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PREFACE

In the real world, systems designed to extract signals from noisy measurements are
plagued by errors evolving from constraints of the sensors employed, to random
disturbances and noise and probably, most common, the lack of precise knowledge
of the underlying physical phenomenology generating the process in the first place!
Methods capable of extracting the desired signal from hostile environments require
approaches that capture all of the a priori information available and incorporate them
into a processing scheme. This approach is typically model-based [1] employing
mathematical representations of the component processes involved. However, the
actual implementation providing the algorithm evolves from the realm of statistical
signal processing using a Bayesian approach based on Bayes’ rule. Statistical signal
processing is focused on the development of processors capable of extracting the
desired information from noisy, uncertain measurement data. This is a text that devel-
ops the “Bayesian approach” to statistical signal processing for a variety of useful
model sets. It features the next generation of processors which have recently been
enabled with the advent of high speed/high throughput computers. The emphasis is
on nonlinear/non-Gaussian problems, but classical techniques are included as special
cases to enable the reader familiar with such methods to draw a parallel between the
approaches. The common ground is the model sets. Here the state—space approach
is emphasized because of its inherent applicability to a wide variety of problems
both linear and nonlinear as well as time invariant and time-varying problems includ-
ing what has become popularly termed “physics-based” models. This text brings
the reader from the classical methods of model-based signal processing including
Kalman filtering for linear, linearized and approximate nonlinear processors as well
as the recently developed unscented or sigma-point filters to the next generation of
processors that will clearly dominate the future of model-based signal processing for
years to come. It presents a unique viewpoint of signal processing from the Bayesian
perspective in contrast to the pure statistical approach found in many textbooks.
Although designed primarily as a graduate textbook, it will prove very useful to the
practicing signal processing professional or scientist, since a wide variety of appli-
cations are included to demonstrate the applicability of the Bayesian approach to
real-world problems. The prerequisites for such a text is a melding of undergraduate

xiii
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work in linear algebra, random processes, linear systems, and digital signal process-
ing as well as a minimal background in model-based signal processing illustrated
in the recent text [1]. It is unique in the sense that few texts cover the breadth of its
topics, whereas, the underlying theme of this text is the Bayesian approach that is uni-
formly developed and followed throughout in the algorithms, examples, applications
and case studies. It is this theme coupled with the hierarchy of physics-based models
developed that contribute to its uniqueness. This text has evolved from three previ-
ous texts, Candy [1-3] coupled with a wealth of practical applications to real-world
Bayesian problems.

The Bayesian approach has existed in statistical physics for a long time and can
be traced back to the 1940s with the evolution of the Manhattan project and the
work of such prominent scientists as Ulam, von Neumann, Metropolis, Fermi, Feyn-
man, and Teller. Here the idea of Monte Carlo (MC) techniques to solve complex
integrals evolved [4]. Since its birth, Monte Carlo related methods have been the
mainstay of many complex statistical computations. Many applications have evolved
from this method in such areas as physics, biology, chemistry, computer science,
economics/finance, material science, statistics and more recently in engineering.
Thus, statisticians have known for a long time about these methods, but their prac-
ticalities have not really evolved as a working tool until the advent of high speed
super computers around the 1980s. In signal processing it is hard to pinpoint the
actual initial starting point but clearly the work of Handschin and Mayne in the late
1960s and early 1970s [5, 6] was the initial evolution of Monte Carlo techniques for
signal processing and control. However from the real-time perspective, it is probably
the development of the sequential Bayesian processor made practical by the work of
Gordon, Salmond and Smith in 1993 [7] enabling the evolution and the explosion of
the Bayesian sequential processor that is currently being researched today. To put this
text in perspective we must discuss the current signal processing texts available on
Bayesian processing. Since its evolution much has been published in the statistical lit-
erature on Bayesian techniques for statistical estimation; however, the earliest texts are
probably those of Harvey [8], Kitigawa and Gersch [9] and West [10] which empha-
size the Bayesian model-based approach incorporating dynamic linear or nonlinear
models into the processing scheme for additive Gaussian noise sources leading to the
classical approximate (Kalman) filtering solutions. These works extend those results
to non-Gaussian problems using Monte Carlo techniques for eventual solution laying
the foundation for works to follow. Statistical MC techniques were also available, but
not as accessible to the signal processor due to statistical jargon and abstractness of
the discussions. Many of these texts have evolved during the 1990s such as Gilks [11],
Robert [12], Tanner [13], Tanizaki [14], with the more up-to-date expositions evolving
in the late 1990s and currently such as Liu [4], Ruanaidh [15], Haykin [16], Doucet
[17], Ristic [18] and Cappe [19]. Also during the last period a sequence of tutorials
and special IEEE issues evolved exposing the MC methods to the signal processing
community such as Godsill [20], Arulampalam [21], Djuric [22], Haykin [23] and
Doucet [24], Candy [25], as well as a wealth of signal processing papers (see refer-
ences for details). Perhaps the most complete textbook from the statistical researcher’s
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perspective is that of Cappe [19]. In this text much of the statistical MC sampling
theory is developed along with all of the detailed mathematics—ideal for an evolving
researcher. But what about the entry level person—the engineer, the experimental-
ist, and the practitioner? This is what is lacking in all of this literature. Questions
like, how do the MC methods relate to the usual approximate Kalman methods? How
does one incorporate models (model-based methods) into a Bayesian processor? How
does one judge performance compared with classical methods? These are all basi-
cally pragmatic questions that the proposed text will answer in a lucid manner through
coupling the theory to real-world examples and applications. Thus, the goal of this
text is to provide a bridge for the practitioners with enough theory and applications to
provide the basic background to comprehend the Bayesian framework and enable the
application of these powerful techniques to real-world problem solving. Next, let us
discuss the structure of the proposed text in more detail to understand its composition
and approach.

We first introduce the basic ideas and motivate the need for such processing while
showing that they clearly represent the next generation of processors. We discuss
potential application areas and motivate the requirement for such a generalization.
That is, we discuss how the simulation-based approach to Bayesian processor design
provides a much needed capability, while well known in the statistical community,
not very well known (until recently) in the signal processing community. After intro-
ducing the basic concepts in Chapter 1, we begin with the basic Bayesian processors
in Chapter 2. We start with the Bayesian “batch” processor and establish its con-
struction by developing the fundamental mathematics required. Next we discuss the
well-known maximum likelihood (ML) and minimum (error) variance (MV) or equiv-
alently minimum mean-squared error (MMSE) processors. We illustrate the similarity
and differences between the schemes. Next we launch into sequential Bayesian pro-
cessing schemes which forms the foundation of the text. By examining the “full”
posterior distribution in both dynamic variables of interest as well as the full data
set, we are able to construct the sequential Bayesian approach and focus on the usual
filtered or filtering distribution case of highest interest demonstrating the fundamen-
tal prediction/update recursions inherent in the sequential Bayesian structure. Once
establishing the general Bayesian sequential processor (BSP) the schemes that follow
are detailed depending on the assumed distribution with a variety of model sets.

We briefly review simulation-based methods starting with sampling methods, pro-
gressing to Monte Carlo approaches leading to the basic iterative methods of sampling
using the Metropolis, Metropolis-Hastings, Gibb’s and slice samplers. Since one of
the major motivations of recursive or sequential Bayesian processing is to provide a
real-time or pseudo real-time processor, we investigate the idea of importance sam-
pling as well as sequential importance sampling techniques leading to the generic
Bayesian sequential importance sampling algorithm. Here we show the solution can
be applied, once the importance sampling distribution is defined.

In order to be useful, Bayesian processing techniques must be specified through
a set of models that represent the underlying phenomenology driving the particular
application. For example, in radar processing we must investigate the propagation
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models, tracking models, geometric models, and so forth. In Chapter 4, we develop the
state—space approach to signal modeling which forms the basis of many applications
such as speech, radar, sonar, acoustics, geophysics, communications, control, etc.
Here we investigate continuous, sampled-data and discrete state-space signals and
systems. We also discuss the underlying systems theory and extend the model-set to
include the stochastic case with noise driving both process and measurements leading
the well-known Gauss-Markov (GM) representation which forms the starting point
for the classical Bayesian processors to follow. We also discuss the equivalence of the
state—space model to a variety of time series (ARMA, AR, MA, etc.) representations
as well as the common engineering model sets (transfer functions, all-pole, all-zero,
pole-zero, etc.). This discussion clearly demonstrates why the state—space model
with its inherent generality is capable of capturing the essence of a broad variety of
signal processing representations. Finally, we extend these ideas to nonlinear state—
space models leading to “approximate” Gauss-Markov representation evolving from
nonlinear, perturbed and linearized systems.

In the next chapter, we develop classical Bayesian processors by first motivating
the Bayesian approach to the state—space where the required conditional distributions
use the embedded state—space representation. Starting with the linear, time-varying,
state—space models, we show that the “optimum” classical Bayesian processor under
multivariate Gaussian assumptions leads to minimum (error) variance (MV') or equiv-
alently minimum mean-squared error (MMSE), which is the much heralded Kalman
filter of control theory [1]. That is, simply substituting the underlying Gauss-Markov
model into the required conditional distributions leads directly to the BSP or Kalman
filter in this case. These results are then extended to the nonlinear state—space repre-
sentation which are linearized using a known reference trajectory through perturbation
theory and Taylor-series expansions. Starting with the linearized or approximate GM
model of Chapter 4, we again calculate the required Bayesian sequential processor
from the conditionals which lead to the “linearized” BSP (or linearized Kalman filter)
algorithm. Once this processor is developed, it is shown that the “extended” Bayesian
processor follows directly by linearizing about the most currently available estimate
rather than the reference trajectory. The extended Bayesian processor (XBP) or equiv-
alently extended Kalman filter (EKF) of nonlinear processing theory evolves quite
naturally from the Bayesian perspective, again following the usual development by
defining the required conditionals, making nonlinear approximations and develop-
ing the posterior distributions under multivariate Gaussian assumptions. Next, we
briefly investigate an iterative version of the XBP processor, again from the Bayesian
perspective which leads directly to the iterative version of the extended Bayesian pro-
cessor (IX-BP) algorithm—an effective tool when nonlinear measurements dominate
the uncertain measurements required.

Chapter 6 focuses on statistical linearization methods leading to the modern
unscented Bayesian processor (UBP) or equivalently sigma-point Bayesian proces-
sor (SPBP). Here we show how statistical linearization techniques can be used to
transform the underlying probability distribution using the sigma-point or unscented
nonlinear transformation technique (linear regression) leading to the unscented
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Bayesian processor or equivalently the unscented Kalman filter (UKF'). Besides devel-
oping the fundamental theory and algorithm, we demonstrate its performance on a
variety of example problems. We also briefly discuss the Gaussian-Hermite quadrature
(G-H) and Gaussian sum (G-S) techniques for completeness.

We reach the heart of the particle filtering methods in Chapter 7, where we discuss
the Bayesian approach to the state—space. Here the ideas of Bayesian and model-
based processors are combined through the development of Bayesian state—space
particle filters. Initially, it is shown how the state—space models of Chapter 4 are
incorporated into the conditional probability distributions required to construct the
sequential Bayesian processors through importance sampling constructs. After inves-
tigating a variety of importance proposal distributions, the basic set of state-space
particle filters (SSPF) are developed and illustrated through a set of example prob-
lems and simulations. The techniques including the Bootstrap, auxiliary, regularized
MCMC and linearized particle filters are developed and investigated when applied to
the set of example problems used to evaluate algorithm performance.

In Chapter § the important joint Bayesian SSPF are investigated by first developing
the joint filter popularly known as the parametrically adaptive processor [1]. Here both
states and static as well as dynamic parameters are developed as solutions to this joint
estimation problem. The performance of these processors are compared to classical
and modern processors through example problems.

In Chapter 9 the hidden Markov models (HMM) are developed for event related
problems (e.g., Poisson point processes). This chapter is important in order to place
purely discrete processes into perspective. HMM evolve for any type of memoryless,
counting processes and become important in financial applications, communications,
biometrics, as well as radiation detection. Here we briefly develop the fundamental
ideas and discuss them in depth to develop a set of techniques used by the practicioner
while applying them to engineering problems of interest.

In the final chapter, we investigate a set of physics-based applications focusing on
the Bayesian approach to solving real-world problems. By progressing through a step-
by-step development of the processors, we see explicitly how to develop and analyze
the performance of such Bayesian processors. We start with a practical laser alignment
problem followed by a broadband estimation problem in ocean acoustics. Next the
solid-state microelectromechanical (MEM) sensor problem for biothreat detection is
investigated followed by a discrete radiation detection problem based on counting
statistics. All of these methods invoke Bayesian techniques to solve the particular
problems of interest enabling the practitioner the opportunity to track “real-world”
Bayesian model-based solutions.

The place of such a text in the signal processing textbook community can best
be explained by tracing the technical ingredients that comprise its contents. It can
be argued that it evolves from the digital signal processing area primarily from those
texts that deal with random or statistical signal processing or possibly more succinctly
“signals contaminated with noise.” The texts by Kay [26-28], Therrien [29], Brown
[30] all provide the basic background information in much more detail than this text,
so there is little overlap at the detailed level with them.



Xviii PREFACE

This text, however, possesses enough theory for the graduate or advanced graduate
student to develop a fundamental basis to go onto more rigorous texts like Jazwinski
[31], Sage [32], Gelb [33], Anderson [34], Maybeck [35], Bozic [36], Kailath [37,
38], and more recently, Mendel [39], Grewel [40], Bar-Shalom [41] and Simon [42].
These texts are rigorous and tend to focus on Kalman filtering techniques ranging
from continuous to discrete with a wealth of detail on all of their variations. The
Bayesian approach discussed in this text certainly includes the state—space models
as one of its model classes (probably the most versatile), but the emphasis is on
various classes of models and how they may be used to solve a wide variety of signal
processing problems. Some of the more recent texts about the same technical level,
but again, with a different focus: are Widrow [43], Orfanidis [44], Sharf [45], Haykin
[46], Hayes [47], Brown [30] and Stoica [48]. Again the focus of these texts is not the
Bayesian approach but more on narrow set of specific models and the development
of a variety of algorithms to estimate these sets. The system identification literature
and texts therein also provide some overlap with this text, but again the approach is
focused on estimating a model from noisy data sets and not really aimed at developing
a Bayesian solution to a particular signal processing problem. The texts in this area
are Ljung [49, 50], Goodwin [51], Norton [52] and Soderstrom [53].

The recent particle filtering texts of Ristic [18] and Cappe [19] are useful as refer-
ences to accompany this text, especially if more details are required on the tracking
problem and the fundamental theorems governing statistical properties and conver-
gence proofs. That is, Ristic’s text provides a introduction that closely follows the
2002 tutorial paper by Arulampalam [21] but provides little of the foundational mate-
rial necessary to comprehend this approach. It focuses primarily on the tracking
problem. Cappe’s text is at a much more detailed technical level and is written for
researcher’s in this area not specifically aimed at the practitioner’s viewpoint. The pro-
posed text combines the foundational material, some theory along with the practice
and application of PF to real-world applications and examples.

The approach we take is to introduce the basic idea of Bayesian signal processing
and show where it fits in terms of signal processing. It is argued that BSP is a natural
way to solve basic processing problems. The more a priori information we know
about data and its evolution, the more information we can incorporate into the pro-
cessor in the form of mathematical models to improve its overall performance. This
is the theme and structure that echoes throughout the text. Current applications (e.g.,
structures, tracking, equalization, biomedical) and simple examples are incorporated
to motivate the signal processor. Examples are discussed to motivate all of the models
and prepare the reader for further developments in subsequent chapters. In each case
the processor along with accompanying simulations are discussed and applied to var-
ious data sets demonstrating the applicability and power of the Bayesian approach.
The proposed text is linked to the MATLAB (signal processing standard software)
software package providing notes at the end of each chapter.

In summary, this Bayesian signal processing text will provide a much needed
“down-to-earth” exposition of modern MC techniques. It is coupled with well-known
signal processing model sets along with examples and problems that can be used
to solve many real-world problems by practicing engineers and scientists along
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with entry level graduate students as well as advanced undergraduates and post-
doctorates requiring a solid introduction to the “next generation” of model-based
signal processing techniques.

JAMES V. CANDY

Danville, California
January 2009
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INTRODUCTION

1.1 INTRODUCTION

In this chapter we motivate the philosophy of Bayesian processing from a probabilistic
perspective. We show the coupling between model-based signal processing (MBSP)
incorporating the a priori knowledge of the underlying processes and the Bayesian
framework for specifying the distribution required to develop the processors. The idea
of the sampling approach evolving from Monte Carlo (MC) and Markov chain Monte
Carlo (MCMC) methods is introduced as a powerful methodology for simulating the
behavior of complex dynamic processes and extracting the embedded information
required. The main idea is to present the proper perspective for the subsequent chapters
and construct a solid foundation for solving signal processing problems.

1.2 BAYESIAN SIGNAL PROCESSING

The development of Bayesian signal processing has evolved in a manner proportional
to the evolution of high performance/high throughput computers. This evolution has
led from theoretically appealing methods to pragmatic implementations capable of
providing reasonable solutions for nonlinear and highly multi-modal (multiple dis-
tribution peaks) problems. In order to fully comprehend the Bayesian perspective,
especially for signal processing applications, we must be able to separate our thinking
and in a sense think more abstractly about probability distributions without worrying
about how these representations can be “applied” to realistic processing problems. Our
motivation is to first present the Bayesian approach from a statistical viewpoint and
then couple it to useful signal processing implementations following the well-known
model-based approach [1, 2]. Here we show that when we constrain the Bayesian

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.



2 INTRODUCTION

distributions in estimation to Markovian representations using primarily state—space
models, we can construct sequential processors capable of “pseudo real-time” oper-
ations that are easily be utilized in many physical applications. Bayes’ rule provides
the foundation of all Bayesian estimation techniques. We show how it can be used to
both theoretically develop processing techniques based on a specific distribution (e.g.,
Poisson, Gaussian, etc.) and then investigate properties of such processors relative to
some of the most well-known approaches discussed throughout texts in the field.

Bayesian signal processing is concerned with the estimation of the underlying
probability distribution of arandom signal in order to perform statistical inferences [3].
These inferences enable the extraction of the signal from noisy uncertain measurement
data. For instance, consider the problem of extracting the random variate, say X, from
the noisy data, Y. The Bayesian approach is to first estimate the underlying conditional
Erobability distribution, Pr(X|Y’), and then perform the associated inferences to extract
X, that is,

P;r(X|Y) =X= arg m)?x PAr(X|Y)

where the caret, X denotes an estimate of X. This concept of estimating the under-
lying distribution and using it to extract a signal estimate provides the foundation of
Bayesian signal processing developed in this text.

Let us investigate this idea in more detail. We start with the previous problem of
trying to estimate the random parameter, X, from noisy data Y =y. Then the associ-
ated conditional distribution Pr(X|Y =) is called the posterior distribution because
the estimate is conditioned “after (post) the measurements” have been acquired. Esti-
mators based on this a posteriori distribution are usually called Bayesian because
they are constructed from Bayes’ rule, since Pr(X|Y) is difficult to obtain directly.
That is,

Pr(Y|X) x Pr(X)
PriX|Y) = ———— (1.1)
Pr(Y)

where Pr(X) is called the prior distribution (before measurement), Pr(Y|X) is called
the likelihood (more likely to be true) and Pr(Y) is called the evidence (scales the
posterior to assure its integral is unity). Bayesian methods view the sought after
parameter as random possessing a “known” a priori distribution. As measurements
are made, the prior is transformed to the posterior distribution function adjusting the
parameter estimates. Thus, the result of increasing the number of measurements is
to improve the a posteriori distribution resulting in a sharper peak closer to the true
parameter as shown in Fig. 1.1.

When the variates of interest are dynamic, then they are functions of time and
therefore, X; — X and Y; — Y. Bayes’ rule for the joint dynamic distribution is

Pr(Y:1X;) x Pr(X;)

Pr(X:|Y;) = Pr(Y) (1.2)
'

In Bayesian theory, the posterior defined by Pr(X;|Y;) is decomposed in terms
of the prior Pr(X;), its likelihood Pr(Y;|X;) and the evidence or normalizing factor,
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Estimated distributions

Prior: Pr (X)

Posterior: Pr (X| Y)

Prob (X)

L

X-(random parameter)

FIGURE 1.1 Bayesian estimation of the random variate X fransforming the prior, Pr(X) to
the posterior, Pr(X|Y) using Bayes’ rule.

Pr(Y;). Bayesian signal processing in this dynamic case follows the identical path,
that is,

Pr(X,|Y,) = X, = arg max Pr(X,|Y,)

So we begin to see the versatility of the Bayesian approach to random signal
processing. Once the posterior distribution is determined, then all statistical inferences
or estimates are made. For instance, suppose we would like to obtain the prediction
distribution. Then it can be obtained as

Pr(X;111Yy) = /PT(XH-HX:, Yy) x Pr(X;|Y;) dX;

and a point estimate might be the conditional mean of this distribution, that is,

E{X1|Y} = /Xt+1Pr(Xt+]|Yt)dXt+]

This relation shows how information that can be estimated from the extracted
distribution is applied in the estimation context by performing statistical inferences.

Again, even though the Bayesian signal processing concept is simple, conceptually,
the real problem to be addressed is that of evaluating the integrals which is very
difficult because they are only analytically tractable for a small class of priors and
likelihood distributions. The large dimensionality of the integrals cause numerical
integration techniques to break down, which leads to the approximations we discuss
subsequently for stabilization. Next let us consider the various approaches taken
to solve the probability distribution estimation problems using non-parametric or
parametric representations. This will eventually lead to the model-based approach [4].
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1.3 SIMULATION-BASED APPROACH TO BAYESIAN PROCESSING

The simulation-based approach to Bayesian processing is founded on Monte Carlo
(MC) methods that are stochastic computational techniques capable of efficiently
simulating highly complex systems. Historically motivated by games of chance and
encouraged by the development of the first electronic computer (ENIAC), the MC
approach was conceived by Ulam (1945), developed by Ulam, Metropolis and von
Neumann (1947) and coined by Metropolis (1949) [5-9]. The method evolved in
the mid-1940s during the Manhattan project by scientists investigating calculations
for atomic weapon designs [10]. It evolved further from such areas as computational
physics, biology, chemistry, mathematics, engineering, materials and finance to name
afew. Monte Carlo methods offer an alternative approach to solving classical numer-
ical integration and optimization problems. Inherently, as the dimensionality of the
problem increases classical methods are prone to failure while MC methods tend to
increase their efficiency by reducing the error—an extremely attractive property. For
example, in the case of classical grid-based numerical integration or optimization
problems as the number of grid points increase along with the number of problem
defining vector components, there is an accompanying exponential increase in com-
putational time [10—15]. The stochastic MC approach of selecting random samples
and averaging over a large number of points actually reduces the computational error
by the Law of Large Numbers irrespective of the problem dimensionality. It utilizes
Markov chain theory as its underlying foundation establishing the concept that through
random sampling the resulting “empirical” distribution converges to the desired pos-
terior called the stationary or invariant distribution of the chain. Markov chain Monte
Carlo (MCMC) techniques are based on sampling from probability distributions based
on a Markov chain, which is a stochastic system governed by a transition probability,
having the desired posterior distribution as its invariant distribution. Under certain
assumptions the chain converges to the desired posterior through proper random
sampling as the number of samples become large—a crucial property (see [10] for
details). Thus, the Monte Carlo approach has evolved over a long time period and
is well understood by scientists and statisticians, but it must evolve even further to
be useful for signal processors to become an effective tool in their problem solving
repertoire.

Perhaps the best way to visualize the MC methods follows directly from the exam-
ple of Frenkel [11]. Suppose that a reasonable estimate of the depth of the Mississippi
river is required. Using numerical quadrature techniques the integrand value is mea-
sured at prespecified grid points. We also note that the grid points may not be in
regions of interest and, in fact, the integrand may vanish as shown in Fig. 1.2. On the
other hand, the surveyor is in the Mississippi and performing a (random) walk within
the river measuring the depth of the river directly. In this sampling approach mea-
surements are accepted as long as the surveyor is in the river and rejected if outside.
Here the “average” depth is simply the sample average of the measurements much
the same as a sampling technique might perform. So we see that a refinement of the
brute force integration approach is to use random points or samples that “most likely”
come from regions of high contribution to the integral rather than from low regions.
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FIGURE 1.2 Monte Carlo sampling compared with numerical grid based integration for
depth of Mississippi estimation.

Modern MC techniques such as in numerical integration seek to select ran-
dom samples in high regions of concentration of the integrand by drawing samples
from a proposed function very similar to the integrand. These methods lead to the
well-known importance sampling approaches (see Chapter 3). Besides numerical inte-
gration problems that are very important in statistical signal processing for extracting
signals/parameters of interest, numerical optimization techniques (e.g., genetic algo-
rithms, simulated annealing, etc.) benefit directly from sampling technology. This
important discovery has evolved ever since and become even more important with
the recent development of high speed/high throughput computers.

Consider the following simple example of estimating the area of a circle to illustrate
the MC approach.

Example 1.1

Define a sample space bounded by a square circumscribing (same center) a circle
of radius . Draw uniform random samples say z := (X, Y) such that z ~U(—r, +7r);
therefore, the number of random samples drawn from within the circle of radius r to
the number of total samples drawn (bounded by the square) defines the probability

No. circle samples

Pr(Z=2z) =
Total No. of (square) samples

From geometry we know that the probability is simply the ratio of the two areas
(circle-to-square), that is,

2

r
PI(Z ZZ) = m =7T/4
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Let r =1, then a simple computer code can be written that:

o Draws the X,Y-coordinates from z ~ U(—1, +1);

« Calculates the range function, p = VXZT+Y2 ;

« Counts the number of samples that are less than or equal to p;
« Estimates the probability, Pr(Z =2).

The area is determined by multiplying the estimated probability by the area of the
square. The resulting sample scatter plot is shown in Fig. 1.3 for a 10,000 sample
realization resulting in 7 & 3.130. As the number of samples increase the estimate of
the area (i) gets better and better demonstrating the MC approach. AAA

In signal processing, we are usually interested in some statistical measure of a
random signal or parameter usually expressed in terms of its moments [16-23]. For
example, suppose we have some signal function, say f(X), with respect to some
underlying probabilistic distribution, Pr(X). Then a typical measure to seek is its
performance “on the average” which is characterized by the expectation

Ex{f(X)} = ff(X)Pr(X)dX (1.3)

Area = 3.130

FIGURE 1.3 Area of a circle of unit radius using a Monte Carlo approach (area is
estimated as 3.130 using 10,000 samples).
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Instead of attempting to use direct numerical integration techniques, stochastic
sampling techniques or Monte Carlo integration is an alternative. As mentioned,
the key idea embedded in the MC approach is to represent the required distribution as
a set of random samples rather than a specific analytic function (e.g., Gaussian). As the
number of samples becomes large, they provide an equivalent (empirical)
representation of the distribution enabling moments to be estimated directly
(inference).

Monte Carlo integration draws samples from the required distribution and then
forms sample averages to approximate the sought after distributions. That is, MC
integration evaluates integrals by drawing samples, {X(7)} from the designated distri-
bution Pr(X). Assuming perfect sampling, this produces the estimated or empirical
distribution given by

N
. 1 .
PrX) ~ Z S(X — X (i)
i=1
which is a probability mass distribution with weights, Ilv and random variable or
sample, X (i). Substituting the empirical distribution into the integral gives

. 1 & L
Ex(f(X)} = / PR X~ 5 33X =7 (1.4)

which follows directly from the sifting property of the delta or impulse function. Here
f is said to be a Monte Carlo estimate of Ex{f(X)}.

As stated previously, scientists (Ulam, von Neumann, Metropolis, Fermi, Teller,
etc. [7]) created statistical sampling-based or equivalently simulation-based methods
for solving problems efficiently (e.g., neutron diffusion or eigenvalues of the
Schrodinger relation). The MC approach to problem solving is a class of stochastic
computations to simulate the dynamics of physical or mathematical systems captur-
ing their inherent uncertainties. The MC method is a powerful means for generating
random samples used in estimating conditional and marginal probability distributions
required for statistical estimation and therefore signal processing. It offers an alter-
native numerical approach to find solutions to mathematical problems that cannot
easily be solved by integral calculus or other numerical methods. As mentioned, the
efficiency of the MC method increases (relative to other approaches) as the problem
dimensionality increases. It is useful for investigating systems with a large number of
degrees of freedom (e.g., energy transport, materials, cells, genetics) especially for
systems with input uncertainty [5].

These concepts have recently evolved to the signal processing area and are of high
interest in nonlinear estimation problems especially in model-based signal processing
applications [16] as discussed next.
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1.4 BAYESIAN MODEL-BASED SIGNAL PROCESSING

The estimation of probability distributions required to implement Bayesian proces-
sors is at the heart of this approach. How are these distributions obtained from data or
simulations? Nonparametric methods of distribution estimation ranging from simple
histogram estimators to sophisticated kernel smoothing techniques rooted in classi-
fication theory [3] offer reasonable approaches when data are available. However,
these approaches usually do not take advantage of prior knowledge about the under-
lying physical phenomenology generating the data. An alternative is to parameterize
the required distributions by prior knowledge of their actual form (e.g., exponential,
Poisson, etc.) and fit their parameters from data using optimization techniques [3].
Perhaps the ideal realization is the parameterization of the evolution dynamics associ-
ated with the physical phenomenology using underlying mathematical representation
of the process combined with the data samples. This idea provides the essence of the
model-based approach to signal processing which (as we shall see) when combined
with the Bayesian processors provide a formidable tool to attack a wide variety of
complex processing problems in a unified manner. An alternative view of the underly-
ing processing problem is to decompose it into a set of steps that capture the strategic
essence of the processing scheme. Inherently, we believe that the more a priori knowl-
edge about the measurement and its underlying phenomenology we can incorporate
into the processor, the better we can expect the processor to perform—as long as the
information that is included is correct! One strategy called the model-based approach
provides the essence of model-based signal processing [1].

Simply stated, the model-based approach is “incorporating mathematical models
of both physical phenomenology and the measurement process (including noise) into
the processor to extract the desired information.” This approach provides a mechanism
to incorporate knowledge of the underlying physics or dynamics in the form of math-
ematical process models along with measurement system models and accompanying
noise as well as model uncertainties directly into the resulting processor. In this way
the model-based processor (MBP) enables the interpretation of results directly in terms
of the problem physics. Itis actually a modeler’s tool enabling the incorporation of any
a priori information about the problem to extract the desired information. The fidelity
of the model incorporated into the processor determines the complexity of the model-
based processor with the ultimate goal of increasing the inherent signal-to-noise ratio
(SNR). These models can range from simple, implicit, non-physical representation
of the measurement data such as the Fourier or wavelet transforms to parametric
black-box models used for data prediction, to lumped mathematical representation
characterized by ordinary differential equations, to distributed representations char-
acterized by partial differential equation models to capture the underlying physics of
the process under investigation. The dominating factor of which model is the most
appropriate is usually determined by how severe the measurements are contaminated
with noise and the underlying uncertainties. If the SNR of the measurements is high,
then simple non-physical techniques can be used to extract the desired information;
however, for low SNR measurements more and more of the physics and instrumen-
tation must be incorporated for the extraction. For instance, consider the example of



1.4 BAYESIAN MODEL-BASED SIGNAL PROCESSING 9

Chemistry

: Noise
dynamics

{3
Raw data {:}%
i / MBP \

|
|
|
|
|
[ —— ——s Chemistry |«— I
model :
|
Noise l
: models e ———-
Cantilever
array
measurement A I Cantilever
|
________ model
\ | /)
J

Signal extraction

FIGURE 1.4 Model-based approach to signal processing: process (chemistry
and physics), measurement (microcantilever sensor array) and noise (Gaussian)
representations.

detecting the presence of a particular species in a test solution using a microcantilever
sensor measurement system [4].

Example 1.2

The model-based processing problem is characterized in Fig. 1.4 representing the
process of estimating the presence of a particular species of material in solution using
the multichannel microcantilever sensor system. Here the microcantilever sensor is
pre-conditioned by depositing attractor material on its levers to attract molecules
of the target species. Once calibrated, the test solution flows along the levers with
the target molecules attracted and deposited on each “tuned” microcantilever creating
a deflection that is proportional to the concentration. This deflection is measured using
a laser interferometric technique and digitized for processing. The process model is
derived directly from the fluidics, while the measurement model evolves from the
dynamics of the microcantilever structure. The resulting processor is depicted in
Fig. 1.5, where we note the mathematical models of both the process dynamics and
microcantilever measurement system. Since parameters, ©, of the model are unknown
a priori calibration data is used to estimate them directly and then they are employed
in the MBP to provide the enhanced signal estimate shown in the figure. Even though
nonlinear and non-Gaussian, the processor appears to yield reasonable estimates. See
Sec. 10.3 [4] for details. AAA

The above example demonstrates that incorporating reasonable mathematical
models of the underlying phenomenology can lead to improved processing capability;
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however, even further advantages can be realized by combining the MBP concepts in
conjunction with Bayesian constructs to generalize solutions.

Combining Bayesian and model-based signal processing can be considered a para-
metric representation of the required distributions using mathematical models of the
underlying physical phenomenology and measurement (sensor) system. Certainly, if
we assume the distribution is Gaussian and we further constrain the processes to be
Markovian (only depending on the previous sample), then the multivariate Gaussian
can be completely characterized using state—space models resulting in the well-known
Kalman filter in the linear model case [2].

Since we are primarily concerned with pseudo real-time techniques in this text, we
introduce the notion of a recursive form leading to the idea of sequential processing
techniques. That is, we investigate “recursive” or equivalently “sequential” solutions
to the estimation problem. Recursive estimation techniques evolved quite naturally
during the advent of the digital computer in the late fifties, since both are sequential
processes. It is important to realize the recursive solution is identical to the batch
solution after it converges, so there is no gain in estimator performance properties;
however, the number of computations is significantly less than the equivalent batch
technique. It is also important to realize that the recursive approach provides the
underlying theoretical and pragmatic basis of all adaptive estimation techniques;
thus, they are important in their own right [2]!

Many processors can be placed in a recursive form with various subtleties emerging
in the calculation of the current estimate ()A(,,ld). The standard technique employed
is based on correcting or updating the current estimate as a new measurement data
sample becomes available. The estimates generally take the recursive form:

Xnew = Aold + KEnew (15)
where
Epew =Y — ?ola' =Y - Cf(old

Here we see that the new estimate is obtained by correcting the old estimate with
a K-weighted error. The error term E,,, is the new information or innovation—the
difference between the actual and the predicted measurement (f/a;d) based on the old
estimate ()A(()ld). The computation of the weight matrix K depends on the criterion
used (e.g., mean-squared error, absolute error, etc.).

Consider the following example, which shows how to recursively estimate the
sample mean.

Example 1.3

The sample mean estimator can easily be put in recursive form. The estimator is
given by

R 1Y
Xy =53 v
=1
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Extracting the N h term from the sum, we obtain
. 1 1=
X(N) = 2y + ; Y0
Identify X (N — 1) from the last term,
2 = =y + L xov - 1y
N N
The recursive form is given by

~ ~ 1 ~
XN)=X(N—-D+ — [yN)—X(N — D]
—— —— N

NEW OLD v ERROR
wr

This procedure to develop the “recursive form” is very important and can be applied
to a multitude of processors. Note the steps in determining the form:

1. Remove the N”'-term from the summation;
2. Identify the previous estimate in terms of the N — 1 remaining terms; and

3. Perform the algebra to determine the gain factor and place the estimator in the
recursive form of Eq. 1.5 for a scalar measurement. AAA

1.5 NOTATION AND TERMINOLOGY

The notation used throughout this text is standard in the literature. Where necessary,
vectors are represented by boldface, lowercase, x, and matrices by boldface, upper-
case, A. We denote the real part of a signal by Re x and its imaginary part by Im x.
We define the notation N to be a shorthand way of writing 1,2,...,N. It will be
used in matrices, A(N) to mean there are N-columns of A. As mentioned previously,
estimators are annotated by the caret, such as x. We also define partial derivatives at
the component level by 3%,-’ the Np-gradient vector by Vg and higher order partials
by Vg.

The most difficult notational problem will be with the “time” indices. Since this
text is predominantly discrete-time, we will use the usual time symbol, ¢ to mean
a discrete-time index, that is, r € Z for Z the set of integers. However, and hopefully
not too confusing, ¢ will also be used for continuous-time, that is, # € R for R the set
of real numbers denoting the continuum. When used as a continuous-time variable,
t € R it will be represented as a subscript to distinguish it, that is, x¢. This approach of
choosing ¢ € 7 primarily follows the system identification literature and for the ease
of recognizing discrete-time variable in transform relations (e.g., discrete Fourier
transform). The rule-of-thumb is therefore to “interpret ¢ as a discrete-time index
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unless noted by a subscript as continuous in the text.” With this in mind we will
define a variety of discrete estimator notations as X(¢|t — 1) to mean the estimate at
time (discrete) ¢ based upon all of the previous data up to r — 1. We will define these
symbols prior to their use within the text to assure no misunderstanding of its meaning.

With a slight abuse of notation, we will use the terminology distribution of X,
Pr(X) in general, so as not to have to differentiate between density for continuous
random variables or processes and mass for discrete variates. It will be obvious from
the context which is meant. In some cases, we will be required to make the distinction
between cumulative distribution function (CDF) and density (PDF’) or mass (PMF)
functions. Here we use the uppercase notation, Px(x) for the CDF and lower case
px (x) for the PDF or PMF.

Subsequently we will also need to express a discrete PMF as a continuous PDF
using impulse or delta functions as “samplers” much the same as in signal process-
ing when we assume there exists an impulse sampler that leads to the well-known
Nyquist sampling theorem [2]. Thus, corresponding to a discrete PMF we can define
a continuous PDF through the concept of an impulse sampler, that is, given a discrete
PMF defined by

px(x) ~ p(X =x) = Y pi 8(x — x;) (1.6)

then we define the equivalent continuous PDF as px(x). Moments follow from the
usual definitions associated with a continuous PDF, for instance, consider the defi-
nition of the expectation or mean. Substituting the equivalent PDF and utilizing the
sifting property of the impulse function gives

E{x} = f " (o) d = f N (Zpi 8(x —xi)) dx =Y xipi (1.7)

X
—00 o0

which is precisely the mean of the discrete PMF.

Also, as mentioned, we will use the symbol ~ to mean “distributed according to”
as in x ~ N (m, v) defining the random variable x as Gaussian distributed with mean
m and variance v. We may also use the extended notation: N (x:m,v) to include
the random variable x as well. When sampling we use the non-conventional right
arrow “‘action” notation — to mean “draw a sample from” a particular distribution
such as x; — Pr(x)—this again will be clear from the context. When resampling, that
is, replacing samples with new ones we use the “block” right arrow such as x; = x;
meaning new sample x; replaces current sample x;.

Finally in a discrete (finite) probabilistic representation, we define a purely discrete
variate as xx(t) := Pr(x(t) = X}) meaning that x can only take on values (integers) k
from aknownset X = {X7, ..., &, ..., An} attime . We also use the symbol, A A A
to mark the end of an example.
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INTRODUCTION

MATLAB is command oriented vector-matrix package with a simple yet effective
command language featuring a wide variety of embedded C language con-
structs making it ideal for signal processing applications and graphics. All of
the algorithms we have applied to the examples and problems in this text are
MATLAB-based in solution ranging from simple simulations to complex appli-
cations. We will develop these notes primarily as a summary to point out to the
reader many of the existing commands that already perform the signal processing
operations discussed in the presented chapter and throughout the text.

MATLAB NOTES
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PROBLEMS

1.1

1.2

Estimate the number of times a needle when dropped between two parallel
lines intersects a line. One was to accomplish this is experimentally by setting
up the experiment and doing it—this is the famous Buffon’s needle experiment
performed in 1725.

(a) Set up the experiment and perform the measurements for 100 samples.
Estimate the underlying probabilities.

(b) Analyze the experiment using a “closed form™ approach.
(c¢) How do your answers compare?
Note that this is one of the first Monte Carlo approaches to problem solving.

Suppose we have three loaded dice with the following six “face” probabilities
(each):

111 111
Dl = TAY 2 1R A L
1276 123 6 6
1111 11
D2 =1—-,—-, - —, 5
6 6 6 12 123
111 11
D3 = T s 0 T A T A A
6 6 6 12 123

Applying Bayes’ rule, answer the following questions:

(a) Selecting a die at random from the three, what is the probability of rolling
a6?

(b) What is the probability that die two (D = D2) was selected, if a six (R =6)
is rolled with the chosen die?
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1.3

14

1.5

INTRODUCTION

A binary communication transmitter (7)) sends either a O or a 1 through a
channel to a receiver (R) with the following probabilities for each as:

Pr(T)) = 0.6 Pr(Tp) =04
Pr(R(|T;) = 0.9 Pr(Ry|T;) =0.1
Pr(R{|Ty) = 0.1 Pr(Ro|Tp) = 0.9

(a) What is the probability that R is received?
(b) What is the probability that Ry is received?

(c¢) What is the probability that the true transmitted signal was a 1, when a 1
was received?

(d) What is the probability that the true transmitted signal was a 0, when a 0
was received?

(e) What is the probability that the true transmitted signal was a 1, when a 0
was received?

(/) What is the probability that the true transmitted signal was a 0, when a 1
was received?

(g) Draw a probabilistic directed graph with nodes being the transmitters
and receivers and links being the corresponding prior and conditional
probabilities?

We are asked to estimate the displacement of large vehicles (semi-trailers)
when parked on the shoulder of a freeway and subjected to wind gusts created
by passing vehicles. We measure the displacement of the vehicle by placing
an accelerometer on the trailer. The accelerometer has inherent inaccuracies
which is modeled as

y=Kux+n

with y, x, n the measured and actual displacement and white measurement noise
of variance R,,, and K, the instrument gain. The dynamics of the vehicle can
be modeled by a simple mass-spring-damper.

(a) Construct and identify the measurement model of this system.

(b) Construct and identify the process model and model-based estimator for
this problem.

Think of measuring the temperature of a liquid in a beaker heated by a burner.
Suppose we use a thermometer immersed in the liquid and periodically observe
the temperature and record it.

(a) Construct a measurement model assuming that the thermometer is lin-
early related to the temperature, that is, y(t) =k AT(¢). Also model the
uncertainty of the visual measurement as a random sequence v(¢) with
variance Ry,.
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(b) Suppose we model the heat transferred to the liquid from the burner as
Q(t) = CA AT(1)

where C is the coefficient of thermal conductivity, A is the cross-sectional area,
and AT (¢) is the temperature gradient with assumed random uncertainty w(t)
and variance R,,,,. Using this process model and the models developed above,
identify the model-based processor representation.

We are given an RLC series circuit driven by a noisy voltage source V;,(¢) and
we use a measurement instrument that linearly amplifies by K and measures the
corresponding output voltage. We know that the input voltage is contaminated
by and additive noise source, w(¢) with covariance, Ry, and the measured
output voltage is similarly contaminated with noise source, v(¢) with R,,.

(a) Determine the model for the measured output voltage, V,,,(f) (measure-
ment model).

(b) Determine a model for the circuit (process model).

(c) Identify the general model-based processor structures. In each scheme,
specify the models for the process, measurement and noise.

A communications satellite is placed into orbit and must be maneuvered using
thrusters to orientate its antennas. Restricting the problem to the single axis
perpendicular to the page, the equations of motion are

d?o
JW =T.+T,

where J is the moment of inertia of the satellite about its center of mass,
T, is the thruster control torque, T, is the disturbance torque, and 6 is the
angle of the satellite axis with respect to the inertial reference (no angular
acceleration) A. Develop signal and noise models for this problem and identify
each model-based processor component.

Consider a process described by a set of linear differential equations

d*c " dc + K
i — Km
a2 T e

The process is to be controlled by a proportional-integral-derivative (PID)
control law governed by the equation

K +1/ a1, %
m = e —_ e —_—
¢ T; ddl‘
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1.9

1.10

1.11

INTRODUCTION
and the controller reference signal r is given by
r=e+c

Suppose the reference is subjected to a disturbance signal and the measurement
sensor, which is contaminated with additive noise, measures the “square” of
the output. Develop the model-based signal and noise models for this problem.

The elevation of a tracking telescope is controlled by a DC motor. It has a
moment of inertia J and damping B due to friction, the equation of motion is
given by
sze +Bd9 =Tn+T
dr? a —

where T, and T, are the motor and disturbance torques and 6 is the elevation
angle. Assume a sensor transforms the telescope elevation into a proportional
voltage that is contaminated with noise. Develop the signal and noise models
for the telescope and identify all of the model-based processor components.

Suppose we have a two-measurement system given by

-3 +v
Y= 4
where R,, = diag[1, 0.1].
(a) What is the batch least-squares estimate (W =1) of the parameter x, if
y=[7 211?
(b) What is the batch weighted least-squares estimate of the parameter x with
W selected for minimum variance estimation?

Calculate the batch and sequential least-squares estimate of the parameter
vector x based on two measurements y(1) and y(2) where

2(1) = €+ = [
y2) = x+v(2)=4

11 o 3
Czb J,cm_u 2, W=1I



BAYESIAN ESTIMATION

2.1 INTRODUCTION

In this chapter we motivate the idea of Bayesian estimation from probabilistic perspec-
tive, that is, we perform the required estimation using the underlying densities or mass
functions. We start with the “batch” approach and evolve to the Bayesian sequential
techniques. We discuss the most popular formulations: maximum a posteriori (MAP),
maximum likelihood (ML), minimum variance (MV) or equivalently minimum
mean-squared error (MMSE) and least-squares (LS) methods. Bayesian sequential
techniques are then developed. The main idea is to develop the proper perspective for
the subsequent chapters and construct a solid foundation for the techniques to follow.

2.2 BATCH BAYESIAN ESTIMATION

Suppose we are trying to estimate a random parameter X from data Y =y. Then the
associated conditional density Pr(X|Y =y) is called the posterior density because
the estimate is conditioned “after (post) the measurements” have been acquired.
Estimators based on this a posteriori density are usually called Bayesian because
they are constructed from Bayes’ theorem, since Pr(X|Y) is difficult to obtain directly.
That is, Bayes’ rule is defined

Pr(X)

Pr(X|Y) := Pr(Y|X) Brt)

2.1

where Pr(X) is called the prior density (before measurement), Pr(Y|X) is called the
likelihood (more likely to be true) and Pr(Y) is called the evidence (normalizes the

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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posterior to assure its integral is unity). Bayesian methods view the sought after
parameter as random possessing a “known” a priori density. As measurements are
made, the prior is converted to the posterior density function adjusting the parameter
estimates. Thus, the result of increasing the number of measurements is to improve
the a posteriori density resulting in a sharper peak closer to the true parameter as
depicted in Fig. 1.1.

To solve the estimation problem, the first step requires the determination of the
a posteriori density. A logical solution to this problem leads us to find the “most
probable” value of Pr(X|Y)—its maximum [1]. The maximum a posteriori (MAP)
estimate is the value of x that maximizes the posterior density, that is,

max Pr(X|Y) (2.2)

The optimization is carried out in the usual manner by differentiating, setting the
result to zero and solving to obtain the MAP equation

VxPr(X|Y)| Xty = 0 (2.3)

with the gradient vector Vy € R¥x*! defined by
d a7
Vy = |:— p :| 2.4)

Because many problems are based on the exponential class of densities,
the In Pr(X|Y) is considered instead. Since the logarithm is a monotonic function,
the maximum of Pr(X|Y) and In Pr(X|Y) occur at the same value of X. Therefore, the
logarithmic MAP equation is

Vx In Pr(X|Y)| Xty = O (2.5)
Now if we apply Bayes’ rule to Eq. 2.5, then
InPr(X|Y) = InPr(Y|X) 4+ In Pr(X) — In Pr(Y) (2.6)

Since Pr(Y) is not a function of the parameter X, the MAP equation can be written
succinctly as

Vx In Pr(X|Y)| Xty = Vx(InPr(Y|X) +In Pr(X))| Xty =0 2.7

With a variety of estimators available, we must construct some way of ascertaining
performance. The quality of an estimator is usually measured in terms of its estimation
error,

X=X-X (2.8)
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A common measure of estimator quality is called the Cramer-Rao lower bound
(CRLB). The CRLB offers a means of assessing estimator quality prior to process-
ing the measured data. We restrict discussion of the CRLB to the case of unbiased
estimates, X, of a “non-random” parameter X. The bound is easily extended to more
complex cases for biased estimates as well as random parameters [2, 3]. The Cramer-
Rao lower bound" for any unbiased estimate X of X based on the measurement, Y, is
given by

Ry =cov(X —X(N|X =x) > T 2.9)
where 7 the Ny x Ny information matrix defined by

T := —E,{Vx(Vx InPr(Y|X))'} (2.10)

with the gradient vector defined above. Any estimator satisfying the CRLB with
equality is called efficient. The bound is easily calculated using the chain rule from
vector calculus [5] defined by

Vx(d'b) := (Vxd)b + (Vxb)a a,b e RN**! (2.11)

where a,b are functions of X. Consider the following example illustrating the
calculation of the CRLB.
Example 2.1
Suppose we would like to estimate a nonrandom but unknown parameter, X, from a
measurement y contaminated by additive Gaussian noise, that is,

y=X+v
where v~ N(0, R,,) and X is unknown. Thus, we have that

E{Y|X} =E{X+vX} =X

and
var(Y|X) = E{(y — E{Y|X})*|X} = E{(v*|X} = Ry,
which gives
Pr(Y|X) ~ N(X,Rw)

and therefore

1 1(y—X)*
InPr(Y|X) = ) In(27R,,) — R
vv

' We choose the matrix-vector version, since parameter estimators are typically vector estimates.
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Differentiating according to the chain rule of Eq. 2.11 and taking the expectation we
obtain

9’ 3 (y—X 1
Tl mpypol = g} 20=0O1_ 1
X2 X Rup Rov

and therefore the CRLB is
R)”qx > Ry AAA

The utility of the CRLB is twofold: (1) it enables us to measure estimator quality
because it indicates the “best” (minimum error covariance) that any estimator can
achieve, and (2) it allows us to decide whether or not a designed estimator is effi-
cient, that is, any estimator achieving the CRLB with equality is efficient—a desirable
statistical property.

In summary, the properties of an estimator can be calculated prior to estimation
(in some cases), and these properties can be used to answer the question “how well
does this estimator perform”. Next we consider the case when the parameter X is not
random leading to the maximum likelihood estimator.

2.3 BATCH MAXIMUM LIKELIHOOD ESTIMATION

In contrast to the Bayesian approach, the likelihood method views the parameter as
deterministic but unknown. We include it in the Bayesian discussion because as we
will show both estimators are in fact intimately linked. Maximum likelihood produces
the “best” estimate as the value which maximizes the probability of the measurements
given that the parameter value is “most likely” true. In the estimation problem the
measurement data are given along with the underlying structure of the probability
density function (as in the Bayesian case), but the parameters of the density are
unknown and must be determined from the measurements; therefore, the maximum
likelihood estimate can be considered heuristically as that value of the parameter that
best “explains” the measured data giving the most likely estimation.

More formally, let X be a vector of unknown parameters, X € RNx*1 and the corre-
sponding set of N-conditionally independent measurements, Y(N) :={y(1) - - - y(N)}
for y € RM*1. The likelihood of X given the measurements is defined to be propor-
tional to the value of the probability density of the measurements given the parameters,
that is,

N
LY(N); X) o PY(N)IX) = Pr(y(1) ... y(V)IX) = [ [ Pr(y()IX) (2.12)

i=1

where L is the likelihood function and Pr(Y|X) is the joint probability density func-
tions of the measurements given the unknown parameters. This expression indicates
the usefulness of the likelihood function in the sense that in many applications mea-
surements are available and are assumed drawn as a sample from a “known” or
assumed known probability density function with unknown parameters (e.g., Poisson
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with unknown mean). Once we have the measurements (given) and the likelihood
function, then we would like to find the best estimate of the parameters. If we search
through parameter space over various values of X, say X;, then we select the value of
X that most likely specifies the underlying probability function that the measurement
sample was drawn from, that is, suppose we have two estimates, X; and X for which

Pr(Y|X;) > Pr(Y|X;)) (2.13)

Thus, it is “more likely” that the Y(N) were drawn for parameter value )A(,- than X i
since, equivalently, £(Y; )A(l-) > L(Y; }?j). Searching over all X and selecting that value
of X that is maximum (most probable) leads to the maximum likelihood estimate (ML)
given by

Xy (Y) = arg max Pr(Y |X) (2.14)

As noted previously, many problems are characterized by the class of exponential
densities for the Bayesian estimator making it more convenient to use the natural
logarithm function; therefore, we define the log-likelihood function as

AY(N)IX) := In L(Y;X) = In Pr(Y(N)|X) (2.15)

Since the logarithm is monotonic, it preserves the maximum of the likelihood
providing the identical result,

Xy (Y) = arg max In Pr(Y|X) (2.16)

What makes the ML estimator popular is the fact that it enjoys some very desirable
properties that we list without proof (see [2] for details).

ML estimates are consistent.
ML estimates are asymptotically efficient with Ry ix =7 N
ML estimates are asymptotically Gaussian with N'(X, Rg).

PS”!\).—‘

ML estimates are invariant, that is, 1f XML, then any function of the ML estimate
is the ML estimate of the function, fML =f (XML)

5. ML estimates of the sufficient statistic are equivalent to the ML estimates over
the original data.

These properties are asymptotic and therefore imply that a large amount of data must
be available for processing.

Mathematically, the relationship between the MAP and ML estimators is clear
even though philosophically they are quite different in construct. If we take the MAP
equation of Eq. 2.6 and ignore the a priori distribution Pr(X) (assume X is unknown
but deterministic), then the maximum likelihood estimator is only a special case of
MAP. Using the same arguments as before, we use the In Pr(X|Y) instead of Pr(X|Y).
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We obtain the maximum likelihood estimate by solving the log-likelihood equation
and checking for the existence of a maximum; that is,

Vx In Pr(X|Y)|X=5(ML =0 2.17)

Of course, to check for a maximum we have that Vx(Vy In Pr(X|Y)) < 0. Again
applying Bayes’ rule as in Eq. 2.1 and ignoring Pr(X), we have

Vx InPr(X[Y) = Vx InPr(Y|X)|,_5 = 0. (2.18)

Consider the following example to demonstrate this relationship between MAP
and ML.

Example 2.2

Consider estimating an unknown constant, from a noisy measurement as in the pre-
vious example. Further assume that the noise is an independent Gaussian random
variable such that v ~ N(0, R,,) and the measurement model is given by

y=X+v (2.19)

First, we assume no a priori statistical knowledge of X just that it is an unknown,
nonrandom constant. Thus, we require the maximum likelihood estimate, since no
prior information is assumed about Pr(X). The associated conditional density is

1 -x)%
Pr(Y|X) = ?e_% Fuu (2.20)
Vv

The maximum likelihood estimate of X is found by solving the log-likelihood
equation:

Vy In Pr(Y|X)|X:}A(ML =0 (2.21)
or
9 9 1
— InPr(Y|X) = — | —=In2%R,, — —X)?
8an(|) 8X{2nﬂw 2va(y )}
= 1( X)
~ Ru

Setting this expression to zero and solving for X, we obtain
Xur =y (2.22)

The best estimate of X in a maximum likelihood sense is the raw data y. The
corresponding error variance is easily calculated (as before)

Ry = Ruw (2.23)
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Next we model X as a random variable with Gaussian prior, that is, X ~N (X, Rxx)
and desire the maximum a posteriori estimate. The MAP equation is

Juap = Vx(InPr(Y|X) + In Pr(X))
7 O anry — - x7 = L inary - 280
= —1—=In27Ry — —(y—X)" — = In27Rxxy — =————
MAP = 5% 2 2R Y 2 xx Rxx
or

1

Imap =
RUU

1 _
—X)— —X-X
y—X) Rxx( )

Setting this expression to zero and solving for X = Xpap, we obtain

Ruwy
A y+ RxxX
Xmap = —F¢x —
14 R
XX

It can be shown from Eq. 2.9 that the corresponding error variance is

R'UU

Ryx = Ty Rw
Rxx

Examining the results of this example, we see that when the parameter variance is

large (Rxx > Ryy), the MAP and ML estimates perform equivalently. However, when

the variance is small, the MAP estimator performs better because the corresponding

error variance is smaller. AAN

The main point to note is that the MAP estimate provides a mechanism to incor-
porate the a priori information, while the ML estimate does not. Therefore, for some
problems, MAP is the efficient estimator. In the above example, if X were actually
Gaussian, then the ML solution, which models X as an unknown parameter, is not
an efficient estimator, while the MAP solution that incorporates this information by
using the prior Pr(X) is efficient.

This completes the introduction to batch Bayesian estimation using the maximum
a posteriori and maximum likelihood estimation. Next we consider a very popular
approach to solving maximum likelihood estimation problems.

2.3.1 Expectation-Maximization Approach
to Maximum Likelihood

Solving maximum likelihood parameter estimation problems is a formidable task
especially when the underlying probability distribution functions are unknown. There-
fore, we must resort to numerical approaches that will successfully converge to the
parameters of interest. Expectation-Maximization (EM) is a general method of deter-
mining the maximum likelihood estimate of parameters of the underlying distribution
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from a given set of data which is incomplete, that is, having “missing” (data) values
[7]. Missing data could be considered a misnomer; however, if we include “hidden
variables” (not directly measured) as missing, then a wide variety of state/parameter
estimation problems can be incorporated into these problem classes. Probably the
most popular applications of the EM technique occur in tomographic image recon-
struction, pattern recognition, communications and the training of hidden Markov
models (see Chapter 9) for speech recognition [8, 9].

The EM technique produces maximum-likelihood parameter estimates in two
steps: an expectation-step followed by a maximization-step. The expectation-step
with respect to the unknown parameters uses the most recently available parameter
estimate conditioned on the measurements, while the maximization-step provides an
updated estimate of the parameters.

To be more precise, we mathematically, formulate the general “missing data”
problem by first defining the unknown parameters or variables to be estimated as
6 € RNox1 with 0 € ©, the parameter space. We further define three distinct spaces
for our problem: (1) the complete data space, Z; (2) the incomplete data space, )V; and
(3) the missing data space, X', where the complete space is the union: Z =(X,)).
Analogously, we define the corresponding complete, incomplete and missing/hidden
vectors as: z € RV-X1 y e RM>! and x e RN+ respectively.

With this in mind, we can now define the underlying distributions as the joint or
complete distribution along with its Bayesian decompositions as

Pr(z|0) = Pr(x,y|0) = Pr(x]y, 0) x Pr(y|0) = Pr(y|x, 6) x Pr(x|0) (2.24)
or taking logarithms, we have the complete (data) log-likelihood
Acp(z]0) = InPr(z|0) = In Pr(x,y|0) = In Pr(x]y, 0) + Ap(y|0) (2.25)

where Ajp(y|6) = InPr(y|60) is the corresponding incomplete (data) log-likelihood
and the missing data is random with x ~ Pr(x). Since x is random, then so is A ¢p(z|0)
with y and 6 assumed fixed (constant). Thus, the basic maximum likelihood param-
eter estimation problem for the complete data is to find the value of the parameter
such that

A

6; = arg mgax Acp(z|0)
given the measured or observed (incomplete) data, y, and the previous parameter

estimate, 6 = 6. However, since Acp is random, we must search for the parameter
vector that maximizes its expectation (over Xx), that is, we seek

0; = arg max Ex{Acp(z/0)) (2.26)

given the measured data, y, and the current parameter estimate, 6. Multiplying both
sides of Eq. 2.25 by the underlying marginal posterior distribution of the missing
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data, Pr(x]y, #) and summing over X, we obtain
Z Acp(z|f) x Pr(xly,0) = Zln Pr(z|0) x Pr(x]y, 6)
X X
- Zln Pr(x|y, 6) x Pr(x]y, 6)
X

+ Y Am(ylf) x Pr(xly, 6)

Using the definition of the conditional expectation and recognizing that the last term
is not a function of the random vector x, we obtain

Ex{Acp(zl9)ly, 0) = Ex{ln Pr(x]y,0)} + Ap(yld) (2.27)

Since we do not know the complete data, we cannot calculate the exact log-
likelihood for this problem. But, given the measured data y, we can estimate the
posterior probability for the missing (data) variables, x. For each x, there exists a 0,
and therefore we can calculate an expected value of the complete log-likelihood.

The basic EM principle is to find the 6 that maximizes Pr(z|0) using the available
data y and current parameter estimate. Let 6;_1 be the current parameter estimate,
then the complete log-likelihood is given by the expectation-step:

E-step:  Q(6,60;—1) := Ex{Acp(|0)ly.0i—1} (2.28)

for 6 the new parameter vector to be optimized in the next step. In this expres-
sion the y and 6 are assumed fixed (constant) and x is the random vector such that
x ~ Pr(x]y, 6;—1) so that

E{Acp@0)ly, 01} =) InPr(x]y, O)Pr(x]y, ;1) (2.29)
X

where Pr(x|y, é,-_l) is the marginal of the missing data (hidden variable) based on the
measured data and current parameter estimate (as shown).

The maximization-step is to find the parameter vector update, 6; that will maximize
the computed expectation, that is,

M-step: é,- = arg IIlng 0, 9,-_1) (2.30)

Each iteration is guaranteed to increase the log-likelihood eventually converg-
ing to a local maximum at an exponential rate [10, 11]. Different forms of the
EM have evolved with the “generalized” EM (GEM) method by finding an alter-
native (simpler) expectation function and using the updated parameter vector such
that Q(é,-, 9,-_1) > Q(6, 9i_1) which is also guaranteed to converge. The Monte Carlo
EM (MCEM) is another form that is used when a closed form distribution for the
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E-step is replaced by simulation-based methods (sampling) [12]. Consider the
following example from Snyder [16].

Example 2.3

Suppose we would like to estimate the rate or intensity parameter, Ay, of a signal
contaminated in Poisson noise with known mean, A,. We measure the counts from a
photodetector characterized by

Yn = Sp+ Up
where y,, is the observation with Poisson distribution
Yn ~ Py) = ()‘y)y” e_ky/yn!
The respective signal and noise counts during the measurement period are independent
of each other with s,, ~ P(A,) and v, ~ P(A,). We have that the log-likelihood of the
incomplete data is

AlD()’nMy) =1In P()’np\y) =ypln Ay — Ay — In y,!

Differentiating A;p with respect to A, setting to the result to zero and solving for
the rate parameter, that is,

Yn
As + Ay

—-1=0

d
E()’n In(As + Ay) — (As +2y) — Iny,!) =
s

which yields the maximum likelihood parameter estimate

A

As =Yn— Ay >0

Here we have used the fact that the superposition of Poisson processes is Poisson
with intensity parameter, A, = A; + A,. Next, let us investigate the EM approach to
this problem. Here the complete data space is z,, = (s,, v,) and y, is the incomplete
(observed) data. Therefore, we have that the complete log-likelihood is

Acp(znlrs) = —(Ag + Ay) + s, InAg + v, In Ay, — Ins,! — Inv,!
because s, and v, are independent. Thus, the expectation-step is given by
E-step:  Q(hslAs(i — 1)) = —Ay 4 5,(i — DInAg — Ay + D,(i — 1) In A,

with
A —1)

§ui — 1) = Efsulyn, hs(i — D} = 7
" nls s Al — 1) + Ay

Yn
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and
(i — 1) = E{Vnlyn, a(i — 1)} = yp — 5, — 1)
Since the maximization-step does not depend on A, or v,(i — 1), we have

As(i) = arg max(—is + $,(i — D) 1nAy)

giving
M-step:  ag(i) = $,(i — 1)

which completes the EM algorithm.

We simulated a sequence of Poisson counts for 500 samples composed of the
additive signal (A;=14) and noise (Ay =3.5). The estimated signal intensity at
each measurement is shown in Fig. 2.1a along with the estimated probability mass

30 T T T T T T T
Estimated signal intensity: mean = 14.02
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FIGURE 2.1 EM estimation for Poisson Intensity: (a) Signal intensity estimate (Mean =
14.02). (b) PDF estimation of Poisson processes: Noise, Signal, EM Estimate, Measurement.
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functions in b of the True signal, EM estimated signal, measurement and noise.
Here we see the estimated signal PDF closely matches the true PDF and the average
intensity is very close to the true signal intensity at A; = 14.02. AAA

In summary, the EM approach is a two-step, iterative technique to solve the maxi-
mum likelihood parameter estimation problem when missing data or hidden variables
(states) are present. Clearly, we have just discussed the generic form of the EM
approach, the actual algorithm is problem specific based on the knowledge of the
underlying distributions; however, we can consider a class of distributions to develop
a more specific algorithm such as the so-called exponential family [13].

2.3.2 EM for Exponential Family of Distributions

In this subsection we apply the EM technique to the exponential class of distri-
bution functions many of which are well-known forms like the Gaussian, Poisson,
Exponential, Raleigh, Binomial and more. The exponential family is defined by the
generic form:

Pr(z|6) = b(z) exp(c'(9)s(z))/a(6) (2.31)

with 8 € RM | the parameters defining the class [7, 14, 15] and s(z) the sufficient
statistic providing all of the information necessary about the underlying process for
estimation with s, ¢ € R"*!. Since the complete log-likelihood can be written as

Acp(z|6) = InPr(z]0) = Inb(z) + ¢/(0)s(z) — In a(®) (2.32)
then taking the conditional expectations, we obtain the expectation-step as:
E-step:  Q(0,0,_1) = Ex{Inb(2)ly,0) + ¢/ (O)E{s(@)ly,0i_1} — Ina@®) (2.33)

Defining §; := E{s(z)y, i1}, the maximization-step with respect to 6, is per-
formed on

E{Inb(z)]y,6) + ¢'(6)8; — Ina(6) (2.34)

Since the first term is not a function of 0, it need not be included. The EM technique
for the exponential family is:

E-step: §;
M-step:  6; = arg max ¢ (0)8 — Ina®) (2.35)

completing the method.

For instance, in the previous example, we have b(z) = (A,)"; exp(c’s) = e ™ and
a(@) =y,!. Consider the following example of producing an image by estimating the
intensity of a Poisson process discussed in McLachlan [6].
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Example 2.4

Photons emitted from a radioactive tracer are injected into tissue in order to create
asingle photon emission computed tomography (SPECT) image for medical diagnosis
[6, 14—-16]. The basic idea is to create an image that represents the photon emitted,
counted by photon detectors and displayed as an image based on pixel counts. For
simplicity we assume all photons are counted by the instrument. The emissions are
assumed to be Poisson distributed with unknown intensities or emission densities
corresponding to the Poisson rate parameters, A. Thus, the basic problem is:

GIVEN a set of incomplete measurements (counts), {y, }, FIND the maximum likeli-
hood estimate of the unknown emission densities, A, (rate parameter vector) assuming
that each of these component intensities is constant within a pixel, that is, A, is
constant form=1,...,M,.

Let y,; n=1,...,Ng be the number of counts measured by the n'"-detector, so

mathematically the problem is to estimate the M),-intensity vector of emission densi-
ties, A, from the N;-measurement vector, y, assuming that the counts are conditionally
independent such that Pr(y,|A,(n)) is Poisson, that is,

Oy(m)yr e

!

Yu ~ P(y(n)) =

For imaging considerations, it is assumed that individual photons are emitted
within a given pixel and detected; therefore, we define x,,,, as the unobservable counts
(missing data) assuming A is known and conditionally independent of x, such that,

(halm, )y ¢~ 2a0m)

Xm!

Xmn ~ P(Ax(m,n)) =

where Ay (m, n) = APy, the emission density corresponding to the number of photons
emitted in the m™-pixel detected by the n'-detector with emission probability, p,,,—a
marked Poisson process [16, 18].

The photon counter measurement at the n'”-detector is the superposition of the
photons emitted by the radionuclide at the mih -pixel; therefore, we have that

M,
Yn = Z Xmn
m=1

which is the sum of Poisson variates, so that

MP MI’
() =" delm.n) =D AP
m=1 m=1
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It has been shown [6] that the conditional probability of the missing data is binomial
with parameter, y,, and probability Pr(),,p,,), that is,

M

P
S ~ B PEGnpn)) Wit PrGunpn) = honpun | 3ibin
j=1

The EM approach for this problem is straightforward, since the underlying distri-
butions are all in the exponential family [6]. The sufficient statistic is the data, x;,,,
which can be estimated. That is, since x,,, is binomial, the conditional mean (Q-step)
is given by

MP
(i = 1) 1= E{xmnlyn, Am(i = D} = yu [ Asm, ) / B AD)
Jj=1

where ):x(m, n)= Aom (i — 1)pmn- Next define the likelihood based on z = (x, y) assum-
ing A is known and conditionally independent. Therefore, the complete likelihood is
given by

Lexyn) = [ [ e Qem, )™ fxn!

and

AR YR =Y =helm,n) + X In Ax(m, 1) = In X!

m,n

or substituting for A,(m, n) and expanding, we have

M, Ny
AX,y|A) = Z Z —AmDnm + Xpm NP pm) — In X!

m=1 n=1

Differentiating this expression with respect to A,,, setting to the result zero and
solving gives the maximization-step as:

Ny
Son(@D) =Y Rpnli — 1)
n=1

Summarizing the E and M-steps for this problem are given by:

E-step:  QChm, (i — 1) = Ex{AX, Y)Y, Am(i — 1))}
M,

= Yool = Dpun [ 3 35 = D
j=1
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Ny
Mostep: (D) = Anli = 1D M[)yAL.”’”
n=1 Zj:l )‘j(l - l)p]n

More details can be found in [6, 14, 16]. AAA
This completes our discussion of the EM approach to parameter estimation
problems with incomplete data/parameters. Next we briefly describe one of the

most popular approaches to the estimation problem—minimum variance (MV) or
equivalently minimum mean-squared error (MMSE) estimation.

2.4 BATCH MINIMUM VARIANCE ESTIMATION

To complete this discussion evolving from the batch Bayesian perspective, we discuss
the development of the minimum (error) variance (MV) or equivalently minimum
mean-squared error (MMSE) estimator. The general techniques developed in this
section can be applied to develop various model-based processors [1].

Suppose we are asked to obtain an estimate of a N,-parameter vector X from a
set of noisy measurements characterized by the Ny-measurement vector Y. We would
like to construct an estimate that is best or optimal in some sense. The most natural
criterion to consider is one that minimizes the error between the true parameter and
its estimate based on the measured data. The error variance criterion defined by

J(X) = Ex{[X — X(M)I'[X — XY} (2.36)
where

X is the true random N,-vector
Y is the measured random N,-vector (data) and
X s the estimate of X given Y

whose minimization leads to the minimum variance estimator [1]. Thus, if we
minimize J(X) using the chain rule of Eq. 2.11, then we have that

Vil (X) = ExfVe(X — X(Y)) (X — X(Y))|Y)
= E{~(X —X(Y) — (X — X))V}
= “2[EJ{X — X()|Y}]

performing the conditional expectation operation gives
Vi (X) = =2[Ex{X|Y} — X(Y)] (2.37)
and setting this equation to zero and solving yields the minimum variance estimate as

Xuv = X(Y) = E.{X|Y} (2.38)
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We check for the global minimum by examining the sign (positive) of the second
derivative, and since

Vi (Vi (X)) =21 (2.39)

a unique minimum exists. Thus, the minimum variance estimator is the conditional
mean. The associated error variance is determined by substituting for X(Y) into
Eq. 2.36 giving
Iuv = Ryy = Ex{(X — E{X|Y}) (X — E{X|Y})|Y}
= E.{X'X|Y} — E2(X|Y} (2.40)
This estimator is linear, unconditionally and conditionally unbiased and pos-

sesses general orthogonality properties. To see this we investigate the estimation
error defined by

X=X-X®) (2.41)

Taking expectations, we have the fact that the estimator is unconditionally unbiased
E{X} = Ei{X — X(V)} = E{X} — E((EAX|Y}} = E(X} — E.{X} =0 (2.42)
as well as conditionally unbiased, since

EJX|Y} = Ed{X — X(V)IY} = Ec(X|Y} — EJEX|Y}|Y)
= EJX|Y} — E({X|Y} =0 (2.43)

Another important property of the minimum variance estimator is that the estimation
error is orthogonal to any function, say f(-), of the data vector Y [4], that is,

Exy{f(NX'} =0 (2.44)

Also,
E{f(MX'|Y} =0 (2.45)

This is the well-known orthogonality condition. To see this we substitute for the error

E{fMNX'|Y} = E{f(Y)X — X)) |V}
= fMEAX - X(¥))|Y})
= FO(EAXIY) = X(¥)) = 0
Taking the expectation over Y proves the unconditional result as well. Thus, the

estimation error is orthogonal to any function of Y, a fact that is used in proofs
throughout the literature for both linear and nonlinear estimators.
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Let us now investigate the special case of the linear minimum variance estimator.
The estimation error is orthogonal to all past data Y, that is,

Exy{YX'} =0 (2.46)
or as before
Ex{YX'|Y} =0 (2.47)

This is the well-known minimum variance estimator results in the linear case [1]. For
a linear function of the parameter, we have that

y=CX+v (2.48)

where y, v, € RN x e RN=x1 e RNy*Nx and v is zero-mean, white with R,,. The
mean-squared error criterion

J(X) = E{X'X} (2.49)

is minimized to determine the estimate. The minimization results in the orthogonality
condition of Eq. 2.47 which we write as

E{(yX'} = EyX'} — E{yXjp} = 0 (2.50)

for Xy = Kuyvy, alinear function of the data vector. Substituting for y and X in this
equation gives

Kuy = RxxC'(CRxxC' + Ry)™" (2.51)
where Ryy is the covariance matrix of X. The corresponding quality is obtained as
Ryz = (Ryy + C'R' O (2.52)

Itis also interesting to note that the fundamental Wiener result [1] is easily obtained
from the orthogonality condition of Eq. 2.47, that is,

E(yX'} = E{yX'} — E{yY'}K};y = Ryx — RyyK}yy = 0 (2.53)

which is called the discrete Wiener-Hopf equation. Solving for Kysy, we obtain the
Wiener solution for a linear (batch) estimation scheme, that is,

Kyy = RXyRy_yl (2.54)

Note that least-squares estimation is similar to that of minimum variance except that
no statistical information (expectation removed) is assumed known about the process,
that is, the least-squares estimator, y;¢ minimizes the sum-squared error criterion

myjn J=j3y= Z y? (2.55)

1

fory =y —Jus.
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This completes the introduction to batch minimum variance, maximum a posteriori
and maximum likelihood estimation. Next we consider the sequential problem.

2.5 SEQUENTIAL BAYESIAN ESTIMATION

Modern statistical signal processing techniques evolve directly from a Bayesian per-
spective, that is, they are cast into a probabilistic framework using Bayes’ theorem
as the fundamental construct. More specifically, the information about the random
signal, x(¢), required to solve a vast majority of estimation/processing problems is
incorporated in the underlying probability distribution generating the process. For
instance, the usual signal enhancement problem is concerned with providing the
“best” (in some sense) estimate of the signal at time ¢ based on all of the data avail-
able at that time. The filtering distribution provides that information directly in terms
of its underlying statistics. That is, by calculating the statistics of the process directly
from the filtering distribution the enhanced signal can be extracted using a variety of
estimators like MAP, ML or MMSE accompanied by a set of performance statistics
such as error covariances and bounds. Sequential methods to calculate these distribu-
tions become extremely important in pragmatic problems where implementation and
speed are an issue. Therefore from an engineering perspective, they are our primary
focus.

The roots of this theory are based on Bayesian estimation and in fact sequen-
tial Bayesian estimation. We will see that many of our well-known techniques are
easily cast into this unifying framework especially in the nonlinear signal process-
ing area. The Bayesian algorithms that provide posterior distribution estimates are
optimal; however, they are impossible to implement directly because they require
integrations or summations with an infinite number of terms. We will develop
the optimal Bayesian algorithms mathematically and perform the required calcu-
lations in a sequential manner, but it must be realized that only under certain
restricted circumstances can these actually be realized (e.g., the linear Gaussian
case). Starting with Bayes’ theorem it is possible to show how this leads directly
to a recursive or sequential estimation framework that is the foundation of these new
approaches.

We cast this discussion into a dynamic variable/parameter structure by defining
the “unobserved” signal or equivalently “hidden” variables as the set of N,-vectors,
{x(0)},t=0,...,N. On the other hand, we define the observables or equivalently
measurements as the set of Ny-vectors, {y(#)},1=0,...,N considered to be con-
ditionally independent of the signal variables. The goal in recursive Bayesian
estimation is to sequentially (in-time) estimate the joint posterior distribution,
Pr(x(0), ..., x(N);y(0),...,y(N)). Once the posterior is estimated than many of the
interesting statistics characterizing the process under investigation can be exploited
to extract meaningful information.

We start by defining two sets of random (vector) processes: X; := {x(0), ..., x(¢)}
and Y; := {y(0), ..., y(#)}, as before. Here we can consider X; to be the set of dynamic
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random variables or parameters of interest and Y; as the set of measurements or
observations of the desired process as before.” In any case we start with Bayes’
theorem for the joint posterior distribution as

Pr(X;)

Pr(X;|Y:) = Pr(Y;|X;) x Pr(Y,)

(2.56)

In Bayesian theory (as before), the posterior defined by Pr(X;|Y;) is decomposed
in terms of the prior Pr(X}), its likelihood Pr(Y;|X;) and the evidence or normalizing
factor, Pr(Y;). Each has a particular significance in this construct which we shall
discuss subsequently.

We can replace the evidence by realizing that it is the fofal probability given by

PI‘(Y;) == /Pr(YAX,)PI‘(XZ)Xm (2.57)

which is integrated over the entire X;-dimensional parameter space. Substituting this
into Eq. 2.56 we obtain

Pr(Y,|X,) x Pr(X,)
JPr(Y/[X,)Pr(X,) dX,

Pr(X;|Y)) = (2.58)

Once the posterior distribution is determined, then all statistical inferences or
estimates are made by integration or equivalently summation. For example, suppose
we would like to obtain a prediction distribution, then it is obtained as

Pr(Xi111Y) = / Pr(Xi111X:, Yy) x Pr(X;|Yy) dX;
and a point estimate might be the conditional mean of this distribution, that is,

E{Xt+1|Yt} = /Xt+1Pr(Xt+1|Yt)dXt+1

while the variance of the distribution can be calculated similarly and used for perfor-
mance evaluation. This calculation illustrates how information that can be estimated
from the extracted distribution is applied in the estimation context.

Again, even though simple conceptually, the real problem to be addressed is that
of evaluating these integrals which is very difficult because they are only analytically
tractable for a small class of priors and likelihood distributions. The large dimen-
sionality of the integrals cause numerical integration techniques to break down which

2 In Kalman filtering theory, the X; are considered the states or hidden variables not necessarily observable
directly, while the Y, are observed or measured directly.
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leads to the approximations we discuss subsequently for stabilization. Let us inves-
tigate further to consider posing problems of signal processing interest. First, we
review some of the basics.

Many of the derivations and algorithms to follow are based on the simple, but
sometimes not so obvious, manipulations of Bayes’ theorem; therefore, we develop

these variants here first. Starting with a joint distribution of variables indexed by ¢,
we apply Bayes’ rule® in steps to expose some of the manipulations:

Pr(y(1), y(r — 1), y(t = 2)) = Pr(y(0), y(t — DIy(r — 2)) x Pr(y(t = 2))  (2.59)

Applying the rule again to the first term in this expression gives

Pr(y(2), y(t = Dyt = 2)) = Pr(y(n)|y(t — 1), y(t — 2)) x Pr(y(r — D|y(r —2)) (2.60)

Combining these results we have

Pr(y(n), y(t — 1), y(t = 2)) = Pr(y(O)|y(r — 1), y(r = 2))
x Pr(y(t — Diy(r — 2)) x Pr(y(r — 2)) (2.61)

Additionally, if {y(¢)} is considered first order Markov, then Eq. 2.61 simplifies
even further to

Pr(y(2), y(t — 1), y(t — 2)) = Pr(y(@)|y(r — 1)) x Pr(y(t — DIyt — 2))
x Pr(y(t — 2)) (2.62)

Generalizing these expansions, we can obtain the chain rule of probability which
states that the joint distribution Y; can be decomposed using Bayes’ rule as

Pr(Y;) = Pr(y(D)|Y;-1) x Pr(Y;—1) = Pr(y(1)|Y;—1) x Pr(y(t — D)|Y;—2) x Pr(¥;-2)
or expanding this expression, we obtain
t
Pr(Y;) = l_[Pr(y(t — Y —k—1) = Pr(y()|Y;—1) X - - - x Pr(y(1)[Yo) x Pr(y(0))

k=0
(2.63)

Further assuming that the process is Markov, then

Pr(y()|Y;-1) = Pr(y(D)ly(z — 1))

3 In set notation, we have (simply) that

Pr(ABC) = Pr(AB|C) x Pr(C) = [Pr(A|BC) x Pr(B|C)] x Pr(C)
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and the chain rule simplifies even further to
t t
Pr(v)) = [ [Pry = OlY ) = [ [Priy —k)lye —k = 1)) (2.64)
k=0 k=0

Marginal distributions are used throughout these derivations and they follow
directly from the Chapman-Kolmogorov evolution equation [18], that is,

Pr(y(0)ly(t = 2)) = /Pr(y(t)ly(t — 1) x Pr(y(t = DIy(t = 2))dy(t = 1) (2.65)

Before we close this section, we must mention that the derivations to follow rely
on the following two fundamental assumptions:

« the dynamic variable x(#) is Markov; and

 the data y(f) are conditionally independent of the past dynamic variables,
{x(t —k)}Vk=>0.

Next we proceed with the development of generic Bayesian processors.

2.5.1 Joint Posterior Estimation

With this information in mind, we develop the sequential Bayesian solution to the joint
posterior estimation problem. Starting with Eq. 2.56, we decompose this expression
by first extracting the ¢ term from the joint distributions, that is,

Pr(Y;1X:) = Pr(y(2), Y;—11x(1), X;—1)
and applying Bayes’ rule to obtain
Pr(Y;[X:) = Pr(y(0)[Yi—1, x(1), X;—1) X Pr(Y;—1]x(1), X;—1) (2.66)

The data at time ¢, y(¢), is assumed independent of X;_| and Y;_;; therefore, the
first term of Eq. 2.66 simplifies to

Pr(y(D)|x(2), Yi-1,Xi—1) —> Pr(y(0)|x(®)) (2.67)

The second term also simplifies based on the independence of the past data and
x(t) to give
Pr(Yi—1|x(1), X;—1) —> Pr(Y;—11X;—1) (2.68)

We now have the final expression for the likelihood as

Pr(Y:|X;) = Pr(y(n)[x(1)) x Pr(Yi—1|X;—1) (2.69)
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Similarly, for the prior, extracting the 1" term and applying the rule, we obtain
Pr(X;) = Pr(x(?), X;—1) = Pr(x(t)|X;=1) x Pr(X;—1)
Assuming x(¢) is a first order Markov process, this expression simplifies to
Pr(X;) = Pr(x()|x(t — 1)) x Pr(X;_1) (2.70)
Finally the evidence is obtained in a similar manner to give
Pr(Yy) = Pr(y(0), Yi—1) = Pr(y()[Y;—1) x Pr(Y;—1) (2.71)

Therefore, substituting these results into Eq. 2.56, we obtain

Pr(Y;|X:) Pr(X,)
Pr(X,|Y,) = [Pr(Y;—11X;—1) X Pr(y()|x(0)] [Pr(x(1)|x(r — 1)) x Pr(X;_1)] 272
U Pr(y(DI¥,—1) X Pr(¥;—1) '
Pr(Y))

but the posterior at the previous time, ¢t — 1, is given by

Pr(Y;—1]1X;—1) x Pr(X;_
PR 1Y) = "Pfr(;) > ) (2.73)
—

Identifying the terms on the right-hand side of Eq. 2.72 and grouping them together
enables the joint sequential Bayesian posterior estimator to be expressed as

Pr(y()|x(1)) x Pr(x(r)|x(t — 1))
Pr(y(O)|Y;-1)

Pr(X;|Y:) = [ } X Pr(X;—1Y;—1) (2.74)

This result is satisfying in the sense that we need only know the joint posterior
distribution at the previous stage, t — 1, scaled by a weighting function to sequentially
propagate the posterior to the next stage, that is,

NEW WEIGHT OLD
——
Pr(X;[Y) = W(t,t — 1) x Pr(X;—1|Yi—1) (2.75)

where the weight is defined by

Wit —1) 1= [Pr()’(t)lx(t)) x Pr(x(t)|x(t — 1))}

Pr(y(O)|Y;-1)
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Pr[X,|Y,] Pr{X,|Y,] Pr{X, Y, ] PrX|Y,]

— W(1,0) = - 2PWe-1,t-2) 7 Wtt-1) |[—

Pr[X,|Y, ] =W (-1 xPriX,_|Y,]
where the Baye’s operator is defined at each stage by
Prly@) | x(O] xPrlx() [x¢=D].  _ | N

W(t,t—-1):=
=D Py O]

FIGURE 2.2 Sequential Bayesian processor for joint posterior distribution.

The sequential Bayesian processor is shown diagrammatically in Fig. 2.2. Even
though this expression provides the full joint posterior solution, it is not physically
realizable unless the distributions are known in closed form and the underlying mul-
tiple integrals or sums can be analytically determined. In fact, a more useful solution
is the marginal posterior distribution.

2.5.2 Filtering Posterior Estimation

In this subsection we develop a more realizable Bayesian processor for the posterior
distribution of the random x(#). Instead of requiring that the posterior possess the
entire set of dynamic variables, X;, we need only restrict our attention to the current
variable attime . That is, for signal enhancement, we would like to estimate Pr(x(#)|Y;)
where we restrict our attention to the value of the parameter based on all of the available
measurements at time ¢. We start with the prediction recursion “marginalizing” the
joint posterior distribution

Pr(x(D)|Yi—1) = / Pr(x(2), x(r — DIY;—1) dx(t — 1)
Applying Bayes’ rule to the integrand yields
Pr(x (), x(t — DIY;—1) = Pr(x(0)x(t — 1), Yi—1) x Pr(x(r — D[Y;—1)

or
Pr(x(t), x(t — 1)|Y,_1) = Pr(x(£)|x(t — 1)) x Pr(x(t — 1)|Yi—1) (2.76)

where the final expression evolves from the first order Markovian assumption.
Applying the Chapman-Kolmogorov equation, the prediction recursion can be
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written as
Pr(x(0)|Y;—1) = /Pr(x(t)|x(t — 1)) x Pr(x(z — D|Y;_1) dx(t — 1) 2.77)

Examining the update or correction equation based on the filtering relation and
applying Bayes’ rule, we have

Pr(x(®), Y)) _ Pr(x(®), y(0), Yi-1)
Pr(Y?) Pr(y(2), Yi—1)

Pr(x(0)|Y:) =

Again applying the rule to this relation gives

Prx(o|1) = TTODRD: Yio) x POl ¥ioy) x Pr(¥ioy) 278
v Pr(y(t)|Y;—1) X Pr(¥;—1) '

Canceling like terms in numerator and denominator and applying the Markov

assumption, we obtain the final expression for the update recursion* as

Likelihood Prior
Posterior
————  Pr(y(t)|x(t)) x Pr(x(t)|Y;—
B (O = (y(@)]x(2)) (x(DYi—1) 2.79)
Pr(y(®)[Y;-1)
— —
Evidence

where we can consider the update or filtering distribution as a weighting of the
prediction distribution as in the full joint case above, that is,

UPDATE WEIGHT PREDICTION
——
Pr(x()|Y;) = We(t, t — 1) x Pr(x(t)|Y,—1) (2.80)

where the weight in this case is defined by

Pr(y(®)|x(1))

Welt-t = D= g SO

The resulting processor is shown diagrammatically in Fig. 2.3.
We summarize the sequential Bayesian processor in Table 2.1.

4 Note that this expression precisely satisfies Bayes’ rule as illustrated in the equation.
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y(-1) y()
§ Prlx(t-1)|Y,] Pr[x(t)|Y,_,] l Pr[x(t)|Y,]
r-=—--=-- + """I l""""""I
»>E Correct ' Predict Correct —.E Predict  1..»
v We(t=1) i We(t, 1-1) ' |

Predict: Prlx()|Y,] = _[Pr[x(t)|x(t—1)]Pr[x(t—l)| Y, Jdx@t-1)
Correct: Prlx(1)|Y,] = We(tt—=D) X Pr[x ()| Y,_]
Prly(1) | x(1)]
Welt t-1) 1= | —F/————
(=D [Pr[ymm]

FIGURE 2.3 Sequential Bayesian processor for filtering posterior distribution.

TABLE 2.1 Sequential Bayesian (Filtering) Processor

Prediction
Pr(x(0)|Y,—1) = / Pr(x()|x(t — 1)) x Pr(x(r — 1)|Y,_1) dx(t — 1) (prediction)
where Pr(x(t)|x(t — 1)) (transition probabliity)
Correction/Update
Pr(x())]Yy) =Pr(y(®)|x(2)) x Prx(®)|Y,—1)/Pr(y(1)]| Yi—1) (posterior)
where Pr(y(2)|x(?)) (likelihood)

Initial Conditions

X(0) P(0) Pr(x(0)|Yo)

2.6 SUMMARY

In this chapter we have developed the idea of statistical signal processing from the
Bayesian perspective. We started with the foundations of Bayesian processing by
developing the “batch” solutions to the dynamic variable (state) or parameter estima-
tion problem. These discussions led directly to the generic Bayesian processor—the
maximum a posteriori solution evolving from Bayes’ theorem. We showed the rela-
tionship of MAP to the popular maximum likelihood estimator demonstrating the ML
is actually a special case when the dynamic variable is assumed deterministic but
unknown and therefore not random. We also include the minimum variance estimator
(MV, MMSE) and mentioned the least-squares (LS) approach. After discussing some
of the basic statistical operations required (chain rule, performance (CRLB), etc.),
we developed the idea of Bayesian sequential or recursive processing. We started
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with the full or joint posterior distribution assuming all of the information about the
dynamic variable and observations was available. The solution to this problem led to a
sequential Bayesian processor. Lastly we followed with the development of a solution
to the more practical marginal posterior or “filtering” distribution and illustrated the
similarity to the previous processor.

MATLAB NOTES

MATLAB is command oriented vector-matrix package with a simple yet effective
command language featuring a wide variety of embedded C language constructs
making it ideal for statistical operations and graphics. Least-squares problems
are solved with the pseudo-inverse (pinv). When the covariance is known (min-
imum variance) the (Iscov) command can be applied. Individual linear algebraic
techniques including the singular-value decomposition, qr-decomposition (Gram-
Schmidt) and eigen-decomposition techniques (svd, qr, eig, etc.) are available.
The Statistics toolbox offers a wide variety of commands to perform estimation.
For instance, “fit” tools are available to perform parameter estimation for a vari-
ety of distributions: exponential (expfit), Gaussian or normal (normfit), Poisson
(poissfit), etc. as well as the generic maximum likelihood estimation (mle) as
well as specific likelihood estimator for negative Gaussian/normal (normlike),
negative exponential (explike).
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PROBLEMS

21

2.2

2.3

Derive the following properties of conditional expectations:
(a) Ex{X|Y}=E{X}if X and Y are independent.

(b) E{X}=E/{E{X|Y}}.

(o) Ex{g(Y) X} =E\{g(Y) E{X|Y}}.

(d) Exni{g(Y) X} =Ey{g(Y) E{X|Y}}.

(e) Ex{c|Y}=c.

(f) ExlgM)Y}=g(¥).

(&) Ex{cX+dY|Z}=cE{X|Z}+dE{Y|Z}.

Verify the following properties:

(a) Vi(d'b)=(Va)b+ (Vb )a, for a,b € R" and functions of x.
(b) Vi(b'x)=D.

(c) V,(x'C)=C, C e ™™,

d) Vi(x)=1I.

(e) Vi(x'x)=2x.

(f) Vi(x’Ax)=Ax+ A'x, for A not a function of x.

Show that for any unbiased estimate of X(y) of the parameter vector x the
Cramer Rao bound is

Cov(klx) > Z~' fori=x=23x(y) and x € R",Z € R"™"
where the information matrix is defined by

T := —Ey{V(V, In Pr(Y|X))}
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2.5

2.6

2.7

2.8

BAYESIAN ESTIMATION

The sample mean, 6 =1/N Zf’zl 6(t), is a very important statistic in data
processing.

(a) Show that the sample mean is an unbiased estimator of 8 ~ Exp(1/6).

(b) Estimate the corresponding variance of 6.

(¢) Show that the sample mean is a consistent estimator of 6.

