
TEAMFL
Y

Team-Fly®

Building Reliable Component-Based
Software Systems

For a listing of recent titles in the Artech House Computing Library,
turn to the back of this book.

Building Reliable Component-Based
Software Systems

Ivica Crnkovic
Magnus Larsson

Editors

Artech House
Boston � London

www.artechhouse.com

Library of Congress Cataloging-in-Publication Data
Building reliable component-based software systems/Ivica Crnkovic, Magnus Larsson,

editors.
p. cm.�(Artech House computing library)
Includes bibliographical references and index.
ISBN 1-58053-327-2 (alk. paper)
1. Component software�Reliability. 2. Software engineering.
I. Crnkovic, Ivica. II. Larsson, Magnus (Magnus Peter Henrik), 1969�

QA76.76.C66 B85 2002
005.1�dc21 2002021594

British Library Cataloguing in Publication Data
Building reliable component-based software systems. � (Artech House computing

library)
1. Software engineering 2. Component software
I. Crnkovic, Ivica II. Larsson, Magnus
005.1
ISBN 1-58053-327-2

Cover design by Igor Valdman

© 2002 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book
may be reproduced or utilized in any form or by any means, electronic or mechanical, in-
cluding photocopying, recording, or by any information storage and retrieval system, with-
out permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Artech House cannot attest to the accuracy of this informa-
tion. Use of a term in this book should not be regarded as affecting the validity of any trade-
mark or service mark.

International Standard Book Number: 1-58053-327-2
Library of Congress Catalog Card Number: 2002021594

10 9 8 7 6 5 4 3 2 1

To Tea, Luka, and Gordana
�Ivica

To Emmy, Jacob, Ida, and Christina
�Magnus

.

Contents

Preface xxi

Organization of This Book xxii

Who Should Read This Book? xxiii

How to Use This Book xxiv

Web Site xxiv

Acknowledgments xxiv

Introduction xxvii

Component-Based Software Engineering xxix

Challenges of CBSE xxx

Components in Reliable Systems xxxiii
References xxxvi

vii

Part 1: The Definition and Specification
of Components 1

1 Basic Concepts in CBSE 3

Introduction 3

Components 4

Different Component Definitions 5

Objects and Components 8

Interfaces 9

Contracts 10

Patterns 12

Frameworks 14

Relations Between Concepts 16

Frameworks and Components 17

Frameworks and Contracts 18

Frameworks and Patterns 18

Conclusion 19

Summary 20
References 21

2 Specification of Software Components 23

Introduction 23

Current Component Specification Techniques 24

Specifying the Semantics of Components 27

Specifying Extrafunctional Properties of Components 34

Summary 37
References 37

viii Building Reliable Component-Based Software Systems

Part 2: Software Architecture and Components 39

3 Architecting Component-Based Systems 41

Introduction 41

Role of Software Architecture 42

Assessment and Evaluation 42

Configuration Management 43

Dynamic Software Architectures 44

Designing Software Architectures 44

Architecture Design Process 45

Architectural Styles 46

Architecture-Driven Component Development 49

Custom Components 50

Preexisting Components 50

Component-Driven Architecture Development 51

Summary 53
References 54

4 Component Models and Technology 57

Introduction 57

A Short Historical Perspective 58

Component Interface and Connections 59

Performing Services Transparently 60

Notation and Plan 61

Acme ADL 62

Components and Ports 63

Connectors and Roles 63

Systems and Attachments 64

Representations and Bindings 64

Contents ix

Properties, Constraints, Types, and Styles 65

Discussion 65

JavaBeans Component Model 66

Key Features 66

Interface of a Component 67

Implementation of a Component 68

Components Assembly 69

Packaging and Deployment 70

COM, DCOM, MTS, and COM+ 71

Interfaces and Assembly 71

Implementation 71

Framework 72

Life Cycle 72

CCM 73

Interface and Assembly 73

Assemblies 75

Implementation of a Component 75

Framework: The Container Approach 76

Life Cycle 77

.NET Component Model 77

Interfaces and Assembly 77

Implementation 78

Framework 78

Life Cycle 79

The OSGI Component Model 79

Two Levels of Components 79

Interface of a Bundle Component 80

Assembly of Bundle Components 80

Implementation of a Bundle Component 83

Summary 83

Interface 83

Assembly 84

x Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

Implementation 84

Framework 84

Conclusion 85
References 86

Part 3: Developing Software Components 87

5 CBD Process 89

Introduction 89

Software Process Models 90

The Sequential Model 91

Evolutionary Development 92

Unified Process 95

CBD 97

Reuse Approach 97

Separation of Development Processes 98

Component-Based Software Life Cycle 100

Development with Components 101

Component Development 108

Summary 111
References 111

6 Semantic Integrity in CBD 115

Introduction 115

General Issues of Semantic Concern 116

Specification Levels 117

Weak and Strong Contracts 117

Required and Provided Interfaces 118

Levels of Formalism for Semantic Specifications 118

An Example 119

No Semantics 119

Contents xi

Intuitive Semantics 120

Structured Semantics 121

Executable Semantics 122

Formal Semantics 124

Phases in a Component�s Life 126

Creation Phase 126

Use Phase 127

Maintenance Phase 128

A Taxonomy for Component Semantics 128

Summary 130
References 131

7 Role-Based Component Engineering 135

Introduction 135

Encouraging the Use of Roles 138

Role Technology 142

Using Roles at the Design Level 142

Using Roles at the Implementation Level 143

Frameworks and Roles 145

Black-Box and White-Box Frameworks 146

A Model for Frameworks 148

Dealing with Coupling 150

Summary 152
References 152

Part 4: Using Software Components 155

8 Dispelling the Myth of Component Evaluation 157

Introduction 157

xii Building Reliable Component-Based Software Systems

Multiple-Criteria Evaluation 160

Genus: Preference Structure-Based Evaluation 160

Species: Multiple-Attribute Utility Evaluation 166

Exploding the Myth of Component Evaluation 167

Components, Assemblies, Properties, and
Determinants 168

Dispensing with Inconsequential Component
Evaluation 169

Distinguishing Abstract from Concrete Interfaces 170

Partial Satisfaction of Evaluation Attributes 171

Fundamental Exemplar Incompleteness 172

Assembly Evaluation and Search 173

Multiple-Attribute Evaluation and Beyond 175

Summary 176
References 176

9 Component Composition and Integration 179

Introduction 179

Component Integration 181

From Integration to Composition 182

Predictable Assembly from Certifiable Components 185

Prediction-Enabled Component Technology 186

Summary 189
References 190

10 Predicting System Trustworthiness 193

Introduction 193

What Else Can Be Done? 195

Two Additional Useful Techniques for Predicting
Component Interoperability 200

Contents xiii

Summary 202
References 203

Part 5: Software Product Lines 205

11 Components in Product Line Architectures 207

Introduction 207

From Products to Components 208

Developing a Single Product 209

Component Markets 209

Established Reuse 211

Product Families and Product Lines 212

Product Populations 213

The Lessons 214

Component Approaches 215

Libraries 215

Object-Oriented Frameworks 216

Component Frameworks 217

Lego 218

Koala 219

Frameworks as Components 219

Summary 220

Conclusion 220
References 220

12 The Koala Component Model 223

Introduction 223

Requirements for Koala 223

Binding and Bind Time 224

Koala Components 226

xiv Building Reliable Component-Based Software Systems

Provides and Requires Interfaces 227

Binding, Gluing, and Switches 228

Diversity Interfaces 229

Product-Line Architecture 229

Creating Products 233

Managing Versions and Variants 233

Subtyping 234

Conclusion 235
References 236

Part 6: Real-Time Software Components 237

13 Components in Real-Time Systems 239

Introduction 239

Characteristics and Challenges of Real-Time Systems 241

Real-Time Component Models 243

Infrastructure Components 244

Application-Specific Component Models 246

Examples of Component Models 246

Designing Component-Based Real-Time Systems 249

Top-Level Design 250

Detailed Design 251

Architecture Analysis 251

Scheduling 251

WCET Verification 252

Implementation of New Components 253

System Build and Test 254

Component Library 254

Contents xv

Composition of Components 255

Example: Real-Time Components in Rubus OS 257

Rubus 257

Extensions for CBSE 258

Reuse of Real-Time Components 259

On-Line Upgrades of Components 260

Summary 261
References 262

14 Testing Reusable Software Components in
Safety-Critical Real-Time Systems 265

Introduction 265

Reuse and Exhaustive Testing 267

Reuse and Statistical Evidence 270

Component Reuse, Statistical Evidence, and
Failure Behavior 270

Sequential Systems 272

Real-Time Systems 274

Concurrent Real-Time Systems 276

Summary 278
References 278

15 Providing Real-Time Services for COTS
Components 281

Introduction 281

Windows NT as an RTOS 283

Real-Time Features of Windows NT 285

Observations and Recommendations 289

Windows NT in a Real-Time Setting 290

Design of the Real-Time Application 291

xvi Building Reliable Component-Based Software Systems

Experimental Results 293

Summary of Results 296

Conclusion 296
References 298

Part 7: Case Studies�CBD in Industrial
Applications 299

16 Component-Based Embedded Systems 303

Introduction 303

Problem Domain 304

Implications for Component Technology 305

Contractually Specified Interfaces 306

Unit of Composition and Independent Deployment 307

Explicit Context Dependencies 308

Component Granularity 308

Reuse 309

Architecture and Frameworks 310

Location Transparency 310

Portability and Platform Independence 310

Component Wiring 311

Embedded Systems with Synchronous Components 311

Synchronous Approach 311

Synchronous Software Components 312

Case Study Description 313

Architecture 314

Dynamic Behavior 316

Intercomponent Communication 317

Prerequisites of Effective Development 319

Summary 322
References 322

Contents xvii

17 Architectural Support for Reuse: A Case Study in
Industrial Automation 325

Introduction 325

Industrial Automation Systems 326

The Motivation for a Platform 329

The Aspect Integrator Platform 331

The AspectObject Paradigm and Object Organization 332

The Architecture of the Aspect Integrator Platform 333

Developing a Domain-Specific Application 346

Reuse in AIP-Based Applications 348

Some Words of Caution 350

Summary 351
References 352

18 A Framework for Integrating Business Applications 355

Introduction 355

Motivation 356

Information Organizer: Support for Building
Integrated Systems 358

Information Organizer Basic Parts 358

BOM 359

BOF 362

Modeling and Integration 363

Structure of Aspects and Objects 364

Patterns Constructed Using the BOF 365

BPS 368

xviii Building Reliable Component-Based Software Systems

Practical Experience 370

Summary 371
References 372

19 Industrial Experience with Dassault Système
Component Model 375

Introduction 375

The OM Component Model 376

Defining an OM Component 377

Using OM Components to Build Applications 377

Implementing OM Components 378

Discussion 380

Different Kinds of Architecture 381

Lessons Learned 382

Framework Evolution 382

Architecture and Components from an Industrial
Perspective 383

Summary 384
References 385

Contributors 387

About the Authors 388

Index 399

Contents xix

.

TEAMFL
Y

Team-Fly®

Preface

This is a book about component-based software engineering (CBSE). CBSE
is the emerging discipline of the development of software components and the
development of systems incorporating such components. Component-based
systems are built by assembling components developed independently of the
systems. To assemble components, a proprietary code that connects the com-
ponents is usually needed. This code is often referred to as �glue code.� In an
ideal world of components the assembly process would be smooth and simple.
The effort required to obtain the glue code would be practically negligible; a
system incorporating components would know everything about them�their
operational interfaces and their nonfunctional properties and the components
would be exactly what the system needs; in short, components could be
assembled as easily as Lego blocks.

In the real world, the component-based development process is com-
plex and often difficult; systems are built from preexisting components when
appropriate and possible and by developing a new code specific to the par-
ticular system. The system may know about the syntax of the operational
interfaces of the components, but not necessarily their other properties.
Developing the glue code can be costly�it may take longer to develop the
glue code than the components concerned. Software components are in fact
much harder to assemble than Lego blocks. Constructing software systems
from components �is more like having a bathtub full of Tinkertoy, Lego,
Erector, Lincoln Log, Block City, and six other incompatible kits�picking
out parts that fit specific functions and expecting them to fit together� (Mary

xxi

Shaw, �Architectural Issues in Software Reuse: It�s Not Just the Functional-
ity, It�s the Packaging,� Presentation at the Symposium on Software Reus-
ability, SSR�95). CBSE tries to make the real world as close as possible to the
ideal world of component-based development. We have a long way to go to
achieve this goal.

In spite of many difficulties, the component-based approach has
achieved remarkable success in many domains. A majority of the software
programs we use everyday take advantage of component-based technologies.
Many classes of software, however, take a rudimentary approach to
component-based methods. For these classes of software the specification of
�how� is at least as important as the specification of �what.� Examples of
these classes of systems are reliable systems; safety-, business-, or mission-
critical systems (also known as dependable systems); and embedded systems.
The general-purpose component technologies currently available cannot
cope with the nonfunctional (or more correctly extrafunctional) require-
ments of such systems. These additional requirements call for new technolo-
gies, new methods, and the specific approach of CBSE. This book describes
the basic principles and the trends in research and practice of CBSE with an
emphasis on dependable systems.

Organization of This Book

The book is divided into parts, each of which explores a theme through the
different chapters. Each part begins with a short introduction presenting its
objective and an overview of the chapters. Although the parts and the chap-
ters are relatively independent of each other, several principles apply to all.
The first principle is from general to specific. The book begins with general
parts related to software components, proceeds through topics such as
processes related to CBSE, continues with domain-specific processes, and
concludes with concrete case studies. The second principle is from theoretical
to practical issues. Although the first chapters discuss theoretical topics such as
component specifications, the last chapters give examples of the use of con-
crete component models. The third principle is from simple to complex. The
first chapters discuss the elements of component-based development, the
components, the middle parts describe systems built from components, and
the final parts give complex examples of real component-based systems.

The book consists of seven parts:

xxii Building Reliable Component-Based Software Systems

• Part 1, The Definition and Specification of Components, gives an over-
all introduction to components and the basic terminology of
component-based software engineering.

• Part 2, Software Architecture and Components, discusses different
component models from the point of view of software architecture.

• Part 3, Developing Software Components, describes a component-
based development process and certain methods for the successful
design and specification of components.

• Part 4, Using Software Components, discusses problems related to
component evaluation, integration, and testing.

• Part 5, Software Product Lines, provides an overview of software
product-line architectures and gives a case study of a component
model used in a product line.

• Part 6, Real-Time Software Components, discusses the principles and
methods for building real-time, embedded, and safety-critical
systems.

• Part 7, Case Studies: CBD in Industrial Applications, shows how the
methods and theories described in the preceding parts of the book
are implemented or utilized in concrete cases.

Who Should Read This Book?

This book is directed toward several reader categories. Software developers
and engineers will find the theory behind existing component models. The
case studies will provide useful information about challenges, pitfalls, and
successes in the practical use of component-based technologies. Experienced
developers will find useful technical details in the last part of the book, while
inexperienced developers can learn about the principles of CBSE. Project and
company managers will be interested in the process and organizational
aspects of component-based development, either for developing components
or systems, with a focus on the reuse of components.

The book includes topics related to current research and to the state of
the art of CBSE. For this reason, it will be of interest to researchers, either
those beginning research in this field or those already involved. Extensive lists
of references in each chapter provide broad insight into current trends.
Finally, the book is appropriate as a course book, primarily for graduate stu-
dents or undergraduate students in the later years of their studies.

Preface xxiii

How to Use This Book

The different chapters have been written by different authors, experts in dif-
ferent areas. For this reason all chapters are relatively autonomous and can be
read independently of each other. For a broader perspective of a topic, an
entire part of interest can be read. This does not mean that the entire book
shouldn�t be read! It merely means that it is not necessary for the book to be
read in the order in which it is organized. Those interested in basic principles
and theories related to component models would be interested in the first
parts, especially Chapters 1 through 5. As course literature, reading could
begin with the first parts and a study of some of the chapters presenting case
studies (i.e., Chapters 12, or 15 through 19). An experienced practitioner or
researcher might be especially interested in these chapters. Chapters 2 and 6
through 10 are more theoretical in nature with many open questions and
might therefore be of special interest to researchers and graduate students.
Chapters 5, 11, 13, and 19 cover the component-based software life cycle
and will be of special interest to project leaders or those working with devel-
opment processes. Chapters 13 through 17 are related to real-time and
dependable systems.

Web Site

The book�s Web site, http://www.idt.mdh.se/cbse-book, includes a set of
presentation slides and additional material to support the use of this book in
teaching and personal study. Instructors may freely use and modify the pre-
sentation material.

Acknowledgments

Many people contributed to the development of this book. First, we wish to
thank all of the authors. It was a wonderful experience to work with them, to
read their contributions, and to discuss the book�s overall objectives or par-
ticular ideas. We never met as a group but we made a great team. We are
grateful to all the reviewers, known and unknown to us. Special gratitude
goes to Heinz Schmidt, who reviewed the entire book and whose comments
led invariably to its improvement. Students attending the CBSE course at
Mälardalen University have analyzed, presented, and discussed different
chapters and selected topics from the book. Their questions and comments
were a positive contribution to its development. We wish to thank Victor

xxiv Building Reliable Component-Based Software Systems

Miller who did a great job of reviewing all chapters and enhancing the writ-
ing style. We are particularly indebted to Tim Pitts, Ruth Harris, and Jill
Hodgson Stoodley from Artech House for their enormous and continuous
support during the writing and editing process.

Finally, we wish to express our gratitude to our families, to the children
Tea and Luka, and Emmy, Jacob, and Ida, and to our wives, Gordana and
Christina, for their unfailing patience, support, and love.

Ivica Crnkovic and Magnus Larsson
Västerås, Sweden

June 2002

Preface xxv

.

Introduction
Ivica Crnkovic and Magnus Larsson

We are witnessing an enormous expansion in the use of software in business,
industry, administration, research, and even in everyday life. Software is no
longer used marginally in technical systems; instead it has become a central
factor in many fields. Features based on software functionality, rather than
other system characteristics, are becoming the most important factor in a
competitive market. This trend increases the demands on software products
such as enhanced usability, robustness, reliability, flexibility, adaptability,
and simpler installation and deployment. As these demands are growing
stronger, the complexity of processes that software manages is increasing
along with the demand for the integration of processes from different areas.
As a consequence, software programs are becoming increasingly large and
complex. The main challenge for software developers today is to cope with
complexity and to adapt quickly to change. Traditionally, software develop-
ment addressed the challenges of increasing complexity and dependence on
external software by focusing on one system at a time and on satisfying deliv-
ery deadline and budget requirements without considering the evolutionary
needs of the system.

Focusing on one system at a time and neglecting forthcoming changes
has led to a number of problems: the failure of the majority of projects to
meet their deadline, budget, and quality requirements as well as the contin-
ued increase in costs associated with software maintenance.

xxvii

One key to the solution of these problems is reusability. The idea of
software reuse is not new. But, despite some successes, reusability has not
become a driving force in software development. Many of the unsuccessful
approaches to reuse did not satisfy the basic requirements of reusability [1]:

1. Reuse requires some modification of the object being reused.

2. Reuse must be integrated into specific software development.

In many approaches, reusability is not inherent in the development
process. What can be reused and what cannot be reused is not precisely
defined, and how the changes can be introduced in the reusable parts is not
formalized. The rapidly emerging approach called component-based devel-
opment (CBD) reestablishes the idea of reuse and introduces new elements.
In CBD, software systems are built by assembling components already devel-
oped and prepared for integration. CBD has many advantages. These
include more effective management of complexity, reduced time to market,
increased productivity, improved quality, a greater degree of consistency, and
a wider range of usability [2].

However, CBD has several disadvantages and risks that can jeopardize
its success:

• Time and effort required for development of components. Among the
factors that can discourage the development of reusable components
is the increased time and effort required to build reusable units [3, 4].

• Unclear and ambiguous requirements. In general, requirements man-
agement is an important and complex phase in the development
process, its main objective being to define consistent and complete
component requirements. One of the major problems of software
development in general comes from unclear, ambiguous, incom-
plete, and insufficient requirements specifications. Reusable compo-
nents are, by definition, to be used in different applications, some of
which may yet be unknown and the requirements of which cannot
be predicted. This applies to both functional and nonfunctional
requirements. This makes it more difficult to identify the require-
ments properly and hence to design and build components success-
fully [5, 6].

• Conflict between usability and reusability. To be widely reusable, a
component must be sufficiently general, scalable, and adaptable; it
will therefore be more complex (and thus more complicated to use)

xxviii Building Reliable Component-Based Software Systems

and more demanding of computing resources (and thus more
expensive to use). A requirement for reusability may lead to another
development approach, for example, a design on a more abstract
level, which may reduce its ultimate flexibility and ability to be
fine-tuned, but it will achieve greater simplicity [3, 4].

• Component maintenance costs. Although application maintenance
costs can be lowered, component maintenance costs can be very
high since the component must respond to the different require-
ments of different applications running in different environments,
with different reliability requirements and perhaps requiring a dif-
ferent level of maintenance support [3].

• Reliability and sensitivity to changes. Because components and appli-
cations have separate life cycles and different kinds of requirements,
there is some risk that a component will not completely satisfy the
particular requirements of certain applications or that it may have
characteristics not known to the application developer. When intro-
ducing changes at the application level (changes such as the updat-
ing of an operating system, the updating of other components, and
changes in the application), developers face the risk that the change
introduced will cause a system failure [7].

To enjoy the advantages and avoid the problems and risks of CBD, we
need a systematic approach to CBD at the process and technology levels.

Component-Based Software Engineering

Both customers and suppliers have expected much from CBD, but their
expectations have not always been fulfilled. Experience has shown that CBD
requires a systematic approach to focus on the component aspects of software
development [3]. Traditional software engineering disciplines must be
adjusted to the new approach, and new procedures must be developed.
Component-based software engineering (CBSE) has become recognized as a
new subdiscipline of software engineering. The major goals of CBSE are as
follows [8]:

• To provide support for the development of systems as assemblies of
components;

• To support the development of components as reusable entities;

Introduction xxix

• To facilitate the maintenance and upgrading of systems by custom-
izing and replacing their components.

The building of systems from components and the building of compo-
nents for different systems require established methodologies and processes
not only in relation to the development and maintenance aspects, but also to
the entire component and system life cycle including organizational, market-
ing, legal, and other aspects [7, 9]. In addition to specific CBSE subjects such
as component specification or composition and technologies, a number of
software engineering disciplines and processes require specific methodologies
for application in CBD. Many of these methodologies have not yet been
established in practice, and some have not yet been theoretically sufficiently
refined. The progress of software development in the near future will depend
very much on the successful establishment of CBSE, a point that is recog-
nized by both industry and academia.

Challenges of CBSE

It is obvious that CBD and CBSE are only in the starting phase of their
expansion. CBD is recognized as a powerful new approach that will signifi-
cantly improve�if not revolutionize�the development of software and soft-
ware use in general. We can expect components and component-based
services to be widely used by nonprogrammers when building their applica-
tions. Tools for building such applications by component assembly will be
developed. Automatic updating of components over the Internet, already
present in many applications today, will be a standard means of application
improvement.

Another trend we have observed is the standardization of domain-
specific components at the interface level. This will make it possible for
developers to build applications and systems from components purchased
from different vendors. The standardization of domain-specific components
requires the standardization of domain-specific processes. Widespread work
on standardization in different domains is already in progress. A typical
example is the work of the OPC Foundation [10] on a standard interface to
enable interoperability between automation/control applications, field sys-
tems/devices, and business/office applications. Support for the exchange of
information between components, applications, and systems distributed
over the Internet will be further developed. Current technologies such as

xxx Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

Extensible Markup Language (XML) [11] are already used to exchange infor-
mation over the Internet.

CBSE is facing many challenges today, some of which are summarized
here and developed further in different chapters of the book:

• Component specification. Although this problem has been addressed
from the very beginning of development of component models, no
consensus has been reached about what is a component and how it
should be specified. Component specification is an important issue
because the basic concepts of CBD rely on it and this book therefore
pays much attention to this problem. Chapters 1, 2, and 6 discuss
component specifications and other basic concepts of component
technologies related to component specifications.

• Component models. Even though existing development models dem-
onstrate powerful technologies, they have many ambiguous charac-
teristics, they are incomplete, and they are difficult to use. The
relations between system architecture and component models are
not precisely defined. The basic principles of component models,
their relations to software architectures, and descriptions of the most
commonly used models are presented in Chapters 3 and 4.

• Component-based software life cycle. The life cycle of component-
based software is becoming more complex because many phases are
separated in unsynchronized activities. For example, the develop-
ment of components may be completely independent of the devel-
opment of systems using those components. The process of
engineering requirements is much more complex because the possible
candidate components usually lack one or more features that the sys-
tem requires. In addition, even if some components are individually
well suited to the system, it is not obvious that they function opti-
mally in combination with others in the system. These constraints
may require another approach in requirements engineering�an
analysis of the feasibility of requirements in relation to the compo-
nents available and the consequent modification of requirements.
Because many uncertainties surround the process of component
selection, a strategy is needed for managing risks in the component
selection and evolution process [8, 12]. Similarly many questions
remain in the late phases of component-based software life cycles.
Because component-based systems include components with in-
dependent life cycles, the problem of system evolution becomes

Introduction xxxi

significantly more complex. Many different types of questions have
not yet been solved. There are technical issues (Can a system be
updated technically by replacing components?), administrative and
organizational issues (Which components can be updated, which
components should be or must be updated?), legal issues (Who is
responsible for a system failure, the producer of the system or the
producer of the component?), and so on. CBSE is a new approach
and little experience has been gained regarding the maintainability
of such systems. We face the risk that many such systems will be
troublesome to maintain. The component-based system life cycle is
discussed in Chapter 5.

• Composition predictability. Even if we assume that we can specify all
of the relevant attributes of components, we do not necessarily know
how these attributes will determine the corresponding attributes of
systems of which they may become part. The ideal approach�to
derive system attributes from component attributes�is still a sub-
ject of research. The questions remain: Is such derivation at all possi-
ble? Should we not concentrate on the determination of the
attributes of component composites? [13]. Component evaluation
and composition are discussed in detail in Chapters 8 and 9.

• Trusted components and component certification. Because the trend is
to deliver components in binary form and the component develop-
ment process is outside the control of component users, questions
related to component trustworthiness become very important. One
way of classifying components is to certify them. In spite of the com-
mon belief that certification means absolute trustworthiness, it in
fact merely provides the results of tests performed and a description
of the environment in which the tests were performed. Although
certification is a standard procedure in many domains, it has not yet
been established in software in general and especially not for soft-
ware components [14, 15]. Chapter 10 elaborates on how trustwor-
thiness can be achieved for software components.

• Component configurations. Complex systems may include many
components, which, in turn, include other components. In many
cases, compositions of components will be treated as components.
As soon as we begin to work with complex structures, problems
involving structural configurations appear. For example, two com-
positions may include the same component. Will such a component
be treated as two different entities or will the system accept the

xxxii Building Reliable Component-Based Software Systems

component as a single instance, common to both compositions?
What happens if different versions of a component are incorporated
in two compositions? Which version will be selected? What happens
if the different versions are not compatible? The problems of the
dynamic updating of components are already known, but their solu-
tions are still the subject of research [16, 17]. One way to handle
such complex systems with many components is to make use of
product line architectures [18, 19] to impose rules for component
configurations. Chapter 11 presents the basis of such component
configurations.

• Tool support. The purpose of software engineering is to provide prac-
tical solutions to practical problems, and the existence of appropriate
tools is essential for successful CBSE performance. Development
tools, such as Visual Basic, have proven to be extremely successful,
but many other tools have yet to appear: component selection and
evaluation tools, component repositories and tools for managing the
repositories, component test tools, component-based design tools,
run-time system analysis tools, component configuration tools, and
so on. The objective of CBSE is to build systems from components
simply and efficiently, and this can only be achieved with extensive
tool support. Three chapters in this book, Chapters 12, 18, and 19,
illustrate the necessity of using tools in the development and mainte-
nance process.

• Dependable systems and CBSE. The use of CBD in safety-critical
domains, real-time systems, and different process-control systems, in
which the reliability requirements are particularly rigorous, is par-
ticularly challenging. A major problem with CBD is the limited pos-
sibility of ensuring the quality and other nonfunctional attributes of
the components and thus our inability to guarantee specific system
attributes. Several chapters of this book treat this problem, as speci-
fied in the following section.

Components in Reliable Systems

In many domains the CBD approach has been very successful. CBD, and
software reuse in general, has been extensively used for many years in desktop
environments and graphical and mathematical applications. The compo-
nents used in these areas are, by their nature, precisely defined and they have
intuitive functionality and interfaces. On the other hand, the extrafunctional

Introduction xxxiii

characteristics and constraints are not of the highest priority. By extrafunc-
tional characteristics we mean the component and system properties that
determine an overall behavior, but cannot be expressed by functions and can-
not be invoked and performed explicitly. Examples of extrafunctional prop-
erties include properties related to temporal constraints (execution time,
latency, periodicity, deadlines, etc.) and then reliability, robustness, perfor-
mance, safety, and security. In addition to these emergent system properties,
we have properties related to the system life cycle: maintainability, usability,
availability, adaptability, reusability, and so on. These properties are often
referred to as nonfunctional properties.

Although component-based models deal successfully with functional
attributes (although still being far from the ideal solutions), they provide no
support for managing extrafunctional properties of systems or components.

CBSE faces two types of problems when dealing with extrafunctional
properties. The first type, one common to all software development, is the
fact that there are many and often imprecise definitions of these properties.
The second, specific to component-based systems, is the difficulty of relating
system properties to component properties. Let us take reliability as an exam-
ple. An intuitive definition of the reliability of a system is the probability that
a system will behave as intended. The formal definition of reliability is �the
ability of a system or component to perform its required functions under
stated conditions for a specified period of time� [20]. We should consider
several points in this definition. To predict or calculate the reliability of a sys-
tem correctly, we must state precisely the relevant conditions under which it
is to apply. This definition does not apply to system behavior in unpredict-
able situations, but experience teaches us that problems most often occur
when a system is exposed to unpredictable conditions. Uncertainty in the
specification of conditions leads to uncertainty in any specification of system
reliability. To include unpredictable (or predictable, but not �normal�) con-
ditions, we introduce the property of robustness. We distinguish between
these two properties but cannot precisely define their relation. Other proper-
ties are also closely related to these two. The availability of a system is the
probability that it will be up and running and able to provide useful service at
any given time. Trustworthiness denotes a user�s confidence that the system
will behave as expected. There are systems in which the safety (i.e., the ability
of the system to operate without catastrophic failure) and security (the ability
of the system to protect itself against accidental or deliberate intrusion) are of
main importance. In such systems, reliability, robustness, availability, and so
forth must be very precisely specified. These systems are often designated as
dependable [21].

xxxiv Building Reliable Component-Based Software Systems

The specific problems and challenges involved in CBD when dealing
with extrafunctional properties are the determination of the relationship
between component properties and system properties. Which properties
should be considered when evaluating components, when composing them
into assemblies, or when testing them? Can we predict the behavior of a sys-
tem from the specifications of its components? Let us again consider reliabil-
ity as an example. The first question that arises is how to define the reliability
of a component. It depends on specified conditions, which might be only
partially defined because these conditions are determined not only by the
component itself but also by its deployment and run-time environment. The
second question is how to predict the reliability of a system from the known
reliabilities of its components. These questions are discussed in Chapters 8
and 9.

CBD usually reduces the development time and effort, but also the
possibility of guaranteeing extrafunctional properties. For example, the
main problem when using commercial components in safety-critical systems
is the system designer�s limited insight into the safety-critical properties of
components. Increasing the number of test cases may decrease this uncer-
tainty. We also need specific test methods to be applied to components.
One way of performing tests is to use fault injection, which can reveal the
consequences of failures in components to the rest of the system [22�24].
This and certain other methods are discussed in Chapter 10. Because, in
general, the trustworthiness of commercial components is less than that of
software developed in-house, we must perform as many tests as needed, but
not more. If a component is extensively tested in one configuration, do we
need to repeat all tests performed or can we assume some of the results of
previous tests? Must we add new tests? This depends on the system require-
ments and on the system configuration. By studying changes in require-
ments, changes in the system environment and changes in the entire
environment in which the system is performing, we can to some extent
ascertain which test cases are already covered by the previous tests. This
analysis is discussed in Chapter 14.

Component-based real-time systems (systems in which the correctness
is also determined by time factors), and hence real-time components, must
take into consideration timing constraints. Very often these systems are
dependable systems (reliable, robust, safety critical, etc.). General-purpose
component models do not provide real-time support. Many questions
remain as to how to build component-based real-time systems: What is a
real-time component, what are its properties, and how can a real-time com-
ponent be specified? Chapter 13 discusses basic principles for modeling

Introduction xxxv

component-based systems. Chapters 16�19 illustrate, via different case stud-
ies, the possibilities of applying component-based principles and building
real-time systems based on non-real-time component technologies.

References

[1] Basili, V. R., and H. D. Rombach, �Support for Comprehensive Reuse,� Software Engi-
neering, Vol. 6, No. 5, 1991, pp. 303�316.

[2] Brown, A. W., Large-Scale Component-Based Development, Upper Saddle River, NJ:
Prentice Hall, 2000.

[3] Crnkovic, I., and M. Larsson, �A Case Study: Demands on Component-Based Devel-
opment,� Proc. 22nd Int. Conf. Software Engineering, Limerick, Ireland, ACM Press,
2000.

[4] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998, pp. 46�56.

[5] Maiden, N. A., and C. Ncube, �Acquiring COTS Software Selection Requirements,�
IEEE Software, Vol. 15, No. 2, 1998, pp. 46�56.

[6] Lamsweerde, A. V., �Requirements Engineering in the Year 00: A Research Perspec-
tive,� Proc. 22nd Int. Conf. Software Engineering, Limerick, Ireland, ACM Press, 2000.

[7] Larsson, M., �Applying Configuration Management Techniques to Component-Based
Systems,� Licentiate Thesis Dissertation 2000-007, Department of Information Tech-
nology, Uppsala University, Uppsala, Sweden, 2000.

[8] Heineman, G. T., and W. T. Councill, Component-Based Software Engineering, Putting
the Pieces Together, Reading, MA: Addison-Wesley, 2001.

[9] Takeshita, T., �Metrics and Risks of CBSE,� Proc. 5th Int. Symp. Software Tools and
Technologies, Pittsburg, PA, IEEE Computer Society, 1997.

[10] OPC Foundation, �OPC, OLE for Process Control,� Report v1.0, OPC Standards
Collection, 1998, http://opcfoundation.org.

[11] World Wide Web Consortium, �XML,� http://www. w3c. org/XML/.

[12] Kotonya, G., and A. Rashid, �A Strategy for Managing Risks in Component-Based
Software Development,� Proc. 27th Euromicro Conf. in the CBSE Workshop, Warsaw,
Poland, IEEE Computer Society, 2001.

[13] Wallnau, K. C., and J. Stafford, �Ensembles: Abstractions for a New Class of Design
Problem,� Proc. 27th Euromicro Conf. in the CBSE Workshop, Warsaw, Poland, IEEE
Computer Society, 2001.

[14] Voas, J., and J. Payne, �Dependability Certification of Software Components,� J. Soft-
ware Systems, Vol. 52, 2000, pp. 165�172.

xxxvi Building Reliable Component-Based Software Systems

[15] Morris, J., et al., �Software Component Certification,� IEEE Computer, Vol. 34, No. 9,
2001, pp. 30�36.

[16] Crnkovic, I., et al., Object-Oriented Design Frameworks: Formal Specifications and Some
Implementation Issues, in Databases and Information Systems, Dordrecht: Kluwer Aca-
demic Publishers, 2001.

[17] Larsson, M., and I. Crnkovic, �New Challenges for Configuration Management,� Proc.
9th Symp. System Configuration Management, Lecture Notes in Computer Science, No.
1675, Berlin, Springer Verlag, 1999.

[18] Bosch, J., Design & Use of Software Architectures, Reading, MA: Addison-Wesley, 2000.

[19] Bosch, J., �Product-Line Architectures in Industry: A Case Study,� Proc. 21st Int. Conf.
Software Engineering, Los Angeles, CA, ACM Press, 1999.

[20] IEEE Standard Computer Dictionary: A Compilation of IEEE Standard, New York: Insti-
tute of Electrical and Electronics Engineers, 1990.

[21] Sommerville, I., Software Engineering, Reading, MA: Addison-Wesley, 2001.

[22] Voas, J., and G. McGraw, Software Fault Injection: Inoculating Programs Against Errors,
New York: John Wiley and Sons, 1998.

[23] Voas, J., �Discovering Unanticipated Software Output Modules,� The Annals of Soft-
ware Engineering, Vol. 11, No. 1, 2001, pp. 79�88.

[24] Besnard, J. F., S. J. Keene, and J. Voas, Assuring COTS Products for Reliability and
Safety Critical Systems, Los Alamitos, CA: IEEE Computer Society, 1999.

Introduction xxxvii

.

Part 1:
The Definition and Specification
of Components

We have a general idea of what a component is, but in the software context,
because what we know as components have so many varied forms, functions,
and characteristics (as source code modules, parts of an architecture, parts of a
design, and binary deployable executables), there are a correspondingly large
number of definitions of a component. This part outlines different definitions
of software components and other concepts related to component-based soft-
ware development. A component has many different parts that must be speci-
fied for many different purposes and there is a consequent need for different
specification techniques. It is not only the component that must be specified,
the environment in which the component is intended to function must also
be specified to prevent its misuse or unintended use. Functional, operational,
quality, and design specifications are examples of different types of compo-
nent specifications. The description of a component is not easy if it is not
clear what a component is. Thus, a well-formulated and clearly understood
definition of the component concept is needed.

The authors of the first chapter present the basic definitions of terms
related to component specification and operation: interface, contract, frame-
work, and pattern and the relations between them. A component is a reusable
unit of deployment and composition that is accessed through an interface.
An interface specifies the access points to a component. The component

1

specification can be achieved through contracts, which make sure certain con-
ditions hold true during the execution of a component within its environ-
ment. A framework describes a large unit of design with defined relationships
between participants of the framework. The last term discussed is patterns,
which define recurring solutions to recurring problems on a higher abstract
level. Patterns enable reuse of the logical solutions and have proven very use-
ful. The chapter describes these terms and discusses relations between them.

The second chapter describes various techniques for component speci-
fication. A component is specified by its interface, which must consist of a
precise definition of the component�s operations and context dependencies.
In the existing component models the specification is focused on the syntac-
tic aspects of the interface. The chapter also discusses other specification
techniques that use Unified Modeling Language (UML) and the Object
Constraint Language (OCL), in which a component implements a set of
interfaces. Each interface consists of a set of operations with associated pre-
and postconditions and invariants. The preconditions define which condi-
tions must be satisfied before the operation begins, and the postconditions
define which conditions will be valid after the execution of the operation.
The invariants are the states that must remain valid during and after the exe-
cution of the operation. This type of specification gives more accurate infor-
mation about component behavior. Finally the chapter discusses the
extrafunctional characteristics of a component (for example, reliability) that
are not covered by these types of specifications and which are matters of cur-
rent research interest.

2 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

1
Basic Concepts in CBSE

Ivica Crnkovic, Brahim Hnich, Torsten Jonsson, and Zeynep
Kiziltan

Introduction

It is very important to clarify some basic concepts frequently encountered
in CBSE. Varying definitions of these concepts might cause confusion
because CBSE is a young discipline. Many concepts have still not been com-
pletely explained or tested in practice, and as a consequence, their definitions
remain imprecise. Different authors have different understandings of differ-
ent concepts in different situations. In this chapter, general definitions of the
concepts, together with their similarities and differences, are presented. For
example, a clear distinction is made between a component and an object, and
an obvious similarity is established between a framework and a contract.

CBSE is based on the concept of the component. Other terms, such as
interface, contract, framework, and pattern, are thereby closely related to
component-based software development. In this chapter we present an over-
view of these terms, their definitions, and the relationships among them. The
terms and the different concepts related to them are used in later chapters of
this book.

The following brief definitions of terms will be further discussed in
subsequent sections. A component is a reusable unit of deployment and com-
position. A common view is that a component is closely related to an object

3

and that CBD is therefore an extension of object-oriented development.
However, many factors, such as granularity, concepts of composition and
deployment, and even the development processes, clearly distinguish compo-
nents from objects. An interface specifies the access points to a component,
and thus helps clients to understand the functionality and usage of a compo-
nent. The interface is clearly separated from the implementation of a compo-
nent. Strictly defined, an interface specifies the functional attributes of a
component. A purely functional description of components is not enough.

The component specification can be achieved through contracts, which
focus on the specification of conditions in which a component interacts with
its environment. Although components may be of different sizes and very
large components may be of interest, a set of components that plays a specific
role is more often of interest than any one component. This leads us to
frameworks. A framework describes a large unit of design, and defines the
relationships within a certain group of potential participants. These partici-
pants may be components.

Finally, we discuss the relationships between components and patterns.
Patterns define recurring solutions to recurring problems on a higher abstract
level, and in this way enable their reuse. Patterns usually capture units of
design that are small when compared with frameworks, because a framework
encompasses several design patterns.

Components

Components are at the heart of CBSE, and we need a precise definition of a
component in order to understand the basics of CBSE. We can find several
definitions of a component in literature, most of which fail to give an intui-
tive definition of a component, but focus instead on the general aspects of a
component. For example, in a Component Object Model (COM) technical
overview from Microsoft, a component is defined as �a piece of compiled
software, which is offering a service� [1]. Everyone agrees that a component
is a piece of software, and it obviously offers a service but this definition is
too broad because, for example, even compiled libraries (e.g., .o and .dll files)
could be defined in this way.

In this section, we first clarify the notion of component by considering
different but complementary definitions found in literature. In many cases,
components are treated as objects and the main differences between compo-
nents and objects are not clear. Thus, secondly, we will argue that compo-
nents are not merely objects.

4 Building Reliable Component-Based Software Systems

Different Component Definitions

Szyperski [2] defines a component precisely by enumerating the characteris-
tic properties of a component: �A software component is a unit of com-
position with contractually specified interfaces and explicit context depend-
encies only. A software component can be deployed independently and is
subject to composition by third party.� The implication of these properties
is as follows: For a component to be deployed independently, a clear distinc-
tion from its environment and other components is required. A component
communicates with its environment through interfaces. Hence, a compo-
nent must have clearly specified interfaces while the implementation must
be encapsulated in the component and is not directly reachable from the
environment. This is what makes a component a unit of third-party
deployment.

The most important feature of a component is the separation of its
interfaces from its implementation. This separation is different from those we
can find in many programming languages (such as ADA or Modula-2) in
which declaration is separated from implementation, or those in object-
oriented programming languages in which class definitions are separated from
class implementations. What distinguishes the concepts in CBSE from these
concepts are requirements of integration of a component into an application.
Component integration and deployment should be independent of the com-
ponent development life cycle and there should be no need to recompile or
relink the application when updating with a new component. Another impor-
tant characteristic of a component is its visibility exclusively through its inter-
face. An important implication of this is a need for a complete specification of
a component including its functional interface, nonfunctional characteristics
(performance, resources required, etc.), use cases, tests, and so forth. Unfortu-
nately, the specification of a component is far from being complete. The cur-
rent component-based technologies successfully manage functional interfaces
only partially. Functional specifications are limited to syntactic lists of opera-
tions and attributes, and current technologies fall short of addressing the
semantics of functional properties. Further, there is no satisfactory support for
specification of nonfunctional properties.

D�Souza and Wills [3] define a component as a reusable part of soft-
ware, which is independently developed and can be combined with other
components to build larger units. It may be adapted but may not be modi-
fied. A component can be, for example, �compiled code� without a program
source (so that it may not be modified) or part of a model or a design.
Components are divided into two major types: general components and

Basic Concepts in CBSE 5

implementation components. General components are, for example, user-
interface widgets dropped onto a canvas, C++ list templates, or class frame-
works. Implementation components include any executable code, source
code, interface specifications, or code templates.

Even though the reusability concept is familiar to us from object-
oriented technologies, CBSE takes an approach to reusability that is different
from conventional software reuse. Aoyama [4] explains this difference as fol-
lows: First, components can be composed at run time without the need for
compilation. Second, a component detaches its interface from its implemen-
tation and conceals its implementation details, hence permitting composi-
tion without the need to know the component implementation details. The
interface of a component should be standardized to enable reuse and allow
components to interoperate in a predefined architecture.

Components are often understood in different ways in academia and in
industry [5]. The academic view of a component is that it is a well-defined
entity, often small and with easily understood functional and nonfunctional
features. It is a black box because it has an explicit encapsulation boundary
that restricts any external access. Industry follows this concept in general, and
many domain-specific component models exist, some of them used as stan-
dards (for example, IEC 61131-3, described in Chapter 13), and some of
them developed internally by companies (for example, Koala, described in
Chapter 12; AspectObjects described in Chapters 17 and 18; or Object
Modeler, discussed in Chapter 19). However, in many cases, industry sees a
component as a large piece of software that is reusable and has a complex
internal structure. It does not necessarily have well-understood interfaces,
and it does not have an explicit encapsulation boundary preventing access to
its internal entities. This is especially true for product-line architectures, in
which different concepts and component models are used within the same
systems [6].

There are many other definitions of components. These definitions
begin with the consideration of CBSE from different viewpoints and they
focus on different aspects of software engineering, for instance, different
phases (in the design phase, components as reusable design parts; in the
implementation phase, components confirmed to a specific component
model, at run time, binary packages, distributed components), business
aspects (business components, service components, COTS components),
architectural issues (UML components), and so on.

What then is common to components? As previously defined, a com-
ponent is a unit of composition, and it must be specified in such a way that it

6 Building Reliable Component-Based Software Systems

is possible to compose it with other components and integrate it into systems
in a predictable way.

To be able to describe a component completely and to ensure its cor-
rect integration, maintenance, and updating, the component should consist
of the following elements:

• A set of interfaces provided to, or required from, the environment.
These interfaces are particularly for interaction with other compo-
nents, rather than with a component infrastructure or traditional
software entities (see Figure 4.1).

• An executable code, which can be coupled to the code of other com-
ponents via interfaces.

To improve the component quality, the following elements can be
included in the specification of a component:

• The specification of nonfunctional characteristics, which are pro-
vided and required;

• The validation code, which confirms a proposed connection to
another component;

• Additional information, which includes documents related to the
fulfilling of specification requirements, design information, and use
cases.

Obviously, certain problems are inevitable in CBSE. A typical diffi-
culty is deciding how to deal with nonfunctional aspects of communication,
cooperation, and coordination included in a component architecture. In the
same way as components themselves, these nonfunctional properties should
be possible to compose and easy to control. A clear separation of nonfunc-
tional requirements gives a component more context independence, and pos-
sibly permits reuse of the component across a wide range of contexts.
Another serious problem is the syntactic fragile base class problem, which
arises due to the incompatibility of different versions of a component. This
problem should not be confused with the semantic fragile base class problem.
If client components dependent on a component rely on a particular behav-
ior of the objects in a component but are unaware of updates that change the
inner workings of the component, the client components� function may

Basic Concepts in CBSE 7

cease, perhaps causing a system failure. This is designated the semantic fragile
base class problem.

Objects and Components

The terms object and component are often thought to be synonymous or very
similar. Szyperski and Pfister [7] view a component as a collection of objects,
in which the objects cooperate with each other and are intertwined tightly.
The boundary between a component and other components or objects is
specified, and the interaction of the component (and thus its objects) across
the boundary is implemented through the component interface while the
inner granularity of a component (i.e., its objects) is hidden. Objects within
a single component have access to each other�s implementation. However,
access to the implementation of an object from outside the component must
be prevented.

Instead of containing classes or objects, a component could contain tra-
ditional procedures, global (static) variables, and can thus be realized by
using not only an object-oriented approach but also functional programming
or an assembly language approach. Similar to the inheritance relation
between objects, a component can have an import relation with another
component. A superclass of a class need not be in the same component as the
class itself. If a class in a component has a superclass in another component,
the inheritance relation between these classes occurs at the boundary between
the components [8].

D�Souza and Wills [3] discuss the differences between and similarities
of objects and components. An important question is whether a class is a
component or not. If a class were packaged together with the explicitly
defined interfaces that it requires and implements, then this class would be
a component. An application programming interface (API) is a specifica-
tion, written in a programming language, of the properties of a module on
which clients may depend [9]. The API of a component is available in
the form of one or more interface constructs (e.g., Java interfaces or
abstract virtual classes in C++). In the same way as classes, components
may be associated with other classes. If these classes themselves have a fully
defined API, the resulting set of classes is designated a component composi-
tion. The differences between a component and a class are discussed further
in Chapter 7.

The following are other important distinctions between objects and
components [3]:

8 Building Reliable Component-Based Software Systems

• Components often use persistent storage whereas objects have local
state.

• Components have a more extensive set of intercommunication
mechanisms than objects, which usually use the messaging
mechanism.

• Components are often larger units of granularity than objects and
have complex actions at their interfaces.

We can conclude that the object-oriented approach and CBSE have
many similarities, but a clear distinction exists between the two approaches.
They are, however, not conflicting; on the contrary, object-oriented analysis,
design, and development constitute a set of technology and methods natu-
rally used in CBSE.

Interfaces

An interface of a component can be defined as a specification of its access
point [2]. The clients access the services provided by the component using
these points. If a component has multiple access points, each of which repre-
sents a different service offered by the component, then the component is
expected to have multiple interfaces.

It is important to note that an interface offers no implementation of
any of its operations. Instead, it merely names a collection of operations and
provides only the descriptions and the protocols of these operations. This
separation makes it possible to (1) replace the implementation part without
changing the interface, and in this way improve system performance without
rebuilding the system; and (2) add new interfaces (and implementations)
without changing the existing implementation, and in this way improve the
component adaptability.

Clients customize components by means of interfaces because an inter-
face is the only visible part. Ideally, in an interface, each operation�s seman-
tics must be specified because this is important to both the implementers of
the interface and clients using the interface. However, this is often not the
case. In most of the existing component models, the interface defines only
the syntax (e.g., types of inputs and outputs) and gives very little information
about what the component does.

Interfaces defined in standard component technologies can express
functional properties. Functional properties include a signature part in which

Basic Concepts in CBSE 9

the operations provided by a component are described, and a behavior part,
in which the behavior of the component is specified. Bergner et al. [10] point
out that most description techniques for interfaces such as interface definition
language (IDL) [11] are only concerned with the signature part. Such inter-
face description techniques, however, are not sufficiently well equipped to
express extrafunctional properties (for example, quality attributes such as
accuracy, availability, latency, security) [9].

We can distinguish two kinds of interfaces. Components can export
and import interfaces to and from environments that may include other
components. An exported interface describes the services provided by a com-
ponent to the environment, whereas an imported interface specifies the serv-
ices required by a component from the environment. The general approach
to interfaces is traditionally syntactic [12]. However, the realization of the
semantic issues related to context dependencies (i.e., specification of the
deployment environment and run-time environment) and interaction has
indicated the need for a contract that clearly specifies the behavior of a com-
ponent (see the �Contracts� section) [13].

Different versions of an interface may cause problems. Szyperski [2]
notes that the traditional way of coping with different versions of an inter-
face is to assign major and minor numbers to the versions. However, this
approach assumes that the versions of a component evolve at a single source.
For controlling different versions, some systems freeze the interfaces once
they are published and never change them again. COM takes this approach
by freezing the current interface and creating new interfaces, thus supporting
multiple interfaces for the different versions of an interface. This, however,
leads to a sudden increase in the number of new interfaces, which in practice
describe the same component.

Contracts

Most techniques for describing interfaces such as IDL [11] are only con-
cerned with the signature part, in which the operations provided by a com-
ponent are described, and thus fail to address the overall behavior of the
component. A more accurate specification of a component�s behavior can be
achieved through contracts. As mentioned by Meyer [14], a contract lists the
global constraints that the component will maintain (the invariant). For each
operation within the component, a contract also lists the constraints that
need to be met by the client (the precondition) and those the component
promises to establish in return (the postcondition). The precondition, the

10 Building Reliable Component-Based Software Systems

invariant, and the postcondition constitute the specification of a compo-
nent�s behavior. For instance, contracts are used in the design of Eiffel [15]
(for object-oriented software development), the unified modeling language
(UML) [16], and so on.

Beyond the specification of the behavior of a single component, con-
tracts can also be used to specify interactions among groups of components.
However, they are employed in a slightly different manner. A contract speci-
fies the interactions among components, in terms of:

• The set of participating components;

• The role of each component through its contractual obligations,
such as type obligations, which require the component to support
certain variables and an interface, and causal obligations, which
require the component to perform an ordered sequence of actions,
including sending messages to the other components;

• The invariant to be maintained by the components;

• The specification of the methods that instantiate the contract.

Note that components not only provide other components with serv-
ices but also require them from yet other components. This is valid for both
functional and nonfunctional requirements. Hence, the contractual obliga-
tions for components differ significantly from only preconditions and post-
conditions of the methods provided by a component.

The use of contracts to specify interactions among components led to
the design of contract languages such as that introduced by Helm et al. [17]
and extended by Holland [18]. Note that according to Helm et al., the par-
ticipants are assumed to be objects, but because components are reusable
units they may also participate in a contract. In a contract language, the con-
tract is used to explicitly specify the set of participating components. A con-
tract also lists the services to be provided by the participating components.
By properly choosing the components and the methods to be used, the com-
ponents work together in a contract to achieve a particular objective or to
maintain some invariant. Each component, in such a group, provides some
of the required functionality and communicates with the other members of
the group.

Using contracts to specify the behavior of interacting components sup-
ports the reuse and refinement of larger grained software components based
on behavior. First, contracts permit the software developer to isolate and

Basic Concepts in CBSE 11

specify explicitly, at a high level of abstraction, the roles of different compo-
nents in a particular context. Second, different contracts make it possible to
modify and extend the role of every participant independently. Finally, new
contracts can be defined by associating different participants with different
roles.

The total behavior of a component may be quite complex because it
may participate in many contracts. Furthermore, contracts specify the condi-
tions in which components interact with other components in terms of pre-
conditions and postconditions on operations. The preconditions specify
what characteristics the environment must meet so that the operations of the
contract can guarantee the postconditions. Simple preconditions/postcondi-
tions on operations establish partial correctness, whereas to achieve total cor-
rectness, termination is required. Because contracts are designed to represent
message-passing protocols between components, they are imperative in
nature and therefore difficult to express in a declarative form.

Note also that contracts and interfaces are quite different concepts.
Whereas an interface is a collection of operations that specifies a service pro-
vided by a component, a contract specifies the behavioral aspects of a compo-
nent or the interaction between different components.

Patterns

An architect named Christopher Alexander first introduced a new concept of
patterns during the late 1970s [19]. In this context, a pattern defines a recur-
ring solution to a recurring problem. Gamma et al. [20] further refined this
definition by specifying the characteristics of a pattern and its objectives. Pat-
terns capture nonobvious solutions, not just abstract principles or strategies,
in an indirect manner, as distinct from many other problem-solving tech-
niques (such as software design paradigms or methods) that derive solutions
from principles. The solutions should be proven to solve the problem rather
than being theories or speculations. Patterns describe relationships between
deeper system structures and mechanisms and not only independent mod-
ules. Finally, human factors are a part of patterns. A design pattern can be
employed in the design and documentation of a component. A component,
as a reusable entity, can be seen as an implementation of some design pattern.
Design patterns can be used to describe the low-level implementation details
of the behavior and structure of the components, or the relationships

12 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

between the components in the context of a particular programming
language.

Patterns can be classified in three major categories depending on the
level of abstraction on which they are used when documenting a software
solution or design. At the highest level of abstraction, architectural patterns
deal with the global properties and architecture of a system composed of
large-scale components. Architectural patterns capture the overall structure
and organization of a software system, and encode high-level tactics, which
describe the set of participating subsystems, specify their roles, and express
the relationships between them. At a lower level of abstraction, design pat-
terns refine the structure and the behavior of the subsystems as well as the
components of a software system, and the relationships that exist among
them. They encode microarchitectures of subsystems and components for a
general design problem within a particular context, which describes the
structure and behavior of the subsystems and components as well as the com-
munication among them. At the lowest level of abstraction, idioms are low-
level patterns that are dependent on the chosen paradigm and the program-
ming language used.

