σ +0 = σ

(I1) σ ⊕σ = σ
(I2) σ ⊕ τ = τ ⊕σ
(I3) σ ⊕ (σ ′⊕σ ′′) = (σ ⊕σ ′)⊕σ ′′

(D1) σ +(σ ′⊕σ ′′) = (σ +σ ′)⊕ (σ +σ ′′)
(D2) σ ⊕ (σ ′ +σ ′′) = (σ ⊕σ ′)+(σ ⊕σ ′′)
(D3) α.σ +α.τ = α.(σ ⊕ τ)
(D4) α.σ ⊕α.τ = α.(σ ⊕ τ)

(RED) σ ⊕ τ ≤ σ

Table 1 defines an axiomatization for the relation ≤, which coincides with ⊑ as we

will see shortly. In the table we use a single axiom σ = τ in place of two axioms σ ≤ τ
and τ ≤ σ . Rules (E1–E4) state that the external choice is an idempotent, commutative,

and associative operator with neutral element 0. Rules (I1–I3) state that internal choice

is idempotent, commutative, and associative. Rules (D1–D2) state that the two choices

distribute over each other, while rules (D3–D4) state the distributivity laws of prefix

over choices. Rules (D3) and (D4) together state a particularly important fact: an exter-

nal choice α.σ + α.τ where both branches are guarded by the same action is actually

an internal choice α.σ ⊕α.τ in disguise. This is one of the reasons why σ ≤ σ + τ
does not hold in general, the other being that τ can introduce interferences as we have

seen in an earlier example. Rule (RED) is perhaps the most important one in that it

characterizes the essence of ⊑ as a relation that reduces nondeterminism.

The axiomatization in Table 2 is sound and complete with respect to ⊑.

Theorem 2. ⊑ = ≤.

The proof of this result is omitted since in §3 we are going to prove soundness and

completeness of the deduction system for a weaker subcontract relation that includes ⊑
at its core.

222 L. Padovani

3 Towards a Weaker Subcontract Relation

3.1 Synchronous Orchestrators

We have seen that the strong subcontract relation (Definition 4) is quite restrictive in

the contracts that it deems comparable and the reason lies, not surprisingly, in the com-

pliance relation (Definition 3) from which it is defined. Thus, we need to re-consider

the compliance relation and in particular we have to investigate in more details the rea-

sons why some clients are not satisfied by some services. Let us start by considering the

interaction

a.e⊕b.e‖ a −→ b.e‖ a (1)

which tells us that the client a.e⊕b.e is not compliant with the service a. In this example

we could say that the client is the one to blame, since it may autonomously decide to

send a message b that the service is not willing to receive. We could also say that the

service is the one to blame, since it is not flexible enough to receive every message that

the client is willing to send. In a dual manner, we can consider the interaction

a.e‖ a⊕b−→ a.e‖ a (2)

which tells us that the client a.e is not compliant with the service a⊕b. In this case too

we can put the blame on either the client or the service, but the point we want to make

here is that in both examples the missed compliance is a consequence of some internal

behavior of either (or both) parties, and that there is no way to mend the situation, since

we assume that clients and services are black boxes whose internal behavior cannot be

constrained from the outside.

Consider now the interaction

a.e+ b.c.e‖ a + b.d −→ c.e‖ d

which proves that a.e+ b.c.e is not compliant with a + b.d. If we were to describe

contracts using English words, it is as if the client says: “here are a message a and a

message b, please pick one. If you choose the message b, send me back a message c”.

On the other side, the service says: “I’m willing to receive a message a or a message

b, please choose what you want. If you choose the message b, I will send you back

a message d”. We realize that this example of failed compliance differs significantly

from the previous ones, because the failure is due to a choice that is external from

both the client and the service. None of them mandates a particular synchronization,

on a or on b, to occur, but the strong compliance takes into account every possible

synchronization, and in the interaction above the bad one has been chosen. Had client

and service synchronized on a, which was a perfectly feasible option for both the client

and the service, the client would have been satisfied.

The last example provides us with the necessary enlightenment for relaxing the def-

inition of compliance: if there is a third party that controls the interaction between the

client and the service, in the sense that it may prevent certain synchronizations from

happening, then a.e+ b.c.e can be made compliant with a + b.d. In the Web service

domain, this centralized control of several interacting processes is called orchestration,

Contract-Based Discovery and Adaptation of Web Services 223

and the controller is itself a process called orchestrator. Here we consider a simpler sce-

nario in which we have only two interacting processes, the client and the service, and

where the orchestrator can only prevent some synchronizations from occurring. We will

relax this latter assumption in §4. For the time being, we will use the term synchronous

orchestrator to indicate an orchestrator that is only capable of enabling or disabling

some synchronizations.

It is worth to remark that in no way an orchestrator can affect the internal choices

of a process. For example, there is no orchestrator that can make the clients of the

interactions (1) and (2) compliant with the corresponding services.

Having realized that we might need an orchestrator to enforce the compliance re-

lation, we now proceed into formalizing the language of synchronous orchestrators. It

turns out that the orchestrators required for fixing the kind of problems depicted above

are made of orchestration actions having one of the following two forms:

〈a,a〉 or 〈a,a〉

An orchestration action of the form 〈a,a〉 permits a synchronization between client

and service provided that the client is ready to send a message on a and the service

is ready to receive it. An orchestration action of the form 〈a,a〉 permits the dual syn-

chronization, in which the client is ready to receive a message on a and the service

is ready to send it. It is as if the orchestrator is a process with two distinct interfaces,

one that connects with the client, the other that connects with the service. Orchestration

actions 〈α,α〉 show which actions the orchestrator simultaneously offers on both in-

terfaces. These orchestration actions are called synchronous because they permit client

and service to synchronize when both parties are ready to perform an action and the

corresponding co-action. We will extend filters to asynchronous actions in §4.

Definition 8 (synchronous orchestrators). Synchronous orchestrators, ranged over

by f ,g, . . . , are described by the following grammar:

f ::= orchestrator

0 (null)

| µ . f (action prefix)

| f ∨ f (disjunction)

µ ::= action

〈a,a〉 (input/output)

| 〈a,a〉 (output/input)

The null orchestrator 0 is the one that does not permit any synchronization between

client and service. The orchestrator µ . f allows the orchestration action µ . If this action

is performed, it continues as the orchestrator f . The orchestrator f ∨g is the disjunction

of the orchestrators f and g: it permits all orchestration actions that are permitted by

either f or by g. As for contracts we will omit trailing 0’s in orchestrators.

In our development orchestrators do not exhibit internal nondeterminism. This calls

for a operational semantics merely expressing which orchestration actions are available.

Definition 9 (operational semantics of orchestrators). The operational semantics of

orchestrators is inductively defined by the rules below

µ . f
µ

−→ f
f

µ
−→ f ′

f ∨g
µ

−→ f ′

g
µ

−→ g′

f ∨g
µ

−→ g′

224 L. Padovani

In practice we will identify orchestrators with the set � f � of strings of orchestration

actions they offer, namely

� f �
def
= {µ1 · · ·µn | ∃g : f

µ1−→ ·· ·
µn
−→ g}

Observe that � f � is a non-empty, prefix-closed, set of strings over the alphabet of orches-

tration actions and that ∨ corresponds to a union operator on the traces of orchestrators,

namely � f ∨ g� = � f �∪ �g�. We write f
µ

�−→ g if �g� = {µ1 · · ·µn | µµ1 · · ·µn ∈ � f �},

namely g is the residual of f after the action µ . Note that f
µ

�−→ f ′ and f
µ

�−→ f ′′ im-

plies � f ′� = � f ′′�. We write f
µ1···µn
�−−−−→ if µ1 · · ·µn ∈ � f �; we write f �

µ
�−→ if µ �∈ � f �; let

init(f)
def
= {µ | f

µ
�−→}.

A better intuition of the semantics of orchestrator can be given by inspecting directly

the weak variant of the compliance relation, where client and service interact under the

supervision of an orchestrator.

Definition 10 (weak compliance relation). An orchestrated system is a triple ρ ‖ f σ
of a (client) contract ρ and a (service) contract σ interacting with each other while be-

ing supervised by an orchestrator f . Let −→ be the least relation between orchestrated

systems inductively defined as follows:

ρ −→ ρ ′

ρ ‖ f σ −→ ρ ′ ‖ f σ

σ −→ σ ′

ρ ‖ f σ −→ ρ ‖ f σ ′

ρ
α

−→ ρ ′ f
〈α ,α〉
�−→ f ′ σ

α
−→ σ ′

ρ ‖ f σ −→ ρ ′ ‖ f ′ σ ′

We write =⇒ for the reflexive, transitive closure of −→; we write ρ ‖ f σ �−→ if there

exist no ρ ′, f ′, and σ ′ such that ρ ‖ f σ −→ ρ ′ ‖ f ′ σ ′. We write f : ρ ⊣ � σ if ρ ‖ f σ =⇒

ρ ′‖ f ′ σ
′ �−→ implies ρ ′ e

−→. We say that ρ is weakly compliant with σ , notation ρ ⊣ � σ ,

if there exists an orchestrator f such that f : ρ ⊣ � σ .

The first two rules in the definition of −→ for orchestrated systems are basically the

same as for the strong compliance relation. In particular the orchestrator has no way

to affect the internal moves of client and service. The third rule expresses the fact that

client and service can synchronize with each other, but only if the orchestrator permits

it (the action 〈α,α〉 “connects” the action α performed by the client with the action α
performed by the service). For example, we have 〈a,a〉 : a.e+ b.c.e ⊣ � a + b.d because

the orchestrator 〈a,a〉 disallows the synchronization on b at the first step while permit-

ting the synchronization on a. At the same time a.e⊕b.e �⊣ � a because no orchestrator

can prevent the client from autonomously evolving to b.e.

Weak compliance induces the weak subcontract relation as follows:

Definition 11 (weak subcontract). Let �σ�w def
= {ρ | ρ ⊣ � σ}. We say that σ is a weak

subcontract of τ , notation σ � τ , if �σ�s ⊆ �τ�w .

According to this definition, σ � τ holds whenever every client satisfied by σ (that is

ρ ⊣ σ) can also be satisfied by τ (that is ρ ⊣ � τ) by means of some orchestrator f . So, it

is safe to replace σ with τ , provided that f mediates the interaction between the client

and τ .

Contract-Based Discovery and Adaptation of Web Services 225

Whether or not � is the subcontract relation we are looking for is hard to tell from

Definition 11. In part this is because it is very reasonable to expect that the orchestra-

tor f may depend on the particular client ρ that we are considering. In addition, it is not

even obvious that � is transitive, which is required if we plan to use � as stated in the

introduction. We will thus devote the following subsection to the study of � and of its

main properties.

3.2 Basic Properties of the Weak Subcontract Relation

Among all the orchestrators involved in a relation σ � τ , we can restrict our interest to a

relatively small class of relevant ones. In order to define relevant orchestrators, we need

three auxiliary notions. The first one is the identity orchestrator I(σ) for a contract σ ,

which is the orchestrator that enables all the traces of actions in σ :

I(σ)
def
=

∨

σ
α

=⇒
〈α,α〉.I(σ(α)) (3)

The second notion we need is a derived operator ∧ over orchestrators that is dual

of ∨. We define

f ∧g
def
=

∨

f
µ

�−→ f ′,g
µ

�−→g′
µ .(f ′ ∧g′)

It is trivial to see that � f ∧ g� = � f �∩ �g�. The third and last notion is an ordering

that allows us to compare orchestrators. We define

f � g
def
⇐⇒ � f � ⊆ �g�

namely f � g holds if every sequence of orchestration actions offered by f is also

offered by g. Using this ordering, we see that f ∨g and f ∧g respectively correspond to

the least upper bound and to the greatest lower bound of f and g.

Definition 12 (relevant orchestrator). Let σ � τ and f be an orchestrator. We say

that f is relevant for σ � τ if f � I(σ)∧ I(τ).

An orchestrator that is relevant for σ � τ never offers orchestration actions that do not

correspond to actions offered by σ or that would never be enabled by τ . It is easy to

see that, given an orchestrator f such that f : ρ ⊣ � τ , then f ∧ I(σ)∧ I(τ) : ρ ⊣ � τ where

f ∧ I(σ)∧ I(τ) is relevant for σ � τ .

The relation σ � τ means that every client ρ satisfied by σ is weakly compliant

with τ by means of some orchestrator which, in principle, may depend on ρ . The next

result shows that it is always possible to find an orchestrator that makes τ work seam-

lessly with every client satisfied by σ . We call such orchestrator “universal”, since it is

independent of a particular client.

Definition 13 (universal orchestrator). We say that f is a universal orchestrator prov-

ing σ � τ , notation f : σ � τ , if ρ ⊣ σ implies f : ρ ⊣ � τ for every ρ .

On the theoretical side, the existence of the universal orchestrator allows us to study

the properties of � independently of specific clients. On the practical side, it makes it

possible to precompute not only the subcontract relation � but also the orchestrator that

proves it, regardless of the client performing the query. The next result assures us that

if σ � τ , then a universal orchestrator proving the relation always exists.

226 L. Padovani

Proposition 2. σ � τ if and only if f : σ � τ for some orchestrator f .

Orchestrators as morphisms. When f : σ � τ every client that is strongly compliant

with σ is also weakly compliant with τ by means of the orchestrator f . In a sense, if

we think of contracts as of (behavioral) types, the orchestrator f is an explicit coer-

cion [8,11,29] that maps the service with contract τ into a service with contract σ . The

function determined by an orchestrator can be effectively computed as by the following

definition.

Definition 14 (orchestrator application). The application of the orchestrator f to the

contract σ , notation f (σ), is defined as

f (σ)
def
=

⊕

σ⇓R ∑
f
〈α,α〉
�−→ f ′,α∈R

α. f ′(σ(α))

The next result proves that f (σ) is indeed the contract of the orchestrated service,

namely it satisfies the same clients that are weakly compliant with σ by means of f :

Theorem 3. f : ρ ⊣ � σ if and only if ρ ⊣ f (σ).

We are now able to connect the strong and weak subcontract relations.

Corollary 1. f : σ � τ if and only if σ ⊑ f (τ).

Proof. By Theorem 3 f : σ � τ if and only if ρ ⊣ σ implies f : ρ ⊣ � τ if and only if

ρ ⊣ σ implies ρ ⊣ f (σ) if and only if σ ⊑ f (τ). ⊓⊔

Corollary 1 also provides us with a handy tool for studying the properties of � since

we can reduce the weak subcontract relation � to the more familiar strong subcontract

relation ⊑. For example, we can reduce checking f : σ � τ to checking σ ⊑ f (τ) by

computing f (τ). The next few examples show that � includes ⊑ and that � permits

width and depth extensions:

– a⊕b � a since a⊕b ⊑ a = 〈a,a〉(a);
– a � a + b since a = 〈a,a〉(a + b);
– a � a.b since a = 〈a,a〉(a.b).

The morphism induced by an orchestrator f is monotone with respect to the strong

subcontract relation and is well behaved with respect to the choice operators.

Proposition 3. The following properties hold:

1. σ ⊑ τ implies f (σ) ⊑ f (τ);
2. f (σ)+ f (τ) ≃ f (σ + τ);
3. f (σ)⊕ f (τ) ≃ f (σ ⊕ τ).

Composition of synchronous orchestrators. Transitivity of the weak subcontract re-

lation is not granted by Definition 11, because σ � τ means that every client that is

strongly compliant with σ is also weakly compliant with τ . So it is not clear whether

Contract-Based Discovery and Adaptation of Web Services 227

σ � τ and τ � σ ′ implies σ � σ ′. Observe that transitivity of � is necessary in order

to enhance Web service discovery as described in §1.

Let us start from the hypotheses f : σ � τ and g : τ � σ ′. By Corollary 1 we know

that σ ⊑ f (τ) and τ ⊑ g(σ ′). Furthermore, by Proposition 3(1) and transitivity of ⊑ we

deduce that σ ⊑ f (τ) ⊑ f (g(σ ′)). Thus we can conclude σ � σ ′ provided that for any

two orchestrators f and g their functional composition f ◦g is still an orchestrator. The

next result, whose proof is left as an easy exercise, confirms that this is indeed the case

and that ∧ corresponds to the functional composition operator between synchronous

orchestrators.

Proposition 4. f (g(σ)) ≃ (f ∧g)(σ).

3.3 Alternative Characterization of the Weak Subcontract Relation

We now proceed to define an alternative, coinductive characterization of �, as we have

done for ⊑. Observe that, when an orchestrator mediates the interaction between a

client and a service, it proposes at each interaction step a set of orchestration actions A

whose effect is to filter out some actions offered by either the client or by the service.

Since a synchronization occurs only if both client and service are willing to interact

on corresponding co-actions, it is sufficient to consider the effect of the orchestrator on

only one of the two interacting parties, which we take to be the service.

If S is a service ready set, then A◦ S denotes the ready set filtered by the orchestrator,

as perceived by the client:

A ◦ S
def
= {α ∈ S | 〈α,α〉 ∈ A}

Namely, the client sees an action α only if that action is provided by the service (α ∈ S)

and the orchestrator does not hide it (〈α,α〉 ∈ A).

With this notion we can now define the coinductive characterization of weak sub-

contract relation, in a similar manner as for the strong variant.

Definition 15 (coinductive weak subcontract). We say that W is a coinductive weak

subcontract relation if (σ ,τ) ∈W implies that there exists a set of orchestration actions

A such that

1. τ ⇓ S implies σ ⇓ R and R ⊆ A ◦ S for some R, and

2. τ
α

=⇒ and 〈α,α〉 ∈ A implies σ
α

=⇒ and (σ(α),τ(α)) ∈ W .

Condition (1) requires that τ must look like a more deterministic version of σ when

filtered by the orchestrator (the ready set A ◦ S of the orchestrated service has a corre-

sponding one of σ that offers fewer actions). Condition (2) poses the usual requirement

that the continuations must be in the subcontract relation, but only for those actions that

are permitted by the orchestrator. Observe that the set A of orchestration actions must

be defined independently of the internal state of the larger contract: the implicit univer-

sal quantifier over the ready sets S of τ in condition (1) falls within the scope of the

existential quantifier that binds A. This enforces the fact that the orchestrator treats τ as

a black box, and that it is not able to sense its internal state.

The two definitions of weak subcontract are equivalent:

Theorem 4. � is the largest coinductive weak subcontract relation.

228 L. Padovani

3.4 Deduction System for the Weak Subcontract Relation

Unlike the strong subcontract relation, � is not a precongruence with respect to the

external choice. For example, we have

0 : 0� a.c and 〈a,a〉.〈b,b〉 : a.b � a.b

but a.b + 0 �� a.b + a.c since a.b + a.c ≃ a.(b⊕ c). However, there is actually a good

reason why � is not a precongruence in general. The relation 0 � a.c holds because

the 0 orchestrator turns a service with contract a.c into a service with contract 0, and

the identity a.b � a.b holds because of the orchestrator I(a.b). When we combine a.b
and 0 into a.b + 0 we are creating a new service that externally offers either the a.b
behavior or the null one. When this service interacts with a client, it must do so by

means of an orchestrator, but which one? The problem is that we need two different

orchestrators for relating the two branches of the external choice, and there is no single

orchestrator that works equally well for both branches, in particular 0∧I(a.b) : a.b �� a.b
and 0∨ I(a.b) : 0 �� a.c.

As a direct consequence of the lack of the precongruence property for �, we have

that the axiomatization of � is more challenging than that of ⊑. Since � is not a pre-

congruence, we cannot “substitute equals for equals” when applying the rewriting rules.

This means that we have to look for the conditions under which substitution in a con-

text is safe, and to explicitly provide precongruence deduction rules that enforce these

conditions. Luckily, all the additional information we need is stored in the orchestrator

that proves a relation σ � τ . This allows us to design a deduction system for judgments

of the form

f : σ ≤ τ

where f is the orchestrator that “proves” the relation σ ≤ τ .

Table 2. Deduction system for the weak subcontract relation

(RED) I(σ) : σ ⊕ τ ≤ σ

(DEPTH) 0 : 0≤ σ

(WEAK)
f : σ ≤ τ g∧ I(τ) � f

f ∨g : σ ≤ τ

(TRANS)
f : σ ≤ σ ′ g : σ ′ ≤ σ ′′

f ∧g : σ ≤ σ ′′

(PREFIX)
f : σ ≤ τ

〈α,α〉. f : α.σ ≤ α.τ

(INT)
f : σ ≤ σ ′ f : τ ≤ τ ′

f : σ ⊕ τ ≤ σ ′⊕ τ ′

(EXT)
f : σ ≤ σ ′ f : τ ≤ τ ′

f : σ + τ ≤ σ ′ + τ ′

The deduction system for � is defined by the equalities in Table 1 and the axioms

and rules in Table 2. Every equality σ = τ inherited from Table 1 is meant to be a

shorthand for two axioms I(τ) : σ ≤ τ and I(σ) : τ ≤ σ . Let us comment the remain-

ing deduction rules. Rule (RED) is the same as in Table 1, except that the relation is

Contract-Based Discovery and Adaptation of Web Services 229

now witnessed by the orchestrator I(σ). In fact, this relation holds without the need of

filtering any action, hence the orchestrator I(σ ⊕ τ) would work as well. However, the

rule as is stated has the advantage that I(σ) is relevant for σ ⊕τ ≤ σ , and the judgment

with orchestrator I(σ ⊕ τ) is derivable by means of (WEAK), which we are to describe

shortly. Rule (DEPTH) expresses the fact that the weak subcontract relation always sup-

ports depth extensions of contracts, by means of the null orchestrator which prevents

any interference caused by the larger σ contract. Thus, 0 is the least element for �.

Rule (WEAK) is a sort of weakening rule that allows less restrictive orchestrators to be

used without compromising safety. The rule says that if f proves σ ≤ τ , then f ∨g also

proves the same relation provided that f ∨g does not enable any action from τ that must

be kept hidden in order for σ ≤ τ to hold. This is guaranteed if the projection of g on

the traces of τ (g∧ I(τ)) is a subset of the traces of actions that are already enabled

by f . Rule (TRANS) is the standard transitivity rule, where the resulting orchestrator is

the composition of the two orchestrators in the premises of the rule (see Proposition 4).

On the right hand side of Table 2 we have three rules of (restricted) precongruence.

Rule (PREFIX) shows that ≤ is a precongruence with respect to prefixes. Rules (INT)

and (EXT) state restricted precongruence of ≤ with respect to the two choices. In both

cases the requirement is that both branches of a choice must be orchestrated in the

same way.

The rest of this subsection is devoted to proving that the deduction system is sound

and complete. Observe that soundness and completeness of the deduction system now

have a stronger meaning since they must take into account the fact that judgments f :

σ ≤ τ include an orchestrator f . Hence, “soundness” means not only that if f : σ ≤ τ ,

then σ � τ , but also that f is an orchestrator that proves the relation. At the same time,

“completeness” means that if f is an orchestrator proving σ � τ , then f can be obtained

by means of the rules in the deduction system.

Theorem 5 (soundness). If f : σ ≤ τ , then f : σ � τ .

As usual soundness of the deduction system is relatively straightforward, whereas com-

pleteness is much harder to prove. The completeness proof relies on the ability to rewrite

a contract, by means of the axioms in Table 1, in a so-called normal form, which is a

syntactic, canonical representation of the contract’s semantics. Once two contracts are

in normal-form, checking that they are related is a much simpler matter. Much of the

development that follows is an adaptation of the completeness proof of the must testing

preorder found in [21].

The normal form of a contract arises by observing that the set of ready sets of a

contract can be saturated without changing the semantics of a contract, according to the

strong subcontract relation. More precisely, we close ready sets by union and by convex

closure. For example, we have a⊕b ≃ a⊕b⊕ (a + b), where we have added the ready

set {a,b} as the union of the ready sets {a} and {b} of the contract on the l.h.s. of ≃.

As another example, we have a⊕(a+b+c)≃ a⊕(a+b)⊕(a+c)⊕(a+b+c), where

we have added the ready sets {a,b} and {a,c} which include {a} and are included in

{a,b,c}. The usefulness of saturation comes from the fact that once two contracts have

been saturated, condition (1) of Definition (7) reduces to verifying that every ready

set of the larger contract is also a ready set of the smaller contract. This makes the

application of rule (RED) in the completeness proof (almost) straightforward.

230 L. Padovani

Definition 16 (contract normal form [21]). The saturated set of ready sets of a con-

tract σ , notation R(σ), is defined as R(σ)
def
= {R ⊆ init(σ) | ∃S : σ ⇓ S ∧ S ⊆ R}. We

say that a contract σ is in normal form if σ ≡
⊕

R∈R(σ) ∑α∈R α.σα where every contin-

uation σα is itself in normal form and ≡ denotes syntactic equality up to associativity

and commutativity of the choice operators.

Observe that if a contract σ is in normal form, the residual of the contract after a visible

action is unique, namely σ =⇒
α

−→ σ ′ and σ =⇒
α

−→ σ ′′ implies σ ′ ≡ σ ′′.

Following [21], we derive a bunch of handy axioms and rules (Table 3). Axioms (S1)

and (S2) implement the saturation of ready set as described above. Axiom (CO) is used

to combine the residual of a contract with respect to some given action α . Rules (E-

PREFIX), (E-INT), and (E-EXT) respectively specialize rules (PREFIX), (INT), and (EXT)

so as to make it possible the substitution of equals for equals in arbitrary contexts. Fi-

nally, rule (WIDTH) embeds width extensions of contracts, provided that the additional

capabilities (in τ) do not interfere with the old ones (in σ). This is implied by the fact

that the identity orchestrator for σ shares no common trace with the identity orchestra-

tor for τ , except for ε (I(σ)∧ I(τ) � 0).

Table 3. Derived rules

(S1) σ ⊕ τ = σ ⊕ τ ⊕ (σ + τ)
(S2) σ ⊕ (σ + τ +ρ) = σ ⊕ (σ + τ)⊕ (σ + τ +ρ)

(α.σ ′ + τ ′)⊕ (α.σ ′′ + τ ′′) =
(CO)

(α.(σ ′⊕σ ′′)+ τ ′)⊕ (α.(σ ′⊕σ ′′)+ τ ′′)

(WIDTH)
I(σ)∧ I(τ) � 0

I(σ) : σ ≤ σ + τ

(E-PREFIX)
σ = σ ′

α.σ = α.σ ′

(E-EXT)
σ = σ ′ τ = τ ′

σ + τ = σ ′ + τ ′

(E-INT)
σ = σ ′ τ = τ ′

σ ⊕ τ = σ ′⊕ τ ′

Lemma 1. The axioms and rules in Table 3 can be derived from those in Tables 1 and 2.

The last auxiliary result is the one assuring us that every contract can be rewritten into

a ≃-equivalent one that is in normal form.

Lemma 2 (normal form). For every contract σ there exists σ ′ in normal form such

that σ = σ ′.

The deduction system for � defined by Tables 1 and 2 is complete for � and the sets of

filters that prove it.

Theorem 6 (completeness). If f : σ � τ , then f : σ ≤ τ .

3.5 Interpretations of Synchronous Orchestrators

At the beginning of this section we have introduced orchestrators as centralized control

points mediating the interaction between clients and services. Orchestrators are limited

Contract-Based Discovery and Adaptation of Web Services 231

in that they can only affect the way client and service try to interact with each other,

but they cannot affect in any way the internal moves of clients and services. This is

clearly reflected in the transition relation for orchestrated systems (Definition 10) and

more technically in the coinductive characterization of the weak subcontract relation

(Definition 15).

Corollary 1 provides us with another interpretation of orchestrators: they are mor-

phisms that transform services into services with a (slightly) different contract. In this

interpretation an orchestrator is like an explicit behavioral coercion that is applied to

(wrapped around) a process so as to change its contract. Along the section we have

made the implicit assumption that the coercion is applied to the service, because this

view has allowed us to develop a theory of synchronous orchestrators that is oblivious to

the specific client that we are considering. In practice, it is perhaps more reasonable to

expect that the morphism is applied to the client, which is the one that must be satisfied.

When interpreting orchestrators as mediators or as morphisms, the query to a registry

of Web service should return not only the services that satisfy the client with contract

ρ , but also the orchestrator that ensures the successful interaction. Namely, the query

looks like this:

Q(ρ) = {(f ,σ) | f : ρ⊥ � σ}

There is a further interpretation of orchestrators as abstract specifications of those

clients that can interact successfully with a given service. Consider for example a rela-

tion f : σ � τ that is proved by an orchestrator f that never hides any action from τ . Any

further action that the orchestrator may allow is practically useless, hence by replacing

σ with τ the orchestrator is never actually preventing any synchronization between the

client and the service with contract τ . This is formalized by the following proposition,

which gives a sufficient (and also necessary, for that matters) condition when the weak

subcontract relation reduces to the strong one:

Proposition 5. If f : σ � τ and I(τ) � f , then σ ⊑ τ .

A finer control can be implemented if the contract of the client performing the query

is known. Suppose for example that the client contract is ρ and that the Web service

repository contains a registered service whose contract is σ , where f : ρ⊥ � σ . In prin-

ciple, the client is satisfied by the service provided that the orchestrator f mediates the

interaction between the two parties. However, suppose in addition that the orchestrator

never hides any action that the client is offering to the service. This can be expressed as

I(ρ⊥) � f . Then, the particular client with contract ρ is also strongly compliant with the

service with contract σ , and no orchestration is actually necessary. This is formalized

by the following proposition:

Proposition 6. If f : ρ⊥ � σ and I(ρ⊥) � f , then ρ ⊣ σ .

For example, consider a client with contract ρ
def
= a.b.e and suppose that the registry

contains a Web service with contract a.b + c.d. Although we have not seen how to

compute the dual of the client’s contract yet, in this case it is intuitively obtained by

simply swapping inputs and outputs. Namely, ρ⊥ = a.b (the e action disappears as it is

only used for denoting client’s satisfaction). We observe that I(ρ⊥) = 〈a,a〉.〈b,b〉, and

232 L. Padovani

that I(ρ⊥) : ρ⊥ � a.b+c.d, hence by Proposition 6 we can conclude that ρ ⊣ a.b+c.d,

without the intervention of any orchestrator at all. Observe however that ρ⊥ �⊑ a.b+c.d,

so the service with contract a.b + c.d would not be retrieved if the strong subcontract

relation were used instead of the weak one.

4 Asynchronous Orchestrators

In the previous section we have resorted to the use of an orchestrator that guarantees

the successful termination of the client. It is then natural to investigate whether, by aug-

menting the capabilities of the orchestrator, it is possible to further enlarge the spectrum

of services that can satisfy a given client. We observe that both the strong and the weak

compliance relations (Definitions 3 and 10) are based on interactions where at each syn-

chronization progress is always guaranteed for both client and service. In this section

we relax this requirement and assume that the orchestrator that mediates the interaction

of a client and a service ensures that at each synchronization progress is guaranteed for

at least one of the interacting parties. The orchestrator must be fair, in the sense that

client and service must have equal opportunities to make progress. In other words, the

orchestrator should not indefinitely guarantee progress to only one of the two parties.

Also, the orchestrator must not disrupt the communication flow between client and ser-

vice: it cannot bounce a message back to the same party that sent it, nor it can pretend

to send a message to a party if that message has not been previously received from the

other party.

4.1 Buffered Compliance and Subcontract Relations

We extend orchestration actions so that they are described by the following grammar:

µ ::= 〈α,ε〉 | 〈ε,α〉 | 〈a,a〉 | 〈a,a〉

The action 〈α,ε〉 means that the orchestrator offers α to the client; the action 〈ε,α〉
means that the orchestrator offers α to the service. Actions 〈α,ε〉 and 〈ε,α〉 are called

asynchronous orchestration actions because, if executed, they guarantee progress to

only one party among client and service. On the other hand, 〈α,α〉 are synchronous

orchestration actions because, if executed, they guarantee simultaneous progress to both

client and service.

A directional buffer is a map {◦,•}×N →Zassociating pairs (r,a) with the number

of a messages stored in the buffer and available for delivery to the role r, where r can

be ◦ for “client” or • for “service”; we let B,B′, . . . range over buffers. Directionality

is ensured by distinguishing messages to be delivered to the client from messages to be

delivered to the service. For technical reasons we allow cod(B) – the codomain of B –

to range over Z, although every well-formed buffer will always contain a nonnegative

number of messages. We write /̃0 for the empty buffer, the one having {0} as codomain;

we write B[(r,a) �→ n] for the buffer B
′ which is the same as B except that (r,a) is

associated with n; we write Bµ for the buffer Bupdated after the orchestration action µ :

Contract-Based Discovery and Adaptation of Web Services 233

B〈a,ε〉 = B[(•,a) �→ B(•,a)+ 1] (accept a from the client)

B〈a,ε〉 = B[(◦,a) �→ B(◦,a)−1] (send a to the client)

B〈ε,a〉 = B[(◦,a) �→ B(◦,a)+ 1] (accept a from the service)

B〈ε,a〉 = B[(•,a) �→ B(•,a)−1] (send a to the service)

B〈α,α〉 = B (synchronize client and service)

We say that B has rank k, or is a k-buffer, if cod(B) ⊆ [0,k]; we say that the k-buffer

B enables the orchestration action µ , notation B ⊢k µ , if Bµ is still a k-buffer. For

instance /̃0 ⊢1 〈a,ε〉 but /̃0 �k 〈a,ε〉 because −1 ∈ cod(/̃0〈a,ε〉). We extend the notion to

sets of actions so that B ⊢k A if B enables every action in A. Synchronization actions are

enabled regardless of the rank of the buffer, because they leave the buffer unchanged.

The language of simple orchestrators remains unchanged, except that now µ ranges

over synchronous as well as asynchronous orchestration actions. The operational and

denotation semantics of orchestrators with asynchronous orchestration actions are sim-

ple extensions of those with only synchronous orchestration actions and will not be

repeated here.

We say that f is a valid orchestrator of rank k, or is a k-orchestrator, if f
µ1···µn
�−−−−→

implies that /̃0µ1 · · ·µn is a k-buffer. Not every term f denotes a valid orchestrator of

finite rank. For instance 〈a,ε〉.〈a,ε〉 is not a valid orchestrator of rank 1 because it

accepts two a messages from the client without delivering them to the service; it is,

however, a valid orchestrator of rank 2; 〈a,ε〉 is invalid because it tries to deliver to the

client a message that it has not received from the service; symmetrically, 〈ε,a〉 is invalid

because it tries to deliver to the service a message that it has not received from the client;

finally, 〈ε,a〉.〈a,ε〉 is a valid orchestrator of rank 1 (or greater). In the following we will

always work with valid orchestrators of finite rank.

We now proceed to extending weak compliance (Definition 10) to asynchronous

orchestrators.

Definition 17 (weak k-compliance relation). A k-orchestrated system is a triple ρ ‖ f σ
of a (client) contract ρ and a (service) contract σ interacting with each other while be-

ing supervised by a k-orchestrator f . Let −→ be the least relation between orchestrated

systems inductively defined as follows:

ρ −→ ρ ′

ρ ‖ f σ −→ ρ ′ ‖ f σ

σ −→ σ ′

ρ ‖ f σ −→ ρ ‖ f σ ′

ρ
α

−→ ρ ′ f
〈α ,α〉
�−→ f ′ σ

α
−→ σ ′

ρ ‖ f σ −→ ρ ′ ‖ f ′ σ ′

ρ
α

−→ ρ ′ f
〈α ,ε〉
�−→ f ′

ρ ‖ f σ −→ ρ ′ ‖ f ′ σ

f
〈ε,α〉
�−→ f ′ σ

α
−→ σ ′

ρ ‖ f σ −→ ρ ‖ f ′ σ ′

The transitive closure of =⇒ as well as the usual notation built on top of −→ is the

same as in Definition 10. We say that ρ is weakly k-compliant with σ , notation ρ ⊣ �k σ ,

if there exists a k-orchestrator f such that f : ρ ⊣ � σ .

The first three rules in the definition of −→ for orchestrated systems are exactly the

same as for the weak compliance relation (Definition 10) and deserve no further com-

ment. The last two rules express the fact that client and service may interact with the

234 L. Padovani

orchestrator, independently of the other partner, if the orchestrator provides suitable

asynchronous actions. Observe that in each rule progress is guaranteed for at least

one of the interacting parties, and that weak compliance and weak 0-compliance do

coincide.

As an example of weak k-compliance we have a.c.b.e ⊣ �1 c.a.b, by means of the

orchestrator 〈a,ε〉.〈c,ε〉.〈ε,c〉.〈ε,a〉.〈b,b〉 which accepts the messages in the order re-

quired by the client, but delivers them in the order expected by the service. However,

we have a.c.e �⊣ �k c.a for every k, since no k-orchestrator is capable of creating the a

message that the client is waiting for, before delivering c to the service.

Weak k-compliance induces the weak k-subcontract relation in a similar way as weak

compliance induces weak subcontract:

Definition 18 (weak k-subcontract). Let �σ�w

k

def
= {ρ | ρ ⊣ �k σ}. We say that σ is a

weak k-subcontract of τ , notation σ �k τ , if �σ�s ⊆ �τ�w

k .

As for the weak subcontract, this definition says little about the properties of �k, hence

we will go through a similar sequence of preliminary results. Luckily, all the properties

enjoyed by � are also valid, in their essence, for �k. However, the proofs of the results

are sometimes more involved because of buffering.

4.2 Basic Properties of the Weak k-Subcontract Relation

Among all the orchestrators involved in a relation σ � τ , we can restrict our interest to

a relatively small class of relevant ones.

Definition 19 (relevant k-orchestrator). Let σ �k τ and f be a k-orchestrator. We say

that f is relevant for σ �k τ if σ
ϕ1···ϕn
===⇒ and f

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉〈ϕ,ϕ ′〉
�−−−−−−−−−−−−−→ and τ

ϕ ′
1···ϕ

′
n

===⇒ imply

σ(ϕ1 · · ·ϕn)
ϕ

=⇒ and τ(ϕ ′
1 · · ·ϕ

′
n)

ϕ ′

=⇒.

A k-orchestrator that is relevant for σ �k τ never offers orchestration actions that do

not correspond to actions offered by σ and that would never be enabled by τ . However,

the existence of a relevant orchestrator is much less obvious than in the synchronous

case. Indeed, it is clear that actions of the form 〈α,α〉 and 〈ε,α〉 can be safely re-

moved if τ does not offer corresponding co-actions. However, asynchronous actions

of the form 〈α,ε〉 may actually be necessary for the orchestrator to satisfy the client,

even if σ never offers α actions. For instance, a.e+ b.e+ c.a.e ⊣ a⊕ b and a⊕ b � a

and 〈c,ε〉.〈a,a〉 : a.e+ b.e+ c.a.e ⊣ � a. Simply removing the 〈c,ε〉 action (and the

corresponding continuation) would produce the null orchestrator, which clearly cannot

satisfy the client.

Proposition 7. Let σ �k τ and ρ ⊣ σ . Then there exists a k-orchestrator g relevant for

σ �k τ such that g : ρ ⊣ � τ .

As for the synchronous case, when σ �k τ holds it is possible to find a universal k-

orchestrator that makes every client that is strongly compliant with σ also weakly k-

compliant with τ .

Proposition 8. σ �k τ if and only if there exists a k-orchestrator f such that ρ ⊣ σ
implies f : ρ ⊣ � τ for every ρ .

Contract-Based Discovery and Adaptation of Web Services 235

Orchestrators as morphisms. Like synchronous orchestrators, asynchronous

k-orchestrators can be seen as morphisms transforming service contracts. The exact

definition of orchestration application is much more involved due to the fact that the

orchestrator may synchronize with the service regardless of the behavior of the client.