(d) Construct the two standard deviation confidence interval about the sample
mean estimator. (Hint: Let 0 ~ N(6, 0%), 0% known.)

(e) Show that 6 is a minimum variance estimator. (Hint: Show it satisfies the
Cramer Rao bound with equality).

NH It 6 is an estimator or 6, calculate the corresponding mean-squared error.

Let x(#) be an unknown dynamic parameter obtained from the linear measure-
ment system

Y1) = C(0) x(1) + v(1)

where v~ N(0, Ry,(1)) with y, v € R” and x is governed by the state transition
mechanism

xt+ 1) =01+ 1,0)x@) ford e RV

Calculate the Cramer Rao bound for the case of estimating the initial state x(0).

Suppose we have the following signal in additive Gaussian noise:
y=x+n withn ~ N(0,Ry,)

(a) Find the Cramer-Rao bound if x is assumed unknown.
(b) Find the Cramer-Rao bound if p(x) = xe™*/Run , x>0.
Suppose we have two jointly distributed random vectors x and y with known
means and variances. Find the linear minimum variance estimator. That is, find

)ACMV =Ay+i)

and the corresponding error covariance cov X, X =x — X.
We would like to estimate a vector of unknown parameters peR" from a
sequence of N-noisy measurements given by

y=Cp+n

where CeRP*",y, neRP, and v is zero-mean and white covariance R,,.
(a) Find the minimum variance estimate pyy .
(b) Find the corresponding quality cov(p — ppyv).
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2.10

2.11

2.12
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Suppose we have N samples {x(0) . . . x(N — 1)} of aprocess x(#) to be estimated
by N complex sinusoids of arbitrary frequencies {fy, . .., fu—1}. Then

N—1
x(k AT) =Y awexp(j2nfuk AT) fork=0,....N -1

m=0
Find the least-squares estimate ay g of {a,,}.

Suppose we are given a measurement modeled by
(1) = s+ n(r)

where s is random and zero-mean with variance o> = 4 and  is zero-mean and
white with a unit variance. Find the two-weight minimum variance estimate
of s, that is,

2
Smy = Z w;y(i)
i=1
that minimizes

J = E{(s —5)?%)

Find the maximum likelihood and maximum a posteriori estimates of the
parameter x

pxX)=ae™® x>0, a>0
and
pylx)=xe x>0, y>0

Suppose we have two classes of objects, black and white with shape subclasses,
circle and square and we define the random variables as:

X1 = number of black circular objects
X> = number of black square objects
X3 = number of white objects

Assume that these objects are trinomially distributed such that:

Grtom4x VT /1 0V /1 0\
Prx|@) = (22N (2) (24 = — =
r(x|©) ( X1l > (4) 173 2 1

Suppose a person with blurred vision cannot distinguish shape (circle or

square), but can distinguish between black and white objects. In a given batch

of objects, the number of objects detected by this person is: y = [y; y2] with
Y1 =x1+x

Y2 = X3
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2.13

2.14

2.15

2.16

BAYESIAN ESTIMATION

(a) What is the probability, Pr(y;|®)?

(b) What is the expression for the E-step of the EM-algorithm assuming Oy is
the current parameter estimate, that is, find the expression for E{x|y1, (:)k}
with x3 known?

(c) What is the corresponding M-step?

(d) Take the EM solution (a)—(c) above based on 100 samples with y; =100
and start iterating with ®o = 0 for 10-steps, what is your final estimate of
the parameter, ®19? (O, = 0.5) for simulation x; =25, x, =38.

Suppose we have a bimodal distribution consisting of a Gaussian mixture
with respective means, variances and mixing coefficients: {m,alz, p1} and
{12, 03, p2)} such that py(x) = Y7_ | piV (wi» 67) with py = 1 — p;. We would
like to fit the parameters, ® = (py, i1, 012, wo, 022) to data. Develop the EM
algorithm for this problem.

Suppose we are given a measurement system
yO) =x()+v@) t=1,...,N
where v(t) ~N(O, 1).

(a) Find the maximum likelihood estimate of x(z), that is, X (¢), for
t=1,...,N.

(b) Find the maximum a posteriori estimate of x(¢) that is, Xpyap(f), if
X

px)=e*.

Suppose we have a simple AM receiver with signal
y@)=0s@)+v() t=1,...,N

where ® is a random amplitude, s is the known carrier, and v ~ N(0, R).
(a) Find the maximum likelihood estimate @ML.

(b) Assume © ~ N(®g, Rpe). Find the maximum a posteriori estimate @MA p.
(c) Assume O is Rayleigh-distributed (a common assumption). Find (:DMAP.

We would like to estimate a signal from a noisy measurement
y=s+v
where v~ N(0, 3) and s is Rayleigh-distributed

ps) = se5 12
with

|
e 6

p(yls) =

5



217

2.18

PROBLEMS 49

(@) Find the maximum likelihood estimate.
(b) Find the maximum a posteriori estimate.
(c) Calculate the Cramer-Rao bound (ignoring p(s)).

Assume that a planet travels an elliptical orbit centered about a known point.
Suppose we make M observations.

(a) Find the best estimate of the orbit and the corresponding quality, that is,
for the elliptical orbit (Gaussian problem)

Bix> + Bry? =1
Find B =[B fa.

(b) Suppose we are given the following measurements: (x,y) = {(2,2), (0, 2),
(—=1,1), and (—1,2)}, find B8 and J, the cost function.

Find the parameters, f;, 82 and f3 such that
f(t) = it + pot* + B3sint

fits (¢, f(t)): ={(0, 1), (r/4,2), (7/2, 3), and (77, 4)} with corresponding quality
estimate, J.






SIMULATION-BASED
BAYESIAN METHODS

3.1 INTRODUCTION

In this chapter we investigate the idea of Bayesian estimation [1-13] using approx-
imate sampling methods to obtain the desired solutions. We first motivate the
simulation-based Bayesian processors and then review much of the basics required
for comprehension of this powerful methodology. Next we develop the idea of
simulation-based solutions using the Monte Carlo (MC) approach [14-21] and intro-
duce importance sampling as a mechanism to implement this methodology from
a generic perspective [22-28]. Finally, we consider the class of iterative proces-
sors founded on Markov chain concepts leading to efficient techniques such as the
foundational Metropolis-Hastings approach and the Gibbs sampler [29-37].
Starting from Bayes’ rule and making assertions about the underlying probabil-
ity distributions enables us to develop reasonable approaches to design approximate
Bayesian processors. Given “explicit” distributions, it is possible to develop analytic
expressions for the desired posterior distribution. Once the posterior is estimated,
then the Bayesian approach allows us to make inferences based on this distribu-
tion and its associated statistics (e.g., mode, mean, median, etc.). For instance, in
the case of a linear Gauss-Markov (GM) model, calculation of the posterior dis-
tribution leads to the optimal minimum variance solution [11]. But again this was
based completely on the assertion that the dynamic processes were strictly con-
strained to Gaussian distributions and a linear GM model therefore leading to a
Gaussian posterior. When the dynamics become nonlinear, then approximate meth-
ods evolve based on “linearization” techniques either model-based (Taylor series
transformations) or statistical (sigma-point transformations). In both cases, these
are fundamentally approximations that are constrained to unimodal distributions.

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.

51



52 SIMULATION-BASED BAYESIAN METHODS

What happens when both the dynamics and statistics are nonstationary and non-
Gaussian? Clearly, these approaches can be applied, but with little hope of success
under most conditions. Therefore, we must resort to other less conventional (in signal
processing) ways of attacking this class of problems that have dominated the science
and engineering literature for a long time [38—61]. This question then leads us directly
to statistical simulation-based techniques invoking random sampling theory and the
Monte Carlo (MC) method—well-known in statistics for along time [14]. This method
is essentially a collection of techniques to estimate statistics based on random sam-
pling and simulation. It can be thought of simply as “performing estimation through
sampling”. The goal of Bayesian techniques using MC methods is to generate a set
of independent samples from the target posterior distribution with enough samples
to perform accurate inferences [21]. Monte Carlo techniques have been applied to a
large variety of applications in science and engineering [56, 57, 61]. In this chapter,
we start out with the simple idea of random sampling with the underlying motive
of developing Monte Carlo simulation techniques to solve nonlinear/non-Gaussian
signal processing problems.

MC methods involve techniques to estimate the posterior distribution of interest
using either numerical integration-based methods (when possible) or sample-based
simulation methods which attempt to produce independent-identically-distributed
(i.i.d.) samples from a targeted posterior distribution and use them to make statistical
inferences. Following Smith [18], we develop this idea further starting out with Bayes’
rule for the variable or parameter, X, and the corresponding data, Y, that is, the
posterior distribution is given by

Pr(Y[X) x Pr(X)  Pr(Y|X) x Pr(X)
Pr(Y) ~ [Pr(YIX) x Pr(X)dX

Pr(X|Y) = 3.1)

with the usual definitions of likelihood, prior and evidence (normalization) distribu-
tions. Once the posterior is estimated, then the inferences follow immediately. For
instance, the conditional mean is given by

E(X|Y) = /XPr(X|Y) dx (3.2)

In the continuous (random variable) case the explicit evaluation of these integrals is
required, yet rarely possible, leading to sophisticated numerical or analytical approx-
imation techniques to arrive at a solution. These methods rapidly become intractable
or computationally intensive to be of any real value in practice. Thus an alternative
method is necessary.

Just as we can use the distribution to generate a set of random samples, the samples
can be used to generate (approximately) the underlying distribution (e.g., histogram).
The idea of using samples generated from the prior through the likelihood to obtain
the posterior parallels that of using analytic distributions. For example, ignoring the
evidence we use the method of composition [16] to sample:

Pr(X|Y) o< Pr(Y|X) x Pr(X) (3.3)



3.2 PROBABILITY DENSITY FUNCTION ESTIMATION 53

so that we can

 Generate samples from the prior: X; — Pr(X); i=1,...,N;
« Calculate the likelihood: Pr(Y|X;); and
« Estimate the posterior: 15r(X |Y)~Pr(Y|X;) x Pr(X;).

Unfortunately, this methodology is not realistic unless we can answer the following
questions: (1) How do we generate samples from distributions for simulations? and
(2) How do we guarantee that the samples generated are i.i.d. from the targeted
posterior distribution?

However, before we develop the idea of sampling and simulation-based methods,
we must have some mechanism to evaluate the performance of these samplers. In the
next section, we briefly describe techniques to estimate the underlying probability
distributions from data samples.

3.2 PROBABILITY DENSITY FUNCTION ESTIMATION

One of the requirements of Bayesian signal processing is to generate samples from
an estimated posterior distribution. If the posterior is of a known closed form (e.g.,
Gaussian), then it is uniquely characterized by its particular parameters (e.g mean
and variance) that can be “fit” to the samples directly using parameter estimation
techniques. But, if the probability density! is too complex or cannot readily be repre-
sented in closed form, then nonparametric techniques must be employed to perform
the estimation.

Since most parametric forms rarely fit the underlying posterior distribution encoun-
tered in the real world, especially if they are multimodal (multiple peaks) distributions,
we investigate the so-called kernel (smoothing) method of PDF estimation. The basic
idea is to fit a simple model individually at each target sample (random variate) loca-
tion, say X, using the observations close to the target, p(x). This estimate can be
accomplished by using a weighting function or equivalently, kernel function, IC(x; x;)
that assigns a weight to x; based on its proximity to X [4]. Different kernels lead
to different estimators. For instance, the classical histogram can be considered a
rectangular or box kernel PDF estimator [5], while the fundamental Parzen win-
dow multidimensional estimator is based on a hypercube kernel [3]. Some of the
popular kernel smoothing functions include the triangle, Gaussian, Epanechnikov
and others [4]. In any case, kernel density estimation techniques [6] provide the basic
methodology required to estimate the underlying PDF from random data samples and
subsequently evaluate sampler performance—one of the objectives of this chapter.

Theoretically, the underlying principle of distribution estimation is constrained by
the properties of the PDF itself, that is,

e py(x)>0VxeRy; and
. fo px(x)dx=1.

!'In this section we introduce more conventional notation for both the cumulative and density or mass
functions, since it is required. The CDF of the random variable X with realization x is defined by Py(x),
while the PDF or PMF is py(x). In instances where it is obvious, we do not use the subscript X to identify
the random variable.
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Formally, the probability that the random variate, x, will fall within the interval,
x; <X <uxjfori<jis given by [3]

.
Pr(x; <X <x;) = / ’pX(x) dx ~ py(x) x Ay for Ay <« 1 (small) (3.4)
Xi

which is simply the area under the PDF in the interval (x;, x;). Thus the probability
that X is in a small interval of length A, is proportional to its PDF, py(x).

Therefore, it follows that the probability at a point, say X, can be approximated by
allowing x; =x and xj =x + A, then

x+Ay
Prix <X <x+Ay) = / px(x)dx forx e Ry (3.5)
X
demonstrating that
. Prix<x<x+ Ay
=1 3.6
Pt = fim, = 36

Consider a random draw of N-i.i.d. (total) samples according to py(x) above. The
probability that ny of these reside within R is binomial and can be approximated
by the frequency ratio, ny /N, leading to a relative frequency interpretation of the
probability. That is, it follows that

ny

px(x) X Ay = N 3.7

But this is just the well-known [1] histogram estimator given by

Ay

Be(0) = Py(®) = — x N ) < (3.8)
X) =px(X)=—x— |x—xXx .
Px Px Ay N =

Here X is located at the midpoint of the interval (bin), x — % <x<Xx+ % and
the corresponding probability is assumed constant throughout the bin as shown in
Fig. 3.1. If

nN/N

py(x) ~ (3.9)

X

then as N — oo, histogram estimator converges to the true PDF that s, py (x) — px(x)
and the following three conditions must hold:

1. lim A, — 0;

N—o00

2. lim ny — o0; and
N—oo

3. lim 3% — 0.
N—o00
The first condition must hold to achieve the limitin Eq. 3.6, while the second condition
indicates how ny is to grow to guarantee convergence. Thus, at all nonzero points of
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FIGURE 3.1 Estimated PDF using both histogram and kernel (Gaussian window, N'(0, 10))
methods for random samples generated from a Gaussian mixture: A7(0, 2.5) and N2(5,1)
and mixing coefficients, P1 =0.3 and P, =0.7.

the PDF by fixing the size of the interval, the probability of samples falling within
this interval is finite and therefore, ny ~ Pr(x) x N and ny — oo as N — oo. The final
condition arises arises because as the interval size shrinks, A, — 0, the corresponding
probability Pr(x) — 0. These conditions indicate the manner in which the parameters
should be chosen: N large, Ay small with ny large. Satisfaction of all of these
conditions imply convergence to py(x) (see [3, 5] for more details).

There are two common ways of ensuring convergence: (1) “shrink” the region

by selecting the interval as a function of the number of samples such as A, = «/LN

(Parzen-window method)?; and (2) “increase” the number of samples within the
interval which can be done as ny = +/N. Here the local region grows until it encloses
ny-neighbors of x (nearest-neighbor method). Both methods converge in probability.
This is the principle theoretical result in PDF estimation [3, 5, 6]. Next consider the
kernel density estimator as a “generalized” histogram.

Let xq,...,xy be a set of i.i.d. samples of the random variate, x, then the kernel
density estimator approximation of the underlying probability density at x is given by

1 1 N X —X; 1 N X —X;
pX(x)ZKx(NiZK( A ))zNAx§K< A ) (3.10)

=1
21t has been shown that the “optimal” bin (interval) size can be obtained by searching for the bin that

.. . . X — 72
minimizes the cost function, C(A,) = & Af*) [7].
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where [ is defined as the kernel density (non-negative and integrates to unity) with
A the corresponding smoothing parameter or bandwidth used to “tune” the estimate.
The classic bias-variance tradeoff arises here. That is, for smaller A (high resolution)
yields smaller bias, but higher variance. However, a larger A, (low resolution), gives
a larger bias with smaller variance [5]. We demonstrate the application of kernel
techniques in the following example of estimating a multimodal distribution.

Example 3.1

Suppose we would like to estimate the PDF of a set of 1000-samples generated from
a mixture of two Gaussian densities such that A (1iy, 02) — N7(0,2.5) and N3 (5, 1)
with mixing coefficients, P; = 0.3 and P, = 0.7. We use both the histogram and kernel
density estimators. For the histogram we choose N = 20 bins to illustrate (graphically)
the bin estimates, while for the kernel density estimator we choose a Gaussian window
1
specified by K(x) = ﬁ e%ﬁz with an optimal bandwidth of A, =0, x (%) 5 [3].
The results are shown in Fig. 3.1 for 100-bins or points where we see the estimated
PDF using both methods along with the “true” Gaussian density. Clearly the Gaussian
kernel estimator provides a much “smoother” estimate of the true density. A smoother
histogram estimate can be obtained by decreasing the bin-width. Both techniques
capture the general shape of the bimodal distribution. AANA

This completes the section on PDF estimation techniques. Note such details as
selecting the appropriate bin-size for the histogram and the bandwidth for the kernel
density estimator as well as its structure (Gaussian, Box, etc.) is discussed in detail in
[3, 5-7]. These relations enable “tuning” of the estimators for improved performance.

Next, we consider the simulation-based methods in and effort to answer the ques-
tions posed previously: (1) How do we generate samples from distributions for
simulations? and (2) How do we guarantee that the samples generated are i.i.d. from
the targeted posterior distribution?

3.3 SAMPLING THEORY

The generation of random samples from a known distribution is essential for simu-
lation. If the distribution is standard and has a closed analytic form (e.g., Gaussian,
exponential, Rayleigh, etc.), then it is usually possible to perform this simulation
easily. This method is called the direct method because it evolves “directly” from the
analytic form. An alternative is the “inversion” method which is based on uniform
variates and is usually preferred. Thus, the uniform distribution becomes an extremely
important distribution in sampling because of its inherent simplicity and the ease in
which samples can be generated [15].

Many numerical sample generators evolve by first generating a set of random
numbers that are uniformly distributed on the interval [a, b] such that all of the subin-
tervals are of equal length and have “equal probability”. Thus, X is said to be a uniform
random variable

X ~ Ula, b) 3.11)
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that has a cumulative distribution function (CDF) defined by

0 x<a
Px(x) =Pr(X <x) = i:fz a<x<b (3.12)
1 x>b

along with the corresponding probability density

1
px() = — a=x= (3.13)
with mean and variance: u, = b;r“ and 02 = %.

Because of its simplicity and ease of numerical generation, the uniform variate is
the starting point of many simulation schemes. For instance, to generate a binomial
random number (e.g., coin tossing with Pr(heads) =p), we first generate uniform
random variates and then count the number of times they are greater than p. The result
is a set of binomial variates with trial parameter, N, and success (heads) probability, p.

Since statistical sampling techniques are based on the generation of random sam-
ples from a given distribution, we must understand the relationship between an input
PDF, py(x) and an output PDF, py(y) when there exists a relationship between the
random variables x and y defined by: y = y(x). The problem is:

GIVEN, x and py(x), FIND the output PDF, py(y) defining the probability of y.

When we have functions of random variables with known analytic distributions,
then the usual transformation method applies. That is, given the known distribution,
Px(x) or density py(x) and the monotonic, one-to-one, invertible transformation,
y =T (x), then the distribution or density of y is found by the using the transformation
relation [1],

—1
py(y) = px(x) x

2| =pe=T"0) % ‘a—x‘ (3.14)
X ay

where ‘ g—; ‘ is the Jacobian of the transformation and 7! is its inverse. The derivation

of this relationship follows directly from the definitions of CDF [2]. Although simple,
this relation establishes one of the basic concepts in random sampling.

Perhaps the most fundamental relation is obtained by applying the transformation
directly to the cumulative distribution function (CDF) defined by

e o]

y(X)ZPx(X)Z/ px(@) da (3.15)

That is, applying the transformation of 3.14 and taking the required derivatives
gives
dy _ dPy(x)
dx  dx

= px(x) (3.16)
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which follows from the fundamental theorem of calculus. Therefore we have

(x)
py(y) = y0r) = X2 (3.17)
|Px(x)|
yielding a uniformly distributed random variable, y ~1/(0, 1), that is,
Py(y) =y(x)=1 for0<y=<1 (3.18)

Thus, the CDF of any random variable is always uniformly distributed on the inter-
val, [0, 1], independently of py(x)! This important result enables us to “sample” from
any arbitrary py(x), since the random variable, x can be sampled by first generating
samples from y ~ (0, 1) and then performing the inversion x = P;l (). This is called
the inversion method in sampling theory that simply entails generating random sam-
ples from ¢/(0, 1) and determining the samples x by inversion of its (known) CDF.
Note that the CDF can be known analytically or just in tabular form to perform the
inversion. We discuss this theorem more formally in the next section. First, consider
the following example to illustrate this idea.

Example 3.2

Suppose we have a uniform random variable, x ~{/(0,1) and a transformation,

y=T(x)= —% Inx. We would like to know the analytic form of the density, py(y).

1
b—a
x=T"1! = e~ therefore, taking the derivative and substituting its absolute value
into Eq. 3.14 gives

Since x is uniform, the density is py(x) = =1, the inverse transformation is,

.y —Ay
Py =1 x [—re [ =ae™

an exponential distribution with parameter, A. AAA

Transformations of discrete random variables are much simpler where we use

the probability mass and discrete cumulative distribution functions in place of their

continuous counterparts. In this case the transformation is still continuous with the
identical conditions (invertible, etc.), that is,

yvi=Tkx) i=1,...,N (3.19)
and therefore, we have the discrete CDF as
Py() =Pr(Y <y)=PrX <x)=PrX <x; =T '(y)); i=1,....,N (3.20)

3.3.1 Uniform Sampling Method

As noted, the uniform distribution plays a vital role in simulating random variates
and is applied heavily in sample-based simulation schemes. We formally present two
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fundamental theorems and a corollary [1] to justify the theoretical foundation of this
approach and motivate their use through some simple examples.

Uniform Transformation Theorem Given arandom variable, X, with distribution,
Px (x), there exists a unique, monotonic, transformation, 7'(X) such that the random
variable, U = T'(X) is distributed as 2/(0, 1), that is, if T(X) is selected as

TX)=U

then
U~UQO,1

The proof of this theorem follows directly [1] from the properties of the CDF.
Suppose x is arbitrary and u = Px(x). Then with a monotonic Py (x), we have U <u
iff X < x and therefore it follows that

Py(u) = Pr(U < u) = Pr(X <x) = Px(x) = u

giving the desired result. This is a strong result stating that any CDF can be represented
in terms of a set of uniform random variates as discussed before.

The second theorem [1] provides the basis of most sample-based simulations and
is reliant on the existence of the “inverse” of the CDF.

Inverse Transformation Theorem Given a uniform random variable, U ~ U(0, 1)
and a distribution (target), Px(x), then there exists a unique, monotonic, transforma-
tion, T'(U), such that the random variable, X = T'(U) is distributed as Px(x), that is,
if T(U) is selected as

T(U) =X =P;'(U)
then
X ~Px(x)

Again the proof of this theorem follows directly from the properties of the CDF
[1]. From the Uniform Transformation Theorem above, we know that U is uniform
and Py (X) is arbitrary; therefore, U =Px(X) — X = P)}l (U) and it follows that

Px(X < x) = Px(X < Py '(U)) = Px(P ' (U)) = u = Px(X)
providing the proof. We illustrate this technique with the following example.

Example 3.3

Suppose we would like to generate a random variable, X, exponentially distributed
with parameter A, X ~ Exp(1). From the Uniform Transformation Theorem, we have

u=Py(x)=1—e*
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and
1 1
x=Py (U)= —Xln(l —u)
To generate exponential random variables:

« Generate uniform samples: u; —> U(0, 1)
« Transform to exponential: x; = —% In(1 — u;)

Also since In(1 —u;) ~U(0, 1), then the exponential variates are generated more
efficiently from x; = —% In(u;). AAA

To further illustrate the inverse CDF method, we apply it to a discrete problem that
occurs quite frequently in nonlinear processing.

Example 3.4

Suppose we have estimated a discrete empirical distribution representing a posterior
density given by

N
Px() =D Wis(x — x;)
i=1

with corresponding CDF
N
Px(x) =) Win(x — x))
i=1

where p(x) is a unit-step function, W;:=Pr(X =x;) and of course, vazl W, =1.
The CDF is shown in Fig. 3.2a. Using the inverse CDF method, we can generate
realizations of X =x; by:

« Generate uniform samples: u; ~ (0, 1)
« Simulate samples: x; = P;l(u) or

xi =x;  for Px(xp—1) < ur < Px(x)

or using the empirical distribution

k—1 k
x; = x; for ZWJ <up < ZWJ
j=1 Jj=1
This transformation is illustrated in Fig. 3.2b. AAA
Summarizing, we first generate a uniform random variate, u; and then “bracket” its

probability to determine the desired random variable, x;. So we see from these exam-
ples that using the inverse CDF method enables us to generate continuous and discrete
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Py (x) Py ()

(a) (b)
FIGURE 3.2 Empirical Distribution: (a) Estimated CDF. (b) Estimated ICDF.

random variates from both the analytic function as well as discrete samples from an
empirical distribution. We will apply this technique frequently in the simulation-based
processor. This approach is also used heavily in the resampling algorithms to follow
(e.g., uniform, systematic, etc.). Numerical methods can also be used to perform the
inversion by solving Px(X) — U =0 for X [5, 15].

Before we close this section, let us note that the above theorems can be generalized
to simulate any distribution from any other distribution using the uniform variates as
an intermediate step leading to the following corollary.

Corollary Given a distribution, Px(X) and a corresponding target distribution,
Py(Y), then there exists a unique, monotonic, transformation, 7'(X), such that the
random variable, Y = T'(X), is distributed as Py(y), that is, if 7(X) is selected as

T(X)=Y =P, (Px(x))

then
Py(Y <y) =Py(y)

The proof of this corollary follows by applying the results of the previous theorems
with U =Px(x) and ¥ = P;l(U ) for U ~U(0, 1). Consider the following example to
demonstrate this approach to simulation.

Example 3.5

Consider arandom variable, X, distributed as X ~Px(x) =1 — e™ —x e¢™*. We would

like to generate a random variable, Y, exponentially distributed with parameter X,
Y ~Exp(A). Then from the Corollary, we have

, 1
u=Py(y)=1—¢e?* and y:P;I(U)z—Xln(l—u)
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Thus it follows that
—1 1 1 —X —X
Py (Px(x)) = Y In(1 — Px(x)) = —3 In(e™ +xe™)

Therefore we have
1
Vi = —X ln(eix" + Xi eixi)

Sampling from the uniform (as before), we first generate {x;} and then the desired set
of random variates, {y;}. AAA

We complete this subsection by stating the Golden Rule of Sampling [22] given by:

« Generate uniform samples: u; — U(0,1); i=1,...,N;
¢ Define the transformation: u#; = Px(x;); and
« Apply the inverse transformation: x; = P;l (u;).

Next we investigate a more general approach.

3.3.2 Rejection Sampling Method

In order to use the uniform sampling simulation methods of the previous section, we
require the inverse CDF, which is not a simple task, even when the distribution is
known in closed form. The rejection sampling method offers an alternative that not
only eliminates the inversion problem, but also becomes an integral part of many of the
sophisticated sampling algorithms to follow because of its simplicity and generality.
In principle, the rejection method can be applied to any distribution with a density
given up to a normalization constant [32].

The basic sampling problem in this context is that we are trying to generate samples
from a density (or distribution) that is capable of being evaluated and we have a
function

px(x) = ¢ x Pr(X)
where Pr(X) is the target distribution and py(x) is related and computable up to

the normalization constant ¢ which is not known. Suppose we select a sampling
distribution, say q(x), such that there exists a “covering” constant M with

px(x) < Mg(x) Vx
The rejection sampling method is illustrated in Fig. 3.3 (¢ = 1) and summarized as:

« Generate a sample: x; —> q(x)

o Generate a uniform sample: uy —> U(0, 1)

« ACCEPT the sample: x; = xy, if uy < Afﬁg’zl)

o Otherwise, REJECT the sample and generate the next trial sample: x;
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Sampling PDF: Mq(x)

AN

<P then ACCEPT
Mq)

Target PDF: p(x)

1
1
1
1
X

FIGURE 3.3 Rejection Sampling Method.

The proof of this method is given in Liu [32] using an indicator function, Z(x),
defined by

|1 ifx Accepted
I(x)—{o if x Rejected (3.2
Proceeding,
Pr(Z() = 1) = [ Pr(Z(0) = 11X = x) qx)dx = (cpr(x)) () dx = —
r(Z(x) = —/r x)=1X =x)qx x—/ M) q(x x_M
and
(i3) 9
Prix|Z(x) = 1) = = Pr(x)

Pr(Z(x)=1)
which shows that the acceptance of the sample corresponds to sampling directly from
the target distribution, Pr(x).

The expected number of samples to accept an x ~ Pr(x) is M and therefore, the key
to using this approach is to select a good proposal distribution q(x) with a low M—a
nontrivial problem. Note that Example 1.1 in which the area of a circle was estimated
using sampling methods is a simple geometric illustration of this methodology. The
following example from Papoulis [1] demonstrates the method in an analytic form.

Example 3.6

Suppose we are given a random variable, x ~ Exp(1) and we would like to simulate
the random variable with truncated Gaussian, y ~ A/(0, 1), that is, we have

2 —X2
e xulx) and qx)=e"

X

px) =

N

where ((x) is a unit step function as before, then for x > 0, we have

@ — %ei(x;])z X el < g
qw) V= Vo
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Setting M = /5, we have the acceptance/rejection sampling rule:

(=17

xi=x; ifu<e 2 (Accept) AAA

This completes the background on sampling theory, next we consider the Monte
Carlo approach.

3.4 MONTE CARLO APPROACH

The Monte Carlo approach to solving Bayesian estimation problems is to replace com-
plex analytic or unknown probability distributions with sample-based representations
to solve a variety of “unsolvable” problems in inference (integration, normalization,
marginalization, expectation, etc.), optimization (parameter, MAP, ML estimation),
statistical mechanics (Boltzmann equation), nuclear physics (fission, diffusion, etc.)
[32, 35]. The key to the MC approach is to generate independent random samples from
a probability distribution, Pr(X), usually known only up to a normalizing constant
(evidence) [32]. Typically, generating independent samples from this distribution is
not feasible implying sample dependencies or using a proposal distribution, q(X), that
is similar to but not the exact target distribution, Pr(X). Independent (i.i.d.) samples
are important because both strong and weak Laws of Large Numbers (mean converges
in distribution to population mean) ensures that the inferences (e.g., mean, variance)
can be made as accurate as desired by increasing the number of samples. However,
the samples can be dependent and still properly reflect the probability of the target
distribution opening the possibility of Markov chain methods (see Sec. 3.4.1).

The rejection method, just discussed, [22], importance sampling [16] and
sampling-importance-resampling [26] are methodologies that do employ a proposal
distribution. The Metropolis technique and its variants provide the foundation for this
approach using Markov chain concepts generating dependent samples from a chain
with Pr(X) as its invariant or stationary distribution. In this section we develop the idea
of the MC simulation-based approach to Bayesian estimation using iterative rather
than sequential Monte Carlo techniques.

Theoretically, the Monte Carlo approach to sampling is based on the following
principles [10, 27, 29, 30, 35]. Here N i.i.d. samples, {X(i)}ﬁv= 1» are drawn from the
target density, p(X), to produce an estimate of the empirical distribution (density)

. 1 &
Pr(X) = pv(X) = N Z&X — X)) (3.22)
i=1

which can be used to approximate integrals (pdfs, areas, etc.) with sums, that is,

1 1Y L as.
ING) = 5 DFOOSK = X)) = - D K@) =5 1) = / FOO PO dX
i=1 i=1
(3.23)
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Here Iy (f) is unbiased and converges (almost surely) to I(f) according to the strong
Law of Large Numbers. Its corresponding variance is bounded, (a)% < 00) and

o
N

<

var(Iy(f)) = (3.24)

A central limit theorem argument shows that the error converges in-distribution as

N—o00

VNUNG) = 1) =5 N(0.0}) (3.25)

The main advantage of MC over deterministic integration is that it positions its samples
over regions of high probability.

In signal processing, we are usually interested in some statistical measure of a
random signal or parameter expressed in terms of its moments. Let us take a slightly
more detailed look at just how MC concepts can be applied with this perspective
in mind. Suppose we have some signal function, say f(X), with respect to some
underlying probabilistic distribution, Pr(X). Then a typical measure to seek is its
performance “on the average” which is characterized by the expectation

Ex{f(X)} = /f(X)Pr(X)dX (3.26)

From the Bayesian perspective, the embedded distribution can be thought of as
the “posterior” of the signals/parameters. The Bayesian approach must integrate over
high-dimensional probability distributions to make inferences about parameters or
predictions about signals. Unless the integral is analytically tractable, the usual
method of evaluation is through numerical integration (deterministic) techniques.
Unfortunately the number of points to evaluate both f(-) and Pr(-) increases exponen-
tially with the dimensionality of the signal/parameter space. Also it is not possible to
evaluate this integral over the entire space in practice; therefore, we concentrate on
specific regions where the integrand is dense (not null). Instead of attempting to use
numerical integration techniques, stochastic sampling techniques known as Monte
Carlo (MC) integration have evolved as an alternative (see Fig. 1.2 for concept). As
mentioned, the key idea embedded in the MC approach is to represent the required
distribution as a set of random samples rather than a specific analytic function (e.g.,
Gaussian). As the number of samples becomes large, they provide an equivalent rep-
resentation of the distribution enabling moments to be estimated directly. A functional
estimate of the distribution could also be fit to the samples, if desired.

Integration has been used throughout statistics to evaluate probabilities and
expectations. However, with Monte Carlo techniques the process is reversed and
expectations are used to calculate integrals [1, 16, 28, 32]. Suppose we are asked to
evaluate a multidimensional integral,

I=/g(x)dx (3.27)
X
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Then an MC approach would be to factorize the integrand as

gx) — f(x)p(x) > p(x) =0 and /p(X) dx =1

where p(x) is interpreted as a probability distribution in which samples can be drawn.
This is the foundation of sampling techniques based on MC integration. Monte Carlo
approaches draw samples from the required distribution and then form sample aver-
ages to approximate the sought after distributions, that is, they map integrals to
discrete sums. Thus, MC integration evaluates Eq. 3.26 by drawing samples, {X (i)}
from Pr(X). Assuming perfect sampling, this produces the estimated or empirical
distribution given by

N
Pr(X) ~ ]iv Y sx — X(0) 5 N, 0P)

i=1

which is a probability distribution of mass or weights, Ilv and random variable or
location X (7). Substituting the empirical distribution into the integral gives

. 1 & L
Ex{f(X)} = /f(X)Pr(X) X ~ I ;f(X(z)) =f (3.28)

which follows directly from the sifting property of the delta function. Here f is said
to be a Monte Carlo estimate of Ex{f(X)}. Clearly, it is unbiased, since

S ‘
E(f} = 5 D EUFX@)} = Ex(f(0)
i=1

with variance given by

— 1
mmzﬁ/mm—&mmWMMM

Additionally, if the variance is finite, then the central limit theorem h_olds and the
error in estimation converges to a zero-mean, Gaussian with N'(0, var(f)). Consider
the following examples to illustrate these concepts. First we discuss an analytic case,
then a numerical case to solidify both MC approaches.

Example 3.7

Suppose we would like to solve for the integral

1
I:/ fx)dx
0
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using the MC approach. Let u be defined as a random variate drawn from a uniform
distribution, u ~ (0, 1), then we can express the integral in terms of an expectation as

1
I =E{f(u)} = /0 Jf () Pr(u) du

Generating a set of independent, identically distributed (i.i.d.) uniform samples,
ui,...,uy, then the corresponding set of functions, {f(u;)} are also i.i.d. with mean
I as defined above. Therefore, the uniform sampling distribution is given by (equally
likely)

N
1
Pr(u = u;) = N;S(u—ui) for0 <u; <1

Substituting this expression into the expectation relation, we obtain

1 1 N 1 N
1= Elf) = /0 Fw [ﬁ ;aw - u»] du= i;f(ui)

From the Law of Large Numbers® as N — oo, it follows that

N
Y fuw) — E{f) =1

i=1

Therefore, we can approximate the integral by generating a large number of random
variables drawn from a uniform sampling distribution, transform them according
to some functional relationship and calculate the sample mean to approximate the
desired integral. AANA

This simple example illustrates the basic MC concept that will be applied through-
out this text. Consider another example that illustrates this approach further by
developing a simulation-based solution to a familiar statistical estimation problem.

Example 3.8

Suppose we have a Gaussian random variable and we would like to estimate its mean
and variance. Knowledge that it is Gaussian enables us to write the closed form
expression for the distribution

—(x — mx)2 }

1
~ N(my,0%) or Pr(x)= ex
x (my, 0}) (x) ol p 202

3 The Law of Large Numbers states simply that the mean converges with probability one to the population
mean as the number of samples become large.
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and the mean and the variance can be calculated analytically as
m, = /x Pr(x) dx
0’3 = / x— mx)2 Pr(x) dx

In contrast, the Monte Carlo approach is to generate N samples from a Gaussian.
Assuming perfect sampling, x; —> N (m, o)%), and we have that

N
N 1
Pr(x) ~ N ; 8(x — x;)

Now the mean and variance can be estimated from the samples directly using

. 1 & 1 &
mx=/xPr(x)dx:/X(N§8(x—xi)>dx=]vizzlxi

with variance

N N
R N 1 1 N
;= f (x —my)*Pr(x) dx = f (x—my)? (ﬁ ,221: 8(x — x») d = ?:1 (i — i)
Summarizing the MC approach for this example, we must:

« Generate N samples from a Gaussian: x; —> N (m,, of);
« Estimate the desired statistics of the distribution from its samples as: /71, and &2

We performed a simulation in MATLAB to generate Gaussian variates with m, =2
and o% =4. The results are shown in Fig. 3.4. In Fig. 3.4a we see a simulation for
N = 1000 samples (+) with corresponding estimated mean (solid line) and upper and
lower 95%-confidence limits about the mean (m, &= 1.960,). The sample mean and
variance for this MC realization were at: i, = 1.97 and 62 = 4.01. The distribution
was estimated using a histogram with 100-bins and is shown in Fig. 3.4b with a near
perfect MC solution using N = 10° samples shown in the inset. AAA

So we see from this example how MC methods can be used to used to approximate
(estimate) distributions and their associated statistics from simulated samples.

These methods are acceptable as long as high accuracy in not required. Monte
Carlo techniques tend to perform a “divide and conquer” approach to integration by
breaking the integral up into distinct regions around the integrand consisting of strong
local peaks at known locations. They are typically very time consuming methods, on
the order of tens and hundreds of thousands of points, and have only recently gained
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notable prominence in the signal processing literature due to the major advances in
fast computers [28]. Next let us consider the extension of Monte Carlo techniques
using Markov chains.

3.4.1 Markov Chains

In MC integration, the population mean of f(X) is estimated by the sample mean.
When the samples {X;(t) = A&}} are independent, the Law of Large Numbers ensures
that the approximation can be made as accurately as required by increasing the num-
ber of samples, N. Generally, however, drawing samples from Pr(X) is not feasible
especially when it is a non-standard distribution. However, dependent samples can
be generated by any process that draws samples throughout the support (range) of the
distribution. One efficient technique to accomplish this sampling is through a Markov
chain having Pr(X) as its unique stationary or invariant distribution—this methodol-
ogy is termed Markov chain Monte Carlo (MCMC). This technique is basically MC
integration where the random samples are produced using a Markov chain. Recall
that a Markov chain is a discrete random process possessing the property that the
conditional distribution at the present sample (given all of the past samples) depends
only on the previous sample (first-order), that is,

Pr(X;(0)|X;(r — 1), ..., Xi(0)) = Pr(X;()|X;(t — 1))

Summarizing, the Markov chain dynamics are represented by the transition prob-
ability, Pj(t —1,1) :=Pr(X(t) = X;|X(t — 1) = &}) denoting the probability that the
state at time ¢ will be A} given that it is currently in state &} at time 7 — 1. Further,
if the chain is also homogeneous in time, then P;(t — 1, t) depends only on the time
difference (in general) and therefore the transition probability is stationary such that
Pt — 1,0)— Py with P >0and YN, Py =1[1].

Thus, the basic requirement in Monte Carlo techniques is to generate random
samples from a probability distribution or target distribution only known up to a nor-
malizing constant. Typically it is not possible to generate the samples from the target
but generating from a known trial distribution that is similar to the target distribution,
just as in rejection sampling, is applied. In order to understand the MCMC approach
we must first define critical properties of the Markov chain.

Markov chains possess certain crucial properties that must exist for them to be
useful in MC simulations [32, 33]. A Markov chain begins with an initial distribution,
Pr(X;(0)) and evolves to another indexed variable X;(#) determined by a transition
kernel, that is, at index ¢ we have

Transition Kernel

—N—
Pr(Xi(1) = ) PrOG(OIX;( — 1) x Pr(X(e — 1) (3.29)
J

An invariant distribution is a fixed point solution to Eq. 3.29. For distribution
estimation the constraint is even more stringent, since we require time reversible
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chains which must satisfy a detailed balance as (ignoring the index)
Pr(X;(1) x Pr(X;(1)|X;(1)) = Pr(X;(1)) x Pr(X;(0)|Xi(r)) V Xi(0), X;(t) ~ (3.30)

which means that the transition probability from X;(¢) to X;(¢) is identical to the
probability from X;(#) to X;(¢) implying invariance [28, 32]. The chain is also required
to be ergodic which means that regardless of the initial distribution, the probability
at t converges to the invariant distribution as r — oo, that is,

tl_l)rgo Pr(X;(t)) — Pr(X;(1)) (3.31)

Thus, MCMC methods for the simulation of a distribution is any technique pro-
ducing an ergodic or reversible chain with invariant distribution being the desired
target distribution. Armed with this information we can now discuss the most pow-
erful and efficient MCMC methods: the Metropolis-Hastings and Gibbs sampler and
their variants.

3.4.2 Metropolis-Hastings Sampling

Markov chain simulation is essentially a general technique based on generating sam-
ples from proposal distributions and then correcting (acceptance or rejection) those
samples to approximate a target posterior distribution. Here we must know both the
target, py (x) (up to a normalizing constant), and the proposal, q(x), a priori. The sam-
ples are sequentially generated forming a Markov chain with properties defined in the
previous section. Typically, in Markov chain simulation, samples are generated from
the transition kernel or distribution. The key, however, is not really the chain itself,
but the fact that the approximate distribution improves sequentially as it converges to
the target posterior.

In this subsection we discuss the basic Metropolis-Hastings sampling method.
We start with the original Metropolis algorithm [24] and then introduce the Hastings
generalization [23]. The fundamental idea is similar to the rejection method discussed
previously. The Metropolis-Hastings (M-H) technique defines a Markov chain such
that a new sample, x; is generated from the previous samples, x;_1, by first drawing a
“candidate” sample, x; from a proposal distribution, q(x), and then making a decision
whether this candidate should be accepted and retained or rejected and discarded
using the previous sample as the new. If accepted, x; replaces x; (X; — x;) otherwise
the old sample x;_ is saved (x;j—; — x;). This is the heart of the M-H approach in its
simplest form.

We start with the basic Metropolis technique to describe the method:

o Initialize: x, — py(x,)
« Generate a candidate sample from proposal: x; — q(x)

« Calculate the acceptance probability: A(x;—1,X;) = min {%, 1}
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o ACCEPT candidate sample with probability, A(x;—1, X;) according to:

3.32
i_1 otherwise ( )

o X if px(%i) > py(xi-1)
T x
We see from this technique that when the candidate sample probability is greater
than the previous sample’s probability it is accepted with probability

A(xi, Xi) if Accepted

i) = e 3.33
Px(xi) { 1 — A(x;,%;) if Rejected (3.33)

The idea is that we can detect when the chain has converged to its invariant distribu-
tion (posterior), when py(x;) = py(x;—1). It is clear from this discussion that in order
for the chain to converge to the posterior it must be reversible and therefore q(x) must
be a symmetric distribution. This was the original Metropolis assumption. Hastings
[23] generalized this technique by removing the symmetry constraint enabling asym-
metric proposals. The basic algorithm remains the same except that the acceptance
probability becomes (px — p)

A(xi, %) = min {—p(x") X 9ult) } (3.34)
p(xi) x q(x;ilx;)
This process continues until the desired N-samples of the Markov chain have been
generated. The critical step required to show that the M-H converges to the invariant
distribution or equivalently the posterior, py(x), evolves directly from the detailed
balance of Eq. 3.30 given by

p(xit11xi) X plxi) = p(xilxi+1) X p(Xi+1) (3.35)

where p(x;y1|x;) is the Markov chain transition probability. If we assume that the
i""-sample was generated from the posterior, x; ~ px(x), then it is also assumed that
the chain has converged and all subsequent samples have the same posterior. Thus,
we must show that the next sample, x;1 is also distributed p(x;) = py(x). Starting
with the detailed balance definition above and integrating (summing) both sides with
respect to x;, it follows that

/ p(xig1lx) p(x;) dx; = / p(xilxiv1) p(xig1) dx;
= P(Xi+1)/P(Xi|xi+1)dXi = p(xi+1) (3.36)

which shows that the relation on the left side of Eq. 3.36 gives the marginal distribution
of x;4| assuming x; is from p(x;). This implies that if the assumption that x; is from
p(x;) is true, then x;y; must also be from p(x;) and therefore p(x;) — py(x) is the
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invariant distribution of the chain. Thus, once a sample is obtained from the invariant
distribution, all subsequent samples will be from that distribution as well, proving
that the invariant distribution is p(x;). A full proof of the M-H technique requires a
proof that p(x;|xp) will converge to the invariant distribution (see [19] for details).
For the M-H technique, the transition from x;;1 7 x; to x; occurs with probability

p(xi) x q(xi|Xi))7 1} = A xis1) X Qi )

p(xit11x:) = q(xit11x;) x min {—A
P(xi) X q(Xiy1]x;
(3.37)

This completes the basic M-H theory.

3.4.3 Random Walk Metropolis-Hastings Sampling

Next we consider another version of the M-H technique based on a random walk
search through the parameter space. The idea is to perturb the current sample, x; with
an addition of a random error, that is,

Xi+1 =x; +¢€ fore ~ pr(e) (3.38)

where € is i.i.d. A reasonable choice for this distribution is a symmetric Gaussian,
that is, pg(€) ~ N(0, 02). Thus, the random walk M-H method is:

Given the current sample, x;,

« Draw a random sample: € — pg(€)

o Generate the candidate sample: x; = x; + ¢;

o Draw a uniform random sample: u; — U(0, 1)

« Calculate the acceptance probability from the known densities: A(x;, X;)
» Update the sample:

. _ )’«\Ci lf up < A(xi,)?i) (3 39)
= x; Otherwise '

« Select the next sample

With this algorithm, we must use both the (known) proposal and target distri-
butions to calculate the acceptance probability and then generate samples (random
walk) from the proposal. It is important to realize that a “good” proposal distri-
bution can assure generating samples from the desired target distribution, but the
samples must still be generated to “cover” its range. This is illustrated in Fig. 3.5
where our target distribution is a Gaussian mixture with mixing coefficients as:
(0.3, (0,2.5); 0.5,N(5,1); 0.2,N(10,2.5)). In the figure we see the results from
choosing a reasonable proposal (A/(0, 100)) in the dark color generating enough sam-
ples to cover the range of the target distribution and a proposal (N (0, 10)) that does not
sample the entire space adequately leading to an erroneous target distribution char-
acterizing the sampler output. Consider the following example of applying a variety
of proposals and M-H techniques.
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(a)

/ ISeCOﬂd-order mixture

Third-order mixtureI

(b)

FIGURE 3.5 Metropolis-Hastings for Gaussian mixture distribution PDF estimates: (a) Inad-
equate proposal: A(0,10) at a 59.2% acceptance rate (light gray). (o) Adequate
proposal: A'(0,100) at a 34.0% acceptance rate (dark gray).

Example 3.9

Suppose we would like to generate samples from a unit Gaussian distribution,
N(0, 1), using the various M-H simulation techniques: (i) symmetric proposal using
U(—10, 10); (ii) symmetric proposal using a Student T distribution, 7 (1); (iii) ran-
dom walk using uniform noise, U (—35, 5); and (iv) uniform proposal using U/(—4,9).
To start we specify the “target” distribution as py(x) ~A(0, 1) and we choose the
following proposals:

e Case (i):  q;(x)~U(—10,10)= 5 for —10 <x <10

o Case (ii): qo(x)~T(1)

e Case (iii): x; =xj_1 + u; where u; ~U(-5,5)= % for -5 <u; <5

o Case (iv): qu(x)~U(—-4,9)= % for -4 <x <9

To implement the Metropolis, Metropolis-Hastings, Random Walk Metropolis-
Hastings techniques we must:

1. Draw a random sample from the proposal: x; — q;(x)
2. Calculate the Acceptance Ratio: A(x;, x;—1)

3. Draw a uniform sample: u; — 4(0, 1)

4. Accept or reject sample: u; < A(x;, x;—1)
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5. Update sample: x;
6. Generate next sample: x4

The results of these 10-sample simulations are shown in Fig. 3.6a-d using the
M-H-sampler in MATLAB. We see the results of using the various proposals. All of the
estimated densities give reasonably close estimates of the target posterior, (0, 1).
We estimated the corresponding posterior distribution from the samples using both
histogram and kernel density estimators of Sec. 3.2 with all of the results reasonable.
The standard deviation estimates were very close to unity in all cases; however,
the means differed slightly from zero. It is interesting to note the corresponding
acceptance rates (see the figure caption) with the most Gaussian-like, 7 proposal
distribution had the highest acceptance rate of 57.8%. The true target distribution
is superimposed for comparison purposes. Acceptance rates provide an indication
of how “probable” a sample from the proposal is accepted as a sample in the target
(posterior). When the proposal provides good coverage of the target distribution,
then many samples are accepted at a high rate, if not the rate is low. Clearly, the
M-H sampling technique and its variants provide a very robust method for generating
samples from a target distribution especially when the proposal covers the entire range
of the target sample space. AAA

There are a variety of M-H sampling techniques such as the independence sampler,
the hybrid or dynamic (Hamiltonian) sampler, the multipoint samplers, etc. [32].
Also note that many of these methods are available in freeware (e.g. language-based
BUGS [38] and the MATLAB-based, NETLAB [39], PRTools [40]). We summarize the
M-H sampling technique is Table. 3.1. Next we discuss a popular special case of this
approach—the Gibbs sampler.

3.4.4 Gibbs Sampling

The Gibbs simulation-based sampler (G-S), one of the most flexible of the sampling
techniques available. It is a special case of the Metropolis-Hastings approach in which
the acceptance probability, A(x;, x;), is unity, that is, all samples are accepted [27].
Theoretically, the G-S is based on the fact that the targeted joint posterior distribution
can be determined completely by a set of underlying conditional distributions evolving
directly from Bayes’ rule (joint = conditional x marginal) [29]. It falls into the class
of sampling algorithms termed, block-at-a-time or variable-at-a-time methods [23].
Proof of these methods have a significant practical implication, since it can be shown
that the product of the transition distribution of the Markov chain is a product of
conditional transitions which converge to joint posterior as its invariant distribution
[30]. Itis for this reason that the G-S is called “sampling-by-conditioning” [28], which
will become obvious after we investigate its underlying structure. As before, it should
be realized that both target and proposal distributions must be known (approximately)
and samples must be easily generated from the proposal to be effective.

Gibbs sampling can be considered an implementation of the M-H technique on
a component-by-component basis of a random vector. It is more restrictive than the
M-H method, but can be more efficient leading to a simpler implementation. The
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TABLE 3.1 Metropolis-Hastings Sampling Algorithm

Initialize
Xo = Px(Xo) [draw sample]

Proposal

X — q(x) [draw sample]

Acceptance probability

Ax, ) = min{ M, }
pxi) X q(xi]x;)
Uniform sample
u, —> U0, 1) [draw sample]
Decision

PR if uy < A(x;, x;)
"7 | x,_1 otherwise

Next sample

Xiy] —> X; [draw sample]

G-S is especially important in Bayesian problems, since it is uniquely designed for
multivariate problems, that is, it replaces sampling from a high-dimensional vector
with sampling from low order component blocks [67]. It can be considered a concati-
nation of M-H samplers, one for each component variable of the random vector. This
decomposition has individual target distributions representing a conditional density
or mass for each component given values for all of the other variables. Thus, the
proposal for the component variable of the vector is the conditional density of that
variable given the most recent values for all of the others.

More formally, suppose the random vector, X € RV+*! is decomposed into its
components, Xi for k=1, ..., N,. Therefore, the idea is to generate, say X (i), based
on the conditional distribution, Pr(X;|X2(i — 1),...,Xy, (i — 1), Y) and the next sam-
ple drawn, X»(i), uses it and the samples available from the previous iteration to
sample from, Pr(Xz|X1({)) UX3(i—1),...,Xy,(i —1),Y) and so forth so that at the
i"-iteration, we have the K component sample generated from

Xi (i) — Pr(Xi (XD} U {Xn(@— 1)} >om>k;n<k,Y) (3.40)
If we expand this relation, then we observe the underlying structure of the Gibbs
sampler,
Given the sample set:, {X(i — 1)}, then
« Generate the first sample: X; — Pr(Xj|X2(i —1),..., Xy, (i —1),Y) and then
« Generate the next sample: X, — Pr(Xo|[X1()UX3(—1),..., XN (i—1),Y)

o Generate the k’h-sample: Xi — Pr(Xcl{Xu—k, - ., XD}, XN, G —D),...,
Xmk-NJ2m>k;n<k,Y)
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So we see that the vector is decomposed component-wise and the corresponding
conditional distributions evolve creating the vector sequence of iterates which are the
realization of a Markov chain with transition distribution. We assume that we would
like to go from X’ — X giving the transition probability:

Pr(X’,X) = Pr(X; |Xé,...,X}’Vx, Y) x Pr(X2|X1,X§,...,X,’VX,Y) X+
X Pr(Xy, X1, .., XN~ 1, Xy, Y) (3.41)
The G-S can be shown to satisfy the detailed balance. As a result it converges to

the invariant distribution of the Markov chain which in this case is the joint posterior
distribution [28, 32]. Consider the following example from [20].

Example 3.10

Suppose we have a measurement vector, y from a bivariate Gaussian with unknown
mean and known covariance, that is,

Pr(X|Y) = M(Y,R,y) for Ry = |:;) 'f] (3.42)

To apply the G-S to X, we require the conditional posterior from the well-known
properties of the bivariate Gaussian [1] given by

Pr(Xi|X2,Y) ~ N(y1 + plxz — y2), 1 = p%)

PrOGIX1, Y) ~ N2 + pler = y1), 1 = p%)

Thus, the G-S proceeds by alternating samples from these Gaussian distributions,

given (x1(0), x2(0))
Leti=1,2,...

e Draw x;(i) = Pr(x;|x2(i — 1),Y)
e Draw x,(i) = Pr(x2|x1(i), Y)

So we generate the pairs: (x1(1),x2(1)), (x1(2),x2(2)), . . ., (x1(i), x2(i)) from the
sampling distribution converging to the joint bivariate Gaussian, Pr(X) as the invariant
distribution of the Markov chain. AAA

Next we consider a generalized variant of the Gibbs’s sampler—the slice sampler.

3.4.5 Slice Sampling

Slice sampling (S-S) is a MCMC sampling technique based on the premise of sampling
uniformly from the region under the target distribution, Pr(X) [19, 31, 32, 36, 37].
Therefore, like all of the previous sampling methods, it can be applied to any problem
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for which the target distribution can be evaluated at a point, say x. It has an advantage
over Metropolis methods being more robust to step-size variations especially since
it performs adaptive adjustments. Slice sampling (S-S) is a generalized case of the
Gibbs sampler based on iterative simulations of the uniform distribution consisting
of one dimensional transitions. It is also similar to rejection sampling in that it draws
samples from under the target distribution. However, in all of these cases the S-S is
not bound by their restriction [37]. It is based on the following proposition proven in
Cappe [36].

Proposition: Let x ~Pr(X) and u~U(0, M), then the pair of random variables,
(x,u) are distributed uniformly as, (x,u) ~U(0,M x Pr(X)). Conversely, if (x,u)
is uniformly distributed, then x admits Pr(X) as its marginal distribution.

In its simplest form, the slice sampler technique generates uniform intervals that
capture the samples:

o Initialize: x;_;
o Draw uniform samples:  u; — U(0, Pr(x;_1))
o Draw uniform samples:  x; —> U(0, S(u;)) where S(u;) = {x : Pr(x;) > u;)

The actual implementation of the algorithm is much more complex and we refer
the interested reader to Neal [31] or MacKay [37] for more details. We merely state
important features of the slice sampler technique.

The S-S involves establishing intervals to ensure the sample points of the target
distribution are included by using an adaptive step-size (interval size) applying two
techniques: (1) step-out technique; and (2) shrinking technique. The step-out tech-
nique is used to increase the size of the interval until the new sample, x; is included,
while the shrinking technique does the opposite, it decreases the interval size to assure
the original sample x;_; is included. Consider the following example from [19] to
illustrate the S-S.

Example 3.11
Suppose we would like to generate samples from a unit Gaussian distribution,
x~N(0, 1) using the slice sampling technique:

o Initialize: x;_; =0 (random draw)

o Draw uniform samples:  u; — U(0,Pr(x;—_1))=U (0, Le’xz/z)

V2r
o Draw uniform samples: x; —> U(—«, o) where o =+/ —In/2my;

Simulations can now be performed and analyzed. AANA

We conclude this section with the a signal processing example. We are given
an autoregressive (all-pole) model and we would like to generate samples from the
corresponding posterior distribution.
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] L(a) élic( i‘bs) sa‘mples gamples

Burn in

o i
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Samples x 10*
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Estimated posterior: N(0.002, 0.1003) AR model:

0.03
A=0.1; Rww=0.1
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Probability
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Samples

FIGURE 3.7 Gibbs (slice) sampler for autoregressive (AR(1)) model: (a) Simulated sam-
ples (N=10%). (b) Estimated posterior distribution: A/(0.002, 0.1003) with 10% burn-in
(N =10%-samples.

Example 3.12
We have the following all-pole (AR(1)) model:
x(t) = —ax(t — 1)+ w(t —1) for w ~ N0, Ryw)

Suppose we choose the following parameters for the model: N =103 samples,
a=0.1, Ry, =0.1 and we would like to develop samples from the posterior. Ana-

lytically, we know that the posterior distribution is given by: x ~ A (O, f_"’a"’z) =
N(0,0.101). We generate the samples using the slice (Gibbs) sampler with the
proposal: g(x) ~AN(0,0.1). The results are shown in Fig. 3.7. Using MATLAB we
synthesized the set of samples and estimated their underlying distribution using both
histogram and kernel density with a Gaussian window estimators. The samples includ-
ing a 10% burn-in period are shown in Fig. 3.7a along with the estimated distribution
in b. The sampler has a 100%-acceptance rate and the estimates are quite good with
the posterior estimated at A/(0.002,0.1003). AAA

This concludes the section on sampling theory and iterative sampling techniques.
Next we investigate the importance sampler that will lead to the sequential approaches
required to construct Bayesian model-based processors.
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3.5 IMPORTANCE SAMPLING

One way to mitigate difficulties with the inability to directly sample from a posterior
distribution is based on the concept of importance sampling. Importance sampling
is a method to compute expectations with respect to one distribution using random
samples drawn from another. That is, it is a method of simulating samples from a
proposal distribution to be used to approximate a targeted (posterior) distribution by
appropriate weighting. Importance sampling is a generalization of the MC approach
which evolves by rewriting Eq. 3.27 as:

1= Jwa= [ (55) [ aorae=
= [ fx)dx = — | x gx)dx for [ g(x)dx =1 (3.43)
X x \g(x)

Here g(x) is referred to as the sampling distribution or more appropriately the
importance sampling distribution, since it samples the target distribution, f(x) non-
uniformly giving “more importance” to some values of f(x) than others. We say that
the support of g(x) covers that of f(x), or the samples drawn from ¢(-) overlap the
same region (or more) corresponding to the samples of f(-) as illustrated previously
in Fig. 3.3. That is, we say that f(x) and g(x) have the same support if

fx)>0 = g(x) >0 VxeRV!

a necessary condition for importance sampling to hold. If we interpret the prior of
Fig. 1.1 as the proposal, g(x) and the posterior as the target, f(x), then this figure
provides a visual example of coverage.

The integral in Eq. 3.43 can be estimated by:

o drawing N-samples from g(x): X(i) ~ g(x) and g(x) ~ + Zl 1 8(x — X(i)); and
» computing the sample mean [28],

f@) FO) 1w N FX()
1=t { } /<_> Xy 20 XDy = Zq(x(,))

q(x) q(x)

with corresponding error variance

FON [ (f® N
wele (G5 1] = [ (G5 1) <o

It is interesting to note that the MC approach provides an unbiased estimator with the
corresponding error variance easily calculated from the above relation.

Consider the case where we would like to estimate the expectation of the function
of X given by f(X). Then choosing an importance distribution, g(x), that is similar to
f(x) with covering support gives the expectation estimator

px)

E {f(x)}—/ﬂx)xp(x)dx—/f( )( 5

) x q(x)dx (3.44)
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If we draw samples, {X (i)}, i=0, 1, ..., N from the importance distribution, g(x) and
compute the sample mean, then we obtain the importance sampling estimator. That
is, assume the perfect sampler, g(x) ~ % Zivz | 8(x — X(7)), and substitute

B PO\ . 0. ()
E,{f(0)} = / f()( )XQ(X)dx“Ni:Z]f(X(’))X<q<x<l-))> (3.45)

demonstrating the concept.

The “art” in importance sampling is in choosing the importance distribution, g(-)
that approximates the target distribution, p(-), as closely as possible. This is the princi-
pal factor effecting performance of this approach, since variates must be drawn from
q(x) that cover the target distribution. Using the concepts of importance sampling,
we can approximate the posterior distribution with a function on a finite discrete
support. Since it is usually not possible to sample directly from the posterior, we use
importance sampling coupled with an easy to sample proposal distribution, g(X;|Y;)—
this is the crucial choice and design step required in Bayesian importance sampling
methodology. Here X; = {x(0), . .., x(¢)} represents the set of dynamic variables and

= {y(0), ..., y(#)}, the set of measured data. Therefore, starting with a function of
the set of variables, say f(X;), we would like to estimate its mean using the importance
concept. That is, using the MC approach, we would like to sample from this posterior
directly and then use sample statistics to perform the estimation. Therefore we insert
the proposal importance distribution, g(X;|Y;) as before

Pr(X;|Y;)

= Ef X)) = | fx,
F) = E(F(x)) = / £ )[ s

:| x q(X;|Yy) dX; (3.46)

Now applying Bayes’ rule to the posterior target distribution, and defining a weighting
function as
Pr(X:|Y;) Pr(Y:|X;) x Pr(X;)

W) = = 3.47
= Xi¥) = Pr(¥) x e, |¥0) (347

Unfortunately, W(¢) is not useful because it requires knowledge of the evidence or
normalizing constant Pr(Y;) given by

Pr(Y,) = / Pr(Y,|X;) x Pr(X,) dX, (3.48)

which is usually not available. But by substituting Eq. 3.47 into Eq. 3.46 and defining
a new weight, W(¢), as

Wy o YD) _ PrkilXo) x Pr(Xo) (3.49)
g(X,|Y)) q(X:Yy)
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we obtain

n 1 Pr(Y:|X Pr(X,
Fo / f(xt)[ %) x Pr( ’)]q(xtm) dx,

Pr(Y;) q(X;1Yy)
1
= Pr(Y,)/W(t)f(Xt)q(XAYI) dX; (3.50)

which is simply the expectation of the weighted function, E,{W (¢)f (X,)} scaled by the
normalizing constant. From this definition of the new weighting function in Eq. 3.49,
we have

W(r) x q(X:|Y;) = Pr(Y:]X;) x Pr(X;) (3.51)

Thus, we can now replace the troublesome normalizing constant of Eq. 3.48 using
Eq. 3.51, that is,

CEWOFX)) | EAWOFX))  EfAWOf(X)

£01) — — = 3.52
1@ Pr(Y,) TWO x qXdX,  EgW) (:52)

Now drawing samples from the proposal X;(i) ~ ¢q(X:|Y;) and using the MC
approach leads to the desired result. That is, from the “perfect” sampling distribution,
we have that

1 N
GxlY) ~ ; 8(X; — X, (i) (3.53)

and therefore substituting, applying the sifting property of the Dirac delta function
and defining the “normalized” weights

Wi(0) for Wit) = Pr(Y; | X; (D)) x Pr(X;(1)) (3.54)

Wi(t) i= ——— :
o S Wi q(X.()|Y;)

we obtain the final estimate

N
F@) =" Wile) x f(X,(0)) (3.55)

i=1

The importance estimator is biased being the ratio of two sample estimators (as in
Eq. 3.52), but it can be shown that it asymptotically converges to the true statistic
and the central limit theorem holds [32, 49]. Thus, as the number of samples increase
(N — 00), an asymptotically optimal estimate of the posterior is

N
Pr(X,|Y:) & ) Wilt) x 8(X; — Xi(0)) (3.56)
i=1

which is the goal of Bayesian estimation. Note that the new weight is, W () W)
where « is defined as “proportional to” up to a normalizing constant.
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3.6 SEQUENTIAL IMPORTANCE SAMPLING

Suppose we would like to develop a sequential version [41-60] of the batch Bayesian
importance sampling estimator of the previous section. The importance distribution
can be modified to enable a sequential estimation of the desired posterior distribution,
that is, we estimate the posterior, I;r(X,_l |Y;—1) using importance weights, W(t — 1).
As a new sample becomes available, we estimate the new weight, YW(¢) leading to an
updated estimate of the posterior, I;r(X, |Y;). This means that in order to obtain the new
set of samples, X;(i) ~ ¢q(X;|Y;) sequentially, we must use the previous set of samples,
X;—1()) ~ q(X;—1]Y;—1). Thus, with this in mind, the importance distribution, g(X;|Y;)
must admit a marginal distribution g(X;_1|Y;—1) implying the following Bayesian
factorization

qXi|Y1) = gXi—11Yi-1) x g(x(D)|X;—1, Y1) (3.57)

which satisfies the probability chain rule decomposition

t
aX,|v)) = [ [ ax®1Xi—x, Y2) (3.58)
k=0

Now let us see how this type of importance distribution choice can lead to the
desired sequential solution [58]. We start with the definition of the unnormalized
weight of Eq. 3.49 and substitute into Eq. 3.57 while applying Bayes’ rule to the
numerator. The resulting weighting function is

Wi = Pr(Y,|X,) x Pr(X,) (3.59)
qXi—11Yi—1) X gx ()| X1, Y1)

Motivated by the definition of W(r — 1), we multiply and divide by the Bayesian
factor Pr(Y;—1|X;—1) x Pr(X;_1) and group to obtain

Pr(Y, 11X, 1) X Pr(X,_1)
aX, 1Y, ) ]
Previous Weight

Pr(Y;1X,) x Pr(X,)
" Pr(Y_ 11X 1) % Pr(X,_ )] X qG(01X_1. ;)

W(t) = [

Therefore we can write

Pr(Y:|X;) x Pr(X;)

W) =Wt -1
(= W = X X % PrXe1) % gD X, ¥0)

(3.60)

Using the probabilistic chain rule of Eq. 2.63 for each of the conditionals and
imposing the Markov property of the dynamic variable along with the conditional
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independence conditions of the measurements, we obtain

1 t—1
Pr(Y|X;) = 1_[ Pr(y(k)|x(k)) = Pr(y(1)|x(1)) l_[ Pr(y(k)|x(k))
k=0 k=0
t—1

t
Pr(X,) = [ ] Prix(o)lx(k — 1)) = Pr(x(t)|x(t — 1) [ | Prxeo)lxk — 1)

k=0 k=0
(3.61)

Therefore, recognizing the relationship between these expansions as well as those at
t — 1 and factoring the z-th term (as shown above), we can cancel both numerator and
denominator chains to extract the final recursions, that is,

PrOO ) [Ty Pl |
[Tz PrOvbechn ]

W) = Wt — 1) x

PrCx(l(r — 1) [ TTiy Prosc) btk — 1)] |
X
[TTih Proccibete — 1) q(D)[Xr-1. Y)
(3.62)

X

which gives the final recursion

W) = Wit — 1) x Pr(y(®)[x(®) x Pr(x()|x(z — 1)) (3.63)
q(x(D1Xi—1, Y1)

Another way of developing this relationship is to recall the Bayesian solution to
the batch posterior estimation problem in Eq. 2.79. We have

Pr(y(n)[x(1) x Pr(x()|x(r — 1))
Pr(y(O)[Y;-1)

Pr(X;[Y;) = [ } x Pr(X;—11Y;-1)

or recognizing the denominator as just the evidence or normalizing distribution and
not a function of X;, we have

Pr(X;|Y;) = C x Pr(y(0)|x(r)) x Pr(x(0)|x(r — 1)) x Pr(X;_1]Y;—1) (3.64)
or simply

Pr(X;|Y:) oc Pr(y(0)|x(2)) x Pr(x(n)[x(r — 1)) x Pr(X;—1]¥i—1) (3.65)
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Substituting this expression for the posterior in the weight relation as before, we have

W) o Pr(Y;|Xy) _ Pr(y(®)|x(1)) x Pr(x(¢)|x( — 1)) o Pr(X;—11Yi-1) (3.66)
q(X;|Y;) qx()1X;—1,Yy) qX;—11Y:—1)
—— —

Previous Weight

giving the desired expression of Eq. 3.63
These results enable us to formulate a generic Bayesian sequential importance
sampling algorithm:

1. Draw samples from the proposed importance distribution: x;(¢) —
qx@®)|Xi-1, Y);

Determine the required conditional distributions: Pr(x;(¢)|x(t — 1)), Pr(y(#)|xi(¢));
Calculate the unnormalized weights: W;(¢) using Eq. 3.63 with x(¢) — x;();
Normalize the weights: W;(¢) in Eq. 3.54; and

Estimate the posterior distribution: Igr(X,|Y = va:l Wi(0)8(x(t) — x;(t))

A

Once the posterior is estimated, then the desired statistics evolve directly. We
summarize the generic sequential importance sampling in Table 3.2.

TABLE 3.2 Bayesian Sequential Importance Sampling Algorithm

Initialize

xi(0)~ qx(0)[y(0)); i=1,..., N, [sample prior]
_ Pr(y(0)[x;(0)) x Pr(x;(0)) .
MO = by Iweights]
W;(0) = WO [normalize]
>, Wi(0)
Importance sampling

Sample

xi(6)~qx@®)|X;—1,Y); i=1,...,N, [sample]
Weight Update

Wi(t) = Wit — 1) x Pr(y()|xi()) x Pr(x(#)|x;(r)) [weights]

qOi(D1Xi(t — 1), Yy)
Weight Normalization

Wil = —iD_
Yol Wit)

Distribution
Np
I;r(x(t)| Y,) =~ Z Wi()d(x(t) — x;(1)) [posterior distribution]
i=1
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Introducing these ideas of Bayesian importance sampling, we are now ready to con-
sider applying this approach to variety of models which we discuss in the next chapter.

3.7 SUMMARY

In this chapter we discussed the importance of simulation-based sampling methods
for nonlinear signal processing. Starting with the basics of PDF estimation and sta-
tistical sampling theory, we motivated statistical approaches to sampling both when
we have analytical expressions for the distributions and we do not have them and
must resort to pure sampling methodologies. We discussed the uniform sampling and
rejection sampling methods examining their inherent advantages and disadvantages.
We showed how these approaches led to more sophisticated techniques evolving from
Markov chain theory and leading to the Metropolis-Hastings sampler. In certain cases
the Gibbs sampler, a variant of the Metropolis-Hastings approach, was developed and
discussed along with its variant—the slice sampler. All of these methods fall into the
general class of iterative methods. Next we concentrated on the importance sampling
approach leading to its recursive version—the sequential importance sampler which
is the workhorse of this text.

MATLAB NOTES

MATLAB is command oriented vector-matrix package with a simple yet effective
command language featuring a wide variety of embedded C language constructs
making it ideal for signal processing applications and graphics. MATLAB has a
Statistics Toolbox that incorporates a large suite of PDFs and CDF's as well as
“inverse” CDF functions ideal for simulation-based algorithms. The mhsample
command incorporate the Metropolis, Metropolis-Hastings and Metropolis inde-
pendence samplers in a single command while the Gibbs sampling approach is
adequately represented by the more efficient slice sampler (slicesample). There
are even specific “tools” for sampling as well as the inverse CDF method captured
in the randsample command. PDF estimators include the usual histogram (hist)
as well as the sophisticated kernel density estimator (ksdensity) offering a vari-
ety of kernel (window) functions (Gaussian, etc.) and ICDF techniques. As yet
no sequential algorithms are available. Type help stats in MATLAB to get more
details or go to the MathWorks website.

REFERENCES

1. A. Papoulis and S. Pillai, Probability, Random Variables and Stochastic Processes
(New York: McGraw-Hill, 2002).

2. P. Peebles, Probability, Random Variables and Random Signal Parameters, 4" FEd.
(New York: McGraw-Hill, 2001).



88

Bl

10.
11.
12.
13.

14.

15.
16.
17.

18.

19.
20.

21.

22.

23.

24,

25.

26.

217.

SIMULATION-BASED BAYESIAN METHODS

R. Duda and P. Hart, Pattern Classsification (New York: Wiley, 2000).

. T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning (New York:

Wiley, 2001).
S. Theodoridis and K. Koutroumbas, Pattern Recognition (New York: Academic Press,
1999).

E. Parzen, “On estimation of a probability density function and mode,” Ann. Math. Stat.,
33, 1065-1076, 1962.

H. Shimazaki and S. Shinomoto, “A method for selecting the bin size of a time histogram,”
Neural Computation, 19, 1503-1527, 2007.

A. Jazwinski, Stochastic Processes and Filtering Theory (New York: Academic Press,
1970).

A. Sage and J. Melsa, Estimation Theory with Applications to Communications and
Control (New York: McGraw-Hill, 1971).

B. Anderson and J. Moore, Optimal Filtering (Englewood Cliff, NJ: Prentice-Hall, 1979).
J. Candy, Model-Based Signal Processing (Hoboken, NJ: Wiley/IEEE Press, 2006).

H. Tanizaki, Nonlinear Filters (New York: Springer-Verlag, 1994).

I. Rhodes, “A tutorial introduction to estimation and filtering,” IEEE Trans. Autom.
Contr., AC-16, 1971.

J. Hammersley and K. Morton, “Poor man’s Monte Carlo,” Symposium on Monte Carlo
Methods, Royal Statistical Society, pp. 23-38, 1954.

S. Ross, A Short Course in Simulation (New York: McMillan, 1990).

M. Tanner, Tools for Statistical Inference, 2 Ed. (New York: Springer-Verlag, 1993).
W. Gilks, S. Richardson and D. Spiegelhalter, Markov Chain Monte Carlo in Practice
(New York: Chapman & Hall/CRC, 1996).

A. Smith and A. Gelfand, “Bayesian statistics without tears: a sampling-resampling
perspective,” Am. Statistician, 44, 4, 84—88, 1992.

C. Robert and G. Casella, Monte Carlo Statistical Methods (New York: Springer, 1999).
A. Gelman, J. Carlin, H. Stern and D. Rubin, Bayesian Data Analysis, 21d Ed. (New York:
Chapman & Hall/CRC, 2004).

M. Mitzenmacher and E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis (Cambridge: Cambridge University Press, 2005).

J. von Neumann, “Various techniques used in connecton with random digits,” Nat. Bureau
Standards Applied Math. Series, 12, 36-38, 1951.

W. Hastings, “Monte Carlo sampling methods using Markov chains and their applica-
tions,” Biometrika, 57, 97-109, 1970.

N. Metropolis, N. Rosenbutt, A. Rosenbutt, M. Teller and A. Teller, “Equations of state
calculations by fast computing machines,” J. Chem. Phys., 21, 1087-1092, 1953.

S. Geman and D. Geman, “Stochastic relaxation: Gibbs distributions and Bayesian
restoration of images,” IEEE Trans. Patten Analy. and Mach. Intell., 6, 721-741,
1984.

D. Rubin, “A noniterative sampling/importance resampling alternative to the data aug-
mentation algorithm for creating a few imputations when fractions of missing information
are modest: the SIR algorithm,” J. Amer. Stat. Assoc., 52, 543-546, 1987.

A. Gelfand and A. Smith, “Sampling-based approaches to calculating marginal densities,”
J. Amer. Stat. Assoc., 85, 410, 398-409, 1990.



28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

REFERENCES 89

J. Ruanaidh and W. Fitzgerald, Numerical Bayesian Methods Applied to Signal Processing
(New York: Springer-Verlag, 1996).

G. Casella and E. George, “Explaining the Gibbs sampler,” Am. Statistician, 46, 3,
167-174, 1992.

S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings algorithm,” Am.
Statistician, 49, 4, 327-335, 1995.

R. Neal, “Slice sampling,” Annals of Statistics, 31, 3, 705-767, 2003.

J. Liu, Monte Carlo Strategies in Scientific Computing (New York: Springer-Verlag,
2001).

W. Fitzgerald, “Markov chain Monte Carlo methods with applications to signal
processing,” Signal Proc., 81, 318, 2001.

C. Andrieu, N. de Freitas, A. Doucet and M. Jordan, “An introduction to MCMC for
machine learning,” Mach. Learn., 50, 5-43, 2003.

D. Frenkel, “Introduction to Monte Carlo methods,” J. von Neumann Inst. Comput. NIC
series, Vol. 23, 29-60, 2004.

0. Cappe, E. Moulines and T. Ryden, Inference in Hidden Markov Models (New York:
Springer-Verlag, 2005).

D. MacKay, Information Theory, Inference and Learning Algorithms (Cambridge, UK:
Cambridge Univ. Press, 2006).

D. Spiegelhalter, A. Thomas, N. Best and D. Lunn, WinBUGS User Manual, Imperial
College: London, UK, 2003 (website: http://www.mrc-bsu.cam.ac.uk).
I. Nabney, NETLAB Algorithms for Pattern Recognition (New York: Springer, 2001).

R. Duin, P. Juszczak, P. Paclik, E. Pekalska, D. de Ridder and D. Tax, PRTools4:
A MATLAB Toolbox for Pattern Recognition, Delft University: Delft, Netherlands, 2004
(website: http://prtools.org).

A. Doucet and X. Wang, “Monte Carlo methods for signal processing,” IEEE Signal Proc.
Mag. 24, 5, 152-170, 2005.

G. Kitagawa, “Non-Gaussian modeling of nonstationary time series,” J. Am. Statistical
Assoc., 82,400, 1032-1063, 1987.

G. Kitagawa, “A nonlinear smoothing method for time series analysis,” Statistica Sinica,
1, 2,371-388, 1991.

N. Gordon, D. Salmond and A. Smith, “A novel approach to nonlinear non-Gaussian
Bayesian state estimation,” IEE Proc. F., 140, pp. 107-113, 1993.

A. Kong, J. Liu and W. Wong, “Sequential imputations and Bayesian missing data
problems,” J. Am. Statistical Assoc., 89, 425, 278-288, 1994.

J. Liu and R. Chen, “Blind deconvolution via sequential imputations,” J. Am. Statistical
Assoc., 90, 430, 567-576, 1995.

G. Kitagawa, “Monte Carlo filter and smoother for non-Gaussian nonlinear state-space
models,” J. Comput. Graphical Stat., 5, 1, 1-25, 1996.

G. Kitagawa and W. Gersch, Smoothness Priors Analysis of Time Series (New York:
Springer-Verlag, 1996).

M. West and J. Harrison, Bayesian Forcasting and Dynamic Models, 2" Ed. (New York:
Springer-Verlag, 1997).

J. Liu and R. Chen, “Sequential Monte Carlo methods for dynamic systems,” J. Am.
Statistical Assoc., 93, 443, 1032-1044, 1998.



90

SIMULATION-BASED BAYESIAN METHODS

51. G. Kitagawa, “Self-organizing state space model,” J. Am. Statistical Assoc., 93, 443,
1203-1215, 1998.

52. M. Isard and A. Blake, “Condensation—conditional density propagation for visual
tracking,” Int. J. Comput. Vis., 29, 1, 5-28, 1998.

53. J. Liu, R. Chen and W. Wong, “Rejection control and sequential importance sampling,”
J. Am. Statistical Assoc., 93, 443, 1022—-1031, 1998.

54. M. Pitt and N. Shephard, “Filtering via simulation: Auxiliary particle filters,” J. Am.
Statistical Assoc., 94, 446, 590-599, 1999.

55. A.Doucet, S. Godsill and C. Andrieu, “On sequential Monte Carlo sampling methods for
Bayesian filtering,” Statist. Comput., 10, 3, 197-208, 2000.

56. A. Doucet, N. de Freitas and N. Gordon, Sequential Monte Carlo Methods in Practice
(New York: Springer-Verlag, 2001).

57. S. Godsill and P. Djuric, “Special Issue: Monte Carlo methods for statistical signal
processing.” IEEE Trans. Signal Proc., 50, 2002.

58. M. Arulampalam, S. Maskell, N. Gordon and T. Clapp “A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking.” IEEE Trans. Signal Proc., 50, 2,
174-188, 2002.

59. P.Djuric, J. Kotecha, J. Zhang, Y. Huang, T. Ghirmai, M. Bugallo and J. Miguez, “Particle
Filtering.” IEEE Signal Proc. Mag. 20, 5, 19-38, 2003.

60. B.Ruistic, S. Arulampalam and N. Gordon, Beyond the Kalman Filter: Particle Filters for
Tracking Applications (Boston: Artech House, 2004).

61. S. Haykin and N. de Freitas, “Special Issue: Sequential state estimation: from Kalman
filters to particle filters.” Proc. IEEE, 92, 3, 2004.

62. C. Andrieu, A. Doucet, S. Singh, and V. Tadic, “Particle methods for change detection,
system identification and control,” Proc. IEEE, 92, 3, 423-438, 2004.

63. A. Harvey, S. Koopman and N. Shephard, State Space and Unobserved Component
Models (Cambridge: Cambridge University Press, 2004).

64. H. Sorenson and D. Alspach, “Recursive Bayesian estimation using Gaussian sums,”
Automatica, 7, 465479, 1971.

65. R. van der Merwe, A. Doucet, N. de Freitas and E. Wan, “The unscented particle filter,”
in Advances in Neural Information Processing Systems 13, MIT Press: Cambridge, MA,
2000.

66. S. Haykin, Kalman Filtering and Neural Networks (Hoboken, NJ: Wiley, 2001).

67. J.Spall, “Estimation via Markov chain Monte Carlo,” IEEE Control Sys. Magz., 4, 3445,
2003.

PROBLEMS

3.1 Letx be a discrete random variable with probability mass function (PMF)

e () Q) e
XY= G —0i\3) \3 rERLS

What is the PMF of y, py(y), when y = x??
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Let z be the distance from the origin to a random point selected within the unit
circle (x> 4+y? < 1). Let z=x2 +y?2, then

(a) What is the probability of the selected point lying within the unit circle?
(b) What is the CDF of z? What is its PDF?

(c) Suppose w = Z2, what is pw(w)? Pw(w)?

Letx~U(0,1) and y = —2 Inx, what is py(x)?

Suppose we have a bivariate distribution with point (X,Y) from a unit square

such that
pxyy(x,y)=1, 0<x<l1l, O<y<l

Let z=x 4y, what is the CDF of z? PDF of z?

A source emits particles that decay at a distance x (x ~ Exp(1)) from the
source. The measurement instrument can only observe these events in a win-
dow of length 20cm (x=1—20cm). N decays are observed at locations:
{x;}={1,...,N}. Using Bayes’ rule [37]

(@) What is the characteristic length A?

(b) Plot the distributions for {x;} ={1.5,2,3,4,5, 12}.

For a particular television show, a contestant is given the following instruc-
tions:

e There are three doors labeled 1, 2, 3 with a prize hidden behind one of them.
Select one of the doors, but it will NOT be opened.

e The host will open one of the other two doors, but will NOT reveal the prize
should it be there.

e The contestant must now make a decision to keep his original choice or
choose another door.

e All the doors will then be opened and the prize revealed
What should the contestant do?

(a) Stay with the original choice?

(b) Switch to the remaining door?

(c) Does it make any difference?

(Hint: Use Bayes’ rule to answer these questions)

Suppose we would like to simulate a random variable X such that

Pr(X =i)=1{0.2,0.15,0.25,0.40}.

(a) Sketch out an algorithm using the inverse transform method to generate
realizations of X choosing an ascending approachfor X =1,X=2,X=3
and X =4.

(b) Sketch out an algorithm using the inverse transform method to generate
realizations of X choosing an descending approachforX =4,X =3,X =1
and X =2.

(c¢) Which approach is more efficient? Why?
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We would like to simulate the value of a discrete random variable X with
associated probabilities: Pr(X =i)=1{0.11,0.12,0.09,0.08,0.12, 0.10,0.09,
0.09,0.10,0.10}. Using the rejection method with M = max Pfgi;)” for
u; ~U(0, 10)

(a) Sketch out rejection sampling algorithm for this problem.

(b) Using this approach synthesize 1000 samples and estimate the histogram?
Estimate the kernel density? (Hint: MATLAB has the commands hist and
ksdensity to perform these operations).

(c) Does the estimated distribution appear to be any classical closed form (e.g.
Poisson)? If so which one?

Suppose the continuous random variable X has cumulative distribution,
Px(x) =x*. Using the inverse transform approach, sketch the methodology to
synthesize X. How would you do this using the rejection approach? Generate
1000 samples and estimate the distributions.

Use the rejection sampling method to generate the continuous random variable
x with density py(x) =20(x(1 — x)3, 0<x< 1. (Hint: select to be gx)=1
and find the maximum ratio of the densities to obtain M).

We would like to compute the solution to the integral

b
I:/ f(x) dx

Using the results of Ex. 3.14, develop the more general MC solution.

Suppose we have a bivariate Gaussian distribution with unknown mean
i =[m1 n2] and known covariance matrix

e-[11]

and a uniform prior on . A single observation (y,y2) then has Gaussian
posterior:

Pr(u|Y) ~ N(Y,C) forY = [y1 y2I
Sketch out the Gibbs sampler algorithm for this problem.

Develop the Metropolis algorithm for a bivariate unit Gaussian target distri-
bution, A(® : 0, I)) with prior Pr(®,) (e.g. (0, 1)). The proposal distribution
is bivariate Gaussian also, N'(®*: 0, (1/5)2])).

We would like to use MATLAB to simulate the Metropolis-Hastings sampler
(mhsample) for the following case with the target distribution being a stan-
dard Gaussian, NV (5, 1) and the proposal Rayleigh distributed with parameter,
b=1.5.Use a 10% sample burn-in. Compare these results to the slice sampler
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(slicesample). Use (ksdensity) to estimate the distribution of the resulting
samples for each algorithm for the comparison.

Develop the Metropolis-Hastings sampler for a 2"?-order autoregressive model

(AR(2)) with known coefficients, {a, a>} = {1, —0.5} driven by Gaussian noise

with e ~ N(0, 1).

(a) Develop the exact likelihood for the parameters, Pr(Y|a, a?).

(b) What is the posterior distribution for the parameters, Pr(a, 2|Y)? (Hint:
Assume the prior is just an indicator function)

(c) Develop the M-H-sampler for this problem.

Suppose we would like to generate samples from a bivariate Gaussian with
mean vector zero and covariance

1 05
€= [ 05 1 :|
(a) Choose a uniform proposal: U/(—3, 3) and develop the M-H-sampler algo-

rithm with a 5% burn-in and N = 10, 000 samples. (Hint: Use MATLAB
mhsample command).

(b) Using the MC-approach, estimate the expected value: E{f(X)} =[1 1]X

(c¢) Compare these results to those obtained using the slice-sampler. (Hint:
Use MATLARB slicesample command).

Set up the Gibbs sampler (G-S) for a joint (X, Y) exponential distribution on
an interval of length (0, I). Estimate the marginal distribution of X, Pr(X), and
compare the results to a simulated data set based on N =500 samples.






STATE-SPACE MODELS FOR
BAYESIAN PROCESSING

4.1 INTRODUCTION

In this chapter we investigate the development of models for Bayesian estimation
[1-15] using primarily the state—space representation—a versatile and robust model
especially for random signals. We start with the definition of state and the basic
principles underlying these characterizations and then show how they are incorpo-
rated as propagation distributions for Bayesian processors in the following chapter.
We review the basics of state—space model development with all of their associated
properties starting with the continuous-time processes, then sampled-data systems
and finally proceeding to the discrete-time state—space. Next we develop the stochas-
tic version leading to Gauss-Markov representations when the models are driven
by white noise and then proceed to the nonlinear case [6—15]. Here we again drive
the models with white Gaussian noise, but the results are not necessarily Gaussian.
We develop linearization techniques based on Taylor-series expansions to arrive at
linearized Gauss-Markov models.

State—space models are easily generalized to multichannel, nonstationary, and non-
linear processes. They are very popular for model-based signal processing primarily
because most physical phenomena modeled by mathematical relations naturally occur
in state—space form (see [13] for details). With this motivation in mind, let us proceed
to investigate the state—space representation in a more general form to at least “touch”
on its inherent richness. We start with continuous-time systems and then proceed to
the sampled-data followed by the discrete-time representation—the primary focus of
this text. We begin by formally defining the concept of state [1].

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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4.2 CONTINUOUS-TIME STATE-SPACE MODELS

The state of a system at time ¢ is the “minimum” set of variables (state variables)
along with the input sufficient to uniquely specify the dynamic system behavior for all
t over the interval ¢ € [fg, 00). The state vector is the collection of state variables into a
single vector. The idea of a minimal set of state variables is critical and all techniques
to define them must ensure that the smallest number of “independent” states have
been defined in order to avoid possible violation of some important system theoretic
properties [2, 3].

Let us consider a general deterministic formulation of a nonlinear dynamic system
including the output (measurement) model in state—space form (continuous-time)!

X = A, u) = a(x;) + b(uy)
Cxr,uy) = c(xy) + d(uy)

Vi

for x;, y; and u; the respective Ny-state, Ny-output and N,-input vectors with corre-
sponding system (process), input, measurement (output) and feedthrough functions.
The N,-dimensional system and input functions are defined by a(-) and b(-), while
the Ny-dimensional output and feedthrough functions are given by ¢(-) and d(-).

In order to specify the solution of the N,-th order differential equations completely,
we must specify the above noted functions along with a set of N,-initial conditions at
time 7y and the input for all # > ¢y. Here N, is the dimension of the “minimal” set of
state variables.

If we constrain the state—space representation to be linear in the states, then we
obtain the generic continuous-time, linear time-varying state—space model given by

)‘Ct = Atx, + Btut
yr = Cx; + Dy 4.1)

where x; € RNex1 u; € RNux1 Yyt € RV and the respective system, input, out-
put and feedthrough matrices are: A e RNV>Nr BeRN*Ne) CeRM>Ne and
D e RNy>Nu,

The interesting property of the state—space representation is to realize that these
models represent a complete generic form for almost any physical system. That is, if
we have an RLC-circuit or a MCK-mechanical system, their dynamics are governed
by the identical set of differential equations, but only their coefficients differ. Of
course, the physical meaning of the states are different, but this is the idea behind state—
space—many physical systems can be captured by this generic form of differential
equations, even though the systems are physically different. Systems theory, which is
essentially the study of dynamic systems, is based on the study of state—space models
and is rich with theoretical results exposing the underlying properties of the dynamic

! We separate x; and u, for future models, but it is not really necessary.
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system under investigation. This is one of the major reasons why state—space models
are employed in signal processing, especially when the system is multivariable having
multiple inputs and multiple outputs. Next we develop the relationship between the
state—space representation and input—output relations—the transfer function.

For this development we constrain the state—space representation above to be a
(deterministic) linear time-invariant (LTI) state—space model given by

X = Acx; + Bowy
yr = Cexy + Doy 4.2)

where A; —> A¢, B — B, C; - C, and D; — D, their time invariant counterparts

[IP%)

with the subscript, “c”, annotating continuous-time matrices.