Patterns have been applied to the design of many object-oriented sys-
tems, and are considered to be reusable microarchitectures that contribute to
an overall system architecture. However, the use of design patterns is not
without problems. The first problem is that the knowledge encoded in the
design pattern is unstructured knowledge that contains many ambiguities
because of the informal description of solutions. Two further major chal-
lenges related to patterns face the pattern community. The first is concerned
with the validation of the conformation of a particular implementation with
the specification of a given pattern. The second challenge is concerned with
the refinement (also known as specialization) of design patterns, that is,
whether one pattern refines (is a special case of) another.

The relationship between components and design patterns can be
viewed as follows. Design patterns are widely used in the process of designing
component-based systems in which the reusable units must be identified.
The use of design patterns makes it easier for us to recognize those reusable
parts and either find them in the form of preexisting components or develop
them as reusable units. Design patterns can be used to describe the behavior
of the inner parts of a component, and thus can be used to develop compo-
nents. Furthermore, design patterns can also be used to describe a compo-
nent composition when designing an assembly or a framework that associates
several components.

Basic Concepts in CBSE 13

Frameworks

CBSE means that we build software by �putting pieces together.� In such an
environment it is essential that a context exists in which the pieces can be
used. Frameworks are a means of providing such contexts. So what exactly is
a framework and how do we use it in CBSE?

Previous attempts to define frameworks have been approached from
different points of view and at different levels of detail. For instance, a frame-
work may be seen as a reusable design of a system in which the design con-
sists of the representation of abstract classes and the interaction of different
instances of these. At another level the framework is simply �a skeleton of an
application which can be customized by an application developer� [21].
Jacobson et al. define framework in relation to the term architecture: �A
microarchitecture which provides an incomplete template for systems within
a specific domain�� [22].

One way of using the term framework centers on the idea that the
design efforts, when building computer systems, may have abstract results
that can be reused in other situations. A framework is then used to describe
something that is not only usable in the current specific situation, but after
some modification, in any similar (or isomorphic) situation. This modifica-
tion may take place during execution or during design time and is called an
instantiation of the framework. It is also often stated that the framework is
defined for a class of problems within a certain domain or problem area.

Frameworks are closely related to patterns. They define a certain group
of participants and the relations among them that could be reused in any iso-
morphic situation. Szyperski [1] finds that they, in comparison with pat-
terns, describe a larger unit of design and that they are more specialized than
patterns. A typical, and often used framework is the Smalltalk Model-View-
Controller (MVC) framework, which defines a setting in which a model (the
information to be handled) is presented through a view, and a controller
manages the user manipulations. Frameworks are also suitable units for shar-
ing and reusing architectures.

A distinction can be made between different types of frameworks. The
MVC framework is an example of what are called low-level application
frameworks but general/business frameworks and component frameworks
are also available. While the term framework in general describes a typical
and reusable situation at a model level [3], a component framework describes a
�circuit board� with empty slots into which components can be inserted to
create a working instance. Typically, components are dynamically inserted at
run time. An example of such a framework is the Blackbox Component

14 Building Reliable Component-Based Software Systems

Framework (BCF) from Oberon Microsystems, the OpenDoc referred to by
Szyperski. Tkach and Puttick [23] define three different types of frameworks.
Their definition conflicts in some ways with the preceding definitions. They
see three types or levels of frameworks: (1) technical frameworks, (2) indus-
trial frameworks, and (3) application frameworks. The first is similar to that
which we termed application frameworks and of which the MVC framework
is an example. The other two represent two levels of model frameworks, the
first at an industrial level, biased toward a certain business area, while the sec-
ond is biased toward certain types of application domains such as certain
business problems.

Another example of a component framework is the Visual Basic devel-
opment environment from Microsoft. Forms are built by adding compo-
nents (controls) to a form, which was originally empty (the circuit board).
The developer, through a programming language (Basic), then adds variants
to the component behavior. This is done through an interface of messages
and events that are exchanged between components. The form itself is also
considered a component. The framework is built around the structures of a
typical Windows application. Visual Basic is built around the COM model,
which is a component model. Visual Basic is an example of a commercially
available component platform biased toward the user interface side of appli-
cations [24]. Such component models (COM, EJB, etc.) are also referred to
as component frameworks. Frameworks within certain component models
are further described in Chapter 4, where a component framework is defined
as a set of formalisms used to describe certain aspects of components, the
services provided by the component model, the run-time infrastructure, and
a number of predefined components.

The two concepts of component models and component frameworks
are sometimes intermixed. The question of how to distinguish them is dis-
cussed by Bachman et al. [9]. A component model defines a set of standards
and conventions used by the component developer, whereas a component
framework is a support infrastructure for the component model.

The key contribution of frameworks is that they force components to
perform their tasks via mechanisms controlled by the framework, thus
enforcing the observance of architectural principles. Even if frameworks are
defined formally or semiformally as described here, there seems to be a limit
to what they can express. The invariant section does not describe in detail the
behavior of the participating components. It is therefore difficult to describe
formally the behavior with which a component participating in the frame-
work must conform, even if a section with preconditions and postconditions
exists. To meet this limitation, contracts, as discussed by Helm et al. [16],

Basic Concepts in CBSE 15

extend the definitions of frameworks to also include formal behavioral defi-
nitions of the participating components.

Frameworks provide a solution for a powerful context in which the par-
ticipating components can be effectively assembled. The problem of making
correct assemblies and evaluating them is discussed in Chapters 8 and 9. A
way to enhance the effectiveness of frameworks through the use of roles and
collaborations is described in Chapter 7. Frameworks used here are object-
oriented frameworks that are somewhat different from component frame-
works. Object-oriented frameworks are more abstract�they are partial
designs and implementations for applications in a particular domain. The
framework is responsible for handling the often complex interactions and the
components must only fulfill their roles in the framework.

Relations Between Concepts

It is interesting to study the relations between some of the concepts in
the previous section. Bachman et al. [9] depict the relations in a very illus-
trative way, as we show in Figure. 1.1. In this �component pattern� a com-
ponent implements one or more interfaces. The component satisfies certain
obligations specified by a contract. A component-based system is based on

16 Building Reliable Component-Based Software Systems

Interface that satisfies contracts

Component
implementation

Component
model

Independent
deployment

Component-type
specific interface

Coordination services (transactions, persistence.)

Component
framework

Figure 1.1 The concepts of a component-based system.

components of particular types, each of which plays a specialized role in a
system and is described by an interface. A component model is the set of
component types, their interfaces, and, additionally, a specification of the
allowable patterns of interaction among component types. A component
framework provides a variety of deployment and run-time services to sup-
port the component model.

In particular, we can study three relationships that exist between frame-
works and components, frameworks and contracts, and finally frameworks
and patterns.

Frameworks and Components

By the definition of frameworks as described earlier, a framework can be seen
as a circuit board (component framework) in which empty positions are
waiting for the insertion of components (here used as �slot fillers�). The
framework (the circuit board) is instantiated by filling in the empty slots.
Requirements are specified to indicate to what the components must con-
form to be able to function as intended in the circuit. In the notion of formal
frameworks, we have seen that the behavior of the framework can be speci-
fied in terms of the preconditions and postconditions of the framework,
invariants, and instantiations, as well as which components are to participate
and the static relations between them. Two remaining problems are to for-
malize the connection among components and to specify in more detail
which interfaces the components should have to the surrounding frameworks
(i.e., to the other components).

The open slots could be filled with atomic components or with other
frameworks, which in turn could be compositions of other components. The
same formalism and languages as described by Lau and Ornaghi [25] are
used to define both frameworks and components. However, note that only
interfaces and relations between components are described. The internal
details of the specification (the implementation) are still concealed within the
component and should remain so. Component frameworks are thus filled
with components and instantiated in this way. As a framework is instantiated
with components it will itself become a new component available for usage
in new frameworks.

Component models and their framework implementations, which are
different to some extent, are discussed in further detail in Chapter 4, where a
number of well-known component models such as COM, DCOM, CCM,
Java Beans, and .NET are described.

Basic Concepts in CBSE 17

Frameworks and Contracts

Contracts, as described by Helm, and frameworks may at first sight seem to
be similar concepts because they both describe situations in which groups of
participants interact with each other. In the contract case they are referred to
as participants and in the framework case they are shown as open slots.
However, notable differences exist between contracts and frameworks.
Frameworks focus on the overall properties of component compositions giv-
ing the general and standard rules within the composition that all compo-
nents must follow. Contracts give specifications for relationships between
concrete components, and these specifications may be different for compo-
nents, within one composition.

Components are added to the framework in an instantiation of it,
resulting in an application. Once in the framework the component will be
used by other components (the clients). The syntactical, behavioral, synchro-
nizational, and quantitative requirements of this communication are then
explicitly defined in contracts [26].

Frameworks and Patterns

Johnson employed design patterns both in the design and the documenta-
tion of frameworks [27]. It is important to realize that design patterns and
frameworks are distinct concepts having different natures. Design patterns
are of a logical nature, representing knowledge of and experience gained with
software, whereas frameworks are of a physical nature, and are executable
software used in either the design or the run-time phase. The relationship
between frameworks and design patterns is a mutual relation: Frameworks
are the physical realization of one or more design patterns; patterns are the
instructions for implementing those solutions.

Gamma et al. [20] summarize the major differences between design
patterns and frameworks. The first difference is the level of abstraction of
frameworks and design patterns. Design patterns are more abstract than
frameworks. The implication of this difference is that frameworks are imple-
mented in a programming language and represent reusable pieces of code
that can not only be studied, but can also be executed. On the other hand,
design patterns need to be implemented each time they are used, but they
encode more knowledge about the trade-offs and consequences of the
design. The second difference is that design patterns are smaller architec-
tural elements than frameworks. A typical framework contains several
design patterns but a pattern never contains several frameworks. The last
difference is the level of specialization of frameworks and design patterns.

18 Building Reliable Component-Based Software Systems

Frameworks are more specialized and are employed in a particular appli-
cation domain, whereas design patterns can be used in any kind of
application.

Conclusion

In the previous sections, we have seen that many different concepts, defini-
tions, and specifications lie behind attempts to manage CBD successfully.
Most of these concepts are presently in the research stage and first attempts
are being made to utilize them successfully. They are still immature, not
completely explained, and in many cases difficult to understand. The main
objective of CBSE is to obtain a more efficient development with shorter
development times and better quality products. This requires clear concepts
and simple methods. Because the basic concepts and all of their details have
not yet reached that level, we must ask who must be familiar with them, why,
and when? Component specifications are essential for component users who
are focused on the component features, functional and nonfunctional. It is
important for users to become familiar with them and to learn to use them
easily and correctly. Component developers provide component specifica-
tions, so they must be able to understand the basic concepts related to com-
ponent specifications and they must be able to implement them. The
contract, as an extension of the interface specification, will be of special inter-
est in particular domains dealing with systems with specific requirements,
such as real-time systems, safety-critical systems, or systems with other con-
straints.

The main purpose of frameworks is to support the process of compo-
nent composition. Consequently, developers, both of components and of
systems using components, must be able to utilize framework support. They
may not need to know the theoretical principles behind the support, but they
must be able to use its functions. Component developers must obey the rules
and formats specified by the framework to develop and to specify the compo-
nent, whereas component users will use frameworks to compose systems
from components in a more efficient and accurate way. The framework tools
play a crucial role�as is well-known in practice. (The popularity of Visual
Basic does not originate from the language itself, but from the user-friendly
framework environment.)

Patterns give an abstract and more general view of a function, proce-
dure, or similar item, which can be implemented in the form of systems
or components. For this reason they are interesting to designers. System

Basic Concepts in CBSE 19

designers can recognize and identify the reusable parts of the system with the
help of patterns. Component designers will use patterns in the design process
to design components more efficiently. Typically, specific patterns already
exist or are being developed in different domains. The same patterns can be
used for different kinds of components, providing the same functionality but
containing different nonfunctional attributes. Alternatively, patterns can be
used for the specific nonfunctional attributes.

Experience shows us that although the different basic concepts and
terms of CBSE are used by different people and in different phases of system
or component life cycles, a general understanding of them is very important
for successful CBD.

Summary

In this chapter, we have introduced the basic concepts of CBSE, summarized
as follows. A component is a reusable unit of deployment and composition
that has no persistent state. It can be composed at run time, with no need for
compilation and its implementation details, but it cannot be modified. The
specification of the services provided by a component is the role of interfaces,
which are useful in the processes of customization and composition of com-
ponents. Design patterns can be used to describe the low-level implementa-
tion details of the behavior and structure of components, or the relationships
between the components in the context of a particular programming lan-
guage. Contracts or frameworks can be used to permit the construction and
reuse of larger grained software components. Frameworks constitute a group
of participants and specify relations and the interactions between them that
could be reused in any isomorphic situation. Contracts and frameworks may
at first look quite similar, but there are notable differences. A framework
defines a set of rules for different services (e.g., transaction, persistence, and
deployment) and an infrastructure of the component model. Contracts are
used for specification of a component and the concrete interaction between
components�and in this sense it is a different form of framework. A compo-
nent can be implemented in different component models, and they will
utilize different internal mechanisms of framework services, but all the
implementations may have the same interface or the same contract.

Patterns are also often used in combination with frameworks in that
they define smaller parts of a system than frameworks define. However, the
main difference between frameworks and patterns are that frameworks con-
cretely describe a set of rules and services, whereas patterns describe behavior

20 Building Reliable Component-Based Software Systems

in a more abstract way. A framework can be constructed using several pat-
terns. The CBSE terms will be used later in this book in different contexts
and sometimes in different ways, but in general their use follows the defini-
tions discussed in this chapter.

References

[1] Microsoft �The Component Object Model Specification,� Report Vol. 99, Microsoft
Standards, Redmond, WA: Microsoft, 1996.

[2] Szyperski, C., Component Software�Beyond Object-Oriented Programming, Reading,
MA: Addison-Wesley, 1998.

[3] D�Souza, D., and A. C. Wills, Objects, Components and Frameworks: The Catalysis
Approach, Reading, MA: Addison-Wesley, 1998.

[4] Aoyama, M., �New Age of Software Development: How Component-Based Software
Engineering Changes the Way of Software Development,� Proc. 1st Workshop on Com-
ponent Based Software Engineering, 1998.

[5] Bosch J., �Component Evolution in Product-Line Architectures,� Proc. Int. Workshop
on Component-Based Software Engineering, Los Angeles, CA, 1999.

[6] Crnkovic, I., and M. Larsson, �A Case Study: Demands on Component-Based Devel-
opment,� Proc. 22nd Int. Conf. Software Engineering, Limerick, Ireland, ACM Press,
2000.

[7] Szyperski C. and Pfister C., �Why Objects Are Not Enough,� Proc. Int. Component
Users Conference, Munich, Germany, SIGS, 1996.

[8] Szyperski, C., �Components vs. Objects vs. Component Objects,� Proc. Object Ori-
ented Programming, Munich, Germany, 1999.

[9] Bachman, F., et al., �Technical Concepts of Component-Based Software Engineering,�
Report CMU/SEI-2000-TR-008, Software Engineering Institute, Carnegie Mellon
University, 2000.

[10] Bergner, K., A. Rausch, and M. Sihling, �Componentware�The Big Picture,� Proc.
Int. Workshop on Component-Based Engineering, Kyoto, Japan, 1999, http://www.sei
.cmu.edu/ cbs/icse99.

[11] Gudgin, M., Essential IDL: Interface Design for COM, Reading, MA: Addison-Wesley,
2001.

[12] Lycett, M., and R. J. Paul, �Component-Based Development: Dealing with Non-
Functional Aspects of Architecture,� Proc. ECOOP, Bryssels, Belgium, Springer, 1998.

[13] Ólafsson, A., and D. Bryan, �On the Need for �Required Interfaces� of Components,�
Proc. Special Issues in Object-Oriented Programming: Workshop Reader of the 10th

Basic Concepts in CBSE 21

European Conference on Object-Oriented Programming, ECCOP �96, Linz, Austria,
Springer, 1998.

[14] Meyer, B., �Applying Design by Contracts,� IEEE Computer, Vol. 25, No. 10, 1992,
pp. 40�51.

[15] Meyer, B., Eiffel: The Language, Upper Saddle River, NJ: Prentice Hall, 1992.

[16] Fowler, M., and K. Scott, UML Distilled�Applying the Standard Object Modelling Lan-
guage, Reading, MA: Addison-Wesley, 1997.

[17] Helm, R., I. Holland, and D. Gangopadadhyay, �Contracts: Specifying Behavioral
Compositions in Object Oriented Systems,� Proc. Conf. Object Oriented Programming:
Systems, Languages and Application, Ottawa, Canada, AMC Press, 1990.

[18] Holland, I., �Specifying Reusable Components Using Contracts,� Proc. ECOOP,
Utrecht, The Netherlands, Springer, 1992.

[19] Alexander, C., The Timeless Way of Building, Oxford, UK: Oxford University Press,
1979.

[20] Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software, Read-
ing, MA: Addison-Wesley, 1995, pp. 39�42.

[21] Johnson, R. E., �Frameworks = (Components + Patterns),� Communications of the
ACM, Vol. 40, No. 10, 1997.

[22] Jacobson, I., M. L. Griss, and P. Jonsson, Software Reuse, Architecture, Process and
Organization for Business Success, Reading, MA: Addison-Wesley and ACM Press, 1997.

[23] Tkach, D., and R. Puttick, Object Technology in Application Development, Reading,
MA: Addison-Wesley, 1996.

[24] Maurer, P. M., �Components: What If They Gave a Revolution and Nobody Came?�
IEEE Computer, Vol. 33, Issue 6, 2000, pp. 28�34.

[25] Lau, K.-K., and M. Ornaghi, �OOD Frameworks in Component-Based Software
Development in Computational Logic,� Proc. LOPSTR�98, Lecture Notes in Computer
Science, No. 1559, Berlin, Springer Verlag, 1999.

[26] Beugnard, A., �Making Components Contract Aware,� IEEE Computer, Vol. 32, Issue
7, 1999, pp. 38�43.

[27] Johnson, R. E., �Documenting Frameworks Using Patterns,� Proc. OOPSLA, New
York, ACM Press, 2001.

22 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

2
Specification of Software Components

Frank Lüders, Kung-Kiu Lau, and Shui-Ming Ho

Introduction

In its simplest form a software component contains some code (that can be
executed on certain platforms) and an interface that provides (the only)
access to the component. The code represents the operations that the compo-
nent will perform when invoked. The interface tells the component user ev-
erything he needs to know in order to deploy the component. Components
can of course be deployed in many different contexts. Ideally, components
should be black boxes, to enable users to (re)use them without needing to
know the details of their inner structure. In other words, the interface of a
component should provide all of the information needed by its users. More-
over, this information should be the only information they need. Conse-
quently, the interface of a component should be the only point of access to
the component. Therefore, it should contain all of the information that users
need to know about the component�s operations (that is, what its code
enables it to do) and its context dependencies (that is, how and where the
component can be deployed). The code, on the other hand, should be com-
pletely inaccessible (and invisible) if a component is to be used as a black box.

The specification of a component is therefore the specification of
its interface. This must consist of a precise definition of the component�s

23

operations and context dependencies and nothing else. Typically, the opera-
tions and context dependencies will contain the parameters of the compo-
nent.

The specification of a component is useful to both component users
and component developers. For users, the specification provides a definition
of its interface, namely, its operations and context dependencies. Because it is
only the interface that is visible to users, its specification must be precise and
complete. For developers, the specification of a component also provides an
abstract definition of its internal structure. Although this should be invisible
to users, it is useful to developers (and maintainers), at least as documenta-
tion of the component.

In this chapter, we discuss the specification of software components.
We identify all features that should be present in an idealized component,
indicate how they should be specified, and show how they are specified using
current component specification techniques.

Current Component Specification Techniques

The specifications of components used in practical software development
today are limited primarily to what we will call syntactic specifications. This
form of specification includes the specifications used with technologies such
as COM [1], the Object Management Group�s Common Object Request
Broker Architecture (CORBA) [2], and Sun�s JavaBeans [3]. The first two of
these use different dialects of the IDL, whereas the third uses the Java pro-
gramming language to specify component interfaces. In this section, COM is
mainly used to illustrate the concepts of syntactic specification of software
components.

First, we take a closer look at the relationships between components
and interfaces. A component provides the implementation of a set of named
interfaces, or types, each interface being a set of named operations. Each
operation has zero or more input and output parameters and a syntactic
specification associates a type with each of these. Many notations also permit
a return value to be associated with each operation, but for simplicity we do
not distinguish between return values and output parameters. In some speci-
fication techniques it is also possible to specify that a component requires
some interfaces, which must be implemented by other components. The
interfaces provided and required by a component are often called the incom-
ing and outgoing interfaces of the component, respectively.

24 Building Reliable Component-Based Software Systems

Figure 2.1 is a UML class diagram [4] showing the concepts discussed
above and the relationships between them. Note that instances of the classes
shown on the diagram will be entities such as components and interfaces,
which can themselves be instantiated. The model is therefore a UML meta-
model, which can be instantiated to produce other models. It is worth noting
that this model allows an interface to be implemented by several different
components, and an operation to be part of several different interfaces. This
independence of interfaces from the component implementations is an
essential feature of most component specification techniques. The possibility
of an operation being part of several interfaces is necessary to allow inheri-
tance, or subtyping, between interfaces. The model also allows parameters to
be simultaneously input and output parameters.

Specification of Software Components 25

Component

Interface

Operation

*

In-interfaces*

*

*

Name

1

1

1 1
1

1

Parameter

1

*

Type
1 *

OutParameterInParameter

InOutParameter

*

Out-interfaces

*

Figure 2.1 UML metamodel of the concepts used in the syntactic specification of soft-
ware components.

The model presented in Figure 2.1 is intended to be a generic represen-
tation of the relationships between components, interfaces, and operations.
In practice, these relationships vary between specification techniques. For
example, one can distinguish between object-oriented specifications and
what might be called procedural specifications. In this chapter we consider
only object-oriented specifications that are used by current technologies.
This leads to no loss of generality, because procedural specification can be
seen as a special case of object-oriented specification. Subtle differences are
seen in the precise nature of the relationship between a component and its
interfaces in different object-oriented specification techniques. In COM, for
example, a component implements a set of classes, each of which implements
a set of interfaces. The statement that a component implements a set of inter-
faces thus holds by association. In more traditional object-oriented specifica-
tion techniques, a component is itself a class that has exactly one interface.
The statement that a component implements a set of interfaces still holds,
because this interface can include, or be a subtype of, several other interfaces.

As an example of a syntactic specification, we now consider the specifi-
cation of a COM component. Below we provide a slight simplification of
what might be the contents of an IDL file. First, two interfaces are specified,
including a total of three operations that provide the functionality of a sim-
ple spell checker. Both interfaces inherit from the standard COM interface
IUnknown. (All COM interfaces except IUnknown must inherit directly or
indirectly from IUnknown. See [1] for more information about the particu-
lars of COM.) All operations return a value of type HRESULT, which is com-
monly used in COM to indicate success or failure. A component is then
specified (called a library in COM specifications), thus implementing one
COM class, which in turn implements the two interfaces previously speci-
fied. This component has no outgoing interfaces.

interface ISpellCheck : IUnknown

{

HRESULT check([in] BSTR *word, [out] bool *correct);

};

interface ICustomSpellCheck : IUnknown

{

HRESULT add([in] BSTR *word);

HRESULT remove([in] BSTR *word);

};

library SpellCheckerLib

{

26 Building Reliable Component-Based Software Systems

coclass SpellChecker

{

[default] interface ISpellCheck;

interface ICustomSpellCheck;

};

};

Relating this specification to the model above, there is one instance of
Component, which is associated with two instances of Interface. Taking a
closer look at the first interface, it is associated with a single instance of
Operation, which is itself associated with one instance of InParameter and
two instances of OutParameter, representing the two named parameters and
the return value. The information that can be obtained from a component
specification such as the above is limited to what operations the component
provides and the number and types of their parameters. In particular, there is
no information about the effect of invoking the operations, except for what
might be guessed from the names of operations and parameters. Thus, the
primary uses of such specifications are type checking of client code and as a
base for interoperability between independently developed components and
applications. Different component technologies have different ways of ensur-
ing such interoperability. For example, COM specifies the binary format of
interfaces, whereas CORBA defines a mapping from IDL to a number of
programming languages.

An important aspect of interface specifications is how they relate to
substitution and evolution of components. Evolution can be seen as a special
case of substitution in which a newer version of a component is substituted
for an older version. Substituting a component Y for a component X is said
to be safe if all systems that work with X will also work with Y. From a syn-
tactic viewpoint, a component can safely be replaced if the new component
implements at least the same interfaces as the older components, or, in tradi-
tional object-oriented terminology, if the interface of the new component is a
subtype of the interface of the old component. For substitution to be safe,
however, there are also constraints on the way that the semantics of opera-
tions can be changed, as we will see in the next section.

Specifying the Semantics of Components

Although syntactic specifications of components are the only form of specifi-
cations in widespread use, it is widely acknowledged that semantic informa-
tion about a component�s operations is necessary to use the component

Specification of Software Components 27

effectively. Examples of such information are the combinations of parameter
values an operation accepts, an operation�s possible error codes, and con-
straints on the order in which operations are invoked. In fact, current com-
ponent technologies assume that the user of a component is able to make use
of such semantic information. For instance, COM dictates that the error
codes produced by an operation are immutable; that is, changing these is
equivalent to changing the interface. These technologies do not, however,
support the specification of such information. In the example with COM,
there is no way to include information about an operation�s possible error
codes in the specification.

Several techniques for designing component-based systems that include
semantic specifications are provided in the literature. In this section, we exam-
ine the specification technique presented in [5], which uses UML and the
Object Constraint Language (OCL) [6] to write component specifications.
OCL is included in the UML specification. Another well-known method that
uses the same notations is Catalysis [7]. The concepts used for specification of
components in these techniques can be seen as an extension of the generic
model of syntactic specification presented in the previous section. Thus, a
component implements a set of interfaces, each of which consists of a set of
operations. In addition, a set of preconditions and postconditions is associated
with each operation. Preconditions are assertions that the component assumes
to be fulfilled before an operation is invoked. Postconditions are assertions that
the component guarantees will hold just after an operation has been invoked,
provided the operation�s preconditions were true when it was invoked. In this
form of specification, nothing is said about what happens if an operation is
invoked while any of its preconditions are not fulfilled. Note that the idea of
pre- and postconditions is not a novel feature of component-based software
development, and it is used in a variety of software development techniques,
such as the Vienna Development Method [8] and Design by Contract [9].

Naturally, an operation�s pre- and postconditions will often depend on
the state maintained by the component. Therefore, the notion of an interface
is extended to include a model of that part of a component�s state that may
affect or be affected by the operations in the interface. Now, a precondition
is, in general, a predicate over the operation�s input parameters and this state,
while a postcondition is a predicate over both input and output parameters as
well as the state just before the invocation and just after. Furthermore, a set
of invariants may be associated with an interface. An invariant is a predicate
over the interface�s state model that will always hold. Finally, the component
specification may include a set of inter-interface conditions, which are predi-
cates over the state models of all of the component�s interfaces.

28 Building Reliable Component-Based Software Systems

The concepts introduced here and the relationships among them
are shown on the UML class diagram of Figure 2.2 and as an example in
Figure 2.3. For the sake of readability, the classes Name, Type, and InOut-
Parameter are not shown, because they have no direct relationships with the
newly introduced classes. Note that this model allows the same state to be
associated with several interfaces. Often, the state models of different inter-
faces of a component will overlap rather than be identical. This relationship
cannot be expressed in the model because we cannot make any assumptions
about the structure of state models. Note also how each postcondition is
associated with both input and output parameters and two instances of the
state model, representing the state before and after an invocation.

In the model presented in Figure 2.2, a partial model of the state of a
component is associated with each interface, to allow the semantics of an

Specification of Software Components 29

Interface

Component

*

In-interfaces*

*

Out-interfaces

*

State
1 *

Constraint

*

*

* 1

Invariant

1

*

1

*

Operation

*

*

Parameter

1

*

PreCondition
* 1

PostCondition
1 *

1

*

InParameter OutParameter

*

*

*

*

*

*

*

2

Figure 2.2 UML metamodel of the concepts used in semantic specification of software
components.

interface�s operations to be specified. The reader should note that this is not
intended to specify how a state should be represented within the component.
Although state models in component specifications should above all be kept
simple, the actual representation used in the component�s implementation
will usually be subject to efficiency considerations, depending on the pro-
gramming language and other factors. It is also worth mentioning that
the model is valid for procedural as well as object-oriented specification
techniques.

Before discussing the ramifications of this model any further, we now
consider an example specification using the technique of [5]. Figure 2.3 is an
example of an interface specification diagram. It shows the two interfaces
introduced in the previous section as classes with the <<interface type>>
stereotype. Thus, all information in the syntactic interface specifications is
included here. The state models of the interfaces are also shown. A state
model generally takes the form of one or more classes having at least one
composition relationship with the interface to which the state belongs. The
special stereotype <<interface type>> is used instead of the standard <<inter-
face>> because the standard <<interface>> would not allow the state models
to be associated with the interfaces in this way.

The interface specification diagram is only a part of the complete inter-
face specifications. The pre- and postconditions that specify the semantics of
the operations as well as any invariants on the state model are specified sepa-
rately in OCL. Below is a specification of the three operations of the two
interfaces above. There are no invariants on the state models in this example.

context ISpellCheck:: check(in word : String, out correct :

Boolean) : HRESULT

pre:

30 Building Reliable Component-Based Software Systems

check(in word : String, out correct : Boolean) : HRESULT

«interface type»
ISpellCheck String

1

Words

*

add(in word : String) : HRESULT
remove(in word : String) : HRESULT

«interface type»
ICustomSpellCheck

1

Words

*

String

Figure 2.3 Example interface specification diagram.

word <> ""

post:

SUCCEEDED(result) implies correct =

words->includes (word)

context ICustomSpellCheck::add(in word : String) : HRESULT

pre:

word <> ""

post:

SUCCEEDED(result) implies words =

words@pre->including(word)

context ICustomSpellCheck::remove(in word : String) :

HRESULT

pre:

word <> ""

post:

SUCCEEDED(result) implies words =

words@pre-> excluding(word)

The precondition of the first operation states that if it is invoked with an
input parameter that is not the empty string, the postcondition will hold
when the operation returns. The postcondition states that if the return value
indicates that the invocation was successful, then the value of the output
parameter is true if word was a member of the set of words and false other-
wise. The specifications of the two last operations illustrate how postcondi-
tions can refer to the state before the invocation using the @pre suffix.
This specification technique uses the convention that if part of an interface�s
state is not mentioned in a postcondition, then that part of the state is
unchanged by the operation. Thus, words = words@pre is an implicit post-
condition of the first operation. All specifications refer to an output parameter
called result, which represents the return value of the operations. The func-
tion SUCCEEDED is used in COM to determine whether a return value of type
HRESULT indicates success or failure.

Like interface specification diagrams, component specification dia-
grams are used to specify which interfaces components provide and require.
Figure 2.4 is an example of such a diagram, specifying a component that pro-
vides the two interfaces specified above. The component is represented by a

Specification of Software Components 31

«comp spec»
SpellChecker

ISpellCheck
ICustomSpellCheck

Figure 2.4 Example of a component specification diagram.

class with stereotype <<comp spec>> to emphasize that it represents a com-
ponent specification. UML also has a standard component concept, which is
commonly used to represent a file that contains the implementation of a set
of concrete classes.

The component specification is completed by the specification of its
inter-interface constraints. The component in this example has one such
constraint, specifying that the sets of words in the state models of the two
interfaces must be the same. This constraint relates the operations of the
separate interfaces to each other, such that invocations of add or remove
affect subsequent invocations of check. The constraint is formulated in OCL
as follows:

context SpellChecker

ISpellCheck::words = ICustomSpellCheck::words

An important property of the model presented in Figure 2.2 is that
state models and operation semantics are associated with interfaces rather
than with a component. This means that the semantics is part of the interface
specification. Consequently, a component cannot be said to implement an
interface if it implements operations with the same signatures as the inter-
face�s operations but with different semantics. Note that the terminology var-
ies in the literature on this point, because interfaces are sometimes seen as
purely syntactic entities. In such cases, specifications that also include seman-
tics are often called contracts. UML, for instance, defines an interface to be a
class with only abstract operations and it can have no state associated with it.

Although the main uses of syntactic specifications are for type checking
and ensuring interoperability, the utility of semantic specifications is poten-
tially much larger. The most obvious use is perhaps for tool support for com-
ponent developers as well as developers of component-based applications. For
the benefit of component developers, one can imagine an automatic testing
tool that verifies all operations produce the correct postconditions when their
preconditions are satisfied. For this to work, the tool must be able to obtain
information about a component�s current state. A component could easily be
equipped with special operations for this purpose that would not need to be
included in the final release. Similarly, for application developers, one can
imagine a tool that generates assertions for checking that an operation�s pre-
conditions are satisfied before the operation is invoked. These assertions could
either query a component about its current state, if this is possible, or main-
tain a state model of its own. The last technique has a requirement, however,
that other clients cannot affect the state maintained by a component, since the

32 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

state model must be kept synchronized with the actual state. Such assertions
would typically not be included in a final release either.

With the notion of an interface specification that include semantics,
the concept of substitution introduced in the previous section can now be
extended to cover semantics. Clearly, if a component Y implements all
(semantically specified) interfaces implemented by another component X,
then Y can be safely substituted for X. This condition is not necessary, how-
ever, for substitution to be safe. What is necessary is that a client that satisfies
the preconditions specified for X must always satisfy the preconditions speci-
fied for Y, and that a client that can rely on the postconditions ensured by X
can also be ensured it can rely on Y. This means that Y must implement
operations with the same signatures as the operations of X, and with pre- and
postconditions that ensure the condition above. More specifically, if X
implements an operation O, where pre(O) is the conjunction of its precondi-
tions and post(O) the conjunction of its postconditions, Y must implement
an operation O ′ with the same signature such that pre(O ′) implies pre(O)
and post(O) implies post(O ′). In other words, the interfaces implemented by
Y can have weaker preconditions and stronger postconditions than the inter-
faces implemented by X. It follows from this that the state models used for
specifying the interfaces of X and Y need not be identical. This condition for
semantically safe substitution of components is an application of Liskov�s
principle of substitution [10]. Note that the above discussion is only valid for
sequential systems. For multithreaded components or components that are
invoked by concurrently active clients, the concept of safe substitution must
be extended as discussed in [11]. Finally, note that a client can still malfunc-
tion after a component substitution, even if the components fulfill semantic
specifications that satisfy the condition specified above. This can happen, for
instance, if the designers of the client and the new component have made
conflicting assumptions about the overall architecture of the system. The
term architectural mismatch has been coined to describe such situations [12].

The component specification diagram in Figure 2.4 shows how we can
indicate which interfaces are offered by a component. In this example, we
indicated that the spell checker offered the interfaces ISpellCheck and
ICustomSpellCheck and used the constraint

ISpellCheck::words = ICustomSpellCheck::words

to specify that the interfaces act on the same information model. We could,
however, extend such diagrams to indicate the interfaces on which a compo-
nent depends. This is illustrated in Figure 2.5.

Specification of Software Components 33

We can also specify realization contracts using collaboration interaction
diagrams. For example, in Figure 2.6 we state that whenever the operation
op1 is called, a component supporting this operation must invoke the opera-
tion op2 in some other component. Component specification diagrams and
collaboration interaction diagrams may therefore be used to define behav-
ioral dependencies.

Specifying Extrafunctional Properties of Components

The specification of extrafunctional properties of software components has
recently become a subject of interest, mainly within the software architecture
community. In [13], it is argued that the specification of architectural com-
ponents is not properly addressed by conventional software doctrines. Archi-
tectural components are components of greater complexity than algorithms
and data structures. Software components, as defined above, generally belong
to this class. Conventional software doctrine is the view that software

34 Building Reliable Component-Based Software Systems

<<comp spec>>
SomeComponent

ISomeInterface

IAnotherInterface

IUsedInterface

Figure 2.5 Component specification showing an interface dependency.

1: op1

/IUsedInterface

1.1: op2

/ISomeInterface

Figure 2.6 Collaboration interaction diagrams.

specifications must be sufficient and complete (that is, provide everything a
user needs to know and may rely on in using the software), static (written
once and frozen), and homogeneous (written in a single notation).

To use an architectural component successfully, information about
more than just its functionality is required. This additional information
includes structural properties, governing how a component can be composed
with other components; extrafunctional properties, such as performance,
capacity, and environmental assumptions; and family properties, specifying
relationships among similar or related components. It is not realistic to
expect specifications to be complete with respect to all such properties, due
to the great effort this would require. (Nor is it realistic to expect that the
developer of a component could anticipate all aspects of the component in
which its user might be interested.) Because we cannot expect software com-
ponents to be delivered with specifications that are sufficient and complete,
and because developers are likely to discover new kinds of dependencies as
they attempt to use independently developed components together, specifi-
cations should be extensible. Specifications should also be heterogeneous,
since the diversity of properties that might be of interest is unlikely to be
suitably captured by a single notation.

The concept of credentials is proposed in [13] as a basis for specifica-
tions that satisfy the requirements outlined above. A credential is a triple
<Attribute, Value, Credibility>, where Attribute is a description of a prop-
erty of a component, Value a measure of that property, and Credibility a
description of how the measure has been obtained. A specification technique
based on credentials must include a set of registered attributes, along with
notations for specifying their value and credibility, and provisions for adding
new attributes. A technique could specify some attributes as required and
others as optional. The concept has been partially implemented in the archi-
tecture description language UniCon [14], which allows an extendable list of
<Attribute, Value> pairs to be associated with a component. The self-
describing components of Microsoft�s new .NET platform [15] include a
concept of attributes in which a component developer can associate attribute
values with a component and define new attributes by subclassing an existing
attribute class. Attributes are part of a component�s metadata, which can be
programmatically inspected, and is therefore suitable for use with automated
development tools.

The concept of credentials has been incorporated in an approach to
building systems from preexisting components; this approach is called
Ensemble [16] and it focuses on the decisions that designers must make, in
particular when faced with a choice between competing technologies,

Specification of Software Components 35

competing products within a technology, or competing components within a
product. In Ensemble, a set of credentials may be associated with a single
technology, product, or component, or with a group of such elements. In
addition, a variation of credentials is introduced to handle measures of prop-
erties that are needed but have not yet been obtained. These are called postu-
lates and can be described as credentials where the credibility is replaced by a
plan for obtaining the measure. The credential triple is thus extended with a
flag isPostulate.

Returning our focus to the specification of single components, we now
extend the ideas of Ensemble to allow a set of credentials to be associated
with a component, an interface, or an operation. A UML metamodel with
the concepts of syntactic specification augmented with credentials is shown
in Figure 2.7. The class Name and the subclasses of Parameter have been
omitted for brevity. Note that the concept of credentials is complementary to
the specification of a component�s functionality and completely orthogonal
to the concepts introduced for semantic specifications. Because the specifica-
tion of extrafunctional properties of software components is still an open area

36 Building Reliable Component-Based Software Systems

Component

Interface

Operation

*

In-interfaces*

*

*

Credential

*
1

* 1

*

1

Parameter

1

*

Type
1 *

*

Out-interfaces

*
Attribute
Value
Credibility
IsPostulate : Boolean

Figure 2.7 UML metamodel of concepts used to specify extrafunctional properties of
software components.

of research, it would probably be premature to proclaim this to be a generic
model.

Because the extrafunctional properties that may be included in a com-
ponent specification can be of very different natures, we cannot formulate a
general concept of safe substitution for components that includes changes of
such properties. A set of extrafunctional properties, which can all be
expressed as cost specifications, is studied in [17] where it is shown that,
depending on the chosen property, weakening, strengthening, or equivalence
is required for substitution to be safe.

Summary

A component has two parts: an interface and some code. The interface is the
only point of access to the component, and it should ideally contain all of the
information that users need to know about the component�s operations:
what it does and how and where the component can be deployed, that is, its
context dependencies. The code, on the other hand, should be completely
inaccessible (and invisible). The specification of a component therefore must
consist of a precise definition of the component�s operations and context
dependencies. In current practice, component specification techniques spec-
ify components only syntactically. The use of UML and OCL to specify
components represents a step toward semantic specifications. Specification of
extrafunctional properties of components is still an open area of research, and
it is uncertain what impact it will have on the future of software component
specification.

References

[1] Microsoft, �The Component Object Model Specification,� Report v0.99, Microsoft
Standards, Redmond, WA: Microsoft, 1996.

[2] OMG, �The Common Object Request Broker: Architecture and Specification,� Report
v2.4, OMG Standards Collection, OMG, 2000.

[3] Sun Microsystems, �JavaBeans 1.01 Specification,� http://java.sun.com/beans.

[4] OMG, �OMG Unified Modeling Language Specification,� Report v1.3, OMG, June
1999.

[5] Cheesman, J., and J. Daniels, UML Components�A Simple Process for Specifying
Component-Based Software, Reading, MA: Addison-Wesley, 2000.

Specification of Software Components 37

[6] Warmer, J., and A. Kleppe, The Object Constraint Language, Reading, MA: Addison-
Wesley, 1999.

[7] D�Souza, D., and A. C. Wills, Objects, Components and Frameworks: The Catalysis
Approach, Reading, MA: Addison-Wesley, 1998.

[8] Jones, C. B., Systematic Software Development Using VDM, Upper Saddle River, NJ:
Prentice Hall, 1990.

[9] Meyer, B., Object-Oriented Software Construction, Upper Saddle River, NJ: Prentice
Hall, 1997.

[10] Liskov, B., �Data Abstraction and Hierarchy,� Addendum to Proc. OOPSLA�87,
Orlando, FL, SIGPLAN Notices, 1987.

[11] Schmidt, H., and J. Chen, �Reasoning About Concurrent Objects,� Proc. Asia-Pacific
Software Engineering Conf., Brisbane, Australia, IEEE Computer Society, 1995.

[12] Garlan, D., R. Allen, and J. Ockerbloom, �Architectural Mismatch: Why Reuse Is So
Hard,� IEEE Software, Vol. 12, No. 6, 1995, pp. 17�26.

[13] Shaw, M., �Truth vs Knowledge: The Difference Between What a Component Does
and What We Know It Does,� Proc. 8th Int. Workshop Software Specification and
Design, Schloss Velen, Germany, IEEE Computer Society, 1996.

[14] Shaw, M., et al., �Abstractions for Software Architecture and Tools to Support Them,�
IEEE Trans. on Software Engineering, Vol. 21, No. 24, 1995, pp. 314�335.

[15] Conrad, J., et al., Introducing .NET, Wrox Press, 2000.

[16] Wallnau, K. C., and J. Stafford, �Ensembles: Abstractions for a New Class of Design
Problem,� Proc. 27th Euromicro Conf., Warsaw, Poland, IEEE Computer Society,
2001.

[17] Schmidt, H., and W. Zimmerman, �A Complexity Calculus for Object-Oriented Pro-
grams,� Object-Oriented Systems, Vol. 1, No. 2, 1994, pp. 117�148.

38 Building Reliable Component-Based Software Systems

Part 2:
Software Architecture and Components

Software architecture and components are closely related. All software sys-
tems have an architecture that can be viewed in terms of the decomposition
of the system into components, connectors, and attachments representing
units of system functionality and their potential run-time interactions. The
placing of constraints on their interactions permits the assembly of groups of
component and connector types into families of systems designated architec-
tural styles. Patterns of interaction can support reasoning with respect to cer-
tain system-related quality attributes such as modifiability, reliability, and
confidentiality.

Traditionally, software architecture is focused on in the early design
phase when the overall structure of the system is designed to satisfy func-
tional and nonfunctional requirements. In monolithic applications, the
architecture specified in the design process is concealed at execution time in
one block of executable code. Component technologies focus on composi-
tion and deployment, closer to or at execution time. In a component-based
system, the architecture remains recognizable during application or system
execution, with the system still consisting of clearly separated components.
The system architecture thus remains an important factor during the exe-
cution phase. CBSE embraces the total life cycles of components and
component-based systems and all procedures involved in such life cycles. It
is therefore of interest to consider the similarities and differences between

39

software architecture and CBD. The aim of this chapter is to show compo-
nents and component-based systems from a software architecture point of
view.

Chapter 3 provides a bird�s-eye view of software architecture and relates
this subject, with particular reference to architectural style, the development
of component frameworks, the analysis of component-based systems for
functional and extrafunctional correctness, and to the more general problem
of creating systems from software components.

Chapter 4 presents a survey of several component models (Java Beans,
the CORBA component model, the .NET component model, and the Open
Service Gateway Initiative component model) from the software architecture
point of view. The main characteristics of architectural definition languages
are described first and are subsequently used in descriptions of component
models. In addition to the main characteristics of each component model,
the following component forms are presented: the interface of a component,
the implementation of a component, component assembly, and component
packaging and deployment.

40 Building Reliable Component-Based Software Systems

3
Architecting Component-Based
Systems

Jan Bosch and Judith A. Stafford

Introduction

For decades, the software engineering community has identified the reuse of
existing software as the most promising approach to addressing certain prob-
lems. Although the reuse of software has been rather successful in some areas,
if we ignore the reuse of functionality provided by operating systems, data-
base management systems, graphical user interfaces and Web servers, and
domain-specific software, reuse has been considerably limited.

With the emergence of explicit software architecture design, a highly
promising approach to software architecture-driven reuse has evolved. The
architecture defines the components of a software system as well as their
interactions and can be used to analyze its quality attributes. What, then, is
software architecture? Consider this frequently cited definition [1]: �The
software architecture of a program or computing system is the structure or
structures of the system, which comprise software components [and connec-
tors], the externally visible properties of those components [and connectors]
and the relationships among them.� Thus, it is clear that software architec-
ture and software components are two sides of the same coin (i.e., the

41

software architecture defines the components that make up the system), but
on the other hand, the properties and functionality of the components define
the overall system functionality and behavior. Consequently, even though
the focus of this book is on CBD, software architecture is included as a topic
because it represents an integral part of any component-based software
system.

The remainder of this chapter is organized as follows. In the next sec-
tion, we discuss the various roles that software architecture might play during
software development. Then, we present a generic process for the design of
software architectures. The subsequent sections discuss the notion of compo-
nent frameworks and architecture-driven component development, respec-
tively. Finally, we summarize the chapter.

Role of Software Architecture

In the introduction to this chapter, we introduced the notion of software
architecture as a key success factor for component-based software develop-
ment. The software architecture plays many important roles during the
development and evolution of component-based software systems. Typically,
we identify three main uses for the software architecture: assessment and
evaluation, configuration management, and dynamic software architectures.
Each of these is discussed in more detail next.

Assessment and Evaluation

Software architecture captures the earliest design decisions concerning a
software system. The earliest design decisions made are the hardest and most
expensive to change once the software system has been developed. It is,
therefore, very important to determine whether the designed software archi-
tecture accurately balances the�typically conflicting�requirements from
the different stakeholders (i.e., all persons or departments that have a stake
in the system). In addition, both the software architect and the stakeholders
are very interested in determining that a system built based on a certain soft-
ware architecture will fulfill not only its functional, but also its quality
requirements. Because one of the driving forces with respect to software
architecture is that the software architecture constrains the quality attri-
butes, the software architecture is a suitable artifact for assessing correctness
with respect to the quality requirements. Next we discuss three types of

42 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

assessment or evaluation: stakeholder-based evaluation, expert-based assess-
ment, and quality-attribute assessment.

The purpose of stakeholder-based assessment is to determine whether
the trade-offs between requirements in the software architecture match the
actual stakeholder priorities for these requirements. The software architect
may have decided to prioritize a requirement from stakeholder A over a
requirement from stakeholder B. However, during the assessment, it may be
discovered that the priority of the requirement for stakeholder B is much
higher than the priority for stakeholder A. Stakeholder-based assessment
allows the stakeholders and the software architect to evaluate the architec-
ture for such mistakes. The most well-known stakeholder-based assessment
method is probably SAAM [2], which has evolved into the recently docu-
mented Architecture Trade-off Analysis Method (ATAM)1 [3].

Expert-based assessment is similar to stakeholder-based assessment.
However, in the case of expert-based assessment, a team of experienced archi-
tects and designers assesses the software architecture designed by the project
team to determine whether a system built based on this architecture will ful-
fill its functional and quality requirements.

Whereas stakeholder- and expert-based assessment qualitatively assess the
software architecture for all its requirements, quality-attribute-oriented assess-
ment aims to provide a quantitative prediction of one quality attribute (e.g.,
maintainability, performance, reliability, or security). For instance, in [4] an
approach is discussed for predicting the required maintenance effort for a sys-
tem built based on the assessed software architecture, the maintenance profile,
the expected number of change requests, and the average productivity of soft-
ware engineers. The maintenance profile captures the most likely change
scenarios for which the architecture should be optimized. Based on this main-
tenance profile, the impact of each change scenario on the software architec-
ture can be determined. Based on the impact analysis and the data mentioned
earlier, one could predict the required maintenance effort. Other techniques
exist for other quality attributes; for example, see Alonso et al. [5] for assessing
real-time behavior.

Configuration Management

A second use of software architecture can be found in the context of software
product lines. During product derivation, the product architecture is derived

Architecting Component-Based Systems 43

1. Registered servicemark by Carnegie/Mellon University.

from the product-line architecture and subsequently populated with selected
and configured product-line components. Also in single-product contexts,
especially if the product is highly configurable, the software architecture is
frequently used as a means to manage the configuration of the product.

As mentioned earlier, the first-class representation of the software
architecture is used in increasingly later phases of the life cycle, for instance,
configuration management and to manage run-time structure (e.g., dynamic
software architectures).

Dynamic Software Architectures

The third and final use of software architecture is currently in an experimen-
tal phase, but is evolving rapidly. Here the software architecture is kept as a
first-class entity for the operation of the system. This is typically referred to as
dynamic software architecture because the architecture is used to aid in modi-
fying the system during its operation. Possible modifications range from
replacing components to reorganizing the software architecture in response
to changed quality requirements for the system. Because it is generally
accepted that the architecture constrains the quality attributes of the system
and the most important quality requirements should drive the design of the
software architecture, the logical consequence is that if the quality require-
ments of the system change dynamically (e.g., because of changes in the con-
text of the system), the software architecture should reorganize itself in
response to these changes.

Note that in this case, the first-class representation of the software archi-
tecture is kept even during run time. This is, of course, what component-
based systems are all about. The main difference is that component-based sys-
tems are typically configured and bound at compile time, whereas we here dis-
cuss the notion of run time and dynamic system (re)configuration.

Designing Software Architectures

In this chapter, we have discussed the importance and uses of software archi-
tecture. However, to this point we have assumed the software architecture to
be present, but the artifact, of course, needs to be designed. In this section,
we discuss the typical process used when designing a software architecture.
The discussion is based on [6].

44 Building Reliable Component-Based Software Systems

Architecture Design Process

The architecture design process can be viewed as a function that takes a
requirement specification as input and generates an architectural design as
output. However, this function is not an automated process and consider-
able effort and creativity from the involved software architects is required.
In Figure 3.1, the main phases in software architecture design are presented
graphically.

The design process starts with functionality-based design (i.e., a design
of the software architecture based on the functional requirements specified in
the requirement documents). Although software engineers generally will not
design a system without concern for reliability or reusability, the quality
requirements are not explicitly addressed at this stage. Functionality-based

Architecting Component-Based Systems 45

Application
architecture

Requirement
specification

Requirement
selection

Functionality-based
architectural design

(Partial)
requirement
specification

Estimate quality
attributes

Architecture
transformation

QA-optimizing
solutions More

requirements?

OK

OK

Yes

no

not OK

F.R.

Figure 3.1 General software architecture design process.

design consists of four steps: (1) defining the boundaries and context of the
system, (2) identification of archetypes, (3) decomposition of the system into
its main components, and (4) the first validation of the architecture by
describing a number of system instances.

The second phase is the assessment of the quality attributes of software
architecture in relation to the quality requirements. Each quality attribute is
given an estimate in using a qualitative or quantitative assessment technique.
As discussed in the previous section, several techniques are available for
assessing quality attributes including scenario-based assessment [3, 6], simu-
lation [7], static analysis [8], metrics-based models [5], and expert-based
assessment [6]. Typically, scenario profiles are used to specify the semantics
of quality attributes. If all estimated quality attributes are as good or better
than required, the architectural design process is completed. Otherwise,
the third phase of software architecture design is entered: architecture
transformation.

The third phase of the software architecture design process is con-
cerned with selecting design solutions to improve the quality attributes while
preserving the domain functionality captured by the software architecture.
Each set of so-called �transformations� (one or more) results in a new ver-
sion of the software architecture. This design is again evaluated and the same
process is repeated, if necessary, until all quality requirements are fulfilled or
until the software engineer decides that no feasible solution exists. In that
case, the software architect needs to renegotiate the requirements with the
customer. The transformations (i.e., quality attribute optimizing solutions)
generally improve one or more quality attributes while affecting others
negatively.

As shown in Figure 3.2, transformations can be organized according to
two dimensions: the scope of impact and the type of transformation. At each
location in the two-dimensional space, one can identify a transformation
category. For each architectural design decision, one can identify at least five
possible structural effects: (1) adding, splitting, or merging one or more com-
ponents, (2) functionality added to the existing components, (3) behavior
superimposed on existing component functionality, (4) additional design
rules, and (5) additional design constraints. We refer to the next section and
to [6] for a more complete discussion of the topic.

Architectural Styles

The study of software architecture has revealed that certain structures recur
and are used to solve specific types of problems. These structures can be

46 Building Reliable Component-Based Software Systems

identified in terms of the types of components and connectors that comprise
them and the patterns of interactions among the components and connec-
tors. Several of these structures have been identified and classified as architec-
tural styles. We describe three architectural styles below and follow these
descriptions with a brief discussion of the relationship between architectural
styles and system quality attributes.

Pipe-and-Filter Architecture

The pipe-and-filter architectural style has only one component and one con-
nector type. The component type is the filter and the connector type is the
pipe. Their interactions are constrained in such a way that pipes receive
streams of data from filters and deliver these streams to other filters. Addi-
tional constraints can be added to pipe-and-filter styles that define the num-
bers of filters that can provide input to, or receive output from, a pipe at a
given time. Programs written using the pipe feature of the UNIX operating
system are examples of the use of the pipe-and-filter architectural style.

Blackboard Architecture

The component types of the blackboard style are repositories and data pro-
cessing components that use the repository. The data processing elements
interact with the repository by scanning the repository for required inputs,
and by writing to the repository when appropriate. Interaction among
repository users is implicit in their shared use of the data values stored in the
repository.

Architecting Component-Based Systems 47

Impose
architectural
pattern

Convert
QR to
functionality

Impose
architectural
style

Component Architecture
Scope of impact

Transformation type

Restructuring

Added functionality,
rules and/or
constraints

Apply
design
pattern

Figure 3.2 Architecture transformation categories.

Object-Oriented Architecture

The component type of the object-oriented style is the object and the con-
nector type is the synchronous message passing, or procedure call. Objects
have state and methods for manipulating that state. The methods are
invoked synchronously via the connectors. An object may or may not be
aware of the identity of the object to be invoked before requesting a service.

Architectural styles can be specialized in various ways in order to fur-
ther constrain interactions associated with the components and connectors
to support meeting specific quality-related goals. For instance, the pipe-
and-filter style might be specialized to disallow cycles, thus improving
maintainability.

System-level quality attributes can often be predicted based on the
observation of certain architectural styles in a system�s architecture. The posi-
tive or negative relationship between architectural styles and quality attri-
butes is generally determined by the degree of concurrency supported by the
style, the degree to which components can be directly interconnected, and
the degree to which data shared by components and management of compo-
nent interactions is centralized. Table 3.1 contains a summary of the rela-
tionship between the architectural styles described above and five quality
attributes that are often of concern to system developers. In the table, a plus
sign in a cell indicates that the style naming the row has a positive impact on
the quality attribute that names the column. A minus sign indicates a nega-
tive relationship. When both types of signs appear in a cell, the style can have
both positive and negative effects.