Definition 20 (orchestrator application). The application of the orchestrator f to the

(service) contract σ , notation f (σ), is defined as

f (σ)
def
=

⊕

σ⇓R

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∑
f
〈α,ε〉
�−→ f ′

α. f ′(σ)+ ∑
f
〈α,α〉
�−→ f ′ ,α∈R

α. f ′(σ(α))

if {α | 〈ε,α〉 ∈ init(f)}∩ R = /0
((

∑
f
〈α,ε〉
�−→ f ′

α. f ′(σ)+ ∑
f
〈α,α〉
�−→ f ′,α∈R

α. f ′(σ(α))
)

⊕0
)

+
⊕

f
〈ε,α〉
�−→ f ′ ,α∈R

f ′(σ(α)) otherwise

The equation reminds of the expansion law for the parallel operator in full CCS [21],

but describing the interaction of the orchestrator and the service. The first line defines

the behavior of the orchestrated service when no synchronization between orchestra-

tor and service occurs ({α | 〈ε,α〉 ∈ init(f)} ∩ R = /0): all the asynchronous orches-

tration actions are available, in addition to all the synchronous orchestration actions

that are enabled by the service contract when in state R. In the second line there is at

least one asynchronous orchestration action that can synchronize with the service in

state R ({α | 〈ε,α〉 ∈ init(f)}∩ R �= /0). In this case the client perceives an appropriate

combination of actions among those that are available before and after the synchro-

nization occurs. The internal choice with the null summand indicates that actions avail-

able before the synchronization are not guaranteed (if the synchronization does actually

occur), whereas all the actions after the synchronization are (the client can just wait

for the orchestrator and the service to reach a stable state). As an example consider

f
def
= 〈a,ε〉.〈c,ε〉.(〈ε,a〉.〈b,b〉∨ 〈ε,c〉.〈d,d〉). Then:

– f (a.b) = a.c.b;

– f (a.b+ c.d) = a.c.(b⊕d);
– f (a.b⊕ c.d) = a.c.(0⊕b⊕d).

In general we have 〈α,α〉. f (α.σ) = α. f (σ) and 〈α,ε〉. f (σ) = α. f (σ) and 〈ε,α〉.
f (α.σ) = f (σ).

The next result proves that f (σ) is indeed the contract of the orchestrated service,

namely it satisfies the same clients that are weakly compliant with σ by means of f :

Theorem 7. f : ρ ⊣ �k σ if and only if ρ ⊣ f (σ).

We are now able to connect the strong and weak k-subcontract relations as we did for

the weak subcontract relation. The proof is identical to that of Corollary 1, except that

Theorem 7 is used instead.

Corollary 2. f : σ �k τ if and only if σ ⊑ f (τ).

236 L. Padovani

The next few examples show that �k extends � by permitting some permutation of

actions:

– a.c.b �1 c.a.b since a.c.b = 〈ε,c〉.〈a,a〉.〈c,ε〉.〈b,b〉(c.a.b);
– a.c.b �1 c.a.b since a.c.b = 〈a,ε〉.〈c,c〉.〈ε,a〉.〈b,b〉(c.a.b);
– a.c.b �1 c.a.b since a.c.b = 〈a,ε〉.〈c,c〉.〈ε,a〉.〈b,b〉(c.a.b).

It is possible in general to postpone input actions. For instance we have a.β .σ �k

β .a.σ where the service on the r.h.s. of �k is able to perform the β action without

having performed a first. On the other hand, we have a.b.σ ��k b.a.σ for every k because

no valid orchestrator is capable of sending an a message to the client, without having

received it in advance from the service. The fact that this relation does not hold is

reasonable since a client of the service on the l.h.s. may need the information contained

in the a message before sending the b message back to the service.

The morphism induced by an orchestrator f is monotone with respect to the strong

subcontract relation and is well behaved with respect to the choice operators.

Proposition 9. The following properties hold:

1. σ ⊑ τ implies f (σ) ⊑ f (τ);
2. f (σ)+ f (τ) ⊑ f (σ + τ);
3. f (σ)⊕ f (τ) ≃ f (σ ⊕ τ).

Observe that, unlike the purely synchronous case, f (σ) + f (τ) ≃ f (σ + τ) does not

hold in general, because of the asynchronous actions that f may offer to the client

side. Consider for example f
def
= 〈a,ε〉.(〈b,b〉+〈d,d〉). Then f (b)+ f (d) = a.b+a.d ≃

a.(b⊕d)⊑ a.(b+d) = f (b+d) but f (b+d) �⊑ f (b)+ f (d). Nonetheless Proposition 9

is still sufficient for proving that if σ ⊑ f (σ ′) and τ ⊑ f (τ ′), then σ + τ ⊑ f (σ ′ + τ ′)
and σ ⊕ τ ⊑ f (σ ′⊕ τ ′).

Composing asynchronous orchestrators. As we have seen for synchronous orchestra-

tors, monotonicity of orchestrator composition (Proposition 9) plays a central role in

proving that �k is a pre-order. Unfortunately, a nasty consequence of buffering is that

the functional composition of two orchestrator is not an orchestrator in general. To see

why, consider for example

f
def
= 〈a,ε〉.〈c,ε〉.(〈ε,a〉.〈b,b〉∨ 〈ε,c〉.〈d,d〉) and g

def
= 〈a,ε〉.〈b,b〉∨ 〈c,ε〉.〈d,d〉

and apply them to the contract σ
def
= b+ d. We obtain

f (g(σ)) ≃ f (a.b+ c.d) ≃ a.c.(b⊕d)

The subsequent applications of g first and then f introduce some nondeterminism due to

the uncertainty as to which synchronization (on a or on c) will occur. This uncertainty

yields the internal choice b⊕ d in the resulting contract. No single orchestrator can

turn b + d into a.c.(b⊕ d) for orchestrators do not manifest internal nondeterminism.

The problem could be addressed by adding internal nondeterminism to the orchestration

language, but this seems quite artificial and, as a matter of facts, is unnecessary. If we are

Contract-Based Discovery and Adaptation of Web Services 237

able to find an orchestrator f ·g such that (f ◦g)(σ ′) ⊑ (f ·g)(σ ′), then σ ⊑ (f ·g)(σ ′)
follows by transitivity of ⊑.

The orchestrator composition operator · is a generalization of ∧ that considers asyn-

chronous orchestration actions:

Definition 21 (orchestrator composition). The composition of two orchestrators f

and g, notation f ·g, is defined as:

f ·g
def
=

∨

f
〈α,ε〉
�−→ f ′

〈α,ε〉.(f ′ ·g)∨
∨

g
〈ε,α〉
�−→g′

〈ε,α〉.(f ·g′)

∨
∨

f
〈ϕ,α〉
�−→ f ′,g

〈α,ϕ′ 〉
�−→ g′,ϕϕ ′ �=ε

〈ϕ ,ϕ ′〉.(f ′ ·g′)∨
∨

f
〈ε,α〉
�−→ f ′,g

〈α,ε〉
�−→g′

(f ′ ·g′)

The first two subterms in the definition of f ·g indicate that all the asynchronous ac-

tions offered by f (respectively, g) to the client (respectively, service) are available.

The third subterm turns synchronous actions into asynchronous ones: for example,

〈α,α〉 ·〈α,ε〉 = 〈α,ε〉 and 〈ε,α〉 ·〈α,α〉 = 〈ε,α〉. The last subterm accounts for the

“synchronizations” occurring within the orchestrator, when f and g exchange a mes-

sage and the two actions annihilate each other. If we consider the orchestrators f and g

defined above, we obtain f ·g = 〈a,ε〉.〈c,ε〉.(〈b,b〉∨〈d,d〉) and we observe (f ·g)(b+
d) = a.c.(b+ d).

The next result proves that f ·g is correct and consequently that �k is a preorder:

Theorem 8. f (g(σ)) ⊑ (f ·g)(σ).

It may be argued that f ·g is somewhat “more powerful” than f ◦g, because (f ◦g)(σ)⊑
(f ·g)(σ) but (f ◦g)(σ) �≃ (f ·g)(σ) in general. Against this objection it is sufficient to

observe that if f and g are k-orchestrators, then f ·g is a 2k-orchestrator. Thus, f ·g is

really nothing more than some proper combination of f and g, as expected.

4.3 Alternative Characterization of the Weak k-Subcontract Relation

We now provide an alternative characterization of �k, which will also guide us in

defining the algorithm for deciding �k in §7.3 As for synchronous orchestrators, asyn-

chronous orchestrators modify the ready sets of the service as they are perceived by the

client. The converse is also true, because of asynchronous orchestration actions. As-

sume A is a set of orchestration actions proposed by an asynchronous orchestrator. If R

is a client ready set and S is a service ready set, then we write A◦ S for the service ready

set perceived by the client and we write R • A for the client ready set perceived by the

service. These two modified ready sets can be defined thus:

A ◦ S
def
= {α | 〈α,ε〉 ∈ A}∪{α ∈ S | 〈α,α〉 ∈ A}

R • A
def
= {α | 〈ε,α〉 ∈ A}∪{α ∈ R | 〈α,α〉 ∈ A}

3 Unlike the strong and weak subcontract relations, a sound and complete deduction system for

the weak k-subcontract relation is not known at the time of this writing.

238 L. Padovani

Namely, the client sees an action α if either that action is provided asynchronously

by the orchestrator (〈α,ε〉 ∈ A), or if it is provided by the service (α ∈ S) and the

orchestrator does not hide it (〈α,α〉 ∈ A); symmetrically for the service.

With these notions we can now define the coinductive characterization of weak sub-

contract relation, in a similar manner as for the weak variant.

Definition 22 (coinductive weak k-subcontract). We say that Wk is a coinductive

weak k-subcontract relation if (B,σ ,τ) ∈ Wk implies that B is a k-buffer and there

exists a set of orchestration actions A such that B ⊢k A and

1. τ ⇓ S implies either (σ ⇓ R and R ⊆ A ◦ S for some R) or (/0 • A)∩ S �= /0, and

2. τ
ϕ ′

=⇒ and 〈ϕ ,ϕ ′〉 ∈ A implies σ
ϕ

=⇒ and (B〈ϕ ,ϕ ′〉,σ(ϕ),τ(ϕ ′)) ∈ Wk.

Condition (1) requires that either τ can be made more deterministic than σ by means

of the orchestrator (the ready set A ◦ S of the orchestrated service has a corresponding

one of σ that offers fewer actions), or that τ can be satisfied by the orchestrator without

any help from the client ((/0 • A)∩ S �= /0 implies that 〈ε,α〉 ∈ A and α ∈ S for some

α). Condition (2) poses the usual requirement that the continuations must be in the

subcontract relation.

The two definitions of weak subcontract are equivalent:

Theorem 9. �k is the largest coinductive weak k-subcontract relation.

5 Contract Duality with Orchestration

We tackle the problem of finding the dual contract ρ⊥ of a given client contract ρ .

Recall that ρ⊥ should be the smallest (according to�k) contract such that ρ is compliant

with ρ⊥.

Before proceeding, we must face the fact that some clients cannot by satisfied by any

service. For instance, there is no service that satisfies (the client) 0; similarly, there is no

service that satisfies a.(0⊕b.e) since this client, after sending a, may internally evolve

into the state 0. We thus need a characterization of those (client) contracts that can be

satisfied:

Definition 23 (viable contract). A (client) contract ρ is viable, notation viable(ρ), if

there exists σ such that ρ ⊣ σ .

It is quite easy to provide an alternative, coinductive characterization of viable contracts.

Definition 24 (coinductive viability). We say that the predicate V is a coinductive

viability if ρ ∈ V and ρ ⇓ R implies either e ∈ R or ρ(α) ∈ V for some α ∈ R.

This characterization mandates that no viable client contract can expose an empty ready

set: every ready set must contain either the special action e denoting the client’s ability

to terminate successfully, or at least one action α whose continuation is itself a viable

contract. So e is the simplest viable client contract, whereas (a+b.e)⊕a.c is not viable

because its continuation after a is 0⊕ c that has an empty ready set.

Contract-Based Discovery and Adaptation of Web Services 239

Proposition 10. viable(·) is the largest coinductive viability.

Now that we have a notion of viability, we are ready to define the dual contract.

Definition 25 (dual contract). Let ρ be a viable client contract. The dual contract of

ρ , denoted by ρ⊥, is defined as:

ρ⊥ def
= ∑ρ⇓R,e �∈R

⊕

α∈R,viable(ρ(α)) α.ρ(α)⊥

The idea of the dual operator is to consider every state R of the client in which the client

cannot terminate successfully (e �∈ R). For every such state the service must provide at

least one way for the client to proceed, and the least service that guarantees this is given

by the internal choice of all the co-actions in R that have viable continuations (note that

there must be at least one of such actions because the client is viable by hypothesis). A

few examples of dual contracts follow:

– (a.e)⊥ = (a.e⊕e)⊥ = a (the service must provide a);

– (a.e+e)⊥ = 0 (the service need not provide anything because the client can termi-

nate immediately);

– (a.e+ b.e)⊥ = a⊕b (the service can decide whether to provide a or b);

– (a.e⊕b.e)⊥ = a+ b (the service must provide both a and b).

Theorem 10 (duality). Let ρ be a viable client contract. Then

1. ρ ⊣ ρ⊥;

2. ρ ⊣ σ implies ρ⊥ � σ .

The assumption of using orchestrators is essential as far as duality is concerned:

(a.e+e)⊥ = 0 but 0 is not the smallest (according to ⊑) contract satisfying a.e+e. For

example, 0⊕b⊑ 0 and a.e+e⊣ 0⊕b. On the contrary, 0 is the least element of �k and

it can be used in place of any service contract that exposes an empty ready set. A notion

a duality without orchestrators can only be achieved if the subcontract relation being

considered provides a least element. This is possible for ⊑ if we extend the theory with

diverging processes, as done in [24].

6 Contracts for Infinite Behaviors

Until now we have been working with finite contracts, namely with contracts that pro-

vide a maximum number of nested prefixes. This means that we can only model client

and service behaviors corresponding to finite interactions, but we cannot model, for

example, a client and a service that interact infinitely often if the client performs an

unbounded number of requests and the service is able to satisfy them all.

There are three well-known ways of dealing with repeated (or recursive) behavior. In

regular expressions, for example, the algebra includes a ∗ operator (the so-called Kleene

star) so that, for example, a∗ denotes the set of arbitrarily long, but finite, sequences of

a symbols. In process algebra, it is more frequent the use of definitions or of recursion

240 L. Padovani

terms. In the former case, the syntax is extended to include variables X , and a global

environment defines a finite set of equations of the form

X
def
= σ

giving the meaning to variables. In the latter case, the syntax is extended with two

constructs: recursion is expressed by a term rec x.σ which binds the recursion variable

x within σ ; every occurrence of the variable x within σ stands for an occurrence of the

whole term rec x.σ . In other words, the contracts rec x.σ and its unfolding σ{rec x.σ/x}
(the latter being the same as σ except that every free occurrence of x has been replaced

by rec x.σ) are equivalent.

Observe that all the three approaches require an extension of the syntax of contracts

(Definition 1) as well as corresponding extensions in their operational semantics (Defi-

nition 2). In addition, it is not obvious how to apply the approach using the Kleene star

in our scenario since it is well known [2,17] that, in a nondeterministic setting, there are

behaviors that cannot be expressed using that syntax.

Instead, we resort to the theory of regular trees [14]. This approach is more com-

monly used in type theory and has the remarkable advantage that it virtually requires no

change at all to the whole theory we have developed so far. The basic idea is extremely

simple: infinite contracts are represented as infinite terms generated by the grammar

in Definition 1. In practice, this amounts to working directly with the solutions of the

equations X
def
= σ or with the infinite unfoldings of recursive terms rec x.σ . However,

saying that we use “infinite terms” is not enough to ensure that such terms do actually

make sense or that the theory remains decidable. To guarantee these facts we must en-

force two additional constraints, hence the precise definition of the infinite terms we

consider is the following:

Definition 26 (contracts). The set of contracts is the set of possibly infinite, regular

trees generated by the grammar in Definition 1 such that every infinite branch of a tree

contains infinitely many occurrences of “.” (the prefix constructor).

This definition imposes two fundamental requirements on the infinite terms we have

mentioned earlier. First of all, we require that the term must be a regular tree. A reg-

ular tree contains finitely many different subtrees (observe that every finite term is a

regular tree). Second, we impose a contractivity condition4 by requiring that if a con-

tract term is infinite, it is because it proposes an unbound sequence of actions. For

example, we exclude regular terms that are solutions of the equations X = X + X or

X = X ⊕X . As a side effect of the contractivity condition, we enforce the fact that the

behaviors we consider are everywhere convergent. Namely, contracts can never exhibit

an infinite number of internal transitions, hence we are not able to describe the behavior

of clients and services that may diverge. This is in practice the only limitation of our

approach, if compared to the more traditional approaches that deal with infinite behav-

iors. The reader interested in one possible way of dealing with divergent contracts can

refer to [24].

The definition of orchestrators can be extended to infinite behaviors in a similar way,

by imposing regularity and contractivity of the orchestrator.

4 The term “contractivity” has nothing to do with the fact that we talk about “contracts”, see [14].

Contract-Based Discovery and Adaptation of Web Services 241

We now revisit the definitions and results we have developed for the theory of finite

contracts and see now they change when we consider contracts as by Definition 26.

The strong compliance relation (Definition 3) now takes into account the possibil-

ity that client and service interact infinitely often. Observe that, since contracts are

everywhere convergent, every infinite computation starting from ρ ‖σ involves an in-

finite number of synchronizations between client and service. For example, we have

a.a.a. · · · ⊣ a.a.a. · · · .
As regards contract continuations (Definition 5), observe that σ(α) is still well de-

fined because contracts are everywhere convergent: there is always a finite number of

residuals σ ′ such that σ =⇒
α

−→ σ ′. In fact we can state an even stronger property

which is fundamental for asserting the well-foundedness of several definitions.

Proposition 11. Let D(σ)
def
= {σ(ϕ) | σ

ϕ
=⇒}. Then D(σ) is finite for every σ .

Proof. It is sufficient to observe that σ(ϕ) is the internal choice of some subtrees σ .

Since a regular tree has finite different subtrees, there is a finite number of terms σ(ϕ).
An alternative, direct proof can be found in [25]. ⊓⊔

A similar result can be proved for orchestrators and the corresponding
µ

�−→ relation.

Because of these results, it is easy to see that all the inductive definitions given in the

paper are well founded, not in the sense that a base case is eventually reached, but that

they yield regular and contractive contracts and orchestrators. Consider for example the

definition of the identity orchestrator I(σ) for a contract σ . According to equation 3

on page 225 we see that I(σ) depends on I(σ(α)) for a finite set of actions α . In

turn, each I(σ(α)) will depend upon a finite set of I(σ(α)(β)). Now observe that

σ(α)(β) = σ(αβ). Hence, if we think of I(σ(ϕ)) as of a label, Proposition 11 let

us conclude that I(σ) depends on a finite number of labels I(σ(ϕ)), hence it can be

represented as a regular orchestrator. A similar reasoning can be applied for deducing

that the definitions of orchestrator composition, orchestrator application (Definition 14),

asynchronous orchestrator application (Definition 20), and other inductive definitions

are all well founded.

As regards the deduction system presented in §3.4 for the weak subcontract relation,

it is still complete, provided that we admit infinite (but regular and contractive) proofs,

where a contractive proof is one where every infinite branch of the derivation tree con-

tains infinite occurrences of the (PREFIX) rule. Details can be found in the full version

of [10]. Observe that if divergence is added to the contract language, the deduction

system must be suitably extended with new axioms [21].

As regards asynchronous orchestrators, the validity constraint and the finiteness of

the rank have fundamental consequences: a valid orchestrator of finite rank cannot read

an unbound number of messages from just one of the two interacting parties. Thus,

finiteness of the orchestrator’s rank guarantees that the orchestrator is fair: it still holds,

as in the case of synchronous orchestrators, that every infinite interaction between a

client and a service is such that both client and service interact infinitely often.

Finally, the proofs of all the results presented are all still valid, since none of them,

except for the completeness proof of the deduction system, proceed by induction on

the depth of contracts or orchestrators (as a matter of facts, most proofs are based on

coinduction).

242 L. Padovani

7 Automatic Synthesis of Orchestrators

In this section we devise an algorithm for computing the k-orchestrator witnessing

σ �k τ , provided there is one. Actually, we have already seen that there can be more

than one orchestrator proving a relation σ �k τ , so when devising the algorithm we

need a criterion for choosing a particular orchestrator as the “right” one. We know

that orchestrators are closed under union, namely if f : σ �k τ and g : σ �k τ , then

f ∨ g : σ �k τ . So we may naively attempt to define an algorithm that synthesizes the

largest orchestrator, according to their trace semantics. This approach is not effective

since the largest orchestrator proving σ �k τ involves an infinite number of different

names, and thus is not representable as a proper orchestrator. The idea is that, by means

of Proposition 7, we may restrict our interest to the subclass of the orchestrators that

are relevant for σ �k τ .

Definition 27 (best relevant orchestrator). We say that f is the best relevant k-

orchestrator such that f : σ �k τ if g : σ �k τ and g is a relevant k-orchestrator im-

plies g � f .

The algorithm that synthesizes the best relevant orchestrator proving σ �k τ , provided

there is one, is defined inductively by the rule:

Ar = {〈ϕ ,ϕ ′〉 | σ
ϕ

=⇒,τ
ϕ ′

=⇒,B ⊢k 〈ϕ ,ϕ ′〉}
A = {〈ϕ ,ϕ ′〉 ∈ Ar | B〈ϕ ,ϕ ′〉 ⊢k f〈ϕ,ϕ ′〉 : σ(ϕ) � τ(ϕ ′)}

τ ⇓ S ⇒ (∃R : σ ⇓ R∧ R ⊆ A ◦ S)∨ (/0 • A)∩ S �= /0

B ⊢k

∨

µ∈A µ . fµ : σ � τ

A judgment of the form B ⊢k f : σ � τ means that f is a k-orchestrator proving that

σ �k τ when the buffer of the orchestrator is in state B. The k-buffer B keeps track of

the past history of the orchestrator (which messages the orchestrator has accepted and

not yet delivered). We write f : σ �k τ if /̃0 ⊢k f : σ � τ .

Although the algorithm looks formidable, it embeds the conditions in Definition 7

in a straightforward way. Recall that the purpose of the algorithm is to find the best

relevant orchestrator f such that every client strongly compliant with σ is weakly com-

pliant with τ when this service is orchestrated by f , assuming that the buffer of the

orchestrator is B. Since B is a k-buffer, the number of enabled asynchronous orchestra-

tion actions is finite: an action 〈a,ε〉 is enabled only if B(◦,a) > 0; an action 〈a,ε〉 is

enabled only if the buffer has not reached its capacity, namely if B(•,a) < k; symmetri-

cally for asynchronous service actions. Also, it is pointless to consider any orchestration

action that would not cause any synchronization to occur. Hence, the set Ar of relevant,

enabled orchestration actions in the first premise of the rule is finite. Of all the actions in

this set, the algorithm considers only those in some subset A such that the execution of

any orchestration action in A does not lead to a deadlock later on during the interaction.

This is guaranteed if for every 〈ϕ ,ϕ ′〉 ∈ A we are able to find an orchestrator f〈ϕ,ϕ ′〉 that

proves τ(ϕ ′) �k σ(ϕ) (second premise of the rule). When checking the continuations,

the buffer is updated to account for the orchestration action just occurred. If the set A is

large enough so as to satisfy the third premise of the rule, which is exactly condition (1)

Contract-Based Discovery and Adaptation of Web Services 243

of Definition 15, then σ and τ can be related. The orchestrator computed in the conclu-

sion of rule (A1) offers the union of all the relevant, enabled orchestration actions µ ,

each one followed by the corresponding continuation fµ .

Observe that the algorithm hides a base case, when the set Ar is empty. This case is

eventually reached when σ and τ are finite contracts, since each application of the rule

in the algorithm decreases the depth of either σ or τ , or both.5 The algorithm can also be

extended for dealing with possibly infinite (but regular) contracts, as by Definition 26,

using standard memoization techniques. The reader interested in the details can refer

to [27].

The algorithm described above is correct and complete and it always terminates.

Theorem 11. The following properties hold:

1. (termination) it is decidable to check whether there exists f such that f : σ �k τ;

2. (correctness) f : σ �k τ implies that f has rank k and f : σ �k τ;

3. (completeness) f : σ �k τ and f is relevant for σ �k τ implies g : σ �k τ for some

g such that f � g.

8 Application Example

Consider a variant of the problem of the dining philosophers in which service providers

hire philosophers for generating philosophical thoughts to those clients that provide two

forks. Each philosopher is modeled by the following contract:

Pi
def
= forki.forki.thought.fork.fork

where the forki actions model the philosopher’s request of two forks, thought models

the generation of a thought, and the fork actions model the fact that the philosophers

return both forks after having generated a thought. We decorate forki actions with an

index i for distinguishing fork requests coming from different philosophers.

We consider two potential clients of such services, a “sloppy” client C and a “dili-

gent” client D which are defined as follows:

C
def
= ∑i=1..2 forki.∑i=1..2 forki.thought.fork.fork

D
def
= ∑i=1..2 forki.forki.thought.fork.fork

The difference between the two clients is that the sloppy one provides two forks,

but it does not care that the two forks it provides end up to the same philosopher. In

a system with two philosophers this may cause the system to deadlock. The diligent

client provides two forks and it does not care which philosopher gets the forks, but it

does care that the two forks end up to the same philosopher.

In order to see which services can satisfy these clients, we compute the correspond-

ing dual contracts and we obtain:

C⊥ def
=

⊕

i=1..2 forki.
⊕

i=1..2 forki.thought.fork.fork

D⊥ def
=

⊕

i=1..2 forki.forki.thought.fork.fork

5 The depth of a finite contract is the maximum number of nested prefixes in it.

244 L. Padovani

We observe that C⊥ ⊑ Pi and D⊥ ⊑ Pi for i = 1..2, hence we conclude that C ⊣ Pi

and D ⊣ Pi. Namely, both clients are satisfied by any service that hires one of the two

philosophers for generating thoughts. Consider now a richer service provider who can

afford two hire both philosophers. Intuitively, this service has contract P1 |P2, which

denotes the parallel composition of P1 and P2. Even though our contract language is not

equipped with a parallel composition operator, we can faithfully capture its semantics

using just the operators provided by our contract language. Assuming that σ and τ are

the contracts of two services that never synchronize with each other, which is the case

in this example, we can express σ | τ using a simplified form of expansion law [21]:

σ | τ
def
=

⊕

σ⇓R,τ⇓S

(

∑α∈R α.(σ(α) | τ)+ ∑α∈S α.(σ | τ(α))
)

With this definition, we can now see that C⊥ �⊑ P1 |P2 and D⊥ �⊑ P1 |P2, hence the

richer service with contract P1 |P2 cannot be used as is to satisfy either client. Let us

now run the algorithm to see whether C⊥ �0 P1 |P2. If we consider the sequence of

actions fork1fork2 we reduce to checking

thought.fork.fork �0 P1(fork1) |P2(fork2)

The contract P1(fork1) |P2(fork2) has only the ready set {fork1, fork2}, while the resid-

ual of the client’s dual contract has only the ready set {thought}. A similar situation

occurs when considering the sequence of actions fork2fork1. There is no orchestration

action that can let the algorithm make some progress from these states. In a sense the

algorithm finds out that the two forks sent by the client must be delivered to the same

philosopher, and this is testified by the resulting orchestrator

f
def
=

∨

i=1..2〈forki, forki〉.〈forki, forki〉.〈thought, thought〉.〈fork, fork〉.〈fork, fork〉

which allows us to prove f : C⊥ �0 P1 |P2.

In this particular example, the same orchestrator f also allows us to prove f : D⊥ �0

P1 |P2. However, there is an important difference with the case of C⊥ because we have

I(D⊥) � f . This means that D⊥ never exposes any action that must be filtered out by

f . Since D⊥ is the dual of D, this in turn means that D never tries to perform any action

that is not filtered by f . In conclusion, while D⊥ �⊑ P1 |P2, hence there are clients of D⊥

that are not satisfied by P1 |P2 if not by means of some orchestrator, it is the case that

D ⊣ P1 |P2 and we are able to conclude this fact from f : D⊥ �0 P1 |P2 and I(D⊥) � f .

Suppose now that the rich service provider is forced to update the service with two

new philosophers who, according to their habit, produce their thoughts only after having

returned the forks. Their behavior can be described by the contract

Qi
def
= forki.forki.fork.fork.thought

The service provider may wonder whether the clients of the old service will still be

satisfied by the new one. The problem can be formulated as checking whether P1 |P2 �k

Q1 |Q2 for some k and the interesting step is when the algorithm eventually checks

P1(fork1fork1) |P2 �k Q1(fork1fork1) |Q2 (symmetrically for P2 and the sequence of ac-

tions fork2fork2). At this stage P1(fork1fork1) |P2 has just the ready set {thought, fork2},

Contract-Based Discovery and Adaptation of Web Services 245

whereas the contract Q1(fork1fork1) |Q2 has just the ready set {fork, fork2}. By accept-

ing the two fork messages asynchronously we reduce to checking whether

P1(fork1fork1) |P2 �k thought.Q1 |Q2, which holds by allowing the thought action to

occur, followed by the asynchronous sending of the two buffered fork messages. Over-

all the relation is proved by the orchestrator

g
def
=

∨

i=1..2〈forki, forki〉.
∨

i=1..2〈forki, forki〉.
〈ε, fork〉.〈ε, fork〉.〈thought, thought〉.〈fork,ε〉.〈fork,ε〉

and now the sloppy client C will be satisfied by the service Q1 |Q2 by means of the

orchestrator

f ·g =
∨

i=1..2〈forki, forki〉.〈forki, forki〉.〈ε, fork〉.〈ε, fork〉.〈thought, thought〉.〈fork,ε〉

9 Related and Future Work

This work originated by revisiting CCS without τ’s [16] in the context of Web services.

Contracts are in fact just a concrete representation of acceptance trees [20,21]. Early

attempts to define a reasonable subcontract relation [9] have eventually led to the con-

clusion that some control over actions is necessary: [24] proposes a static form of control

that makes use of explicit contract interfaces whereas [10] proposes a dynamic form of

control by means of so-called filters and [27] elaborates on the idea of [10] by adding

asynchrony and buffering to filters: this apparently simple addition significantly increases

the technicalities of the resulting theory, both because of the very nature of asynchrony

and also because orchestrator composition and conjunction no longer coincide.

[18] provides a very clear and interesting comparison of several refinement relations

among which reduction refinement, which corresponds to the must preorder and to our

notion of strong subcontract (see §2), and implementation refinement, which roughly

corresponds to the subcontract relation defined in [9] and that can be traced back to

the LOTOS language [7]. The authors of [18] emphasize the importance of implemen-

tation refinement, which enables width and depth extensions of partial specifications,

but also its lack of transitivity, which hinders its application in practice. Thus, the work

done in [10,27] can be seen as a solution to the lack of transitivity of this (and similar)

refinement relations, by the introduction of suitable coercions/orchestrators/connectors.

WS-BPEL [1] is often presented as an orchestration language for Web services. Re-

markably WS-BPEL features boil down to storing incoming messages into variables

(buffering) and controlling the interactions of other parties. Our orchestrators can be

seen as streamlined WS-BPEL orchestrators in which all the internal nondeterminism of

the orchestrator itself is abstracted away. ORC [26] is perhaps the most notable example

of orchestration-oriented, algebraic language. The peculiar operators ≫ and where of

ORC represent different forms of pipelining and can be seen as orchestration actions in

conjunction with the composition operator · of simple orchestrators (§4).

There has been extensive research on the automatic synthesis of connectors both in

the domain of software architectures (see for example [23]) and also in the more spe-

cific domain of Web services [5,19,22,28,30]. In these contexts the problem consists in

finding a connector component (if there is one) which coordinates n given components

246 L. Padovani

(associated with corresponding behaviors) so as to accomplish a specific goal (for ex-

ample, adhering to a target behavior). There is a clear analogy with the present work

in that a component of the system (which we call orchestrator) is synthesized so as to

make other components interact in some restricted way. We can highlight four main dif-

ferences between the two scenarios: (1) there is a conceptual difference in that we focus

on finding an existing service with a desired behavior, whereas Web service composi-

tion tries to synthesize a desired behavior starting from n given services. (2) The nature

of simple orchestrators is driven by a notion of safe replacement for Web services (the

subcontract relation). Although they play an essential role, simple orchestrators are just

a tool for reasoning on service equivalence, which is the real main concern in this work.

(3) The connector resulting from the automatic composition of Web services is ad hoc

for the particular set of services that have been composed. In our case, it is possible to

synthesize a universal orchestrator that satisfies all the clients of a desired service. The

tight relationship between the subcontract relation and orchestrators provides us with

an efficient way of composing connectors, which is not possible in the more complex

scenario of Web service composition. (4) The automatic composition of Web services

can only generate stub connectors whose low-level details must still be filled in by pro-

grammers. This is due to the fact that in most cases the behavioral description of the

Web services is not detailed enough (or is too complex) to fully automate the code gen-

erating process. In our restricted scenario, the orchestrators are simple enough to admit

a fully automatic code generation.

Future work. The presented theory of contracts is based on (a variant of) the CCS lan-

guage, whose terms describe interactions without any information on the content of the

exchanged messages. Consequently, this theory is adequate as long as the topology of

the interaction network and the roles (client/service) of the participants to an interaction

are fixed. In more complex scenarios, one can be interested in modelling systems with

multiple participants that interact by opening private sessions and by exchanging (del-

egating) opened sessions between them. In this scenario, the crisp distinction between

client and service is lost, and the exchange of communication channels during interac-

tion cannot be adequately captured by a CCS-based contract language. Consequently,

the theory presented in this paper is currently being extended to a π-calculus based

contract language, which enables the description of processes creating and exchanging

communication channels.

Acknowledgments. Parts of the work presented in this paper have been developed in

collaboration with Samuele Carpineti, Giuseppe Castagna, Nils Gesbert, and Cosimo

Laneve. The sound and complete deduction system in §3 is an adaptation of the one

in the full version of [10] which, in turn, closely follows the one for the must preorder

presented in [21].

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., et al.: Web Services Business Process Execution

Language Version 2.0 (2007)

2. Baeten, J.C.M., Corradini, F., Grabmayer, C.A.: A characterization of regular expressions

under bisimulation. J. ACM 54(2), 6 (2007)

Contract-Based Discovery and Adaptation of Web Services 247

3. Banerji, A., Bartolini, C., Beringer, D., Chopella, V., et al.: Web Services Conversation Lan-

guage (WSCL) 1.0 (2002)

4. Bellwood, T., Capell, S., Clement, L., Colgrave, J., et al.: UDDI Version 3.0.2. OASIS Stan-

dard (2005), http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

5. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic compo-

sition of e-services that export their behavior. In: Orlowska, M.E., Weerawarana, S., Papa-

zoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 43–58. Springer, Heidelberg

(2003)

6. Beringer, D., Kuno, H., Lemon, M.: Using WSCLin a UDDIRegistry 1.0 (2001)

7. Brinksma, E., Scollo, G., Steenbergen, C.: LOTOS specifications, their implementations and

their tests. IEEE Computer Society Press, Los Alamitos (1995)

8. Bruce, K.B., Longo, G.: A modest model of records, inheritance and bounded quantification.

Information and Computation 87(1/2), 196–240 (1990)

9. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A formal account of contracts for Web

Services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184,

pp. 148–162. Springer, Heidelberg (2006)

10. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for Web services. In: Proceed-

ings of POPL 2008, pp. 261–272. ACM, New York (2008)

11. Chen, G.: Soundness of coercion in the calculus of constructions. Journal of Logic and Com-

putation 14(3), 405–427 (2004)

12. Chinnici, R., Moreau, J.-J., Ryman, A., Weerawarana, S.: Web Services Description Lan-

guage (WSDL) Version 2.0 Part 1: Core Language (2007)

13. Colgrave, J., Januszewski, K.: Using WSDL in a UDDI registry, version 2.0.2. Technical note,

OASIS (2004)

14. Courcelle, B.: Fundamental properties of infinite trees. Theoretical Computer Science 25,

95–169 (1983)

15. De Nicola, R., Hennessy, M.: Testing equivalences for processes. Theoretical Computer Sci-

ence 34, 83–133 (1984)

16. De Nicola, R., Hennessy, M.: CCS without τ’s. In: Ehrig, H., Levi, G., Montanari, U. (eds.)

CAAP 1987 and TAPSOFT 1987. LNCS, vol. 249, pp. 138–152. Springer, Heidelberg (1987)

17. De Nicola, R., Labella, A.: Nondeterministic regular expressions as solutions of equational

systems. Theor. Comput. Sci. 302(1-3), 179–189 (2003)

18. Eshuis, R., Fokkinga, M.M.: Comparing refinements for failure and bisimulation semantics.

Fundamenta Informaticae 52(4), 297–321 (2002)

19. De Giacomo, G., Sardiña, S.: Automatic synthesis of new behaviors from a library of avail-

able behaviors. In: IJCAI, pp. 1866–1871 (2007)

20. Hennessy, M.: Acceptance trees. JACM: Journal of the ACM 32(4), 896–928 (1985)

21. Hennessy, M.: Algebraic Theory of Processes. Foundation of Computing. MIT Press, Cam-

bridge (1988)

22. Hull, R., Benedikt, M., Christophides, V., Su, J.: E-services: a look behind the curtain.

In: PODS 2003: Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART sym-

posium on Principles of database systems, pp. 1–14. ACM, New York (2003)

23. Inverardi, P., Tivoli, M.: Software architecture for correct components assembly.

In: Bernardo, M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 92–121. Springer,

Heidelberg (2003)

24. Laneve, C., Padovani, L.: The must preorder revisited – an algebraic theory for web ser-

vices contracts. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703,

pp. 212–225. Springer, Heidelberg (2007)

25. Laneve, C., Padovani, L.: The pairing of contracts and session types. In: Degano, P.,

De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065,

pp. 681–700. Springer, Heidelberg (2008)

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

248 L. Padovani

26. Misra, J., Cook, W.R.: Computation orchestration – a basis for wide-area computing. Soft-

ware and Systems Modeling 6(1), 83–110 (2007)

27. Padovani, L.: Contract-directed synthesis of simple orchestrators. In: van Breugel, F.,

Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 131–146. Springer, Heidelberg

(2008)

28. Pistore, M., Traverso, P., Bertoli, P., Marconi, A.: Automated synthesis of composite

BPEL4WS web services. In: ICWS 2005: Proceedings of the IEEE International Conference

on Web Services, Washington, DC, USA, pp. 293–301. IEEE Computer Society, Los Alami-

tos (2005)

29. Soloviev, S., Jones, A., Luo, Z.: Some Algorithmic and Proof-Theoretical Aspects of Coer-

cive Subtyping. In: Giménez, E. (ed.) TYPES 1996. LNCS, vol. 1512, pp. 173–196. Springer,

Heidelberg (1998)

30. Traverso, P., Pistore, M.: Automated composition of semantic web services into executable

processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,

vol. 3298, pp. 380–394. Springer, Heidelberg (2004)

31. von Riegen, C., Trickovic, I.: Using BPEL4WS in a UDDI registry. Technical note, OASIS

(2004)

A Proofs

A.1 Proofs of §2

Proof (of Theorem 1). First of all we prove that ⊑ is a coinductive strong subcontract

relation. Let σ ⊑ τ . As regards condition (1) in Definition 7, let {R1, . . . ,Rn} be the

ready sets of σ and assume by contradiction that there exists S such that τ ⇓ S and

Ri �⊆ S for every 1 ≤ i ≤ n. Namely, for every 1 ≤ i ≤ n there exists αi ∈ Ri \ S. Consider

ρ
def
= ∑1≤i≤n α i.e. Then ρ ⊣ σ but ρ �⊣ τ , which is absurd by hypothesis. As regards

condition (2), let τ
α

=⇒ and assume by contradiction that σ �
α

=⇒. Consider ρ
def
= e+ α .

Then ρ ⊣ σ but ρ �⊣ τ , which is absurd by hypothesis. Let ρ ′ be a client contract such

that ρ ′ ⊣ σ(α) and consider ρ
def
= e+ α.ρ ′. Then ρ ⊣ σ , from which we derive ρ ⊣ τ ,

hence ρ ′ ⊣ τ(α). We conclude σ(α) ⊑ τ(α) because ρ ′ is arbitrary.