This LTI model corresponds the constant coefficient differential equation solutions
which can be solved using Laplace transforms. Taking the Laplace transform of these
equations, we have that

sX(8) — xzp = AcX(s) + B U(s)
and solving for X(s)
X(s) = (sI —A) " "xy + (5T — A) "' BU(s) 4.3)
where I € RN=*Nx is the identity matrix. The corresponding output is
Y(s) = C.X(s) + D U(s) 4.4
Therefore, combining these relations, we obtain
Y(5) = [Ce(sT — Ae) ™' Be + DelU(s) + CelsT — A~ 'x;, (4.5)

From the definition of transfer function (zero initial conditions), we have the desired
result

H(s) = C.(s] —A.)"'B. + D, (4.6)

Taking the inverse Laplace transform of this equation gives us the corresponding
impulse response matrix of the LTI-system as [1]

H(1,7) = Coe* "™ B, + D8t — 1) fort >t 4.7

So we see that the state—space representation enables us to express the input—output
relations in terms of the internal variables or states. Note also that this is a multivariable
representation as compared to the usual single input—single output (scalar) systems
models that frequently appear in the signal processing literature.
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Now that we have the multivariable transfer function representation of our LT/
system, we can solve the state equations directly using inverse transforms to obtain
the time-domain solutions. First we simplify the notation by defining the Laplace
transform of the state transition matrix or the so-called resolvent matrix of systems
theory [1, 3] as

De(s):=(sT —A)™" 4.8)
Therefore we can rewrite the transfer function matrix as
H(s) = CcP.(s)B. + D, (4.9)
and the corresponding state—input transfer matrix by
X(s) = Pc()xs, + Pe(s)BU(s) (4.10)
Taking the inverse Laplace transformation gives the time domain solution
X = L7X(5)] = Oclt, to)xsy + Pe(t, 10)Be * us

or
t
xp = De(2, 10)xy, —}—/ O (t,a)Beouy da “4.11)
—————

fo

zero—input
zero—state

with corresponding output solution

t
yt==cc¢ca,m>no+l/ Co®o(t,o0)Betty d 4.12)

to

The state transition matrix, ®.(t, tp), is the critical component in the solution of the
state equations. Ignoring the input (zero-state) of the LT7 state—space system, we have
the set of (homogeneous) vector-matrix state equations

%= Acx, (4.13)

It is well known from linear algebra [1] that this equation has the matrix exponential
as its solution

X = Ot to)xy, = X 0)x, (4.14)
The meaning of “transition” is now clear since knowledge of the transition matrix

®.(t, tp) enables us to calculate the transition of the state vector from time # to any
t > to. Taking the Laplace transform of this equation gives

X(s) = De(s)xs, = (5T — A" x
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with
Al = L7 — Ao (4.15)

We have that the state transition matrix for a LTI system is
Dt 1) = X070 1> (4.16)

Revisting the continuous-time system of Eq. 4.11 and substituting the matrix
exponential for the state transition matrix gives the LTI solution as

t
xp = A0y, 4 / ARy, da (4.17)
fo

with corresponding measurement system
yr = Cex (4.18)
In general, the state transition matrix satisfies the following properties [1, 2]:

1. ®.(t,19) is uniquely defined for ¢, ¢ € [0, 00) [Unique]
2. ©.(t,t)=1 [Identity]
3. ®.(2) satisfies the matrix differential equation:

do(t,10) = Ai®c(t. 1), Pelto.to) =1, =1y (4.19)
4, ®.(t,10) =Dc(1,7) X Do(T,00) X -+ X D(B, 10) [Semi-Group]
5. @, 1) = De(t, 1) [Inverse]

Thus, the transition matrix plays a pivotal role in LT7 systems theory for the analysis
and prediction of the response of linear time-invariant and time-varying systems [2].
For instance, the poles of a LTI govern such important properties as stability and
response time. The poles are the roots of the characteristic (polynomial) equation of
A, which is found by solving for the roots of the determinant of the resolvent, that is,

|Pc(s)] = |(s] = Ac)ls=p, =0 (4.20)

Stability is determined by assuring that all of the poles lie within the left half of the
S-plane. The poles of the system determine its response as:

Nx
=) KieP' (4.21)
i=1

where A, is diagonal which in this case is given by A, =diag[p1,p2,...,pn,], the
eigenvalues of A.. Next we consider the sampled-data, state—space representation.



100 STATE-SPACE MODELS FOR BAYESIAN PROCESSING

4.3 SAMPLED-DATA STATE-SPACE MODELS

Sampling a continuous-time system is commonplace with the advent of high speed
analog-to-digital converters (ADC) and modern computers. A sampled-data sys-
tem lies somewhere between the continuous analog domain (physical system) and
the purely discrete domain (stock market prices). Since we are strictly sampling a
continuous-time process, we must assure that all of its properties are preserved. The
well-known Nyquist sampling theorem precisely expresses the required conditions to
achieve “perfect” reconstruction of the process from its samples [13].

Thus, if we have a physical system governed by continuous-time dynamics and we
“sample” it at given time instants, then a sampled-data model can be obtained directly
from the solution of the continuous-time state—space model. That is, we know from
the previous section that

t

xp = DP(t, tO)xto +/ D.(t, 0)B()uy do

to

where ®.(-, -) is the continuous-time state transition matrix that satisfies the matrix
differential equation

(1, 10) = A D1, 10),  DPclto,t0) =1, t>19

Sampling this system such that # — #; over the interval (¢, #4—1], then we have the
corresponding sampling interval defined by Aty :=t; — tx_1. Note this representation
need not necessarily be equally spaced—another important property of the state—space
representation. Thus the sampled solution becomes (with notation change)

x(t) = <I>(lk,lk—1)x(lk—1)+/k D(ty, 0)Be(a)uy do (4.22)

k-1

and therefore from the differential equation above, we have the solution

173
D(ty, fy—1) = / A@)D(t, ) da for D(1g,10) = 1 (4.23)

k-1

where ®(#, tx_1) is the sampled-data state transition matrix—the critical component
in the solution of the state equations enabling us to calculate the state evolution in
time.

If we further assume that the input excitation is piecewise constant (uy — u(tx—1))
over the interval (#, tx—1 ], then it can be removed from under the superposition integral
in Eq. 4.22 to give

173
x(ty) = P, tg—1)x(tg—1) + </ D(ty, @)Bo() da) X u(tg—1) (4.24)
tk—1
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Under this assumption, we can define the sampled input transmission matrix as

Tk
B(ty—1) :=/ O(ty, ¥)B (o) da (4.25)

k-1

and therefore the sampled-data state—space system with equally or unequally sampled
data is given by:

x(ty) = O, ti—1)x(tk—1) + B(tk—ultr—1)
y(t) = C(ti)x(te) (4.26)

Computationally, sampled-data systems pose no particular problems when care is
taken, especially since reasonable approximation and numerical integration methods
exist [17]. For instance, the following three methods of solving for the state transition
and input transmission matrices can be quite effective. If we constrain the system to
be LTI, then we have that the matrix exponential can be represented by the Taylor
series expansion

o (Ac Ay
AcAl _
i=

Truncating the series is possible at an acceptable error magnitude [17]. This is called
the series approach to estimating the state transition matrix and can be determined
for a finite sum. For example, a simple first-order approximation uses the relations:

D(tg, tr—1) = (I + At Ae)
B(ty) ~ AtB. (4.28)

This direct approach can yield unsatisfactory results; however, one improved
solution is based on the Pade’ approximation incorporating a scaling and squaring
technique [17, 18]. This scaling and squaring property of the matrix exponential is
given by

bt _ (eAL-Alk/M)m (4.29)

and is based on choosing the integer m to be a power-of-two such that the exponential
term can reliably and efficiently be calculated followed by repeated squaring. A typical
criterion is to choose ||A||/m < 1 yielding a very effective numerical technique for
either Taylor or Pade’ approximants.

Ordinary differential equation methods using numerical integration techniques
(e.g., Runge-Kutta, Gear’s method, etc.) offer another practical approach to solving
for the state transition matrix and the corresponding input matrices as given by Egs.
4.23 and 4.25, respectively. The advantages of numerical integration techniques are
reliability and accuracy as well as applicability to time-varying and nonlinear sys-
tems. The major disadvantage is computational time which can be very high for stiff
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(large eigenvalue spread) differential equations and variable integration step-sizes
[17]. In any case, the sampled-data system has the property that it has evolved
from a system with continuous dynamics and must be accurately approximated or
numerically integrated to produce reliable solutions.

The final class of methods we discuss briefly are the matrix decomposition methods
[18]. These methods are based on similarity transformations, that is,

A, =TAT™! and Adt =T ADIT-] (4.30)

where At :=t — 7 in the continuous-time case. If the similarity transformation matrix
is chosen to be an eigenvalue—eigenvector transformation say, T =V, then

A =y Aty 4.31)

with A, diagonal. The matrix exponential operation becomes a simple scalar
computation,
eNeA = diag(eM D, ..., MO (4.32)

In fact, using the eigen-decomposition and applying the ordinary differential
equation approach, we have that

#(t) = Acx(t)

and therefore the solution is given in terms of the eigenvectors, v;

N
x(t) = Zai By, (4.33)
i=0

where the coefficients, «; are the solution of the linear equations, V x a = x(0). This
approach works well when A, is symmetric leading to an orthogonal set of eigenvec-
tors, but can be plagued with a wealth of numerical issues that need reconciliation
and sophisticated numerical techniques [18].

Consider the following example to demonstrate these approaches.

Example 4.1

Suppose we are given the following system:

)’C[ = —0303)(, + U
i =2x
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with sampling interval, Ar=0.1, initial state, x,, =2 and input u, a sequence of
irregularly-spaced step functions. Using a first-order approximation, we obtain

x(ty) = (1 —0.303A1)x(tk—1) + Atgu(tr—1) = 0.97x(tx—1) + 0. 1u(tx—1)
(1) = 2x(tx)

We performed numerical integration on the differential equations and a Taylor
series approximation using 25-terms to achieve an error tolerance of €= 10712,
The simulations of the state, output and input are shown in Fig. 4.1a—c. The true
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States
o
o
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T

0 10 20 30 40 50 60 70 80 90 100
Time (sec)
(a)

0.25

—— Continuous
o2¢ . A A e Sampled -
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FIGURE 4.1 Sampled-data simulation (unequally spaced) of first order continuous pro-
cess: (a) States: continuous (numerical integration) and sampled (series approximation).
(b) Outputs: confinuous (numerical integration) and sampled (series approximation).
(©) Input: continuous (numerical integration).
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continuous-time solution is shown in the figure as the solid line, while the sampled-
data (discrete) solution is shown with the dotted lines. The plots reasonably overlay
each another, but it is apparent that there is some truncation error evolving which can
be observed at the peak amplitudes of the simulation. Thus we see that the continuous-
time system in some cases can be reasonably approximated even by the Taylor-series
approach. AAA

This completes the discussion of sampled-data systems and approximations, next
we consider the discrete-time systems.

4.4 DISCRETE-TIME STATE-SPACE MODELS

Discrete state—space models evolve in two distinct ways: naturally from the problem
or from sampling a continuous-time dynamical system. An example of a natural
discrete system is the dynamics of balancing our own checkbook. Here the state is the
evolving balance given the past balance and the amount of the previous check. There
is “no information” between time samples and so this model respresents a discrete-
time system that evolves naturally from the underlying problem. On the other hand, if
we have a physical system governed by continuous-time dynamics, then we “sample”
it at given time instants as discussed in the previous section. So we see that discrete-
time dynamical systems can evolve from a wide variety of problems both naturally
(checkbook) or physically (circuit). In this text we are primarily interested in physical
systems (physics-based models), so we will concentrate on sampled systems reducing
them to a discrete-time state—space model.

We can use a first-difference approximation® and apply it to the general LTI
continuous-time state—space model to obtain a discrete-time system, that is,

1) —x(—1
X~ w ~Acx(t — 1)+ Beu(t — 1)
AT

yi = y(t) = Cex(t) + Deulr)
Solving for x(¢), we obtain

x(t) = (I + A AT)x(t — 1) + Be ATu(t — 1)
¥(@) = Cex(t) + Deu(t) (4.34)

Recognizing that the first difference approximation is equivalent to a first order
Taylor series approximation of A, gives the discrete system, input, output and

2 This approximation is equivalent to a first-order Taylor series approximation.
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feedthrough matrices as
A~ [ +A. AT + O(AT?)
B ~ B, AT
C =~ C,
D ~ D, (4.35)

We define the nonlinear discrete-time state—space representation by its process or
system model

x(t) =A@t — 1), u(t — 1)) = alx(t — 1)] + blu(® — 1)] (4.36)
and corresponding measurement or output model by
y(1) = Cx(®), u(r)) = c[x()] + d[u(®)] (4.37)
where x(2), u(t), y(¢) are the respective discrete-time, Ny-state, N,-input and Ny-output
vectors with corresponding system (process), input, output and feedthrough functions:
the N,-dimensional system and input functions, a[-], b[-] and the Ny-dimensional
output and feedthrough functions, c[-], d[-].

The discrete linear time-varying state—space representation is given by the system
or process model as

x() =At — Dx(t — 1)+ Bt — Du(t — 1) (4.38)
and the corresponding discrete output or measurement model as
y(t) = C(t)x(t) + D(t)u(t) (4.39)
where x,u,y are the respective Ny-state, N,-input, Ny-output and A,B,C,D are
the (N x Ny)-system, (Ny x Ny)-input, (Ny, X Ny)-output and (N, x N,)-feedthrough
matrices.

The state—space representation for linear, time-invariant, discrete systems is
characterized by constant system, input, output and feedthrough matrices, that is,

A(t)=A, B(t)=B, and C(t)=C, D@t)=D
and is given by the LTT system

x(f) = Ax(t — 1) + Bu(t — 1)
y(t) = Cx(t) + Du(t) (4.40)
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The discrete system representation replaces the Laplace transform with the
Z-transform defined by the transform pair:

X(@2) =) x()"

t=0

(1) = / X(2)z " d 4.41)

Time-invariant state—space discrete systems can also be represented in input—
output or transfer function form using the Z-transform to give

H@) =C@ —A)'B+D (4.42)

Also taking inverse Z-transforms, we obtain the discrete impulse response
matrix as
H(t,k)=CA™*B+D fort>k (4.43)

The solution to the state-difference equations can easily be derived by induction
[3] or using the transfer function approach of the previous subsection. In any case it
is given by the relations

t
x(1) = Ot kx(k) + Y Ot )B(ui) fort >k (4.44)
i=k+1

where ®(t, k) is the discrete-time state-transition matrix. For time-varying systems,
it can be shown (by induction) that the state-transition matrix> satisfies

Pt k)=ACt—1)-ACt—2)---Ak)
while for time-invariant systems the state-transition matrix is given by
O, k) =A% fort >k

The discrete state transition matrix possesses properties analogous to its
continuous-time counterpart, that is,

1. ®(z,k) is uniquely defined [Unique]
2. d(t,)=1 [Identity]
3. ®(t, k) satisfies the matrix difference equation:

Ot k)= At — DOt —1,k), Dk =1, t>k+1 (4.45)

3 Recall that for a sampled-data system, the state-transition matrix is: ®(t,#;) = A=) where A is the
sampled-data system or process matrix.
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4, d(tk)=Dt,t— 1D x Pr—1,t—2)x --- x Pk + 1,k) [Semi-Group]
5. Lt k)= Dk, 1) [Inverse]

As in the continuous case, the discrete-time transition matrix has the same
importance in discrete systems theory which we discuss next.

4.4.1 Discrete Systems Theory

In this subsection we investigate the discrete state—space model from a systems theory
viewpoint. There are certain properties that a dynamic system must possess in order to
assure a consistent representation of the dynamics under investigation. For instance,
it can be shown [2] that a necessary requirement of a measurement system is that it
is observable, that is, measurements of available variables or parameters of interest
provide enough information to reconstruct the internal variables or states. Mathemat-
ically, a system is said to be completely observable, if for any initial state, say x(0),
in the state—space, there exists a finite # > 0 such that knowledge of the input u(¢)
and the output y(¢) is sufficient to specify x(0) uniquely. Recall that the deterministic
linear state—space representation of a discrete system is defined by the following set
of equations:

State Model: x(t) = A(t — Dx(t — 1) + B(t — Du(t — 1)
with corresponding measurement system or output defined by

Measurement Model:  y(t) = C(¢)x(t)

Using this representation, the simplest example of an observable system is one in
which each state is measured directly, therefore and the measurement matrix C is a
Ny x N, matrix. Thus, from the measurement system model, we have that in order to
reconstruct x(¢) from its measurements y(¢), then C must be invertible. In this case the
system is said to be completely observable; however, if C is not invertible, then the
system is said to be unobservable. The next level of complexity involves the solution
to this same problem when C is a Ny x N, matrix, then a pseudo-inverse must be
performed instead [1, 2]. In the general case the solution gets more involved because
we are not just interested in reconstructing x(¢), but x(¢) over all finite values of ¢,
therefore, we must include the state model, that is, the dynamics as well.

With this motivation in mind, we now formally define the concept of observability.
The solution to the state representation is governed by the state-transition matrix,
®(¢,0), where recall that the state equation is [3]

t—1
x(t) = O(£,0)x(0) + Y O(t. k)B(k)u(k)
k=0
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Therefore, pre-multiplying by the measurement matrix, the output relations are

-1
y(t) = C()®(t, 0)x(0) 4 Z C()D(t, k)B(k)u(k) (4.46)
k=0

or rearranging we define

t—1
() = y() = Y C(OHD(t, K)BUku(k) = C(H)D(2,0)x(0) (4.47)
k=0

The problem is to solve this resulting equation for the initial state; therefore,
multiplying both sides by ®’C’, we can infer the solution from the relation

@' (1,0)C’ (1) C(1)D(t,0)x(0) = @' (,0)C(1)y(1)

Thus, the observability question now becomes under what conditions can this equation
uniquely be solved for x(0)? Equivalently, we are asking if the null space of C(¢)®(z, 0)
is 0 RV~ It has been shown [2, 4] that the following Ny x N, observability
Gramian has the identical null space, that is,

-1
0, 1) := Z @' (k, 0)C'(k)C(k)D(k,0) (4.48)
k=0

which is equivalent to determining that (J(0, t) is nonsingular or rank N,. Further
assuming that the system is LTI leads to the NNy x Ny observability matrix [4]
given by

C

OWN) := : (4.49)

CAN71

It can be shown that a necessary and sufficient condition for a system to be com-
pletely observable is that the rank of O or p[O(N)] must be N,.. Thus, for the LTI case,
checking that all of the measurements contain the essential information to reconstruct
the states for a linear time-invariant system reduces to that of checking the rank of the
observability matrix. Although this is a useful mathematical concept, it is primarily
used as a rule-of-thumb in the analysis of complicated measurement systems.

Analogous to the system theoretic property of observability is that of controllabil-
ity, which is concerned with the effect of the input on the states of the dynamic system.
A discrete system is said to be completely controllable if for any x(z), x(0) € R~ there
exists an input sequence, {u(#)}, t=0,...,N — 1 such that the solution to the state
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equations with initial condition x(0) is x(¢) for some finite . Following the same
approach as for observability, we obtain that the controllability Gramian defined by

t—1
C,1) := Z ®(0, k)B(k)B' (k)®'(0, k) (4.50)
k=0

is nonsingular or p[C(0, t)] = Ny
Again for the LTI system, the Ny x NN, controllability matrix defined by

C(N) := [B|AB| ...|AN"'B] 4.51)

must satisfy the rank condition, p[C] = N, to be completely controllable [4].
If we continue with the L77 system description, we know from Z-transform theory
that the discrete transfer function can be represented by an infinite power series, that is,

H(z)=C@zl —A)~'B = ZH(k)z_k for H(k) = CA*"'B (4.52)
k=1

where H (k) is the N, x N, unit impulse response matrix which may also be viewed
as a Markov sequence with (A, B, C) defined as the Markov parameters.

The problem of determining the internal description (A, B, C) from the external
description (H(z) or {H(k)}) of Eq. 4.43 is called the realization problem. Out of all
possible realizations, (A, B, C), having the same Markov parameters, those of small-
est dimension are defined as minimal realizations. It will subsequently be shown that
the dimension of the minimal realization is identical to the degree of the charac-
teristic polynomial (actually the minimal polynomial for multivariable systems) or
equivalently the degree of the transfer function (number of system poles).

In order to develop these relations, we define the (N x NyN,,) x (N x NyN,,) Hankel
matrix by

H(1) H(_2) e H(N)
H(2) H(3) - HN+1D

H(N) := . . (4.53)
HWN) HWN+4+1) ---  HQ2N)

Suppose the dimension of the system is N,. Then the Hankel matrix could be con-
structed such that N = N, using 2N, impulse response matrices which tells us the
minimum number of terms we require to extract the Markov parameters. Also the
P[H(N)] = N, which is the dimension of the minimal realization. If we did not know
the dimension of the system, then we would let (in theory) N — oo and determine
the rank of #(o0). Therefore, the minimal dimension of an “unknown” system is the
rank of the Hankel matrix. In order for a system to be minimal it must be completely
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controllable and completely observable. This can be seen from the fact that the Hankel
matrix factors as:

CB ... CAN-'B C
HWN) = : : = : (B|---|AN"1B]  (4.54)
CAN-'B ... cA*M—2B cAN—1
or more simply
H(N) = ON)C(N) (4.55)

From this factorization it follows that the p[H(N)] = min[p(O(N)), p(C(N))] = Ny.
Therefore, we see that the properties of controllability and observability are care-
fully woven into that of minimality, and testing the rank of the Hankel matrix yields
the dimensionality of the underlying dynamic system. This fact will prove crucial
when we must “identify” a system, ¥ = {A, B, C}, from noisy measurement data. For
instance, many of the classical realization techniques [19, 20] rely on the factorization
of Eq. 4.55 to extract the system or process matrix, that is,

C CA
ON) X A= | can—2 |[A=| yv-1 | = ot (4.56)
cAN-! cAN

Solving for A using the pseudo-inverse [18] gives
A =0"WN)O!  where OF(N) := (O'(N)OWN)"LO'(N) (4.57)

An efficient realization technique for a scalar (single input/single output) system
can be obtained by performing a singular value decomposition (SVD) of the Hankel
matrix constructed from the impulse response sequence, H(k);k=1,...,N, that is,

HIN)=U x A x V with p(H(N)) = N, (4.58)

where A =diag[A;];i=1,...,N*; N*:=N x N,N,, {A;} is the set of singular values,
and U and V the corresponding left and right singular vector matrices [18]. A variety
of techniques can be used to estimate the rank of a matrix, perhaps the simplest
(given the SVD) being the best rank approximation o (percentage) based on the ratio
of singular values,

Ny o
a(Ny) = (Zf=‘ ’\’) x 100 (4.59)

A
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Here o (%) is the percentage of the original matrix (Hankel) approximated by choosing
N;. A threshold, 7, (%) can be selected to search over i for that particular N, that
“best” approximates H up to the threshold, that is,

an(Ny) > 1(%) forn=1,...,N, (4.60)
Once the rank is estimated, then

A | 0
HN)=UAV=U|-——| ———=|V=UAV 4.61)
0 | 0

for U € RN NxNx "A @ RNexN: [y @ RNeXNyNu
When the decomposition and rank (Nx) are determined, the system triple (scalar),
¥ =(A, b, ¢) are identified by [21]

1

1 —

—_ A 1 1 — 1
UTU' A2, b=A2V; and c=TUA? (4.62)

8]

A=A

where (as before) T is the eigenvector matrix, U shifted up one row with a row of
zeros (0') appended [21]. Here A!'/2(A'/2Y are the square-root matrices of A. It has
been shown that this method results in a stable realization such that the eigenvalues
of A, M\(A<1).

Example 4.2

Consider the following scalar example with impulse response, H(k) = {1, 1/2, 1/4,
1/8 1/16} with N=35. Using the SVD approach, we would like to extract the
realization ¥ = (A, b, ¢). Creating the Hankel matrix and performing the SVD, we
obtain

1 12 1/4
HGS)=|1/2 1/4 1/8 | =UAV
1/4 1/8 1/16

A =diag[1.31, 0, 0] yielding a rank, Ny=1; the singular vectors are

—0.8729 —-0.4364 —0.2182 —0.8729 —-0.4364 —0.2182
U=|-04364 0.8983 —-0.0509|; V= 0.4880 —0.7807 —0.3904
—-0.2182 —0.0509  0.9746 0 —0.4472  0.8944

Thus the best rank approximants are: A = 1.3125 and

—0.8729 —0.4364 , —0.8729

U=|-04364|: U ' =|-02182|: V =|-04364
—0.2182 0 —0.2182
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Therefore, we obtain the realizations:

—_1 A 1
A=AT T A:
—0.4364

(0.873)[-0.8729 —0.4364 —0.2182] | —0.2182 |(1.1456)
0

[ — — 1
=048~ 1/2; ' =A2V=[100]; c=UA>=[—-100] AAA

This completes the subsection on discrete systems theory. It should be noted that
all of the properties discussed in this section exist for continuous-time systems (see
[2] for details).

4.5 GAUSS-MARKOV STATE-SPACE MODELS

In this section we extend the state—space representation to incorporate random
inputs or noise sources along with random initial conditions. We briefly discuss the
continuous-time representation evolving to the sampled-data model and then provide
a detailed discussion of the discrete-time Gauss-Markov model which will be used
extensively throughout this text.

4.5.1 Continuous-Time/Sampled-Data Gauss-Markov Models

We start by defining the continuous-time Gauss-Markov model. If we constrain the
state—space representation to be linear in the states, then we obtain the generic
continuous-time, linear time-varying Gauss-Markov state—space model given by

X = At + By + Wi,
yr = Cixr + vy (4.63)

where x; € RV y, e RNy, e RNox1 0y, e RV XLy, e RM*D are the
continuous-time state, input (deterministic), process noise, measurement and mea-
surement noise* vectors with corresponding system (process), input, output and
feedthrough matrices: A € RNexNe B e RNeXNu W e RNe*Nu and € € RNy *Nx,

The continuous-time Gaussian stochastic processes are w; ~ N0, Ry, w, (1)) and
v, ~N(0, Ry, (¢)) with initial state defined by xo ~ N (X0, Po). The corresponding

4 Note that process and measurement noise sources are different. The process noise term is used primarily
to model uncertainties in the input, state or even possibly unknown model parameters and it is “filtered” or
colored (correlated) by the system dynamics, while measurement noise is uncorrelated and used to model
instrumentation or extraneous environmental noise.
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statistics of this model follow with the dynamic mean derived directly from Eq. 4.63
(see [6-8] for details) as

mxt = Almx[ + Blul (464)

and the variance (continuous-time Lyapunov equation)

Pt = AP, + PtA; + WtRw(»wc(t)Wt/ (4.65)

with corresponding covariance

o .(t, T)P forr >t
P”:{ et DPre - (4.66)

P ®@L(t,T) fort<rt

where ®.(¢, 7) is the continuous state transition matrix.
As before, for the deterministic case, the stochastic sampled-data system follows
from the continuous-time state solution

t t

®.(t, T)Bru dt + / O.(t, ) Ww dt 4.67)

fo

xp = De(2, 1o)Xy +/
)
Sampling this system with # — #; over the interval (#,x—1], then the sampled
solution becomes (with notational change)5
I

<I>(tk,r)Brufdt+/ O(tg, )Wrw, dt  (4.68)

tk—1

173
x(t) = Dt tiDx(ter) + /

tk—1
If we further assume that the input excitation is piecewise constant (u; — u(tx—1))

over the interval (#, fx—1], then it can be removed from under the superposition integral
in Eq. 4.68 to give

13

173
x(ty) = P, tr—1)x(tg—1) + (/ D(t, T)B: dt) X u(tk—1)+/ (1, ) Wow, dt
tr—1 I

-1

(4.69)
We define the sampled-data input transmission matrix as
T
B(ty—1) := / d(1y, T)B. dt 4.70)
tk—1
with the sampled-data process noise covariance matrix is given by
Ik
Ryw(t—1) == / D(1y, T)Werch(t)Wéq)/(tk’ ) dt 4.71)
Tk—1

> We note in passing that this solution is conceptual and must actually follow a much more rigorous
framework embedded in stochastic integrals and beyond the scope of this text (see [6-8] for details).
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and therefore the sampled-data state—space system with equally or unequally
sampled-data is given by:

x(ty) = Oy, te—)x(tk—1) + Btr—Du(t—1) + W(tr—)w(tx—1)
y(t) = C(t)x(te) + v(f) 4.72)
for wy, ~N(0,Ryy(t)) and vy, ~N(0,Ryy(#)) with initial state defined by

x(to) ~ N (x(to), P(to)). Recall from the deterministic solution that if we use a first
order Taylor series approximation we have that:

D(ty, tr—1) =~ I + Ay x A(tg—1)
B(tx—1) ~ Aty X By,
Ruw(te—1) & At x Wy Ryuw (—D)W;_,
Ryp(te) = Ry (k)] Aty (4.73)

The corresponding mean and covariance of the sampled-data process are:
my(tk) = A(tk—1)my(te—1) + Bte—1)u(ti—1) (4.74)
and the measurement mean vector my as
my () = C(t)my(ty) (4.75)
The state variance is given by
P(ty) = At )Pt DA (te-1) + W (t—1)Ruu(ti— 1) W' (tr-1) (4.76)
and the measurement variance is
Ryy(tx) = C(ti)P(t)C' (1) + Ruw(ti) (4.77)

This completes the development of the sampled-data Gauss-Markov representa-
tion evolving from a continuous-time stochastic process, next we consider the more
pragmatic discrete-time model.

4.5.2 Discrete-Time Gauss-Markov Models

Here we investigate the case when random inputs are applied to a discrete state—space
system with random initial conditions. If the excitation is a random signal, then the
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state is also random. Restricting the input to be deterministic u(# — 1) and the noise to
be zero-mean, white, random Gaussian w(t — 1), the Gauss-Markov model evolves as

x(t) = A(t — Dx(t — 1)+ B(t — Du(t — 1) + W(t — Dw(t — 1) (4.78)

where w ~ N (0, Ry, (t — 1)) and x(0) ~ N (x(0), P(0)).
The solution to the Gauss-Markov equations can easily be obtained by induction
to give

t—1 t—1

xX(t) = Bt kx(k) + Y @i+ DB + Y ®ti+ HWHw@) — (4.79)
i=k i=k

which is first-order Markov depending only on the previous state. Since x() is just
a linear transformation of Gaussian processes, it is also Gaussian. Thus, we can
represent a Gauss-Markov process easily using the state—space models.

When the measurement model is also included, we have

y(@) = C(t)x(t) + v(t) (4.80)

where v~ N(0, Ry,(1)). The model is shown diagrammatically in Fig. 4.2.

Since the Gauss-Markov model of Eq. 4.78 is characterized by a Gaussian distri-
bution, it is completely specified statistically by its mean and variance. Therefore, if
we take the expectation of Eqs. 4.78 and 4.80, respectively, we obtain the state mean
vector my as

my(t) = A(t — Dmy(t — 1)+ B(t — Du(t — 1) 4.81)

and the measurement mean vector my, as

my(t) = C(1)my(1) (4.82)
w v(t)
u(t) —, B z 1 X0 » C y(t)
A

FIGURE 4.2 Gauss-Markov model of a discrete process.
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The state variance® P(t) := var{x(¢)} is given by the discrete Lyapunov equation:
P(t) =A@t — DP(t — DAt — 1)+ W(t — DRy — DW(t — 1) (4.83)
and the measurement variance, Ry, (?) := var{y(t)} is
Ryy (1) = C(OP()C'(1) + Ryw(1) (4.84)

Similarly, it can be shown that the state covariance propagates according to the
following equations:

(1, k)P(k) fort >k

P,k = {P(t)cb’(t, k) fort<k (4.85)

We summarize the Gauss-Markov and corresponding statistical models in
Table 4.1.

TABLE 4.1 Gauss-Markov Representation

State Propagation
x() =A@t — Dx(t — 1)+ Bt — Du@ — )+ W — Dw( — 1)

State Mean Propagation
my(t) = A(t — Dmy(t — 1)+ B(t — Du(t — 1)
State Variance/Covariance Propagation
Pit)=At— DP(t — DAt — 1)+ Wt — DRy, (t — DW'(t — 1)

O, k)P(k) t>k

Pl = POD'(1,k) t<k

Measurement Propagation
y(@) = COx(t) + ()
Measurement Mean Propagation
my(1) = C(Om(1)
Measurement Variance/Covariance Propagation
Ry, (1) = COPO)C (1) + Ruy(0)
Ry (t,k) = C(OHP()C' (1) 4+ Ry (t, k)

6 We use the shorthand notation, P(k) := P, (k, k) = cov{x(k), x(k)} = var{x(k)}, throughout this text.
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If we restrict the Gauss-Markov model to the stationary case, then
A(t)=A,B(t) =B, C(t)=C, W) =W, Ryw(t) =Ryy, and Ry,(1) = Ry
and the variance equations become
P(t) = AP(t — DA" + WRy,,, W’
and

Ryy(t) = CP(t)C' + Ry, (4.86)

At steady-state (f — 00), we have
P)=Pt—1)=-.--=Py:=P
and therefore, the measurement covariance relations become
Ryy(0) = CPC' + Ry, forlagk =0 (4.87)
By induction, it can be shown that
Ryy(k) = CAMPC" fork #0 (4.88)

The measurement power spectrum is easily obtained by taking the Z-transform of
this equation to obtain

Syy(2) = CSx(2)C" 4 S (2) (4.89)
where
Su(@) = T@)Swu(@)T' (27" for T(z) = (zf —A)'W
with
Sww(@) = Ryw and  Sy(2) = Ry

Thus, using H(z) = CT (z), the spectrum is given by
Syy(2) = H@RuwwH' (™) + Ry (4.90)

So we see that the Gauss-Markov state—space model enables us to have a more gen-
eral representation of a multichannel stochastic signal. In fact, we are able to easily
handle the multichannel and nonstationary statistical cases within this framework.
Generalizations are also possible with the vector models, but the forms become quite
complicated and require some knowledge of multivariable systems theory and canon-
ical forms (see [1] for details). Before we leave this subject, let us consider a simple
input-output example with Gauss-Markov models.
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Example 4.3

Consider the following difference equation driven by random (white) noise:
yt)=—ay@t—1)+et—1)
The corresponding state—space representation is obtained as
x(t) = —ax(t — 1)+ w( —1) and y(t) = x(t)

Taking Z-transforms (ignoring the randomness), we obtain the transfer function

1
HG) = ———
@ 1 —az™!

Using Eq. 4.83, the variance equation for the above model is
P(t) = a*P(t — 1) + Ry

Assume the process is stationary, then P(¢) = P for all ¢ and solving for P it follows
that

Ruw
P =
1 —a?
Therefore,
k| ’ a‘k‘wa ’ Ryw
Ryy(k) = CA"'PC = ﬁ and Ry)(O) = CPC +va = m

Choosing Ry, =1 —a? gives Ryy(k)za”“. Taking Z-transforms the discrete
power spectrum is given by

1 1

Syy(2) = H@ReeH' (271 + Ry = R
)y(z) (DReeH'(z77) + Ryy 1 —az ! wwl_aZ

Therefore, we conclude that for stationary processes these models are equivalent.
Now if we assume a nonstationary process and let a=—0.75,x(0)~
N(@1,2.3),w~N(0,1), and v~ N (0, 4), then the Gauss-Markov model is given by

x()=0.75xt — D+ w—1) and y(r) = x(¢) 4+ v(t)
The corresponding statistics are given by the mean relations

my(t) = 0.75m(t — 1) m(0) =1
my(t) = my(1) my(o) = m,(0)

and the variance equations

P(t) =0.5625P(t — 1)+ 1 and R,(1) = P(t) + 4
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FIGURE 4.3 Gauss-Markov simulation of first-order process.

We apply the simulator available in SSPACK_PC [13] to obtain a 100-sample real-
ization of the process. The results are shown in Fig. 4.3a through c. In a and b we
see the mean and simulated states with corresponding confidence interval about the
mean, that is,

[myx(r) £ 1.96\/P(1)]
and
p=—"2" =22
— 2 86

Using the above confidence interval, we expect 95% of the samples to lie within
(my — 0) £3.03(1.96 x +/2.286). From the figure we see that only 2 of the 100 sam-
ples exceed this bound, indicating a statistically acceptable simulation. We observe
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similar results for the simulated measurements. The steady-state variance is given by
Ryy = P+ Ry, =2.286 + 4 = 6.286

Therefore, we expect 95% of the measurement samples to lie within (m, — 0)
£5.01(1.96 x +/6.286) at steady-state. This completes the example. AAA

4.6 INNOVATIONS MODEL

In this subsection we briefly develop the innovations model which is related to the
Gauss-Markov representation just discussed. The significance of this model will be
developed throughout the text, but we take the opportunity now to show its relationship
to the basic Gauss-Markov representation. We start by extending the original Gauss-
Markov representation to the correlated process and measurement noise case and then
showing how the innovations model is a special case of this structure.

The standard Gauss-Markov model for correlated process and measurement noise
is given by

x(t) = Ax(t — 1)+ Bu(t — 1) + Wt — Dw*(r — 1)
y(t) = Cx(t) + v*(t) 4.91)

where R*(¢, k) := R*8(t — k) and

Rw*w* | Rw*v* WwaW/ | WRwu
Ri=|-———]-—=|=|-——|-=-

Rv*w* |Rv*v* vaW/ | va

Here we observe that in the standard Gauss-Markov model, the (N, + N,) X
(N + N,) block covariance matrix, R*, is full with cross-covariance matrices R+
on its off-diagonals. The standard model assumes that they are null (uncorrelated). To
simulate a system with correlated w(¢) and v(¢) is more complicated using this form
of the Gauss-Markov model because R* must first be factored such that

* RT */ */
R = | | IR RS (4.92)
2

where Rf are matrix square roots [6, 7]. Once the factorization is performed, then the
correlated noise is synthesized “coloring” the uncorrelated noise sources, w(z) and

v(t) as
|:w*(t):| _ |:R1 w(t):| 4.93)
v*() R} v(1)
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The innovations model is a constrained version of the correlated Gauss-Markov
characterization. If we assume that {e(#)} is a zero-mean, white, Gaussian sequence,
that is, e ~ N(0, R..), then the innovations model [9—13] evolves as:

x(t) =A@t —Dx(t— 1)+ Bt — Du(t — 1) + K(t — 1)e(t — 1)
¥(1) = C()x(t) + D(Hu(t) + e(r) (4.94)

where e(?) is the Ny-dimensional innovations vector and K (¢ — 1) is the (Ny x Ny)
weighting matrix.’

KRuoK' | KRy
Ket ee ee

R:, = cov ([ e(i))D ) I S P
ReeK/ | Ree

It is important to note that the innovations model has implications in Wiener-
Kalman filtering (spectral factorization) because R,, can be represented in factored
or square-root form (R:= Jl_eﬁ/) directly in terms of the gain and innovation
covariance matrix, that is,

A\ Ree

Comparing the innovations model to the Gauss-Markov model, we see that they are
both equivalent to the case when w and v are correlated. This completes the discussion
of the innovations model. Next we show the equivalence of the various model sets to
this family of state—space representations.

R, := {K“/R_“}[ RecK’ \/R_ee](S(t—k) (4.95)

4.7 STATE-SPACE MODEL STRUCTURES

In this section we discuss special state—space structures usually called “canonical
forms” in the literature, since they respresent unique state constructs that are particu-
larly useful. We will confine the models to single input/single output forms because
the multivariable structures are too complicated for this discussion [4]. Here we will
first investigate the most popular “time series” models and then their equivalent rep-
resentation in the state—space. We start with the ARMAX model and then progress to
the special cases of this generic structure.

4.7.1 Time Series Models

Time series models are particularly useful representations used frequently by statisti-
cians and signal processors to represent time sequences when no physics is available

7 Actually K is called the Kalman gain matrix, which will be discussed in detail when we develop the
model-based processor in a subsequent chapter.
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to use directly. They form the class of black box or gray box models [13] which
are used in predicting data. These models have an input—output structure, but they
can be transformed to an equivalent state—space representation. Each model set has
its own advantages: the input-output models are easy to use, while the state—space
models are easily generalized and usually evolve when physical phenomenology can
be described in a model-based sense [13].

The input—output or transfer function model is familiar to engineers and scientists
because it is usually presented in the frequency domain with Laplace transforms.
Similarly in the discrete-time case, it is called the pulse transfer function model and
is expressed as

Bz™")
H(z) = 4.96
@ =21 (4.96)
where A and B are polynomials in z or z 7!,
ACH =1+az !+ ayz ™ (4.97)
B ) =by+biz 44 by,z ™ (4.98)

If we consider the equivalent time domain representation, then we have a difference
equation relating the output sequence {y(r)} to the input sequence {u(r)}.% We use the
backward shift operator q with the property that ¢g~*y(r) = y(t — k).

Alg~ () = Bg Hu) (4.99)
or,
V() 4+ ary(t — 1) + - - 4 an,y(t — Ng) = bou(t) + - - - by,u(t — Np) ~ (4.100)

When the system is excited by random inputs, the models are given by the
autoregressive-moving average model with exogenous inputs (ARMAX)?

Alg~My(1) = Blg™Hu(t) + C(g™"e(t) (4.101)
N’
AR X MA

where A, B, C, are polynomials, and {e(¢)} is a white noise source, and

C(q_l) =co+ clq_1 +--- 4 cNCq_NC

8 We change from the common signal processing convention of using x(¢) for the deterministic excitation
to u(t) and we include the by coefficient for generality.

® The ARMAX model can be interpreted in terms of the Wold decomposition of stationary times series,
which states that a time series can be decomposed into a predictable or deterministic component (u(¢)) and
nondeterministic or random component (e(?)) [10].
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The ARMAX model usually abbreviated by ARMAX(N,, Ny, N.) represents the gen-

eral form for many popular time series and digital filter models. A summary of these
models follows:

« Pulse Transfer Function or Infinite Impulse Response (/IR) model: C(-) =0, or
ARMAX(Ng, Np, 0), that is,

A(g~ () = B(g™ Hu(r)

« Finite Impulse Response (FIR) model: A(-)=1,C(-) =0, or ARMAX(1, Np,0),
that is,

(1) = B(g~ u(t)

» Autoregressive (AR) model: B(-) =0, C(-) =1, or ARMAX(N,, 0, 1), that is,

Alg™ () = e(t)

o Moving Average (MA) model: A(-) =1, B(-) =0, or ARMAX(1, 0, N,), that is,

¥(1) = C(g~ He()

» Autoregressive-Moving Average (ARMA) model: B(-)=0, or ARMAX(N,, O,
N,), that is,

Alg~ () = CgVe(r)

 Autoregressive model with Exogenous Input (ARX): C(-)=1, or ARMAX(N,,
Np, 1), that is,

A(q~Hy(0) = Bg~ Hu(t) + e(1)
The ARMAX model is shown in Fig. 4.4. ARMAX models can easily be used
for signal processing purposes, since they are basically digital filters with known
deterministic (u(¢)) and random (e(?)) excitations.

Since the ARMAX model is used to characterize a random signal, we are interested
in its statistical properties. The mean value of the output is easily determined by

A(g™HE(0)} = B(g7HE{u(t)} + Cg~HE(e(1))

or

Alg™my(t) = Blg™u(t) + Clg~Hyme(r) (4.102)
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u(t) —> B(q‘1) —> +

L 1_A(q—1)

FIGURE 4.4 ARMAX input-output model.

Because the first term in the A-polynomial is unity, we can write the mean propagation
recursion for the ARMAX model as

my(t) = (1 — A(g~ " my(t) + Blg™"u(t) + C(q~ me(t) (4.103)
N, Np N,

my(t) = =Y amy(t — i)+ Y _bu(t —i)+ Y _cme(t —i)  (4.104)
i=1 =0 =0

We note that the mean of the ARMAX model is propagated using a recursive digital
filter requiring N,, Np, N, past input and output values.

The corresponding variance of the ARMAX model is more complex. First, we note
that the mean must be removed, that is,

Y(0) — my(®) = [(1 — Alg~)y(@) + Blg™Hu(®) + Clg~He()]
— [0 = Alg™ HYymy(t) + Blg™Hu®) + ClgHme(1)]  (4.105)

or
(1) = my(8) = (1 — AGq~))((@) — my(0) + Clg " )et) — me(1)
or finally

AlgH@) — my(@)) = Clg~ " )(e(t) — me(1)) (4.106)
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that is, y —my is characterized by an ARMAX(N,, 0, Np) or equivalently an ARMA
model.

The covariance of the ARMAX model can be calculated utilizing the fact that it is
essentially an /IR system, that is,

YO _ S ot
e H(z) = ;h(t)z (4.107)

Using this fact and the commutativity of the convolution operator, we have (assuming
the mean has been removed)

Ryy(k) = E{y(0)y(t + k)} = E 3> " h(de(t — i)Y h(j + k)e(t —j + k)
i=0 j=0

or
Ryy(k) = Y h(Dh(i + k)Ele(t — i)e(t — i + k)}

i=0
+ 3> T h(Dh(j + kE{e(t — De(t — j + k)}
i#]
The whiteness of {e(f)} gives

[Ree k=0
Ree(k) = { 0 elsewhere

therefore, applying this property above we have the covariance of the ARMAX model
given by

o0
Ryy(k) = Ree Y h(Dh(t +K) fork =0 (4.108)
i=0

with corresponding variance
o
Ryy(0) = Ree Z R2(1) (4.109)
=0

We note that one property of a stationary signal is that its impulse response is bounded
which implies from Eq. 4.108 that the variance is bounded [14]. Clearly, since the
variance is characterized by an ARMA model (ARMAX(N,, 0, N.)), then we have

Az DH(z) = CHER), EQ®) = +Re
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TABLE 4.2 ARMAX Representation

Output Propagation
y(0) = (1 = Alg~ ")y + Blg~"u(®) + C(g™He(r)
Mean Propagation
my () = (1 — A(g~ )my(1) + B(g~"u(®) + Clg~Hme(1)
Impulse Propagation
h(t) = (1 — A(g~" Dh(1) + C(g~"s(1)
Variance/Covariance Propagation

Ry(k) =Ree y_h(DhGi+k) k=0
i=0

= output or measurement sequence

= input sequence

process (white) noise sequence with variance R,,
= impulse response sequence

= impulse input of amplitude +/R..

mean output or measurement sequence

m, = mean process noise sequence

= stationary output covariance at lag k

= N,-th order system characteristic (poles) polynomial
Nj,-th order input (zeros) polynomial

= N,-th order noise (zeros) polynomial

SR I
I

F
I

=
=
|

Aaw>x
Il

or taking the inverse Z-transform
h(t) = (1 = Alg~ " Dh(t) + C(g~"s(0)

or
Ny N,
h(t) == aih(t — i)+ Y _ cid(t), co=1 (4.110)
i=1 i=0

where §(¢) is an impulse of weight /R,.. So we see that this recursion coupled with
Eq. 4.108 provides a method for calculating the variance of an ARMAX model. We
summarize these results in Table 4.2 and the following example.

Example 4.4

Consider the difference equation of the previous example with a = 0.5 which is an AR
model with A(z) =1+ 0.5z"!, and R,, = 1. We would like to calculate the variance.
From Eq. 4.110, we have

h(t) = —0.5h(t — 1) + 8(t) —> (—0.5)'
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and

o0
Ry, (0) = th(i) =12 —0.5% + .25 — 1.25> + .0875* — -] — 1.333
i=0
AAA

Let us consider a more complex example to illustrate the use of the ARMA model.

Example 4.5

Suppose we would like to investigate the structure of an ARMAX(2, 1, 1) model with
the following difference equation and calculate its underlying mean and variance
propagation relations

(1+3/4g7" +1/8¢72)y(t) = (1 + 1/8¢ Dyu(t) + (1 + 1/16¢~ He(r)

where u(?) =sin2m(0.025)t and e~AN(1,0.01). Then the corresponding mean
propagation equation is

(143747 +1/8¢ Hmy(t) = (1 4+ 1/8¢ u(t) + (1 + 1/16g™ Hym.(1)

for m,(¢) = 1 for all . The impulse propagation model is

(1+3/4g7" +1/8¢7Dh(t) = (1 + 1/16¢7")y/Reed(t)  for /Ree = 0.1
and the variance/covariance propagation model is:
oo
Ryy(k) = Ry, Z hOh(t+k) k>0
=0
This completes the example. AAA
It should be noted that for certain special cases of the ARMAX model, it is par-

ticularly simple to calculate the mean and covariance. For instance, the MA model
(ARMAX(1, 0, N.)) has mean

my(t) = E{C(q~e(t)} = C(g~ " me(t) 4.111)
and covariance (directly from Eq. 4.108 with h — ¢)
N,

Ryy(k) = Ree Y _ cicii fork >0 (4.112)
i=0
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Another special case of interest is the AR (ARMAX(N,, 0, 1)) model with mean
my(t) = (1 — A(q~ " )my(t) + me(1) (4.113)

and covariance which is easily derived by direct substitution

N,

Ry (k) = ED()y(t + 0} = (1 — Aq™ DRy (k) = = Y @Rk —i) fork >0
= (4.114)

In fact, the AR covariance model of Eq. 4.114 is essentially a recursive (all-pole)
digital filter which can be propagated by exciting it with the variance Ry, (0) as initial
condition. In this case the variance is given by

Na N
Ry (0) = E(y*(1)} = E { (— > ay— i)+ e(r)) y(r)} = — ) @Ry + Ree
i=1 i=1
(4.115)
So combining Eqgs. (4.114, 4.115), we have that the covariance propagation equations
for the AR model are given by
— >N @Ry (i) +Ree k=0

Ryy(k) =
> {— YNGRk —i) k>0

Consider the following example of calculating the statistics of the AR model.

Example 4.6
Consider the AR model of the previous two examples. We would like to determine
the corresponding mean and variance using the recursions of Eqgs. (4.113, 4.114) with
A(gH)=140.5¢". The mean is

my(t) = —0.5my(t — 1)

and the covariance is

—0.5R, () +1 k=0

Ryy(k) =
() —0.5Ry(k—1) k>0

The variance is obtained directly from these recursions, since

Ryy(1) = —0.5R,,(0)
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and therefore

Ryy(0) = —0.5R,(1) + 1
Substituting for R,y (1), we obtain
Ryy(0) = —0.5(=0.5R,,(0)) + 1

or
R,,(0) = 1.333
as before. AAA

This completes the section on ARMAX models.

4.7.2 State-Space and Time Series Equivalence Models

In this section we show the equivalence between the ARMAX and state—space models
(for scalar processes). That is, we show how to obtain the state—space model given the
ARMAX models by inspection. We choose particular coordinate systems in the state—
space (canonical forms) and obtain a relationship between entries of the state—space
system to coefficients of the ARMAX model. An example is presented that shows how
these models can be applied to realize a random signal. First, we consider the ARMAX
to state—space transformation.

Recall from Eq. 4.101 that the general difference equation form of the ARMAX
model is given by

Ny Np N,
YOy == ayt—i)+ Y bult —i)+ Y cie(t — i) (4.116)
i=1 i=0 i=0

or equivalently in the frequency domain as

by +biz7 ' 4+ +byz™ otz V- + CN(.Z_N‘
Y(z) = ( T e | U@+ — — | EQ)
l+aiz7' +- - +an,z e l4+aiz7t 4+ +ay,z N

4.117)

where N, > Nj and N, and {e(t)} is a zero-mean white sequence with spectrum given
by Ree.

It is straightforward but tedious to show (see [5]) that the ARMAX model can be
represented in observer canonical form:

x(t) = Agx(t — 1) + Bou(t — 1) + Woe(t — 1)
Y(1) = Chx(t) + bou(t) + coe(r) (4.118)
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where x, u, e, and y are the N,-state vector, scalar input, noise, and output with

—an,bo —an,co
0 | —ap, —ay,+1bo —aN,+1¢€0
Ay = ———| : By = - — = Wo = - — =
In-1 | —a by, — an,bo CN, = @N,.€0
| b1 —aiby | | ¢1—aico |

Cy:=1[0---01]
Noting this structure we see that each of the matrix or vector elements
{Ain,, Bi, Wi, Ci}i=1,...,N, can be determined from the relations
Ay, =—a; i=1,...,N,
B; = b; — a;by
W; = ¢; — ajco
Ci = 6(Ng — i) (4.119)
where
b =0 fori> N,
¢ =0 fori> N,
8(i —j) is the Kronecker delta

Consider the following example to illustrate these relations.

Example 4.7
Let N, =3, N, =2, and N, = 1; then the corresponding ARMAX model is
Y1) = —aiy(t — 1) —axy(t — 2) — azy(t — 3) + bou(r)
+bru(t — 1) + bou(t — 2) + coe(t) + cre(t — 1) (4.120)

Using the observer canonical form of Eq. 4.118 we have

0 0| —a3 —azbg
x(1) = I-E : ) x(t—1)+ bz___az_bo u(t —1)
0 1 |—a by — aibo
—asco
o (=)

€1 —aico
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y(@) =10 0 1]x(t) + bou(t) + coe(t)
This completes the example. AAA

It is important to realize that if we assume that {e(?)} is Gaussian, then the ARMAX
model is equivalent to the innovations representation of the previous section, that is,

x(t) = Ax(t — 1) + Bu(t — 1) + We(t — 1)
y(1) = C'x(1) + bou(t) 4 coe(t) (4.121)

whereinthiscase, K — W,D — bp,and 1 — cq. Also, the corresponding covariance
matrix becomes:

WR..W' WR,.C
e ([H0]) = | L
ee " -
coe(?) CoReeW’ | coReeco

This completes the discussion on the equivalence of the general ARMAX to state—
space.

Next let us develop the state—space equivalent model for some special cases of

the ARMAX model presented in the previous subsection. We begin with the moving
average MA

N,
() = ZCiE(t —i) or Y@ =CRE@=0+c1z "+ +enz ME®R)
i=1

Define the state variable as
xit—1)i=e(t—i—1), i=1,...,N, (4.122)

and therefore,

xit)y=et—0D)=x—1(t—=1), i=1,....,N, (4.123)

Expanding this expression, we obtain

x1(t) =e(t—1)
x@) =et—2) =xi(t—1)
x3(t) =e(t—3) =x(—1)

xn,(f) = e(t —N,) = xn,_1(t — 1) (4.124)
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or in vector-matrix form

0 0 | O
x1(2) L o x1(t—1) 1
' : S S :
xn, (1) 0 . | 0 Xy (t—1) 0
xit—1)
X —1)
y@) =[c1 c2---cen] : + coe(?) (4.125)
XN(,(I —1)

Thus the general form for the moving average (MA) state—space is given by

0 0 | 0
x(1) = - _IN_I_ - : [ x(t =1 +bre(t— 1)
| 0
y(t) = ¢/x(1) + coe(r) (4.126)

with Ny =N, by, ¢ € R¥>1 b a unit vector.
Example 4.8
Suppose we have the following MA model
y(t) = coe(t) + cre(t — 1) + cre(t — 2)

and we would like to construct the equivalent state—space representation. Then we
have N, =2, and therefore,

x(t) = |:(1) gj| x(t — 1)+ [(1)} e(t—1)
y(@) = [e1 2] x(r) + coe(?) AAA

Consider the AR model (all-pole) given by

N,

Zﬂ aiy(t —i)=oce(t) or Y(z)=

i=1

oE(2)
l+aiz7' +--- 4 ayz N

(4.127)
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Here the state vector is defined by x;(f — 1)=y(t—i—1) and therefore,
xi®) =yt —i)=xi-1(t—1); i=1,...,N;—1 with xx,(¢) =y(¢). Expanding over
i, we obtain the vector-matrix state—space model

x1(2) 0 | 1 0 0 x1(t —1) 0
x2(8) 0 | 0 1 0 x(t—1) 0
B I T N
0 | 0 0 1 : =D
- | - -
xn, (1) —aN, —aN,—-1 —an,—2 -+ —aj xn, (t—1) o
x1(t—1)
x(t — 1)
y)y=[0 0 . (4.128)
xn,(t—1)

In general, we have the AR (all-pole) state—space model

0 |
Do Iy, -1
x(t) = 0 | x(t — 1)+ be( —1)
——— | ——— —— = ———
—an, —an,—-1 —anN,-2 e —ay
y(t) = 'x(2) (4.129)

with N, = N,,, b, ¢ € RV~*! Consider the following example to demonstrate this form.

Example 4.9

Given the AR model with N, =2 and o = +/2, find the equivalent state—space form.
We have

Y(t) = —ary(t — 1) — apy(t — 2) + /(2)e(t)

and therefore,

x(t—1) =yt —2)
x—=1) =yt-1)

which gives

x1() =yt -1 =x(-1)
00 =y =—a1yt —1) —axy(t —2) = —a1x2(t — 1) —azx1(t — 1)
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or more succinctly

0
x(t) = [_212 _lal} x(t — 1)+ [\/ﬂ e(t—1)

y(@) = [0 1]x(@) AAA

Another useful state—space representation is the normal form which evolves by
performing a partial fraction expansion of a rational discrete transfer function model
(ARMA) to obtain

N,

B 14 - i Y(Z_l) B p Ri
h(t) = ;Rl(p,) or H(iz )= B = l;—l —— (4.130)

for {R;,pi};i=1,..., N, the set of residues and poles of H (z~1). Note that the normal
form model is the decoupled or parallel system representation based on the following
set of relations

yilt) —piyit =) =e(®), i=1,....Np

Defining the state variable as x;(¢) := y;(¢), then equivalently
xi(®) —pxit—1)=e@®), i=1,...,N, (4.131)

and therefore, the output is given by

N, N,
YO =Y Riyi(t) =Y Rxi(), i=1,....N, (4.132)
i=1 i=1

Expanding these relations over i, we obtain

x1(1) p 0 -0 xi(t—1)
x2(t) 0 pp -+ 0 x(t — 1)
. =1 . . . . e(t—1)

oy (1) 0 0 - py]lwwe—n] [
xi(t—1)]
x—1)

y)=[Ri Ry --- Ry, : (4.133)

xn, (= 1) |
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Thus, the general decoupled form of the normal state—space model is given by

pr 0 - 0
0 pp -~~~ 0
x(1) = . x(t — 1)+ be(r — 1)
0 0 -
y(1) = ¢'x(1) (4.134)

for be RM*! with b=1, a Np-vector of unit elements. Here ceR>*M and
¢=[Rf R, --- RNp]'

Example 4.10
Consider the following set of parameters and model with N, =N, =3 and

yit) = pyit — D +e(t—1)

3
Y6) =Y Riyi(t)

i=1

Using the normal state—space form structure above, we obtain by inspection

pt 0 O 1
xt) =10 pr O|x¢—1D+|1]e@—1)
0 0 p3 1
¥(t) =[R1 Ry R3]x(®) AAA

4.8 NONLINEAR (APPROXIMATE) GAUSS-MARKOV
STATE-SPACE MODELS

Many processes in practice are nonlinear rather than linear. Coupling the non-
linearities with noisy data makes the signal processing problem a challenging one. In
this section we develop an approximate solution to the nonlinear modeling problem
involving the linearization of the nonlinear process about a “known” reference tra-
jectory. We limit our discussion to discrete nonlinear systems. Continuous solutions
to this problem are developed in [6—13].

Suppose we model a process by a set of nonlinear stochastic vector difference
equations in state—space form as

x(t) = alx(t — D]+ blu(t — D]+ w( — 1) (4.135)
with the corresponding measurement model

y(@) = clx(@®)] + v(r) (4.136)
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Y
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Deterministic state trajectory, x;

Time

FIGURE 4.5 Linearization of a deterministic system using the reference frajectory defined
by ({1, u*(1)).

where a[-], b[-], ¢[-] are nonlinear vector functions of x, u, with x, a, b, w € RN=*1,
y,c,ve RM*and w ~ N(0, Ryw(t — 1)), v ~ N(0, Ryy(1)).

Ignoring the additive noise sources, we “linearize” the process and measurement
models about a known deterministic reference trajectory defined by [x*(¢), u*(¢)] as
illustrated in Fig. 4.519 that is,

x*(t) = alx*(t — D] + blu*(t — 1)] (4.137)
Deviations or perturbations from this trajectory are defined by:

Sx(t) = x(t) — x*(1)
Su(t) = u(t) — u*(t)

Substituting the previous equations into these expressions, we obtain the perturbation
trajectory as

x(t) = a[x(t — )] — alx*(t — D] + blu(t — 1)] — blu*(t — )] + w(t — 1) (4.138)

10 In practice, the reference trajectory is obtained either by developing a mathematical model of the process
or by simulating about some reasonable operating conditions to generate the trajectory using the state—space
model.
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The nonlinear vector functions a[-] and b[-] can be expanded into a first order
Taylor series about the reference trajectory [x*(¢), u*(¢)] as'!

da[x*(t — 1)]

alx(t — D] = a[lx™(t — D]+ m&x(t —1)+HO.T.
N dblu*(t — 1)]
blu(t — D] =blu"(t — 1)] + ———du(t — 1) + H.O.T. (4.139)
du*(t —1)

We define the first order Jacobian matrices as

_ da[x*(t — 1)]

Al — 1] = and Bu*(t—1)]:= dblu(t — D]

dxx(t—1) O odurt—1) (4.140)

Incorporating the definitions of Eq. 4.140 and neglecting the higher order terms
(H.O.T.) in Eq. 4.139, the linearized process model in Eq. 4.138 can be expressed as

Sx(t) = A[x*(t — D]8x(t — 1) + Blu*(t — Ddut — D +w(t — 1) (4.141)

Similarly, the measurement system can be linearized by using the reference
measurement

yH(#) = c[x*(0)] (4.142)
and applying the Taylor series expansion to the nonlinear measurement model
de[x*(t
)] = e + s + 1O (4.143)
dx*(t)

The corresponding measurement perturbation is defined by
8y(t) = y(1) — y* (1) = c[x()] — c[x* )] + v(2) (4.144)
Substituting the first order approximation for c[x(¢)] leads to the linearized measure-
ment perturbation as
3y(1) = C[x*(1)16x(t) + v(¢) (4.145)

where C[x*(¢)] is defined as the measurement Jacobian as before.

Summarizing, we have linearized a deterministic nonlinear model using a first-
order Taylor series expansion for the functions, a, b, and ¢ and then developed a
linearized Gauss-Markov perturbation model valid for small deviations given by

sx(f) = Alx*(t — DIsx(t — 1) + Blu*(t — D1su(t — 1) + w(t — 1)
Sy(t) = CLx*()]8x(t) + v(t) (4.146)

with A, B and C the corresponding Jacobian matrices and w, v zero-mean, Gaussian.

"'We use the shorthand notation % to mean ‘ld(—; )
="
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We can also use linearization techniques to approximate the statistics of the process
and measurements. If we use the first-order Taylor series expansion and expand about
the mean, m,(¢), rather than x*(¢), then taking expected values

my(t) = E{a[x(t — D1} + E{blu(t — D]} + E{w(t — 1)} (4.147)

gives

my(t) = a[my(t — 1)] + blu(t — 1)] (4.148)
which follows by linearizing a[-] about m, and taking the expected value to obtain

dalm,(t — 1)]

E{alx(t — DI} = E{a[m(r — D] + m[x(t — 1) —m(r — DI}
_ da[my,(t — 1)] o B
= a[m,(r — D] + “am—1) [Efx(t — D} — my(z — 1)]
= a[m,(t — 1)]

The variance equations P(t) := cov(x(?)) can also be developed in similar manner
(see [2] for details) to give

P(1) = Almy(t — DIP(t — DA [my(t — D] + Ryw(t — 1) (4.149)
Using the same approach, we arrive at the accompanying measurement statistics
my(t) = c[m,(t)] and Ryy(t) = C[mx(t)]P(t)C/[mx(t)] + Ry(1) (4.150)

We summarize these results in an “approximate” Gauss-Markov model of Table 4.3.
Before we close consider the following example to illustrate the approximation.

Example 4.11

Consider the discrete nonlinear process given by
x(#) = (1 = 0.05AT)x(r — 1) + 0.04ATx*(t — 1) + w(t — 1)
with corresponding measurement model
V() = 22(0) + 2°(1) + (1)

where w(t) ~ N(0, Ryw), v(t) ~ N(0, R,,) and x(0) ~ N (x(0), P(0)). Performing the
differentiations we obtain the following Jacobians:

Alx(t — 1)] = 1 — 0.05AT + 0.08ATx(r — 1) and C[x(r)] = 2x(t) + 3x°(r)

AAA



4.9 SUMMARY 139

TABLE 4.3 Approximate Nonlinear Gauss-Markov Model

State Propagation
x(t) = alx(t — D]+ blu(t = D]+ w( —1)

State Mean Propagation
my(t) = almy(t — 1)] + blu(r — 1)]
State Covariance Propagation

P(t) = Almy(t — DIP(t — DA [my(t — D] + Ryu(r — 1)

Measurement Propagation
Y1) = clx()] + v(@®)
Measurement Mean Propagation
my(t) = c[my(1)]
Measurement Covariance Propagation
Ryy(1) = Clmy(DIP()C'[me(D)] + Ry (1)
Initial Conditions
x(0) and P(0)
Jacobians

(o 1y = QA=D1 ()= RO
Al =Dl = dx(t = 1) |,opoy chror= dx(1) |y

x*—my

Although the linearization approach discussed here seems somewhat extraneous
relative to the previous sections, it becomes a crucial ingredient in the classical
approach to (approximate) nonlinear estimation of the subsequent chapters. We dis-
cuss the linear state—space approach (Kalman filter) to the estimation problem in great
detail in the next chapter and then show how these linearization concepts can be used
to solve the nonlinear estimation problem in the following chapter. There the popu-
lar “extended” Kalman filter processor relies heavily on the linearization techniques
developed in this section for its development.

4.9 SUMMARY

In this chapter we have discussed the development of continuous-time, sampled-data
and discrete-time state—space models. The stochastic variants of these three types of
models were presented leading to the Gauss-Markov representations for both linear
and (approximate) nonlinear systems. The discussion of both the deterministic and
stochastic state—space models included a brief development of their second order
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statistics. We also discussed the underlying discrete systems theory as well as a
variety of time series models (ARMAX, AR, MA, etc.) and showed that can easily be
represented in state—space form through the use of canonical forms (models). These
models form the embedded structure incorporated into the majority of the Bayesian
processors that will be discussed in subsequent chapters.

MATLAB NOTES

MATLAB has many commands to convert to/from state—space models to other
forms useful in signal processing. Many of them reside in the Signal Process-
ing and Control Systems toolboxes. The matrix exponential invoked by the
expm command is determined from Taylor/Pade’ approximants using the scal-
ing and squaring approach of section 4.2. Also the commands expmdemol,
expmdemo2, and expmdemo3 demonstrate the trade-offs of the Pade’, Taylor
and eigenvector approaches to calculating the matrix exponential. The ordinary
differential equation method is available using the wide variety of numerical inte-
grators available (ode*). Converting to/from transfer functions and state—space is
accomplished using the ss2tf and tf2ss commands, respectively. ARMAX sim-
ulations are easily accomplished using the filter command with a variety of
options converting from armax-to/from transfer functions. The Identification Tool-
box converts polynomial-based models to state—space and continuous parameters
including Gauss-Markov to discrete parameters (th2ss, thc2thd, thd2thc). The
the Third Party Toolbox SSPACK_PC converts continuous-time models to dis-
crete (SSCTOD) performs Gauss-Markov (linear and nonlinear) simulations as
well as innovations-based simulations (SSISIM and conversions from GM to
innovations models INVTOGM, GMTOINY)). See http:www.techni-soft.net
for details.
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PROBLEMS
4.1  Suppose the stochastic process {y(¢)} is generated by
y(t) = aexp(—t) + ct, a,brandom, then
(@) What is the mean of the process?
(b) What is the corresponding covariance?
(c) Is the process stationary, if E{a} = E{b} =0, and E{ab} =0.
4.2  Suppose x, y, z are Gaussian random variables with corresponding means m,,

my, m; and variances Ry, Ryy, R;, show that:
(a) If y=ax+ b, a, b constants, then y ~ N(am, + b, aszx).
(b) If x and y are uncorrelated, then they are independent.
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(¢) If x(i) are Gaussian with mean m(i) and variance R, (i), then for

y=Y Kix(i), y~N (Z Kim(i), ) K?Rxxa))

(d) If x and y are jointly (conditionally) Gaussian, then

E{x|y}
Ryy = Ry + RyR}Ryx

my + RXyR;y1 (y +my), and

(e) The random variable x = E{x|y} is orthogonal to y.
(f) If y and z are independent, then

E{xly,z} = E{x|y} 4 E{x[z} — my
(g) If y and 7 are not independent, show that
Efx|y,z} = E{x|y, e} = E{x|y} + E{x|e} — m,
for e =z — E{x|y}.
Assume y(t) is a zero mean, ergodic process with covariance Ryy(k), calculate
the corresponding power spectra, Syy(z) if
(@) Ryy(k)=Ca.
(b) Ryy(k)=C cos(wlkl), [k] < 7.
(¢) Ryy(k)=C exp(—all).

(Hint: Recall the sum decomposition: Syy(z) = S;;,(Z) + 85, (2)— Ry (0) with
SyJ; the one-sided Z-transform and S, (z) = S;ry(z’] )

Develop a MATLAB program to simulate the ARMA process
() = —ay(t = 1) + e(?)

where a =0.75, e~ N(0,0.1) for 100 data points.

(a) Calculate the analytic covariance Ryy (k).

(b) Determine an expression to “recursively” calculate, Ryy (k).

(c) Plot the simulated results and construct the +2,/R,,(0) bounds.
(d) Do 95% of the samples fall within these bounds?

Develop the digital filter to simulate a sequence, y(¢#) with covariance
Ryy(k) = 4¢3kl Perform the simulation using MATLAB.

(Hint: Recall the spectral factorization (Wiener): S,,(z) =H(z) x H @ hH
where the poles and zeros of H(z) lie inside the unit circle.)
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Using the “realized” digital filter perform a simulation as in the previous
example and check the validity of the samples lying within bounds.

Suppose we are given a zero-mean process with covariance
Ry (k) = 10 exp(—0.5]k|)

(a) Determine the digital filter which when driven by white noise will yield a
sequence with the above covariance.

(b) Develop a computer program to generate y(¢) for 100 points.

(c) Plot the results and determine of 95% of the samples fall within
£2,/R,,(0).

Suppose we are given the factored power spectrum Sy, (z) = H(z)H(z~ ') with

(a) Develop the ARMAX model for the process.

(b) Develop the corresponding Gauss-Markov model for both the standard
and innovations representation of the process.

Suppose we are given a causal L77 system characterized by its impulse
response, h(t). If this system is excited by zero-mean, unit variance white
noise, then

(a) Determine the output variance, Ry, (0);
(b) Determine the covariance, Ryy(k) for k > 0;
(¢) Suppose the system transfer function is given by

1+ boz™!

H(z) =
@ 1 +aiz7! +axz2

find a method to recursively calculate A(t) and therefore Ry,(0).

Given the covariance function
Ryy(k) = e~ 1/2 K cos k],

find the digital filter when driven by unit variance white noise produces a
sequence {y(¢)} with these statistics.

Suppose we have a process characterized by difference equation
y(t) =x(@)+ 1/2x(t — 1) + 1/3x(t — 2)

(a) Determine a recursion for the output covariance, Ryy (k).
(b) If x(¢) is white with variance o)%x, determine Ryy (k).

(c¢) Determine the output PSD, Syy(z).
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4.11 We are given a linear system characterized by the difference equation

1
() — 1/5y(t — 1) = —=x(1)
V3

and the system is excited by:
(1) white Gaussian noise, x ~ N(0, 3);
(2) exponentially correlated noise, Re.(k) = (1/2)!
In both cases find:
(a) Output PSD, S,,(2);
(b) Output covariance, Ryy(k);
(¢) Cross-spectrum, Sy.(k);

(d) Cross-covariance, Ry, (k).

4.12 We are given the following Gauss-Markov model

x(t) = 1/3x(t — )+ 1/2w(t — 1)
y(#) = 5x(t) + v(1)
w ~ N(0,3) v~ N(,2)

(a) Calculate the state power spectrum, Sy, (2).

(b) Calculate the measurement power spectrum, Syy(z).

(¢) Calculate the state covariance recursion, P(t).

(d) Calculate the steady-state covariance, P(f)= - -- =P = Py;.
(e) Calculate the output covariance recursion, Ry (?).

(f) Calculate the steady-state output covariance, Ry,.

4.13 Suppose we are given the Gauss-Markov process characterized by the state
equations

x(H)=097x¢t - D +u@t—D+wkE—-1)

for u(r) a step of amplitude 0.03 and w ~ N(0, 10™#) and x(0) ~ N(2.5, 10~12).
(a) Calculate the covariance of x, i.e., P(t) = Cov(x(?)).
(b) Since the process is stationary, we know that

P(t+k)y=Plt+k—1)=---=P0) =P

What is the steady state covariance, P of this process?
(c) Develop a MATLAB program to simulate this process.

(d) Plot the process x(¢) with the corresponding confidence limits +2./P(t)
for 100 data points, do 95% of the samples lie within the bounds?
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Suppose we are given the ARMAX model

y(@) = —0.5y(t — 1) — 0.7y(t — 2) + u(t) + 0.3u(t — 1)
+e(t) + 0.2e(t — 1) + 0.4e(t — 2)

(a) What is the corresponding innovations model in state—space form for
e~N(0,10)?
(b) Calculate the corresponding covariance matrix R},.

Given the following ARMAX model

_ _ Cg™h
Alg~" (@) = Blg~ Hu) + me(o

for g~ ! the backward shift (delay) operator such that

AlgH = 1415¢71 407472
B(g~") =1405¢7"!
ClgH =1+407¢""
D) = 140.5¢7!

(a) Find the pulse transfer representation of this process (C =D = 0). Convert
it to the following equivalent pole-zero and normal state—space forms. Is
the system controllable? Is it observable? Show your calculations.

(b) Find the pole-zero or ARX representation of this process (C=1,D=0).
Convert it to the equivalent state—space form.

(¢) Find the pole-zero or ARMAX representation of this process (D =0).
Convert it to the equivalent state—space form.

(d) Find the all-zero or FIR representation of this process (A =1,C=D =0).
Convert it to the equivalent state—space form.

(e) Find the all-pole or /IR representation of this process (B =0,C=0,D =0).
Convert it to the equivalent state—space form.

(f) Find the all-zero or MA representation of this process (A = 1,B=0,D =0).
Convert it to the equivalent state—space form.

(g) Using the full model above with A, B, C, D polynomials, is it possible to
find and equivalent Gauss-Markov representation? If so, find it and convert
to the equivalent state—space form. (Hint: Consider the C/D polynomials
to be a coloring filter with input €(¢) and output e(?).)

Given a continuous-discrete Gauss-Markov model

.7‘6'[ =(xx,—|—ut+wl

Y(tx) = Bx(te) + v(tx)
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where w; and v(#) are zero-mean and white with respective covariances, Ry,
and R,,, along with a piecewise constant input, ;.

(a) Develop the continuous-discrete mean and covariance propagation models
for this system.

(b) Suppose w(t) is processed by a coloring filter that exponentially correlates
it, Ryu(7)=Ge ™7, Develop the continuous-discrete Gauss-Markov
model in this case.

Develop the continuous-discrete Gauss-Markov models for the following
systems:

(a) Wiener process: z; = wy; z0 = 0, w is zero-mean, white with Ry,,,.
(b) Random bias: z; = 0; zo =z, where z, ~N(0,R,,).

(¢) Random ramp: 7, =0; 20 =21; 20 =20

(d) Random oscillation: 7; + w2z = 0; 20 =215 20 =20

(¢) Random second order: 7, + 2¢w,% + w2z, = 02wy 20 =215 20 =20

Develop the continuous-discrete Gauss-Markov model for correlated process
noise, that is,

Wi = AcwW; + Bewlr + chw;k for w* ~ N(Os Ryyeuw+)

Develop the approximate Gauss-Markov model for the following nonlinear
state transition and measurement model are given by

t—l t—1)+ 251 — 1) + 8 1.2 — 1))+ w( —1

X()—Ex( ) 1+x2—(t—1) cos(1.2( ) + w( )
_ XA

y(t)—ﬁ—i—v(t)

where w ~ N(0, Ry ( — 1)) and v ~ N (0, Ry, (1)). The initial state is Gaussian
distributed with ¥(0) ~ A(0, P(0)).

Consider the discrete nonlinear process given by
x() = (1 — 0.05AT)x(t — 1) + 0.04ATx*( — 1) + w(t — 1)
with corresponding measurement model
Y6 = 2(0) + () + v(0)
where w ~ N(0, Ry (f — 1))and v~ N(O, Ry, (1)). The initial state is Gaussian
distributed with x(0) ~ N0, P(0)).

Develop the approximate Gauss-Markov process model for this nonlinear
system.



CLASSICAL BAYESIAN
STATE-SPACE PROCESSORS

5.1 INTRODUCTION

In this chapter we introduce the concepts of statistical signal processing from
the Bayesian perspective using state—space models. We first develop the Bayesian
paradigm using the generic state—space representation of the required conditional
distributions and show how they propagate within the Bayesian framework. Next we
start with the linear (time-varying) Gauss-Markov model and develop the required
conditional distributions leading to the well-known Kalman filter processor [1]. Based
on this fundamental theme, we progress to the idea of linearization of the non-
linear state—space system developed in the previous chapter, where we derive the
linearized Bayesian processor (LZ-BP). It is shown that the resulting processor pro-
vides a solution (time-varying) to the nonlinear state estimation. We then develop
the extended Bayesian processor (XBP) or equivalently the extended Kalman filter
(EKF), as a special case of the LZ-BP linearizing about the most currently available
estimate. Next we investigate a further enhancement of the XBP by introducing a
local iteration of the nonlinear measurement system. Here the processor is called
the iterated-extended Bayesian processor (IX-BP) and is shown to produce improved
estimates at a small computational cost in most cases. We summarize the results with
a case study implementing a 2D-tracking filter.

5.2 BAYESIAN APPROACH TO THE STATE-SPACE

In the previous chapter, we briefly developed deterministic and stochastic (Gauss-
Markov) state—space models and demonstrated how the states propagate through
the state transition mechanism for both continuous and discrete systems and their

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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variants. Here we again take a Bayesian perspective and assume that the state or
dynamic variables evolve according to a “probabilistic” transition mechanism.

Bayesian estimation relative to the state—space models is based on extracting
the unobserved or hidden dynamic (state) variables from noisy measurement data.
The Markovian state vector with initial distribution, Pr(x(0)), propagates tempo-
rally throughout the state—space according to the probabilistic transition distribution,
Pr(x(t)|x(t — 1)), while the conditionally independent measurements evolve from the
likelihood distribution, Pr(y(t)|x(t)). We see that the dynamic state variable at time ¢
is obtained through the transition probability based on the previous state (Markovian
property), x(t — 1), and the knowledge of the underlying conditional probability. Once
propagated to time ¢, the dynamic state variable is used to update or correct based on
the likelihood probability and the new measurement, y(¢). Note that it is the knowledge
of these conditional distributions that enable the Bayesian processor.

Returning to the usual model-based constructs of the dynamic state variables dis-
cussed in the previous chapter, we see that there is an implied equivalence between the
probabilistic distributions and the underlying state/measurement transition models.
Recall from Chapter 4 that the functional discrete state representation is given by

x(t) = A(x(t — D, u(t — 1), w( — 1))
(@) = Cx(@), u(®), (1)) (5.1)

where w and v are the respective process and measurement noise sources with u a
known input. Here A(-) is the nonlinear (or linear) dynamic state transition function
and C(-) the corresponding measurement function. Both conditional probabilistic
distributions embedded within the Bayesian framework are completely specified by
these functions and the underlying noise distributions: Pr(w(t — 1)) and Pr(v(#)). That
is, we have the (implied) equivalence1

AQx(t — 1) u(t — D), w(r — 1)) = Pr(x(0)|x(r — 1)) & A@x(®)|x(t — 1))
Cx@), u(t),v(1)) = Pry@)Ix(@) & CO@)Ix(@)) (52)

Thus, the state—space model along with the noise statistics and prior distributions
define the required Bayesian representation or probabilistic propagation model which
defines the evolution of the states and measurements through the transition probabil-
ities. This is sometimes a subtle point that must be emphasized. As illustrated in
the diagram of Fig. 5.1, the dynamic state variables propagate throughout state—
space specified by the transition probability A(x(¢)|x(z — 1)) using the embedded
process model. That is, the “unobserved” state at time ¢ — 1 requires the transition
probability distribution to propagate to the state at time 7. Once evolved, the state
combines under the corresponding measurement at time ¢ through the conditional
likelihood distribution C(y(¢)|x(¢)) using the embedded measurement model to obtain

! We use this notation to emphasize the influence of both process (.A) and measurement (C) representations
on the conditional distributions.



5.2 BAYESIAN APPROACH TO THE STATE-SPACE 149

-1 () y@e+1)

C(y(t-D|xt-1)) Cy(®)|xt) C(y(t+D|x(t+1))

Ax(@®)]xt-1)) Ax(t+D)|x(1))

x(t-1)

x(t) x(t+1)

FIGURE 5.1 Bayesian state-space probabilistic evolution.

the required likelihood distribution. These events continue to evolve throughout with
the states propagating through the state transition probability using the process model
and the measurements generated by the states and likelihood using the measurement
model. From the Bayesian perspective, the broad prior is scaled by the evidence and
“narrowed” by the likelihood to estimate the posterior.

With this in mind we can now return to the original Bayesian estimation problem,
define it and show (at least conceptually) the optimal solution based on the state—space
representation.

The basic dynamic state estimation (signal enhancement) problem can now be
stated in the Bayesian framework as:

GIVEN a set of noisy uncertain measurements, {y(¢)}, and known inputs, {u(?)},
t=0, ...,N along with the corresponding prior distributions for the initial state and
process and measurement noise sources: Pr(x(0)), Pr(w(z — 1)), Pr(v(z)) as well as
the conditional transition and likelihood probability distributions: Pr(x(¢)|x(t — 1)),
Pr(y(z)|x(¢)) characterized by the state and measurement models: A(x(¢)|x(t — 1)),
C(y(1)|x(2)), FIND the “best” estimate of the filtering posterior, I;r(x(t)|Y[), and its
associated statistics.

It is interesting to note that the entire Bayesian system can be defined by the set
X as

T = [{y®}, {u®}, Pr(x(0)), Pr(w(t — 1)), Pr(v(1)), Ax(@®)lx(t — 1)), Cy(1)[x(1))]

Compare this to the model-based solutions to follow where we obtain closed form
analytic expressions for these distributions.

Analytically, to generate the model-based version of the sequential Bayesian pro-
cessor, we replace the transition and likelihood distributions with the conditionals
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of Eq. 5.2. The solution to the signal enhancement or equivalently state estimation
problem is given by the filtering distribution, Pr(x(#)|Y;) which was solved previously
in Sec. 2.5 (see Table 2.1). We start with the prediction recursion characterized by the
Chapman-Kolmogorov equation replacing the transition probability with the implied
model-based conditional, that is,

Embedded Process Model Prior
Pr(x()|Yi—1) = / A@)|x(@ — 1)) x Pr(x(t — D[Y;—1) dx(t = 1) (5.3)

Next we incorporate the model-based likelihood into the posterior equation with
the understanding that the process model has been incorporated into the prediction

Embedded Measurement Model Predicition
—— ——
Pr(x(D)|Y,) = Co@®Ix(@) x Pr(x(t)|Y;—1) [Pry®)Yi-1)  (5.4)

So we see from the Bayesian perspective that the sequential Bayesian processor
employing the state—space representation of Eq. 5.1 is straightforward. Next let us
investigate a more detailed development of the processor resulting in a closed-form
solution—the linear Kalman filter.

5.3 LINEAR BAYESIAN PROCESSOR (LINEAR KALMAN FILTER)

In this section we constrain the state—space model to be linear (time-varying) and apply
the Bayesian approach to obtain the optimal processor assuming additive Gaussian
noise.

Suppose we are given the linear discrete Gauss-Markov model of the previous
section (ignoring u with W = I for notational simplicity) and we would like to develop
the Bayesian processor. Since we know the processes are linear and Gaussian, then we
know that the required distributions will also be Gaussian. To develop the processor
for this case, we start with the prediction equation® and use the process model of Eq.
4.78, that is,

Pr(x(D)|Yi—1) = /A(X(I)IX(I — 1)) x Pr(x(t — D|Y;—1) dx(t — 1)

where the filtered conditional® is:

Pr(x(t — D|Yi—1) ~ N(x(t) : 2t — 1]t — 1), Pt — 1]t — 1))

2We have changed Gaussian distribution notation to include the random process, that is,
N(m;,R) = N(z: m;,R,).

3 This notation is defined in terms of conditional means and covariances by: x(t|t):=E{x(t)|Y;} and
i’(tlt) := cov(X(¢|t)) for the state estimation error, x(t|t) := x(t) — x(t|t).
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Now using the process model, we have that

AG(D)|x(r — 1)) ~ N(x(r) : At — Dx(t — 1]t — 1), A(r — DP(t — 1]t — 1)
XA/(t - 1) + wa(t - 1))

which follows directly from the linearity of the conditional expectation operator,
that is,

x(tlt — 1) = E{x(O)|Y;—1} = E{A(t — Dx(t — 1) + w(t — D|Y;—1}
= A@t— D3¢t =1t —1) (5.5)

Using this result, the predicted state estimation error can be obtained as

Xt —1) = x(t) — x(tjt = 1)
= [A(t — Dx(t — D)+ w(t — D] =A@t — Dx(r — 1|t = 1)
=At—Dit—1t—D+wi—1) (5.6)

and the corresponding state error covariance, P(t|t — 1) = E{x(t|t — D¥ (t|t — 1)} is
easily derived. Summarizing, the conditional means and covariances that completely
characterize the current (Gaussian) state evolve according to the following equations:

Xt —=1) = A@r — D@t —1|r = 1) [Prediction]
P(tlr — 1) = A(t — DP(t — 1|t — DA'(t — 1) + Ryy(t — 1) [Prediction Covariance]

Substituting these multivariate Gaussian distributions (transition and filtered) into
the prediction equation, we have that

Pr(x()|Y;—1) ~ N(x(¢) : X(t|t — 1), P(t]t — 1))

With the prediction distribution available, we require the correction or update
distribution obtained from the likelihood and the measurement model of Eq. 5.4,
that is,

COy(D)]x(@)) x Pr(x(2)[Y;—1)
Pr(y()|Y;-1)

Under the Gauss-Markov model assumptions, we know that each of the conditional

distributions can be expressed in terms of the Gaussian distribution as:

Pr(x(0)|Y:) =

COMIx®) ~ N@) : COx(t), Ryo(1))
Pr(x(£)|Y,—1) ~ N(x(t) : &(t]t — 1), P(¢]t — 1))
Pr(y(0)|Yi—1) ~ N () : 3(t]t = 1), Ree(?))
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for R..(¢) the innovations covariance with innovations defined by e(t) :=y(t) —
y(t|t — 1) and predicted or filtered measurement given by y(¢|t — 1) = C()x(¢|t — 1).

Substituting these probabilities into Eq. 5.4 and combining all constants into a
single constant x, we obtain

1
Pr(x(0)|Y;) = k x exp [—E(y(t) - C(t)x(t))’Rv_v1 OO — C(t)X(t))}
X exp [—%(x(t) — Xt = DYP7 @)t — D(x(t) — 2(t|t — 1))]
1
X exp |:+§(y(t) — (et — DYR (O((1) — 5(elt — 1))}

Recognizing the measurement noise, state estimation error and innovation in the above
terms, we have that the posterior probability is given in terms of the Gauss-Markov
model by

Pr(x(1)|Y;) = K X exp [—%v’(t)Rw‘ (r)vm}
X exp [—%i’(m — DP |t — Dx(e|t — 1)]
X exp |:+%e/(t)Reel (t)e(t)] (5.7)

So we see that the posterior distribution can be estimated under the multivariate
Gaussian assumptions and the corresponding linear (time-varying) Gauss-Markov
model. This is the optimal Bayesian processor under these assumptions. In most
cases we are not able to characterize the distributions in closed form and must resort
to numerical (simulation-based) solutions.

We realize at this point that we have the optimal Bayesian predictor and posterior,
but we still have not extracted the optimal state estimates explicitly and its associated
performance metric. Recall from the batch Bayesian solutions of Sec. 2.1 that once
we have the posterior, we can estimate a variety of statistics using it as the basis. In
this case, the optimal Bayesian processor will be the one that maximizes the posterior;
therefore, we continue the development of the linear filter by deriving the Bayesian
MAP estimator.

Starting with the MAP equation of Eq. 2.3 and taking natural logarithms of each
side gives

InPr(x(n)[Y:) = In Pr(y(1)|x(1)) + In Pr(x(1)[Y;—1) — In Pr(y(n)[Y;—1)
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In terms of multivariate Gaussian, the posterior is given by
1 ’ -1 1 ~/ p—1 =
In Pr(x(#)|Y;) = Ink — Ev (R, (Hv(t) — 7% (tlt — P~ (t]t — Dx(t|t — 1)
1
+ Ee’(t)ie;el(t)e(t) (5.8)
with
Xt —1) = x(t) — x(¢|r = 1) [State Error]
e(t) = y(t) — COx(tlt — 1) = C(t — )x(¢t|t — 1) + v(t) [Innovation]

The MAP estimate is then obtained by differentiating Eq. 5.8, setting it to zero and
solving, that is,

V. In Pr(x(t)|Yl)’x=f(map =0 (5.9

Using the chain rule of the gradient operator (see Eq. 2.11), we obtain the following
expression. Note that the last term of Eq. 5.8 is not a function of x(¢), but just the
data; therefore, its gradient is null.

V. In Pr(x(1)|Y;) = C'(OR,, ()[y(t) — C()x(t)] — P~ (et — DF(tlt — 1) (5.10)
Setting Eq. 5.10 to zero and solving for x(¢) gives the Bayesian MAP estimate

Xmap(t) = [C'(OR,N(OC(@) + P~ (t]t — ]!
x [P~L(t|t — D]t — 1) + C' (DR, ()y (1)) (5.11)

This relation can be simplified by using a form of the matrix inversion lemma [1]
defined by the following equation

A+BD) '=a"'—A"'Bu+DA'By"HD'A™! (5.12)

Defining the following terms for the lemma, A = P ltt—1),B= C’(I)Rv’v1 (t) and
setting D' = C(t), we find that

[Pt — 1) + C'OR,, (HC(1)] ™
= P(t]t — 1) — P(t|]t — DC' (DR, ()T + C()P(t]t — DC (DR} (1))~
x C()P(t]t — 1) (5.13)

Making the observation that the term in parenthesis on the right hand side of Eq. 5.13
can be rewritten by factoring out R} ! (¢) as

(I + COP(t]t — YT (DR, (1) ™" = Ryp(t)(Ryu(1) + C(1)P(t]t — 1C' (1)) ™" (5.14)
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then Eq. 5.14 can also be expressed as

[Pl (et — 1) + C' (R, (HC ()]

= P(t|t — 1) — P(t|t — DC'(1)(Ry() + C(H)P(t|t — DHC ()" C)P(t)t — 1)
(5.15)

The innovations covariance can be expressed as
Ree(1) = Cov(e(t)) = C(t)P(t]t — C'(t) + Ryu(2)
and substituting Eq. 5.15 becomes

[P (1]t — 1) + C' ()R, (HC ()]

= P(t|t — 1) — P(t]t — 1)C' ()R, (1) C(t)P(t]t — 1) = (I — K(H)C(0)P(z]t — 1)
(5.16)

where K(¢) =13(t|t — 1)C’(t~)Re_e1 (#) is the gain. We see that Eq. 5.16 is simply the
updated error covariance, P(t|t), equivalent to

P(t|t) = [P~ (t|t — 1) + C'(OR,,} (1)C(1)] ™! (5.17)
Thus we can eliminate the first bracketed term in Eq. 5.11 to give
Xinap() = P(t16) x [P~ (1t — DRt = D) + C'OR,, (0)y()]

Solving Eq. 5.17 for P(t|t — 1), we can substitute the result into the above equation
to give

Kinap(t) = P(t]1) x [P (t]1) — C'(OR, N (OCDi(t]t — 1) + C' (DR, (1)y(0)] (5.18)

Multiplying out, regrouping terms and factoring, this relation can be rewritten as

Xmap(t) = &(t]t — 1) + (PIOC' (R, (O)y(t) — COR(t]r — 1)] (5.19)
or finally
Xmap(t) = R(t]1) = R(t]t — 1) + K(De(?) (5.20)

Now we only need to show the equivalence of the gain expression using the updated
instead of predicted error covariance, that is,

K@) = P(tlt — DC'(OR} (1) = P(t|nP~ (t|n)(P(t]t — HC ()R, (1))
= P(t|t)[C'(OR,L(1)C(t) + P~ (t|t — DIP(t|t — 1)C(OR (1)
= P(t|t)C' ()R, (D[C1)P(t|t — 1)C'(t) + Ry(D)IR;, (1) (5.21)
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TABLE 5.1 Linear BP (Kalman Filter) Algorithm

Prediction
Xt —1)=A¢ — Dx@ — 1|t — 1)+ B — Du(t — 1) (state prediction)
P(tlt — 1) = A(t = DP(t — 1]t = DA'(t — 1) + Ryu(t — 1) (covariance prediction)
Innovation
e(t) =y@) — y(tlt — 1) = y(t) — C(O)x(t|t — 1) (innovation)
R..(t) = C(HP(t|r — D)C'(t) + Ryp(0) (innovation covariance)
Gain
K(t) = P(t|t — 1)C'(HR., (1) (gain or weight)
Update
x(t|t) = x(t]t — 1) + K(0)e(r) (state update)
P(tt) = [I — K(O)C®)IP(t]t — 1) (covariance update)

Initial Conditions
2(010)  P(0]0)

which gives the desired result from the definition of innovations covariance. We now
have two equivalent expressions in terms of the updated or predicted error covariances
that can be used to calculate the gain

K(t) = P(t|)C' (DR (t) = P(t]t — DC' (DR} (1) (5.22)

which completes the Bayes’ approach to the signal enhancement or equivalently state
estimation problem yielding the optimum linear Bayesian processor (Kalman filter).
A summary of the linear BP algorithm is shown in Table 5.1.