In some cases it is possible to moderate the degree to which a quality
attribute is affected by using a variant of the style. It is also possible for a par-
ticular variant of a style to have both positive and negative effects on a given
quality attribute. Again, using the pipe-and-filter style as an example, the
style can affect performance positively because it naturally allows for the con-
current operation of filters. However, it can also have a negative effect
because a large amount of data manipulation may be required. And, what is

48 Building Reliable Component-Based Software Systems

Table 3.1
Architectural Styles and Their Affinity to Quality Attributes

Architecture Performance Maintainability Reliability Safety Security

Pipes and filters + − + − − − +
Blackboard − + + − − + −
Object-oriented + − + − + − + + −

good for one quality attribute is not necessarily good for another. The black-
board style is not a good style to use if you are building a safety-critical part
of a system because of the large amount of data-sharing among components.
Use of the blackboard style allows bad data to be immediately read by all
components attached to the blackboard. This same characteristic of the
blackboard style that leads to potential safety problems because of centrally
located data, however, makes it easier to monitor data access and thereby can
have a positive impact on security. See [6] for more details on the relation-
ship between architectural styles and quality attributes.

Architecture-Driven Component Development

Once the architecture of the system has been detailed in terms of its compo-
nents and connectors, it is time to embody these architectural elements. The
styles used to design the architecture might suggest the use of a specific com-
ponent framework (e.g., CORBA, EJB) or set of frameworks for implemen-
tation. Implementation components, that is, components that can be
executed, are developed or selected to fulfill the requirements assigned to the
architectural components, which define the components� specifications. As
we said in the �Role of Software Architecture� section of this chapter, the
quality of the system is, in part, a function of the properties of the compo-
nents that comprise it. The goal for the embodiment phase of design is to
either build or select components and connectors that possess the quality
attributes identified during the architecting phase of development. Only
when this is the case can architecture-based analysis be relied on to predict
correctly the quality of the component assembly.

Three types of components may be available to embody architectural
components: custom-built components, components developed, or commis-
sioned, by an organization for a specific purpose; reusable components, com-
ponents already owned by the organization; and commercial components,
components developed to be sold in a marketplace by vendors. The type of
project and the culture of the development organization may restrict choice
among these but it is likely that some decision will need to be made about the
most appropriate source of components for a project. Determining the qual-
ity attributes associated with components of each of these types presents a
different problem for developers. In the remainder of the section we discuss
issues related to determining component properties. Issues related to compo-
nent composition and integration are addressed in Chapter 9.

Architecting Component-Based Systems 49

Custom Components

As is the case with any type of custom development, the costs are high in
terms of both time and money, but the results are likely to meet the needs of
the project commissioner. In the particular case of software development,
custom component development is most likely to pay off in cases of software
that is very unusual, safety critical, or highly secure. Benefits to be gained
include the fact that components can be created to precisely meet the specifi-
cation of the architectural components, thereby providing assurance that
the component assembly will, in fact, possess the quality attributes it was
designed around.

Preexisting Components

The two main classes of preexisting components are reusable components
and commercial components. Components that are being reused provide dif-
ferent challenges for the architect than do those that are being purchased
from commercial vendors.

Up to this point in the discussion we have assumed that the architect
retains control over all aspects of design. It is more often the case that
the design is constrained by a variety of factors. For instance, a business deci-
sion may have been made to reuse certain aspects of a system that is already
in place; a marketing decision may have been made to use a specific technol-
ogy; the organization might have prior experience using a certain component
framework or a set of communication mechanisms and services to support
component integration; or time-to-market requirements might encourage
the use of commercial components.

Regardless of the reason, designing a system around preexisting compo-
nents and component frameworks over which the designer has little control
is a fundamentally different problem from custom design as described in pre-
vious sections. In this case, the requirements to use specific components and
component frameworks drive the architecture. Components are generally
not mutable, thus solutions to this design problem center on adapting com-
ponent interactions rather than on adapting components themselves.

Reusable Components

Developers consider many breeds of components to be reusable. These can
exist on a wide scale of reusability within any organization. On one end of
the scale they might be components that were custom designed by the
organization for a certain purpose and they perform a task the way that the
developer required, but were not designed with reuse in mind. They must be

50 Building Reliable Component-Based Software Systems

adapted in order to be integrated into the new environment. Also, they must
be analyzed to produce sufficient information to determine how the compo-
nents will actually compose. In most cases, designers will need to create
adapters, often referred to as glue code, to modify these types of components
so they can be used in the new context.

At the other end of the scale are components developed with reuse in
mind. These may be in the form of parameterized components that can read-
ily be used in a variety of settings and with a variety of property values and
interdependencies explicitly stated. Clearly, ease of integration and composi-
tion will depend on the level of reusability of the components. Product-line
development exemplifies the use of preplanned reusable components. Prod-
uct lines are described in Chapter 11.

Commercial Components

The use of commercial components impacts the design process in profound
ways that often reflect other problems rather than design difficulty. Com-
mercial components introduce a large degree of uncertainty into the design
process. Market demands impact component selection in ways that go
beyond the lack of visibility; commercial components tend to be complex,
idiosyncratic, and unstable�complex because market demands require con-
stant feature expansion; idiosyncratic because differentiation, rather than
standardization, is rewarded in the marketplace; and unstable because the
pressures of the marketplace never let up. When these issues are considered
in addition to issues of software privacy and requirements of commercial
developers, one wonders if there is any potential for a true marketplace of
commercial components. These issues are addressed more fully in Chapter 8.

It is easy to see that consideration of the types of components to be
used in a system must be of concern to the architect and adjustments in
scheduling and range of acceptable quality must be made as early as possible
with regard to the types of components that are likely to be used to assemble
the system.

Component-Driven Architecture Development

When a software architect must design a software architecture that needs to
use preexisting components, additional constraints are placed on the architect.
The introduction of component frameworks to system assembly is analogous
to the advent of structured programming. In the early days of program analy-
sis, programmers recognized that unconstrained use of control flow constructs

Architecting Component-Based Systems 51

resulted in programs that were difficult, if not impossible, to analyze; restrict-
ing control-flow paths provided measurable improvement in program read-
ability and static analysis. Component frameworks impose restriction on
component interactions. Because component frameworks have typically been
defined to support certain quality attributes, limitations on the types of inter-
actions supported by a framework may constrain the architectural styles that
can be used to design the system.

When designing on the basis of preexisting components, the architect
might not be allowed access to the source code of the components. Design
freedom is limited to component selection and the way the selected compo-
nents are integrated. This restricted freedom magnifies the importance of
managing and controlling component integration. A component�s API does
not normally provide enough information to indicate how the component
will actually behave when used in a given environment. This difficulty raises
issues related to understanding and verifying both the functional and extra-
functional properties of the components so that the unexpected mismatches
among components are avoided and overall system quality can be accurately
predicted.

When custom components are developed into requirements, these
requirements become the requirements specification for the component.
Verification of component properties is required for developers to be confi-
dent that a system will behave as its architect predicted it would. Issues
related to the measurement and verification of components is a relatively new
area of research [9]. Only when these objectives have been met will it be pos-
sible to predictably select components that embody architecture.

As mentioned earlier, the types of components that a system is com-
posed of influence the architecture of the system. This is because the exis-
tence of preexisting or commercial components reduces the architect�s
control over the final product. In a like manner, the framework into which
components are to be plugged influences the architecture of the system and,
in fact, influences the process by which the system is designed. If one views
an operating system as a customizable framework, the constraints on the
architect are high when developing to a specific framework, but they decrease
as other types of frameworks are allowed to coexist in the system.

Different development processes are required when building systems
depending on the degree to which the components are preexisting, perhaps
commercial, and the frameworks are prescribed. Various development
approaches have been suggested and documented in books. The greatest
amount of design freedom is retained when building systems with custom
components to be deployed into an operating system, and the least amount

52 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

of freedom is obtained when using commercial components and deploying
them in a predetermined component framework such as EJB or CORBA.

Current trends in component-based design point toward an increased
focus on this type of development primarily because it enforces a structured
approach to CBD that is expected to result in similar benefits to those reaped
through the application of structured programming techniques to computer
programs.

The theory is that more reliable systems can be produced more quickly
and at less expense due to the restrictions on design freedom. At first glance,
and as stated in the previous section, the cost of moving in this direction will
be to sacrifice the ability to optimize components and connectors in order to
produce precisely the system that is desired. If this statement is true, then it
seems we will not be able to bridge the gap between architecture and compo-
nents. We are not as pessimistic about the state of things as it may seem. In
fact, we can imagine a commerce in components similar to what exists for
most other engineering disciplines. As an example, the development of com-
merce in plumbing components resulted when plumbing standards sup-
ported ease of installation and repair of plumbing fixtures and other parts.
Not many years ago in the United States there was no agreement as to how
far from the wall a toilet drain should be placed. The toilet needed to be cho-
sen before an architect could design a bathroom. Today a drain is centered
15 inches from the wall. Thus, the plumbing and floor can be installed
before the actual toilet is purchased or even chosen. Reaching for a similar
goal seems reasonable for software engineering today. As is the case with
plumbing, designers will need to deal with legacy systems for years and the
desire to build custom systems will never die out completely. However, given
an increase in domain- or application-specific component models that
describe standards for components and a framework for providing services
and constraining interactions, component-driven architectural design will
follow.

Summary

Software architecture is a key enabler for CBSE. Components and software
architecture form two sides of the same coin: Software architecture defines
the components that make up the system as well as the interactions among
them, whereas the properties and functionality of the components define the
overall system behavior.

Architecting Component-Based Systems 53

Software architecture plays multiple roles during the development and
evolution of component-based systems. First, the software architecture may
be used for stakeholder-, expert-, or quality-attribute-based assessment. Sec-
ond, the software architecture may be used for configuration management.
One can identify this especially in the context of software product lines.
Finally, software architecture can be used to dynamically reorganize the sys-
tem at run time (i.e., dynamic software architectures).

Design of software architectures consists of three main phases. The first
phase is functionality-based architectural design, which is the process of
designing a domain model based on the functional requirements only. The
second phase is software architecture assessment during which the software
architecture is evaluated with respect to the driving quality requirements.
Finally, architecture transformation is concerned with improving the quality
attributes of the software architecture through imposing an architectural pat-
tern, using a design pattern, or by converting a quality requirement to
functionality.

Once the software architecture has been defined, the components that
make up the system need to be developed or selected. One can identify three
categories of software components: custom, reused, and commercial compo-
nents. Custom components are developed specifically for the system at hand.
Reused components are typically developed within the organization, but
were present before the design of the software architecture. Commercial
components are developed by an external organization and typically pur-
chased through an intermediary. Preexisting components typically need to be
integrated into the system through the use of glue code.

Finally, we discussed the extreme case of systems development based on
the use of preexisting components (i.e., component-driven architectural
design). In this case, software architecting is primarily concerned with identi-
fying means for optimizing the interactions among the given components.

References

[1] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Reading, MA:
Addison-Wesley, 1998.

[2] Kazman, R., et al., �SAAM: A Method for Analyzing the Properties of Software Archi-
tectures,� Proc. 16th Int. Conf. Software Engineering, ACM Press, 1994.

[3] Clements, P., R. Kazman, and M. Klein, Evaluating Software Architectures: Methods and
Case Studies, Reading, MA: Addison-Wesley, 2000.

54 Building Reliable Component-Based Software Systems

[4] Bengtsson, P., and J. Bosch, �Architecture Level Prediction of Software Maintenance,�
Proc. 3rd European Conf. Software Maintenance and Reengineering�CSMR�99, Los
Alamitos, CA, IEEE Computer Society, 1999.

[5] Alonso, A., M. Garcia-Valls, and J. A. de la Puente, �Assessment of Timing Properties
of Family Products,� Proc. 2nd Int. ESPRIT ARES Workshop on Development and Evolu-
tion of Software Architectures for Product Families, Lecture Notes in Computer Science,
No. 1429, Berlin, Springer Verlag, 1998.

[6] Bosch, J., Design & Use of Software Architectures, Reading, MA: Addison-Wesley, 2000.

[7] Luckham, D. C., et al., �Specification and Analysis of System Architecture Using Rap-
ide,� IEEE Trans. on Software Engineering, Special Issue on Software Architecture,
Vol. 21, Issue 4, 1995, pp. 336�354.

[8] Shaw, M., and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Upper Saddle River, NJ: Prentice Hall, 1996.

[9] Hissam, S. A., J. Stafford, and K. C. Wallnau, �Packaging Predictable Assembly,� in
Proc. of the First International IFIP/ACM Working Conference on Component Deploy-
ment, Berlin, Germany, 2002.

Architecting Component-Based Systems 55

.

4
Component Models and Technology

Jacky Estublier and Jean-Marie Favre

Introduction

The many definitions of what a component is�and what it is not�often try
to define a component in opposition either to object-oriented programming
languages or to architecture description languages (ADLs). This chapter does
not intend to provide yet another definition, but tries to clarify the situation
showing the models of the different component technologies currently avail-
able in the industry: JavaBeans [1] , COM+ [2], CCM [3, 4], .NET [5, 6],
and the Open Service Gateway Initiative (OSGI) [7].

A difficulty is that industrial component technologies focus on practi-
cal problems and are described in technical terms, thus providing many
implementation details and making it difficult for users to understand con-
cepts and principles. Available documentation is either oriented toward deci-
sion makers and provides mostly marketing arguments, or it is oriented
toward programmers or tool implementers and includes pieces of code and
complex API specifications.

The ADL community, by contrast, has tried primarily to establish
high-level concepts and principles and has produced many research papers. A
large amount of work has been dedicated to the analysis and comparison of
the different features proposed by the various ADLs [8].

57

Whereas component technologies focus on the last phases of the life
cycle, that is, on implementation, deployment, and execution, ADLs focus
on the early stages, mainly on design. Indeed, comparing component tech-
nologies and ADLs is difficult because they do not address the same prob-
lems and they are not described at the same level of abstraction. It is useful,
however, because they share the component concept and their scope is
complementary.

The goal of this chapter is to describe component technology in the
same terms as ADLs at the same abstraction level. Of course, this chapter
does not intend to provide in-depth coverage or present the different facets
of these technologies. We shall try instead to identify the component model
underlying each component technology. This allows us to identify similari-
ties and differences, both between the various component technologies and
between ADLs and current component technologies.

The remainder of this chapter is organized as follows. In the next sec-
tion, we provide a short historical perspective showing where component
technology has its roots. Then we present a broad overview of the main fea-
tures provided and introduce the notation used in this chapter. The next
section briefly introduces Acme as a representative of the main concepts
typically found in ADLs. The subsequent sections briefly present industrial
component technology, namely, Sun�s JavaBeans, OMG�s CORBA Com-
ponent Model (CCM), Microsoft�s .NET, and OSGI. Finally, the chapter is
summarized.

A Short Historical Perspective

Programming languages, apart from their linguistic aspect, can be seen from
either the run-time point of view (run-time support while executing the pro-
gram) or from the design and reuse perspective (designing new programs and
reusing existing programs). The first perspective provides transparent sup-
port during program execution, dynamic loaders and binary interoperability
being examples of the (extrafunctional) properties added to a program by
run-time support. The second perspective, reuse and design, leads to more
abstract concepts such as classes, inheritance, and polymorphisms and to
methods and notation like UML.

To a large extent, component-based technology is the logical continua-
tion of the first perspective (introspection capability and run-time support),
whereas ADLs are the logical follow-up of the second (design and reuse).
Take the example of dynamic loading. The association of the language run-
time support with the operating system, and the addition of a limited form of

58 Building Reliable Component-Based Software Systems

introspection to executables (a table of symbols with their offset), is sufficient
to provide new properties for applications (incremental loading, module sub-
stitution, partial recompilation, portability, etc.) without any change in the
application source code.

It is the development of this idea that is the basis for component-based
technology: By relying on the component framework, it is possible to trans-
parently provide new services and remove information from source code.
These goals can only be reached by improving source code introspection or
by defining new formalisms. Indeed, the approach was used to (1) explicitly
define components and their interactions with other components (to per-
form static connection checking and automate connection control), (2)
explicitly define their implementation from native code and interactions
with other �native� code (to dynamically instantiate and control instance life
cycle), and (3) explicitly define components (extrafunctional) properties and
services (to delegate their realization to the component framework). Indeed
these three goals were addressed, more or less simultaneously, by different
groups, and ended up in different systems.

Component Interface and Connections

ADL

The ADL community focused on the definition of a component, its inter-
face, and relationships with other components. ADLs primarily address the
issues related to the early phases of software engineering: design and analysis.
They identify a number of concepts such as architecture, configurations,
connectors, bindings, properties, hierarchical models, style, static analysis,
and behavior (see Chapter 3). Simultaneously, but on a different abstraction
level, industrial component technology addresses similar issues, emphasizing
more pragmatic aspects.

Improving Code Independence

The compilation techniques used in classic languages like C and C++ are
such that even a simple change in a program could result in dramatic recom-
pilations that increase development costs and reduce reusability. The idea of
improving code independence was to improve the independence of �pro-
grams,� relying on the definition of explicit �interfaces� and on a simple
interaction protocol (e.g., asking for a �connection� to an interface).

COM falls into this category. It proposes an improved binary
interoperability convention and a few composition techniques: containment

Component Models and Technology 59

and aggregation. Dassault Systèmes� component model improved the compo-
sition technique with extensions and delegation (see Chapter 19).

Simplifying Composition

JavaBeans focuses on increasing composition capabilities and reuse. The sys-
tem is based on considerably extended introspection capabilities and on
many programming conventions. The result is that beans are highly reusable
and can be easily composed, statically or dynamically. Specific assembly tools
have been developed, for example, Net Bean [9].

Performing Services Transparently

Performing Distribution

The goal here was to provide a way to realize distributed applications almost
transparently. The remote procedure call (RPC) is the ancestor of this very
successful line of work. CORBA Object Request Broker (ORB) extended the
approach with object-oriented (OO) and language heterogeneity. COM+
relies on RPC.

In these approaches, introspection requires �full� knowledge of the
interfaces, which are provided in the IDL and processed by a compiler. Run-
time support requires more resources, the ORB itself being only one of the
required run-time components.

Generalizing Services

The goal here was to generalize the big success of distribution support on a
number of other extrafunctional properties. This produced a proliferation of
�services� (see CORBA services [10] and MTS specification) including trans-
action and persistency. The complexity of each service, and, much worse, of
their combination, led to their encapsulation under the concept of container
(EJB). The container is an abstraction for the set of services to be applied to a
component.

The CCM, adding among other things language heterogeneity, gener-
alized the approach.

Here introspection is more demanding, and the description of the ser-
vices to apply to a component requires specific formalism(s). The container is
an abstraction for the set of services to apply to a component, and its imple-
mentation is a mixture of run-time interpreters (code introspection and con-
tainer information), of objects generated when compiling the container
description (stubs, skeletons, etc.), and of general run-time services (ORB,
DBs, etc.).

60 Building Reliable Component-Based Software Systems

In an abstract way, in these approaches, a component is a box. The box
itself is the container that describes and controls the access and properties of
its content; and the content is the �functional� or executable code of the
component. The box manages the content but the content ignores the box.
These approaches emphasize the distinction between the box itself (described
in a number of specialized formalisms), and the content (described in classic
programming languages, object-oriented or not). The box describes how to
manage the content at execution.

Notation and Plan

A component model specifies, at an abstract level, the standards and conven-
tions imposed on software engineers who develop and use components.
Compliance with a component model is one of the properties that distin-
guishes components from other software entities.

In this chapter we call a component framework the set of (1) the for-
malisms used to describe some aspects of components; (2) a number of tools,
including the above formalisms, compilers, design tools and others; (3) the
run-time infrastructure that interprets part of the above formalism and
enforces specific properties; and (4) a number of predefined components and
libraries.

Though imprecise, industrial component models often make assump-
tions about important steps in an implicit product life cycle. Table 4.1 gives
a rough picture of the major steps that could be identified.

In the following discussion, we look at different industrial component
models. For each model we will provide the intended goal of the model and
describe it from different aspects: (1) interface and assembly, (2) implemen-
tation, (3) framework, and (4) the life cycle.

Component Models and Technology 61

Table 4.1
Majors Steps in CBD Life Cycle

Aspect Phase Actor

Interface Definition Designer

Assembly Assembly Architect

Implementation Implementation Developer

Life cycle Packaging, deployment Administrator

Framework, run-time support Execution End user

For the purpose of this chapter, we will use a simple graphical formal-
ism, in which a component is a gray box (Figure 4.1). The closed box is used
to represent the interface of the component and the concepts provided to
model the interaction points of the component with the external world. In all
ADLs, as well as in most component models, the unique (meta) entity is the
component, and interaction points are only relationships between compo-
nents. We will instead identify three classes of �entities,� the components
(gray), the run-time component framework (black), and the other users pro-
grams (white). We emphasize the relationship of a component with (1) the
other components (left and right), (2) the component run-time framework
(bottom), and (3) the usual programs that are no components (top).

Acme ADL

Many architecture description languages have been proposed, sometimes to
satisfy the needs of different application domains. Different surveys have
been published (e.g., [8]). Although there is little consensus about what
exactly an ADL is, there is agreement about what the set of core concepts
could be, at least regarding the structural aspect of architectural description.
Acme is an architectural description language [11] that incorporates these
concepts. In this section, we give a very brief description of Acme in order to
present typical ADL concepts. Acme is a second-generation ADL that
focuses on the definition of a core set of concepts related to the structural
aspects of software architecture in order to make it possible to exchange
descriptions between independently developed ADLs. Acme is a generic

62 Building Reliable Component-Based Software Systems

Interactions
with traditional
software entities

Interactions
with other
components

Interactions
with other
components

Interactions with
component
infrastructure

Components

Traditional
software
entities

Component
infrastructure

Figure 4.1 Component interactions.

TEAMFL
Y

Team-Fly®

ADL that can be used to describe more specific concepts by specializing the
core concepts.

Just like other ADLs, Acme concentrates on the design and evaluation
of software architecture, emphasizing the notation used as illustrated by the
following statement: �An important problem for component-based systems
engineering is finding appropriate notations to describe those systems. Good
notations make it possible to document component-based design clearly, rea-
son about their properties, and automate their analysis and system genera-
tion� [11]. Acme is made of a textual and a graphical notation. In this
chapter, we use a very similar graphical notation as an aid to compare the
major concepts of ADLs and component models.

A system is described as a graph of components and connectors as
shown in Figure 4.2.

Components and Ports

Components represent the computational elements and data stores of a sys-
tem. There are no restrictions on the size of a component. A component can
be as small as a button in a graphical user interface or as large as a Web server.
For large and complex components, it is essential to be able to hide their
internal structures. The interface of a component, that is, its external view, is
described as a set of ports. The ports are the points of interaction between a
component and its environment.

Connectors and Roles

Connectors represent interactions between components. Like components,
connectors can be of arbitrary complexity. This notion makes it possible to
represent, in a unified way, simple concepts such as a method call as well as
complex and abstract connections such as an SQL connection between a

Component Models and Technology 63

Connector
Role

Component

Port

(a) (b) (c)

Attachment

Figure 4.2 Components, ports, connectors, roles, systems, and attachments in (a) a
component interface, (b) a connector interface, and (c) a very simple system.

client and a database server. Indeed, making a connector a first-class entity is
one of the important features of many ADLs. Because a connector can be
rather complex, it is important to be able to describe its interface independ-
ently from its internal structure. The interface of a connector is defined as a
set of roles. A role is to a connector what a port is to a component, that is,
its interaction points. Many simple connectors are binary. For instance, a
method call is a connector with two roles, the caller and the callee; a pipe has
a writer and a reader; an event channel has an emitter and a receiver, and so
forth. Simple arrows could be seen as suitable notation for binary connectors
but this is just a matter of graphical notation.

Systems and Attachments

Acme makes it possible to describe components and connectors separately,
but the goal is to describe a complete system as an assembly of components
and connectors. The structure of a system is specified by a set of components,
a set of connectors, and a set of attachments. An attachment links a compo-
nent port to a connector role. Connections between components are thus
modeled as a component�port�role�connector�role�component sequence.
This may seem unnecessarily complex, but it is needed to model complex
systems. In particular, it allows us to reason about connectors in isolation,
which is possible only if connector interfaces are explicitly defined.

Representations and Bindings

The concepts presented above make it possible to describe how a system is
made of components and connectors, giving an overall view of this system,
an example of which is shown in Figure 4.3. To support top-down design of

64 Building Reliable Component-Based Software Systems

Connector

Component

Port

Role
Attachment

Binding

Figure 4.3 Representation of a system.

software architectures, a refinement feature is needed. One or more compo-
nent representations can be associated with a component interface. A com-
ponent representation is made of a system and a set of bindings. Each binding
links an internal port to an external port. A component can thus be decom-
posed hierarchically. Connectors can also be decomposed in a similar way.
One important aspect of this approach is that the same formalism is used at
each level of decomposition.

Properties, Constraints, Types, and Styles

The concepts introduced can be used to describe the structural aspect of soft-
ware architecture. To improve the description of components, connectors,
and systems, each ADL offers additional information to define, for instance,
component behavior, protocols of interaction, and functional and extrafunc-
tional properties. Instead of defining a fixed set of features, Acme makes it
possible to annotate each entity with an arbitrary set of properties. Acme also
includes a constraint language based on first-order predicate logic. One or
more constraints can be attached to any architectural entity. This includes
simple constraints defining the range of values an attribute can take, the
number of connections accepted by a component, but also sophisticated con-
straints to control the topology of a system.

Acme also provides a facility for defining new types, including types of
properties, types of components, types of connectors, and types of ports.
Types are not expressed in terms of the structure of the elements they charac-
terize; they also include constraints that must be satisfied by the elements.
One interesting feature of Acme is that it enables us to define the style of
architecture, that is, the type of system.

Discussion

Acme defines a relatively small set of clearly identified concepts commonly
found in other ADLs and can be considered as a typical ADL. Acme does not
contain all of the features found in all ADLs, but its generality and focus on
structural aspects makes it particularly interesting in a comparison with typi-
cal industrial component models.

Indeed, industrial component models concentrate on a subset of the
concepts described above and largely ignore advanced features such as behav-
ior specification. Finally Acme, in the same way as other ADLs, emphasizes
the notation and design of new systems but does not provide substantial help
for implementation software or dealing with existing pieces of code, which

Component Models and Technology 65

explains why it is unlikely that Acme, and other existing ADLs, will be
widely used by software engineers in industry.

JavaBeans Component Model

The JavaBeans component model was proposed by Sun in 1997, as the first
integration of the notion of a component on top of the Java language: A bean
is a component.1 The main quality of this component model is its simplic-
ity�at least when compared to other industrial component models: The
whole specification of the JavaBeans model is a 114-page document [1],
which can be compared to, say, 1,172 pages for the CCM specification [4].
The scope of this component model is quite limited and it does not scale up
to large CBD. Despite its limitations this component model has been widely
used and is influential and popular in the Java community; more than a
dozen books have been written on it.

Key Features

One of the factors explaining the success of JavaBeans is the Bean Box, a tool
delivered with the specification to demonstrate the feasibility of an appealing
idea. The first sentence of the specification is, �The goal of the JavaBeans
APIs is to define a software component model for Java, so that third party
ISVs can create and ship Java components that can be composed together
into applications by end users� [1]. The visual assembly or composition of
existing components is at the origin of the JavaBean component model: �A
JavaBean is a reusable software component that can be manipulated visually
in a builder tool� [1]. The reader is invited to contrast this definition with
the others provided in this book. JavaBean was designed for the construction
of graphical user interfaces (GUIs). Customization of components plays an
essential role in JavaBean.

An interesting aspect of this component model is the importance given
to the various contexts in which a component can be considered. �First a
bean must be capable of running inside a builder tool. Second, each bean
must be usable at run-time within the generated application� [1]. JavaBeans
is one of the few models in which the component is explicitly tailored to

66 Building Reliable Component-Based Software Systems

1. Sun later released a second distinct component model, namely, Enterprise JavaBeans
(EJB). These two models are fairly distinct and should not be confused because their
names are misleading. EJB is very complex and is similar to CORBA�s CCM.

interact in two different contexts: at composition time, within the builder
tool, and at execution time, in the run-time environment. This feature illus-
trates the fact that component models can take into account the collabora-
tion between components and different contexts, not only execution.

Interface of a Component

A bean can be described from an external view as a set of ports though this
terminology is not used in JavaBeans. This model defines four types of
ports: methods, properties, event sources, and event sinks called listeners. In
Figure 4.4, we introduce a graphical notation to ease the understanding of
the model. Other component models will also be described in a similar way.

The notion of property can be used both to parameterize the compo-
nent at composition time (as described above) or as a regular attribute (in the
object orientation sense of the term) during run time. From a client point of
view, three main operations are associated with a property: getting the value
of a property, setting a new value, and editing the property. This last opera-
tion is the one used typically by the builder tool to support the customization
of the component. A �bound property� can generate an event whenever it
changes its values. A �constrained property� is a property that can be modi-
fied only if no other components reject the proposed change after a valida-
tion protocol.

The notion of method is directly bound to the notion of method in the
Java programming language. From the client point of view, calling the
method is the only operation associated with ports.

Component Models and Technology 67

Component interface

Read-only property

Write-only property

Property

Method

Event source

Event sink (listener)

Bounded property

v Vetoable property

ro

wo

1 Unicast event source

Ports

Figure 4.4 Interface of a bean component.

Event-based communication is also allowed and plays a major role in
this model. Event sources generate events of a certain type, while event sinks
receive events. Multicast event sources can be connected to an arbitrary
number of event sinks, while unicast only supports one sink at the most.
From a client point of view, the only operations supported by the event
sources are the connection and disconnection of an event sink.

Implementation of a Component

The information described in the previous section represents the interface of
a component; nothing else is visible from other components. Most bean
components are implemented by a simple Java object, the object being
encapsulated in the component [Figure 4.5(a)]. Mapping between object
methods and component ports is implicit thanks to the use of naming con-
ventions. Sometimes more sophisticated implementations are required as
suggested in Figure 4.5(b):

• Wrapping a legacy object. It is possible to wrap an existing object that
cannot be changed and does not follow the standard naming con-
vention. This wrapping is done through a set of explicit bindings
between object methods and component ports.

• Multiple-objects implementation. A component may encapsulate a col-
lection of objects collaborating in the realization of the component.

68 Building Reliable Component-Based Software Systems

Object

Method

Method call

Binding

(a) (b)

Figure 4.5 Implementations of bean components: (a) simple implementation and (b)
more complex implementation.

These objects are shown inside the component in Figure 4.5(b). In
particular, additional objects can be attached to the core functionality
of the component to support its extrafunctional aspects such as the
customization service; for instance, a property editor of a given prop-
erty, as shown in the figure in the top-left corner, or a �customizer� as
shown in the bottom part.

• Dependency on traditional entities. A bean object may call another
object outside the component boundary and it thus depends on
objects outside of it.

The implementation of a component is described here from a concep-
tual point of view. A component is built by grouping different objects and
binding them to the components ports. From a technical point of view, this
is achieved by means of nontrivial APIs.

Components Assembly

Although assembly is one of the key features of JavaBeans, this component
model does not provide any specific solution. Instead, the component model
has been designed to support different ways of assembling components:
�Some builder tools may operate entirely visually, allowing the direct plug-
ging together of JavaBeans. Other builders may enable users to conveniently
write Java classes that interact with and control a set of beans. Other builders
may provide a simple scripting language to allow easy high-level scripting of
a set of beans� [1].

The JavaBeans distribution includes a toy prototype, the Bean Box, to
illustrate the notion of interactive and visual assembly of beans components.
This approach has been successfully integrated in various commercial pro-
gramming environments such as Sun�s Net Beans, IBM�s Visual Age, and
Borland�s JBuilder. Whatever the builder used, from a conceptual point of
view, a bean assembly can be seen as a graph of components as suggested in
Figure 4.6(a).

Nevertheless, it is important to stress that JavaBeans neither specifies an
assembly language nor the kind of connections that can be used to connect
components. Obviously event sources can be directly connected to event
sinks, but the range of connections available depends on the assembly tool.
For instance, the Bean Box supports only connections between event sinks
and methods with no arguments. Commercial builder tools allow the user to

Component Models and Technology 69

express much more sophisticated connections and generate code behind the
scene when necessary.

Although these tools have proven useful in the construction of GUIs,
currently most existing systems combine component-based and traditional
technology [Figure 4.6(b)]. This smooth integration has been planned:
�Note that while beans are primarily targeted at builder tools they are also
entirely usable by human programmers. All the key APIs, such as events,
properties, and persistence, have been designed to work well both for human
programmers and for builder tools� [1].

Packaging and Deployment

JavaBeans define a model for packaging components into archives. When the
archive is loaded into a builder tool, all packaged beans will be added to the
directory of available components.

Packaging is required in practice because most bean components depend
on resources (e.g., icons and configuration files) and on other Java classes. To
avoid duplication of items shared by different beans, it is therefore better to
package all of these items together. To handle packaging issues, the JavaBeans
definition includes the definition of dependency relationships between the
package items.

The customization code associated with a component may be poten-
tially quite large. For example, if a component includes a �wizard custom-
izer� guiding a user through a series of choices, then the customization code
can be more complex than the component itself. It is therefore important to
be able to eliminate this code if necessary. Each package item can be marked
�Design Only,� so that they can be removed in a final application.

70 Building Reliable Component-Based Software Systems

(a) (b)

Figure 4.6 Bean-based systems: (a) component-based assembly and (b) heterogeneous
assembly.

COM, DCOM, MTS, and COM+

These technologies come from Microsoft.2 COM (1995) is typical of early
attempts to increase program independence and allow programming lan-
guage heterogeneity, but for C/C++ like languages, in a centralized context,
and on Windows platforms. COM relies on binary interoperability conven-
tions and on interfaces. DCOM extends COM with distribution, and MTS
extends DCOM with persistency and transaction services. Together they
constitute COM+, which is discussed here.

Interfaces and Assembly

A COM interface is seen as a C++ virtual class and takes the form of a list of
data and function declarations without associated code.3 The binary conven-
tion is based on the C++ technique to support polymorphism: a double indi-
rection for the access to the interface elements (see Figure 4.7). COM does
not provide an assembly language; it instead provides a simple protocol that
COM objects can use to dynamically discover or create objects and inter-
faces. All interfaces are descendants of the IUnknown interface, which
defines the basic functions: QueryInterface, AddRef, and Release.

Implementation

A COM object is a piece of binary code that can be written in any program-
ming language as long as the compiler generates code following the binary
interoperability convention. These objects can be packaged in executables or
DLL dynamic libraries that contain the minimum information (introspec-
tion) required for dynamic link and COM object identification.

COM supports two composition techniques: containment and aggrega-
tion. Containment is the operation by which a COM object contains other
COM object(s). The outer object declares some of the inner object inter-
faces. The implementation of these interfaces is simply a call (delegation) to
the same function of the inner object. Of course, clients see a single object
(the outer one) as implementing all interfaces.

Aggregation is more complex. The outer object can expose interfaces of
the inner object as if the outer object implemented them, but without the

Component Models and Technology 71

2. Microsoft terminology is very obscure; these �definitions� come from [2].

3. An interface can be declared using C++ alone, or using the MIDL language, an extension
of OSF DCE IDL; MIDL is required only for DCOM.

need to implement them (it avoids the call indirection). Unfortunately, the
process of aggregation requires the source code of both the inner and outer
objects to be changed so as to handle the IUnknown interface properly.

Framework

The COM framework consists of standard interfaces (IUnknown, IDis-
patch, etc.) and a simple run time that interprets, in collaboration with the
dynamic library run time, the calls for creating COM objects, returning
interface handles, and managing the reference count for releasing objects.
Fortunately, the COM framework proposes a set of tools, like Visual Studio,
that vastly simplifies the implementation of COM objects; indeed many
COM programmers ignore the COM component model.

DCOM (Distributed COM, 1996) extends COM with distribution,
based on the DCE RPC mechanism. The component model is unchanged,
but the framework is extended. The MIDL language and compiler are
required for interface definition; the introspection capability is much
enhanced by means of type libraries.

MTS (Microsoft Transaction Server, 1997) extends DCOM with the
container approach, already presented in CCM, to produce COM+ (1999).
MTS introduced the distributed transactional approach and added services,
similar to those of CORBA.

Life Cycle

COM and COM+ are strictly execution-time and binary component mod-
els. No life-cycle issues are explicitly supported. The .NET component
model is a departure from this approach, as described later in this chapter.

72 Building Reliable Component-Based Software Systems

(a)

Interface

Ports (b)

Figure 4.7 COM interface: (a) component interface and (b) component implementation.

TEAMFL
Y

Team-Fly®

CCM

The CCM is the most recent and complete component specification from
OMG4. It has been designed on the basis of the accumulated experience
using CORBA service, JavaBeans, and EJB.

Like many component models, CCM focuses on the developer who
builds applications by assembling available parts, but also explicitly the com-
ponent designer, assembler, and deployer. The major goal behind the CCM
specification was to provide a solution to the complexity reached by CORBA
and its services: �CORBA�s flexibility gives the developer a myriad of choices,
and requires a vast number of details to be specified. The complexity is sim-
ply too high to be able to do so efficiently and quickly� [4]. The choice was
to define a component model generalizing the standard defined by EJB, in
which the number of details to be specified and the risk of inconsistent mix-
tures are vastly reduced. CCM focus is �a server-side component model for
building and deploying CORBA applications� [4].

One of the advantages of CCM is its effort to �integrate� many of the
facets involved in software engineering. As a consequence, a software applica-
tion is described in different formalisms along two dimensions: the time
dimension (the life cycle, from design to deployment) and the abstract
dimension (from abstractions to implementation). Altogether, this makes a
rather complex specification. As of early 2002, no complete implementation
of CCM had been accomplished.

For CCM, a component is �a self-contained unit of software code con-
sisting of its own data and logic, with well-defined connections or interfaces
exposed for communication. It is designed for repeated use in developing
applications, either with or without customization�[4].

Interface and Assembly

The external view of a component is an extension of the traditional CORBA
IDL language; a component interface is made of ports divided into these
pieces (Figure 4.8):

• Facets, which are distinct named interfaces provided by the compo-
nent for client interaction;

Component Models and Technology 73

4. First draft: October 1999; first revision: November 2001.

• Receptacles, which are named connection points that describe the
component�s ability to use a reference supplied by some external
agent;

• Event sources, which are named connection points that emit events
of a specified type to one or more interested event consumers, or to
an event channel;

• Event sinks, which are named connection points into which events of
a specified type may be pushed;

• Attributes are named values, exposed through accessor and mutator
operations. Attributes are primarily intended for use in component
configuration, although they may be used in a variety of other
ways [4].

CCM considers ports as named and typed variables (most models con-
sider only interfaces, i.e., a type), thus different facets of the same component
can have the same type. Components are typed and can inherit (simple
inheritance) from other components (i.e., it inherits its interface).

Homes are component factories that manage a component instance life
cycle: creation, initialization, destruction, and retrieval of (persistent) com-
ponent instances. Homes are also typed and can inherit from other home
types. A home type can manage only one component type, but a component
type can have different home types. Homes are defined independently from
components, which allow component life-cycle management to be changed
without changing the component definition.

74 Building Reliable Component-Based Software Systems

(a)

Attribute

Facet

Event source

Event sink

Ports

Receptacle
Segment

(b)

Figure 4.8 CORBA component interface: (a) component interface and (b) component
implementation.

CCM uses the term navigation to describe the framework operations
that can be called by a component to dynamically discover and connect to
other components and ports.

Assemblies

CCM simply defines the concept of connection as �an object reference�; thus
CCM, like all other industrial component models, does not provide a con-
nector concept. Nevertheless, components are connected by linking facets to
receptacles and event sources to event sinks. Connections are binaries and
oriented, but the same port can handle multiple connections.

Connections can be explicitly described (in the assembly descriptor, an
XML file) and established by the CCM framework at initialization. A com-
ponent assembly describes the initial configuration of the application (i.e.,
which components make up the assembly), how those components are parti-
tioned, and how they are connected to each other. The assembly does not
address architecture evolution during execution.

It is interesting to note that the CCM specification explicitly refers to
the Rapide ADL: �The provides and uses statements in this submission are
similar to the Interface Connection Architecture implemented in Rapide
[12] and discussed in [13]. The Rapide Interface Connection Architecture
applies provides and requires statements to individual functions in a class
declaration � the difference being that we specify dependencies with respect
to interfaces rather that individual methods� [4].

Implementation of a Component

The implementation of a component is a set of segments or executors. Seg-
ments are executable code written in any programming language, imple-
menting at least one port. Segments are loaded only when required. No
(segment) composition operators are defined. Nothing prevents a segment
from calling conventional programs; conversely, the concept of �equivalent
interface� was defined to turn a program into a component and to make a
component appear as a classic program.

Because implementation is always a set of executable code, the CCM
model is not hierarchical. The same applies to homes which are directly
bound to executors.

CCM proposes a Component Implementation Definition Language
(CIDL) that describes the segments, the associated home executor, the type

Component Models and Technology 75

of storage, and the class of container (see discussion of containers). Different
implementations can be associated with the same (abstract) component.

Framework: The Container Approach

Like CORBA, MTS, and EJB, CCM emphasizes the fact that many services
can be made available to components without having to change that compo-
nent�s source code. This approach increases component reusability, reduces
complexity, and significantly improves maintainability. These reasons are at
the origin of the many CORBA services; unfortunately, the multiplication of
services has (re)introduced a level of complexity incompatible with wide-
spread use of that technology.

Like EJB, CORBA components use a container to implement compo-
nent access to system services using common design patterns gleaned from
experience in building business applications using object technology and
CORBA services. Containers are defined in terms of how they use the under-
lying CORBA infrastructure and thus are capable of handling services like
transactions, security, events, persistence, life-cycle services, and so on. Com-
ponents are free to use CORBA services directly (component-managed serv-
ice), but CCM emphasizes container-managed service (i.e., the container
managing services automatically); the component code itself ignores the asso-
ciated services. To do so, the container intercepts communications between
components and calls, if needed, framework services. In Figure 4.9, the con-
tainer is represented as the part of the run-time framework located between
the ports and the component implementation. Components may have to
implement callback operations defined by the framework if they need to
manage their own persistent state.

76 Building Reliable Component-Based Software Systems

CCM run-time infrastrucure

container

Figure 4.9 CCM run-time framework.

Life Cycle

A package descriptor is a file, in XML, describing a set of files and descrip-
tors, including the component assembly descriptor. CMM does not define
the set of formalisms from which this XML file is produced; thus the CCM
specification does not describe the actual packaging and deployment. Ven-
dors, in the future, should provide assembly, packaging, and deployment
design tools, whose purpose will be to help users in the design and specifica-
tion of these topics, as well as deployment tools, which, by interpreting the
information found in the packaging, assembly, and component implementa-
tion descriptors, will perform actual deployment and assembly.

CCM is the best effort to date to gather the advances made in different
fields, to include a wide spectrum of life-cycle activities, while still claiming
efficiency and heterogeneity capabilities, but the whole does not provide the
feeling of being as �simple� as claimed.

.NET Component Model

.NET [5], the latest component model from Microsoft, represents a disconti-
nuity�it no longer relies on COM, because binary interoperability is too
limited. .NET relies instead on language interoperability and introspection.
To do so, .NET defines an internal language Microsoft Intermediate Lan-
guage (MSIL), which is very similar to Java Byte Code and its interpreter
with introspection capabilities: the Common Language Runtime (CLR),
which is very similar to a Java Virtual Machine.

Interfaces and Assembly

.NET represents the programming language approach for component pro-
gramming. It means that the program contains the information related to
the relationships with other �components,� and that the compiler is respon-
sible for generating the information needed at execution. This (proprietary)
approach contrasts with the Object Management Group (OMG) (open)
approach where separate formalisms (and files) are used to indicate
component-related information, with languages and compilers being
unchanged.

What most resembles a component is an assembly. The manifest is the
component descriptor. It gathers in a single place all information about an
assembly: exported and imported methods and events, code, metadata, and
resources.

Component Models and Technology 77

Because of the programming language approach, the corresponding
programming language, C#, which is very similar to Java, includes some fea-
tures of a component model: (first-class) events and extensible metadata
information. The compiler not only produces MSIL byte code but also gen-
erates, in the manifest, the interface description of the component (called
assembly), in the form of a list of import and export types. There is no
explicit concept of connection but rather the traditional list of imported and
exported resources. .NET relies on a specific dynamic linker to realize the
connections, during execution, between the provided and required resources.

Implementation

A component (assembly) consists of modules, which are traditional executable
files or dynamic link libraries (DLLs). Following the programming language
approach, the list of modules composing an assembly is provided in the com-
piler command line when compiling the main module. The compiler thus
generates the manifest in the same file as the main module executable. Mod-
ules are loaded only when required. Modules cannot be assemblies, thus the
.NET model is not hierarchical. Figure 4.10 shows the .NET interface and
component implementation.

Framework

.NET relies on the traditional programming approach in which the frame-
work is seen as the language run-time support: �The .NET Runtime is
designed to give first-class support for modern component-based program-
ming�directly in the Runtime� [6]. Extrafunctional aspects such as dis-
tribution, security, confidentiality, and version control are delegated at

78 Building Reliable Component-Based Software Systems

(a)

Attribute

Method

Event source

Ports

Event source

(b)

Modules

Figure 4.10 .NET component (a) interface and (b) implementation.

execution to the operating system and loader (see the life-cycle section
below). Transaction control relies on Microsoft Transaction Server (MTS).

Life Cycle

Unlike when using traditional DLLs, the .NET model includes visibility
control, which allows assemblies (and their modules) to be local to an appli-
cation, and thus different DLLs with the same name can run simultaneously.
Further, each assembly keeps track of versioning information about itself and
about the assemblies it depends on, provided either in the form of attributes
in the code source or as command-line switches when building the manifest.

Version control is delegated to the dynamic loader, which selects the
�right� version, local or distant, based on the assembly�s version information
and on a set of default rules. Both at the machine-wide level and at each appli-
cations level, the default rules can be altered using XML configuration files.

These features significantly improve application packaging and deploy-
ment control (with respect to traditional Windows application deployment).
The early life-cycle phases (design, analysis) appear not to have received corre-
sponding attention to date.

The OSGI Component Model

The OSGI was founded in 1999 with the mission of creating �open specifi-
cations for the delivery of multiple services over wide area networks to local
networks and devices� [7]. The OSGI emphasis is on a lightweight frame-
work that can be executed in low-memory devices. Actually, the OSGI tar-
gets products such as set-top boxes, cable modems, routers, consumer
electronics, and so on. The OSGI relies on Java to ensure portability on dif-
ferent hardware. An important characteristic of this technology is that it has
been tailored to support dynamic evolution of the system architecture. Com-
ponents can be downloaded, updated, and removed dynamically, without
even stopping the system. Moreover, the OSGI allows for remote admini-
stration of the system via the network.

Two Levels of Components

The OSGI is based on two main concepts that can be interpreted as compo-
nents: bundles and services. �Developers should design an application as
a set of bundles that contain services, with each service implementing a seg-
ment of the overall functionality. These bundles are then downloaded on

Component Models and Technology 79

demand� [7]. The term component is used alternatively for each concept in
the specification.

While some authors define components as a unit of composition and as
a unit of deployment, these two concepts can be distinguished in the OSGI.
A service is a unit of composition; a system is a set of cooperating services that
are connected. A bundle is a unit of deployment that groups a set of services
that can be deployed as a unit. The following discussion centers on bundle
components because the OSGI provides many more features at this level
than at the level of service components. Indeed, a service component is
merely defined as an implementation and as a set of interfaces.

Interface of a Bundle Component

A bundle packages a set of software entities that collectively form a piece of
software. These entities may depend on entities packaged in other bundles,
therefore creating dependencies between bundles. The OSGI manages these
dependencies. From an external point of view, the interface of a bundle could
be represented as shown in Figure 4.11. As suggested in the figure, a bundle
uses three kinds of ports to express its interactions, (1) with traditional tech-
nology, (2) with others components, and (3) with the run-time environment.

First, the OSGI clearly recognizes the importance of handling tradi-
tional technology. In particular, a bundle may require and provide one or
more Java packages. It declares this information statically by means of appro-
priate ports depicted on the topside of the interface.

Second, bundles manage dynamic connections between services. At any
time, and for any reason, a bundle may display or remove a service interface.
Similarly, at any time, and for any reason, a bundle may require or release the
use of a service interface. Service interfaces can therefore be attached and
detached dynamically on the left and right sides.

Third, bundles can interact with the run-time environment through the
ports depicted on the bottom side. Bundles may listen to events published by
the framework such as the insertion of a new component in a system or the
publication of a new service. In this way bundles can take appropriate action
as the architecture evolves.

Assembly of Bundle Components

Most ADLs and component models are based on the notion of static assem-
bly: The set of participating components is known and components are con-
nected by a human to form a valid system. The OSGI is based on a radically

80 Building Reliable Component-Based Software Systems

C
om

ponentM
odelsand

T
echnology

81

Package export

Package import

Service use

Ports

Service interface

static

dynamic

(a)

Translator

Translator

Translator
TextEditor

source = "english"
and target = "spanish"
and performance > 10

source = "english"
target = "french"
version = 2.4
performance = 5

source = "english"
target = "spanish"
version = 1.03
performance = 17

(b)

Figure 4.11 (a) Interface of a bundle component and (b) dynamic connection.

different approach. A system is an evolving set of bundle components. Com-
ponents can connect to each other dynamically based on their own decisions.
Components cannot assume that the interfaces they use will be available
at all times since the component displaying these interfaces may be unin-
stalled or may decide to remove this interface from their ports. This means
that components may have some knowledge about how to connect and
disconnect.

The process of dynamic connection is illustrated in Figure 4.12. When
a bundle component publishes a service interface, it can attach to it a set of
properties describing its characteristics. When a component requires an
interface for its use, it will select one via a query expression based on these
properties. The destination of a connection is never given explicitly. The
result of the query depends on the actual state of the system. This contrasts
with the traditional approach in which each connection statically links ports
of identified components. At a given point in time, an OSGI system may
look like that shown in Figure 4.12.

The set of connections between components (in the middle of the fig-
ure) evolves dynamically. This flexibility also has its counterpart. Once a
connection is established with a bundle, there is no guarantee that the service
will remain available. Each bundle component must listen to events gener-
ated by the OSGI run-time environment and must take appropriate action as
the system evolves. These connections are displayed in the bottom of the fig-
ure. On the top of the figure, the connections between Java packages are
shown. The framework automatically creates these connections on the basis

82 Building Reliable Component-Based Software Systems

Package

Resource

Service component

Activator

Figure 4.12 Implementation of a bundle component.

TEAMFL
Y

Team-Fly®

of the information provided in the bundle interface. Various bundles may
provide the same package but in different versions. In this case, the frame-
work will ensure that only one will be selected on the basis of the preference
expressed by the bundles requiring the packages and on a set of default rules
specified by the OSGI. A bundle cannot be activated until all of the packages
it imports are present in a system.

Implementation of a Bundle Component

The section above described a bundle from an external point of view. Actu-
ally, from a concrete point of view, a bundle is represented as a JAR archive
containing (1) service components, (2) Java packages, and (3) other resources
files such as configuration files and images (Figure 4.12).

The set of entities contained in a bundle component can be connected
to form a running system. If a bundle provides an �activator� object, the
framework will call this object to activate and passivate the bundle. The enti-
ties contained in the bundle are not visible from outside as long as the bundle
does not export them. They are independent from the rest of the system as
long as they do not require a service provided by another bundle.

One wonders then if every service component must handle the com-
plexity of dealing with the dynamic apparition and retirement of external
services. The OSGI specification does not provide any information with
respect to this question, but in some situations it is possible to regroup this
behavior in a piece of code providing a default value when a connection can-
not be resolved or when a resolved connection later becomes unavailable. In
this case, communication with the outside of the bundle can be made totally
transparent to the internal components; the connection manager can be seen
as a container providing a connection service. This method does not prevent
individual components from registering directly with framework events if
they want to achieve a specific behavior.

Summary

The following briefly summarizes the main differences among the presented
component models, along our four dimensions.

Interface

Although interfaces appear to be similar, a number of differences exist in the
concept and in the way they are defined. In the programming language

Component Models and Technology 83

approach, JavaBeans and .NET, the structure is a language one: virtual
classes (.NET) or interfaces (Java), and the compiler are in charge of generat-
ing the required information. In EJB and COM, an interface corresponds to
a set of methods; it is a type. In CCM, ports are typed variables but in all
cases interfaces are described in a separate formalism.

In ADLs, interfaces and ports are carefully designed but abstract con-
cepts. The connector, as a first-class concept, is typical of ADLs. Connectors
may have ports, are typed, can inherit, and can be associated with potentially
complex behavior. Connections and necessary connectors do not yet exist in
today�s industrial component models.

Assembly

JavaBeans is original in that assembly is a step directly supported by the
framework. Beans can include code that helps in customizing and assembling
components. EJB and COM do not provide specific features. CCM makes
explicit and automates the initial connections, .NET relies on the dynamic
loader, and the OSGI focuses on the dynamic discovery of services.

In ADLs, assemblies (often called configurations) and the analysis of
their properties are important facets, but assembly is seen from a static point
of view, during design.

Implementation

Surprisingly, all models are flat, but most models consider a component as a
set of executables: segments (CCM), modules (.NET), and classes. From this
point of view, components provide a higher level of structuring and packag-
ing than programming languages. In all models, components are seen as a
composition unit; in many cases they are also seen as the packaging and
deployment unit.

In all models, component implementations can call the usual pro-
grams, which are not components. In ADLs, all models are hierarchical, but
the relationship with executables is seldom considered.

Framework

In the language approach, the operating system and loaders perform most of
the work in a transparent way. In JavaBeans and COM no added formalism
is required, but added (extrafunctional) services are not provided either. In
.NET the loader has been extended to provide distribution, security,

84 Building Reliable Component-Based Software Systems

deployment, and versioning services, but attributes and configuration files
are required. In MTS, EJB, and CCM, the container concepts make explicit
a set of services, described in a specific formalism, and supported at execution
by the framework.

In most models the infrastructure is limited to the run time, JavaBeans
shows that the infrastructure can provide support to the assembly phase, but
the same idea can be extended to all phases: design, deployment, and so on.
In ADLs, this aspect is not explicitly addressed. Extrafunctional properties,
such as distribution and transaction, and the way they can be implemented
are not usually considered important.

Conclusion

The major differences between ADLs and component technologies are seen
in their focus. Component technology addresses primarily execution and
technological issues, including interoperability, heterogeneity, distribution,
efficiency, fast life cycle, deployment, and multiprogrammer development.
In component technologies, pragmatism and realism require that an applica-
tion is always a mixture of components (which satisfy the model and proto-
cols) and of the usual programs (classes and procedures). The component
support system manages the former and simply ignores the latter.5, 6 ADLs
make the hypothesis that all system parts are components.

Component technology often makes the distinction between the com-
ponent model specification (e.g., CORBA) and the implementation of the
standards (many companies, such as Visigenic and Iona, market their
CORBA implementations), the in-house developed component, and the
components available in the marketplace. ADLs do not make these distinc-
tions. Component technology emphasizes the relationships with operating
systems and the run-time support, not ADLs. Conversely, component
technologies do not have a hierarchical model, propose very limited formal-
isms, do not propose any connector concept, have no design formalism,
and do not propose any analysis tool. To say the least, there is room for
improvement.

Component-based technologies and ADLs are the logical results of evo-
lution from the previous generation of software engineering technology.

Component Models and Technology 85

5. Which makes difficult, or useless, many of the analyses ADL systems can perform.

6. The OSGI is one of the very few exceptions, see the section on the OSGI component
technology.

Thus drawing a definitive boundary between them is difficult and irrelevant.
Trying to contrast ADLs and component-based technology is also irrelevant
since, initially, the former focused on early life-cycle phases (analysis and
design) while the latter focused on the execution phase and its technological
issues. Their natural fate is to be merged to provide next-generation software
engineering environments, tools, techniques, and methods.

References

[1] Sun Microsystems, �JavaBeans 1.01 Specification,� http://java.sun.com/beans.

[2] Eddon, G., and H. Eddon, Inside COM+ Base Services, Redmond, WA: Microsoft
Press, 2000.

[3] Marvie, R., and P. Merle, �CORBA Component Model: Discussion and Use with
Open CCM,� Techincal report Laboratoire d�Informatique Fondamentale de Lille
Université des Sciences et Techniques de Lille, Lille, France, Jan. 2001.

[4] OMG, �CORBA Components,� Report ORBOS/99-02-01, OBJECT MANAGE-
MENT GROUP, 1998, http://www.omg.org.