Then we prove that ⊑ is the largest among all the coinductive strong subcontract

relations. To this aim it is sufficient to show that any coinductive strong subcontract

relation S is included in ⊑. Let (σ ,τ)∈S and assume ρ ⊣σ . Consider now a maximal

computation ρ | τ =⇒ ρ ′ | τ ′ �−→. We can “unzip” this derivation into two derivations

ρ
ϕ

=⇒ ρ ′ �−→ and τ
ϕ

=⇒ τ ′ �−→ for some string ϕ of actions. From condition (2) of

Definition 7 and by induction on ϕ we derive that σ
ϕ

=⇒ and (σ(ϕ),τ(ϕ)) ∈ S . From

τ(ϕ) ⇓ init(τ ′) and condition (1) of Definition 7 we derive that there exists R ⊆ init(τ ′)
such that σ(ϕ) ⇓ R. By definition of ready set we obtain that there exists σ ′ such that

σ
ϕ

=⇒ σ ′ �−→ and init(σ ′) ⊆ init(τ ′). We can now “zip” the two derivations starting

from ρ and σ and obtain a derivation ρ |σ =⇒ ρ ′ |σ ′. We observe that ρ ′ |σ ′ �−→ since

ρ ′ �−→ and σ ′ �−→ and init(σ ′) ⊆ init(τ ′). From ρ ⊣ σ we conclude ρ ′ e

−→. ⊓⊔

The proof of Proposition 1 is omitted. A proof of property (1) can be found in [24],

while a proof that ⊑ is a precongruence with respect to the operators of the contract

language is included in [21].

Contract-Based Discovery and Adaptation of Web Services 249

A.2 Proofs of §3

Proof (of Proposition 2). The “if” part is trivial. As regards the “only if” part, the

intuition is that if we are able to find the “most demanding” client satisfied by σ , then

its corresponding orchestrator is universal. The most demanding client satisfied by σ ,

denoted by σ⊤, can be defined thus:

σ⊤ def
= ∑

σ⇓R

{

e if R = /0
⊕

α∈R α.σ(α)⊤ otherwise

It is trivial to verify that σ⊤ ⊣ σ . Let f be an orchestrator such that f : σ⊤ ⊣ � τ and

assume, without loss of generality, that f is relevant for σ � τ . We prove that f : σ � τ
by contradiction. Assume that there exists ρ such that ρ ⊣ σ and f : ρ �⊣ � τ . Then there

exists a derivation ρ ‖ f τ =⇒ ρ ′ ‖ f ′ τ ′ �−→ such that ρ ′ �
e

−→. Consequently there exist

α1, . . . ,αn and such that ρ
α1···αn
====⇒ ρ ′ �−→ and τ

α1···αn
===⇒ τ ′ �−→ and f

〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→

f ′. Since f is relevant, it is easy to deduce, by induction on n, that σ
α1···αn
===⇒. From

ρ ′ ‖ f ′ τ ′ �−→ we deduce that ρ ′ α
−→ and f ′

〈α ,α〉
�−→ imply τ ′ �

α
−→. Let R1, . . . ,Rm be the

ready sets of σ(α1 · · ·αn). From ρ ⊣ σ and ρ ′ �
e

−→ we deduce that for every 1 ≤ i ≤

n there exists βi ∈ Ri and ρ ′ β i−→. By definition of most demanding client we have

σ(α1 · · ·αn)
⊤ ⇓ {β 1, . . . ,β m}, because each ready set of σ(α1 · · ·αn)

⊤ is obtained by

taking one action from every non-empty ready set of σ(α1 · · ·αn). Hence there exists

ρ ′′ such that σ⊤ α1···αn
====⇒ ρ ′′ �−→ and init(ρ ′′) = {β 1, . . . ,β m} ⊆ init(ρ ′). By zipping the

derivations starting from σ⊤, f , and τ we obtain a derivation σ⊤ ‖ f τ =⇒ ρ ′′ ‖ f ′ τ
′ �−→

where ρ ′′ �
e

−→. This is absurd, for f : σ⊤ ⊣ � τ by hypothesis. ⊓⊔

Proof (of Theorem 3). (⇒) Assume f : ρ ⊣ � σ and consider a derivation ρ ‖ f (σ) =⇒

ρ ′‖τ �−→. Then there exist ϕ and f ′ such that ρ
ϕ

=⇒ ρ ′ �−→ and f (σ)
ϕ

=⇒ f ′(σ(ϕ)) =⇒
τ �−→. By definition of f (σ) there exist α1, . . . ,αn and such that ϕ = α1 · · ·αn and

f
〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→ f ′. From ρ ′ ‖ τ �−→ we deduce init(ρ ′)∩ init(τ) = /0. From f ′(σ(ϕ))

=⇒ τ �−→ and by definition of f ′(σ(ϕ)) we deduce that there exists σ ′ such that σ
ϕ

=⇒
σ ′ �−→ and init(f ′(σ ′)) = init(τ). By zipping the derivations starting from ρ , f , and σ
we obtain ρ ‖ f σ =⇒ ρ ′ ‖ f ′ σ ′. Furthermore ρ ′ ‖ f ′ σ ′ �−→ because ρ ′ �−→ and σ ′ �−→.

From the hypothesis f : ρ ⊣ � σ we conclude ρ ′ e

−→.

(⇐) Assume ρ ⊣ f (σ) and consider a derivation ρ ‖ f σ =⇒ ρ ′ ‖ f ′ σ ′ �−→. By “un-

zipping” this derivation we have that there exist α1, . . . ,αn such that ρ
α1···αn
====⇒ ρ ′ �−→

and f
〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→ f ′ and σ

α1···αn
===⇒σ ′ �−→. Furthermore from ρ ′‖ f ′ σ

′ �−→ we derive

init(ρ ′)∩ init(f ′(σ ′)) = /0. By definition of f (σ) there exists τ such that f (σ)
α1···αn
===⇒

τ �−→ and init(τ) = init(f ′(σ ′)). By zipping the derivations starting from ρ and f (σ)
we obtain ρ ‖ f (σ) =⇒ ρ ′ ‖ τ . Furthermore ρ ′ ‖ τ �−→ because ρ ′ �−→, τ �−→, and

init(ρ ′)∩ init(τ) = init(ρ ′)∩ init(f ′(σ ′)) = /0. From ρ ⊣ f (σ) we conclude ρ ′ e

−→. ⊓⊔

Proof (of Proposition 3). We prove item (1); items (2) and (3) are similar. By The-

orem 3 it is sufficient to prove that f : ρ ⊣ � σ implies f : ρ ⊣ � τ for every ρ , under

250 L. Padovani

the hypothesis σ ⊑ τ . Consider a derivation ρ ‖ f τ =⇒ ρ ′ ‖ f ′ τ ′ �−→. Then there ex-

ist α1, . . . ,αn such that ρ
α1···αn
====⇒ ρ ′ �−→ and f

〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→ f ′ and τ

α1···αn
===⇒ τ ′ �−→.

Furthermore, from ρ ′ ‖ f ′ τ ′ �−→ we deduce init(ρ ′)∩ init(f ′(τ ′)) = /0. From σ ⊑ τ we

derive that there exists σ ′ such that σ
α1···αn
===⇒ σ ′ �−→ and init(σ ′)⊆ init(τ ′). By zipping

the derivations starting from ρ , f , and σ we obtain ρ ‖ f σ =⇒ ρ ′ ‖ f ′ σ ′. Furthermore,

init(ρ ′)∩ init(f ′(σ ′))⊆ init(ρ ′)∩ init(f ′(τ ′)) = /0, hence ρ ′ ‖ f ′ σ
′ �−→. From f : ρ ⊣ � σ

we conclude ρ ′ e

−→. ⊓⊔

Proof (of Theorem 4). First we show that � is a coinductive weak subcontract relation.

Let f : σ � τ and assume, without loss of generality, that f is relevant for σ � τ . It is

sufficient to prove that

W
def
= {(σ(α1 · · ·αn),τ(α1 · · ·αn)) | f

〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→}

is a coinductive weak subcontract relation. Let (σ ′,τ ′)∈W . Then there exist α1, . . . ,αn

and α1, . . . ,αn and f ′ such that f
〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→ f ′, σ ′ = σ(α1 · · ·αn), and τ ′ =

τ(α1 · · ·αn). Let A
def
= init(f ′). As regards condition (1) of Definition 15, let R1, . . . ,Rm

be the ready sets of σ ′. Assume by contradiction that there exists S such that τ ′ ⇓ S and

Ri �⊆ A◦ S for every 1 ≤ i ≤ m. Then there exists αi ∈ Ri \A◦ S for every 1 ≤ i ≤ m. Let

ρ
def
= ∑1≤i≤m α i.e. We have ρ ⊣ σ ′ but f ′ : ρ �⊣ � τ ′, which is absurd. As regards condi-

tion (2) of Definition 15, assume τ ′
α

=⇒ and 〈α,α〉 ∈ A. Since f is relevant for σ � τ

we have σ ′ α
=⇒. We conclude (σ ′(α),τ ′(α)) ∈ W by definition of W .

Now we prove that � is the largest coinductive weak subcontract, by showing that

every coinductive weak subcontract is included in it. Let W be a coinductive weak

subcontract relation such that (σ ,τ) ∈ W and assume ρ ⊣ σ . Let A(σ ′,τ ′) stand for the

set A of orchestration actions satisfying conditions (1) and (2) of Definition 15 whenever

(σ ′,τ ′) ∈ W . Let

f (σ ′,τ ′)
def
=

∨

〈α ,α〉∈A(σ ′,τ ′)〈α,α〉. f (σ ′(α),τ ′(α)) (4)

and let f
def
= f (σ ,τ). We prove f : ρ ⊣ � τ . Consider a derivation ρ ‖ f τ =⇒ ρ ′ ‖ f ′ τ

′ �−→.

By “unzipping” this derivation we obtain that there exist α1, . . . ,αn such that ρ
α1···αn
====⇒

ρ ′ �−→ and f
〈α1,α1〉···〈αn,αn〉
�−−−−−−−−−−→ f ′ and τ

α1···αn
===⇒ τ ′ �−→. By condition (2) of Definition 15

and by induction on n we derive that σ
α1···αn
===⇒ and (σ(α1 · · ·αn),τ(α1 · · ·αn)) ∈ W .

Observe that τ(α1 · · ·αn) ⇓ init(τ ′). By condition (1) of Definition 15 we have that there

exists R such that σ(α1 · · ·αn) ⇓ R and R ⊆ init(f ′)◦ init(τ ′), hence there exists σ ′ such

that σ
α1···αn
===⇒ σ ′ �−→ and init(σ ′) ⊆ init(f ′) ◦ init(τ ′). By “zipping” the derivations

starting from ρ and σ we obtain ρ ‖σ =⇒ ρ ′ ‖σ ′. Furthermore ρ ′ ‖σ ′ �−→ because

init(σ ′) ⊆ init(f ′)◦ init(τ ′). From ρ ⊣ σ we conclude ρ ′ e

−→. ⊓⊔

Proof (of Theorem 5). Let W
def
= {(σ ,τ) | ∃ f : f : σ ≤ τ}. We prove that W is a coin-

ductive weak subcontract relation by showing that f : σ ≤ τ implies

Contract-Based Discovery and Adaptation of Web Services 251

1. τ ⇓ S implies σ ⇓ R and R ⊆ init(f)◦ S, and

2. τ
α

=⇒ and 〈α,α〉 ∈ init(f) implies σ
α

=⇒ and f ′ : σ(α) ≤ τ(α) where f
〈α ,α〉
�−→ f ′.

We proceed by induction on the maximum depth of an axiom or of an unnested

instance of rule (PREFIX) in the derivation tree of f : σ ≤ τ and by cases on the last rule

applied.

Assume the last rule was (PREFIX). Then f = 〈α,α〉. f ′, σ ≡ α.σ ′, τ ≡ α.τ ′, and

f ′ : σ ′ ≤ τ ′ is derivable (we use ≡ to denote syntactic equality up to associativity

and commutativity of ⊕). Suppose τ ⇓ S. Then S = {α} and we notice that σ ⇓ {α}

and init(f) ◦ S = {α}. We also notice that τ
α

=⇒ and 〈α,α〉 ∈ init(f) and σ
α

=⇒ and

that this is the only possible transition for σ and τ . We conclude by observing that

σ(α) ≡ σ ′ and τ(α) ≡ τ ′ and that f ′ : σ ′ ≤ τ ′ is derivable by hypothesis.

Assume the last rule was (RED). Then σ ≡ σ ′ ⊕ τ and f = I(τ). Suppose τ ⇓ S.

Then init(f)◦ S = S and σ ⇓ S. Suppose τ
α

=⇒ and 〈α,α〉 ∈ init(f). We distinguish two

subcases: if σ ′ α
=⇒, then σ(α) ≡ σ ′(α)⊕ τ(α) and we conclude f ′ : σ ′(α)⊕ τ(α) ≤

τ(α) by (RED) since f ′ = I(τ(α)). If σ ′ �
α

=⇒, then σ(α) ≡ τ(α), hence we conclude

by reflexivity of ≤ (indeed σ = σ ⊕σ and I(σ) : σ ⊕σ ≤ σ).

Assume the last rule was (DEPTH). Then σ ≡ 0 and f = 0. The condition on ready

sets of τ trivially holds because σ ⇓ /0 and there is nothing left to prove since init(f) = /0.

Assume the last rule was (WEAK). Then f = f1 ∨ f2, f1 : σ ≤ τ , and f2 ∧ I(τ) �

f1. Suppose τ ⇓ S. By induction hypothesis we have σ ⇓ R where R ⊆ init(f1) ◦ S.

We conclude R ⊆ init(f) ◦ S by observing that init(f1) ⊆ init(f). Suppose τ
α

=⇒ and

〈α,α〉 ∈ init(f). Then 〈α,α〉 ∈ init(f ∧I(τ)) = init((f1∨ f2)∧I(τ)) = init((f1∧I(τ))∨

(f2 ∧ I(τ))) ⊆ init(f1) since f2 ∧ I(τ) � f1. By induction hypothesis we have σ
α

=⇒

and f ′1 : σ(α) ≤ τ(α) where f1
〈α ,α〉
�−→ f ′1. We distinguish two subcases. If f2

〈α ,α〉
�−→ , then

f ′ = f ′1 ∨ f ′2 where f2
〈α ,α〉
�−→ f ′2. From f2 ∧ I(τ) � f1 we deduce f ′2 ∧ I(τ(α)) � f ′1, hence

we conclude f ′1 ∨ f ′2 : σ(α) ≤ τ(α) by rule (WEAK). If f2 �
〈α ,α〉
�−→ , then f ′ = f ′1 and there

is nothing left to prove.

Assume the last rule was (TRANS). Then f = f1 ∧ f2, f1 : σ ≤ σ ′, f2 : σ ′ ≤ τ for

some σ ′. Suppose τ ⇓ S. By induction hypothesis σ ′ ⇓ R′ for some R′ ⊆ init(f2) ◦ S.

Again by induction hypothesis σ ⇓ R for some R ⊆ init(f1) ◦ R′ ⊆ init(f1) ◦ init(f2) ◦

S = init(f) ◦ S. Suppose τ
α

=⇒ and 〈α,α〉 ∈ init(f). Then 〈α,α〉 ∈ init(f1)∩ init(f2).

By induction hypothesis σ ′ α
=⇒ and f ′2 : σ ′(α) ≤ τ(α) where f2

〈α ,α〉
�−→ f ′2. Again by

induction hypothesis f ′1 : σ(α) ≤ σ ′(α). By (TRANS) we have that f ′1 ∧ f ′2 : σ(α) ≤
τ(α) is derivable and we conclude by observing that f ′ = f ′1 ∧ f ′2.

Assume the last rule was (INT). Then σ ≡ σ1 ⊕σ2, τ ≡ τ1 ⊕ τ2, f : σ1 ≤ τ1, and

f : σ1 ≤ τ2. Suppose τ ⇓ S. Then τi ⇓ S for some i ∈ {1,2}. By induction hypothesis

we deduce σi ⇓ R for some R ⊆ init(f) ◦ S and we conclude by observing that σ ⇓ R.

Suppose τ
α

=⇒ and 〈α,α〉 ∈ init(f). We distinguish three interesting subcases, depend-

ing on which contracts admit α-successors. Assume τ1
α

=⇒ and τ2
α

=⇒. By induction

hypothesis we deduce σ1
α

=⇒ and σ2
α

=⇒ and f ′ : σi(α) ≤ τi(α) for every i ∈ {1,2}.

By rule (INT) we deduce f ′ : σ1(α)⊕ σ2(α) ≤ τ1(α)⊕ τ2(α) and we conclude f ′ :

σ(α) ≤ τ(α) by observing that σ(α) ≡ σ1(α)⊕σ2(α) and τ(α) ≡ τ1(α)⊕ τ2(α).

252 L. Padovani

Assume τ1
α

=⇒ and σ2 �
α

=⇒. Then τ2 �
α

=⇒. By induction hypothesis we deduce σ1
α

=⇒
and f ′ : σ1(α) ≤ τ1(α). We conclude by observing that σ(α) ≡ σ1(α) and τ(α) ≡

τ1(α). Assume τ1
α

=⇒ and τ2 �
α

=⇒ and σ2
α

=⇒. By induction hypothesis we deduce

σ1
α

=⇒ and f ′ : σ1(α) ≤ τ1(α). By rule (RED) we have I(σ1(α)) : σ1(α)⊕σ2(α) ≤
σ1(α). From f ′∧ I(σ1(α)) ≤ I(σ1(α)) and by rule (WEAK) we obtain I(σ1(α))∨ f ′ :

σ1(α)⊕σ2(α) ≤ σ1(α). By rule (TRANS) we deduce f ′ : σ1(α)⊕σ2(α) ≤ τ1(α). We

conclude by observing that σ(α) ≡ σ1(α)⊕σ2(α) and τ(α) ≡ τ1(α)⊕ τ2(α).
Assume the last rule was (EXT). Then we can proceed as for the previous case, the

only thing that changes being the reasoning on ready sets. The details are left to the

reader. ⊓⊔

Proof (of Lemma 1). In the rewritings that follow we indicate only the most relevant

laws that are applied. As regards (S1):

σ ⊕ τ = (σ ⊕ τ)+ (σ ⊕ τ) (1)
= σ ⊕ τ ⊕ (σ + τ) (2)

where (1) is justified by (E1) and (2) is justified by (D1).

As regards (S2):

σ ⊕ (σ + τ + ρ) = σ +(σ ⊕ τ)+ (σ ⊕ρ) (1)
= σ +(σ ⊕ (σ + τ)⊕ (σ + ρ)⊕ (τ + ρ)) (2)
= σ ⊕ (σ + τ)⊕ (σ + ρ)⊕ (σ + τ + ρ) (3)
= σ ⊕ (σ + τ)⊕ (σ + τ)⊕ (σ + ρ)⊕ (σ + τ + ρ) (4)
= σ ⊕ (σ + τ)⊕ (σ + τ + ρ) (5)

where (1) is justified by (D2), (2) is justified by (D1), (3) is justified by (D2), (4) is

justified by (I1) and finally (5) is justified by rewriting the subterm of step (3) with the

original one.

As regards (CO):

(α.σ + τ)⊕ (α.σ ′ + τ ′)
= (α.σ + τ)⊕ (α.σ ′+ τ ′)⊕ (α.σ + α.σ ′ + τ + τ ′) (1)
= (α.σ + τ)⊕ (α.σ ′+ τ ′)⊕ (α.σ + α.σ ′ + τ + τ ′)

⊕ (α.σ + α.σ ′ + τ)⊕ (α.σ + α.σ ′ + τ ′) (2)
= (α.σ + τ)⊕ (α.σ ′+ τ ′)⊕ (α.σ + α.σ ′ + τ + τ ′)

⊕ (α.(σ ⊕σ ′)+ τ)⊕ (α.(σ ⊕σ ′)+ τ ′) (3)
= (α.σ + τ)⊕ (α.σ ′+ τ ′)⊕ (α.(σ ⊕σ ′)+ τ)⊕ (α.(σ ⊕σ ′)+ τ ′) (4)
= ((α.σ ⊕α.(σ ⊕σ ′))+ τ)⊕ ((α.σ ′⊕α.(σ ⊕σ ′))+ τ ′) (5)
= (α.(σ ⊕σ ′)+ τ)⊕ (α.(σ ⊕σ ′)+ τ ′) (6)

where (1) is justified by (S1), (2) is justified by (S2), (3) is justified by (D3), (4) is

justified by (S1), (5) is justified by (D1), and (6) is justified by (D4) and (I1).

Proving (E-PREFIX) is trivial. As regards (E-EXT), observe that from I(σ ′) : σ ≤ σ ′

and I(τ ′)∧ I(σ ′) � I(σ ′) we derive I(σ ′)∨ I(τ ′) : σ ≤ σ ′ by an application of (WEAK).

Similarly we can derive I(σ ′)∨ I(τ ′) : τ ≤ τ ′, hence we can apply (EXT) and derive

I(σ ′)∨ I(τ ′) : σ + τ ≤ σ ′ + τ ′. By a similar argument we can also derive I(σ)∨ I(τ) :

σ ′ + τ ′ ≤ σ + τ , hence σ + τ = σ ′ + τ ′. Rule (E-INT) is analogous.

Contract-Based Discovery and Adaptation of Web Services 253

As regards (WIDTH), from the axiom 0 : 0≤ τ and the hypothesis I(σ)∧ I(τ) � 0 we

derive I(σ) : 0≤ τ . From I(σ) : σ ≤ σ and applying (EXT) we conclude I(σ) : σ +0≤
σ + τ , hence I(σ) : σ ≤ σ + τ . ⊓⊔

Proof (of Lemma 2). We define the head normal form of σ as

hnf(σ)
def
=

⊕

R∈R(σ) ∑α∈R α.σ(α)

It is sufficient to prove that σ = hnf(σ) is derivable. The statement of the Lemma then

follows by a simple induction on the maximum number of nested prefixes in σ . We

prove σ = hnf(σ) by induction on the maximum depth of a topmost prefix in σ and by

cases on the structure of σ . If σ ≡ 0, then σ is already in head normal form.

If σ ≡ α.σ ′, then σ is already in head normal form because σ(α) is σ ′.

If σ ≡ σ1 + σ2, then

σ = (
⊕

R1∈R(σ1) ∑α∈R1
α.σ1(α))+ (

⊕

R2∈R(σ2) ∑β∈R2
β .σ2(β)) (1)

=
⊕

R1∈R(σ1),R2∈R(σ2)
(∑α∈R1

α.σ1(α)+ ∑β∈R2
β .σ2(β)) (2)

=
⊕

R1∈R(σ1),R2∈R(σ2) ∑α∈R1∪R2
α.σ(α) (3)

=
⊕

R∈R(σ) ∑α∈R α.σ(α) (4)

where (1) is justified by the induction hypothesis and congruence rules, (2) is justified

by the repeated use of (D1), (3) is justified by (CO), and (4) follows from R(σ) =
{R1 ∪ R2 | R1 ∈ R(σ1),R2 ∈ R(σ2)}. Indeed, if R ∈ R(σ), then there exist R′

1 and R′
2

such that σ1 ⇓ R
′
1 and σ2 ⇓ R

′
2 and R

′
1 ∪ R

′
2 ⊆ R. Now R

′
1 ⊆ R ∩ init(σ1) ⊆ init(σ1) and

R′
2 ⊆ R∩ init(σ2)⊆ init(σ2), hence R∩ init(σ1) ∈R(σ1) and R∩ init(σ2)∈R(σ2). We

conclude by observing that (R ∩ init(σ1))∪ (R ∩ init(σ2)) = R because R ⊆ init(σ1)∪
init(σ2). On the other hand, let R1 ∈R(σ1) and R2 ∈R(σ2). Then there exist ready sets

R′
1 and R′

2 of respectively σ1 and σ2 such that R′
1 ⊆ R1 ⊆ init(σ1) and R′

2 ⊆ R2 ⊆ init(σ2).
Hence R

′
1 ∪ R

′
2 ⊆ R1 ∪ R2 ⊆ init(σ1)∪ init(σ2) and we conclude R1 ∪ R2 ∈ R(σ) by

observing that σ ⇓ R′
1 ∪ R′

2 and init(σ) = init(σ1)∪ init(σ2).
Finally, if σ ≡ σ1 ⊕σ2, then

σ = (
⊕

R1∈R(σ1) ∑α∈R1
α.σ1(α))⊕ (

⊕

R2∈R(σ2) ∑β∈R2
β .σ2(β)) (1)

= (
⊕

R1∈R(σ1) ∑α∈R1
α.σ(α))⊕ (

⊕

R2∈R(σ2) ∑β∈R2
β .σ(β)) (2)

=
⊕

R∈R(σ) ∑α∈R α.σ(α) (3)

where (1) is justified by the induction hypothesis and congruence rules, (2) is justified

by (CO), and (3) is justified by the repeated use of (S1) and (S2). ⊓⊔

Proof (of Theorem 6). By Lemma 2 we can assume that σ and τ are in normal form.

We reason by induction on the depth of σ and τ .

If τ ≡ 0, then σ must have an empty ready set hence by (MUST) we have 0 : σ ≤ 0

and we conclude f : σ ≤ τ by (WEAK) because f ∧ I(0) � 0.

For the remaining cases, assume

σ ≡
⊕

R∈R(σ) ∑α∈R α.σα and τ ≡
⊕

S∈R(τ) ∑α∈S α.τα

254 L. Padovani

and assume τ
α

=⇒ and f
〈α ,α〉
�−→ . From f : σ � τ we deduce σ

α
=⇒ and by induction

hypothesis we derive

f ′ : σα ≤ τα

where f
〈α ,α〉
�−→ f ′. Then, by (PREFIX),

〈α,α〉. f ′ : α.σα ≤ α.τα .

Now assume τ ⇓ R. From f : σ � τ and the fact that σ and τ are in head normal

form we have σ ⇓ init(f) ◦ R. Let fR

def
=

∨

f
〈α,α〉
�−→ f ′′,α∈R

〈α,α〉. f ′′ and notice that fR ∧

〈α,α〉.I(τα) � 〈α,α〉. f ′. Hence, by (WEAK),

fR : α.σα ≤ α.τα

and, by (EXT),

fR : ∑
α∈R, f

〈α,α〉
�−→

α.σα ≤ ∑
α∈R, f

〈α,α〉
�−→

α.τα .

From init(f)◦ R ⊆ R and by applying (WIDTH),

fR : ∑
α∈R, f

〈α,α〉
�−→

α.σα ≤ ∑α∈R α.τα .

Let f ′
def
=

∨

τ⇓R′ fR′ . From (
⋃

τ⇓R′ init(f)◦R′)∩R = (init(f)◦
⋃

τ⇓R′ R′)∩R ⊆ init(f)◦
R we observe that f ′∧

∨

α∈R〈α,α〉.I(τα) � fR. Hence, by (WEAK), by iterating over all

the ready sets of τ , and by (INT), we obtain

f ′ :
⊕

τ⇓R ∑
α∈R, f

〈α,α〉
�−→

α.σα ≤ τ .

Now

f ′ : σ ≤
⊕

τ⇓R ∑
α∈R, f

α
�−→

α.σα

by possibly applying (RED) for removing all the ready sets of σ that are not in {init(f)◦
S | τ ⇓ S} hence, by (TRANS), we conclude f ′ : σ ≤ τ . In order to prove f : σ ≤ τ it

is sufficient to apply (WEAK). This is possible because f ∧ I(τ) � f ′. Indeed, assume

τ
α

=⇒ and 〈α,α〉 ∈ init(f). Then α ∈ R for some τ ⇓ R, hence σ ⇓ init(f)◦ R and now

α ∈ init(f)◦ R. So, it must be fR

〈α ,α〉
�−→ from which we conclude f ′

〈α ,α〉
�−→ . ⊓⊔

A.3 Proofs of §4

Proof (of Proposition 7). We say that a subterm α.ρ ′ of ρ is useless if ρ
ϕ

=⇒
α

−→ ρ ′ and

σ
ϕ

=⇒ implies σ(ϕ) �
α

=⇒. Let ρr be the (client) contract obtained from ρ by replacing

every useless subterm α.ρ ′ with α.0. Clearly ρr ⊣ σ since no synchronization will ever

occur on those α actions that guard useless subterms of ρ . From the hypothesis σ �k τ
there exists a k-orchestrator g such that g : ρr ⊣ � τ . Let

R(g,σ ,τ)
def
=

∨

g
〈ϕ,ϕ ′〉
�−−−→g′,σ

ϕ
=⇒,τ

ϕ′
=⇒

〈ϕ ,ϕ ′〉.R(g′,σ(ϕ),τ(ϕ ′))

Contract-Based Discovery and Adaptation of Web Services 255

and let gr
def
= R(g,σ ,τ). Observe that gr is relevant for σ �k τ by its own definition and

gr : ρr ⊣ � τ because every derivation starting from ρr ‖gr τ is also a

possible derivation starting from ρr ‖g τ . We prove that gr : ρ ⊣ � τ . Consider a deriva-

tion ρ ‖gr τ =⇒ ρ ′ ‖g′r
τ ′ �−→. Then there exist ϕ1, . . . ,ϕn and ϕ ′

1, . . . ,ϕ
′
n such that

ρ
ϕ1···ϕn====⇒ ρ ′ �−→ and gr

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→ g′r and τ

ϕ ′
1···ϕ

′
n

===⇒ τ ′ �−→. None of the ϕi can be

an α guarding a useless subterm of ρ , by construction of gr. By definition of ρr, there

exists ρ ′
r such that ρr

ϕ1···ϕn====⇒ ρ ′
r and init(ρ ′

r) = init(ρ ′) (in fact it is possible to find a ρ ′
r

that is the same as ρ ′ except that useless subterms α.ρ ′′ have been replaced by α .0).

By zipping the derivations starting from ρr, gr, and τ we obtain ρr ‖gr τ =⇒ ρ ′
r ‖g′r

τ ′

and we notice that ρ ′
r ‖g′r

τ ′ �−→ since init(ρ ′
r) = init(ρ ′). From gr : ρr ⊣ � τ we deduce

ρ ′
r

e

−→, hence we conclude ρ ′ e

−→. ⊓⊔

Proof (of Proposition 8). The “if” part is trivial. As regards the “only if” part, we

use the same intuition as for the synchronous case, by considering the most demand-

ing client σ⊤ that is satisfied by σ . Let f be a k-orchestrator such that f : σ⊤ ⊣ � τ
and assume, without loss of generality, that f is relevant for σ �k τ . We prove that

f : σ �k τ by contradiction. Assume that there exists ρ such that ρ ⊣ σ and f : ρ �⊣ � τ .

Then there exists a derivation ρ ‖ f τ =⇒ ρ ′ ‖ f ′ τ ′ �−→ such that ρ ′ �
e

−→. Consequently

there exist ϕ1, . . . ,ϕn and ϕ ′
1, . . . ,ϕ

′
n such that ρ

ϕ1···ϕn====⇒ ρ ′ �−→ and τ
ϕ ′

1···ϕ
′
n

===⇒ τ ′ �−→ and

f
〈ϕ1,ϕ ′

1〉···〈ϕn,ϕ ′
n〉

�−−−−−−−−−−→ f ′. Since f is relevant, it is easy to deduce, by induction on n, that

σ
ϕ1···ϕn
=⇒ . From ρ ′ ‖ f ′ τ ′ �−→ we deduce that ρ ′ α

−→ implies f ′ �
〈α ,ε〉
�−→ and f ′

〈α ,α〉
�−→ im-

plies τ ′ �
α

−→. Let R1, . . . ,Rm be the ready sets of σ(ϕ1 · · ·ϕn). From ρ ⊣ σ and ρ ′ �
e

−→

we deduce that for every 1 ≤ i ≤ n there exists αi ∈ Ri and ρ ′ α i−→. By definition of

most demanding client we have σ(ϕ1 · · ·ϕn)
⊤ ⇓ {α1, . . . ,αm}, because each ready set

of σ(ϕ1 · · ·ϕn)
⊤ is obtained by taking one action from every non-empty ready set

of σ(ϕ1 · · ·ϕn). Hence there exists ρ ′′ such that σ⊤ ϕ1···ϕn====⇒ ρ ′′ �−→ and init(ρ ′′) =
{α1, . . . ,αm} ⊆ init(ρ ′). By zipping the derivations starting from σ⊤, f , and τ we ob-

tain a derivation σ⊤ ‖ f τ =⇒ ρ ′′‖ f ′ τ
′ �−→ where ρ ′′ �

e

−→. This is absurd, for f : σ⊤ ⊣ � τ
by hypothesis. ⊓⊔

Proof (of Theorem 7). (⇒) Assume f : ρ ⊣ �k σ and consider a derivation ρ ‖ f (σ) =⇒

ρ ′ ‖ τ �−→. Then there exist ϕ , ϕ ′, and f ′ such that ρ
ϕ

=⇒ ρ ′ �−→ and f (σ)
ϕ

=⇒
f ′(σ(ϕ ′)) =⇒ τ �−→. By definition of f (σ) there exist ϕ1, . . . ,ϕn and ϕ ′

1, . . . ,ϕ
′
n such

that ϕ = ϕ1 · · ·ϕn and ϕ ′ = ϕ ′
1 · · ·ϕ

′
n and f

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→ f ′. From ρ ′ ‖ τ �−→ we de-

duce init(ρ ′)∩ init(τ) = /0. From f ′(σ(ϕ ′)) =⇒ τ �−→ and by definition of f ′(σ(ϕ ′))

we deduce that there exist α1, . . . ,αm and σ ′ and f ′′ such that σ
ϕ ′α1···αm
=====⇒ σ ′ �−→ and

f ′
〈ε,α1〉···〈ε,αm〉
�−−−−−−−−→ f ′′ and (/0• init(f ′′))∩ init(σ ′) = /0 and init(f ′′)• init(σ ′)⊆ init(τ). By

zipping the derivations starting from ρ , f , and σ we obtain ρ ‖ f σ =⇒ ρ ′ ‖ f ′′ σ ′. Fur-

thermore ρ ′ ‖ f ′′ σ
′ �−→ because ρ ′ �−→ and σ ′ �−→ and init(ρ ′)∩(init(f ′′)• init(σ ′))⊆

init(ρ ′)∩ init(τ) = /0. From f : ρ ⊣ �k σ we conclude ρ ′ e

−→.

256 L. Padovani

(⇐) Assume ρ ⊣ f (σ) and consider a derivation ρ ‖ f σ =⇒ ρ ′ ‖ f ′ σ ′ �−→. By “un-

zipping” this derivation we have that there exist ϕ1, . . . ,ϕn and ϕ ′
1, . . . ,ϕ

′
n such that

ρ
ϕ1···ϕn====⇒ ρ ′ �−→ and f

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→ f ′ and σ

ϕ ′
1···ϕ

′
n

===⇒ σ ′ �−→. Furthermore from ρ ′ ‖ f ′

σ ′ �−→ we derive init(ρ ′)∩ (init(f ′)• init(σ ′)) = /0. By definition of f (σ) there exists

τ such that f (σ)
ϕ1···ϕn
===⇒ τ �−→ and init(τ) = init(f ′) • init(σ ′). By zipping the deriva-

tions starting from ρ and f (σ) we obtain ρ ‖ f (σ) =⇒ ρ ′ ‖ τ . Furthermore ρ ′ ‖ τ �−→
because ρ ′ �−→, τ �−→, and init(ρ ′)∩ init(τ) = init(ρ ′)∩(init(f ′)• init(σ ′)) = /0. From

ρ ⊣ f (σ) we conclude ρ ′ e

−→. ⊓⊔

Proof (of Proposition 9). We prove item (1); items (2) and (3) are similar. By Theorem 7

it is sufficient to prove that f : ρ ⊣ � σ implies f : ρ ⊣ � τ for every ρ , under the hypoth-

esis σ ⊑ τ . Consider a derivation ρ ‖ f τ =⇒ ρ ′ ‖ f ′ τ ′ �−→. Then there exist ϕ1, . . . ,ϕn

and ϕ ′
1, . . . ,ϕ

′
n such that ρ

ϕ1···ϕn====⇒ ρ ′ �−→ and f
〈ϕ1,ϕ ′

1〉···〈ϕn,ϕ ′
n〉

�−−−−−−−−−−→ f ′ and τ
ϕ ′

1···ϕ
′
n

===⇒ τ ′ �−→.

Furthermore, from ρ ′ ‖ f ′ τ ′ �−→ we deduce init(ρ ′) ∩ (init(f ′) • init(τ ′)) = /0. From

σ ⊑ τ we derive that there exists σ ′ such that σ
ϕ ′

1···ϕ
′
n

===⇒ σ ′ �−→ and init(σ ′) ⊆ init(τ ′).
By zipping the derivations starting from ρ , f , and σ we obtain ρ ‖ f σ =⇒ ρ ′ ‖ f ′ σ ′.

Furthermore, init(ρ ′)∩ (init(f ′) • init(σ ′)) ⊆ init(ρ ′)∩ (init(f ′) • init(τ ′)) = /0, hence

ρ ′ ‖ f ′ σ ′ �−→. From f : ρ ⊣ � σ we conclude ρ ′ e

−→. ⊓⊔

The proof that f ·g is the orchestrator we are looking for needs the following technical

result, which tells us about the “unzipping” of compound orchestrators.

Lemma 3. f ·g
〈ψ1,ψ ′

1〉···〈ψm,ψ ′
m〉

�−−−−−−−−−−−→ h implies that there exist ϕ1, . . . ,ϕn and ϕ ′
1, . . . ,ϕ

′
n

and ϕ ′′
1 , . . . ,ϕ ′′

n such that f
〈ϕ1,ϕ ′

1〉···〈ϕn,ϕ ′
n〉

�−−−−−−−−−−→ f ′ and g
〈ϕ ′

1,ϕ ′′
1〉···〈ϕ

′
n,ϕ ′′

n〉
�−−−−−−−−−−→ g′ and ψ1 · · ·ψm =

ϕ1 · · ·ϕn and ψ ′
1 · · ·ψ

′
m = ϕ ′′

1 · · ·ϕ
′′
n and init(f ′ ·g′) ⊆ init(h).