The design of linear Bayesian processors under the Gauss-Markov assumptions
is well-understood [1-9]. Based on a variety of properties both theoretically well-
founded and pragmatically applied with high success, the minimum (error) variance
design procedure has evolved [10-14]. We summarize the design steps below and
subsequently using the notation of the Bayesian processor algorithm in Table 5.1.

It is important to realize that a necessary and sufficient condition that the linear BP
(under the GM constraints) is optimal is that the innovation sequence is zero-mean
and white or uncorrelated! This is the first and most important step in BP design.
If this condition does not hold then the underlying model and GM assumptions are
invalid. Therefore, we briefly mention the minimum variance design procedure here
and provide more details in Sec. 5.7 where pragmatic statistical tests are developed.
We will apply the procedure to the following processors (linear and nonlinear) in the
example problems and then provide the design details subsequently.

The minimum (error) variance design procedure is:

1. Check that the innovations sequence is zero-mean.
2. Check that the innovations sequence is white.
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FIGURE 5.2 RC-circuit problem diagram.

3. Check that the innovations sequence is uncorrelated in time with input u.

4. Check that the innovations sequence is lies within the confidence limits
constructed from R, predicted by the Bayesian processor.

5. Check that the innovations sequence variance is reasonably close to the
estimated (sample) variance, R,..

6. Check that the state estimation error, Xx(t|t), lies within the confidence limits
constructed from P(¢|¢) predicted by the Bayesian processor.

7. Check that the state error variance is reasonably close to the estimated (sample)

variance, P(t|t).

These is the basic “cookbook™ approach to linear Bayesian processor design.
Before we close this section, let us consider a simple linear example to demonstrate
the ideas.

Example 5.1

Suppose we have the RC circuit as shown in Fig. 5.2. We measure the voltage across
the capacitor with a high impedance voltmeter as shown. Since these measurements
are noisy and the component values imprecise (£ A), we require an improved estimate
of the output voltage. We develop a BP to solve this problem from first principles—a
typical approach. Writing the Kirchoff current equations at the node, we have

e(t) de(t) _

(@) ———-C =0
() — — 7

where e, is the initial voltage and R is the resistance with C the capacitance. The
measurement equation for a voltmeter of gain K, is simply

eour(t) = Kee(r)
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We choose to use the discrete BP formulation; therefore, approximating the deri-
vatives with first differences and substituting, we have

e(t)—et—1)  et—=1) _
C T — + Lin(t = 1)

or
e(r) ( - _RC) e( ) _C in( )

where the measurement is given above. Suppose that for this circuit the parameters are:
R=33kQand C=1000 uF, AT =100ms, e, =2.5V, K, =2.0, and the voltmeter
is precise to within +4 V. Then transforming the physical circuit model into state—
space form by defining x = ¢, y = e,ur, and u = I;;,, we obtain

x(t) = 0.97x(t — 1) + 100u(t — 1) + w(t — 1)
y() = 2x(t) + v(1)

The process noise covariance is used to model the circuit parameter uncertainty
with Ry, =0.0001, since we assume standard deviations, AR, AC of 1%. Also,
Ry, =4, since two standard deviations are AV = 2(% 4V). We also assume initially
that the state is x(0) ~ A(2.5, 10~12), and that the input current is a step function of
u(t) =300 uA. SSPACK _PC is used to simulate this system [8]. The results are shown
in Fig. 5.3. The simulated and true (mean) states (voltages) are shown in Fig. 5.3a
along with the corresponding confidence limits. We see that the process samples (state
and process noise) lie within the bounds (3.5% out). Therefore, the data statistically
satisfy the underlying Gauss-Markov model assumptions. If it does not, then choose
another simulation. That is, we perform another realization (different seed in random
number generator) until the samples lie within the bounds. Similarly, the simulated
and true (mean) measured voltages are shown in Fig. 5.3b. Again the data (measure-
ment and noise) statistically satisfy the underlying models with only 4.5% of the
samples exceeding the prescribed bounds. The state and measurement variances used
to construct the confidence intervals about the means, that is, [m,(¢f) £ 1.96./P(f)]
and [my () £ 1.96,/Ryy()] are shown in Fig. 5.3c.

With the data simulated, we now consider the design of the BP. In the ideal BP
problem, we are given the model set, X :={A, B, C, Ry, Ryy, x(0), P(0)}, the known
input {u(#)} and the set of noisy measurements, {y(¢)} to construct the processor. The
RC model-based processor for this problem can simply be written as:

X(t]t — 1) = 0.97%(t — 1|t — 1)) + 100u(t — 1) [Predicted State]

P(t|t — 1) = 0.94P(t — 1|t — 1) 4 0.0001 [Predicted Covariance]
e(t) = y(t) — 2x(t|lt — 1) [Innovation]

Ree(t) = 4P(t]t — 1) + 4 [Innovations Covariance]
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FIGURE 5.3 RC circuit problem Gauss-Markov simulation. (a) Simulated and true (mean)
output voltage. (b) Simulated and frue (mean) measurement. (c) Simulated state and
measurement variances.

P(t]t — 1) .
K = - G
® 4P(tlt — 1)+ 4 [Gain]
x(t|t) = x(tlt — 1) + K(t)e(t) [Updated State]
P(t]r) = % [Updated Covariance]

The estimator is also designed using SSPACK_PC and the results are shown in
Fig. 5.4. In Fig. 5.4a we see the estimated state (voltage) and estimation error as
well as the corresponding confidence bounds. Note that the processor “optimally”
estimates the voltage, since our models are exact. That is, it provides the minimum
error variance estimate in the Gaussian case. Also since we have the true (mean) state,
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error. (b) Filtered voltage measurement and error (innovations). (¢) WSSR and
zero-mean/whiteness tests. (d) Gain and updated error covariance.
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we can calculate the estimation error and use the corresponding error covariance to
specify the bounds as shown. Note that the error is small and no samples exceed
the bound as indicated by the overestimation of the variance compared with the
sample variance (0.0017 > 0.0002). In Fig. 5.4b, we see the filtered measurement
(3(¢]t — 1)) and corresponding innovation sequence along with the confidence limits
provided by the processor. Here only 4.5% of the samples exceed the bounds and the
variance predicted by the filter is close to the sample variance estimate (4.0 ~3.7).
The weighted sum-squared residual (WSSR) statistic, zero-mean, and whiteness tests
are shown in Fig. 5.4c. Here we see that using a window of 75 samples, the threshold
is not exceeded, indicating a statistically white sequence. The innovation mean is
small and well within the bound (0.11 < 0.27). The sequence is statistically white,
since 0% of the normalized sample covariances exceed the bound. Finally, we see the
gain and updated error covariance as monotonically decreasing functions that reach
a steady-state (constant) value at approximately 8 sec. This completes the example
of an ideally “tuned” BP. AAA

5.4 LINEARIZED BAYESIAN PROCESSOR (LINEARIZED
KALMAN FILTER)

In this section we develop an approximate solution to the nonlinear processing prob-
lem involving the linearization of the nonlinear process about a “known” reference
trajectory followed by the development of a Bayesian processor based on the under-
lying linearized state—space model. Many processes in practice are nonlinear rather
than linear. Coupling the nonlinearities with noisy data makes the signal processing
problem a challenging one. In this section we limit our discussion to discrete nonlinear
systems. Continuous solutions to this problem are developed in [1-7].

Recall from the previous chapter that our process is characterized by a set of
nonlinear stochastic vector difference equations in state—space form as

x(t) = alx(t — D]+ blu@t — D] +w@ — 1) (5.23)
with the corresponding measurement model
Y1) = clx(D)] + v(®) (5.24)

where a[-], b[-], c[-] are nonlinear vector functions of x, u, with x,a,b, w € RNex1,
y,c,ve RY*and w ~ N(0, Ry (1)), v~ N (0, Ryy(1)).

In Chapter 4 we linearized a deterministic nonlinear model using a first-order
Taylor series expansion for the functions, a, b, and ¢ and developed a linearized
Gauss-Markov perturbation model valid for small deviations given by

sx(t) = Alx*(t — D18x(r — 1) + Blu*(t — D]du(t — 1) + w(t — 1)
Sy(t) = Clx™(1)18x(t) + v(r) (5.25)

with A, B and C the corresponding Jacobian matrices and w, v zero-mean, Gaussian.
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We used linearization techniques to approximate the statistics of Egs. 5.23 and 5.24
and summarized these results in an “approximate” Gauss-Markov model of Table 4.3
of the previous chapter. Using this perturbation model, we will now incorporate it to
construct a Bayesian processor the embeds the (A[-], B[-], C[-]) Jacobians linearized
about the reference trajectory [x*, u*]. Each of the Jacobians are deterministic and
time-varying, since they are updated at each time-step. Replacing the (A, B) matrices

and X(¢|t — 1) in Table 5.1, respectively, by the Jacobians and 8x(¢|z — 1), we obtain
the state perturbation predicted estimate

8x(t|t — 1) = A[x*(t — 1))8x(r — 1|t — 1) + Blu*(t — 1)]8u(t — 1) (5.26)

For the Bayesian estimation problem, we are interested in the state estimate x(¢| — 1)
not its deviation 8x(z|t — 1). From the definition of the perturbation in Sec. 4.8,
we have

Rl — 1) = 83(t|t — 1) + x* (1) (5.27)

where the reference trajectory x*(f) was defined previously as

x*(t) = alx*(t — D] + blu*(t — )] (5.28)

Substituting this relation along with Eq. 5.26 into Eq. 5.27 gives

)t — 1) = alx* ¢t — D]+ Alx* — DIFEE — 1)t — 1) — x*@¢ — 1]
+blu*(t — D] + Blu*(t — D][ut — 1) — u*(t — 1)] (5.29)

The corresponding perturbed innovation can also be found directly

Se(t) = 8y(t) — 8y(t]t — 1) = (y(1) — y* (1)) — (G(t]t — 1) — y* (1))
=y =t = 1) =e(®) (5.30)

Using the linear BP with deterministic Jacobian matrices results in
(|t — 1) = Clx*()]8x(t|t — 1) (5.31)

and therefore using this relation and Eq. 4.142 for the reference measurement, we
have

St — 1) = y* (1) + CIF @183t — 1) = c[x* ()] + CI* 182t — 1) (5.32)
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Therefore it follows that the innovation is
e(t) = y(1) — c[x* ()] — CIx*ONX(t|t — 1) — x*(1)] (5.33)
The updated estimate is easily found by substituting Eq. 5.27 to obtain

8x(t|t) = 8x(t|t — 1) + K(¢)e(t)
[x(z]r) — x*(1)] = [x(t]t — 1) — x* ()] + K(D)e(2) (5.34)

which yields the identical update equation of Table 5.1. Since the state perturbation
estimation error is identical to the state estimation error, the corresponding error
covariance is given by 8P(t|-) = P(¢|-) and therefore,

8x(t|) = 8x(t) — 8x(t]-) = [x(t) — x™(1)] — [X(z]-) — x™(1)] = x(2) — X(¢]-) (5.35)
The gain is just a function of the measurement linearization, C[x*(¢)] completing the

algorithm. We summarize the discrete linearized Bayesian processor (Kalman filter)
in Table 5.2.

TABLE 5.2 Linearized BP (Kalman Filter) Algorithm

Prediction
Xt — 1) =alx*(t — D]+ Alx*(t — DI[x(t — 1|t — 1) — x*(@ — 1)]
+blu*(t — D] + Blu*(t — D][u(t — 1) — u*( — 1)] (state prediction)

P(t]t — 1) = A[x*(t — DIP(t — 1]t — DA'[x*(t — 1)] 4+ Ryw(t — 1)  (covariance prediction)

Innovation
e(t) = y(t) — c[x*(1)] — CIx*(O1[x (¢t — 1) — x*(1)] (innovation)
Ro.(t) = CIx*()]P(t]t — DC'[x*(0)] + Ruu() (innovation covariance)
Gain
K(t)=P(t]t — DC'[x*(0)IR. (1) (gain or weight)
Update
x(t|t) = x(t]t — 1) + K(t)e(t) (state update)
P(t|t) = [I — K(OC[x*()]1P (]t — 1) (covariance update)

Initial Conditions
£(010)  P(0]0)

Jacobians
.rr _ dalx(t — 1)] e _ dblu(t — 1)]
Alx*(t — D= T o Blu*(t 1)]—7‘1”0 T R
delx(1)]
Clx*()]=
beol=0 |
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In a more formal framework, the LZ-BP can be developed under (approximate)
Gaussian assumptions using the Bayesian approach as before in the linear case. We
briefly outline the derivation by carefully following the steps in Sec. 5.3.

The a posteriori probability is given by

Pr(x(1)|Y;) = Pr@(t)lﬁitg;(;;'l;trfgt)'Y”‘) (5.36)

Under the Gauss-Markov model assumptions, we know that each of the conditional
expectations can be expressed in terms of the conditional Gaussian distributions as:

L. Pr(y(n)|x(?)) : N (c[x(D)], Ry (1))
2. Pr(x()|Yi—1) . NG|t — 1), P(t]t — 1))
3. Pry()|Yi—1) : Nt — 1), Ree(2))

Using the nonlinear models developed earlier, substituting the Gaussian probabil-
ities and taking logarithms, we obtain the logarithmic a posteriori probability as

In Pr(x(1)|Y;) = Ink — %v’(r)R;vl(t)v(t) —~ %x’(m — DP7 (1]t — D]z — 1)
+ %e’(t)Re_el (D)e(?) (5.37)

The MAP estimate is then obtained by differentiating this equation, setting the
result to zero and solving for x(¢), that is,

VilnPr(x()|Y)l,_g =0 (5.38)
=Amap
Before we attempt to derive the MAP estimate, we first linearize about a reference

trajectory, x* — x with the nonlinear measurement model approximated by a first
order Taylor series

. de[x*(1)] N N N
clx(®)] ~ c[x™ (0] + W&C(D = c[x" (O] + Clx"(O)](x(2) — x™(1))

Substituting this result into Eq. 5.37, we obtain
1
In Pr(x(1)|Y;) = Ink — E(y(t) — c[x*(1)] — CIx*(O)(x(1) — X)) R, (1)
1 -
x (y(1) — clx* ()] — CLx*(O](x(t) — x* (1)) — Ei’(tlt — DP~(t)t = Dx(t]t — 1)

1
+500 - it — DY R (D) — 3t — 1)) (5.39)
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Applying the chain rule and the gradient operator (see Chapter 3), we obtain the
following expression. Note that the last term of Eq. 5.39 is not a function of x(¢), but
just the data, so it is null.

V. InPr(x(1)|Y;) = —C'[x*()IR,, ()((1) — clx*(1)] — CLx*(D1(x(2) — x*(1)))
— Pt = DIx() — 3|t — D] =0 (5.40)

Multiplying through and grouping like terms in x(¢) gives

C' OIR (OO(0) — el (O] + CLe* (0 (1)
— [Pt = 1) + C'* OIR,, (OCL* (o) + P (el — DRl — 1) =0

(5.41)
Solving for x(¢) = )A(map(t) gives
Xmap(®) = [P71(tlt — 1) + C' I (OIR,, () CLx* ()11
x [P7L (|t — Di(t|r — 1) 4 C'[x*(OIR; (1)
x (1) — c[x* ()] + Clx*(0)]x*(1))] (5.42)

Using the matrix inversion manipulations of Egs. 5.12-5.17 with C(t) —> C[x*(¢)],
the first term in Eq. 5.42 becomes

[Pt — 1) + C'IF* OIR,, (OCIx* O
= (I — P(tlt — DC'[X*(OIR,, ()CLx* () DP ™ (t]t — 1)
= (I — K(OCx*())P(t|t — 1) = P(t|1) (5.43)

where K is the Kalman gain, R, is the innovations covariance of the LZ-BP with this
expression precisely the updated error covariance, P(t|t), as in Table 5.2.
Solving this equation for the inverse of the predicted error covariance gives

Pt — 1) = P7Y(t|) — C'Ix*(OIR, L (1) Clx* (1)) (5.44)
and substituting into Eq. 5.42 using the results of Eq. 5.43 yields
Xmap(t) = P(t|t) [(P™' (tI0k(t]t — 1) — C'[x* (IR, () CLx* ()& (|t — 1))
+ C' I (O1R,, ()(6(1) — c[x* ()] + CLx*()]x*(1)] (5.45)

Multiplying through by the updated error covariance and recognizing the expression
for the Kalman gain gives

Xmap(1) = &(tlt = 1) = KOCIX* 013t — 1) + K(OCIX* ()]x*(2)
+ K1) = clx* D) (5.46)
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which leads to the final expression for the linearized MAP estimate as

Xmap(®) = R(t]1) = X(tlt — 1) + KOO(1) — elx* (0] — CI* 01Gele — 1) — x*(1)
5.47)

Compare this result to Table 5.1. The error covariances and predicted estimates follow
as in the linear case. This completes the derivation. Next let us consider a discrete
version of the nonlinear system example given in Jazwinski [1].

Example 5.2

Consider the discrete nonlinear process given by
x(t) = (1 — 0.05AT)x(t — 1) + 0.04 ATx*(t — 1) + w(t — 1)
with corresponding measurement model
() = X*(0) + (1) + v(0)
where v(¢) ~ N (0, 0.09), x(0)=2.3, P(0)=0.01, AT =0.01 sec and R,,,, =0. The

simulated measurement using SSPACK _PC [8] is shown in Fig. 5.5c. The LZ-BP is
designed from the following Jacobians:

Alx(t — D] = 1 — 0.05AT + 0.08ATx(r — 1) and C[x(r)] = 2x(r) + 3x2(1)

Observing the mean state, we develop a reference trajectory by fitting a line to the
simulated state which is given by

x*(t) =0.067t+2.0 0<t <15 and u*©) =u(@®)=0.0 Vvt
The LZ-BP algorithm is then given by

)t —1) = (1 —0.05AT)x*(t — 1)
+(1 — 0.05AT + 0.08ATx*(t — )[R — 1]t — 1) — x*(t — 1)]
P(tlt — 1) = [1 — 0.05AT + 0.08ATx*(t — D*P(r — 1|t — 1)
e(t) = y(1) — (20 = ¥ (0) — @x* () + 3 O)RElE — 1) = x*(1)]
Reo(t) = [23(t]r — 1) + 332(t]r — D*P(t]r — 1) + 0.09
P(t]t — D[2x*(1) + 3x*2(1)]
Ree(t)
x(t)t) = x(t)t — 1) + K()e(?)

K@) =
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FIGURE 5.5 Linearized BP simulation. (o) Estimated state (0% out) and error (0% out).
(b) Filtered measurement (1% out) and error (innovation) (2.6% out). (c) Simulated
measurement and zero-mean/whiteness test (3.9 x 1072 < 10.1 x 102 and 0% out).

P(tlt) = (1 — K@OR2x* () + 3x* 20N Pt)t — 1)

%010) = 2.3 and P(0]0) = 0

.01

A LZ-BP run is depicted in Fig. 5.5. Here we see that the state estimate begins
tracking the true state after the initial transient. The estimation error is good (0%
lie outside confidence limits) indicating the filter is performing properly for this
realization. The filtered measurement and innovations are shown in Fig. 5.5b with
their corresponding predicted confidence limits. Both estimates lie well within these
bounds. The innovations are zero mean (3.9 x 1072 < 10.1 x 10~2) and white (0%
lie outside limits) as shown in Fig. 5.5¢ indicating proper tuning. This completes the
nonlinear filtering example.

AAA
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5.5 EXTENDED BAYESIAN PROCESSOR (EXTENDED KALMAN FILTER)

In this section we develop the extended Bayesian processor (XBP) or equivalently the
extended Kalman filter (EKF). The XBP is ad hoc in nature, but has become one of
the workhorses of (approximate) nonlinear filtering [1-11]. It has found applicability
in a wide variety of applications such as tracking [15], navigation [1, 5], chemical
processing [17], ocean acoustics [18], seismology [19] (see [20] for a detailed list).
The XBP evolves directly from the linearized processor of the previous section in
which the reference state, x*(¢), used in the linearization process is replaced with
the most recently available state estimate, X(¢|f)—this is the step that makes the
processor ad hoc. We must realize that the Jacobians used in the linearization process
are deterministic (but time-varying), when a reference or perturbation trajectory is
used. However, using the current state estimate is an approximation to the conditional
mean, which is random, making these associated Jacobians and subsequent relations
random. Therefore, although popularly ignored, most XBP designs should be based
on ensemble operations to obtain reasonable estimates of the underlying statistics.
With this in mind, we develop the processor directly from the LZ-BP. Thus, if instead
of using the reference trajectory, we choose to linearize about each new state estimate
as soon as it becomes available, then the XBP algorithm results. The reason for
choosing to linearize about this estimate is that it represents the best information we
have about the state and therefore most likely results in a better reference trajectory
(state estimate). As a consequence, large initial estimation errors do not propagate;
therefore, linearity assumptions are less likely to be violated. Thus, if we choose to
use the current estimate x(f|o), where « is r — 1 or ¢, to linearize about instead of the
reference trajectory x*(¢), then the XBP evolves. That is, let

) =x(tla) fort—1<a<t (5.48)
Then, for instance, when o =t — 1, the predicted perturbation is
801l — 1) = 21l — 1) = x* ()] i1 = 0 (5.49)

Thus, it follows immediately that when x*(r) = x(¢|¢), then 8x(¢|7) = 0 as well.

Substituting the current estimate, either prediction or update into the LZ-BP algo-
rithm, it is easy to see that each of the difference terms [x — x*] are null resulting in the
XBP algorithm. That is, examining the prediction phase of the linearized algorithm,
substituting the current available updated estimate, x(r — 1|t — 1), for the reference
and using the fact that (u*(t) = u(¢) V t), we have

Xt —1) = alx@ — 1|t — D]+ A[x(z — 1]t — D][x@E — 1|t — 1) — %@ — 1|t — 1)]
+blu(t — D] + Blu@® — D][u@t — 1) —u(t — 1)]

giving the prediction of the XBP

2t — 1) = a[f(t — 1|t — D] + bu(z — D] (5.50)
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Now with the predicted estimate available, substituting it for the reference in Eq. 5.33,
gives the innovation sequence as

e(t) = y(t) — c[x(t]t — D] — C[x(t]t — 1)]
x [x(t]t — 1) — X(t|t — 1)] = y(¢) — c[x(t]t — 1)] (5.51)

where we have the new predicted or filtered measurement expression
Y|t — 1) = c[x(t]t — 1)] (5.52)

The updated state estimate is easily obtained by substituting the predicted estimate
for the reference (x(¢|z — 1) — x*(¢)) in Eq. 5.34

8x(t|t) = 8x(t|t — 1) + K(¢)e(r)
[X(r]) = X(tlr = D] = [X(t]t — 1) — &(t|t — D] + K(@©)e(r)
x(t|t) = x(t|t — 1) + K(t)e(?) (5.53)
The covariance and gain equations are identical to those in Table 5.2, but with the
Jacobian matrices A, B, and C linearized about the predicted state estimate, x(¢|z — 1).

Thus, we obtain the discrete XBP or equivalently the EKF algorithm summarized in
Table 5.3. Note that the covariance matrices, P, and the gain, K, are now functions of

TABLE 5.3 Extended BP (Kalman Filter) Algorithm

Prediction
x(t|t —1) = a[x(t — 1|t — D] + blu(z — 1] (state prediction)
P(tt — 1) = A[&(t]t — DIP(t — 1]t — DA'[&(t]t — 1)] + Ryw(t — 1) (covariance prediction)
Innovation
e(t) = y(t) — c[x(t]t — 1)] (innovation)
R..(t) = C[x(t]t — DIP@t|t — DC'[x(t]f — 1)] + Ryw(0) (innovation covariance)
Gain
K(=P(t|t — DC'[x(t|t — DIR, (1) (gain or weight)
Update
x(t]t) = X(t|t = 1) + K(t)e(t) (state update)
P(t|t) = [I — K(OCI&(t|t — DIIP(t]t — 1) (covariance update)

Initial Conditions
%(0]0) P(0|0)

Jacobians

da[x(t — 1)] Clitlr — 1= 2]

Alxlr = DI= =2 ) dx(1)

x=x(t|t—1)
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the current state estimate, which is the approximate conditional mean estimate and
therefore a single realization of a stochastic process. Thus, ensemble (Monte Carlo)
techniques should be used to evaluate estimator performance, that is, for new initial
conditions selected by a Gaussian random number generator (either x(0|0) or P(O|O))
the algorithm is executed generating a set of estimates which should be averaged over
the entire ensemble using this approach to get an “expected” state, etc. Note also in
practice that this algorithm is usually implemented using sequential processing and
UD (upper diagonal/square root) factorization techniques (see [21]).

The XBP can also be developed under (approximate) Gaussian assumptions using
the Bayesian approach as before in the linear case. We briefly outline the derivation.

The a posteriori probability is given by

Pr(x(1)|Y;) = Pr(y(t)li(rtgy)(;;fg”'YH) (5.54)

Under the Gauss-Markov model assumptions, we know that each of the conditional
expectations can be expressed in terms of the conditional Gaussian distributions as:

1. Pr(y(@)|x(®)) : N (clx(D)], Ruyu(1))
2. Pr(x()|Yi—1) . NG|t — 1), P(t]t — 1))
3. PryOIYi—) 1 NGt — 1), Ree(1))

Using the nonlinear models developed earlier, substituting the Gaussian probabil-
ities and taking logarithms, we obtain the logarithmic a posteriori probability as

In Pr(x(r)|Y;) = Inx — %v’(t)R;vl ((t) — %x’(m — DP e — DR — 1)
+ %e’(t)Re_el(t)e(t) (5.55)

The MAP estimate is then obtained by differentiating Eq. 5.55, setting it to zero
and solving; that is,

Vi In Prix(0[ YD)l g, =0 (5.56)

Applying the chain rule and the gradient operation (see Chapter 3), we obtain the
expression. Note that the last term of Eq. 5.55 is not a function of x(#), but just the
data.

V. InPr(x()|Y,) = Vi [x(O)IR;, () (1) — c[x()])
— Pl — D(x(t) — 2(t)t — 1)) (5.57)

Using a first order Taylor series approximation for c[x(#)] linearized about the pre-
dicted estimate x(¢|t — 1) and the usual definition for the Jacobian matrix C[x(¢|t — 1)]
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we have

Y, In Pr(x(n)|Y,) = C'[&(tlr — DIR, (0Iy(0) — cli(elr — D]
— Cx(t]t — DI(x(®) — x(t|]t — 1))] — 13_1(t|t — Dx(r) — x(¢]t — D] (5.58)

Identifying the innovation vector and grouping like-terms gives the expression

V, In Pr(x(1)|Y,) = C'[(t]t — DIR;! (t)e(?)
— [C'[&(t]t — DR, (1) CIA(t]t — D] + P(t]t — 1)] x(2)
+[C'[x(t)t — 1)] Rv‘vl(t)C[)%(t|t — D]+ P(t|t — D]kt — 1)

Setting this equation to zero and solving for x(¢) = )A(map(t) gives

Xmap(t) = [C'[R(t|t — DIR,, (OCIR(t)t — D]+ P(efe — 1]
x [C'[&(t]t — DIR, N (1)CI&(t]t — 1)] + P(t|t — D] &(t|t — 1)
+[C'[&(t]t — DIR,, (OC[&(t]r — 1]
+ P(t]t — DI7'C' () — DIR,, (e(r) (5.59)

or

Kinap(t) = &(t]t — 1) + [C'[3(t] — DIR, (OCIR (] — 1)]
+ P(t]t — DI7C (] — DIR, (1e(r) (5.60)
Recognizing the similarity of this expression to the linear case with
C[x(t|t — 1)] = C(¢) and using the matrix inversion lemma, it is easy to show (see
Eqgns. 5.13-5.17) that our approximate updated error covariance satisfies
P(t|t) = [C'[x(t|t — DIR,,} ()Clk(t|r — D] + P~ (tr — D]} (5.61)
and therefore Eq. 5.60 can be simplified to give

Rmap(t) = &(t]t — 1) + Pt|0)C'[3(1t]r — VIR, (1)e(r) (5.62)

Now recognizing the alternate form for the gain as in Eq. 5.21 gives the desired
updated estimate as

x|t = )?map(t) = x(tlt — 1) + K(®)e(?) (5.63)

This completes the derivation. Consider the following discrete nonlinear example
of the previous section.
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Example 5.3

Consider the discrete nonlinear process and measurement system described in the
previous example. The simulated measurement using SSPACK_PC [8] is shown in
Fig. 5.6¢c. The XBP is designed from the following Jacobian:

Alx(t — D] = 1 — 0.05AT + 0.08ATx(t — 1) and Clx(t)] = 2x(t) + 3x2(F)

The XBP algorithm is then given by

Rt —1) = (1 —0.05AT)(t — 1|t — 1) + 0.04ATR>(r — 1]t — 1)
P(tlt — 1) = [1 — 0.05AT + 0.08ATx(r — D]*P(r — 1]t — 1)

e(r) = y@t) — ()t — ) =@t = 1)
Ree(t) = [23(t]r — 1) 4 332(t|r — D?P(t]r — 1) + 0.09

K(t) = (P(t|t — D[2&(t]t — 1) + 3%°(t]t — DDR (1)
x(@|t) = x(t|r — 1) + K(0)e()
P(t|r) = (1 — K(O[2&(t]t — 1) + 3%°(t]t — DDP(e]t — 1)
%(0]0) = 2.3 and P(0]0) = 0.01

A XBP run is depicted in Fig. 5.6. Here we see that the state estimate begins
tracking the true state after the initial transient. The estimation error is reasonable
(~1% lie outside limits) indicating the filter is performing properly for this realiza-
tion. The filtered measurement and innovations are shown in Fig. 5.6b and lie within
the predicted limits. The innovations are zero mean (6.3 x 1072 < 11.8 x 1072)
and white (0% lie outside limits) as shown in Fig. 5.6¢c indicating proper tuning.
Comparing the XBP to the LZ-BP of the previous section shows that it performs
slightly worse in terms of predicted covariance limits for the estimated measure-
ment and innovations. Most of this error is caused by the initial conditions of the
processor.

Running an ensemble of 101 realizations of this processor yields similar results
for the ensemble estimates: state estimation error increased to (~2% outside limits),
innovations zero mean test increased slightly (6.7 x 1072 < 12 x 10~2) and whiteness
was identical. This completes the example. AANA

Next we consider one of the most popular applications of XBP approach—the
tracking problem [1, 5, 15, 20]. The choice of the coordinate system for the tracker
determines whether the nonlinearities occur either in the state equations (polar coor-
dinates [22]) or in the measurement equations (Cartesian coordinates [23]). The
following application depicts typical XBP performance in Cartesian coordinates.
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FIGURE 5.6 XBP (EKF) simulation. (a) Estimated state (1% out) and error (1% out).
(b) Filtered measurement (1.3% out) and error (innovation) (3.3% out). (c) Simulated
measurement and zero-mean/whiteness test (6.3 x 1072 < 11.8 x 102 and 0% out).

Example 5.4

Consider the following passive localization and tracking problem that frequently
arises in sonar and navigation applications [15]. A maneuvering observer O monitors
noisy “bearings-only” measurements from a target ¢ assumed to be traveling at a
constant velocity. These measurements are to be used to estimate target position r
and velocity v. The problem is geometrically depicted in Fig. 5.7. The velocity and
position of the target relative to the observer are defined by

Ux(#) 1= v (t) — vox(2) (1) 1= ri(t) — rox(t)

V(1) = vgy(t) — Voy(2) ry(t) = ry(t) — roy(t)
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X
FIGURE 5.7 Observer/target ground track geometry for the XBP tracking application.

The velocity is related to position by

u(t) = %r(r) ~ % for AT the sampling interval
or
r@)=rt—1)+ ATv(r - 1)
and

v(t) = v(t —1) 4+ [v@) — v(t — 1)]
v(t) = [t — 1) — vt — D] = [v(t) — vt — D] = v(t — 1) — Avy(t — 1)

for a constant velocity target v;(f) =v;(t — 1)=---=v; and Av is the incremental
change in observer velocity. Using these relations, we can easily develop a Gauss-
Markov model of the equations of motion in two dimensions by defining the state
vectorasx’ := [ry ry vy vy ]andinputu’ :=[—Av, — Av,y], but first let us consider
the measurement model.

For this problem we have the bearing relation given by

rx(t)
ry(t)

B(x,t) := arctan

The entire system can be represented as a Gauss-Markov model with the noise
sources representing uncertainties in the states and measurements. Thus, we have the
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equations of motion given by

10AT O 00
—Avg(t —1)
01 0 AT 00 o
x(t) = 00 1 0 x(t—1)+ 10 +w(—1)
00 0 1 0 1| L7AvWE=D
with the nonlinear sensor model given by
t
y(t) = arctan xl—() + v(t)
x2(1)

for w~N(0, Ryy) and v ~ N(0, Ry,). The SSPACK_PC software [8] was used to
simulate this system which is depicted in Fig. 5.8 for two legs of a tracking scenario.
An impulse-incremental step change (Av,y = —24 knots and Av,y, = +10 knots) was
initiated at 0.5 h, resulting in a change of observer position and velocity depicted in
the figure. The simulated bearing measurements are shown in Fig. 5.6d, The initial
conditions for the run were x'(0) := [0 15nm 20k —10k]and Ry, = diag 10~° with
the measurement noise covariance given by R,, =3.05 x 10~#rad” for AT =0.33 h.

The XBP algorithm of Table 5.3 is implemented using this model and the following
Jacobian matrices derived from the Gauss-Markov model above:

Alx]=A and C[x]:[)ci_(;) —);12(0 0 O]

where

R=/x}t) + x50

The results of this run are shown in Fig. 5.8. In a and b we see the respective x and
y position estimates (velocity estimates are not shown) and corresponding tracking
errors. Here we see that it takes approximately 1.8 h for the estimator to converge to the
true target position (within &1 nm). The innovations sequence appears statistically
zero-mean and white in Fig. 5.8¢ and d, indicating satisfactory performance. The
filtered measurement in c is improved considerably over the unprocessed data in d.
This completes the example. AAA

This completes the section on the extension of the BP to nonlinear problems. Next
we investigate variants of the XBP for improved performance.
5.6 ITERATED-EXTENDED BAYESIAN PROCESSOR
(ITERATED-EXTENDED KALMAN FILTER)

In this section we discuss an extension of the XBP of the previous section to the
iterated-extended (IX-BP). We heuristically motivate the design and then discuss a
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FIGURE 5.8 Extended BP (EKF) simulafion for bearings-only tracking problem. (a) X-
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and error (innovation). (d) Simulated measurement and zero-mean/whiteness test
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more detailed approach using Bayesian MAP estimation coupled with numerical opti-
mization techniques to develop the processor. This algorithm is based on performing
“local” iterations (not global) at a point in time, ¢ to improve the reference trajec-
tory and therefore the underlying estimate in the presence of significant measurement
nonlinearities [1]. A local iteration implies that the inherent recursive structure of the
processor is retained providing new estimates as the new measurements are made
available.

To develop the iterated-extended processor, we start with the linearized processor
update relation substituting the “linearized” innovation of Eq. 5.33 of the LZ-BP,
that is,

() = 2(t]t — D+ K x"(0) [y(0) — clx* (O] — CIx" (0] G|t — 1) —x* ()] (5.64)

where we have explicitly shown the dependence of the gain (through the measure-
ment Jacobian) on the reference trajectory, x*(¢). The XBP algorithm linearizes about
the most currently available estimate, x*(¢) =Xx(¢|f — 1) in this case. Theoretically,
the updated estimate, x(¢|¢) is a better estimate and closer to the true trajectory. Sup-
pose we continue and re-linearize about Xx(¢|¢) when it becomes available and then
recompute the corrected estimate and so on. That is, define the (i + 1)”-iterated
estimate as X;(¢|¢), then the updated iterator equation becomes

Xip1(t]t) = X(t|lt — 1) + K(t; X;(t]1))
x [y(t) — c[x;(t|)] — C[x;(t|)1(x(t]t — 1) — X ([ (5.65)

Now if we start with the 07" iterate as the predicted estimate, that is, x, = x(¢|t — 1),
then the XBP results for i =0. Clearly, the updated estimate in this iteration is
given by

x1(t|) =x(t|t — 1)+ Ko (O)[y(t) — c[x(t]1)] — C[x(t]t — D]I(&(t]t — 1) — X(¢]t — 1))]
(5.66)

where the last term in this expression is null leaving the usual innovation. Note also
that the gain is reevaluated on each iteration as are the measurement function and
Jacobian. The iterations continue until there is little difference in consecutive iterates.
The last iterate is taken as the updated estimate. The complete (updated) iterative loop
is given by:

ei(t) = y(t) — clX;(7]n)]
Reye (1) = CLE(tID]P(t]t — DC'[Zi(t]0)] + Ryy(t)
Ki(t) = P(tlt — DC'[Z:(t|DIR, 3, (¢)
Rip1(tlr) = &l — 1) + Ki0lei(r) — CLRDIEE] — 1) — 2i(t]0))]
Pit]t) = (I — Ki(t)CIX:(t|DO]P(t]t — 1) (5.67)
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TABLE 5.4 Ilterated Extended BP (Kalman Filter) Algorithm

Prediction
Xt —1) = a[x(@ — 1|t — )] — blu(t — 1)] (state prediction)
P(tlt — 1) = A[&(t]r — DIP(t — 1]t — DA'[%(t]f — 1)] — Ryw(t — 1) (covariance prediction)

LOOP:i=1,..., Niterations

Innovation
ei(t) = y(t) — clx;(t]1)] (innovation)
Repei(1) = Clx:(tID1P(t|t — DC'[%:(t]))] — Ryw(2) (innovation covariance)
Gain
Ki(t)=P(|t — DC'[%¢IDIR,) (1) (gain or weight)
Update
X1 (t|) = X(tlt — 1) + Ki(D)[ei(t) — CIRi(t[)] (2]t — 1) — X;(¢]))] (state update)
Pi(tlH) = [I — KOCI&tONP ) — 1) (covariance update)

Initial Conditions
2(010), P(00), R (tlt)=X(t]t — 1)

Jacobians
. dalx(t — 1)] . dclx(t)]
Alx(tt — D)= ———— Clx;(t|n)] =
dx(t — 1) |z dx(®) |z
A typical stopping rule is:
| Xip1(tt) — Xi(t]) < € and  X;i(t]t) — X(¢|t) (5.68)

The IX-BP algorithm is summarized in Table 5.4.

The IX-BP can be useful in reducing the measurement function nonlinearity
approximation errors improving processor performance. It is designed for measure-
ment nonlinearities and does not improve the previous reference trajectory, but it will
improve on the subsequent one. Next we take a slightly more formal approach to
developing the IX-BP from the Bayesian perspective, that is, we first formulate a
parametric optimization problem to develop the generic structure of the iterator, then
apply it to the underlying state estimation problem. Let us assume that we have a non-
linear cost function, J(®), that we would like to maximize relative to the parameter
vector, ® € RVe * 1 'We begin by expanding the cost in terms of a Taylor series about
the ©®;, that is,

J(©) =J(©) + (O — 0,)[Vel(©)] + %(6 — 0)[Veel(©)I(O — ©;) + H.O.T.
(5.69)
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where Vg is the Ng-gradient vector defined by

VelJ(®;) = 9() (5.70)
® i) -— PYe) 0=0, .
with the corresponding Ng x Ng Hessian matrix defined by
Veol(0;) = ) (5.71)
OO = 507 oz, '

Now if we approximate this expression by neglecting the H.O.T. and assume that
®; is close to the true parameter vector (®; & Oy ), then differentiating Eq. 5.69
using the chain rule, we obtain

VeJ(0;) =0+ Ve®'[Ve (0] + %(2[V®®J(®i)](® —0))=0
or
[Veoo (O)(O — 0;) = —[VeJ(0))]
Solving for ® and letting ® — ©®;; we obtain the well-known Newton-Rhapson
iterator (NRI) as [1, 15, 16]
Oir1 = ©; — [Voo  (©)] ' [Ve (©))] (5.72)

This is the form that our IX-BP will assume. Now let us return to the basic problem
of improved state estimation using the NRI.

Under the usual Gaussian assumptions, we would like to calculate the MAP esti-
mate of the state at time ¢ based on the data up to time ¢, therefore, the a posteriori
probability (see Sec. 5.4) is given by

1
Pr(x(0)|Y:) = e Pr(y(0)|x(2)) x Pr(x(r)|Y;—1) (5.73)

where 7 is a normalizing probability (not a function of the state) and can be ignored
in this situation. As in the linear case, we have

L. Pr(y(n)|x(?)) : N (c[x(D)], Ryy(1))
2. Pr(x()|Yi1) . NGt — 1), Pt|t — 1))

Maximizing the a posteriori probability is equivalent to minimizing its logarithm,
therefore, we have that

J(x(1))

In Pr(y(#)|x(1)) + In Pr(x(#)|Y;—1)

1
—500 - xRy, (1) — elx()])

- %(x(t) — R0t — DYP )t — D) =2t — 1) (5.74)
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Minimizing this expression, we differentiate with respect to x(¢) using the gradient
operator as before to obtain

Vi (x(1)) = [V [x(OTIR,) (D ((1) — c[x()]) — P~ (¢]t = D(x() = £(t]—1)) (5.75)
With a slight abuse, we can simplify the notation by defining the relations

0
Clx(®)] = %(tt))]lx(t):xi(o,ei(l) = y(#) — c[x; ()], and X;(r) := x;(¢) — x(t]t — 1)

Therefore, letting x — x;, we can write Eq. 5.75 as
VoI (xi(1) = C' xRy, (Dei(t) — P~ (t|t — DF;(t|t — 1) (5.76)

which is the same form of the linear MAP estimator of Eq. 5.10 with C[x;(#)] = C(¢).
Continuing with the NRI derivation, we differentiate Eq. 5.76 again to obtain the
Hessian

Ve (xi(0)) = C'Ixi()IR,, (1) Clxi(t)] + P~ (1]t — 1) (5.77)

but applying the matrix inversion lemma as in Sec. 5.4 (see Eq. 5.13 for details), it is
shown that

[Vaed (i) ™" = (I = KiO)Clx(®DP (]t — 1) = Piel0) (5.78)
for
Ki(t) == Ki(t:x:0)) = Ptlt — DC'Da(0)IR; L (0) (5.79)
with
Reie;(t) = CLxi)1P(t]t — 1)C'Ixi(1)] + Ruu(t) (5.80)

Now equating Eqs. 5.76 and 5.78 and solving for P~!(¢|t — 1), we obtain

Pt — 1) = P~ (t]1) — C'la(OIR,, (1) Clxi(1)] (5.81)
which can be substituted back into Eq. 5.76 to give

VoI (xi(0) = C'Ixi(0)IR,, (D)eit) — [P~ (t]t) — C (DR, (OCIxi()]1F (et — 1)
(5.82)

The NRI can now be written in terms of the iterated state at time t as
Xip1(8) = xi(0) — [Vae (5(0)] ™' Vi (xi(0)) (5.83)
Using the expressions for the Hessian and gradient, we have
Xi41 (1) = xi(1) + Pi(t]r)

x(C'[x (DR, (Dei(t) — [P (111) — C' (IR, ()CLa(ONFi(t]t — 1))
(5.84)
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Multiplying through by the Hessian and recognizing the alternate expression for
the gain (see Eq. 5.22), we obtain the expression

Xit1() = xi(t) + Ki(Dei(t) — (I — K@) Clxi(n)Dxi(e]t — 1) (5.85)

Now multiplying through by X(¢|t — 1), factoring out the gain and performing the
additions, we have

X1 (1) = x|t = D) + Ki(Dlei() — Clxi(D]X (]t — 1) — xi(1)] (5.86)

Defining the iterate in terms of the corrected state estimate, that is, x;(£) — X;(f|t)
gives the NRI iterator of Eq. 5.67 and Table 5.4.

So we see that for strong measurement nonlinearities the IX-BP can be used for lit-
tle cost to the XBP. A further extension of these results is called the iterator-smoother
XBP in which the entire processor is iterated to mitigate strong nonlinearities in the
predicted estimates [1]. Here the measurement is relinearized and then a “smoothed”
state estimate is calculated and used in the prediction loop. This completes the
discussion of the processor, next we demonstrate its performance.

Example 5.5
Consider the discrete nonlinear process and measurement system described in the
previous example. The simulated measurement using SSPACK_PC [8] is shown in
Fig. 5.9c. The IX-BP is designed from the following Jacobian:
Alx(t — 1)] =1 —0.05AT 4+ 0.08ATx(r — 1) and C[x(r)] = 2x(r) + 3x*(1)
The IX-BP algorithm is then given by

)t —1) = (1 —0.05AT)R( — 1]t — 1) + 0.04ATR>(t — 1]t — 1)
P(t]t — 1) = [1 — 0.05AT + 0.08ATx(r — DJ*P(t — 1]t — 1)

ei(t) = y(t) — & (t|t) — % (¢lt)
Ree.(t) = [23(t]0) 4 3%7(t|)]*P(t]t — 1) +0.09

Ki(t) = P(t]t — DI28i(t]1) + 387 (1]1)]/Rese; (1)

X1t = 2]t — 1) 4+ Ki(@)[ei(r) — [2%:(2]t) + 322 (t|D1GE ()t — 1) — Xi(t]0)
Pi(t|t) = (1 — Ki(0)[2%(t|t) + 332 (t|ODP(e]t — 1)

#0]0) = 2.3 and P(0]0) = 0.01

A IX-BP run is depicted in Fig. 5.9. Here we see that the state estimate (~0% lie
within limits) begins tracking the true state instantaneously. The estimation error is



5.6 [TERATED-EXTENDED BAYESIAN PROCESSOR 181

0.04
0.02 p
\\‘7 7777777777777777
4 X 0 Jrwn/ TN M
-0.02 |/
1.95 -0.04
0 0.5 1 1.5 0 0.5 1 15
Time (s) (a) Time (s)
14.5 2
14
135
§, 13
12.5
12
11.5¢
145
14
13.5
y 13

125
12
11.5

Time (s) (c) Lag time (s)

FIGURE 5.9 Iterated-extended BP (IEKF) simulation. (o) Estimated state (~0% out) and
error (~0% out). (b) Filtered measurement (~1% out) and error (innovation) (~2.6%
out). (¢) Simulated measurement and zero-mean/whiteness test (4 x 1072 < 10.7 x 102
and 0% out).

reasonable (~0% out) indicating the filter is performing properly for this realization.
The filtered measurement (~1% out) and innovations (~2.6% out) are shown in
Fig. 5.9b. The innovations are zero mean (4 x 1072 < 10.7 x 10~2) and white (0%
lie outside limits) as shown in Fig. 5.9¢ indicating proper tuning and matching the
LZ-BP result almost exactly.

Running an ensemble of 101 realizations of this processor yields similar
results for the ensemble estimates: innovations zero mean test decreased slightly
(3.7 x 1072 < 10.3 x 10~2) and whiteness was identical. So the overall effect of the
IX-BP was to decrease the measurement nonlinearity effect especially in the initial
transient of the algorithm. These results are almost identical to those of the LZ-BP.
This completes the nonlinear filtering example. AAA

Next we consider some more practical approaches to designing estimators.
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5.7 PRACTICAL ASPECTS OF CLASSICAL BAYESIAN PROCESSORS

In this section we heuristically provide an intuitive feel for the operation of the
Bayesian processor using the state—space model and GM assumptions. These results
coupled with the theoretical points developed in [10] lead to the proper adjustment
or “tuning” of the BP. Tuning the processor is considered an art, but with proper
statistical tests, the performance can readily be evaluated and adjusted. As men-
tioned previously, this approach is called the minimum (error) variance design.
In contrast to standard filter design procedures in signal processing, the minimum
variance design adjusts the statistical parameters (e.g., covariances) of the pro-
cessor and examines the innovations sequence to determine if the BP is properly
tuned. Once tuned, then all of the statistics (conditional means and variances) are
valid and may be used as reasonable estimates. Here we discuss how the para-
meters can be adjusted and what statistical tests must be performed to evaluate BP
performance.
Heuristically, the sequential BP can be viewed simply by its update equation

Prediction Update
——
A A F-/—\
Xhew = Xold + K X Epew
~—~— ~———
State—space model Measurement

where Xold ~ f(model) and Eyy ~ f(measurement).

Using this model of the BP, we see that we can view the old, or predicted estimate
)A(old as a function of the state—space model (A, B) and the prediction error or innovation
E as a function primarily of the new measurement, as indicated in Table 5.1. Consider

the new estimate under the following cases:

K — small f(new = AO]d = f(model)

K — large }A(new = KEpew = f(measurement)

So we can see that the operation of the processor is pivoted about the values of the
gain or weighting matrix K. For small K, the processor “believes” the model, and for
large K, the processor believes the measurement (Fig. 5.10).

Let us investigate the gain matrix and see if its variations are consistent with these
heuristic notions. First, it was shown in Eq. 5.22 that the alternate form of the gain
equation is given by

K(t) = P(t|)C (OR,, (1)

Thus, the condition where K is small can occur in two cases: (1) P is small (fixed
Ry») which is consistent because small P implies that the model is adequate; and
(2) Ryy is large (P fixed), which is also consistent because large R, implies that the
measurement is noisy, so again believe the model.

For the condition where K is large two cases can also occur: (1) K is large when Pis
large (fixed R,,), implying that the model is inadequate, so believe the measurement;
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Condition Gain Parameter

Believe model Small P small (model adequate)
R,, large (measurement noisy)

Believe measurement Large R,, small (measurement good)
P large (model inadequate)

FIGURE 5.10 Bayesian processor heuristic notions.

and (2) Ry, is small (P fixed), implying the measurement is good (high SNR). So we
see that our heuristic notions are based on specific theoretical relationships between
the parameters in the BP algorithm of Table 5.1.

Summarizing, a BP (Kalman filter) is not functioning properly when the gain
becomes small and the measurements still contain information necessary for the
estimates. The filter is said to diverge under these conditions. In this case, it is
necessary to detect how the filter is functioning and how to adjust it if necessary, but
first we consider the tuned BP.

When the processor is “tuned”, it provides an optimal or minimum (error) variance
estimate of the state. The innovations sequence, which was instrumental in deriving
the processor, also provides the starting point to check the BP operation. A necessary
and sufficient condition for a BP to be optimal is that the innovation sequence is
zero-mean and white (see [4] for the proof). These are the first properties that must
be evaluated to ensure that the processor is operating properly. If we assume that the
innovation sequence is ergodic and Gaussian, then we can use the sample mean as
the test statistic to estimate, m,, the population mean. The sample mean for the i
component of ¢; is given by

N
. 1 .
me(i) = N Z_E 1 ei(t) fori=1,...,N, (5.87)

where 71.(i) ~ N (m,, Ree(i)/N) and N is the number of data samples. We perform a
statistical hypothesis test to “decide” if the innovation mean is zero [10]. We test that
the mean of the i component of the innovation vector e;(¢) is

H,: m,(i)=0
Hy: m, i) #0

As our test statistic we use the sample mean. At the «-significance level, the probability
of rejecting the null hypothesis H, is given by

< e (i) — me (i) T; — me(i)
Pr - > :
\/Ree(l)/N \/REE(Z)/N

) =« (5.88)
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Therefore, the zero-mean test [10] on each component innovation e; is given by

Reject Hyp
e (i) T (5.89)

< Accept Hp

Under the null hypothesis H,, each m,(7) is zero. Therefore, at the 5% significance
level (¢ =0.05), we have that the threshold is

T — 1.96 RL(Z.) (590)
\ N

where R, (i) is the sample variance (assuming ergodicity) estimated by
| N
Reeti) = + ; eX(r) (5.91)

Under the same assumptions, we can perform a whiteness test [10], that is, check
statistically that the innovations covariance corresponds to that of an uncorrelated
(white) sequence. Again assuming ergodicity of the innovations sequence, we use
the sample covariance function as our test statistic with the i/ component covariance
given by

R 1 &
Ree(i, k) = N Z (ei(t) — me(i))(ei(t + k) — m(0)) (5.92)
t=k+1

We actually use the normalized covariance test statistic

. Ree(i, k)
Pee(l, k) = —— (5.93)
Reeli)

Asymptotically for large N, it can be shown that (see [10-14]) that
Peelis k) ~ N(0,1/N)

Therefore, the 95% confidence interval estimate is
.. 1.96
Iy, = Pee(i, k) = ﬁ for N > 30 (5.94)

Hence, under the null hypothesis, 95% of the pe.(i, k) values must lie within this
confidence interval, that is, for each component innovation sequence to be considered
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statistically white. Similar tests can be constructed for the cross-covariance properties
of the innovations [13] as well, that is,

Cov(e(t),e(k)) =0 and Cov(e(t),u(t—1))=0

The whiteness test of Eq. 5.94 is very useful for detecting model inaccuracies from
individual component innovations. However, for complex systems with a large num-
ber of measurement channels, it becomes computationally burdensome to investigate
each innovation component-wise. A statistic capturing all of the innovation infor-
mation is the weighted sum-squared residual (WSSR) [14]. It aggregates all of
the innovation vector information over some finite window of length N. It can be
shown that the WSSR is related to a maximum-likelihood estimate of the normalized
innovations variance [10, 14]. The WSSR test statistic is given by

14
po)y = Y R, (Kelk) for =N (5.95)
k=0—N+1

and is based on the hypothesis test

H,: p(¢) is white
H; : p(£) is not white

given by
Reject Hop

2(0) T (5.96)

< Accept Hp

Under the null hypothesis, the WSSR is chi-squared distributed, p(£) ~ xz(NyN ).
However, for NyN > 30, p(¢) is approximately Gaussian N (NyN,2N,N) (see [4]
for more details). At the a-significance level, the probability of rejecting the null

pl) —Ny,N 17— N,N

hypothesis is given by
Pr > =« 5.97
( V2NN V2NyN ) ©97

For a level of significance of « = 0.05, we have
T = NyN + 1.96,/2N,N (5.98)

Thus, the WSSR can be considered a “whiteness test” of the innovations vector
over a finite window of length N. Note that since [{e(?)}, {R..(¢)}] are obtained from
the state—space BP algorithm directly, they can be used for both stationary as well
as nonstationary processes. In fact, in practice for a large number of measurement
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Data Property Statistic Test Assumptions
Innovation me=0 Sample mean Zero mean Ergodic, gaussian
Ree(t) Sample covariance Whiteness Ergodic, gaussian
p() WSSR Whiteness Gaussian
Rgelt k) Sample cross- Cross-covariance  Ergodic, gaussian
covariance
Rgu(tk) Sample cross- Cross-covariance  Ergodic, gaussian
covariance
Covariances  Innovation ~ Sample variance Ree = .‘A?ee Ergodic
Innovation R, Confidence interval
about {e(t)}
Estimaton ~ Sample variance  p= P Ergodic, Xyye
error ~ known
Estimation P Confidence interval X, known
error about {X(t|1)}

FIGURE 5.11 State-space BP tuning tests.

components, the WSSR is used to “tune” the filter and then the component innovations
are individually analyzed to detect model mismatches. Note also that the adjustable
parameter of the WSSR statistic is the window length N, which essentially controls
the width of the window sliding through the innovations sequence.

Other sets of “reasonableness” tests can be performed using the covariances esti-
mated by the BP algorithm and sample variances estimated using Eq. 5.92. The BP
provides estimates of the respective processor covariances R, and P from the relations
given in Table 5.1. Using sample variance estimators, when the filter reaches steady
state (process is stationary), that is, Pis constant, the estimates can be compared to
ensure that they are reasonable. Thus we have

Roo(i) ~ Roli) and  P(i) ~ P(i) (5.99)

Plotting the +1.96,/R,,.;(¢) and £1.96,/ P;(t|t) about the component innovations
{ei(r)} and component state estimation errors {X;(¢|¢)}, when the true state is known
provides an accurate estimate of the BP performance especially when simulation is
used. If the covariance estimates of the processor are reasonable, then 95% of the
sequence samples should lie within the constructed bounds. Violation of these bounds
clearly indicate inadequacies in modeling the processor statistics. We summarize these
results in Fig. 5.11 and examine an RLC-circuit design problem in the following
section to demonstrate the approach in more detail.

5.8 CASE STUDY: RLC CIRCUIT PROBLEM

Consider the design of an estimator for a series RLC circuit (second-order system)
excited by a pulse train. The circuit diagram is shown in Fig. 5.12. Using Kirchhoff’s
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FIGURE 5.12 RLC circuit problem.

voltage law, we can obtain the circuit equations with i = C(de/dt):

d’¢ Rde 1 1

PR T T o
where e;, is a unit pulse train. This equation is that of a second-order system that
characterizes the electrical RLC circuit, or a mechanical vibration system, or a
hydraulic flow system, etc. The dynamic equations can be placed in state—space
form by choosing x :=[e | de/dt] and u = ejy:

dx 0 1 0 0
- = 1 RIX+|_ 1 fut|_1|w
dt L=c ~I ~1IC ~IC

where w ~ N(0, Ry,) is used to model component inaccuracies.

A high-impedance voltmeter is placed in the circuit to measure the capacitor
voltage e. We assume that it is a digital (sampled) device contaminated with noise of
variance R,,; that is,

Y1) = e(r) + v(1)

where v~ N(0,R,,). For our problem we have the following parameters:
R=5KQ,L=25H,C=0.1 uF, and T=0.1ms (the problem will be scaled in
milliseconds). We assume that the component inaccuracies can be modeled using
Ryw =0.01, characterizing a deviation of +0.1V uncertainty in the circuit repre-
sentation. Finally, we assume that the precision of the voltmeter measurements are
(e £0.2V), the two standard deviation value, so that Ry, = 0.01 (V)2 Summarizing
the circuit model, we have the continuous-time representation

SRR
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and the discrete-time measurements

y@® =[1 0lx(z) + v(®)

where

_OD 0.01(V)* and Ry, = 0.01(V)?
ww — T - Y- v — Y-

Before we design the discrete Bayesian processor, we must convert the system or
process model to a sampled-data (discrete) representation. Using SSPACK_PC [8],
this is accomplished automatically with the Taylor series approach to approximating
the matrix exponential. For an error tolerance of 1 x 10712, a 15-term series expansion
yields the following discrete-time Gauss-Markov model:

098  0.09 ~0.019 ~0.019
o) = [—0.36 0.801}6([_ D+ [—0.36 }”(’_ D+ [—0.36 }“’“_ D

y(®) =1 | 0]x(r) + v(r)
where
Ryw = 0.01(V)> and R, = 0.01(V)?

Using SSPACK _PC with initial conditions x(0) =0 and P = diag(0.01,0.04), the
simulated system is depicted in Fig. 5.13. In Fig. 5.13a—c we see the simulated
states and measurements with corresponding confidence limits about the mean (true)
values. In each case, the simulation satisfies the statistical properties of the GM model.
The corresponding true (mean) trajectories are also shown along with the pulse train
excitation. Note that the measurements are merely a noisier (process and measurement
noise) version of the voltage x.

A discrete Bayesian processor was designed using SSPACK_PC to improve the
estimated voltage x;. The results are shown in Fig. 5.14. In a through ¢ we see the
filtered states and measurements as well as the corresponding estimation errors.
The true (mean) states are superimposed as well to indicate the tracking capability of
the estimator. The estimation errors lie within the bounds (3 percent out) for the second
state, but the error covariance is slightly underestimated for the first state (14 percent
out). The predicted and sample variances are close (0.002 =~ 0.004 and 0.028 ~ 0.015)
in both cases. The innovations lie within the bounds (3 percent out) with the predicted
sample variances close (0.011 2 0.013). The innovations are statistically zero-mean
(0.0046 « 0.014) and white (5 percent out, WSSR below threshold),* indicating a
well-tuned estimator. This completes the RLC problem.

4 WSSR is the weighted-sum squared residual statistic which aggregates the innovation vector information
over a window to perform a vector-type whiteness test (see [2] for details).
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FIGURE 5.13 Gauss-Markov simulatfion of RLC circuit problem. (a) Simulated and frue
state (voltage). (b) Simulated frue state (current). (¢) Simulated and true measurement.
(d) Pulse-train excitation.
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FIGURE 5.14 Bayesian processor design for RLC circuit problem. (a) Estimated state (volt-
age) and error. (b) Estimated state (current) and error. (¢) Filtered and frue measurement
(voltage) and error (innovation). (d) WSSR and whiteness test.
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5.9 SUMMARY

In this chapter we have introduced the concepts of classical linear and nonlinear
Bayesian signal processing using state—space models. After developing the idea of
linearizing a nonlinear state—space system, we developed the linearized Bayesian pro-
cessor (LZ-BP). It was shown that the resulting processor provides an approximate
solution (time-varying) to the nonlinear state estimation problem. We then devel-
oped the extended Bayesian processor (XBP) or equivalently the extended Kalman
filter (EKF), as a special case of the LZ-BP linearizing about the most currently
available estimate. Next we investigated a further enhancement of the XBP by intro-
ducing alocal iteration of the nonlinear measurement system using a Newton-Rhapson
method. Here the processor is called the iterated-extended Bayesian processor (IX-
BP) and is shown to produce improved estimates at a small computational cost in
most cases. Examples were developed throughout to demonstrate the concepts (see
http://www.techni-soft.net for more details).

MATLAB NOTES

SSPACK_PC [8] is a third-party toolbox in MATLAB that can be used to
design classical Bayesian processors. This package incorporates the major
nonlinear BP algorithms discussed in this chapter—all implemented in the UD-
factorized form [21] for stable and efficient calculations. It performs the discrete
approximate Gauss-Markov simulations using (SSNSIM) and both extended
(XBP) and iterated-extended (IX-BP) processors using (SSNEST). The lin-
earized Bayesian processor (LZ-BP) is also implemented (SSLZEST). Ensemble
operations are seamlessly embodied within the GUI-driven framework where
it is quite efficient to perform multiple design runs and compare results. Of
course, the heart of the package is the command or GUI-driven post-processor
(SSPOST) which is used to analyze and display the results of the simulations and
processing.

REBEL is a recursive Bayesian estimation package in MATLAB available on
the web which performs similar operations including the new statistical-based
unscented algorithms including the UBP (Chapter 6) including the unscented
transformations [24]. It also includes the new particle filter designs (Chapter 7)
discussed in [25] (see http://choosh.ece.ogi.edu/rebel for more details).
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Problems

51

5.2

5.3

54

Derive the continuous-time BP by starting with the discrete equations of
Table 5.1 and using the following sampled-data approximations:
A= AP T4+ ANt
B At
WAt
Ryw = Ry w, A

2 w
[

Suppose we are given a continuous-time Gauss-Markov model character-
ized by

x(1) = Ac(Ox(t) + Be(D)u(t) + We(H)w(t)

and discrete (sampled) measurement model such that ¢ — #; then

(i) = C(t)x(tr) + v(te)

where the continuous process, w(t) ~ N(0, Ryy), and v(t;) ~ N(0, Ry,) with
Gaussian initial conditions.

(a) Determine the state mean (mm,(¢)) and covariance (P(t)).

(b) Determine the measurement mean (my(#)) and covariance (Ryy(#)).

(c) Develop the relationship between the continuous and discrete Gauss-
Markov models based on the solution of the continuous state equations

and approximation using a first order Taylor series for the state transition
matrix, ®(¢,1,) and the associated system matrices.

(d) Derive the continuous-discrete BP using first difference approxima-
tions for derivatives and the discrete (sampled) system matrices derived
above.

The covariance correction equation of the BP algorithm is seldom used directly.
Numerically, the covariance matrix 13(t|t) must be positive semidefinite, but in
the correction equation we are subtracting a matrix from a positive semidefinite
matrix and cannot guarantee that the result will remain positive semidefinite
(as it should be) because of roundoff and truncation errors. A solution to
this problem is to replace the standard correction equation with the stabilized
Joseph form, that is,

P(t|t) = [I — K(OC1P(t]t — DI — K(OC1)] + K(ORw(K'(t)

(a) Derive the Joseph stabilized form.
(b) Demonstrate that it is equivalent to the standard correction equation.

Prove that a necessary and sufficient condition for a linear BP to be optimal
is that the corresponding innovations sequence is zero-mean and white.
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5.5 A bird watcher is counting the number of birds migrating to and from a par-

5.6

5.7

ticular nesting area. Suppose the number of migratory birds, m(¢) is modeled
by a first order ARMA model:

m(t) = —0.5m(t — 1) + w(z) for w ~ N(10,75)
while the number of resident birds is static, that is,
ry=rt—1)
The number of resident birds is averaged leading to the expression
y(t) = 0.57(¢) + m(t) + v(t) for w ~ N(0,0.1)

(a) Develop the two state Gauss-Markov model with initial values r(0) =20
birds, m(0) = 100 birds, cov r(0) =25.

(b) Use the MBP algorithm to estimate the number of resident and migrating
birds in the nesting area for the data set y(¢) = {70, 80}, that is, what is
x(2]2)?

Suppose we are given a measurement device that not only acquires the current
state but also the state delayed by one time step (multipath) such that

y(t) = Cx(t) + Ex(t — 1) 4+ v(¢)

Derive the recursive form for this associated MBP. (Hint: Recall from
the properties of the state transition matrix that x(¢) = (¢, t)x(r) and
o1, 1)=D(1,1)

(a) Using the state transition matrix for discrete-systems, find the relationship
between x(¢) and x(¢ — 1) in the Gauss-Markov model.

(b) Substitute this result into the measurement equation to obtain the usual
form

y(1) = Cx(t) + 0(t)

What are the relations for C and 9(¢) in the new system?

(¢) Derive the new statistics for v(¢) ~ N(u3, Ryz).

(d) Are w and v correlated? If so, use the prediction form to develop the MBP
algorithm for this system.

Develop the discrete linearized (perturbation) models for each of the following
nonlinear systems ([7]):

e Synchronous (unsteady) motor: X(t) + Cx(t) 4 p sin x(¢) = L(t)

e Duffing equation: x(t) + ax(t) + ﬂx3 (1) =F(cos wt)

e Van der Pol equation: X(t) + ex(t)[1 — x>(t)] + x(t) = m(t)

e Hill equation: X(t) — ax(t) + Bp(t)x(t) = m(t)
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(a) Develop the LZ-BP.
(b) Develop the XBP.
(c) Develop the IX-BP.

Suppose we are given the following discrete system
x(t) = —a)zx(t — 1D +sinx(t —1)+au(t— 1)+ wE —1)
y() = x(1) + v(1)
with w and v zero-mean, white Gaussian with usual covariances, Ry, and R,
(a) Develop the LZ-BP for this process.
(b) Develop the XBP for this process.

(c) Develop the IX-BP for this process.

(d) Suppose the parameters w and « are unknown develop the XBP such that
the parameters are jointly estimated along with the states. (Hint: Augment
the states and parameters to create a new state vector).

Assume that we have the following nonlinear continuous-discrete Gauss-
Markov model:

x(1) = flx(®)] + glu()] + w(r)

2(tx) = hlx(@)] + v(t)
with w and v zero-mean, white Gaussian with usual covariances, Q and R.
(a) Develop the perturbation model for 8x(¢) := x(¢) — x*(¢) for x*(¢) the given

reference trajectory.

(b) Develop the LZ-BP for this process.

(c) Choose x*(t)=x(t) whenever x(¢) is available during the recursion.
Therefore, develop the continuous-discrete XBP.

Suppose we assume that a target is able to maneuver, that is, we assume that
the target velocity satisfies a first order AR model given by:

vr(t) = —av (t — 1)+ w(t — 1) forw ~ N(0, Ry, u,)

(a) Develop the Cartesian tracking model for this process.

(b) Develop the corresponding XBP assuming all parameters are known
a priori.

(c) Develop the corresponding XBP assuming « is unknown.

Nonlinear processors (LZ-BP, XBP, IX-BP) can be used to develop neural net-
works used in many applications. Suppose we model a generic neural network
behavior by

x(t) =x@—1D+wk—1)

Y1) = clx(®), u(r), a(n)] + v(r)
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where x(f) is the network weights (parameters), u(¢) is the input or training
sequence, o(¢) is the node activators with w and v zero-mean, white Gaussian
with covariances, Ry, and R,,.

(a) Develop the LZ-BP for this process.
(b) Develop the XBP for this process.
(c) Develop the IX-BP for this process.

The Mackey-Glass time delay differential equation is given by

o ax(t — 1)
x(t) = ToxG— o Bx(t) + w(?)

y() = x(1) + v(1)

where «, B are constants, N is a positive integer with w and v zero-mean,
white Gaussian with covariances, R,,,, and R,,,. For the parameter set: « = 0.2,
B=0.1, =7 and N =10 with x(0) = 1.2

(a) Develop the LZ-BP for this process.
(b) Develop the XBP for this process.
(c) Develop the IX-BP for this process.

Consider the problem of estimating a random signal from an AM modulator
characterized by

s(t) = V2Pa(t)sin w.t
r(t) = s(1) + v(r)
where a(?) is assumed to be a Gaussian random signal with power spectrum

2k,P,

Saa(w) = (,()2 + k2
a

also assume that the processes are contaminated with the usual additive noise

sources: w and v zero-mean, white Gaussian with covariances, Ry, and Ry,.

(a) Develop the continuous-time Gauss-Markov model for this process.

(b) Develop the corresponding discrete-time Gauss-Markov model for this
process using first differences.

(c) Develop the BP.

(d) Assume the carrier frequency, w, is unknown. Develop the XBP for this
process.
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6.1 INTRODUCTION

In this chapter we discuss an extension of the approximate nonlinear Bayesian suite
of processors that takes a distinctly different approach to the nonlinear Gaussian
problem. Instead of attempting to improve on the linearized approximation in the
nonlinear XBP (EKF) schemes discussed in the previous section or increasing the
order of the Taylor series approximations [1-11] a modern statistical (linearization)
transformation approach is developed. It is founded on the idea that “it is easier to
approximate a probability distribution, than to approximate an arbitrary nonlinear
function of transformation” [3, 12-21]. The classical nonlinear Bayesian processors
discussed so far are based on linearizing nonlinear functions of the state and mea-
surements to provide estimates of the underlying statistics (using Jacobians), while
the statistical transformation approach is based on selecting a set of sample points
that capture certain properties of the underlying distribution. This transformation is
essentially a “statistical linearization” technique that incorporates the uncertainty of
the prior random variable when linearizing [12]. This set of sample points is then non-
linearly transformed or propagated to a new space. The statistics of the new samples
are then calculated to provide the required estimates. Note that this method differs
from the sampling—resampling approach, in which random samples are drawn from
the prior distribution and updated through the likelihood function to produce a sample
from the posterior distribution [22]. Here the samples are not drawn at random, but
according to a specific deterministic algorithm. Once this transformation is performed,
the resulting processor, the sigma-point Bayesian processor (SPBP) or equivalently
the unscented Kalman filter (UKF') evolves. It is a recursive processor that resolves
some of the approximation issues [14] and deficiencies of the XBP of the previous
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sections. We first develop the idea of nonlinearly transforming a random vector with
known probability distribution and then apply it to a Gaussian problem leading to the
SPBP algorithm. We then apply the modern processor to the previous nonlinear state
estimation problem and compare its performance to the classical.

6.2 SIGMA-POINT (UNSCENTED) TRANSFORMATIONS

A completely different approach to nonlinear estimation evolves from the concept of
statistical linearization [3, 16, 19, 24]. Instead of approximating the nonlinear process
and measurement dynamics of the underlying system using a truncated Taylor series
representation that leads to the classical forms of estimation (LZKF, EKF, IEKF, etc.),
the statistical approximation or equivalently statistical linearization method provides
an alternative that takes into account the uncertainty or probabilistic spread of the
prior random vector. The basic idea is to approximate (linearize) a nonlinear function
of a random vector while preserving its first and second moments; therefore, this
approachrequires a priori knowledge of its distribution resulting in a more statistically
accurate transformation.

6.2.1 Statistical Linearization

Following Gelb [3], statistical linearization evolves from the idea of propagating an
N,-dimensional random vector x with PDF, px(X), through an arbitrary nonlinear
transformation a[-] to generate a new random vector,

y =a[x] (6.1)
Expanding this function in a Taylor series about x; gives
a[x] = a[x;] + (x — x;) Vxa[x;] + HO.T. (6.2)
where Vy is the N,-gradient vector defined by

oa[x]
ox

X=X;

Vyalx;] := 6.3)

Neglecting the H.O.T and simplifying with the appropriate definitions, we obtain
the “regression form” of y regressing on x

y=a[x] ¥ Ax+b 6.4)

where both A, b are to be determined given x ~ px(x). Estimation of A, b follows
from the traditional linear algebraic perspective by defining the approximation or
linearization error as:

€e:=y—Ax—b=a[x]—-Ax—b (6.5)
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along with the corresponding cost function
Je := E{é'e} (6.6)

that is minimized with respect to the unknowns A, b. Performing the usual differ-
entiation of the cost function, J¢ — J<(A, b), with respect to the unknowns, setting
the results to zero and solving generates the MMSE result discussed previously in
Chapter 2. That is, we first minimize with respect to b

ViJo(A,b) = VpE{€'e} = E{Vp(y — AX — b)'e} = 0 (6.7)
Now using the chain rule of Eq. 2.11 with @’ = (y — Ax — b)’ and b = ¢ we obtain
VbJe(A,b) = E{V(y —Ax — b)e} = —2E{(y —Ax — b)} =0

Solving for b, we obtain
b= MUy — Ay (6.8)

Furthermore, substituting for b into the cost and differentiating with respect to A,
setting the result to zero and solving yields

VaJe(A, b)lb:/LyfA/,Lx = E{A(x — u)(x — i) + (v — My)(x — o)} =0

giving
AE{(x — p)(x — 1)} = E{(y — py)(x — 142)'}
or
ARy = Ry,
that has the MMSE solution
A =RuR' =R R/ (6.9)

Now suppose we linearize the function through this relation by constructing a linear
regression between a selected set of N,-points and the nonlinear transformation, a[x],
at these selected points. That is, defining the set of the selected points as { X}, ;} with

Vi = a[4&j]

Following the same approach as before by defining the “pointwise” linearization
error as
€ =Y —AX;i —b =a[Aj] - AX; — Db (6.10)
with
pe =0, and Ree =Ry, — AR A’ (6.11)
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Performing a weighted minimization (as above) on the pointwise linearization error
with a set of regression weights, {W;};i=1,..., N, yields the following solution:

A=R R, b=y, —Au, (6.12)

where the weighted statistics are given by

Ny
Mx = Z Wi/Yi
i=1
Ny
Ry = ) WilXi — )X — i) (6.13)
i=1
and for the posterior
Ny
My = Z Wi
i=1
Ny
Ry = Y WiV — )i — 11y)’ (6.14)

i=1

with the corresponding cross-covariance

Ny
Ry =Y WiXi — )i — py) (6.15)

i=1

With this underlying regression and pointwise transformation in place, the next step
is to determine the corresponding set of regression (sigma) points {X;} and their
corresponding weights, {W;}.

6.2.2 Sigma-Point Approach

The sigma-point transformation (SPT) or equivalently unscented transformation
(UT) is a technique for calculating the statistics of a random vector that has been non-
linearly transformed. The approach is illustrated in Fig. 6.1. Here the set of samples or
so-called sigma points are chosen so that they capture the specific properties of the
underlying distribution. In the figure we consider px(x) to be a 2D-Gaussian, then
the o-points are located along the major and minor axes of the covariance ellipse
capturing the essence of this distribution. In general, the goal is to construct a set
of o-points possessing the same statistics as the original distribution such that when
nonlinearly transformed to the new space, then new set of points sufficiently capture
the posterior statistics. The transformation occurs on a point-by-point basis, since
it is simpler to match statistics of individual points rather than the entire PDF. The
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Nonlinear
Transformation

& Sigma Points

FIGURE 6.1 Unscented transformation. A set of distribution points shown on an error
ellipsoid are selected and transformed into a new space where their underlying statistics
are estimated.

statistics of the transformed points are then calculated to provide the desired estimates
of the transformed distribution.

Following the development of Julier [15], consider propagating an N,-dimensional
random vector, X, through an arbitrary nonlinear transformation a[-] to generate a new
random vector,

y = a[x] (6.16)

The set of o-points, {&X;}, consists of N, + 1 vectors with appropriate weights,
{W;}, given by X ={&;, W;;i=0, ...,N,}. The weights can be positive or negative
but must satisfy the normalization constraint

so that the estimate of the statistics remains unbiased. The problem then becomes:

GIVEN the sigma-points, ¥ ={X;, W;; i=0,...,N,}, and the nonlinear transfor-
mation a[x], FIND the statistics of the transformed samples,

wy =E{y} and R, = Cov(y)

The sigma-point (unscented) transformation (SPT) approach to approximate the
statistics, (ity, Ryy) is:

1. Determine the number, weights and locations of the o-point set, X, based on
the unique characteristics of the prior distribution
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2. Nonlinearly transform each point to obtain the set of new (posterior)
o-points, {V;}:

Vi = a[X]] (6.17)
3. Estimate the posterior mean by its weighted average!
No
wy = Wil (6.18)
i=0
4. Estimate the posterior covariance by its weighted outer product
Ny
Ry =Y Wi — 1) — 1)’ (6.19)
i=0

One set of o-points that satisfies the above conditions consists of a symmetric set
of N, =2N, + 1 points that lie on the \/N,-th covariance contour [13]:

1

X = s W = —

0 Mx 0 N,

1
X = px ++/ Ny o, Wi:ZNx

1

Xitn, = tx — /Ny oi,  Wign, = N
X

where /N, o; is the i standard deviation scaled by /N, and W; is the weight
associated with the i o-point.

Thus, the o-point transformation can be considered a statistical linearization
method that provides an optimal (MMSE) linear approximation to a general nonlinear
transformation taking into account the prior second-order statistics of the underlying
random variable, that is, its mean and covariance [19]. It can be accomplished using
the weighted statistical linear regression approach (WSLR) [16, 19], resulting in the
weight-constrained estimates above.

Therefore, in contrast to random sampling, selection of the “deterministic”
o-points requires resolving the following critical issues:

e Ny, the number of o-points;
o W;, the weights assigned to each o-point; and
o Aj, the location of the o-points.

That is, we must answer the questions of: How many (points)?, What (weights)? and
Where (located)?

! Note that this estimate is actually a weighted statistical linear regression (WSLR) of the random variable
[19].
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The o-points should be selected or constrained to capture the “most important”
statistical properties of the random vector, x. Let the underlying prior px(x) be its
density function, then the o-points capture the properties by satisfying the necessary
(constraint) condition

g[X, px(x)] =0 (6.20)

Since it is possible to meet this constraint condition and still have some degree of
freedom in the choice of o-points, assigning a penalty function

PIZ, px(X)] (6.21)

resolves any ambiguity in the choice. This function is to incorporate desirable features
that do not necessarily have to be satisfied. Decreasing the penalty function leads to
more and more desirable solutions. In general, the o-point set relative to this problem
that is the most desirable is the set that conforms to the necessary conditions of
Egs. 6.20 and 6.21. The o-points must satisfy

mzin PIZ, px(X)] > g[X, py(xX)] =0 (6.22)

The decision as to which properties of the random vector x to capture precisely or
approximate depends on the particular application. For our problems, we wish to
match the moments of the underlying distribution of o-points with those of x.

Summarizing, to apply the SPT approach: (1) a set of o-points, X, are constructed
that are “deterministically” constrained to possess the identical statistics of the prior;
(2) each o-point is nonlinearly transformed to the new space, );; and (3) the statis-
tics of the transformed set are approximated using WSLR techniques. The following
example illustrates this approach.

Example 6.1

Consider a scalar random variable, x, for which we would like to propagate its first two
moments (/4,Ryy) through a nonlinear transformation, ); = a[&;]. The corresponding
set of constraint equations are defined by:

Na
Zi:O Wi—1
(2. py(x)) = YN Wi — s =0
YN Wil — )X — f12) — R

with posterior
NU
MHy = Z Wi
i=0

No
Ry = Z Wi(V; — )V — 1y

i=0
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Suppose x ~ N(0, 1), then the set of o-points are defined by N, =2 or 3 points
with Xy =09 =0, X1 = —0o1, and X> = 03. The constraint equations become

Wo+Wi+Wr—1 =0
—Wio1 + Whor —0 =0
Wio? +Waos —1 =0

for Wo, a free parameter whose value affects the 4" and higher moments. These
relations are not uniquely satisfied (4 unknowns, 3 equations); therefore, we must add
another constraint to the set based on the property that the skew is zero for the Gaussian

—VV]Ul3 + WQO'S =0
Solving these equations and using the symmetry property of the Gaussian gives:

o =1/2yW, Wi=(0-Wy)/2, or=01, Woa=W AAA

This example illustrates the use of the constraint equations to determine the
o-points from properties of the prior. Next, let us incorporate the nonlinear transfor-
mation and penalty function to demonstrate the entire selection procedure. Following
Julier [13] consider the following one-dimensional example.

Example 6.2

As before, suppose we have a scalar random variable x, Gaussian distributed with
mean i, and variance af, and we would like to know the statistics (mean and variance)
of y which nonlinearly transforms x according to

y=alx] = X2
Here the true mean and variance are
uy = Ely} = E(’} = o7 + 1
and
o = EY’} — ) = Elx*) — u} = Bof + 60717 + y) — (07 + 20747 + 1)
= 2(7;‘ + 40% [L)zc

According to SPT of Eqns. 6.17-6.19 the number of o-points is N, = 3. Since this is
a scalar problem (N, = 1) only 3 points are required: the two o-points and the mean,
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therefore, we have

{X, X1, A2} = {ux, ux — V1 + K0, iy + V1 + K0y}
{Wo, Wi, Wa} = {1/(1 4+ 1), 1/2(1 4+ ), 1/2(1 4+ «)}

and « is chosen as a scaling factor to be determined. Propagating these samples
through a[-] gives the transformed samples, say X/ that lie at

(. 2. 3} = {1, (e = VT 0% (s + VT 0

The mean of y is given by

Iy (2/(/1)2( + 2/1)2( +2(1 + /c)af) = ,uf + af

- 2(1 + k)

which is precisely the true mean. Next the covariance is given by

2
1
2 / 2 4 4 2.2
= — X — uy 2 = 4
To find the solution, x must be specified. The kurtosis of the true distribution is 20;‘
and that of the o-points is o2. Since the kurtosis of the points is scaled by an amount

(1 + x), the kurtosis of both distributions only agree when x = 2 which gives the exact
solution. This completes the Gaussian example. AANA

Next using the underlying principles of the SPT, we develop the multivariate
Gaussian case in more detail.

6.2.3 SPT for Gaussian Prior Distributions

To be more precise and parallel the general philosophy, we choose “to approximate
the underlying Gaussian distribution rather than approximate its underlying nonlin-
ear transformation,” in contrast to the XBP (EKF). This parameterization captures
the prior mean and covariance and permits the direct propagation of this information
through the arbitrary set of nonlinear functions. Here we accomplish this (approxi-
mately) by generating the discrete distribution having the same first and second (and
potentially higher) moments where each point is directly transformed. The mean and
covariance of the transformed ensemble can then be computed as the estimate of
the nonlinear transformation of the original distribution. As illustrated in Fig. 6.2,
we see samples of the true prior distribution of x and the corresponding nonlinearly
transformed distribution of y. Using the same transformation, the selected o-points
are transformed as well closely preserving the dominant moments of the original
distribution (see Julier [13] for more details).
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Sampling Sigma point transformation ‘

Sigma points

Covariance
=}
=]
Mean
&
y = alx] yi = alx]
Transformed sigma points
True mean < gmap

% True covariance Sigma point mean ~ Q e!
[
.

Sigma point covariance

FIGURE 6.2 Sigma point (unscented) fransformation approximation of the original
distrioution moments after nonlinear transformation.

Itis important to recognize that the SPT has specific properties when the underlying
distribution is Gaussian [16]. The Gaussian has two properties which play a significant
role in the form of the o-points selected. First, since the distribution is symmetric, the
o-points can be selected with this symmetry. Second, the problem of approximating x
with an arbitrary mean and covariance can be reduced to that of a standard zero-mean,
unit variance Gaussian, since

X = ux + Us for U the matrix square root of R, (6.23)

where s ~ N (0, ). Therefore, in the Gaussian case, the second order SPT uses a set
of o-points which capture the first two moments of s correctly, that is, they must
capture the mean, covariance and symmetry. Let s; be the i component of s, then its
covariance is given by

E{s})=1 Vi (6.24)

Also from the symmetry properties of the distribution, all odd-ordered moments
are zero.

The minimum number of points whose distribution obeys these conditions has two
types of o-points: (1) a single point at the origin of the s-axis with weight, W,; and
(2) 2N, symmetrically distributed points on the coordinate s-axis a distance r from
the origin all having the same weight, Wj. Thus, there are N, = 2N, + 1 o-points for
a two-dimensional distribution. The values of W,,, W| and r are selected to ensure that
their covariance is the identity. Therefore, due to their symmetry, it is only necessary
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to specify one direction on the s-axis, say s1. The constraint function will consist of
the moment for E {s%} and the normalization condition must be satisfied. Therefore,
we have that

_ 2Wir? — 1 _
glo. px(9)] = (WO N — 1) =0 (6.25)
The solution to these equations is given by
1
r= \/Z—Tl and Wo =1- ZNXW[, WU free (626)
By reparameterizing W :=m, then it can be shown that after pre-multiplying

by U, the matrix square root of Ry,, that the o-points for x are:

K
X, = [, W, = —
0 Hx 0 Ny + 1)
1
X = N. R, Wi= —
i tx + (v (Nx + R i 2(N; + )
1
Xign, = e = (V(Nx + R, Wigw, = )
X

where « is a scalar, (v/(Nx + k) Ry); is the i row or column of the matrix square root
of (N 4 k)R, and W; is the weight associated with the i o-point. The parameter « is
free; however, it can be selected to minimize the mismatch between the fourth-order
moments of the o-points and the true distribution [16]. From the properties of the
Gaussian, we have that

E(shY=3 Vi (6.27)

The penalty function penalizes the discrepancy between the o-points and the true
value along one direction (s1), in this case, due to the symmetry. Therefore, we
have that

3001
plo,px(s)] = 2Wir* — 3| giving W) = Sai=g O K= Ny —3 (6.28)

It is clear that the ability to minimize p depends on the number of degrees of freedom
that are available after the constraint g is satisfied for the given set of o-points; the
kurtosis cannot be matched exactly without developing a larger set of o-points (see
Julier [16] for details).

We summarize the sigma-point processor under the multivariate Gaussian assump-
tions: Given an N,-dimensional Gaussian distribution having covariance R, we can
generate a set of O(N,) o-points having the same sample covariance from the columns
(or rows) of the matrices #=+/(N, + K)R,.. Here « is the scaling factor discussed previ-
ously. This set is zero mean, but if the original distribution has mean ., then simply
adding p, to each of the o-points yields a symmetric set of N, =2N, + 1 samples
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having the desired mean and covariance. Since the set is symmetric, its odd cen-
tral moments are null; so its first three moments are identical to those of the original
Gaussian distribution. This is the minimal number of o-points capable of capturing the
essential statistical information. The basic SPT technique for a multivariate Gaussian
distribution [16] is therefore:

1. Determine the set of N, =2N,+ 1 o-points from the rows or columns of
++/(Nx + k) Ry. For the nonzero mean case compute, X; =0 + piy;

K
X, = [y, Wy=——
0 Mx 0 (N: + 1)
1
X = (\/ Ne + OR ) , . —
i Uy + (Nx +«) ). i 2N, + 1)
1
Xian, = Hx — (\/ (Ny + K)Rxx>i, Witn, = 2N, 1 1)
X

where « is a scalar, («/(NX + K)Rxx)l. is the i row or column of the matrix square
root of (Ny + k)R, and W; is the weight associated with the ith o-point;
2. Nonlinearly transform each point to obtain the set of new o-points: ); = a[X}]

3. Estimate the posterior mean of the new samples by its weighted average
(regression)

ZNx
My = Z Wi
i=0

4. Estimate the posterior covariance of the new samples by its weighted outer
product (regression)

2Ny

Ry = > WiV — ty)V; — y)

i=0
There is a wealth of properties of this processor:

1. The transformed statistics of y are captured precisely up to the second order.

2. The o-points capture the identical mean and covariance regardless of the choice
of matrix square root method.

3. The posterior mean and covariance are calculated using standard linear algebraic
methods (WSLR) and it is not necessary to evaluate any Jacobian as required by
the XBP methods.

4. kisa“tuning” parameter used to tune the higher order moments of the approxi-
mation that can be used to reduce overall prediction errors. For x a multivariate
Gaussian, N, + « = 3 is a useful heuristic.

5. A modified form for x — A = &*(N, + k) — Ny (scaled transform) can be used
to overcome a nonpositive definiteness of the covariance. Here o controls the
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spread of the o-points around ., and is typically set to a value 0.01 <o <1
with « a secondary scaling parameter set to 0 or 3 — N, and f is an extra degree
of freedom to incorporate any extra prior knowledge of the px(x) with =2
for Gaussian distributions. In this case the weights change and are given by:
W' = A W =k + (= + B, and W™ = 15 117,21, 24),
6. Note that although statistical linearization offers a convenient way to interpret
the subsequent sigma-point approach, it does not indicate some of its major
advantages, especially since it is possible to extend the approach to incorporate
more points capturing and accurately propagating higher order moments [24].

Next we apply the o-point approach to the nonlinear filtering problem by defining
the terms in the SPT and showing where the statistical approximations are utilized.

6.3 SIGMA-POINT BAYESIAN PROCESSOR
(UNSCENTED KALMAN FILTER)

The SPBP or UKF is a recursive processor developed to eliminate some of the defi-
ciencies created by the failure of the linearization process to first order (Taylor series)
in solving the state estimation problem. Different from the XBP (EKF), the o-point
processor does not approximate the nonlinear process and measurement models, it
employs the true nonlinear models and approximates the underlying Gaussian distri-
bution function of the state variable using a statistical linearization approach leading
to a set of regression equations for the states and measurements. In the sigma-point
processor, the state is still represented as Gaussian, but it is specified using the minimal
set of deterministically selected samples or o-points. These points completely capture
the true mean and covariance of the prior Gaussian distribution. When they are propa-
gated through the nonlinear process, the posterior mean and covariance are accurately
captured to the second order for any nonlinearity with errors only introduced in the
third- and higher order moments. This is the statistical linearization using the weighted
(statistical) linear regression approximation (WSLR) discussed previously [16].

We use the XBP (EKF) formulation and its underlying statistics as our prior dis-
tribution specified by the following nonlinear model with the conditional Gaussian
distributions. Recall that the original discrete nonlinear process model is given by

x(t) = a[x(t — D] +blut — D]+ w —1) (6.29)
with corresponding measurement model
y(#) = e[x(@)] + v(1) (6.30)

for w ~ N (0, Ryy) and v ~ N (0, Ry,). It was demonstrated previously (Sec. 5.3) that
the critical conditional Gaussian distribution for the state variable statistics was the
prior

Pr(x(1)|Y;—1) = N@(tlt — 1), P(elt — 1)



210 MODERN BAYESIAN STATE-SPACE PROCESSORS

with the measurement statistics specified by
Pr(y(®)|Yi—1) = N(3(t]t — 1), Rgg(t]t — 1))

where X(z|t — 1), and P(z|t — 1) are the respective predicted state and error covariance
based upon the data up totime (r — 1) and y(¢|r — 1), Ree(¢|f — 1) are the predicted mea-
surement and residual covariance. The idea is to use the “prior” statistics and perform
the SPT (under Gaussian assumptions) using both the process and measurement non-
linear transformations (models) as specified above yielding the corresponding set of
o-points in the new space. The predicted means are weighted sums of the transformed
o-points and the covariances are merely weighted sums of their mean-corrected, outer
products, that is, they are specifically the WSLR discussed in Sec. 6.2.
To develop the sigma-point processor we must:

« PREDICT the next state and error covariance, (X(¢|f — 1), P(¢t|t — 1)), by SPT
transforming the prior, N'(x(z — 1|t — D), P(t— 1]t — 1)), including the process
noise using the o-points, X;(¢|t — 1) and &X;(z — 1|t — 1), respectively;

« PREDICT the measurement and residual covariance, [y(f|t — 1), Rez(¢]t — 1)]
by using the SPT transformed o-points );(¢|t — 1) and performing the weighted
regressions; and

« PREDICT the cross-covariance, Rz¢(t|¢ — 1) in order to calculate the correspond-
ing gain for the subsequent update step.