[5] Microsoft, .NET, http://www.microsoft.com/net/.

[6] Microsoft, �Microsoft Development Network (MSDN),� http://msdn.microsoft.com.

[7] OSGI, �OSGI Service Gateway Specification,� Release 1.0, http://www.osgi.org.

[8] Medividovic, N., and R N. Taylor, �A Classification and Comparison Framework for
Software Architecture Description Languages,� IEEE Trans. on Software Engineering,
Vol. 26, No. 1, 2000, pp. 70�93.

[9] NET Beans, �NetBeans, an Open Source, Modular IDE,� http://www.netbeans.org.

[10] OMG, �CORBA Services: Common Object Services Specification,� Object Manage-
ment Group, 1997, http://www.omg.org.

[11] Garlan, D., R. T. Monroe, and D. Wile �ACME: Architectural Description of
Component-Based Systems,� Foundations of Component-Based Systems, G. T. Leavens
and M. Sitarman, Eds., Cambridge, UK: Cambridge University Press, 2000.

[12] Stanford University, �The Stanford Rapide Project,� http://poset.stanford.edu/rapide/.

[13] Luckham, D. C., et al., �Specification and Analysis of System Architecture Using Rap-
ide,� IEEE Trans. on Software Engineering, Special Issue on Software Architecture,
1995, pp. 336�354.

86 Building Reliable Component-Based Software Systems

Part 3:
Developing Software Components

In a component-based development process we distinguish development of
components from development of systems. When developing component-
based systems, we focus on identification of reusable entities and selection of
components that fulfill system requirements. When developing components
our focus is on reusability. Components are developed as reusable entities to
be used in many products. For this reason they must be general enough but
also sufficiently specific to be easily identified, understood, and used.

Components communicate with their environment only through the
interface, so it is the interface that provides all of the information needed and
it is only the interface that provides this information. For this reason it is
natural that component development is interface-focused. One of the main
challenges of component development is to design an appropriate interface.
Two chapters in this part address this challenge. One chapter discusses the
component-based development process.

Chapter 5 discusses the component-based system life cycle. The devel-
opment process is separated into two processes�component development
and system development; components can be developed independently of
systems. The processes, however, have many interaction points. Component
requirements are related to system requirements and an absence of their
influence on each other may cause severe problems in designing both systems
and components. The maintenance phases are strongly related. One way of

87

minimizing the problems related to incompatibilities between these processes
is to follow standards. However, the standards in component-based develop-
ment are not well defined because the processes and technologies are still not
stable.

Chapter 6 shows that syntactic descriptions alone cannot ensure the
semantic integrity of a component. Two dimensions of CBSE are presented
where semantics play an important role. One dimension encompasses five
levels of formalism in describing component semantics. The other dimension
covers three phases in the life of a component, in which each phase requires
certain semantic considerations. Based on these two dimensions, the taxon-
omy for component semantics is discussed. For safety-, mission-, or
business-critical applications, formal semantics may be necessary, but are
hardly necessary for the noncritical domains.

Chapter 7 demonstrates how interfaces can be divided into smaller
modeling roles. Role-based component engineering extends the traditional
object orientation component paradigm and provides more natural support
for modeling component collaborations. The idea of role-based components
is to split the public interface into smaller interfaces that represent different
roles. Users of a component can communicate with the component through
the smaller role interfaces instead of using the full interface. The use of roles
makes it possible to have multiple views of one class. These role perspectives
are more cohesive than the total class interface. The chapter discusses the use-
fulness of the role-based approach and the development methods for role-
based components.

88 Building Reliable Component-Based Software Systems

5
CBD Process

Benneth Christiansson, Lars Jakobsson, and Ivica Crnkovic

Introduction

Traditional software development can be considered to lie between two
extremes. At one extreme is the custom design of a solution tailored to the
exact requirements of a single customer; at the other is the development of
standard application packages based on the general requirements of an entire
customer segment [1]. Custom design has the advantage of supporting the
customer�s own business practices and, if these are unique, providing him
with an advantage over his competitors [2].

The disadvantages of custom design are the high cost of development
and the usual long time to market, although it is assumed that the potential
profits to be gained by using the system are expected to more than pay for the
costs of its development. Another disadvantage is the uncertain capability of
the new system to communicate with other existing and future software sys-
tems [1]. These disadvantages do not apply to standard application packages
but these have their own disadvantages. One is the possible need to reorga-
nize habitual business practices to adapt to a newly acquired standard appli-
cation package. Another disadvantage is that competitors may acquire and
use the same standard application package and thereby neutralize a competi-
tive lead. Another drawback with the use of a standard application package is

89

the difficulty of adapting such a package to possible future changes in the
company�s own business practices [3].

These two alternatives should be considered as extremes and, in prac-
tice, most software development projects consist of a combination of the two
alternatives. Typically, a development organization will focus on its core
business, developing those parts in which they have a competitive advantage
and not spending efforts on those parts that are not relevant to their primary
business interest. For example, a company developing industrial automation
systems will concentrate on functions directly related to industrial processes,
but will buy rather than develop general graphics packages, compilers, or
other general-purpose components. The reuse of software components from
earlier projects is likely to increase the productivity and thereby the cost effi-
ciency of development projects. According to some experience, reuse of soft-
ware packages is already profitable if reused at least three times [4]. Reuse of
internally built components and reuse of the same software architecture is the
main idea of software product-line architectures. Product-line architectures
are described in detail in Chapter 11. It may also be possible to purchase
commercial off-the-shelf (COTS) software from different vendors.

A focus on the reuse of existing components on the one hand and the
production of reusable units on the other introduces new elements in the
software development process. This chapter describes the component-based
software life cycle.

In the next section we give an overview of generic software engineering
processes and development life-cycle models. Then, we motivate a need for
recognition of different processes when developing components and when
building systems or applications from components. Finally, we describe these
processes, reviewing their procedures and highlighting the parts that are spe-
cific for CBD.

Software Process Models

A software system can be considered from a life-cycle point of view. This
means that the system is observed from the first notion of its existence to its
operation and management. Several different approaches to the development
life cycle are considered below. The different approaches are all based on the
same activities [5], described in Table 5.1, and vary only in the way they are
performed. We will briefly look at different life-cycle models and describe
their basic characteristics.

90 Building Reliable Component-Based Software Systems

The Sequential Model

The sequential model (for example, a waterfall model) follows a systematic,
sequential approach that begins at the system level and progresses succes-
sively from analysis to settlement. Each activity is regarded as concluded
before the next activity begins (Figure 5.1). The output from one activity is
the input to the next.

This approach to software development is the oldest and the most
widely used. It rests on the notion that it is possible to define and describe all
system requirements and software features beforehand, or at least very early
in the development process. Many major problems in software engineering
arise from the fact that it is difficult for the customer to state all requirements
explicitly. A sequential model requires a complete specification of require-
ments and there can be difficulty in accommodating the natural uncertainty
that exists at the beginning of many projects.

It is also difficult to add or change requirements during the develop-
ment because, once performed, activities are regarded as completed. In prac-
tice, requirements will change and new features will be called for and a

CBD Process 91

Table 5.1
Generic Life-Cycle Activities

Activity Description

Requirements analysis and system
specification

The system�s services, constraints, and goals are estab-
lished. They are then defined in detail and serve as a sys-
tem specification.

System and software design Software design involves identifying and describing the
fundamental software system abstractions and their rela-
tionships. An overall system architecture is established. A
detailed design follows the overall design.

Implementation and unit testing The formalization of the design in an executable way,
which can be composed of smaller units. The units are
verified to meet their specifications.

Integration, system verification, and
validation

The system units are integrated; the complete system is
verified, validated, and delivered to the customer.

Operation support and maintenance A system in operation requires continuous support and
maintenance.

Disposal A disposal activity, often forgotten in life-cycle models, in-
cludes the phasing out of the system, with possible re-
placement by another system or a complete termination.

purely sequential approach to software development can be difficult and in
many cases unsatisfactory. Another problem sometimes encountered when a
sequential model is applied is the late response to the customer. A working
version of the software will not be available until late in the system develop-
ment process and a major misunderstanding, if undetected until the work-
ing program is reviewed, can be disastrous.

The sequential model has an important place in software engineering.
It provides a template into which methods for analysis, design, implementa-
tion, integration, verification, validation, and maintenance can be placed.
Although in practice it is never used in its pure (and rather naïve) form, the
sequential model has remained the most influential software development
process model. For example, the waterfall model in combination with proto-
typing, or the V-model [6], has been extensively used for entire life cycles
or as a part of other models, covering particular phases of the entire process
model.

Evolutionary Development

The basic principle of evolutionary development is to develop a system
gradually in many repetitive stages, increasing the knowledge of the system
requirements and system functionality at each stage and exposing the results
to user comments [6]. This model reduces the risk of only detecting critical
and costly problems in later phases of the development. It also enables better
management of changes of requirements appearing during the development
process. One disadvantage of the evolutionary approach is the increased diffi-
culty of project coordination and evaluation. It can, for example, be difficult

92 Building Reliable Component-Based Software Systems

Analysis

Design

Implementation

Integration

Test

Development

Figure 5.1 The sequential model.

TEAMFL
Y

Team-Fly®

to determine the exact number of iterations beforehand, and new iterations
may be added as requirements change or evolve.

Iterative Approach

The iterative approach [see Figure 5.2(a)] to software development is based
on the sequential model supplemented with the possibility of returning to
previous activities. Each iteration addresses the full system and increases the
functionality of system parts. This approach permits further refinement of
system requirements, which increases the possibilities of managing low-level
requirements, and requirements related to technologies (in general, those
requirements that tend to change more often). One specific disadvantage
of using this approach is the inability to predict the feasibility of the final
implementation.

Incremental Model

The incremental model combines elements of the sequential model (applied
repetitively) with the iterative approach. As Figure 5.2(b) shows, the incre-
mental model applies the sequential model in stages as calendar time pro-
gresses. Each sequence produces a deliverable �increment� of the software
with new functionality added to the system [4, 7, 8].

When the incremental model is used, the first increment is often the
core of the software system. Basic requirements are addressed but many sup-
plementary features remain undelivered. As a result of the use and/or evalua-
tion of the core software, a plan is developed for the next increment. The
plan proposes the modification of the core software to satisfy requirements
more effectively and the delivery of additional features and functionality.
This process is repeated following the delivery of each increment, until the
complete software system has been developed.

The incremental model is particularly useful for handling changes in
requirements. Early increments can be implemented to satisfy current require-
ments and new and altered requirements can be addressed in later increments.
If the core software is well received, the next increment can be added accord-
ing to the plan. Increments can also be planned to manage technical risks.

Prototyping Model

The evolutionary model for software development is based on the creation of
a prototype very early in development activities. The prototype is a prelimi-
nary, or intentionally incomplete or scaled-down, version of the complete
system. As shown in Figure 5.2(c), the prototype is then gradually improved
and developed until it meets a level of acceptability decided on by the user.

CBD Process 93

94 Building Reliable Component-Based Software Systems

Analysis

Design

Implementation

Integration

Test

Development

(a)

Increment 1, 2... n

Analysis

Design

Implementation

Integration

Test

Development

(b)

Analysis

Test
prototype

Develop
prototype

Design

Implementation

Integration

Test

Development

(c)

Figure 5.2 (a) Iterative, (b) incremental, and (c) prototype evolutionary model.

Iteration is used to tune the prototype to satisfy the needs of the customer.
The developer is able at the same time to determine what measures need
to be taken. When these changes are made, the prototype becomes the new
system.

This approach can be hazardous when the entire system rests on an ini-
tial software core that may be just barely usable. It may be too slow, too large,
or too awkward to use, or all three. The solution to this problem is to use a
slightly different approach, throw-away prototyping, in which the prototype
serves merely as a mechanism for identifying software requirements. When
the requirements are captured, the prototype functions purely as a model
with respect to requirements and features for the real software development
task, which will then begin from scratch.

In his famous spiral model [9], Boehm has combined iterative, incre-
mental, and evolutionary procedures in a model in which activities are
performed several times in an iterative manner, beginning with a base func-
tionality and addressing in each loop the following issues: objective setting,
risk assessment and reduction, development and validation, and planning for
the next loop. The iteration can be concluded when a complete working soft-
ware system has been developed.

Unified Process

Jacobson et al. [10] have developed a systems development process desig-
nated the Unified Process (UP), optimized for object-oriented and
component-based systems. The UP is an iterative incremental development
process consisting of four phases (Figure 5.3):

1. Inception, the first phase in which the system is described in a for-
malized way, providing a base for further development;

2. Elaboration, the phase in which the system architecture is defined
and created;

3. Construction, the development of completely new products, with
reuse capabilities;

4. Transition, the work of delivering the product to the customer.
This phase includes the installation of the system and the training
of its users.

Several iterations of core workflows occur during these phases: require-
ments, analysis, design, implementation, and test. These workflows occur in

CBD Process 95

96
Building

Reliable
Com

ponent-Based
Softw

are
System

s

Inception Elaboration Construction Transition

Requirements

Analysis

Design

Implementation

Test

Iter #1 Iter #nIter #2 --- --- --- --- --- ---

An iteration in the
elaboration phase

Phases

Iterations

Figure 5.3 The four phases of UP and its workflows.

each of the four phases of inception, elaboration, construction, and transi-
tion. This is the iterative part of UP. The incremental part is based on the
fact that successful iterations will result in the release of a system. As an itera-
tive/incremental model, UP has the advantages of both incremental and
iterative models but also inherits the disadvantages of both the iterative and
incremental approaches.

CBD

Reuse Approach

CBD originates from reuse. The reuse approach is not new. Significant
research work was performed during the 1980s and 1990s [4, 11], the main
goal of which was to develop systematic approaches to the effective reuse of
experience gained previously. The reuse approach makes the following
assumptions [11]:

• All experience can be reused;

• Reuse typically requires some modification of objects being reused;

• Reuse must be integrated into the specific software development;

• Analysis is necessary to determine when, and if, reuse is appropriate.

Although they may seem obvious, many approaches to reuse did not
succeed because these assumptions were not fulfilled. For example, the modi-
fication of objects for reuse could require more effort than the development
of a comparable object from scratch. Similarly, if the reuse principle is not
integrated in the development process, it is probable that the reuse opportu-
nities will not be utilized (for example, developers may experience problems
when trying to identify reusable entities or will be motivated to try to find
them).

Which of these principles are acquired by CBD? To answer this ques-
tion, let us first define what we assume by reuse: For given requirements r for
an object x, we propose the reuse of the already existing object xk. The reuse
procedure includes identification of a set of objects x1, x2,�, xm as candidates,
selection of one of these, and, if required, its modification to translate xk to x′
which is as close to x as possible. The object x can be of any type�a system
architecture, an overall design, design pattern, infrastructure, or different
types of components or services.

CBD Process 97

The first reuse principle (reuse of all experience) is integrated in CBSE.
We reuse system architecture determined by the component models (which
we also reuse), we reuse component frameworks, and finally we reuse the
components that provide particular services. The modification principle is
also to a large extent determined by the component model; because a compo-
nent is specified by its interface and the source of the implementation is, in
principle, not available, there is less risk of performing uncontrolled modifi-
cations. The reuse approach is inherent to component technologies and
CBD; it is much easier to use components as reusable entities, which have
precisely defined operational interfaces, than other entities in a non-CBD.
The last principle (analysis if and when reuse is appropriate) is not part of
component-based technologies, and it must be built into the development
process model. Later in this chapter we will see that such analysis occurs in
the system design and maintenance phase, as well as in the component
evaluation phase.

Separation of Development Processes

CBSE addresses challenges and problems similar to those encountered else-
where in software engineering. Many of the methods, tools, and principles of
software engineering used in other types of system will be used in the same or
a similar way in CBSE. There is, however, one difference: CBSE specifically
focuses on questions related to components and in that sense it distinguishes
the process of component development from that of system development
with components. There is a difference in requirements and business ideas in
these two cases and different approaches are necessary. Components are built
to be used and reused in many applications, some of which might not yet
exist and might require use of the components in some possibly unforeseen
way. A component must be well specified, easy to understand, sufficiently
general, easy to adapt, easy to deliver and deploy, and easy to replace.

The component interface must be as simple as possible and when used
strictly separated (both physically and logically) from its implementation.
Marketing factors play an important role, because development costs must
be recovered from future earnings, this being especially true for COTS
software. System development with components is focused on the identifi-
cation of reusable entities and relations between them, beginning from the
system requirements and from the availability of components already exist-
ing [12, 13]. Much implementation effort in system development will no
longer be necessary but the effort required in dealing with components,

98 Building Reliable Component-Based Software Systems

locating them, selecting those most appropriate, testing them, and so on,
will increase [14].

We not only recognize different activities in the two processes, but also
find that many of these activities can be performed independently of each
other. In reality, the processes are already separate because many components
are developed by third parties, independently of system development. Even
components being developed internally in an organization that uses these
very same components are often treated as separate entities developed
separately.

However, even if we separate the processes, they remain dependent on
each other to a certain degree. A component is assumed to be an integrated
part of a larger application or system, but its component life cycle may not be
compatible with the life cycles of many applications and systems.

CBD: The Consumer Perspective

Typically a component consumer selects a component (according to particu-
lar criteria) and then uses it in a software system. But several aspects of this
process must be addressed to ensure the correctness of component selection
with respect to both behavior and impact on the system as a whole.

The component life cycle must be considered in relation to the life
cycle of the system as a whole. For example, component maintenance and
operation support may be essential for successful system operation. Will the
component producer be able to deliver a new component version when this
is required? How will changes in a component in the system affect the behav-
ior of another component? Will the component be compatible with newer
versions of the surrounding systems and applications? The question of opera-
tion support may even be of importance to the end user. If a system fails due
to a component failure (or due to unpredictable behavior of component
compositions), who is responsible for the failure and who is responsible
for the support�the system producer or the component producer? These
questions are not related to the attributes of the component (neither func-
tional nor extrafunctional), but belong to the development and maintenance
processes, and relationships between the producers and consumers.

Component Development: The Producer Perspective

The basic prerequisite for the success of the component-based approach is
the existence of a developed component market. Because the development of
reusable components requires significantly more effort than the development
of special-purpose software, it is essential that a component be reused as
much as possible. For this reason the producer of a component must have in

CBD Process 99

mind what is required of the component from both his point of view (for
example, the business goal, component functionality, maintenance policy)
and that of the consumer (the type of application and system in which the
component will be used, the requirements of the system, and the life expec-
tancy of relevant systems).

As mentioned above, the maintenance requirements of components
and systems are not necessarily compatible. It is therefore important when
selecting components for their maintenance requirements to be synchro-
nous with those of the system in which they are to be incorporated. In many
cases, component producer and consumer have no direct contact, and it is
important that both be aware of the maintenance and support policy of the
other.

We can recognize two different types of disposal of component-based
systems. One is initiated by consumers when they conclude that the compo-
nent no longer provides the support of the system it was intended to provide
or that the system no longer needs the component. The other type occurs
when a component becomes obsolete and the producer ceases component
maintenance and operation support. The most likely reason for disposal in
this case would be the production of a new, more effective component with
the same, similar, or extended functionality, but it is also possible that the
producer is not able to continue with support or maintenance. The con-
sumer should have a fair chance to upgrade or at least have time to obtain a
replacement for the old component (if necessary). This is of interest to both
producer and consumer who should, ideally, arrive at a compromise with
respect to the life cycles of their different products. However, it is not obvi-
ous that this will happen. A component producer can disappear from the
market or can change its business goals. For this reason the consumer should
always have in mind an alternative solution, such as the replacement of the
component with another developed internally or by another producer.

Component-Based Software Life Cycle

In this section we consider the component-based system development
process. Because we have mentioned that we distinguish between two
processes�building systems with components and building compo-
nents�we shall discuss these processes separately. In many real situations
they will be combined, and maybe even not distinguished as separate activi-
ties. However, the separation of the processes is a particular characteristic of

100 Building Reliable Component-Based Software Systems

the component-based approach and to gain its advantages, the means of
managing the separation should be available.

Development with Components

The development of systems as an assembly of components is similar to the
development of non-component-based systems. There is, however, a crucial
difference in a component-based system development process. The emphasis
is not on the implementation of the system designed, but on the reuse of pre-
existing components. This approach has many obvious advantages but also a
number of disadvantages. It is first necessary to find reusable units that will
meet the requirements specified and will be compliant with the system
design. Secondly, the amount of extra effort required to use reusable units
instead of units dedicated to a particular purpose must be determined. How
much performance overhead can be tolerated? A further question is related to
trustworthiness: How far can we trust component specifications (if we have
any)? How can we test these components? We address these and other ques-
tions related to the component-based approach by studying system life-cycle
activities. We will see that we need to include new procedures related to com-
ponent management.

Requirements Analysis and Definition

The analysis activity involves identifying and describing the requirements to
be satisfied by the system. In this activity, the system boundaries should be
defined and clearly specified. Using a component-based approach, an analy-
sis will also include specifications of the components that are to collaborate
to provide the system functionality. To be able to do this, the domain or sys-
tem architecture that will permit component collaboration must be defined.
In CBD, the analysis is an activity with three tasks. The first task is the cap-
ture of the system requirements and the definition of the system boundaries.
The second task is the definition of the system architecture to permit
component collaboration, and the third task is the definition of compo-
nent requirements to permit the selection or development of the required
components.

The approach described above is an optimistic and an idealized view
of the process. It assumes that the component requirements can be precisely
defined and that it is possible to find components that satisfy these require-
ments. In reality, we experience several problems [15]. It is not easy to derive
component requirements from system requirements and we must accept that
they may be (as requirements often are) inconsistent, insufficient, and not

CBD Process 101

precisely defined. The process of finding components to meet these require-
ments may be even more difficult. We can be almost certain that we will not
find any component that exactly satisfies the requirements.

The next problem that we will meet is the problem of incompatible
component assemblies; even if we find components that meet the compo-
nent requirements defined, it is not at all certain that they will interact as
intended when assembled. Very often, when beginning from specific require-
ments, we find that none of the components meets the requirements and the
only way to continue with the system development process is to develop a
new component. This return to traditional development means that the
benefits of reuse are lost in the case of this particular component. In reality,
the process of design and even requirements engineering will be combined
with component selection and the evaluation process. Experiences from
COTS-based development projects at NASA show that which COTS soft-
ware is selected drives the requirements to at least some extent [14]. In some
cases new functionality was discovered in a COTS that was useful although
not originally planned.

Component Selection and Evaluation

To perform a search for suitable components and make their identification
possible, the components must be specified, preferably in a standardized
manner. Again, this may often not be the case. The component specifications
will include precisely defined functional interfaces, while other attributes will
be specified informally and imprecisely (no method is developed for this) if
specified at all. The components selected must therefore be evaluated. The
process of evaluation will include several aspects (see Chapter 8) of both a
technical and nontechnical nature. Technical aspects of evaluation include
integration, validation, and verification. Examples of nontechnical issues
include the marketing position of the component supplier, maintenance sup-
port provided, and alternative solutions.

An important method that decreases the risk of selecting a �wrong�
component is to identify several component candidates, investigate these,
reject those not compliant with the main requirements, continue with the
evaluation of the reduced number of candidate components, if necessary
refine the requirements, and repeat the evaluation process. This process is
known as procurement-oriented requirements engineering [16]. An example of
selection is the choice between an internal and an external component. One
scenario is to search for an internally developed component and, if nothing
suitable is found, to continue by searching for an external component [17].

102 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

An internal component need not be chosen simply because it is internal and
thereby has certain evident advantages. Other criteria, such as time to mar-
ket, production and maintenance costs, and quality, may favor the selection
of an external component.

Finally, in many cases, it may be more relevant to evaluate a set of com-
ponents composed as an assembly than to evaluate a component. The avail-
ability of assemblies is more common than might be expected. Some
assemblies may be purchased as functional packages that disintegrate into
several components when deployed. Another example of such an assembly is
a set of components that, when integrated together, constitutes a functional
unit. In such cases, it is necessary to evaluate the assembly; evaluation of the
individual components is not sufficient. This implies that an investigation of
the integration procedure may be part of an evaluation.

If a component is selected that only partly fulfills the specification on
which the selection is based, two immediate alternatives are available: either
the component is adapted to the particular specification, or the specification
is adapted to the component. The latter alternative may be considered radi-
cal, but there are advocates who will point out the advantages of this
approach [18]. A third possibility is the development of a new component.
From the system development point of view, this is a bad choice, if this activ-
ity was not planned for at the beginning of the development process. The
consequence of such a decision would require additional resources and devel-
opment time.

System Design

System design activity typically begins with the system specification and the
definition of the system architecture and continues from there. In traditional
development, the design of the system architecture is the result of the system
requirements, and the design process continues with a set of sequences of
refinements (for example, iterations) from the initial assumptions to the final
design goal. In contrast with traditional development, many decisions related
to the system design will be a consequence of the component model selected.

The initial architecture will be a result of both the overall requirements
and the choice of component model. The component model defines the col-
laboration between the components and provides the infrastructure sup-
porting this collaboration. The more service provided by the component
framework (i.e., by a particular component model), the less effort required
for component and hence system development. Thus, the choice of compo-
nent model is very important.

CBD Process 103

Although many domains will use standard and de facto standard com-
ponent models, within particular domains with specific requirements, the
specific component models providing particular services will be used, and
even internally developed. Chapters 12, 14, and 19 discuss the necessity of
domain-specific component models and then the costs for their develop-
ment. Chapters 16 and 17 discuss cases in the particular domains that use a
standard component model and add new properties to them by designing
and standardizing the system architecture and framework. The design activ-
ity is very much determined by the component selection procedure. This
procedure begins with the selection of component candidates and continues
with consideration of the feasibility of different combinations of these. Con-
sequently the design activity will not be a sequence of refinements of the
starting assumptions, but will require a more dynamic and exploratory and,
consequently, evolutionary approach: The goal will be to find the most
appropriate and feasible combination of the component candidates. In this
way the results of the design activity may be less predictable, but on the
other hand, components will automatically introduce many solutions on the
design detail level [19�21].

System Implementation

In an ideal CBD process, the implementation by coding will be reduced to
the creation of the �glue code� and to component adaptation. Note that if
the components selected are not appropriate or an inappropriate model is
used, or if the components are not well understood, the costs of glue code
and component adaptation may be greater than that of the development of
the components themselves! The effort for the development of glue code is
usually less than 50% of the total development effort, but effort per line of
glue code is about three times the effort per line of the application�s code
[22]. Note also that it may still be necessary to design and implement some
components�those that are business critical or unique to a specific solution
and those that require refinement to fit into a given solution.

System Integration

Integration is the composition of the implemented and selected components
to constitute the software system. The integration process should not require
great resources, because it is based on the system architecture and the use
of deployment standards defined by the component framework and by
the communication standard for component collaboration [19]. This is,
however, valid only for syntactic and partially semantic integration. Several
other aspects need to be taken into consideration: component adaptation,

104 Building Reliable Component-Based Software Systems

reconfigurations of assemblies, and emerging properties of assemblies inte-
grated into the system.

• Component adaptation. In many cases a component must be adjusted
to system requirements. This adjustment can be achieved in differ-
ent ways. In some cases it will be enough to specify the component�s
parameters; in others, a wrapper that will manage the component�s
inputs and outputs must be developed, and in some cases even a new
component that will control particular components and will guaran-
tee the fulfillment of the system requirements must be added to the
system.

• Reconfigurations of assemblies. Different assemblies (or composite
components) can include common basic components. By introduc-
ing assemblies into the system, conflicts between the basic compo-
nents can develop. It may happen, for example, that assemblies
include different versions of the same basic component. In such a
case a mechanism for reconfiguring assemblies must exist, either
supported by the component framework, or used manually. This
case is discussed in the �System Operation Support and Mainte-
nance� section of this chapter.

• Emerging properties. An important fact is that it is not possible to dis-
cover all the effects of a component until the integration is per-
formed. For this reason it is necessary to include test procedures as a
part of the integration, both for component assemblies and the
entire system.

Finally, one of the characteristics of many component-based systems is
the ability to dynamically integrate components without interrupting system
execution. This means that the integration activity in CBD is present in sev-
eral phases of the component-based system life cycle.

Verification and Validation

This last step before system delivery is similar to the corresponding proce-
dures in a traditional development process. The system must be verified and
validated. These terms can be easily confused although there is a clear dis-
tinction between them. Verification is a process that determines whether the
system meets its specified functional and nonfunctional requirements. A vali-
dation process should ensure that the system meets customer expectations.
Or as succinctly expressed by Boehm [23]:

CBD Process 105

• Validation: Are we building the right product?

• Verification: Are we building the product right?

Within validation and verification, two techniques can be used [5]:
software inspection (analyzing and checking systems artifacts such as require-
ments specification, design documentation, and source code), and software
testing (executing the system implemented with test data and examining out-
puts and system behavior).

To successfully perform testing, we must know what is to be tested,
how to perform the test, and what the system is expected to accomplish. In a
traditional system development process, this implies that the specifications
from the analysis and design activities are used to define test cases. A problem
in obtaining the necessary test cases is that the analysis results must be trans-
lated into concrete tests during the implementation activity, both on the
module and on the system level. In CBD we distinguish validation and veri-
fication of components from validation and verification of systems; we must
perform comprehensive initial test and inspection activities before using a
component.

• Component validation and verification. After a component is selected,
it should be tested to check that it functions in accordance with its
specification. Tests may also be conducted to achieve a better under-
standing and knowledge of a given component. In Chapter 4 we
have seen that evaluation of a component alone (which includes
verification) is not sufficient, and that component assemblies must
be tested. Similarly, when a component is dynamically integrated in
a system, we must ensure the correct operational behavior of the sys-
tem, even with failure of the component. To achieve this, we can
incorporate in the system different mechanisms such as wrappers
[24], which detect component run-time failure and prevent its
propagation to the system. We can see that test activities that are
similar to integration activities are distributed over different phases
of the system life cycle and are not strictly connected to the overall
system verification. We should also note that the component valida-
tion is strongly related to system validation, because the role of vali-
dation is to check out the overall system characteristics.

• System verification and validation. The system verification and vali-
dation process is similar to the processes for non-component-based
systems. The difference is that the implications of the processes may

106 Building Reliable Component-Based Software Systems

be different�new component requirements may emerge and it may
happen that the selected components cannot meet the new require-
ments. This may include severe problems especially in COTS-based
development. To decrease the risk of a selection of a nonsatisfactory
component, the component validation in relation to system valida-
tion should be performed in the component evaluation phase.

System Operation Support and Maintenance

The purpose of the operational support and maintenance of component-based
systems is the same as that of monolithic, non-component-based systems, but
the procedures might be different. One characteristic of component-based sys-
tems is the existence of components even at run time, which makes it possible
to improve and maintain the system by updating components or by adding
new components to the system. This makes faster and more flexible improve-
ment possible�it is no longer necessary to rebuild a system to improve it. In a
developed component market it also gives end users the opportunity to select
components from different vendors. On the other hand, maintenance proce-
dures can be more complicated, because it is not necessarily clear who is sup-
porting the system�the system vendor or the component vendors.

Another serious and, unfortunately, common problem may appear
when a component is replaced with a different component or with a new ver-
sion of the same component. It is not unusual for a component to be used by
several other components, and the new version turns out to be compliant
with one, but not with another [25]. The same problem may appear when
we install a component package (seen from the system point of view as one
component, but consisting of several subcomponents) which replaces a com-
mon subcomponent. An example of this inconsistent integration is shown in
Figure 5.4. Product P version V2 (PV2) uses component A version V2 and
component B version V2 (AV2 and BV2). At the same time, component AV2

uses component version BV1, an older version. Integration in a system of dif-
ferent versions of the same component may cause unpredictable behavior of
the system.

System Development Process

From the previous discussion we have seen that the CBD process includes a
number of procedures related to component management. The process con-
sists of parallel tracks in which the basic architecture and its environment are
being developed and managed concurrently with both the development of

CBD Process 107

applications consisting of components and the evaluation of the actual com-
ponents. These concurrent processes can all be characterized as evolutionary
(for example, as a combination of an incremental model and an iterative
approach) because many activities overlap each other and are strongly
related. One strategy is to adapt the Unified Process [10]. The concept is
quite simple; instead of producing the complete system as a single, mono-
lithic release, the approach is to build up the complete functionality of the
system by deliberately developing the system as a series of smaller increments,
or releases. These releases can be at the architectural, application, or compo-
nent level [26].

The entire system development process is illustrated in Figure 5.5. Of
course, there may be a third parallel process�component development. This
process is discussed next.

Component Development

The component development process is in many respects similar to system
development: Requirements must be captured, analyzed, and defined and
the component must be designed, implemented, verified, validated, and
delivered [5, 27, 28]. When building a new component the developers will
reuse other components and will use procedures similar to those for compo-
nent evaluation for system development. Some significant differences exist,

108 Building Reliable Component-Based Software Systems

Product P
Version V1

Component A
Version V1

Component A
Version V2

Component B
Version V1

Component B
Version V2

Product P
Version V2

Figure 5.4 An example of inconsistent component integration.

however. Components are built to be part of something else. They are
intended for reuse in different products, many of them yet to be designed.
The consequences of these facts are as follows:

• Managing requirements is more difficult.

• Greater effort is needed to develop reusable units.

• A precise component specification is required.

Component Requirements Analysis and Definition

The main problems of requirements analysis are even more evident when
analyzing component requirements. The requirements may be unclear,
incomplete, inconsistent, and even unknown. The development of reusable
components would be easier if requirements remained constant during the
time of component and system development. As a result of new requirements
for the system, old or new requirements for the components will emerge. The
more reusable a component is, the more demands are placed on it. A number
of the requirements of different systems may be the same or very similar, but
this is not necessarily the case; new systems may generate completely new
requirements.

To satisfy these requirements, the components must be updated rapidly
and the new versions must be released more frequently than the systems in
which they are incorporated. The component evolution process is more
dynamic in the early stage of the component�s life cycle. At that stage, the
components are less general and cannot respond to the new requirements of

CBD Process 109

Find

Select

Adapt

Integrate

Test

Evaluation

Analysis

Design

Implementation

Integration

Test

Development

(a) (b)

Figure 5.5 CBD process: (a) component evaluation and (b) system development.

the products without being changed. In later stages, their generality and
adaptability increase, and the impact of the system requirements becomes
less significant. In this period, systems benefit from the combinatorial and
synergic effects of component reuse. In the last stage of its life, the compo-
nents are becoming out of date until they finally become obsolete for differ-
ent reasons, such as the introduction of new techniques, new development
and run-time platforms, new development paradigms, and new standards.

We also face the risk that the initial component cohesion will degener-
ate when many changes are introduced, in turn requiring more effort. This
process is illustrated in Figure 5.6. The number of demands on a common
component increases faster in the beginning, stabilizes in the period [t0 − t1],
and increases again when the component features become inadequate.

Designing for Reusability

For a component to be reusable, it must be designed in a more general way
than a component tailored for a unique situation. Components intended to
be reused require adaptability. This will increase the size and complexity of
the components. At the same time, they must be concrete and simple enough
to serve a particular requirement in an efficient way. This requires much
more design and development effort. Developing a reusable component
requires three to four times more resources than developing a component
that serves a particular purpose [1]. Selling the component to many consum-
ers will pay for these additional efforts, but the producer must investigate the
market and consider the possible risks of not getting a return on the
investment.

110 Building Reliable Component-Based Software Systems

Product P2

Product P1

Component

Time

Accumulated requirements

t0 t1

Figure 5.6 Accumulated component requirements.

Component Specification

Because the objective is to reuse components as much as possible, and
because a producer is, in principle, not the same as the consumer, it is impor-
tant for the component to be clearly and properly specified. This is especially
true if the component is delivered in a binary form. The consumer must be
able to understand the component specification. This is where the impor-
tance of using a standardized mode of expression for component specifica-
tion is evident [17]. We have already discussed the component specification
problem in Chapters 1 and 2.

The components must also be trustworthy. One way of making com-
ponents trustworthy is to certify them. In spite of the common belief that
certification means absolute trustworthiness, it in fact only gives the results of
tests performed and a description of the environment in which the tests were
performed. Although certification is a standard procedure in many domains,
it is not yet established in software in general and especially not for software
components [29, 30].

Summary

In this chapter we have discussed a CBD process in relation to traditional
software development. In a CBD process we distinguish development of
components from development of systems using components. While the
component development process is focused on building reusable units, the
system development process concentrates on the reuse of components and
their evaluation and integration.

These processes are often performed independently of each other. This
on the one hand has many advantages, such as shorter time to market and
encouragement of the use of standard solutions, but on the other suffers from
many problems such as difficulty understanding and predicting component
behavior and increased uncertainty regarding maintenance and operational
support. Achieving a proper balance between the independence of and col-
laboration between the processes remains a challenge for researchers and
practitioners.

References

[1] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

CBD Process 111

[2] Casanve, C., �Business-Object Architectures and Standards,� Proc. Data Access Corpora-
tion, Miami, FL, 1995.

[3] Steel, J., �Component Technology Part I An IDC White Paper,� Proc. Int. Data Corpo-
ration, London, 1996.

[4] Basili, V. R., and G. Caldiera, �Identifying and Qualifying Reusable Software Compo-
nents,� IEEE Computer, Vol. 24, Issue 2, 1991, pp. 61�70.

[5] Sommerville, I., Software Engineering, Reading, MA: Addison-Wesley, 2001.

[6] Pfleeger, S. L., Software Engineering, Theory and Practice, Upper Saddle River, NJ:
Prentice-Hall, 2001.

[7] Selby, R., V. R. Basili, and T. Baker, �Cleanroom Software Development: An Empiri-
cal Evaluation,� IEEE Trans. on Software Engineering, Vol. 13, No. 9, 1987,
pp. 1027�1037.

[8] Basili, V. R., �Software Development: A Paradigm for the Future,� Proc. 13th Annual
Int. Computer Software and Application Conf., Orlando, FL, 1989, pp. 471�485.

[9] Boehm, B., �Spiral Development: Experience, Principles and Refinements,� Special
Report CMU/SEI-2000-SR-008, Software Engineering Institute, Carnegie Mellon
University, 2000.

[10] Jacobson, I., G. Booch, and J. Rumbaugh, The Unified Software Development Process,
Reading, MA: Addison-Wesley-Longman, 1999.

[11] Basili, V. R., and H. D. Rombach, �Support for Comprehensive Reuse,� Software Engi-
neering Journal, Vol. 6, September 1991, pp. 301�318.

[12] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Reading, MA:
Addison-Wesley, 1998.

[13] Garlan, D., R. Allen, and J. Ockerbloom, �Architectural Mismatch: Why Reuse Is So
Hard,� IEEE Software, Vol. 12, No. 6, 1995, pp. 17�26.

[14] Morisio, M., et al., �Investigating and Improving a COTS-Based Software Develop-
ment Process,� Proc. 22nd Int. Conf. on Software Engineering, Limerick, Ireland, ACM
Press, 2000.

[15] Wallnau, K. C., S. A. Hissam, and R. C. Seacord, Building Systems from Commercial
Components, Reading, MA: Addison-Wesley, 2001.

[16] Heineman, G. T., and W. T. Councill, Component-Based Software Engineering, Putting
the Pieces Together, Reading, MA: Addison-Wesley, 2001.

[17] Christiansson, B., �Component-Based Systems Development�A Shortcut or the
Longest Way Around?� On Methods for System Development in Professional Organiza-
tions, A. G. Nilsson and J. S. Pettersson, Eds., Studentlitteratur, 2001.

[18] Vidger, N. R., W. M. Gentleman, and J. Dean, COTS Software Integration: State of the
Art, Ottawa, Canada: National Research Council of Canada, 1996.

112 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[19] Pressman, R. S., Software Engineering�A Practitioner�s Approach, New York:
McGraw-Hill International Ltd., 2000.

[20] McClure, C., Software Reuse Techniques, Upper Saddle River, NJ: Prentice-Hall 1997.

[21] Leach, R., Software Reuse Methods, Models and Costs, New York: McGraw-Hill, 1997.

[22] Basili, V. R., and B. Boehm, �COTS-Based Systems Top 10 List,� IEEE Computer,
May 2001, pp. 91�95.

[23] Boehm, B., �COCOMO II Model Definition Manual,� Los Angeles, CA: Science
Department, University of Southern California, 1997.

[24] Popov, P., et al., �On Systematic Design of Protectors for Employing OTS Items,�
Proc. 27th Euromicro Conf., Warsaw, Poland, IEEE Computer Society, 2001.

[25] Crnkovic, I., and M. Larsson, �A Case Study: Demands on Component-Based Devel-
opment,� Proc. 22nd Int. Conf. Software Engineering, Limerick, Ireland, ACM Press,
2000.

[26] Jacobson, I., M. L. Griss, and P. Jonsson, Software Reuse, Architecture, Process and
Organization for Business Success, Reading, MA: Addison-Wesley and ACM Press, 1997.

[27] Carrano, F. M., Data Abstraction and Problem Solving with C++, Reading, MA:
Addison-Wesley-Longman, 1995.

[28] Meyer, B., Object-Oriented Software Construction, Upper Saddle River, NJ: Prentice-
Hall, 1997.

[29] Voas, J., and J. Payne, �Dependability Certification of Software Components,� J. of
Software Systems, Vol. 52, 2000, pp. 165�172.

[30] Morris, J., et al., �Software Component Certification,� IEEE Computer, Vol. 34, No. 9,
2001, pp. 30�36.

CBD Process 113

.

6
Semantic Integrity in CBD

Eivind J. Nordby and Martin Blom

Introduction

As seen in previous chapters, a component has certain characteristics that set
it apart from other software. The requirement of separate deployability is
perhaps the single characteristic that distinguishes components most from
other software [1�3]. This property allows a component to be dropped into a
system and put to work [4]. For this to work, the interfaces provided by the
component to the surroundings and those required by the component from
the surroundings need to be specified [5]. Because the source code of the
component is generally not available for evaluation or reference, it is impor-
tant that the specifications be as useful and readable as possible.

The specification of an interface is partly syntactic, partly semantic.
Informally, the syntax of an interface is its form or arrangement, as opposed
to its semantics, which is its interpretation [6]. The syntax can be described
for instance using an IDL for CORBA or COM or by a Java interface.1 The
semantic component properties, the focus of this chapter, are expressed using
invariants for the component as a whole and contracts expressed through
pre- and postconditions, for each operation. This is more fully described in
[7] and in Part 1 of this book. A component specification should include
both functional and nonfunctional aspects, for instance, synchronization and

115

quality of service. Some of these aspects may be included in the invariants
and the interface contracts whereas others have to be handled by other
mechanisms.

This chapter presents some areas of concern for component semantics
and a structural framework for the management of the semantic specifica-
tions of a component with a focus on semantic integrity. The semantic integ-
rity of a software system is the degree to which its semantic properties are
preserved. The term can be explained by stating that each part of the system
should respect the intended purpose of all the other parts. It is essential for
any stable system that its semantic integrity be maintained. This requires
each part to be clearly described and the description to remain valid as
the part evolves. If the semantic integrity is violated, the system will enter
an unstable state, which eventually will lead to some kind of malfunc-
tion. Defining a contract for each operation and then following it exactly is
essential in order to maintain the semantic integrity of component-based
systems.

The next section presents some component issues where semantics
play an important role. The issues discussed are specification levels, weak and
strong contracts, and required and provided interfaces. The section after that
presents five levels of formalism for the specification of component semantics
and relates them to current specification techniques. The levels are character-
ized by no semantics, intuitive semantics, structured semantics, executable
semantics, and formal semantics. The section after that highlights three
phases in the life of a component and investigates the semantic issues that
characterize each phase. The phases are the creation phase, the use phase, and
the maintenance phase. The levels of formalism and the life-cycle phases are
then combined into a taxonomy that can be used to identify different
approaches to semantic specifications.

General Issues of Semantic Concern

This section discusses three general component issues that affect the semantic
integrity of a system: specification levels, weak and strong contracts, and

116 Building Reliable Component-Based Software Systems

1. The purist will object that data typing is semantics, so an IDL specification is concerned
about semantics, not only syntax. True, but programming language semantics is not con-
cerned with the application area of the component, which is what this chapter is about,
so it will be treated as syntax here.

required and provided interfaces. A fourth issue, the versioning problem, is
mentioned with maintenance in the section on life-cycle phases.

Specification Levels

The properties to be specified for a component may be divided into four
levels: syntax, behavior, synchronization, and quality of service [8]. Level 1
includes specifications on the programming language level, which is cov-
ered by earlier parts of this book and is not dealt with further in this chap-
ter. Level 2 relates to contracts [7] and is the main focus of this chapter.
Level 3 describes the dependencies between services provided by a compo-
nent, such as sequence, parallelism, or shuffle. Some techniques to manage
these issues are discussed in [7�9] and are not pursued in this chapter.
However, the structural framework presented supports this level. The same
applies for level 4, which deals with quality of service, for instance, maxi-
mum and average response delay, precision of the result, and throughput
for data streams [10].

Weak and Strong Contracts

The semantics of an operation are described with a contract. The precondi-
tion specifies the required entry conditions for activating the operation and
the postcondition specifies the exit conditions guaranteed by the operation
at the end of its execution, provided the precondition was satisfied at its
entry. The outcome when the precondition was not satisfied is explicitly left
undefined [7].

When an operation can only succeed under specific conditions, these
conditions are included in the precondition, and the postcondition merely
needs to specify the outcome in those well-defined situations. This may be
called a strong contract [11]. However, in CBD, components that are directly
accessible to human users should not have preconditions because humans
cannot be expected to check conditions at all times. Instead, such a compo-
nent should be capable of filtering out invalid uses in order to meet the pre-
conditions of the internal components it uses [12]. The postcondition for
such user-interface components will then specify the outcome of the invalid
uses, which are filtered out as well. Such contracts may be called weak con-
tracts. A component with strong contracts may be replaced by one with cor-
responding weak contracts without affecting its clients [13]. Architectures
with front-end components with weak contracts and back-end components
with strong contracts are common, as for instance in [14]. By making the

Semantic Integrity in CBD 117

distinction between strong and weak contracts explicit, one may profit more
easily from their properties.

Required and Provided Interfaces

To be composable solely on the basis of its specification, a component needs
to be equipped with explicit declarations of required as well as provided
properties, such as functionality, synchronization, and quality [1]. A compo-
nent can be used in a given architectural environment only if its required
properties are satisfied by the suppliers in the environment and its provided
properties satisfy the requirements from the clients in the environment.
From a contractual point of view, a supplier interface S satisfies the demands
from a client environment C if the contracts required by C are the same as or
stronger than those provided by S [11, 15]. This matching must be done for
a component�s required as well as provided interfaces. In the rest of this chap-
ter, the fact that a component is playing a dual role as both client and sup-
plier is not stressed, because both the required and the provided interfaces are
covered by the general considerations. The focus of the presentation will be
on provided interfaces, because that is what a component designer can
manipulate most easily.

Levels of Formalism for Semantic Specifications

A component can be described with different levels of formalism. Different
environments and developer preferences as well as the maturity of the devel-
opers influence the choice of level of formalism. The semantic awareness of
component designers varies as does their ability and willingness to formalize
the semantic specification. During a literature survey [16], five levels of for-
malism of semantic issues were identified. These are used in structuring this
chapter and are also used in the taxonomy in the last section. The levels of for-
malism can be defined, in increasing order of formalism, by the key phrases
�no semantics,� �intuitive semantics,� �structured semantics,� �executable
semantics,� and �formal semantics.� For each level, we give an example of an
operation using the techniques available at that level. Based on practical expe-
rience, the descriptions given are believed to be representative for the different
levels of formalism. The operation of the example is part of the supplied inter-
face of the component.

118 Building Reliable Component-Based Software Systems

An Example

A complete semantic description of a component should include both an
overall description, showing its general properties and component invariants,
and a specification for each public operation. In this presentation, however,
we will use a running example with a focus on an individual operation rather
than on an entire component.

The example is a component controlling the access to random access
file of a record type R. This file access component will be called Random-

Access. It may be used, for instance, by a database management system to
access the physical file structure. The physical file controlled by the compo-
nent contains records of a fixed size, and the access to the file is by record
number, counted from zero. We assume that the file is continuous, so that all
records up to and including a current maximum number, called the high
water mark, are in use. The component defines operations for adding and
removing records to and from the physical file, for querying the current high
water mark, and for retrieving and updating a particular record.

In our example, we will assume that the file is already populated and
concentrate on the component operation getRecord to retrieve a given
record. The precondition for this interface contract is that the single input
parameter of the operation is the number of the record concerned, which
must exist in the file. The postcondition is that the result of the operation is
the required data record of type R. If an unrecoverable system error occurs,
such as a disk read error or some other file system error, the operation indi-
cates a failure, so this part of the contract is weak. However, no indication
will be provided about possibly unsatisfied preconditions, for example, a
request for a record number that is too high. This strong part of the contract
simply assumes that this does not happen [12].

In the remainder of this section, this example operation is described for
each of the five levels of formalism. Where relevant, we will use Java as the
specification and implementation language, with the obvious assumptions
about class, operation, and type names.

No Semantics

The focus for a component at the �no semantics� level is exclusively on the
syntactic parts of the interfaces, represented by CORBA or COM IDL, Java
interfaces, or similar IDLs. They represent the minimum level of specifica-
tion needed to connect components. Operations are not explained, except
that the names used may be chosen to be as self-explanatory as possible. We
have only included this level for the sake of completeness, because it is not

Semantic Integrity in CBD 119

concerned with semantics at all. The interpretation is left to the reader�s
intuition. The definition of the operation getRecord may be defined as in
Example 6.1.

Nothing is said about when number is a legal parameter, the interpre-
tation of number or the resulting R object, or the cases in which an IOEx-

ception is thrown. There is plenty of room for free guesses. Most would
agree that with this level of semantic specification, a commercial software
component would not be trustworthy [1].

Intuitive Semantics

By �intuitive semantics� we mean plain text, unstructured descriptions and
comments about a component and its parts, as illustrated in Example 6.2.
The description has no particular structure and no guidelines are provided to
determine the kind of information it should contain or how the informa-
tion should be presented. Lacking such structure for the specification, the
designer of the component must rely on his or her intuition and experience
when describing its semantic properties.

The description in Example 6.2 has two serious drawbacks. First, the
description does not give the conditions for using the operation correctly.
Second, this kind of description is unstructured and the information it con-
tains is scattered and arbitrary. Both of these factors make this kind of
description difficult to use.

An investigation of a number of software engineering projects showed
that the semantic aspects were largely based on intuitive reasoning of the
same kind as in Example 6.2 [17]. We believe that a large portion of the non-
critical software being developed today falls into this category, that is, that

120 Building Reliable Component-Based Software Systems

throws IOException
public R getRecord (int number)

Example 6.1 A purely syntactic specification of getRecord.

The operation retrieves a record by its number, returning the record
requested. If an error occurs, such as disk read error or file system error, the I/O
error is returned.

getRecord

Example 6.2 An intuitive specification of getRecord.

the semantics are mentioned and intuitively described, but without structure
and consistency. Compared with what we have seen elsewhere, Example 6.2
shows a reasonably good intuitive description. The next level of formalism
may be a step forward for designers at this level [1].

Structured Semantics

Structured semantics are produced by designers and engineers who are highly
aware of the semantic implications and requirements of their components,
but who are reluctant to express the specifications in a too formal way. Extra
cost and competence requirements on present and future users of the specifi-
cation are examples of valid reasons for such a choice, as is the fact that many
requirements are hard to formalize. The semantics are presented in a struc-
tured way but need not be in accordance with any particular syntax or for-
malism. In Example 6.3, the semantic conditions are expressed as plain-text
contracts [7, 18] that can be inserted as comments in the design documenta-
tion, in the interface descriptions, or in the code itself. The major focus for
structures semantics is on a conscious, structured approach to semantic ques-
tions without being too focused on the formalities or executable test mecha-
nisms. One way to structure the information is to begin with a short
description of the operation and its parameters, followed by the relevant pre-
conditions and postconditions, as in Example 6.3. The postcondition is only
specified for cases in which the precondition is satisfied.

This structured description is easier to read than the intuitive descrip-
tion in Example 6.2, even if it may contain the same information. The fact
that the same structure applies to the specification of all the operations also
reduces the risk of leaving out important information. It is, however, neces-
sary for the designer to understand the implication of the different parts of
the specification. Case studies have shown that pre- and postconditions were

Semantic Integrity in CBD 121

getRecord returns a record identified by its number.
Parameters:
number: the number of the record to retrieve, counted from zero
Precondition: number 0 and number the high water mark
Postcondition: the record with the given number is returned, unless a file system
error occurs, in which case a file system error is reported and the value returned
is undefined.

>= <=

Example 6.3 A structured specification of getRecord.

sometimes used in specifications but that their implications were not under-
stood, so that the conditions set up were meaningless or even incorrect [17].

A structured approach without formal requirements may be a useful
improvement from a purely intuitive handling of semantics [19]. It supports
two major aspects of the development process. First, formulating the seman-
tics in a structured, textual form stimulates extra thinking and favors a better
design. Second, the structured documentation makes reading and under-
standing the specification easier for client programmers as well as for compo-
nent implementers. This kind of specification can also handle nonexecutable
conditions [20], which set a limit to the applicability of the next level of for-
malism, the executable semantics.

Executable Semantics

By �executable semantics� we mean that semantic aspects are expressed in a
way that can be executed and controlled by the system during run time. As
such, the executable specification for an operation is included in the imple-
mentation of the component. It must therefore be expressed using some
executable syntax in the implementation language. The specification of
getRecord for Java may, for instance, be expressed as in Example 6.4. We
assume that hwm() returns the current high water mark, result is an
implicitly declared variable representing the result of the function, and
record() is a primitive function returning a record from the file. The con-
tract in the example says that, provided the number is between zero and
hwm, the requested record is returned unless an irrecoverable I/O error
occurs, which is signaled through an exception. The contract does not state
the result if the number is not in the required interval. That situation corre-
sponds to a coding error and a violation of the semantic integrity of the sys-
tem. It is not covered by the strong contract used. An I/O error, on the other
hand, corresponds to a failure outside the control of the software and must
be captured in a weak contract.

122 Building Reliable Component-Based Software Systems

getRecord returns a record identified by its number.
Parameters:
number: the number of the record to retrieve, counted from zero
Precondition: (0 number) && (number hwm())
Postcondition: throw IOException || (result record (number))

<= <=
==

Example 6.4 An executable specification of getRecord.

TEAMFL
Y

Team-Fly®

With this formalism, assertions can be used to express preconditions
and postconditions and to test them during run time. The most obvious can-
didate to test is the precondition. Bertrand Meyer is a strong advocate of this
approach, which is integrated in the Eiffel language [21]. Another example is
Biscotti, an extension of Java that enhances Java remote method invocation
interfaces with Eiffel-style preconditions, postconditions, and invariants
[22]. A third example is OCL [23], a specification language developed
within the framework of UML where conditions are compiled into executa-
ble statements. Other examples include Jass [24], iContract [25], Guerreiro�s
approach [26], and jContractor [27]. The execution of the assertions should
not add functionality to the component; instead they serve to detect possible
violations of the conditions defined. We stress that these assertions serve to
detect coding errors and should not try to handle or compensate for them
[7]. Because these assertions might not be turned on at all times, the behavior
of the software system should not be affected by whether or not they are
actually executed. In fact, OCL only defines inquiry operations without side
effects. OCL statements cannot be used for data processing or for corrective
actions. What to do when an assertion does not hold is a robustness issue and
not a correctness issue. A broken assertion is a sign of a coding error and a
violation of the semantic integrity. It is not discussed in this chapter, which
focuses on how to avoid violating the semantic integrity, not on how to
repair it once it is broken.

For the purpose of our example, we will assume that the System class in
Java contains an assert method that can be used to execute the assertions. It
takes one Boolean argument. If the value of the argument is true, the method
returns without any visible effect. If the value of the argument is false, the
method terminates the program, possibly leaving some suitable tracing infor-
mation to help detect the offending code. For debugging purposes, the com-
ponent itself may then use the executable precondition to trap offending
calls, as shown in Example 6.5 [12].

Semantic Integrity in CBD 123

public R getRecord (int number) throws IOException
{
System.assert((0 <= number && (number <= hwm()));
// the implementation of the method

}

Example 6.5 Use of an executable precondition in a supplier component to trap offend-
ing calls.