Proof. In this proof we adopt the following notation: we write f
〈α1···αn,ε〉
−֒−−−−−→ f ′ if

f
〈α1,ε〉···〈αn,ε〉
�−−−−−−−−→ f ′ and f

〈ε,α1···αn〉
−֒−−−−−→ f ′ if f

〈ε,α1〉···〈ε,αn〉
�−−−−−−−−→ f ′. We admit n = 0, in which

case we have f
〈ε,ε〉
−֒−→ f . We prove the result for m = 1. The general statement follows

by a simple induction on m. Assume f ·g
〈ψ,ψ ′〉
�−−−−→ h. Then

h =
∨

f
〈ε,ϕ〉
−֒−−→ f ′

g
〈ϕ,ε〉
−֒−−→g′

(

∨

f ′
〈ψ,ε〉
�−→ f ′′

ψ ′=ε

f ′′ ·g′∨
∨

g′
〈ε,ψ′〉
�−→ g′′

ψ=ε

f ′ ·g′′∨
∨

f ′
〈ψ,α〉
�−→ f ′′

g′
〈α,ψ ′〉
�−→ g′′

f ′′ ·g′′
)

namely h accounts for all the possible continuations of the action 〈ψ ,ψ ′〉 considering

all the possible “synchronizations” occurring within f ·g. All these synchronizations

are captured by iterating over all ϕ such that f
〈ε,ϕ〉
−֒−−→ f ′ and g

〈ϕ,ε〉
−֒−−→ g′. There is a finite

number of them because f and g are valid orchestrators of finite rank. We deduce that

there exist ϕ ′
1, . . . ,ϕ

′
n such that

f
〈ε,ϕ ′

1〉···〈ε,ϕ ′
n−1〉〈ψ,ϕ ′

n〉
�−−−−−−−−−−−−−→ f ′ and g

〈ϕ ′
1,ε〉···〈ϕ ′

n−1,ε〉〈ϕ ′
n,ψ ′〉

�−−−−−−−−−−−−−−→ g′

Contract-Based Discovery and Adaptation of Web Services 257

and we conclude by taking ϕ1 = · · · = ϕn−1 = ϕ ′′
1 = · · · = ϕ ′′

n−1 = ε and ϕn = ψ and

ϕ ′′
n = ψ ′. The fact that init(f ′ ·g′)⊆ init(h) is an immediate consequence of the fact that

f ′ ·g′ is a summand occurring in h. ⊓⊔

Proof (of Theorem 8). Let ρ ⊣ f (g(σ)). By Theorem 7 it is sufficient to show that f ·g :

ρ ⊣ � σ , so consider a derivation ρ ‖ f ·g σ =⇒ ρ ′ ‖h σ ′ �−→. By unzipping this derivation

we deduce that there exist ψ1, . . . ,ψm and ψ ′
1, . . . ,ψ

′
m such that ρ

ψ1···ψm====⇒ ρ ′ �−→ and

f ·g
〈ψ1,ψ ′

1〉···〈ψm,ψ ′
m〉

�−−−−−−−−−−−→ h and σ
ψ ′

1···ψ
′
m

====⇒ σ ′ �−→. From ρ ′ ‖h σ ′ �−→ we deduce init(ρ ′)∩
(init(h) • init(σ ′)) = /0. By Lemma 3 we derive that there exist ϕ1, . . . ,ϕn, ϕ ′

1, . . . ,ϕ
′
n,

and ϕ ′′
1 , . . . ,ϕ ′′

n such that f
〈ϕ1,ϕ ′

1〉···〈ϕn,ϕ ′
n〉

�−−−−−−−−−−→ f ′ and g
〈ϕ ′

1,ϕ ′′
1〉···〈ϕ

′
n,ϕ ′′

n〉
�−−−−−−−−−−→ g′ and ψ1 · · ·ψm =

ϕ1 · · ·ϕn and ψ ′
1 · · ·ψ

′
m = ϕ ′′

1 · · ·ϕ
′′
n and init(f ′ ·g′) ⊆ init(h). Since f and g are valid or-

chestrators of finite rank, there exist f ′′, g′′, and ϕ such that f ′
〈ε,ϕ〉
−֒−−→ f ′′ and g′

〈ϕ,ε〉
−֒−−→ g′′

and f ′′
〈ε,α〉
�−→ implies g′′ �

〈α ,ε〉
�−→. Namely f ′′ and g′′ are two residual orchestrators that do

not “synchronize” with each other. By definition of orchestrator composition, observe

that init(f ′′ ·g′′) ⊆ init(f ′ ·g′) because f ′′ ·g′′ is a summand within f ′ ·g′. By defini-

tion of orchestrator application we have g(σ)
ϕ ′

1···ϕ
′
n

===⇒ g′(σ(ϕ ′′
1 · · ·ϕ

′′
n)) =⇒ g′(σ ′)

ϕ
=⇒

g′′(σ ′). Furthermore /0 ◦ init(g′′) ⊆ /0 ◦ init(f ′′ ·g′′) ⊆ /0 ◦ init(f ′ ·g′) ⊆ /0 ◦ init(h) hence

(/0 ◦ init(g′′))∩ init(σ ′) = /0 and g′′(σ ′) �−→ and init(g′′(σ)) = init(g′′) • init(σ ′). By

definition of orchestrator application we have f (g(σ))
ϕ1···ϕn
===⇒ f ′(g(σ)(ϕ ′

1 · · ·ϕ
′
n)) =

f ′(g′(σ(ϕ ′′
1 · · ·ϕ

′′
n))) =⇒ f ′(g′(σ ′)) =⇒ f ′′(g′′(σ ′)). Now we want to show that (/0 ◦

init(f ′′))∩ init(g′′(σ ′)) = /0. From init(g′′(σ ′)) = init(g′′)• init(σ ′) we derive that (/0 ◦

init(f ′′))∩ init(g′′(σ ′)) �= /0 if and only if there exists α such that f ′′
〈ε,α〉
�−→ and either

g′′
〈α ,ε〉
�−→ or (g′′

〈α ,α〉
�−→ and σ ′ α

−→). However, by the way f ′′ and g′′ have been cho-

sen we have that f ′′
〈ε,α〉
�−→ implies g′′ �

〈α ,ε〉
�−→. Furthermore, if f ′′

〈ε,α〉
�−→ and g′′

〈α ,α〉
�−→ , then

〈ε,α〉 ∈ init(f ′′ ·g′′)⊆ init(h). Then σ ′ �
α

−→ because ρ ′‖h σ ′ �−→. Hence (/0◦ init(f ′′))∩
init(g′′(σ ′)) = /0, so f ′′(g′′(σ ′)) �−→ and init(f ′′(g′′(σ ′))) = init(f ′′) • init(g′′(σ ′)) =
init(f ′′)• init(g′′)• init(σ ′) = init(f ′′ ·g′′)• init(σ ′) ⊆ init(h)• init(σ ′). By zipping the

derivations starting from ρ and f (g(σ)) we obtain ρ ‖ f (g(σ)) =⇒ ρ ′‖ f ′′(g′′(σ ′)) �−→,

hence we conclude ρ ′ e

−→. ⊓⊔

Proof (of Theorem 9). We prove that �k is a coinductive weak k-subcontract relation.

Let f : σ �k τ and assume, without loss of generality, that f is relevant for σ �k τ . It is

sufficient to prove that

Wk
def
= {(/̃0〈ϕ1,ϕ

′
1〉 · · · 〈ϕn,ϕ

′
n〉,σ(ϕ1 · · ·ϕn),τ(ϕ ′

1 · · ·ϕ
′
n)) | f

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→}

is a coinductive k-subcontract relation. Let (B,σ ′,τ ′) ∈ Wk. Then there exist ϕ1, . . . ,ϕn

and ϕ ′
1, . . . ,ϕ

′
n and f ′ such that f

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→ f ′, B = /̃0〈ϕ1,ϕ

′
1〉 · · · 〈ϕn,ϕ

′
n〉, σ ′ =

σ(ϕ1 · · ·ϕn), and τ ′ = τ(ϕ ′
1 · · ·ϕ

′
n). Since f is a k-orchestrator we have that B is a k-

buffer. Let A
def
= init(f ′). As regards condition (1) of Definition 22, let R1, . . . ,Rm be

the ready sets of σ ′. Assume by contradiction that there exists S such that τ ′ ⇓ S and

258 L. Padovani

Ri �⊆ A ◦ S for every 1 ≤ i ≤ m and (/0 • A)∩ S = /0. Then there exists αi ∈ Ri \ A ◦ S

for every 1 ≤ i ≤ m. Let ρ
def
= ∑1≤i≤m α i.e. We have ρ ⊣ σ ′ but f ′ : ρ �⊣ � τ ′, which is

absurd. As regards condition (2) of Definition 22, assume τ ′
ϕ ′

=⇒ and 〈ϕ ,ϕ ′〉 ∈ A. Since

f is relevant we have σ ′ ϕ
=⇒. We conclude (B〈ϕ ,ϕ ′〉,σ ′(ϕ),τ ′(ϕ ′)) ∈Wk by definition

of Wk.

Now we prove that �k is the largest coinductive weak k-subcontract relation, by

showing as usual that every coinductive weak k-subcontract relation is included in it. Let

Wk be a coinductive weak k-subcontract relation such that (/̃0,σ ,τ)∈Wk and assume ρ ⊣
σ . Let A(B,σ ′,τ ′) stand for the set A of orchestration actions satisfying conditions (1)

and (2) of Definition 22 whenever (B,σ ′,τ ′) ∈ Wk. Let

f (B,σ ′,τ ′)
def
=

∨

〈ϕ,ϕ ′〉∈A(B,σ ′,τ ′)

〈ϕ ,ϕ ′〉. f (B〈ϕ ,ϕ ′〉,σ ′(ϕ),τ ′(ϕ ′))

and let f
def
= f (/̃0,σ ,τ). Observe that f is well defined by regularity of σ and τ and that

it is a k-orchestrator. We prove f : ρ ⊣ � τ . Consider a derivation ρ ‖ f τ =⇒ ρ ′ ‖ f ′ τ
′ �−→.

By “unzipping” this derivation we obtain that there exist ϕ1, . . . ,ϕn and ϕ ′
1, . . . ,ϕ

′
n such

that ρ
ϕ1···ϕn====⇒ ρ ′ �−→ and f

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→ f ′ and τ

ϕ ′
1···ϕ

′
n

===⇒ τ ′ �−→. By condition (2) of

Definition 22 and by induction on n we derive that σ
ϕ1···ϕn
===⇒ and (/̃0〈ϕ1,ϕ

′
1〉 · · · 〈ϕn,ϕ

′
n〉,

σ(ϕ1 · · ·ϕn),τ(ϕ ′
1 · · ·ϕ

′
n)) ∈ Wk. Observe that τ(ϕ ′

1 · · ·ϕ
′
n) ⇓ init(τ ′). By condition (1)

of Definition 22 we have that either there exists R such that σ(ϕ1 · · ·ϕn) ⇓ R and R ⊆
init(f ′) ◦ init(τ ′) or (/0 • init(f ′))∩ init(τ ′) �= /0. However from ρ ′ ‖ f ′ τ ′ �−→ we derive

(/0 • init(f ′))∩ init(τ ′) = /0, hence there exists σ ′ such that σ
ϕ1···ϕn
===⇒ σ ′ and init(σ ′) ⊆

init(f ′) ◦ init(τ ′). By “zipping” the derivations starting from ρ and σ we obtain ρ ‖
σ =⇒ ρ ′‖σ ′. Furthermore ρ ′‖σ ′ �−→ because init(σ ′)⊆ init(f ′)◦ init(τ ′). From ρ ⊣ σ

we conclude ρ ′ e

−→. ⊓⊔

A.4 Proofs of §5

Proof (of Proposition 10). First we prove that viable(·) is a coinductive viability. Let

viable(ρ) and ρ ⇓ R. Then there exists σ such that ρ ⊣ σ and ρ ′ such that ρ =⇒ ρ ′ �−→

and R = init(ρ ′). If ρ ′ e

−→ there is nothing to prove, so assume ρ ′ �
e

−→ and σ =⇒
σ ′ �−→. We have ρ ‖σ =⇒ ρ ′‖σ ′ and from ρ ⊣ σ we deduce that ρ ′‖σ ′ −→ ρ ′′‖σ ′′ for

some ρ ′′ and σ ′′. Hence there exists α such that ρ =⇒ ρ ′ α
−→ ρ ′′ and σ =⇒ σ ′ α

−→ σ ′′.

It is trivial to see that from ρ ⊣ σ and ρ
α

=⇒ and σ
α

−→ we have ρ(α) ⊣ σ(α), hence

we conclude viable(ρ(α)).
To show that viable(·) is indeed the largest coinductive viability, we show that any

coinductive viability is included in viable(·). To do this, assume that ρ ∈ V for some

coinductive viability V . We must be able to find a service S(ρ) such that ρ ⊣ S(ρ). We

define S(ρ) thus

S(ρ)
def
= ∑ρ⇓R,α∈R\{e},ρ(α)∈V α.S(ρ(α))

and we leave the easy proof that ρ ⊣ S(ρ) to the reader. ⊓⊔

Contract-Based Discovery and Adaptation of Web Services 259

Proof (of Theorem 10). As regards item (1), consider a derivation ρ ‖ρ⊥ =⇒ ρ ′‖σ �−→

and assume by contradiction that ρ ′ �
e

−→. By unzipping this derivation we obtain that

there exists ϕ such that ρ
ϕ

=⇒ ρ ′ �−→ and ρ⊥ ϕ
=⇒ σ �−→. In particular, by definition

of ρ⊥ we can rewrite this latter derivation as ρ⊥ ϕ
=⇒ ρ(ϕ)⊥ =⇒ σ �−→. From ρ ′ ‖

σ �−→ we deduce init(ρ ′)∩ init(σ) = /0. Let R1, . . . ,Rn be the ready sets of ρ(ϕ) not

containing e (there must be at least one since ρ ′ �
e

−→). From the fact that ρ is viable and

by definition of ρ⊥ we know that every ready set of ρ(ϕ)⊥ contains one co-action from

every ready set of ρ(ϕ) that does not contain e and whose continuation is viable. Hence,

init(σ) = {α1, . . . ,αn} where αi ∈ Ri and ρ(ϕαi) is viable. From ρ(ϕ) =⇒ ρ ′ �−→

we deduce that init(ρ ′) = Rk for some k ∈ {1, . . . ,n}. Now ρ ′ αk−→ and σ
αk−→, which

contradicts init(ρ ′)∩ init(σ) = /0.

As regards item (2), it is sufficient to prove that W
def
= {(/̃0,ρ(ϕ)⊥,σ(ϕ)) |

ρ
ϕ

=⇒,σ
ϕ

=⇒} is a coinductive weak 0-subcontract relation, because (/̃0,ρ⊥,σ) ∈ W .

Let (/̃0,ρ ′,σ ′) ∈ W . Then there exists ϕ such that ρ ′ = ρ(ϕ)⊥ and σ ′ = σ(ϕ). Con-

sider A
def
= {〈α,α〉 | ρ ′ α

=⇒} and observe that /̃0 ⊢0 A. As regards condition (1) in Defi-

nition 18, let {R1, . . . ,Rn} = {R | ρ ⇓ R,e �∈ R} be the ready sets of ρ(ϕ) not containing

e. From the hypothesis ρ ⊣ σ we derive ρ(ϕ) ⊣ σ(ϕ), hence Ri ∩ S �= /0 for every

1 ≤ i ≤ n. Namely, for every 1 ≤ i ≤ n there exists α i ∈ Ri ∩ S. By definition of dual

contract we have ρ(ϕ)⊥ ⇓ {α1, . . . ,αn}. We conclude {α1, . . . ,αn} ⊆ A◦ S. As regards

condition (2), assume σ(ϕ)
α

=⇒ and 〈α,α〉 ∈ A. Then σ
ϕα
=⇒ and ρ(ϕ)⊥

α
=⇒ hence

ρ
ϕα
=⇒. By definition of W we conclude that (/̃0,ρ(ϕ)⊥(α),σ(ϕ)(α)) ∈ W because

ρ(ϕ)⊥(α) = ρ(ϕα)⊥ and σ(ϕ)(α) = σ(ϕα). ⊓⊔

A.5 Proofs of §7

Proof (Proof of Theorem 11). Item (1) is trivial for finite contracts. The extension of the

algorithm to infinite contracts is done in a standard way using a memoziation context.

The details can be found in the full version of [27].

As regards item (2), by a simple structural induction it is easy to establish that,

given a derivation for B ⊢k f : σ � τ where B is a k-buffer, every buffer B
′ in ev-

ery judgment occurring in the derivation is also a k-buffer. It is sufficient to show that

W
def
= {(B,σ ,τ) | B ⊢k f : σ � τ} is a coinductive weak k-subcontract relation. Let

(B,σ ,τ) ∈ W . Then B ⊢k f : σ � τ is derivable. Let A
def
= init(f) and observe that

B ⊢k A. As regards condition (1) in Definition 11, there is nothing to prove because it

exactly coincides with the third premise in rule (A1). As regards condition (2), assume

τ
ϕ ′

=⇒ and 〈ϕ ,ϕ ′〉 ∈ A. From the first premise of rule (A1) we derive σ
ϕ

=⇒. From

the second premise we know that B〈ϕ ,ϕ ′〉 ⊢k f〈ϕ,ϕ ′〉 : σ(ϕ) � τ(ϕ ′) is derivable. We

conclude (B〈ϕ ,ϕ ′〉,σ(ϕ),τ(ϕ ′)) ∈ W by definition of W .

As regards item (3), from g : σ � τ we derive that

Wk
def
= {(/̃0〈ϕ1,ϕ

′
1〉 · · · 〈ϕn,ϕ

′
n〉,σ(ϕ1 · · ·ϕn),τ(ϕ ′

1 · · ·ϕ
′
n)) | g

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→}

260 L. Padovani

is a weak k-subcontract relation. Note that since g is relevant, we have that

g
〈ϕ1,ϕ ′

1〉···〈ϕn,ϕ ′
n〉

�−−−−−−−−−−→ implies σ
ϕ1···ϕn
===⇒ and τ

ϕ ′
1···ϕ

′
n

===⇒. We prove that, if (B,σ ,τ) ∈ Wk, then

B ⊢k f : σ � τ is derivable by induction on the depth of σ and τ .

The base case is when both σ and τ have null depth. In this case, Ar = A = /0

and the premises of the algorithm are trivially satisfied, since both σ and τ have just

the empty ready set. In the inductive case, from (B,σ ′,τ ′) ∈ Wk and by definition of

Wk we deduce that there exist ϕ1, . . . ,ϕn, ϕ ′
1, . . . ,ϕ

′
n such that g

〈ϕ1,ϕ ′
1〉···〈ϕn,ϕ ′

n〉
�−−−−−−−−−−→ g′ and

B = /̃0〈ϕ1,ϕ
′
1〉 · · · 〈ϕn,ϕ

′
n〉 and σ ′ = σ(ϕ1 · · ·ϕn) and τ ′ = τ(ϕ ′

1 · · ·ϕ
′
n). Since g is rele-

vant for σ � τ and has rank k, we deduce that init(g′) ⊆ Ar in the first premise of the

algorithm. Let 〈ϕ ,ϕ ′〉 ∈ init(g′). By definition of coinductive weak k-subcontract rela-

tion and from the fact that g is relevant we know that (B〈ϕ ,ϕ ′〉,σ ′(ϕ),τ ′(ϕ ′)) ∈ Wk.

Since ϕϕ ′ �= ε , by induction hypothesis we obtain that there exists f〈ϕ,ϕ ′〉 such that

B〈ϕ ,ϕ ′〉 ⊢k f〈ϕ,ϕ ′〉 : σ ′(ϕ) � τ ′(ϕ ′). Hence init(g′) ⊆ A in the second premise of the

algorithm. Since g proves σ � τ , we have that init(g′) satisfies condition (1) of Defi-

nition 15, which coincides with the third premise of the algorithm. From init(g′) ⊆ A

we deduce that A also satisfies the third premise of the algorithm. Hence we can apply

the rule and conclude B ⊢k

∨

µ∈A fµ : σ ′ � τ ′. The fact that the algorithm computes the

best relevant orchestrator proving σ � τ is an immediate consequence of init(g′) ⊆ A,

as shown earlier. ⊓⊔

Contract-Based Discovery and Composition

of Web Services⋆

Mario Bravetti and Gianluigi Zavattaro

Department of Computer Science, University of Bologna, Italy

Abstract. In the context of Service Oriented Computing behavioural
contracts are descriptions of the observable message-passing behaviour
of services. In other terms, contracts are behavioural interfaces that can
be used, for instance, to check whether a group of services can be safely
combined avoiding, e.g., undesired deadlocks. In this paper we consider
the problem of discovering available services that can be used to imple-
ment a given service system. The idea is to first design a service system
by describing the overall behaviour of each of its participant, and then
instantiate such participants retrieving services exposing a behavioural
contract which is conformant with the corresponding given behaviour.

1 Introduction

Service Oriented Computing (SOC) is a paradigm for distributed computing
based on services intended as autonomous and heterogeneous components that
can be published and discovered via standard interface languages and pub-
lish/discovery protocols. Web Services are the most prominent service oriented
technology: Web Services publish their interface expressed in WSDL, they are
discovered through the UDDI protocol, and they are invoked using SOAP.

Even if one of the declared goal of Web Services is to support the automatic
discovery of services, this is not yet practically achieved. Two main problems are
still to be satisfactorily solved. The first one, investigated by the semantic web
research community, is concerned with the lack of semantic information in the
description of services. The second problem, addressed in this paper, is concerned
with the problem of guaranteeing that the interacting services are compliant in
the sense that their behaviours are complementary. In particular, it is important
to check whether in a set of services, combined in order to collaborate, no service
deadlocks waiting indefinitely for a message that never arrives.

In order to be able to check the compliance of the composed services, it is
necessary that the services expose in their interface also the description of their
expected behaviour. In the service oriented computing literature, this kind of
information is referred to as the behavioural service contract [15]. More precisely,
the service contract describes the sequence of input/output operations that the
service intends to execute within a session of interaction with other services.

⋆ Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 261–295, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

262 M. Bravetti and G. Zavattaro

Compliance checking based on the behavioural descriptions of the composed
entities has been already considered, for instance, in the context of component-
based systems (see e.g. [9,2,23]) or for client-service interaction [14]. In this
paper, we consider a different scenario with respect to both approaches.

As far as component-based systems are concerned, the commonly adopted
approach is to synthesize either wrappers or adaptors that respectively block
(the non compatible) part of the behaviour of one component or deal with pos-
sible mismatchings between the combined components. The approach adopted
in this paper is different because we address the problem of composition with-
out the introduction of any additional wrapper or adaptor. In other terms, we
consider the problem of retrieving some already available services in order to
implement a correct composition without the introduction of any additional el-
ement. In the service oriented computing literature, the approach we consider is
known with the name of choreography [27], which contrasts with the orchestrated
approach [25] according to which all services communicate only with a central
orchestrator. It is worth mentioning the fact that we could define our theory hav-
ing in mind components instead of services. Nevertheless, our assumption about
the choreographic approach makes all our theory more related to the current
vision of service oriented computing.

As far as client-service interaction is concerned, we assume a more general
context in which an arbitrary number of interacting services communicate di-
rectly without the presence of any central coordinator. We call this different
context multi-party composition. Moving from a simpler client-service to a more
complex multi-party scenario introduces several interesting new problems such
as independent refinement. By independent refinement we mean the possibility
to replace several services in a composition with other services that are selected
one independently from the other ones.

More precisely, the aim of this paper is to exploit the notion of behavioural
service contracts in order to define a theory that, on the one hand, permits
to formally verify whether they are compliant (thus giving rise to a correct
composition) and, on the other hand, permits to replace a service with another
one without affecting the correctness of the overall system. In this case we say
that the initially expected contract is replaced with one of its subcontracts.

We intend to formalize a notion of subcontract to be exploited in the service
discovery phase. Consider, for instance, a service system defined in terms of the
behavioural contracts to be fulfilled by each of the service components. The
actual services to be combined could be retrieved independently one from the
other (e.g. querying contemporaneously different service registries) collecting
services that either expose the expected contract, or one of its subcontracts.
Another application that we foresee for our notion of subcontract is for service
updates, as a mean to ensure backward compatibility. Consider, e.g., a service
that should be updated in order to provide new functionalities; if the new version
exposes a subcontract of the previous service, our theory ensures that the new
service is a correct substitute for the previous one.

Contract-Based Discovery and Composition of Web Services 263

1.1 Technical Contribution

The main contribution of this paper is to generalize results that we have pre-
sented in [3,7], where we have presented for the first time our approach for the
definition of a subcontract relation: we first assume that this relation should be
a pre-order, then we formalize the property that we want a “good” subcontract
pre-order should preserve, and finally we define our relation as the maximum of
such pre-orders (i.e. the union of all pre-orders satisfying the considered prop-
erty). This is similar to the co-inductive approach considered, e.g., in the defi-
nition of the bisimulation relation for CCS [24]. More precisely, in [3,7] we have
presented a theory, developed following this approach, considering two specific
languages, one for contracts and one for service systems. In this paper we gener-
alize such theory in two ways. On the one hand, we do not consider any specific
contract language thus presenting a version of our theory that can be applied
to any contract language satisfying a property, called output persistence, that
we will discuss in the following. On the other hand, we do not make any spe-
cific assumption on the way service systems are specified (in [3,7] we defined a
subcontract relation assuming a precise form of service system specifications in
which the restriction operator is applied directly to contracts and not to parallel
compositions of contracts).

More formally, we consider a generic language for behavioural contracts es-
sentially consisting of a process algebraic representation of labeled transition
systems defined on internal, input and output actions, and an additional action
representing successful completion. Then, we define a language for service sys-
tem specification that simply allows for the composition of contracts with the
parallel and restriction operators. We use this latter language to formalize the
notion of compliance: n services/contracts are compliant if their composition is
guaranteed to successfully complete without deadlocks or livelocks. After having
formalized compliance, we are able to formalize the property that each refine-
ment should satisfy: a refinement is a subcontract pre-order if it preserves service
compliance, namely, given n compliant services, and substituting each of them
with one of its refinements, the achieved n services are still compliant. Then
we define the subcontract relation as the union of all subcontract pre-orders.
One of the main results proved in this paper is that for the class of behavioural
contracts that we consider, the subcontract relation achieved according to this
approach is actually the largest subcontract pre-order thus allowing for the inde-
pendent replacement/retrieval of contracts. In fact, in other theories of contracts
recently proposed in the literature (details are reported in the next subsection),
independent replacement is not allowed.

This difference with respect to other contract theories relies on the output per-
sistence property that we impose on behavioural contracts: a contract is output
persistent if once a contract reaches a state in which it can perform an output
operation, this operation must be eventually executed from the contract before
successful completion. This property is usually satisfied by languages for compos-
ing services, such as WS-BPEL [25], in which output operations cannot be guard

264 M. Bravetti and G. Zavattaro

in external choices. In these languages, once an output action is executable by a
process, this output must be executed before the process successfully completes.

Another important technical achievement of [3,7] that we report in this paper
is a characterization of the subcontract relation in a testing-like scenario [18]:
we can prove that a contract C ′ is a subcontract of C if, after some appropriate
transformations applied to both C ′ and C , the former is guaranteed to satisfy
at least all the tests satisfied by the latter. In particular, we show how to use
the theory of should-testing [26] to prove that one contract is a subcontract
of another one. An important consequence of this characterization is a precise
localization of our refinement with respect to traditional refinements such as
failure refinement, or simulation (i.e. half-bisimulation): the refinement that we
achieve as the largest one preserving compliance is coarser than both failure
refinement and simulation.

1.2 Related Work

As stated above, we resort to the theory of testing, in particular, to the must-
testing pre-order. There are some significant differences between our form of
testing and the traditional one proposed by De Nicola-Hennessy [18]. The most
significant difference is that, besides requiring the success of the test, we impose
also that the tested process should successfully complete its execution. This
further requirement has important consequences; for instance, we do not distin-
guish between the always unsuccessful process 0 and other processes, such as
a.1 + a.b.1,1 for which there are no guarantees of successful completion in any
possible context. Another significant difference is in the treatment of divergence:
we do not follow the traditional catastrophic approach, but the fair approach
introduced by the theory of should-testing of Rensink-Vogler [26]. In fact, we do
not impose that all computations must succeed, but that all computations can
always be extended in order to reach success.

It is well known that the De Nicola-Hennessy must testing pre-order and the
CSP failure refinement [20] coincide (at least for finitely branching processes
without divergences [17]). It is interesting to say that the failure refinement
has been already exploited for checking component compatibility by Allen and
Garlan in [1]. Similarly to our theory, the failure refinement is used to prove that a
component can be replaced by one of its refinements in a component composition.
Differently from our theory, a composition of several components is obtained
adding a Glue component which behaves as a mediator for every component
interaction. This Glue component permits to cut the additional actions that the
refined components may include. The main difference with our theory is that, in
our context, we have no mediator that allows us to cut additional behaviours of
refined services. Nevertheless, the output persistence property that we consider
allows us to replace a service with another one having additional behaviour.

Behavioural contracts have been initially introduced in the context of process
calculi by Fournet et al. [19]. As far as service oriented computing is concerned,

1 We use 0 to denote unsuccessful termination, 1 for successful completion and +
for choice composition.

Contract-Based Discovery and Composition of Web Services 265

an initial theory of contracts for client-service interaction has been proposed by
Carpineti et al. [14] and then independently extended along different directions
by Bravetti and Zavattaro (see e.g. [3,4,5]) by Laneve and Padovani [22], and by
Castagna et al. [16]

In [19] contracts are CCS-like processes; a generic process P is defined as com-
pliant to a contract C if, for every tuple of names ã and process Q, whenever
(νã)(C|Q) is stuck-free then also (νã)(P |Q) is. Our notion of contract refinement
differs from stuck-free conformance mainly because we consider a different no-
tion of stuck process state. In [19] a process state is stuck (on a tuple of channel
names ã) if it has no internal moves (but it can execute at least one action on one
of the channels in ã). In our approach, an end-state different from successful ter-
mination is stuck (independently of any tuple ã). Thus, we distinguish between
internal deadlock and successful completion while this is not the case in [19].
Another difference follows from the exploitation of the restriction (νã); this is
used in [19] to explicitly indicate the local channels of communication used be-
tween the contract C and the process Q. In our context we can make a stronger
closed-world assumption (corresponding to a restriction on all channel names)
because service contracts do not describe the entire behaviour of a service, but
the flow of execution of its operations inside one session of communication.

The closed-world assumption is considered also in [14] where, as in our case, a
service oriented scenario is considered. In particular, in [14] a theory of contracts
is defined for investigating the compatibility between one client and one service.
Our paper considers multi-party composition where several services are com-
posed in a peer-to-peer manner. Moreover, we impose service substitutability as
a mandatory property for our notion of refinement; this does not hold in [14]
where it is not in general possible to substitute a service exposing one contract
with another one exposing a subcontract. Another significant difference is that
the contracts in [14] comprise also external mixed choices that do not satisfy the
output persistence property.

The preliminary versions of this paper [3,7] introduces several interesting new
aspects not considered in the initial approach of Carpineti et al. For instance, we
consider also contracts with an infinite behaviour admitting the recursive oper-
ator in contracts, we consider multi-party compositions, and we present how to
resort to the theory of testing pre-orders. Moreover, in another paper [4] we also
investigate a new stronger notion of correctness for contract systems in which we
assume that output operations cannot wait indefinitely. This problem naturally
arises when also unlimited contract behaviours are permitted. For instance, the
three contracts

a.b a.recX.(c.d.X) recX.(c.d.X) + b

(recX. denotes the classical recursive definition operator) are typically assumed
to be compliant as their composition is stuck-free. Nevertheless, the second out-
put of the first contract can wait indefinitely due to the possible unlimited inter-
action between the second and the third contract. In [4] we address this problem:
we propose a new stronger notion of compliance, called strong compliance, and
we present a new theory of contracts which is consistent with strong compliance.

266 M. Bravetti and G. Zavattaro

In [5] we discuss how contracts can be exploited in a more general theory
for choreography conformance. Choreography languages, used to describe from
a global point of view the peer-to-peer interactions among services in a compo-
sition, have been already investigated in a process algebraic setting by Busi et
al. [10,11] and by Carbone et al. [12]. The notion of choreography conformance
is in general used to check whether a service can play a specific role within a
given choreography. In [5] we present a basic choreography language, and we
define conformance between that language and a contract language as follows:
we check conformance by projecting a choreography on the considered role, and
then exploiting contract refinement.

The work of Carpineti et al. [14] discussed above has been extended by (some
of) the original authors in two ways, in [22] by explicitly associating to a con-
tract the considered input/output alphabet, in [16] by associating to services
a dynamic filter which eliminates from the service behaviour those interactions
that are not admitted by the considered contract.

The explicit information about the input/output alphabet used in [22] allows
the corresponding theory of contracts to be applied also to multi-party com-
positions. Nevertheless, the complete symmetry between inputs and outputs in
the contract language considered in [22], does not permit to achieve one of the
most interesting property we prove in this paper, that is, independent contract
refinement. In fact, according to [22] the contracts in a multi-party composition
cannot be independently refined, because if a refinement includes more inputs
or outputs with respect to the corresponding contract, these additional names
cannot be part of the input/output alphabets of other refinements. As the re-
finement cannot be applied independently the theory of contracts in [22] does
not admit parallel discovery of services in multi-party service systems.

The dynamic filters of [16], on the contrary, allow for independent refinement,
at the price of synthesizing a specific filter used to eliminate the additional
behaviours of refinements. Even if very interesting from a theoretical point of
view, the practical application of filters is not yet clear. In fact, it is not possible
to assume the possibility to associate a filter to a remote service. This problem
can be solved in client-service systems, assuming that a co-filter is applied to the
local client, but it is not clear how to solve this problem in multi-party systems
composed of services running on different hosts.

Finally, also the work based on types (e.g. that in [21] and [13]) gives rise
to notions of refinement in terms of subtyping. For instance, the work in [21]
allows subsystems like a.(P |b.Q) to be replaced by a.P |b.Q under the knowl-
edge that the context is of the kind ā.P ′|b̄.Q′, while in the work o f [1 3] a sub-
term can be replaced by another one where inputs can be syntactica lly added
in externa l cho ices and outputs can be syntactica lly added in interna l cho ices.
The la tter approach leads to a notion o f refinement which is included in the
one obta ined in this paper. In our approach, however, fea tures like input exter-
na l cho ice extension and interna l cho ice reduction are inferred and not taken
by syntactica l definition. The former approach is incomparable because it dea ls

Contract-Based Discovery and Composition of Web Services 267

with very special cases: in fact, following our approach we have that a |b does not
refine a.b because the latter is compliant with the pair of contracts b and b.a.b,
while this is not the case for the former.

1.3 Structure of the Paper

In Section 2 we introduce our notation for behavioural contracts. In Section 3
we introduce the model for the representation of service systems in terms of
contract compositions. Section 4 presents our theory for contract refinement.
Finally, Section 5 reports some conclusive remarks.

This paper is a generalised version of [7] where we consider a language inde-
pendent modeling of contracts (here a contract is any output persistent labeled
transition system while in [7] a specific contract language is considered) and we
do not impose any constraint on the way contracts can be composed (in [7] only
service systems with restriction directly applied to contracts are considered).

2 Behavioural Contracts

Contracts are defined as transition systems labeled over internal, input, and
output action names. We first define the class of labeled transition systems of
interest for this paper.

Definition 1. A finite connected labeled transition system (LTS) with termi-
nation transitions is a tuple T = (S,L,−→, sh, s0) where S is a finite set
of states, L is a set of labels, the transition relation −→ is a finite subset of
(S − {sh}) × (L ∪ {√}) × S such that (s,

√
, s′) ∈−→ implies s′ = sh, sh ∈ S

represents a halt state, s0 ∈ S represents the initial state, and it holds that every
state in S is reachable (according to −→) from s0.

In a finite connected LTS with termination transitions we use
√

transitions
(leading to the halt state sh) to represent successful termination. On the con-
trary, if we get (via a transition different from

√
) into a state with no outgoing

transitions (like, e.g., sh) then we represent an internal failure or a deadlock.
We assume a denumerable set of action names N , ranged over by a, b, c,

We use τ /∈ N to denote an internal (unsynchronizable) computation. In con-
tracts the possible transition labels are the typical internal τ action and the
input/output actions a, a.

Definition 2. A contract is a finite connected LTS with termination transitions,
that is a tuple (S,L,−→, sh, s0), where L = {a, a, τ | a ∈ N}, i.e. labels are either
a receive (input) on some operation a ∈ N or an invoke (output) directed to some
operation a ∈ N at some location l.

In the following we introduce a process algebraic representation for contracts
by using a basic process algebra (a simple extension of basic CCS [24] with
successful termination) with prefixes over {a, a, τ | a ∈ N} and we show that
from the LTS denoting a contract we can derive a process algebraic term whose
behaviour is the same as that of the LTS. In the algebra syntax, we use 0 and 1
to denote unsuccessful and successful termination, respectively.

268 M. Bravetti and G. Zavattaro

Definition 3. We consider a denumerable set of contract variables V ar ranged
over by X, Y , · · ·. The syntax of contracts is defined by the following grammar

C ::= 0 | 1 | α.C | C+C | X | recX.C
α ::= τ | a | a

where recX. is a binder for the process variable X. The set of the contracts C
in which all process variables are bound, i.e. C is a closed term, is denoted by
Pcon. In the following we will often omit trailing “1” when writing contracts.

The structured operational semantics of contracts is defined in terms of a tran-
sition system labeled by L = {a, a, τ, | a ∈ N} obtained by the rules in Table 1
(plus symmetric rule for choice), where we take λ to range over L ∪ {√}. In
particular the semantics of a contract C ∈ Pcon gives rise to a finite connected
LTS with termination transitions (S,L,−→,0, C) where S is the set of states
reachable from C and −→ includes only transitions between states of S. Note
that the fact that such a LTS is finite (i.e. finite-state and finitely branching) is
a well-known fact for basic CCS [24] (and obviously the additional presence of
successful termination does not change this fact).

Table 1. Semantic rules for contracts (symmetric rules omitted)

1
√

−→ 0 α.C
α−→ C

C
λ−→ C′

C+D
λ−→ C′

C{recX.C/X} λ−→ C′

recX.C
λ−→ C′

In Appendix A we formalize the correspondence between contracts and terms
of Pcon by showing how to obtain from a contract T = (S,L,−→, sh, s0) a
corresponding C ∈ Pcon such that there exists a (surjective) homomorphism
from the operational semantics of C to T itself. In the light of this correspondence
result, we can safely consider the introduced process algebra to develop general
theories for behavioural contracts.

In the remainder of the paper we use the following notations: C
λ−→ to mean

that there exists C′ such that C
λ−→ C′ and, given a string of labels w ∈ L∗,

that is w = λ1λ2 · · ·λn−1λn (possibly empty, i.e., w = ε), we use C
w−→ C′ to

denote the sequence of transitions C
λ1−→ C1

λ2−→ · · · λn−1−→ Cn−1
λn−→ C′ (in case

of w = ε we have C′ = C, i.e., C
ε−→ C).

2.1 Output Persistence

We now introduce a property for behavioural contracts that we call output per-
sistence. We first present the formal definition.

Contract-Based Discovery and Composition of Web Services 269

Definition 4 (Output persistence). Let C ∈ Pcon be a contract. It is output

persistent if given C
w−→ C′ with C′ a−→ then: C′

√
−→/ and if C′ α−→ C′′ with

α �= a then also C′′ a−→.

The output persistence property states that once a contract decides to execute
an output, its actual execution is mandatory in order to successfully complete the
execution of the contract. This property typically hold in languages for the de-
scription of service behaviours or for service orchestrations (see e.g. WS-BPEL)
in which output actions cannot be used as guards in external choices (see e.g.
the pick operator of WS-BPEL which is an external choice guarded on input
actions). In these languages, when a process instance or an internal thread de-
cides to execute an output actions, it will have to complete such action before
successful completion.

In the context of process algebra with parallel composition a syntactical char-
acterization that guarantees output persistence can be found in [3]. The idea is
to require that every output prefix (i.e. the term a.P) is preceded by an internal
τ prefix (i.e. the above term always occurs in the larger term τ.a.P).

As we also anticipated in the introduction, the actual impact of output persis-
tence (in turn coming from the asymmetric treatment of inputs and outputs) in
our theory is the existence of maximal independent refinement. This statement
will be made precise by means of a counter-example that we are going to present
after the Definition 9 –we postpone the presentation of this example because
we first need to formalize contract compositions as well as the notion of correct
composition– and by the results presented in Section 4.

We now formalize a direct consequence of output persistence that we will use
in the following.

Proposition 1. Let C ∈ Pcon be an output persistent contract such that C
w−→

C′ a−→. If C′ w′

−→ C′′ and C′′
√
−→ then the string w′ must include a.

Proof. We proceed by contradiction assuming that the premise in the statement
of the Proposition holds even for a sequence of actions w′ that does not include

a−→. As C′ a−→, due to output persistence, if w′ does not include a then also

C′′ a−→. Output persistence then guarantees that C′′
√
−→/ , thus contradicting

the premise C′′
√
−→. ⊓⊔

In the remainder of the paper we restrict to output persistent contracts, namely,
Pcon denotes the set of output persistent contracts from now on. Note that, it is
meaningful to do this because: any derivative of an output persistent contract is
again an output persistent contract (as it can be immediately inferred from Def-
inition 4) and homomorphism preserves output persistence (two homomorphic
contracts are either both output persistent or no one is).

3 Service Systems

We now introduce the calculus for modeling systems of composed contracts. This
is an extension of the previous calculus; the basic terms are contracts under

270 M. Bravetti and G. Zavattaro

execution denoted with [C]. Such a notation is inspired by process algebras with
locations in which brackets “[”,“]” are used to denote a located process.