We use these steps as our road map to develop the sigma-point processor depicted
in the block diagram of Fig. 6.3. We start by defining the set, ¥, and selecting
the corresponding, Ny = 2N, + 1 o-points and weights according to the multivariate
Gaussian distribution selection procedure developed in the previous section. That is,
the N, points are defined by substituting the o-points for the SPT transformation of
the “prior” state information specified by 1, = £(t — 1|t — 1) and Ryy = P(t — 1]t — 1).
We define the set of o-points and weights as:

A K
Xy = e =30~ i - 1), Y= W o
X = o+ (VO ORs)
) - 1
XigN, = Mo — (m)l
) - B 1
:x(t—1|t—1)—<\/(NX+K)P(t_1|t_1))i’ Wi = W o

Next we perform the state prediction-step to obtain, {X;(¢|t — 1), x(¢|f — 1)}, trans-
forming each o-point using the nonlinear process model to the new space, that is, to
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obtain the one-step state prediction as
Xi(t|t — 1) = a[X;(t — 1|t — )] + b[u(t — 1)] (6.31)
The WSLR approximation step to obtain the predicted mean follows from the

statistical linearization transformation model using the following relations: y — x(¢),
x—>x(t—1),A—>A{—1),b—>b(t—1)and e - €(t — 1) of Eq. 6.4

x() =A@t —Dx(t—1)+bt— 1)+ et—1) (6.32)
— —
Linear Approximation Linearization Error

Conditioning Eq. 6.32 on Y;_; and taking expectations, we have

x(tlt = 1) = Ex(@0Yi—1} = E{A(t = Dx(t = DIY,—1} + E{b(r — D|Y;—1}
+ E{e(t — DI|Y;-1}

or
Xt —1D) =A@ —Dx@—1jr—=1)+bx—1) (6.33)

Using this linearized form, with the conditional means replacing the unconditional,
that is, puy, — X(f|t — 1) and p, — x(z — 1|t — 1), we have from Eq. 6.8 that

b(t — 1) — &(tlt — 1) — At — DIt — 1]t — 1)
2Nr
=Y Wiki(tlt — 1) — At — DR — 1 — 1) (6.34)
i=0

where we substituted the regression of Eq. 6.14 for u,. Substituting this expression
for b above gives the required regression relation

ZNx
Rt — 1) = A — DR — 1t — 1)+ Y WiXielt — 1) — At — D — 1]t — 1)
i=0
2Ny
= > WiXi(t|t — 1) (6.35)
i=0

yielding the predicted state estimate using the WSLR approach shown in Fig. 6.3.
Next let us define the predicted state estimation error as

X(tlt — 1) := X;(tlt — 1) — %)t — 1) (6.36)
therefore, the corresponding predicted state error covariance,

P(tlt — 1) := cov[Xi(t|t — 1] = cov[X;(t]t — 1) — X(t|t — 1)]
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can be calculated from

P(tlt — 1) = cov[(At — DX;(t — 1|t — 1)+ b(r — 1) + €:(t — 1))
— (At — D3t — 1]t — D + bt — 1))]
= cov[A(t — DXt — 1|t — 1) + €t — 1)]

Performing this calculation gives the expression
P(tlt — 1) = A(r — DP(t|t — DA'(t — 1) + Ree(t — 1) (6.37)

which can also be written in the regression form by using the relations from Eq. 6.11
with y — &, Ryy — Pxx. Therefore, substituting for APA’ above, we have

P(t|lt — 1) = Pax(tlt = 1) = Rec(t — 1) + Reet — 1)
2N,
= > WiX(tlt — DX/ (t]t — 1) (6.38)
i=0
In the case of additive, zero-mean, white Gaussian noise with covariance,
Ry (t — 1), we have the final WSLR

2Nx
Pt —1) = Z WiXi(t|t — DX/ (t]t — 1) + Ry (t — 1) (6.39)
i=0

completing the state error prediction step of Fig. 6.3.
_ Here, the Bayesian processor approximates the predicted density, N@E@e—1),
P(t|t — 1)), where

px(xO|Yi-1) = /px(X(l)IX(l — Dpx(x(t — DIYi—1) dx(z — 1) (6.40)

Next we calculate a new set of o-points to reflect the prediction-step and perform
the SPT in the measurement space as

Xi(tlt—1) = {Xi(¢lt = 1), Xiltlt — 1) 1/ Ry (t = 1), Xit]t = 1) = ky/ Ryt — 1)}
(6.41)

We linearize the measurement function similar to the nonlinear process function in
the previous steps. We use the nonlinear measurement model to propagate the “new”
o-points to the transformed space producing the measurement prediction step shown
in Fig. 6.3.

Viltlt — 1) = e[Xi(t]r — 1)] (6.42)

The WSLR is then performed to obtain the predicted measurement, that is,

y(1) = C(O)x(1) + b(t) + €(t) (6.43)
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Conditioning on Y;_1, as before, and taking expectations of Eq. 6.43 gives
Yt = 1) = E{y(®)|Yi—1} = COX(t]t — 1) + b(1) (6.44)

Using this linearized form with the conditional means replacing the unconditional,
thatis, i, — y(t|t — 1),A— C,b — band u, — X(t|t — 1), we have from Eq. 6.8 that

2N,
b(t) — (1]t — 1) — COI— 1) = Y WDiel — 1) — COR(ele — 1) (6.45)
i=0

where we substituted the regression of Eq. 6.14 for 1,. Substituting this expression
for b above gives the WSLR relation

2N,
3(tle = 1) = CORlr = D+ Y Widi(tle — 1) = CORGelr — 1)
i=0
2N,
= D Wil 1) (6.46)
i=0

yielding the predicted measurement estimate of Fig. 6.3.
Similarly, the residual (measurement) error is defined by:

&t — 1) := Yitlt — ) = 3(t|t — 1) (6.47)
and therefore the residual (predicted) covariance can be expressed as
Ree(t]t — 1) = cov[&;(t|t — 1)] = cov[Y(tlt — 1) — 3(t|t — 1)]
Substituting the linearized model above, we obtain

Ree(t]t — 1) = cov[(C()AX;(t]t — 1) + b(2) + €;(1))
—(COx(tlt — 1) + b(1)]
= cov[C(t — DX;(t]t — 1) + €(1)]
Performing this calculation gives the expression

Ree(tlt — 1) = C(t)i)(t|t — DC'(t) + Ree(t) (6.48)

which can also be written in the regression form by using the relations from Eq. 6.11
with y — &;, R,, — Pg:. Therefore, substituting for CPC " above, we have

2N,

Ree(t]t — 1) = Pee(t|t — 1) — Ree(t) 4 Ree(t) = Z Wigi(tlt — D&[(t|t — 1) (6.49)
i=0
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In the case of additive, zero-mean, white Gaussian noise with covariance, R,,(¢)
we have the final WSLR

2N

Ree(tlr — 1) = Z Wigitlt — D&[(t]t — 1) + Ryy(t) (6.50)
i=0

completing the measurement residual prediction step of Fig. 6.3.
The gain is estimated from

K(t) = Rie(tlt — DR (t]t — 1) 6.51)
where the cross error covariance is approximated using the WSLR as (above)

2N,

Ree(tlt — 1) = 3 Wiitelt — DE (@l — 1) (652
i=0

With this in mind it is clear that the posterior distribution can be calculated from

px (DY) ~ NG, Pt|) = / px(x(D)]x(z — 1)
x py(x(t — D|Y,—1) dx(t — 1) (6.53)

where we have the “usual” (Kalman) update relations of Fig. 6.3 starting with the
innovations

e(t) = y(t) = 3(t|lt — 1) (6.54)
and the state update
x(tt) = x|t — 1) + K(@)e(r) (6.55)

along with the corresponding state error covariance update given by
P(t|t) = P(t]t — 1) — K(t)Res(t]t — DK/ (1) (6.56)

This completes the SPBP algorithm which is summarized in Table 6.1. We have
shown how the SPT coupled with the WSLR can be used to develop this technique in its
“plain vanilla” form. We note in passing that there are no Jacobians calculated and the
nonlinear models are employed directly to transform the o-points to the new space.
Also in the original problem definition (see Sec. 6.2) both process and noise sources,
(w, v) were assumed additive. The SPT enables us to “generalize” the noise terms to
also be injected in a nonlinear manner (e.g. multiplication). Thus, the noise is not
treated separately, but can be embedded into the problem by defining an augmented
state vector, say x(¢) = [x(t) w(t — 1) v(r)]’. We chose to ignore the general case to
keep the development of the sigma-point processor simple. For more details of the
general process see the following references [17, 21, 24]. Let us apply the sigma-point
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TABLE 6.1 Discrete Sigma-Point Bayesian Processor (Unscented Kalman Filter)
Algorithm

State: Sigma Points and Weights

K
X,=x(t— 1]t —1), W, =
( | ) (Nx + )
Xi=x(—1t—1)+ \/(N+ YPE—1]t—1) w, !
i =t =1t — ) P(t— 1]t — , i =
; 2(Ny +x)
Xy, =3¢ — 1]t —1)— \/(N +) Pt —1lr—1) Wiy = —
i+Ny — x ia i+Ny — Z(NX —|—K)
State Prediction
Xi(t|lt—1) = a[X;(t — 1|t — D]+ blu(t — 1)] (nonlinear state process)
2N,
Xe—=1) =Y WXt —1) (state regression)
i=0
State Error Prediction
z’?,-(tlt— D=X(t|t—1)—x@¢|t—1) (state error)
. N, L 5
Pt — 1))=Y WX (t|lt — DX/(t]t — 1)+ Ryu(t — 1) (error covariance prediction)
Measurement: Sigma Points and Weights
)E‘i(tll - 1): {‘Xl(tlt - 1), )(i(tll - 1)+K\/ wa(t - 1), )(i(tlt - 1) — K/ wa(t - 1)}
Measurement Prediction
Vitlt—1)= c[é\?i(t|t —1)] (nonlinear measurement)
2N,
Jlt— D=3 Wt|lr — 1) (measurement regression)
i=0
Residual Prediction
E(tlt — D) =Yi(tlt — 1) =yt — 1) (predicted residual)
2N,
Ree(t|t — 1) =Y Wi&i(t|t — DE(t]t — 1) + Ry (1) (residual covariance regression)
i=0
Gain
Ny
Rie(tlt — 1))=Y W Xi(t|t — Dgi(t|r — 1) (cross-covariance regression)
i=0
K(t) = Ree(tlt — DR (¢]t — 1) (gain)
State Update
e(t)=y(t) —y(t|t — 1) (innovation)
x| =x@|t— 1)+ K@)e(r) (state update)
P(t]t) = P(t|t — 1) — K(t)Re(t]t — DK (2) (error covariance update)

Initial Conditions

2(010)  P(0]0)
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processor to the nonlinear trajectory estimation problem and compare its performance
to the other nonlinear processors discussed previously.
Example 6.3

We revisit the nonlinear trajectory estimation problem of the previous examples with
the dynamics specified by the discrete nonlinear process given by
x(1) = (1 — 0.05AT)x(t — 1) + 0.04ATx>(t — 1) + w(t — 1)
and corresponding measurement model
V(1) = x*(0) + (1) + (1)

Recall that v(r) ~ N(0,0.09), x(0)=2.0, P(0)=0.01, AT =0.01 sec and Ry, =0.
The simulated measurement is shown in Fig. 6.4b. The sigma-point processor (SPBP)
and XBP (EKF) and IX-BP (IEKF) (3 iterations) were applied to this problem. We
used the square-root implementations of the XBP and IX-BP in SSPACK_PC [10] and
compared them to the sigma-point processor in REBEL [24]. The results are shown

1.2 ©
21 1 XBP
2.08
% 2.06
2.04 3
2,02 5w
5 11 (d) IX-BP
d 0.8
1.98 ] o 06
14 Ree 0.4
02  — .
135 0 oA
y 8 11 (e) SPBP
125 08
s 0.6
12 e A~ 04
.: : Ree 0.2
15} 0
-0.2
02 04 06 08 10 12 14 0 02 04 06 08 10 12 14
Time (s) Lags time (s)

FIGURE 6.4 Nonlinear trajectory estimation. (a) Trajectory (state) estimates using the
XBP (thick dotted), IX-BP (thin dotted) and SPBP (thick solid). (b) Filtered measurement
estimates using the XBP (thick dotted), IX-BP (thin dofted) and SPBP (thick solid). (c) Zero-
mean/whiteness tests for XBP(1.04 x 107" < 1.73 x 10~1/1% out). (d) Zero-mean/whiteness
tests for IX-BP (3.85 x 1072 < 1.73 x 10~1/0% out). (€) Zero-mean/whiteness tests for SPBP:
(5.63x 1072 < 1.73 x 1071/0% out).
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in Fig. 6.4 where we see the corresponding trajectory (state) estimates in a and the
“filtered” measurements in b. From the figures, it appears that all of the estimates are
quite reasonable with the sigma-point processor estimate (thick solid line) converging
most rapidly to the true trajectory (dashed line). The XBP (thick dotted line) appears
slightly biased while the IX-BP (thin dotted line) converges rapidly, but then wan-
ders slightly from the truth. The measurements also indicate the similar performance.
The zero-mean/whiteness tests confirm these observations. The XBP and IX-BP per-
form similarly with respective zero-mean/whiteness values of: (1.04 x 107! < 1.73 x
1071/1% out) and (3.85x 1072 < 1.73 x 107! /0% out), while the sigma-point
processor is certainly comparable at (5.63 x 1072 < 1.73 x 1071/0% out). This
completes the example. AAA

6.3.1 Extensions of the Sigma-Point Processor

Recently there have been a number of developments in the nonlinear estimation area
that are based on the sigma-point (or similar) transformation [29, 30, 32]. Next
we briefly mention these approaches keeping in mind that they are members of the
“sigma-point family”.

The central difference Bayesian processor (CDBP) or unscented Kalman filter
(UKF) is based on the Stirling approximation interpolation formula that is essentially
a second order Taylor series expansion of the nonlinear random function about its
mean. The central differences are used to approximate the first and second order
terms of the series. In this sense the processor implicitly employs the WSLR used
to derive the SPBP as before. The resulting o-points are dependent on the half-step
size, Ay, rather than the other parameters discussed previously. The CDBP is slightly
more accurate than the SPBP, and also has the advantage of only requiring a single
parameter A, to adjust the spread of the o-points. For more details, see [29].

Just as with the Kalman filter implementations [10], the SPBP also admits the
numerically stable “square-root” forms for prediction and updated state covariance
matrices. These methods are based on employing the QR decomposition and Cholesky
updating. Again this approach offers a slightly more accurate processor as well as
reduced computational costs while maintaining their numerical stability. See [29] for
further details.

6.4 QUADRATURE BAYESIAN PROCESSORS

The grid-based quadrature Bayesian processor (OBP) or equivalently quadrature
Kalman filter (QKF) is another alternative o-point approach [30-32]. It uses the
Gauss-Hermite numerical integration rule as its basic building block to precisely
calculate the sequential Bayesian recursions of Chapter 2 under the Gaussian
assumptions. For scalars, the Gauss-Hermite rule is given

00 M
J% /_ N fx)e™ dx = ; Wi x f(Ax;) (6.57)
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where equality holds for all polynomials, f(-), of degree up to 2M — 1 and the quadra-
ture (grid) points Ax; with corresponding weights W; are determined according to the
rule. The OBP uses the WSLR to linearize the nonlinear transformations through a
set of Gauss-Hermite quadrature points rather than introducing the set of o-points.
Details of this approach can be found in [32]. We briefly show the approach following
the usual recursive forms of the BP of the previous chapter. For our nonlinear estima-
tion problem, we have both nonlinear process (a[-]) and measurement (c[-]) equations
that can be expressed in terms of the Gauss-Hermite rule above.

Suppose we have the conditional mean and covariance at time (¢ — 1) based on all
of the data up to the same time step. Then the corresponding conditional distribution
is Pr(x(t — D|Y;—_1) ~ N @@ — 1]t — 1),13(t — 1|t — 1)). The QBP is then given by the
following set of recursive Bayesian equations:

!
X =Pt — 1)t — 1) Ax; + 3t — 1]t — 1) (6.58)

= - ~ =
where \/F is the matrix square root (Cholesky factor: P = \/; \/F). The prediction-
step: Pr(x(t)|Y;—1) ~ N (x(t|t — 1), P(¢|t — 1)) is given by

M
Relt—1) = ) Wialxi]
i=1

M
Pt —1) = Z Wi(alx;] — &(tlt — D)(@lxi] — X7l = 1)) + Ryw(r = 1) (6.59)

i=1

The update-step: Pr(x(t)|Y;) ~ N ((t|t), P(t|t)) follows a similar development

X =+ Pt — 1) Ax; + x(t]t — 1) (6.60)

and

M
x(tlr) = x|t — 1) + K(OOG@) — Y1) for y(t) = Z Wiclxi]

i=1

P(t|t) = P(t|t — 1) — K(t)Pxy (6.61)
where

K(t) = Pxy(Pyy + Rup())™

M
Pxy = Y Wik(tlt — 1) = X)(y() — c[x:])
i=1

M
Pyy = ) Wily(t) — c[®](y(t) — clxilY (6.62)

i=1
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As with the SPBP, the QBP does not linearize the process or measurement models
as in the case of the classical nonlinear processors. It calculates the weighted quadra-
ture points in state-space over a fixed grid to estimate the unknown distribution (see
[32—-34] for more details).

Another powerful approach to nonlinear estimation is the Gaussian sum (mixture)
processor [36], which we discuss in more detail next.

6.5 GAUSSIAN SUM (MIXTURE) BAYESIAN PROCESSORS

Another general approach to the Bayesian processing problem is the Gaussian sum
(G-S) approximation leading to a processor. It has been shown [4, 35, 36] that any
non-Gaussian distribution can be approximated by a sum of Gaussian distributions,
that is,

Ng Ng Ng
Px() & D Wipi(x) = D WiN(x: px(i), £,()  for Wi =1 and Wj > 0Vi

i=1 i=1 i=1

(6.63)
amixture of Gaussian distributions with {JV;} the set of mixing coefficients or weights.
Clearly, this approach can be implemented with a bank of parallel classical processors
(LZ-BP, XBP, IX-BP) or with any of the modern SPBP family just discussed in order
to estimate the mean and variance of the individual Ng-processors. In addition, the
particle filtering algorithms to be discussed in the next chapter can also be incorporated
into a Gaussian mixture framework—that is what makes this approach important [37].
Before we develop the processor, let us investigate some of the underlying properties
of the Gaussian sum or equivalently Gaussian mixture (G-M) that makes it intriguing.
The fundamental problem of approximating a probability distribution or density
evolves from the idea of delta families of functions, that is, families of functions that
converge to a delta or impulse function as the parameter that uniquely characterizes
that family converges to a limiting value. Properties of such families are discussed
in [35]. The most important result regarding Gaussian sums is given in a theorem,

which states that a probability density function formed by

px(x) = / p(a)d(x — @) do (6.64)

—00

converges uniformly to py(x) [35]. The Gaussian density forms a delta family with
parameter o represented by

8o(x) = N(x:0,0%) =

! a (6.65)
expy —=— .

V2mo? Pl 202
which satisfies the requirement of a positive delta family as o — 0, that is, as the
variance parameter approaches zero in the limit, the Gaussian density approaches a
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delta function; therefore, we have that

px(x) = / PNy (x — ) dox (6.66)

This is the key result that forms the underlying basis of Gaussian sum or mixture
approximations, similar to the idea of an empirical probability distribution
Nx NE
Pr) & ) Widlx —x) & Py~ ) WiN (i ieli), B:()  (6.67)
i=1 i=1

as the variance oy — 0. The Gaussian converges to an impulse located at its mean,
. The Gaussian mixture distributions have some interesting properties that we list
below (see [35, 36] for more details):

o Mean: p,= 25\21 W (i)

« Covariance: T, = Y Wi(Ze(i) + pa(i)

o Skewness: 7, = Y0 Wilia(D) — ) BE(i) + (i) — 1)? X T

e Kurtosis: kg = 305 WiBE2() + 6(11() — g2 (i) + uH ;2 -3

Next, let us see how this property can be utilized to develop a Bayesian processor.

The processor we seek evolves from the sequential Bayesian paradigm of Sec. 2.5
given by
Pr(y()|x(1)) x Pr(x(®)[Yi—1)

Pr(x(lY;) = PryO[Yr 1) (6.68)

with the corresponding prediction-step
Pr(x(1)|Y;—1) = /Pr(x(t)|x(t — 1)) x Pr(x(t — 1)|Y;—1)dx(t — 1) (6.69)

Assume at time ¢ that we approximate the predictive distribution by the Gaussian
mixture

Ng

Pr(x(n)]Y;—1) ~ Z Wit — DN (x(t) : %i(2), Pi(1)) (6.70)
i=1

Then substituting this expression into the filtering posterior of Eq. 6.68 we obtain
PIGORD) | o
Y)x — N D
Prx(®)|Y;) = ———" x Wit — DN (x(@) : X;(2), Pi(t 6.71
O = p ; (t = DN : %), (o)) (6.71)

For clarity in this development we constrain both process and measurement models
to additive Gaussian noise sources” resulting in the nonlinear state-space approximate

2 This is not necessary but enables the development and resulting processor relations to be much simpler.
In the general case both noise sources can be modeled by Gaussian mixtures as well (see [35] for details).
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GM representation of Sec. 4.8, that is, the process model
x()=alx(t — D]+ wit—1) w~ N, Ryy(1)) (6.72)
and the measurement model
y(®) = elx(] +v(®) v~ N(O,Ry()) (6.73)

with Gaussian prior, x(0) ~ N (x(0), P(0)). Applying the fundamental convergence
theorem of Eq. 6.64, the Gaussian mixture distribution of the posterior can be
approximated by

N,

Pr(x(1)|Y:) ~ ZWi(t)N(X(l) 2 xi(1), Pi(1)) (6.74)

i=1

and converges uniformly in x(¢) and y(¢) as P;(t) — 0 for i=1, ..., N,. Therefore,
{xi(t), Pi(¢)} can be estimated from any of the classical (nonlinear) processors devel-
oped in Chapter 5 or the modern o-point processor of this chapter. We choose to
use the SPBP technique’ of Table 6.1 to provide a “bank” of N,-parallel processors
required to estimate each member of the Gaussian mixture such that

yi(t) = f(xi(1))
ei(t) = y(1) — y;(1)
Ree,(1) = g(Pi(1), Ryn(1))
xi(t) = x;(t) + Ki(#)e; (1)
Pi(1) = Pi(t) — Ki(D)Re,e,(DK(1)

where f(-), g(-) are functions that are derived from the SPBP of Table 6.1 and the
weights* (mixing coefficients) of the individual mixture Gaussians are updated

Wl(t - ]) X N(y(t) : yl(t)s Reie,-(t))
SN Wt = 1) x N0 2 5:(0), Repe, (1)

Once we have performed the parallel SPBP estimation using the Gaussian mixtures,
we can estimate the statistic of interest from the posterior: the conditional mean as

Wi(t) = (6.75)

x(t])

Ex()|Y,} = / x(OPr(x(1)| Y;) dx(t)

&

N&’
ZWi(t) / x(ON (x():x; (1), Pi(1)) dx(t)

i=1

3 We symbolically use the SPBP algorithm and ignore the details (sigma-points, etc.) of the implementation
in this presentation to avoid the unnecessary complexity.

4The detailed derivation of these expressions can be found in Alspach [36] and Anderson [4]. Both
references use the uniform convergence theorem to develop the posterior representation given above.
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Now using the sifting property of the implied delta function, the Gaussian sum
converges uniformly (P; — 0, N'(-) = 8(-)) to give

N,

fln = 3 Wiow0) (6.76)

i=1
Defining the estimation error as
x(t|t) := x(t) — x(t]p)

and the corresponding error covariance as f’(t|t) :=cov(x(¢|t)) as before in Chapter 5,
the approximated state error covariance is given by

N,
P(t]ty =Y WiDIPi(t) + cov(xi(t) — &(t0))] (6.77)

i=1

Thus, updating consists of a bank of N¢-parallel SPBP to estimate the means and
covariance {x;(t), P;(t)} required for the conditional statistics of Egs. 6.76 and 6.77.
This set of relations constitute the update-step of the Gaussian sum processor. Next
let us briefly develop the prediction-step.

With the availability of the posterior PAr(x(t)| Y;) and the process model of Eq. 6.72,
the one-step prediction distribution can also be estimated as a Gaussian mixture.
Using the filtering posterior and SPBP relations of Table 6.1, we have that

Ng
Pr(x(r + DY) ~ Z Wi(t) f X(ON @t + 1) :xi(t + 1), Pi(t + 1)) (6.78)
i=1

and using the N,-SPBP, we have

xi(t+ 1) = a[x;(»)]
Pi(t + 1) = h(Pi(1)) + Ry ()

for h(-) a function of the SPBP parameters in Table 6.1. These relations lead to the
one-step prediction conditional mean and covariance (as before)

Ng
Re+100 = Y Wi +1)
i=1
Ng
P(t+ 1)) = ZW,'(I)[F;(I +1+covixi(t + 1) =2+ 1]1)]  (6.79)

i=1

to complete the algorithm.
Next we consider the application of nonlinear processors to a tracking problem.
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6.6 CASE STUDY: 2D-TRACKING PROBLEM

In this section we investigate the design of nonlinear BP to solve a two-dimensional
(2D) tracking problem. The hypothetical scenario discussed will demonstrate the
applicability of these processors to solve such a problem and demonstrate the “basic”
thinking behind constructing such a problem and solution. In contrast to the “bearings-
only” problem discussed in Chapter 5, let us investigate the tracking of a large tanker
entering a busy harbor with a prescribed navigation path. In this case the pilot on
the vessel must adhere strictly to the path that has been filed with the harbor master
(controller). Here we assume that the ship has a transponder frequently signaling
accurate information about its current position. The objective is to safely dock the
tanker without any incidents. We observe that the ship’s path should track the pre-
scribed trajectory (Cartesian coordinates) shown in Fig. 6.5 which corresponds to the
instantaneous XY -positions (versus time) shown.

Our fictitious measurement instrument (e.g., low ground clutter phased array radar
or a satellite communications receiver) is assumed to instantly report on the tanker
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FIGURE 6.5 Tanker ground tfrack geometry for the harbor docking application: (o) Instan-
taneous X-position (nm). (©) Instantaneous Y-position (nm). (c) Filed XY-path (nm).
(d) Instantaneous bearing (deQ). (e) Instantaneous range (nm). () Polar bearing-range
frack from sensor measurement.
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position in bearing and range with high accuracy. The measurements are given by

©(r) = arctan (%) and  R(1) = VX2(1) + Y2(1)

We use the usual state-space formulation for a constant velocity model (see
Sec. 5.5) with state vector defined in terms of the physical variables as x(¢):=
[X(#) Y(r) Vi) Vy(®)] along with the incremental velocity input as u =
[—AV,, — AV, 1.

Using this information (as before), the entire system can be represented as a Gauss-
Markov model with the noise sources representing uncertainties in the states and
measurements. Thus we have the equations of motion

1 0 AT 0
=g o ¥ 4 |-
00 0 1
0 0
Y 8[:iéﬁ:iﬂ+w0—b (6.80)
0 1

with the corresponding measurement model given by

x(0)
x1(2)

y(t) = + (1)
X3 + x5(1)

for w~N(0, Ryyw) and v~ N (0, Ryy).

The SSPACK_PC software [23] was used to simulate this Gauss-Markov sys-
tem for the tanker path and the results are shown in Fig. 6.6. In this scenario,
we assume the instrument is capable of making measurements every AT =0.02 hr
with a bearing precision of £0.02 degree and range precision of £0.005nm (or
equivalently R,, =diag[4 x 107*, 1 x 107*]. The model uncertainty was repre-
sented by Ry, = diag(1 x 107%). An impulse-incremental step change in velocity, for
example, Vy going from —12 k to —4 k is an incremental change of +8 k correspond-
ingto AV, =[8 1.5 —10.83 3.33] knots and AV, =[0 4.8 —10.3 22.17] knots.
These impulses (changes) occur at time fiducials of t=[0 1 3.5 7.5 8.1 9.1] hr
corresponding to the filed harbor path depicted in the figure. Note that the velocity
changes are impulses of height (AV,, AVy) corresponding to a known deterministic
input, u(r). These changes relate physically to instantaneous direction changes of the
tanker and create the path change in the constant velocity model.

arctan
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FIGURE 6.6 XBP (EKF) design for harbor docking problem (input known). (a) X-position
and velocity estimates with bounds (0% out). (b) Y-position and velocity estimates with
bounds (0% and 3% out). (¢) Bearing and range estimates with bounds (1% and 2% out).
(d) Innovations zero-mean/whiteness tests for bearing (6 x 1074 <26 x 10~ and 3% out)
and range (2 x 1074 <42 x 10~ and 5% out).

The simulated bearing measurements are generated using the initial condi-
tions x’(0):=[20nm 50nm Ok —12k] and Ry, =diag[l x 1076, 1 x 107] with
the corresponding initial covariance given by P(0) = diag[1 x 107, 1 x 107°]. The
Jacobian matrices derived from the Gauss-Markov model above are shown below:

X —x@
OO 00

Alx] =A and C[x]=
ua®  xO g
R() R(1)
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The XBP, IXBP, LZ-BP, and SPBP were executed under the constraint that all
of the a priori information for the tanker harbor path is “known”. Each of the
processors performed almost identically. A representative realization output for the
XBP is shown in Fig. 6.6. In a and b we observe the estimated states X (~0%
out), ¥ (~0% out), V; (~0% out), Vy (~3% out)’. Note that the velocities are
piecewise constant functions with step changes corresponding to the impulsive incre-
mental velocities. The filtered measurements: bearing (~1% out) and range (~2%
out) are shown in Fig. 6.6¢ with the resulting innovations zero-mean/whiteness tests
depicted in d. The processor is clearly tuned with bearing and range innovations zero-
mean and white (6 x 107* <26 x 107#/3% out) and (2 x 10~ < 42 x 107*/5% out),
respectively. This result is not unexpected, since all of the a priori informa-
tion is given including the precise incremental velocity input, u(f). An ensemble
of 101 realizations of the estimator were run by generating random initial con-
dition estimates from the Gaussian assumption. The 101 realization ensemble
averaged estimates closely follow the results shown in the figure with the zero-mean/
whiteness tests (2 x 107* <25 x 1074/4% out), (2 x 107* <15 x 107%/7% out)
slightly worse.

Next, we investigate the realistic case where all of the information is known a priori
except the impulsive incremental velocity changes represented by the deterministic
input. Note that without the input, the processor cannot respond instantaneously to
the velocity changes and therefore will lag (in time) behind in predicting the tanker
path. The solution to this problem requires a joint estimation of the states and now
the unknown input which is a solution to the deconvolution problem [25]. It is also a
problem that is ill-conditioned especially, since u(¢) is impulsive.

In any case we ran the nonlinear BP algorithms over the simulated data and the
best results were obtained using the LZ-BP and SPBP. This is expected, since we
used the exact state reference trajectories or filed paths, but not the input. Note that
the other nonlinear BP have no knowledge of this trajectory inhibiting their perfor-
mance in this problem. The results are shown in Fig. 6.7, where we observe the state
estimates as before. We note that the position estimates appear reasonable, primar-
ily because of the reference trajectories. The LZ-BP is able to compensate for the
unknown impulsive input with a time lag as shown at each of the fiducials. The veloc-
ity estimates (4% out, 1% out) are actually low-pass versions of the true velocities
caused by the slower LZ-BP response even with the exact step changes available.
These lags are more vividly shown in the bearing estimate of Fig. 6.7c which shows
the processor has great difficulty with the instantaneous velocity changes in bearing
(0% out). The range (0% out) appears insensitive to this lack of knowledge primar-
ily because the XY-position estimates are good and do not have step changes like
the velocity for the LZ-BP to track. Both processors are not optimal and the inno-
vations sequences are zero-mean but not white (75 x 1073 <81 x 1073/59% out),
(2% 1073 <4 x 1073/8% out).

3 Here “% out” means the percentage of samples exceeding the confidence bounds.
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FIGURE 6.7 LZBP design for harbor docking problem (input unknown). (a) X-position and
velocity estimates with bounds (68% and 4% out). (b) Y-position and velocity estimates
with bounds (49% and 1% out). (c) Bearing and range estimates with bounds (0% and
3% out). (d) Innovations zero-mean/whiteness tests for bearing (75 x 1073 < 81 x 10~2 and
59% out) and range (2 x 1073 <4 x 10-3 and 8% out).

We also designed the SPBP (UKF) to investigate its performance on this problem
and its results were quite good® as shown in Fig. 6.8. The processor does not perform
a model linearization but a statistical linearization instead, it is clear from the figure
shown that it performs better than any of the other processors for this problem. In
Fig. 6.8a—d, we see that the XY position estimates “track” the data very well while

6We used noisier simulation data for this run than that for the LZ-BP with R,, =diag=[4 x 10~*
5 x 10~!] providing a more realistic measurement uncertainty.
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the XY -velocity estimates are somewhat nosier due to the abrupt changes (steps) tun-
ing values of the process noise covariance terms. In order to be able to track the
step changes, the process noise covariance could be increased even further at the
cost of nosier estimates. The SPBP tracks the estimated bearing and range reason-
ably well as shown in figure with a slight loss of bearing track toward the end of
the time sequence. These results are demonstrated by the zero-mean/whiteness test
results of the corresponding innovations sequences. The bearing innovation statistics
are: 3.3 x 1073 < 1.2 x 107! and 4.7% out and the corresponding range innovation
statistics given by: 6.5 x 1073 < 1.2 x 10~! and 4.7% out. Both indicate a tuned
processor. These are the best results of all of the nonlinear processors applied. This
completes the case study.

It is clear from this study that nonlinear processors can be “tuned” to give reason-
able results, especially when they are provided with accurate a priori information. If
the a priori information is provided in terms of prescribed reference trajectories as in
this hypothetical case study, then the SPBP appears to provide superior performance,
but in the real-world tracking problem (as discussed in Sec. 5.5) when this information
on the target is not available, then the XBP and IX-BP can be tuned to give reasonable
results.

There are many variants possible for these processors to improve their performance
whether it be in the form of improved coordinate systems [26, 27] or in the form of
a set of models, each with its own independent processor [8]. One might also con-
sider using estimator/smoothers as in the seismic case [7] because of the unknown
impulsive input. In any case, this is a challenging problem that much work has been
accomplished, the interested reader should consult Ref. [8] and the references cited
within.

6.7 SUMMARY

In this chapter we have developed the “modern” sigma-point Bayesian processor
(SPBP) or equivalently, the unscented Kalman filter (UKF), from the basic princi-
ples of weighted linear stochastic linearization (WSLR) and o-point transformations
(SPT). We extended the results for multivariate Gaussian distributions and calculated
the corresponding o-points and weights. Once determined, we developed the SPBP
by extrapolating the WSLR and SPT approaches coupled to the usual Kalman fil-
ter recursions. Grid-based quadrature and Gaussian sum (G-S) processors were also
discussed and developed using the SPBP formulation to demonstrate a distribution
approximation approach leading to the particle filter formulation of the next chap-
ter. Examples were developed throughout to demonstrate the concepts ending in a
hypothetical investigation based on tracking a tanker entering a busy harbor. We sum-
marized the results by applying some of the processors to the case study implementing
a 2D-tracking filter.
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MATLAB NOTES

SSPACK_PC is a third-party toolbox in MATLAB that can be used to design model-
based signal processors [10, 23]. This package incorporates the major nonlinear
MBP algorithms discussed in this chapter—all implemented in the UD-factorized
form [38] for stable and efficient calculations. It performs the discrete approxi-
mate Gauss-Markov simulations using (SSNSIM) and both extended (XMBP) and
iterated-extended (IX-MBP) processors using (SSNEST). The linearized model-
based processor (LZ-MBP) is also implemented (SSLZEST). Ensemble operations
are seamlessly embodied within the GUI-driven framework where it is quite effi-
cient to perform multiple design runs and compare results. Of course, the heart
of the package is the command or GUI-driven post-processor (SSPOST) which
is used to analyze and display the results of the simulations and processing (see
http://www.techni-soft.net for more details).

REBEL is a recursive Bayesian estimation package in MATLAB available on
the web, that performs similar operations including the new statistical-based
unscented algorithms including the UKF including the unscented transformations
[24]. It also has included the new particle filter designs as discussed in [28] (see
http://choosh.ece.ogi.edu/rebel for more details).
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PROBLEMS

6.1

6.2

6.3

6.4

Let x; and x be i.i.d. with distribution A/(0, 1). Suppose y =x]2 + x%, then
(a) What is the distribution of y, py(y)?

(b) Suppose E{y} =2 and 03 =4, using the sigma point transformation what
are the sigma-points for x =[x7 x2]'?
(c) What are the sigma-points for y?

Suppose x ~N(0, 1) and y = x2,
(a) What is the distribution of y, py(y)?

(b) What is the Gaussian approximation of the mean and variance of py(y)?
(Hint: Use linearization)

(c) What is the sigma-point transformation and corresponding mean and
variance estimates of Py (y)?

From the following set of nonlinear system models, develop the SPBP
algorithm for each:

(a) Synchronous (unsteady) motor: X(t) + Cx(t) + p sin x(¢t) = L(t)
(b) Duffing equation: X(t) + ax(t) + ﬁx3 (t)=F coswt)

(¢) Van der Pol equation: X(t) + ex(1)[1 — x>(t)] + x(t) = m(¢)

(d) Hill equation: x(t) — ax(t) + Bp(t)x(t) = m(t)

Suppose we are given the following discrete system
x(f) = —w?x(t — 1) + sin(x(t — 1)) + au(t — 1) + w(z — 1)
y(1) = x(1) + v(1)

with w and v zero-mean, white Gaussian with usual covariances, R,,, and
Ryy. Develop the SPBP for this process. Suppose the parameters @ and « are
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unknown, develop the SPBP such that the parameters are jointly estimated
along with the states. (Hint: augment the states and parameters to create a new
state vector).

The Mackey-Glass time delay differential equation is given by

() = —2U70 g+ ui
= Ty PO

y() = x(1) + (1)

where «, f are constants, N is a positive integer with w and v zero-mean,
white Gaussian with covariances, R, and R,,. For the parameter set: « = 0.2,
B=0.1, r="7 and N = 10 with x(0) = 1.2 (see [21, 29]).

Develop the SPBP for this process.

Assume that a target is able to maneuver, that is, we assume that the target
velocity satisfies a first-order AR model given by:

vr(t) = —av (t — 1)+ w(t — 1) forw ~ N(0, Ry, u.)

(a) Develop the Cartesian tracking model for this process.

(b) Develop the corresponding SPBP assuming all parameters are known
a priori.

(c) Develop the corresponding SPBP assuming « is unknown.

Nonlinear processors can be used to develop neural networks used in many
applications. A generic neural network behavior is governed by the following
relations:

x(t) = x@t—1)+wk—1)

(@) = cl[x(®), u(t), ()] + v(z)
where x(¢) is the network weights (parameters), u(¢) is the input or training
sequence, «(?) is the node activators with w and v zero-mean, white Gaussian

with covariances, Ry, and R,,.
Develop the SPBP for this process.

Consider the problem of estimating a random signal from an AM modulator
characterized by

s(t) = V2Pa(t)sin w.t
r(t) = s(t) + v(®)
where a(t) is assumed to be a Gaussian random signal with power spectrum

2kqPg

Saa(w) = PR
a
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also assume that the processes are contaminated with the usual additive noise
sources: w and v zero-mean, white Gaussian with covariances, Ry, and
Ryy. The discrete-time Gauss-Markov model for this system was developed
(chapter 5 problems) from the continuous-time representation using first
differences, then:

(a) Develop the SPBP.

(b) Assume the carrier frequency, w. is unknown. Develop the SPBP for this
process.

Develop the Gaussian sum (G-S) processor algorithm using the XBP instead
of the SPBP. In the literature, this is the usual approach that is used. How does
the overall algorithm differ? What are the apparent pitfalls involved in this
approach compared to the SPBP approach?

6.10 We are given a sequence of data and know it is Gaussian with an unknown

mean and variance. The distribution is characterized by y ~ N (i, o%).

(@) Formulate the problem in terms of a state—space representation. (Hint:
Assume that the measurements are modeled in the usual manner (scale by
standard deviation and add mean to a A/(0, 1) “known” sequence, say v(z)).

(b) Using this model, develop the SPBP technique to estimate the model
parameters.

(c) Synthesize a set of data of 2000 samples at a sampling interval df =0.01
with process covariance, R,,,, = diag[1 x 1079, 1 x 10_6] and measure-
ment noise of Ry, = 1 x 107 with X(0) = [v/20 37’

(d) Develop the SPBP algorithm and apply it to this data, show the per-
formance results (final parameter estimates, etc.). That is, the find the
best estimate of the parameters defined by ® := [ o]’ using the SPBP
approach. Show the mathematical steps in developing the technique and
construct simple SPBP to solve.






PARTICLE-BASED BAYESIAN
STATE-SPACE PROCESSORS

7.1 INTRODUCTION

In this chapter we develop particle-based processors using the state—space represen-
tation of signals and show how they evolve from the Bayesian perspective using
their inherent Markovian structure along with importance sampling techniques as
our basic construct. Particle filters offer an alternative to the Kalman model-based
processors discussed in the previous chapters possessing the capability not just to
characterize unimodal distributions but also to characterize multimodal distributions.
We first introduce the generic state—space particle filter (SSPF) and investigate some
of its inherent distributions and implementation requirements. We develop a generic
sampling-importance-resampling (SIR) processor and then perhaps its most popular
form—the “bootstrap” particle filter. Next we investigate the resampling problem and
some of the more popular resampling techniques also incorporated into the bootstrap
filter from necessity. The bootstrap and its variants are compared to the classical and
modern processors of the previous chapters. Finally, we apply these processors to
a variety of problems and evaluate their performance using statistical testing as part
of the design methodology.

7.2 BAYESIAN STATE-SPACE PARTICLE FILTERS

Particle filtering (PF) is a sequential Monte Carlo method employing the sequential
estimation of relevant probability distributions using the “importance sampling” tech-
niques developed in Chapter 3 and the approximations of distributions with discrete

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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random measures [1-4]. The key idea is to represent the posterior distribution by
a set of N, random samples, the particles, with associated weights, {x;(¢), W;(¥)};
i=1,...,N,, and compute the required Monte Carlo estimates. Of course, as the
number of particles becomes very large the MC representation becomes an equiva-
lent characterization of the analytical description of the posterior distribution (e.g.,
see Ex. 3.15 which converges to the optimal Bayesian estimate).

Thus, particle filtering is a technique to implement sequential Bayesian estima-
tors by MC simulation. It offers an alternative to approximate Kalman filtering for
nonlinear problems [1, 5]. In PF, continuous distributions are approximated by “dis-
crete” random measures composed of these weighted particles or point masses where
the particles are actually samples of the unknown or hidden states from the state—
space representation and the weights are the “probability masses” estimated using
the Bayesian recursions as shown in Fig. 7.1. From the figure we see that associated
with each particle, x;(¢) is a corresponding weight or (probability) mass, W;(¢) (filled
circle). Knowledge of this random measure, {x;(¢), W;(¢)} characterizes an estimate

Wi(t) T T T T T T T T
. Np
Pr(X,|Y)=Y W,(1)5(X(2) - X;(1))
i=1
0.06 i
0.04 | ]
3 _____
S A °
B e---- HI
'8 H
a - i -
‘\
0.02 | \ .
! /!:i( Particles
I \ s i
\\ // ’.‘\
: [T A S IR R
0 1112 13141516 17 18 1920 21 22 X,(1)
Particle no.
FIGURE 7.1

Particle filter representation of posterior probability distribution in terms of
weights (probabilities) and particles (samples).
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of the instantaneous (at time #) filtering posterior distribution (solid line),

Np

Br(x()]Y) & Y Win)d(x(r) — xi(0))

i=1

We observe from the figure that the particles need not be equally-spaced or conform
to a uniform grid and that they tend to coalesce in high probability regions (HPR).
Importance sampling plays a crucial role in state—space particle algorithm devel-
opment. The PF does not involve linearizations around current estimates, but rather
approximations of the desired distributions by these discrete random measures in
contrast to the Kalman filter which sequentially estimates the conditional mean and
covariance used to characterize the (Gaussian) filtering posterior, Pr(x(#)|Y;). Particle
filters are a sequential MC methodology based on “point mass” representation of prob-
ability distributions that only require a state—space representation of the underlying
process. This representation provides a set of particles that evolve at each time-step
leading to an instantaneous approximation of the target posterior distribution of the
state at time ¢ given all of the data up to that time. Figure 7.2 illustrates the evolution
of the posterior at each time step. Here we see the estimated posterior at times ¢, t2

Probability
(W]

Xniap®

’ A PrXiely) /?\
/ / > % Xniapto / ‘s
,‘jéMAp(t) TSI }'XI/
S/ ,'/ Is
/Q . /j\ /
- M\ &
/ / t
§ PM\

) Xpiap®)
i Pr ( )&[llll)-/\

Particle no. [Xi(®)]

FIGURE7.2 Particle filter surface (X;vs. tvs. Pr(Xi(H) | Y1) representation of posterior prob-
ability distribution in terms of time (index), particles (samples) and weights or probabilities
(left plot illustrates extracted MAP estimates vs. 1).
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to t¢ creating an instantaneous approximation of ¢ vs x; vs. 15r(x(t)|Y ¢). Statistics are
calculated across the ensemble at each time-step to provide estimates of the states. For
example, the minimum mean-squared error (MMSE) estimate is easily determined by
averaging over Xx;, since

IMMSE() = / x(DPr(x(1)|Y;) dx ~ f xX(OPr(x(1)|Y,) dx

N, N,

= / x(t) [ Y- Wie)s () — xi0) | dx =Y Wioxi(o)

i=1 i=1

The maximum a posteriori (MAP) estimate is simply determined by finding the sample
corresponding to the maximum weight of x;(¢) across the ensemble at each time-step
(as illustrated in Fig. 7.2), that is,

Saap(t) = arg max Pr(x(t)|Yy) (7.1)
x;(t

In Bayesian processing, the idea is to sequentially estimate the posterior, Pr(x(z —
1)|Y;—1) = Pr(x(2)|Y;). Recall that optimal algorithms “exactly” track these distri-
butions; however, they are impossible to implement because the updates require
integration that cannot usually be performed analytically. Recall that the batch
joint posterior distribution follows directly from the chain rule under the Markovian
assumptions on x(#) and the conditional independence of y(¢), that is,

t
Pr(X;|Y;) = ]_[Pr(x(i)lx(i — 1)) x Pr(y(i)|x(i))  for Pr(x(0)) := Pr(x(0)|x(—1))
=0 (7.2)

The corresponding sequential importance sampling solution to the Bayesian esti-
mation problem was given generically in Eq. 3.59 starting with the recursive form for
the importance distribution as

qXi1Yy) = q(Xi—11Y—1) X qx(D|X;—1, Yr)

leading to the sequential expression for the importance weights as

W Pr(X;|Y;) Pr(Y:|X;) x Pr(X;)
(1) x =
qXelY)  qXi—11Yi—1) X g(x()| X1, Y)
Likelihood Transition
W) = Wit — 1) x Pr(y(1)|x(1)) x Pr(x(®)|x(z — 1)) (7.3)

q(x(D1 X1, Y1)
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Similarly the state—space particle filter (SSPF) evolving from this sequential
importance sampling construct follows directly. Recall that the generic state—space
characterization representing the transition and likelihood probabilities is:

Pr(x(t)|x(t — 1)) & Ax@)|x(t — 1))
Pr(y(H)|x(1)) < C(y®)|x(®))

which leads to an alternate representation of Eq. 7.2

t
Pr(X;|Y;) = ]_[ Ax@)|x(@ — 1)) x Cy(@)|x(@@))  for A(x(0)|x(—1)) := Pr(x(0))
i=0 (7.4)

Thus the generic state—space sequential importance sampling solution is given by

xi(t) ~ q(x()|X;-1,Yy)

COMOxi(1)) x Ax@®|xi(t — 1)

Wi = Wi —1 ]
(t) (t—1)x qi(O1X—1(0), Y1)

Wi(®)

Wi(t) = ———
Y Wito)

(7.5)

where the sample at time ¢, x;(¢) is referred to as the population or system of particles
and X, (i) for the i"-particle as the history (trajectory or path) of that particular particle
[6]. It is important to note that a desired feature of sequential MC sampling is that the
Np-particles of X,(i) are i.i.d.

In the practical application of the SSPF algorithm, we can obtain samples from
the posterior by augmenting each of the existing samples with the new state draw,
that is,

Xi(D) = {xi(0), Xi—1(D)}

where x;(t) ~ g(x()|X;-1, ¥y) and X;—1(i) ~ g(X;—1|Y;-1).
Now if we further assume that

qx(O1Xi-1, Y1) = qx@)|x(z — 1), (1)) (7.6)

then the importance distribution is only dependent on [x(¢ — 1), y(¢)] which is common
when performing filtering, Pr(x(¢)|Y;), at each instant of time.
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Assuming this is true, then the SSPF with x;() — X,(i) and y(¢#) — Y; recursion
becomes

xi(t) ~ q(x(®)|x(t — 1), (1))
Cy®xi() x Ax@)|xi(t — 1))

Wi@t) = Wit — 1
(t) t—1x q(i(D)lxi(r — 1), y(1))

Wi(?)

Wi() = —— (7.7)
Zi:p1 Wi(®)
and the filtering posterior is estimated by
Np
Pr(x(1)|Y,) ~ Z Wi(t) x 8(x(1) — xi(2)) (7.8)

i=1

We summarize the generic SSPF in Table 7.1. Note that as N, becomes large, in
the limit, we have
lim Pr(x(1)|Y;) — Pr(x(r)|Y;) (7.9)
Np—o00
which implies that the Monte Carlo error decreases as the number of particles
increase.

7.3 IMPORTANCE PROPOSAL DISTRIBUTIONS

Selection of the importance distribution is a critical part of the design phase in particle
filtering. Besides assuring that the distribution “covers” the posterior, there are a
number of properties that can also be satisfied to achieve a robust design.

7.3.1 Minimum Variance Importance Distribution

Unfortunately, the generic algorithm presented in the previous section has a serious
flaw, the variance of the importance weights increases over time [4, 6]. Therefore,
the algorithm degenerates to a single non-zero weight after a few iterations. One way
to limit this degeneracy is to choose an importance distribution that minimizes the
weight variance based on the available information, [X;_1, ¥;]. That is, we would like
the solution to the problem of minimizing the variance, Vg (x,_,,v,)(Wi(?)), with
respect to g(-) such that

(Pr(y(n)|x(0)Pr(x() 1 X,—1(i)))*
qx(D1Xi-1(2), Y1)

is minimized. It has been shown [4] that the minimum variance importance
distribution that minimizes the variance of the set of weights, {W;(#)} is given by:

V(Wit)) = WA(t) [ dx(t) — Pf(y(f)|th(i))2i|

gmy xX(D1X;—1, Y1) — Pr(x()|x(z — 1), y()) (7.10)
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TABLE 7.1 Generic State-Space Particle Filtering Algorithm

Initialize
1
xi(0) = Pr(x(0));  Wi(0)= N i=1,...,N, [sample]
»

Importance Sampling

x;(t) ~ Ax(@)|x;i(t — 1)) [state transition]

State—Space Transition

A@)]xi(t — 1)) < At — 1), u(t — 1), w;(t — 1));
w; ~ Pr(w;(?)) [transition]

Measurement Likelihood

CO®)|xi(1) & Cx(1),u(t), v(®)); v; ~ Pr(v(2)) [likelihood]
Weight Update
CO®ONx:(1) x Alx(®)|xi(t — 1)) .
Wit)=W;(t — 1 ht:
O == D Ot — Do) weights]
Weight Normalization
Wi(n) = % [weight normalization]
Zi:p1 Wi(t)
Distribution
Nl’
lsr(x(t)l Y= > Wi0)sx(t) — xi(1)) [posterior distribution]
i=1
State Estimation (Inference)
NP
x(t|t) = E{x(0)| Y} = Y Wi(o)xi(1) [conditional mean]
i=1
Xyap(t) = arg IIlfl;( E;r(x(t)|Y ) [maximum a-posteriori]
Xuep () = median{I;r(x(t) 1Y)} [median]

Let us investigate this minimum variance proposal distribution in more detail
to determine its realizability. Using Bayes’ rule we can decompose' this proposal
distribution in steps with A =x(¢) and B =x(z — 1), y(¢):

Pr(x(t — 1), y()|x(1)) x Pr(x(1))

Prx()x(z — 1), y(0)) = Pt — D) (7.11)

' We apply the following form of Bayes’ rule: Pr(A|B) = Pr(B|A) x Pr(A)/Pr(B).
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but the first term in the numerator can be decomposed further to obtain

Pr(x(t — 1), y())|x(r)) = Pr(y()lx(r — 1), x(1)) x Pr(x(r — 1)|x(1))

Pr(x(¢)|x(t — 1))Pr(x(t — 1)):|
Pr(x(r))

= Pr(y(®)x(r — 1), x(1)) x [
(7.12)
Substituting this relation into Eq. 7.11 and canceling the Pr(x(#)) terms, we obtain

Pr(y(®)|x(t — 1), x(2)) x Pr(x(#)|x(t — 1)) x Pr(x(t — 1))

Pr(x(D)|x(t — 1), y(r) = Pre( — 1), (1)

(7.13)
Expand the denominator in Eq. 7.13 using Bayes’ rule,

Pr(x(r — 1), y(7)) = Pr(y(0)|x(t — 1)) x Pr(x(r — 1))

substitute, cancel the Pr(x(# — 1)) terms and apply the conditional independence
assumption of the measurements on past states, that is,

Pr(y()[x(r — 1),x(1)) — Pr(y(®)|x(1))
to obtain the final expression for the minimum variance proposal distribution as

Pr(y(D)|x(1)) x Pr(x(n)|x(t — 1))

gmuvx()|X;—1, Y1) = Prx@)lx(@ — 1), (1)) = Pr(y(®)|x(t — 1))

(7.14)

If we substitute this expression for the importance distribution in the weight
recursion of Eq. 3.63, then we have

Pr(y(0)|x()) x Pr(x()|x(r — 1))

W) =W —1
0) (r—1)x gy x(OIXi—1, Y2)

or

W(r) = W(t — DPHOOI@))Pr(@( — 1) x [ Pry@lxtr — 1) ]

Pr(y(0)|x(1)) x Pr(x(r)|x(t — 1))

Canceling like terms and applying the Chapman-Kolmogorov relation, we obtain the
corresponding minimum variance weights

Wuv(t) = Wyy(t — 1) x Pr(y(@®)|x(z — 1)) = Wyy(t — 1)

x / CO@OIx(0) x Ax(@D)lx(t — 1)) dx(1) (7.15)

which indicates that the importance weights can be calculated before the particles
are propagated to time ¢. From this expression we can also see the problem with
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the minimum variance importance function approach: (1) we must sample from
Pr(x()|x(t — 1), y(¢)); and (2) we must evaluate the integral which generally has no
analytic form.

7.3.2 Transition Prior Importance Distribution

Another choice for an importance distribution is the transition prior. This prior is
defined in terms of the state—space representation by A(x(¢)|x(t — 1)) < A(x(z — 1),
u(t — 1), w(t — 1)) which is dependent on the known excitation and process noise
statistics and is given by

Qprior(x(D)|x(t — 1), Y1) — Pr(x(0)|x(t — 1))
Substituting this choice into the expression for the weights of Eq. 7.3 gives

Pr(y(0)|xi(1)) x Pr(x(1)|xi(r — 1))
CIprior(x(t)|xi(t -1, ¥)
= Wit — 1) x C(y(0)|xi(1)) (7.16)

Wi(t) = Wit — 1) x

since the priors cancel.

Note two properties for this choice of importance distribution. First, the weight
does not use the most recent observation, y(¢) and second it does not use the past
particles x;(z — 1)) but only the likelihood. This choice is easily implemented and
updated by simply evaluating the measurement likelihood, C(y(#)|x;(¢));i=1,...,N,
for the sampled particle set. In contrast to the minimum variance choice, these weights
require the particles to be propagated to time ¢ before the weights can be calculated.

This choice of importance distribution can lead to problems, since the transition
prior is not conditioned on the measurement data, especially the most recent. Fail-
ing to incorporate the latest available information from the most recent measurement
to propose new values for the states leads to only a few particles having significant
weights when their likelihood is calculated. The transition prior is a much broader
distribution than the likelihood indicating that only a few particles will be assigned
a large weight. Thus, the algorithm will degenerate rapidly and lead to poor per-
formance especially when data outliers occur or measurement noise is small. These
conditions lead to a “mismatch” between the prior prediction and posterior distribu-
tions. Techniques such as the auxiliary particle filter [2, 7, 8] as well as local linearized
particle filters [4, 6, 9] have been developed that drive the particles to regions of high
likelihood by incorporating the current measurement. Thus, the SSPF algorithm takes
the same generic form as before with the minimum variance approach; however, we
note that the importance weights are much simpler to evaluate with this approach
which has been termed the bootstrap PF, the condensation PF, or the survival of the
fittest algorithm. We summarize the bootstrap particle filter algorithm in Table 7.2 to
follow.
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7.4 RESAMPLING

The main objective in simulation-based sampling techniques is to generate i.i.d. sam-
ples from the targeted posterior distribution in order to perform statistical inferences
extracting the desired information. Thus, the importance weights are quite critical
since they contain probabilistic information about each specific particle. In fact,
they provide us with information about “how probable a sample drawn from the tar-
get posterior has been” [10, 11]. Therefore, the weights can be considered acceptance
probabilities enabling us to generate independent (approximately) samples from the
posterior, Pr(x(#)|Y;). Recall that the empirical distribution, Isr(x(t)l Y;) is defined over
a set of finite (N,) random measures, {x;(?), W;()}; i=1,...,N, approximating the
posterior, that is,

N,

Pr(x(t)|Y:) & ) WiD8(x(r) — xi(t)) (1.17)

i=1

One of the major problems with importance sampling algorithms is the depletion
of the particles. The degeneracy of the particle weights creates a problem that must be
resolved before these algorithms can be of any pragmatic use. It occurs because the
variance of the importance weights increases in time [4] thereby making it impossible
to avoid this weight degradation. Degeneracy implies that a large computational effort
is devoted to updating particles whose contribution to the posterior is negligible. This
approach is bound to fail in the long run, since the weight degeneration leads to a few
particles containing most of the probability mass. Thus, there is a need to somehow
resolve this problem to make the sequential simulation-based techniques viable. This
requirement leads to the idea of “resampling” the particles.

Resampling involves sampling N,-draws from the current population of particles
using the normalized weights as selection probabilities. The resampling process is
illustrated in Fig. 7.3. Particles of low probability (small weights) are removed and
those of high probability (large weights) are retained and replicated. Resampling
results in two major effects: (1) the algorithm is more complex and is not merely the
simple importance sampling method; and (2) the resampled trajectories, X;(7) are no
longer i.i.d. and the normalized weights are set to 1/N,,.

Resampling, therefore, can be thought of as a realization of enhanced parti-
cles, Xi(f), extracted from the original samples, x;(f) based on their “acceptance
probability”, Wj(t), at time ¢. Statistically, we have

Pr(ix(1) = xi(6)) = Wi(t) fori=1,...,N, (7.18)

or we write it symbolically as
(1) = xi(1)

where “=" defines the resampling operator generating a set of new particles, {X(¢)},
replacing the old set, {x;()}.
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FIGURE 7.3 Resampling consists of processing the predicted particles with their associ-
ated weights (probabilities), duplicating those particles of high weight (probability) and
discarding those of low weight.

The fundamental concept in resampling theory is to preserve particles with large
weights (i.e., large probabilities) while discarding those with small weights. Two
steps must occur to resample effectively: (1) a decision, on a weight-by-weight basis,
must be made to select the appropriate weights and reject the inappropriate; and
(2) resampling must be performed to minimize the degeneracy. This overall strategy
when coupled with importance sampling is termed sequential sampling-importance-
resampling (SIR) [4].

A reasonable measure of degeneracy is the effective particle sample size based on
the coefficient of variation [12] defined by

N, N,
Neg (1) == 3 = <N, (7.19)
E WX} 1+ V,(W(Xy)
An estimate of the effective number of particles at time ¢ is given by
- 1
Ne(t) = (7.20)

P W2<r>

and a decision based on the rejection method [13] is made by comparing it to a
threshold, Nyesn. That is, when Ng(t) is less than the threshold, resampling is
performed.

N A(f) = =< Nihresh Resample
& a > Niresh Accept
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FIGURE 7.4 Resampling (with replacement) by inverse transforming a uniform sampler
to generate samples from target distribution.

Once the decision is made to resample, a uniform sampling procedure [14] can
be applied removing samples with low importance weights and replicating samples
with high importance weights. Resampling (with replacement) generates a set of new
samples with uniform weights from an approximate discrete posterior distribution,

N,

Pr(xe(0)|Y,) ~ Y Wi08(x(t) — (1)) (7.21)

i=1

so that Pr[%;(r) = x;(1)] = Wj(t). The resulting independent and identically distributed
sample from the probability mass of Eq. 7.21 is uniform such that the sampling
induces the mapping of {x;(¢), Wi(t)} — {x;(1), Wi(t)}, Wi(t) =1/N, Vi. The selec-
tion of x;(fr) =x;(¢) is shown in Fig. 7.4. Here the procedure is termed systematic
resampling [4]. For each resampled particle, that is, N;-times is related to the original
particle. The methodology relies on uniformly sampling the cumulative distribu-
tion function resulting in the new replicated particles or uniform weighting. The
resampling algorithm is incorporated in Table 7.2.

Resampling decreases the degeneracy problem algorithmically, but introduces its
own set of problems. After one resampling step, the simulated trajectories are no
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TABLE 7.2 Bootstrap SIR State-Space Particle Filtering Algorithm

Initialize

x;(0) ~Pr(x(0)) W;(0)= NL i=1,...,N, [sample]
P

Importance Sampling

xi(1) ~ Ax(Dlxi(t — 1) < At — D, u(t = 1), wi(r — 1);

w; ~ Pr(w;(t)) [state transition]

Weight Update
Wi(t) =C(y(@)|x;(1)) < C(x(1), u(t), v(t)); v~ Pr(v(t)) [weight/likelihood]

Weight Normalization

Wi(t)
Wity= ———
Do Wi
Resampling Decision
N 1
Ny = [effective samples]
T Wi

Ao Resample < Nyyesn
= | Accept > Nigesh

Resampling
Xi(t) = x;(1)
Distribution
Np
Pr(x(t) |Y,)~ Z Wi ()8(x(t) — x;(2)) [posterior distribution]

longer statistically independent. Therefore, the simple theoretical convergence results
under these assumptions lose their validity. Pragmatically, resampling can limit algo-
rithm parallelization because combining particles causes an increase in computational
complexity. Also there is a possible loss in diversity caused by replication of those
particles with highest importance weights [4]. Thus as with any methodology there
are tradeoffs that must be considered.

7.4.1 Multinomial Resampling

There are a variety of techniques available to implement the basic resampling method
[1,6, 16, 19]. The usual approach is to resample with replacement, since the probabil-
ity of each particle x;(¢) is given by the normalized weight W;(#). Therefore, the number
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of times N; that each particular particle in the original set {x;(¢)} is selected follows
a binomial distribution, Bin(V,, W;(#)). The corresponding vector, [Ny, ... ,NND] is
distributed according to a multinomial distribution with parameter, N, and probability
of success [W(¢),..., WNp(t)]. With this resampling scheme, particles in the original
set with small variance weights are most likely discarded, while those of high weights
are replicated in proportion to these weights. The multinomial resampling method is
given by:

o Given a random measure at time ¢, that is, a set of particles and weights,
{xi(), Wi()},i=1,...,Np;

 Sample uniformly, uy — U(0,1);k=1,...,Np;

o Determine the index, ix: ix =k for Pr(x; (£) = xx(¢)) = ug;

o Select a new sample, X;, (f) = x;(¢) and weight, Wik(t) = Nl,, based on the new
sample index, i; and

« Generate the new random (resampled) measure: {%;,, Wik (®)}; for k=1,...,N,.

Here the index notation, i designates the original /”*-particle or parent and the new k-
particle using the inverse CDF method of Sec. 3.3. This sampling scheme is equivalent
to drawing, ix;k=1,...,N, samples from a multinomial distribution with parame-
ters, M(N;,, W;,(¢)) and corresponding statistics: mean, E{N; } =N, and variance,
Var(Nix) = Np Wik (1)(1 — Wik (1)).

The basic idea is to first construct the CDF from the original random measure,
{xi(r), W;i(#)}, since it is given by

N,

Pr(X(1) < xi(1) & Y Wilt)u(x(t) — xi(1)) (7.22)

i=1

where ((-) is the unit step function.

Uniform samples, uy, are drawn from the interval [0, 1] and projected onto the
inverse CDF (see Sec. 3.3) corresponding to the associated probability and identifying
the particular new particle sample index, iy, and corresponding replacement particle,
X;,(¢) leading to the resampling

X, (1) = xi(1) (7.23)

Clearly those particles or samples with highest probability (or weights) will be selected
more frequently, thereby, replacing particles with lower probability (weights) and
therefore, the new random measure is created, that is,

(), Wi (0} = (i), Wi} with W, (1) = % (7.24)
14



7.4 RESAMPLING 251

This resampling technique represents a direct implementation of random sampling
by generating an i.i.d. sample from the empirical posterior distribution

Np
Pr(x(n)]Y)) ~ Y Wilt)S(x(t) — xi(1)
i=1
Np 1 Np
= 2 Wi @8t — %, (1) = = 3 L 8(x() = 5, (1)
i=1 Pz
(7.25)

A second more efficient way of generating this measure is the ‘“‘systematic”
resampling method.

7.4.2 Systematic Resampling

The systematic resampling method is based on an ordered technique in which a set
of Np-ordered uniform variates are generated [20]. It minimizes the error variance
between the original selected sample and its mean. Thus, the systematic sampling
method is given by:

» Given a random measure at time #, that is, a set of particles and weights,
{xi(), Wi}, i=1,...,Np;

« Sample uniform N,-ordered variates: e = uy + % fork=1,...,N, and
u, — U, 1);

o Determine the index, ix: iy = k for Px(xx—1(?)) < ity < Px(xx(?)); (see Fig. 7.4)

« Select a new sample, X;, (f) = x;(f) and weight, Wik = 1%,, based on the new
sample index, i;; and

« Generate the new random (resampled) measure: {%;,, Wik ®)}; fork=1,...,N,.

where recall the CDF is given by: Py (xx(¢)) = Zgi 1 Wi p(x(t) — x () with u(-)
is a unit step function.

The final sampling scheme we discuss has a low weight variance, the residual
method.

7.4.3 Residual Resampling

The residual resampling method is based on the idea of estimating the number of
times each particle should be replicated, that is, the i/”-particle is replicated, say

N,(i) :=Int(E{N,(i)}) = Int(N, x W;(1)) (7.26)

times where Int means the “smallest integer value of”’.
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The remaining particles are sampled using the multinomial sampling method
discussed above. Here we have

NP
Ny(®) := N, = > _N,(i) (7.27)
i=1
with corresponding weights
o 1 —
Wi(t) = =——(N,Wi(t) — N, (i) (7.28)
N,(0) p P

The overall effect is to reduce the variance by E{(N,(i) —E {Np(i)})z}, since the
particles cannot be replicated less than E{N), (i)} times.
We summarize the residual resampling method by:

« Given a random measure at time #, that is, a set of particles and weights,
{xi(), Wi()},i=1,...,Np;

Calculate N, (i): N(i) = Int(N, x W;());

Multinomial Sample: x;(t) = x;(¢) fori=1,. .. ,N,,(i); and

« Update the new random (resampled) measure: {%;,, Wik ®}; fork=1,...,N,.

So we see that there are a variety of resampling schemes that can be employed
to solve the particle degeneracy problem. We can now update our generic particle
filtering algorithm to incorporate a resampling procedure and alleviate the degeneracy
problem created by the variation of the weights.

To visualize the “resampling” approach mitigating the particle degeneracy prob-
lem, the SIR is illustrated in Fig. 7.5. Here we show the evolution of the particles and
weights starting with the uniform weighting (W,-(t = NL,,) Once the initial weights
are updated, they are resampled uniformly. Next they are propagated using the state—
space transition mechanism (model), then updated using the measurement likelihood
producing the measure, {x;(t), Wi(#)},i=1, ..., N, leading to an approximation of the
posterior distribution at time ¢. This measure is then resampled, propagated, updated
and so on. A generic flow diagram of the algorithm is shown in Fig. 7.6 where we
again illustrate the basic ingredients of the SIR technique.

7.5 STATE-SPACE PARTICLE FILTERING TECHNIQUES

There are a number of pragmatic PF techniques that have been introduced in
the literature. Here we discuss some of the more robust and popular techniques
that have been applied to a wide variety of problems starting with the bootstrap
processor [1, 2, 6].
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FIGURE 7.5 Evolution of parficle filter weights and particles using the sequential
state-space SIR algorithm: resampling, propagation-step (state-space fransition model),
update-step (state-space measurement likelihood), resampling ... ..

7.5.1 Bootstrap Particle Filter

The basic “bootstrap” algorithm developed by Gordon, Salmond and Smith [16] is
one of the first practical implementations of the processor to the tracking problem.
It is the most heavily applied of all PF techniques due to its simplicity. Thus, the
SSPF algorithm takes the same generic form as before with the minimum variance
approach; however, we note that the importance weights are much simpler to evaluate
with this approach which has been termed the bootstrap PF, the condensation PF, or
the survival of the fittest algorithm [2, 16, 22].

As mentioned previously, it is based on sequential sampling-importance-
resampling (SIR) ideas and uses the tranmsition prior as its underlying proposal
distribution,

Gprior(X(D)|x(t — 1), Y;) = Pr(x(1)|x(r — 1))
The corresponding weight becomes quite simple and only depends on the

likelihood; therefore, it is not even necessary to perform a sequential updating because

Pr(y(n)[x(1)) x Pr(x()|x(z — 1))
Pr(x(0)[x(t — 1))

W) = < ) x W —1) =Pr(y@)|x(®) x Wi —1)
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e State—space SIR algorithm
Initialize

* [yt =Wt = DY = | Pr[x = DY,

Predict
A(x(t) 1 x(t=1))

Data 4’? HOWO} = POl

|: 0 Update
= COO1x0)

No {xOW,0} => [Pr[x0)|¥]

Resample
x:(1) = x;(1)

W;(1) = W (1)

New
sample?

Yes

Output

{xO.W0} => |Px0|Y]

FIGURE 7.6 State-space SIR particle filtering algorithm structure: initialization, propagao-
tion (state fransition), updating (measurement likelihood), resampling.

since the filter requires resampling to mitigate variance (weight) increases at each
time step [16]. After resampling, the new weights become

W) = = W) = PrOO0) = CO0hi)
p

revealing that there is no need to save the likelihood (weight) from the previous step!
With this in mind we summarize the simple bootstrap particle filter algorithm in
Table 7.2. One of the primary features as well as shortcomings of this technique
is that it does not use the latest available measurement in the importance proposal,
but only the previous particles, x;(t — 1), which differs from the minimum variance
approach. Also in order to achieve convergence, it is necessary to resample at every
time step. In practice, however, many applications make the decision to resample
based on the effective sample-size metric discussed in the previous section.

In order to construct the bootstrap PF, we assume that: (1) x;(0) ~ Pr(x(0)) is
known; (2) A(x(?)|x(t — 1)), C(y(¢)|x(¢)) are known; (3) samples can be generated
using the process noise input and the state-space model, A(x(t — 1), u(t — 1), w(t — 1));
(4) the likelihood is available for point-wise evaluation, C(y(¢)|x(¢)) based on the
measurement model, C(x(¢), v(¢)); and (5) resampling is performed at every time-step.
To implement the algorithm we

o Generate the initial state, x;(0)
« Generate the process noise, w;(t)
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» Generate the particles, x;(f) =A(x;(t — 1), u(t — 1), w;(t — 1))—the prediction-
step

o Generate the likelihood, C(y(¢)|x;(t)) using the current particle and
measurement—the update step

» Resample the set of particles retaining and replicating those of highest weight
(probability), x;(t) = x;(t)
« Generate the new set, {£:(¢), Wi(1)} with W;(r) = 1%,,

Next we revisit the model of Jazwinski [21] in Chapter 5 and apply the simple
bootstrap algorithm to demonstrate the PF solution using the state—space SIR particle
filtering algorithm.

Example 7.1

Recall the discrete state—space representation of the basic problem given by the
Markovian model:

x() = (1 — 0.05AT)x(t — 1) + 0.04ATx(t — 1) + w(t — 1)
(1) = x2(1) 4+ (1) + v(r)

where Ar=0.01, w~N(0,107°) and v~ N(0,0.09). The initial state is Gaussian
distributed with x;(0) ~ N/ (x(0), P(0)) and x(0) = 2.0, P(0) = 10~2.
We selected the following simulation run parameters:

Number of Particles: 250
Number of Samples: 150
Number of States: 1
Sampling Interval: 0.01 sec
Number of Measurements: 1
Process Noise Covariance: 1x10°°
Measurement Noise Covariance: 9 x 1072
Initial State: 2

Initial State Covariance: 10~20

Thus, the bootstrap SIR algorithm of Table 7.2 for this problem becomes:

1. Draw samples (particles) from the state transition distribution: x;(#) — N (x(?) :
alx(t — D], Ryy), that is, generate

w;(t) — Pr(w(t)) ~ N0, Ryw)
and calculate {x;(#)} using the process model and w;(¢)

xi(t) = (1 = 0.05AT)x;(t — 1) + 0.O4ATxl-2(t —D4wi(—-1)
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2. Estimate the weight/likelihood, W;(¢) = C(y()|xi(1)) = N (y(¢) : e[xi(1)], Ryu(2))

clxi(D] = x2(1) + %3 (1)

O@t) — x2 (1) — x3(1)?
2va

In Cy(1)|xi(t)) = —% In 2Ry,

Update the weight: W;(¢) = C(y(#)|xi(t))
Normalize the weight: Wi(t) = Wi(t)/ Y07, Wi(t)
Decide to resample if Nog < Nypresn

If resample: X;(¢) = x;(¢)

Estimate the instantaneous posterior:

N AW

N,

Pr(x(t)|Y) & Y Wi)8(x(r) — &i(t))

i=1
8. Estimate (inference) the corresponding statistics:

XMAP(I) = arg mg{ I;r(x(t)|Yt)
x;i(t

NP
Xwmise(t) = Efx(0)|Y,} = Y 2(0Pr(x(1)| Y1)
i=1

XmEepian(?) = median(Pr(x(r)|Y,))

Note that compared to the previous examples of Chapter 5 for the extended
Bayesian processors, we have added more process noise to demonstrate the effective-
ness of the bootstrap processor. The results of the bootstrap PF are shown in Fig. 7.7.
The usual classical performance metrics are shown: zero-mean (0.03 < 0.17), white-
ness (0.78% out) and WSSR (below threshold) all indicating (approximately) a tuned
processor. The PF tracks the state and measurement after the initial transient error has
diminished.

In Fig. 7.8 we show the bootstrap state and measurement estimates (inferences),
that is, the MAP and MMSE compared to the modern sigma-point processor SPBP
(UKF). The plots demonstrate that the PF can outperform the sigma-point design,
that assumes a unimodal Gaussian distribution. The estimated state and predicted
measurement posterior distributions are shown in Fig. 7.9 along with a time-slice
in Fig. 7.10 at time 1.04 sec demonstrating the capability of the bootstrap PF to
characterize the multimodal nature of this problem. AAA

This completes the development of the most popular and simple PF technique.
We mention in passing that a simple pragmatic method of preventing the sample
impoverishment problem is to employ a method suggested by Gordon [16] and
refined in [17, 18] termed particle “roughening” which is similar to adding pro-
cess noise to constant parameters when constructing a random walk GM model.
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FIGURE 7.7 Nonlinear trajectory simulation/estimation for low process noise case:
(@) Simulated state and mean. (b) Simulated measurement and mean. (¢) Bootstrap
stafe estimate. (d) Bootstrap measurement estimate. (e€) Zero-Mean/Whiteness test
(0.03 <0.17/0.78% out). (f) WSSR test (below threshold).

Roughening? consists of adding random noise to each particle affer resampling is
accomplished, that is, the a posteriori particles are modified as

Xi(t) = xi(t) + €i(1)

(7.29)

2 Roughening is useful in estimating embedded state—space model parameters and is applied to the joint
state/parameter estimation problem in Sec. 8.4 to follow.
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FIGURE 7.8 Nonlinear trajectory Bayesian estimation comparison for low process noise
case problem: (o) State estimates: MAP, MMSE, UKF, median. (b) Predicted measurement
estimates: MAP, MMSE, UKF, median.

where €; ~ N (0, diag[x M, N, 1/ N"]) and « is a constant “tuning” parameter (e.g.
~0.2), M, is a vector of the maximum difference between particle components
before roughening, the n'"-element of M given by (see Sec. 8.4 for application):

My = max [x{"(1) = x{"(0)| for n=1,....Nq (7.30)
ij
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FIGURE 7.9 Nonlinear trajectory Bayesian estimation instantaneous posterior distribu-
tions: (a) Updated state distribution. (b) Predicted measurement distribution.
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Next we consider some alternative approaches that attempt to approximate the
minimum variance importance distribution more closely for improved performance.

7.5.2 Auxiliary Particle Filter

The auxiliary particle filter employing sampling-importance-resampling (ASIR) is
a variant of the standard SIR [8]. It is based on attempting to mitigate two basic
weaknesses in particle filtering: (1) poor outlier performance; and (2) poor posterior
tail performance. These problems evolve from the empirical approximation of the
filtering posterior which can be considered a mixture distribution.

The basic concept of ASIR is to mimic the operation of the minimum variance (opti-
mal) importance distribution, gpy(x(¢)|x(t — 1), y(¢)), by introducing an auxiliary
variable, /C, representing the weight of the mixture used in the empirical prediction
distribution estimate. The idea is to perform resampling at time (¢ — 1) using the
available measurement at time ¢ before the particles {x;(¢)} are propagated to time ¢
through the transition and likelihood distributions. The key step is to favor particles at
time (r — 1) that are likely to “survive” (largest weights) at the next time-step, ¢. The
problem is that these schemes tend to introduce a bias into the estimated posterior that
must then be corrected by modifying the weight of the remaining particles. Thus, the
ASIR is a two-stage process such that: (1) particles with large predictive likelihoods at
time-step (f — 1) are propagated; and (2) the resulting particles are then re-weighted
and drawn from the resulting posterior.

Following the development in Cappe [6], we start with a proposal over the entire
path {X;} up to time ¢ under the assumption that the joint posterior at time (¢ — 1) is
well approximated by a particle representation, {W;(t — 1), X; — 1(i)}. Thus, the joint
importance proposal for the “new” particles {X;(7)} is

PAST NEW
——
q(X1) = gXi—11Y1) x g(x()|x(z — 1), y(1)) (7.31)

Note that the “past” trajectories depend on the data up fo time-step ¢ to enable the
adaption to the new data, y(#), while the “new” conditional importance distribution
(g — qumv) incorporates the new state, x(¢). We substitute an empirical distribution
for Pr(X;_1|Y;) centered on the previous particle paths {X;—1(i)}

Np
qXi—11YD) ~ Y Kilt = D8Xi—1 = Xi—1(D) (7.32)

i=1

where Zjvz"l KCi(t — 1)=1 and K;(t — 1) > 0. The i"" weight (probability mass) for
each particle in this proposal is based on the pre-selected particles that are a “good
fit” to the new data point y(¢). One choice [8] for these weights is to choose a point
estimate of the state such as its mean,

u(t) = / x(t) x Pr(x(®)xi(t — 1)) dx(t) (7.33)
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and then compute the weighting function as the likelihood evaluated at this point
Ki(t — 1) = Cy(®)lrni(2))
as in the bootstrap technique [16] or if the particles {x;(# — 1)} are weighted [6], then
Ki(t — 1) = Wit — 1) x Cy(0) (1))

which follows from the marginal Pr(X;_1|Y;)—a smoothing distribution. That is,
using the particle approximation from time (# — 1) and expanding, we obtain

Pr(X;—1|Y;) o [Pr(Xt—1IYt—1) x Ax(®)|x(r — 1) x Co@Ix(0) dx(®)  (7.34)

and using the empirical distribution approximation for the first term gives

N

Pr(X;—1|Yy) =~ ZWi(t — DéXi—1 — Xi—1() X/ COMIx@))AX®)|xi(t — 1)) dx(t)
i=1

(7.35)

One approximation [8] A(x(¢)|x;(t — 1)) — 8(x(¢) — m;(¢)) leads to the estimator

NP
Pr(X,_1[Y) ~ D CO@)l(t) x Wit — 1) x 8(X,—1 — Xi-1(i) (7.36)

i=1

combined weight
giving the desired result above
Ki(t = 1) =Wt = 1) x Co(®)|rni(1)) (7.37)
Using this proposal, the generalized weight

Pr(X:|Y1)

Waux (i, 1) :=
0=

is determined from the ratio of the posterior
Pr(X;|Y;) o« /C(y(t)IX(l)) x AQx(@®)lx(t — 1)) X Pr(X;—11Yi—1) dx(2)

to the joint proposal giving

PrXil¥y _ Wit —1)  COM®i®) x Alxi(@)lxi(t — 1)
q(X1) Ki(t —1) q(xi(@)|xi(r — 1), (1))

Waux(i, t) =
(7.38)
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TABLE 7.3 Auxiliary SIR State-Space Particle Filtering Algorithm

Initialize
x;(0) ~Pr(x(0)) Wi(0)=1/N, i=1,...,N,
Auxiliary Weights
Bootstrap Processor: {W; (1), x;(¢)}
(1) ~ E{x(1))
Weight calculation
Ki(t — 1) = Wit — 1) x Cy(®)|n (1))

Weight Normalization
Np

Kt =D =Kt =1/ > Kt = 1)
i=1

Resampling
Select indices {j(7)} using {C;;)(t — 1)}: xi() = Xy (1)
ai(t = 1):=Wpt — D/Kjp@ — 1)
Importance Sampling Proposal (Optimal)
%i(1) ~ qGi(0)]xi(t — 1), y(1))
Weight Update

CO®)Ixi(1) x AF(D)|xi(t — 1))
gxi(O)|xi(t — 1), y(1))

Wit) = it — 1) x

Weight Normalization
Np
Wan(ist) = Witt) [ 3 Wito)
i=1
Distribution

Np

Pr(x(t)|¥)) & ) Wi (i, 8(x(t) — (1))

i=1

[sample]

[bootstrap mean]

[bootstrap likelihood]

[auxiliary weight]

[resample]

[first stage weights]

[sample]

[weight-update]

[normalize]

[posterior distribution]

which follows directly from substitution of the empirical distributions [6]. Here the
bias correction, 1//C;, is introduced into the sampler to correct the auxiliary weight

(first stage).

We summarize the auxiliary particle filter in Table 7.3. First, the bootstrap tech-
nique is executed to generate a set of particles and auxiliary weights at time-step
(t —1), that is, {W;(1), x;(t)} which are used to estimate the set of means (or modes)
{m;(t)} as in Eq. 7.33 for the “smoothing” weight calculation of Eq. 7.37 generat-
ing the probability masses, {K;(t — 1)}. These weights are then used in resampling
to generate the set of “most likely” particles and weights under the new sampling
indices {j(i)}, {/Cj(,')(l‘ — 1),xj(;)(t — 1)}, that is, x;(t — 1) :xj(i)(t —1)yi=1, ... ,Np.
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Next, samples are drawn from the optimal proposal and used to update the
auxiliary weights using the resampled particles and first stage weights defined by
ai(t—1):=W;(t —1)/K;(t — 1). The posterior distribution is estimated using the
auxiliary weights to complete the process.

If the process is governed by severe nonlinearities or contaminated by high pro-
cess noise, then a single point estimate such as m;(¢) does not sufficiently represent
the transition probability Pr(x(¢)|x;(z — 1)) very well. Therefore, we can expect the
ASIR performance to be poor even yielding weaker results than that of the bootstrap
processor. However, if the process noise is small, implying that a point estimate can
characterize the transition probability reasonably well, then the ASIR is less sensitive
to “outliers” and the weights will be more uniformly balanced resulting in excellent
performance compared to the bootstrap. These concepts can be used as an aid to help
decide when such a technique is applicable to a given problem.

7.5.3 Regularized Particle Filter

In order to reduce the degeneracy of the weights in the SIR processor, resampling
was introduced as a potential solution; however, it was mentioned that even though
the particles are “steered” to high probability regions, they tend to lose their diversity
among other problems introduced by such a procedure [1, 44]. This problem occurs
because samples are drawn from a discrete rather than continuous distribution (see
Sec. 1.5). Without any attempt to correct this problem, the particles can collapse
to a single location giving a poor characterization of the posterior distribution and
therefore result in poor processor performance.

One solution to the diversity problem is to develop a continuous rather than dis-
crete approximation to the empirical posterior distribution using the kernel density
estimator of Sec. 3.2 and then perform resampling directly from it. This is termed
a regularization-step resulting in diversification by a form of “jittering” the par-
ticles; thus, the processor is called the regularized particle filter (RPF). The key
idea of the RPF is the transformation of the discrete empirical posterior distribution,
I;r(x(t)| Y;) — Pr(x;|Y;) in order to resample from an absolutely continuous distribution
producing a “new” set of N,-particles with different locations.

To be more precise let us define the properties of a kernel that can be applied
to this problem [7]. A regularization kernel K(x) is a symmetric probability
density function such that: (1) K(x)>0; (2) [Kx)dx=1; (3) [xK(x)dx=0;
and (4) f ||x2||IC(x) dx < oo and for any positive bandwidth A, the corresponding
rescaled kernel is defined by

1\ X
Ka,(x) = (A—) K (A—X) for x € RNV+*1 (7.44)

The most important property of the kernel density follows from its regulariza-
tion property, that is, for any distribution P(x) € R¥*!, the regularization results
in an absolutely continuous probability distribution, Ka (x)*P(x), with * the
convolution operator, such that

%[ICAX(X) * P(x)] = / Ka,(x — a)P(a) du (7.45)
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If P is an empirical distribution, then

Np
P~ ) 3x —xi)
i=1

for x; — {x1,..., pr} a sample from the posterior and therefore

d A 1\ al X — X; L
T [Ka, (0% Px)] = <A—x) ;Wi/c ( ™ ) = ; Wika, (x —x;) (7.46)

Both the bandwidth and the kernel are selected in practice to minimize the mean
integrated error between the posterior and regularized distribution. Classical ker-
nels result under specialized assumptions such as the Epanechnikov, Box, Triangle,
Gaussian etc. (see [7], Chapter 12 for more details).

One of the underlying assumptions of this transformation is that the true posterior
Pr(x/]Y;) has a unity covariance which is not the case when implementing the RPF
technique. Therefore, at each time-step we must estimate the ensemble mean and
covariance by the usual sample approach given by

N,
1 P

m(t) = — ) xi(?)
N,

1 &
Rec(t) = <= ) (l0) = m(®)(xi(t) — m(1)) (7.47)
P

i=1

With this calculation, we factor the covariance using the Cholesky decomposition to
yield the matrix square roots used in a whitening transformation (unity covariance),
that is,

Ruc(t) = L'2(1)LT2(1)
which leads to the new scaled kernel

1 L™12x
ICAX(X):|L‘/2|(AX)NIK< A > (7.48)

The old particles are then “jittered” by using the step
%(t) = x(0) + DL 2 (1)ei(0) (7.49)

where the {¢;(#)} are drawn from the new scaled kernel above. A typical example of
kernel density estimation of a discrete probability mass function is shown in Fig. 7.1
where the circles represent the discrete point masses (impulses) at the particular
location and the continuous approximation to the probability density is shown by the



266 PARTICLE-BASED BAYESIAN STATE-SPACE PROCESSORS

smooth curve provided by the kernel density estimate using a Gaussian window. This
completes the RPF technique which is summarized in Table 7.4. Next we discuss
another popular approach to produce particle diversity.

7.5.4 MCMC Particle Filter

Another approach to increase the diversity in the particle set {x;(t), W;()};i=1,...,N,
is to take an MCMC step(s) with the underlying invariant distribution targeted as the
posterior Pr(X;|Y;) on each particle [45]. The MCMC particle filter is available in two
varieties: (1) MCMC-step(s) with the usual BSP; and (2) full MCMC iterative filter.
The sequential processors use the MCMC-steps as part of the resampling process for
especially insensitive (weight divergence) problems, while the full MCM(C iterative
processor is available as a separate algorithm typically executed using the Metropolis,
Metropolis-Hastings or Gibbs samplers of Chapter 3. We confine our discussion to
the MCMC-step approach, since we are primarily interested in sequential techniques
and refer the interested reader to [1, 23, 24] for the iterative approach.

The main idea is that the particles are distributed as Pr(X;(i)|Y;), then applying a
Markov chain transition kernel defined by

T (Xi1X: (D)) :=Pr(X; | X, (D) (7.50)

with posterior invariant distribution such that
Pr(X;|Y;) = f T XX (D)) x Pr(X,(i)[Yr) dX;(i) (7.51)

continues to result in a particle set with the desired posterior as its invariant distri-
bution. However, the new particle locations after the move result in high probability
regions of the state—space. It has been shown that by applying the MCMC transition
kernel that the total variance of the current distribution can only decrease [46]. Any
of the MCMC methods (M-H, G-S, S-S, etc.) can be incorporated into the SMC
framework to achieve the desired move occuring after the resampling operation.
Following [46, 47] the objective is to move the set of particles using a combination
of importance sampling, resampling and MCMC sampling, that is, the approach is to:

« Initialize the set of particles yielding: {x;(#)};i=1,...,N,

 Resample this set to obtain: {X;(1)};i=1,...,N,

e Move using an MCMC step(s) to generate the “new” set of particles
{xi(®};i=1,...,N, with X;(t) ~ Pr(X;| ;) and transition kernel, 7 (x;()|X;(i))

The move-step performs one or more iterations of an MCMC technique on each
selected particle after the resampling step with invariant distribution Pr(X;|Y;). Note
that before the move, the resampled particles are distributed X;(¢) ~ Pr(X;|Y;); there-
fore, the “moved” particles, X;(¢) are approximately distributed by this posterior as
well. The move-step improves particle diversity by enriching the particle locations to
those highest probability regions.
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TABLE 7.4 Regularized Particle Filtering Algorithm

Initialize
Draw: x;(0) ~Pr(x(0)) W;(0)= NL,, i=1,...,N, [sample]
Importance Sampling
Draw: x;(¢) ~ Ax(®)|x;(t — 1)) [state transition]
Weight Update
Wi(t) =Cy()|x; (1)) <= C(x(1), u(t), v(t)); v~ Pr(v(t)) [weight/likelihood]

Weight Normalization
N,

Wi(t) = Wi(t) Z Wi(t)
i=1

Resampling Decision

N Np
Negr =1 / PRAG! [effective samples]
i=1
& _ | Resample <Ny L
Ny = { Accept > Nypesh [decision]
Regularization Sample Statistics
Ny
m(t)=1/N, 3 xi(t) [sample mean]
i=1
Np
Ruo()=1/N, Y~ (x;(t) — m(®))(xi(t) — m()) [sample covariance]
i=1
Factorization
R () =L'2()L" (1) [Cholesky decomposition]
Resampling
()= x:(1)
Diversification
Draw: €;(t) ~ K, (x(t) — xi(1)) [sample]
Diversify
%) =Xi(1) + ALV (1)ei(r) [generate sample]
Distribution

NF
15r(x(t)|Y,) Y Wi(0)8(x(t) — Xi(2)) [posterior distribution]
i=1
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For instance, let us “track” the i" particle with corresponding high valued weight.
Based on its associated weight (probability), x;(f) = x;(¢) is selected according to

Pr(x;(t) = xi(t)) = Wi(1)

Resampling results in replication of the i-particle, Nj-times, producing the
resampled set, {X;1(2), Xi2(?), ..., %in,(£)}. Next the move-step moves each replicant
X;j(t) — X;j(¢) to a distinct (unique) location in the region of strongest support dictated
by Pr(X;|Y;). This provides the “move-step” for the SMC technique and mitigates the
divergence problem.