It may be worth mentioning again that this assertion is not a mecha-
nism for handling errors, only for detecting them. If the logical expression (0

<= number) && (number <= hwm()) has the value false, then the
method System.assert does not return. Instead, because this condition
identifies a situation in which the outcome of a call to getRecord is not
defined, the program is typically terminated. This is especially useful
for detecting errors early during the development and testing of client
systems [11].

The client code may also take advantage of the executable assertions by
checking the precondition before the call, as in Example 6.6. We assume that
the client has a variable theFile of class RandomAccess and a variable
record of class R.

In addition to the benefits for design and documentation given by the
structured semantics approach, the executable specification supports the
efforts to maintain semantic integrity by early error detection and removal.
However, this benefit is limited by the fact that not all conditions can be
expressed in an executable way. This is illustrated by the postcondition in
Example 6.4, where the fact that an exception may be thrown is only
expressed as a comment.

Formal Semantics

With formal semantics, programs can be proven to have consistent and sound
semantics [28�30]. Formal specification languages such as VDM, Z, and l are
well-known. We will use Z to express the formal specification of getRecord.
The concept for the Z description is taken from [31] but modified to suit our
purpose. For further details regarding the meaning of terms and symbols
used, the reader is referred to literature on Z, for example, [31�33].

The visible state of the random access component is defined in a
state schema called RandomAccess, shown in Example 6.7. The term records

124 Building Reliable Component-Based Software Systems

if ((0 <= number) && (number <= theFile.hwm()))
{
try {

record = theFile.getRecord(number);
// record == the record requested
}
catch (IOException e)
{ /* unrecoverable IO error */ }

}

Example 6.6 Use of executable semantics in a client component to ensure a correct call.

represents all the records in the file and R is the record data type. The variable
hwm (for high water mark) shows how much of the file is in use.

The formula (){ }∀ × ≠ ∅i hwm records i: ..0 in the lower part of the
schema expresses the invariant for the component, which is that all the
records from number zero up to and including the high water mark are in
use; that is, the file has no �holes.�

The file operation is defined as a state schema called getRecord,
shown in Example 6.8.

The upper part specifies the parameters of the inquiry and the lower
part expresses its pre- and postconditions. In agreement with the contract
used, no return value is defined if the precondition number ≤ hwm is not
satisfied. Similarly, also in accordance with the contract, the return value of
record is undefined if a file system error occurs, so no record value is specified
for that case.

A formal approach is valuable for security-critical applications. Büchi
[34] argues that such an approach will simplify the process of formal reason-
ing of components and make it easier to compose components based on their
contracts. However, the rigid formalism restricts the application of their

Semantic Integrity in CBD 125

getRecord

Ξ
?: N

!:
{ }

RandomAccess
number
record R
status!: OK, FileSystemError

number? ≤
∧ ∨

hwm
((status record records number
status

! = OK) ! = (?))
(! = FileSystemError)

Example 6.8 Z schema for the operation getRecord.

RandomAccess

records R
hwm

: N
: N

®

"i :O.. { }hwm records (i)´ ¹Æ

Example 6.7 Z state schema for the random access file.

proposed ideas to environments in which the overhead of formal methods
can be tolerated. The major part of the component market may find the for-
mal approach too costly or too difficult to access.

Phases in a Component�s Life

During its lifetime, a component passes through different phases. This sec-
tion considers their creation phase, use phase, and maintenance phase from a
semantic point of view. The creation phase of a component includes its
design and implementation, both for the initial creation and for subsequent
additions of new functionality. This phase corresponds roughly to the tradi-
tional development cycle. The use phase includes all regular use, both initial
use and reuse. The maintenance phase includes all changes to the existing
functionality after release, including versioning.

All of these phases may recur in no particular order, except for the ini-
tial creation phase. In particular, use and maintenance of a component are
often closely related. As a component is being used, problems and deficien-
cies are detected and corrected. For the following discussion on semantic
considerations, it is assumed that the operation getRecord is specified with
the structured contract of Example 6.3.

Creation Phase

The first creation phase begins when the need for a component is identified.
Further creation phases frequently occur later during the component�s life,
when new functionality is identified and added to the component. During
the creation phase, the semantic focus is on design and implementation.

The design of a component defines its required and provided func-
tional and nonfunctional characteristics. We have already stressed how
semantic integrity depends on good semantic specifications and that a syn-
tactic description is not enough. The semantic part of the design includes
invariants for the component, and required and provided contracts with pre-
and postconditions for each operation. Implementation details should be
kept out of this description.

Normally, the client programmer will not see any code for the inter-
faces provided by the component, nor will the component designer see the
code for the required interfaces, so the semantic description must express all
information needed by the user about the component and its required and
provided interfaces. Even if the code were available to the developer, it could

126 Building Reliable Component-Based Software Systems

only show what the current implementation happens to be and not the pur-
pose of the operation. This becomes evident in the maintenance phase when
the code is modified, as described below. Any client program based on the
current implementation instead of on the specification will be endangered by
any such modification.

Once designed, the component should be implemented. The contracts
and invariants should be implemented in a consistent way. Because the code
will not, and should not, be available to the client programmer, no new con-
ditions should be introduced during implementation without also being
reflected in the design specification.

Use Phase

A component enters the use phase when it is used as a service provider by
some client software. The main semantic issue for the client programmer is
to determine the semantic specification of the component and to use it
accordingly. If a contract required by the client is the same as or stronger
than a contract provided by the component, the operation may be used
directly [11, 15]. In other cases, it will be necessary to create an adapting shell
around the component, where the interface defined by the shell is being bet-
ter adapted to the client requirements than the component itself [35].

A component is sometimes developed for use in a particular context
and is normally used in this context first. At the same time, one objective in
designing components is to produce reusable software, with the component
developer not needing to know much about the different contexts in which it
will be possible to use the component. In both cases, the rules for use are the
same. To ensure the semantic integrity of the system, the component should
only be used as defined in its semantic specification; therefore, the specifica-
tion must be complete and consistent. If the description is unstructured and
intuitive, interpretation problems easily arise and trial and error might be the
only way to determine how the component behaves.

Testing is sometimes advocated as the major quality assurance mecha-
nism for components [36]. If the component to be used is not adequately
described, testing may be the only practical approach, although very resource
consuming. However, basing the use of a component on its empirical behav-
ior may cause problems during maintenance of the component, as discussed
next. Sometimes, as in the case of the French rocket Ariane 5 [37, 38], testing
is explicitly excluded because of the high costs. In any case, the use of testing
does not contradict the usefulness of thorough planning and a thorough
description of the semantic aspects of a component. On the contrary, such a

Semantic Integrity in CBD 127

description can reduce the number of errors and thereby speed up the testing
process.

Maintenance Phase

Maintenance is the work performed on a component after its deployment in
order to correct errors, to improve performance or other properties, or to
adapt it to changes in the environment [39]. The main semantic issue here is
to maintain backward compatibility and to detect when it is discontinued.
Addition of new functionality is not classified as maintenance, but is treated
as if in the creation phase.

Because the component is identified externally by its semantic descrip-
tions only, any modification of the component that respects these is unprob-
lematic. It is, however, important to check that a modification does not in
fact violate the description.

If the contract of an operation is changed to put changed demands on
the clients, problems may arise. A change in a component is sometimes
harmless to client systems, and sometimes harmful. Liskov�s substitutability
principle [13] can be applied to determine which effect it will have. It implies
that a change is safe if the client cannot observe it. If the new contract
is weaker than the original, so as to demand less from the clients, no prob-
lems arise, since all existing clients already conform to the new specification
[11, 15]. Otherwise, existing clients conforming to the first contract may
suddenly violate the modified contract although the clients themselves have
not changed. The modified operation should be recognized as being differ-
ent, for instance, with a new interface definition. This versioning issue is a
serious source of problems when components are replaced [2].

A Taxonomy for Component Semantics

We now suggest a two-dimensional taxonomy for component semantics.
One dimension encompasses the five levels of formalism and the other the
three phases of a component�s life. This taxonomy may serve as a reference
when components and component issues are discussed and presented. A
recent survey of the state of the art in semantic management of components
is also summarized and related to the taxonomy.

To find out how semantic aspects are managed in the software engi-
neering community, a literature survey was conducted during Spring 2000
[16]. The survey was updated with the latest references in November 2001

128 Building Reliable Component-Based Software Systems

and included a large number of journals and conference proceedings. Out of
the articles searched and examined, we judged 37 publications to be relevant
for our purposes. Figure 6.1 shows how these publications are related to the
taxonomy. Each reference in the survey is represented by an asterisk and
some of the references appear more than once. Each reference is related as
truthfully as possible to the taxonomy according to its main approach to
semantics. Of course, because the survey focuses on semantic management, it
did not include publications in the �No semantics� column.

The limited number of references found during the survey may be an
indication that semantic issues are not actively discussed in component con-
texts. It was also found that authors have very different approaches to the
semantic aspects when discussing components. However, consensus has been
reached that there is a need for semantic descriptions of components and that
this need is not covered by the interface description languages as they stand.

Two interesting conclusions can be drawn from the distribution of the
publications shown in Figure 6.1. The first is that most of the publications
dealing with component semantics are found in the area of executable
semantics. This reflects a general view that exact semantics cannot be effi-
ciently expressed in plain text [23]. However, our experience is that the state
of the art among practitioners is mostly at the intuitive level. For practition-
ers who find themselves at this level, the structured level may be a first step
toward a more organized approach to semantics. The structured approach
gives good support to the design process itself as well as to the documenta-
tion, both of which are crucial factors for components, without requiring too

Semantic Integrity in CBD 129

Life cycleCreation Use Maintenance

No semantics

Intuitive semantics

Structured semantics

Executable semantics

Formal semantics

Semantic formalism

**

*

*

*

Figure 6.1 A literature survey related to the proposed taxonomy for component semantics.

much formalism. It may be applied even if the conditions in the contract are
not executable.

The other interesting observation from the diagram is that there is little
discussion of component maintenance issues. This lack of discussion is a seri-
ous threat to the long-term stability of any component-based system. We
believe that it would be possible to establish a sound practice for component
maintenance by applying Liskov�s principle of substitutability [13] to com-
ponents with descriptions at the structured level of formalism or above.
Using this principle will help to avoid the problem which arises when a new
release of a component compromises the stability of complete systems.

Summary

In this chapter, we have presented some important semantic component
issues, how semantic properties of components can be described with differ-
ent levels of formalism, and the importance of semantic integrity in the dif-
ferent phases in a component�s life. Finally a two-dimensional taxonomy for
component semantics was presented along with the results of a recent litera-
ture survey that shows how semantic aspects are handled in current research.

One dimension in the taxonomy encompasses five levels of formalism
in describing component semantics, where the level chosen for a particular
project depends on the application domain and the degree of experience of
the designers. The other dimension covers three phases in a component�s life,
in which each phase requires certain semantic considerations. The taxonomy
allows a designer to position himself with respect to his semantic awareness
and to increase this awareness. The majority of the publications in the survey
focused on intuitive or executable semantics in the creation and use stages.
Few publications discuss the semantic issues involved in maintenance and
even fewer discuss structured semantics.

Component developers who find themselves at the level of intuitive
semantics can benefit from applying structured semantics for improved
design and documentation. Executable semantics add the potential for
dynamic error detection. For critical and semicritical applications, formal
semantics may be necessary, but are hardly motivated for the noncritical
market. The main point is that, to maintain semantic integrity, the specifica-
tion of required and provided properties should be complete and under-
standable, not only by the component developers, but also by the users of the
component and by those maintaining it. For the component market in

130 Building Reliable Component-Based Software Systems

particular, an increased focus on semantics during maintenance should
reduce the number of problems experienced in this area today.

References

[1] Szyperski, C., �Components and Contracts,� Software Development Magazine, Vol. 8,
No. 5, 2000.

[2] Szyperski, C., �Greetings from DLL Hell,� Software Development Magazine, Vol. 7,
No. 10, 1999.

[3] Douglas, B. P., �Components, States and Interfaces, Oh My!� Software Development
Magazine, Vol. 4, 2000.

[4] Szyperski, C., �Point, Counterpoint,� Software Development Magazine, Vol. 8, No. 2,
2000.

[5] Szyperski, C., Component Software�Beyond Object-Oriented Programming, Reading,
MA: Addison-Wesley, 1998.

[6] Aho, A., R. Sethi, and J. Ullman, Compilers�Principles, Techniques and Tools, Reading,
MA: Addison-Wesley, 1986.

[7] Meyer, B., Object-Oriented Software Construction, Upper Saddle River, NJ: Prentice-
Hall, 1997.

[8] Beugnard, A. et al., �Making Components Contract Aware,� IEEE Computer, Vol. 32,
Issue 7, 1999, pp. 38�45.

[9] Watkins, D., �Using Interface Definition Languages to Support Path Expressions and
Programming by Contract,� Proc. Tools 26: Technology of Object-Oriented Languages
and Systems, Los Alamitos, CA, IEEE Computer Society, 1998.

[10] Preiss, O., A. Wegmann, and J. Wong, �On Quality Attribute Based Software Engi-
neering,� Proc. EUROMICRO 2001 CBSE Workshop, Warsaw, Poland, IEEE Com-
puter Society, 2001.

[11] Nordby, E., M. Blom, and A. Brunström, �On the Relation Between Design Contracts
and Errors, A Software Development Strategy,� Proc. 9th IEEE Conf. and Workshops on
Engineering of Computer-Based Systems, Lund, Sweden, IEEE Computer Society, 2002.

[12] Meyer, B., �The Significance of dot-NET,� Software Development Magazine, Vol. 11,
2000.

[13] Liskov, B., �Data Abstraction and Hierarchy,� Addendum to Proc. OOPSLA�87,
Orlando, FL, ACM Press, 1987.

[14] Bhagat, S., and R. K. Joshi, �Behavioral Contracts for COM Components,� Proc. Infor-
mation System Technology and Its Applications�ISTA 2001, Lecture Notes in Informat-
ics, 2001.

Semantic Integrity in CBD 131

[15] Nordby, E., and M. Blom, �Semantic Integrity of Switching Sections with Contracts:
Discussion of a Case Study,� Informatica, Vol. 10, No. 2, 1999, pp. 203�218.

[16] Blom, M., and E. Nordby, �Semantic Integrity in Component Based Development,�
Internal report on CBSE, Mälardalen University, Västerås, Sweden, 2000.

[17] Blom, M., et al., �Using Quality Criteria in Programming Industry: A Case Study,�
Proc. European Software Day, Euromicro 98, 1998.

[18] D�Souza, D., and A. C. Wills, Objects, Components and Frameworks: The Catalysis
Approach, Reading, MA: Addison-Wesley, 1998.

[19] Meyer, B., Contracts for Components, �Interface Definition Languages As We Know
Them Today Are Doomed,� Software Development Magazine, Vol. 7, 2000.

[20] Kotula, J., �Source Code Documentation: An Engineering Deliverable,� Proc.
TOOLS-34, Santa Barbara, CA, IEEE Computer Society, 2000.

[21] Meyer, B., Eiffel: The Language, Upper Saddle River, NJ: Prentice-Hall, 1992.

[22] Cicalese, C. D. T., and S. Rotenstreich, �Behavioral Specification of Distributed Soft-
ware Component Interfaces,� IEEE Computer, Vol. 32, Issue 7, 1999, pp. 46�53.

[23] Warmer, J., and A. Kleppe, The Object Constraint Language, Reading, MA: Addison-
Wesley, 1999.

[24] Bartetzko, D., et al., �Jass�Java with Assertions,� Proc. Workshop on Runtime Verifica-
tion, 2001, held in conjunction with 13th Conf. Computer Aided Verification, Paris,
France, Elsevier Science, 2001.

[25] Kramer, R., �iContract�The Java Design by Contract Tool,� Proc. Technology of
Object-Oriented Languages�TOOLS26, Los Alamitos, CA, IEEE Computer Society,
1998.

[26] Guerreiro, P., �Another Mediocre Assertion Mechanism for C++,� Proc. Technology of
Object-Oriented Languages�TOOLS33, Los Alamitos, CA, IEEE Computer Society,
2002.

[27] Karaorman, M., U. Hölze, and J. Bruno, �jContractor: A Reflective Java Library to
Support Design by Contract,� Proc. Metal-Level Architectures and Reflection, Lecture
Notes in Computer Science, No. 1616, Berlin, Springer Verlag, 1999.

[28] Findler, R. B., and M. Felleisen, �Contract Soundness for Object-Oriented Lan-
guages,� Proc. OOPSLA2001, Tampa Bay, FL, AMC Press, 2001.

[29] Miao, H., C. Yu, and L. Li, �A Formalized Abstract Component Object Model
Z-COM,� Proc. TOOLS36, Xian, China, IEEE Computer Society, 2000.

[30] Reussner, R. H., �Enhanced Component Interfaces to Support Dynamic Adaption and
Extension,� Proc. 34th Hawaii Int. Conf. System Sciences, Hawaii, IEEE Computer Soci-
ety, 2001.

[31] Spivey, J. M., The Z Notation, A Reference Manual, Upper Saddle River, NJ: Prentice-
Hall, 1992.

132 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[32] Potter, B., J. Sinclair, and D. Till, An Introduction to Formal Specification and Z, Upper
Saddle River, NJ: Prentice-Hall, 1991.

[33] Diller, A., Z, An Introduction to Formal Methods, New York: John Wiley & Sons, 1995.

[34] Büchi, M., and E. Sekerinski, �Formal Methods for Component Software: The Refine-
ment Calculus Perspective,� Proc. 2nd Int. Workshop on Component-Oriented Program-
ming�WCOP�97, 1997.

[35] Edwards, S. H., B. W. Weide, and J. Hollingsworth, �A Framework for Detecting
Interface Violations in Component-Based Software,� Proc. Fifth Int. Conf. Software
Reuse, Victoria, Canada, IEEE Computer Society, 1998.

[36] Weyuker, E. J., Testing Component-Based Software: A Cautionary Tale, IEEE Soft-
ware, Vol. 15, Issue 5, 1998, pp. 54�59.

[37] Le Lann, G., �An Analysis of the Ariane 5 Flight 501 Failure�A System Engineering
Perspective,� Proc. 4th Int. Conf. Engineering of Computer-Based Systems, Los Alamitos,
CA, IEEE Computer Society, 1997.

[38] Inquiry Board, �ARIANE 5�Flight 501 Failure,� Inquiry Board report.

[39] IEEE, �IEEE Standard for Software Maintenance,� Report IEEE Std 1219-1998, 1998.

Semantic Integrity in CBD 133

.

7
Role-Based Component Engineering

Jilles van Gurp and Jan Bosch

Introduction

COTS components have been a long-standing software engineering dream
[1]. Several technologies have tried to fulfill this dream but most of them, so
far, have failed despite some successes (such as Visual Basic components).
From time to time, a promising new technique appears. The most successful
technique to date has been OO, but even this technique has failed to deliver
truly reusable COTS components. In this chapter we investigate a promising
extension of OO called role-based component engineering. Role-based compo-
nent engineering extends the traditional OO component paradigm to pro-
vide a more natural support for modeling component collaborations.

The idea of role-based components is that the public interface is split
into smaller interfaces that model different roles. Users of a component can
communicate with the component through the smaller role interfaces instead
of using the full interface. In this chapter we examine why roles are useful,
discuss methods and techniques for using them, and discuss how they can be
used to make better OO frameworks.

Four different definitions of a component are given in [2] and a number
of definitions have been discussed elsewhere in this book. This indicates that
it is difficult to get the software community as a whole to agree on a single
definition. Rather than continuing this discussion here, we will focus on

135

aspects of object-oriented components that are relevant to role-based compo-
nent engineering (for a more elaborate discussion of these concepts, see [3]):

• The interface. The interface of a component defines the syntax of
how to use a component. The semantics of the interface are usually
implicit, despite efforts to provide semantics in various languages
(e.g., Eiffel [4]).

• The size or granularity. One purpose of using components is to
extend reusability, so the larger the component the more code is
reused. A second purpose of components is to improve flexibility
but as Szyperski noted, there is a conflict between small components
and flexibility on the one hand and large components and usability
on the other (�maximizing reusability minimizes usability�) [5].

• Encapsulation. The main motivation behind software components,
however, is to achieve the same as has been achieved in electronics:
pluggable components. To achieve this, a clear separation must exist
between the externally visible behavior of a component and its inter-
nal implementation. The latter must be encapsulated by the com-
ponent. This feature is also referred to as information hiding or
black-box behavior and is generally considered to be an important
feature of the OO paradigm.

• Composition mechanisms. A component is used by connecting it to
other components, thus creating a system based on multiple compo-
nents. Components can be plugged together in many ways. These
range from something as simple as a method call to more complex
mechanisms such as pipes and filters or event mechanisms. Cur-
rently, three component models dominate: COM, CORBA, and
JavaBeans. These models provide a general architecture for plumb-
ing components. All three allow for method calls (synchronous calls)
and event mechanisms (asynchronous calls).

The concept of roles is based on the notion that components may have
several different uses in a system. These different uses of a component in a
system are dependent on the different roles a component can play in the vari-
ous component collaborations in the system. The idea of role-based compo-
nents is that the public interface is separated into smaller interfaces, which
model these different roles. Users of a component can communicate with the
component through the smaller role interfaces instead of through the full

136 Building Reliable Component-Based Software Systems

interface. The main advantage of this is that by limiting the communication
between two components by providing a smaller interface, the communica-
tion becomes more specific. Because of the smaller interfaces the communi-
cation also becomes easier to generalize (i.e., to apply to a wider range of
components). These two properties make the components both more versa-
tile and reusable.

This is particularly important when component collaborations (i.e.,
archetypal behavior of interacting components) are to be modeled. Tradi-
tionally, the full interface of a component is considered when modeling
component collaborations. Because of this, the conceptual generality of a col-
laboration is lost in the design as the lowest level at which modeling can be
performed is the class interface. This means that collaborations are always
defined in terms of classes and the only way for components to share an
interface (i.e., to be part of the same collaboration) is to inherit from a com-
mon base class. In some cases, multiple inheritance can be applied to inherit
from multiple base classes, but this is generally considered to be a bad prac-
tice. By introducing roles, these collaborations can be modeled at a much
more finely grained level.

If, for example, we analyze a simple GUI button, we observe that it has
several capabilities. It can be drawn on the screen, it has dimensions (height,
width), it produces an event when clicked, it has a label, it may display a tool
tip, and so forth. If we next analyze a text label, we find that it shares most of
its capabilities with the button but sends no event when it is clicked.

The OO approach to modeling these components would be to define a
common base class to expose an interface, which then accommodates the
common capabilities. This approach has severe limitations when modeling
collaborations because in a particular collaboration, usually only one particu-
lar capability of a component is of interest. A button, for instance, could be
used to trigger some operation in another component (i.e., the operation is
executed when a user clicks the button). When using OO techniques, this
must be modeled at the class level. Even though only the event-producing
capability of the button is relevant in this particular collaboration, all other
capabilities are also involved because the button is referred to as a whole.

Roles radically change this because roles make it possible to involve
only the relevant part of the interface. The button in the example above, for
instance, could implement a role named EventSource. In the collaboration, a
component with the role EventSource would be connected to another com-
ponent implementing the role EventTarget. Similarly, the ability to display
text could be captured in a separate DisplayText interface that also applies
to text labels, for example. This way of describing the collaboration is more

Role-Based Component Engineering 137

specific and more general�more specific because only the relevant part of
the interface is involved and more general because any component that sup-
ports that role can be part of the collaboration.

This idea has been incorporated into the OORam [6] method, which is
discussed later in this chapter. The term role model will be used to refer to a
collaboration of components implementing specific roles. Role models can be
composed and extended to create new role models and role models can be
mapped to component designs. Note that multiple roles could be mapped to
a single component, even if these roles are part of one role model. In the
example given above, a button component could be both an EventSource and
an EventTarget. This means that it is possible to model a component collabo-
rating with itself. Of course, this is not particularly useful in this example but
it does show the expressiveness of roles as opposed to full class interfaces.

From the above comments, we can conclude that there is no need to
place many constraints on the component aspects discussed earlier, in discuss-
ing role-based component engineering. Role-based components can support
multiple, typically small interfaces. The size of the component is not signifi-
cant. Because multiple, functionally different components will support the
same role interface, it is not desirable to take the implementation of a compo-
nent into account when addressing it through one of its role interfaces.

The relation between a role and a component, which supports that
role, should be seen as an �is-a� relation. The relations between roles can be
both �is-a� and �has-a� relations. Although hybrid components are possible
(components that are only partly role-oriented), it is, in principle, not neces-
sary to have component-to-component relations in the source code. Typi-
cally, references to other components will be typed using the role interfaces
rather than component classes.

The goal of this chapter is to study role-based component engineering
from several different perspectives. In the following sections we will first
advocate the use of roles by using existing metrics for object-oriented sys-
tems. Several techniques that make it possible to use roles in both design and
implementation are then discussed and, finally, we discuss the use of roles in
object-oriented frameworks.

Encouraging the Use of Roles

In this section we argue that using roles as outlined in the introduction
improves an OO system in such a way that some of the metrics typically used
to assess the software quality of an OO system will improve.

138 Building Reliable Component-Based Software Systems

Chidamber and Kemerer [7] describe a metric suite for object-oriented
systems. The suite consists of six different types of metrics which together
make it possible to perform measurements on OO systems. The metrics are
based on so-called viewpoints, gained by interviewing a number of expert
designers. On the basis of these viewpoints, Kemerer and Chidamber pre-
sented the following definition of good design: �good software design prac-
tice calls for minimizing coupling and maximizing cohesiveness� [7].

Cohesiveness is defined in terms of method similarity. Two methods
are similar if the union of the sets of class variables they use is substantial. A
class with a high degree of method similarity is considered to be highly cohe-
sive. A class with a high degree of cohesiveness has methods that operate pri-
marily on the same properties in that class. A class with a low degree of
cohesiveness has methods that operate on distinct sets; that is, there are dif-
ferent, more or less independent sets of functionality in that class.

Coupling between two classes is defined as follows: �Any evidence of a
method of one object using methods or instance variables of another object
constitutes coupling� [7]. A design with a high degree of coupling is more
complex than a design with a low degree of coupling. Based on this notion,
Lieberherr et al. [8] created the law of Demeter, which states that the sending
of messages should be limited to the following: argument classes (i.e., any
class that is passed as an argument to the method that performs the call or
self) and instance variables. Applied to role-based component engineering,
this rule becomes even stricter; the sending of messages should be limited to
argument roles and instance variables (also typed using roles).

The use of roles makes it possible to have multiple views of one class.
These role perspectives are more cohesive than the total class interface since
they are limited to a subset of the class interface. The correct use of roles
ensures that object references are typed using the roles rather than the classes.
This means that connections between the classes are more specific and more
general at the same time�more specific because they have a smaller inter-
face, and more general because the notion of a role is more abstract than the
notion of a class. Although roles do nothing to reduce the number of rela-
tions between classes, it is now possible to group the relations in interactions
between different roles, which makes them more manageable.

Based on these notions of coupling and cohesiveness, Kemerer and
Chidamber created six metrics [7]:

1. Weighted methods per class (WMC). This metric reflects the notion
that a complex class (i.e., a class with many methods and proper-
ties) has a larger influence on its subclasses than a small class. The

Role-Based Component Engineering 139

potential reuse of a class with a high WMC is limited, however,
because such a class is application-specific and will typically need
considerable adaptation. A high WMC also has consequences with
respect to the time and resources needed to develop and maintain a
class.

2. Depth of inheritance tree (DIT). This metric reflects the notion that
a deep inheritance hierarchy constitutes a more complex design.
Classes deep in the hierarchy will inherit and override much behav-
ior from classes higher in the hierarchy, which makes it difficult to
predict their behavior.

3. Number of children (NOC). This metric reflects the notion that
classes with many subclasses are important classes in a design.
While many subclasses indicate that much code is reused through
inheritance, it may also be an indicator of lack of cohesiveness in
such a class.

4. Coupling between object classes (CBO). This metric reflects the fact
that excessive coupling inhibits reuse and that limiting the number
of relations between classes helps to increase their reuse potential.

5. Response for a class (RFC). This metric measures the number of
methods that can be executed in response to a message. The larger
this number is, the more complex the class. In a class hierarchy, the
lower classes have a higher RFC than higher classes since they can
also respond to calls to inherited methods. A higher average RFC
for a system indicates that implementation of methods is scattered
throughout the class hierarchy.

6. Lack of cohesiveness in methods (LCOM). This metric reflects the
notion that noncohesive classes should probably be separated into
two classes (to promote encapsulation) and that classes with a low
degree of cohesiveness are more complex.

The most important effect of introducing roles into a system is that
relations between components are no longer expressed in terms of classes but
in terms of roles. The effect of this transformation can be evaluated by study-
ing its effects on the different metrics:

1. WMC. Roles model only a small part of a class interface. The
amount of WMC of a role is typically less than that of a class.

140 Building Reliable Component-Based Software Systems

Components are accessed using the role interfaces. A smaller part of
the interface must be understood than when the same component
is addressed using its full interface.

2. DIT. The DIT value will increase since inheritance is the mecha-
nism for imposing roles on a component. Note, however, that roles
only define the interface, not the implementation. Thus while the
DIT increases, the distribution of implementation throughout the
inheritance hierarchy is not affected.

3. NOC. Because role interfaces are typically located at the top of the
hierarchy, the NOC metric will typically be high. In a conventional
class hierarchy, a high NOC for a class expresses that that class is
important in the hierarchy (and probably has a low cohesiveness
value). Similarly, roles with a high NOC are important and have a
high cohesiveness value.

4. CBO. The CBO metric will decrease because implementation
dependencies can be avoided by only referring to role interfaces
rather than by using classes as types.

5. RFC. Because roles do not provide any implementation, the RFC
value will not increase in implementation classes. It may even
decrease because class inheritance will be necessary to inherit imple-
mentation only, interfaces are no longer necessary.

6. LCOM. Roles typically are very cohesive in the sense that the
methods for a particular role are closely related and roles will thus,
typically, have a lower LCOM value.

Based on the analysis of these six metrics it is safe to conclude the following:

• Roles reduce complexity (improvement in CBO, RFC, and LCOM
metrics) in the lower half of the inheritance hierarchy because inter-
component relations are moved to a more abstract level. This is con-
venient because this is generally the part of the system where most of
the implementation resides.

• Roles increase complexity in the upper half of the inheritance hierar-
chy (higher DIT and NOC values). This is also advantageous
because it is now possible to express design concepts that were previ-
ously hard-coded in the lower layers of the inheritance hierarchy on
a higher, more abstract level.

Role-Based Component Engineering 141

Role Technology

The use of roles during both design and implementation is discussed in this
section. Several modeling techniques and the use of roles in two common
OO languages (Java and C++) are studied.

Using Roles at the Design Level

Though roles provide a powerful means of modeling component collabora-
tions, the common modeling languages (e.g., UML [9] and OMT) do not
treat them as first-class entities. Fowler and Scott [10] suggest the use of the
UML refinement relation to model interfaces. Although this technique is
suitable for modeling simple interfaces it is not very suitable for modeling
more complex role models.

In a recent document [11], the shortcomings of UML in representing
component collaborations are discussed. Reenskaug defines collaboration as
follows: �A Collaboration describes how a number of objects work together
for a common purpose. There are two aspects. The structural aspect is a
description of the responsibilities of each object in the context of the overall
purpose of the collaboration; and also the links that connect the objects into
a communication whole. The dynamic aspect is a description of how stimuli
flow between the objects to achieve the common purpose�� [11].

It is essential that collaborations model the interaction of objects par-
ticipating in the collaboration. In UML, a class diagram models the relations
between classes. According to the UML 1.3 specification a class is defined as
follows: �A class is the descriptor for a set of objects with similar structure,
behavior, and relationships�� [9]. As distinct from a class, an object in a col-
laboration has an identity. UML also provides the possibility of modeling
object collaborations (object diagram) but Reenskaug argues that these are
too specific to model the more general role models he uses in OORam,
which is introduced in his book Working with Objects [6]. Using a UML
object diagram, it is possible to express how a specific object interacts with
another specific object. This diagram applies, however, only to those two
objects.

In [11] Reenskaug proposes an extension to UML that provides a more
general way to express object collaborations without the disadvantage of
being too general (class diagrams) or too specific (object diagrams). Essen-
tially, Reenskaug uses what he calls ClassifierRoles to denote the position an
object holds in an object structure. Note that there is an important difference
when modeling roles as interfaces only. Reenskaug�s ClassifierRoles retain

142 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

object identity, whereas an interface has no object identity. Because of this it
is possible to specify a relation between ClassifierRoles without explicitly
specifying the identity of the objects and without giving up the notion of
object identity completely, as in a class diagram. In principle, a single object
can interact with itself and still be represented by two ClassifierRoles in the
collaboration.

Reenskaug defines ClassifierRoles as follows: �a named slot for an
object participating in a specification level Collaboration. Object behavior is
represented by its participation in the overall behavior of the Collaboration.
Object identity is preserved through this constraint: �In an instance of a col-
laboration, each ClassifierRole maps onto at most one object� � [11].

Catalysis [12] is a very extensive methodology based on UML, which
offers a different approach to using roles in the design phase. Catalysis uses
the concepts of frameworks to model component interactions, treating roles
in a manner unlike that of OORam. It includes a notion of types and type
models. A type corresponds to a role and a type model describes typical col-
laborations between objects of that type (i.e., the performance of a role in the
collaboration). New type models can be composed from those existing. Type
models can then be used to create components and frameworks. Unlike
OORam�s RoleClassifier, a type has no identity. It classifies a set of objects in
the same way as a class but unlike a class it provides no implementation. This
minor difference is the most important between the two notations apart from
naming and methodology issues (both approaches include a development
methodology).

UML in its default form is not sufficiently expressive to express the
concepts Catalysis and OORam use. The UML metamodel, however, is
extensible and both Catalysis and OORam use this to role-enable UML.

Using Roles at the Implementation Level

After a system has been designed, it must be implemented. Implementation
languages are typically on a lower abstraction level than the design. This
means that in the process of translating a design to an implementation, some
design information is lost (e.g., constraints such as cardinalities on aggrega-
tion relations). Relations between classes in UML are commonly translated
to pointers and references when a UML class diagram is implemented in, for
example, C++. This information loss is inevitable but can become a problem
if it becomes necessary to recover the design from the source code (for exam-
ple, for maintenance).

Role-Based Component Engineering 143

With roles, a similar loss of information occurs. In the worst case, roles
are translated into classes, which means that one class contains the methods
and properties of multiple roles. It is not possible to distinguish between the
roles on the implementation level. Fortunately, languages such as Java and
C++ can both be used to represent roles as first-class entities (even if, in the
case of C++, some simple tricks are required).

Native support for interfaces is provided in Java. More importantly,
interface extension and multiple inheritance of interfaces are supported.
Because of this, it is possible to create new interfaces by extending those exist-
ing and one class may implement more than one interface. This makes Java
very suitable for supporting role-based component engineering, since it is
easy to map the design level roles to implementation level interfaces.

The advantage of expressing roles in this way is that references to other
classes can be typed using the interfaces. Many errors can be prevented by
using type checking during compilation. In the case of Java, these types can
also be used during run time (i.e., two components that were developed sepa-
rately but implement roles from a particular role model can be plugged
together at run time). The run-time environment will use the type informa-
tion to permit only legal connections between components.

A problem with Java is that objects must often be cast in order to get
the correct role interface to an object. A common example is the collection
classes in Java, which by default return object references that need to be cast
before they can be used. C++ does not have this problem since in C++, tem-
plates can often be used to address this. A similar solution in the form of a
Java language extension is currently planned in an upcoming version of Sun�s
JDK [13].

C++ has no language construct for interfaces. Typically, the interface
of a class is defined in a header file. A header file consists of a preprocessor
and declarations. The contents are typically mixed with the source code at
compile time. This means that the implied �is-a� relation is not enforced at
compile time. Fortunately it is possible, as in Java, to simulate interfaces.
Interfaces can be simulated by using abstract classes containing only virtual
methods without implementation. Because C++ supports multiple inheri-
tance, these abstract classes can be combined as in Java. This style of pro-
gramming is often referred to as using mixing classes. Unfortunately, the use
of virtual methods (unlike Java interfaces) has a performance impact on each
call to such methods, which may make this way of implementing roles less
feasible in some situations.

Roles can also be mapped to IDL interfaces, which make it possible to
use multiple languages (even those not object oriented) in one system. An

144 Building Reliable Component-Based Software Systems

important side effect of using component frameworks such as CORBA,
COM, or JavaBeans is that in order to write components for them, IDL
interfaces must be defined and in order to use components, these IDL inter-
faces must be used. Adopting a role-oriented approach is therefore quite
natural in such an environment.

As an example, consider the JButton class in the Swing framework
commonly used for GUI applications in Java. According to the API docu-
mentation, this class implements the following Java interfaces: Accessible,
ImageObserver, ItemSelectable, MenuContainer, Serializable, SwingCon-
stants. These interfaces can be seen as roles, which this class can play in vari-
ous collaborations. The Serializable interface, for example, makes it possible
to write objects of the JButton class to a binary stream. How this is done is
class specific. However, the object responsible for writing other objects to a
binary stream can handle any object of a class implementing the Serializable
interface, regardless of its implementation.

A problem is that many roles are associated with a more or less default
implementation, slightly different for each class. However, imposing such
default implementation on a component together with a role is difficult.
Some approaches (e.g., the framelet approach discussed below) attempt to
address this issue. An approach, which appears to be gaining ground cur-
rently is the aspect-oriented, programming approach suggested by Kiczalez
et al. [14]. In this approach program fragments can be combined with an
existing piece of software, resulting in a new software system that has the pro-
gram fragments included in the appropriate locations in the original pro-
gram. However, these approaches have not yet evolved beyond the research
state and adequate solutions for superimposing [15] behavior associated with
roles on components are lacking.

Frameworks and Roles

Why roles are useful and how they can be used during design and imple-
mentation was described earlier. In this section we argue that using roles
together with object-oriented frameworks is useful. Object-oriented frame-
works are partial designs and implementations for applications in a particu-
lar domain [16].

By using a framework, the repeated reimplementation of the same
behavior is avoided and much of the complexity of the interactions
between objects can be hidden by the framework. An example of this is the
Hollywood principle (�don�t call us, we�ll call you�) often used in frameworks.

Role-Based Component Engineering 145

Developers write components that are called by the framework. The frame-
work is then responsible for handling the often complex interactions,
whereas the component developer has only to make sure that the component
can fulfill its role in the framework.

Most frameworks begin at a small scale, as a few classes and interfaces
generalized from a few applications in the domain [17]. At this stage the
framework is difficult to use because it has hardly any reusable code and the
framework design changes frequently. Inheritance is the technique usually
used to enhance such frameworks for use in an application. As the framework
evolves, custom components, which permit frequent usage of the framework,
are added. Instead of inheriting from abstract classes, a developer can now
use predefined components, which can be composed using the aggregation
mechanism.

Black-Box and White-Box Frameworks

The relations between different elements in a framework are shown in Figure
7.1. The following elements are shown in this figure:

• Design documents. The design of a framework can consist of class
diagrams (or other diagrams), written text, or merely an idea in the
developer�s head.

• Role interfaces. Interfaces describe the external behavior of classes.
Java includes a language construct for this. Abstract classes can be
used in C++ to emulate interfaces. The use of header files is not suf-
ficient because these are not involved by the compiler in the type
checking process. (The importance of type checking when using
interfaces was also argued by Pree and Koskimies [18].) Interfaces
can be used to model the different roles in a system (for example, the
roles in a design pattern). A role represents a small group of interre-
lated method interfaces.

• Abstract classes. An abstract class is an incomplete implementation of
one or more interfaces. It can be used to define behavior common to
a group of components implementing a group of interfaces.

• Components. As noted before, the term component is a somewhat
overloaded term and its definition requires care. In this chapter, the
only difference between a component and a class is that the API of
a component is available in the form of one or more interface

146 Building Reliable Component-Based Software Systems

constructs (e.g., Java interfaces or abstract virtual classes in C++).
In the same way as classes, components can be associated with other
classes. In Figure 7.1, we attempted to illustrate this by the �are
a part of � arrow between classes and components. If these classes
themselves have a fully defined API, we denote the resulting set of
classes as a component composition. Our definition of a component
is influenced by Szypersi�s views on this subject [5] (see also Chap-
ter 1). However, in this definition, Szyperski considers components
in general, whereas we limit ourselves to object-oriented compo-
nents. Consequently, in order to conform with this definition, an
OO component can be nothing else than a single class (unit of
composition) with an explicit API and certain associated classes that
are used internally only.

• Classes. Classes are at the lowest level in a framework. Classes differ
from components only in the fact that their public API is not repre-
sented in the interfaces of a framework. Typically, classes are used
internally by components to delegate functionality to. A framework
user will not see those classes since he or she deals only with
components.

Role-Based Component Engineering 147

Classes

Components

Abstract classes

Interfaces

Design documents

Are a part of

Inherit

Implement

Partially implement

Reflect

Figure 7.1 Framework elements.

The elements in Figure 7.1 are connected by labeled arrows, which indicate
the relations between these elements. Interfaces together with the abstract
classes are usually called the white-box framework. The white-box framework
is used to create concrete classes. Some of these classes are components
(because they implement interfaces from the white-box framework). The
components together with the collaborating classes are called the black-box
framework.

The main difference between a black-box framework and a white-box
framework is that in order to use a white-box framework, a developer must
extend classes and implement interfaces [17]. A black-box framework, on the
other hand, consists of components and classes that can be instantiated and
configured by developers. The components and classes in black-box frame-
works are usually instances of elements in white-box frameworks. Composi-
tion and configuration of components in a black-box framework can be
supported by tools and are much easier for developers to perform than com-
position and configuration in a white-box framework.

A Model for Frameworks

The decomposition of frameworks into framework elements in the previous
section permits us to specify the appearance of an ideal framework. In this
section we do so by specifying the general structure of a framework and com-
paring this with some existing ideas on this topic.

In [16], it is revealed that multiple frameworks, covering several subdo-
mains of the application, are often used in the development of an application
and that a number of problems surround the use of multiple frameworks in
an application:

• Composition of framework control. Frameworks are often assumed to
be in control of the application. When two such frameworks are
composed, synchronizing their functionality may be a difficult task.

• Composition with legacy code. Legacy code must often be wrapped by
the frameworks to avoid reimplementing existing code.

• Framework gap. The frameworks provided often do not cover
the full application domain. In such cases, a choice must be made
between extending one of the frameworks with new functionality,
creating a new framework for the desired functionality, or imple-
menting the functionality in the glue code (i.e., in an ad hoc, nonre-
usable fashion).

148 Building Reliable Component-Based Software Systems

• Overlap of framework functionality. The opposite problem may also
occur if the frameworks provided overlap in functionality.

These problems can be avoided to some extent by following certain
guidelines and by adhering to the model we present in this section.

We suggest that rather than specifying multiple frameworks, developers
should instead focus on specifying a common set of roles based on the com-
ponent collaborations identified in the design phase. This set of roles can
then be used to specify implementation in the form of abstract classes, com-
ponents, and implementation classes. Whenever possible, roles should be
used rather than a custom interface. Role interfaces should be defined to be
highly cohesive (i.e., the elements of the interface should be related to each
other) and small and general enough to satisfy all of the needs of the compo-
nents that use them (i.e., it should not be necessary to create variants of an
interface with duplicated parts).

Subsequently, components should use these roles as types for any dele-
gation to other components and to fully encapsulate any internal classes. Not
following this rule reduces the reusability of the components because this
causes implementation dependencies (i.e., component A depends on a spe-
cific implementation, namely, component B).

This way of developing frameworks addresses, to some extent, the
problems identified in [16]. Because role interfaces do not provide imple-
mentations, the problem of composition of framework control is avoided
although, of course, it may affect component implementations. However,
the smaller role interfaces should provide developers with the possibility of
either avoiding or solving such problems.

The problem of legacy code can be addressed by specifying wrappers
for legacy components, which implement interfaces from the white-box
framework. Because the other components (if implemented without creating
implementation dependencies) can interact with any implementation of the
appropriate role interfaces, they will also be able to interact with the wrapped
legacy components. Framework gap can be addressed by specifying addi-
tional role interfaces in the white-box framework. Whenever possible, exist-
ing role interfaces should be reused. Finally, the most difficult problem to
address is the resolving of framework overlap. One option may be to create
wrapper components, which implement roles from both interfaces, but in
many cases this may only be a partial solution.

The use of roles in combination with frameworks has been suggested
before. In [18] the notion of framelets is introduced. A framelet is a very small

Role-Based Component Engineering 149

framework (typically no more than 10 classes) with a clearly defined inter-
face. The general idea behind framelets is to have many, highly adaptable
small entities that can be easily composed into applications. Although the
concept of a framelet is an important step beyond the traditional monolithic
view of a framework, we consider the framelet concept to have one important
deficiency: It does not take into account the fact that there are components
whose scope is larger than one framelet.

As Reenskaug showed in [6], one component may implement roles
from more than one role model. A framelet can be considered an implemen-
tation of one role model only. Rather than the Pree and Koskimies [18] view
of a framelet as a component, we prefer a wider definition of a component,
which may involve more than one role model or framelet as in [6].

Another related technology is Catalysis, which was also discussed earlier
in this chapter. Catalysis strongly focuses on the precise specification of inter-
faces. The Catalysis approach would be very suitable for implementing
frameworks in the fashion we describe in this chapter. Note, however, that
Catalysis is a design-level approach whereas our approach can, and should,
also be applied at implementation time.

Dealing with Coupling

From previous research with frameworks in our research group we have
learned that a major problem in using and maintaining frameworks are the
many dependencies between classes and components. More coupling between
components means higher maintenance costs (McCabe�s cyclomatic com-
plexity [19], the law of Demeter [8]). We have already argued in the section
on encouraging the use of roles that the use of role interfaces minimizes cou-
pling and maximizes cohesiveness.

In this section we outline a few strategies for minimizing coupling. Sev-
eral techniques permit two classes to work together. What these techniques
have in common is that for component X to use component Y, X will need a
reference to Y. The techniques differ in the way this reference is obtained.
The following techniques can be used to retrieve a reference:

1. Y is created by X and then discarded. This is the least flexible way of
obtaining a reference. The type of the reference (i.e., a specific class)
to Y is compiled into a class specifying X but X cannot use a differ-
ent type of Y without editing the source code of X ′ class.

150 Building Reliable Component-Based Software Systems

2. Y is a property of X. This is a more flexible approach because the
property holding a reference to Y can be changed at run time.

3. Y is passed to X as a parameter of some method. This is even more
flexible because the responsibility of obtaining a reference no longer
lies in the X ′ class.

4. Y is retrieved by requesting it from a third object. This third object
can, for example, be a factory or a repository. This technique dele-
gates the responsibility of retrieving the reference to Y to a third
object.

A special case of technique 3 is the delegated event mechanism such as that in
Java [20]. Such event mechanisms are based on the observer pattern [21].
Essentially, this mechanism is a combination of the second and the third
techniques. Y is first registered as being interested in a certain event originat-
ing from X. This is done using technique 3. Y is passed to X as a parameter of
one of X �s methods and X stores the reference to Y in one of its properties.
Later, when an event occurs, X calls Y by retrieving the previously stored ref-
erence. Components notify other components of certain events and those
components respond to this notification by executing one of their methods.
Consequently the event is decoupled from the response of the receiving com-
ponents. This coupling procedure is referred to as loose coupling.

Regardless of how the reference is obtained, two types of dependencies
are seen between components:

1. Implementation dependencies. The references used in the relations
between components are typed using concrete classes or abstract
classes.

2. Interface dependencies. The references used in the relations between
components are typed using only interfaces. This means that, in
principle, the component�s implementation can be changed (as
long as the required interfaces are preserved). It also means that
any component using a component with a particular interface can
use any other component implementing that interface. This
means, in combination with dynamic linking, that even future
components, which implement the interface, can be used.

The disadvantage of implementation dependencies is that it is more difficult
to replace the objects to which the component delegates. The new object
must be of the same class or a subclass of the original object. When interface

Role-Based Component Engineering 151

dependencies are used, the object can be replaced with any other object
implementing the same interface. Interface dependencies are thus more flexi-
ble and should always be preferred to implementation dependencies.

In the model presented in this section, all components implement
interfaces from role models. Consequently, it is not necessary to use imple-
mentation dependencies in the implementation of these components. Using
this mechanism is therefore an important step towards producing more flexi-
ble software.

Summary

Roles and frameworks are already combined in many programming environ-
ments (e.g., Sun�s JavaBeans and Microsoft�s COM). In this chapter we have
argued why this is useful, how it can be performed during both design and
implementation, and how the idea of roles complements the notion of
frameworks.

We first looked for a motivation for role-based component engineering
in the form of a discussion of OO metrics. From this discussion we learned
that these metrics generally improve when roles are used. By using roles,
complexity is moved to a higher level in the inheritance hierarchy. This leads
to a higher level of abstraction and makes the component relations more
explicit (because roles are generally more cohesive than classes) while reduc-
ing coupling since implementation dependencies can be eliminated.

We then considered how roles could be incorporated in both design
and implementation and found that UML in itself is too limited but can be
extended in many ways (Catalysis and OORam) to support the role para-
digm. Roles can also be supported on the implementation level. This is par-
ticularly easy in a language such as Java but can also be supported in C++ if
the inconvenience of having extra virtual method calls can be accepted.

We then discussed how roles can help in the structuring of frameworks.
By providing a common set of role models (either OORam-style role models
or Catalysis-type models), interoperability between frameworks is improved
and common framework integration problems can be addressed.

References

[1] Mcllroy, M. D., �Mass Produced Software Components,� Proc. Report on Software
Engineering Conf., NATO Science Committee, 1968.

152 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[2] Brown, A. W., and K. C. Wallnau, �The Current State of CBSE,� Proc. Asia Pacific
Software Engineering Conf., Workshop on Software Architecture and Components, Los
Alamitos, CA, IEEE Computer Society, 1999.

[3] van Gurp, J., and J. Bosch, �Design, Implementation and Evolution of Object Ori-
ented Frameworks: Concepts & Guidelines,� Software Practice & Experience, Vol. 33,
No. 3, 2001, pp. 277�300.

[4] Meyer, B., Eiffel: The Language, Upper Saddle River, NJ: Prentice-Hall, 1992.

[5] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

[6] Reenskaug, T., Working with Objects, Manning Publications, 1996.

[7] Chidamber, S. R., and C. G. Kemerer, �A Metrics Suite for Object Oriented Design,�
IEEE Trans. on Software Engineering, Vol. 20, No. 6, 1994, pp. 267�271.

[8] Lieberherr, K., I. Holland, and A. Riel, �Object-Oriented Programming: An Objective
Sense of Style,� Proc. OOPSLA Conf., San Diego, CA, ACM Press, 1988.

[9] OMG, �OMG Unified Modeling Language Specification,� Report version 1.3, OMG,
June 1999.

[10] Fowler, M., and K. Scott, UML Distilled�Applying the Standard Object Modelling Lan-
guage, Reading, MA: Addison-Wesley, 1997.

[11] Reenskaug, T., �UML Collaboration Semantics�A Green Paper, http://www.ifi.uio
.no/~trygver/documents.

[12] D�Souza, D., and A. C. Wills, Objects, Components and Frameworks: The Catalysis
Approach, Reading, MA: Addison-Wesley, 1998.

[13] JavaSoft, �Add Generic Types to the Java Programming Language,� http://jcp.org/jsr/
detail/014.jsp.

[14] Kiczalez, G., et al., �Aspect Oriented Programming,� Proc. ECOOP, Jyväskylä, Finland,
Springer, 1997.

[15] Bosch, J., �Superimposition: A Component Adaptation Technique,� J. Information and
Software Technology, Vol. 5, No. 5, 1999 pp. 257�273.

[16] Bosch, J., et al., �Object Oriented Frameworks�Problems & Experiences,� in Object-
Oriented Application Frameworks, M. E. Fayad, D. C. Schmidt, and R. E. Johnson,
Eds., New York: John Wiley & Sons, 1999.

[17] Roberts, D., and R. Johnson, Patterns for Evolving Frameworks, Reading, MA:
Addison-Wesley, 1998.

[18] Pree, W., and K. Koskimies, �Rearchitecting Legacy Systems�Concepts and Case
Study,� Proc. First Working IFIP Conf. on Software Architecture�WICSA�99, San
Antonio, TX, Kluwer Academic Publishers, 1999.

Role-Based Component Engineering 153

[19] McCabe, T. J., �A Complexity Measure,� IEEE Trans on Software Engineering, Vol. 2,
1976.

[20] Sun Microsystems, �JavaBeans 1.01 Specification,� http://java.sun.com/beans.

[21] Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software, Read-
ing, MA: Addison-Wesley, 1995.

154 Building Reliable Component-Based Software Systems

Part 4:
Using Software Components

The main advantage of component-based system development is the reuse of
components when building applications. Instead of developing a new system
ab initio, components already existing are assembled to give the required
result. Systems are being increasingly constructed using off-the-shelf software
components but this is not a straightforward procedure. To incorporate a
component in a system successfully, a procedure of selection, composition, and
integration, and, finally, test and verification must be followed. One of the
basic difficulties is to obtain predictability. Can we predict the behavior of a
component in a system environment by simply knowing the behavior of the
component itself and the rules of composition?

This part discusses the procedures involved in the use of software com-
ponents: component evaluation, component assembly and integration, and
testing of component-based systems.

Chapter 8 argues against strongly entrenched misconceptions about
component evaluation. Where COTS components are to be used, there will
probably be several competing components from which to choose, and so,
naturally, a component selection decision is required. This has led to a perni-
cious myth in software engineering literature and in practice: that compo-
nent selection implies the necessity of a formal process for component
evaluation. A consequence of this myth is the emergence of numerous com-
ponent evaluation techniques that have little connection with, or relevance

155

to, current component-based design process. The authors demonstrate that
while components must be selected, it is assemblies of components that must
be evaluated. Component selection is thus only one part of a design proce-
dure, the objective of which is to select sets of components that work
together as required in an assembly.

Chapter 9 describes the process of component composition and inte-
gration. While software system composition and component integration may
be viewed as synonyms, they distinguish the two terms in order to elevate the
process of composition, which not only involves integration, or �wiring�
components together to create an assembly, but also the unification of the
assembly into a composed system. Failures associated with integration led to
the development of component standards and frameworks (e.g., EJB and
CORBA) to support integration through the imposition of constraints on
component form and interaction mechanisms. However many difficulties
can be encountered when building assemblies that result from mismatch
assumptions that lie deeper than the information available in syntactic com-
ponent interfaces.

The chapter describes the use of analysis to identify and eliminate
potential problems. Similar analysis techniques can also be used to assess the
properties of assemblies so that the assemblies can, themselves, be used as
components. The chapter concludes with a presentation of a possible solu-
tion in which systems are composed from well-understood preexisting com-
ponents in such a way that the composed system does what it is supposed to,
correctly, and as specified by the system commissioners.

In the last chapter of this part, Chapter 10, the authors discuss the
problem of system reliability and other nonfunctional characteristics when
using components. Even if trustworthy components are integrated, the
resulting system itself need not be trustworthy. As shown in Chapter 8, it is
not sufficient to evaluate just the component but instead the assembly or sys-
tem must be evaluated. This chapter stresses the same point by describing
how components must be tested in the system environment to ensure system
reliability. The author proposes the use of interface propagation analysis (IPA),
which propagates the corrupted states through the interfaces that connect
COTS software components with other types of components. Inverted
operational profile testing, in conjunction with IPA, is an effective means of
increasing the a priori knowledge of the reliability of a system.

156 Building Reliable Component-Based Software Systems

8
Dispelling the Myth of Component
Evaluation

Kurt Wallnau and Judith A. Stafford

Introduction

Software systems have become increasingly dependent on software compo-
nents supplied by the commercial marketplace, or what we will call COTS
software components. Given this, it is of no little concern to understand
what, if any, effect commercial software components have on software engi-
neering practices. There is certainly no shortage of opinion regarding this
question. In this chapter we critically examine the widely held opinion that
rigorous component evaluation is an essential element of CBSE practice. We
refer to this opinion as the myth of component evaluation.

Before turning to the main argument we must introduce some
terminology:

• Components are independently deployed software implementations.
Commercial components are components that are supported by ven-
dors motivated profit by incentives.