Besides the parallel composition operator ||, we consider also restriction \\
in order to model the possibility to open local channels of interaction among
contracts. The restriction operator that we consider is non-standard because it
distinguishes between input and output operations. For instance, in the system
[C]\\{a, b} we have that C cannot perform inputs on a and cannot perform out-
puts on b. This operator is useful for the modeling of private directed channels.
For instance, if we want to model the fact that the service [C1] is the unique
receptor on a particular channel a, we can simply restrict all the other services
on action a (and [C1] on a):

[C1]\\a || [C2]\\a || [C3]\\a || · · · || [Cn]\\a

As another example, consider a system composed of two contracts C1 and C2

such that channel a is used for communications from C1 to C2 and channel b
is used for communications along the opposite directions. We can model such
system as follows:

([C1]\\{a, b}) || ([C2]\\{a, b})

As a final example of the flexibility of the restriction operator \\ we consider the
system (

([C]||[C′])\\a
)
|| [D]

where we have that C, C′ and D can execute input actions on the name a, but
the inputs of C and C′ cannot synchronize with output actions performed by D,
while the inputs of D can synchronize with outputs performed by C and C′.

Definition 5 (Contract composition). The syntax of contract compositions
is defined by the following grammar

P ::= [C] | P ||P | P\\L

where C∈Pcon and L ⊆ {a, a | a ∈ N}.

We use P , P ′, · · ·, Q, Q′, · · · to range over terms representing contract com-
positions, also called systems. The set of systems is denoted by Psys. Moreover,
given a set of action names L we denote with L the set of complementary actions:
L = {a|a ∈ L} ∪ {a|a ∈ L}.

In the following we will sometimes omit parenthesis“[]” when writing contract
compositions.

The operational semantics of systems is defined by the rules in Table 2 (plus
the omitted symmetric rules).

Note that given [C]\\L, we obtain a transition system homomorphic to that
of the contract C{0/α.D|α ∈ L} or, equivalently, to that of [C{0/α.D|α ∈ L}],
where C{0/α.D|α ∈ L} represents the syntactical substitution of 0 for every
occurrence of any subterm α.D such that α ∈ L. In the light of this equivalence
result, we will overload the restriction operator applying it also to contracts:

Contract-Based Discovery and Composition of Web Services 271

Table 2. Semantic rules for contract compositions (symmetric rules omitted)

C
λ−→ C′

[C]
λ−→ [C′]

P
λ−→ P ′ λ�= √

P||Q λ−→ P′||Q

P
a−→ P′ Q

a−→ Q′

P||Q τ−→ P′||Q′

P
√

−→ P′ Q
√

−→ Q′

P||Q
√

−→ P′||Q′

P
λ−→ P′ λ�∈ L

P\\L λ−→ P′\\L

C\\L = C{0/α.D|α ∈ L}. It is immediate to verify (by just applying definition 4)
that, for any set L, the restriction of an output persistent contract is again an
output persistent contract.

We are now ready to define our notion of correct composition of contracts. In-
tuitively, a system composed of contracts is correct if all possible computations
may guarantee completion; this means that the system is both deadlock and,
under the fairness assumption2, livelock free (there could be an infinite com-
putation, but given any possible prefix of this infinite computation, it can be
extended to reach a successfully completed computation). Note that our notion
of correctness simply checks the compliance of the composed services without
verifying whether the replies computed by the services actually corresponds to
some desired functionalities. Henceforth, our notion of correct service composi-
tion should not be confused with the classical notion of program correctness.

Definition 6 (Correct contract composition). A system P is a correct con-

tract composition, denoted P ↓, if for every P ′ such that P
τ−→∗

P ′ there exists

P ′′ such that P ′ τ−→∗
P ′′

√
−→ .

As examples of correct contract compositions, you can consider C1||C2 with

C1 = a + b C2 = τ.a + τ.b

C1 = a.b C2 = a.b

C1 = a + b + c C2 = τ.a + τ.b

C1 = (a.b) + (b.a) C2 = a.b + b.a

C1 = recX.(a.b.(X + 1)) C2 = recX.(τ.a.b.(X + 1))

As an example of contract composition which is not correct we can consider
[a.b]||[a] in which the first service deadlocks after executing the first output action
(thus successful completion cannot be reached). Another interesting example is
[recX.(τ.a.b.(X + 1))]||[a.recX(τ.b.a(X + 1))], in which only an infinite compu-
tation (livelock) is executed (also in this case successful completion cannot be
reached). We can also consider an additional example in which we combine both
deadlock and livelock: [recX.(τ.a.b.X + τ.c.d)]||[recX.(τ.b.a.X + c)].

The design choice of requiring livelock freedom under the fairness assumption
is related to considering the following aspects.

2 The notion of fairness that we consider is the following: when a state is traversed
infinitely often each of its outgoing transitions is not discarded infinitely often.

272 M. Bravetti and G. Zavattaro

– it is unsatisfactory to just require deadlock freedom (accepting too many
systems as correct ones as, e.g., the system with livelock discussed above
[r e c X .(τ.a.b.(X + 1))]||[a.recX(τ.b.a(X + 1))]) as often multi-party conver-
sations of services are executed inside sessions and it seems natural to ask for
the ability of all the party involved to successfully terminate for the session
to finish;

– it is too demanding to require livelock freedom without the fairness assump-
tion (discarding too many systems that intuitively should be correct in the
presence of infinite computations as, e.g., the last pair of contracts C1 C2

presented in the example above).

4 Service Discovery

In this Section we introduce our theory of contracts. The basic idea is to have
a notion of refinement of contracts such that, given a system composed of the
contracts C1, · · · , Cn, we can replace each contract Ci by one of its refinements
C′

i without breaking the correctness of the system.
This notion of refinement is useful when considering the problem of service

discovery. Given the specification of a contract composition (composed of the
so called “initial contracts”), the actual services to be composed are discovered
independently sending queries to registries. It could be the case that services with
a contract which exactly correspond to the “initial contracts” are not available;
in this case, it is fundamental to accept also different contracts that could be
replaced without affecting the overall correctness of the system.

One of the peculiarities of our theory of refinement, is that we consider the
possibility of relying on some knowledge about the “initial contracts”, in par-
ticular, the input and output actions that occur in them. A very important
consequence of this knowledge, is that we have the guarantee that a contract
can be refined by another one that performs additional external input actions
on names that do not occur in the initial contracts. For instance, the contract a
can be refined by a + b if we know that b is not among the possible outputs of
the other initial contracts.

Some additional simple examples of refinement follow. Consider the correct
system C1||C2 with

C1 = a + b C2 = τ.a + τ.b

We can replace C1 with C′
1 = a + b + c or C2 with C′

2 = a without breaking the
correctness of the system. This example shows a first important intuition: a con-
tract could be replaced with another one that has more external nondeterminism
and/or less internal nondeterminism.

Consider now
D1 = a + b + c D2 = τ.a + τ.b

where we can refine D1 with D′
1 = a + b + d. Clearly, this refinement does not

hold in general because we could have another correct system

D1 = a + b + c D′
2 = τ.a + τ.b + τ.c

Contract-Based Discovery and Composition of Web Services 273

where such a refinement does not hold. This second example shows that refine-
ment is influenced by the potential actions that could be executed by the other
contracts in the system. Indeed, D ′

1 is not a correct substitute for D 1 because
D ′

2 has the possibility to produce c.
Based on this intuition, we parameterize our notion of subcontract relation

C′ ≤I,O C on the set I of inputs, and the set O of outputs, that could be
potentially executed by the other contracts in the system. We will see that
D′

1 ≤N ,N−{c,d} D1 but D′
1 �≤N ,N D1.

4.1 Subcontract Pre-orders as Correctness Preserving Refinements

We first introduce the notion of context: a context is a system in which some
contract is left unspecified and abstractly represented by a contract variable. In
this way we can use contexts to represent architectures of systems in which we
use contract variables to represent placeholders for contracts.

Definition 7 (Contexts). Contexts C are terms over the same syntax as con-
tract compositions P with the addition of the term [X]:

P ::= [X] | [C] | P ||P | P\\L

where X is a contract variable belonging to a totally ordered set CV ar, ranged
over by X ,Y, In the following we assume contexts C not to include multiple
occurrences of the same variable X .

Given a set of terms Wi, with 1 ≤ i ≤ n, where either Wi ∈ Pcon (i.e. Wi is
a contract) or Wi ∈ CV ar and a context C such that n is the number of term
variables included in C, we use C(W1, . . . , Wn) to stand for C{Wi/Xi|1 ≤ i ≤ n},
where X1, . . . ,Xn are the term variables included C ordered according to the order
on the set CV ar.

As the notion of refinement that we define is parametrized on the sets of input
and output actions that can be performed by the other contracts in the system,
we need to formally define these sets.

Definition 8 (Input and Output sets). Given the contract C ∈ Pcon, we
define I(C) (resp. O(C)) as the subset of N of the potential input (resp. ouput)
actions of C. Formally, we define I(C) as follows:

I(0) = I(1) = I(X) = ∅ I(τ.C) = I(a.C) = I(recX.C) = I(C)
I(a.C) = {a} ∪ I(C) I(C+C′) = I(C)∪I(C′)

and O(C) as follows:

O(0) = O(1) = O(X) = ∅ O(τ.C) = O(a.C) = O(recX.C) = O(C)
O(a.C) = {a} ∪ O(C) O(C+C′) = O(C)∪O(C′)

Given the system P , we define I(P) (resp. O(P)) as the subset of N of the
potential input (resp. output) actions of P . Formally, we define I(P) as follows:

I([C]) = I(C) I(P ||P ′) = I(P) ∪ I(P ′) I(P\\L) = I(P) − {a | a ∈ L}

274 M. Bravetti and G. Zavattaro

and O (P) as follows:

O([C]) = O(C) O(P ||P ′) = O(P)∪O(P ′) O(P\\L) = O(P)−{a | a ∈ L}

Given a context C containing exactly one contract variable X , we define I(C)
(resp. O(C)) as the subset of N of the potential input (resp. output) actions of
contracts in the context that can possibly synchronize with actions executed by
any contract replacing X in the context. Formally, assuming that C contains
exactly one variable X we define I(C) as follows:

I([X]) = ∅ I(C||P) = I(P ||C) = I(C) ∪ (I(P) − outr(C)) I(C\\L) = I(C)

and

O([X]) = ∅ O(C||P) = O(P ||C) = O(C)∪(O(P)−inr(C)) O(C\\L) = O(C)

where inr(C) (resp. out(C)) are the input (resp. output) actions on which the
variable X occurring in C is restricted defined as follows:

inr([X]) = ∅ inr(C||P) = inr(P ||C) = inr(C)
inr(C\\L) = inr(C) ∪ {a | a ∈ L}

and

outr([X]) = ∅ outr(C||P) = outr(P ||C) = outr(C)
outr(C\\L) = outr(C) ∪ {a | a ∈ L}

We are now ready to define the notion of subcontract pre-order C′
i ≤I,O Ci in

which the substitutability of contract Ci with C′
i is parameterized in the possible

input and output actions I and O of the other contracts in the considered system.
More precisely, we consider a correct system C(C1, . . . , Cn), and we require

that the system is still correct even if we replace each Ci with any C′
i such that

C′
i ≤I(C′),O(C′) Ci where C′ = C(C1, . . . , Ci−1,X , Ci+1, . . . , Cn).

Definition 9 (Subcontract pre-order family). A family {≤I,O| I, O ⊆ N }
of pre-orders over Pcon is a subcontract pre-order family if, for any context C
with n contract variables and including no contracts, contracts C1, . . . , Cn ∈ Pcon

and C′
1, . . . , C

′
n ∈ Pcon, and Ci = C(C1, . . . , Ci−1,X , Ci+1, . . . , Cn), we have

C(C1, . . . , Cn)↓ ∧ ∀i.
(
C′

i ≤Ii,Oi
Ci ∧ I(Ci) ⊆ Ii ∧ O(Ci) ⊆ Oi

)

⇒ C(C′
1, . . . , C

′
n)↓

In the next subsection we will prove that there exists a maximal subcontract
pre-order family; this is a direct consequence of the output persistence property.
In fact, if we consider possible outputs that can disappear without being actually
executed (as in an external choice among outputs a+b or in a mixed choice a+b
in which, e.g., the possible b is no longer executable after the output or input on
a) it is easy to prove that there exists no maximal subcontract pre-order family.

Contract-Based Discovery and Composition of Web Services 275

Now consider, e.g., the trivially correct system C1||C2 with C1 = a and C2 = a;
we could have two subcontract pre-order families ≤1 and ≤2 such that

a + c.0 ≤1
N−c,N−c a and a + c.0 ≤1

N−c,N−c a

and
a + c.0 ≤2

N−c,N−c a and a + c.0 ≤2
N−c,N−c a

but no subcontract pre-order family ≤ could have

a + c.0 ≤N−c,N−c a and a + c.0 ≤N−c,N−c a

because if we refine C1 with a+ c.0 and C2 with a+ c.0 we achieve the incorrect
system a + c.0||a + c.0 that can deadlock after synchronization on channel c.
Note that, if we instead assume output persistence of contracts, as we do in this
paper, subcontracts cannot add reachable outputs on new types. For instance
an output persistent contract a + τ.c adding a new output on c with respect to
a, similarly to the pre-order ≤2 in the example above, would not be a correct
subcontract because when composed in parallel with the other initial contract a
would lead to a deadlock.

The existence of the maximal subcontract pre-order family permits to de-
fine co-inductively a subcontract relation achieved as union of all subcontract
pre-orders. The co-inductive definition allows us to prove that two contracts
are in subcontract relation, simply showing the existence of a subcontract pre-
order which relates them. Moreover, we can use different subcontract pre-orders
to refine independently several contracts in a multi-party composition, without
affecting the correctness of the overall system.

4.2 Input-Output Subcontract Relation as the Maximal
Subcontract Pre-order

We will show that (over output persistent contracts) the maximal subcontract
pre-order family exists, and we will characterize it with a relation on contracts
called the input-output subcontract relation. Differently from the subcontract
pre-orders, that permit to refine contemporaneously several contracts in a com-
position, this new relation allows for the refinement of one contract only. Besides
giving the possibility to prove the existence of the maximal subcontract pre-order
family, this relation will allow us to resort to the theory of testing in the next
subsection.

Before presenting the definition of the input-output subcontract relation, we
present a coarser form of subcontract pre-order, called the singular subcontract
pre-order, according to which, given any system composed of a set of contracts,
refinement is applied to one contract only (thus leaving the other unchanged).
This new pre-order will allow us to prove that the input-output subcontract
relation is coarser than any subcontract pre-order.

276 M. Bravetti and G. Zavattaro

Definition 10 (Singular subcontract pre-order family). A family {≤I,O|
I, O ⊆ N } of pre-orders over Pcon is a singular subcontract pre-order family if,
for any context C with a single contract variable (and possibly some contracts)
and C, C′ ∈ Pcon we have

C(C)↓ ∧ C′ ≤I,O C ∧ I(C) ⊆ I ∧ O(C) ⊆ O ⇒ C(C′)↓

The following Proposition shows that a subcontract pre-order family is also a
singular subcontract pre-order family. Intuitively, this means that if we can refine
several contracts in a system without affecting its correctness, we can also refine
only one of those contracts, leaving the others unchanged.

Proposition 2. If a family of pre-orders {≤I,O| I, O ⊆ N } is a subcontract
pre-order family then it is also a singular subcontract pre-order family.

Proof. Suppose that {≤I,O| I, O ⊆ N } is a subcontract pre-order family. Con-
sider a context C with one contract variable X1 and n−1 contracts. Let C ∈ Pcon

be a contract such that C(C) ↓. Consider now C′ ∈ Pcon such that C′ ≤I,O C
for I, O such that I(C) ⊆ I and O(C) ⊆ O. We now prove that also C(C′) ↓.
Let C′ be the context obtained from C replacing all contracts C2, . . . , Cn with
the contract variables X2, . . . ,Xn. We have that C(C) = C′(C, C2, . . . , Cn). By
C(C) ↓ we have that also C′(C, C2, . . . , Cn) ↓. As I(C) = I(C′(X , C2, . . . , Cn))
and O(C) = O(C′(X , C2, . . . , Cn)) we can replace C with C′, and by reflexiv-
ity of pre-orders we can replace all other contracts Ci with themselves (in fact,
we have that D ≤I,O D for every I, O and D). Thus, also C′(C′, C2, . . . , Cn) ↓.
The proof is completed by observing that C′(C′, C2, . . . , Cn) = C(C′) thus also
C(C′)↓. ⊓⊔

We now have to prove that the singular subcontract pre-order families have
maximum. This result is obtained in two steps: we first observe that we can
restrict the set of contexts of interest in the definition of the singular subcontract
pre-order families to contexts of the form [X]||P , then we define the maximum
of the singular subcontract pre-order families considering this restricted set of
contexts (this new relation is called input-output subcontract relation).

The first observation is formalized by the following Proposition.

Proposition 3. Let C be a context with a single contract variable. There exists
P ∈ Psys such that: I(P) = I(C), O(P) = O(C), and for every contract C ∈ Pcon

we have that C(C)↓ if and only if C||P ↓.

Proof. The proof is in Appendix B. ⊓⊔

In the light of the above proposition we can conclude that we could restrict the
contexts in the Definition 10 only to contexts of the form [X]||P . We now define
the maximum of the singular subcontract pre-order families considering this
restricted set of contexts. In this definition (and in the remainder of the paper)
we use Psys,I,O to denote the subset of processes of Psys such that I(P) ⊆ I and
O(P) ⊆ O.

Contract-Based Discovery and Composition of Web Services 277

Definition 11 (Input-Output Subcontract relation). A contract C′ is a
subcontract of a contract C with respect to a set of input channel names I ⊆ N
and output channel names O ⊆ N , denoted C′ �I,O C, if

∀P ∈ Ps y s ,I,O. (C||P)↓ ⇒ (C′||P)↓

The main difference between the Definition 10 and the Definition 11 is that in the
former we describe a property that every singular subcontract pre-order should
satisfy, while in the latter we define a new relation (the input-output subcontract
relation) that relates all those pairs of contracts C′ and C that satisfy the same
property. For instance, the identity relation is a singular subcontract pre-order
because it satisfies the property, but it does not coincide with the input-output
subcontract relation because it does not relate all those pairs of contracts C′

and C that satisfy the property even if C′ is not syntactically equal to C. In the
following we will consider only the input-output subcontract relation (Defini-
tion 11), but we have presented both definitions because this simplify the proof
of the following Theorem (stating that the input-output subcontract relation
includes all subcontract pre-order families) that, indeed, is a simple corollary of
the Proposition 2 in which we made use of the Definition 10.

Theorem 1. Given a subcontract pre-order family {≤I,O| I, O ⊆ N }, we have
that it is included in the family of pre-orders {�I,O| I, O ⊆ N }, that is

C′ ≤I,O C ⇒ C′ �I,O C

Proof. From Proposition 2 we know that each subcontract pre-order family
{≤I,O| I, O ⊆ N } is also a singular subcontract pre-order family. The thesis
directly follows from the observation that the input-output subcontract relation
�I,O is the maximum of all singular subcontract pre-orders ≤I,O, due to Propo-
sition 3. ⊓⊔

In the light of this last Theorem, the existence of the maximal subcontract pre-
order family can be proved simply showing that {�I,O| I, O ⊆ N } is itself a
subcontract pre-order family (thus it is the maximum among all subcontract
pre-order families). The proof of this result (Theorem 2) is rather complex and
requires several preliminary results.

The following proposition states an intuitive contravariant property: given
�I′,O′ , and the greater sets I and O (i.e. I ′ ⊆ I and O′ ⊆ O) we obtain a
smaller pre-order �I,O (i.e. �I,O⊆�I′,O′).

Proposition 4. Let C, C′ ∈ Pcon be two contracts, I, I ′ ⊆ N be two sets of
input channel names and O, O′ ⊆ N be two sets of output channel names. We
have:

C′ �I,O C ∧ I ′ ⊆ I ∧ O′ ⊆ O ⇒ C′ �I′,O′ C

Proof. The thesis follows from the fact that extending the sets of input and
output actions means considering a greater set of discriminating contexts. ⊓⊔

278 M. Bravetti and G. Zavattaro

The following proposition states that a subcontract is still a subcontract even if
we restrict its actions in order to consider only the inputs and outputs already
available in the supercontract. The result about the possibility to restrict the
outputs will be extensively used in the proof of Theorem 2.

Proposition 5. Let C, C′ ∈ Pcon be contracts and I, O ⊆ N be sets of input
and output names. We have

C′ �I,O C ⇒ C′\\(I(C′) − I(C)) �I,O C

C′ �I,O C ⇒ C′\\(O(C′) − O(C)) �I,O C

Proof. We discuss the result concerned with restriction of outputs (the proof for
the restriction of inputs is symmetrical). Let C′ �I,O C. Given any P ∈ Psys,I,O

such that (C||P)↓, we will show that (C′\\(O(C′) − O(C)) || P)↓. We first observe
that (C || P\\(O(C′) − O(C)))↓. Since C′ �I,O C, we derive (C′ || P\\(O(C′) −
O(C))) ↓. As a consequence (C′\\(O(C′) − O(C)) || P\\(O(C′) − O(C))) ↓. We
can conclude (C′\\(O(C′) − O(C)) || P)↓. ⊓⊔

All the results discussed so far do not depend on the output persistence prop-
erty. The first significant result depending on this peculiarity of the considered
contracts is reported in the following proposition. It states that if we substitute
a contract with one of its subcontract, the latter cannot activate outputs that
were not included in the potential outputs of the supercontract.

Proposition 6. Let C, C′ ∈ Pcon be contracts and I, O ⊆ N be sets of input
and output names. If C′ �I,O C we have that, for every P ∈ Psys,I,O such that
(C||P)↓,

(C′||P)
τ−→∗

(C′
der ||Pder) ⇒ ∀ a ∈ O(C′) − O(C). C′

der

a−→/

Proof. We proceed by contradiction. Suppose that there exist C′
der , Pder such

that (C′||P)
τ−→∗

(C′
der||Pder) and C′

der

a−→ for some a ∈ O(C′) − O(C). We
further suppose (without loss of generality) that such a path is minimal, i.e.

no intermediate state (C′
der2||Pder2) is traversed, such that C′

der2
a−→ for some

a ∈ O(C′) − O(C). This implies that the same path must be performable by
(C′\\(O(C′) − O(C)) || P), thus reaching the state (C′

der\\(O(C′) − O(C)) ||Pder).

However, since in the state C′
der of contract C′ we have C′

der

a−→ for some
a ∈ O(C′) − O(C) and the execution of a is disallowed by restriction, due to
output persistence, the contract will never be able to reach success (no matter
what contracts in P will do). Therefore (C′\\(O(C′) − O(C)) || P) �↓ and (due to
Proposition 5) we reached a contradiction. ⊓⊔

The following proposition permits to conclude that the set of potential inputs of
the other contracts in the system is an information that does not influence the
subcontract relation.

Contract-Based Discovery and Composition of Web Services 279

Proposition 7. Let C ∈ Pcon be contracts, O ⊆ N be a set of output names
and I, I ′ ⊆ N be two sets of input names such that O(C) ⊆ I, I ′. We have that
for every contract C′ ∈ Pcon,

C′ �I,O C ⇐⇒ C′ �I′,O C

Proof. Let us suppose C′ �I′,O C (the opposite direction is symmetric). Given
any P ∈ Psys,I,O such that (C||P) ↓, we will show that (C′||P) ↓. We first ob-
serve that (C || P\\(I − O(C))) ↓. Since C′ �I′,O C and O(C) ⊆ I ′, we derive
(C′ || P\\(I − O(C)))↓. Due to Proposition 6 we have that (C′ || P\\(I − O(C)))
can never reach by τ transitions a state where outputs in O(C′) − O(C) are
executable by some derivative of C′, so we conclude (C′ || P)↓. ⊓⊔

It is worth noting that a similar result does not hold for the output set, that is,
if O ⊆ O′ we can have C′ �I,O C but C′ ��I,O′ C even under the assumption
I(C) ⊆ O, O′. As an example, you can consider τ.a + b �N ,N−b a. This holds
in general because the addition of an input on b is admitted in a subcontract if
we know that no outputs on that channel can be executed by the other initial
contracts in the system. On the contrary, we have that τ.a + b ��N ,N a because

[a] || [a.b] || [b]

is a correct composition while

[τ.a + b] || [a.b] || [b]

is not, because the first and the second contracts are now in competition to
consume the unique output on b produced by the third contract.

We are now in place to prove one of the main results of this paper, i.e.,
that the input-output subcontract relation defined in the Definition 11 is also a
subcontract pre-order family.

Theorem 2. The family of pre-orders {�I,O| I, O ⊆ N } is a subcontract pre-
order family.

Proof. Consider a context C containing n contract variables and no contracts. Let
C1, . . . , Cn ∈ Pcon be contracts such that C(C1, . . . , Cn)↓. We consider contracts
C′

1, . . . , C
′
n ∈ Pcon such that, for every i from 1 to n, C′

i �Ii,Oi
Ci for I(Ci) ⊆ Ii

and O(Ci) ⊆ Oi with Ci = C(C1, . . . , Ci−1,X , Ci+1, . . . , Cn).
We now derive that also C(C′

1, . . . , C
′
n)↓.

We first observe that, for every i from 1 to n, we have that:

C(C′
1\\(O(C′

1) − O(C1)), . . . , Ci, . . . , C
′
n\\(O(C′

n) − O(Cn)))↓

In fact, as the input-output subcontract relation is also a singular subcontract
pre-order family, we can apply it n − 1 times to replace the contracts Cj with

j �= i with their subcontract Cj\\(O(C′
j) − O(Cj)) (the latter is a subcontract of

the former due to Proposition 5).

280 M. Bravetti and G. Zavattaro

For any i , since C′
i �Ii,Oi

Ci, by Proposition 6 we have that

C(C′
1\\(O(C′

1) − O(C1)), . . . , C
′
i, . . . , C

′
n\\(O(C′

n) − O(Cn)))

can never reach by τ transitions a state where outputs in O(C′
i) − O(Ci) are

executable by the derivative C′
i,der of C′

i. If now we consider the behaviour of

C(C′
1\\(O(C′

1) − O(C1)), . . . , C
′
n\\(O(C′

n) − O(Cn))) we derive that, for any i, we
cannot reach by τ transitions a state

C(C′
1,der\\(O(C′

1) − O(C1)), . . . , C
′
i,der\\(O(C′

i) − O(Ci)), . . . ,

||C′
n,der\\(O(C′

n) − O(Cn)))

where C′
i,der can execute outputs in O(C′

i) − O(Ci). Hence the presence of the
restriction operators does not affect the internal behaviour of

C(C′
1\\(O(C′

1) − O(C1)), . . . , C
′
n\\(O(C′

n) − O(Cn)))

with respect to C(C′
1, . . . , C

′
n). Therefore, we can finally derive C(C′

1, . . . , C
′
n) ↓

from
C(C′

1\\(O(C′
1) − O(C1)), . . . , C

′
n\\(O(C′

n) − O(Cn)))↓
that is obtained by further applying the definition of singular subcontract pre-
order to refine Ci in any of the i-indexed statements at the beginning of the
proof. ⊓⊔

In Theorem 1 we proved that all subcontract pre-order families are included in
{�I,O |I, O ⊆ N}; this last Theorem proves that this family of relations is also
a subcontract pre-order family, thus it is the maximal one.

4.3 Subcontract Relation

In the previous subsection we have introduced the input-output subcontract
relation �I,O, and we have proved that it is the maximal subcontract pre-order
family. Moreover, the Proposition 7 permits to abstract away from the index I
of �I,O assuming always I = N . In this way we achieve a simpler relation �O,
corresponding to �N ,O, that we simply call subcontract relation, which has only
one parameter indicating the set of names on which the expected contexts can
perform outputs. In the definition of the subcontract relation we use Psys,O to
denote the set of processes Psys,N ,O.

Definition 12 (Subcontract relation). A contract C′ is a subcontract of a
contract C with respect to a set of output channel names O ⊆ N , denoted C′ �O

C, if
∀P ∈ Psys,O. (C||P)↓ ⇒ (C′||P)↓

In order to prove that one contract C′ is a subcontract of C, the Definition 12
is not exploitable due to the universal quantification on all possible parallel
process P . The remainder of this subsection is devoted to the definition of an

Contract-Based Discovery and Composition of Web Services 281

actual way for proving that two contracts are in subcontract relation. This is
achieved resorting to the theory of should-testing [26]. The main difference of
should-testing with respect to the standard must-testing [18] is that fairness
is taken into account; an (unfair) infinite computation that never gives rise to
success is observed in the standard must-testing scenario, while this is not the
case in the should-testing scenario. The formal definition of should-testing is
reported in the proof of Theorem 3.

We need a preliminary result that essentially proves that C′ �O C if and only
if C′\\N−O �N C\\N−O.

Lemma 1. Let C, C′ be two contracts and O ⊆ N be a set of output names.
We have

C′ �O C ⇔
(
∀P ∈ Psys. (C\\N−O ||P)↓ ⇒ (C′\\N−O ||P)↓

)

Proof. Given P ∈ Psys, we have (C\\N−O ||P)↓ ⇐⇒ (C\\N−O ||P\\N−O)↓ ⇐⇒
(C ||P\\N−O)↓. The same holds also for C′, i.e., (C′\\N−O ||P)↓ ⇐⇒ (C′\\N−
O ||P\\N−O)↓ ⇐⇒ (C′ ||P\\N−O)↓. In the particular case of P ∈ Psys,O, the
processes of interest in the definition of �O, we have that P\\N−O is isomorphic
to P , thus (C ||P\\N−O)↓ ⇐⇒ (C ||P)↓ and (C′ ||P\\N−O)↓ ⇐⇒ (C′ ||P)↓.

In the following we denote with �test the should-testing pre-order defined in [26]
as follows. Intuitively, two processes P ′ and P are related by testing pre-order,
namely P ′ �test P , if P ′ satisfies at least the same tests as P . A test t is any
process including a special action representing success (denoted with

√
in [26],

but denoted with
√′

to avoid confusion with the action
√

used in this paper to
denote successful completion). Before presenting the formal definition we need to
introduce the set of actions Λ as being Λ = {a, a|a ∈ N}∪ {√} (i.e. we consider
input and output actions and

√
: the latter is included in the set of actions of

terms being tested as any other action). Similarly as in [26] we use and Λτ to
denote Λ ∪ {τ}.

Formally, we write P ′ �test P , if P shd t implies P ′ shd t, where Q shd t
means that

∀w ∈ Λ∗
τ , Q′. Q||Λt

w−→ Q′ ⇒ ∃v ∈ Λ∗
τ , Q′′ : Q′ v−→ Q′′

√
′

−→

where ||Λ is the CSP parallel composition operator: in R||ΛR′ transitions of R
and R′ con be executed only if they are labeled with τ ,

√′
or some λ ∈ Λ, but in

this last case both R and R′ must perform an action λ and their synchronization
yields a transition still with label λ.

In order to resort to the setting used in [26], we define a normal form rep-
resentation with terms of the process algebra considered in [26] of the finite la-
beled transition system (LTS) of a system P . In the following we use quadruples
(S, Lab,−→, sinit) to represent LTSes, where S is the set of states of the LTS,
Lab the set of transition labels, −→ the set of transitions with −→⊆ S×Lab×S
and sinit ∈ S the initial state. We have that the semantics [[P]] of a system P is
defined as being the LTS [[P]] = (S, Λτ ,−→, P), where S is the set of terms P ′

282 M. Bravetti and G. Zavattaro

reachable from P according to the transition relation defined by the operational
rules for systems in Tables 1 and 2, i.e. such that P

w−→ P ′ for some (possibly
empty) sequence of labels w, and −→ is the subset of such a transition relation
obtained by just considering transitions between states in S.

The normal form for a system P (denoted with NF(P)) is derived from its
semantics [[P]] = (S, Λτ ,−→, P) as follows, by using the operator recXθ (defined
in [26]) that represents the value of X in the solution of the minimum fixpoint
of the finite set of equations θ,

NF(P) = recXP
θ where θ is the set of S-indexed equations

XP ′ =
∑

(λ,P ′′):P ′
λ−→P ′′

λ; XP ′′

where we assume empty sums to be equal to 0, i.e. if there are no outgoing
transitions from XP ′ , we have XP ′ = 0. Note that differently from our syntax,
in [26] the CSP sequential composition operator ; is considered instead of the
prefix operator we consider in this paper, thus the process α.P is written α; P .

According to the definitions in [26], the semantics [[NF(P)]] of the normal
form NF(P) ≡ recXP

θ is, as expected, the labeled transition system [[NF(P)]] =
(S′, Λτ ,−→′,NF(P)), where:

– S′ = {NF(P ′) ≡ recXP ′
θ | P ′ ∈ S}

– −→′= {(NF(P ′), λ,NF(P ′′)) | P ′ λ−→
′
P ′′}

In the following, given a contract C, we will use NF(C) to stand for NF([C]).
We are now in a position to define the sound characterization of the subcontract
relation in terms of testing.

Theorem 3. Let C, C′ be two contracts and O ⊆ N be a set of output names.
We have

NF(C′\\(N−O)) �test NF(C\\(N−O)) ⇒ C′ �O C

Proof. The proof is in Appendix C.

Note that the opposite implication

C′ �O C ⇒ NF(C′\\(N−O)) �test NF(C\\(N−O))

does not hold in general. For example if we take contracts C = a + a.c and
C′ = b + b.c we have that C′ �O C (and C �O C′) for any O (there is no
contract P such that (C||P)↓ or (C′||P)↓), but obviously NF(C′\\(N−O)) �test

NF(C\\(N−O)) (and NF(C\\(N−O)) �test NF(C′\\(N−O))) does not hold for
any O that includes {a, b, c}. As another example, consider contracts C = τ.0+a
and C′ = τ.0 + b. We have that C′ �O C (and C �O C′) for any O (there is
no contract P such that (C||P) ↓ or (C′||P) ↓), but NF(C′\\(N −O)) �test

NF(C\\(N−O)) (and NF(C\\(N−O)) �test NF(C′\\(N−O))) does not hold for
any O that includes {a, b}: this can be seen by considering the test t =

√′
+ b;0

(and t =
√′

+ a;0).

Contract-Based Discovery and Composition of Web Services 283

Finally, we observe that as the labeled transition system of each contract C
is finite state by definition (see Definition 2), also NF(C\\N − O) is finite state
for any O. In [26] it is proved that for finite state terms should-testing pre-order
is decidable and an actual verification algorithm is presented. This algorithm,
in the light of our Theorem 3, can be used in our setting to prove whether a
contract C′ is a subcontract of C (for some set of output names O). As the
characterization we give in Theorem 3 is sound but not complete, it could be the
case that C′ is a subcontract of C even if the algorithm answers negatively thus
leading to a false negative result. Nevertheless, all the cases of false negative we
have experienced so far are related to extreme cases as those reported above,
that is contracts that cannot be used in any correct system. We leave as an
open problem the definition of a sound and complete characterization of the
subcontract relation.

5 Conclusion

We have introduced a notion of subcontract relation useful for service oriented
computing, where services are to be composed in such a way that deadlocks and
livelocks are avoided. In order to be as much flexible as possible, we want to
relate with our subcontract relation all those services that could safely replace
their supercontracts. In the Introduction we have already discussed the practical
impact of our notion of subcontract and we have compared our theory with the
related literature.

Here, we add some comments about the work we have done in our previous
papers, that, with respect to this paper, is also concerned with choreographic
descriptions of service systems. In particular, we first perform a conceptual sum-
mary of our results (encompassing both this paper and previous papers), then
we consider more detailed technical differences of this paper with respect to our
previous papers.

5.1 Summary of Results

Besides the problem of contract-based service retrieval that we have faced in this
paper, often the design and functioning of service oriented systems, is based on
high level languages called choreography languages in the SOC literature. Chore-
ography languages are intended as notations for representing multi-party service
compositions, that is, descriptions of the global behaviour of service-based appli-
cations in which several services reciprocally communicate in order to complete
a predefined task. One of the most popular choreography languages has been
developed by W3C and is called Web Services Choreography Description Lan-
guage WS-CDL [27]. In WS-CDL, the basic activities in a service choreography
are interactions, that is, the atomic execution of a send and a receive opera-
tions performed by two communicating partners, called roles. For this reason,
WS-CDL is said to follow an interaction-oriented approach.

When implementing an interaction-oriented choreography by assembling al-
ready available services, several mechanisms and notions need to be introduced.

284 M. Bravetti and G. Zavattaro

Often the possibility is considered of extracting, from the global specification,
the behaviour of each of the involved processes in the form of a contract or
of an abstract workflow. Such an extraction is often called “projection of the
choreography on the roles” (see, e.g. [5]). The idea is that, based on such a pro-
jection, services are retrieved that expose a behaviour which is compatible with
the extracted processes (based, e.g., on a contract refinement theory like the one
presented in this paper).

We now summarize the results that we have obtained in [3,5,4,6,7,8] about
contract refinement in different scenarios.

The first mean of classification of possible scenarios is based on the amount of
knowledge about the (initial) behavioural description of the other roles the con-
formance relation may depend on. We considered: knowledge about the whole
choreography (full knowledge about the behaviour of other roles) or knowledge
restricted to input types (receive operations) and/or output types (invoke oper-
ations) that the other roles may use. Note that in this paper we used knowledge
of the latter kind. The second mean of classification of possible scenarios is based
on the kind of service compliance assumed (i.e. of the principle assumed for as-
sessing when multiple services work well together and form a correct system).
We considered: “normal” compliance, as reported in this paper, where service
interaction via invoke and receive primitives is based on synchronous handshake
communication and both receive and invoke primitives may wait indefinitely
(with no exception occurring) for a communication to happen (the standard
CCS synchronization); “strong compliance”, where we additionally require that,
whenever a service may perform an invoke on some operation, the invoked service
must be already in the receive state for that operation; “queue-based compli-
ance”, where service interaction via invoke and receive primitives is based on
asynchronous communication: the receiving service puts invoke requests in an
unbounded queue. Concerning service compliance we considered in all cases the
fair termination property, i.e. for any finite behavioural path of the system there
exists a finite path from the reached state that leads all services to successful
termination. This guarantees that the system is both deadlock and, under the
fairness assumption (i.e. whenever a choice is traversed infinitely often every
possible outcome is chosen infinitely often), live-lock free.

Our results are summarized in the following.

– Knowledge about the whole choreography (direct conformance relation with
respect to a choreography for a certain role): the maximal independent con-
formance relation does not exist, no matter which kind of service compliance
(among those mentioned above) is considered.

– Knowledge about other initial contracts limited to input/output types they
use (conformance by means of refinement of a single contract parameterized
on the I/O knowledge about the others, as in this paper):

• In the case of “normal compliance” we have that: for unconstrained con-
tracts the maximal independent conformance relation does not exist;
for contracts such that the output persistence property holds, as in the
case of this paper, the maximal independent conformance relation exists

Contract-Based Discovery and Composition of Web Services 285

and knowledge about input types is not significant; for output persistent
contracts where locations expressing a unique address for every system
contract are introduced and outputs are directed to a location, the max-
imal relation exists and knowledge about both input and output types
is not significant.

• In the case of “strong compliance” we have that: for unconstrained con-
tracts (where outputs are directed to a location identifying a unique
system contract) the maximal relation exists and knowledge about both
input and output types is not significant.

• In the case of “queue-based compliance” we have that: for unconstrained
contracts (where outputs are directed to a location identifying a unique
system contract) the maximal relation exists and knowledge about both
input and output types is not significant.

For every maximal refinement relation above (apart from the queue-based one),
we provide a sound characterization that is decidable, by resorting to an encoding
into should-testing [26], a fair version of must testing. As a consequence we
obtain:

– An algorithm (based on that in [26]) to check refinement.
– A classification of the maximal refinement relations with respect to existing

pre-orders as, e.g., (half) bisimulation, (fair/must) testing, trace inclusion. In
particular we show that the maximal refinement relations are coarser with
respect to bisimulation and must testing preorders (up to some adequate
encoding and treatment of fairness) in that, e.g., they allow external non-
determinism on inputs to be added in refinements.