To be more specific, let us illustrate the “move” by choosing the Metropolis-
Hastings technique of Table 3.1 to perform our MCMC-step using the random walk
M-H approach of Sec. 3.4.

We start with the basic bootstrap PF of Sec. 7.5 to obtain the set of resampled
particles {x;(¢)}. Using the random walk model, we perform the “move” step to obtain
the new set of particles as

Xi(®) = xi(t) + €i(r) for e; ~ pg(e) (7.52)

One choice is €; ~ pg(€) =N (0, Rc.), since it is symmetric, easy to generate and
will simplify the calculations even further. The corresponding acceptance probability
for the M-H approach is specified by

(7.53)

AGA.5:(0) — min {Pr(xf(mm) | AGO1(D) 1}

Pr(X,()Y))  qGDIxi(D)

where )~(i(t) = {X;(t), X;—1()} and Xi(t) = {Xi(¢), X;—1 (i)} are the augmented sets of
joint random particles. Drawing samples from the random walk with (symmet-
ric) Gaussian distribution enables us to simplify the acceptance probability, since
q(xi()|%:(1)) = q(X;(?)|x; (1)) canceling these terms in Eq. 7.53 to produce

A .| Pr(X, (DY)
A(x;(1), x;(¢)) = min {m 1} (7.54)
But from the sequential Bayesian recursion,
Pr(X;|Y;) o< Pr(y(0)|x(1))Pr(x(0)[x(t — 1)) x Pr(X;—1|Y;-1)
we obtain
w0 =i om0

With this information in mind, the implementation of the bootstrap PF with (ran-
dom walk) MCMC-step is given in Table 7.5. Another approach to improve particle
diversity is using local linearization techniques which can be implemented with any
of the classical/modern algorithms of the previous two chapters.
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TABLE 7.5 MCMC Particle Filtering Algorithm

Initialize

Draw: x;(0) ~Pr(x(0)) W;(0)= Ni i=1,...,N, [sample]

Draw: x;(t) ~ A(x(@®)|x;(t — 1))

Wi(1) =Cy®)lxi(n)

N[’
Wi =W, [ > Wi
i=1

Np
mwﬂ/Z)Wm
i=1

Mo Resample < Nyyesn
@ Accept > Ntllresh

xi(t) = xi(1)

P
Importance Sampling

[state transition]

Weight Update
[weight/likelihood]

Weight Normalization

Resampling Decision

[effective samples]

A(%;(?), X;(t)) = min {

Draw: €;(t) ~ N0, Rc.)

Xi(t) = Xi(t) + €i(1)
Draw: u; — U(0, 1)

X ifu < Alx;, %)
Xi(r) otherwise

xi(t) = {

[decision]
Resampling
Diversification Acceptance Probability
Cy)|xi(1)) x AG(O)]xi(t — 1)) 1}
COMIN) X AG O — 1)’
Diversify
[sample]
[generate sample]
[uniform sample]
Decision
Distribution

NI7
Pr(x(n)]Yy) & Y Win)s(x(t) — xi(t))
i=1

[posterior distribution]
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7.5.5 Linearized Particle Filter

Attempts to approximate the minimum variance importance proposal distribution of
Sec. 7.2 continue to evolve [24]. The motivation for this is based on inadequacies
created by selecting the transition prior of Sec. 7.5.1 as the proposal leading to the
popular bootstrap algorithm [16] of Table 7.2. As mentioned previously, the bootstrap
approach requires resampling to mitigate the particle depletion problem and lack of
incorporating the most recent measurement in the weight update. These reasons have
led to the development of the PF that incorporates the latest measurement sample.
One way to do so is to generate an approximately Gaussian importance proposal based
on linearization methods [4, 7, 9] with the idea of selecting

Pr(x(0)|X;—1, Y) = gnr(x(1)]Yy) (7.56)

as a Gaussian proposal. This approach is used to provide coverage of the actual
posterior due to its long-tailed distribution while incorporating the latest available
measurement. This Gaussian proposal is the result of marginalizing the prior state,
x(t — 1), of the minimum variance proposal. That is,

gn x®|Yy) — Prx(®)|Yy) = /Pr(X(t)IX(t — 1), y(®) x Pr(x(t — D)|Y;—1) dx(t — 1)
(7.57)

In a sense this implicit marginalization effectively averages the proposal with
respect to the previous posterior, Pr(x(# — 1)|Y;—1), which incorporates all of the
“information” about x(# — 1). Thus, we see that by choosing the Gaussian importance
distribution as our proposal enables us to implicitly incorporate all of the knowledge
available about the previous state as well as incorporate the current measurement,
y(t). These features make gar(x(¢)|Y;) a reasonable choice as long as it provides the
overlapping support or coverage of the desired posterior [9].

One of the linearization approaches to implementing the minimum variance
importance function, gy (x(¢)|x(t — 1), y(¢)) is to estimate it as a Gaussian prior,
that is,

amy () x(t — 1), y(1) ~ N (& (), P(t]1) (7.58)

where the associated (filtered) conditional mean, X(¢|t) = E{x(¢)|Y;} and error covari-
ance, P(t|t) = E{%(¢t|t)¥ (¢|t)} for X(¢|t) = x(t) — X(t|¢) are obtained from an additional
estimation scheme.

There are a variety of choices available, each evolving from either the classical
(linearized, extended or iterated Kalman filters) or the modern unscented (sigma-
point) Kalman filter. Further alternatives are also proposed to these approaches [4],
but we will confine our discussion to these popular and readily available approaches
[9]. In each of these implementations a linearization, either of the nonlinear dynam-
ics and measurement models in the classical case or in the statistical linearization
(unscented transformation) as in the unscented or sigma-point case occurs. All of
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these “linearized-based” processors provide the updated or filtered conditional mean
estimate

X)) = x|t — 1) + K(x*(2))e(r) (7.59)

where

X(t|t — 1) is the predicted conditional mean, E{x(¢)|Y;_1};

K(x*(t)) is the gain or weight based on the particular linearization technique; and
e(t) is the innovation sequence.

Here the choices are:

x*(t) = x,(2) is a reference trajectory in the linearized case; or
x*(t) = X(t|a) is a extended or iterated cases; and

x*(t) — xi(t|t) is a sigma-point in the unscented case.

The error covariance is much different in each case, that is,
P(t|t) = (I — K(&x*(0)Clx*(O)P(t|r — 1) (7.60)

in the linearized and extended cases with measurement Jacobian

a .
Clr'(t)] = — ] (7.61)
axj xX=x*()
and, of course,

P(t|t — 1) = AlxX*)]P(t — 1|t — DA'[x* ()] + Ry ( — 1) (7.62)

for Alx*(1)] = 2401 :

7 lx=x*(1)

In the sigma-point (unscented) case, we have

P(t|t) = P(t]t — 1) — KO (0)Ree( DK (x* (1)) (7.63)

So we see that depending on the linearization method or the particular classical
or unscented processor we select, we will generate the Gaussian prior at each time-
step which is used to obtain the minimum variance importance distribution. Thus,
we see why they are called the class of “local” linearization-based particle filters.
The linearized particle filter algorithm is shown in Table 7.6 where we see that the
conditional mean and covariance are estimated in each time-step of the algorithm and
particles are drawn from

xi(t) = Pr(x(n)|Y;) ~ N (&(t|1), P(t|1)) (7.64)

the updated “Gaussian” estimates and the weights also follow the importance
distribution of Eq. 7.58 given by
COMxi(1)) x Ax@®|xi(t — 1)

Wi(t) = 7.65
O = v GO = Dyy () (7.65)
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TABLE 7.6 Linearized Particle Filtering Algorithm

Initialize
Draw: x;(0) ~Pr(x(0)) W;(0)= Nip i=1,...,N, [sample]
Linearization

LZKF/EKF/IEKF/UKF Processor
{xi(2), Pi(D)} = N (&(t]1), P(1]1))

Importance Sampling
xi(t) ~ NG(tlt), P(tlt)) [state draw]

Weight Update
_ COMx®) x Ax@®|xi(r = 1))

Wi(0) [MV weight]
gmy (x(@)|x;(t — 1), y(1))
for
gy @O 1xi(t = 1, 3(0) = N (xi(0), Pi(1))
Weight Normalization
Np
Wit)y=W(t) | 3 Wi(t)
i=1
Resampling Decision
Np
Neﬁ- =1 / Z Wl-z(t) [effective samples]
i=1
& ) = Nuresn Resample ..
Ny = {> Nuwesn Accept [decision]
Resampling
Xi(t) = xi(1)
Distribution
N Ny
Pr(x(0)|Y;) = Y Wi(1)8(x(r) — Xi(2)) [posterior distribution]
i=1

This completes the linearized particle filters, next we consider some of the practical
considerations for design.

7.6 PRACTICAL ASPECTS OF PARTICLE FILTER DESIGN

Monte Carlo methods, even those that are model-based, are specifically aimed at
providing a reasonable estimate of the underlying posterior distribution; therefore,
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performance testing typically involves estimating just “how close” the estimated
posterior is to the “true” posterior. However, within a Bayesian framework, this
comparison of posteriors only provides a measure of relative performance but does
not indicate just how well the underlying model embedded in the processor “fits”
the measured data. Nevertheless, these closeness methods are usually based on the
Kullback-Leibler (KL) divergence measure [58] providing such an answer. However
in many cases we do not know the true posterior and therefore we must resort to
other means of assessing performance such as evaluating mean-squared error (MSE)
or more generally checking the validity of the model by evaluating samples generated
by the prediction or the likelihood cumulative distribution to determine whether or
not the resulting sequences have evolved from a uniform distribution and are i.i.d.
(see Sec. 3.3)—analogous to a whiteness test for Gaussian sequences.

Thus, PF are essentially sequential estimators of the posterior distribution employ-
ing a variety of embedded models to achieve meaningful estimates. In contrast to the
BP designs which are typically based on Gaussian assumptions, the PF have no such
constraints per se. In the linear case, a necessary and sufficient condition for opti-
mality of the linear BP is that the corresponding innovations or residual sequence
must be zero-mean and white (see Sec. 5.6 for details). In lieu of this constraint, a
variety of statistical tests (whiteness, uncorrelated inputs, etc.) were developed in Sec.
5.6 evolving from this known property. When the linear Bayesian processors were
“extended” to the nonlinear case, the same tests were performed based on approxi-
mate Gaussian assumptions. Clearly, when noise is additive Gaussian these arguments
can still be applied. These same statistical tests can also be performed based on the
on the innovations or residual sequences resulting from the PF estimates (MAP, ML,
MMSE) inferred from the estimated posterior distribution. However, some other more
meaningful performance tests for the PF can also be applied for improved design and
performance evaluation.

7.6.1 Posterior Probability Validation

Much effort has been devoted to the validation problem with the most significant
results evolving from the information theoretical point of view [59]. Following this
approach, we start with the basic ideas and quickly converge to a reasonable solution
to the distribution validation problem [59, 60].

Let us first define some concepts about probabilistic information necessary for the
development. These concepts are applied extensively in communications problems
and will prove useful in designing parametric signal processors. The information
(self) contained in the occurrence of the event w; such that X(w;) = x;, is

Z(x;) = —log,Pr(X(w;) = x;) = —log,Pr(x;) (7.66)

where b is the base of the logarithm which results in different units for information
measures (e.g., base 2 — bits, while base e — implies nats). The entropy or average
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information is defined by
N N
H(xi) == Ex{T(x)} = Y Z(x)Pr(x)) = — Y _ Pr(x;) log,Pr(x;) (7.67)
i=1 i=1

Mutual information is defined in terms of the information available in the occurence
of the event Y (w;) = y; about the event X(w;) =x; or

Pr(x;|y;)
Z(x;;y;) = log, Pr(’x ‘j] = log, Pr(xiy;) — log,Pr(x;) (7.68)
l

Now using these concepts, we take the information theoretic approach to distri-
bution estimation following [59, 60]. Since many processors are expressed in terms
of their “estimated” probability distributions, quality or “goodness” can be evalu-
ated by its similarity to the true underlying probability distribution generating the
measured data.

Suppose Pr(x;) is the true discrete posterior probability distribution and Pr(%;) is
the estimated distribution. Then the Kullback-Leibler Information (KL) quantity of
the true distribution relative to the estimated is defined by using

N
Txr (Pr(x;); Pr(%)) := Ex {ln Iir()f") } =) Pr(x;)In Iir()fi)
Pr(x;) o1 Pr(x;)

N N
= Z Pr(x;) In Pr(x;) — Z Pr(x))InPr(%;)  (7.69)

i=1 i=1

where we chose log, = In. The KL possesses some very interesting properties which
we state without proof (see [60] for details) such as

1. Tgr(Pr(x;); Pr(&;)) > 0
2. Txr(Pr(x;); Pr(%)) = 0 < Pr(x;) = Pr(%,) Vi
3. The negative of the KL is the entropy, Hxr (Pr(x;); P;r(fci))

The second property implies that as the estimated posterior distribution approaches
the true distribution, then the value of the KL approaches zero (minimum). Thus,
investigating Eq. 7.69, we see that the first term is a constant specified by the true
distribution; therefore, we only need to estimate the average value of the estimated
posterior relative to the true distribution, that is,

N
L&) := Ex{InPr(%)} = > Pr(x;) In Pr(%) (7.70)
i=1
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where L(X;) is defined as the average log-likelihood of the random variable of value
In Pr(%)). Clearly, the larger the average log-likelihood, the smaller the KL implying
a better model.

The third property, entropy, is approximately equal to 1lv times the probability that
the relative frequency distribution of N measurements obtained from the estimated
posterior equals the true distribution.

The Tk, is applied frequently to parameter estimation/system identification prob-
lems to estimate the intrinsic order of the unknown system [5]. Two popular
information metrics have evolved from this theory: the Akaike Information Crite-
rion (AIC) and the minimum data length (MDL) description [59, 60, 62, 63]. Both
are used to perform order estimation and are closely related as shown below

n
AIC() = ~InRec + 25

MDL(y) = —InR.. + glnN

where 7 is the system order, € is the one-step prediction error with corresponding
covariance R and N is the number of samples (data) values.

However, our interest lies in comparing two probability distributions to determine
“how close” they are to one another. Even though Zx; does quantify the difference
between the true and estimated distributions, unfortunately it is not a distance mea-
sure due to its lack of symmetry. However, the Kullback divergence (KD) defined by
a combination of Zgy,

Tkp(Pr(x;); Pr(x:)) = Zir (Pr(x;); Pr(%)) + Zir (Pr(z:); Pr(x,)) (7.71)

is a distance measure between distributions indicating “how far” one is from the other.
Consider the following example of this calculation.
Example 7.2

We would like to calculate the KD for two Gaussian distributions, p;(x) ~ N (m;, V});
i=1,2 to establish a closeness measure. First, we calculate the KL information,

pl(x)} :Epl{ In 72 (x—m2)2 (x—ml)Z}

Tkr(py(x); pr(x)) = Ep, {111 ) 2V, 2V,

Now performing the expectation term-by-term gives

1
Tkr(py(x); p2(x) = 5 1n—+2—V2/(x m) pl(X)dx——/(x—im) Py (x) dx

Since the last term (under the integral) is the variance, Vi, it is simply —% and
therefore all we need do is expand and perform the integration of the second integral
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term-by-term to give

Trr(py(x); pa(x))
Ly ifz()d > / (0d 2f<)d !
_2nV1+2V2 x“py(x)ax —2my | xp;(x)dx +m; p;(x)ax —2

or identifying terms from the properties of moments, we obtain

T (py (00 pa) = 5 1n 2 + =L [(Vy  2d) — 2y + 3] — -
X);pyx)=-In—+ — my) — 2momy + m;] — =
KL(P1(X); P2 2y, Ty, 1 1 2m| 2175
Finally, we have
Vo Vitm—m)? 1
Z ; =-lh—+—7-——"—— =
KL(p1(x); p (1)) = = In 7 + v, 5
Performing the same calculation, we get
1. Vi Vat(m —m)* 1
7 5 =—In— - - -
KL(P2(x); P1(x)) = 5 In A + 7 7
and therefore the KD is
Jkp(p1(0); p2(x)) = Zkr(p1(x); P2(x)) + Zgr (P2 (x); p1 (x))
Vi —m)(Vi+ V) + Vs .
B 2ViVa
This completes the example. AAA

The KL and therefore the KD can also be determined by probability distribu-
tion estimation using MC sampling techniques [64, 65]. As another example of this
approach consider how to apply the KL information to distinguish between a unimodal
Gaussian and a Gaussian mixture.

Example 7.3

Suppose we would like to test whether a given data set is from a Gaussian distri-
bution specified by N (m, V) or from a Gaussian mixture distribution specified by
pN(m1, V1) + (1 — p)N(my, V) where p is the mixing coefficient (probability). The
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Kullback divergence can easily be calculated and compared to a bound « to determine
“how close” the data is to a mixture or a Gaussian, that is,

Tkp(Pr(x;); Pr(%) = Tkp(pN (m1, V1) + (1 = p)N (ma, V2); N(m, V) < «

In order to perform the test we choose m and +/V to minimize the KD above.
Solving we obtain

m=pm+ (1 —pmy; and V =pVi+ (1 —p)Va+p(l — p)(m; — my)>

A typical bound of @ = 0.1 appears to perform well in distinguishing a single Gaussian
from a mixture. AAA

This completes the section, next we discuss an entirely different approach to this
distribution problem by investigating “goodness of fit” testing.

7.6.2 Model Validation Testing

Of the major practical concerns with all model-based processors is whether or not the
model embedded in the processor “matches” the underlying phenomena and can be
used to extract meaningful information from the noisy measurements. As mentioned,
in the classical Gaussian-based techniques, the zero-mean/whiteness testing of the
innovations is a critical measure of this match. These properties are also used exten-
sively for linearized models evolving from nonlinear dynamic systems as well [5]. In
all of these cases the distributions are considered unimodal and typically Gaussian.

In the non-unimodal (non-Gaussian) case the diagnostics are more complicated.
The roots of MC model diagnostics lie in the basic Uniform Transformation Theorem
of Sec. 3.3 and the works of Rosenblatt [48] and Smith [49] under the general area
of “goodness-of-fit” statistical tests [39, 40, 50, 51, 57, 58].

The fundamental idea is based on analyzing the predicted measurement cumu-
lative distribution, Py(y(t)|Y:—1). A processor is considered consistent only if the
measurement y(f) is governed by the statistics of its predicted cumulative distribu-
tions. Therefore, validation consists of statistically testing that the measurements
“match” the predictions using the underlying model embedded in the processor. By
defining the residual sequence as

(1) :=Py(yOlYi—1) =Pr(Y (1) = y(O|Y;—1) = /Y Pr(y (0|Y:—1)dy' (1) (7.72)
<y

we must show that {e(#)} is a valid realization of an independent, identically dis-
tributed, process uniformally distributed on the interval [0, 1] given the measurements
Y;_1. Thus, the statistical test validates whether or not the sequence is €(¢) ~ (0, 1)
(component-wise for the vector case).
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More formally, we use Rosenblatt’s theorem? that states, if y(¢) is a continuous
random vector and the underlying model is “valid”, then the corresponding sequence
{e(®)} is i.i.d. on [0, 1]. Under the assumption that the residual sequence is stan-
dard uniform, then we can transform to obtain an equivalent Gaussian sequence [48]
such that

w(t) = ® '(e(t))  forv ~ N(0,1) withe ~ U(0, 1) (7.73)

where ® ! is the inverse standard Gaussian cumulative distribution. Once the residual
sequence is transformed, then all of the classical Gaussian statistical tests can be
performed to ensure validity of the underlying model.

With this in mind we are still required to solve two basic problems: (1) the esti-
mation of the residual sequence €(¢) or equivalently the estimation of the predictive
measurement cumulative distribution, Py(y(¢)|Y;—1); and (2) the diagnostic statis-
tical testing of €(¢) or equivalently v(¢), that is, demonstrating that ¢ ~2(0, 1) or
v~N(0,1).

The key to estimating the residual sequence is based on representing the predictive
cumulative distribution as an infinite mixture [39, 40, 51]

() =Py(yOIY;-1) = /Py(y(t)IX(t)) X Pr(x(0)| Y1) dx(1) (7.74)

An MC approach to this estimation problem is to “particulate” the required under-
lying distribution and estimate the empirical prediction cumulative distribution or
equivalently the residuals. Perhaps the simplest MC technique is to sample from
the predicted state distribution directly “when possible”, that is, if we could replace
the prediction distribution with its empirical representation, then we could obtain an
estimated residual [57], that is,

N,

1 <
€)= / Py(y(®)lx(1)) x FZB(x(I)—xi(t)) dx(t) (7.75)
P =1

or simply
L
&0 = 5= > Pro0hi(n) (7.76)
Pi=1

However, if direct sampling of the predicted state distribution is not possible,
then the predictive decomposition into the transition prior and posterior can be

3 The theorem states that for a given random vector y € R™*! with corresponding distribution Py(y),
the transformed vector, € =Ty, is uniformly distributed on the N,-hypercube for Pr(e) = ]_[f\il €; when
0 <¢; < I. The transformation, T is given by €; =Py(y;|Yi_1);i=1,...,N, [48].
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accomplished, that is,
Pr(x(¢)|Y;—1) = /Pr(x(t)|x(t — 1) x Pr(x(t — D)|Y;—1) dx(t — 1) (7.77)

or using the state—space representation of the transition prior
Pr(x(®)|Yi—1) = /A(x(t)|x(t — 1)) x Pr(x(r — 1)|Y;—1) dx(z — 1) (7.78)
and performing a particle approximation, we obtain the empirical estimate of the

(t — 1)-step posterior as

Ny

Pr(x(t — DIYi—1) = Y Wit — DS (x(t — 1) — x(t — 1)) (7.79)
k=1

Substituting this expression into Eq. 7.78 gives the prediction distribution

Br(x(1)|Y,_1) = / AG@) (i = 1)

NP
X | Y Wit = D8 (et — 1) — xe(t = 1) | dx(t — 1)
k=1
N,
= Wit — DA@(@®)|x (t — 1)) (7.80)
k=1

and the residual of Eq. 7.74 becomes

N,
) = /PY(y(t)IX(t)) D Wit = DAGO) |t — 1) | dx(t) (7.81)

k=1

If we draw a sample, x;(¢), from the transition prior, x; ~ A(x(¢)|xx(t — 1)) and use
the perfect sample approximation,

At — 1)) & 8(x(1) — xi()) (7.82)

then substituting into Eq. 7.81 for the transition distribution yields

Ny
& =7y Wit - 1)/PY(y(l)IX(t)) X 8 (x(1) — xi(1) dx(r) (7.83)

k=1
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giving the final expression for the estimated residual as [39, 40, 51]

N,

&) =Y Wit — DPy((0)xi(1)) (7.84)

k=1

for

Py(y(®)lxi(1)) = / CO®xi(1)) dy(r)
Y=y
which can be estimated through direct integration or using an empirical CDF [14], if
necessary.

Once we have obtained the estimate of the residual €(¢) (or equivalently the trans-
formed residual v(¢)), we can perform diagnostic tests to evaluate the “goodness-
of-fit” and therefore evaluate the validity of the embedded dynamic model.

There are a variety of diagnostic tests that can be performed which include: x*-
testing (C-sq), Kolmogorov-Smirnov (K-S) tests, normality testing (graphically),
zero-mean/whiteness testing, etc. Here we concentrate on the C-sq and K-S as well as
moment testing of the transformed residuals. Zero-mean/whiteness testing was
already discussed in Sec. 5.6.

Any of the Kalman techniques can also be used to generate an approximation to the
sequence of residuals or prediction cumulative distribution, using the empirical PDF,
EKF, UKF, Gauss-Hermite (G-H) grid-based integration as well as the Gaussian
mixture approach, that is, Gaussian sums (G-S) (see [51, 66—69] for more details).

7.6.2.1 Chi-Square Model Validation Test Chi-square (C-Sq) tests are
hypothesis tests with the null hypothesis, H,, that an N-length sequence of data
is a random sample from a specified distribution against the alternative that it is not
[14, 15]. It is usually applied to Gaussian distributions. C-Sgq tests are based on the
fact that the exponent of a Gaussian distribution, that is, the square of the ratio of
the random variable minus its mean divided by its standard deviation is chi-square
distributed with N degrees of freedom, that is, (x — u/0)*> ~ x>(N). However, this
test can be applied to any distribution.

For instance, if the random variable is binomially distributed with B(, p) for p
the success probability, then it takes the same form as the exponent above—it is
distributed (in the limit) as x2(1). Extending this to a multinomial distribution with
parameters N and p(i) fori=1,...,k— 1; M(N, {p@@)}), then in the limit as N — oo
the test statistic, say Cx_1, has an approximate x>(k — 1) distribution.*

Hypothesis testing that H,, is true using the test statistic is specified by the value
k (probability bound) of the X2(k — 1) using Pr(Cy—1 > k) =« for « the significance
level of the test. Thus, if the test statistic is less than k the null hypothesis is accepted
and the selected distribution is correct.

4To be more specific, if the i.i.d. random variables, yi,..., Yk—1 are multinomially distributed
with ye =N — Y* 71y, and ptk)=1— Y57 p(i), then the statistic, Gy = Y| (v — N,(i)%/N,(i) is
Cio1 ~ x*(k—1) [15].
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For our problem, a goodness-of-fit test of the residuals follows directly from their
uniformity property of an adequate model. The most common statistical tests for uni-
formity follows from the x>-test based on segmenting the estimated residual sequence
on [0,1] into subintervals and testing. The chi-square statistical test can be used
to decide whether or not the residual sequence €(t) is U(0, 1) or equivalently the
transformed residual, v(¢) is N(0, 1).

The C-Sq test statistic for our problem is given by

Ne¢ N =2
D i (7.85)
i=1

where N is the total number of residual samples; N is the number of bins (equally
spaced subintervals); n(7) is the number of residual counts in the i""-bin (subinterval);
and € is the expected number of counts per bin given by € = 1%

If the residual sequence is uniform, then Cy, 1 ~ )(2(NE — 1) and « is compatible
with a X2(N€ — 1) distribution at significance level, «. Therefore, if Cy,—; <« the
null hypothesis that the residual sequence is uniformly distributed is accepted and
the model is adequate (validated) otherwise it is rejected. Thus, the x2-model

validation test is:

o Partition the N-sample residual sequence into N, bins (equally spaced
subintervals)

o Count the number of residual samples in each bin, n.(i); i=1,..., N
o Calculate the expected bin count, € = N /N,

« Calculate the test statistic Cy__1 of Eq. 7.85

o Testthat Cy,—1 <« [Accept H,]

Example 7.4

Suppose we have a residual sequence, €(¢), scaled on [0, 1] of N = 1000 samples and
we would like to test that it is uniformly distributed using the y?>-model validation
test. We partition the sequence into N = 10 bins; therefore, the expected counts per
bin is € = 100. At the o = 5% significance level, the test statistic,

Cn.—1 =3.22

is less than « (probability bound) accepting the null hypothesis that the sequence is
uniform and therefore the model is validated. AAA

Next we consider another more robust method for goodness-of-fit testing.
7.6.2.2 Kolmogorov-Smirnov Model Validation Test The -chi-square

goodness-of-fit test suffers from the limitations of arbitrary interval widths and the
requirement of large data sets. An alternative or complementary approach is the
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Kolmogorov-Smirnov (K-S) goodness-of-fit test that is based on deciding whether or

not a hypothesized (e.g., uniform) or estimated cumulative distribution characterizes
a given data sequence (e.g., residual). The hypothesis test is given by:

Ho: Prle) = Pyle)
Hi: Prle) # Pyle) (7.86)

where Py is the underlying (estimated) population CDF and P, is the hypothesized
CDF'. The test statistic used in making the decision is:

K = max |Pg(e) — P,(¢)| (7.87)
€
where Pg is given by the empirical distribution function estimate
. N,
Py(e) = N — Pr(E <€¢)=Pg(e) asN — o (7.88)

For large N, K~ 0 with H,, true while for H; true, K is close to the maximum
difference. Therefore, we reject H,, if K >k with « a constant determined by the
level-of-significance of the hypothesis test, «. That is,

a = Pr(K > k| Hy) ~ 2e7 2N (7.89)

Thus the K-S-test is:

« Estimate the empirical CDF, ISE(E)
o Calculate K-S test statistic /C from Eq. 7.87

L4 ]est that
< N ln IACCept ;{0

Example 7.5

We have a residual sequence, €(¢), scaled on [0, 1] of N =25 samples and we would
like to perform the K-S test that the samples are uniformly distributed at the o« = 5%
significance level. The test statistic,

K=0.17
is less than x = 0.26 accepting the null hypothesis that the sequence is uniform and

therefore the model is valid. The test is shown in Fig. 7.11 as the location of the
maximum deviation between the hypothesized and empirical distributions. AAA
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Kolmogorov-Smirnov test
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FIGURE 7.11 Kolmogorov-Smirnov model validation test of residual sequence: hypoth-
esized and empirical CDF.

When the transformed residuals are used, then the standard zero-mean/whiteness
testing can be accomplished as well as estimating the moments of the Gaussian
distribution which we discuss in the next section.

7.6.2.3 Moment-Based Model Validation Test When the residuals are
transformed from the hypothesized uniformly distributed sequence to a standard
Gaussian, v~ N(0, 1), then a wealth of normality diagnostics can be applied to val-
idate the adequacy of the embedded model. Besides the zero-mean/whiteness and
WSSR tests of Sec. 5.6 for Gaussian processes, the usual suite of diagnostics can be
applied to estimate the underlying moments to check for consistency of the Gaussian
assumption and therefore model validation. The brute force approach is simply to cal-
culate the mean-squared (estimation) error over an ensemble of runs of the processor
and any truth model available for comparison,

£ =\ E{(Ome — ©)?) (7.90)

where ® can be any parameter, state or measurement estimated by © and the expec-
tation can be calculated by integrating or solving over an ensemble generated by
executing the processor a multitude of times and averaging. This can be very costly
and sometimes impossible because of the lack of the “truth”.

Another approach is to calculate a set of statistical indexes that can be used to
“qualitatively” assess performance and model validity using the transformed residual
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sequence, v(¢) [S1-53]. Here the first four central moments of an N-sample sequence
of transformed residuals are estimated based on

N
my (k) = %Z(v(t) —my())f fork >2 (7.91)

1=1
with the first moment the sample mean

N

1
m() = & Z w(7) (7.92)

t=1

These moments can then be used to construct the following diagnostic indices
which are asymptotically distributed N(0, 1) (see [51] for details).

e Bias Index: By = +/Nmy(1)

e Dispersion Index: Dy = %

o Skewness Index: Sy =% 2(11,)(_}\’2;“ 3) %

. Tail Index: Ty=(W+ DA I (e 3-D)
o Joint Index: InN = S}%/ + 77\,2

From a pragmatic perspective these indices are used in a more qualitative manner
even though they are quantitative. They are used to expose “surprising values”, that
is, for N not too small, the indices can be bound by some constant, 8 and com-
pared with upper and lower quantile estimates of their exact distribution [51]. For
instance, consider the quantile, Dy 4, of the exact dispersion index distribution under
the assumption of a valid model. Then it can be shown [51] that

Do = (Xhy_14 — (N = 1)/y/2(N = 1)) (7.93)

where XIZ\,_M is x2(N — 1) distributed. Other measures such as the skewness and tail
indices, Sy and Ty can be obtained from MC simulations [51].

If By is surprisingly high or low, the measurements tend to be larger or smaller then
predicted (3(¢)), while a surprisingly high or low dispersion index, Dy indicates that
the measurements are under or over dispersed. The Sy and 7y are useful in analyzing
the measurement distribution. A higher or lower Sy indicates a skew to either right or
left while a higher or lower 7Ty indicates longer or shorter tails respectively. The Jy
is an asymptotically equivalent to normality tests [50, 54]. A suite of other statistics
exist for testing correlations [55, 56] as well.

This completes the section on practical aspects of PF design and analysis. We will
couple these statistical tests to the classical whiteness testing techniques to evaluate
the performance of the processors. Next let us consider the design of a “bootstrap”
processor on a canonical problem: a case study for population growth.
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7.7 CASE STUDY: POPULATION GROWTH PROBLEM

In this section we discuss the development of state—space particle filters (SSPF) for the
population growth problem. We consider this well-known problem that has become
a benchmark for many of the PF algorithms. It is highly nonlinear and nonstationary.
Thus, consider the problem of [25] and [20, 26-29].

The state transition and corresponding measurement model are given by

(t)—l(t 1) M 8cos(1.2(r — 1)) t—1

X _2x — +1+x2(t—1)+ cos(1. — + w(t —
_ X0

y(t)_2_0+v(t)

where At=1.0, w~N(0,10) and v~N(0,1). The initial state is Gaussian
distributed with x(0) ~ N(0.1, 5).
In terms of the nonlinear state—space representation, we have

. 1 B 25x(t — 1)
alx(t — 1)] = 2x(t 1+ 12201 20D
blu(t — 1)] = 8cos(1.2(t — 1))

(1)
c[x(@®)] = S0

In the Bayesian framework, we would like to estimate the instantaneous posterior
filtering distribution,

Np
Bre(0)|Y) ~ 3 Wid(x(t) — xi(1) (7.94)
i=1
where the unnormalized importance weight is given by

_ COMX@) x Ax@)lxi(t — 1))

Wi(t) = 7.95
® GO X1 1) (7.95)

The weight recursion for the bootstrap case is W;(t) = Wi(r — 1) x C(y(2)|x(2)).
Therefore, for the Bayesian processor, we have that the state transition probability is
given by

A@(@)]x( — 1)) ~ N(x(@) : a[x(t — 1)], Ry) (7.96)
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Thus, the SIR algorithm becomes:

1. Draw samples (particles) from the state transition distribution: x;(#) — N (x(?) :
alx(t — D], Ryy)

wi(t) = Pr(w(®)) ~ N(0, Ryw)

25x,(t — 1)

m + 8cos(1.2(t — 1)) + w;(t — 1)

xi(t) = %xi(z‘ -+

2. Estimate the weight/likelihood,

Wi(t) = Cy®Ix(®) — N (y() : e[x(®)], Ryy(1))

X0

clxi(0)] = 20

3. Normalize the weight: W;(r) = W;(¢)/ Zf\]:" W)
4. Resample: X; = x;
5. Estimate the instantaneous posterior:

N,

Pr(x(n)|Ys) & Y Wid(x(t) — xi(0))

i=1
6. Estimate (inference) the corresponding statistics:
)A(MAp(t) = arg m(a)x 15r(x(t)|Yt)
x(t

NP
Xwmse(t) = Efx(@)|Y,} = Y xi(t)Pr(x(1)| V1)
i=1

XmEepIan(?) = median(Pr(x(r)|Y,))

We show the simulated data in Fig. 7.12. In a we see the hidden state and b the
noisy measurement. The estimated instantaneous posterior distribution surface for
the state is shown in Fig. 7.13a while slices at selected instants of time are shown in
b with the circles annotating particle locations normalized to a constant weight. Here
we see that the posterior is clearly not unimodal and in fact we can see its evolution in
time as suggested by Fig. 7.1 previously. The final state and measurement estimates
are shown in Fig. 7.12 demonstrating the effectiveness of the PF bootstrap processor
for this problem. Various ensemble estimates are shown (e.g., median, MMSE, MAP).
It is clear from the figure that the EKF gives a very poor MMSE estimate since the
posterior is not Gaussian (unimodal).
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7.8 SUMMARY

In this chapter we have discussed the development of state—space particle filters
(SSPF). After introducing the idea of Bayesian particle filters, we showed how
the state—space models could easily be interpreted in terms of this framework. We
developed a generic state—space particle filtering algorithm based on the importance
(sampling) proposals selected either using the minimum variance or transition prior
approach. However we emphasized that in practice these techniques suffer from parti-
cle depletion and lack of diversity because of ever-increasing weight variances causing
divergence of the processors. We introduced the concept of resampling as a solution
to the divergence problem and discussed a number of techniques to mitigate the diver-
gence problem. With that in hand, we discussed the popular bootstrap particle filter
and showed some examples to demonstrate its performance. We then proceeded to
discuss improvements to the bootstrap approach attempting to approximate the min-
imum variance proposal. These methods included the auxiliary, regularized, MCMC
and linearized algorithms. Next we investigated some of the practical aspects of parti-
cle filter design and developed a number of statistical tests to determine performance
including both information theoretic approaches to validate the posterior distribution
as well as diagnostic testing for model validation. We concluded the chapter with a
case study on population growth—a nonlinear/non-Gaussian model presenting a very
challenging problem for any particle filter design. Besides the references in the chap-
ter there has been a wealth of particle filtering papers appearing in both the statistics
and signal processing literature [30—43].

MATLAB NOTES

MATLAB is command oriented vector-matrix package with a simple yet effective
command language featuring a wide variety of embedded C language constructs
making it ideal for signal processing applications and graphics. MATLAB has a
Statistics Toolbox that incorporates a large suite of PDF's and CDF's as well as
“inverse” CDF functions ideal for simulation-based algorithms. The mhsample
command incorporate the Metropolis, Metropolis-Hastings and Metropolis
independence samplers in a single command while the Gibbs sampling approach
is adequately represented by the more efficient slice sampler (slicesample). There
are even specific “tools” for sampling as well as the inverse CDF method captured
in the randsample command. PDF estimators include the usual histogram (hist)
as well as the sophisticated kernel density estimator (ksdensity) offering a variety
of kernel (window) functions (Gaussian, etc.) and ICDF methods including the
empirical cumulative distribution (ecdf) estimator. As yet no sequential algo-
rithms are available.

In terms of statistical testing for particle filtering diagnostics MATLAB offers
the chi-square “goodness-of-fit” test chi2gof as well as the Kolmogorov-Smirnov
distribution test kstest. Residuals can be tested for whiteness using the Durbin-
Watson test statistic dwtest while “normality” is easily checked using the
normplot command indicating the closeness of the test distribution to a Gaussian.
Other statistics are also evaluated using the mean, moment, skewness, std, var
and kurtosis commands. Type help stats in MATLAB to get more details or go to
the MathWorks website.
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PROBLEMS

7.1

7.2

7.3

7.4

Given a sequence of Gaussian data (measurements) characterized by
y~N(u, 02), find the best estimate of the parameters definedby ® :=[u o]
using a “sequential” MC approach. Show the mathematical steps in developing
the technique and construct a simple PF' to solve the problem.

Consider the following simple model [7]

X(6) = ax(t — 1)+ w(t — 1)  for w ~ N(O, Ryw(i)) with Z(t) = i
(1) = x(t) + v(t) for v ~ N (0, Ryy)

with Pr(Z(¢) =i|Z(t — 1),x(t — 1)) =Pr(Z(t) = i) =p;
(a) Suppose i ={1,2}, what is the distribution, Pr(Z(¢) = (i1, i2), x1|y1, X0)?
(b) How would the marginal be estimated using a Kalman filter?

(c) Develop a computational approach to bootstrap PF algorithm for this
problem.

Suppose we have two multivariate Gaussian distributions for the parameter
vector, @ ~ N (u;, 5;);i=1,2

(a) Calculate the Kullback-Leibler (KL) distance metric, J.

(b) Suppose X = X| = X, recalculate the KL for this case.

An aircraft flying over a region can use the terrain and an archival digital map
to navigate. Measurements of the terrain elevation are collected in real time
while the aircraft altitude over mean sea level is measured by a pressure meter
with ground clearance measured by a radar altimeter [7]. The measurement
differences are used to estimate the terrain elevations and compared to a digital
elevation map to estimate aircraft position. The discrete navigation model is
given by

x(t) =x(t—D+ut— 1D +wt—1) forw~ N(@O,Ryy)
y(t) = clx(®)] + () for v ~ N(0, Ryy)
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where x is the 2D-position, y is the terrain elevation measurement, the navi-
gation systems output u and w are the respective distance traveled and error
drift during one time interval. The nonlinear function c[-] denotes the ter-
rain database yielding terrain elevation outputs with v the associated database
errors and measurements. Both noises are assumed zero-mean, Gaussian with
known statistics, while the initial state is also Gaussian, x(0) ~ A (x(0), P(0)).

(a) Based on this generic description construct the bootstrap PF algorithm
for this problem.

(b) Suppose: P(0) = diag[10* 10*]', Ry, =diag[25 251, Ry, =16, N =150
samples, u(r) =[25 25]’. Simulate the aircraft measurements and apply
the bootstrap algorithm to estimate the aircraft position.

In financial systems, a stochastic volatility model is used in the analysis of
financial time series such as daily fluctuations in the stock market prices,
exchange rates and option pricing. The volatility is usually expressed in terms
of a time-varying variance with the model given by:

y(t) = o(t) x e(t) €~ N(0,1)
Ino?(t) = a + Blnc’(t — 1) + In (1)

or equivalently

y(1) = D12 x o(1) x e(r) e~ N(©,1)
Ino?(t) = B Ino?(t — 1)+ v(E) v~ NQO,1%)

where o(f) corresponds to the time-varying volatility (amplitude) and the sec-
ond relation represents the change in volatility. The parameters « and g are
regression coefficients, and the remaining parameters are the In 72(¢) variance
term.

(a) Suppose we would like to estimate the unknown parameters augmenting
the original state (Ino?(f)) with the unknowns, a, 8,1n 2. Assume the
parameters can be represented by a random walk driven by zero-mean,
Gaussian noise processes. What is the overall model for this financial
system?

(b) Construct a bootstrap PF for this problem.

(¢) Simulate the data for N = 1000 samples and estimate the volatility and
parameters. The simulation parameters are: o = 1.8, 8=0.95, > =0.1,
and e ~ N(0, 1).

Develop a suite of particle filters for the RC-circuit problem of Ex. 5.1 where
the output voltage was given by:

n=11 Ar t—1 ATI-l‘ 1
e()—( ‘E)e( — D+ hat =D
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where e, is the initial voltage and R is the resistance with C the capacitance.
The measurement equation for a voltmeter of gain K, is simply

eour(t) = Kee(t)

Recall that for this circuit the parameters are: R=3.3kQ and C = 1000 uF,
AT =100ms, e, =2.5V, K, =2.0, and the voltmeter is precise to within
44 V. Then transforming the physical circuit model into state—space form by
defining x =e, y = eyys, and u = I;;,, we obtain

x(1) = 0.97x(t — 1) + 100u(t — 1) + w(t — 1)
(1) = 2x(t) + v(1)

The process noise covariance is used to model the circuit parameter uncertainty
with R, =0.0001, since we assume standard deviations, AR, AC of 1%.
Also, R,, =4, since two standard deviations are AV =2 (% 4 V). We also
assume initially that the state is x(0) ~ A/ (2.5, 10~ 1 2), and that the input current
is a step function of u(#) =300 pA.

With this in mind, we know that the optimal processor to estimate the state
is the linear BP (Kalman filter).

(a) After performing the simulation using the parameters above, construct a
bootstrap PF and compare its performance to the optimal. How does it
compare? Whiteness? Zero-mean? State estimation error?

(b) Let us assume that the circuit is malfunctioning and we do not pre-
cisely know the current values of RC. Construct a parameter estimator
for A=1/RC using the EKF or UKF and compare its performance to the
bootstrap and linearized PF.

(c) Try “roughening” the bootstrap PF, does its performance improve?
Compare results.

Consider the storage of plutonium nitrate in a tank (see [5] for details), we
would like to dynamically estimate the amount (mass) of Pu present at any
given time. Losses occur due to radiolysis and evaporation. The underlying
state—space model for this system is given by:

Summarizing the process and measurement models in state—space form, we

have

d [m(r) —K.P 0] |m(t) 1 wi(t)

— = t

di [p(t) 0 o [ew] T [o] T Lw)
where u is a step function of amplitude — Kp. The corresponding measurement
model based on pressure measurements is

I:APAi| _ [g/b —(a/b)g} [m(l)} + I:Ul(t)i|
APg| | 0 gH p() va(1)
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discretizing the dynamics and incorporating the model parameters, we obtain
the Gauss-Markov model with sampling interval of 0.1 day as

x(t) = [8'999 ﬂ x(t—1)+ [(1)] u(t—1)+w(i—1)

¥y = [(2)9'8 ‘22'_223} X(1) 4 (1)

Ry = diag[10 10], Ry, = diag[5.06 x 10* 1.4 x 10°] with initial conditions
%(0]0) = [988 1455]" and P(0|0) = diag[0.01 0.01].

(a) Develop the optimal BP for this problem and compare its performance to
the bootstrap PF.

(b) How well does the bootstrap PF perform? How about the linearized PF?

We are asked to investigate the possibility of creating a synthetic aperture using
a single hydrophone to be towed by an AUV in search of targets. We know
that a single hydrophone offers no improvement in SNR in the sense of array
gain, but also wonder about its capability to localize, especially more than one
target.

(a) Using the synthetic aperture model developed in the case study of Sec. 8.5,
develop the bootstrap PF and UKF processors for this problem. Assume
we would like to track two targets.

(b) Perform the same simulation outlined in the case study for two targets
at —45°, —10°.

(c) Apply the bootstrap algorithm with and without “roughening” along with
the UKF. Discuss processor performances and compare. Zero-mean?
Whiteness?

(d) Implement the “optimal” PF processor using the EKF or UKF lineariza-
tion. How does its performance compare?

We are asked to investigate the possibility of finding the range of a target
using a hydrophone sensor array towed by an AUV assuming a near-field
target characterized by it spherical wavefront instead of the far-field target of
the previous problem using a plane wave model. The near-field processor can
be captured by a wavefront curvature scheme (see [5] for more details) with
process and measurement models (assuming that the parameters as well as
the measurements are contaminated by additive white Gaussian noise). The
following set of dynamic relations can be written succinctly as the Gauss-
Markov wavefront curvature model as

Otx) = Ot—1) + wlty) for O) =lo fo 6, 1ol
pe(tn) = 61(5)e>™ WO ), £ =1, L
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where «,f,, 6, and r, are the respective amplitude, target frequency, bearing
and range. The time delay at the £”-sensor and time 7 is given in terms of the
unknown parameters of

1
ACHIES . (94(tk) - \/93(&) + d}(t) — 2dy(1)04(t) sin 93(tk)>

for dy(¢) the distance between the ¢ sensor and reference range r, given by
de(t) =x¢ + v x t, for x, the position of sensor ¢

(a) Using this model develop the bootstrap PF' and UKF processors for this
problem. Assume we would like to estimate the target bearing, frequency
and range (@ =1).

(b) Perform a simulation with initial parameters r, =3 Km, f, =51.1 Hz and
6, =27° and true parameters at r =2 Km, f =51 Hz and 6 =25°, L =4.

(c) Apply the bootstrap algorithm with and without “roughening” along with
the UKF. Discuss processor performances and compare. Zero-mean?
Whiteness?

(d) Implement the “optimal” PF processor using the EKF or UKF lineariza-
tion. How does its performance compare?

Consider the bearings-only tracking problem of Ex. 5.4 given by the state—
space model. The entire system can be represented as an approximate Gauss-
Markov model with the noise sources representing uncertainties in the states
and measurements. The equations of motion given by

1 0 AT 0 0 0
01 0 AT 0 0f|—-Avur—1

=0 0 1 o |X-D+]| 4 Lot =D e — 1y
00 0 I 0 1] | -Avyt—1

with the nonlinear sensor model given by

y(t) = arctanxl—(t) + v(?)
X2(2)

for w ~ N (0, Ryy) and v ~ N(0, Ry,).

(a) Using this model develop the bootstrap PF and UKF processors for this
problem. Assume we would like to estimate the target bearing, frequency
and range (0 = 1).

(b) Perform a simulation with the following parameters: an impulse-
incremental step change (Av,, = —24 knots and Av,y, = +10 knots) was
initiated at 0.5 h, resulting in a change of observer position and velocity
depicted in the figure. The simulated bearing measurements are shown in
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Fig. 5.6d, The initial conditions for the run were x'(0):=[0 15nm 20k
—10k] and R, = diag 10~° with the measurement noise covariance given
by Ry =3.05 x 10~*rad? for AT =0.33h.

(c) Apply the bootstrap algorithm along with the UKF. Discuss processor
performances and compare. Zero-mean? Whiteness?

(d) Implement the “optimal” PF processor using the EKF or UKF lineariza-
tion. How does its performance compare?
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8.1 INTRODUCTION

In this chapter we develop the Bayesian approach to the parameter estimation/system
identification problem [1-4] which is based on the decomposition of the joint poste-
rior distributions that incorporates both dynamic state and parameter variables. From
this formulation the following problems evolve: (1) joint state/parameter estimation;
(2) state estimation; and (3) parameter (fixed and/or dynamic) estimation. The state
estimation problem is thoroughly discussed in the previous chapters. However, the
most common problem found in the current literature is the parameter estimation
problem which can be solved “off line” using batch approaches (maximum entropy,
maximum likelihood, minimum variance, least squares, etc.) or “on-line” using the
expectation-maximization (EM) technique (see Chapter 2), the stochastic Monte
Carlo approach and for that matter almost any (deterministic) optimization tech-
nique [5, 6]. These on-line approaches follow the classical (EKF), modern (UKF)
and the sequential Monte Carlo or particle filter (PF). However, it still appears that
there is no universally accepted approach to solving this problem especially for fixed
parameters [7-9]. From the pragmatic perspective, the most useful problem is the
Jjoint state/parameter estimation problem, since it evolves quite naturally from the
fact that a model is developed to solve the basic state estimation problem and it is
found that its inherent parameters are either poorly specified, just bounded or even
unknown, inhibiting the development of the processor. We call this problem the “joint”
state/parameter estimation, since both states and parameters are estimated simultane-
ously on-line and the resulting processor is termed parametrically adaptive [18]. This
terminology evolves because the inherent model parameters are adjusted sequentially
as the measurement data becomes available.

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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In this chapter, we concentrate primarily on the joint Bayesian state/parameter
estimation problem and refer the interested reader to the wealth of literature avail-
able on this subject [7-19]. First, we precisely define the three basic problems
from the Bayesian perspective and then investigate the classical, modern and par-
ticle approaches to its solution. We incorporate the nonlinear re-entry problem of
Jazwinski [20] used throughout as an example of parametrically adaptive design and
then discuss a case study to demonstrate the approach.

8.2 BAYESIAN APPROACH TO JOINT STATE/PARAMETER
ESTIMATION

To be more precise, we start by defining the joint state/parametric estimation problem.
We begin by formulating the Bayesian recursions in terms of the posterior distribution
using Bayes’ rule for decomposition, that is,

Pr (x(2), 0(0)| Y1) = Pr (x(1)0(2), Y;) x Pr (0(1)|Y;) = Pr (6(1)|x(2), Y1) x Pr (x(1)|Y;)
(8.1)

From this relation, we begin to “see” just how the variety of state and parameter
estimation related problems evolve, that is,

« Optimize the joint state/parameter posterior:
Pr (x(2), 0(t)|Y;) [state/parameter estimation]
» Optimize the state posterior:
Pr (x(1)|Y;) [state estimation]
« Optimize the parametric posterior:
Pr (6(0)|Y;) [parameter estimation]

Now if we proceed with the usual factorizations, we obtain the Bayesian decomposi-
tion for the state estimation problem as

Pr (y(0)|x(1)) x Pr (x(1)|Y;-1)
Pr(y(®O)|Y;-1)

Pr(x()|Yi—1) = / Pr (x()|x(t — 1)) x Pr(x(t — D|Yi_)dx(t — 1) (8.2)

Pr(x(|Y;) =
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Equivalently for the parameter estimation problem, we have

Pr (y(0)|6()) x Pr (6(0)[Yi—1)
Pr (y()[Yi-1)

Pr(6(1)|Y;—1) = /Pr @00t — 1)) x Pr(6(t — D|Y;—1)dO(t — 1)  (8.3)

Pr(0(|Y;) =

Now for the joint state/parameter estimation problem of Eq. 8.1, we can substitute
the above equations above to obtain the posterior decomposition of interest, that is,

Pr (x(1). 6(1)|Y,) = Pr (x(0|0(1), Y1) XPErP(ry(();)(G/IQ(S) x Pr(0()|Y;-1)] 8.4)
Al

or

Pr (x(2), 0(0)|Yy) = Pr (x(6)|6(2), Y1) x Pr (y(1)|0(2))
[Pr(6)|6(t — 1)) x Pr(6( — 1)|Y;_)d6(t — 1)
X
Pr (y(0)|Y:-1)

(8.5)

This is the most common decomposition found in the literature [7—19] and leads to
the maximization of the first term with respect to x and the second with respect to 8
[22, 23].

Alternatively, using the state/parameter estimation form which is rarely applied,
we have

Pr(06).x()|Y) = Pr (0(1)|x(1), Y1) ><P[r 1:; ((;))(@ inz)) x Pr (x(1)|Y;—1)] &6

or

Pr(0(t), x(1)|Y;) = Pr(0@®)|x(2), Y1) x Pr(y(1)|x(2))
[ Pr(x(t)]x(t — 1)) x Pr(x(t — D|Y,—1)dx(t — 1)
X
Pr (y(®)|Y;-1)

8.7

Here the first term is maximized with respect to 6 and the second with respect to x
compared to the previous decomposition.

So we see that Bayes’ rule can be applied in a number of ways to develop the sequen-
tial Bayesian processors for the state, parameter and joint state/parameter estimation
problems.
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8.3 CLASSICAL/MODERN JOINT BAYESIAN STATE/PARAMETRIC
PROCESSORS

In this section, we develop the “joint” state—space Bayesian sequential processor
or equivalently the parametrically adaptive Bayesian signal processor (ABSP) for
nonlinear state—space systems. The ABSP is a joint state/parametric processor, since it
estimates both the states as well as the unknown model parameters. It is parametrically
adaptive, since it adjusts or “adapts” the model parameters at each time step. The
simplified structure of the classical (EKF) parameter estimator is shown in Fig. 8.1.
We see the basic structure of the ABSP which consists of two distinct, yet coupled
processors: a parameter estimator and a state estimator. The parameter estimator
provides estimates that are corrected by the corresponding innovations during each
recursion. These estimates are then provided to the state estimator in order to update
the model parameters used in the estimator. After both state and parameter estimates
are calculated, a new measurement is processed and the procedure continues. In
general, this processor can be considered to be a form of identifier, since system
identification is typically concerned with the estimation of a model and its associated
parameters from noisy measurement data. Usually the model structure is pre-defined
(as in our case) and then a parameter estimator is developed to “fit” parameters
according to some error criterion. After completion or during this estimation, the
quality of the estimates must be evaluated to decide if the processor performance
is satisfactory or equivalently the model adequately represents the data. There are
various types (criteria) of identifiers employing many different model (usually linear)
structures [2—4]. Here we are primarily concerned with joint estimation in which the
models and parameters are usually nonlinear. Thus,we will concentrate on developing
parameter estimators capable of on-line operations with nonlinear dynamics.

Parameter <
Estimator
[
|
|
Parameter I
Measurement ———— Innovation Innovation
State
|
l Parameter
State
Estimator

FIGURES8.1 Nonlinear parametrically adaptive (ABSP): simplified processor structure illus-
frating the coupling between parameter and state estimators through the innovation
and measurement sequences.
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8.3.1 Classical Joint Bayesian Processor

From our previous discussion in Chapter 5, it is clear that the extended Bayesian
processor XBP (extended Kalman filter) can satisfy these constraints nicely, so we
begin our analysis of the XBP as a state/parametric estimator closely following the
approach of Ljung [21] for the linear problem discussed in Sec. 8.2. The general non-
linear parameter estimator structure can be derived directly from the XBP algorithm
in Table 5.3.

Recall the Bayesian solution to the classical problem was based on solving for
the posterior distribution (see Eq. 8.2) such that each of the required distributions
were represented in terms of the XBP estimates. In the joint state/parameter esti-
mation case these distributions map simply by defining an augmented state vector
X(2):=[x(®)|0()] to give:

Pr (y(@)[x(0) ~ N(e[x(®)], Ryu(1)
&
Pr (y()[x(1), 0()) ~ N(c[x(®), ()], Ryo(1))
Pr(x()|Y,1) ~ NG|t — 1), P(t]t — 1))
&
Pr(X(0)|Y,—1) ~ N(X(t|t = 1), Pt — 1)

Pr(y(®)IYi—1) ~ NG|t — 1), Ree(t))

=4
Pr(y(0)|Y—1) ~ NGotlt — 1), Reye, (1)) (8.8)
where
Xt — 1) = [&(t|t — 1) | B(t|t — DY
Jo(tlt — 1) == c[x(t]t — 1), 01|t — 1)]
) Puc(tlt —1) | Pup(tlt — 1)
Pt —1) := — — —

Pou(tlt — 1) | Pgo(tlt — 1)
Repe,(t) := CIX(t]t — DIP(t|t — DHCIX(t]t — 1)]' 4 Ru(2)

To develop the actual internal structure of the ABSP, we start with the XBP equations,
augment them with the unknown parameters and then investigate the resulting algo-
rithm. We first define the composite state-vector (as before) consisting of the original
states, x(¢), and the unknown “augmented” parameters represented by 6(¢), that is,

x(1)
X@t)=| ——— 8.9)
o(r)
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where 7 is the time index, X € RM+No)x1 apd x € RNxx1 g g RNox1 Substituting this
augmented state vector into the XBP relations of Table 5.3, the following matrix
partitions evolve as

i Pu(tlt—1) | Pyt —1) i i
Palt—1):=| - - = o Paltlt = 1) = Py(tlt = 1)
Pou(tlt — 1) | Peg(t]t — 1)

(8.10)
where P € RN:HN)x(NetNo) P e RNXN: Py € RNo*No and Py € RN~No,
This also leads to the partitioning of the corresponding gain
K(1)
K@t)=| ——— (8.11)
Ky (1)

for K € RNeHNoxNy [ € RN>Ny and Ky € RNo*Ny,
We must also partition the state and measurement predictions as equations, that s, !

(Xt —1)
Xet-1)=| ———
Ot — 1)

Ca[x(r — 1]t — 1),0(t — 1|t — 1]
+b[E( — 1t — 1,060 — 1|t — D, u(z — 1]

i ot — 1)t — 1)
(8.12)
where the corresponding predicted measurement equation becomes
y(tt — 1) = e[x(¢]t — 1),@(t|t— D] (8.13)

Next we consider the predicted error covariance

P(t|t — 1) = A[R(t]t — 1), 0t|t — DIP(t|t — DA[R(t]t — 1),0(t]t — D] + Rypu(t — 1)
(8.14)

' Note that we have “implicitly” assumed that the parameters can be considered piecewise constant,
B(1)=0(t — 1) or follow a random walk if we add process noise to this representation in the Gauss-
Markov sense. However, if we do have process dynamics with linear or nonlinear models characterizing
the parameters, then they will replace the random walk and the associated Jacobian etc. will change from
this representation.
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which can be written in partitioned form using Eq. 8.10 and the following Jacobian
process matrix>

A&l — 1,001t — D] | Agla(tlt — 1),0(t]t — 1)]

A[%,0] = - — - (8.15)
0 | Iy,
where

" n da[%,0]  b[%,0

A5 0] = [8 Iy [8 |
x x (8.16)

a dalx,0]  ob[x,0]

Aglx,0] :=
olx, 0] 0 + %0

with A € RWxtNo) x NatNo) g e RNexNx A, e RNx>No,

Using these partitions, we can develop the ABSP directly from the XBP processor
in this joint state and “parameter estimation” form. Substituting Eq. 8.15 into the
XBP Prediction Covariance relation of Table 5.3 and using the partition defined in
Eq. 8.10, we obtain (suppressing the %, 6, time index ¢ notation for simplicity)

Pt —1)
Ac | Ag] A | A Ryw, | 0
|- - —|Pe—-1t—-D|- - | +| = - - (8.17)
0 | INg 0 | INg 0 | ngwg

Expanding these equations, we obtain the following set of predicted covariance
relations

Pt — 1)
AP Al + AgPoy Al + AcPrgAl) + ApPooAl + Ry, | AxPrp + ApPog

PyAl, + PyoA,, | Pog + Ruyu,
(8.18)

The innovations covariance follows from the XBP as
Ree(t) = CIZ, 01P(t]t — C'[%,0] + Ruy(1) (8.19)
Now we must use the partitions of P above along with the measurement Jacobian

C[%,0] = [Cel&(1]t — 1), 02|t — DN|ColR(t]t — 1), 0(t|r — D] (8.20)

2 Here is where the underlying random walk model enters the structure. The lower block rows of A, could
be replaced by [Ag.[X, 0]|Ag[X, 0]] which enables a linear or nonlinear dynamic model to be embedded
directly.
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where
PSR & F )
C,[4.0] :=
e (8.21)
Coli. 9] dc[x, 0]
x,0] :=
o 3

with C € RN (Netho) € e RN Ve, Cy e RN Mo,
The corresponding innovations covariance follows from Egs. 8.19 and 8.20 as

Pxx | Px@ C)/c
Ree() =1[CilCol | = — = | | === | +Ru(® (8.22)
Poy | Pey Cy
or expanding

Ree(t) = CoPyCl + CoPy Cl. + CiPgCl + CoPgpCly + Ry (8.23)

Ree € RY»*Ny The gain of the XBP in Table 5.3 is calculated from these partitioned
expressions as

/!

Kx(t) Pxx | Px@ Cx
Ky=|-——|=|- - - ||-——| RJO® (8.24)
Ko(1) Poy | Peg Co
or
K. (1) (PxxCl + PyCpR;, ()
Kn=|---|=|_ - == (8.25)
Ko (1) (PoxCl. + PogCR; (1)

where K € MxtNoxNy - g e RNV - Ky e RNeXNy - With the gain determined, the
corrected state/parameter estimates follow easily, since the innovations remain
unchanged, that is,

e(t) = y(t) = $(tt — 1) = y(t) — c[&(t]t — 1), 6|t — 1)] (8.26)
and therefore partitioning the corrected state equations, we have

x(t|t) x|t —1) K (De(r)
Xth=|-——|=| ——— |+| ——— (8.27)
) B(t|t — 1) Ky(t)e(t)
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Finally, the corrected covariance expression is easily derived from the following
partitions

» | i’xe Kx(t) i)xx | PxG
Pun=| - — - |-| ——- |1cdCl | — - - (8.28)
| Poy Ky(2) Pox | Pog

Performing the indicated multiplications leads to the final expression

5 Pxx - Kxcxpxx - Kxcﬁi)ex | Px@ - KxCxi)xﬂ - Kxcﬁpé)ﬁ
P(tlr) = -—- -—- -
Pgy — KgCxPxy — KgCoPox | Pgo — KgCxPrg — KgCpPyy

(8.29)

We summarize the parametrically adaptive model-based processor in predictor-
corrector form in Table 8.1. We note that this algorithm is not implemented in this
fashion, it is implemented in the numerically stable, “upper triangular-diagonal” or
UD-factorized form as in SSPACK_PC [18]. Here we are just interested in the overall
internal structure of the algorithm and the decomposition that evolves. This completes
the development of the generic ABSP.

It is important to realize that besides its numerical implementation the ABSP is sim-
ply the XBP with an augmented state vector thereby implicitly creating the partitions
developed above. The implementation of these decomposed equations directly is not
necessary—just augment the state with the unknown parameters and the ABSP evolves
naturally from the standard XBP algorithm of Table 5.3. The ABSP of Table 8.1 indi-
cates where to locate the partitions. That is, suppose we would like to extract the
submatrix, Pgg, but the XBP only provides the overall (N, + Np) error covariance
matrix, P. However, locating the lower Ny x Ny submatrix of P enables us to extract
Py directly.

Next let us reconsider the nonlinear system example given in Chapter 5 and
investigate the performance of the parametrically adaptive Bayesian processor.

Example 8.1

Recall the discrete nonlinear trajectory estimation problem [20] of Chapter 5
given by

x(t) = (1 — 0.05AT)x(t — 1) + 0.04x>(t — 1) + w(z — 1)
with corresponding measurement model
Y0y = 22(0) +x°(0) + (1)

where v(r) ~ N (0,0.09), x(0) =2.0, P(0)=0.01, AT =0.01 sec and R,,,, =0.
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Here we generalize the problem to the case where the coefficients of the process
are unknown leading to the ABSP solution. Therefore, the process equations for this
problem become

x(1) = (1 — 0 ATx(t — 1)+ 625>t — D) 4+ w(r — 1)

with the identical measurement and covariances as before. The true parameters
are: Oy =[0.05 0.04]". The ABSP can be applied to this problem by defining the
parameter vector as

O(t) = Ot — 1) (constant)

and augmenting it to form the new state vector X =[x’ 0; 6,]'. Therefore the process
model becomes

(1 — 61(t — DAT)x(t — 1) + 62(t — DATA(t — 1)
X(t) = 01t — 1) +w(t—1)
Ot — 1)

¥(1) = x2(1) + 3(t) + v(t)

To implement the ABSP the required Jacobians are

AlX( — 1]
[1 —601(t — DAT +2AT6x(t — Dx(t — 1)] AT)x(t — 1) ATx*(t — 1)
= 0 1 0
0 0 1

CIX(t— D]l =[2xt— D +3x%¢—1) 0 0]

Using SSPACK_PC [18] the ABSP is applied to solve this problem for 1500 samples
with AT =0.01 sec. Initially, we used the starting parameters:

P(0]0) = diag[100 100 100] and X(0|0) = [2 0.055 0.044]

The results of the ABSP run are shown in Fig. 8.2. We see the estimated state and
parameter estimates in b and c. After a short transient (25 samples), the state estimate
begins tracking the true state as evidenced by the innovations sequence in Fig. 8.2c.
The parameter estimates slowly converge to their true values as evidenced by the
plots. The final estimates are

A

6; = 0.0470
6, = 0.0395

Part of the problem for the slow convergence results stems from the lack of sen-
sitivity of the measurement, or equivalently, innovations to parameter variations
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FIGURE 8.2 XBP (EKF) simulation. (o) Estimated state and parameter no. 1. (b) Estimated
parameter no. 2 and innovation. (c) Predicted measurement and zero-mean/whiteness
test (0.008 < 0.061 and 3.6% out).

in this problem. This is implied from the zero-mean/whiteness tests shown in c.
The innovations are statistically white (3.6% out), and zero-mean (0.008 < 0.061).
The filtered measurement is also shown in ¢ as well. This completes the ABSP
example. AAA

As pointed out by Ljung [1, 2, 21], it is important to realize that the XBP is sub-
optimal as a parameter estimator as compared to the recursive prediction error (RPE)
method based on the Gauss-Newton (stochastic) descent algorithm. Comparing the
processors in this context, we see that if a gradient term [VyK (®)] e(¢) is incorporated
into the XBP (add this term to Ag), its convergence will be improved approaching the
performance of the RPE algorithm (see Ljung [21] for details). We also note in passing
that the nonlinear BSP in the form developed in Chapter 5 as well as the parametri-
cally adaptive ABSP are all heavily employed as neural networks. For more details
of this important application see Haykin [17]. Next we consider the development of
the “modern” approach to Bayesian processor design using the unscented Bayesian
processor of Chapter 6.
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8.3.2 Modern Joint Bayesian Processor

The modern unscented processor offers a similar representation as the extended pro-
cessor detailed in the previous subsection. Here we briefly outline its structure for
solution to the joint problem and apply it to the trajectory estimation problem for
comparison. We again start with the augmented state vector defined initially by
sigma-points, that is,

x(1)
X(t):=|——— (8.30)
0(t)

X € RNHNox1 and x e RN+*1, g ¢ RV**1, Substituting this augmented state vector
into the SPBP relations of Table 6.1 yields the desired processor. We again draw the
equivalences (as before):

Pr (y()[x(1), (1)) ~ N(c[x(t),0(t)], Ry(t))
Pr(X(t)|Y;—1) ~ N(X(t|t — 1),75(t|t - 1)) (8.31)
Pr ((0)|Y;—1) ~ N@a(t|t — 1), Reye, (1))

where

X(tlt — 1) := [&¢|t — 1) | O¢t)t — DY
Pot]t — 1) == e[x(t|r — 1), 0]t — 1)]

) Po(tlt—1) | Py(tlt —1)
Pt —1) := - - -
Poc(t]lt — 1) | Pap(t|t — 1)

Repe, () 1= CIX(t]t — DIP(t|t — DCIX(t]t — D] + Ryy(2)

With this in mind it is possible to derive the internal structure of the SPBP in a manner
similar to that of the XBP. But we will not pursue that derivation here. We just note
that the sigma-points are also augmented to give

Al — 1) Pultlt = 1) | Pugltlt — DT\ 2
X = - + | Ny + k) y — - — (8.32)
Bt — 1) Paxltl — 1) | Pttt — 1)

with the corresponding process noise covariance partitioned as

Ry, —1) | 0
Ruw(t —1) = - - - (8.33)
0 | mel)e(t - 1)
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It also follows that the prediction-step becomes

ax(t|r — 1),0(t|t — 1)] + b[B(r]t — 1), u(t — 1)]
Xi(tlt—1) = - — (8.34)
alft|t — 1]

and in the multichannel (vector) measurement case we have that

c[x(tlr — 1),0(t]t — 1)]
Yitlt — 1) = -—— (8.35)
c[(t)t — 1)]

Using the augmented state vector, we apply the “joint” approach to the trajectory
estimation problem [20] and compare its performance to that of the XBP.

Example 8.2

Using the discrete nonlinear trajectory estimation problem of the previous example
with unknown coefficients as before, we define the augmented sigma-point vector
X(t) defined above and apply the SPBP algorithm of Table 6.1.

The process equations for this problem are:

x(t) = (1 — 61 AT)x(t — 1) + 062t — 1)+ w(t — 1)

with the identical measurement and covariances as before. The true parameters are:
Orue =[0.05 0.04]. The SPBP can be applied to this problem by defining the param-
eter vector as a constant and augmenting it to form the new sigma-point vector
X =[x 6; 0,].Therefore the process model becomes

x(1) (1 =61t —DAT)x(t — 1)+ 6(t — I)Asz(t -1
| = 01t —1) +w(@—1)
o(t) 02t — 1)

¥(6) = x2(0) + (1) + v(0)

To implement the SPBP the sigma-points are selected as before for a Gaussian dis-
tribution using the scaled transformation with « = 1, k =0 and 8 =2 using the same
initial conditions as the XBP.

Using MATLAB [18], the ABSP is applied to solve this problem for 1500 sam-
ples with AT =0.01sec. The results of the SPBP run are shown in Fig. 8.3. We
see the estimated state and parameter estimates in a and b. After a short transient,
the state estimate begins tracking the true state as evidenced by the predicted mea-
surement and innovations sequence in Fig. 8.3c. The parameter estimates converge
to their true values as evidenced by the plots. The final estimates are: 6; =0.05;
6> =0.04. The processor appears to converge much faster than the XBP demonstrating
itsimproved capability. This is implied from the zero-mean/whiteness tests shownin c.
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FIGURE 8.3 SPBP (UKF) simulation. (a) Estimated state and parameter no. 1.
(b) Estimated parameter no. 2 and innovation. (c) Predicted measurement and
zero-mean/whiteness test (0.0113 <0.0612 and 1.86% out).

The innovations are statistically white (1.86% out) and zero-mean (0.0113 < 0.0612).
The filtered measurement is also shown in ¢ as well. This completes the ABSP
example. AANA

We also note in closing that a “dual” rather than “joint” approach has evolved
in the literature. Originally developed as a bootstrap approach, it is constructed by
two individual (decoupled) processors: one for the state estimator and one for the
parameter estimator which pass updated estimates back and forth to one another as
they become available. This is a suboptimal methodology, but appears to perform
quite well (see [22, 23] for more details). This completes our discussion of the joint
modern approach, next we investigate the SMC approach to solving the joint problem.

8.4 PARTICLE-BASED JOINT BAYESIAN STATE/PARAMETRIC
PROCESSORS

In this section we briefly develop the sequential Monte Carlo approach to solving
the joint state/parametric processing problem. It is not surprising that the resulting
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particle filtering technique does not perform very well especially for a non-dynamic
or static parameter. In fact, after the initial time, if left alone, the PF will just assign
the initial weight as unity and proceed to use the initial parameter estimate for the
entire trajectory. As discussed previously for the state estimation problem, this occurs
because the parameter has no mechanism to explore the associated parameter space
for the optimal solution.®> The most obvious solution to this particular problem is
to artificially assign a random walk (pseudo dynamic) model with small variance to
approximate small variations in the parameter forcing it to vary, that is,

0(r) = 0(t — 1) + wp(t — 1) for wg ~ N(0, Rypu,) (8.36)

The process noise variance bounds the excursions of the random walk or equivalently
the parameter space. Using artificial dynamics is the identical approach used for
both the classical (XBP) and modern (SPBP) techniques used in the previous section.
The only problem results when the parameter is truly static such as in financial models
and its variations can have very large repercussions in the money and economic
markets. Thus, a large variety of “off-line” MC methods have evolved [16], but we
will not discuss them here since we are primarily interested in physical systems which
typically have parametric uncertainties that are well modeled by the random walk or
other variations. Of course, if the parametric relations are truly dynamic, then the joint
approach incorporates parameter estimation and yields an optimal filtering solution
to this joint problem.

Here we are concerned with the joint estimation problem consisting of setting
a prior for 0 and augmenting the state vector to solve the joint estimation problem
as defined in Sec. 8.2 thereby converting the parameter estimation problem to one
of optimal filtering. Thus, confining our discussion to state—space models and the
Bayesian equivalence we develop the Bayesian approach using the relations:

x ~ A (x(0)]x(z — 1),6( — 1))
6 ~ Ag (0(0)|0(t — 1), x(t — 1)) (8.37)
y ~ COMIx@),0)

Here we separate the state transition function into the individual vectors for illustrative
purposes, but in reality (as we shall observe), they can be jointly coupled. The key
idea is to develop the PF technique to estimate the joint posterior Pr (x(z), 6(¢)|Y;)
relying on the parametric posterior Pr (6(¢)|Y;) in the Bayesian decomposition. We will
follow the approach outlined in [16, 33] starting with the full posterior distributions
and proceeding to the filtering distributions.

Suppose it is possible to sample N,-particles, {X;(i),®,()} for i=1,...,N,
from the joint posterior distribution where we define, X;:={x(0),...,x(¢)} and
®;:={6(0),...,0(t)}. Then the corresponding empirical approximation of the joint
posterior is given by

3 The idea of applying a particle filter to a problem that does not have much or any process noise is not
practical, it is better to use other methods for this type of problem [6].
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Ny
; 1 . .
PrX,, O,1Y) ~ == ) 80X, = Xi(D), 0 = ©:(D) (8.38)
P i1

and it follows directly that the filtering posterior (see Chapter 2) is given by

N,
~ 1 r
Pr(x(r), 0(0)|Yy) ~ N Z 3(x(1) — xi(2), 0(1) — 6;(2)) (8.39)
P =1

Unfortunately it is not possible to sample directly from the full joint posterior
Pr (X;, ®;]Y;) at any time t. However one approach to mitigate this problem is by
using the importance sampling approach of Chapter 2.

Suppose we define a (full) importance distribution, g(X;, ®;|Y;) such that
Pr (X;, ©;]Y;) > 0 implies g(-) >0, then we define the corresponding importance
weight (as before) by

Pr (X;, ©:|Y;)

WX, 0,) o ——=b 2170 (8.40)
P (X, 040Y))

From Bayes’ rule we have that the posterior can be expressed as

Pr(Y,|X,. ®,) x Pr(X,.©
Pr (X, ©,]Y,) = r (X P;)(;) r (X, ©:) (8.41)
t

Thus, if N,-particles, {X,(i),®;(i)}; i=1,...,N,, can be generated from the
importance distribution

(X (D), ©,()} — q(X;, O,]Y;) (8.42)

then the empirical distribution can be estimated and the resulting normalized weights
specified by

W(X,(i), O4(i))
YN WX (K), ©,(K))

W) = fori=1,...,N, (8.43)

to give the desired empirical distribution of Eq. 8.38 leading to the corresponding
filtering distribution of Eq. 8.39.

If we have a state transition model available, then for a fixed parameter estimate
the state estimation problem is easily solved as before in Chapter 7. Therefore, we
will confine our discussion to the parameter posterior distribution estimation problem,
that is, marginalizing the joint distribution with respect to the states (that have already
been estimated) gives

Pr(©,]Y,) = / Pr (X,, ©,]Y,)dX, (8.44)
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and it follows that

Pr (©|Y;)
W(® _ 8.45
IR (8.4

Assuming that a set of particles can be generated from the importance distribution as
®; ~ q(O;|Y;), then we have the set of normalized weights

Wi(B(3)) = __ WO fori=1,...,N, (8.46)

N W(O,k)

which is the joint “batch” importance sampling solution when coupled with the
dynamic state vectors.

The sequential form of this joint formulation follows directly (as before in Chap-
ter 2). We start with the factored form of the importance distribution and focus on the
full posterior Pr (®,]Y;), that is,

t
9@ = [ | 9(6(0)1O-1, Y2) (8.47)
k=0

with Pr (6(0)|©_1, Y;) — Pr(6(0)|Y;).
Assuming that this factorization can be expressed recursively in terms of the
previous step, g(®;_1]Y;—1) and extracting the ¢-th term gives

t—1

q(0,]Y)) = qO00)|0,1, Y1) x [ [ 40|01, Yi) (8.48)
k=0
or simply
q(0:]Y1) = q(0(1)|O;-1, Y1) x q(O;1|Y;-1) (8.49)

With this in mind the weight recursion becomes
W(©,) = W) x W(O,-1) (8.50)
Applying Bayes’ rule to the posterior, we define

W(r) = Pr (y(1)|®:, Y;—1) X Pr(6(1)|©( — 1))
Pr(y()|Y;-1) x q(0(D)|O;-1, 1)

o rOMI6:, ¥i—1) x Pr6()|6¢ — 1))
q(0(1)|0;-1, 1)

8.51)

As before in the state estimation problem we must choose an importance
distribution before we can construct the algorithm. We can choose from
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the minimum variance (optimal) using local linearization techniques given by
q(0()|0;_1,Y;) — Pr(6()|®;_1, Y;) which leads to the transition posterior

Pr(y()|®;_1,Y:—1) x Pr(0(1)|6(t — 1
Pr (6(1)|®,_1.Y,) = (®[O;—1, Yi—1) B®)16(r — 1)) (8.52)
Pr(y()|©;—1, Y1)

and therefore it follows using Eq. 8.51 that

Wiy (1) o Pr (y(1)|©;—1, Yi—1) = /Pr (1O, Y1) x Pr(0(®)|6(t — 1)) do(z)
(8.53)

with (local linearization implementation of Chapter 7)
Pr (y(010y, Yi—1) ~ N(Po(t|t — 1), Rese,)

which can be obtained from any of the classical or modern techniques (Chapters 5
and 6).

The usual bootstrap approach can also be selected as the importance distribu-
tion leading to a simpler alternative with g(6(¢)|®;_1, Y;) — Pr (6(¢)|6(t — 1)) and the
weight of Eq. 8.51 becomes

Was(1) = Pr (y(1)|®;, Y;—1) (8.54)

From the pragmatic perspective, we must consider some practical approaches to
implementing the processor for the joint problem. The first approach, when applicable,
(not financial problems) is to incorporate the random walk model of Eq. 8.36 when
reasonable [16]. We will use this approach for our case study to follow. Another
variant is to use the “roughening” method that moves the particles (after resampling)
by adding a Gaussian sequence of specified variance.*

The kernel method (regularized PF of Chapter 7) can also be applied to the joint
problem. In the bootstrap implementation we can estimate the posterior distribution
using the kernel density approach, that is, after resampling we have the empirical
distribution given by

N,
. 1 & R
PrOMIY,) = - 3 8(60(0) — 0i(1)) (8.55)
P =]

The kernel technique consists of substituting for this degenerate distribution, the
kernel density estimate

N,
. 1 < R
PrO®IY) = = 3 KO0 — 0i(1) (8.56)
Pz

4 Recall that the sequence is distributed € ~ A/ (0, kM N, 1 NX) for « a constant and Mj; the maximum
distance between the i and j" particles discussed previously of Sec. 7.5.
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for KC(-) the kernel (e.g., Gaussian, triangle, etc.). Now a new set of parametric particles
can be obtained by generating samples from 6;(¢) ~ K(6(¢)). In the same manner as
the standard bootstrap, this approach introduces diversity into the set of particles.

Yet another alternative is to introduce the MCMC-step (see chapter 7) to “move”
the particles to the regions of high probability using a Markov chain with appropriate
invariant distribution. Again the new particles are sampled according to a MCMC
with joint distribution (when possible) Pr(X;(7), ®,(i)|Y;) such that

X (D), O:()) ~ Kycme Xs, ©41Yr)

This completes the discussion of the joint state/parameter estimation problem using
the PF approach, we emphasize that the algorithm of Chapter 7 may be used by merely
augmenting the state vector with the parameter vector especially when a dynamic
equation characterizing the parameter dynamics is available. Next we consider an
example to illustrate this approach.

Example 8.3

Again we consider the trajectory estimation problem [20] using the particle filter
technique. At first we applied the usual bootstrap technique and found what was
expected, a collapse of the parameter particles giving an unsatisfactory result. Next
we tried the “roughening” approach and the results were much more reasonable. We
used a roughening factor or k = 5 x 107> along with N, = 350. The results are shown
below in Fig. 8.4. We see both the estimated states and measurement along with the
associated zero-mean/whiteness test. The result, although not as good as the modern
approach, is reasonable with the final estimates converging to the static parameter
values of true parameters: 6; =0.05 (0.034) and 6, =0.04 (0.039). The state and
measurement estimates are quite good as evidenced by the zero-mean (0.002 < 0.061)
and whiteness (1.76% out). We show the estimated posterior distributions for the
states and parameters in Fig. 8.5 again demonstrating a reasonable solution. Note
how the distributions are initially multi-modal and become unimodal as the parameter
estimates converge to their true values as depicted in Fig. 8.5. AAA

8.5 CASE STUDY: RANDOM TARGET TRACKING USING A SYNTHETIC
APERTURE TOWED ARRAY

Synthetic aperture processing is well-known in airborne radar, but not as familiar
in sonar [35-40]. The underlying idea in creating a synthetic aperture is to increase
the array length by motion, thereby, increasing spatial resolution (bearing) and gain
in SNR. It has been shown that for stationary targets the motion induced bearing
estimates have smaller variance than that of a stationary array [38, 41]. Here we
investigate the case of both array and target motion. We define the acoustic array
space-time processing problem as:

GIVEN a set of noisy pressure-field measurements from a horizontally towed array
of L-sensors in motion, FIND the “best” (minimum error variance) estimate of the
target bearings.
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FIGURE 8.4 PF simulation. (a) Estimated state and parameter no. 1. (b) Estimated
parameter no. 2 and innovation. (c) Predicted measurement and zero-mean/whiteness
test (0.002 < 0.061 and 1.76% out).

We use the following nonlinear pressure-field measurement model for M
monochromatic plane wave targets characterized by a corresponding set of temporal
frequencies, bearings, and amplitudes, [{wy,}, {6}, {am}]. That is,

M
PO 1) =Y apel PS4y (8.57)

m=1

where B(x, ty) := kox(t,) + vity, k, = %\—” is the wavenumber, x(f) is the current spa-
tial position along the x-axis in meters, v is the tow speed in m/sec, and n(f)
is the additive random noise. The inclusion of motion in the generalized wave
number, B, is critical to the improvement of the processing, since the synthetic
aperture effect is actually created through the motion itself and not simply the
displacement.
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If we further assume that the single sensor equation above is expanded to include
an array of L-sensors, x — xp, £ =1, ..., L; then we obtain

M
POt 1) =Y apel i IPEISOn g ()
m=1
M
— Z A coS(wmty — B(xe, tr) sin6,,) + ne(ty) (8.58)

m=1

since our hydrophone sensors measure the real part of the complex pressure-field, the
final nonlinear measurement model of the system can be written in compact vector
form as

p(tk) = clt; O] + n(t) (8.59)

wherep,c,n € CL*1 arethe respective pressure-field, measurement and noise vectors
and ® € RM*! represents the target bearings. The corresponding vector measurement
model

M
co(ty; ®) = Z am cos(wpty — Bxe, ) sinb,,) forl =1,...,L

m=1

Since we model the bearings as a random walk emulating random target motion, then
the Markovian state—space model evolves from first differences as

O(tr) = Ot—1) + woltr—1) (8.60)

Thus, the state—space model is linear with no explicit dynamics, therefore, the process
matrix A =1 (identity) and the relations are greatly simplified.

Now let us see how a particle filter using the bootstrap approach can be con-
structed according to the generic algorithm of Table 7.2. For this problem, we assume
the additive noise sources are Gaussian, so we can compare results to the perfor-
mance of the approximate processor. We define the discrete notation, ;41 — ¢+ 1
for the sampled-data representation.

Let us cast this problem into the sequential Bayesian framework, that is, we would
like to estimate the instantaneous posterior filtering distribution, P;r(x(t)|Y,), using
the PF representation to be able to perform inferences and extract the target bearing
estimates. Therefore, we have that the transition probability is given by (®(¢) — x())

Pr(6(n)|6(t — 1)) —> A@®)16(t — 1)) ~ N(O(0): a[O(t — 1)], Ry )
or in terms of our state transition (bearings) model, we have

O(1) = a[O@F—1)]+we(t—1) = O —1)+wg(t—1) for Pr(wy(r)) ~ N (0, Ryyw,)
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The corresponding likelihood is specified in terms of the measurement model

(y(@®) — p(0)) as
Pr(y(t)[x(1)) —> C(y(0)|x(1)) ~ N(y(1) : c[O(1)], Ry (1))

where we have used the notation: z~N(z:m;, R;;) to specify the Gaussian
distribution in random vector z. In terms of our problem, we have that

M
InCOM)Ix(1)) = « — %(y(r) — 3"y cos (wnt — B(1) sin 6, Ry,

m=1

M
X (Y(t) = Y ay cos (nt — B(t) sin O,)

m=1

with « a constant, BeRL*! and B(t):=[B(x1,1)|...|B(xz,1)], the dynamic
wavenumber expanded over the array. Thus, the SIR algorithm becomes:

« Draw samples (particles) from the state transition distribution:
0;(t) ~ N(O(): a[0(f — D], Ry, u,)
w@j(t) ~ Pr (U)(t)) NN(O’ Rw()iw(;i)9 G‘)l(t) = G‘)l(t - 1) + w@,‘(t - 1)

« Estimate the likelihood, C(y(2)|©(1)) ~ N (y(2): ¢[®(1)], Ryy()) with cp(t; ©;) =
Z%:l Am €OS (Wmtx — P(xe, ) sin O, ;(¢)) for £=1,...,L and ©,,; is the jth-
particle at the m"-bearing angle;

« Update and normalize the weight: W;(¢) = W;(t)/ 25\21 Wi(t)
« Resample: Neﬁr(t) < Nihresh
« Estimate the instantaneous posterior: 15r(®(t)| Y~ va;’ | Wi(D(B(t) — B;(1)
« Perform the inference by estimating the corresponding statistics:
Ormap(1) =arg max Pr(O(1)|,); Ommse (1) = E(O0)|,} = L) Oi0)Pr(©(1)|Yo);
Omedian (1) = median(Pr(©(1)[Y})).

Consider the following simulation of the synthetic aperture using a 4-element,
linear towed array with “moving” targets using the following parameters:

Target: Unity amplitudes with temporal frequency is 50 Hz, Wavelength =30m,
Tow Speed =5 m/sec; Array: four (4) element linear towed array with 15 m spac-
ing; Particle filter: Ng=4 states (bearings), Ny =4 sensors, N =250 samples,
N, =250 weights; SNR: is —10dB; Noise: white Gaussian with: Ry, = diag [2.5],
R,y =diag [0.1414]; Sampling interval: is 0.005 sec; Initial Conditions: (bearings
and uncertainty) ©, = [45° —10° 5° —75°], P, =diag (10~10).

The array simulation was executed and the targets moved according to a random
walk specified by the process noise and sensor array measurements with —10 dB SNR.
The results are shown in Fig. 8.6 where we see the noisy synthesized bearings (left)
and four (4) noisy sensor measurements at the moving array. The bearing (state)
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MAP est. target no. 1 cM

Bearing (deg)

Bearing (deg)

Bearing (deg)

Bearing (deg)

Time(sec)

FIGURE 8.7 Particle filter bearing estimates for four targets in random motion: PF bearing
(state) estimates and simulated target fracks (UKF, conditional mean, MAP).

estimates are shown in Fig. 8.7 where we observe the targets making a variety of
course alterations. The PF (MAP) is able to track the target motions quite well while
we observe the unscented Kalman filter (UKF') [18] unable to respond quickly enough
and finally losing track completely for target no. 4. It should be noted that targets no. 2
and no. 4 “crossover” between 0.8 and 1.0 sec. The PF loses these tracks during this
time period getting them confused but recovers by the 1 sec time step. Both the MAP
and MMSE (CM) estimates using the estimated posterior provide excellent tracking.
Note that these bearing inputs would provide the raw data for an XY-tracker [18].
The PF estimated or filtered measurements are shown in Fig. 8.8. As expected the
PF tracks the measurement data quite well while the UKF is again in small error.
Using the usual optimality tests for performance demonstrates that the PF processor
works well, since each measurement channel is zero-mean and white with the WSSR
lying below the threshold indicating a white innovations sequence demonstrating
the tracking ability of the PF processor at least in a classical sense [18] as shown in
Fig. 8.9. The instantaneous posterior distributions for the bearing estimates are shown
in Fig. 8.10. Here we see the Gaussian nature of the bearing estimates generated by
the random walk. Clearly, the PF performs quite well for this problem. Note also
the capability of using the synthetic aperture, since we have only a 4-element sensor
array, yet we are able to track 4 targets. Linear array theory implies with a static array
that we should only be able to track L — 1 =3 targets!
In this case study we have applied the bootstrap PF to an ocean acoustic synthetic
aperture towed array target tracking problem to test the performance of a the particle
filtering technique. The results are quite reasonable on this simulated data set.
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FIGURE 8.8 Particle filter predicted measurement estimates for four channel hydro-

phone sensor array.
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FIGURE 8.9 Particle filter classical performance metrics: zero-mean/whiteness fests for
45°, —10°, 5° and 75° targets as well the corresponding WSSR test.
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8.6 SUMMARY

In this chapter we have discussed the development of joint Bayesian state/parametric
processors. Starting with a brief introduction, we defined the variety of problems
based on the joint posterior distribution Pr (x(¢), 6(¢)|Y;) and its decomposition. We
decided to focus on the joint problem of estimating both states and parameters simul-
taneously (on-line)—the most common problem of highest interest. We then briefly
showed that all that is necessary for this problem is to define an “augmented” state
consisting of the original state variables along with the unknown parameters typi-
cally modeled by a random walk when a dynamic parametric model is not available.
This casts the joint problem into an optimal filtering framework. We then showed
how this augmentation leads to a decomposition of the classical (EKF’) processor and
developed the “decomposed” form for illustrative purposes. The algorithm is imple-
mented by executing the usual processor with the new augmented state vector. We
also extended this approach to both the modern “unscented” and “particle-based” pro-
cessors, again only requiring the state augmentation procedure to implement. It was
shown that all of the processors required a random walk parametric model to func-
tion, while the particle filters could be implemented using the “roughening” (particle
random walks) or any of the “move” techniques developed in Chapter 7 to track the
parameters effectively. Besides applying these processors to the usual nonlinear tra-
jectory estimation problem, we developed a case study for a synthetic aperture towed
array and compared the modern to the particle-based processors.

MATLAB NOTES

SSPACK_PC is a 3™ party toolbox in MATLAB that can be used to design
model-based signal processors. This package incorporates the major nonlinear
MBP algorithms discussed in this chapter—all implemented in the UD-factorized
form [18] for stable and efficient calculations. It performs the discrete approxi-
mate Gauss-Markov simulations using (SSNSIM) and both extended (XMBP) and
iterated-extended (IX-MBP) processors using (SSNEST). The linearized model-
based processor (LZ-MBP) is also implemented (SSLZEST). Ensemble operations
are seamlessly embodied within the GUI-driven framework where it is quite effi-
cient to perform multiple design runs and compare results. Of course, the heart
of the package is the command or GUI-driven post-processor (SSPOST) which
is used to analyze and display the results of the simulations and processing (see
http://www.techni-soft.net for more details).