• Assemblies are aggregations of components that provide integrated
behavior. Assemblies may be acquired �off the shelf,� for example,

157

Web browsers and HTTP servers; but more often they are the prod-
uct of a design activity.

• Selection decisions arise when there are clearly identifiable alterna-
tives among discrete choices. Choosing one component over another
involves selection.

• Evaluation is the formalized process of quantifying human judgment
by assigning value to choices. All selection decisions, for exam-
ple, whether or not to read this chapter, involve assigning value
to choices; evaluation makes this process formal, explicit, and
quantifiable.

The myth of component evaluation is based on the reasonable supposi-
tion that a system is only as good as its components. That is, while it might
be possible for us to construct systems of poor quality from high-quality
components, it is unlikely to be the case that we can construct systems of
high quality from poor-quality components. More formally, this supposition
can be expressed as a logical argument:

• If the quality of software components (in some way) determines the
quality of the composed system,

• Then CBSE must provide techniques to reliably and repeatedly
select high-quality components.

It is difficult to disagree with either the premise or its conclusion�the
first seems true, and the second seems to follow. In fact, we accept this argu-
ment, which we call the argument for component selection, as entirely plau-
sible and, for all practical purposes, valid.

However, although we accept the argument for component selection,
we utterly reject the validity of the argument that invariably (it seems) fol-
lows. This new argument, the argument for component evaluation, uses the
previously established conclusion as its premise, and from this draws a new
(but, suspect) conclusion:

• If CBSE must provide techniques to reliably and repeatedly select
high-quality components,

• Then component evaluation is a distinguished CBSE activity, with
distinguished workflows and techniques.

158 Building Reliable Component-Based Software Systems

After all, what could be more reasonable than to assume that we must
first evaluate what we must select? That this argument has many adherents
can be seen from the literature on so-called �component evaluation practice�
[1�6]. Many techniques have been defined for building and using models,
called multiple-criteria decision aids, to evaluate components against explicit
norms, or criteria, and to select components that best satisfy these norms.
Multiple-criteria decision aids are mathematical models of decisions and
have been used in business, public policy, social sciences, and elsewhere to
help decision makers obtain insight into critical decisions.

We do not take issue with the usefulness of multiple-criteria decision
aids; in fact, we will show later in this chapter how these decision aids can
be used to select components. Rather, we reject the myth that component
evaluation is a distinguished CBSE activity. Although it may seem paradoxi-
cal at first, the need for component evaluation, as that notion is reflected
in the literature, does not follow from the need to select high-quality
components.

In this chapter we replace naïve component evaluation with a far more
general, and effective, notion: assembly evaluation. That is, COTS compo-
nents do not merely determine (in some way) the qualities of an assembly.
Commercial components also determine the design of the assemblies in
which they operate. Therefore, a designer is not confronted with a set of
component alternatives, but rather with a set of design alternatives. Each
such design alternative is an expression of one or more underlying compo-
nent selection decisions. It is not the components that must be evaluated, but
their assemblies.

As we will show in this chapter, the shift in focus from component
evaluation to assembly evaluation is not merely a rhetorical device, but is
rather a real and necessary consequence of the current state of commercial
software component technology. Moreover, this shift in focus also has pro-
found implications on the design process. In our judgment and experience,
the design process that emerges from this shift in emphasis is intellectually
rigorous, and better reflects the design processes that arise in the actual prac-
tice of CBSE.

In this chapter we first describe an abstract model for multiple-criteria
decision aids and instantiate this abstract model in the familiar form of a
multiple-attribute utility model. We then demonstrate why multiple-criteria
aids are insufficient for evaluating commercial software components, and
why we must focus our attention instead on evaluating design alternatives,
called assemblies. We next turn our attention to the implications of this shift
in emphasis on the design process itself. We discuss the relationship between

Dispelling the Myth of Component Evaluation 159

assembly evaluation and design search; this discussion establishes a practical
link between component selection and the design process. This, in turn, rees-
tablishes the role of multiple-criteria decision aids in both moderating the
design search and in selecting from among the design alternatives (i.e.,
assemblies) that emerge from this search. We then summarize the main
points and build a bridge to a later discussion of component composition.

Multiple-Criteria Evaluation

A considerable literature is associated with multiple-criteria decision theory.1

In this discussion we focus our attention on decision aids for solving decision
problems involving a fixed (and usually small) number of alternatives, a class
of decision problem often referred to as selection problems.2 Still, the litera-
ture is vast even within the confines of multiple-criteria selection aids, and
there is no hope of providing a comprehensive overview of this topic. None-
theless, a particular genus of decision aid has emerged in software engineer-
ing literature, and within this genus a variety of species have been concretely
(if not formally) defined and applied. We first describe the genus, and then
one particularly successful species. Our purpose in describing both genus and
species is to provide the reader with some facility in understanding the gen-
eral concepts that lie beneath multiple-criteria selection aids, and how these
concepts are realized in practical settings.

Genus: Preference Structure-Based Evaluation

The following description is an adaptation of an excellent overview of the
topic provided by Morisio and Tsoukias [5]. Their concern was to describe a
generic process framework within which a unique species of decision aids
could be custom made for particular selection problems. Our concern is
merely to extract the main features held in common by these species of deci-
sion aid:

160 Building Reliable Component-Based Software Systems

1. Also frequently called multiple-objective and multiple-criteria decision making.

2. In contrast, optimization problems involve an uncountable number of alternatives, with
each alternative defined as a specific configuration of variables and their values. An exam-
ple of an optimization problem is choosing a setting on a graphic equalizer (a piece of
audio equipment).

1. A preference structure. This is the model of the decision�for exam-
ple, the factors that govern the decision and judgments about these
factors.

2. An aggregation technique. This is the tool that generates interpreta-
tions of the model�for example, classifying or ranking
alternatives.

A preference structure emerges from the integration of a set of evalua-
tion attributes, their measures and measurement scales, and a preference rela-
tion. We discuss each in turn. We only briefly touch on aggregation
techniques, since the species of decision aids found in practice are essentially
indistinguishable in their aggregation techniques.

Evaluation Attributes

The result of a selection decision is an outcome. Sometimes the correlation of
decision and outcome is so strong that the distinction might seem trivial:
The outcome of choosing between chicken and fish for dinner is that we eat a
chicken or fish dinner. Sometimes, however, the correlation is not as clear:
The outcome of choosing a course of university study is, for example, future
opportunities in our careers and for self-fulfillment. Evaluation attributes
describe qualities that, in some way, distinguish the �goodness� of these out-
comes. It is worth emphasizing that the attributes are essentially descriptive
of the qualities of outcomes; they are only incidentally descriptive of the
qualities of the options themselves. Consider Figure 8.1, which describes
evaluation attributes for a hypothetical component selection decision.

Evaluation attributes are conventionally defined hierarchically,
although there is no need to do so. The root of the hierarchy refers to the
outcome, and the attributes are qualities that influence the outcome. Basic

Dispelling the Myth of Component Evaluation 161

Select

Vendor Component

Health Function UsabilityReputation

Composed
attribute

Basic
attribute

Qualitative
dependency

Figure 8.1 Evaluation attributes.

attributes are found at the frontier of the hierarchy; they are basic
because they are not decomposed. These are the observable qualities. Com-
posed attributes are found in the interior of the hierarchy. A composed
attribute qualitatively comprises other composed attributes or basic attrib-
utes. Because the composition is qualitative, it expresses human judgment.3

Measures and Measurement Scales

One of the qualities we require of decision aids, when they are applied to
engineering decisions, is repeatability. That is, the fact that evaluation attri-
butes are qualitatively composed, or express judgment, does not imply that
decisions based on these attributes are nonrepeatable. The basis for repeat-
ability lies in measurement. Consider Figure 8.2, which is based on the previ-
ous illustration. Each basic attribute has been assigned a measurement.

We can measure the functionality of a component by counting the
number of distinct menu items; we can also compute a usability measure on
the basis of the number of observed usability features, such as the �infinite
undo� feature. Basic attributes defined by empirical measures are called,
oddly enough, measured attributes. Although these measures may not be par-
ticularly meaningful, they must be repeatable. By virtue of this repeatability,
these measures are said to express something essential about a component
(i.e., about its �essence�); we therefore say that measured attributes enable
essential judgments. In contrast, the measures associated with a vendor are
based on judgment, and are therefore nonrepeatable. For example, we might
ask system administrators if the component vendor has a good reputation for
product support.4 Depending on which administrator we ask, we may get
entirely different answers. Unmeasured attributes lead to nonrepeatable
judgments.

Each measurement has a measurement scale. For example, the number
of menu items and the usability index would probably be expressed using
a nominal scale. Performance measures, for example, latency, might be

162 Building Reliable Component-Based Software Systems

3. In this context, attribute composition is, by definition, qualitative, not quantitative. A
composed attribute consisting only of quantitative dependencies would, in effect, be a
basic attribute possessing an observable, though aggregate, quality. For example, volume
might be quantitatively composed from height, width, and depth, but volume would
itself be a basic attribute.

4. We wish to be clear that it is certainly possible to enable essential judgments for vendor
health and reputation. In a practical vein, there is a trade-off among measurement rigor,
cost of measurement, accuracy of measurement, predictive qualities of the measurement,
and the criticality of the decision.

TEAMFL
Y

Team-Fly®

expressed in a ratio scale. We will not dwell on the topic of measurement
scales other than to observe that a failure to consider the effect of scale type
on operations performed on, and interpretations of, measures can seriously
compromise the effectiveness of a decision aid. Kontio describes clearly the
issues involved in selecting appropriate measurement scales for multiple-
criteria evaluation [3].

Preference Relation

We now leave the realm of measurement and enter into the realm of formal-
ized judgment. The basis for formalized judgment is the preference relation,
S. We use the notation S(x, y) to denote (x, y) ∈ S. Informally, S(x, y) states
that x is preferred to y. Examined more closely, S can be constructed from
three more primitive relations:

1. P(x, y), strict preference, states that x is strictly preferred to y.

2. I(x, y), indifference, states that neither x nor y is preferred.

3. R(x, y), incomparability, states that x and y are incomparable.

For example, we might define a preference relation S(x, y) = P(x, y) ∪
I(x, y) to mean that with respect to preference, two components are related to
one another either through strict preference or through indifference.

Dispelling the Myth of Component Evaluation 163

Select

Vendor Component

Health Usability FunctionalityReputation

Judgment Usability indexJudgment #Menu items

Nonrepeatable
judgment

Essential

Figure 8.2 Evaluation attributes revisited.

Preference Structure

A preference structure emerges when we express preference relations in terms
of attributes. In the following, we define the set of attributes to be G, and use
g ∈G to denote a particular evaluation attribute. Informally, we wish to
know whether one component is preferred to another with respect to some
particular attribute. If we could answer this question for each attribute, we
would have a basis for making repeatable selection decisions. Clearly, it is
advantageous to restrict G to only measured attributes if our ultimate objec-
tive is repeatability; however, this restriction is not strictly required by this
genus or the many kindred species of decision aids.

Here we part company with Morisio and Tsoukias only in our formali-
zation of this idea. We do so by redefining preference as a ternary relation
constructed from three primitive relations:

1. P(x, y, g), strict preference: x is strictly preferred to y with respect
to g,

2. I(x, y, g), indifference: neither x nor y is preferred with respect to g,
and

3. R(x, y, g), incomparability: x and y are incomparable with respect
to g,

where x and y are components and g is either a measured or unmeasured
attribute.

We can now explore ways of quantifying the judgment expressed by the
preference structure. For example, if g is a measured attribute, we might treat
it as a function whose domain is components that possess that measurable
attribute, and whose codomain is the measurement scale associated with the
attribute measure. If the measurement scale is numeric (for example, nomi-
nal or ratio scale), we might define a preference structure:

() () ()
() () ()
() () ()

S x y g P x y g I x y g

P x y g g x g y k

I x y g g x g y k

, , , , , ,

, ,

, ,

= ∪
↔ − ≥
↔ − <

for some arbitrary sensitivity threshold k, with ↔ denoting �if and only if.�
That is, x is preferred to y with respect to g if it outperforms y by at least k
units of performance in the scale of g; x and y are indistinguishable (that is,
indifferent) if the difference in their performance does not exceed threshold k.

164 Building Reliable Component-Based Software Systems

In the more general case, where g is either an unmeasured attribute, or
is a measured attribute lacking a numeric measurement scale (e.g., g is of
ordinal scale), we can define a further transform function t for the measure-
ment scale of g. That is, we merely replace each occurrence of g(x) with t(g(x))
in the above definition of S(x, y, g). In fact, we need not stop here. We can
also introduce a substitution rate rx, sometimes known as a weight or priority,
for example, r(t(g(x))). As we will soon see, this is precisely the approach
taken in multiple-attribute utility evaluation.

Incidentally, the role of the incomparability relation, R(x, y, g) should
now be clear. In cases where only one of x and y possess an attribute g, and
where the existence of this attribute is not itself a preference judgment, x and
y are, strictly speaking, incomparable. Oddly enough, this aspect of evalua-
tion is usually ignored in component evaluation literature.

Aggregation

It should be clear that the preference relation that emerges from even a mod-
erately complex selection decision could be quite large, given the combinato-
rial behavior of a preference structure. For example, if we let |S | denote the
cardinality of preference structure, that is, the set of triples S(x, y, g) con-
structed for a particular evaluation, then:

()S
m n

n
=

×
× −

!

!2 2
(8.1)

for n components and m attributes. So, for n = 5 components and m = 20
attributes, |S | = 200, which is quite a lot of data. An aggregation technique
produces an overall, or aggregate preference, for a preference structure, and
provides concise roll-up views of different aspects of a decision model.
Many aggregation techniques are available, and the decision of which to use
depends on the kinds of information we wish to extract from the preference
structure. An aggregation technique that generates a total ordering of com-
ponents in S may be different than one that partitions S into the singleton
set �best� and the remainder set �rest.� A small hint of the ingenuity possible
can be seen in Roy�s �outranking� approach and the associated decision
aids [7].

Despite this variety, the overwhelming majority of documented com-
ponent evaluation methods employs only simple variants of the aggregation
technique used in the multiple-attribute utility approach to evaluation. We
turn to this next.

Dispelling the Myth of Component Evaluation 165

Species: Multiple-Attribute Utility Evaluation

Although some might disagree, we assert that most industrial and academi-
cally published component evaluation methods are local variations of the
multiple-attribute utility species [1, 3, 4]. The simplest way to describe this
species is through its formulaic expression, in which each evaluation attribute
gk ∈ G is defined as the triple (wk, uk, gk):

()()U w u g xx k k k= ×∑ (8.2)

where Ux denotes the overall utility of component x, uk denotes a transform
function that maps the scale of attribute measure gk to a universal utility scale
uk, and wk denotes the substitution rate for gk. As we will illustrate below, U is
usually taken to be a simple interval scale, although a ratio scale is occasion-
ally found. Equation (8.2) aggregates the performance of a component with
respect to all of its evaluation attributes and produces an overall, aggregate
measure of utility for that component.

The overall aggregation function, that is, the aggregation function over
the entire preference structure, is a simple matter of �more is better.� The
preference structure most frequently associated with multiple-attribute util-
ity is as follows:5

() () ()S x y g P x y g I x y g, , , , , ,= ∪ (8.2a)

()P x y g U Ux y, , ↔ > (8.2b)

()I x y g U Ux y, , ↔ = (8.2c)

which states that x is preferred to y if it has a higher utility, and x and y are
indifferent if they have the same utility.

We should mention that there is no magic in defining utility functions,
although there may be some art (see the fine monograph by Edwards and
Newman [8]). Consider Figure 8.3, which illustrates a simple linear utility
transform function for usability on the left, and a bilinear transform function

166 Building Reliable Component-Based Software Systems

5. We are guilty here of oversimplifying the simplification. Not all multiple-attribute utility
approaches employ such a simple scheme of aggregation. The analytic hierarchy process
(AHP) requires pair-wise comparisons, leading to a complex aggregation process alluded
to in (8.1), as discussed earlier.

for functionality on the right (which reflects the judgment that more is not
always better). For nonmeasured attributes we simply express component
performance directly in utility scale.

As can be seen in Figure 8.3, there has been a steep drop-off in com-
plexity from the general concepts of multiple-criteria evaluation in the genus
to multiple-attribute utility species. For example, in place of many pair-wise
comparisons, each component can be independently evaluated. The resulting
simplicity is no doubt part of the appeal of multiple-attribute utility
approaches to evaluation. There are, however, many pitfalls lurking in this
simplicity. Among the assumptions underlying the validity of the multiple-
attribute utility approach are independence of evaluation attributes, inde-
pendence of selection decisions, and feasibility of all selection options. In
practical settings, all of these assumptions (and others as well) will almost cer-
tainly be violated.

We might make an effort to expand on these pitfalls and give tips
on how to avoid them. Ultimately, however, that would be missing the key
point. And that point is that the problem lies not with multiple-criteria
evaluation, but with the notion that component evaluation is itself funda-
mentally and irretrievably flawed. We now substantiate this claim, and then
set matters right.

Exploding the Myth of Component Evaluation

We must now demonstrate that while component selection is an important
activity in the design process, component evaluation is not. We emphasize

Dispelling the Myth of Component Evaluation 167

Usability index

Utility

100

0

u(usability)

Menu items

Utility

100

0

u(functionality)

Figure 8.3 Simple utility transform functions.

again that by evaluation we mean a formal, explicit, and quantifiable assign-
ment of value to choices. In the following argument, we assume that candi-
date components have found their way into a design decision-making
process. Clearly, for this to be so there must have been some earlier selection
decisions; and, naturally, some evaluative process governed these selections.
What we argue against is the assumption that these �evaluative processes�
are, of necessity, formal, explicit, and quantifiable. Instead, we argue that
whatever formal decision processes are at work would be more productively
applied to assemblies of components rather than individual components.

What follows is a logical argument that, while falling short of being
demonstrable, is certainly highly plausible. It conforms to our direct experi-
ence working on large-scale industrial projects, and to our post mortem
assessments of successful and unsuccessful industrial projects; in each of these
projects, the use of commercial software components was a significant ele-
ment of the system under development. To make this argument, we will
introduce several conceptual distinctions and the graphical and notational
devices to represent them.

Components, Assemblies, Properties, and Determinants

To begin, consider a simpler-than-real-world situation consisting entirely of
commercial software components and the systems assembled from these
components. In this world, the components exist prior to a development
activity, the system exists after development is complete. Now, we know that
one system will interact with other systems. It is often convenient to repre-
sent this idea through hierarchical abstraction, that is, as systems, subsystems,
sub-subsystems, and so forth.6 Because the scope of a system, or its relative
position in a hierarchy of systems, is not material to what follows, we will use
the term assembly in place of system. That is, commercial components are
assembled into assemblies.

We know that assemblies, once they exist, will exhibit a variety of prop-
erties: functionality, reliability, usability, and so forth. We know that
commercial components also exhibit properties: functionality, reliability,
usability, and so forth. Because assemblies do not exist independent of their
constituent components, we can be sure that the properties of an assem-
bly are determined, in some way, by the properties of the components

168 Building Reliable Component-Based Software Systems

6. In this view a �system of systems� is a system comprising a collection of systems, each of
which plays the role of a subsystem.

themselves. Although this observation seems quite obvious, is it surprising
that its consequences have not been fully understood (or, at least, reflected)
in the literature on component evaluation.

The situation as we have described it is depicted in Figure 8.4. Assem-
bly A, depicted as a dashed box, comprises components C1 and C2, depicted
as solid boxes. The assembly possesses a set of properties PA, and C1 and C2

possess sets of properties P1 and P2, respectively. We said above that PA is
determined, in some way, by P1 and P2. This vague notion is expressed by the
equation PA = D(P1, P2).

7

Dispensing with Inconsequential Component Evaluation

We can now inquire, informally, about how strongly correlated PA is with P1

and P2. If the correlation is exceedingly weak, then the selection of C1 in
favor of some other components that might have played the same role in A
can be made without too much regard for PA. That is, we could decouple the
selection decision for C1 from other decisions pertinent to the development
of A. We could, in this case, evaluate these competing components using
multiple-attribute utility evaluation. This is, however, a logical absurdity. To
say that P1 is only weakly determinant of PA is to say that the selection of C1 is
not of significant consequence to the design of A. If this is so, it makes no
sense to use rigorous evaluation technologies such as those described above
for inconsequential selection decisions. In fact, many such largely incon-
sequential selection decisions arise in practice, for example, selection of a

Dispelling the Myth of Component Evaluation 169

C1

C2

P1

P2

A

PA

PA 1 2= D(P , P)

Figure 8.4 Assembly properties determined by component properties.

7. It might be argued that PA is not wholly determined by P1 and P2, but may be deter-
mined by other factors as well. In particular, some p ∈ PA may be determined by an in-
teraction between C1 and C2, for example, �p = A can deadlock.� This is a subtle point
best deferred to a later discussion of component composition. Whether PA is wholly de-
termined by P1 and P2 or is determined by P1 and P2 and other factors is immaterial to
the present discussion, because in both cases, P1 and P2 play a role in determining PA.

graphical user interface control. In these situations the investment in rigor-
ous and repeatable evaluation would be senseless.

What remains, then, are situations in which the correlation between PA

and P1 (and P2) is sufficiently strong to be of interest to the designer of A, and
it is for these situations that the value of repeatable, formal component
evaluation should be manifest. To see why this is not the case, we must intro-
duce a distinction that is often ignored in evaluation literature: an abstract
interface versus a concrete (or �real�) interface.

Distinguishing Abstract from Concrete Interfaces

In Figure 8.4, P1 and P2 denote the properties of components. These proper-
ties constitute, in effect, the interfaces of these components. Here we are
going beyond the conventional idea of interface as �API� (application pro-
gramming interface); we use the term interface to encompass the visible prop-
erties of P1 and P2 that may determine PA. In our use of the term, the API of a
component is just one property (or set of properties) of that component.

When we specify evaluation attributes, we are, in effect, defining an
abstract interface; it is an interface of a hypothetical exemplar of the class of
component being selected. This exemplar interface defines the norms that
must be satisfied by real components, and our evaluation activity quantifies
the degree to which a component satisfies the norms set by its exemplar.

The situation as we now have it is depicted in Figure 8.5, in which C2 is
not shown to simplify the presentation. The premise of component evalua-
tion is that PA can be predicted on the basis of PE1 and PE2, the norms estab-
lished by hypothetical exemplars. That is, the specification of PE1 and PE2 is
germane to the design of A, and all that is required is that we demonstrate
that selected components satisfy these norms. Because this is just what we do
when we evaluate components, then it would seem that component evalua-
tion is instrumental in the design of A. This is the heart of the myth of com-
ponent evaluation.

170 Building Reliable Component-Based Software Systems

C1 P1

PE1

A PA

PA E1 E2= D(P , P)

satisfies

Figure 8.5 Satisfaction of normative abstract interface.

This notion of evaluation breaks down for two reasons, either of which
would be sufficient to demonstrate the fallacy of component evaluation and,
in addition, demonstrate the need for assembly evaluation in place of compo-
nent evaluation. So that the myth of component evaluation is fully exploded,
however, we elaborate both reasons: The first concerns the impact of partial
rather than complete satisfaction of exemplar interfaces, and the second con-
cerns the inherent incompleteness of exemplar interfaces.

Partial Satisfaction of Evaluation Attributes

As noted, PE1 defines an ideal interface. The task of evaluation is to select the
component that best satisfies this ideal. We can assume, therefore, that in
Figure 8.5, C1 was selected from among its competitors because it came clos-
est to satisfying PE1. To come close to a norm is not the same as equaling the
norm.8

In both theory and practice, then, an inevitable variance exists between
the norms specified by an abstract interface (the evaluation attributes) and
the concrete interface of candidate components. Satisfaction is not, there-
fore, an �all or nothing� affair�it is not merely a matter of acceptance test-
ing. Therefore, a more accurate representation of satisfaction is depicted in
Figure 8.6, which shows satisfaction as a condition of variance between a
concrete interface and its abstract counterpart.

Under the circumstances of Figure 8.6, it is hardly reasonable to expect
PA to be determined by PE1 and PE2 alone. Instead, it is determined by PE1 and
PE2, and also the variance of P1 and P2 from these ideals. Because each candi-
date will, in general, exhibit a different variance, we must expect the assembly
properties to likewise vary. It is plain, then, that the selection of a component
will influence the properties of the assembly�and will in effect result in a
unique assembly for each possible component selection decision. In this
situation, we cannot select a component without first selecting the assembly;
or, more correctly, assembly selection supplants component selection. The
problem of component selection, and therefore component evaluation, has
been shifted to assembly selection, and therefore assembly evaluation.

Dispelling the Myth of Component Evaluation 171

8. If a component is required to absolutely satisfy some evaluation attribute, then that
attribute imposes a feasibility requirement on the component. Such attributes impose
necessary conditions, not preference conditions, on components. As can be seen by ex-
amining (8.1), there is no place for necessary conditions in multiple-attribute utility
evaluation. (For example, what is the substitution rate of a necessity?)

Fundamental Exemplar Incompleteness

In practice, we will find that the concrete interface of a component will
include properties not found in any abstraction of that interface. It is widely
understood that �formal� interface specification languages lack the abstrac-
tions to describe all of the properties that may appear in a concrete interface
and that may be determinant of an assembly property (e.g., reliability, per-
formance, resource consumption, and so forth). Beyond that, we have time
and again discovered that component properties that we have been taught as
computer scientists to regard as �implementation details,� and therefore sub-
lingual to specifications, have in fact found expression (usually unhappy
expression) in the properties of their assemblies. Implementation details such
as �uses kernel threads instead of application threads� have been known to
cause assemblies to fail [9]. Whether such properties reflect implementation
details or not is arguable; what is not arguable is that they appear, by virtue of
their impact on assemblies, in the concrete interface of a component. This
lamentable situation is depicted in Figure 8.7.

In Figure 8.7, we have (artificially) partitioned the concrete interface of
C1 into to sets: P1, the properties which correspond to the exemplar, and PH1,
those which will be visible and determinant of PA but that are not found in

172 Building Reliable Component-Based Software Systems

C1 P1

PE1

A
PA

PA E1 1 E2 2= − −D(P P , P P)
P1 E1P⊆

sat

Figure 8.6 Accommodating variance from evaluation norms.

C1 P1

PE1

A

PA

PA H1 H2 E1 1 E2 2= − −D(P , P , P P , P P)
P1 E1P⊆

sat

PH1

PE1 H1P∩ = ∅

Figure 8.7 The inevitability of hidden properties.

TEAMFL
Y

Team-Fly®

PE1. We say this situation is lamentable because the state of the art in software
component technology, to say nothing of the state of the practice in the com-
mercial component marketplace, is such that PH1 can be a large set. Moreo-
ver, PH1 is usually hidden from view until an unexpected emergent property
in PA highlights its existence. It is preposterous to ignore these properties sim-
ply because we lack the language to express them or the foresight to antici-
pate them. And this is precisely what the myth of component evaluation
would have us do.

It is apparent from a study of function D in Figure 8.7 that we can no
longer sustain the idea that components can be selected independently of
assembly selection and that, in fact, a more reasonable approach is to evaluate
assemblies and treat component selection as a �side effect� of the design
process. Moreover, the presence of a hidden concrete interface (PH1) provides
clues as to the nature of this design process. We turn to this next.

Assembly Evaluation and Search

Having taken the trouble to dispel the myth of component evaluation, we
should be careful to replace it with something authentic. Ignoring for the
moment the existence of the hidden interface, we might be inclined to con-
clude that we need simply to shift the focus from component evaluation to
assembly evaluation. That is, in place of hypothetical component exemplars
and their abstract interfaces, we specify hypothetical assembly exemplars with
their abstract interfaces. Unfortunately, things are not so simple, because
assemblies may be, and most likely will be, composed into higher level assem-
blies. Thus, what appears as an assembly at one level of abstraction will be a
component at another. If we are not careful, we will simply reintroduce the
myth of component evaluation elsewhere in a new form.

This is more obvious when we consider the hidden interface. What this
interface represents, in fact, is the set of unknown but potentially determi-
nant properties of a component. From the designer�s point of view, another
name for this might be the risk potential of a component. The risk potential
of an assembly based on that component is, of course, positively correlated
with the magnitude of the hidden interface of that component. This is an
important clue that leads us to conclude that the evaluation of assemblies will
be linked, in some way, to evaluating the magnitude of the hidden inter-
face�that is, to evaluating the risk presented by a component and therefore
to an assembly on which it is based.

Dispelling the Myth of Component Evaluation 173

How can the magnitude of the hidden interface be assessed? Consider
that the hidden interface consists of both known unknowns, that is, known
risks, and unknown unknowns, or unknown risks. A known risk might be an
unanticipated performance problem with a component; the property is
known and is of itself not a risk, but its mitigation may be uncertain, and this
uncertainty presents the risk. An unknown risk is what the performance
problem was prior to its discovery. It is obviously problematic to assess the
magnitude of a hidden interface (that is, the nature of unknown unknowns)
beyond this simple rule of thumb: Complex components will probably have
larger hidden interfaces than simple components.

Therefore, the criteria for selecting an assembly (and its components)
cannot be the magnitude of the hidden interface. We must adopt a more
dynamic view of assembly evaluation�one that accommodates the process
of discovering the hidden interface. In brief, we must find a way to incor-
porate assembly evaluation into a discovery process. To that end, it is
worthwhile to ponder the following quotation from the essay �The Science
of Design� by Herbert Simon, a man who knew a thing or two about
design [10]:

Design procedures in the real world do not merely assemble problem
solutions from components but must search for appropriate assemblies.
In carrying out such a search, it is often efficient to divide one�s eggs
among a number of baskets�that is, not to follow out one line until it
succeeds completely or fails definitively, but to begin to explore several
tentative paths, continuing to pursue a few that look most promising at
a given moment. If one of the active paths begins to look less promising,
it may be replaced by another that had previously been assigned a lower
priority.

If we believe Simon, and if we accept the logic of the argument just pre-
sented, we are led to the conclusion that assembly evaluation involves at least
two aspects. In one aspect, we view the assembly as a point of departure for
further design exploration. We evaluate this aspect of assemblies in terms of
the value (in terms of reducing risk, for example) that we assign to the search
that will follow from that point. In another aspect, we view the assembly as a
destination, perhaps a design, or a prototype, or a full-fledged implementa-
tion. We evaluate this aspect of assemblies in the more familiar terms of satis-
faction of some abstract, normative assembly interface.

As we will see in the next section, multiple-criteria evaluation can play a
positive role in both aspects of evaluation.

174 Building Reliable Component-Based Software Systems

Multiple-Attribute Evaluation and Beyond

We have almost reached the terminus of our argument, not because there is
no more to be said, but because what must follow lies in the realm of design
process, which has a significantly broader scope than the putative subject of
this chapter, component evaluation. This was, of course, our objective. How-
ever, some readers may have inferred that we believe that multiple-criteria
evaluation is unsuitable for, or irrelevant to, component-based design. We
did not mean to imply this. While we hedge our bets on the usefulness of
multiple-attribute utility, other forms of multiple-criteria evaluation appear
to play a role in the science of design.

Figure 8.8 depicts a fragment of a design search space drawn from the
extended case study of component-based design presented by Wallnau et al.
[11]. At the risk of oversimplification, we say that each of the boxes repre-
sents a stable assembly9�they constitute a set of design decisions that address
one or more design risks and move the design forward toward the goal of
establishing that at least one assembly is feasible. Each assembly has associ-
ated with it one or more feasibility attributes (not shown), whose values are
defined in strong three-value logic: true, false, or unknown. The design
process terminates at a leaf when all feasibility attributes are evaluated as true.
In this illustration, the design (search) process is mediated by a multiple-
criteria evaluation function expressed as logic equations. While this is not
multiple-criteria evaluation in the genus described earlier, it is a multiple-
criteria process nonetheless.

There is also room for other forms of multiple-criteria evaluation.
Although we did not do so in [11], we could have applied architecture-based
evaluation methods to each assembly depicted in Figure 8.8. That is, each

Dispelling the Myth of Component Evaluation 175

Web:Ensemble

applet:Ensemble

servlet:Ensemble

primary

contingency

contingency

JavaProtectionDomains:Ensemble

NetscapeKeyDatabase:Ensemble

wait

repair

Web:EnsembleWeb:Ensemble

applet:Ensembleapplet:Ensemble

servlet:Ensembleservlet:Ensemble

JavaProtectionDomains:Ensemble

NetscapeKeyDatabase:Ensemble

Figure 8.8 Fragment of design (assembly) search space.

9. In Figure 8.8, �ensembles� in this illustration are equivalent to �assemblies.�

node in Figure 8.8 has associated with it a more detailed view containing a
set of components and their interactions. The resultant �component and
connector� views are amenable to a variety of architecture-based analysis
techniques [1, 12, 13]. These techniques may offer greater insight into the
performance of particular assemblies with respect to key attribute goals than
could be obtained by a preference-structure-based evaluation method. The
point here is to recognize component selection as being performed in the
context of design selection, and to understand and accept that the use of
components does not require a separate and distinct form of design evalua-
tion, a myth we have attempted, in this chapter, to expunge from our con-
ception of CBSE.

Summary

In exposing (and, we hope, exploding) the myth of component evaluation,
we have not succeeded in simplifying matters. Instead, we have made it
apparent that the selection of components involves an evaluative activity no
less difficult than that which arises in the evaluation of design alternatives.
We have shown that, in fact, component selection is subjunctive to assembly
selection and therefore to assembly evaluation, and that assembly evaluation
is bound up with both the design process and its end products. However, if
we have not simplified matters, we have at least replaced a mythical concep-
tion of component evaluation with something authentic.

References

[1] Balsamo, S., P. Inverardi, and C. Mangano, �An Approach to Performance Evaluation
of Software Architectures,� Proc. Workshop on Software and Performance, Santa Fe, CA,
1998.

[2] Jeanrenaud, A., and P. Rmanazzi, �Software Product Evaluation Metrics: Methodologi-
cal Approach,� Software Quality Management II. Building Quality into Software 2,
Vol. 776, 1995, pp. 59�69.

[3] Kontio, J., �A Case Study in Applying a Systematic Method for COTS Selection,�
Proc. 18th Int. Conf. on Software Engineering, Berlin, Germany, IEEE Computer Soci-
ety, 1996.

[4] Min, H., �Selection of Software: The Analytic Hierarchy Process,� Int. J. of Physical
Distribution and Logistics Management, Vol. 22, No. 1, 1992, pp. 42�52.

176 Building Reliable Component-Based Software Systems

[5] Morisio, M., and A. Tsoukias, �IusWare: A Methodology for the Evaluation and Selec-
tion of Software Products, IEE Proc. Software Engineering, Vol. 144, No. 3, 1997,
pp. 162�174.

[6] Rowley, J. E., �Selection and Evaluation of Software,� ASLIB Proc., Vol. 45, 1993,
pp. 79�81.

[7] Roy, B., �The Outranking Approach and the Foundations of the ELECTRE Meth-
ods,� Theory and Decision, Vol. 31, Dordrecht, The Netherlands: Kluwer, 1991,
pp. 49�73.

[8] Edwards, W., and J. R. Newman, �Multiattribute Evaluation,� Series on Quantitative
Applications in the Social Sciences, Thousand Oaks, CA: Sage Publications, 1982.

[9] Hissam, S. A., and D. Carney, �Isolating Faults in Complex COTS-Based Systems,�
J. of Software Maintenance: Research and Practice, Vol. 11, No. 4, 1999, pp. 183�199.

[10] Simon, H. A., The Sciences of the Artificial, 3rd ed., Cambridge, MA: The MIT Press,
1996.

[11] Wallnau, K. C., S. A. Hissam, and R. C. Seacord, Building Systems from Commercial
Components, Reading, MA: Addison-Wesley, 2001.

[12] Bertolino, A., et al., �An Approach to Integration Testing Based on Architectural
Descriptions,� Proc. 1997 Int. Conf. Engineering of Complex Computer Systems, Lake
Como, Italy, IEEE Computer Society, 1997.

[13] Kazman, R., �The Architecture Tradeoff Analysis Method,� Report CMU/
SEI-98-TR-009, Software Engineering Institute, Carnegie Mellon University, 1998.

Dispelling the Myth of Component Evaluation 177

.

9
Component Composition and
Integration

Judith A. Stafford and Kurt Wallnau

Introduction

Software systems are composed hierarchically using components that might
themselves be systems. These subsystem components might have been devel-
oped in a separate organization and might even have been developed with a
specific purpose in mind unrelated to their current usage context. CBSE
involves connecting sets of components to create a software system capable of
performing some useful function. Component integration is the mechanical
task of �wiring� components together by matching the needs and services of
one component with the services and needs of others. Integration alone is not
sufficient to assure the quality of many details of run-time interactions in
software systems composed of assemblies of components.

Component integration and composition are not synonymous. All
assemblies are potentially subsystems. There must therefore be a means of
determining the properties of assemblies in order to check their run-time
compatibility. Component composition supports this type of reasoning; it goes
one step further than integration in that the result of component com-
position is a component assembly that can be used as part of a larger

179

composition. Assemblies must be designed in such a way that they can live in
a variety of contexts. Once a component assembly has been created it must
be possible to reason about how the assembly will affect the systems in which
it is used and also how it is affected by these systems.

Component composition is based on the ability to assign properties to
the whole based on the properties of the parts and the relationships between
the parts. Composition provides a foundation for reasoning about emergent
behavior. It is an engineering task beyond the mechanics of wiring compo-
nents together. In analogy, consider the incompatibility of connecting a
very powerful audio amplifier to low-wattage speakers. The speakers will
plug in with no problem and at low volumes will probably function
acceptably, but if the volume is raised the speakers will most likely be
destroyed.

Component integration is based on syntactic information such as
method signatures and, when available, supplementary information supplied
in a component�s interface. Supplementary information will most likely
include information such as a description of the function to be performed
and types of exceptions thrown. While this information is certainly helpful it
is not sufficient for reasoning about properties of the resulting assembly and
does not support composition. Indeed, it is often the case, as in the stereo
example above, that components whose interfaces are syntactically compati-
ble, in fact, exhibit undesirable behavior when used together. Thus, composi-
tion is distinguished from integration primarily by the fact that composition
also focuses on emergent assembly-level behavior, making certain that the
assembly will perform as desired and that it could be used as a building block
in a larger system. The constituent components must not only plug together,
they must play well together.

In the previous chapter we described a method for identifying and
selecting among feasible design alternatives. In this chapter we look at a dif-
ferent aspect of component-based software development. We describe com-
ponent mismatch and the mechanisms employed by component
technologies to help developers plug components together. We then intro-
duce a new paradigm for composing software components, which we call
predictable assembly from certifiable components (PACC) and describe
prediction-enabled component technologies (PECTs), our approach to bridging
the integration�composition gap. PECTs support building assemblies that
compose software components into assemblies that predictably meet quality
requirements.

180 Building Reliable Component-Based Software Systems

Component Integration

Integrating components can be illustrated as a mechanical process of wiring
components together. It is rarely the case that two components are perfectly
matched so the process generally involves more than simply finding two
components, which together perform the desired tasks, and then connecting
their APIs. It may be necessary to create adaptors to translate data types or to
manage control issues. Garlan, Allen, and Ockerbloom [1] report on a vari-
ety of difficulties they encountered when developing the Aesop system,
which made use of components obtained from outside sources. Two of the
difficulties were integration mismatches that prevented the plugging together
of components. One mismatch was caused by the incompatibility of the
event-based communication mechanisms used in two of the constituent
tools; the second was caused by two tools having different assumptions about
the form in which data was to be exchanged. The first mismatch was resolved
by reverse engineering and the modification of one of the tools; the second
was resolved by the development of a translator and the wrapping of the
components. Adaptations such as these not only take a considerable amount
of time and effort, but they require a great deal of knowledge about the inter-
nals of the tools being used. And, in the end the resulting system is complex,
difficult to maintain, and functionally compromised.

Component-based system developers have been wiring, prototyping,
tweaking, and tuning components into assemblies for years. As generally
happens in industries that involve the fitting of parts together, standardiza-
tion was recognized as a necessary restriction to simplify the building process.
Integration mismatches have, to a large degree, been ameliorated by the
introduction of component models such as EJB, CORBA, and COM. Com-
ponent models provide standards for components and a framework into
which components can be plugged. The component standard defines what it
means to be a component in the particular model; generally speaking, the
standard describes the syntax for interfaces and may specify methods that
components must implement. A framework defines a set of protocols and
services that supports communication between components. Component
models enforce a structure on the design of component-based systems that
not only makes them easier to build but also easier to maintain over time.
Although the introduction of component models has enabled component-
based developers to plug components together much more easily than in the
past, it is still difficult to get them to play well together.

Component Composition and Integration 181

From Integration to Composition

The advent of component standards and frameworks has moved component
technology many steps forward so that wiring problems are becoming a diffi-
culty of the past. What is emerging in their place is the more important prob-
lem of predicting the emergent behavior of assemblies. The problem of
reasoning about how well components will play together is the most impor-
tant problem facing component-based system developers today. It is in
resolving this problem that CBD will make the transition from integration to
composition. The value of a component marketplace will only be realized
when components can be predictably and reliably purchased and used to
build larger and more complex systems by organizations that specialize in
composition rather than programming.

The desire to move beyond integration to composition is hampered by
the fact that component interfaces do not provide enough information to
predetermine the consequences of using two components together, let alone
a group of components. An interface normally provides enough information
to determine if the component can be wired to some other component. For
example, the CORBA IDL provides syntax for object encapsulation, which
uses language-independent specification of method signatures and can be
embodied by a variety of objects. What is missing is a parallel form of specifi-
cation that supports reasoning about emergent properties of the assemblies in
which it is used.

This current view of component interfaces has proved to be inade-
quate. Integration decisions based on this level of information alone have
often resulted in assemblies with unexpected behavior or of unacceptable
quality. The reason for this is the lack of concern with the architecture of the
assembly and its effects on the behavior of individual components. In addi-
tion to the wiring problem cited in the previous section encountered by Gar-
lan et al. [1] while developing Aesop, they experienced a variety of other
serious difficulties in getting the components to work together. Various
aspects of their experience are likely to resonate with anybody who has
attempted to build a component-based system. As mentioned above, two of
the problems prevented the components from being plugged together. The
remaining problems were related to their inability to build the system as they
intended because of the assumptions components made about the environ-
ment in which they would be used.

In their report, Garlan et al. [1] describe four classes of structural
assumptions that came into play during the integration of their system: the
nature of components (infrastructure, control model, and data model), the

182 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

nature of connectors (protocols and data models), the architecture of the
assemblies (constraints on interactions), and the run-time construction
process (order of instantiations). By the time they had a working version of
Aesop�after working around the integration mismatches and component
assumptions�it was bloated, difficult to maintain, and suffered from poor
performance.

Inverardi, Wolf, and Yankelevich [2] describe the use of formal archi-
tectural description and analysis to uncover what they call behavioral
mismatch among components used to build the compressing proxy. We dis-
tinguish this type of problem, as well as most of the problems encountered by
Garlan et al. [1], from component mismatch. Most of these difficulties did
not prevent the plugging of the components together�what we call compo-
nent mismatch�but rather prevented the system from meeting its func-
tional and extrafunctional requirements. To make this distinction clear, we
contrast the integration mismatch encountered by Garlan et al., which pre-
vented them from plugging components together because of the use of differ-
ent data formats, with the behavior of the compressing proxy, discussed in
the next paragraph, which exhibited an undesirable emergent property�a
potential for deadlock. In the latter case, there was no problem with wiring
the components together. The use of sophisticated analysis techniques pro-
vides the means of predicting the potential for run-time failure.

The compressing proxy was designed to improve performance of Web
browsers through the transparent compression and decompression of trans-
mitted data. The mismatch allowed the proxy to deadlock�not a positive
feature for an assembly designed to improve performance. Figure 9.1 contains
a graphical representation of the compressing proxy. Data to be transmitted
over the Web enters the proxy by way of the filter on the left. It is then fed
into another filter that acts as an adaptor that supports the use of the GZIP
application, which performs data compression. Careful analysis revealed the
potential for deadlock because the adaptor blocked while supplying data to
GZIP. The adaptor could not then receive any compressed data until all the
data had been read by GZIP. GZIP was not allowed to offload zipped data
over connection 3 until all the data had been read from the adaptor via con-
nection 2. This meant that any attempt to process a file larger than the capac-
ity of the GZIP buffer would cause the system to deadlock. Based on this
finding the adaptor was replaced by a nonblocking version and the proxy
functioned as intended. This is not a mismatch of components. In fact, under
many circumstances the proxy will function correctly. It is a mismatch with
the requirements of the system. If the requirements are changed to restrict
transmission to small enough files, the potential for deadlock disappears.

Component Composition and Integration 183

The lesson learned from this and the experiences of Garlan et al. [1] is
that careful analysis of the assumptions components make about the context
in which they are to be used can help prevent design errors and result in
building the right product faster. Garlan et al. point out:

Architectural mismatch stems from mismatched assumptions a reusable
part makes about the structure of the system it is to be part of. These
assumptions often conflict with the assumptions of other parts and are
almost always implicit, making them extremely difficult to analyze
before building the system [1].

A component must express such assumptions as buffer size or expected
data formats that it makes about any environment in which it is to be used
and it must also be able to express its effects on these environments. Without
an expression of behavioral properties it is not possible to encapsulate com-
ponent behavior because it is not possible to encapsulate something that
cannot be represented in the encapsulation mechanism. This lack of expres-
siveness results in component property leaks, which may in turn become
sources of implicit component dependency. Unspecified, but real, assump-
tions may obscure the contribution that a component makes to some emer-
gent property of the assembly.

184 Building Reliable Component-Based Software Systems

Filter FilterPseudo filter
(Adaptor)

gzip

1

2 3

4

Compressing proxy

Process

Component

Channel

Function call interface

UNIX pipe interface

Figure 9.1 The compressing proxy. (From [3] and supplied by Alexander L. Wolf.)

The success of a component marketplace depends on having trustwor-
thy claims for component properties and global analysis techniques to sup-
port reasoning about the emergent properties of assemblies before component
acquisition and integration [4�7].

Predictable Assembly from Certifiable Components

We are studying approaches to ensuring that assemblies of components play
together as expected and that the properties of assemblies be made explicitly
available to support hierarchical system composition. Informally, composi-
tional reasoning posits that if we know something about the properties of
two components, c1 and c2, then we can define a reasoning function f such
that f(c1, c2) yields a property of an assembly comprising c1 and c2.

Many would argue that compositional reasoning is the holy grail of
software engineering. This argument usually has as its unspoken premise that
only a fully formal and rigorous reasoning function is acceptable. If we follow
this premise, then progress will indeed be slow. Instead, we suggest that it is
possible to adopt a more incremental approach involving many levels of for-
mality and rigor. To begin, we suggest that three interlocking questions must
be answered:

1. What types of system quality attributes are developers interested in
predicting?

2. What types of analysis techniques support reasoning about these
quality attributes, and what component property values do they
require as input parameters?

3. How are these component properties specified, measured, and
certified?

These three questions are interdependent. The types of compositional rea-
soning that can be accomplished ultimately depend on the types of compo-
nent properties that can be measured. Conversely, it is the reasoning
techniques that determine what component properties are material in the
first place. Therefore, the answers to these three questions, which are mutu-
ally informing (and constraining), will provide a foundation for a sustainable
improvement in predicting the properties of component assemblies and for
confidence in the software components that make up these assemblies. How-
ever, answering these questions will be an ongoing process. New prediction
models will require new or improved component measures, which will in

Component Composition and Integration 185

turn lead to more accurate prediction, and to a demand for better or addi-
tional prediction models, more precise component measures, and so forth.

Prediction-Enabled Component Technology

A prediction-enabled component technology consists of a component model
and an associated analysis model. Many analysis techniques support reason-
ing about emergent properties of assemblies. These techniques will influence
the design of component models, depicted by the lower arc in Figure 9.2; or
analysis models might be developed or adapted for application to specific
component models as depicted by the upper arc in the figure. The PECT
approach is based on two fundamental premises: first, that system quality
attributes are emergent properties that are associated with patterns of interac-
tion among components, and, second, that software component technology
provides a means of enforcing predefined and designed interaction patterns,
thus facilitating the achievement of system quality attributes by construction.

As discussed in the �Component Integration� section, software compo-
nent models provide a means of composing systems from precompiled parts.

186 Building Reliable Component-Based Software Systems

Component
model

Analysis
model

Component
model

Analysis
model

Assumptions

Interpretation

PECT

not connected
specializes
influences

Figure 9.2 Prediction-enabled component technologies.

Component models have been developed to support integration of compo-
nents that are created in isolation, perhaps in heterogeneous environments
and languages. The assumption is that a component makes known, through
its interface, all the information required to use (and deploy) its services [8].
However, current component models do not support reasoning about emer-
gent system quality attributes (e.g., performance, modifiability, reliability,
and safety). Instead, engineers must wait until the components have been
acquired, integrated, and the system as a whole benchmarked, to determine
whether a system meets its quality attribute goals.

Software architecture provides a means of analyzing system designs with
respect to quality attributes. Indeed, a premise of software architecture is that
emergent properties�and our ability to reason about them�adhere to par-
ticular, recurring structural patterns. These structural patterns are often
referred to as architectural styles, and are usually defined as sets of component
and connector types and their allowable patterns of interactions [3, 9, 10].
Thus, a synchronizing concurrent pipeline style might be appropriate for sys-
tems with stringent latency requirements, since that style supports rate mono-
tonic analyses (RMAs) [11]. On the other hand, a three-tiered style might be
appropriate for systems in which modifiability of business logic is of para-
mount concern.1 Software architecture, however, as yet has had no apprecia-
ble impact on software component technology.

The objective of our work is to demonstrate how component technol-
ogy can be extended to support compositional reasoning. To do this, PECT
integrates ideas from research in the areas of software architecture, com-
ponent certification, and software component technology. The ideas of
architecture-based analysis, component certification, and architectural style
are not new but their integration is.

Architecture-Based Analysis

Software architecture-based analysis provides a foundation for reasoning
about system completeness and correctness early in the development process
and at a high level of abstraction. To date, research in the area has focused
primarily on the use of ADLs as a substrate for analysis algorithms. The
analysis algorithms that have been developed for these languages have, in
general, focused on correctness properties, such as liveness and safety [2,
12�14]. However, other types of analysis are also appropriate for use at the
architecture level and are currently the focus of research projects. Examples

Component Composition and Integration 187

1. We rely on the evocative names of these styles to convey the main point.

include system understanding [15, 16], performance analysis [17, 18], and
architecture-based testing [9, 19].

One still unresolved challenge within architecture technology is the
bridging of the gap between architectural abstractions and implementation.
Specification refinement is one approach that seeks to prove properties of the
relationship between abstract and more concrete specifications, across either
heterogeneous design notations [20] or homogeneous notations [21]. We are
currently exploring an approach to proving properties of concrete specifica-
tions or constructive models that involves identifying mappings between
analytic models and constructive models in order to produce reasoning-
enabled component technologies. Analytic models capture the fundamentals
of compositional reasoning techniques: assumptions of the algorithms used
as well as the algorithms themselves.

Component Certification

The National Security Agency (NSA) and the National Institute of Stan-
dards and Technology (NIST) used the trusted computer security evaluation
criteria (TCSEC), a.k.a., the �Orange Book�2 as the basis for the Common
Criteria,3 which defines criteria for certifying security features of compo-
nents. Their effort was not crowned with success, at least in part because it
defined no means of composing criteria (features) across classes of compo-
nent. The Trusted Components Initiative (TCI)4 is a loose affiliation of
researchers with a shared heritage of experience in the formal specification of
interfaces. Representative of the TCI is the use of pre- and postconditions on
APIs [22]. Quality attributes, such as security, performance, availability, and
so forth, are beyond the reach of these assertion languages. Voas and Payne
have defined rigorous mathematical models of component reliability based
on statistical approaches to testing [23], but have not defined models of com-
posing reliability measures. Commercial component vendors are not inclined
to formally specify their component interfaces, and it is not certain that it
would be cost effective for them to do so. Shaw observed that many features
of commercial components are discovered only through use. She proposed
component credentials as an open-ended, property-based interface specifica-
tion [24]. A credential is a triple (attribute, value, knowledge) that asserts a
component has an attribute of a particular value and that this value is known

188 Building Reliable Component-Based Software Systems

2. For more information, go to http://www.radium.ncsc.mil/tpep/library/tcsec/ index.html.

3. For more information, go to http://csrc.nist.gov/cc/.

4. For more information, go to http://www.trusted-components.org/.

through some means. Credentials reflect the need to address component
complexity, incomplete knowledge, and levels of confidence (or trust) in
what is known about component properties, but do not go beyond nota-
tional concepts. Therefore, despite many efforts, fundamental questions
remain. What does it mean to trust a component? Still more fundamental:
What ends are served by certifying (or developing trust) in these properties?

Architectural Styles and Component Models

Architectural styles are sets of component types and constraints on how
instantiations of those types can be interconnected. Component technology
provides the means of realizing architectural-style constraints in software
and, in fact, the concept of architectural style is quite amenable to a
component-based interpretation [14]. In our view, a component model can
play a role in assembly composition analogous to that played by structured
programming languages and compilers in imperative programming�it lim-
its the freedom of designers (programmers) so that the resulting design (pro-
gram) is more readily analyzed. In one of many possible examples, the EJB
specification defines component types, such as session and entity beans,5 and
constraints on how they interact with one another, with client programs, and
with the run-time environment. When viewed in this way it is clear that EJB
specifies an architectural style.

Prediction-enabled component technologies exploit the relationship
between structural restrictions and assumptions of analysis models to com-
pute properties of assemblies based on trusted properties of the assembly�s
constituent components.

Summary

In summary, component integration and composition are not synonymous.
Component integration is the mechanical process of �wiring� components
together, whereas composition takes this one step further to ensure that
assemblies can be used as components in larger assemblies. A new paradigm
for building component-based software is emerging that promises to support
building the right software from components the first time and on time. We
are developing a model for prediction-enabled component technologies to
support this goal. Prediction-enabled component technologies exploit
research in the areas of software architecture-based analysis, component

Component Composition and Integration 189

5. Components are denoted as beans in EJB.

certification, and architectural style to produce component models that are
enhanced to support reasoning about both the functional and extrafunc-
tional properties of software systems composed of components.

References

[1] Garlan, D., R. Allen, and J. Ockerbloom, �Architectural Mismatch: Why Reuse Is so
Hard,� IEEE Software, Vol. 12, No. 6, 1995, pp. 17�26.

[2] Inverardi, P., A. L. Wolf, and D. Yankelevich, �Static Checking of System Behaviors
Using Derived Component Assumptions,� ACM Trans. on Software Engineering, Vol. 9,
No. 3, 2000, pp. 238�272.

[3] Shaw, M., and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Upper Saddle River, NJ: Prentice-Hall, 1996.

[4] Crnkovic, I., et al.,(editors), 4th ICSE Workshop on Component-Based Software Engi-
neering: Component Certification and System Prediction, Software Engineering Notes,
Vol. 26, No. 6, 2001.

[5] Bachman, F., et al., �Technical Concepts of Component-Based Software Engineering,�
Report CMU/SEI-2000-TR-008, Software Engineering Institute, Carnegie Mellon
University, 2000.

[6] Hissam, S. A., J. Stafford, and K. C. Wallnau, �Packaging Predictable Assembly,� in
Proc. of First International IPIP/ACM Working Conference on Component Deployment,
Berlin, Germany, June 2002.

[7] Stafford, J., and A. L. Wolf, �Annotating Components to Support Component-Based
Static Analyses of Software Systems,� Report CU-CS-896-99, Boulder, CO, University
of Colorado, 2000.

[8] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

[9] Garlan, D., and M. Shaw, �An Introduction to Software Architecture,� Advances in
Software Engineering and Knowledge Engineering, Vol. I, 1993.

[10] Medividovic, N., P. Oreizy, and R. N. Taylor, �Reuse of Off-the-Shelf Components in
C2-style Architectures,� Proc. Int. Conf. Software Engineering, Boston, MA, IEEE Com-
puter Society, 1997.

[11] Klein, M., et al., A Practitioner�s Handbook for Real-Time Analysis, Dordrecht, The
Netherlands: Kluwer, 1993.