5.2 Detailed Comparison with Our Previous Work

Here, we add some comments about significant technical differences between this
paper and our previous papers [5,4,8]. The first technical difference is that in
this paper we prove the coincidence between multiple contemporaneous refine-
ment and singular refinement, for any combination of input and output sets I ,
O. On the contrary, in the other papers we more simply consider the maximal
sets for inputs and outputs N , N . This more specific result, on the one hand,
required a significant technical effort (see Theorem 2 and all its preliminary re-
sults), on the other hand, allow us to achieve a more general refinement that
permits also to reduce external nondeterminism. According to the theory in this
paper we have, for instance, that a+ b �N−c a+ b+ c, similarly to the examples
reported at the beginning of Section 4. This kind of refinement that removes
internal nondeterminism is not permitted in the other papers. Another inter-
esting technical difference is that in this paper we use restriction in order to
model the possibility to have channels that can be written by some processes
and read by some other ones. In [5,4,8] we consider a more specific channel policy
according to which channels are located, meaning that they can be read only
by the processes running on the channel location. This additional constraint
has an important consequence: if C′ is a subcontract of C assuming a set O of

286 M. Bravetti and G. Zavattaro

possible outputs for the other contracts in the system, then C′ is a subcontract
of C even if we consider a larger set of outputs O′ (knowledge about output
types is not significant). This result does not hold in this paper as proved by the
counterexample reported after Proposition 7. A final remark, is concerned with
the paper [4,8] where we present a stronger notion of compliance according to
which when an output operation is ready to be executed, than the correspond-
ing input should be already available. The interesting result is that the strong
subcontract relation achieved in that paper starting from strong compliance is
incomparable with the subcontract relation presented in this paper considering
(standard) compliance. In fact, it is possible to show the existence of C′ and C
in subcontract relation according to one notion of subcontract, but not accord-
ing to the other one. For instance, in this paper we have τ.a �N a, while τ.a
is not strongly compliant with a which can send an invocation on a even if the
server is not yet ready to serve it. On the contrary, using the characterization of
the strong subcontract relation in [4,8], it is easy to prove that τ.a.b + τ.b.a is
a strong subcontract of a.b + b.a, while the former is not (standard) compliant
with the contract a.b which is compliant with the latter.

References

1. Allen, R., Garlan, D.: Formalizing Architectural Connection. In: Proc. ICSE 1994,
pp. 71–80. IEEE Computer Society Press, Los Alamitos (1994)

2. Autili, M., Inverardi, P., Navarra, A., Tivoli, M.: SYNTHESIS: a tool for auto-
matically assembling correct and distributed component-based systems. In: Proc.
ICSE 2007, pp. 784–787. IEEE Computer Society Press, Los Alamitos (2007)

3. Bravetti, M., Zavattaro, G.: Contract based Multi-party Service Composition.
In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 207–222.
Springer, Heidelberg (2007)

4. Bravetti, M., Zavattaro, G.: A Theory for Strong Service Compliance. In: Mur-
phy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 96–112.
Springer, Heidelberg (2007)

5. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-
formance and Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

6. Bravetti, M., Zavattaro, G.: Contract Compliance and Choreography Conformance
in the Presence of Message Queues. In: Proc. WS-FM 2008. LNCS. Springer, Hei-
delberg (2008) (to appear)

7. Bravetti, M., Zavattaro, G.: A Foundational Theory of Contracts for Multi-party
Service Composition. Fundamenta Informaticae 89(4), 451–478 (2008)

8. Bravetti, M., Zavattaro, G.: A Theory of Contracts for Strong Service Compliance.
In: Mathematical Structure in Computer Science. Cambridge University Press,
Cambridge (2009) (in publication)

9. Brogi, A., Canal, C., Pimentel, E.: Component adaptation through flexible subser-
vicing. Science of Computer Programming 63, 39–56 (2006)

10. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration: A synergic approach for system design. In: Benatallah, B., Casati, F.,
Traverso, P. (eds.) ICSOC 2005. LNCS, vol. 3826, pp. 228–240. Springer, Heidelberg
(2005)

Contract-Based Discovery and Composition of Web Services 287

11. Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., Zavattaro, G.: Choreography and
orchestration conformance for system design. In: Ciancarini, P., Wiklicky, H. (eds.)
COORDINATION 2006. LNCS, vol. 4038, pp. 63–81. Springer, Heidelberg (2006)

12. Carbone, M., Honda, K., Yoshida, N.: Structured Communication-Centred Pro-
gramming for Web Services. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 2–17. Springer, Heidelberg (2007)

13. Carbone, M., Honda, K., Yoshida, N., Milner, R., Brown, G., Ross-Talbot, S.:
A Theoretical Basis of Communication-Centred Concurrent Programming, WCD-
Working Note (2006),
http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf

14. Carpineti, S., Castagna, G., Laneve, C., Padovani, L.: A Formal Account of Con-
tracts for Web Services. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM
2006. LNCS, vol. 4184, pp. 148–162. Springer, Heidelberg (2006)

15. Carpineti, S., Laneve, C.: A Basic Contract Language for Web Services. In: Sestoft,
P. (ed.) ESOP 2006. LNCS, vol. 3924, pp. 197–213. Springer, Heidelberg (2006)

16. Castagna, G., Gesbert, N., Padovani, L.: A Theory of Contracts for Web Services.
In: Proc. POPL 2008, pp. 261–272. ACM Press, New York (2008)

17. De Nicola, R.: Extensional equivalences for transition systems. Acta Informat-
ica 24(2), 211–237 (1987)

18. De Nicola, R., Hennessy, M.: Testing Equivalences for Processes. Theoretical Com-
puter Science 34, 83–133 (1984)

19. Fournet, C., Hoare, C.A.R., Rajamani, S.K., Rehof, J.: Stuck-Free Conformance.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 242–254. Springer,
Heidelberg (2004)

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs (1985)

21. Kobayashi, N.: Type Systems for Concurrent Processes: From Deadlock-Freedom
to Livelock-Freedom, Time-Boundedness. In: Watanabe, O., Hagiya, M., Ito, T.,
van Leeuwen, J., Mosses, P.D. (eds.) TCS 2000. LNCS, vol. 1872, pp. 365–389.
Springer, Heidelberg (2000)

22. Laneve, C., Padovani, L.: The must preorder revisited - An algebraic theory for
web services contracts. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007.
LNCS, vol. 4703, pp. 212–225. Springer, Heidelberg (2007)

23. Mateescu, R., Poizat, P., Salaün, G.: Behavioral adaptation of component compo-
sitions based on process algebra encodings. In: Proc. ASE 2007, pp. 385–388. ACM
Press, New York (2007)

24. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

25. OASIS: WS-BPEL: Web Services Business Process Execution Language Version
2.0, Technical Report, OASIS (2003)

26. Rensink, A., Vogler, W.: Fair testing. Information and Computation 205, 125–198
(2007)

27. W3C: WS-CDL: Web Services Choreography Description Language, Technical Re-
port, W3C (2004)

A Process Algebraic Representation of Contracts

In this appendix we formalize the correspondence result between contracts
and terms of the language Pcon by showing how to obtain from a contract

http://www.dcs.qmul.ac.uk/~carbonem/cdlpaper/workingnote.pdf

288 M. Bravetti and G. Zavattaro

T = (S,L,−→, sh, s0) a corresponding C ∈ Pcon such that there exists a (sur-
jective) homomorphism from the operational semantics of C to T itself.

Definition 13. A set of process algebraic equations is denoted by θ = {Xi =
Ci | 0 ≤ i ≤ n− 1}, where n is the number of equation in the set, Xi are process
variables, Ci are contract terms (possibly including free process variables). A
set of process algebraic equations θ = {Xi = Ci | 0 ≤ i ≤ n − 1} is closed if
only process variables Xi, with 0 ≤ i ≤ n − 1, occur free in the bodies Cj , with
0 ≤ j ≤ n − 1, of the equations in the set.

Definition 14. Let T = (S,L,−→, sh, s0) be a contract. A contract term C ∈
Pcon is obtained from T as follows.

– Supposed S = {s0, . . . , sn−1} (i.e. any given numbering on the states S), we
first obtain from T a finite closed set of equations θ = {Xi = Ci | 0 ≤ i ≤
n − 1} as follows. Denoted by mi the number of transitions outgoing from
si, by αi

j the label of the j − th transition outgoing from si (for any given
numbering on the transitions outgoing from si), with j ≤ mi, and by ssucci

j

its target state, we take Ci =
∑

j≤mi
αi

j .Xsucci
j

+ {1}, where 1 is present

only if si

√
−→ sh and an empty sum is assumed to yield 0.

– We then obtain, from the closed set of equations θ = {Xi = Ci | 0 ≤ i ≤
n−1}, a closed contract term C by induction on the number of equations. The
base case is n = 1: in this case we have that C is recX0.C0. In the inductive
case we have that C is inductively defined as the term obtained from the equa-
tion set {Xi = C′

i | 0 ≤ i ≤ n − 2}, where C′
i = Ci{recXn−1.Cn−1/Xn−1}.

Definition 15. A homomorphism from a finite connected LTS with termination
transitions T = (S,L,−→, sh, s0) to a finite connected LTS with termination

transitions T ′ = (S′,L,−→′, s′h, s′0) is a function f from S to S′ such that:

f(s0) = s′0, f(sh) = s′h, and for all s ∈ S we have {(λ, s′) | f(s)
λ

−→′ s′} =

{(λ, f(s′)) | s
λ−→ s′}, i.e. the set of transitions performable by f(s) is the same

as the set of transitions performable by s when f -images of the target states are
considered.

Note that, if f is a homomorphism between finite connected LTSs with finite
states then f is surjective: this because all states reachable by f(s0) must be
f -images of states reachable from s0.

Proposition 8. Let T = (S,L,−→, sh, s0) be a contract and C ∈ Pcon be a
contract term obtained from T . There exists a (surjective) homomorphism from
the semantics of C to T itself.

Proof. Let us consider the ordering S = {s0, . . . , sn−1} on states of S used to
derive C from T . We first show that every state C′ in the semantics of C is such
that

Contract-Based Discovery and Composition of Web Services 289

1) C′ = 0 or C′ is of the form recXi.C
′′, for some 0 ≤ i ≤ n − 1, C′′ ∈ Pcon

2) Every subterm of C′ of the form recXk.C′′, for any k, C′′, is such that:
C′′ =

∑
0≤j≤m αj .Cj + {1} where Cj is either of the form recXsuccj

.C′
j , for

some 0 ≤ succj ≤ n−1, C′
j, or of the form Xsuccj

, for some 0 ≤ succj ≤ n−1;

and the following holds: {(α, s′) | sk
λ−→ s′} = {(αj , ssuccj

) | 0 ≤ j ≤ m}
and 1 is present in C′′ if and only if sk

√
−→ sh.

Once proved this fact, the assert of the proposition is then simply derived
as follows. We consider the function f from closed terms of the semantics of C
to states of T defined as: f(0) = sh and f(recXi.C

′) = si for any i such that
0 ≤ i ≤ n − 1 and term C′. From property 2) above we conclude that f is an
homomorphism from the semantics of C to T .

The assert above on states C′ ∈ Pcon in the semantics of C is proved as follows.
First we prove it to hold for C itself and we then prove that, given a contract
C1 ∈ Pcon that satisfies it, any contract C2 ∈ Pcon reached by a transition from
C1 (according to the operational semantics) satisfies it.

Concerning C, we prove the assert above by showing that all equation sets
θ considered when inductively obtaining C from the LTS T are such that, for
every term C′ in the body of θ it holds:

1) C′ =
∑

0≤j≤m αj .Cj + {1} where Cj is either of the form recXsuccj
.C′

j , for
some 0 ≤ succj ≤ n−1, C′

j, or of the form Xsuccj
, for some 0 ≤ succj ≤ n−1;

and the following holds: {(α, s′) | sk
λ−→ s′} = {(αj , ssuccj

) | 0 ≤ j ≤ m}
and 1 is present in C′ if and only if sk

√
−→ sh.

2) Every subterm of C′ of the form recXk.C′′, for any k, C′′, is such that:
C′′ =

∑
0≤j≤m αj .Cj + {1} where Cj is either of the form recXsuccj

.C′
j , for

some 0 ≤ succj ≤ n−1, C′
j, or of the form Xsuccj

, for some 0 ≤ succj ≤ n−1;

and the following holds: {(α, s′) | sk
λ−→ s′} = {(αj , ssuccj

) | 0 ≤ j ≤ m}
and 1 is present in C′′ if and only if sk

√
−→ sh.

This can be easily verified by “reversed” induction on the number of equations
in equation sets θ. It obviously holds for the initial equation set with n equations
directly derived from T : 1) directly holds by construction and 2) trivially holds
because no recXk.C′′ subterm is present in the body of any equation. If we sup-
pose it to hold for the equation set θ with m equations, it holds for the equation
set θ′ with m− 1 equations as it can be immediately verified by considering the
construction procedure of θ′ from θ in the second item of Definition 14. From
this we can conclude that the assert above holds for C in that C is obtained
from the equation set with the single equation X0 = C′ by just taking it to be
recX0.C

′.
We finally deal with preservation of the assert above when going from a con-

tract C1 ∈ Pcon to a contract C2 ∈ Pcon. In order to prove this fact, we show,
by induction on the length of the inference of transitions from C1 to C2, for any
C1, C2 ∈ Pcon, that if C1 satisfies

290 M. Bravetti and G. Zavattaro

1) C1 is either of the form recXi.C
′′, for some 0 ≤ i ≤ n−1, C′′ ∈ Pcon or is such

that: C1 =
∑

0≤j≤m αj .recXsuccj
.Cj + {1} for some 0 ≤ succj ≤ n − 1, Cj

and m ≥ 0.
2) Every subterm of C1 of the form recXk.C′′, for any k, C′′, is such that:

C′′ =
∑

0≤j≤m αj .Cj + {1} where Cj is either of the form recXsuccj
.C′

j , for
some 0 ≤ succj ≤ n−1, C′

j, or of the form Xsuccj
, for some 0 ≤ succj ≤ n−1;

and the following holds: {(α, s′) | sk
λ−→ s′} = {(αj , ssuccj

) | 0 ≤ j ≤ m}
and 1 is present in C′′ if and only if sk

√
−→ sh,

then C2 satisfies the assert above. This can be easily verified by cases on the
operational rule applied at the inductive step and on the operational rules with
no premises, corresponding to the base case of the induction. ⊓⊔

B Proof of Proposition 3

In this appendix we provide the proof of Proposition 3 that shows that a context
with a single contract variable X can be turned into a context of the form [X]||P .
After giving some preliminary definitions we prove Lemma 2 which formalizes
a result which is more general than the one stated in Proposition 3 (thus, from
which Proposition 3 trivially derives).

Given a system P ∈ Psys we call “reduction behaviour” of P the finite con-
nected LTS with termination transitions (S, {τ},−→, sh, P) defined as follows.
S is the finite subset of Psys of systems reachable from P via (possibly empty
sequences of) τ transitions, −→ are τ transitions between states of S, and sh

is the system obtained from the system P by replacing each contract with the
0 contract. We say that the reduction behaviour of a system P is homomor-
phic to that of a system P ′ if there exists an homomorphism from the reduction
behaviour of P to the reduction behaviour of P ′ according to Definition 15.

Lemma 2. Let C be a context with a single contract variable. There exists P ∈
Psys such that I(P) = I(C), O(P) = O(C) and, for every C ∈ Pcon, the reduction
behaviour of C(C) is homomorphic to that of C||P and.

Proof. We first observe that the reduction behaviours of two systems such that
one is obtained from the other one by just exploiting commutativity and asso-
ciativity of parallel composition “||” are obviously homomorphic. Similarly the
inputs and outputs offered by contexts (see Definition 8) such that one is ob-
tained from the other one by just exploiting commutativity and associativity of
parallel composition are the same. Moreover the composition of two homomor-
phisms yields an homomorphism.

We call X the unique contract variable included in C. We can assume that
the topmost operator of C is parallel composition. If it is a restriction we can
just exploit the fact that, for every C ∈ Pcon, the reduction behaviour of C(C) =(
C′\\L

)
(C) is homomorphic to that of C′(C) and the inputs and outputs offered

by the contexts C′\\L and C′ (according to Definition 8) are the same. If C is
directly in the form [X], then the assert trivially holds true for P = [1].

Contract-Based Discovery and Composition of Web Services 291

We can also assume that the contract variable X occurs in C in the scope of
a restriction operator, otherwise the assert trivially holds by commutativity and
associativity of parallel composition.

Therefore there exists a context C′, a system R and a set L such that, for
every C ∈ Pcon, C(C) can be turned into

(
(C′\\L)||Q

)
(C) by commutativity and

associativity of parallel composition.
Moreover, we have that, for every C ∈ Pcon, the reduction behaviour of(

(C′\\L)||Q
)
(C) is homomorphic to the reduction behaviour of

(
C′||(Q\\L)

)
(C)

and the inputs and outputs offered by the contexts (C′\\L)||Q and C′||(Q\\L)
(according to Definition 8) are the same.

Now, if X does not occur in C′ in the scope of a restriction operator then we
are done, otherwise we consider the following function fX .

Given a context C′′, such that X occurs in C′′ in the scope of a restriction
operator and a system R, fX (C′′, R) is inductively defined by means of the
following two cases (depending on whether C′′ is in the form C′′′\\L or (C′′′\\L)||S):

fX (C′′′\\L, R) =

{
C′′′||(R\\L) ifX is not inside a restriction in C′′′

fX (C′′′, R\\L) otherwise

fX ((C′′′\\L)||S, R) =

{
C′′′||((S||R)\\L) ifX is not inside a restriction in C′′′

fX (C′′′, (S||R)\\L) otherwise

In the following we show that, for any context C′′ such that X occurs in C′′ in the
scope of a restriction operator and system R, fX (C′′, R) is such that, for every
C ∈ Pcon, the reduction behaviour of the system

(
C′′||R

)
(C) is homomorphic

to that of
(
fX (C′′, R)

)
(C); the inputs and outputs offered by the contexts C′′||R

and fX (C′′, R) (according to Definition 8) are the same; and
(
fX (C′′, R)

)
(C) can

be turned by using commutativity and associativity of parallel composition into
the form C||P , for some P ∈ Psys.

This result yields the thesis by taking C′′ to be C′ and R to be Q\\L.
The result above can be shown by induction on depth of the inductive defini-

tion of function fX .
The base case is either C′′ = C′′′\\L or C′′ = (C′′′\\L)||S with (in both cases)

X not occurring in C′′′ in the scope of a restriction. In such cases the result
obviously holds true because, for every C ∈ Pcon, the reduction behaviour of
the system

(
(C′′′\\L)||R

)
(C) is homomorphic to that of

(
C′′′||(R\\L)

)
(C) and the

reduction behaviour of the system
(
(C′′′\\L)||S||R

)
(C) is homomorphic to that of(

C′′′||((S||R)\\L)
)
(C). Moreover the inputs and outputs offered by the contexts

(C′′′\\L)||R and C′′′||(R\\L) are the same and the inputs and outputs offered by
the contexts (C′′′\\L)||S||R and C′′′||((S||R)\\L) are the same.

In the inductive case the result is derived directly from the induction hy-
pothesis and, again, from the fact that the reduction behaviour of the sys-
tem

(
(C′′′\\L)||R

)
(C) is homomorphic to that of

(
C′′′||(R\\L)

)
(C) and the reduc-

tion behaviour of the system
(
(C′′′\\L)||S||R

)
(C) is homomorphic to that of the

292 M. Bravetti and G. Zavattaro

system
(
C′′′||((S ||R)\\L)

)
(C) and the inputs and outputs offered by the respective

contexts are (pairwise) the same. ⊓⊔

C Proof of Theorem 3

In this appendix we provide the proof of Theorem 3 stating a sound characteriza-
tion of the subcontract relation in terms of the should-testing pre-order of [26].
Before reporting the proof of the theorem, we first introduce some technical
machinery.

In order to build a test for the transformation NF(C\\(N −O)) of a con-
tract C we have to consider a similar transformation for a system P that is
executed in parallel with the contract. First of all, we consider the normal form
NF(P) as defined above. Then, we perform the following two additional trans-
formations that, respectively, add the

√ ′ success label to the test and perform
an input/output inversion so to deal with the CSP-like synchronization (where
equal actions are synchronized) considered in the testing scenario of [26].

We first consider NF ′(P) ≡ NF(P){√;
√ ′; XP ′/

√
; XP ′ | P ′ ∈ Psys}, i.e.

NF ′(P) is the term recXP
θ′ where θ′ is obtained from θ in NF(P) ≡ recXP

θ
by replacing every subterm

√
; XP ′ occurring in θ, for any P ′, with the sub-

term
√

;
√ ′; XP ′ . The LTS [[NF ′(P)]] = (S′′, Λτ ,−→′′,NF ′(P)) turns out to

be, according to the definitions in [26], as follows

– S′′ = {NF ′(P ′) ≡ recXP ′
θ′ | P ′ ∈ S} ∪ {NF ′√(P ′′) ≡ √ ′.recXP ′′

θ′ | ∃P ′∈
S :P ′

√
−→ P ′′}

– −→′′= {(NF ′(P ′), λ,NF ′(P ′′)) | P ′ λ−→ P ′′ ∧ λ �= √}
∪{(NF ′(P ′),

√
,NF ′√(P ′′)) | P ′

√
−→ P ′′}

∪{(NF ′√(P ′′),
√ ′,NF ′(P ′′)) | NF ′√(P ′′) ∈ S′′}

where we assume (S, Λτ ,−→, P) to denote the LTS [[P]].

We then consider NF ′(P), i.e. the term recXP
θ′′ where θ′′ is obtained from

θ′ in NF ′(P) ≡ recXP
θ′ by turning every a occurring in θ′, for any a ∈ N , into

a and every a occurring in θ′, for any a ∈ N , into a. The LTS [[NF ′(P)]] =

(S′′′, Λτ ,−→′′′,NF ′(P)) turns out to be a transformation of [[NF ′(P)]] where
θ′′ instead of θ′ is considered inside states (the state obtained in this way from a

state NF ′(P ′) is denoted by NF ′(P ′) and similarly a state NF ′√(P ′) is turned

into NF ′√(P ′)) and whose transition labels are transformed by inverting in-
put/output actions as described above.

We now introduce mapping of traces of [[[C]]] into [[NF(C)]] and mapping of
traces of [[P]] into [[NF ′(P)]]. First of all we define a n-length trace tr ∈ TrTn ,
with n ≥ 0, of a LTS T = (S, Lab,−→, sinit) to be a pair (s, λ), where s is a
function from the interval of integers [0, n] to states in S (we will use si to stand
for s(i)) and λ is a function from the interval of integers [1, n] to labels in Lab

(we will use λi to stand for λ(i)) such that si−1
λi−→ si, for 1 ≤ i ≤ n. A n-length

Contract-Based Discovery and Composition of Web Services 293

initial trace tr ∈ IT r Tn is defined in the same way with the additional constraint
that s0 = sinit. We let Tr T to stand for

⋃
n≥ 0 Tr Tn . In the following we will

also denote a n-length trace tr simply by writing the sequence of its transitions,

i.e. tr = s0
λ1−→ s1

λ2−→ . . .
λn−1−→ sn−1

λn−→ sn. We denote concatenation of two
traces tr′ ∈ TrTn and tr′′ ∈ TrTm such that s′n = s′′0 by tr′ ̂ tr′′ defined as
the trace tr ∈ TrTn+m with si = s′i for 0 ≤ i ≤ n, λi = λ′

i for 1 ≤ i ≤ n,
sn+i = s′′i for 1 ≤ i ≤ m and λn+i = λ′′

i for 1 ≤ i ≤ m. We also use lessi(tr) to
stand for the shortened trace tr′ ∈ TrTn−i obtained from the trace tr ∈ TrTn by
simply letting s′i = si for 0 ≤ i ≤ n − i and λ′

i = λi for 1 ≤ i ≤ n − i. We use
less(tr) to stand for less1(tr). Finally we denote with vis(tr) the sequence of
visible labels of the trace tr, i.e., the string w ∈ (L−{τ})∗ defined by induction
on the length n ≥ 0 of trace tr as follows. If n = 0 then vis(tr) = ε. If n ≥ 1
then: vis(tr) = vis(less(tr)) if λn = τ , vis(tr) = vis(less(tr)) ̂ λn otherwise
(where we use w′ ̂ w′′ to denote string concatenation).

Let us consider a transition s
λ−→ s′ of [[[C]]]. We can take tr = s

λ−→ s′ with

tr ∈ Tr
[[[C]]]
1 and we define map(tr) = NF(s)

λ−→ NF(s′). We then define the

mapping map(tr) of a whatever transition tr = (s, λ) ∈ Tr
[[[C]]]
n to be the transi-

tion tr′ = (s′, λ′) ∈ Tr
[[NF(C)]]
n with s′0 = NF(s0) and s′n = NF(sn) achieved by

induction on n ≥ 0 as follows. If n = 0 then map(tr) is the trace tr′ ∈ Tr
[[NF(C)]]
0

such that s′0 = NF(s0). If n ≥ 1 then map(tr) = map(less(tr)) ̂ map(sn−1
λn−→

sn). It is immediate to verify that for any tr ∈ Tr[[[C]]], vis(map(tr)) = vis(tr).
Moreover we have that map : Tr[[[C]]] → Tr[[NF(C)]] is obviously injective and
surjective.

Let us consider a transition s
λ−→ s′ of [[P]]. We can take tr = s

λ−→ s′

with tr ∈ Tr
[[P]]
1 . We define map√(tr) as follows. If λ �= √

then map√(tr) =

NF ′(s)
λ−→ NF ′(s′). Otherwise, if λ =

√
then map√(tr) = NF ′(s)

√
−→

NF ′√(s′). We then define the mapping map√(tr) of a whatever transition tr =

(s, λ) ∈ Tr
[[P]]
n (tr may include

√
only as the final transition because target states

of
√

transitions have no outgoing transitions in the semantics of systems) to be

the transition tr′ = (s′, λ′) ∈ Tr
[[NF(P)]]
n with s′0 = NF ′(s0) and, in the case n ≥

1, s′n = NF ′(sn) if λn �= √
, s′n = NF ′√(sn) otherwise, achieved by induction on

n ≥ 0 as follows. If n = 0 then map√(tr) is the trace tr′ ∈ Tr
[[NF′(P)]]
0 such that

s′0 = NF ′(s0). If n ≥ 1 then map√(tr) = map√(less(tr)) ̂ map√(sn−1
λn−→

sn). It is immediate to verify that for any tr ∈ Tr[[P]], vis(map√(tr)) = vis(tr).

Moreover we have that map√ : Tr[[P]] → Tr[[NF′(P)]] is injective (because the last
transition of the trace singles out at each inductive step a unique mapping that
can produce it) and is surjective over the codomain of traces that begin with a
state of the form NF ′(s) with s ∈ [[P]] and do not include

√ ′ transitions.
We finally define some other auxiliary functions that will be used in the proof.

Given a trace tr ∈ Tr[[NF′(P)]] or tr ∈ Tr[[NF′(P)]], we define tr to be tr′ = (s′, λ′)
defined as: s′i = si and λ′

i = λi for any i (where the application of the overbar to

294 M. Bravetti and G. Zavattaro

states or labels that have it already causes its removal and it has no effect when
applied to τ and

√
labels). Notice that vis(tr) = vis(tr) denoting the application

of the overbar to any label occurring in the sequence of visible labels.

Proof of Theorem 3
According to the definition of should-testing of [26], since

NF(C′\\(N−O)) �test NF(C\\(N−O))

we have that, for every test t, if NF(C\\(N−O)) shd t, then also NF(C′\\(N−O))
shd t, where Q shd t iff

∀w ∈ Λ∗
τ , Q′. Q||Λt

w−→ Q′ ⇒ ∃v ∈ Λ∗
τ , Q′′ : Q′ v−→ Q′′

√
′

−→

where ||Λ is the CSP parallel operator.
Let us now consider P ∈ Psys with (C\\N −O||P)↓. In the following we will

provide a first subproof that this implies NF(C\\(N−O)) shd NF ′(P). Since
NF(C′\\(N−O)) �test NF(C\\(N−O)), from this we can derive NF(C′\\(N−
O)) shd NF ′(P). In the following we will provide a second subproof that this
implies (C′\\N−O||P)↓. The thesis, then, directly follows from Lemma 1.

First subproof: (C̃||P)↓ ⇒ NF(C̃) shd NF ′(P), with C̃ = C\\(N−O).

We consider the trace tr = (s, λ) ∈ IT r
[[NF(C̃)||ΛNF ′(P)]]
r such that λi �= √ ′

for any i. There exist ṫr ∈ IT r
[[NF(C̃)]]
n and ẗr ∈ IT r

[[NF′(P)]]
m , corresponding to

the local moves performed by the two parallel processes when doing trace tr,
such that vis(ṫr) = vis(ẗr).

We have two cases for the structure of the last state of trace ẗr:

1. s̈m ≡ NF ′(s) for some s∈ [[P]]

2. s̈m ≡ NF ′√(s) for some s∈ [[P]]

Let us start by taking ẗr to be as in the simpler case (2). Since, by def. of

NF ′(P), s̈m = NF ′√(s) ⇒ s̈m

√
′

−→, we have sr = ṡn||Λs̈m

√
′

−→ and we are done.

We now move to the non-trivial case (1) for ẗr. Consider ẗr
′
= map−1√ (ẗr)∈

IT r
[[P]]
m . We have s̈m = NF ′(s̈′m). Let us also consider ṫr

′
= map−1(ṫr)∈IT r

[[[C̃]]]
n .

We have ṡn = NF(ṡ′n). Moreover, vis(ẗr
′
) = vis(ẗr) = vis(ṫr) = vis(ṫr

′
).

Therefore, there exists tr′ ∈ IT r
[[C̃||P]]
r , with λ′

i = τ for any i, such that s′r =
ṡ′n||s̈′m.

Since (C̃||P) ↓ we have that there exists tr′′ ∈ Tr
[[C̃||P]]
r′′ with s′′0 = s′r, λ′′

i =

τ for 1 ≤ i ≤ r′′ − 1 and λ′′
r′′ =

√
. Therefore, there exist ṫr

′′∈Tr
[[[C̃]]]
n′′ with ṡ′′0 =

ṡ′n and ẗr
′′∈Tr

[[P]]
m′′ , with s̈′′0 = s̈′m corresponding to the local moves performed by

the two parallel processes when doing trace tr′′, such that vis(ṫr
′′
) = vis(ẗr

′′
).

Contract-Based Discovery and Composition of Web Services 295

Let us now consider ṫr
′′′

= map(ṫr
′′
)∈Tr

[[NF(C̃)]]
n′′ . We have ṡ′′′0 = NF(ṡ′′0) =

NF(ṡ′n) and λ̇′′′
n′′ =

√
. Let us also consider ẗr

′′′
= map√(ẗr

′′
)∈Tr

[[NF′(P)]]
m′′ . We

have s̈′′′0 = NF ′(s̈′′0) = NF ′(s̈′m) and λ̈′′′
m′′ =

√
. Moreover, vis(ṫr

′′′
) = vis(ṫr

′′
) =

vis(ẗr
′′
) = vis(ẗr

′′′
).

Therefore, there exists tr′′′ ∈Tr
[[NF(C̃)||ΛNF ′(P)]]
r′′ . Such trace has initial state

s′′′0 = NF(ṡ′n)||ΛNF ′(s̈′m) = ṡn||Λs̈m = sr, and s′′′r′′ = ṡ′′′n′′ ||Λs̈′′′m′′ . Moreover,

since, by def. of NF ′(P), λ̈′′′
m′′ =

√ ⇒ s̈′′′m′′

√
′

−→, we have s′′′r′′

√
′

−→.

Second subproof: NF(C̃′) shd NF ′(P) ⇒ (C̃′||P)↓, with C̃′ = C′\\(N−O).

We consider the trace tr = (s, λ)∈ IT r
[[C̃′||P]]
r such that λi = τ for any i. There

exist ṫr∈ IT r
[[[C̃′]]]
n and ẗr∈ IT r

[[P]]
m corresponding to the local moves performed

by the two parallel processes when doing trace tr, such that vis(ṫr) = vis(ẗr).

Let us now consider ṫr
′
= map(ṫr)∈IT r

[[NF(C̃′)]]
n . We have ṡ′n = NF(ṡn). Let

us also consider ẗr
′
= map√(ẗr)∈IT r

[[NF′(P)]]
m . We have s̈′m = NF ′(s̈m) because

ẗr does not include a
√

transition. Moreover, vis(ṫr
′
) = vis(ṫr) = vis(ẗr) =

vis(ẗr
′
). Therefore, there exists tr′ ∈ IT r

[[NF(C̃′)||ΛNF′(P)]]
r with s′r = ṡ′n||Λs̈′m =

NF(ṡn)||ΛNF ′(s̈m).

Since NF(C̃′) shd NF ′(P) we have that there exists tr′′∈Tr
[[NF(C̃′)||ΛNF ′(P)]]
r′′

with s′′0 = s′r, such that λ′′
i �= √ ′ for 1 ≤ i ≤ r′′ − 1 and λ′′

r′′ =
√ ′.

There exist ṫr
′′∈Tr

[[NF(C̃′)]]
n′′ with ṡ′′0 = ṡ′n and ẗr

′′∈Tr
[[NF ′(P)]]
m′′ , with s̈′′0 = s̈′m

corresponding to the local moves performed by the two parallel processes when
doing trace tr′′. We must have λ̈′′

m′′ =
√ ′ and, since s̈′′0 = s̈′m is in the form

NF ′(s̈m), by def. of NF ′(P) we have (r′′ ≥ 2 and) λ̈′′
m′′−1 =

√
. Moreover

we must have vis(ṫr
′′
) = vis(less(ẗr

′′
)), hence in particular λ̇′′

n′′ =
√

: the
√

transition must be the last one in such a trace (i.e. there are no τ transitions
afterward) because target states of

√
transition have no outgoing transitions in

the semantics of contracts and the transformation NF(C̃′) cannot add outgoing
τ transitions to such states.

Let us now consider ṫr
′′′

= map−1(ṫr
′′
)∈Tr

[[[C̃′]]]
n′′ . We have ṡ′′0 = ṡ′n = NF(ṡ′′′0)

and λ̇′′′
n′′ =

√
. Let us also consider ẗr

′′′
= map−1√ (less(ẗr

′′
))∈Tr

[[P]]
m′′−1. We have

s̈′′0 = ṡ′m = NF ′(s̈′′′0) and λ̈′′′
m′′−1 =

√
. Moreover, vis(ẗr

′′′
) = vis(less(ẗr

′′
)) =

vis(ṫr
′′
) = vis(ṫr

′′′
).

Therefore, there exists tr′′′∈Tr
[[C̃′||P]]
r′′ such that λ′′′

i = τ for 1≤ i≤r′′−1, with
s′′′0 = ṡ′′′0 ||Λs̈′′′0 = ṡn||Λs̈m = sr and λ′′′

r′′ =
√

. ⊓⊔

Quantitative Analysis of Web Services

Using SRMC

Allan Clark, Stephen Gilmore, and Mirco Tribastone

Laboratory for Foundations of Computer Science
The University of Edinburgh, Scotland

Abstract. In this tutorial paper we present quantitative methods for
analysing Web Services with the goal of understanding how they will
perform under increased demand, or when asked to serve a larger pool of
service subscribers. We use a process calculus called SRMC to model the
service. We apply efficient analysis techniques to numerically evaluate our
model. The process calculus and the numerical analysis are supported
by a set of software tools which relieve the modeller of the burden of
generating and evaluating a large family of related models. The methods
are illustrated on a classical example of Web Service usage in a business-
to-business scenario.

1 Introduction

Web Services are a popular and effective method of component-based develop-
ment of distributed systems. Using widely-agreed standards service providers
are able to quickly develop flexible assemblies of components to respond to new
business demands. Legacy systems can be incorporated using application servers
as intermediates which expose the functionality of the legacy system on the net-
work, allowing it to be invoked by a remote service. This might itself have been
invoked by another service, allowing these components to be built into complex
workflows and managed as either an orchestration or a choreography.

Service providers publish their services in a public registry. Service consumers
discover services at run-time and bind to them dynamically, choosing from the
available service instances according to the criteria which are of most impor-
tance to them. This architecture provides robust service in difficult operational
conditions. If one instance of a service is temporarily unavailable then another
one is there to take its place.

It is likely though that this replacement is not fully functionally identical. It
might have some missing functionality, or it might even offer additional func-
tionality not found in the temporarily unavailable service instance. One reason
why differences such as this arise is that new versions of services are released in
order to correct errors or add new features. These updates are applied at differ-
ent times at different sites and therefore it is quite common for different hosts
to be running different versions of the software services. Some will be running
an older version, others the latest. Even if they are hosting the same version

M. Bernardo, L. Padovani, and G. Zavattaro (Eds.): SFM 2009, LNCS 5569, pp. 296–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Quantitative Analysis of Web Services Using SRMC 297

of the software then because of different security policies at different sites some
hosts will have disabled certain features, whereas others will not have done this
because their security policy is more permissive.

Even in the rare case of finding a functionally-identical replacement matters
are still not straightforward when non-functional criteria such as availability and
performance are brought into the picture. It is very unusual indeed for all of the
hosts which offer instances of a service to have identical performance profiles. In
contrast, the best practice in virtualisation argues that the hosts should inten-
tionally be heterogeneous (using different processors, memory, caches or disks)
in order that not all of them can be affected by a single flaw in a hardware
component. Seemingly small modifications such as this can have a vast impact
on performance which affects essentially all of the performance measures which
one would think to evaluate over the system configuration.

In practice it is very frequently the case that the functionally-equivalent re-
placement for the temporarily unavailable service will exhibit different perfor-
mance characteristics. Ultimately this is because it hosts a copy of the service
on another hardware platform which has either been intentionally made differ-
ent for reasons such as virtualisation practice, or unintentionally because it has
been commissioned at a different time when other hardware components were
the most cost-effective purchase.

Analytical or numerical performance evaluation provides valuable insights into
the timed behaviour of systems over the short or long run. Important methods
used in the field include the numerical evaluation of continuous-time Markov
chains (CTMCs) (see, for example, [1]) and the use of fluid-flow approximation
using systems of ordinary differential equations (ODEs) (see, for example, [2]).
In the present paper we work with a timed process calculus, the Sensoria Refer-
ence Markovian Calculus (SRMC) [3,4] which builds on Performance Evaluation
Process Algebra (PEPA) [1]. PEPA has both a discrete-state Markovian seman-
tics and a continuous-state differential equation semantics. We make use of both
kinds of analysis here.

Mathematical modelling formalisms such as CTMCs and ODEs are often ap-
plied to study fixed, static system configurations with known subcomponents
with known rate parameters. This is far from the operating conditions of service-
oriented computing where for critical service components a set of replacements
with perhaps vastly different performance qualities stand ready to substitute for
components which are either unavailable, or the consumer just simply chooses
not to bind to them.

We seek to address this issue with SRMC by building into the calculus a mech-
anism for the formal expression of uncertainty about binding and parameters (in
addition to the other dimension of uncertainty about durations modelled in the
Markovian setting through the use of exponentially-distributed random vari-
ables). We put forward a method of numerical evaluation for this calculus which
scales well with increasing problem size to allow precise comparisons to be made
across all of the possible service bindings and levels of availability considered.

298 A. Clark, S. Gilmore, and M. Tribastone

Numerical evaluation is supported inside a modelling environment for the cal-
culus. In addition to comparing the results of particular service configurations
we can combine the results to provide overall performance characteristics such
as are required for service level agreements.