REBEL is arecursive Bayesian estimation package in MATLAB available on the
web, that performs similar operations including the new statistical-based unscented
algorithms including the UKF including the unscented transformations. It also has
included the new particle filter designs (see http://choosh.ece.ogi.edu/rebel for
more details).
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PROBLEMS

8.1 Suppose we are given the following innovations model (in steady state)
@) = ax(t — 1)+ ke(t — 1)
Y1) = ck(t) + e(1)
where e(t) is the zero-mean, white innovations sequence with covariance, R,.

(a) Derive the Wiener solution using the spectral factorization method of
Sec. 4.5.

(b) Develop the linear steady-state BP for this model.
(c) Develop the parametrically adaptive processor to estimate k and R,,.

8.2 As stated in the chapter, the XBP convergence can be improved by incorporat-
ing a gain gradient term in the system Jacobian matrices, that is,

Aplx, 0] :=Aglx, 0] + [VoK(®)le(t) for K:=[K, | Ko]
(a) By partitioning the original Ny x Ny Jacobian matrix, Ag[x, 6], derive the
general “elemental” recursion, that is, show that

Ny
Ajli 0] = Vo,ailx. 01+ Y Vo ke(i) ej(0)i=1,....Nesl =1,.... N
j=1

(b) Suppose we would like to implement this modification, does there exist a
numerical solution that could be used? If so, describe it.
8.3 Using the following scalar Gauss-Markov model
x(t) = Ax(t — 1)+ w( — 1)
y(1) = CX(0) + v(®)

with the usual zero-mean, R,,,, and R,, covariances.

(a) Let{A,C,K,R,.} bescalars, develop the ABSP solution to estimate A from
noisy data.

(b) Can these algorithms be combined to “tune” the resulting hybrid
processor?

8.4 Suppose we are given the following structural model

mix(t) + cx + kx(t) = p(t) + w(r)
Y1) = Bx(1) + v(t)

with the usual zero-mean, R,,,, and R,, covariances.
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(a) Convert this model to discrete-time using first differences. Using cen-

tral difference create the discrete Gauss-Markov model. (Hint: X(t) ~
x()—2x(t—1)+x(t—2)
D)

(b) Suppose we would like to estimate the spring constant k from noisy
displacement measurements, develop the ABSP to solve this problem.

(c) Transform the discrete Gauss-Markov model to the innovations represen-
tation. (Hint: Use the KSP equations of [18]).

(d) Solve the parameter estimation problem using the innovations model, that
is, develop the estimator of the spring constant.

Given the ARMAX model
V() = —ay(t — 1)+ bu(t — 1) + e(t)

with innovations covariance, R,.:
(a) Write the expressions for the ABSP in terms of the ARMAX model.
(b) Write the expressions for the ABSP in terms of the state—space model.

Consider tracking a body falling freely through the atmosphere [18]. We
assume it is falling down in a straight line towards a radar. The state vector
is defined by: x:=[z z ] where ~./\/(,u/3,R,3,3) =N(2000,2.5 x 10°) is
the ballistic coefficient. The dynamics are defined by the state equations

x1(t) = x2(0)

2
. 0x5()
() = 52—
2x3(1)
X3t =0
_x®
p = poe *

where d is the drag deceleration, g is the acceleration of gravity (32.2), p is
the atmospheric density (with p, (3.4 x 1073) density at sea level) and kya
decay constant (2.2 x 10*). The corresponding measurement is given by:

y() = x1(6) + v(1)

for v~ N (0, Ryy) =N(0, 100). Initial values are x(0) = ~ N (1065, 500),
2(0) ~ N (—6000,2 x 10%) and P(0) = diag[po(1, 1), po(2, 2), po(3,3)] = [500,
2 x 104, 2.5 x 10%).

(a) Is this an ABSP If so, write out the explicit algorithm in terms of the
parametrically adaptive algorithm of this chapter.

(b) Develop the XBP for this problem and perform the discrete simulation
using MATLAB.
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(c) Develop the LZ-BP for this problem and perform the discrete simulation
using MATLAB.

(d) Develop the PF for this problem and perform the discrete simulation using
MATLAB.

Parameter estimation can be performed directly when we are given a nonlinear
measurement system such that

y=h®) +v

where y,h € R¥*! and 6 ~ N (mg, Rgg) and v ~ N (0, R,,).
(a) From the a posteriori density, Pr (6]y) derive the MAP estimator for 6.

(b) Expand y =h(6) in a Taylor series about 6, and incorporate the first order
approximation into the MAP estimator (approximate).

(c¢) Expand y =h(0) in a Taylor series about 6, and incorporate the second
order approximation into the MAP estimator (approximate).

(c) Develop and iterated version of both estimators in (b) and (c). How do
they compare?

(d) Use the parametrically adaptive formulation of this problem assuming the
measurement model is time-varying. Construct the ABSP assuming that
6 is modeled by a random walk. How does this processor compare to the
iterated versions?

Suppose we are asked to solve a detection problem, that is we must “decide”
whether a signal is present or not according to the following binary hypothesis
test

Ho: y(t) = v(t) for v~ N(0,Ry,)
Hi:y(t) = s(t) + v(2)

The signal is modeled by a Gauss-Markov model
s()=a[s(t—D]+w(i—1) forw ~ N(O,Ryw)
(a) Calculate the likelihood-ratio defined by

__ Pr(Y(W)|[Hy)
il Pr (Y(N)|H,)

where the measurement data setis defined by Y (IV); = {y(0), y(1), ..., y(N)}.
Calculate the corresponding threshold and construct the detector (binary
hypothesis test).
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(b) Suppose there is an unknown but deterministic parameter in the signal
model, that is,

s(ty=als(t —1);0( — D]+ w(E—1)

Construct the “composite” likelihood ratio for this case. Calculate the cor-
responding threshold and construct the detector (binary hypothesis test).
(Hint: Use the ABSP to jointly estimate the signal and parameter.)

(c) Calculate a sequential form of the likelihood ratio above by letting the
batch of measurements, N — ¢. Calculate the corresponding threshold
and construct the detector (binary hypothesis test). Note there are two
thresholds for this type of detector.

Angle modulated communications including both frequency modulation (FM)
and phase modulation (PM) are basically nonlinear systems from the model-
based perspective. They are characterized by high bandwidth requirements and
their performance is outstanding in noisy environments. Both can be captured
by the transmitted measurement model:

s(1) = V2P sin [wct 4+ kym()]  (PM)

or
t

s(t) = V2P sin [t + 27ky f m(t)dt] (FM)

where P is a constant, w, is the carrier frequency, k, and ks are the deviation
constants for the respective modulation systems and of course, m(t), is the
message model. Demodulation to extract the message from the transmission
is accomplished by estimating the phase of s(¢). For FM, the recovered phase
is differentiated and scaled to extract the message, while PM only requires the
scaling.

Suppose the message signal is given by the Gauss-Markov representation

m() = —am(t — 1)+ wE —1)
y(@) = s(t) + v(t)

with both w and v zero-mean, Gaussian with variances, R,,,, and Ry,.
(a) Construct a receiver for the PM system using the XBP design.
(b) Construct an equivalent receiver for the FM system.

(c) Assume that the message amplitude parameter « is unknown, construct
the ABSP receiver for the PM system to jointly estimate the message and
parameter.

(d) Under the same assumptions as (c), construct the ABSP receiver for the
FM system to jointly estimate the message and parameter.
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(e) Compare the receivers for both systems. What are their similarities and
differences?

8.10 We are given the population model of the Chapter 7 case study and would like

to “parameterize” it for adaptive processing, since we know the parameters
are not very well known. The state transition and corresponding measurement
model are given by

_ l B 25x(t — 1) _ _
x(t) = 2x(t 1)+—1+x2(t— D +8cos(1.2(t = 1)+ w(t—1)
_ X
) = >0 + (0

where At=1.0, w~N(0,10) and v ~N(0, 1). The initial state is Gaussian
distributed with x(0) ~ N(0.1, 5).
In terms of the nonlinear state—space representation, we have

afx(t — 1] = lx(t D+ (M)
2 1+x2(— 1)
blu(t — 1)] = 8cos(1.2(t — 1))
x2(1)

clx(@®)] = 20

(a) Choose the model constants: 25, 8, 0.5 and % as the unknown parame-
ters, reformulate the state estimation problem as a parameter estimation
problem with unknown parameter vector, ® and a random walk model
with corresponding process noise variance, Ry, = diag[1 x 107°].

(b) Develop the joint SPBP algorithm to solve this problem. Run the SPBP
algorithm and discuss the performance results.

(c) Develop the joint PF algorithm to solve this problem. Run the PF
algorithm and discuss the performance results.

(d) Choose to “move” the particles using the roughening approach, how do
these results compare to the standard bootstrap algorithm?

(e) Develop the joint linearized (UKF') PF algorithm to solve this problem.
Run this PF algorithm and discuss the performance results.



DISCRETE HIDDEN MARKOV
MODEL BAYESIAN
PROCESSORS

9.1 INTRODUCTION

In this chapter we develop discrete (event) hidden Markov models. All of the Bayesian
processors we have discussed are, in fact, hidden Markov processors, since the internal
states are usually not measured directly and are therefore “hidden” by definition, but
the distinguishing factor is the type of underlying process governing the sequence. In
fact, the (state) transition matrix is a “probability” matrix with specific properties that
distinguish it uniquely from other dynamic systems. These discrete representations of
stochastic processes find enormous application in the speech, economics, biomedical,
communications and music areas where coding approaches are prevalent. We discuss
the development of the basic processor and investigate a case study in communications
to demonstrate the design and application.

9.2 HIDDEN MARKOV MODELS

A discrete-time hidden Markov model (HMM) is a stochastic representation (model)
of a process that can be used for simulation, modeling and estimation much the same
as the state—space model is used for dynamic (physical) systems. These models are
prevalent in acoustics, biosciences, climatology, control, communications, econo-
metrics, text recognition, image processing, signal processing and speech processing
[1]. Perhaps its distinguishing feature is that it is a “probabilistic model” in the sense
that it is driven by internal probability distributions for both states and observations
or equivalently measurements. Here the state transition matrix prevalent in linear
systems theory is still valid and also called a transition matrix, but it is a discrete

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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probability matrix with rows summing to unity and in some cases (doubly stochastic)
columns summing to unity as well. The underlying structure from which the HMM
evolves is the Markov chain of Chapter 3 along with the sequential Bayesian recur-
sions of Chapter 2. We start with the idea of a Markov chain and its decomposition
basics leading to HMM.

9.2.1 Discrete-Time Markov Chains

A discrete-time Markov chain is characterized by a state variable that changes at
certain time instances [2—4]. At each time-step ¢ the state is defined by x(¢) € X" (state—
space) and X' = {&], ..., Xy, }. The probability that at time ¢ the chain occupies state
i is defined by Pr(x;(¢)). The dynamics of the Markov chain are represented by its
transition probability, ay,,(t — 1,1) :=Pr(x,(¢)|x,(t — 1)) where x;(¢) := {x(¢) = &;}.
This expression means that the probability that the state at time ¢ is &}, given that
it is currently in state &), at time ¢t — 1 for (X},, X,,) € X'. Here the key Markovian
assumption is that the transition probability a,,, applies whenever state &, is “visited”
independent of the “past” and the path or previous states employed to reach A},. This
is merely a statement of the Markovian property that

amn(t — 1,1) = Pr(xa@)|xm(t — 1), ..., x¢(0)) = Pr(xn()[xm(r — 1))
V t and (X,,X,) e X 9.1)

Further, if the chain is homogeneous-in-time, then a,,,,(t — 1,t) depends only on the
time difference (in general) and therefore the transition probability is stationary such
that dy(t — 1,1) = dmy With @y >0 and 30 | @y =1[21].

Summarizing, a discrete-time Markov chain is characterized by:

« afinite set of known N,-states: X = {X7,..., Ay };

« anon-negative set of state-transition probabilities for (X}, X,,) — {a,}; and

« asequence of random variables: x,,,(0), x,(1), . . . € X that satisfy the Markovian

property:
A (t — 1, 1) = Pr(x,(1)|x,,(t — 1))V ¢ and all states (X}, X)) € X

The elements of the homogeneous chain are embedded in the N, x N, state tran-
sition probability matrix, A =[am,]; m,n=1,...,Ny. The chain can be specified
pictorially by a directed graph with nodes representing states and arcs or arrows

corresponding to the transition probabilities as illustrated in Fig. 9.1.

Example 9.1

Suppose we are given a two-state (N, = 2) Markov chain with transition probability

amn = Pro,(Olxp,(t — 1)); m,n=1,2
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app

au State—transition probabilities

ar

FIGURE 9.1 Directed graph representation of two-state Markov chain.

and a,,;, = {0.55,0.45,0.25,0.75}. Construct the state-transition probability matrix A
and the corresponding directed graph. The transition probability is given by:

4 [055 045
~ 025 075

The resulting graph is shown in Fig. 9.1. AAA

9.2.2 Hidden Markov Chains

A hidden Markov model (HMM) is simply a Markov chain in which all of the states
are not observed—some are hidden. In this case we introduce the observation or
measurement or output process where only a subset of the states are observed directly.
Thus, the essential difference between a Markov chain and a hidden Markov model
is that for a HMM there is not a one-to-one correspondence between the states and
observations (output measurements). It is not possible to tell which state the model
was in by merely observing the outputs of the chain. We illustrate the structural model
in Fig. 9.2a. Note that when the states are directly observed in a, then the observations
and states are identical.

Thus, we differentiate the hidden Markov chain or HMM from the Markov chain by
introducing an observation or measurement process [5—8]. Here the state sequence
is not known, that is, it is hidden in the measurement sequence. Thus, at every
time-step ¢, the system generates a measurement or observation y(z) according to a
probability distribution that depends on the state, x(¢). The number of observations
Ny corresponds to a known distinct set, that is, at time ¢ the observation is y(¢) € Y
(observation space) with V= {1, ..., Vn,}. We define the corresponding “discrete”

observation probability (likelihood) by':

cke(t, 1) := Pr(ye(D)|xx (1)) 9.2)

! This probability expression has two subscripts to annotate the discrete state (x;(¢)) and the discrete
measurement or observation (y(¢)). Most references assume a continuous observation and use the notation

a(y(@) [9-12].
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Initial conditions
(prior)

Markov chain
(states)

Observations
(measurements)

FIGURE 9.2 Hidden Markov model structure: (a) Markov chain (states) and observations
(measurements). (b) Markov chain with state-transition probabilities and observations
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with measurement probabilities (likelihoods).

. N,
Again for the homogeneous case, c¢(f,1) = cx¢ and cge >0 and 2[:1 cre=1.As

in the chain, we have the associated Ny x N, observation probability matrix given

by C=[cke] for k=1,...,Ny; £=1,...,Ny with C € RN+ The final ingredi-

ent to characterize the HMM is the prior or initial probability distribution given by

Pr(x(0) = &;(0)); i =1, ..., N, which represents the initial probability of the chain.

Summarizing a hidden Markov model is specified by the model X:=

{A, C,Pr(x;(0))} (homogeneous case) where:

o The state-transition probability matrix is:

A = [amn] = Pre,(®)|x,(t — 1));

o The observation probability matrix is:

C = [cre] = Prye(®)|xe(t)) fork =1,...,Ny;

« The prior probability is:

Pr(x;(0));

i=1,...,Ny.

mn=1,...,Ny;

£=1,...,Nyand
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where N, Ny are the number of states and observations (measurements), respectively
(see Fig. 9.2b).

We must realize a subtle point that in contrast to dynamic physical systems where
the states and measurements can be any real value or number, the HMM states or
observations can only assume pre-defined integer values, X ={X7,..., Xy } and
Y={V1,...,Yn,}J—this is very important to comprehend. It is the transition and
observation probabilities that drive the occurrence of an individual state and observa-
tion event, since both are merely (integer) realizations of model outputs. For example,
the mapping or quantization of a “real” physical communications signal to a binary
coded representation takes the form of a sequence of a 0 or 1 integer value at each
time-step which are mapped to the observation sequence (see Sec. 9.7).

It should also be noted that with the addition of the observation process, it is simple
to define an underlying HMM state—space model as:

x(t) = Ax(t — D)+ w(t — 1)
() = Cx(t) + v(?) 9.3)

where w, v are uncorrelated (white) sequences (noise) with x, y the usual state and
measurement sequences and associated initial conditions x(0), all specified by the
HMM above of Fig. 9.2b.

Note that the additive sequences (noise) are not necessarily Gaussian and therefore
the linear Bayesian processor (Kalman filter) is not optimum in this case. However,
it has been shown [13] that under some (sufficient) conditions (stationarity, etc.)
that an optimal minimum error variance estimator (Kalman filter) can be constructed
based on a stochastic realization of a HMM. The results of this design are capable
of providing reasonable estimates of the HMM states and observations. It is also
important to understand that exists state—space representations in which both dis-
crete HMM models are combined with dynamic (physical) state—space systems. For
instance, one prevalent form is termed switching models in which the discrete HMM
determines which underlying dynamic model applies at a given time-step. This is an
approach frequently used in target tracking problems [14] to provide multiple model
choices.

9.3 PROPERTIES OF THE HIDDEN MARKOV MODEL

In this section we investigate some of the underlying probabilistic properties of the
discrete HMM. To no surprise it matches our Bayesian processor development of
the previous chapters. After all, once placed in the state—space representation, all
Bayesian properties should hold. We start with the joint distribution.

The HMM is a probabilistic model of the joint collection of random variates (Y3, X;).
Critical properties of the HMM rely on basic Bayesian methodologies and develop-
ments. Perhaps the most useful notions inherited from the Markov chain theory are the
two major properties of conditional independence that are used over and over again
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along with Bayes’ rule. That is, under a HMM there are two assumptions enabling the
development of the underlying techniques:

1. The hidden variables are first-order Markov?: Pr(x(0)|X;—1, Yi—1) =
Pr(x(t)|x(t — 1)) (state-transition); and

2. The observation is independent of other variates given the state (at time ?):
Pr(y(®)|Y;—1, X;) = Pr(y(¢)|x(¢)) (likelihood).

These properties imply that the underlying joint distribution can be expanded as:

Pr(Yl’X[) = Pr()’(t), Yt—l’x(t)9Xt—l)
= Pr(y(1), x(0)| Y1, Xi—1) X Pr(¥i—1,X;—1) 9.4

Continuing to apply Bayes’ rule to this expression gives

Pr(Y;, Xp) = [Pr(y(®)[x(1), Xi—1, Yi—1) X Pr(x(0)|X;—1, Y;—1)]
X Pr(Y;—1, Xi—1) 9.5)

or finally
Pr(Y:, X;) = Pr(y(£)|x(r)) x Pr(x(t)|x(t — 1)) x Pr(¥;—1,X;—1) (9.6)

where we have applied the conditional independence properties of the HMM. From
the chain rule and these independence properties, we can expand this expression even
further to obtain

t t
Pr(Y;, X)) = 1_[ Pr(y(k)|x(k)) x 1_[ Pr(x(k)|x(k — 1)) x Pr(x(0)) 9.7)

k=0 k=2

Thus, in order to characterize a HMM we require the following probabilities:

¢ Prior: Pr(x(0));
o Transition: Pr(x(t)|x(t — 1)); and
o Likelihood: Pr(y(1)|x(2)).

These quantities correspond to the classic® definition of a hidden Markov
model [10]. The underlying Markov chain is usually assumed to be homogeneous-
in-time with associated stochastic state transition matrix defined before by
A = apmy = Pr(x,(t)|x,(t — 1)) VYt and the observation (measurement) probability is

2 Any N*'-order Markov process can be transformed to a first-order process [15].
3 Classical notation: 1, — Pr(x(0)); aij = Pr(x;(1)|x;(r — 1)); and b;(y(t)) = Pr(y(1)|x;(t)) (continuous
observation) or b;; — Pr(y;(#)|x;(t)) (discrete observation).
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FIGURE 9.3 HMM basic problems: (a) Evaluation problem. (b) Sequence estimation
problem. (c) Parameter estimation problem.

given by C =[ck¢] =Pr(ye(t)|xx(t)). The HMM-parameters are usually specified
by X =(A, C,Pr(x;(0))). Here the measurements Y; are observed and the states
or internal variables are hidden. In order to generate (simulate) samples from
the HMM, the initial “state” distribution is generated followed by the likelihood
(prior — transition — likelihood). It is important to understand that each mea-
surement sample simulated requires new state samples, that is, two synthesized
measurement samples originated from two different states in the hidden Markov chain.

9.4 HMM OBSERVATION PROBABILITY: EVALUATION PROBLEM

With these HMM properties available, we can now pose the first problem of interest.
With the model known and a set of observations available, how can we evaluate the
performance of the HMM to faithfully synthesize observations? One way to approach
this problem is to estimate the corresponding observation probability Pr(¥Y7) and use
it to “validate” that the model and observations are compatible (see Fig. 9.3a). This
approach is especially useful when we are to compare or “match” different models
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to the same observation sequence and search for that model which provides the best
match. Thus, calculating the total observation probability provides a solution to the

evaluation problem of HMM, that is,

GIVEN the observation sequence, Yr and HMM parameters X, FIND the total
observation probability, Pr(Y7) for Y7 = {y(0),...,y(T)}.

The observation probability is obtained by marginalizing (summing over) the total

probability

t t

Pr(Y) =) Pr(Y.Xn=) (H Pr(y(k)Lx(k)) x [ T Prxk) stk — 1) Pr(x<0)>>
X, X \k=0 k=2

(9.8)

Blindly computing this summation is a very inefficient method to estimate the

desired probability. Instead, we factor the states using their first-order Markov
property (conditional independence) such that

Pr(Y,) = Z Pr(Y,, x(1), x(t — 1)) 9.9)

x(1),x(t—1)
but continuing the expansion over Y; we have

Pr(Y:, x(1), x(r — 1)) = Pr(Y;—1,x(t — 1), y(1), (1))
= Pr(y(®), x(O[Y;—1,x(t — 1)) x Pr(x(r — 1), Y;—1)

or

Pr(Y:, x(1), x(r — 1)) = Pr(y(D)|x(2), Y1, x(t — 1)) x Pr(x(n)[Y;—1, x(r — 1))
x Pr(x(t — 1), Y;—1)

which yields the final expression
Pr(Yy, x(t), x(t — 1)) = Pr(y(¢)|x(2)) x Pr(x(¢)|x(t — 1)) x Pr(Y;—1,x(t — 1))  (9.10)
Marginalizing, we obtain

Pr(Y;, x(1))

> Pr(Yp,x(t), x(t — 1)

x(t—1)

> Pr(y(0)lx(1)) x Pr(x(n)|x(t — 1)) x Pr(Y,_p,x(t — 1)) (9.11)

x(t—1)
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Define the forward operator as Fx(t) :=Pr(Y;, x(t) = X), then rewriting Eq. 9.11
we have

Fi() = Pr(Y;, xi (1))
= Pr(y(#)lx (7)) ZPI(Xk(t)IXz(t — D) x Pr(Yi—1, x¢(t — 1))
¢

or substituting for the previous time-step, we obtain the forward recursion for the
HMM

Fi(t) = Pr(y(n)|xx (1)) ZPr(Xk(t)lxz(t — 1) x Fe(t — 1)) 9.12)
14

Now, if we assume a stationary chain, then A =[a¢], C = [ck¢], and this result can
be expressed in terms of transition probabilities simply as

Fi(@) = Zakz x cxe x Fo(t — 1) for cxe = Pr(ye(T)|xx(T)) 9.13)
12
Clearly marginalizing over x(¢) gives the total observation probability as
Pr(Yr) =Y Fi(T) =Y Pr(Yr,x(1) (9.14)
k X (1)

Thus, we have the forward recursion algorithm for HMM that can be used to obtain
the total observation probability as:

o Initialize: Fi(0) =Pr(xx(0)) x cro;

« Recursion: Fie(®)= "y are X cre x Fe(t —1);

o Termination: Pr(Yr)= >, Fi(T).

This algorithm will be used not only to estimate the observation probability as
the solution to the evaluation problem, but also to combine with another recursion to

estimate model states and parameters.
Before we close this section, consider the following example of simulating a HMM.

Example 9.2

Suppose we have a discrete binary signal with the two-states (N, =2) specified
by: {x1(t)=1, x2(z) =2}. The observation is also discrete with Ny, =3 and speci-
fied by {y1(#) =1, ya2(t) =2,y3(t) = 3}. The transition and observation probabilities
are given by:

amn = Pr(e,(0)x,(t — 1)), m,n=1,2 and ¢ = Pr(ye(0)|xa(1)); k=1,2,3

with a,,, = {0.6,0.4;0.3,0.7} and ¢, = {0.50, 0.25, 0.25; 0.35, 0.25, 0.40}. Construct
the state transition probability matrix A and the corresponding directed graph.
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FIGURE 9.4 HMM realization of a discrete two-state Markov chain and observation:
(a) Hidden state simulation. (o) Observation simulation. Note that both states/
observations can assume only integer values governed by the transition and observation
probabilities.

The transition probability is given by:

A 0.6 04/ C— 0.50 0.25 0.25
~ 103 07| ~10.35 0.25 0.40

The resulting directed graph is identical to that in Fig. 9.1. The transition probability
implies that once a particular state is occupied, it is more than likely to remain in that
state since aj; = 0.6 and ay; = 0.7 rather than transition to the other states, aj, =0.4
and ap; = 0.3. So we expect the state transitions to essentially have longer time-steps
with fewer transitions. The observation probability on the other hand seems almost
equally likely to transition with c1; = 0.5 implying that when occupying state 1 it is
most probable that the observation output will be 1 with ¢p3 = 0.4 next, that is, if in
state 2 then the output 3 is most likely.

Using MATLAB a simulation was performed for 100 samples with the results
shown in Fig. 9.4. The state transitions are shown in a and appears to conform the
intuition afforded by the transition probability, while the observations also follow
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as well. The evaluation problem can be solved by estimating the corresponding total
observation probability which is In Pr(Y7) = —106 and then making additional runs
with various HMM for comparison. AAA

9.5 STATE ESTIMATION IN HMM: THE VITERBI TECHNIQUE

In this section we develop solutions to the state estimation problem for two cases of
interest: (1) individual hidden state estimation, that is, the state estimate at a given
time-step; and (2) entire sequence or “all” time-steps hidden state estimation problem.
Both of these problems lead to reconstructing the entire sequence of hidden states
strictly from the observations and HMM. Think of receiving a signal and being asked
to retrieve or recognize the individual symbols from a coded sequence. Here the
hidden states are the embedded sequence and the observations are the noisy digitized
measurements.

9.5.1 Individual Hidden State Estimation

State estimation in HMM provides a methodology by which the hidden variables or
states embedded within the hidden Markov model can be extracted from knowledge
of the model parameters > and the noisy observations as illustrated in Fig. 9.3b. The
basic problem to be solved is:

GIVEN the observation sequence, Y7 and HMM parameters X, FIND the “best”
(MAP) estimate x;(¢) of the hidden state at time 7 based on the posterior distribution
Pr(x(¢)|Y7), that is,

Xx(t) = argmax Pr(xg(t)|Yr) forxi() & x(¢t) = X
Xk

The solution to this estimation problem is analogous to the forward recursion algo-
rithm and incorporates the so-called backward algorithm, since it proceeds sequen-
tially backwards in time (smoothing). The solution which follows is accomplished by
decomposing or partitioning the total observation sequence into two sub-sequences:
Yi={),....y@®}and Y; L 1.7 :={y( + 1),...,¥(T)}. To see this let us investigate
the solution to the state estimation problem assuming uninformative priors

Pr(xg (0)|Y7) = Pl %(1)) o« Pr(Yr, x¢ (1)) 9.15)
Pr(Y7)

Partitioning Y7 as above we have, Yr={Y;, Y;y1.7} which can be used to

decompose the joint distribution as

Pr(Yr, x1(1)) = Pr(Yz, Yoy 1.7, X1(0)) = Pr(Ye, xi () X Pr(Ypy 1.7 |Ye, 21 (2))

Applying the Markov property along with the conditional independence properties of
the HMM, we have

Pr(Yr, xi(1)) = Pr(Yy, xi (1)) x Pr(Yiq 1.7 |xi(1)) 9.16)
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Defining the backward operator as By (t) := Pr(Y;41.7|x¢(2)), then we can write the
marginalization

Pr(Yiq 1.7 |xi(2)) = Z Pr(xe(r + D), y(t + 1), Yiqo.7 [xx (1)) 9.17)
xe(t+1)
and applying the Bayes’ rule
Pr(Yy 17 |xe(?)) = Z Pr(Yypo:7|xe(r + 1), y(t + 1), xx(2))
xe(t+1)
X Pr(y(t 4+ 1), x¢(¢t 4+ 1)|xx (1)) (9.18)

Now using the Markovian independence properties of the HMM and expanding the
last term using the Bayes’ rule, we obtain

Pr(Yisrrla()) = Y Pr(Yiparlxe(t + 1) x Pr(y(t + Dlxe(t + 1))
xe(r+1)
X Pr(xe(t + Dlxk(2)) 9.19)

Using the definition of the backward operator, we obtain the final backward
recursion as:

Bi(2) = ZakgPr(y(t—i—1)|xg(t+1))Bg(t+1) fort=T7-1,T-2...,1,0 (9.20)
14

with B;(0) =1V k. This relation, when coupled with the forward operator can also
be used to calculate the desired posterior probability for state estimation, since

Pr(Yr, xi (1)) = Pr(Yy, xi (1)) x By(t) = Fie(r) x By(1) 9:21)

Thus, we have by marginalization that the total observation probability can be
estimated by

Pr(Yr) = Y Fi(T) x By(t) 9.22)
k

and therefore the posterior distribution is given by:

Fi(t) x By(t)
Pr(x()Yr) = (9.23)
>k Fi(T) x By(t)
leading to the desired state estimate, Xp4p(2).
With this information available, we now have the solution to the individual hidden

state estimation problem using the backward recursion algorithm as:

« Initialize: Br(0)=1Vk;
« Recursion: Be(H)= ", arePr(y(t + Dx(t + 1)Be(t + 1);
« Termination: Pr(Yr) = Y, Fi(T) x Bi(t); and

FrOxBi(®) .

e Posterior: Pr(x(1)|Yr) = and

Pr(Yr)

« Estimation: Xp(t) = argmax Pr(x;(¢)|Y7).
X
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Together the forward—backward recursions are the key ingredient to estimating the
HMM parameters from noisy observation data as well which will be discussed sub-
sequently, but first we consider extending the MAP state estimation for the individual
state (X (7)) to the problem of estimating the entire sequence of hidden states (}A(T)
from the observation data, (Y7).

An example follows to demonstrate the forward—backward recursion in estimating
the posterior distribution.

Example 9.3

Suppose we have the discrete binary signal (N, = 2) specified by: {x{ () = 1, x2(¢) = 2}
and the discrete observation specified by {y1(t) =1, y2(#) =2, y3(¢) =3}. Here we
attempt to “decode” the message from the observations, that is, consider the binary
state sequence generated by the HMM along with the corresponding the observations
and we wish to extract the coded state sequence at each time-step using the forward—
backward approach discussed above.

We apply MATLAB (hmmdecode) to perform the estimation using the forward—
backward approach for the 100 observation samples. Using the synthesized output
data and corresponding transition and observation probability matrices, we can esti-
mate the corresponding posterior distribution for each individual state, Pr(x(¢)|Y;)
with the results shown in Fig. 9.5. The combined state transitions are shown in a and
the posterior state probabilities in b and c, respectively. We can see that the estimated
probabilities “match” the states reasonably well with the state transitioning accord-
ing to the estimated posterior at each time-step, that is, when the HMM is in state 1,
the posterior probability is high relative to that of state 2 and visa-versa. This com-
pletes the decoding example. Next we consider estimating the entire state sequence.

AAA

9.5.2 Entire Hidden State Sequence Estimation

The maximum a posteriori estimation of the state at time ¢ using the forward—
backward recursion algorithm above can be extended to reconstruct the entire hidden
state sequence which provides a more meaningful solution when attempting to extract
a critical coded message from a hostile environment or accurately extracting a DNA
sequence for forensic analysis. Unfortunately, estimating the individually ‘“most
likely” states as in the previous subsection does not imply that the entire sequence
is estimated with minimal probability of error. Therefore, the state estimation prob-
lem must be based on jointly estimating “all” states in the sequence to obtain the
optimal solution. The individual state estimates at each time-step of the forward—
backward algorithm minimize the error probabilities of individual states maximizing
the expected number of correctly estimated states [16]. However, we are interested
in estimating the entire state sequence, that is, we would like to solve the following
problem:

GIVEN the observation sequence, Y7 and HMM parameters X, FIND the “best”
(MAP) estimate the sequence X7 where X7 = {X(0), ..., X (T)} of the entire hidden
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FIGURE 9.5 HMM realization of a discrete two-state Markov chain and observation:
(o) Hidden state sequence redalization. (b) State 1 posterior probability estimate,
Pr(x1(f) | Y1). (c) State 2 posterior probability estimate, Pr(xa (1) | Y.

state sequence from time-step O to time-step 7 based on the posterior distribution
Pr(Xr7|Yr), that is,

f(T = arg n)l(ax Pr(X7|YT)
T

Since we are seeking a sequential solution to this problem, we must track the
estimate at time-step f. Following the development in [16], for each x(¢) a partial
sequence of length ¢4 1 is defined for each possible state; therefore, there are N,-
partial sequences for each 7. An alternative is to use the joint distribution, since the
observation sequence is fixed in length Y7, that is, we require

X = arg I)I(laX Pr(X,_1,x(¢),Y;) for x(¢) endpoint (9.24)
t—1

At each time-step, the maximal path (X;_1) problem terminating in x(¢) given Y, is
transformed into the maximization problem of finding the best path ending in x(¢ + 1)
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given Y. This follows directly by applying the chain rule to the joint probability
distribution

Pr(Xii1, Yip1) = Pr(x(t + 1), Xy, y(t + 1), Y1)
= Pr(x(r + 1), y(t + D|X;, ¥7) x Pr(Xy, Y3) (9.25)

applying Bayes’ rule along with the conditional independence properties of the chain
gives

Pr(Xiy1, Y1) = Pr(y(t 4+ Dix(z + 1)) x Pr(x(z + DIx(r)) x Pr(X;, Y:) ~ (9.26)
Recursively maximizing the probability gives
max Pr(Xp11, Y141) = max{Pr(y(r + Dx(r + 1)) x Pr(x(t + Dlx(®)) x Pr(X;, Y1)}

= Pr(y(t + 1)|x(z + 1)) x n}(ax{Pr(x(t + D]x(2)) x Pr(X;, Y;)}

= Pr(y(r + Dix(z + 1)) x max {PT(X(I + DIx(®)

x max {Pr(X;, Yt)}}

t—1

Now this gives us a recursion with V(x(#)) := r}r{lax{Pr(Xt, Y}
V(x(t + 1)) = Pr(y(t + 1)|x(z + 1)) x arg m(atl)x{Pr(x(t + DJx(2)) x V(x(¢))} (9.27)

Defining the smoothing variable as

Ux(t)) := I}r(lax{Pr(x(t + Dx(2)) x V(x(1))} (9.28)

enables us to construct the entire state (sequence) estimation or equivalently the Viterbi
algorithm as [16]:

« Initialize:

V(x(0)) = Pr(x(0)), Pr(y(0)|x(0))
UX0) =0 forx0)=1,...,Ny

« Recursion:
V(x(1)) = Pr(y()]x(2)) x xr(ItlE_vf){Pr(X(t)IX(t — D) x V(x(t — 1))}
Ux(t)) = r(r}g)f){Pr(x(tﬂx(t — 1) x V(@ —1)} forx(®)=1,...,Ny;

t=2,....,T
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¢ Termination:

P = %aTu);{V(x(T))}

XT|T) = arg g%aTl?{V(x(T))}

e Smoothing: x(¢|T) = Ux(t+ D|T)) fort=T-1,T—2,...,0

The Viterbi algorithm uses these recursions and smoothing relations to estimate
the “optimal path” and has on the same order of operations as the forward algorithm
discussed in the previous section. It has proved to be an extremely popular and robust
algorithm to perform decoding. Consider the following example of a path estimate.

Example 9.4

Using the discrete binary signal and observation of the previous example we would
like to “decode” the entire message from the observations, that is, we wish to extract
the “entire” coded sequence at each time-step using the Viterbi approach discussed
above.

We apply MATLAB (hmmviterbi) to perform the optimal entire state sequence
(path) estimation using the Viterbi algorithm for the 100 observation samples. Using
the synthesized output data and corresponding transition and observation probability
matrices, as before we obtain the estimation results shown in Fig. 9.6. Here we can
observe the path (dark solid line) which corresponds to the sequence estimation.
Note that it is a simple path but contains most of the states and leads directly to the
desired result. The matching capability of this approach is captured by estimating the
percentage of the time that the actual sequence agrees with the estimated. For this
simulation, the estimated matches the actual sequence 52% of the time. AAA

This completes the state sequence estimation example, next we consider estimating
the model parameters.

9.6 PARAMETER ESTIMATION IN HMM:
THE EM/BAUM-WELCH TECHNIQUE

The most challenging problem in HMM is the development of the model in the first
place. Just as in dynamic (physical) systems theory [17, 18], the system identifi-
cation/parameter estimation problem is still a highly researched problem especially
for nonlinear systems. The basic estimation problem consists of two major issues:
(1) estimation of the underlying internal structure (interconnections, state assign-
ments, etc.); and (2) HMM parameter estimation consisting of the transition and
observation probabilities and initial conditions assuming that the internal structure
of (1) is known a priori.
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FIGURE 9.6 HMM realization of a discrete two-state Markov chain sequence and the
results of the Viterbi path estimation with an 52% match (estimated-to-actual states).

For dynamic physical systems, the identification of the internal structural model
usually evolves from first principles where relations governing the phenomenology
are assembled. For non-physical systems, parametric models (with interconnections)
are assumed (e.g., ARMA) and then the solution to the parameter estimation problem
follows [19]. HMM are very similar from this perspective. Their structure is developed
from an internal probabilistic representation that is application driven. For instance,
the well-known problem in signal processing of recovering a transmitted random
telegraph signal from noisy observations is representative. Here the problem is to
“decode” the signal into a sequence of zeros or ones with the probability distribution
of the transitions (zero-to-one) assumed known (Poisson). A HMM can be structurally
developed to model this problem quite easily [2]. Another example is the decoding
of DNA strings for forensic analysis. Here the same modeling principle applies to
develop the internal structural model [5]. In any case developing the internal model is
usually the task of the phenomenologist, whether a physical or non-physical system,
and the next step is to “fit” the parameters of this structure to the model—the primary
focus of this section. Thus, we discuss the development of the parameter estima-
tion techniques applied to estimate the parameters of a HMM. Here we assume the
number of states and measurements are known along with the internal structure and
the problem becomes a matter of “fitting” these well-defined parameters (transition
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probabilities, observation probabilities and initial conditions) to the known model
internal structure.

Parameter estimation for HMM has been a difficult and challenging problem, espe-
cially in an on-line environment [1]. The original efforts of Baum-Welch [20] have
led to the general expectation-maximization (EM) algorithm (see Chapter 2) which
is a very powerful iterative approach using likelihood estimation techniques to solve
this problem [21, 22]. Here we briefly outline the iterative approach and then show
how the algorithm is a special case of EM.

The basic HMM parameter estimation problem is (see Fig. 9.3c):

GIVEN aset or J-sets* of observation sequences, {Y;(j)}; j=1,...,J along with the
underlying HMM internal structure X, FIND the “best” (MAP) estimate of the under-
lying parameters, @MAP :={aun, cke, P(0)} maximizing the posterior distribution,
Pr(®|Y;).

We will discuss this problem in two parts: (1) state sequence is known a priort;
and (2) state sequence is unknown [5].

9.6.1 Parameter Estimation with State Sequence Known

When the state sequence is “known” a priori, then the parameter estimation problem
is much simpler as in the case in physical systems for the design of optimal inputs for
system identification [18].

We define the following posterior probability

Punn(t,t + 1) 1= Pr(x, (1), x,(t + D[Yr, ©)

This posterior is the probability of the joint event that a path (state sequence) passes
through state m at time-step ¢ and through state n at t 4+ 1 and the HMM generates a
sequence of observations Y7 given the model parameters, ®.

To analyze this probability further, we apply Bayes’ rule and then partition the data
as before

Pr(xn(0), x,(t + 1), Y7|0)

t,t+1) =
Pun(t,t + 1) Pr(Y7]®)
_ Preon @), x,(t + 1), ¥, Yi41:71©) 9.29)
Pr(Yr|®)
now applying Bayes’ rule to the numerator results in
Pr(x (1), xp (1 + 1), Yy, Yiy1.71©) = Pr(xa(r + 1), Yeq1:71 Ve, (1), ©)
X Pr(Y;, x,,(1)|®) (9.30)

4 These sets are called training sets a term that evolves from the classification/neural-net technical area.
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The last term is just F,(¢), the forward operator (with the parameter set ® given).
Now concentrating on the remaining term of this expression, we extract the y(t 4 1)
from the data term and apply Bayes’ rule again to obtain

Pr(xn(t + 1)’ )’(f + 1)’ Yt+2ZT|Y[7xm(t)’ ®)
= Pr(Yi2.7 6 (t 4+ 1), y(t + 1), Yy, X (1), ©)
x Pr(x,(t + 1), y(t + D|Ys, xs(2), ©) (9.31)

where the last term above decomposes further to
Pr(x,(t + 1), y(t + )| Y, x0(2), ©®) = Pr(y(t + 1)|x, (¢ + 1), Yy, X (), ©)
X Pr(x,(t + 1)|x,,(2), Yz, ©) (9.32)
enabling us to simplify each of these terms individually to yield:
Pr(Yio:7lxa(t + 1), y(r + 1), Y1, X (1), ©) — Pr(Yipo.7|xa(r + 1), ©)

Pr(x,(t + 1), y(t + D| Y1, x0(2), ®) — Pr(y(t + D|x,(t + 1), ©)
x Pr(x,(t + D|x,(2), ®) (9.33)

and therefore we obtain the expression:
Pinn(t,t + 1) = Pr(Y;, x(1)) X Pr(xu(t + D]xy (1), ©)
X Pr(y(t + D|xa(t + 1), ©) x Pr(Yiq:7|xa(z + 1), ©)/Pr(¥Y7|O)
Finally, substituting for the known parameters, we have the desired result

Fn(®) X X Cpn X Byt + 1)
Ponlt,t 4+ 1) = Pr(YTT®) (9.34)

where F(t) encompasses the past history ending at time ¢ and state m while B,,(t 4 1)
accounts for the path’s future which at time ¢ + 1 is at state n evolving until the end.
The product term (a,,, X c,) takes into account the current activity at r with discrete
observation yi(t + 1) — y(t + 1).

With this term determined, we then define the posterior distribution from
Eq. 9.23 as:

On(1) := Pr(xu(0)|YT) (9.35)

which is a probability of the joint event that a path passes through state m at time-step ¢
and the HMM generates a sequence of observations Yr given the model parameters, ®.

Note that both probabilities are related, since one can be obtained through
marginalization of the other

Nx
On() =Y Punlt,t +1) (9.36)

n=1
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Summing both these quantities “across time” enables us to obtain the expected number

of times in state m and the expected number of transitions away from state m for Y
(see [15] for more details)

T—1
Z Ot 9.37)
=1

Similarly, the expected number of transitions from state m to state n for Y is given by

T-1
> Pun®) (9.38)
=1
Thus, using these expectations and counting estimation of probabilities [5], we are
able to obtain the Baum-Welch estimates:
Py(0) = Op(1)
=1 Pun(?)

&mn = _
1 Ou(t)
T
Con = M such that y(t) = (9.39)
Zz‘:l Om(t)

where

P,,(0) is the expected number of times in state, x,(f) at t =1;
amn 18 the expected number of transitions from state, x;,(¢) to state x,(¢) over
the expected transitions in state x,,(¢); and
ckn 1S the expected number of times in state, x,(¢) and observing yx(¢) over
the expected number of times in state x,, (7).

Thus, when all of the paths are known (this case), then it is possible to count the
number of times each particular transition or output observation is applied in a set of
training data. It has been shown that counting functions, say Ny, (x(¢)) for the state
transitions and Ny, (y(¢)) for the output observations provide maximum likelihood
estimates for the desired model parameters [5], such that

~ Nyn(x(2))

N and &y, — NG
N N (x(2)) "

2 N ()

Next we consider the unknown path case and combine the above results to establish
the algorithm.

(9.40)

9.6.2 Parameter Estimation with State Sequence Unknown

In this section we consider the case where the state sequence is “not known” [5]
and must be determined using the current parameter estimates available. When the
paths are unknown for training sequences, a closed-form equation is nonexistent
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and therefore some type of iterative approach must be applied (e.g., EM [22-30]).
The EM/Baum-Welch approach precisely solves the HMM parameter estimation prob-
lem in an iterative manner. It first estimates the counting functions, N,,,(x(¢)) for
states and Ny, (y(¢)) for observations by considering possible paths for the training
sequences using current model parameters ® and then calculates the new estimates
using Eq. 9.40. The algorithm continues to iterate until the log-likelihood function,
In Pr(Y7|®) no longer increases with each iteration. Baum [20] has shown that the
overall log-likelihood increases with each iteration indicating convergence to a local
maximum.

More precisely, this technique estimates the counting functions, N,,(x(¢)) and
Nin(y(2)) as the expected number of times each transition or output is utilized from
the given training sequences. It also uses the identical forward/backward operators as
before (see Section 9.5) using the posterior probability P, (¢, t + 1) of Eq. 9.34. From
this relation, we can derive the expected number of times that a,,, is used by summing
over all possible positions and over all training sequences Yr(j); j=1,...,J. We can
also use the training sequences to derive the expected number of times the observation
occurs to obtain:

Ny (x(1)) = Z m Z}—m(t J) X Qmp X Cpy X Bt + L,j)
Nie (1) = Z o (Y ) ka(t J) % Bi(t,)) (9.41)

Once these expectations are estimated, the model parameters are updated as above
and these new estimates are used in the counting functions. We summarize the
EM/Baum-Welch algorithm as:

« Initialization: Oo, Npn(x(2)) and Nio (¥(2));

» Forward/Backward Recursions: F(t,j) and B(¢,j) of Egs. 9.12 and 9.20;
» Counting functions: N, (x(¢)) and N, (y(¢)) of Eq. 9.41;

« Parameter Estimation: ©® = {amn> ckn, P(x(0))} of Eq. 9.40;

« Likelihood: Pr(Y7|©); and

« Termination: Pr(Y7|®) < t for 7 a threshold.

This completes the algorithm. It should be noted that an alternative approach
to searching over all paths is to use the Viterbi paths providing the most probable
paths for all of the training sequences. However, this approach does not maximize
the true likelihood. It is known that Viterbi training does not perform as well as the
Baum-Welch, but it is still popular when applied to decoding problems.

There are also a number of techniques that practitioners use to enhance numerical
performance and convergence of this technique. These include: (1) logarithmic trans-
formation of the product probabilities to create sums [5]; (2) scaling both forward
and backward operators [10]; (3) initial conditions; and (4) training data issues [23].
In closing, we note that the Baum-Welch algorithm is just a special case of the EM
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algorithm of Sec. 2.3. That is, the E-step of the EM algorithm is given by [15]:
E-step: Q(©,0;_1) = Y InPr(x|Yr,©) x Pr(x|Y7, ©;_)
X

T
= Zln P(x(0))Pr(Yy, x(1)|©®) + Z (Z 10 Gypn(f — l,t))

X =1

T
x Pr(Yr,x(1)|©) + Z (Z In &t r)) x Pr(Yr, x(1)|©)

X =1

(9.42)

where Pr(Yr, x(1)|©) = P(x(0)) [ 17— &a(t, 1) X [1}—; émn(t,  + 1). Optimizing these
terms leads precisely to the expressions in Eq. 9.39 (see [10] or [15] for details).
Thus, the E-step of the EM consists of estimating the required expectations using the
forward/backward recursions which completely determines Q(®, @) and the maxi-
mum (M-step) consists of substituting these terms into the corresponding likelihood.

Example 9.5

Again using discrete binary signal and the discrete observation of the previous
examples, we perform the parameter estimation of the transition and observation
probabilities, first using, the “known” (actual) state sequence and then generating an
ensemble of training sequences (N = 25) to perform the EM/Baum-Welch algorithm
(hmmtrain) with a maximum of 500 iterations and a error tolerance of 1 x 1074,
Here we also use the MATLAB maximum likelihood estimation with the “known” state
sequence (hmmestimate) as well to compare performance. The resulting parameter
estimates and percentage errors are:

EM/BAUM-WELCH PARAMETER ESTIMATES

A |06 04] Cror — [0:50 025 0.25
RU=103 0.7 RU=10.35 0.25 0.40
; [0.62 0.38 (3 4
Asw = 1030 0.7 ] Averk = | o}

e [0.51 029 019 . [3 18 23
V=034 022 044 PERR =13 13 11

Thus, the parameter estimates are quite reasonable under these conditions. Note
the initial probability matrices are automatically established by this implementation
in MATLAB; however, it is possible to alter them if desired.

MAXIMUM LIKELIHOOD PARAMETER ESTIMATES

A [06 047 Crorr — [0:50 025 0.25
TRU-= 103 0.7]° TRU=1035 0.25 0.40
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A, [067 0337 A 12 18
ML= 1036 0.64|° %ERR =121 9
oo _ [045 023 032] c [9 9 28
ML= 1047 0.19 0.34]° W%ERR =1 34 23 15

Again the estimates appear quite reasonable. Longer sequences can be employed
to improve the estimates even further. We see that there is a distinct advantage when
the state sequence is known a priori, because the training sequences are not required.
The Viterbi initialization was also executed on this data, but it did not perform near
as well as the Baum-Welch technique. AAA

This completes the section, next we consider a case study.

9.7 CASE STUDY: TIME-REVERSAL DECODING

In this section, we consider applying the Viterbi algorithm to decode a message trans-
mitted through a hostile environment with reverberations along with the processor
and decoding algorithm. Acoustic time-reversal (7/R) communications is an applica-
tion area motivated by the recent theoretical advances in 7/R theory [30]. Although
perceived by many in signal processing as simply an application of matched-filter
theory, a T/R receiver offers an interesting solution to the communications problem
for a highly reverberant channel. This case study briefly describes an acoustic commu-
nications experiment of data gathered in air and its associated signal processing. The
experiment is developed to evaluate the performance of a point-to-point 7/R receiver
designed to extract a transmitted code information sequence propagating in a hos-
tile, highly reverberant environment. These results are merely used to “synthesize” a
HMM based on the raw/quantized acoustic measurements and then used to extract the
transition and observation probabilities for simulation and evaluation. Even though
this case study is based on real data, it is only chosen to illustrate the application of
HMM techniques after data is simulated through the HMM process (evaluation).
From a signal processing perspective, 7/R processing appears to be an application
of matched-filtering in which the output signal-to-noise ratio (SNR) is maximized.
This 7/R replicant is then cross-correlated with the noisy received signal to pro-
duce the optimal filtered output [31]. However, it becomes more complicated in
the spatio-temporal case in which the optimal matched-filter must not only match
the transmitted temporal function, but also the corresponding spatio-temporal chan-
nel medium impulse response or so-called Green’s function. It has been shown that
time-reversal techniques are applicable to spatio-temporal phenomena that satisfy
a wave-type equation possessing the time reversal invariance property [30]. Thus,
time-reversal is the dynamic broadband analog of the well-known phase conjugate
mirror used to focus narrowband monochromatic waves. It represents the “optimal”
spatio-temporal matched filter in the sense of maximizing the output SNR. It is essen-
tially a technique, which can be used to “remove” the aberrations created by an
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inhomogeneous or random channel. In communications, the 7/R receiver can over-
come the inherent noise created by the medium providing the enhancement required to
extract the transmitted information sequence. Here we ignore the array aspects of 7/R
by considering only point-to-point communications. In this case study the realization
of a T/R receiver is briefly discussed and applied to a noisy microphone measure-
ment in a hostile environment. It is then used to estimate the required transition and
observation matrices for eventual synthesis/analysis.

For time-reversal, the matched-filter in additive white noise is identical to that
posed above with a “known” Green’s function of the medium replacing the known
signal replicant [31]. The Green’s function, g(r, r,; ), is the result of a point-to-point
communication link between a station (source) at r, to a master station (receiver)
at r. In this case, the matched-filter solution is again found by maximizing, SNR,,,
leading to the solution that is satisfied with equality at some time 7. If the resulting
filter response is, f(¢), then the solution is given by

f@) =glr,ro;T —1) (9.43)

Thus, for T/R, the optimal matched-filter solution is the time-reversed Green’s
function from the link station-to-master station (source-to-receiver) or visa versa.
Comparing these results with the standard matched-filter solution found in the litera-
ture, the Green’s function of the channel is time-reversed rather than the transmitted
replicant signal as in radar or sonar. Note that since 7/R theory requires reci-
procity [30], the result of Eq. 9.43 is valid for both transmission and reception,
thatis, g(r, ro; T —t) <> g(r,, r; T —t). Note also that if an array is included to sample
the spatial field or transmit a wave, then these results include the focus at link station
(source) position, r,, yielding the optimal, spatio-temporal matched-filter solution,
g(re,ro; T — 1) at sensor position, 7.

So we see that in transmitting a coded signal (state sequence) through a disruptive
medium the distorting effects can be mitigated by time-reversing the estimated media
Green’s function and creating an effective receiver. The details of this mechanism
are discussed in [31-33] and is beyond the scope of this case study. Here we just
describe one of the variety of receiver types that can be used, once the Green’s
function is estimated from pilot signals transmitted from transmitter (speaker) to
receiver (microphone) producing g(r, rp; T — 1).

With the estimated Green’s function or impulse response available, we choose
to apply time-reversal processing on reception [31] to the noisy received data,
y(t) = g(r; t) % i(¢) with i(¢) the coded information (state) sequence. On reception, the
estimated Green’s function is reversed and convolved with the receiver input to give

R(t) = 2(t) % (r; —1) = g(r; 1) % i(1) x g(r; —1) = Cop(t) % i(1) (9-44)

where Cg; is the estimated autocorrelation function of the medium possessing all of
the reflection and scattering information—but modified for code signal enhancement.
We show a typical 7/R receiver output that was used to “synthesize” a discrete state
and output sequence for transition and observation probability estimates. We show the
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FIGURE 9.7 T/R processor acoustic microphone data: (a) T/R receiver structure. (b) Raw
measurement data, synthesized observation and state data input for HMM parameter
estimation.

receiver structure in Fig. 9.7a where the time-reversed Green’s function is convolved
with the received data and then quantized to recover the code. Actual 7/R processed
data is shown in b along with quantized state and observation sequence extracted for
illustrative purposes and eventual application of the HMM techniques.

The results of processing these quantized sequences using the EM/Baum-Welch
algorithm are:

EM/BAUM-WELCH PARAMETER ESTIMATES

i _10.42 0581, & |1 0
BV =10.28 0.72] BV =10.22 0.78
Next we used these extracted probability matrices to synthesize “realistic” 7/R data
for HMM processing, the results are shown in Fig. 9.8. With this available we proceed
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FIGURE 9.8 HMM redlization of the T/R discrete Markov chain and observation:
(a) Hidden state sequence realization. (b) Observation realization.

as before and estimate the individual states as depicted by the posterior probabilities in
Fig. 9.9. These results are quite reasonable as can be observed by comparing samples
with the aligned probability functions at each time-step. Next the entire state sequence
was estimated using the “most likely”” Viterbi approach and the results are illustrated
in Fig. 9.10, where both the actual (synthesized time-reversed) state sequences are
shown along with the Viterbi result superimposed. The agreement is quite good with
an 85% matching (in-time) of the actual with the estimated states.

With these synthesized probability matrices, we performed the parameter estima-
tion approach as before to give

EM/BAUM-WELCH PARAMETER ESTIMATES

e [042 0587 10
RU=10.28 0.72]" TRU=10.22 0.78

A _ [045 055)  _[6 5
B =1027 0.73)° PERR =14 2

A 1 0 0 0
Cw = (024 0.76]° Cokrr = |:8 2}
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FIGURE 9.9 HMM estimation of the T/R discrete two-state Markov chain and observa-
fion: (0) Hidden state sequence realization. (b) State 1 posterior probability estimate,
Prixa (1) | Y. (c) State 2 posterior probability estimate, Pr(xz(h [YD.

Thus, the parameter estimates are quite reasonable under these conditions. Note
the initial probability matrices are automatically established by this implementation
in MATLAB; however, it is possible to alter them if desired.

MAXIMUM LIKELIHOOD PARAMETER ESTIMATES

ARy

Ayr

Cur

1

[0.42
0.28

[0.42
10.29

0.24

0.58]
0.72] Crru = [
0.587
0.71] ; AgERR =
0
0.76 ; CoERR =

1 0
0.22 0.78

i
KN

The estimates are quite reasonable. We see that there is a distinct advantage when
the state sequence is known a priori, then the training sequences are not required.
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Most likely state-sequence: Viterbi path
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FIGURE 9.10 Entire state sequence estimation using the Viterbi algorithm illustrating
the most likely path with an 82% match between the actual state sequence and the
estimated.

Again the Viterbi initialization was also executed on this data but it did not perform
very well. This completes the case study.

9.8 SUMMARY

In this chapter we have introduced the concept of hidden Markov models and illus-
trated their internal characteristics through a state-space representation. We first
developed the concepts of Markov and hidden Markov chains and showed how
they were related. Next, we investigated properties of the HMM illustrating how
the Bayesian concepts easily transfer over to this discrete representation. We next
investigated the three fundamental problems along with some variations: (1) the eval-
uation (simulation) problem; (2) the state estimation problem; and (3) the parameter
estimation problem. A careful analysis of each led us to the popular Viterbi decoding
technique and the specialized EM algorithm popularly called the Baum-Welch tech-
nique. We concluded with a case study to decode a transmitted coded sequence from
data enhanced by a time-reversal processor.
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MATLAB NOTES

MATLAB has a Statistics Toolbox that incorporates the capability to develop and
process hidden Markov models (HMM) along with demonstrations and a tutorial.
hmmgenerate synthesizes a sequence for a HMM, while the command hmmde-
code calculates the posterior state probabilities of a given sequence (Sec. 9.3).
The most likely (entire) state path can be estimated using the Viterbi algorithm
of Sec. 9.5 (hmmviterbi). Training sequences can be used to solve the HMM
parameter estimation problem (Sec. 9.6) while the EM/Baum-Welch technique
is used to estimate the model parameters using the hmmestimate command. The
PDF estimators include the usual histogram (hist) as well as the sophisticated ker-
nel density estimator (ksdensity) offering a variety of kernel (window) functions
(Gaussian, etc.).

There also exists NETLAB which is a free MATLAB software package that
includes HMM algorithms (see [24] for details and website) as well as the
MATLAB-based software package (free) called the “HMM toolbox” by K.
Murphy (http:www.cs.ubc.ca/murphyk/Software/HMM/hmm_usage.html) which
can be downloaded for use. The EM algorithm is well documented [20-22, 25-29]
and an integral part of each of these packages.
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PROBLEMS

9.1

9.2

9.3

94

9.5

Suppose we have a noisy binary channel with input (symbol) x and output
(symbol) ysuchthatx € ¥ ={0, 1} andy € Y = {0, 1}. The transition probability
matrix is:

_[Pry=0x=0) Pr(y=0x=17]_[085 0.15
T |Pry=1x=0) Pry=1x=1)|"|0.15 085

Assume we observe the symbol y =1 and x ~ Pr(x(0)) =[0.9 0.1]’, then
(a) What is posterior probability of x?

(b) Let x =1, what is the posterior if this is true?

(¢) Let x=0, what is the posterior if this is true?

(d) Suppose y =0, what are the corresponding posteriors of x?

A fly [4] moves along a straight line in unit increments. At each time period
it moves one unit to the left with probability 0.3, one unit to the right with
probability 0.3 and stays in place with probability 0.4. A spider is hiding at
positions 1 and m: if the fly lands there, it is captured by the spider and the
process ends.

(a) Construct a Markov chain model, assuming the fly starts at positions

2,....,m—1.
(b) Sketch the corresponding directed graph.

(c) What is the probability of the following state evolution sequence:
PI‘(Xl = 2, X3 = 3, X4 = 4|X2)?

Consider placing a ball in one of N compartments at each event. Each com-
partment can hold multiple balls. Let x;; i=0,...,N be the state where k
compartments are occupied. At the next event, the next ball can go into one of
the occupied compartments with probability k/N or an empty compartment.

(a) Create a Markov chain for this problem.
(b) What is the state diagram?
(¢) What is the transition matrix, A.

Suppose we have a discrete state-space and discrete-time measurement sys-
tem (sampled-data). Defining the discrete (finite) states as x;(#) and the
measurements as y(¢), then:

(a) What is the state prediction probability, Pr(x;(t)|Y;—1)?

(b) What is the state posterior distribution, Pr(x;(¢)|Y;)?

(c) Sketch out the steps of the Bayesian filtering operation at times: ¢t — 1 and z.

Autoregressive (AR(N,)) models (all-pole) occupy a large part of the signal
processing literature especially in speech applications [10].



366

9.6

9.7
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(a) An AR model is an example of a Markov chain on a continuous space, show
that the AR(1) model forms a Markov chain, that is,

y(t) = aiy(t — 1)+ e(r), €~ N(0,0%)

(b) Show an AR(N,) model also forms a Markov chain. (Hint: Place the AR
model in state-space form).

(¢) Does an ARMA(N,, N,) model form a Markov chain, as well?

Autoregressive (AR(N,)) switching models also occupy a significant part of the
time series literature [14]. It is a model where the mean can switch between
two values, po and 1. It enables the time series with several regimes or local
nonstationarities to be represented as:

Pr(y(0)|y(t — 1), x(0), x(t — 1)) ~ N (i) + @10t — 1) = fa—1))), 0°)
Pr(x(®)|x(t — 1)) ~ pr—1)Lea—1(x(1)
+ (1 = px—1)T1—x@—1)(x(1))

where the hidden state, x(¢) takes values in {0, 1} with initial values, x(0) = g

and y(0) =0, and Z is an indicator function.

(a) What is the sampling distribution, Pr(x(¢)|x(t — 1), x(¢ + 1), y(¢), y(t — 1),
y(+1))?

(b) Using the priors, Pr(i; — po) ~ N(0, ), Pr(a, o%) with pg, p1 ~U(0, 1)
simulate the AR switching model for N =500 samples. What are the final
parameter estimates for: {10, 11,a,p1,p2}?

Consider a 4-state Markov switching model [34] with the set of discrete states
given by S ={1, 2, 3,4} representing a Markov chain with transition matrix:

1 -3« o o o
a-| B 1=B-2y Y 1
B Y 1—p—2y 14

B Y Y 1-p-2

The observation sequence is specified by a set of AR(2) models:
y@) =ayt — 1) +ay(t —=2) +€(t) forS; i=1,...,4

where €; ~ N (0, 02)
(a) What is the (state) prediction probability for this model, Pr(s(#)|Y;—1)?
(b) What is the (state) filtering posterior probability for this model, Pr(s(¢)|Y;)?

(c) What is the likelihood for the following set of parameters describing this
model, ® ={a, 8, y, az,ali,ay};iz 1,...,47
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(d) Simulate the system with the following parameters {«, 8, y, 02} =0.0033,
0.016, 0.002, 0.1 and {aj;,az;}={(1.785, —0.903), (1.344, —0.903),
(1.386, —0.640), (0.800, —0.640)} for N = 1000 samples.

Suppose we have a HMM model with discrete state—space defined by
X={xi(t)=4;} i=1,...,N, with state transition matrix A. We would like
to establish a parameter estimation problem given the observation sequence,
Y7. Assume that the complete likelihood is given by Pr(y, x|0) and the den-
sity is given by: Pr(y|x;, 0) = N (ix(), ) with known diagonal covariance and
unknown mean. Develop the EM algorithm to estimate the parameter u, that is,
(a) What is the Q-step?

(b) What is the M-step?

State—space models are perhaps the most important class of linear dynamic
systems characterized by:

x(t+ 1) = Ax(t) + w(t)
Y(t) = Cx(t) + v(t)

Develop the EM algorithm for this class of model based on the usual Gauss-
Markov assumptions.

(a) Suppose we are asked to estimate the A and C parameters. What is
corresponding the E-step? (Hint: Use gradient techniques.)

(b) What is the associated M-step?
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BAYESIAN PROCESSORS
FOR PHYSICS-BASED
APPLICATIONS

In this chapter we develop a set of Bayesian signal processing applications based on the
underlying physical phenomenology generating the measured process. The complexity
of the process and the desire for enhanced signals drives the design primarily indicated
by the process model. We motivate each application, succinctly develop the process and
measurement models, develop the BSP and analyze its performance. More details on
any of the designs can be obtained from the references for the interested reader. The
main objective is to demonstrate the applicability of the Bayesian approach to a variety
of interesting applications and analyze their performance.

10.1 OPTIMAL POSITION ESTIMATION FOR
THE AUTOMATIC ALIGNMENT

The alignment of high energy laser beams for fusion experiments demand high preci-
sion and accuracy of the underlying positioning algorithms whether it be for actuator
control or monitoring the beam line for potential anomalies. This section discusses
the development of on-line, optimal position estimators in the form of Bayesian pro-
cessors to achieve the desired results. Here we discuss the modeling, development,
implementation and processing of Bayesian processors applied to both simulated and
measured beam line data.

10.1.1 Background

Alignment of a high power beam is a complex and critical process requiring precise
and accurate measurements. Misalignment of such a beam could easily destroy costly
optics causing a deleterious disruption of an entire experiment. The alignment of large

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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operative, short pulse, laser systems is a significant and costly endeavor dating back to
the late sixties and early seventies [1]. Contemporary imaging systems employ high-
resolution video cameras to image and accurate position control systems to align the
beam. This approach estimates the current beam position from the image, adjusts
mirrors relative to an accurate reference measurement of physical beam center and
minimizes their difference or deviation [2-9]. However, even with these sophisticated
measurements, the beam position estimate is still a function of the inherent beam noise
caused by the internal beam line gas turbulence as well as instrumentation noise [10].
Here we introduce the idea of post-processing these uncertain measurements using
advanced signal processing techniques to “enhance” the raw data and “detect” any
beam line anomalies during laser system operations [11].

High power, tightly focused laser beams are required to achieve successful igni-
tion and therefore fusion at the Lawrence Livermore National Laboratory (LLNL)
National Ignition Facility (NIF) [12]. These beams must simultaneously focus pre-
cisely on a nanoscale target capsule to succeed. Therefore, there are a large number
of alignment measurements that must be performed along the NIF beam line to assure
that the pointing and alignment control system centers the beam in order to provide the
maximum energy on the fusion target located in the associated chamber [12—-14]. An
automatic alignment (AA) system was designed and implemented to assure successful
deployment of the high energy beam in each of the 192 beam lines. However, since
a variety of techniques are provided to perform the alignment, there is a quantifiable
uncertainty associated with each technique that may or may not meet the desired accu-
racy and precision specifications associated at each control point. Therefore, there is
a need for a post-processing technique, which accepts as input an uncertain position
measurement and provides as output an improved position estimate (see Fig. 10.1).
As illustrated in the figure, the measured image position estimate is compared to the
reference image estimate providing an position error that is input to the mirror control
system that moves the associated mirrors correcting the beam position.

Perhaps the most challenging of all beam line measurements are those made on the
KDP (potassium dihydrogen phosphate) crystals. These crystals are critical elements

Optimal position estimator/anomaly detector

1(x,y) (x(k), y(k))

Measured Raw position
image calculation

Ap(k) Anomaly P
Post-processor detector —
(BP position est.) (innovations)

e(k)

Reference  |/*¥)| Raw position (%, (K), . (K))
image calculation

FIGURE 10.1 Optimal position estimation with anomaly detector: Bayesian post-
processing and innovations-based anomaly detection.
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used to double or triple the frequency of the laser beam as it passes providing a shorter
wavelength. The higher frequency determined from the target physics enables laser
plasma interactions for fusion. The NIF final optics assembly matches lenses to this
particular frequency producing the beam that is tightly focused on the target capsule
required to achieve fusion ignition. In order for the KDP crystals to optimally double
or triple the laser operating frequency, they must be precisely positioned at the appro-
priate angle. This is one of the critical tasks of the AA system. The KDP measurement
consists of using a charge coupled device (CCD) imaging camera, which produces a
noisy back reflection image of a diagnostic alignment beam. The noise is caused by the
camera itself as well as uncertainties that are due to small pointing errors made during
the measurement. A sophisticated two-dimensional (2D) phase-only, matched-filter
[15] algorithm was developed to provide the initial raw position estimates.

The image acquired from the CCD imaging camera produces both noisy mea-
surement and reference images. A precise reference image is used to provide the
desired fiducial that is used by the alignment system. Corrections to align the mea-
sured image with the reference is accomplished using the dedicated control loops that
adjust pointing mirror stepping motors until the deviations between both reference
and measured positions are within acceptable limits [14]. Ultimately, the goal is to
make this difference zero assuring proper beam alignment. Fig. 10.2 shows a sequence
of measured KDP images with position estimates (O) along with the corresponding
reference image measurement (+). Note how the control loop adjusts the KDP mea-
surements (O) until the centroid position converges to the reference position (+). The
objective, therefore, of the control loop is to adjust the beam mirrors such that both
measured and reference positions completely overlap (zero deviation) as shown in the
bottom of this figure. Thus, the smaller the XY-deviations, the closer the beam is to

Raw KDP image Reference

<
Oa

]
+»'
&
O—
Data Reference

Position estimates

FIGURE 10.2 Raw KDP crystal back-reflection image and reference position estimates.



372 BAYESIAN PROCESSORS FOR PHYSICS-BASED APPLICATIONS

the centerline reference assuring a tightly focused, high energy beam on target—the
goal of the alignment system. Should, for some reason, an anomaly develop in any
beam line, it may not be possible to align for a particular shot. The timely detection
of beam line anomalies are necessary to avoid future problems, which, if left unmit-
igated could result in less than optimum performance of the laser. In this work, we
show how a Bayesian processor (BP) can be used to detect anomalies, on-line, during
the calibration phase of a laser shot.

Thus, we discuss the feasibility of applying a Bayesian processor as an on-line post-
processing technique to improve the final position estimates provided by a variety of
estimators and detect anomalies in a high energy laser beam line [11]. These estimators
are used to align high-powered laser beams for experiments at NIF. We first motivate
a stochastic model of the overall process and measurement system. Next, we discuss
the underlying theory for both position estimation and anomaly detection. With the
theory in hand, we develop the processor for the KDP application through ensemble
statistics, simulation and application to real measurement and reference data.

10.1.2 Stochastic Modeling of Position Measurements

The typical beam position estimator is accomplished by calculating the centroid of
the measured images [18]. The point is that these measured positions are derived
from the associated noisy CCD images. We define the true centroid positions by the
position vector p(k) := [x(k) | y(k)]’, where p € R¥*! and k is the sample time. Since
quite a number of images are acquired daily, a large data base consisting of position
estimates are available, say, P(¢) = {p(k)}; k=1, ..., K and the position estimates are
to be updated continuously. Since we know that the images are contaminated with
noise and uncertainty, a more reasonable position measurement model is given by

z(k) = Cp(k) + v(k) (10.1)

where z, ve RV-*1 C e RV-"M and v ~ N(0, R,y), that is, the measurement noise is
assumed zero mean, multivariate Gaussian with covariance matrix, Ry, € RN:*N:,

We also note that since the CCD camera uses the identical beam line to measure
both images, we model the position estimates as piecewise constants contaminated
with beam line noise besides that noise contributed by the measurement systems. This
process noise can be considered fluctuations caused by the inherent system optical
transfer functions and turbulence caused by the argon gas filled housing during the
laser beam propagation (boiling noise). Therefore, we assume that the contaminated
position measurement is represented as

P =0+w() with p(0) = [x(0)]yO) (10.2)

in continuous time, but if we discretize over the k-sample images, then using first
differences we obtain
PUi+1) — i)

P~ ———————— =w(t) for Aty :=txy1 — tx (10.3)
Aty
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Substituting into Eq. 10.2, we obtain the following Gauss-Markov position model

P(tis1) = p(tx) + Ay w(ty) (10.4)

where p, w e R¥*! and w ~ N(0, R,,,,) along with the accompanying measurement
model of Eq. 10.1. This completes the basic description of the underlying Gauss-
Markov model. We note in passing that for a complete description of the general
model including means, my,(k), m,(k) with their associated covariances see [11] for
more details.

Since we have both final measured and reference position estimates, we re-define
a more convenient position vector by grouping the positions as

x(k) wy (k)
y(k) wy (k)
pk)=|——— and w(k):=|———
x(k) wy, (k)
yr(k) wy, (k)

where p(0) ~ N(p(0), ﬁpp (0)) are the respective measurement and reference positions
coordinates (pixels) with the corresponding process noise covariance matrix given by

Ryw | 0
Ryw = - - -

0 | Ry,

since each of the measured and reference images are uncorrelated.

This type of formulation enables us to estimate the process noise covariances
independently for each image as well as characterize their uncertainties individually.
Since the control loop jointly uses both the reference and measured images to produce
its final centroid position estimates, we model the measurement matrix as the deviation
(difference) between these data contaminated with independent measurement noise,
that is, our measurement model of Eq. 10.1 becomes

z(k)=[(1) A _ﬂ p(k) + v(k)

with measurement covariance matrix

2
oy | 0
va = - - -
2
O | VrUr
and 02 =02 +02 and o2, =02 . + 02, . Note that the deviations are defined b
vy T Pax »y VU T U XXy Vryr y

_ k) — k)

e e e
) =y

Ap(k):=Cp(k) = [Ay(k)
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This completes the section on position (uncertainty) modeling, next we consider the
development of the optimal position estimator.

10.1.3 Bayesian Position Estimation and Detection

Itis well-known that the optimal solution to the position estimation problem under the
Gauss-Markov model assumption is provided by the Bayesian (state—space) processor
or Kalman filter of Chapter 5. This solution can be considered a predictor-update
design in which the processor uses the model (random walk) to predict in absence
of a measurement and then updates the estimate when the measurement becomes
available. Under the assumption of a perfect model, that is, the model embedded in
the process exactly matches the process, the BP is capable of achieving the optimal
minimum (error) variance estimate under the Gaussian assumptions.

For the position estimation problem, the BP takes on the following predictor-update
form where t, — k:

Prediction: pk + 11k) = p(k|k)

Innovation: ek+1)=zk+1)—2k+11k)=zk + 1) — Cp(k + 1]k)
Update: Pk + 11k + 1) =p(k + 11k) + G(k + De(k + 1)

Gain: Gk +1) = P(k + 11H)CTR. (k + 1)

for p(k + 1k) := E{p(k)|p(k — 1),...,p(1)} and Z(k + 1|k), the underlying condi-
tional means and G(k + 1) e R™ XLVZ is the corresponding gain matrix calculated
from the error covariance matrix, P(k + 1|k) = Cov(p(k + 1|k)) with position error
p(k + 1]k) :==p(k + 1) — p(k + 1|k). The innovations covariance matrix is defined by
Ree(k+1).

Recall that for a Gauss-Markov representation a necessary and sufficient condi-
tion for the BP to be optimal is that the innovations sequence be zero mean and
white (uncorrelated)—conditions that we test during processor design. It is possible
to exploit this property of the innovations to detect anomalies in the system reveal-
ing potential problems in the beam line in pseudo real-time—a large asset when
attempting to automate the alignment system. We apply two detection techniques to
monitor the position estimates from the daily measurements: zero-mean/whiteness
detector and the weighted-sum-squared-residual (WSSR) detector (see Sec. 5.7 for
details). Both of these techniques rely on the assumption that the position deviations
in the loop should change little during the measurement cycles. The underlying idea
in anomaly detection is that the processors are “tuned” during calibration to operate
in an optimal manner (innovations zero-mean/white). However, when an anomaly
occurs, the innovations no longer maintain their optimal statistical properties leading
to a “change from normal” and an anomaly is declared. With this detection, a decision
must be made to either classify the anomaly or perform some other action. The main
point to realize is that since we are using a recursive-in-time BP, the innovations
represent “how well the position model and its underlying statistics represent the raw
data.” If it is an optimal fit, then the innovations should be zero-mean and statistically
white (uncorrelated) and the detectors evolve naturally.
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This completes the description of the BP and the associated anomaly detectors,
next we consider a simulation of the data and processor to predict the expected
performance.

10.1.4 Application: Beam Line Data

In this section, we discuss the application of optimal position estimators based on
daily historical position estimates (data base) provided by the KDP algorithm. The
data are a record of 48 days of final positions output from both the accurate reference
system (reference data) and the estimated final position output from the KDP back-
reflection data coupled to a phase-only, matched filter [15] imaging algorithm. The
motivation for applying the Bayesian approach to this data set is to obtain a more
accurate and precise estimate of error deviations from the reference characterizing
the overall control loop performance in that position of the beam line. Theoretically,
the position deviations between the reference and the KDP estimates should ideally be
zero, but because of the beam line noise and variations, CCD camera limitations and
control system tolerances, this is not the case. Instead the overall error statistics are
used to bound the performance and assure that they remain within design specification.

10.1.4.1 BPDesign Inthe design of the BP the usual procedure is to: (1) develop

the required models; (2) simulate a set of position data characterized by any of the
a priori information available; (3) develop the minimum error variance design; and (4)
apply the processor to the available data set evaluating its performance. We developed
the basic model set assuming a Gauss-Markov structure as in the previous subsection.
These parameters of this model were estimated from the statistics of a large ensemble
(>5000) of images and performance statistics of the KDP centroiding algorithm. We
used this information to construct the initial simulation of the BP to “match” with the
historical data available (48 days) and the corresponding ensemble statistics.

Thus, our approach is to first perform a simulation of the measurement process
using estimated statistics from the data and then apply it to the actual data. During
the simulation phase, we are able to analyze the performance of the BP and assure
ourselves that all of the models and statistics are correct. We expect to obtain the
minimum variance estimates, if not achieved, then it is usually an implementation
issue. Once the simulation and model adjustments have been made, we apply the
processor to the measured data.

10.1.4.2 Simulafion Now that we have developed the models and have some
estimates from the ensemble statistics of the database, we are now able to perform
a Gauss-Markov simulation to assess the feasibility of the BP. We simulated a set
of data based on the following parameters using the mean XY-position estimates,
that is, x; = uy, £ 1.960; for both the measured and reference data: x(0) =[344 £38,
270+ 13.8, 344 + 7.8, 270 + 14.4]". We used the mean values as the initial position
estimates with low error variances (1 x 10~%). We chose an uncorrelated measurement
(deviation) noise covariance matrix as: Ry, =diag[0.0076 0.0078]. The process
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noise covariance selected is

Ry 0 = [ 500 —26.57.

R“’“’_[ 0 Eww(z)] f"er“’(l)_[—%.s 50.0}’
= 500 —37.7
Ruw(2) = [—37.7 50.0}

The synthesized positions have small variations due to the process noise, but are
essentially constants (mean values). The simulated noisy DX, DY-deviation mea-
surements (dotted line) including the process and measurement noise are shown in
Fig. 10.3. Next we executed the BP over this data set and the position deviations (solid
line) are also shown in the figure. Here we see that much of the raw measurement and
process noise have been removed by the processor and only the deviation errors are

—20 - Estimated b
-30 I I I I I I 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Time (days)

FIGURE 10.3 Simulated XY-position deviatfions: Raw (dotted) and estimated (solid).
(a) X-deviation. (b) Y-deviation.
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shown. Recall that they should be close to zero for the alignment control system to
be operating efficiently.

To validate the results, we investigate the minimum variance design procedure. We
investigate the statistics of the innovations sequence and check that they are zero-mean
and white for optimality. Both innovations sequences are zero-mean: (0.30 < 3.5;
0.95 <3.3) and white: (4% out; 0% out); with the WSSR decision function lying
below the threshold for a window of size N: (Threshold =69.6, N =25). These
statistics indicate that the minimum variance position deviation estimates have been
achieved. This result is expected, since the models used in the BP are identical to
those in the Gauss-Markov simulator. However, the results can be interpreted as the
“best” (minimum variance) one could hope to do under these circumstances. Next we
apply the BP to the actual deviation data.

10.1.5 Results: Beam Line (KDP Deviation) Data

In order to process the KDP deviation data, we must develop parameters for the under-
lying model embedded in the processor. We start with guesses of the noise (process
and measurement) statistics from the simulator and then adjust them accordingly.
For instance, if the innovation sequence lies outside its predicted bounds implying
that the measurement noise variance is too small, then it can be adjusted to satisfy
this constraint and “match” the data. The process noise is actually quite difficult to
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FIGURE 10.4 Actual KDP data XY-deviations and estimated XY-positions: Raw measured
data (dashed). Estimated data (solid): (a) AX-position. (b) AY-position.
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select, since it is directly proportional to the BP gain. In essence, once all of the other
model parameters are reasonably adjusted, they are then held fixed and the process
noise covariance is varied to achieve the “best” possible (minimum error variance)
innovations statistics (zero-mean/white, WSSR below threshold).

The results of the BP design for the KDP deviation data as shown in Fig. 10.4 along
with the corresponding error ellipsoids in Fig. 10.5. We see the raw KDP position
deviation estimates along with the optimal processor results over the 48-day period in
Fig. 10.4. It is clear that the processor is tracking the trends in the data while reducing
the noise or equivalently enhancing the SNR. To confirm this we observe the three-
sigma error ellipsoid plots of Fig. 10.5 where we observe that much of the uncertainty
has been removed and the estimated deviations are clearly clustered (centered) around
the (0,0) position and have a much smaller ellipsoid (better precision) than the raw
data. Again to confirm the optimality of the processor we check the zero-mean-
whiteness/WSSR statistics which give the following results: zero-mean: (0.08 < 0.80;
0.05 < 0.71); approximately white: (4% out; 8% out); and WSSR decision function lies
below the threshold for a window of size N: (Threshold = 69.6, N = 25). The results

Enhanced

DY-deviation (pixels)

DX-deviation (pixels)

FIGURE 10.5 Three-sigma error ellipsoid for KDP XY-position deviations from simulated
data: Raw deviations (O) and estimated (+) with less outliers.
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are shown in Fig. 10.6. These statistics again indicate that the minimum variance
design has been achieved and the processor along with its associated statistics are
valid and optimal. This completes the BP design for the position estimation problem.
Next we investigate the feasibility of using this approach for anomaly detection.

10.1.6 Results: Anomaly Detection

We use the actual KDP measurement data as before to assess the feasibility of applying
the BP as an effective means to detect anomalies (off-normal) that could occur in the
beam line. Here we assume that the BP has been “tuned” to normal operations for
the particular beam line and optics. Thus, the innovations are zero-mean, white and
the WSSR lies below the threshold for optimal design. To “simulate” an off-normal
condition (in terms of position estimates), we increase the amplitude of both X and
Y deviations fivefold in the raw measurement data during the period of 29-35 days.
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FIGURE 10.6 BP design for KDP XY-position deviation data: (a) Innovations for X-deviation
and Y-deviation. (b) Optimality tests: Zero-mean (0.08 < 0.80; 0.05 < 0.71) and whiteness
(4% out; 8% out) (c) WSSR Test (threshold = 69.6, N = 25).
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FIGURE 10.7 Raw KDP data XY-deviatfions with simulated anomaly: Raw (dotted) and
estimated (solid).

This can be thought of as corresponding to a pulse-like transient in either or both
of the measurement and/or reference position data. We applied the optimal (for no
anomaly) BP to this data to determine whether or not it could detect and track the
unknown transient anomaly.

The results of the effect on the deviation measurements are shown in Fig. 10.7.
We see the normal measurement and then the transient “jump” within the prescribed
time period. It is interesting to note that there is a corresponding disturbance in the
estimated (filtered) measurement indicating that there is enough of a disruption at
this SNR to cause the BP to track it. However, the BP is not able to track the tran-
sient extremely well—the expected results. Next we observe the deviation innovation
sequences output by the BP in Fig. 10.8. We again observe the transient anomaly in
both sequences, since the position estimates do not track it well enough. The zero-
mean/whiteness tests seem a bit too insensitive to the rapid change (6 samples) and
do not dramatically detect it even the whiteness tests do not indicate a non-white
sequence (0% out; 4% out). On the other hand, the WSSR test clearly detects “change
from normal” caused by the simulated beam line anomalies almost instantaneously
indicating a feasible solution. This is again expected since the WSSR statistic (o(£))
can be tuned to transient disruption by selecting the appropriate window length. For
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FIGURE 10.8 BP detection with simulated anomaly: (a) DX and DY innovations with
anomaly. (b) Optimality tests: Zero-mean (0.07 < 1.7; 0.05 < 2.3); whiteness (0% out; 4%
out). (¢) WSSR test (Threshold =18; N =5).

this problem we chose: (N =35; Threshold = 18). To verify the performance of the
zero-mean/whiteness test we observe the estimated positions (states) in Fig. 10.9.
Here we see that the BP actually responds to such a high amplitude level change in
the anomaly transient. The processor could easily be “tuned” to ignore the change of
the states by decreasing the process noise variance. Finally, the scatter plots for this
case are shown in Fig. 10.10: one for the optimal solution (no anomaly) and one for
the solution with the anomaly. The size difference of the error ellipsoids in both cases
is obvious due to the added uncertainty of the modeled anomaly. The three-sigma
error ellipsoid for the case with an anomaly suspiciously indicates that something is
different, since the estimated deviation uncertainty (ellipsoid) is actually about the
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FIGURE 10.9 Estimated XY-positions with anomaly: (a) Measured position estimates.
(b) Reference position estimates.

same size or larger than that of the raw data. This completes the study of applying a
Bayesian anomaly detector.

10.2 BROADBAND OCEAN ACOUSTIC PROCESSING

Acoustic sources found in the ocean environment are spatially complex and broad-
band, complicating the analysis of received acoustic data considerably. A Bayesian
approach is developed for a broadband source in a shallow ocean environment char-
acterized by a normal-mode propagation model. Here we develop the “optimal”
Bayesian solution to the broadband pressure-field enhancement and modal function
extraction problem.

10.2.1 Background

Acoustic sources found in the hostile ocean environment are complex both spatially
and temporally being broadband rather than narrowband. When propagating in the
shallow ocean these source characteristics complicate the analysis of received acoustic
data considerably—especially in littoral regions providing an important challenge for
signal processing [19-24]. It is this broadband or transient source problem that leads
us to a Bayesian signal enhancement solution.

The uncertainty of the ocean medium motivates the use of stochastic models to cap-
ture the random nature of the phenomena ranging from ambient noise and scattering



10.2 BROADBAND OCEAN ACOUSTIC PROCESSING 383

(@) 25 T T T T t

20 | Normal i

151 Raw data

or 3 Sigma
bounds

Enhanced

DY-deviation (pixels)

-30 -20 -10 0 10 20 30
DX-deviation (pixels)

Anomaly

Enhanced |

DY-deviation (pixels)
o

-30 —20 -10 0 10 20 30

DX-deviation (pixels)

FIGURE 10.10 Three-sigma error ellipsoid and estimated XY-position deviations: (o) Mea-
sured data (o) no anomaly. (b) Measured data (o) with anomaly. Enhanced (+).



384 BAYESIAN PROCESSORS FOR PHYSICS-BASED APPLICATIONS

to distant shipping and the nonstationary nature of this hostile environment. When
contemplating the broadband problem it is quite natural to develop temporal tech-
niques especially if the underlying model is the full wave equation; however, if we
assume a normal-mode propagation model then it seems more natural to: (1) filter the
broadband receiver outputs into narrow bands; (2) process each band with a devoted
processor; and then (3) combine the narrowband results either coherently [25] or
incoherently [26, 27] to create a broadband solution. One apparent advantage to this
approach is to utilize narrowband signal processing techniques thereby providing
some noise rejection and intermediate enhancement for the next stage. This is the
approach we take in this section to construct a broadband Bayesian processor (BP),
that is, we first decompose the problem into narrow bands and construct a bank of
Bayesian processors—one for each band. Finally, we incoherently or coherently com-
bine the outputs of each to provide an overall enhanced signal useful for detection
and localization.

Employing a vertical array of hydrophone sensors, the enhancement of noisy
broadband acoustic pressure-field measurements using a multichannel Bayesian tech-
nique is discussed. Here the Bayesian approach is developed for the broadband source
using a normal-mode propagation model. Propagation theory predicts that a different
modal structure evolves for each spectral line; therefore, it is not surprising that the
multichannel Bayesian solution to this problem results in a scheme that requires a
“bank” of processors—each employing its own underlying modal structure for the
narrow frequency band that it operates over. The Bayesian solution using state-space
forward propagators is developed and shown that each processor is decoupled in
modal space and recombined in the measurement space to provide enhanced estimates
[28, 29].

The methodology employed is based on a state-space representation of the normal-
mode propagation model [28]. When state-space representations can be accomplished,
then many of the current ocean acoustic processing problems can be analyzed and
solved using this more revealing and intuitive framework which is based on firm
statistical and system theoretic grounds. In this application, we seek techniques to
incorporate the: (1) ocean acoustic propagation model; (2) sensor array measurement
model; and (3) noise models (ambient, shipping, surface and measurement) into the
processor to solve the associated signal enhancement problem.

10.2.2 Broadband State-Space Ocean Acoustic Propagators

In this section we discuss the development of a broadband propagator eventually
employed in a Bayesian scheme to enhance noisy pressure-field measurements from
a vertical array of hydrophone sensors. First, we briefly discuss the propagator from
normal-mode theory following the Green’s function approach [32] and then extend
it using a state—space representation to develop a forward propagation scheme for
eventual use in Bayesian processor design.

It is well-known [32-34] in ocean acoustics that the pressure-field solution to the
Helmbholtz equation under the appropriate assumptions can be expressed as the sum
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of normal modes

M

Prz0) =Y aHo(c (m)r)pm(zs)pm(@)e (10.5)

m=1

where p is the acoustic pressure-field; a is the source amplitude; H, is the zeroth-
order Hankel function; ¢,, is the m'™ modal function evaluated at z and source depth
Zs; kr(m) is the horizontal wave number associated with the m™ mode; w, is the
temporal source frequency, and r is the horizontal range. The wave numbers satisfy
the corresponding dispersion relation

2
w
i = 20 K2m) + k2(m), m=1,....M (10.6)

where «; is the vertical wave number with ¢ the depth-dependent sound speed profile.
Taking the temporal Fourier transform of the pressure-field, we obtain

M
p(r,z,w) = Z aHo(kr(M)r)m(Zs, )P (2, @)3(w — @) (10.7)

m=1

indicating a narrowband solution or equivalently a line at w,, in the temporal frequency
domain.

This modal representation has been extended to include a broadband source, s(?),
with corresponding spectrum, Ss(w). In this case, the ocean medium is specified by its
Green’s function (impulse response) which can be expressed in terms of the inherent
normal modes spanning the water column

g(r.z,w) = Z Ho(er (M) @m(2s, @)pm(z, @) (10.8)

and therefore the resulting pressure-field in the temporal frequency domain is given by
p(r,z,w) = G(r,z,w)S(w) (10.9)

which equivalently corresponds to a convolution of G(r,z,t) and s(¢) in the time
domain.

Suppose we decompose the continuous source spectrum into a sampled or discrete
spectrum using a periodic impulse (frequency) sampler, then it follows that

Si(@) = Ao Y S@)8(w — wg) = Ao Y Swg)d(w — wy) (10.10)
q q

from the sampling properties of Fourier transforms. Therefore a broadband signal
spectrum can be decomposed into a set of narrowband components assuming an
impulse sampled spectrum.
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Utilizing this property in Eq. 10.10 and extracting just the ¢ source frequency,
we have that

p(r,z,0q) = G(r, 2, 0)Ss(wy) (10.11)

where S(w,) can be interpreted as a single narrowband impulse at w, with amplitude,
a; = Aw|S(wy)|. Suppose that the broadband source is assumed to be bandlimited
and sampled Ss(w), w1 <w < wg then

0
Si(@) = Ao Y S(wg)8(w — w,) (10.12)
g=1
Thus, the normal-mode solution to the Helmholtz equation for the broadband

source problem can be decomposed into a series of narrowband solutions, that is,

M,
p(r.z, wq) = Z aqu(Kr(m’ Dr)Pm(zs, wq)¢m(za a)q) (10.13)

m=1
and the dispersion relation now satisfies

Kz(mq)zw—é—Kz(mq) m=1,....Mg; g=1,...,0 (10.14)
r b C2(Z) Z b b 9 q b 9 .
This overall decomposition of the field into narrowband components could lead to
an enhancer averaging each narrowband component of source frequency and would
be the superposition of the pressure-field of Eq. 10.13 given by

0
pr2) =Y p(r,z,mp) (10.15)
q=1

assuming an incoherent approach as depicted in Fig. 10.11.