[12] Magee, J., J. Kramer, and D. Giannakopoulou, �Analysing the Behaviour of Distrib-
uted Software Architectures: A Case Study,� Proc. 6th IEEE Workshop Future Trends of
Distributed Computing Systems, Tunis, Tunisia, IEEE Computer Society, 1997.

190 Building Reliable Component-Based Software Systems

[13] Naumovich, G., et al., �Applying Static Analysis to Software Architectures,� Proc. 6th
European Software Engineering Conf., Lecture Notes in Computer Science, No. 1301,
Springer Verlag, 1997, pp. 77�93.

[14] Wallnau, K. C., et al., �On the Relationship of Software Architecture to Software
Component Technology,� Proc. 6th Workshop on Component-Oriented Programming,
Budapest, Hungry, 2001.

[15] Kramer, J., and J. Magee, �Analysing Dynamic Change in Software Architectures: A
Case Study,� Proc. 4th Int. Conf. Configurable Distributed Systems, 1998, pp. 91�100.

[16] Stafford, J., and A. L. Wolf, �Architecture-Level Dependence Analysis in Support of
Software Systems,� International Journal of Software Engineering and Knowledge Engi-
neering, Vol. 11, No. 4, August 1998, pp. 431�453.

[17] Spitznagel, B., and D. Garlan, �Architecture-Based Performance Analysis,� Proc. Conf.
Software Engineering and Knowledge Engineering, San Francisco, CA, 1998.

[18] Balsamo, S., P. Inverardi, and C. Mangano, �An Approach to Performance Evaluation
of Software Architectures,� Proc. Workshop on Software and Performance, 1998.

[19] Vieira, M. E. R., S. Dias, and D. J. Richardson, �Analyzing Software Architectures with
Argus-I,� Proc. Int. Conf. Software Engineering, Los Angeles, CA, IEEE Computer Soci-
ety, 2000.

[20] Gilham, F., R. Reimenschnider, and V. Stavridou, �Secure Interoperation of Secure
Distributed Databases: An Architecture Verification Case Study,� Proc. World Congress
on Formal Methods (FM�99), Lecture Notes on Computer Science, No. 1708, Berlin,
Springer Verlag, 1999.

[21] Philips, J., and B. Rumpe, �Refinement of Information Flow Architectures,� Proc. Int.
Conf. Formal Engineering Models, Hiroshima, Japan, IEEE Computer Society, 1997.

[22] Meyer, B., Object-Oriented Software Construction, Upper Saddle River, NJ: Prentice
Hall, 1997.

[23] Voas, J., and J. Payne, �Dependability Certification of Software Components,� J. of
Software Systems, Vol. 52, 2000, pp. 165�172.

[24] Shaw, M., �Truth vs Knowledge: The Difference Between What a Component Does
and What We Know It Does,� Proc. 8th Int. Workshop on Software Specification and
Design, Schloss Velen, Germany, 1996.

Component Composition and Integration 191

.

TEAMFL
Y

Team-Fly®

10
Predicting System Trustworthiness

Jeffrey Voas

Introduction

Much of the work during the past 10 years in CBSE and CBD has dealt with
functional composability (FC) and functional correctness. FC is concerned
with whether f (A) x f (B) = f (A x B) is true (where x is some mathematical
operator, and f (x) is the functionality of component x), that is, whether a
composite system results with the desired functionality given that the system
is created solely by joining A and B.

But increasingly, the software engineering community is discovering
that FC, even if it were a solved problem (using formal methods, architec-
tural design approaches, model checking, etc.), is still not mature enough for
other serious concerns that arise in CBSE and CBD. These concerns stem
from the problem of composing �ilities.� Ilities are nonfunctional properties
of software components that define characteristics such as security, reliabil-
ity, fault tolerance, performance, availability, and safety.

The problem stems from our inability to know a priori, for example,
that the security of a system composed of two components, A and B, can be
determined from knowledge about the security of A and the security of B.
Why? Because the security of the composite is based on more than just the
security of the individual components. There are numerous reasons for this,

193

and here, we will consider factors of component performance and calendar
time.

As an example, suppose that A is an operating system and B is an intru-
sion detection system. Operating systems have some level of built-in authen-
tication security, and intrusion detection systems have some definition of the
types of event patterns that warn of a possible attack. Thus, the security of
the composition clearly depends on the security models of the individual
components. But even if A has a worthless security policy or flawed imple-
mentation, the composite can still be secure. How? By simply making the
performance of A so poor that no one can log on (i.e., if the intrusion detec-
tion system is so inefficient at performing an authentication regardless of the
performance of A, then in a strange way, security is actually increased). And
if the implementation of A�s security mechanism is so unreliable that it disal-
lows all users access, even legitimate ones, then strangely, security is again
increased. Whereas these last two examples are clearly not a desirable way to
attain higher levels of system security, both do actually decrease the likeli-
hood that a system will be successfully attacked.

And if we again use the example of A as an operating system and B as
an intrusion detection system, and we assume that both A and B provide
excellent security, we must still accept the fact that the security of B is also
a function of calendar time. The reason for this is that new threats and
ways to �break into systems� are always being discovered and made pub-
lic. So even if a mathematical composition scheme such as Security(A) x
Security(B) = Security(A x B) could be created, it is still the case that Secu-
rity(B) is a function of the version of B that is being composed and of what
new threats have arisen.

So the question then comes down to this: Which ilities, if any, are easy
to compose? The answer is that none of the ilities is easy to compose and
some are much harder to compose than others. Further, there are no widely
accepted algorithms for doing this. We have just demonstrated this problem
with respect to security. But note that the same holds true for other ilities
such as reliability [1]. For reliability, consider a two-component system in
which component A feeds information to B and B produces the output of the
composite. Assume that both components are reliable. What can we assume
about the reliability of the composite? While it is reasonable to assume that
the composite system will be reliable, it must be recognized that the compo-
nents (which were tested in isolation for their individual reliabilities) can
suddenly behave unreliably when connected to other components, particu-
larly if the isolated test distributions did not at all reflect the distribution
of transferred information after composition. Further, some component

194 Building Reliable Component-Based Software Systems

behaviors can be termed �nonfunctional� and cannot be observed or do not
manifest themselves until after the composition. Such behaviors can under-
mine the reliability of the composition. Finally, if one of the components is
simply the wrong component, although highly reliable, the resulting system
will naturally be useless.

In addition to reliability and security, one ility that at least on the sur-
face appears to have the best possibility of successful composability is per-
formance. But even that is problematic from a practical sense. The reason
stems from the fact that even if a big-O algorithmic analysis has been per-
formed on a component, its performance after composition depends largely
on the relevant hardware and other physical resources.1 This means that it
might be necessary to take into consideration many different hardware vari-
ables in developing any certification making even minimal, worst-case claims
about the performance of the component. Clearly, this introduces serious
pragmatic difficulties.

Note that nonfunctional behaviors are particularly troublesome in
COTS software products, for which source code is not available. Nonfunc-
tional behaviors can include malicious code (Trojan horses, logic bombs, etc.)
and any other behaviors or side effects not documented. Such behaviors can
cause serious problems for system integrators and users and maintainers of
systems incorporating substantial quantities of COTS software functionality.

Finally, another worrisome (and related) problem facing CBSE and
CBD is the issue of �hidden interfaces.� Hidden interfaces are typically chan-
nels through which application or component software is able to induce an
operating system to execute undesirable tasks or to launch undesirable
processes. An example of this would be an application making a request to
attain higher levels of permissions than the application should be allowed.
Further, hidden interfaces can also be used by rogue developers who know
how to activate certain functionality at a remote site (once the software is
installed) in a manner totally unknown to the owners of the site.

What Else Can Be Done?

Well, to begin, we will now stop discussing the notion of mathematically
composing numerical scores representing the quantification of different ili-
ties for components. We can instead discuss observation-based techniques

Predicting System Trustworthiness 195

1. Big-O notation is a function that returns the order of magnitude of a computation, such
as a linear search being O(n2).

that, although also quantitative in nature, will be used in a more qualitative
manner. For example, if a piece of software fails only once after 100 tests,
instead of trying to create some quantitative score based on this information,
we can simply consider that fact to be the result of the testing, and not a
number derived from a reliability equation.

Our interest, then, is in creating and deploying techniques that can
augment traditional reliability quantification techniques. We wish also to be
able to predict the behavior of the software when it is supplied with cor-
rupted information. By doing so we gain new information about how the
software will behave, information that is completely different from the infor-
mation collected during operational profile-based reliability testing. By per-
forming this analysis in addition to reliability testing, we gain a better
understanding of the behavior to be expected of the software when con-
fronted with unexpected circumstances caused by a skewed (off-nominal)
environment.

When software systems fail, confusing and complex liability problems
ensue for all parties that have contributed software functionality (whether
COTS or custom) to the system. Potential contributors to the system failure
include (1) defective software components, (2) problems with interfaces
between components, (3) problems with assumptions (contractual require-
ments) between components, and (4) hidden interfaces and nonfunctional
component behaviors that cannot be detected at the component level.

Our approach here will be to disregard particular reasons for the possi-
ble failure of a component or of the interface between components and
assume the worst case (i.e., the occurrence of both possibilities). Once such
an assumption is made, it is possible to predict, a priori, how the composite
system will behave as a result of the failure of a particular component. Let�s
look briefly at several different techniques for making such predictions.

To begin, we should recognize that more and more software is deliv-
ered to system integrators in a form described as a black box. Software com-
ponents are termed black boxes because they are packaged as executable
objects (with licensing agreements forbidding decompilation back to source
code). A worthy goal, then, is to provide a methodology for determining how
well a system can perform if particular COTS components are of such poor
quality that interoperability problems arise.

The technique for assessing the level of interoperability between COTS
software components and custom components presented here is designated
IPA [2]. IPA perturbs (i.e., corrupts) the states that propagate through the
interfaces that connect COTS software components to other types of com-
ponents. By corrupting data going from one component to a successor

196 Building Reliable Component-Based Software Systems

component, failure of the predecessor is approximated (simulated), and its
impact on the successor can be assessed. Because many of the interoperability
issues related to software problems are a result of one component�s intoler-
ance of another, our approach enables a determination of the level of intoler-
ance when one component fails and sends �junk� information (or even a lack
of information) to its successor.

Note that IPA is simply one type of software fault injection [3]. Before
we explain further how IPA works, we will explain the key difference
between traditional reliability testing and fault injection, because many read-
ers may think these techniques are equivalent, and while they are comple-
mentary, they are by no means equivalent.

To begin, consider the following analogy. Consider a software program
to be a dense tropical rain forest. The animals living in the forest represent
different behaviors that the software can exhibit. The goal of every software
quality assessment technique is then to detect as many as possible of the ani-
mals living in the forest. Software testing, then, can be thought of as the
process of walking through the forest or even floating over the forest in a hot
air balloon and looking for the forest�s inhabitants. The lower the balloon
flies and the more powerful the binoculars, the more animals that will be
discovered (i.e., the better the test-case generation scheme). Likewise the
more time spent walking (i.e., more test cases), the more animals will be
discovered.

But the smaller the animals are and the better they are concealed by
camouflage, the less likely that testing will find them. In contrast, fault injec-
tion can be thought of as sending wildly barking dogs into the forest to see
what animals they can drive out. Thus, while the goals of testing and fault
injection are similar, the results can be vastly different because the methods
used for discovery are different.

Note that software fault injection is also a form of accelerated testing.
To understand why, consider the following example. Assume that a program
is tested 1 million times and that during those 1 million tests, only one input
causes the program�s state to become corrupted. Not much is learned from
those 1 million tests about the robustness of the software to corrupted inter-
nal states, only how the software behaved for one particular corrupted state.
From the other 999,999 tests, nothing is learned about the robustness of the
software.

Testing the software 1 million times to gain one data point of informa-
tion is unacceptably expensive. Instead, it would be preferable to test the
software 1 million times, knowing on each occasion that at least one data
state was corrupted, thus providing 1 million data points revealing how

Predicting System Trustworthiness 197

robust software was to the injections. This is precisely what software fault
injection does. Note that in either case the software is tested 1 million times
but that in the latter case, 1 million data points concerning the software�s
robustness are obtained. In the former, only one piece of data is obtained.
(Of course, in the former situation the reliability of the software can be quan-
tified as a result of the 1 million tests.) This demonstrates the fundamental
difference between reliability testing and robustness (fault tolerance) testing.
Note further that the more reliable the software is, the less robustness testing
results can be obtained by traditional software testing. This is an unfortunate
circumstance that can fortunately be overcome by using fault injection
techniques.

Now let�s return to IPA and explain briefly how the process works.
Recall that our objective is to determine the impact on one component if a
predecessor component were to fail and send corrupted information to the
successor component. To do this, we must artificially corrupt the informa-
tion produced by the predecessor component, send this to the successor, and
see how the successor behaves.

To modify the information (states) that components use for intercom-
munication, write access to those states is required (in order to modify the
data in those states). This is obtained by creating a small software routine
named PERTURB that replaces, during system execution, the original out-
put state with a different (corrupted) state. By simulating the failure of vari-
ous software components, we determine whether or not these failures can be
tolerated by the remainder of the system. The cos() function (a fine-grained
COTS utility for which we do not have access to the source code) can be
used in an illustration:

double cos(double x)

This declaration indicates that the cos() function receives a double float (con-
tained in variable x) and returns a double float. Because of C�s language con-
straints, the only output from cos() is the returned value, which is therefore
all that fault injection can corrupt.

To see how this analysis works, consider an application containing the
following code:

if (cos(a) > THRESHOLD) {

do something

}

198 Building Reliable Component-Based Software Systems

Our objective is to determine how the application will behave if cos()
returns incorrect information. For this, the return value from the call is
modified:

if (PERTURB(cos(a)) > THRESHOLD) {

do something

}

Several key issues should now be mentioned with respect to any fault
injection function such as PERTURB. Firstly, the value added by having a
utility such as PERTURB is, in general, dependent on how well PERTURB
mimics corruptions that the utility under consideration (which in this case is
cos()) could produce in the real world. Note, however, that there are interest-
ing cases, particularly from safety-critical code, in which, although
PERTURB had created corrupt states that in no way reflected how the com-
ponents could behave while in real operation, the fault injection process was
still able to reveal to the designers of the system certain system-level behaviors
that were totally unexpected [4]. These behaviors were completely unsafe,
and protection against them was essential (since it is still possible that there
were unknown and actual output states from the components that could
induce similar or identical system behaviors). It is also possible that other
hardware components or human activities associated with the system might
also be able to force the system into such hazardous states. For example, it is
impossible to predict all the human errors that many systems can experience
during operation, and because of that, it is also likely that we will fail to pre-
dict which system-level behaviors resulting from human error will be unpre-
dictable. Interestingly, an analysis such as IPA can actually partially address
this problem, by showing us events never before imagined.

Note that IPA need not only be used to simulate bad information leav-
ing a component. IPA can just as easily simulate other components of the
system sending bad information to a COTS component. This then simulates
the results of the COTS software receiving bad information from its environ-
ment. This is particularly important information in critical systems that are
very dependent on COTS functionality, because it is incorrect to assume that
in a COTS-based system, all problems that arise are the results of COTS
software failure.

Finally, it must be acknowledged that the exhaustive fault injection of
software components is just as infeasible as the exhaustive testing of software.
Thus here, we are no less restricted in terms of how much analysis can be per-
formed than we are with reliability testing. Therefore the proper approach to

Predicting System Trustworthiness 199

maximizing the value added by such a technique is first to identify which
portions (functionally speaking) of the system are the most critical, and then
analyze how that critical functionality degrades when components on which
it depends fail. From there, we can continue to perform more analysis on
those critical components, or we can move on to other portions of the system
and perform a similar analysis.

The point here is that the space of potential corruptions that can be
injected is often a number of times larger than the size of the entire input
domain, and therefore intelligent decisions must guide the process. But one
thing of which we can be certain is that the results from this technique are
viable predictors of the potential future behavior of the software because we
have already seen the system behave in that manner as a result of our analysis.

In summary, IPA begins from the assumption that all software compo-
nents will fail and that the interfaces between them can be defective. By
simulating the failure of troublesome COTS components and defective
interfaces, we can observe the system�s tolerance of their misbehavior. Such
an analysis is clearly prudent.

Two Additional Useful Techniques for Predicting Component Interoperability

Finally, we will consider two techniques in addition to IPA that are useful in
addressing the composability of components problem.

The entire software reliability field (or what is now termed software reli-
ability engineering) is currently evangelizing about techniques that make soft-
ware programs behave in �reliable� ways (given specific expectations about
the environments in which the software will reside). And it is reasonable to
design software in the light of where it is likely to execute. After all, why
overdesign a software package to handle negative integers reliably if the soft-
ware will never input negative integers?

Thus, the entire notion of what is reliable software versus what is not
reliable software is a function of how the software will be used in the environ-
ment in which it will be embedded. This means that component A embed-
ded in environment B may behave far more reliably than component A
embedded in environment C. This illustrates how fragile the science of quan-
tifying software reliability really is. And, unfortunately, because the science of
quantifying software reliability is so imperfect, there is even more confusion
as to when a software component is truly �reliable enough� for a specific
environment.

This problem is impossible to overcome, but there is yet another prob-
lem of even greater magnitude: knowing how a software component will

200 Building Reliable Component-Based Software Systems

react when it receives inputs that are outside the range of any profile that the
original designers anticipated. [Note that here we are not necessarily talking
about component input information that is corrupted, but instead input
information that is simply outside the nominal operational (probabilistic)
range within which reliability testing would normally test the component.]
Such profiles can be the result of (1) an oversight on the part of the designers
failing to know what the actual operational environment would be (which, of
course, is very common when we are talking about generic, use-everywhere
software components), and (2) unanticipated radical modifications of the
environment. In each case, a priori predictions as to how reliably the software
component will behave during its lifetime are no longer trustworthy. This
means that all of the previous reliability quantification for the component
should be disregarded and any efforts toward �design-for-reliability� of the
component cannot necessarily be trusted.

Technique 1

The first technique involves the deliberate inversion of the operational profile
originally anticipated by the system designers.2 This technique is most bene-
ficial when the description of the expected profile is accurate. If the defined
operational profile turns out to be inaccurate, then the only benefit from
doing so would be to learn about potentially dangerous output modes from
the software, which might be difficult to detect by other means.

At this point, the reader may ask why we should recommend such. The
answer is simple: We wish to force the software to experience unusual yet
possible inputs to enable us to learn more about its output behavior. The
software is forced to experience these inputs because traditional operational
profile testing is highly likely to overlook them due to the low probability of
their being selected. This is valuable from a component point of view,
because there could well be possible behaviors delivered from a predecessor
component that could never be tolerated by any successor component, no
matter how robust the successor component is designed to be.

Note that this technique is indeed different from software fault injec-
tion. In fault injection, the environment is in a fixed state and the informa-
tion flowing between components is corrupted. Yet in this technique, there is

Predicting System Trustworthiness 201

2. The operational profile for a piece of software is simply a mathematical distrubution rep-
resenting the probabilistic likelihood that any particular input vector will be fed into the
software during operational usage. Therefore an operational profile contains two pieces of
information: (1) the domain of the software, and (2) the likelihood that any particular
element of the domain will be selected for execution during operation.

no corruption of information, but simply the selection of states flowing
between components that are very rare. This is generally a result of the envi-
ronment itself being in very rare mode. It is here that the fundamental differ-
ence between the two analyses lies.

Technique 2

The second technique is simply a combination of the previous technique
with IPA. This is a situation in which the software is operating in an unusual
input mode while being bombarded with corrupt information. This provides
a unique assessment of how robust the software is when it is operating under
unusual circumstances and receiving corrupt information.

Thus, knowing how trustworthy a software system built from software
components will be involves far more than a simple assessment of the reli-
ability of the component with respect to an assumed operational profile and
the assumption that all of the other components with which it interacts will
behave properly. It involves knowing how reliably the system can behave
when its components are being stressed as a result of operating under unusual
circumstances (regardless of the cause of those unusual circumstances). And
it also involves knowing how robust its components are when the com-
ponents are forced to experience the consequences of the failure of other
subsystems.

Summarizing, reliability testing of software components, while neces-
sary, is not sufficient. It disregards a variety of operational anomalies that can
seriously disrupt the reliable and safe behavior of a component-based system
due to the inherent unpredictability associated with all digital systems.

Summary

This short chapter has briefly discussed interoperability issues with respect to
both software component failures and the lack of scalable composability
theories for the ilities, those nonfunctional behaviors that occur when soft-
ware executes.

Component failures and how they propagate present a fascinating pre-
diction problem in software engineering. IPA is a technique geared toward
addressing this problem. Hidden interfaces and nonfunctional behaviors are
problematic for CBSE and CBD. Inverted and skewed operational profile
testing, in conjunction with IPA, can easily increase the a priori knowledge
of the system integrator who is responsible for building a component-based
system from black-box components.

202 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

In our opinion, CBSE and CBD will not flourish until technologies
exist that permit the successful predictability of the degree to which different
software components are interoperable. Without predictability, interoper-
ability cannot be known a priori until after a system is built. It may then be
too late in its life cycle for financial recovery if it is discovered that one or
more of the components is not compatible.

References

[1] Voas, J., and J. Payne, �Dependability Certification of Software Components,� J. of
Software Systems, Vol. 52, No. 2�3, 2000, pp. 165�172.

[2] Voas, J., �Error Propagation Analysis for COTS Systems,� IEEE Computing and Con-
trol Engineering J., Vol. 8, No. 6, 1997, pp. 269�272.

[3] Voas, J., and G. McGraw, Software Fault Injection: Inoculating Programs Against Errors,
New York: John Wiley and Sons, 1998.

[4] Voas, J., �Discovering Unanticipated Software Output Modules,� The Annals of Soft-
ware Engineering, Vol. 11, No. 1, 2001, pp. 79�88.

Predicting System Trustworthiness 203

.

Part 5:
Software Product Lines

Using software product-line architectures is a means to implement planned
reuse of components within an organization. This kind of architecture sup-
ports structured assembly of product-line components. The various compo-
nents can be assembled together as long as they follow the implicit rules of
the planned architecture. This approach has been proven to be very success-
ful for companies that produce many variants of products with similar func-
tionality (e.g., TVs and VCRs). By having planned for development of many
different products over a longer period of time, the software product line
helps both with developing and reusing components. Components do not
have to be developed bottom up with a great deal of generality; they can
instead be developed with guidelines from the product-line architecture.

Chapter 11 describes how product-line architectures can be used to
utilize component reuse. The reuse of components between many different
products is dependent on how the architecture is set up in the beginning; the
more investment put into the architecture, the more possible reuse of com-
ponents that can be achieved. Creating an architecture requires decisions
about how to develop the products. To choose one of the two approaches of
top-down versus bottom-up development is not appropriate at all times. A
mixture is often suitable and it is here where product-line architectures can
help to set the stage for a development that both uses components in a
bottom-up way and architectures in a top-down approach.

205

Chapter 12 presents the findings from using a product-line architecture
within Philips for the creation of a product population of consumer electron-
ics. Koala, the component model that was developed, is also an architectural
description language used to build products from a repository of compo-
nents. The chapter describes the Koala model and how it is used to build
components that fit into a product-line architecture.

206 Building Reliable Component-Based Software Systems

11
Components in Product-Line
Architectures

Rob van Ommering and Jan Bosch

Introduction

Reuse of software is a long-standing dream of the software engineering com-
munity. We have seen some successes, but also many failures. In the last de-
cade, the interest in software component technology has grown, and a vision
of a global software component market solving all our reuse problems is
emerging. We believe this vision to be oversimplified for (at least) two
reasons:

1. We are far from a global component market yet. Success stories
today only involve relatively small components in generic and
mature domains.

2. There will always be a need for intraorganizational reuse of core
software for companies that produce sets of related products.

This chapter is about software product lines: proactive, systematic,
planned, and organized approaches toward software reuse for sets of products
within an organization. Figure 11.1 summarizes the driving forces of such
product lines. Complexity and quality are best handled with an explicit

207

architecture, while quality, diversity, and lead-time reduction are achieved by
reuse of software components. There is a delicate balance between classical,
architecture-driven top-down development for single products and the
visionary bottom-up component assembly as suggested by many advocates of
component technology. It depends on the required diversity of the products:
For small product families, a product-line approach may resemble single-
product development, but for large populations of products, it may have
many elements of bottom-up component assembly.

In the first section of this chapter, we contrast single-product develop-
ment with envisaged component assembly and show some shades in
between. Then, we discuss various reuse approaches along two dimensions,
variability and composability. In the next chapter we illustrate our findings
with a case: the Koala component model as used within Philips for the crea-
tion of a product population of consumer electronics.

From Products to Components

Classical software development�for a single product�differs in many
aspects from the building of applications by selecting and combining third-

208 Building Reliable Component-Based Software Systems

Size and
complexity

Quality

Lead time
reduction

Architecture

Reuse Components

Product
lines

Diversity

Figure 11.1 Basic arguments for software product lines.

party components. Many companies are successful in the former, but the lat-
ter�we believe�is currently only successful in specific, limited domains. In
the next sections we will be concerned with the use of components within
organizations to achieve the reuse of core product software. This requires an
approach that lies somewhere between that of classical single-product devel-
opment and third-party component markets. We first describe the two
extremes: single-product development and the notion of component mar-
kets. We then address some forms of established reuse, before turning to
product lines for product families and product populations.

Developing a Single Product

We already know how to develop a single product by applying a standard
software engineering process. Starting from the requirements, we define an
architecture that helps us to realize the required functional and nonfunc-
tional properties. The architecture decomposes the system into subsystems
and components. We build and test the components, then the subsystems,
and finally the product. Typical characteristics of this approach (see also
Figure 11.2) include the following:

• It is a top-down activity (all software governed by a single architec-
ture).

• Use of components is planned (develop only what is needed).

• All software is developed during the process.

• All development is within a single organization.

Component Markets

Let us now contrast single-product development with the building of systems
from existing components, obtained from third parties. Typical characteris-
tics include these:

• It is a bottom-up activity (no global architecture defined).

• Use of components is opportunistic (use whatever is available).

• The component software is available when starting the project.

• It results in interorganizational reuse.

Components in Product-Line Architectures 209

This sounds ideal, but we must make some remarks here. The first is
about architecture. During the past few years we have learned that we cannot
build large, efficient, high-quality software systems without paying a lot of
attention to the architecture (see, for instance, [1]). We have also learned that
combining components that have not been developed under the same archi-
tecture may result in an architectural mismatch [2] (e.g., both may assume
that they are running the highest priority thread) and thus a less efficient sys-
tem (if functioning at all). So our component market vision only works if
either there is some kind of global architecture, or if we manage to abstract
sufficiently from an architecture. The success of Microsoft�s Visual Basic [3]
is probably due to the first: An ActiveX control must provide a large number
of interfaces to be useful in Visual Basic, and it will require an undefined sub-
set of the Win32 API, making it useless outside Visual Basic or even outside
Windows. In Koala we attempt to take the other direction, as we show in the
next chapter.

Our second remark is about scale. It is easy to reuse small components
such as buttons and labels, but the larger components become, the more

210 Building Reliable Component-Based Software Systems

Product Lines

Single
Product

Top-down Top-down

Planned

Developed Developed

Intraorganization Intraorganization Intraorganization Intraorganization

Product
Family

Planned

Product
Population

Partially
bottom-up

Planned /
opportunistic

Developed /
available

Component
Markets

Bottom-up

Opportunistic

Available

Figure 11.2 Characteristics of product lines.

specific they tend to be for the situation for which they were originally
designed. A natural friction is observed between reusability and usefulness:
Small components can be very reusable but are not very useful, whereas large
components are very useful but often not very reusable, as is nicely illustrated
in Figure 1.1 of [4]). The solution is parameterization, but how well this
works for large components is not yet well understood.

Thirdly, successful component reuse frameworks, such as Visual Basic,
often require an excess of resources that are not available in many products,
for example, in embedded software. A high-end television, for instance, has
the computing resources of a personal computer 10 years ago; a low-end tele-
vision sets time 20 years back. Still, reuse of software within a family of tele-
visions is an important requirement if a company is to stay ahead of the
competition.

Finally, many companies categorize their product software into core,
key, and base. Core software is the software that provides the competitive
edge: Only a few other companies are able to produce such software and
sharing is not an option! Key software is software that could be obtained
from others but is not for strategic reasons, whereas base software can and is
obtained from others. So there will always be software that is produced by a
company for itself only, but that needs to be reused in different products.
The software cannot be turned into generic components�the �customer�
base is not large enough. But the software cannot be made too specific either,
because that would hamper the intraorganizational reuse. This is where prod-
uct lines enter the picture.

Established Reuse

Before we discuss product lines, let us consider some established forms of
software reuse, namely, that of mathematical or graphical libraries, operating
systems, database management systems, compilers, and so forth. There is
hardly any product today that is completely built from scratch�even a tele-
vision contains at least an off-the-shelf real-time kernel. Even more, this form
of reuse often concerns large pieces of software. Is software reuse already
happening?

The answer is yes, but with many restrictions. The use of an existing
software package often has a large influence on the design of the software to
be developed, which may be good or bad depending on the circumstances.
For example, the use of Windows results in applications based on message
loops, which may not be the best architecture in all cases. As a result, the
application becomes dependent on the chosen software package, and if not

Components in Product-Line Architectures 211

anticipated, it is virtually impossible to port the application to another pack-
age (operating system or library).

The most important problem is that the use of two existing packages
that have not been developed together (or one on top of the other) is often
virtually impossible, sometimes for simple syntactical reasons (they both
define the class String), and sometimes for fundamental reasons such as that
both packages implement the function �main.� But to be restricted to the use
of only one existing package is too limiting, and will not result in dazzling
products.

Also, as we have already discussed in the previous section, existing soft-
ware packages often only implement functionality that can be considered to
be mature and therefore generic, while many companies rely on core software
that they can only develop themselves. Note that it may take decades before
certain functionality is implemented by standard software: Operating sys-
tems were researched in the 1960s and 1970s, and windowing systems in the
1970s and 1980s. It takes such a long time for people to actually agree on the
concepts�a necessary prerequisite for reusable software.

The final contrast with product lines to be discussed next is the topic of
economics. A company that sells a software package can only survive if it has
many customers. Conversely, other companies usually only accept the soft-
ware when there is at least a �second source� supplying the same or similar
software. So the interorganizational reuse of software obeys normal economic
laws. These do not usually hold within a company! We therefore believe that
intraorganizational reuse should be built on different foundations. Just set-
ting up a reuse division within an organization does not work. Instead an
overall proactive approach is required: that of a product line.

Product Families and Product Lines

We define a product family as follows: A product family is a set of products
with many commonalties and few differences. An example of a product fam-
ily is a set of televisions. Variations include the kind of output device (tube,
flat panel, projection), the size of the output device, the broadcasting stan-
dards that it supports, the quality of picture and sound, the user interface,
and the data processing functions such as Teletext and an Electronic Pro-
gramming Guide. By definition, a product family is intraorganizational, and
reuse of core software within the family is a strategic issue.

We define a product line as follows: A product line is a top-down,
planned, proactive approach to achieve reuse of software within a family (or
population, see the next section) of products. Product lines have received

212 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

quite some attention lately [5, 6]. If the product family is small and most of
the variation is known in advance, then a fixed generic architecture (called
variant-free in [7]) can be chosen that has explicit variation points to deal with
diversity. Such variation points could be compile-time flags (using #ifdef),
run-time options [using �if (p)� where p is stored in some nonvolatile mem-
ory], plug-in components (accessed through a registry), configuration man-
agement parameters, and so forth.

This is indeed the approach advocated by many researchers in the field
of product lines. Typically, an organization creates a platform first, from
which products can be derived later. Having a single common architecture is
a sound basis for realizing the functional and nonfunctional properties of the
systems. In particular, properties such as quality, size, and performance of the
code can be handled with techniques similar to those for a single product.
The downside is that in certain situations it is difficult to forecast the require-
ments of future products, thus resulting in an architecture that becomes an
obstacle for realizing new products. A second problem is that it may be virtu-
ally impossible to agree on a single architecture in a large multiple-business-
line organization, with different interests and different time horizons.

Product Populations

Some organizations want to extend the reuse of software beyond the bounda-
ries of a (small) product family. We define a product population as follows
[8]: A product population is a set of products with many commonalities but
also many differences. An example of a product population is the set of tele-
visions, video recorders, CD and DVD players and recorders, and so forth.
Such products have things in common: A TV and a VCR share a video
tuner. They also have differences. A TV has a picture tube, whereas a VCR
has a tape mechanism. This implies that a single generic architecture no
longer suffices; instead we should create reusable components that we can
combine in seemingly arbitrary ways. So are we now back at third-party com-
ponent markets?

No, we are not. We are talking about core software that has to be devel-
oped by the organization itself. The functionality may not be mature enough
yet to create truly generic reusable components. The relatively few customers
are all within the organization, so the laws of economics of component mar-
kets do not readily apply. Finally, the products are resource constrained, rul-
ing out many of those powerful component technologies out on the market.

Instead, again we have to adopt a product-line approach: a top-down,
planned, proactive process to design and create components that can be

Components in Product-Line Architectures 213

combined in more than one way (though not freely), and that can be turned
into products (without being overly generic). But the approach now has
bottom-up elements (unforeseen combinations of existing components),
planning is less strict (products may have different life cycles that are shifted
in time), and though still intraorganizational, development will cross busi-
ness line, group, or division boundaries. This has a number of consequences,
of which we name two.

First, the wider the spread over the organization, the more difficult it
becomes to define common architectural rules and mechanisms. It is there-
fore important to minimize the global architecture and to define a number of
issues �regionally,� that is, to be valid only in certain parts of the system. A
syntactical example is that naming conventions could be reduced to the use
of a prescribed prefix to avoid name clashes. Note, however, that this may
increase the chance of an architectural mismatch.

Second, planning becomes an important issue. In single-product devel-
opment, there is only one plan: that of the product. On the component
market, companies that sell reusable components have a plan for the develop-
ment of their component only, based on vague expectations of what is eco-
nomically interesting on the market. In a product population, however, a
product plan has to incorporate the planning of many components, and the
component plan has to incorporate the planning of many products. In par-
ticular, if products belong to different parts of the organization, the compo-
nent developers will face many conflicting requirements, both with respect to
the functionality and to the planning.

The Lessons

What can we learn from this? Reuse within an organization requires a top-
down, planned, proactive effort; in other words, a product-line approach.
For product families we can define a generic architecture with explicit varia-
tion points to manage diversity. For product populations we need to create
reusable components that can be combined in different ways, but without
the generality and flexibility that one would expect of components on a com-
ponent market because there is no economic benefit to offset the extra effort.
Instead, a careful road mapping process is required to determine what func-
tionality is needed when and in which product [9]. Also, technically the
architecture must be such that there is sufficient freedom to combine compo-
nents in new ways without resulting in systems that have poor quality, per-
formance, or a large code size.

214 Building Reliable Component-Based Software Systems

Component Approaches

In the previous section we discussed various aspects of software reuse
depending on the scope of reuse. We now discuss a number of technical
options for achieving reuse. We categorize them in two dimensions: variabil-
ity and independence.

The variability dimension concerns the degree to which an existing
piece of software can be modified when used in a product. This may range
from no variation (reuse �as is�), through parameterization and inheritance,
to sophisticated mechanisms such as component plug-ins. Remember that
small reusable components are not very useful, and that larger components
tend to become too specific. The ability to adapt a component when it is
integrated into a product is therefore very important.

The second dimension is about independence, and we distinguish two
cases. Suppose a product contains two pieces of software, A and B. In the first
case, A is reused from somewhere else, and B is built on top of A. In the sec-
ond case, A and B are developed independently (given some lightweight
common architecture), and are only composed when creating the product. In
the second case, A and B are independent, but in the first case, B is usually
dependent on A. There are ways of decoupling B from A even in the first
case, but certain techniques for reuse, such as the use of inheritance, actually
induce dependence. If we deploy a class library that uses inheritance as a spe-
cialization technique, then our specialization, B, is intertwined with the class
library A, and cannot be decoupled from it.

As explained before, we believe that the combination of nontrivial
components that were not developed together is the major challenge that we
are facing for software components, but it is not the only way to achieve
reuse. Figure 11.3 shows example techniques for different points in the two-
dimensional space, and we discuss each of them briefly. See [10] for an
inventory of some techniques for achieving independent deployment.

Libraries

The classic technique for organizing reusable software is in the form of (func-
tional) libraries. Examples are a mathematical library and a graphical library.
Typically, software built on top of the library includes the header file(s) of
the library (if programmed in C), and with that it becomes dependent on the
specific library. It is possible to abstract from the library by defining a
library-independent interface; POSIX is an example of this. The actual
implementation can then be selected in the build process. However, in

Components in Product-Line Architectures 215

practice, most software built on top of libraries becomes specifically depend-
ent on those libraries.

This is especially true for the libraries themselves. Often, a library uses
other software (in the form of libraries), but few (or none) of these libraries
allow the user to select which underlying library to use. And, as we have seen
before, if two libraries that do not depend on each other and that have been
independently developed are combined, mismatches may occur: simple ones
such as name clashes, or fundamental problems such as that both libraries
assume the ability to implement the main control loop.

Parameterization of libraries is often limited to the setting of parame-
ters and�at the most�callback functions. Parameterization happens mainly
through callable interfaces, so that a run-time penalty is associated with the
parameterization. If source code is available, some parameters may influence
the compilation and linking process.

Object-Oriented Frameworks

An OO framework is a set of classes from which one can create an application
by specializing the various classes in the framework using implementation
inheritance. The power lies in the use of inheritance as a parameterization

216 Building Reliable Component-Based Software Systems

Plug-ins Component
frameworks

Inheritance OO
Frameworks

Frameworks as
components

Parameterized Koala

�As is�

Libraries

Va
ria

bi
lit

y

Lego

Reusable Composable

Independence

Figure 11.3 Variability versus independence.

mechanism. Inheritance allows the framework to abstract from specific behav-
ior; this is added later in the form of specialized classes. But the danger also lies
in the use of inheritance: The derived classes are very dependent on the frame-
work and cannot be used in any other context.

The situation may even be worse. A new version of the same frame-
work, with new versions of base classes, may break down existing applica-
tions. This phenomenon is known as the fragile base class problem (see, e.g.,
[4]) and is a further illustration of the strong dependencies between the
applications with the underlying framework.

Also, because many OO frameworks are an application by themselves,
the combination of two OO frameworks is often virtually impossible. We
will come back to this later, when discussing OO frameworks as components.

Component Frameworks

We define a component framework as an application or part of an applica-
tion in which components can be plugged to specialize the behavior. Com-
ponent frameworks resemble OO frameworks, and indeed many component
models have their roots in OO technology. The difference is in the depend-
encies between specialized code and generic code. Whereas OO frameworks
rely on implementation inheritance, component frameworks specify the
interfaces between the plug-ins and the underlying framework. This greatly
reduces dependencies, and especially the risk of the �fragile base class prob-
lem� when the framework evolves over time.

The frameworks that exist today often have some disadvantages. First,
the plug-ins are only useful in the context of the framework and cannot be
independently deployed. Second, the framework itself often implements a
complete application, and is thus not composable itself. We�ll come back to
this topic in the next section.

Figure 11.4 illustrates a component framework as developed within
Philips [11]. The ground plane contains an (almost) variant-free skeleton of
components. Most of these components are present in all members of the
family, while the others are optional. Each component can only be used
together with the other components of the ground plane�there is no inde-
pendent deployment of ground plane components. The plug-in compo-
nents, drawn in the third dimension, serve to implement diversity. One can
create different members of the family by inserting different plug-ins. The
plug-in components also have no life outside of the scope of the ground
plane (there is no independent deployment in space), but it is possible to use

Components in Product-Line Architectures 217

old plug-ins with new versions of the ground plane (there is independent
deployment in time).

Lego

The archetype example for reusability is Lego, the toy bricks with the stan-
dard �click and play� interface. Indeed, Lego bricks are very composable, but
they are not parameterized at all, so they are at the top of the vertical axis of
Figure 11.3. This results in the following two phenomena: First, it is possible
to create complicated shapes with ordinary Lego bricks, but it results in huge
objects requiring thousands of bricks to make the shapes seem smooth (as
can be admired in LegoLand). Because the reusable components are then
very small compared with the resulting product, there is effectively not much
reuse. The reuse of Lego bricks is then comparable to the reuse of statements
in a programming language.

On the other hand, Lego started manufacturing specialized bricks some
years ago, bricks that can only be used for one purpose (for example, the head
of a pirate). With such bricks it is possible to create smooth shapes with only
a few bricks. The downside is that the specialized bricks can only be used in
specialized cases.

218 Building Reliable Component-Based Software Systems

Variant
Free
Skeleton

Variant-free
skeleton

Selectable
Plug -ins

Selectable
plug-ins

Figure 11.4 Component frameworks with plug-ins.

The solution should be parameterized bricks, but somehow this is
mechanically inconceivable. Maybe a Lego printer, a device that can produce
new plastic bricks of any shape at home, is the answer (although strictly
speaking, the software equivalent of a Lego printer is a code generator, and
not a parameterized component).

Koala

Koala is an architectural description language and component model for the
development of embedded software for consumer electronics products. It is
discussed in more detail in the next chapter; for now it suffices to say that
Koala supports both parameterization and composability. Parameterization
is supported in the form of special diversity interfaces; a named parameter
mechanism allows for the creation of a large set of parameters with default
values, thus not overloading the users of the component. Composability is
obtained by making all required functionality explicit in the form of required
interfaces that can be bound to selected services by third parties.

Frameworks as Components

The ultimate solution for both variability and independence lies, we believe,
in the use of frameworks as components. As explained before, a framework is
a large piece of software with a powerful parameterization mechanism, such
as the use of implementation inheritance (in an OO framework) or compo-
nent plug-ins (in a component framework). If a framework only covers a part
of the application domain (a subdomain), and if frameworks can be �arbi-
trarily� combined (making them true components), then we can create a
multitude of products by selecting and combining such framework compo-
nents and specializing them toward the product to be created using inheri-
tance or component plug-ins.

Some examples of OO frameworks used as components do exist [12],
but no examples of component frameworks used as components yet. The
basic mechanism for achieving composability is to make every context
dependency explicit and bindable by a third party, much in the way, for
instance, Koala does. Put differently, components should also be parameter-
ized over their context dependencies. We see this happening already in the
small scale; consider, for instance, a sort function that is parameterized over
the compare function. We do not see this happening in the large scale yet.

Components in Product-Line Architectures 219

Summary

We talked about variability and independence. We also talked about antici-
pated variation only; in practice, it is also important to be able to adapt exist-
ing components to new situations for which they were not designed. A
typical solution here is to insert product specific glue code between compo-
nents. Unfortunately, many binding techniques (such as the inclusion of
libraries or the inheritance of base classes) do not allow the insertion of extra
code or do at least require special techniques [13]. Only solutions that rely
on some form of third-party binding, such as GenVoca [14], Darwin [15],
and Koala [16], allow for easy insertion of glue code.

We also did not talk about code generation, another way to reuse code.
We believe this approach to be very successful but in restricted domains
only, such as in the generation of compilers. In a way, GenVoca, Darwin,
and Koala are also code generation solutions, albeit for the code that con-
nects hand-written components only.

Conclusion

We started this chapter with a comparison between traditional single-
product development on the one hand, and third-party component markets
on the other hand. We concluded that there is a large and still relatively
unexploited area of potential reuse of software within an organization for a
set of related products. Product lines are the answer: a planned and proac-
tive approach for the sharing of software. For small product families, tradi-
tional techniques are still sufficient. But for larger product populations, an
approach is required that combines top-down with bottom-up approaches,
in other words, the best elements of single-product development and third-
party component markets.

We then investigated various mechanisms that facilitate the reusability
of software. We organized these along two dimensions: mechanisms for vari-
ability on the one hand, and the degree to which independently developed
(large) components can be deployed on the other hand. We gave examples of
techniques for various points in this two-dimensional space.

References

[1] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Reading, MA:
Addison-Wesley, 1998.

220 Building Reliable Component-Based Software Systems

[2] Garlan, D., R. Allen, and J. Ockerbloom, �Architectural Mismatch: Why Reuse Is So
Hard,� IEEE Software, Vol. 12, No. 6, 1995, pp. 17�26.

[3] Microsoft, �Microsoft Visual Basic,� http://msdn.microsoft.com/vbasic.

[4] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

[5] van der Linden, F., Proc. 2nd Int. ESPRIT ARES Workshop, Lecture Notes in Computer
Science, No. 1429, Berlin, Springer Verlag, 1998.

[6] Donohoe, P., Proc. 1st Software Product Line Conf., Kluwer Int. Series in Engineering
and Computer Science, No. 576, Dordrecht, The Netherlands, Kluwer, 2000.

[7] Perry, D. E., �Generic Architecture Descriptions for Product Lines,� Proc. 2nd Int.
ESPRIT ARES Workshop, Lecture Notes in Computer Science, No. 1429, Springer Ver-
lag, 1998.

[8] van Ommering, R., �Beyond Product Families: Building a Product Population?� Proc.
3rd Int. Workshop on Development and Evolution of Software Architectures of Product
Families, 2000, LNCS1951, Springer Verlag, pp. 187�198.

[9] van Ommering, R., �Roadmapping a Product Population Architecture,� Proc. 4th Int.
Workshop on Product Family Engineering, Berlin: Springer, Verlag, 2001.

[10] van Ommering, R., �Techniques for Independent Deployment to Build Product Popu-
lations,� Proc. WICSA2001, The Working IEEE/IFIP Conf. Software Architecture,
Amsterdam, The Netherlands, 2001.

[11] Wijnstra, J. G., �Supporting Diversity with Component Frameworks as Architectural
Elements,� Proc. 22nd Int. Conf. Software Engineering, Limerick, Ireland, IEEE Com-
puter Society, 2000.

[12] Bosch, J., Design & Use of Software Architectures, Reading, MA: Addison-Wesley, 2000.

[13] Balzer, R., �An Architectural Infrastructure for Product Families,� Proc. 2nd Int.
ESPRIT ARES Workshop, Lecture Notes in Computer Science, No. 1429, Berlin,
Springer Verlag, 2001.

[14] Batory, D., and S. O�Malley, �The Design and Implementation of Hierarchical Soft-
ware Systems with Reusable Components,� ACM Trans. on Software Engineering and
Methodology, Vol. 1, No. 4, 1992, pp. 355�398.

[15] Magee, J., N. Dulay, and S. Eisenbach, �Specifying Distributed Software Architec-
tures,� Proc. European Software Engineering Conf., Lecture Notes in Computer Science,
No. 989, Berlin, Springer Verlag, 1995.

[16] van Ommering, R., �Koala, a Component Model for Consumer Electronics Product
Software,� Proc. 2nd Int. ESPRIT ARES Workshop, Lecture Notes in Computer Science,
No. 1429, Berlin, Springer Verlag, 1998.

Components in Product-Line Architectures 221

.

TEAMFL
Y

Team-Fly®

12
The Koala Component Model

Rob van Ommering

Introduction

Koala is a component model and an architectural description language that is
used to build a large diversity of products (a product population) from a
repository of components. Koala was designed for use in building consumer
products such as televisions, video recorders, CD and DVD players and
recorders, and combinations of these (e.g., a TV-VCR). In this chapter we
highlight the most important features of Koala, starting with the original
requirements. More information on Koala can be found in various publica-
tions listed at the end of this chapter; a good starting point is [1].

Requirements for Koala

The following three requirements were formulated for Koala at the time of
its design (in 1996):

• (R1) Devise a technique with which components can be �freely�
composed into products as the main approach to dealing with diver-
sity in a product population.

223

• (R2) The technique must work in resource-constrained environ-
ments such as televisions and video recorders (which are typically 10
years behind on PCs in computing power).

• (R3) Make the product architectures as explicit as possible, to man-
age complexity.

Note that we took composability as our starting point (R1), instead of
designing, for instance, a variant-free framework with variation points, as
explained in the previous chapter. We expected that it would not be feasible
to define such a single global architecture in our organization where new
innovative products are often created by new combinations of existing assets.
Requirement R2 is prominent in consumer electronics, where the �bill of
material� plays a dominant role: Given the millions of products sold per year,
making the product one dollar cheaper immediately shows in the company�s
profit and loss calculation. Requirement R3 shows that even for a single
product, we needed some way to cope with complexity.

Thinking about solutions for these requirements, three auxiliary require-
ments were formulated:

• (R4) Permit components make as few assumptions as possible about
their environment.

• (R5) Allow for parameterized components that are�when instanti-
ated�as efficient as dedicated components.

• (R6) Allow for various ways of connecting components; more spe-
cifically, allow for adding glue code to the connection between
components.

Requirement R4 is directly related to R1 and results in the introduc-
tion of required interfaces and third-party binding, as discussed in the next
section. Requirement R5 is related to R2 and results in the notion of late
compile-time binding, also as explained in the next section. Requirement R6
anticipates that we will not be able to construct �perfectly fitting� compo-
nents, and hence need some help in connecting components.

Binding and Bind Time

Let us consider a product P that consists of a component A and a component
B, and suppose that A uses B (see the left-hand side of Figure 12.1). This

224 Building Reliable Component-Based Software Systems

means that A can call a function in B. In traditional software development,
this implies that A must know the name of the function in B. Components A
and B are compiled separately, and the call of A is bound to the function in B
by the linker. Although the actual binding occurs at link time (and some link-
ers indeed offer possibilities to change the binding), and can even occur at
run time (if dynamically linkable libraries are used), in most cases the name
of the function of B is hard-coded into A, so the actual choice for using B in
A is already made at compile time.

Now let us look at this from a different point of view. We can also say
that the choice of using B is made by the designer of component A, and is
therefore made at component time. But this specific choice makes it difficult
to create a product P ′ consisting of component A and a different component
B ′ (see the right-hand side of Figure 12.1). We actually want the product
creator to be able to make that choice, that is, at product time. How can we
achieve such flexibility?

Modern component technologies often deploy run-time binding to
achieve product-time binding. In such cases, component A implements a
pointer to a function (or a pointer to a VTable of pointers to functions). This
pointer is filled with the address of the function in B at run time by software
specific to the product P. This third-party binding (where P is the third party)
is sometimes also called late binding, and it is an essential technique to delay
decisions in, for instance, product lines. The extra indirection introduced by
the pointer provides a slight overhead in code size and performance.

Koala is to be used in resource-constrained environments (R2) where
typically 90% or more of the bindings is known and fixed at product time
(but different for different products). It is also not known in advance which
10% of the bindings must remain flexible, so this knowledge cannot be built
into the components (R4). This has led to the following basic binding
scheme:

The Koala Component Model 225

A

B

P
A

B�

P�

Figure 12.1 Principle of binding.

• Components that require functions of other components use sym-
bolic names to refer to such functions.

• Components are declared in an architectural description language,
and so are products interconnecting components.

• A compiler generates a simple #definestatement to map sym-
bolic names to physical names for bindings known at product time,
and it generates code for run-time binding otherwise.

Our use of #define is sometimes called late compile-time binding: It
is late in the development process, but still early in the compilation process.
We can use this efficient implementation technique as long as we build
closed systems, which will be for quite some years. When computing
resources allow us to build open systems, we only have to change the com-
piler to generate run-time binding.

The remainder of this section provides a brief overview of Koala.

Koala Components

A Koala component is a piece of code that can interact with its environment
through explicit interfaces only. As a consequence, a (basic) Koala compo-
nent has no dependencies on other Koala components. The implementation
of a Koala component is a directory with a set of C and header files that may
use each other in arbitrary ways, but communication with other components
is routed only through header files generated by the Koala compiler, based on
the binding between components. To achieve this, the directory also con-
tains a component definition file, describing (among other things) the inter-
faces of the component.

A Koala configuration is a list of components (a part list) and a list of
connections between components (a net list). Configuring components A
and B to work together is the task of a third party, resulting in a configura-
tion C. We call this third-party binding. To be able to scale this approach to
build large systems, the Koala model is recursive; any combination of com-
ponents is again a component. A configuration is just a top-level component
that has no interfaces at its border.

To be more precise, a component definition describes a template for
instantiating a component and its subcomponents (if present), in other
words, a type. Different products are described by different component defi-
nitions that�when instantiated�may aggregate subcomponents of the

226 Building Reliable Component-Based Software Systems

same type, hence we obtain reuse. A single product is even allowed to contain
more than one instance of a certain component type; we call this multiple
instantiation.

In that respect, a Koala component definition resembles a class in, for
instance, Java, and a component instance is an object. It is not possible, how-
ever, to pass pointers to components in Koala.

Figure 12.2 shows an example of a Koala component. The small
squares that contain triangles denote interfaces as explained in the next sec-
tion; the tip of the triangle points in the direction of the function call. Com-
ponents C1�C3 are subcomponents of CC. The objects marked with �m� and
�s� are modules and switches, respectively, as discussed in a section below.

Provides and Requires Interfaces

Connections between components are expressed in terms of interfaces. As in
COM and in Java, a Koala interface is a small set of semantically related
functions. An interface definition defines the prototypes and semantics of
these functions, while components provide or require instances of interfaces.

Koala provides interfaces are much like the interfaces from COM and
Java. A component may provide multiple interfaces, which is a useful way of
handling evolution and diversity. Koala components also have requires inter-
faces, which are explicit connection points for communicating with the

The Koala Component Model 227

CC

C2

C1

C3

ms

Figure 12.2 A Koala component example.

environment of the component that are bound by a third party. Such a fea-
ture is not part of COM or Java, but can easily be built on top of it, by
declaring interface pointer variables within the COM or Java class, and pro-
viding a way to set these from outside. But in Koala all communication is
routed through such requires interfaces, even calls to the operating system,
while COM components and Java classes still have many implicit connec-
tions to the environment.

Koala interfaces can be optional. An optional requires interface need
not be connected and an optional provides interface need not be imple-
mented. This allows components to fine-tune themselves to their environ-
ment by observing what the environment can and cannot deliver. Such
implicit adaptability is also a goal of COM, where QueryInterface is used
to examine the connected component. Self-adaptable components make the
task of handling diversity easier. As a side effect, the compiler can also opti-
mize the memory usage of the application (the so-called footprint), by elimi-
nating functionality in a component that is not used.

Binding, Gluing, and Switches

The normal way of composing components is to connect requires interfaces of
one component to provides interfaces of another component. Naturally, in
compound components it is also possible to connect provides interfaces of
subcomponents to provides interfaces of the compound component, and simi-
larly for requires interfaces. In all cases, it is assumed that interfaces fit. What
happens if interfaces have to be connected that do not have the same type?

One feature of Koala is that it is allowed to connect a requires interface
to a provides interface of a wider type. The provides interface should imple-
ment all of the functions of the required interface, but it may implement
more than that. This allows for an easy evolution of functionality, though in
practice it is better to support both the old interface and a new one, as one
would do in COM.

Now suppose that two interfaces do not fit. In Koala it is possible to
add glue code to the binding between interfaces. Simple glue code can be
expressed in an expression language within Koala; more complicated code
can be written in C. This allows us to easily overcome a certain category of
syntactic and semantic differences. Glue code is not independently reusable
code. It belongs to the compound component that performs the binding.

A special case of glue code is code that switches a binding between com-
ponents. Such a mechanism to select from components can be implemented

228 Building Reliable Component-Based Software Systems

in C, but it occurs so frequently that we decided to define a special concept
for this in the language: the switch. The compiler converts a switch internally
to a set of Koala expressions, which has the advantage that it can perform cer-
tain optimizations, such as reducing the switch to a straight binding if the
switch is set to a position that is known at compile time.

The �normal� binding, the glue module, and the switch are examples
of connectors. The Koala language defines no other connectors. But other
kinds of connection can easily be made as special-purpose components. We
created, for example, a set of generic components that implement remote
procedure call services, for use in products with multiple processors. These
services are instantiated by hand for different interface types�in principle,
this can be automated.

Diversity Interfaces

Koala components can be parameterized through diversity interfaces. Koala
has no specific construct for this. They are just requires interfaces that can be
bound using any Koala binding technique, although the use of Koala expres-
sions is preferred for optimization reasons. The mechanism allows us to
define component-specific sets of parameters. Note that in many software
systems, either low-level components know about product diversity parame-
ters, or at the product level low-level component parameters must be given a
value. In Koala, low-level parameters of subcomponents can be calculated in
terms of higher level parameters of compound components.