Structure of this paper. SRMC allows three levels of uncertainty; uncertainty as
to the configuration of the system, uncertainty as to the rate parameters of some
system components and finally uncertainty as to the duration of events. After an
introduction to the calculus in Section 2 we build up to the full SRMC language
in reverse order of these levels of uncertainty. In Section 2.2 we review the PEPA
process algebra, a stochastic process algebra with support for compositional
construction of an underlying Markov chain. Thus we can reason about the
performance of a known system with unknown duration of events. We continue
in this section to show how we can augment this process algebra with the ability
to specify a range of rate parameters such that not only is the duration of a
particular event unknown but its average duration is specified as a set of possible
values. Because of this a single model in the SRMC calculus gives rise to a related
family of models in the PEPA stochastic process algebra. In Section 4 we explain
how this family of models is derived. Our intention is to perform analysis on these
models. In Section 5 we present a high-level query language for models, eXtended
Stochastic Probes (XSP). We show how this language is used to query models to
determine whether or not they satisfy precise service-level agreements on their
quality of service. In Section 6 we apply Markovian analysis techniques to all of
the models in this related family. In Section 7 we address the challenge of large-
scale modelling and recast the modelling problem in the continuous world where
we can apply Hillston’s fluid-flow approximation method [2] to obtain a system
of ordinary differential equations which allow us to efficiently analyse large-scale
versions of our models. In Section 8 we consider the suite of software tools which
are available to support the SRMC and PEPA process calculi. Section 9 surveys
related work and we present our conclusions after this.

2 Background

In order to introduce the concepts of SRMC we build up a generic example of a
Web Service. We will provide a specific example later.

2.1 SRMC

In this example we have a service which remains idle until it receives a request
from a client. The service does not specify the rate at which requests arrive, this
is specified elsewhere (in the definition of the client). Once a request comes in
the service computes (at rate r c) and then returns the response (at rate r r)
before becoming idle again.

Quantitative Analysis of Web Services Using SRMC 299

Listing 1.1. SRMC model of a Web Service

WS_A::{

r_c = 10.0; r_r = 1.0;

Idle = (request, _).Computing;

Computing = (compute, r_c).Responding;

Responding = (response, r_r).Idle;

};

This high-level model of the service describes only three states, Idle,
Computing and Responding, abstracting from many details of the service. These
three related definitions are collected into the namespace for the component WS A

together with the values of the rates for the activities compute and response.
This definition gives rise to a small transition system with only three states

and three transitions. The transition system corresponding to the component
WS A is shown in Figure 1. Note that component names and rate names have
been replaced by their fully qualified versions. Activity type names (such as
request, compute and response) are not subject to this expansion because
these names are used to define synchronisation points with other components
(and therefore cannot be renamed).

WS A::Idle

WS A::Computing

WS A::Responding

(request,)

(compute, WS A::r c)

(response, WS A::r r)

Fig. 1. Underlying transition system for the component WS A

We now consider an optimised version of this service where some computation
is avoided because the service can retrieve a previously computed result. Looking
up a result is ten times faster than re-calculating it. Only 30% of incoming
requests can be answered in this way, the remaining 70% of requests lead to the
result being computed as before.

Model components with similar names can be distinguished because they are
collected under a different namespace WS B. Thus here we have the definition
of a process term whose fully qualified name is WS B::Idle whereas the fully
qualified name of the previous process term is WS A::Idle.

300 A. Clark, S. Gilmore, and M. Tribastone

Listing 1.2. SRMC model of an optimised Web Service

WS_B::{

r_l = 100.0; p = 0.7; r_c = 10.0;

r_r = { 1.0, 0.6, 0.2 };

Idle = (request, p * _).Computing;

+ (request, (1 - p) * _).Retrieving;

Computing = (compute, r_c).Responding;

Retrieving = (lookup, r_l).Responding;

Responding = (response, r_r).Idle;

};

The advantage of using this optimised version of the service is reduced slightly
because connectivity to the service is very variable and responses coming back
from the service may be delayed (even though the service generated them quickly
by looking up a previously-calculated result). The transition system correspond-
ing to the component WS B is shown in Figure 2.

WS B::Idle

WS B::Computing WS B::Retrieving

WS B::Responding

(request, WS B::p *) (request, (1- WS B::p) *)

(compute, WS B::r c) (lookup, WS B::r l)

(response, WS B::r r)

Fig. 2. Underlying transition system for the component WS B

In SRMC we can characterise this kind of variability by recording different
possible parameter values for the response activity. We denote these by listing a
set of possible values for the rate parameter ({ 1.0, 0.6, 0.2 } above). Uncertainty
about a rate parameter is represented in SRMC in this way (by listing a set of
possibilities) and uncertainty about a service binding is represented in a very
similar way.

Listing 1.3. Specifying binding uncertainty in SRMC

WS ::= { WS_A, WS_B };

Service = WS::Idle;

Quantitative Analysis of Web Services Using SRMC 301

These definitions record that the Web Service which we use will either be A
(the unoptimised version) or B (the optimised version) and that the service is
initially in its idle state.

Now we are able to complete our model by providing the definition of a
client who thinks for some time before requesting the service and waiting for the
response.

Listing 1.4. SRMC model of a Client

Client::{

r_t = 0.002; r_r = 0.5;

Idle = (think, r_t).Requesting;

Requesting = (request, r_r).Waiting;

Waiting = (response, _).Idle;

};

The namespace mechanism is helpful here also because there is no clash be-
tween the name of the rate identifier used here for requests (whose fully qualified
name is Client::r r) and rate identifiers used earlier for responses (whose fully
qualified names are respectively WS A::r r and WS B::r r). The transition sys-
tem corresponding to the client is shown in Figure 3.

Client::Idle

Client::Requesting

Client::Waiting

(think, Client::r t)

(request, Client::r r)

(response,)

Fig. 3. Underlying transition system for the client

Finally, we complete the model by requiring the Client and the Web Service
(whichever one it is) to cooperate on the request and response activities. All
other activities are performed by a single component independently from the
others.

Listing 1.5. SRMC model composition

Client::Idle <request, response> Service

302 A. Clark, S. Gilmore, and M. Tribastone

In the case where the binding is resolved in favour of WS A then the overall
model has the transition system corresponding to the client paired with WS A as
shown in Figure 4. All of the definitions which relate to the WS B namespace are
removed from this model and have no impact on the underlying transition system.

Client::Idle | WS A::Idle

Client::Requesting | WS A::Idle

Client::Waiting | WS A::Computing

Client::Waiting | WS A::Responding

(think, Client::r t)

(request, Client::r r)

(compute, WS A::r c)

(response, WS A::r r)

Fig. 4. Underlying transition system for the client paired with WS A

Client::Idle | WS B::Idle

Client::Requesting | WS B::Idle

Client::Waiting | WS B::Computing Client::Waiting | WS B::Retrieving

Client::Waiting | WS B::Responding

(think, Client::r t)

(request, WS B::p * Client::r r) (request, (1- WS B::p) * Client::r r)

(compute, WS B::r c) (lookup, WS B::r l)

(response, WS B::r r)

Fig. 5. Underlying transition system for the client paired with WS B

If, on the other hand, the binding is resolved in favour of WS B then the overall
model has the transition system corresponding to the client paired with WS B as
shown in Figure 5. All of the definitions which relate to the WS A namespace are
removed from this model.

Quantitative Analysis of Web Services Using SRMC 303

2.2 PEPA

The starting point for the new calculus was the stochastic process algebra
PEPA [1]. The PEPA language has the following combinators:

P ::= (a, λ).P | P + P | P ⊲⊳
L

P | P/L

A (a, λ).P describes a process which may perform the action a at rate λ to
become the process P . The rate may be a numerical rate or the special rate ⊤

(written as in SRMC) which means the operation is performed passively by this
process which must be subsequently synchronised with over this activity. The
other process involved in the synchronisation determines the rate of the activity.
The process P1 +P2 depicts competitive choice between the processes P1 and P2

and therefore may perform any of activity which P1 may perform or any which
P2 may perform. The operator ⊲⊳

L
is cooperation/synchronisation between two

components over the given set of actions L. The process P/L behaves exactly as
P except that the activities in the set L are no longer observable and hence it is
not possible for another process to cooperate on these activities. This is referred
to as hiding, and we will not make use of hiding in this tutorial.

A model is represented by a series of definitions which describe the sequential
behaviour of named components. These named components are then combined
together in a main system equation which represents the interaction between the
various components in a model. This description of a model has an underlying
Markov chain representation though the user is hidden from the details of the
underlying states. Each defined sequential component is a description of a small
stateful process and each such is combined using the cooperation combinator
with the restriction that the two must synchronise over the specified action
labels. This may mean that some states are unreachable so composition does not
always increase the state space but in general the state-space size does increase
rapidly. Full details of the PEPA stochastic process algebra can be found in [1].

3 Case Study

In this tutorial the SRMC language is illustrated by means of a case study of a
Web-service orchestration. Our case study is adapted from the example proposed
in the specification of WS-BPEL 2.0, the OASIS standard for the description
of business process behaviour of Web services [5]. Figure 6 depicts an informal
outline of the business process of a sample order management system. Boxes
with straight corners represent the invocation of Web services. Dotted lines im-
pose sequentiality between invocations, and solid lines indicate data dependency.
For example, the invocation of Complete Price Calculation does not start until
Decide On Shipper returns. Similarly, Complete Production Scheduling needs
the output of Arrange Logistics before being called. The box with rounded cor-
ners indicates the execution of parallel flows. After Receive Purchase Order is
executed, the executions of Initiate Price Calculation, Decide On Shipper, and
Initiate Production Scheduling may start in parallel. Finally, after all these ac-
tivities terminate Invoice Processing may be invoked.

304 A. Clark, S. Gilmore, and M. Tribastone

Fig. 6. Sketch of the order management system case study used in this tutorial

The aim of this tutorial is not to provide an algorithmic procedure to au-
tomatically translate BPEL processes into SRMC models, rather we show how
the features of the language may be exploited to model web service orchestra-
tion. Nevertheless, the tutorial will also give directions on how to capture other,
more fine-grained behaviours which are not strictly in the domain of web ser-
vice description languages albeit they may affect the system’s performance. The
construction of the performance model of the case study will be carried out in-
crementally — from the components which exhibit sequential behaviour to their
arrangement through the cooperation operator to impose synchronisation and
ordering. The initial SRMC model will be kept intentionally simple — it will not
capture dynamic binding or rate uncertainty, in effect making it fall within the
realm of PEPA. This initial model will primarily serve the purpose of guiding
the reader through the most basic constituents of the language. Nevertheless,
we will show how it may give a coarse-grained understanding of the system’s
performance characteristics.

3.1 Initial Performance Model

Figure 6 clearly shows that the BPEL process is composed of four distinct com-
ponents with sequential behaviour. The first component, which describes the
main flow of execution, is responsible for the reception of a purchase order
and the final issue of an invoice. Between these two actions, three sequential

Quantitative Analysis of Web Services Using SRMC 305

components perform some activities in parallel, as discussed above. To generate
the performance model, it is necessary to associate each activity of the business
process with a rate, which uniquely describes the exponentially distributed vari-
able which indicates the duration of the activity. Listing 1.6 shows the PEPA
sequential component corresponding to the main flow of execution. The operator
prefix is used to describe the execution of an activity. Throughout this paper
we adopt the convention that the activity name is the initials of the associated
process name in Figure 6, and its rate of execution is indicated by r_<name>.
(For example, the rate of Receive Purchase Order is r_rpo). The sequential
component is cyclic so as to model the behaviour that the system is capable
of processing a new order after the previous one has completed. The sequential
components involved in price calculation, shipping management and production
scheduling may be derived in a similar fashion. Their underlying performance
models are shown in Listings 1.7, 1.8, and 1.9, respectively.

Listing 1.6. PEPA model of the main flow of execution of the BPEL process in Figure 6

ReceivePurchaseOrder = (rpo, r_rpo).InvoiceProcessing;

InvoiceProcessing = (ip, r_ip).ReceivePurchaseOrder;

Listing 1.7. PEPA model for price calculation

InitiatePriceCalculation = (ipc, r_ipc).CompletePriceCalculation;

CompletePriceCalculation = (cpc, r_cpc).InitiatePriceCalculation;

Listing 1.8. PEPA model for shipping management

DecideOnShipper = (dos, r_dos).ArrangeLogistics;

ArrangeLogistics = (al, r_al).DecideOnShipper;

Listing 1.9. PEPA model for production scheduling

InitiateProductionScheduling = (ips, r_ips).CompleteProductionScheduling;

CompleteProductionScheduling = (cps, r_cps).InitiateProductionScheduling;

In order to capture the business logic of the orchestration, these sequential
components need to be augmented with further behaviour. Price calculation,
shipping management, and production scheduling can only start after an order
is received. Moreover, these activities may run in parallel. In SRMC this can be
modelled by preceding their descriptions with a local state which synchronises
over some action fork. Similarly, the invoice processing activity can be executed

306 A. Clark, S. Gilmore, and M. Tribastone

after all the parallel flows are completed. To express this, a local state is added
to the descriptions, which synchronises over the action ip. Thus, Listings 1.7,
1.8, and 1.9 are revised as shown in Listings 1.10, 1.11, and 1.12, respectively.
In all descriptions, the names of the synchronising components are prefixed by
the words Fork and Join and their activities are executed passively.

Listing 1.10. Revised PEPA model for price calculation

ForkPriceCalculation = (fork, _).InitiatePriceCalculation;

InitiatePriceCalculation = (ipc, r_ipc).CompletePriceCalculation;

CompletePriceCalculation = (cpc, r_cpc).JoinPriceCalculation;

JoinPriceCalculation = (ip, _).ForkPriceCalculation;

Listing 1.11. Revised PEPA model for shipping management

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).ArrangeLogistics;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

Listing 1.12. Revised PEPA model for production scheduling

ForkProductionScheduling = (fork, _).InitiateProductionScheduling;

InitiateProductionScheduling = (ips, r_ips).CompleteProductionScheduling;

CompleteProductionScheduling = (cps, r_cps).JoinProductionScheduling;

JoinProductionScheduling = (ip, _).ForkProductionScheduling;

Other sequential components are added to the system to observe the causality
rules of the orchestration:

1. The fork action must be performed after rpo is executed.
2. The cpc action must be performed after dos is executed.
3. The cps action must be performed after al is executed.

Each rule is implemented by a cyclic two-state sequential component which ob-
serves the related actions in the order in which they must be executed. The
component in Listing 1.13 models the first rule. An excerpt of the system equa-
tion (which will be fully shown later in this section) is presented in Listing 1.14.
After a purchase order is received the component Fork1 behaves as Fork2.
This will in turn enable the activity fork, which will start the price calculation
process.

Quantitative Analysis of Web Services Using SRMC 307

Listing 1.13. Implementation of the causality rule for the execution of the parallel
flows

Fork1 = (rpo, _).Fork2;

Fork2 = (fork, r_fork).Fork1;

Listing 1.14. Excerpt of the model’s system equation showing the cooperation between
the main flow and the price calculation component

(ReceivePurchaseOrder <rpo> Fork1) <fork> ForkPriceCalculation

Rules 2 and 3 are handled in a similar way: A cyclic two-state sequential
component enforces the order of execution of the activities by enabling them
passively. The corresponding sequential components used in this example are
shown in Listings 1.15 and 1.16. Finally, the complete system equation for this
model is shown in Listing 1.17.

Listing 1.15. Implementation of the causality rule between price calculation and ship-
ping management

PriceShipping1 = (dos, _).PriceShipping2;

PriceShipping2 = (cpc, _).PriceShipping1;

Listing 1.16. Implementation of the causality rule between shipping management and
production scheduling

ShippingProduction1 = (al, _).ShippingProduction2;

ShippingProduction2 = (cps, _).ShippingProduction1;

Listing 1.17. Complete system equation of the PEPA model

Sys = (ReceivePurchaseOrder <rpo> Fork1)

<fork,ip>

(

(ForkPriceCalculation <cpc> PriceShipping1)

<fork,dos,ip> ForkShipper

)

<fork,al,ip>

(ForkProductionScheduling <cps> ShippingProduction1)

308 A. Clark, S. Gilmore, and M. Tribastone

Model of user workload. The system equation is combined with the model
of user workload, which represents the external agents that invoke the service.
Although various kinds of workload can be modelled, in this tutorial we shall
consider the case of closed workload, i.e., a collection of users which cyclically
execute the orchestration, interposing some think time between successive re-
quests. The model of a user is shown in Listing 1.18. It describes a typical
request/response scenario in which the activity rpo triggers the execution of
the orchestration and the activity ip indicates the response of the system. The
composition with the model of the orchestration is shown in Listing 1.19. Here,
we made use of the array operator [N_U] to indicate N U distinct users of the
system.

Listing 1.18. Model of a user of a closed workload

Think = (think, r_think).Execute;

Execute = (rpo, r_rpo).Wait;

Wait = (ip, _).Think;

Listing 1.19. Complete model with user workload

Model = Think[N_U] <rpo,ip> Sys

System concurrency level. Similarly to the user workload, the concurrency
levels of the system should be specified. The model in Listing 1.17 features
one copy for each sequential component of the system. Thus, if the number
of users is greater than one, then there is contention amongst these users to
access the orchestration. After a user executes the shared action rpo, all the
remaining users are blocked because the action cannot be enabled by the sys-
tem. Indeed, the sequential component ReceivePurchaseOrder will behave as
InvoiceProcessing, hence rpo is enabled again only after the current request
has been completely processed.

In this scenario, one sequential component can be thought of as a single flow of
execution which can handle only one request at all times. If multiple requests are
to be handled simultaneously, then multiple copies of the sequential components
need to be deployed. Again, SRMC makes use of the array operator to model
this situation. The concurrency level has a clear impact on the performance of
the system — it increases the system’s throughput, or equivalently, reduces the
response time. The concurrency level has also a clear counterpart in the actual
system that the SRMC description is modelling. For instance it may refer to the
number of threads or processes which are allocated to a given web service.

However, the modelling approach adopted in this case study poses an ad-
ditional difficulty: although some sequential components clearly correspond to
real units of execution, others have been introduced only to serve the auxiliary
purpose of guaranteeing the intended order of execution of the business logic.

Quantitative Analysis of Web Services Using SRMC 309

For this reason, the deployment of the latter kind of components will be depen-
dent upon the concurrency levels of the sequential components which they are
supporting.

One such example is the sequential component in Listing 1.15. To determine its
concurrency level, we first observe that its initial local state PriceShipping1 en-
ables an action (i.e., dos) which must be executed in cooperation with the compo-
nent DecideOnShipper, a local state of Listing 1.11. Let NF S be the concurrency
level of ForkShipper and NPS be the concurrency level of PriceShipping1. If
NF S > NPS a reachable state of the system may have NF S components in state
DecideOnShipper and NPS components in state PriceShipping1. Therefore,
NF S − NPS DecideOnShipper components cannot engage in the dos action.
This introduces a form of blocking in the SRMC model which does not corre-
spond to the real behaviour of the system, because dos is in fact an independent
activity. Thus, it must hold that NPS = NF S in order to avoid this undesired de-
lay. On the other hand, the local state PriceShipping2 enables a shared action
which is carried out in cooperation with CompletePriceCalculation, a local
state of the component in Listing 1.10. If the concurrency level of this compo-
nent, denoted by NPC , is lower than NPS , then the activity cpc will be subject
to delay. Conversely, if the concurrency level is higher, then some of the flows of
ForkPriceCalculation will be under-utilised because there are not be enough
requests to be served. In either case, the behaviour reflects that of the real sys-
tem, thus the concurrency level of ForkPriceCalculation does not affect the
calculation of the concurrency level of the auxiliary component PriceShipping1.

It is worthwhile pointing out that setting NPS > NF S does not alter the
performance results of the system. To understand this, observe that with such a
setting there are more auxiliary components than the number of flows which can
enable the dos action. The NPS − NF S surplus components will be idle across
the entire state space of the system. This is confirmed by the result that the
state spaces of the models with NPS ≥ NF S are lumpably equivalent [1,6], which
guarantees the equivalence of the derived performance measures.

Listing 1.20. Revised system equation of the PEPA model with concurrency levels

Sys = (ReceivePurchaseOrder[N_RP] <rpo> Fork1[N_RP])

<fork,ip>

(

(ForkPriceCalculation[N_PC] <cpc> PriceShipping1[N_FS])

<fork,dos,ip> ForkShipper[N_FS]

)

<fork,al,ip>

(

ForkProductionScheduling[N_PS]

<cps>

ShippingProduction1[N_FS]

)

310 A. Clark, S. Gilmore, and M. Tribastone

The concurrency levels of ShippingProduction1 and Fork1 can be
determined with similar arguments. The revised system equation is shown in
Listing 1.20.

3.2 Uncertainty about Parameters

The model described in the previous section may be subjected to quantitative
analysis to extract performance indices. By interpreting it against the opera-
tional semantics of PEPA, a CTMC is built and transient as well as steady-state
measures can be computed. However, one single analysis run often provides only
a partial understanding of the system under study. More often, one is interested
in the sensitivity of the performance to the variation of some of the system’s
parameters. For instance, one would like to ask questions such as: How is the
system’s performance affected by an increase in concurrency levels or an increase
in the rate of execution of an action?

These questions arise at all stages of a modelling study. For example, per-
formance analysis serves as a useful predictive tool which helps size the initial
capacity of the system; further along the system’s lifetime, it constitutes valuable
support for planning system upgrades. With PEPA, answering these questions
requires building a family of similar models, which maintain the same syntactic
structure expect for one of more parameters which change in value. For instance,
sensitivity analysis of the concurrency levels requires the construction of differ-
ent models as in Listing 1.20 with distinct values for the parameters N_RP, N_PC,
N_FS, or N_PS. If carried out manually, this process would be tedious and er-
ror prone. Fortunately, software tools for PEPA automate this form of analysis,
requiring minimal user intervention [7,8].

If, on the one hand, this process is transparent to language, on the other
hand the information about parameter uncertainty must be stored separately
from the model. SRMC supports the declaration of array of parameters, which
takes the form param = { 1.0, 2.0, ... }. This gives rise to distinct perfor-
mance models in which the parameter param takes the different values in the
set. (The syntax is not limited to numerical literals, but arbitrary expressions
are also allowed.) This construct can be used for rate as well as concurrency
level uncertainty. In the latter case, the elements of the set are restricted to be
positive integers and expressions thereof.

Figure 7 shows the results of two sensitivity analysis studies conducted on the
model in Listing 1.20. In both cases the performance metric of interest is the
system’s steady-state throughput, indicated by the throughput of the action ip.
Figure 7(a) studies its sensitivity with respect to the rate r_dos, specified in the
SRMC model with the definition

r_dos = {0.1,0.2,...,5.0}.

These results enable the insight that the system benefits from increases in the
rate of the dos activity, albeit the relative gain diminishes significantly in the
region [2.0, 5.0]. For instance, doubling the rate from 0.5 to 1.0 gives a system’s
throughput improvement of about 30% while doubling the rate again from 2.0 to

Quantitative Analysis of Web Services Using SRMC 311

0 1 2 3 4 5
0

0.5

1

1.5

2

r
dos

T
h
ro

u
g
h
p
u
t

o
f

a
c
ti
o
n
 i
p

(a)

0 2 4 6 8 10
10

15

20

25

N
RP

T
h
ro

u
g
h
p
u
t

o
f

a
c
ti
o
n
 i
p

(b)

Fig. 7. Examples of parameter sweep for the model in Listing 1.20. Sensitivity anal-
yses are conducted with (a) rate r_dos and (b) concurrency level N_RP. In (a),
N_RP = 4 and in (b) r_dos = 5. In both cases the other parameters were set as fol-
lows: N_U = 4,N_PC = 3, N_FS = 3, N_PS = 2, r_think = 1.0; all other rates were set
to 10.0.

4.0 provides only an improvement of about 4%. A similar qualitative behaviour
is shown in Figure 7(b), which studies the sensitivity analysis with respect to
the concurrency level of ReceivePurchaseOrder, by using the definition

N_RP = {1,2,...,10}.

Unlike the former, the latter analysis gives rise to structurally different under-
lying CTMCs because the values of N_RP alter the number of sequential compo-
nents in the model and therefore the state space size.

312 A. Clark, S. Gilmore, and M. Tribastone

3.3 Uncertainty about System Configurations

A further dimension of uncertainty is represented by dynamic binding. This
is particularly interesting in service-oriented architectures, in which different
providers may be functionally equivalent, i.e. they expose the same interface of
the service. In these applications the identity of the services invoked by a client
does not need to be known in advance, rather their binding is usually mediated
by registries [9]. It is therefore a desirable feature to capture this form of dynamic
binding in the SRMC model — although the services expose the same interface,
their performance behaviour may vary significantly.

Listing 1.21. SRMC model for shipping management

r_rpo = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0};

r_think = {1, 2, 3, 4};

r_ip = 10.0; r_fork = 10.0; r_ipc = 10.0;

r_cpc = 10.0; r_dos = 5.0; r_al = 10.0;

r_ips = 10.0; r_cps = 10.0;

ForkShipper = SM::ForkShipper;

SM ::= { SM_A, SM_B, SM_C };

SM_A::{

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).ArrangeLogistics;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

};

SM_B::{

r_delay = 5;

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).Delay;

Delay = (delay, r_delay).ArrangeLogistics;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

};

SM_C::{

r_fail = 5;

r_repair = {1, 2};

ForkShipper = (fork, _).DecideOnShipper;

DecideOnShipper = (dos, r_dos).ArrangeLogistics

+ (failure, r_fail).Failure;

Failure = (repair, r_repair).DecideOnShipper;

ArrangeLogistics = (al, r_al).JoinShipper;

JoinShipper = (ip, _).ForkShipper;

};

Quantitative Analysis of Web Services Using SRMC 313

Our language incorporates dynamic binding by means of namespace defini-
tions. A namespace is used to isolate the definitions that are needed to fully
define an individual component of the system under study. Functional equiva-
lence among namespaces is then imposed through an array operator syntactically
and semantically similar to the rate array operator introduced in Section 3.2.
These features are now introduced by means of our running example. Let us
suppose that the shipping management activities are outsourced and that they
are accessed via web-service invocations. An interesting matter is to determine
the impact on the overall orchestration of the shipping management services
which can be bound. In order to answer this question, let us suppose that the dy-
namic behaviour of three of these services is known to the performance modeller.
Each implementation of this service is assigned a namespace, SM_A, SM_B, and
SM_C. The model of shipping management in Listing 1.11 is revised as shown in
Listing 1.21. The namespace array SM indicates the set of possible bindings. Each
element is a process definition within a namespace, accessed using the format
<namespace>::<process>. Process and rate definitions are uniquely identified
by their name as well as the namespace in which they are defined, thus the
same definition can appear within distinct namespaces. This property has been
exploited in our case study in order to stress the functional uniformity across
the possible bindings. The implementation SM_A encapsulates the original defi-
nition of the process; SM_B interposes some external delay between the actions
dos and al; finally, SM_C models a less reliable service which may fail. After
failure occurs, some delay is introduced to reset the server to a fully working
state. Additionally, SM_C has a rate array which indicates uncertainty about the
rate of failure r_f.

This SRMC model gives rise to four underlying PEPA models, organised in a
tree as shown in Figure 8. Each node represents a binding to a specific namespace
or the selection of a rate of an array. Here, the nodes of the first level denote the
binding to the three implementations of the shipping management component.
The leaves indicate the parameter sweep across the rate of failure r_f. This

Fig. 8. The four PEPA models which underlie the SRMC description in Listing 1.21,
represented as leaves of a tree. The nodes along the path from the root indicate the
bindings to namespaces and the choice of rates for each PEPA model. In parentheses
is the steady-state system throughput for each configuration.

314 A. Clark, S. Gilmore, and M. Tribastone

analysis is not performed with SM_A and SM_B because these namespaces do
not define a rate array. Each leaf is also labelled with the steady-state system
throughput (action ip, in parentheses). The results show that the extra delay
in SM_B has a negative effect on the performance. Conversely, the throughput
does not deteriorate significantly when the rate of failure is relatively small, i.e.
r_f = {1,10}. On the other hand, the perceived performance for r_f = 100 is
comparable to that of the system which binds to SM_B.

4 Deriving Experiments

In this section we explain precisely how all individual experiments are derived
from a single SRMC model file. We will continue to use our running example
for illustration. The aim is to derive a number of separate PEPA models corre-
sponding to the number of distinct system configurations. We then analyse each
PEPA model once for each configuration of the appropriate variable rates.

4.1 Namespace Scoping

The first part of our algorithm is to scope the identifiers used within namespaces.
This is a straightforward translation which makes sure that each defined identi-
fier is prefixed with the list of namespaces in which it occurs. There may be more
than one if it occurs within a nested namespace. Additionally each reference to
an identifier must be similarly prefixed in the same way as the definition was
scoped. Shown below is the scoping as applied to the SM_B namespace:

Listing 1.22. Scoped SM_B

SM_B::{

SM_B::r_delay = 5;

SM_B::ForkShipper = (fork, _).SM_B::DecideOnShipper;

SM_B::DecideOnShipper = (dos, r_dos).SM_B::Delay;

SM_B::Delay = (delay, SM_B::r_delay).SM_B::ArrangeLogistics;

SM_B::ArrangeLogistics = (al, SM_B::r_al).SM_B::JoinShipper;

SM_B::JoinShipper = (ip, _).SM_B::ForkShipper;

};

Notice that action names are not scoped, this allows cooperation in the final
system equation between components defined in separate namespaces. The glob-
ally defined rate r_dos is also not prefixed with any namespace since this rate
is defined at the top level.

Quantitative Analysis of Web Services Using SRMC 315

4.2 Namespace Selections

The key component in distinguishing system configurations in SRMC models is
the namespace selection definitions. In our example this is the line:

SM ::= { SM_A, SM_B, SM_C };

We do a depth first search of all namespace selections because some namespace
selections will entail further namespace choices. This occurs when we have a
namespace selection nested within a namespace which is itself a choice. In our
example this does not occur and in fact we have only one choice leading to three
system configurations. Once a namespace has been chosen there are two tasks
left to do; the first is to promote the definitions made within the given namespace
into the top level and remove the now empty namespace definition. The second
task is to substitute references to the selection definition (in this case SM) for
references to the selected namespace. In this example we have been quite frugal
in our use of the abstract namespace SM, so there is only one line to change other
than the promoted definitions, namely the line:

ForkShipper = SM::ForkShipper;

Because we made this definition and then used the name ForkShipper the
system equation is the same for all three models. However in general the system
equation is modified according to the namespace selections. So that references to
SM::ForkShipper and SM::DecideOnShipperwould be replaced with references
to SM_A::ForkShipper and SM_A::DecideOnShipper and respectively so for the
other definitions and the other derived models.

The completion of these two tasks results in what is an almost valid PEPA
model for each possible configuration. The remaining non-valid PEPA definitions
are those rate definitions with uncertainty; these are removed in the next section.
The (almost valid) PEPA model given in Listing 1.23 corresponds to choosing
SM_A and the Listings 1.24 and 1.25 show the differences between that model
and the derived instances resulting from choosing SM_B and SM_C respectively.

Listing 1.23. Scoped PEPA model example

r_rpo = {0.5, 1.0, 1.5, 2.0, 2.5, 3.0};

r_think = {1, 2, 3, 4};

r_ip = 10.0; r_fork = 10.0; r_ipc = 10.0;

r_cpc = 10.0; r_dos = 5.0; r_al = 10.0;

r_ips = 10.0; r_cps = 10.0;

316 A. Clark, S. Gilmore, and M. Tribastone

ReceivePurchaseOrder = (rpo, r_rpo).InvoiceProcessing;

InvoiceProcessing = (ip, r_ip).ReceivePurchaseOrder;

Fork1 = (rpo, _).Fork2;

Fork2 = (fork, r_fork).Fork1;

ForkPriceCalculation = (fork, _).InitiatePriceCalculation;

InitiatePriceCalculation = (ipc, r_ipc).CompletePriceCalculation;

CompletePriceCalculation = (cpc, r_cpc).JoinPriceCalculation;

JoinPriceCalculation = (ip, _).ForkPriceCalculation;

PriceShipping1 = (dos, _).PriceShipping2;

PriceShipping2 = (cpc, _).PriceShipping1;

ForkShipper = SM_A::ForkShipper;

SM_A::ForkShipper = (fork, _).SM_A::DecideOnShipper;

SM_A::DecideOnShipper = (dos, r_dos).SM_A::ArrangeLogistics;

SM_A::ArrangeLogistics = (al, r_al).SM_A::JoinShipper;

SM_A::JoinShipper = (ip, _).SM_A::ForkShipper;

SM_A::Deciding = [SM_A::DecideOnShipper];

ShippingProduction1 = (al, _).ShippingProduction2;

ShippingProduction2 = (cpc, _).ShippingProduction1;

ForkProductionScheduling = (fork, _).InitiateScheduling;

InitiateScheduling = (ips, r_ips).CompleteProduction;

CompleteProduction = (cps, r_cps).JoinProductionScheduling;

JoinProductionScheduling = (ip, _).ForkProductionScheduling;

User = (think, r_think).Execute;

Execute = (rpo, _).Wait;

Wait = (ip, _) .User;

Waiting = [Wait];

n_u = {7000, 8000, 9000};

n_rp = 800;

n_pc = {500, 600, 700};

n_fs = {500, 600, 700};

n_ps = 400;

User[n_u] <rpo, ip>

((ReceivePurchaseOrder[n_rp] <rpo> Fork1[n_rp])

<ip,fork>

((ForkPriceCalculation[n_pc] <cpc> PriceShipping1[n_fs])

<dos,fork,ip>

ForkShipper[n_fs]

)

Quantitative Analysis of Web Services Using SRMC 317

<fork,al,ip>

(ForkProductionScheduling[n_ps] <cps>

ShippingProduction1[n_fs]

)

)

Listing 1.24. Scoped PEPA model example

// Same as in the other model

ForkShipper = SM_B::ForkShipper;

SM_B::r_delay = 20;

SM_B::ForkShipper = (fork, _).SM_B::DecideOnShipper;

SM_B::DecideOnShipper = (dos, r_dos).SM_B::Delay;

SM_B::Delay = (delay, SM_B::r_delay).SM_B::ArrangeLogistics;

SM_B::ArrangeLogistics = (al, SM_B::r_al).SM_B::JoinShipper;

SM_B::JoinShipper = (ip, _).SM_B::ForkShipper;

SM_B::Deciding = [SM_B::DecideOnShipper];

// The rest is also the same including the system equation

Listing 1.25. Scoped PEPA model example

// Same as in the other model

ForkShipper = SM_C::ForkShipper;

SM_C::r_fail = 5;

SM_C::r_repair = {1, 2};

SM_C::ForkShipper = (fork, _).SM_C::DecideOnShipper;

SM_C::DecideOnShipper = (dos, r_dos).SM_C::ArrangeLogistics

+ (failure, SM_C::r_fail).SM_C::Failure;

SM_C::Failure = (repair, SM_C::r_repair).SM_C::DecideOnShipper;

SM_C::ArrangeLogistics = (al, r_al).SM_C::JoinShipper;

SM_C::JoinShipper = (ip, _).SM_C::ForkShipper;

SM_C::Deciding = [SM_C::DecideOnShipper + SM_C::Failure];

// The rest is also the same including the system equation

4.3 Rate Parameter Experiments

The rate parameter selections are removed simply by creating a standard PEPA
rate specification using the first of the possible selections for the rate. This
gives us three PEPA models which are written out to three files: SM_A.pepa
and SM_B.pepa and SM_C.pepa. It remains only to perform sensitivity analysis

318 A. Clark, S. Gilmore, and M. Tribastone

over these PEPA models. We create an experiment for each which ranges over
all possible combinations of the rate selections, we use these to override the
definitions given in the standard PEPA model using substitution. The first two
PEPA models corresponding to the choices SM_A and SM_B use only globally
defined rate choices while the choice of SM_C uses a rate choice which need not
be ranged over for the other models. So the number of experiments will be larger
for the configuration in which SM_C is chosen. Where the ... stand for the rest
of the arguments given to compute the specified measure, the experimentation
for the first configuration begins with:

ipc --rate r_po=1,r_think=1,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=2,r_think=1,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=1,r_think=2,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=2,r_think=2,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=1,r_think=3,n_u=7000,n_pc=500,n_pc=500 ...

ipc --rate r_po=2,r_think=3,n_u=7000,n_pc=500,n_pc=500 ...

...

In this way we range over all possible rate configurations appropriate for the SM_A
system configuration. We are not ranging over the rate SM_C::r_repair because
this rate is not used in the first (or second) configuration. The experiment for
the second configuration looks much the same, for the third we must range over
the extra rate SM_C::r_repair and our experiment looks like:

ipc --rate r_po=1,r_think=1,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=2,r_think=1,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=1,r_think=2,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=2,r_think=2,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=1,r_think=3,n_u=7000,n_pc=500,n_pc=500,r_repair=1

ipc --rate r_po=2,r_think=3,n_u=7000,n_pc=500,n_pc=500,r_repair=1

...

The number of experiments produced for each of the derived PEPA models is
equal to the product of the lengths of all the appropriate rate selections. For
the SM_A PEPA model this is 6 × 4 × 3 × 3 × 3 = 648 and the same is true
for the second (SM_B) configuration. For the SM_C configuration it is this number
multiplied by the extra uncertainty of the rate r_repair which is 2×648 = 1296
adding these all together we get the total number of experiments to be 2592.

5 Query Specification

When performing analysis over a SRMC model we generate many — perhaps
several thousand — PEPA model instances which must all be analysed sepa-
rately. Clearly we do not wish to analyse each of these PEPA model instances

Quantitative Analysis of Web Services Using SRMC 319

by hand but automatically. We therefore require a query specification technique
that is portable across many similar models. Our query specification language
is that of eXtended Stochastic Probes [10]. We enhance this by allowing virtual

components.
When specifying a measurement we are often concerned with specifying a

set or sets of states. In the Markovian world these states are the states of the
CTMC which underlies the PEPA model in question. Even when analysing a
single PEPA model one does not wish to specify the states of the Markov chain
directly since these are automatically derived from the PEPA model. We wish
to specify such states compositionally just as we have compositionally described
the model. One method of doing this is with a state specification where the full
state space of the model is filtered with respect to the population sizes of the
sequential states of the individual components. Figure 9 reports the grammar of
state specifications.

expr := Process population
| i n t constant
| expr relop expr comparison
| expr binop expr arithmetic

relop := = | �= | > | <
| ≥ | ≤ relational operators

binop := + | − | × | ÷ binary operators
pred := ¬pred not

| true | false boolean
| if pred

then pred

else pred conditional
| pred && pred disjunction
| pred ‖ pred conjunction
| expr expression

Fig. 9. The full grammar of the state specifications

State specifications can work well for measurements of steady-state condition
probabilities but are not so appropriate for passage-time measurements. This is
because for passage-time analysis we are concerned with events which happen
and the states which result from those events. This means that slight changes
to the model can affect the passage-time specification greatly because there are
more or fewer states along the passage. In SRMC we mitigate this to some extent
with our use of virtual components. A virtual component is one which has no
representation within the CTMC but takes its population value as a function of
the populations of other related components. For example using the following
definition it is possible to define a component whose population is a measure of
the number of components which are in either the Broken state or the Offline

state:

320 A. Clark, S. Gilmore, and M. Tribastone

Listing 1.26. Virtual Component for an unavailable service

Unavailable = [Broken + Offline] ;

When we wish to measure the states of a component that correspond to
some abstract state, such as being unavailable or being within a passage to be
measured, we can use a virtual component to ensure that the query specification
may be the same across several configurations. When modelling with a single
PEPA model this can be useful in that the states along the passage are defined
in the same place as the behaviour of the component(s) involved in the passage
— such as a user component which is in an abstract state of Waiting in order to
analyse reponse-time. This is especially useful in SRMC when the definitions for
a service component can change based on the system configuration in use for a
specific derived PEPA model. In our running example we use virtual components
to specify when the shipping component is in a state of deciding on a shipper.
For configurations SM_A and SM_B this is simply one local state. For configuration
SM_C though the shipping component may be in the DecideOnShipper state or
the Failure state in which it is still in the (delayed) process of deciding on the
shipper. So we make the virtual component with:

Listing 1.27. Virtual Component for deciding

Deciding = [DecideOnShipper + Failure];

For each of the configurations SM_A and SM_B this is simply:

Listing 1.28. Virtual Component for deciding

Deciding = [DecideOnShipper];

Now when we make the selection we can simply refer to SM::Deciding in this
way we have a measure of the number of components in the abstract state of
‘Deciding’ which is portable across all of the derived PEPA models.