Suppose we further assume an L-element vertical sensor array, then z — zy,
£=1,...,L and therefore, the pressure-field at the array for the q’h temporal
frequency of Eq. 10.13 becomes

M‘I
Pr2e,0g) = Y Bulr, 26, 0)bm(ze, 0g) (10.16)

m=1

where Bu(r, z¢, wg) := agHo(kcr(m, @)r)m(zs, @q) is the m™-modal coefficient at the
g"" temporal frequency.
Thus, following Eq. 10.15 the broadband pressure-field at the £”-sensor is simply

0
prze) =Y p(r.ze. ) (10.17)
g=1
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FIGURE10.11 Decomposition of broadband signalinto narrowband components based
on normal-mode propagation representation.
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which corresponds to incoherently summing all of the narrowband solutions over the
discrete spectral lines (bins) [25].

Thus, the amount of spectral energy “seen” at the £”*-sensor in the ¢”-spectral bin
(wg = qAw) is defined by p(z¢, w,) and therefore the total energy seen by the array in
the q’h-bin is given by the set of sensor outputs, F(a)q) ={p(z1,wy), ... p(zL, wy)}. This
implies that the subsequent processor must be able to process Q temporal frequencies
over the array of L-sensors or must have LQ processors. One obvious technique
would be to collect the array snapshots at each frequency and incoherently average
the results, that is,

eth

0
P(w) = é > " P(w,) (10.18)
g=1

Using this approach implies that the “temporal incoherent processor” replaces the
noisy broadband signal P(w) with the smoothed signal P(w).

ITtis well known [29] that the state—space propagators for the narrowband pressure-
field can be obtained from the relationship

p(r,z, 1) = pu(r)p(z)e 72" (10.19)

Assuming that the source range is known (r = r) and transforming to the temporal
frequency domain, we have that

P(z, o) = Ho(kyrg)Pp(2)8(w — wo) (10.20)

with H, (k,rs) the zeroth-order Hankel function. If we sample the spatial pressure-field
with a vertical line array of hydrophones as before, then we have

P(2e, wo) = [B1(7s, 25, o) O ... |Bu(rs, 25, o) 0]p(z¢, o) (10.21)
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with Bin(rs, 25, wo) = Ho(Krrs)(Pm (zg, o) OF Simply
Pz, @0) = CT(ry, 25, 00) (20, o) (10.22)

In terms of these models, it has been shown [29] that the broadband state—space
propagator can be expressed as

L d(z.0) = AG @)D, )
dz
P(ze, @) = CT(ry, 2, )@ (20, @) (10.23)

where ®(z, ) e R X!, Az, ) € XM CT(7,0) e RVM with M= Y2 M,
Here we have implicitly assumed an incoherent sum over the set of temporal frequen-
cies for our pressure-field measurement model. Note we use the parameter “w” to
signify the entire set of discrete temporal frequencies, {wy},g=1,...,0.

The internal structure of this overall processor admits the following decomposition:

Az, w1) 0] - 0] ®(z,w1)

d [0 A(z,wy) - 0 P(z, )
—®(z,0) = . _ . . (10.24)

dz : " : :
0 0 o Az, o) | [ (2, w0)
and A(z, wg) = diag[Ai1(z, ) . . . Am, (2, wg)] € R2Mq*2Mg apd
Az, wy) = 0 1 =1,...M (10.25)
m(Z, Wq) = —K?(m,q)O R m=1,...,Mgq .

with the incoherent pressure-field sensor measurement model given by (see Fig. 10.11)

D(z¢, 1)
plze, ) = [CT (ry, 2, 1) . .. C(rs, 25, )] : (10.26)
D(zy, a)Q)

This deterministic model can be extended to a stochastic Gauss-Markov represen-
tation [11] given by

%d)(z, w) = Az, 0)®(z, w) + wW(z, w)
Pz, 0) = CT(z,0)® (20, 0) + v(z, ) (10.27)

where w, v are additive, zero-mean Gaussian noise sources with respective spec-
tral covariance matrices Ry, (z, ), and Ry, (z, ). Next we investigate the internal
structure of the broadband Bayesian processor.
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10.2.3 Broadband Bayesian Processing

The broadband pressure-field can be characterized by the function, p(z, ). If we
assume that the field is measured by a vertical array, then at each sensor the acquired
time series is given by p(z¢, t). Clearly, this sensor measurement contains all of the
information about the source, both temporally and spatially, but due to the com-
plexity of this received data coupled with the noise, the required signal processing
is quite a challenging problem. If we take the Fourier transform in the temporal
domain, then the broadband source can be thought of as being viewed through a
bank of narrowband temporal filters, that is, the broadband pressure-field surface or
image is then given by: p(z, w) = p(z¢, w,); for£=1,...,L,andg=1,..., 0. Once
this surface is constructed, it is possible to infer other useful information about the
dynamics of the ocean as well as the source. If we assume further that we have a
shallow water environment characterized by trapped wave propagation, then we may
represent the underlying Green’s function or channel impulse response in terms of
a normal-mode model. In this case it may also be of interest to observe the surface
created by the various broadband modal functions, that is, as a function of temporal
frequency, ¢ (z¢, w,); form=1,...,M,. It is clear that as we decompose this com-
plex temporal pressure-field measurement into these narrow frequency bands, each
band will contain oceanographical and source information. Thus, the problem that we
address first here, is that of receiving a set of temporal noisy broadband pressure-field
measurements and developing the enhancement necessary to construct the surfaces
created by both the broadband pressure-field and modal functions.

With this problem in mind, we now recast our incoherent measurement model of
Eq. 10.26 into that of a broadband system obtained by “stacking” all of the narrow-
band pressure-field measurements, rather than performing the coherent or incoherent
addition. The resulting vector broadband pressure-field measurement model at the £
vertical sensor is now given by

Pze. ) = CT(ry, 20, 0) B (2, ) + V(2¢, ) (10.28)
where p,v e C2%!, CT € R2*®M 'and & € R?M*1_ Expanding this model over the set
of discrete temporal frequencies {w;},g=1,..., 0, we have

p(ze, w1) CTz, 1) --- 0 ®(z¢, 1) v(ze, w1)
: = : . : : + :
P(ze, wQ) 0 o Cl(zp,00) | | ®(2e, w0) v(zg, Q)

(10.29)
We assume that the corresponding measurement spectral covariance is given by:
Ruy(z¢, w) = diag[Ryv(ze, w1) . . . Ryw(2e, w0)] (10.30)

In order to obtain the optimal (minimum error variance) estimator, we cast our
problem into a probabilistic framework under these Gauss-Markov assumption;
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therefore, our sequence of pressure-field measurements at each sensor are Fourier
transformed to yield a discrete set of frequencies {wy},g=1,...,Q and the set of
broadband sensor measurements, {p(z¢,w)},€=1,...,L;p€ C2%1 Note that the
window length of the Fourier transform is determined by the temporal correlation time
of the measurement (source) to assure the independence of the frequency samples.
For our pressure-field/modal function estimation problem, we define the underlying
broadband pressure-field/modal function enhancement problem as:

GIVEN aset of noisy broadband pressure-field measurements, {p(z¢, w)},£=1,...,L
and the underlying Gauss-Markov model (previous section), FIND the best (min-
imum error variance) estimate of the broadband modal functions, &)(zg,a)), and
pressure-field, p(z¢, ).

The Bayesian solution to this problem can be obtained by the maximizing the a
posteriori density. Define the set of broadband pressure-field measurements as: P, =
{p(z1,w),...,p(zL,w)};peC 0x1 then the maximum a-posteriori (MAP) estimator
of the modal functions must maximize the posterior density given by

Pr(®(z¢, )| Py) = W (10.31)

but it follows directly from Bayes’ rule that we have

Pr(® (2. )| Py) = Pr(P(Zz,w)|‘I>(Zle;rZ))(,Z1:e;l))|;: Plf)(‘I’(Ze,wNPefl) (1032)

Under Gauss-Markov assumptions, we have that

Pr(p(ze, )|Pe—1) ~ N(C(ry, 25, @)D(zee-1, ),
C(ry, 25, 0)P(zg1e—1, 0)CT (ry, 25, ) + Ryp(ze—1, )
Pr(p(z¢, 0)| ®(z¢, ), Pe—1) ~ N(C(ry, 75, 0) (20, @), Ryp(20-1, w))
Pr(®(z¢, )|Pe—1) ~ N(®(zeje—1, ), Pzeje—1, ) (10.33)

where the modal estimation error covariance is given by [29]
P(zj-1, ) = Aze—1, 0)P(ze—110—1, 0)AT (z¢—1,®) + Ry (ze—1,0)  (10.34)

Here the notation <i>(zm_1, w)=E{®(zy,w)|P¢—_1} is the conditional mean, that is,
the “best” (minimum variance) estimate at depth z, based on the previous sensor
measurement up to the depth z,_.

Now substituting these distributions into the a posteriori density and perform-
ing the necessary manipulations [17], we obtain the desired relations. That is, by
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maximizing the a posteriori density or equivalently its logarithm, we obtain the MAP
equation

)
aTbln Pr(®(z¢, »)|Py)| oy =0 (10.35)

Differentiating the posterior density, setting the result to zero and solving for ®(-)
gives the desired MAP estimator [29]

@ (2410, ) = B(zpp—1, ) + K(z0, w)e(ze, ) (10.36)

where ®(z, wy) € RPMX1 K(zp, 0) € C*M*C | and e(zp, w) € C2*! is the corrected
estimate (below) and shown in the linear space-varying broadband Kalman filter
algorithm. The overall structure of the estimator can be seen by expanding the gain
matrix over the set of discrete frequencies for w — w,, one for each of the Q-columns
to give
A R Q
D(z10, ) = Bzee-1,0) + Y K(20, 0g)e(ze, ) (10.37)
g=1
where <i>(z, w) € R*M*1 K(z, wy) € C2Mx1 and e(zy, wy) € C!*! Now let us rewrite
this equation in a slightly different manner by expanding over the set of discrete
frequencies and expressing the gain in terms of 2M, x Q block rows Kg(zg,a))

which have been decomposed further into its individual column vectors defined by
Kyn(ze, 04) € C?Myx1 0 obtain the narrowband recursion for the corrected estimate as

Y
D(z¢1¢, wg) = P(zep0—1, wg) + Z Kyn(ze, on)e(ze, wy) (10.33)

n=1

with &(Z@‘g, wy) € C2Myx1 the gain Ky, (z¢, wp) € CHMyx1 and e(zp, wy) € C*! show-
ing how each narrowband frequency line w, can be combined to form the optimal
MAP estimate.

These relations suggest an efficient parallel, but suboptimal approach to imple-
menting this broadband processor might be achieved by constructing a “local”
narrowband processor for each spectral line w, and then combining their outputs
to obtain the final broadband estimate, that is,

B (2010, 0g) = B(ze10—1, wq) + Kyq(ze, 0g)e(ze, ) (10.39)

where we have discarded the other 2M, x 1 submatrices, Ky, (z¢,w,)=0n+#¢q
to give
f’(ZW—l, w)CT (ry, 25, 0g)

Ree(ze, wq)

qu (ze» a)q)

The structure of the suboptimal broadband implementation of the BP is illustrated
in Fig. 10.12. Thus the optimal algorithm will consist of a bank of narrowband
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Bayesian predictors combined during the update (correction) phase o

f the algo-

rithm to create the broadband MAP estimator. The algorithm then proceeds for each

{wgl,q=1,...,0as:

Prediction:
d . A
pe D(z,0y) = Az, wy)®(z, wy)
P(ze, @) = CT(rs, 25, 0g)®(ze10—1, )
Innovation:
€(ze, wg) = p(ze, wq) — P(ze, wq)
Correction:
A ) o
D(z0i0, 0q) = (201, 09) + Y Kgn(ze, on)e(ze, wn)
n=1
Gain:

K(ze, ) = P(zeo—1, 0)CT (15, 25, 0)RZ (20, @)

(10.40)
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FIGURE 10.13 Shallow ocean environment problem: channel (100m) with broadband
(60 Hz) source located at range, rs= 10 Km and depth, z;=50m.

This completes the development of the broadband Bayesian processor. Next we
consider its application.

10.2.4 Broadband BSP Design

In this subsection we discuss the application of the Bayesian processor to data synthe-
sized by a broadband normal-mode model using the state—space forward propagator
and the underlying Gauss-Markov representation.

Let us consider a basic shallow water channel depicted in Fig. 10.13. We assume
a flat bottom, range independent three layer environment with a channel depth of
100 m, a sediment depth of 2.5 m and a subbottom. A vertical line array of 100-sensors
with spacing of Az=1m spans the entire water column and a broadband source of
unit amplitude and 50 Hz bandwidth ranging from 50-100 Hz in 10 Hz increments is
located at a depth of 50 m and a range of 10 Km from the array. The sound speed profile
in the water column and the sediment are sketched in the figure and specified along
with the other problem parameters. SNAP, a normal-mode propagation simulator [35]
is applied to solve this shallow water problem and executed over the set of discrete tem-
poral source frequencies. This boundary value problem was solved using SNAP and
the results at each narrowband frequency are shown [29]. We note that as the temporal
frequency increases, the number of modes increases thereby increasing the corre-
sponding order of the state—space. Details of the problem parameters are given in [29].
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The parameters obtained from SNAP are now used to construct the broadband
state—space and measurement models of the previous subsection. Here we use the set
of horizontal wave numbers, {«(m,q)},m=1,...,M,;q=1, ..., 0, and sound speed,
{c(z¢)}, to implement the state models along with the corresponding modal function
values, {¢1(z5, wq)}, as well as the Hankel functions, {H,(k(m, g)ry)} to construct
the measurement models.

The final set of parameters for our simulation are the modal and measurement noise
covariance matrices required by the Gauss-Markov model (see [29] for more details).

It is important to realize that the state—space “forward” propagators do not offer
an alternative solution to the Helmholtz equation (not to be confused with a marching
method), but rather use the parameters from the boundary value solution to obtain a
set of initial conditions/parameters for the propagator construction. Even the adap-
tive Bayesian processors still utilize the boundary value solutions to “initialize” the
processing [28].

With this information in hand, the Gauss-Markov simulation was performed at
SNR;, =25 dB (noise free) and SNR,,; = —30dB. The “true” pressure-field surface
is shown in Fig. 10.14 along with the corresponding noisy surface—both produced

True pressure-field

20 1

40 |

Depth (m)

50| |60 [70 80 90 \100
100 = ! ! 3
Frequency (Hz)

(c)

A. 80
/'Gq(/eo 70 60 20
(o)
J/(A/g) 50 ™o Dep\\\ Kﬂ\\
(b)

FIGURE 10.14 Synthesized broadband pressure-field surface: (a) True pressure-field.
(b) Noisy (—30dB) pressure-field. (c) Narrowband DFT filter outputs of true field.
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as outputs of a set of narrowband DFT filters at each w,. We also show the true
pressure-field functions which are expected to be extracted by the optimal processor
along with the modal function estimates.

The optimal Bayesian or minimum variance processor was designed using the
identical set of parameters used in the Gauss-Markov simulation thereby eliminating
any “mismatch” between model and environment. We can consider this simulation as
a bound on the best one could hope to achieve, since it is in fact the minimum variance
estimates satisfying the Cramer-Rao lower bound. In minimum variance estimation
it is important to realize the overall design philosophy. First, the key issue is that
a necessary and sufficient condition for optimality is that the innovation sequences
(difference between measured and predicted pressure-fields) are zero-mean and uncor-
related (white). Thus, actual minimum variance designs are not considered “tuned”
unless this condition is satisfied; therefore, the free parameters in the processor (usu-
ally initial conditions and process/measurement noise vectors/matrices) are adjusted
(if possible) until this condition is achieved. Once satisfied, then and only then can the
state (modal function) and measurement (pressure-field) estimates along with their
associated covariances be considered viable.

Thus, overall performance of the processor can be assessed by analyzing the sta-
tistical properties of the innovations, which is essentially the approach we take in
this feasibility test for the broadband processor design on synthesized data. There are
other tests that can be used with real data to check the consistency of the processor
(see Chapter 5 for more details).

10.2.5 Results

We use SSPACK_PC [30], a Bayesian processing toolbox available in MATLAB [31]
to design our broadband MBP. The results of the minimum variance design are shown
in Fig. 10.15, where we see the enhanced pressure-field and the corresponding inno-
vations sequences at each discrete temporal frequency as a function of depth. Each
of the innovations sequences tested zero-mean and white with the following test
results: 50Hz: (2% out; 0.08 <7.5); 60Hz: (2% out; 0.98 <2.5); 70Hz: (3.9%
out; 0.66 <2.6); 80 Hz: (2% out; 0.70 < 3.8); 90 Hz: (0% out; 0.70 < 1.9); 100 Hz:
(2% out; 1.90 < 3.4). The corresponding WSSR statistic lies below the threshold in
Fig. 10.16. Thus we have (as expected) achieved a minimum variance “broadband”
design. Note that the enhanced pressure-field estimate at each temporal frequency,
wy =150, 60, 70, 80,90, 100}, is governed by the Gauss-Markov model of the pre-
vious subsection. The corresponding modal functions were then extracted from the
noisy pressure-field producing viable estimates. The estimated modal functions cor-
respond to the two (2) modes at 50 Hz and three (3) at 60 Hz. The other estimated
modes (from the noisy data) are at 70 Hz (3 modes), 80 Hz (4 modes), 90 Hz (4 modes)
and 100 Hz (5 modes). Again note that the modal estimates (:)(Z[, wy) along with the
measurement model at each temporal frequency, C T(rs, Zs, ) are used to construct
the pressure-field, p(z¢,w,) at each temporal frequency solving the enhancement
problem.
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FIGURE 10.15 Broadband Bayesian processor design: (a) Enhanced pressure-field
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This completes the application of the broadband Bayesian processor designed to
enhance the pressure-field surface and extract the corresponding modal functions.

10.3 BAYESIAN PROCESSING FOR BIOTHREATS

The design of a “smart” physics-based processor for microcantilever sensor arrays to
detect various target species in solution based on the deflections of a functionalized
array is discussed. A proof-of-concept design is demonstrated and shown to perform
quite well on experimental data.

10.3.1 Background

Smart sensors with embedded processors offer unique advantages for applications
that must gather large amounts of data and continuously monitor evolving conditions
for potential changes (e.g., machine condition monitoring) or potential threats (e.g.,
biological, chemical, nuclear). Unfortunately, the usual processing techniques such
as nonparametric methods like wavelets or parametric methods like autoregressive-
moving average (ARMA) models do not capture the true essence of the problem
physics required to extract the desired information, detect the change or monitor
the environment for threats. The underlying physical phenomenology governing the
propagation physics is usually quite complex governed by nonlinearities typically
characterized by nonlinear differential/difference equations. Coupling the resulting
nonlinear processor to the sensor performing the measurement has not been considered
arealistic possibility until now with the evolution of high-speed microcomputer chips
that can easily be incorporated into the sensor design. We consider the design of
an algorithm coupled to a microelectromechanical sensor (MEMS) to estimate the
presence of critical materials or chemicals in solution.

Microcantilevers are powerful transducers for sensing inorganic, organic and
biological molecules, since they readily bend or deflect in the presence of a very
small number of target molecules (nanomolar to femtomolar concentrations) [36] as
shown in Fig. 10.17. The number of potential target chemicals is large, ranging from
DNA [37] to explosives [38], implying that these sensors may be useful in defense,
medicine, drug discovery, and environmental monitoring. Microcantilevers are capa-
ble of recognizing antibodies [39] and nerve agent products (hydrofluoric acid) in solu-
tion [40]. However, a major limitation of these sensors is that their signal-to-noise ratio
(SNR) is low in many operational environments of interest. Therefore, we discuss the
design of a “smart sensor” design combining the array with a physics-based processor
to minimize its inherent limitations and maximize the output SNR for enhancement.

We investigate the physics-based Bayesian approach [17] to develop a multichannel
processor evolving into a smart sensor for this application. This approach is essentially
incorporating mathematical models of both physical phenomenology (chemistry/flow
dynamics) and the measurement process (cantilever array including noise) into the
processor to extract the desired information. In this way the resulting Bayesian signal
processor (BSP) enables the interpretation of results directly in terms of the problem
physics.
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FIGURE 10.17 Micromachined cantilever array: (a) Eight(8)-element lever array.
(b) Lever deflection.

We discuss the design of physics-based signal processing to micromachined can-
tilever measurement arrays to estimate the critical materials in solution. We briefly
present the underlying physical phenomenology and reduce it to a simple model for
processor development. Unknown parameters in this model are “fit” from indepen-
dent experimental data. Once these parameters are estimated, we use minimum error
variance techniques for the BSP design [17]. We then apply the resulting processor
to experimental data demonstrating the overall enhancement that would lead to an
eventual “smart sensor” design. The resulting processor is based on nonlinear evo-
lution equations leading to an extended Bayesian processor (XBP) or classically, the
extended Kalman filter, (EKF) that can be implemented in an on-line manner yielding
the enhanced data as its output.

10.3.1.1 MicrocantileverSensors The dynamics of the fluids flowing over the
cantilever array of Fig. 10.17 is influenced by two major factors: temperature and flow.
The temperature is dependent on many variables and the dynamics are relatively slow,
creating a disturbance to the cantilever sensor system. Flow in the medium associated
with the array induces a stress along with the chemical forces created by the molecules
bonding with the functionalized levers leading to the measured deflection.
Micromachined cantilevers can function as detection devices when one side is
fabricated to be chemically distinct from the other, as shown in Fig. 10.17b. Func-
tionalization can be accomplished, for example, by evaporating a thin (10’s of nm)
film of metal such as gold on the top of the chip, then immersing the cantilever chip in
a “probe” chemical that will bind preferentially to the thin gold film. The lever acts as
a sensor when it is exposed to a second “target” chemical that reacts with the probe,
since the reaction causes a free energy change that induces stress at the cantilever
surface. Differential surface stress, Ao, in turn, induces a deflection of the cantilever
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that can be measured optically or electronically. In this subsection, we describe results
of experiments with gold-coated cantilevers exposed to 2-mercaptoethanol, a small
sulfur-terminated molecule with high affinity for gold.

When the microcantilever is immersed in a fluid and it has been functionalized
to attract the target molecules, the changes in surface stress can be predicted as a
function of surface loading. The evolution dynamics of this chemical interaction is
captured by the well-known Langmuir kinetics in terms of a set of ordinary nonlinear
differential equations. Rather than propagate these equations directly, we choose
to use their solution in our processor that accounts for the adsorption—desorption
kinetics. We developed an approximation to the Langmuir evolution equations based
on a stirred tank reactor to estimate the target concentration as a function of time
under continuous flow conditions. Experimentally, the applied chemical input signal
is a constant concentration initiated by a step (function) increase at time, toy, and
terminated at time, fopr [41].

Based on this representation of the process evolution physics, the dynamic (nor-
malized) surface concentration of the interacting molecules on the surface of the

cantilever, I'(¢) = Fm) , is given by the relations

MAX

0 t < ION
r = | (75825 ) 11— exp[—(kac) + ka)(t = oW} fon = 1 = tor

1
V 2ka(t—toFr) ¢ > IoFF

where k,, kg and c(¢) are the respective adsorption rate constant [M 1=t desorp-
tion rate constant (cm™2M :ls’l) and bulk concentration of the target molecules in
solution (moles/liter) with I'y74x, the maximum surface concentration of the species
of interest (cm™2M 1),

The total free energy change of the cantilever surface, AG, is related to the surface
stress difference Ao, between top and bottom side of the cantilever by

(10.41)

Ac(t) = AGHT(t)/ My (10.42)

where AG has units of J/mole and is the change in the sum of all of the contributions
to the free energy of the surface of the cantilever with M, is Avogadro’s number (con-
stant). The differential surface stress in the cantilever induces a chemically induced
deflection, AzC(¢), using a variant of Stoney’s equation [41], which implies that the
deflection of the cantilever is directly proportional to the difference in surface stress
(signal) on the cantilever surface relating this stress difference to the surface coverage
and free energy of absorption, that is,

302(1 —v)
ES?
where E is the Young’s modulus, v is the Poisson’s ratio, and £ and § are the cantilever

length and thickness, respectively. This model can be used to predict changes in
surface stress as a function of surface loading.

AZE(1) = BAG(t) for B = (10.43)
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The measurement model is more complicated, since it is the superposition of both
the chemical and temperature deflection phenomena

ye@®) = Az§ (O + AT (1) fore=1,...,L (10.44)

where Azf is the chemical deflection, different for different cantilevers, and AZT(t)
is the thermal deflection, assumed to be the same for all cantilevers. Since we have
approximated the physics developing the well-founded formulation of Eq. 10.41,
we know that there is uncertainty in both the measurements (noise) and the model
parameters. Therefore, we cast the problem into a Gauss-Markov (GM) state-space
framework [17] representing these uncertainties as additive Gaussian processes,
that is,

AG(t) = AG(t— 1D+ w(—1) [state]
ye(t) = Bel(t; ®)AG(H) + AZT(f) + ve(r) [measurements]  (10.45)

where £ =1,...,L; I'(t; ®) is given by Eq. 10.41 with unknown model parameters
defined by the vector, ® = [k, ky4 FMAX] and free energy (state) modeled as a ran-
dom walk (AG(t) = 0). This representation, therefore, creates the foundation for our
physics-based processor design. The process uncertainty is modeled by w and the
corresponding measurement uncertainty as v, both zero-mean Gaussian with respec-
tive covariances, Ry, and R,,. With this representation in mind, the cantilever signal
enhancement problem is defined as:

GIVEN aset of noisy deflection measurements {y,(¢)} with known bulk concentration
inputs, {c(¢)} and unknown parameters ®, FIND the best (minimum error variance)
estimate of the deflection, y(¢|7 — 1), that is, the conditional mean at # based on the
data up to time ¢ — 1.

The design of the processor for this problem is illustrated in Fig. 10.18 and Fig. 1.4,
1.5. After the cantilever physics model is developed, itis used (1) to extract the required
parameters using a physics-based parameter estimator; (2) to synthesize “data” for the
initial processor designs; and (3) to enhance the noisy measurements being incorpo-
rated into the final BSP structure. In the figure, we see that the complex mathematical
model of Eq. 10.41 (dashed box) is used to perform the physics-based parameter
estimation using independent experimental data to extract the required parameters
(adsorption/desorption rate constants and maximum concentration) as well as ini-
tially simulate data for BP design studies, once these parameters are extracted. The
actual experimental data replaces the synthesized and is used to validate the processor
performance.

10.3.2 Parameter Estimation

The basic approach is to first estimate the model parameters, ®, (off-line) from an
independent set of deflection measurements, and then, incorporate them into the BSP
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FIGURE 10.18 Physics-based approach to microcantilever “smart sensor” design: physics
evolution model, parameter estimation (off-line) data, Bayesian processor and data
enhancement.

to enhance the experimental (proof-of-concept) data. That is, we extract the critical
absorption, desorption rate constants and maximum concentration parameters for each
channel as: ®; = [k,(£) kq(€) Tyax(€)]. The parameter estimator employed was a
nonlinear least-squares solution using the Nelder-Meade polytope search algorithm
[43]. This algorithm is based on minimizing

N,
min J(©) = Y e} (1:0) for e(t; ©) 1= yu(t) — Hu(t: ©) (10.46)

t=1
where the estimated cantilever measurement at the £”*-lever is given by
Pe(t;0) = Az (1; ) + AZT (1) = BeT(1; ©)AG(r) + AZT (1) (10.47)

We executed this estimator on raw experimental deflection data and estimated the
parameters for each lever. The extracted parameters reasonably predicted the filtered
cantilever response and the resulting error was uncorrelated as discussed below.

10.3.3 Bayesian Processor Design

Next using these estimated parameters, we developed BSP for the multichannel deflec-
tion data. The GM model was used to synthesize the multichannel data and provide
known truth data to “tune” or adjust the processor noise covariance matrices that
provide the “knobs” for BSP design (see Fig. 10.18 and [17] for details). Since the
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simulation model and that used in the processor are identical, optimal (minimum
error variance) performance is achieved (zero-mean, uncorrelated errors) providing
the starting point for application to the experimental data. The final (simplified) BSP
algorithm (assuming the parameters, ©, have been estimated) is shown below. Here
we see that the algorithm has a classical predictor-corrector form where the prediction
estimates (conditional mean) the free energy, filters the measurement, estimates the
innovation and corrects the final (filtered) free energy estimate.

AG@Et—1) = AG(r— 1]t —1)
Je(r]t — 1) = BeT(1; ©)AG(t|r — 1) + A2 (1)  [Deflection Prediction]

ee(t) = ye®) — ye(tlt — 1)

AG@t) = AGHr — 1) + K (D)e®)

[Free Energy Prediction]

[Innovation or Residual]

[Free Energy Correction]

(10.48)

where Kk is the corresponding weight or gain and © is the output estimate from the
parameter estimator.
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FIGURE 10.20 Bayesian processing of microcantilever experimental (proof-of-concept)
data: Raw data, enhanced (BP) deflection measurement and residual results for each
lever.

10.3.4 Results

First, we take the filtered measurement signals, average them to a single measurement,
fit the parameters using an off-line optimization technique [43] and use the parameters
in the Bayesian processor. The results are shown in Fig. 10.19 where we see the
raw deflection and temperature measurements in a and b. The parameter estimator
results are shown in Fig. 10.19c along with the state (signal) estimator in d. The
parametric fit is quite reasonable as is the signal enhancement. However, it is clear
from the innovations that the optimal processor is clearly not Gaussian, since it is not
zero-mean or white. Next, we used the BSP with the free energy as our piecewise
constant parameter (state) and the nonlinear cantilever array model with 6 elements
along with a filtered estimate of the temperature profile in the processor, Az (z).
By tuning the measurement noise covariance parameters (R,,) we demonstrate that
the BSP is capable of tracking the noisy cantilever deflection data reasonably well;
however, the performance is again suboptimal, since the innovations (shown in each
figure), although quite small, are not uncorrelated. The results are shown in Fig. 10.20
where we see the raw measured cantilever data, Bayesian processor estimates and
the corresponding residual errors or innovations. The results are quite reasonable
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except for the systematic bias error in the processor output at each lever. The bias
is created by out lack of knowledge of the initial concentration input and can easily
be compensated (gain) at each lever as well. The dynamics appear to be captured
by the model especially in cantilever 5. From the figure we note that the dynamics
of the individual levers (on-set and off-sets) are quite close to the expected. This
design demonstrates that even complex physical systems can be incorporated into
physics-based processors enabling the development of a “smart” sensor.

10.4 BAYESIAN PROCESSING FOR THE DETECTION
OF RADIOACTIVE SOURCES

With the increase in terrorist activities throughout the world, the need to develop
techniques capable of detecting radioactive sources in a timely manner is a critical
requirement. The development of Bayesian processors for the detection of contraband
stems from the fact that the posterior distribution is clearly multimodal eliminating
the usual Gaussian-based processors. The development of a sequential bootstrap pro-
cessor for this problem is discussed and shown how it is capable of providing an
enhanced signal for detection.

10.4.1 Background

Radionuclide source detection is a critical technology to detect the transportation of
illicit radiological materials by potential terrorists. Detection of these materials is
particularly difficult due to the inherent low-count emissions produced. These emis-
sions result when sources are shielded to disguise their existence or, when being
transported, are in relative motion with respect to the sensors. This section addresses
the first step in investigating the problem of enhancing radionuclide signals from
noisy radiation measurements using a Bayesian approach. Some work has been
accomplished on this problem [44—48]. Here we model the source radionuclides
by decomposing them uniquely as a superposition (union) of monoenergetic sources.
Each y-ray emitted is then smeared and distorted as it is transported on a path to the
output of the detector for measurement and counting.

We start with the “physics-based” approach to solving this suite of problems and
then discuss the measurement system employed to detect y-rays and show how the
mononenergetic approach leads to a compound Poisson driven Markov process [56]
which is amplified, shaped and digitized for further processing. The processor is devel-
oped using state-space representations of the transition probability and associated
likelihood and we apply it to synthesized data to evaluate its performance.

10.4.2 Physics-Based Models

Radiation detection is the unique characterization of a radionuclide based on its elec-
tromagnetic emissions. It has been and continues to be an intense area of research
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FIGURE 10.21 Gamma-ray evolufion and measurement: radionuclide source (EMS),
medium fransport (physics), detector material interaction, detector temporal response
(preamplification/pulse shaping) and A/D conversion with quantization noise.

and development for well over 50 years [57-61]. It is well known that a particu-
lar radionuclide can be uniquely characterized by two basic properties: its energy
emitted in the form of photons or gamma-rays (y-rays) and its radioactive decay rate.
Knowledge of one or both of these parameters is a unique representation of a radionu-
clide. Mathematically, we define the pair, [{€;}, {A;}], as the respective energy level
(MeV) and decay rate (probability of disintegration/nuclei/sec) of the i”*~component
of the elemental radionuclide. Although either of these parameters can be used to
uniquely characterize a radionuclide, only one is actually necessary—unless there
is uncertainty in extracting the parameter. Gamma ray spectrometry is a methodol-
ogy utilized to estimate the energy (probability) distribution or spectrum by creating
a histogram of measured arrival data at various levels (counts vs. binned energy)
[58]. It essentially decomposes the test sample y-ray emissions into energy bins
discarding the temporal information. The sharp lines are used to identify the cor-
responding energy bin “detecting” the presence of a particular component of the
radionuclide. In the ideal case, the spectrum consists only of lines or spikes located
at the correct bins of each constituent energy, €;, uniquely characterizing the test
radionuclide sample.

Gamma-ray interactions are subject to the usual physical interaction constraints of
scattering and attenuation as well as uncertainties intrinsic to the detection process.
Energy detectors are designed to estimate the y-ray energy from the measured elec-
tron current. A typical detector is plagued with a variety of extraneous measurement
uncertainty that creates inaccuracy and spreading of the measured current impulse
(and therefore y-ray energy). The evolution of a y-ray as it is transported through the
medium and interacts with materials, shield and the detector is shown in Fig. 10.21.
It is important to realize that in the diagram, the source radionuclide is represented
by its constituents in terms of monoenergetic (single energy level) components and
arrival times as &(¢;, 7;). Since this representation of the source radionuclide contains
the constituent energy levels and timing, then all of the information is completely
captured by the sets, [{€;}, {r;}], i=1,...,Nc. The arrivals can be used to extract
the corresponding set of decay constants, {A;} which are reciprocally related (1/mean
rate). Thus, from the detector measurement of arrivals, or equivalently the so-called
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FIGURE 10.22 Monoenergetic source decomposition: individual source constituent EMS
from ideal composite (superposition).

event mode sequence (EMS), a particular radionuclide can be uniquely characterized.
The constituent energy levels (spikes), {¢;} and arrival times, {t;}, extracted from
the EMS are depicted in Fig. 10.22, where we show the union (superposition) of
each of the individual constituent monoenergetic sequences composing the complete
radionuclide EMS. Note that there is no overlapping of arrivals—a highly improbable
event.

So we see that the signal processing model developed from the transport of the
y-ray as it travels to the detector is measured and evolves as a distorted EMS.
First, we develop a model of the event mode sequence in terms of its monoen-
ergetic decomposition. Define &(t;€;, 7;, A;) as the component EMS sequence of
the i”"-monoenergetic source at time ¢ of energy level (amplitude), €; and arrival
time, t; with decay rate, »;—as a single impulse, that is, &£(¢; €;, 7;, A;) = €;8(t — T;)
and rate A;. Thus, we note that the ideal EMS is composed of sets of energy-
time pairs, {€;, 7;}. In order to define the entire emission sequence over a specified
time interval, [#,,T), we introduce the set notation, 7;:={7;(1)...7;(Ne(i)) } at
the n'-arrival with N.(i) the total number of counts for the i""-source in the inter-
val. Therefore, &(¢; €;, T;, A;) results in an unequally-spaced impulse train given by
(see Fig. 10.22)

Nc(i) Ne(i)
Erent) = Y Eten i) = Y edlt — Tin) (10.49)
n=1 n=1

The interarrival time, is defined by Art;(n) =rti(n) — ti(n — 1) for A7;(0) = 1,
with the corresponding set definition (above) of At; fori=1,..., Ne(i) — 1. Next we
extend the EMS model from a single source representation to incorporate a set of
Ne-monoenergetic sources.
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Suppose we have a radionuclide source whose EMS is decomposed into its N-
monoenergetic source components, £(¢; €, T, A). From the composition of the EMS we
know that

N. N(i) Ne Ne(i)

E(t e, T,0) = Z Z E(t; €1, Ti(n), i) = Z Z €8t — ti(n) (10.50)

i=1 n=1 i=1 n=1

Clearly, since the EMS is the superposition of Poisson processes, then it is
also a composite Poisson process [56] with parameters: A = Zi\il Ai, €= vazfl €,
Ne = Zf\ﬁ | Ne(@) for A the total decay rate, € the associated energy levels and Ng the
total counts in the interval, [#,, T). Note that the composite decay rate is the superpo-
sition of all of the individual component rates. This follows directly from the fact that
the sum of exponentially (Poisson) distributed variables are exponential (Poisson). We
note that the (composite) EMS of the radionuclide directly contains information about
A, but not about its individual components—unless we can extract the monoenergetic
representation (Eq. 10.50) from the measured data.
Statistically, the EMS can be characterized by the following properties:

 non-uniform arrival time samples, t;(n)

» monoenergetic source components, &(¢; €;, 7;(n), A;) having their own unique
decay rate, A;

« unique energy level, ¢;

» gamma distributed arrival times, t;(n), I'(k, 7;)

« Poisson distributed counts, N(i), P(N¢(n) = m)

exponentially distributed interarrival times, At;(n), E(A;Ati(n))

composite decay rate, A

Next we consider the measurement of the EMS along with its inherent
uncertainties.

10.4.3 Gamma-Ray Detector Measurements

Using the mathematical description of the EMS in terms of its monoenergetic source
decomposition model discussed previously, we show how this ideal representation
must be modified because of the distortion and smearing effects that occur as the y-
rays propagate according to the transport physics of the radiation process. Typically,
these are quantified in terms of y-ray spectral properties of energy “peak width”
and “peak amplitude”. The uncertainties evolve from three factors inherent in the
material and instrumentation: inherent statistical spread in the number of charge
carriers, variations in the charge collection efficiency and electronic noise [58]. In
general, the energy resolution is defined in terms of a Gaussian random variable,

€ ~ N(&,02).
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Next we consider uncertainties created in the associated pulse processing sys-
tem that consists of an amplifier and pulse shaping circuits. Here we concentrate
on the amplitude output of the pulse shaper, since it carries not only the quantified
y-ray energy information, but also it is used for the detector timing circuits (gat-
ing pulses, logic pulses, etc.). The shaped pulse is converted to a logic pulse in
order to extract the energy amplitude and precise timing information (arrival times,
interarrival times, etc.). We consider the pulse shaper circuitry capable of taking the
“raw” detector charge pulse, amplifying and shaping it to create a Gaussian pulse
shape [58]. Once the Gaussian pulse amplitude, which is proportional to the orig-
inal y-ray energy (after scaling), is digitized or quantized by the analog-to-digital
converter (ADC), the critical EMS parameters, [{€;}, {7}, {A;}], energy level, arrival
time and decay rate can be extracted for further analysis and processing. From this
data all other information can be inferred about the identity and quantity of the test
radionuclide.

Next we define a signal processing model that captures the major characteris-
tics of a solid state detector in order to formulate our Bayesian approach to the
radiation detection problem. Consider the diagram again of the overall detector sys-
tem shown in Fig. 10.21. Here we see how the y-ray is transported through the
medium (scattering and attenuation) to the detector. Each photon is deposited in the
detector material, charge is collected and a charging current created. This current
passes into measurement electronics that are also contaminated with random noise
followed by the quantization to produce the noisy output measurement. Thus, from
the i"-monoenergetic component we have

Ne(D)

P(D) =Y &t €4, i), 1) % 1(8) + we, (1)
n=1
Ne(i)
= Z €r(t — Ti(n)) + we, (f) (10.51)
n=1

where r(¢f) is a rectangular window of unit amplitude defined within
7;(n) <t < t;(n — 1). The uncertain (random) amplitude is Gaussian, ¢; ~ N(€;, ofi),
with inherent uncertainty representing the material charge collection process time “jit-
ter” by the additive zero-mean, Gaussian noise, wy, ~ N (T;, aiq) and t(n) — ti(n);
n=1,...,Ni). Therefore, the material output pulse train for the /"-source is given by
5(t) = Hg(t) x pp, (t) + v(¢). Extending the model to incorporate all of the N,-sources
composing the radionuclide leads to the superposition of all of the monoenergetic
pulse trains, that is, p, (1) = Zf\ﬁl Pm;(t). The uncertain material pulse, p,(f), is
then provided as input to the pulse shaping circuitry. Here the preamplifier and pulse
shaper are characterized by a Gaussian filter with impulse response, Hg(f) with output
given by

s(t) = Hg(t) % pm(t) + v(t) (10.52)
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where the uncertainty created by instrumentation noise is modeled through the addi-
tive zero-mean, Gaussian noise source, v~ N0, 05). The shaped pulse is then
quantized (fx — ¢) and digitally processed to extract the energy levels and timing
information for further processing. Due to quantization limitations the ADC inher-
ently contaminates the measured pulse with zero-mean, Gaussian quantization noise,
v,(#x) while there exists background radiation noise, b(#;) that must also be taken into
account. At this point, we could also develop a signal processing model of the back-
ground, but we choose simplicity. We just simply model it as an additive disturbance
at the output of the quantizer given by b(#) giving us the final expression at the output
of the quantizer as

(1) = s(tx) + b(tk) + vy (te) (10.53)

with vy ~ N0, 03).

So we see that the entire EMS can be captured in a signal processing model with
the key being the monoenergetic source decomposition representation of radiation
transport. Next we start with this model and convert it to state-space Markovian form
directly for Bayesian processing.

In our problem, the EMS is the noisy input sequence characterized by both input
and noise processes, that is, £ and w; — w. The states are part of the preamplifier and
Gaussian pulse shaping system and the output is the quantized measurement, that is,
z(tx) — y(t). To be more specific, we use &(; €;, T;, A;), the i”’—monoenergetic source
including both amplitude and timing uncertainties as a Poisson input to our Markovian
model above along with the matrices, A, B, C, specifying the pulse shaping circuit
parameters transformed to state-space form.

To see this consider the state-space representation for a single monoenergetic
source is given by the following set of relations:

xi(t) = Aixi(t) + b;i&(t; €;, T;, Ai) + Wiw,(f)  [Source]
y(1) = ¢ixi(t) + v(r) [Pulse Shaper]
(k) = y(ty) + vq(tk); i=1,...,N [ADC] (10.54)

Expanding this model over i to incorporate the N.-monoenergetic source components
gives the extended state vector, x(¢) = [x;(t) | x2(t) | ... | xn_.(¢)] where each compo-
nent state is dimensioned N, and therefore, x € RNxNeX I Thus, the overall radiation
detection state—space model for N, monoenergetic sources is given by: A = diag[A;],
B=diag[B;], C=[c| || ... | c}ve].

It is interesting to note some of the major properties of this model. The first
feature to note is that the monoenergetic decomposition of the radionuclide source is
incorporated directly into the model structure. For instance, it we are searching for a
particular radionuclide and we know its major energy lines that uniquely describe its
spectrum, we can choose the appropriate value of N, and specify its corresponding
mean energy levels and decay rates directly—this is the physics-based approach.
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We also note that the corresponding noise and statistics are easily captured by this
structure as well. This formulation is a continuous-discrete or simply “sampled-data”
model, since the ADC in used in the detection scheme.

10.4.4 Bayesian Physics-Based Processor

In this section we discuss the development of a Bayesian processor for a problem of
enhancing a noisy EMS measurement with all of the information required “known”
a priori. We demonstrate how a radiation detector can be modeled (simply) from a
physics/statistical signal processing perspective, develop the mathematical represen-
tations and incorporate them into a Bayesian framework to enhance the constituent
monoenergetic representation. We then demonstrate the Bayesian framework with an
illustrative simulation.

A simple radiation transport synthesizer was developed for signal analysis purposes
[62]. It consists of specifying the radionuclide in terms of its EMS and corresponding
monoenergetic source decomposition then transporting this sequence through the
medium (shield) along with its inherent scattering to the detector. At the detec-
tor the “surviving” or escaping y-ray photons are transported through the detector
material (semiconductor) again being absorbed and scattered with the final surviv-
ing photons providing the current pulse input to the shaping circuitry as shown in
Fig. 10.21. After initializing the radionuclide and its corresponding monoenergetic
source decomposition, the simulator transports the “ideal” EMS through the shield that
incorporates both absorption (attenuation) and scattering (Compton) properties using
the prescribed shield parameters. The output of this step is specified by the percentage
of the photons escaping the shield and those captured or absorbed by the material and
converted to thermal energy. The surviving photons escaping are then transported to
the detector material where they undergo further absorption and scattering with the
survivors converted to charge (electrons) provided as the input to the detector shaping
circuitry.

To illustrate the Bayesian approach using physics-based signal processing mod-
els, we choose a single monoenergetic source sequence to represent a radionuclide
with parameters, {€,,A,, Nc(0)} and generate the distortion and Gaussian smearing
to synthesize the noisy detector output as illustrated previously in Fig. 10.21. Next
we investigate the development of a sequential Bayesian processor for the following
problem which can be stated formally as:

GIVEN aset of noisy y-ray detector measurements, {z(#)} and a set of a priori param-
eters {€,, Ao, Ne(0)} or equivalently its state-space representation, X, = {A,, By, C,},
along with a known (generated) EMS, {£,(¢)}, FIND best estimate of the underlying
radionuclide EMS, {J(t;)}.

For our problem we assume we have a “good” synthetic model of the EMS and
we construct the ideal physics-based processor with known parameters {¢,, T, Ne(0)}
or equivalently known (generated by model) EMS. Note that we use the simplified
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notation, &,(t) — &(t;€,,7,,1,). Therefore, the state—space representation is
given by

Xo(t) = Apxo(t) + bo€o(t) + we, (1)  [Process]
y(1) = ¢\ xo(t) + v() [Measurement]
Z(tr) = y(t) + vg(te) [ADC] (10.55)

where we, ~ N(0, Ry,u,), v~N(0,Ry) and v, ~N(0,Ry,y,). Under these linear
assumptions with additive Gaussian noise processes, the optimal processor is the
Kalman filter [17].

In order to develop the particle filter for this problem we require that the transition
and likelihood distributions; therefore, under the modeling assumptions (Gaussian
noise, known input, parameters, etc.), we have that:

AGC@x(t — 1) ~ N(Aox(t — 1) + bo&o(t), Ruyu,, (t — 1))
CO@x(0) ~ N(c,x(1), Ry)

Therefore, the bootstrap particle filter implementation for this problem for
i=1,...,Npyis:

o Draw: x;(t) ~ A(x(0)|xi( — 1)); w; ~ Pr(w;(1));
« Weight: Wi(r) = C(y(1)|x(1));

« Normalize: W;(¢);

o Resample: x;(t) = x;(1);

« Posterior: f;r(x(t)|Y,)% i Wi)dx(1) — xi(2);
o Inferences: x(¢|t), Xpap(2).

This completes the formulation and Bayesian processor realizations both for the
Kalman and particle filter designs, next we synthesize a radiation detection problem
and apply the processors.

Suppose we have a nuclide represented by a single monoenergetic source of energy
level, €, = 3.086 keV . Using the transport simulator with the following Gaussian noise
variances: Ry, = 1070 and R,,, = 1072, we generated a realization of the noisy EMS.
Next we construct the EMS signal enhancer and the results are shown in Fig. 10.23
where we observe the raw synthesized data illustrated along with the enhanced
Bayesian processor estimates (both conditional mean and maximum a-posteriori).
We see the enhanced EMS signal in (a) along with a zoomed version to observe
the actual enhancement. Note the zero amplitude level noise has been minimized
as part of the enhancement process. The optimal, X,,, (Kalman filter), and particle
filter inferences for both conditional mean and maximum a-posteriori are annotated
in Fig. 10.23; howeyver, all of the realizations overlay one another so they are hard to
differentiate.
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FIGURE 10.23 Bayesian Processor for radiation detection signal enhancement. (a) Entire
EMS enhancement with box annotating zoom area. (b) Zoomed EMS with raw and
enhanced processor outputs.

10.4.5 Physics-Based Bayesian Deconvolution Processor

In this section we consider extending the BP algorithm to solve the problem of esti-
mating an unknown input from data that have been “filtered.” This problem is called
deconvolution in signal processing literature and occurs commonly in seismic and
speech processing [63] as well as transient problems [17, 64].

In many measurement systems it is necessary to deconvolve or estimate the input
to an instrument given that the data are noisy. The basic deconvolution problem is
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u(t)y ——— H (1) — (0
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w(t) v(t)
u(r) —(g— H () 4(g— y(0)

y(t)=H()*[u(t)+w(t)]+v(t)
(b)

FIGURE 10.24 Model-based deconvolution problem: (a) Deterministic problem.
(b) Stochastic problem (Gauss-Markov formulation).

depicted in Fig. 10.24a for deterministic inputs {«(¢)} and outputs {y(¢)}. The problem
can be simply stated as follows:

GIVEN the impulse response, H(t) of a linear system and outputs {y(¢)}, FIND the
unknown input {u(#)} over some time interval.

In practice this problem is complicated by the fact that the data are noisy and
impulse response models are uncertain. Therefore, a more pragmatic view of the
problem would account for these uncertainties. The uncertainties lead us to define the
stochastic deconvolution problem shown in Fig. 10.24b. This problem can be stated
as follows:

GIVEN a model of the linear system, H(¢) and discrete noisy measurements {y(f)},
FIND the minimum (error) variance estimate of the input sequence {u(f)} over some
time interval.

The solution to this problem using the Bayesian processor involves developing a
model for the input and augmenting the state vector [17]. Suppose we utilize a discrete
Gauss-Markov model and augment the following Gauss-Markov model of the input
signal:

wit)=F@t— Du@—1)+ni—1) (10.56)
where n~N(0,R,,(t)). The augmented Gauss-Markov model is given by

Xy =[x |u'] and w),:=[w | n]:

Xu(t) = Au(t — DXt — 1) + wy(t — 1) (10.57)
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and

y(@) = Cu(D)X, (1) + v(2) (10.58)

The matrices in the augmented model are given by

_[Aae-1) Ba@-1D]. _ [Ruw@ = 1) Ryn—1)
Au“—l)—[ 0 F(t—l)}’ Rw"‘[Rnw(r—l) R,m(r—n}

and
Cu(t) = [C() | O]

This model can be simplified by choosing F' =1I; that is, u is a piecewise constant.
This model becomes valid if the system is oversampled [64]. The BP for this problem
is the standard Kalman filter Bayesian algorithm with the augmented matrices given
by the equations:

State prediction: X, (1]t — 1) = A, X, (t — 1]t — 1)

Innovation: e(t) = y(t) — y(¢|t — 1) where y(¢|t — 1) = CuXu(tlt —1)
State correction: )A(u(t|t) = )A(u(t|t — 1)+ K(t)e()

with K (¢), the Kalman gain calculated using the state error and innovations covariance
matrices where }A(u(t|t) = E{X,(?)|Y;}, that is, the conditional mean estimate of the
augmented state given all of the previous data up to time z. Note that this is an optimal
estimator under Gaussian assumptions (see Candy [17] for details).

One approach to estimating the unknown input sequence, u(¢) is to use a Taylor-
series representation [64] given by

AT AT?
l/l([ + AT) =y + o] T + an T +H.O.T. (1059)

where o; = % foru(t+ AT)~ ), «; (AI—,TI)

For our problem [47, 48] we consider two cases: the composite system of the
pre-amplifier and pulse shaping circuits; and (ii) the pre-amplifier subsystem. In case
(i) we assume all of the required information about the EMS is available at the output
of the pulse shaping circuitry and the quantifier (ADC) merely extracts the maximum
amplitude of the Gaussian shaped pulse and corresponding arrival times, [{&;}, {ti}].
However, we also consider case (ii) where we measure the output of the pre-amplifier
(separately). Here the energy deposited by the y-ray and subsequent charge curve
reveals more detailed information about the y-ray physics (arrival times, multiple
arrivals, etc.). We digitize the actual pre-amplifier output generating a time series of the
pulse and then perform the deconvolution to extract an “enhanced” y-ray pulse through
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the recovered (deconvolved) charging curve leading to the enhanced EMS. Once the
EMS is recovered, the inherent photon information can be extracted (amplitudes and
arrivals) and counted or employed as the input to a parameter estimator capable of
providing improved energy (amplitude) estimates and corresponding arrival times
while minimizing the noise and uncertainty.

In this section we concentrate on the model and deconvolved EMS. We accomplish
the deconvolution by performing a system identification [17] of both pre-amplifier and
pulse shaper to obtain transfer function estimates and then incorporate these estimates
in the deconvolution algorithm. In this manner we will eventually be able to construct
the final Bayesian sequential processor.

Once the deconvolved EMS is available from the processor, a Bayesian detector
can be constructed to “decide” whether or not the threat radionuclide is present. If
we assume the deconvolved and enhanced EMS is captured by é(t; €, T, ). Thus, the
binary detection problem is defined by testing the hypotheses

Ho : y(t) = v(¢) [Noise]
Hi:y@) = é(t; €,7,A) + v(¢) [Signal + Noise] (10.60)

with v~ N(0, R,,). Thus, under the Neyman-Pearson criterion the optimal sequential
decision function is the log-likelihood ratio given by [65]

Ag(t) = At — 1) + InPr(y(®)|H1) — In Pr(y(1)|H,) (10.61)

here the distributions are specified by the inherent statistics associated with the EMS
that still must be determined. Our approach will be to develop particle filters capable of
estimating the appropriate posterior distributions. The sequential detector is therefore
given by

Hi
>

Ag(l) < Te (10.62)
H()

Ultimately, this scheme will be implemented to perform the radionuclide contraband
detection.

10.4.6 Results

In this section we discuss the results of developing the models for both pre-amplifier
and pulse shaper and applying them to perform the deconvolution operation [47], [48].
We injected a set of pulses into both subsystem components individually obtaining
the required transfer functions and then developed the physics-based deconvolution
processor as discussed in the previous section.

The test of the algorithm is on a simulated radionuclide (°°Co) EMS with 1.17 and
1.33 MeV lines generating the random detector input sequence. Here we convolved the
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FIGURE 10.25 Bayesian deconvolution processor design. (a) Response estimate from
system identification of composite (preamplifier and pulse shaper) system. (b) Decon-
volution processing using identified impulse response (transfer function) with synthesized
(known) EMS (¢°Co: 1.17 and 1.33MeV lines).

simulator output (deposited energy) with the identified composite transfer function.
The results are shown in Fig. 10.25, where we see the transfer function validation run
in (a) and the actual deconvolution processor output in (b). The processor is capable
of extracting the EMS successfully and improving the overall y-ray spectrum signifi-
cantly as shown in Fig. 10.26. In (a) we see the “true” spectrum indicating two sharp
energy lines at the correct energies (1.17 and 1.33 MeV), (b) the estimated (decon-
volved) spectrum has captured the lines with some uncertainty (spreading shown), but
its performance is quite reasonable and demonstrates the enhancement as observed
from the measured spectrum of (c¢). Thus the Bayesian deconvolver works quite well
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FIGURE 10.26 Deconvolution processor performance/enhancement (©°Co: 1.17 and

1.33MeV lines). (a) Histogram of True EMS (synthesized). (b) Processed EMS histogram.
(¢) Raw (synthesized) measured detector output histogram.

on the synthesized data set. Thus, it appears that the processor can reliably extract the
input excitation using this physics-based approach.
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Appendix A

PROBABILITY AND
STATISTICS OVERVIEW

A.1 PROBABILITY THEORY

Defining a sample space (outcomes), €2, a field (events), B, and a probability function
(on a class of events), Pr, we can construct an experiment as the triple, {<2, B, Pr}.

Example A.1
Consider the experiment, {€2, B, Pr} of tossing a fair coin, then we see that
Sample space: = {H,T}
Events: B = {0,{H},{T}}
Probability: Pr(H) = p
P(T) = 1-p AAA

With the idea of a sample space, probability function, and experiment in mind,
we can now start to define the concept of a discrete random signal more precisely.
We define a discrete random variable as a real function whose value is determined
by the outcome of an experiment. It assigns a real number to each point of a sample
space €2, which consists of all the possible outcomes of the experiment. A random
variable X and its realization x are written as

X(@)=x for weS (A1)

Consider the following example of a simple experiment.

Bayesian Signal Processing. By James V. Candy
Copyright © 2009 John Wiley & Sons, Inc.
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Example A.2

We are asked to analyze the experiment of flipping a fair coin, then the sample space
consists of a head or tail as possible outcomes, that is,

Q={0HT} = X(w)=x
w=1{H,T}

If we assign a 1 for a head and O for a tail, then the random variable X performs the
mapping of

X(w=H)=x(H)=1
Xw=T)=x(T)=0
where x(.) is called the sample value or realization of the random variable X. AAA
A probability mass function defined in terms of the random variable, that is,
Px(x;) = Pr(X(w;) = xi) (A2)

and the probability distribution function is defined by

Fx(xi) = Pr(X(®;) < xi) (A.3)

These are related by
Px(x;) =3 Fx(x)d(x — x;) (A4)
Fx(x)) =Y, Px(xpu(x — x;) (A.5)

where 8, and u are the unit impulse and step functions, respectively.
It is easy to show that the distribution function is a monotonically increasing
function (see Papoulis [1] for details) satisfying the following properties,

lim Fx(x;)) =0

Xi——00
and
lim Fx(x) =1
Xi—> 00

These properties can be used to show that the mass function satisfies
> Px(x) =1
i

Either the distribution or probability mass function completely describe the
properties of arandom variable. Given either of these functions, we can calculate prob-
abilities that the random variable takes on values in any set of events on the real line.
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To complete our coin tossing example, if we define the probability of a head occurring
as p, then we can calculate the distribution and mass functions as shown in the
following example.

Example A.3

Consider the coin tossing experiment and calculate the corresponding mass and
distribution functions. From the previous example, we have

Sample space: Q = {H,T}
Events: B = {0, {H},{T}}
Probability: Px(xi=H) = p

Px(xo=T) = 1—p
Random variable: X(w; =H) = x1=1
X(wr=T) = x=0

1 xi>1
Distribution: Fx(x;) =411l—-p 0=<x=<1
0 x; <0

the mass and distribution functions for this example are shown in Fig. A.1. Note that
the sum of the mass function value must be 1 and that the maximum value of the
distribution function is 1 satisfying the properties mentioned previously. AAA

If we extend the idea that a random variable is now a function of time as well,

then we can define a stochastic process as discussed in Chapter 2. More formerly, a
random or stochastic process is a two dimensional function of ¢ and w:

X(t,0) weQ, teT (A.6)

where T is a set of index parameters (continuous or discrete) and 2 is the sample
space.

1-p x=0
Pux)=4p x=1
@) Otherwise
Ll EEEC— -—
pH . P
Py(x) Fx(x)
(1-p)s (1-p)¢—
| . | -
0 1 X 0 1 X

FIGURE A.1 Probability mass and distribution functions for coin-tossing experiment.
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We list some of the major theorems in probability theory and refer the reader to
more detailed texts [1, 2].

Univariate: Pr(X) = Px(x)
Bivariate: Pr(X,Y) = Pxy(x,y)
Marginal: Pr(X) = Zy Pxy(x,y)
Independent: Pr(X,Y) = Px(x)xPy(y)
Conditional: Pr(X|Y) = Pxy(x,y)/Py(»)

Chain Rule: Pr(X,Y,Z)

Pr(X|Y,Z) x Pr(Y|Z) x Pr(Z)

For a random variable, we can define basic statistics in terms of the probability
mass function. The expected value or mean of a random variable X, is given by

m, = E{X}

and is considered the typical or representative value of a given set of data. For this
reason, the mean is called a measure of central tendency. The degree to which numer-
ical data tend to spread about the expected value is usually measured by the variance
or equivalently, auto-covariance given by

Ry = E{(X — my)*}

The basic statistical measures are called ensemble statistics because they are measured
across the ensemble (i =1,2,...) of data values, that is, the expectation is always
assumed over an ensemble of realizations. We summarize these statistics in terms of
their mass function as:

Expected Value: m, = E{X} = > XiPx(x;)
N"-moment: E{X"} = > XI"Px(x)
N™_-moment about mean: E{(X — m,)"} = > (X — my)"Px(xi)
Mean Squared (N =2): E{X?) > XiZPX(x,-)

Variance: Ru= E{Xi—m)* = Y, (X; —my)*Px(x;)
Covariance: Ryy = E{(X; — m)(Y; — my)}
Standard Deviation: Oxx = /Ru

Conditional Mean: E{X|Y} = > X;P(X;|Y)

Joint Conditional Mean:  E{X|Y,Z} = Y XiPX;|Y,Z)
Conditional Variance: Ryjy = E{(X — E{X|Y})?|Y)

These basic statistics possess various properties that enable them to be useful for
analyzing operations on random variables, some of the more important! are:

Linearity: Elax+b} = aE{x}+b=am,+b
Independence: E{xy} = E{x}E{y}
Variance: Ry (ax +b) = @Ry

! Recall that independence states that the joint mass function can be factored, Pr(x,y)=Pr(x) x Pr(y),
which leads to these properties.
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Covariance:
Uncorrelated: E{xy} = E{x}E{y} {R, =0}
Orthogonal: E{xy} =0

Note that the expected value operation implies that for stochastic processes these basic
statistics are calculated across the ensemble. For example, if we want to calculate the
mean of a process, that is,

my(t) = E{X(1, w;) = xi(1)}

we simply take the values of £=0, 1, ... and calculate the mean for each value of
time across (i =1, 2, ...) the ensemble. Dealing with stochastic processes is similar
to dealing with random variables except that we must account for the time indices
(see Chapter 2 for more details).

Next let us define some concepts about the probabilistic information contained in
a random variable. We define the (self) information contained in the occurrence of
the random variable X (w;) = x;, as

I(x;) = —log, Px(x;) (A7)

where b is the base of the logarithm which results in different units for information
measures (base =2 — bits) and the entropy or average information of X(w;) as

H(x) = —E{I(x)} = ZPX(xi)logb Px(x;) (A.8)

1

Consider the case where there is more than one random variable. Then we define the
Jjoint mass and distribution functions of an N-dimensional random variable as

Px(xr,....xn),  Fx(xr,...,xn)

All of the basic statistical definitions remain as before, except that we replace the scalar
with the joint functions. Clearly, if we think of a stochastic process as a sequence
of ordered random variables, then we are dealing with joint probability functions,
that is, a collection of time-indexed random variables. Suppose we have two random
variables, x1, and x; and we know that the latter has already assumed a particular
value, the we can define the conditional probability mass function of x; given that
X(wy) = x; has occurred by:

Pr(x; | x2) := Px(X(w1) | X(@2) = x2) (A.9)
and it can be shown from basic probabilistic axioms (see Papoulis [1]) that

Pr(xy,
Pr(x; | x3) = ;(:(;XZX)Z) (A.10)
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Note also that this expression can also be written as
Pr(xy,x2) = Pr(xa | x1)Pr(x1) (A.11)
Substituting this equation into Eq. A.10 gives Bayes’ rule, that is,

Pr(x;)
Pr(x2)

Pr(x; | x2) = Pr(xa | x1) (A.12)

If we use the definition of joint mass function and substitute into the previous
definitions, then we can obtain the probabilistic chain rule [1-3],

Pr(xi,...,xy) = Pr(x; | xo, ..., x5)Pr(x2 | x3,...xn5) ... Pr(xy—1 | xy)Pr(xpn)
(A.13)
Along with these definitions follows the idea of conditional expectation, that is,
Efxi | xj} =Y X;Pr(xi | x)) (A.14)

1

With the conditional expectation defined, we list some of their basic properties:

E{X|Y}=E{X}, ifX and Y are independent
E{X}=E/{E{X|Y}}
E{gWX|Y}=gWE{X|Y}

Exy{g(V)X} =E{g(Y)E{X|Y}}

E{clY}=c

E{g(Y)|Y}=g(Y)

Ecy{cX +dY|Z}=cE{X|Z}+dE{Y|Z}

A

The concepts of information and entropy can also be extended to the case of more
than one random variable. We define the mutual information between two random
variables, x; and x; as

Px (xi | xj)
I(x;;x)) = log,, ———— (A.15)
P8 )

and the average mutual information between X (w;) and X (wy) as

I(Xi: X)) = Ex {1050} = > > Px(xi, x)1(x1, ) (A.16)
i
which leads to the definition of joint entropy as
H(Xi: X)) = —> > Px(xi.x;) log, Px(x;, x;) (A.17)
— =

J

This completes the section on probability theory, next let us consider an important
multivariable distribution and its properties.
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GAUSSIAN RANDOM VECTORS

In this section we consider the multivariable Gaussian distribution used heavily in this
text to characterize Gaussian random vectors, thatis, z ~ AV (m_, R.;) where z € R™-*!
and defined by

Pr(z) = 1) N/2|R..| 7% exp (—%(z -m)R;'(z - mz)> (A.18)

where the vector mean and covariance are defined by

m, :=E{z} and R, = Cov(z) := E{(z — m,)(z — m,)'}

Certain properties of the Gaussian vectors are useful such as:

Linear transformation. Linear transformations of gaussian variables are
gaussian; that is, if z~ N (m;, R;;) and y = Az + b, then

Y ~ N(Am, + b, AR_.A") (A.19)

Uncorrelated Gaussian vectors. Uncorrelated gaussian vectors are independent.

Sums of Gaussian variables. Sums of independent gaussian vectors yield gaus-
sian distributed vectors with mean and variance equal to the sums of the
respective means and variances.

Conditional Gaussian vectors. Conditional Gaussian vectors are gaussian
distributed; that is, if x and y are jointly Gaussian, with

— X — my . _ _ Rxx ny
mZ_E{y}_[my:|, and RZZ—COV(Z)—[RyX Ryy:|

then the conditional distribution for x and y is also Gaussian with conditional
mean and covariance given by

my, = m, +RyR!(y — my)
Rx\y = Rxx - nyRy_yl Ryx
and the vectors x — E{x|y} and y are independent.
Gaussian conditional means. Let X, y and z be jointly distributed Gaussian

random vectors and let y and z be independent, then

E{x]y,z} = E{x|y} + E{y|z} — m,
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A.3 UNCORRELATED TRANSFORMATION: GAUSSIAN RANDOM
VECTORS

Suppose we have a Gaussian random vector, x ~ N (my, R,,) and we would like to
transform it to a normalized Gaussian random vector with the mean, m,, removed so
that, z ~ AN(0,I). Assume that the mean has been removed (z — z — m,), then there
exists a nonsingular transformation, T, such that z=Tx and therefore

R, = Cov(z) = Cov((Tx)(Tx)') = TR, T' =1 (A.20)
Thus we must find a transformation that satisfies the relation
R, =1=TR,T (A.21)

Since Ry is a positive semi-definite, symmetric matrix it can always be factored
into matrix square roots (R =UU" = R;){ZR){X/Z) using a Cholesky decomposition [4];

therefore, Eq. A.21 implies

R, =1=(TOUT (A.22)

or simply that
T=U"'= R;xl/ 2 (inverse matrix square root) (A.23)

and therefore
R, = R;POURT? =R /PR. R =1 (A.24)

the desired result.

This discussion completes the introductory concepts of probability and ran-
dom variables which is extended to include stochastic processes in Chapter 2 and
throughout the text.
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Indicator function, 93
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approach, 352, 355
methods, 87
sampling techniques, 80
simulations, 79
technique, 30

Jacobian, 57, 161, 167, 176, 197, 208, 215, 304,
309, 330

Jacobian matrices, 137, 160, 161, 168, 169
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estimation, 227, 302, 314
event, 353
index, 284
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posterior, 314, 315
posterior distribution, 37, 41, 75, 78, 299, 327
posterior estimation problem, 39
probability density, 22
random particles, 268
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estimation, 299, 300, 301, 318
posterior, 300
processing, 302, 313, 327
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Jointly estimate, 333
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Kalman filter, 11, 139, 162, 183, 218, 230, 239,
270, 293, 295, 339, 374,411, 414
Kalman filtering theory, 37
Kalman gain matrix, 121
Kalman techniques, 280
Kernel, 53, 264, 265
density, 56, 75, 264, 317
estimation, 53, 56, 265
method, 317
smoothing, 8, 53
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Kirchoff current equations, 156
Kolmogorov-Smirnov, 280, 282
Kullback-Leibler, 273, 293
Kullback-Leibler information, 274, 276
Kullback divergence, 275, 277
Kurtosis, 205

Lack of diversity, 289

Langmuir kinetics, 399

Laplace transforms, 97, 98, 122

Law of Large Numbers, 4, 64, 67, 70

Least squares, 19, 43

Least-squares estimate, 18

Least-squares estimation, 35

Level of significance, 185, 282

Likelihood, 2, 19, 39, 52, 93, 151, 245, 253, 254,

322, 340, 341, 356, 366, 404

cumulative distribution, 273
distributions, 3, 37, 148, 149, 261, 411
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method, 22
probability, 148, 241
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Linear dynamic systems, 367
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Linear time-invariant, 97
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process, 167
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Linearize, 213
Linearized, 194, 270, 271
algorithm, 289
Gauss-Markov models, 95
measurement perturbation, 137
model, 214
particle filter, 271, 272
process model, 137
state—space model, 160
Linear Kalman filter, 150
Linear regression, 199
Linear systems theory, 335
Linear time-invariant system, 108
Linear time-varying, 96, 112
Linear time-varying state—space, 105
Linear transformation, 115
Local iteration, 176, 191
Local linearization, 317
Local linearization technique, 268
Local linearized particle filters, 245
Local maximum, 355
Location, 66
Log-likelihood, 23, 26-28, 30, 275, 355
equation, 24
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ratio, 415
Logarithmic transformation, 355
Logarithmic a posteriori probability, 163, 169
Long-tailed distribution, 270
Low dispersion index, 284
Low probability, 246
LTI model, 97, 99
Lyapunov equation, 113, 116

Manhattan Project, 4
MAP estimate, 20, 23, 153, 391
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MAP state estimation, 347
Marginal distributions, 39, 79, 84, 93
Marginalization, 64, 346
Marginalizing, 270, 342
Marginal posterior distributions, 7, 26, 44
Marked Poisson process, 31
Markov, 39, 42, 115
Markov chain, 4, 51, 64, 70-72, 75, 78, 318,
336, 337, 340, 366
dynamics, 70
methods, 64
model, 365
Monte Carlo, 1, 4, 70
simulation, 71
theory, 87, 339
transition
kernel, 266
probability, 72
assumptions, 240
independence, 346
model, 255
property, 336
representations, 2
state—space model, 321
state vector, 148
structure, 237
Markov parameters, 109
Markov property, 84, 345
Markov sequence, 109
Markov switching model, 366
Mass function, 13, 53, 238
Matched filter, 357, 358, 375
Matrix
decomposition methods, 102
difference equation, 106
differential equation, 99
exponential, 98, 101, 102
inversion lemma, 153, 170, 179
square roots, 120, 208, 219, 265
Maximum, 240
Maximal path, 348
Maximization step, 26, 27, 29, 30, 32, 367
Maximum-likelihood estimate, 185
Maximum a posteriori, 19, 20, 36, 43, 47,
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Maximum a-posteriori estimate, 25, 48, 347
Maximum deviation, 282
Maximum likelihood, 19, 23, 36, 47
estimates, 22-25, 31, 43, 48, 354, 356
parameter estimation, 25, 26, 30
MC
methods, 4, 7
model diagnostics, 277
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MC (Continued)
sampling techniques, 276
simulation, 238
MCMC iterative processor, 266
MCMC sampling, 266
MCMC-step, 266, 268, 318
MCMC technique, 266
Mean, 208, 426
Mean propagation recursion, 124
Mean-squared error criterion, 35
Measurement
covariance, 117
distribution, 284
instrument, 17
Jacobian, 176, 271, 305
likelihood, 245, 252
linearization, 162
mean vector, 114, 115
models, 16, 270, 295
noise, 152
nonlinearities, 176, 180, 181
perturbation, 137
power spectrum, 117
prediction, 213
system, 48, 107
system models, 8
variance, 114, 116
Measure of degeneracy, 247
Median, 286
Method of composition, 52
Metropolis, 74, 266
Metropolis algorithm, 71, 92
Metropolis-Hastings, 71, 74, 75, 266
approach, 51
sampler, 71, 77, 87, 92, 93
technique, 268
Metropolis technique, 64, 79
Microcantilever sensor, 9, 397
Microelectromechanical sensor, 397
Minimal realizations, 109
Minimum data length (MDL) description, 275
Minimum error variance, 158, 182, 183
estimator, 339
Minimum mean-squared error, 19, 33, 240
Minimum variance, 19, 33, 35, 289, 317
approach, 253, 254
design, 155, 182
estimation, 18, 395
estimator, 33-35, 43, 46
importance distribution, 242, 271
optimal, 261
importance function, 245, 270
importance proposal, 270, 289

proposal distribution, 243
weights, 244
Mismatch, 395
Missing/hidden vectors, 26
Missing data, 26, 27, 30, 32
Mixing coefficients, 73, 220, 222, 276
Mixture, 220, 277
Modal functions, 389, 395
Model based
approach, 1,3, 8
likelihood, 150
processing, 9
processor, 8, 17, 121, 277
signal processing, 1, 7, 8, 11, 95
solutions, 149
Model
mismatches, 186
parameters, 354, 355
uncertainties, 8
validation, 289
Modern technique, 317
Moments, 13, 65, 203, 205, 276
Monoenergetic decomposition, 406
Monte Carlo, 1, 4, 51, 52, 65, 169
approach, 4, 64, 68, 299
error, 242
estimates, 7, 66, 238
integration, 7
methods, 4, 272
simulation techniques, 52
techniques, 52, 64, 65, 70
Most probable paths, 355
Move, 266, 334
Move step, 266, 268
Moving average, 123, 131, 132
Multichannel, 95, 117
Bayesian solution, 384
data, 401
processor, 397
Multimodal, 17, 53, 318
distribution, 237
Multinomial distribution, 250, 280
resampling, 250
sampling method, 252
Multipath, 194
Multivariable
representation, 97
structures, 121
transfer function, 98
Multivariate, 208

Gaussian distributions, 11, 151, 152, 210, 230,
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Mutual information, 274, 428



National Ignition Facility, 370
Navigation, 224
Nearest neighbor, 55
Nelder-Meade polytope, 401
Neural networks, 195, 234, 352
Newton-Rhapson, 178, 191
Neyman-Pearson criterion, 415
Non-Gaussian distribution, 9, 52, 220
Nonlinear, 95
Bayesian processors, 197
Bayesian signal processing, 191
cost function, 177
discrete-time state—space representation, 105
dynamic model, 305
dynamics, 270, 302
dynamic systems, 96, 277
estimation, 7, 139, 220
filtering, 167, 181, 209
measurement, 163
measurement model, 137
measurement system, 147
models, 209, 215, 304
non-Gaussian model, 289
non-Gaussian signal processing, 52
parameter estimator, 303
problems, 238
process, 209, 210
processing, 60
processors, 217, 223, 230, 234, 397
re-entry problem, 300
sensor model, 174, 297
signal processing, 36, 87
state estimation, 191, 198
state—space representation, 285, 302, 334
stochastic vector difference equations, 135,
160
systems, 101, 135, 139, 146, 160, 194, 233,
307, 350
trajectory estimation, 217, 327
transformations, 198, 199, 201, 205, 210
vector functions, 136, 160
Nonparametric methods, 8
Nonphysical systems, 351
Nonrandom constant, 24
Nonstationary, 52, 95, 117
Normal form, 134
Normality diagnostics, 283
Normal mode theory, 384
Normality testing, 280, 284
Normalization, 52, 64
condition, 207
constant, 62
constraint, 201
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covariance, 184
Gaussian random vector, 430
innovations variance, 185
weights, 246, 249
Normalizing
constant, 64, 70, 71, 82, 83
distribution, 85
factor, 2
Normal state—space form, 135
Nuclear physics, 64
Null hypothesis, 183
Numerical
implementation, 307
integration, 3-5, 7, 37, 52, 65, 101, 103
quadrature, 4
Numerically stable, 307
Nyquist sampling theorem, 100

Observability matrix, 108
Observable, 107
Observation
probability, 337, 338, 339, 341-343, 352
probability matrices, 347
process, 339
sequence, 339
Observer canonical form, 129, 130
Ocean
acoustic, 324
environment, 382
On-line, 302, 352
One-step prediction distribution, 223
Optimal, 36, 183
bandwidth, 56
Bayesian algorithms, 36
Bayesian estimate, 238
Bayesian processor, 152
matched filter, 358
minimum variance solution, 51
path, 350
processor, 150, 295
Optimality, 273
Optimality tests, 324
Optimization, 4, 5, 8, 64, 177, 299
Ordered moments, 206
Ordered uniform variates, 251
Ordinary differential equation, 8, 101, 102
Orthogonal, 34, 142
Orthogonality condition, 34, 35
Orthogonal set, 102
Outlier performance, 261

Pade’ approximation, 101
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Parameter estimation, 33, 275, 299, 300,
314, 331, 350, 352, 356
problem, 351, 352, 362, 367
techniques, 351
Parameter
estimators, 302, 310
posterior distribution, 315
space, 73
variables, 299
vector, 318
Parametrically adaptive, 300, 302, 310,
332
Bayesian signal processor, 302
model-based processor, 307
Parametric
models, 351
posterior, 300
signal processors, 273
Partial differential equation, 8
Partial fraction expansion, 134
Particle
based, 327
approximation, 279
based processors, 237
degeneracy problem, 252
depletion, 289
problem, 270
diversity, 266, 268
filter, 266, 294, 299, 411
design, 284, 289, 411
filtering, 237, 238, 242, 314, 324
algorithm, 252
filters, 237, 239, 327, 415
paths, 261
set, 266
weights, 246
Particles, 238, 239, 252, 266, 316-318
Partition the data, 352
Partitions, 305
Parzen window, 53, 55
Passive localization, 172
Path, 352, 353
estimate, 350
known, 354
Penalty function, 203
Perfect sampling, 7, 68
Performance, 283
statistics, 36
tests, 273
Perturbation model, 195
trajectory, 136
Phased array radar, 224
Phase modulation, 333

Photon
counter, 31
emission computed tomography, 31
emitted, 31
Physical phenomenology, 8, 122, 397
Physical systems, 100, 104, 314, 352
Physics-based approach, 409, 417
parameter estimation, 400
processor, 397, 404
signal processing, 398, 410
Piecewise constant, 304
Plane wave model, 296
Plutonium nitrate, 295
Point estimate, 3, 264
Point mass, 238, 239
Poisson, 31
counts, 29
distribution, 28, 31
driven Markov process, 404
noise, 28
processes, 28, 30
rate, 31
Polar coordinates, 171
Pole-zero, 145
Poles, 99
Population growth, 284, 289
problem, 285
model, 334
Population or system of particles, 241
Position measurement model, 372
Positive delta family, 220
Possible paths, 355
Posterior, 2, 19, 20, 36, 40, 72, 86, 209, 240,
279, 316
distribution, 2—4, 36, 37, 41, 44, 51-53,
81, 82, 84, 93, 215, 245, 252, 256,
264,272,273, 300, 314, 317, 318,
346, 352, 353
equation, 150
filtering distribution, 321
invariant distribution, 266
mean, 208
Posterior probability, 27, 152, 274, 346, 347,
352, 355, 360, 365
Posterior tail performance, 261
Posterior target distribution, 82
Power spectrum, 142, 196, 235
Practical application, 241
Practitioners, 355
Predicted
cumulative distribution, 277
error covariance, 304
estimate, 168, 182



measurement, 214, 304
cumulative distribution, 277

perturbation, 167

state distribution, 278

state error covariance, 212

state estimation error, 212
Prediction, 273

cumulative distribution, 280

distribution, 3, 37, 42, 151, 261, 279

error, 182

estimates, 402

probability, 366

recursion, 41, 150

step, 213, 221, 223
Predictive

decomposition, 278

distribution, 221

measurement cumulative

distribution, 278

Predictor corrector form, 307
Pressure field, 386
Prior, 2, 3, 19, 37, 40, 52, 81

distribution, 2

prediction, 245
Probabilistic

axioms, 427

chain rule, 428

framework, 36

information, 246

model, 335, 339

propagation model, 148

transition distribution, 148
Probability

bound, 281

density, 22, 53, 55, 57, 220, 265

distribution, 3, 25, 36, 64, 66, 70, 198,

220, 274, 351, 424
distribution estimation, 276

distributions, 1, 4, 8, 51, 237, 239, 335

from data samples, 53

function, 423

mass, 58, 238, 246, 248, 261

mass distribution, 7

mass function, 90, 424, 427

matrices, 359
Probability of error, 347
Probability of success, 250
Probability theory, 426
Process, 105

dynamics, 9

model, 8, 151

noise, 245, 254, 322

noise covariance, 157, 295
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Processor statistics, 186
Proportional to, 83

Proposal distributions, 63, 64, 71, 75, 81, 82,

243,253
Pulse transfer function, 122, 123, 145

Quadrature
Bayesian processor, 218
Kalman filter, 218
points, 219

Quantile estimate, 284

Radar, 331

Radiation detection problem, 404, 408, 411

Radiation transport, 409
Radionuclide, 31
source detection, 404
Random, 41
amplitude, 48
draw, 54
inputs, 114
measures, 238, 246, 250
parameter, 2, 19
samples, 5, 7, 52, 56, 57
sampling, 4, 52, 57, 251
signal, 2, 6, 36, 65, 114, 123,234
signal processing, 3
target motion, 321
telegraph signal, 351
variables, 53, 57, 142, 423
vectors, 27, 46, 198, 201

walk, 73, 256, 268, 304, 314, 317, 321

walk, Metropolis-Hastings, 74

walk model, 268

walk parametric model, 327
Range, 227
Rank, 108, 111
Rank condition, 109
Rate parameter, 28, 31
Rayleigh distributed, 48
Realizations, 60, 423
Realization problem, 109
Recursive, 11

approach, 11

Bayesian estimation, 36

estimation, 11

form, 11, 12

processor, 197, 209
Reference

measurement, 137, 161

position estimate, 373

state, 167
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trajectory, 135-137, 160, 161, 165, 167, 176
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Region of strongest support, 268 state—space system, 101, 114
Regions of high probability, 318 system, 19, 100, 102, 104, 113
Regression Sample
coefficients, 294 impoverishment problem, 256
form, 213 mean, 11, 67, 183, 284
weights, 200 space, 423
Regularization kernel, 264 variance, 160, 184
Regularization property, 264 variance estimators, 186
Regularized, 289, 317 Sampling, 77
Rejection algorithms, 62, 75
method, 62, 64, 71, 92, 247 approach, 4
sampling, 62, 70, 79, 87 distribution, 83
method, 62, 92 importance-resampling, 64, 237, 247, 253, 261
Relative frequency, 54 interval, 103
Relative performance, 273 methods, 51
Repeated squaring, 101 problem, 62
Replicating samples, 248 resampling, 197
Replication, 268 scheme, 250, 251
Resample, 322 techniques, 4, 66, 75
Resampled particles, 266 theory, 80, 87
Resampled uniformly, 252 Satellite communications, 224
Resampling, 246, 248, 254, 261, 264, Scaled kernel, 265
266, 268, 270 Scaling and squaring, 101
algorithm, 248 Sequence estimation, 350
method, 249 Sequential, 11, 64
operator, 246 Sequential approaches, 80
problem, 237 Sequential Bayesian, 39
process, 266 estimation, 36
scheme, 250, 252 estimators, 238

step, 248, 266
technique, 251

framework, 321
posterior estimator, 40

theory, 247 processor, 41, 44, 149, 150
Residuals, 214, 278, 280, 281, 283 recursions, 268, 336

method., 251 Sequential

predlCtl(?n, 215 bootstrap processor, 404

resampling, 251, 252 estimation, 84, 237, 239, 248, 273

sequence, 273, 278, 281, 282
Resolvent, 99

estimation framework, 36
importance sampler, 87

matrix, 98 importance sampling, 86, 240, 241
Response time, 99 methods, 36
Reverberant channel, 357 Monte Carlo, 299
RLC circuit, 186, 188 approach, 313
Rosenblatt’s theorem, 278 method 537

Roughening, 256, 257, 258, 295, 317, 318
Rule of thumb, 108
Runge-Kutta, 101

processing, 11, 169

processors, 2

simulation-based techniques, 246
solution, 348

S-plane, 99 updating, 253

Sample-based simulation methods, 52, 59 Series approach, 101

Sampled-data, 95, 99, 139 Sifting property, 7, 83, 223
model, 100 Sigma-point (unscented) transformation, 201
process, 114 Sigma-point Bayesian processor, 197, 230,

process noise, 113 235



Sigma-point
design, 256
processor, 256
transformation, 51, 200
Sigma points, 200, 202, 207, 208, 218, 222, 233,
271
Signal-to-noise ratio, 8
Signal enhancement, 36, 41, 150
Signal estimate, 2
Signal processing, 6-8, 52, 65, 79, 97, 182, 351,
357, 406
Signal processing model, 408, 409
Significance level, 184, 185, 280
Similarity transformation matrix, 102
Similarity transformations, 102
Simulated trajectories, 248
Simulation based, 7
approach, 4, 64
Bayesian processors, 51
methods, 53, 56
sampling, 87
technique, 246
solution, 67
Single input/single output, 121
Singular values, 110
Singular vectors, 110, 111
Skewness index, 284
Slice sampler, 78, 87, 92, 93
Smart sensor, 398
Smoothing, 345
parameter, 56
relation, 350
variable, 349
Sonar, 172
Space—time processing problem, 318
Spatio-temporal channel, 357
matched filter, 357
Spectral factorization, 121
Square-root matrices, 111
SSPF algorithm, 241
Stability, 99
Stabilized, 193
Stable realization, 111
Standard Gauss-Markov model, 120
Standard uniform, 278
State, 95, 96
State information, 210
State—input transfer matrix, 98
State—space, 2, 96, 157, 191, 220, 295
form, 135, 145, 160, 295
forward propagator, 384
models, 95, 96, 104, 122, 139, 147, 148, 182,
321
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particle algorithm, 239

particle filters, 237, 241, 285, 289

representations, 95, 96, 105, 112, 121, 122,
149, 237-239, 339

structures, 121

transition, 252

State

covariance, 116

delay, 194

equations, 98, 100

error covariance, 151

error covariance update, 215

error prediction, 213

estimate, 167, 346

(sequence) estimation, 349

estimation, 299, 300, 316, 345, 346
errors, 151, 152, 186
problem, 150, 315, 334, 345, 347, 362

mean vector, 115

parameter estimation, 26, 301, 303

perturbation, 162

posterior distribution, 300, 365

prediction, 210

prediction probability, 365

sequence, 352, 354, 358, 361
estimation, 350

transition, 101, 314, 344, 354

transition distribution, 322

transition matrix, 99-101, 106, 193, 335,
340, 367

transition mechanism, 46

transition model, 315

transition probability, 149, 285, 338

transition probability matrix, 336, 343

variables, 96, 209

variance, 114, 116

vector, 96, 98

Static parameter, 318
Stationary, 70, 117

chain, 343
distribution, 64
processes, 118

Statistical

approximation, 198
estimation, 67

hypothesis test, 183
indexes, 283

inferences, 2, 3, 37, 52, 246
linearization, 270

white sequence, 160
measure, 65

mechanics, 64

sampling techniques, 57
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Statistical (Continued) Time reversible, 70
signal processing, 5, 36, 43, 147 Total observation probability, 342, 343, 345, 346
simulation-based techniques, 52 Total observation sequence, 345
tests, 182, 237, 273, 277, 278, 284, 289 Towed array, 324
Statistics, 240 Tracking problems, 171, 172, 223, 224, 230, 253,
Steady state, 117, 186, 330 339
Stochastic Tracking telescope, 18
deconvolution problem, 413 Training
linearization, 230 data, 354
models, 382 sequences, 196, 234, 354, 355, 357
processes, 169, 335, 425, 427 sets, 352
realization, 339 Trajectory estimation, 318
sampling, 65 Transfer function, 97, 106, 109, 122, 134, 415
system, 4 Transfer function matrix, 98
Stopping rule, 177 Transformation, 57
Strong Law of Large Numbers, 65 Transformed residual, 280, 281, 284
Structural model, 330 Transformed statistics, 208
Student T distribution, 74 Transient problems, 412
Suboptimal, 310 Transition
Sufficient statistic, 23, 32 distribution, 75, 78
Sum-squared error criterion, 35 kernel, 70, 71, 266
Superposition integral, 100 matrix, 98, 335, 366
Survival of the fittest algorithm, 253 posterior, 317
Switching model, 366 prior, 245, 253, 270, 278, 279, 289
Symmetric distribution, 72 probabilities, 148, 336, 343, 352
Synthetic aperture, 296, 318, 319, 322, 324 probability, 4, 70, 71, 78, 148, 264, 321, 336,
towed array, 327 344, 404
Systematic resampling, 248, 251 matrix, 365
System identification, 275, 350, 415 Transitions, 354
System model, 105 True posterior, 265, 273

Systems theory, 96, 98, 107, 112, 350 Truncated Gaussian. 63

Truncation error, 104

Tail Index, 284 Tuned processor, 183, 186, 256

Tank, 295

Target, 195, 234 Tuning, 258
distribution, 62, 70, 71, 73, 77, 78, 79, 81,
82,92 UD-factorized form, 307
posterior distribution, 52, 71, 239, 246 Unbiased, 65, 66
tracking, 324 estimate, 45
Targeted posterior distribution, 53, 246 estimator, 81
Taylor-series approach, 104 Unconditionally unbiased, 34
Taylor series, 51, 95, 101, 103, 104, 114, 137, Uncorrelated, 141
138, 169, 177, 188, 193, 197, 209, 332, 414 Uncorrelated noise, 120
Temporal incoherent processor, 387 Unequally sampled data, 101
Test statistic, 183—185, 280282 Uniform convergence, 222
Thermal deflection, 400 Uniform distribution, 56, 58, 273
Time reversed Green’s function, 359 Uniform intervals, 79
Time varying, 101, 150, 167, 332 Uniformity property, 281
Time-varying volatility, 294 Uniformly distributed, 56, 79, 281-283
Time delay, 196, 234, 297 Uniformly distributed random variable, 58
Time domain representation, 122 Uniformly sampling, 248
Time invariant systems, 106 Uniform
Time reversal, 357, 358 proposal, 93

Time reversal processing, 358, 362 random samples, 5



random variable, 56
samples, 250
sampling, 87
distribution, 67
procedure, 248
simulation, 62
transformation theorem, 59, 277
variates, 56, 57, 61
weighting, 248, 252
Unimodal, 256, 277
Unimodal distribution, 237
Unit-step function, 60
Unnormalized weight, 84
Unobservable, 107
Unscented, 270
Unscented Kalman filter, 197, 230, 324
Unscented transformation, 200, 270
Update, 42
Update equation, 162, 182
Update step, 219
Updated, 355
error covariance, 154
estimate, 26, 167, 176
state estimate, 168

Validation problem, 273

Validity, 273, 278

Variance, 125, 426

Variance equations, 118

Vector calculus, 21

Viterbi, 355, 362
algorithm, 349, 350, 357
approach, 350, 360
training, 355

Volatility, 294
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Wavefront curvature, 296

Weighted function, 83

Weighted particles, 238

Weighted quadrature points, 220

Weighted sum-squared residual, 185, 374

Weighting function, 40, 53, 82-84

Weighting matrix, 182

Weight recursion, 244, 316

Weights, 238, 245

Weight variances, 242, 289

White, 115, 121, 146, 160, 174, 181, 227,
273,403

‘Whiteness, 181

Whiteness tests, 160, 184, 185, 273, 280, 284

Whitening transformation, 265

‘White noise, 95, 143

Wiener, 35

Wiener-Kalman filtering, 121

Wiener solution, 35

Wold decomposition, 122

Zero mean, 142, 146, 160, 196, 227, 234,
273,403

Zero mean test, 181, 184

Zero-mean-whiteness, 378

Zero-mean/whiteness detector, 374

Zero-mean/whiteness tests, 277, 280, 310,
312

Zero-state, 98

Z-transforms, 106, 109, 117, 118
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