Activity probes can allow a more intuitive query specification when the states
we are interested in are the results of a sequence of event observations. This
is the common case when the query is a passage-time query. In x s p the mod-
eller specifies a series of activities to be observed and the compiler automatically
translates this into a PEPA sequential component which can then be queried as
a filter on the entire state space of the model. For passage-time measurements
the user can label activities of the probe as either start activities which begin
the passage or stop activities which end the passage. The probe states which are

Quantitative Analysis of Web Services Using SRMC 321

source, target or passage states are then mechanically derived and given to the
analyser. The user therefore need not specify the states they are interested in
at all, only the events/observations. A very common passage-time query which
measures the response-time is given by the probe specification:

Listing 1.29. Response-time probe specification

request:start, response:stop

In our example the request is started with the completion of a think activity
and is terminated with the completion of a ip activity. So the equivalent probe
for our example model is:

Listing 1.30. Response-time probe specification

think:start, ip:stop

However often we are concerned with the response-time as observed by a
single client, rather than that observed by the system above. The above probe
will measure the passage between the occurrence of a request activity performed
by any component in the model (usually a synchronisation between one client
and the service being modelled) and an occurrence of a response activity again
performed by any component. To observe only those request and response

activities which originate from a single ‘tagged’ client we can attach the probe
to a single Client component rather than the whole model. The following probe
using the double colon syntax achieves this for our example:

Listing 1.31. Response-time probe specification

User::(think:start, ip:stop)

Sometimes events are not powerful enough to express the queries that we
are interested in. This is often the case when we are interested in the response-
time when the service is in a particular state. For example we may have made
one passage-time measurement already using the above probe and found that
the general response-time is adequate, but that we wish to know more about
how this general response-time profile is made up. One possibility is to split up
the query into several analysing response-times when the service is in different
states. The following two probes analyse the response-time for all requests that
are initially made when the service is entirely available or (at least) partially
unavailable.

322 A. Clark, S. Gilmore, and M. Tribastone

Listing 1.32. Response-time probe specification

User::({Unavailable == 0}think:start, ip:stop)

User::({Unavailable > 0}think:start, ip:stop)

The guards on the first activity observation (of the think activity) are state
specifications. Note that these may refer to virtual components as well as to
regular component populations. Guards need not always be used to make a dis-
tinction as to when a passage is begun, they may also be used to terminate the
passage. The following two probes analyse the time it takes for a system to be-
come fully repaired after the initial breakdown of one of its components/servers.

Listing 1.33. Response-time probe specification

break:start, {Broken == 1}repair:stop

break:start, {Broken == 0}:stop

Here we do not assume that there is a single server which may be broken or not,
but several servers each of which may be broken independently. So the probe
must begin the passage on observation of the first breakage and only terminate
the passage when a repair activity fixes the only broken server (other servers
may have broken since the first one did). The first probe achieves this by only
observing a repair activity if there is exactly one server in the Broken state.
However this may still not be robust enough since we may change the model such
that a repair does not necessarily fix the broken server, for example there may

Pdef := name :: R locally attached probe
| R globally attached probe

R := activity observe action
| R1 , R 2 sequence
| R 1 | R 2 choice
| R :label labelled
| R/activity resetting
| (R) bracketed

| R n iterate
| R{m , n } iterate
| R

+ one or more
| R

∗ zero or more

| R
? zero or one

R := . . . |{pred}R guarded

Fig. 10. The full grammar of the eXtended Stochastic Probes query specification
language

Quantitative Analysis of Web Services Using SRMC 323

be more than one thing broken within the server. The second probe by contrast
has the guard placed on the :stop label itself. This means that the probe will
consider itself to have terminated the passage precisely when we first move into
a state in which there are no servers in the Broken state. Figure 10 provides the
full grammar for the xsp language.

6 Markovian Modelling with Many Models

In the Markovian world in which we generate a CTMC from a PEPA model
we suffer from the well-known state-space explosion problem. Small increases in
the size of the PEPA model or the population size of a component or compo-
nents within the model can cause the number of distinct states of the generated
CTMC to increase dramatically. We mitigate this to some extent with our use
of aggregation [6] but this can provide only so much relief — this is described
in [11]. When the model state space becomes large we cannot simply allow more
time for the numerical solver because at some point the state space is simply
too large to even generate or hold in memory. From our single SRMC model
we generate a large number of PEPA models each of which can be solved inde-
pendently. Because we do not model uncertainty by increasing the complexity
of a single large PEPA model then provided each derived PEPA model is not
itself too large we avoid state space explosion. In other words we can solve many
small models better than we can solve one very large model. Indeed each of the
generated PEPA models may be solved in parallel on many machines using a
grid or cluster computing environment. The task of separately solving each of
these models falls into the class of problems which are known in the parallel
computing community as “embarrassingly parallelisable”. That is to say, they
are essentially a large number of independent processes without synchronisa-
tion points and therefore they deliver impressive speedups when executed on a
compute cluster.

Even with this the model sizes which can be solved using the CTMC tech-
nology is still low. Although in our example model presented so far we have
several thousand users and several hundred server processes. Unfortunately this
would result in an unmanageably large CTMC with a state-space size described
in astronomical terms. Given this, instead of analysing the whole system we are
obliged to analyse a portion of it, such as the performance of one set of server
processes. To this end we modified our SRMC model to have one for each kind of
server process — this means we set the values NRP , NPC , NFS and NPS all to
one. We are therefore able to reduce the number of clients since some clients will
be served by other server processes. In this example we ranged over the number
of users NU with the SRMC definition:

Listing 1.34. Number of users specification

N_U = { 2, 3, 4, 5, 6};

324 A. Clark, S. Gilmore, and M. Tribastone

This also meant that we are not ranging over the values NPC and NFS and
hence there were not as many experiments to run. We ran 750 experiments each
of which took between 30 seconds and one 1 minute to complete on an ordinary
desktop computer.

Prior to solving each of the models we must specify some query with which
to analyse each model. This is because some queries require us to automatically
add components to the model in order to distinguish states. For our model of
the web service we are interested in the response-time as observed by a single
user. Often we are interested in average response-time but compiling the PEPA
models to CTMCs allows a finer grained analysis known as passage-time quantile
analysis [12,13]. This allows the prediction of not just the average response-time
but the response-time profile, such that we know the probability of receiving a
response at or within any given time t after the request was made. This allows
us to answer such service-level agreements as: “90 percent of all requests will be
serviced within 10 seconds” something which is not possible to answer with only
the average response-time. Having specified this as our performance query once
for the SRMC model, this is then translated into the equivalent query for each of
the generated PEPA models. Thus, for each of the generated PEPA models we
calculate a cumulative distribution function which plots the time t for a specified
range (in this case 0 to 10) against the probability that a specific user observes
the ip event t time units after performing a think action.

Having calculated this function for each of the generated PEPA models we now
have a database mapping process instantions and rate parameters to response-
time profiles. We can extract information from this database as we wish. The
graph on the left of Figure 11 shows for one specific set of process instantiations
(or system configuration) the response-time profile as we vary the number of
users. All the other rates are held constant — by this we mean that we have
selected results from runs which have the same parameters other than the num-
ber of users. This graph indicates that the number of users has a quite dramatic
effect on the response-time of the system, where there is a low number of users
the probability of passage completion rises very quickly with time. As the num-
ber of users is increased the rise of the probability of completion against time
is more languid. The graph on the right hand side of the same figure does the
same kind of analysis except here we have kept constant the number of users and
the parameter that we are varying — whereby again ‘varying’ means selecting
the already computed results which correspond to a varying — rate of rpo the
rate at which the service can receive orders. From this graph we learn that at
least for the parameter range chosen the rate of rpo does not drastically affect
the response-time as observed by a single user. This is a perhaps surprising re-
sult because the activity performed at this rate is included within the analysed
passage.

Figure 12 shows a similar kind of surface plot except in these graphs we are
holding only the system configuration as constant and ranging over the whole
rate configuration space for each derived PEPA model. What you see is the
depths of probabilities at each time for the given system configuration. Where

Quantitative Analysis of Web Services Using SRMC 325

 2 2.5 3 3.5 4 4.5 5 5.5 6 0
 2

 4
 6

 8
 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

CDF surface plot

Users

Time

Pr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 1 2 3 4 5 6 7 8 9 10 0
 2

 4
 6

 8
 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

CDF surface plot

rpo

Time

Pr

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Fig. 11. A surface plot showing how the number of users affects the response-time
profile

 0 20 40 60 80 100 120 140 160 0
 2

 4
 6

 8
 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

CDF surface plot

sm_a experiment

Time

Pr

 0 20 40 60 80 100 120 140 160 0
 2

 4
 6

 8
 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

CDF surface plot

sm_b experiment

Time

Pr

 0 50 100 150 200 250 300 350 400 450 0
 2

 4
 6

 8
 10

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Pr

CDF surface plot

sm_c experiment

Time

Pr

Fig. 12. Surface plots depicting the cumulative distribution functions for each system
configuration across all rate configurations

this depth is long there is great variability in the probability of completing the
passage at that time. In other words at that time the rates have a large affect
on the probability of completing the passage. Where the depth is low the rates
do not affect so much the probability of completion, this may be because there
is either always low or always high proability at that time or it may be because
there is some bottleneck in the passage and therefore altering other rates has
less effect.

Figure 13 depicts the candle-stick graphs of completion of the passage for
all the experiments performed automatically from the SRMC model. At each

326 A. Clark, S. Gilmore, and M. Tribastone

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a
b
ili

ty

Time

top = 90 bottom = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a
b

ili
ty

Time

top = 60 bottom = 40

Fig. 13. Candlestick graphs showing the probability of completion ranging over all of
the experiments performed automatically from the SRMC model

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a

b
ili

ty

Instance Number

 time = 8.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a

b
ili

ty

Instance Number

time = 3.0
time = 7.0

Fig. 14. Time graphs showing probability of completion at the given times plotted
against experiment number

time point the top and bottom bars represent the best and worst performing
experiment at that time point. We see from these two graphs that the range of
possibilities is quite high which suggests that the exact system configuration is
important for the modelled system. The thick bar along each line represents a
particular middle-percentage range for that time — in other words we remove
some percentage of best performing experiments and some percentage of the
worst performing experiments. The graph on the left plots between 10 and 90
percent while the graph on the right plots between 40 and 60 percent. In general
this can highlight the possibility that the best or worst performing experiment
is really an outlier and the wide variability of the experiments is not a true
reflection of the variability of the system as a whole. It can also allow the modeller
to zero in on experiments which are causing particularly good or poor results
and determine whether or not the system/model can be improved as a whole.

Another kind of graph which we plot are called simply time graphs. These plot
the probability of completing the passage within the given times against all the
experiment numbers of all the system and rate parameter configurations ranged
over within the SRMC model. On the left of Figure 14 we see only the single time

Quantitative Analysis of Web Services Using SRMC 327

8.0 being plotted. From this graph we can see that with few exceptions there is
at least a sixty percent chance that the passage will be completed and in some
configurations it is close to a certainty. On the graph of the right of the same
figure we plot more than one time, indeed our software ranges over sets of times
although more than two is not very useful when the graphs are in black and white.
From these two times we can see that there are some configurations that are more
likely to complete the passage within time 3.0 than other poorer performing
configurations are at time 7.0. Again this demonstrates wide variability in the
system we are modelling.

7 Large-Scale Modelling with Differential Equations

Our use of SRMC to model uncertainty by splitting up the possible system
configurations has ensured that our model does not inflate to an unmanageable
size through the modelling of uncertainty. However there are many models which
are inherently large, in particular models of web services often hope to have
many thousands of users. Therefore even when modelling one single configuration
the state-space size is simply too massive. Recently it has become possible to
analyse such systems with a fluid-flow approach. In this case the PEPA model
is translated into a system of ordinary differential equations. These are solved
until the model has reached a steady-state in which the population levels of each
kind of component are stationary. This gives us the same kind of steady-state
measurements that are possible with the CTMC analysis. Systems in which the
limit of user components for CTMC analysis was of the order of a few tens can
now be analysed with a more realistic number of users in the many thousands.
Unfortunately the price paid for this extraordinary rise in model size capacity is
a reduced set of analyses which are appropriate. In particular our passage-time
analysis used on the CTMC models of the Section 6 in as of yet unavailable.

In our example model we can instead calculate a measure of the average
response-time by looking at the number of users who are typically in a state
of waiting for their response. For each derived PEPA model instance and rate
configuration we solve the assocated ODEs to provide a time-series analysis.
These plot the population of the specified component types against time. Three
such graphs are shown in Figure 15 one for each of the three system configura-
tions. Note that after some time each of these time-series becomes stable in that
the population of each component type is not changing. This allows us to infer
the steady-state or long-term average poplulation of each component type. By
analysing the long-term population level of the number of waiting users we can
gain a measure of the response-time of the system. The graph in Figure 16 plots
the steady-state population of waiting users for all of the experiments (that is
all system configurations at all rate configurations). We did the same for the
number of deciding shippers (recall from Section 5 that ‘Deciding’ was a virtual
component) and the results are plotted in Figure 17. Overall we ran 2592 ex-
periments each of which took between 1 and 3 seconds to complete. We invoked
these in serial on an ordinary desktop PC and achieved results within 2 hours.

328 A. Clark, S. Gilmore, and M. Tribastone

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10 12 14 16

P
o

p
u
la

ti
o

n

Time

Example time series for the SM_A configuration

Waiting
Deciding

 0

 50

 100

 150

 200

 250

 300

 350

 0 2 4 6 8 10 12 14 16

P
o

p
u
la

ti
o

n

Time

Example time series for the SM_B configuration

Waiting
Deciding

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 2 4 6 8 10 12 14 16

P
o

p
u
la

ti
o

n

Time

Example time series for the SM_C configuration

Waiting
Deciding

Fig. 15. Example time-series showing how the population of a subset of the component
types in specific model instances change with time

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 500 1000 1500 2000 2500

W
a

it
in

g

Experiment Number

Fig. 16. Graphs showing how configurations affect the number of waiting users

For some models the time taken to produce one result is longer, alternatively
we may have a larger uncertainty space resulting in many more experiments. In
these cases it is worth considering farming out the solving of each experiment
(or a set of experiments) using a parallel computing cluster such as Condor as
we have done before [14].

The results show that the population levels tend to concentrate on a very
small number of values, as can be intuitively appreciated by the presence of
horizontal lines in the graphs. An explanation of this behaviour is that there
are dominant elements in the parameter space considered in this case study.
Particularly, the rate r_rpo and the instance of SM have a strong impact on

Quantitative Analysis of Web Services Using SRMC 329

 50

 100

 150

 200

 250

 300

 350

 0 500 1000 1500 2000 2500

D
e

c
id

in
g

Experiment Number

Fig. 17. Graphs showing how configurations affect the number of deciding shippers

Table 1. Results of Figure 16 grouped by SM and r_rpo. The third column shows the
average population level across all the experiments with the same configuration.

SM r_rpo Average Value

SM_A 0.5 66.65
SM_A 1.0 114.25
SM_A 1.5 149.94
SM_A 2.0 177.70
SM_A 2.5 199.90
SM_A 3.0 218.07
SM_B 0.5 61.52
SM_B 1.0 99.97
SM_B 1.5 126.28
SM_B 2.0 145.40
SM_B 2.5 159.85
SM_B 3.0 159.85
SM_C 0.5 123.05
SM_C 1.0 199.95
SM_C 1.5 252.56
SM_C 2.0 290.91
SM_C 2.5 319.69
SM_C 3.0 319.69

the population levels considered. Table 1 gives the results of Figure 16 in an
aggregated form by grouping the experiments according to these two parame-
ters. It shows the average population level across all the experiments with the
same values of r_rpo and SM. Each group of experiments exhibits a negligible
standard deviation, confirming the strong influence of the two parameters on the
performance measure.

The specific instance of SM seems to have a stronger impact in some cases. For
instance, the groups of experiments (SM_B, 2.5) and (SM_B, 3.0) have the same
average population level, suggesting a low sensitivity of result with respect to
the change in the value of the rate r_rpo. The same situation is observer for the
groups (SM_C, 2.5) and (SM_B, 3.0).

330 A. Clark, S. Gilmore, and M. Tribastone

8 Software Tools for SRMC and PEPA

The kinds of analysis presented in this tutorial are supported by a suite of
software tools which can be accessed at http://groups.inf.ed.ac.uk/srmc/.
The tool smc implements the compiler for SRMC, and is based on Pepato and
ipc for the quantitative analysis. This section gives an overview of the tool-chain
and discusses the main features of each individual application. The architecture
of the software for SRMC is depicted in Fig. 18.

Fig. 18. Architecture of the software tools for SRMC

8.1 Pepato

Pepato is a Java Application Programming Interface (API) which provides core
services for the execution of PEPA-related tasks. The API is centred around
an abstract syntax tree representation of a PEPA model which can be created
programmatically or via the parsing of a file with the concrete syntax presented
throughout this tutorial. This in-memory representation gives access to func-
tionality for Markovian analysis and fluid-flow approximation through ODEs.

The modules for Markovian analysis include a state-space explorer, which in-
fers the labelled transition system according to the semantics rules of PEPA. The
generated state space is the input to the steady-state analyser which constructs
the underlying Markov chain and solves it for the equilibrium distribution us-
ing the external library MTJ (Matrix Toolkit for Java) [15]. The solution can be
used for the calculation of a predefined set of performance indices, indicated as
reward structures over the Markov chain: the throughput is calculated for each ac-
tion type, and the mean population level is given for each sequential process in the
system. An alternative form of Markovian analysis is stochastic simulation, which
is offered by Pepato with the implementation of a semantics for PEPA [16] which

http://groups.inf.ed.ac.uk/srmc/

Quantitative Analysis of Web Services Using SRMC 331

maps onto efficient methods such as Gillespie’s direct method [17] and Gibson-
Bruck’s algorithms [18]. This module, which relies on the stochastic simulation
algorithms implemented by the Java library ISBjava [19], permits the tuning of
the most common parameters of a simulation study, including number of replica-
tions, time horizon, confidence intervals, and output variables of interest.

The module for fluid-flow analysis transforms a PEPA model into a system of
first-order ODEs according to the semantics described in [20]. The differential
equation model can be analysed with a range of numerical solvers and the output
provides the evolution of the population levels of the system’s components over
time. The module uses the odetojava package by Patterson and Spiteri [21],
available in the ISBjava library.

Pepato is exposed through a command-line interface for the purpose of com-
munication with the other non-Java elements of the SRMC tool-chain.

8.2 ipc

The ipc tool is written in Haskell and supports the analysis of response-time
quantiles for PEPA [13]. The tool permits the definition of performance mea-
sures (called probes) by using a regular-expression like specification language
called xsp which we described in Section 5. The tool converts a PEPA model
and its measurement specification into an equivalent PEPA model for the nu-
merical analysis. In its latest incarnation, backed by the library ipclib [7], the
solvers are implemented natively. Optionally, the user can invoke the original
tool-chain, which translates the model into the input format accepted by Hy-
dra [22], implemented in C++, which has been designed to cope efficiently with
large-sized models (i.e. up to 107 states).

8.3 smc

The SRMC Model Compiler (smc) is our software support for translating from
the SRMC language into multiple PEPA models. The tool is written in Haskell
alongside the ipc library and hence uses the same parsing for the PEPA specific
portions of the SRMC syntax. The user provides both a SRMC model together
with a query specification. From this, one PEPA model per system configura-
tion is produced. The query specification is robust enough to be used over all
the PEPA models. Note that we do not produce one PEPA model for each ex-
periment. Each experiment consists of a system configuration (or equivalently
a derived PEPA model) and a set of rate parameter instantiations. So our smc

compiler produces for each derived PEPA model a list of rate parameter instan-
tiations relevant to that particular model instance. For each experiment the ipc

tool is invoked with the particular PEPA model, the particular rate parame-
ter instantiations and the globally appropriate query specification. The ipc tool
may then produce the result itself for a Markovian response-time quantile query
or pass the instantiated model onto Pepato to solve using ordinary differential
equations.

332 A. Clark, S. Gilmore, and M. Tribastone

9 Related Work

This tutorial paper is concerned with using process calculi to model Web Services
with a particular focus on quantitative evaluation. As others have before us, we
used a process calculus to express our model. The process calculus SRMC builds
on the simpler process algebra PEPA which has been used for numerous studies
of stochastically-timed systems (for a recent overview of modelling with PEPA
see [23] and [24]).

SRMC can be seen as an extension of PEPA. Formally, it is a superset of the
PEPA language in the sense that every PEPA model is immediately an SRMC
model which gives rise to a singleton set of PEPA model instances. Another
extension of PEPA which had mobility (rather than binding) as its motivation
was the language of PEPA nets [25,26]. PEPA nets are stochastic Petri nets
whose tokens are PEPA terms. We find this language applied to modelling Web
Services in [27].

PEPA nets and the stochastic π-calculus are applied to modelling a Web
Service in [28]. Of note with regard to this paper is that properties of interest to
the PEPA net model are specified using PMLν , an extension of Larsen and Skou’s
Probabilistic Modal Logic (PML). This is a distinctive approach to characterising
sets of states which are of interest in the specification of performance measures.
Modal logics are rarely used for this purpose and temporal logics such as CSL
are more commonly applied here.

However, the style of modelling pursued in the above work is discrete-state
Markovian modelling. With the advent of the theory presented in [2] and the
algorithm presented in [29] it was possible to map process algebra models to
systems of ordinary differential equations for solution. The relationship between
these two kinds of models is explored from a theoretical perspective in [30] and
by example in [31] and [11].

One of the earliest published papers to include a PEPA modelling case study
which is carried out using this evaluation method is [32]. In this paper a large-
scale model of the BitTorrent distribution protocol is developed in PEPA and
solved using the fluid-flow approximation. Previous models of Web Services con-
sidered in this style include the distributed e-learning and course management
system considered in [33] in PEPA and the same system considered in the un-
timed process calculus SOCK and in PEPA in [34].

10 Conclusion and Future Perspectives

In this paper we have addressed an inherent difficulty of modelling studies,
namely that we lack certainty about details of the system which we are mod-
elling. Very often this problem can be due to a lack of knowledge about rate
parameters but it is also possible that we lack certainty about the function of
some components of the system. This can be because we are undertaking a
prospective modelling study of a still-to-be-constructed system. At this point
decisions about the specification have not yet been finalised (and a quantitative
modelling study can guide us in making the right decisions).

Quantitative Analysis of Web Services Using SRMC 333

There are principally two ways to address these kinds of problems within a
model. The first is to try to abstract away from the details of the components
about which we are uncertain but such an approach risks missing too much detail
and then our models will be unconvincing and their results will be inaccurate.
The second is to try to include all of the detail of each possible component,
presenting these as internal choices made by the model. Unfortunately, if we
have included too much detail then we encounter the well-known state-space
explosion problem where we simply do not have enough memory available to
represent the detailed model or not enough time to compute the desired results.
The model might be useful, if it helped us to think clearly, but we will always
feel uncertain about it because we will be unable to test it or make predictions
based on it.

The alternative which we have pursued here is to accept that we have more

than one model to consider and that we need to apply our analysis to a related
family of models. There are two attendant difficulties here. The first is that if
we are to consider a large family of models then we surely want to generate
these models automatically via a repeatable transformation. The smc compiler
performs this function for the SRMC language, generating many PEPA models
for a single input SRMC model. The second difficulty which we encounter here
is that we have a daunting number of model evaluations to perform. For this
approach to be feasible we need an evaluation mechanism which has low uni-
tary cost. Fortunately the cost of solving initial value problems for systems of
differential equations can extremely low.

We have applied these methods here to modelling Web Services and it seems
that they suit this domain well because of its inherent uncertainty about binding
sites and the attendant level of performance which we can expect to receive.
However, we hope that our methods will also be useful beyond the domain of
Web Services and that we may find many possible applications of the SRMC
language in the future.

Acknowledgements. The authors are supported by the EU FET-IST Global Com-
puting 2 project SENSORIA (“Software Engineering for Service-Oriented Over-
lay Computers” (IST-3-016004-IP-09)).

References

1. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press, Cambridge (1996)

2. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, September 2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos
(2005)

3. Clark, A., Gilmore, S., Tribastone, M.: Service-level agreements for service-oriented
computing. In: Proceedings of the 19th International Workshop on Algebraic De-
velopment Techniques (WADT 2008), Pisa, Italy (June 2008) (to appear)

334 A. Clark, S. Gilmore, and M. Tribastone

4. Clark, A., Gilmore, S., Tribastone, M.: Scalable analysis of scalable systems.
In: Proceedings of Fundamental Approaches to Software Engineering (FASE 2009),
New York, England (March 2009) (to appear)

5. OASIS Web Services Business Process Execution Language (WSBPEL) Technical
Commitee. Web Services Business Process Execution Language Version 2.0 (April
2007)

6. Gilmore, S., Hillston, J., Ribaudo, M.: An efficient algorithm for aggregating PEPA
models. IEEE Transactions on Software Engineering 27(5), 449–464 (2001)

7. Clark, A.: The ipclib PEPA Library. In: QEST [35], pp. 55–56
8. Tribastone, M.: The PEPA Plug-in Project. In: QEST [35], pp. 53–54
9. OASIS UDDI Specifications Technical Committee. Universal Description Discovery

and Integration (UDDI),
http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm

10. Clark, A., Gilmore, S.: State-aware performance analysis with eXtended Stochastic
Probes. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS, vol. 5261, pp. 125–140.
Springer, Heidelberg (2008)

11. Clark, A., Duguid, A., Gilmore, S., Tribastone, M.: Partial evaluation of PEPA
models for fluid-flow analysis. In: Thomas, N., Juiz, C. (eds.) EPEW 2008. LNCS,
vol. 5261, pp. 2–16. Springer, Heidelberg (2008)

12. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of
passage-time densities in PEPA models using IPC: The Imperial PEPA Compiler.
In: Kotsis, G. (ed.) Proceedings of the 11th IEEE/ACM International Symposium
on Modeling, Analysis and Simulation of Computer and Telecommunications Sys-
tems, University of Central Florida, October 2003, pp. 344–351. IEEE Computer
Society Press, Los Alamitos (2003)

13. Bradley, J., Dingle, N., Gilmore, S., Knottenbelt, W.: Extracting passage times
from PEPA models with the HYDRA tool: A case study. In: Jarvis, S. (ed.) Pro-
ceedings of the Nineteenth annual UK Performance Engineering Workshop, July
2003, pp. 79–90. University of Warwick (2003)

14. Clark, A., Gilmore, S.: Evaluating quality of service for service level agreements.
In: Brim, L., Leucker, M. (eds.) Proceedings of the 11th International Workshop
on Formal Methods for Industrial Critical Systems, Bonn, Germany, August 2006,
pp. 172–185 (2006)

15. Heimsund, B.-O.: MTJ: Matrix Toolkit for Java, http://ressim.berlios.de/
16. Bradley, J., Gilmore, S.: Stochastic simulation methods applied to a secure elec-

tronic voting model. Electr. Notes Theor. Comput. Sci. 151(3), 5–25 (2006)
17. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journal

of Physical Chemistry 81(25), 2340–2361 (1977)
18. Gibson, M.A., Bruck, J.: Efficient exact stochastic simulation of chemical sys-

tems with many species and many channels. Journal of Physical Chemistry 104,
1876–1889 (2000)

19. CompBio Group, Institute for Systems Biology. ISBJava,
http://magnet.systemsbiology.net/software/ISBJava/

20. Hillston, J.: Fluid flow approximation of PEPA models. In: Proceedings of the Sec-
ond International Conference on the Quantitative Evaluation of Systems, Torino,
Italy, September 2005, pp. 33–43. IEEE Computer Society Press, Los Alamitos
(2005)

21. odeToJava library, http://www.netlib.org/ode/odeToJava.tgz
22. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: HYDRA: HYpergraph-Based Dis-

tributed Response-Time Analyzer. In: Arabnia, H.R., Mun, Y. (eds.) PDPTA,
pp. 215–219. CSREA Press (2003)

http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm
http://ressim.berlios.de/
http://magnet.systemsbiology.net/software/ISBJava/
http://www.netlib.org/ode/odeToJava.tgz

Quantitative Analysis of Web Services Using SRMC 335

23. Hillston, J.: Tuning systems: From composition to performance. The Computer
Journal 48(4), 385–400 (2005); The Needham Lecture paper

24. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th
Annual IEEE Symposium on Logic in Computer Science (LICS 2005), Chicago,
June 2005, pp. 239–248. IEEE Computer Society Press, Los Alamitos (2005)

25. Gilmore, S., Hillston, J., Ribaudo, M., Kloul, L.: PEPA nets: A structured perfor-
mance modelling formalism. Performance Evaluation 54(2), 79–104 (2003)

26. Hillston, J., Ribaudo, M.: Modelling mobility with PEPA nets. In: Aykanat, C.,
Dayar, T., Körpeoğlu, İ. (eds.) ISCIS 2004. LNCS, vol. 3280, pp. 513–522. Springer,
Heidelberg (2004)

27. Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: Software performance modelling
using PEPA nets. In: Proceedings of the Fourth International Workshop on Soft-
ware and Performance, Redwood Shores, California, USA, January 2004, pp. 13–24.
ACM Press, New York (2004)

28. Brodo, L., Degano, P., Gilmore, S., Hillston, J., Priami, C.: Performance eval-
uation for global computation. In: Priami, C. (ed.) GC 2003. LNCS, vol. 2874,
pp. 229–253. Springer, Heidelberg (2003)

29. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process
algebra models of signalling pathways. In: Plotkin, G. (ed.) Proceedings of Com-
putational Methods in Systems Biology (CMSB 2005), Edinburgh, Scotland, April
2005, pp. 204–215 (2005)

30. Geisweiller, N., Hillston, J., Stenico, M.: Relating continuous and discrete PEPA
models of signalling pathways. Theor. Comput. Sci. 404(1-2), 97–111 (2008)

31. Zhao, Y., Thomas, N.: Approximate solution of a PEPA model of a key distribution
centre. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol. 5119,
pp. 44–57. Springer, Heidelberg (2008)

32. Duguid, A.: Coping with the parallelism of BitTorrent: Conversion of PEPA
to ODEs in dealing with state space explosion. In: Asarin, E., Bouyer, P. (eds.)
FORMATS 2006. LNCS, vol. 4202, pp. 156–170. Springer, Heidelberg (2006)

33. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based dis-
tributed e-learning and course management system. In: Bravetti, M., Núñez, M.T.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Hei-
delberg (2006)

34. Bravetti, M., Gilmore, S., Guidi, C., Tribastone, M.: Replicating web services for
scalability. In: Barthe, G., Fournet, C. (eds.) TGC 2007 and FODO 2008. LNCS,
vol. 4912, pp. 204–221. Springer, Heidelberg (2008)

35. Fourth International Conference on the Quantitative Evaluation of Systems (QEST
2007), Edinburgh, Scotland, UK, September 2007. IEEE Computer Society, Los
Alamitos (2007)

A Detailed Results

In this section we depict some of the graphs that we have produced from our
example models which have not been shown in the main text. We include these
here for completeness because it is sometimes the case that one can see the
significance of one graph only in comparison to others.

Figure 19 shows some more of the candle stick graph possibilities which were
not shown in Section 6. Figures 20 and 21 and shows all of the time graphs which
plot probability of completion within the given time against experiment number.

336 A. Clark, S. Gilmore, and M. Tribastone

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a
b
ili

ty

Time

top = 90 bottom = 10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a

b
ili

ty

Time

top = 85 bottom = 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a
b

ili
ty

Time

top = 80 bottom = 20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a

b
ili

ty

Time

top = 75 bottom = 25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a

b
ili

ty

Time

top = 70 bottom = 30

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a
b
ili

ty

Time

top = 65 bottom = 35

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a

b
ili

ty

Time

top = 60 bottom = 40

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

P
ro

b
a
b
ili

ty

Time

top = 55 bottom = 45

Fig. 19. Candlestick graphs showing the probability of completion ranging over all of
the experiments performed automatically from the SRMC model

Quantitative Analysis of Web Services Using SRMC 337

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 0.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 1.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 2.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 3.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 4.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 5.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 6.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 7.0

Fig. 20. Time graphs showing the probability of completion within the given times
ranging over all of the experiments performed automatically from the SRMC model

338 A. Clark, S. Gilmore, and M. Tribastone

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 8.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 9.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

 time = 10.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

time = 3.0
time = 7.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

time = 4.0
time = 9.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

time = 2.0
time = 5.0
time = 8.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

time = 1.0
time = 3.0
time = 5.0
time = 7.0
time = 9.0

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

P
ro

b
a
b
ili

ty

Instance Number

time = 0.0
time = 1.0
time = 2.0
time = 3.0
time = 4.0
time = 5.0
time = 6.0
time = 7.0
time = 8.0
time = 9.0

time = 10.0

Fig. 21. Time graphs showing the probability of completion within the given times
ranging over all of the experiments performed automatically from the SRMC model

Quantitative Analysis of Web Services Using SRMC 339

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 500 1000 1500 2000 2500

W
a
it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0 20 40 60 80 100

W
a
it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 200 220 240 260 280 300

W
a

it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 700 720 740 760 780 800

W
a

it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1000 1020 1040 1060 1080 1100

W
a
it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 1500 1520 1540 1560 1580 1600

W
a
it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 2000 2020 2040 2060 2080 2100

W
a
it
in

g

Experiment Number

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 2400 2420 2440 2460 2480 2500

W
a
it
in

g

Experiment Number

Fig. 22. Selected experiment number interval graphs for the SRMC model ODEs

Author Index

Bravetti, Mario 261

Bruni, Roberto 1

Carbone, Marco 187

Clark, Allan 296

Gilmore, Stephen 296

Honda, Kohei 187

Marconi, Annapaola 89

Mooij, Arjan J. 42

Padovani, Luca 213

Pistore, Marco 89

Stahl, Christian 42

Tribastone, Mirco 296

van der Aalst, Wil M.P. 42

Vasconcelos, Vasco T. 158

Wolf, Karsten 42

Yoshida, Nobuko 187

Zavattaro, Gianluigi 261

	Calculi for Service-Oriented Computing
	Introduction
	What You Will Not Find Here
	Aspects of Interest
	Related Work
	Structure of the Paper

	Setting the Context on Interactive and Orchestrated Systems
	CCS, Labelled Transition Systems and SOS Rules
	Pi-Calculus, Structural Congruence and Reduction Semantics
	A Session Calculus
	Orc

	A Calculus of Sessions and Pipelines
	A CaSPiS Walk-through
	Close-Free Fragment
	Full Calculus
	Other Variants

	Application Examples
	From Lambda-Calculus to CaSPiS
	From Pi-Calculus to CaSPiS
	From Orc to CaSPiS
	From Close-Free CaSPiS to Pi-Calculus

	Conclusion and Future Perspectives
	References

	Service Interaction: Patterns, Formalization, and Analysis
	Introduction
	Service Interaction Patterns
	Workflow Patterns Initiative
	Basic Service Interaction Patterns
	Correlation Patterns
	More Advanced Correlation Patterns

	Specifying Services
	Basic Definitions on Petri Nets
	Open Nets
	Composing Open Nets
	Behavioral Properties

	Exposing Services
	Behavior of Open Nets
	Operating Guidelines

	Replacing and Refining Services
	A Notion of Accordance
	Deciding Accordance
	Refining Services

	Integrating Services Using Adapters
	Adapter Specification
	Elementary Adapter Activities
	Adapter Generation
	Encoding an SEA as an Engine
	Selecting a Controller

	Tool Support
	Translating Services to Open Nets
	Operating Guidelines
	Adapter Generation

	Conclusions
	References

	Synthesis and Composition ofWeb Services
	Introduction
	Composing Web Services
	Logic-Based Approaches
	Rule-Based Approaches
	AI Planning-Based Approaches
	Other Approaches
	Comparison of Existing Approaches

	Automated Composition: Example Scenario
	Formal Model of Web Service Composition
	Modeling Web Services
	WS-BPEL Processes as Service Graphs
	Formal Model of Web Service Orchestration
	Control Flow Requirements
	Data Flow Requirements

	Automated Synthesis of a Web Service Composition
	Planning in Asynchronous Domains
	Automated Synthesis through Planning in Asynchronous Domains
	Service Graphs as STS
	Data Nets as STS
	Generating the Composite Service

	The ASTRO WS-Compose Tool
	{\sf WS-Compose}: A Nominal Execution
	{\sf WS-Synth}: An Overview of the Tool

	The Amazon-MPS Case Study
	The Amazon-MPS Composition Domain
	The Amazon-MPS Composition Requirements
	Generating the e-Bookstore Executable Process

	Concluding Remarks
	References

	Fundamentals of Session Types
	Introduction
	Syntax
	Typing
	Operational Semantics
	Choice
	Recursive Types
	Replication
	Subtyping
	Algorithmic Type Checking
	Notes
	References

	Asynchronous Session Types: Exceptions and Multiparty Interactions
	Introduction
	Notation
	Interactional Exceptions in Session Types
	Preview on Interactional Exceptions
	The π-Calculus with Asynchronous Sessions and Interactional Exceptions
	Session Types with Interactional Exceptions

	Multiparty Asynchronous Session Types
	Preview on Multiparty Interactions
	The π-Calculus with Multiparty Asynchronous Session Types
	Types for Multiparty Sessions

	Discussion
	Interactional Exceptions
	Multiparty Session Types

	References

	Contract-Based Discovery and Adaptation of Web Services
	Introduction
	A Theory of Contracts
	Contracts: Syntax and Semantics
	Alternative Characterization
	Properties of the Strong Subcontract Relation

	Towards a Weaker Subcontract Relation
	Synchronous Orchestrators
	Basic Properties of the Weak Subcontract Relation
	Alternative Characterization of the Weak Subcontract Relation
	Deduction System for the Weak Subcontract Relation
	Interpretations of Synchronous Orchestrators

	Asynchronous Orchestrators
	Buffered Compliance and Subcontract Relations
	Basic Properties of the Weak k-Subcontract Relation
	Alternative Characterization of the Weak k-Subcontract Relation

	Contract Duality with Orchestration
	Contracts for Infinite Behaviors
	Automatic Synthesis of Orchestrators
	Application Example
	Related and Future Work
	References
	A Proofs
	A.1 Proofs of §2
	A.2 Proofs of §3
	A.3 Proofs of §4
	A.4 Proofs of §5
	A.5 Proofs of §7

	Contract-Based Discovery and Composition of Web Services
	Introduction
	Technical Contribution
	Related Work
	Structure of the Paper

	Behavioural Contracts
	Output Persistence

	Service Systems
	Service Discovery
	Subcontract Pre-orders as Correctness Preserving Refinements
	Input-Output Subcontract Relation as the Maximal Subcontract Pre-order
	Subcontract Relation

	Conclusion
	Summary of Results
	Detailed Comparison with Our Previous Work

	References
	A Process Algebraic Representation of Contracts
	B Proof of Proposition 3
	C Proof of Theorem 3

	Quantitative Analysis of Web Services Using SRMC
	Introduction
	Background
	SRMC
	PEPA

	Case Study
	Initial Performance Model
	Uncertainty about Parameters
	Uncertainty about System Configurations

	Deriving Experiments
	Namespace Scoping
	Namespace Selections
	Rate Parameter Experiments

	Query Specification
	Markovian Modelling with Many Models
	Large-Scale Modelling with Differential Equations
	Software Tools for SRMC and PEPA
	{\sf Pepato}
	{\sf ipc}
	{\sf smc}

	Related Work
	Conclusion and Future Perspectives
	References
	A Detailed Results