The use of optional interfaces also implies a diversity mechanism.
Components can observe what is connected to their interfaces, and thus
decide to adapt themselves to their environment. A more thorough treatment
of various ways of handling diversity can be found in [2].

Product-Line Architecture

The Koala model is a relatively simple model that allows us to combine dif-
ferent components as long as the provided services can be made to match the
required services. The most important prerequisite to combine components
is that both should obey the Koala model. For newly developed components,
this requires a trivial effort; they must satisfy the naming conventions so that
the Koala compiler can generate the appropriate #define statements. For
legacy components, encapsulation into a Koala component is straightforward

The Koala Component Model 229

(using a special construct that circumvents the default naming conventions),
albeit the creation of bindable requires interfaces may be a problem if source
code is not available.

But even for Koala components, architectural mismatches are still pos-
sible, so we defined a set of simple architectural rules for preventing gross
mismatches. We discuss three of these here: initialization, multithreading,
and notifications.

All components should provide an initialization interface. The general
rule is that functions in this interface must be called before any of the other
interfaces can be accessed. Components that do not control hardware pro-
vide a simple initialization interface IInit, with a single function Init.
Components that do control hardware provide a more complicated interface,
IPower, that has an Init function to initialize the software component, but
also a Turn-on and Turn-off function to control the hardware power of
the specific device. Different devices may be on or off, depending on the
power state of the system as a whole.

A particular point of attention is that most components need function-
ality of other components during initialization. In principle, components
designers must specify what outcalls they make in the implementation of the
Init function, and it is the task of the system designer to satisfy these
requirements. In practice, we define a number of legal outcalls during ini-
tialization, mostly concerning access to the computing infrastructure, such as
creating semaphores and accessing nonvolatile memory.

Our second rule concerns multithreading. Control software for con-
sumer electronics typically contains a large number of relatively small and
independent activities, for example, a control loop to measure and control
the image quality. Some of these activities are hard in real time (a TV may
not catch fire), some are relatively hard (you do not want to miss Teletext
data, but nothing disastrous happens if you do), and some are relatively soft.
A real-time kernel with preemptive scheduling is used to separate the high-
frequency tasks from the low-frequency tasks. However, two problems
remain:

1. Consumer products are resource constrained. They do not have
ample memory and processing cycles, and this severely constrains
the number of threads that can be created.

2. Reusable components cannot make too many assumptions about
the execution architecture of products, because these may be dif-
ferent for different products.

230 Building Reliable Component-Based Software Systems

The first problem is solved with a technique called thread sharing. In
our software, autonomous activities use pumps, message queues with a func-
tion to process messages and a logical thread to activate the pump function.
We also have pump engines, which essentially are physical threads controlling
pumps and which solve the second problem. Pumps are allocated to pump
engines at the product level, where a single pump engine may serve multiple
pumps. This is again a form of late binding, as are many techniques in
product-line engineering. More information on our execution architecture
can be found in [3].

Our third rule concerns notifications. Given the large number of asyn-
chronous activities, many components need the ability to report the occur-
rence of �spontaneous� events. An example in the TV domain is if a
broadcast stops; the software must then mute the sound and blank the pic-
ture. Another example is a frequency search for a next station. This will typi-
cally take seconds, up to 1 minute, and is therefore not implemented as an
indivisible action. Instead, the search action is started and a notification is
raised when a station has been found (or not).

In the majority of our products, each notification is connected to a sin-
gle client (which may be different in different products). We therefore model
notifications as outcalls through optional requires interfaces, and rely on
Koala interface binding as a notification subscription mechanism. Whenever
we encounter a situation with multiple clients, we insert a small component
to broadcast the notification. Only if we foresee that for a specific component,
all products will define multiple clients that are interested in notifications fol-
lowing specific requests, will we build an explicit subscription mechanism
into the component.

We have now discussed three basic rules in our architecture. Let us now
highlight some of the modular architecture of our products. The overall
architecture is separated into three layers, as is illustrated in Figure 12.3:

1. A computing platform layer, abstracting from computing hardware;

2. An A/V/data platform layer, abstracting from audio, video, and
data processing hardware;

3. An applications and services layer.

Components from the second layer can use the components from the
first layer, and components from the third layer can use components from
both the first and the second layer. Each layer contains a set of subsystems

The Koala Component Model 231

that cover one specific subdomain. Figure 12.3 lists nine of them described
briefly below:

• infra implements most of the computing infrastructure�some
would call this the operating system;

• uims implements a user interface management system to build appli-
cations (apps);

• tvplf is a �TV platform,� abstracting from hardware peculiarities;

• tvsvc is a set of hardware-independent services in the TV domain;

• txt and epg are Teletext and Electronic Programming Guide,
respectively;

• fact and deal are special software for the factory and the dealer.

Each subsystem contains many components, ranging from basic components
dealing with only one aspect of the subdomain to compound components
implementing the full subdomain for one specific category of products. We
elaborate on this in the next section.

232 Building Reliable Component-Based Software Systems

A/V
platform

API

Computing
platform

Computing
platform

API

Audio / video hardware

Co
m

pu
tin

g
ha

rd
w

ar
e

A/V and data platform

Applications and services

tvplf
infra

uims

txt

epg dealfacttvsvc

apps

Figure 12.3 Layers and subsystems in the product-line architecture.

TEAMFL
Y

Team-Fly®

Creating Products

Koala components are stored in a repository. The repository is a set of pack-
ages, where each package is a set of component and interface definitions,
some of which are public, some of which are private. Each package is devel-
oped by a single team and at a single location. The package is published as a
source tree and as a ZIP file on an intranet, for downloading by others. A
�home page� makes the repository look like a single conceptual directory
structure.

Creating a product is simple. A subset of packages is downloaded into a
private directory structure. Then, a top-level component definition is created
that instantiates and binds components from the repository, preferably com-
pound components (subsystems). If existing compound components do not
satisfy the product requirements, new compound components can be created
from basic components. If existing basic components do not satisfy the
requirements, new basic components can be created. A software develop-
ment environment consisting of an off-the-shelf software development envi-
ronment (SDE) extended with the Koala compiler allows the required
configuration to be built.

The previous paragraph describes an idealized bottom-up approach for
product generation. In practice, development of basic and compound com-
ponents occurs in parallel with the development of products using these
components. This requires careful planning�a topic already discussed previ-
ously in this chapter (see also [4]).

Managing Versions and Variants

The management of versions and variants of components and products is tra-
ditionally the domain of configuration management (CM) systems. We
believe that diversity in a product line should not be handled by a CM sys-
tem, for the following two reasons:

1. It keeps diversity outside the scope of the architects (at least in prac-
tice), whereas we feel that diversity should be one of the main archi-
tectural issues.

2. CM systems can only handle compile-time variation, whereas we
expect that more and more diversity will be handled at run time in
the (near) future.

The Koala Component Model 233

This leads to the following approach:

1. We use a CM system to maintain the full-version (revision) history
of all our software assets, including source code and documentation.

2. We use the CM system for temporary branches with a short life-
time (e.g., when one developer corrects an error while another adds
a feature).

3. We also use branches in the CM system for safeguarding a product
in its final testing phase from changes to the code made on behalf of
other products only.

4. We use Koala for all permanent diversity in the product family or
population.

The large scale of our development and the fact that it is distributed
give rise to a second level of version and variant handling, namely, at the level
of packages. We have already seen that each package is the responsibility of a
single team at a single location; each package is also maintained in its own
CM system. This package-specific CM system maintains the full-version his-
tory of all files in the package; users of a package only see formal releases of
that package (which are numbered sequentially). It is the responsibility of the
package development teams to ensure consistency within a package, so that
users only have to worry about consistency among packages.

Most variation is handled within a package, by having different com-
pound Koala components for different ranges of products. Occasionally we
find it useful to define two different packages to implement the same func-
tionality for different parts of the product population. We currently have, for
instance, two disjoint implementations of a TV platform, one for our older
hardware and one for our newer hardware.

More information on handling variants can be found in [2]. More
information on the relation with configuration management can be found
in [5].

Subtyping

We have already shown how Koala allows us to connect �wider� provides
interfaces to �narrower� requires interfaces, as long as all required func-
tions are indeed implemented. In object-oriented terminology, an interface
definition can be seen as a type, more specifically as an abstract base class.

234 Building Reliable Component-Based Software Systems

Providing an interface is equivalent to inheriting the virtual functions from
that abstract base class and implementing them. This allows us to formalize
the notion of �wider� interfaces, because it coincides with the notion of sub-
typing in OO: A wider interface is a subtype of a narrower interface.

Compatibility checks between components are thus reduced to type
and subtype checks on the interfaces. We can also see components as classes
and use the same notion of subtyping there. In a nutshell, a component is a
subtype of another component if it provides more and requires less. The
�provides more� part will look familiar to the reader, as a class that inherits
from more abstract base classes. The �requires less� part may come as a sur-
prise. Consider, however, a function with input and output parameters. It
can be substituted by a function with fewer input parameters and more out-
put parameters (ignoring some syntactic problems).

We use subtyping at the component level mainly for ensuring that new
versions of a component are backward compatible with old versions. It is suf-
ficient for this if the new component is a subtype of the old component. We
can also use subtyping to achieve substitutability: A component A can be
replaced by a component B if B is a subtype of A. There are, however, no
direct constructs for replacing components by other components in the
Koala language.

We can also use subtyping at the level of packages, where a subtype of a
package provides more and requires less. Note that packages may require
component definitions from other packages and will usually require interface
definitions from other packages. A full treatment of this is outside the scope
of this document.

Conclusion

We introduced the Koala component model as used for the creation of a
family of television products. We highlighted some of the features against the
background sketched in previous sections, stressing the importance of vari-
ability, composability, and adaptability.

Koala is currently in use by a few hundred software engineers for the
creation of a family of televisions. Experience shows that it is very easy to cre-
ate derivative products by selecting components, binding them, adding glue
code, and so forth. The technology is not difficult�it can be learned in a few
days.

As far as we know, Koala is the only large-scale industrial application of
an architectural description language. Because code is generated from the

The Koala Component Model 235

ADL, the architectural descriptions are by definition consistent with the
implementation. We use the ADL as a design tool, as a communication tool,
and also as a means to check properties of the system. The latter is an espe-
cially interesting area for future research.

Koala does not have special features to achieve nonfunctional attributes
such as quality, reliability, safety, and security. Nor does it prevent engineers
from achieving those either. In fact, the encapsulation and parameterization
facilities offered by Koala allow developers to use components without
changing them, resulting in stable components that in the long term will
increase their quality.

The products that are created with Koala consist in large part of soft-
ware especially written for Koala. Some parts concern legacy software that
was also written at Philips but not for Koala. At the moment, the only third-
party component in the TVs is the real-time kernel. In set-top boxes it is
more common to have third-party software, usually in the form of large mid-
dleware stacks such as OpenTV.

References

[1] van Ommering, R., F. van der Linden, and J. Kramer, �The Koala Component Model
for Consumer Electronics Software,� IEEE Computer, Vol. 33, Issue 3, pp. 78�85.

[2] van Ommering R., �Mechanisms for Handling Diversity in a Product Population,�
Proc. Int. 4th Software Architecture Workshop, Limerick, Ireland, 2000, http://www
.extra.research.philips.com/SAE/papers.

[3] van Ommering, R., �A Composable Software Architecture for Consumer Electronics
Products,� XOOTIC Magazine, Vol. 7, No. 3, 2000, pp. 37�47.

[4] van Ommering, R., �Roadmapping a Product Population Architecture,� Proc. 4th Int.
Workshop on Product Family Engineering, Bilbao, Spain, 2001.

[5] van Ommering, R., �Configuration Management in Component Based Product Popu-
lations,� Proc. 10th Int. Workshop on Software Configuration Management, Toronto,
Canada, 2001, http://www.ics.uci.edu/~andre/scm10.

236 Building Reliable Component-Based Software Systems

Part 6:
Real-Time Software Components

Real-time systems are computer systems in which the correctness of the sys-
tems depends not only on the logical correctness of the computations per-
formed but also on time factors. In such systems it is essential that the timing
constraints are always met. Real-time systems must satisfy, under all condi-
tions, requirements of timeliness (meeting deadlines, i.e., finishing certain
tasks within specified time limits), simultaneous processing (more than one
event may occur simultaneously, all deadlines must be met), predictability
(predictable reactions to all possible events), and dependability (including
characteristics such as reliability, integrity, privacy, safety, and security). In
many cases, real-time systems are safety critical (i.e., their failure may result
in injury, loss of life, or major environmental damage). Very often, real-time
systems must strictly satisfy requirements with respect to restricted use of
memory, CPU performance and energy.

It is clear that these specific requirements have a strong impact on real-
time system design procedures, not only at the application level but with
respect to entire system architectures and infrastructures. Standard compo-
nent models and technologies cannot be guaranteed to meet these require-
ments and can only be used in such systems to a limited degree. Different
concepts of system design, in component composition reasoning, in reusing
components, and so on, must be applied. The concept of a component-based
approach is as attractive for real-time systems development as for other

237

software systems, and a component-based concept has been used successfully
in certain domains. The chapters in this part address questions relating to
component-based development of real-time, embedded and safety critical
systems.

Chapter 13 presents an introduction to real-time systems by describing
their main principles and introducing the basic terminology of real-time sys-
tems. The basic requirements of real-time systems for infrastructural compo-
nents such as operating systems, databases, and so on, are then discussed.
Some successful examples of CBD models are presented. Finally a process for
designing component-based real-time systems is described, using a top-down
approach, identifying components at the design phase, specifying their prop-
erties, selecting preexisting components, reasoning about the composition of
the components, and analyzing the system. This chapter shows that it is pos-
sible to apply the CBD concept even to dependable real-time systems.

Chapter 14 presents arguments for the reuse and reverification of com-
ponents in safety-critical real-time systems. The arguments for reuse of soft-
ware (components) are usually arguments for rapid prototyping, arguments
for outsourcing, and arguments for greater reliability. In the latter case, it is
assumed that the verification of the components can be eliminated or
reduced and that the reliability of the component has been demonstrated in
previous applications. Expensive and catastrophic experiences have shown,
however, that it is not always so simple. The authors approach this problem
by presenting a framework for determining when components in real-time
systems can be reused immediately, when complete retesting is necessary, or
when only parts of the systems need additional verification. As an alternative
to complete reverification, the possibility of decreasing the testing effort is
attractive, and essential in the case of safety-critical real-time systems.

Chapter 15 investigates a practical approach to developing real-time
applications in an environment consisting of COTS components with mini-
mal support for real-time use. They concentrate on resource management
and scheduling techniques to reduce the unpredictability inherent in these
types of components. Instead of modifying the COTS components, they
provide solutions sitting on the COTS components. They also discuss the
limitations and real-time features of modern general-purpose operating sys-
tems and in particular present a characterization of Windows NT from the
perspective of real-time constraints. They find that the unpredictable part
of Windows NT can be minimized by the use of a user-level scheduling
scheme. The chapter concludes with guidelines and recommendations of use
to real-time system designers building applications using Windows NT.

238 Building Reliable Component-Based Software Systems

13
Components in Real-Time Systems

Damir Isovic and Christer Norström

Introduction

The development of complex embedded systems is an expanding field. More
and more applications are being based on the use of embedded computers.
Examples include highly complex systems such as medical control equip-
ment, mobile phones, and vehicle control systems. Most of such embedded
systems can also be characterized as real-time systems (i.e., systems in which
the correctness of the system depends not only on the logical result of the
computations it performs but also on time factors) [1]. Embedded real-time
systems contain a computer as part of a larger system and interact directly
with external devices. They must usually meet stringent specifications for
safety, reliability, limited hardware capacity, and so on. The increased com-
plexity of embedded real-time systems leads to increasing demands with
respect to requirements engineering, high-level design, early error detection,
productivity, integration, verification, and maintenance. This calls for meth-
ods, models, and tools that permit a controlled and structured working pro-
cedure during the complete life cycle of the system [2]. When applying
CBSE methodology in the development of real-time systems, an important
factor is reusability of real-time components. Designing reusable real-
time components is more complex and more expensive than designing

239

nonreusable non-real-time components [3, 4]. This complexity arises from
several aspects of real-time systems not relevant in non-real-time systems. In
real-time applications, components must collaborate in meeting timing con-
straints. Furthermore, to keep production costs down, embedded systems
resources must usually be limited, but they must perform within tight dead-
lines. They must also often run continuously for long periods of time with-
out maintenance.

In this chapter we present some issues related to the use of component
technology in the development of real-time systems. First we give a short but
comprehensive introduction to real-time systems, providing some back-
ground and defining the basic terminology. After this introduction, we will
present that which is required of infrastructural components such as operat-
ing systems, databases, and the communication protocol when employed in
real-time systems. The main requirement is predictability in the time domain
(e.g., knowledge of the maximum response time for each system service
used). Thereafter, we will state the demands on domain-specific component
models for embedded real-time systems such as the port-based object model
and the IEC 61131 standard [5, 6]. From a real-time perspective, the
demands on a component can be divided into communication, synchroniza-
tion, and timing requirements.

Given a system composed of a set of well-tested real-time components,
we face the composability problem. Besides guaranteeing the functional
behavior of a specific component, the composition must also guarantee that
the communication, synchronization, and timing properties of the compo-
nents and the system are retained. The composability problem with respect
to timing properties, which we refer to as timing analysis, can thus be divided
into (1) verifying that the timing properties of each component in the com-
posed system still hold, and (2) schedulability analysis (i.e., system-wide tem-
poral attributes, such as end-to-end deadlines, can be fulfilled). This timing
analysis must be included in a design procedure. We present one such
method that focuses especially on enabling high-level analysis on the archi-
tectural design level. This analysis is important to avoid costly redesign late in
the development due to the detection in the integration test phase that the
system as developed does not fulfill the timing requirements.

Furthermore, we propose a method for composing components and
show how the resulting compositions could be handled when designing real-
time systems. This is followed by a description of how an existing real-time
development environment can be extended to support our design method.
Finally, we provide guidelines about what one should be aware of when reus-
ing and updating on-line real-time components.

240 Building Reliable Component-Based Software Systems

Characteristics and Challenges of Real-Time Systems

Real-time systems are computing systems in which the meeting of timing
constraints is essential to correctness. Real-time systems are usually used to
control or interact with a physical system, and the timing constraints are
imposed by the environment. As a consequence, the correct behavior of these
systems depends not only on the result of the computation but also on the
time at which the results are produced [1]. If the system delivers the correct
answer, but after a certain deadline, it could be regarded as having failed.
Many applications involving the external world are inherently of a real-time
nature. Examples include aircraft and car control systems, chemical plants,
automated factories, medical intensive care devices, and numerous others.
Most of these systems interact directly or indirectly with electronic and
mechanical devices. Sensors provide the system concerned with information
about the state of its external environment. For example, medical monitoring
devices, such as ECGs, use sensors to monitor patient and machine status.
Air speed, attitude, and altitude sensors in aircraft provide information for
the proper execution of flight control plans.

Real-time systems can be constructed of sequential programs, but typi-
cally they are built of concurrent programs, called tasks. Tasks are usually
divided into periodic and nonperiodic tasks. Periodic tasks consist of an infi-
nite sequence of identical activities, called instances, which are invoked
within regular time periods. Nonperiodic tasks are invoked by the occurrence
of an event, for example, a stimulus that may be generated by processes exter-
nal to the system (e.g., an interrupt from a device).

When a processor is to execute a set of concurrent tasks, the operation
of the CPU must be assigned to the various tasks according to a predefined
criterion called a scheduling policy. Various algorithms are currently available
for scheduling of real-time systems. They fall into two categories [1]: off-line
and on-line scheduling. In off-line scheduling, the scheduler has complete
knowledge of the task set and its constraints. Scheduling decisions are based
on fixed parameters that are assigned to tasks before their activation. The
off-line-generated schedule is stored and dispatched subsequently during run
time of the system. On the other hand, on-line scheduling algorithms make
their scheduling decisions during run time.

A typical timing constraint on a real-time task is the deadline. A dead-
line is the maximum time within which the task must complete its execution
with respect to an event. Depending on the consequences that could result
from a missed deadline, real-time systems are divided into two classes, hard
and soft real-time systems. In hard real-time systems, all task deadlines must

Components in Real-Time Systems 241

be met, whereas in soft real-time systems, meeting deadlines is desirable but
not essential. In hard real-time systems, late data is bad data. Soft real-time
systems are constrained only by average timing constraints (e.g., handling
input data from the keyboard).

As mentioned earlier, many real-time systems are safety critical and the
design of such systems must focus on demands for predictability, flexibility,
and reliability. When applying CBSE methodology in the development of
real-time systems, another important factor is the reusability of real-time
components. Designing reusable real-time components is more complex
than designing nonreusable, non-real-time components [3]. This complexity
arises from several aspects of real time not relevant in non-real-time systems.
In real-time applications, components must collaborate to meet timing con-
straints, also referred to as end-to-end transaction deadlines [7]. Further-
more, to keep production costs down, embedded systems resources are
usually limited but they must perform within tight deadlines. They must
often run continuously for long periods of time without maintenance.

Concurrent real-time systems are extremely complex to specify and
develop because the performance of many independent operations may be
required at the same time. When systems are large, these interactions make it
difficult for developers to appreciate the implications of their design decisions.
It is often impossible to predict with certainty when particular events will
occur and what their order of occurrence and their duration will be. Real-time
systems, however, must respond to events within a specified, predictable time
limit. Similarly, hardware and software failures are usually unpredictable, but
real-time software must be able to handle them in a predictable manner.

The load on a real-time system from its external environment is
another source of complexity. This often requires the development of a
priority-driven system that postpones less important tasks during heavy sys-
tem loading. To be able to contend with this, real-time components must be
designed to handle exceptional situations.

Real-time system developers must ensure that they are using the most
efficient target resources available. Hence, common CBSE technologies
(such as JavaBeans, CORBA, and COM) are seldom used, due to their exces-
sive processing and memory requirements and unpredictable timing charac-
teristics, which is unacceptable in the class of application we consider. They
have, however, one desirable property which is flexibility, but predictability
and flexibility have often been considered to be contradictory requirements,
particularly from the scheduling perspective. Increased flexibility leads to
lower predictability. Hence, a model for hard real-time systems cannot sup-
port flexibility to the same extent as the above-mentioned infrastructures.

242 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

Further, the development of standard real-time components that can
be run on different hardware platforms is complicated by the components
having different timing characteristics on different platforms. Thus a compo-
nent must be adapted and reverified for each hardware platform to which it is
ported, especially in safety-critical systems. Hence, we need to perform a tim-
ing analysis for each platform to which the system is ported.

Timing analysis is performed at two levels, the task level and the system
level. At the task level the worst-case execution time (WCET) for each task is
analyzed or estimated. The analysis can be performed in two ways, either via
measurement or by static analysis of the code. If the execution time is meas-
ured, we can never be sure that we have determined the worst case. On the
other hand if we use analysis, we must derive a safe value for the execution
time. The estimated execution time must be greater than or equal to the real
worst case and in the theory provided, the estimate can be excessive. The
challenge here is thus to derive a value as close as possible to the real worst-
case execution time. Puschner and Koza give a good introduction to this
problem in their seminal paper [8] and the state of the art can be found in a
special issue of real-time systems devoted to timing analysis [9].

At the system level we conduct analyses to determine if the system
composed fulfills the timing requirements. Several different mature analysis
methods exist, for example, analysis for priority-based systems and pre-run-
time scheduling techniques [10, 11]. Both kinds of analysis have been proven
to be useful in industrial applications [12, 13].

When designing a system, we can assign time budgets to the tasks that
are not implemented by intelligent guesses based on experience. By doing
this, we gain two positive effects. First, the system-level timing analysis can
be performed before implementation, thus providing a tool for estimating
the performance of the system. Second, the time budgets can be used as an
implementation requirement. By applying this approach, we make the
design process less ad hoc with respect to real-time performance. In tradi-
tional system design, timing problems are first recognized when the complete
system or subsystem has been implemented. If a timing problem is then
detected, ad hoc optimization will begin, this most surely making the system
more difficult to maintain.

Real-Time Component Models

In this section we will try to make a distinction between infrastructure com-
ponents such as real-time operating systems, databases, communication

Components in Real-Time Systems 243

protocols, and user-interface subsystems, and application-specific compo-
nent models that are normally specific to a particular application area and
used to program the specific functionality. Examples of application-specific
component models are IEC 61131 for industrial control [6], and the port-
based objects approach that has been developed for designing embedded
control systems, especially for robotics [5].

Infrastructure Components

A desirable feature in all system development, including the development of
real-time systems, is the possibility of reusing standard components. How-
ever, using any particular operating system or database system for a real-time
application is not always feasible, because many such systems are designed to
maximize the average throughput of the system but do not guarantee tempo-
ral predictability. Therefore, to guarantee predictability, we must use either
specific COTS developed for real-time systems or an appropriate subset of
the functionality provided by the COTS.

The main characteristic of a standard real-time operating system
(RTOS), for example, is temporal predictability, which means that each sys-
tem service has a known upper limit to execution time [14]. We also need to
know the upper limit to the interrupt latency provided by the RTOS. If the
RTOS supports predictability, we can perform an analysis of our applica-
tion�s temporal behavior by using schedulability analysis. However, predict-
ability is not enough, the RTOS must also be efficient with respect to
memory and CPU usage to be useful in a cost-sensitive system. Other real-
time components such as a database must of course also satisfy predictability
and efficiency requirements.

Assume instead that we wish, if possible, to use a standard operating
system in a real-time application. Consider the use of Windows NT in a
real-time application. Because Windows NT was not developed for real-time
application, we must use it carefully. In Chapter 15 and in [15], Ramam-
ritham et al. discuss the features of Windows NT that should not be used if
predictability is of importance. One of the weaknesses identified was that pri-
ority inversion could easily occur if real-time threads invoke routines in the
Windows API. To achieve predictability when using Windows NT, the sys-
tem must be designed in such a way that the real-time threads do not use all
of the CPU and I/O capacity. Some resources must be reserved for function-
ality without real-time priority, especially functionality that handles interac-
tive I/O.

244 Building Reliable Component-Based Software Systems

A current research project, VEST [16], at Virginia State University is
the study of how an RTOS for embedded real-time systems can be built
from components when limited resources are available. VEST aims at the
construction of the operating system (OS) part of an embedded real-time
system with small resource requirements. System development begins with
the design of an infrastructure that can be saved in a library and used again.
The infrastructure consists of microcomponents such as interrupt handlers,
indirection tables, dispatchers, plug and unplug primitives, proxies for state
mapping, and so forth. It constitutes a framework for composing a system
consisting of components. Configuration tools permit the user to create an
embedded real-time system by composing components into a system and by
mapping passive components into run-time structures (tasks).

After the system is composed, dependency checks are invoked to estab-
lish certain properties of the composed system. If the property requirements
are satisfied and the system needs no further refinement, the user can invoke
analysis tools to perform timing and reliability analyses. Note that compo-
nents in VEST are passive (a collection of code fragments, functions, and
objects) and are mapped into run-time structures (tasks). Each component
can be composed from subcomponents. For example, a task management
component can consist of components such as create task, delete task, and set
task priority. Components have real-time properties such as WCET, dead-
line, and precedence and exclusion constraints, which enable timing analysis
of the composed system.

In addition to temporal properties, each component has explicit mem-
ory needs and power supply requirements for efficient use in an embedded
system. Selecting and designing the appropriate component(s) is a fairly
complicated process, because both real-time and non-real-time aspects of a
component must be considered and appropriate configuration support must
be available. Dependency checks proposed in VEST [16] provide configura-
tion support and demonstrate the effectiveness of the VEST approach.

Due to their complexity, dependency checks are separated into four
types:

• Factual: Component-by-component dependency checks (WCET,
memory, importance, deadline, etc.), intercomponent: pair-wise
component checks (interface requirements, version compatibility, a
component is included in another, etc.);

• Aspects: Checks of issues that affect the performance or semantics of
components (real-time, concurrency synchronization and reliability
issues);

Components in Real-Time Systems 245

• General: Checks of global properties of the system (the system
should not be subject to deadlocks, hierarchical locking rules must
be followed, etc.).

Using well-defined dependency checks is very important because they mini-
mize possible errors in the system composition.

Application-Specific Component Models

In addition to infrastructure components, domain-specific component mod-
els, which in fact have been used for many years for certain domains, must be
considered. Here, the objective is to make use of components with well-
defined temporal behavior and resource demands that can be easily com-
posed to constitute a system. The basic idea is to have a component library
that the application engineer can use when developing an application. Com-
ponents for an industrial control system can be different kinds of controllers,
alarm functions, algorithms, etc. The application engineer should also be
able to design new components for the particular application and thereby
achieve a uniform handling of components both purchased and developed
in-house.

We first present a standard IEC 61131-3 [6] for programming indus-
trial control and thereafter a component-based system for robotics desig-
nated port-based objects (PBOs). As will be seen, these models are quite
similar to the pipe-and-filters model presented in Chapter 3. The main dif-
ference is that in the IEC 61131 and PBO models, the pipe can accommo-
date only one data item, which means that if the data have not already been
processed when new data arrive, they will be overwritten.

Examples of Component Models

IEC 61131 is a standard for programmable control systems and a set of asso-
ciated tools, for example, debuggers, test tools, and programming languages.
The part of IEC 61131 related to components is referred to as IEC 61131-3
[6] and is concerned with the programming of an application. IEC 61131-3
structures an application hierarchically and provides mechanisms for execut-
ing an application and providing support for communication between the
different components. The model is shown in Figure 13.1.

A configuration in IEC 61131-3 encapsulates all software for an appli-
cation. In a distributed system several configurations allocated to different
nodes may communicate with each other. A configuration consists of one or

246 Building Reliable Component-Based Software Systems

several resources that provide the computational mechanisms. A program is
written in any of the languages proposed in the standard, for example,
instruction lists, assembly languages, structured text, a high-level language
similar to Pascal, ladder diagrams, or function block diagrams (FBDs). Ladder
diagrams and FBDs are graphical programming languages, FBD being the
most relevant for CBD of embedded systems. The data flow is specified in
IEC 61131-3 function blocks by connecting in-ports and out-ports. Out-
ports contain the result from a computation based on input and the current
state of the function block. Figure 13.2 presents a simple function block dia-
gram representing a feedback control loop.

Real-time tasks can also be associated with a function block. Tasks can
either be periodic or event driven. For periodic execution of a function block

Components in Real-Time Systems 247

Global and direct variables

Accesspath

Execution
control path

Variable
access path

FB
Task

Program Program

FB FB

Task

Program

Task

Program

FB FB

Task

Resource Resource
Configuration

Communication function

Function
block

Variable

Figure 13.1 The IEC 61131-3 application structure.

FB1 FB2

Figure 13.2 A feedback control loop with two function blocks (FB).

a period of time must be specified. In implementations of IEC 61131-3, the
RTOS checks that the function block is periodically invoked. Event-
triggered blocks are also supervised by the RTOS, which monitors that the
CPU load does not exceed a certain threshold for a longer period of time
than specified. Communication between function blocks within the same
program is straightforward, whereas communication between function
blocks in different programs requires support by special mechanisms.

The PBO approach was developed at the Advanced Manipulators
Laboratory at Carnegie Mellon University [5]. The model is based on the
development of domain-specific components that maximize usability, flexi-
bility, and predictable temporal behavior. Independent tasks are the bases for
the PBO model. Independent tasks are not permitted to communicate with
other components, and components are thus loosely coupled and conse-
quently, at least in theory, easy to reuse. Although no system can consist of
independent components only, minimization of synchronization and com-
munication among components is a desirable design goal. The data flow is
specified by connecting in- and out-ports of different components, as in IEC
61131-3. Whenever a PBO needs data for its computation, it reads the most
recent information from its in-ports, irrespective of its producer. When PBO
components wish to make information available to other components in a
system, they store data at their out-ports. A parameterization interface is pro-
vided to make PBO components more flexible and reusable. Several different
application-specific behaviors can be implemented by one single component
through a parameterization interface. In addition to the data interface and
the parameterization interface named above, each PBO has an I/O interface.
A PBO is shown in Figure 13.3. The PBOs are by their nature periodic and

248 Building Reliable Component-Based Software Systems

PBO
Variable
input ports

Variable
output ports

Resource ports for communication
with sensors and actuators

Configuration parameters

Figure 13.3 A PBO.

the system can be analyzed using traditional schedulability analysis [5]. As
can be seen in this figure, the PBO model is quite simple and domain-
specific.

Designing Component-Based Real-Time Systems

In this section we present a method for system development using real-time
components. This method is an extension of [12], which is also in use in
developing real-time systems within a Swedish automobile manufacturing
company. It is a standard top-down development process to which timing
and other real-time specific constraints have been added and precisely
defined (or more correctly, have been predicted) at design time. The idea is
to implement the same principles, but also take into consideration features of
existing components that might be used in the system. This means that the
system is designed not only in accordance with the system requirements, but
also with respect to existing components.

This concept assumes that a library of well-defined real-time compo-
nents is available. The component model used is an extension of the earlier
described PBO model. The extension includes temporal attributes such as
WCET, release time, and deadline, and synchronization constraints such as
mutual exclusion and precedence relationships (see [17]). The development
process requires a system specification, obtained by analyzing the customer�s
requirements. We assume that the specification is consistent and correct in
order to simplify the presentation of the method.

The development process with real-time components is divided into
several stages, as depicted in Figure 13.4. Development starts with the sys-
tem specification, which is the input to top-level design. At the top level of
design, which includes the decomposition of the system into components,
the designer browses through the component library and designs the system,
making selections from the possible component candidates.

The detailed design will show which components are suitable for inte-
gration. To select components, both real- and non-real-time aspects must be
considered. In the architecture analysis, different architecture analysis meth-
ods are used for analyzing the extendibility of the design, the maintenance of
the design, and so forth. The scheduling and interface check will show if the
selected components are appropriate for the system, if adaptation of compo-
nents is required, or if new components must be developed.

The process of component selection and scheduling may need to be
repeated several times to refine the design and determine the most appropriate

Components in Real-Time Systems 249

components. When a new component must be developed, it should be (when
developed and tested) entered into the component library. When the system
finally meets the specified requirements, the timing behavior of the different
components must be tested on the target platform to verify that they meet the
timing constraints defined in the design phase. A detailed description of these
steps is given below.

Top-Level Design

The first stage of the development process involves decomposition of the sys-
tem into manageable components. We need to determine the interfaces
between them and to specify the functionality and safety issues associated
with each component. Parallel with the decomposition, we browse the

250 Building Reliable Component-Based Software Systems

System specification

Top-level design

Detailed design

Scheduling/interface
check

Obtain components
timing behavior on
target platform

System verification

Final product

Component
library

Create specifications
for the new components

Implement and verify
new components using
classical development
methods

Add new
components
to library

Architecture analysis

Figure 13.4 Design model for real-time components.

component library to identify a set of candidate components (i.e., compo-
nents which might be useful in our design).

Detailed Design

At this stage a detailed component design is performed by selecting compo-
nents to be used from the candidate set. In a perfect world, we could design
our system only using the library components. In a more realistic scenario,
we must identify missing components that we need according to our design
but which are not available in the component library. Once we have identi-
fied all of the components to be used, we can start by assigning attributes to
them, such as time budgets, periods, release times, precedence constraints,
deadlines, and mutual exclusion.

A standard method of performing the detailed design is to use the
WCET specified for every task, which specifies the upper limit of the time
needed to execute a task. Instead of relying on WCET values for components
at this stage, a time budget is assigned to each component. A component is
required to complete its execution within its time budget. This approach has
also been adopted in [17] and shown to be useful in practice. Experienced
engineers are often needed to make correct assignments of time budgets. The
time budget is thus an implementation requirement in addition to the func-
tional requirements of a component.

Architecture Analysis

At this stage it is time to check that the system under development satisfies
extrafunctional requirements such as maintainability, reusability, modifiabil-
ity, and testability. Different approaches to performing an analysis for this
purpose include scenario-based methods, simulation-based methods, mathe-
matical model-based methods, and experience-based methods [18]. For
instance, in addition to experience-based methods, we can apply the
scenario-based Software Architecture Analysis Method (SAAM) [19, 20]. If
the analysis shows that the design satisfies the extrafunctional requirements,
the next step is to analyze the design�s temporal requirements. If not, an
architectural transformation of the design must be performed.

Scheduling

At this point we must check that the temporal requirements of the system
can be satisfied, assuming time budgets assigned in the detailed design stage.

Components in Real-Time Systems 251

In other words, we need to make a schedulability analysis of the system
based on the temporal requirements of each component. A scheduler that
can handle the relevant timing attributes has been presented in [17], but
other approaches such as a fixed priority schedulability analysis can also be
used [21].

The scheduler in [17] takes a set of components with assigned timing
attributes and attempts to create a static schedule. If scheduling fails, changes
are necessary. It may be sufficient to revise the detailed design by reengineer-
ing the temporal requirements or by simply replacing components with oth-
ers from the candidate set. An alternative is to return to the top-level design
and either to select other components from the library or to specify new
components.

During the scheduling we must check that the system is properly inte-
grated. Component interfaces are checked to ensure that input ports are con-
nected and that their types match. If the specified system passes this test, the
schedules and the infrastructure for communication between components
will be generated.

The benefit of this analysis is an increase in the confidence that design
will fulfill the requirements. Further, the detection of any flaws or bugs at
this stage will permit a system redesign that is relatively inexpensive com-
pared with that necessary if such shortcomings are first recognized during the
integration test when all code is available. This approach avoids the possible
necessity of desperate optimization toward the end of a project, which most
often has serious effects on the maintainability of the system.

WCET Verification

Performing a worst-case analysis can either be based on measurements or on
a static analysis of the source code. Because no static analysis tools are avail-
able on the market, we use dynamic verification by running the code on the
target platform. This must be done even if the component supplier provides
a specification of the WCET, unless the specification is for an identical plat-
form. We can verify the WCET by running test cases developed by the com-
ponent designer and measuring the execution time. The longest time
measured is accepted as the component WCET.

Obtaining the WCET for a component is quite a complicated process,
especially if the source code is not available for the performance of the
analysis. For this reason, correct information about the WCET from the
component supplier is essential. Giving the WCET as a number does not

252 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

provide sufficient information. What is more interesting in the test cases is
the execution time behavior shown as a function of input parameters as
in Figure 13.5. The execution time shows different values for the different
input subdomains.

Producing such a graph can also be a difficult and time-consuming
process. In many cases, however, the component developer can derive
WCET test cases by combining source code analysis with the test execution.
For example, the developer can find that the execution time is independent
of input parameters within an input range (this is possible for many �simple�
processors used in embedded systems but not for others). The exact values of
the execution time are not as important as the maximum value within input
intervals, as depicted in Figure 13.6. When a component is instantiated, the
WCET test cases are chosen from the appropriate input subdomain. The
timing behavior depends on how the component is instantiated. Further
reading about this method is available in [22]. This approach has been tested
successfully on a real industrial system [23].

Implementation of New Components

New components�that is, those not already in the library�must be imple-
mented. The designer of the component has two requirements, the func-
tional requirements and the assigned time budget. A standard development
process for the development of software components is used, with the excep-
tion that the time budget must be considered. It may happen that some of
the new components fail to meet their assigned time budgets. The designer
can either add these to the library for possible reuse in other projects or rede-
sign them.

One approach when redesigning a component is to apply a negotiation
strategy, which means that we can move execution time to the component

Components in Real-Time Systems 253

Execution time

Input
domain 1 domain 2 domain 3

Figure 13.5 An execution time graph.

from other components that do not use the complete time budget, or from
the components considered that are not yet implemented. This negotiation
strategy has been successfully used in a concrete project applying this
approach [12]. To perform the implementation and the verification, the tar-
get platform must be available.

System Build and Test

Finally, we build the system using old and new components. We must now
verify the functional and temporal properties of the system obtained. If the
verification test fails, we must return to the relevant stage of the development
process and correct the error. Using this approach together with the static
scheduler has shown that the system test has been successful since the scheduler
has already integrated the system, despite the unavailability of some code. This
is because all synchronization and communication between the components
was fully specified in the design and checked by the static scheduler [10].

Component Library

The component library an important part of any CBSE system, because it
contains binaries of components and their descriptions. When selecting
components, we examine the attributes available in the library. A component
library containing real-time components should provide the following in
addition to component identification, functional description, interface, com-
ponent binary, and test cases:

• Memory requirements. This is important information to have when
designing memory-restricted systems and when performing trade-
off analyses;

254 Building Reliable Component-Based Software Systems

Execution time

Input
domain 1 domain 2 domain 3

Figure 13.6 Maximum execution time per subdomain.

• WCET test cases. These are test cases that indicate the WCET of the
component�s WCET for a particular processor family. Information
about the WCET for previously used targets should be stored to give
a sense of the component�s processor requirements.

• Dependencies. This describes dependencies on other components.

• Environment assumptions. These are assumptions about the environ-
ment in which the component operates, for example, the processor
family.

Composition of Components

As mentioned earlier a component consists of one or more tasks. Several
components can be composed into a more complex one. This is achieved by
defining an interface for the new component and connecting the input and
output ports of its building blocks, as shown in Figure 13.7.

This new kind of component is also stored in the component library, in
much the same way as the other components. However, two aspects are dif-
ferent: the timing information and the component binary. The WCET of a
composed component cannot be computed because its parts may be execut-
ing with different periods. Instead we propose that end-to-end deadlines
should be specified for the input to and output from the component. End-
to-end deadlines are set such that the system requirements are fulfilled in the
same way as the time budgets are set. These deadlines should be the input to
a tool that can derive constraints on periods and deadlines for the subcompo-
nents. This possibility remains the subject of research and cannot be consid-
ered feasible today.

Furthermore, we specify virtual timing attributes (period, release time,
and deadline) of the composed component, which are used to compute the
timing attributes of subcomponents. For example, if the virtual period is set
to P, then the period of a subcomponent A should be fA × P and the period
of B is fB × P, where fA and fB are constants for the composed component,
which are stored in the component library. This enables the specification of
timing attributes at the proper abstraction level. The binary of the com-
posed component is not stored in the component library. Instead references
to the subcomponents are stored, to permit the retrieval of the correct set of
binaries.

Components in Real-Time Systems 255

256
Building

Reliable
Com

ponent-Based
Softw

are
System

s

Component 1
(C)1

Component 2
(C)3

Component n
(C)2

in4_Cnew

in3_Cnew

in2_Cnew

in1_Cnew in_C1

in2_Cn

in1_C2

in2_C2

out_C1

out_C2

out1_Cn

out2_Cn

out3_Cnew

out2_Cnew

out1_Cnew

New component (Cnew)

Figure 13.7 Composition of components.

Example: Real-Time Components in Rubus OS

Only a few real-time operating systems are currently available that have some
concept of components. The Rubus operating system [24] is one of these. In
this section we describe the main features of Rubus, and then present certain
extensions that make it suitable for use in our development process. The
scheduling theory behind this framework is explained in [17].

Rubus

Rubus is a hybrid operating system, in the sense that it supports both preemp-
tive static scheduling and fixed priority scheduling. That which is referred to
as the red part of Rubus deals only with hard real-time requirements and that
referred to as the blue part, only with soft real-time requirements. Here we
focus on the red part only.

Each task in the red part is periodic and has a set of input and output
ports, which are used for unbuffered communication with other tasks. This
set also defines the interface of a task. A task provides the thread of execution
for a component and the interface to other components in the system via the
ports. In Figure 13.8 we can see an example of the appearance of a task/com-
ponent interface.

Each task has an entry function that has input and output ports as
arguments. The values of the input ports are guaranteed not to change dur-
ing the execution of the current instance of the task, in order to avoid incon-
sistency problems. The entry function is reinvoked periodically by the kernel.

The timing requirements of the task are shown in Figure 13.8. The
timing requirements are specified by release-time, deadline, WCET, and
period. Remember here that the WCET is a static attribute that is based on

Components in Real-Time Systems 257

Task: BrakeLeftRight
Period: 50 ms
Release time: 10 ms
Deadline: 30 ms
Precedes: outputBrakeValues
WCET: 2 ms

oil pressure

speed

�.

brake left wheel

brake right wheel

Task state information

Figure 13.8 A task and its interfaces in the red part of Rubus.

the component code, while the release time and deadline are requirements
derived from the process controlled and defined for the task. In addition to
the timing requirements, it is also possible to specify the ordering of tasks
using precedence relations and mutual exclusion. For example, the task
depicted in Figure 13.9 is required to execute before the OutputBrakeValues
task (i.e., task BrakeLeftRight precedes task OutputBrakeValues). A system is
composed of a set of components/tasks the input and output ports of which
have been connected, as depicted in Figure 13.9.

When the design of a system is completed, a pre-run-time scheduler is
run to check that the temporal requirements are satisfied. If the scheduler
demonstrates this, it then generates a schedule for the design, which is later
used by the red kernel to execute the system.

Extensions for CBSE

Rubus and its supporting tools have certain deficiencies that make them cur-
rently unsuitable for CBD. First, there is no support for creating composite
components (i.e., components that are built of other components). Second, a
tool is needed to manage the components available and their associated source
files, so that components can be fetched from a library and instantiated into
new designs. Further, there is a lack of real-time tools such as WCET analysis
and allocation of tasks to nodes.

Support for composition of components can easily be incorporated into
Rubus, because only a front-end tool is needed to translate component speci-
fications to task descriptions. For composition of components, the front-end
tool should be able to perform these tasks:

1. Assign a name to the new component.

2. Specify input and output ports of the composition.

3. Connect input and output ports to the tasks/components within
the component (see Figure 13.10).

258 Building Reliable Component-Based Software Systems

Component:
BrakeLeftRight

oil pressure

speed brake right wheel

brake left wheel

State information

input 2

input 1
Component:
OutputBrakeValues

State information

Figure 13.9 A composed system in the red model of Rubus.

4. Generate task descriptions and port connections for the task
within the component.

Reuse of Real-Time Components

Design for reuse means that a component from a current project should
require a minimum of modification for use in a future project. Abstraction is
extremely valuable for reuse. When designing components for reuse, design-
ers should attempt to anticipate as many future applications as possible.
Reuse is more successful if designers concentrate on abstract rather than
existing uses. The objective should be to minimize the difference between the
component�s selected and ideal degrees of abstraction. The smaller the vari-
ance from the ideal level of abstraction, the more frequently a component
will be reused.

Designers of reusable components must consider other important fac-
tors, in addition to anticipating future design contexts and future reuses.
They must consider:

• What users need and do not need to know about a reusable design,
or how to emphasize relevant information and conceal that which is
irrelevant;

• What is expected from potential users, and what their expectations
are about the reusable design;

Components in Real-Time Systems 259

oil
pressure

speed

brake left

brake right

Task state information

Task:
OutputBrakeValues

Task state information

component: BrakeSystem

pressure

speed

Task:
BrakeLeftRight

Figure 13.10 Composition of components in Rubus.

• That it is desirable, although difficult, to implement binary compo-
nents, to allow users to instantiate only relevant parts of compo-
nents. For example, if a user wants to use only some of the available
ports of a component, then only the relevant parts should be instan-
tiated.

No designer can actually anticipate all future design contexts or when
and in which environment the component will be reused. This means that a
reusable component should depend as little as possible on its environment
and be able to perform sufficient self-checking. In other words, it should be
as independent as possible because frequency of reuse and utility increase
with independence. Thus independence should be another main area of con-
cern when designing reusable components.

An interesting observation about efficient reuse of real-time compo-
nents, made by engineers at Siemens [25], is that, as a rule of thumb, the
overhead cost of developing a reusable component, including design plus
documentation, is recovered after the fifth reuse. Similar experience at ABB
[26] shows that reusable components are exposed to changes more often than
nonreusable parts of software at the beginning of their lives, until they reach
a stable state.

Designing reusable components for embedded real-time systems is
even more complicated due to memory and execution time restrictions. Fur-
thermore, real-time components must be much more carefully tested because
of their safety-critical nature.

These examples show that it is not easy to achieve efficient reuse, and
that the development of reusable components requires a systematic approach
in design planning and extensive development and support of a more com-
plex maintenance process.

On-Line Upgrades of Components

A method for on-line upgrades of software in safety-critical real-time systems
has been presented in [27]. It can also be applied to component-based sys-
tems when replacing components.

Replacing a component in a safety-critical system can result in cata-
strophic consequences if the new component is faulty. Complete testing of
new components is often not economically feasible or even possible (e.g.,
shutting down a process plant with high demands on availability can result in
enormous financial losses). It is often not sufficient to simulate the behavior

260 Building Reliable Component-Based Software Systems

of the system including the new component. The real target must be used for
this purpose. However, testing in the real system means that it must be shut
down, and there is also a potential risk that the new component could endan-
ger human life or vital systems.

To overcome these problems, Sha [27] has proposed that the new com-
ponent be monitored to check that its output is within valid ranges. If it is
not, then the original component will resume control of the system. It is
assumed that the old component is reliable, but not as effective as the new
component in some respects; for example, the new component may provide
much improved control performance. This technology has been shown to be
useful for control applications.

A similar approach can be found in [21] where a component wrapper
invokes a specific component version depending on the input values. The
timing constraints related to the wrapper execution time must be taken into
consideration, and such a system must support version management of
components.

In this development model we assume that a static schedule is used at
run time to dispatch the tasks, and since the schedule is static the flexibility is
restricted. However, in some cases it is possible to perform on-line upgrades.
On-line upgrades of the system require that the WCET of the new compo-
nent be less or equal to the time budget of the component it replaces. It must
also have the same interface and temporal properties (e.g., period and dead-
line). If this is not feasible, a new schedule must be generated and we must
close down the system to upgrade it. Using the fault-tolerance method dis-
cussed earlier, we can still do this safely with a short downtime.

Summary

In this chapter we presented certain issues related to the use of component
technology in the development of real-time systems. We pointed out the
challenges introduced by using real-time components, such as guaranteeing
the temporal behavior not only of the real-time components but also of the
entire composed system.

When designing real-time systems with components, the design
process must be changed to include timing analysis and especially to permit
high-level analysis on an architectural design level. We presented a method
for the development of reliable real-time systems using the component-based
approach. The method emphasizes the temporal constraints that are esti-
mated in the early design phase of the systems and are matched with the

Components in Real-Time Systems 261

characteristics of existing real-time components. We outlined the informa-
tion needed when reusing binary components, saved in a real-time compo-
nent library.

Furthermore, we proposed a method for composing components and
how the resulting compositions could be handled when designing real-time
systems. We also provided guidelines about what one should be aware of
when reusing and updating on-line real-time components.

References

[1] Stankovic, J., and K. Ramamritham, Tutorial on Hard Real-Time Systems, Los Alami-
tos, CA: IEEE Computer Society Press, 1998.

[2] Kalansky, D., and J. Ready, �Distinctions Between Requirements Specification and
Design of Real-Time Systems,� Proc. TRI-Ada�88, ACM Press, 1988.

[3] Douglas, B. P., Real-Time UML�Developing Efficient Objects for Embedded Systems,
Reading, MA: Addison-Wesley-Longman, 1998.

[4] Basil, V. R., and H. D. Rombach, �Support for Comprehensive Reuse,� Software Engi-
neering, Vol. 6, No. 5, 1991, pp. 303�316.

[5] Stewart, D. B., R. A. Volpe, and P. K. Khosla, �Design of Dynamically Reconfigurable
Real-Time Software Using Port-Based Objects,� IEEE Trans. on Software Engineering,
Vol. 23, No. 12, 1997, pp. 759�776.

[6] IEC, Application and Implementation of IEC 61131-3, Geneva: IEC, 1995.

[7] Cornwell, P., and A. Wellings, �Transaction Integration for Reusable Hard Real-Time
Components,� Proc. High-Assurance Systems Engineering Workshop, Niagra, Canada,
IEEE Computer Society Press, 1996.

[8] Puschner, P., and Koza C., �Calculating the Maximum Execution Time of Real-Time
Programs, J. of Real-Time Systems, Vol. 1, No. 2, 1989, pp. 159�176.

[9] Stankovic, J., W. A. Halang, and K.-F. Man, Special Issue on Real-Time Systems on
Worst-Case Execution Time Analysis, Dordrecht, The Netherlands: Kluwer, 2000.

[10] Audsley, N. C., et al., Fixed Priority Pre-emptive Scheduling: An Historical Perspec-
tive, J. of Time-Critical Computing Systems, Vol. 8, Nos. 2/3, 1995, pp. 173�198.

[11] Jand, X., and D. L. Parnas, �Scheduling Processes with Release Times, Deadlines,
Precedence and Exclusion Relations,� IEEE Trans. on Software Engineering, Vol. 16,
No. 3, 1990, pp. 360�369.

[12] Norström, C., et al., �Experiences from Introducing State-of-the-art Real-Time Tech-
niques in the Automotive Industry,� Proc. 8th Annual IEEE Int. Conf. and Workshop on
the Engineering of Computer Based Systems�ECBS01, Washington, D.C., IEEE Com-
puter Society Press, 2001.

262 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[13] Casparsson, L., et al., �Volcano: A Revolution in On-Board Communications,� Volvo
Technology Report 98-12-10, Volvo, Sweden, 1998.

[14] Buttazzo, G., Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications, Dordrecht, The Netherlands: Kluwer, 1997.

[15] Ramamritham, K., �Using Windows NT for Real-time Applications: Experimental
Observations and Recommendations,� Proc. 4th Real-Time Technology and Applications
Symp., Denver, CO, IEEE Computer Society, 1998.

[16] Stankovic, J., �VEST: A Toolset for Constructing and Analyzing Component Based
Operating Systems for Embedded and Real-Time Systems,� Report CS-2000-19,
Department of Computer Science, University of Virginia, 2000.

[17] Eriksson, C., et al., An Overview of RTT: A Design Framework for Real-Time Sys-
tems, J. of Parallel and Distributed Computing, Vol. 36, Issue 1, 1996, pp. 66�80.

[18] Bosch, J., Design & Use of Software Architectures, Reading, MA: Addison-Wesley, 2000.

[19] Kazman, R., et al., �SAAM: A Method for Analyzing the Properties of Software Archi-
tectures,� Proc. 16th Int. Conf. on Software Engineering, 1994.

[20] Kazman, R., et al., Scenario-Based Analysis of Software Architecture, IEEE Software,
Vol. 13, Issue 6, 1996, pp. 47�55.

[21] Cook, J. E., and J. A. Dage, �Highly Reliable Upgrading of Components,� Proc. 21st
Int. Conf. on Software Engineering, Los Angeles, CA, 1999.

[22] Lindgren, M., H. Hansson, and H. Thane, �Using Measurements to Derive the
Worst-Case Execution Time,� Proc. 7th Int. Conf. on Real-Time Computing Systems and
Applications�RTCSA 2000, Cheiu Island, South Korea, IEEE Computer Society,
2000.

[23] Lindgren, M., and C. Norström, �Using Simulation to Verify Real-Time Properties,�
Report MRTC 00/27, MRTC, Mälardalen University, Västerås, Sweden, 2000.

[24] Articus, �Rubus OS Reference Manual,� Articus Systems, 1996.

[25] Mrva, M., �Reuse Factors in Embedded Systems Design,� Munich: High-Level Design
Techniques Department, Siemens AG, 1997.

[26] Crnkovic, I., and M. Larsson, �A Case Study: Demands on Component-Based Devel-
opment,� Proc. 22nd Int. Conf. Software Engineering, Limerick, Ireland, ACM Press,
2000.

[27] Sha, L., �Dependable System Upgrade,� Proc. 20th Real-Time Systems Symp., Madrid,
Spain, IEEE Computer Society, 1998.

Components in Real-Time Systems 263

.

14
Testing Reusable Software Components
in Safety-Critical Real-Time Systems

Henrik Thane and Anders Wall

Introduction

In this chapter we will discuss how dynamic verification (i.e., testing) of
real-time software relates to component reuse in safety-critical real-time sys-
tems. Experience with software reuse has shown that retesting cannot be
eliminated in general. For safety-critical systems, this is a significant problem
because testing is the single most expensive and time-consuming activity dur-
ing system development.

The arguments for reuse of software in general, and software compo-
nents in particular, are usually arguments for rapid prototyping (reusing
code), arguments for outsourcing, and arguments for greater reliability, all of
which are to be achieved at lower cost. In the case of reliability, it is assumed
that testing of the components can be eliminated and that the reliability of
the component can be �inherited� from previous uses. Expensive and cata-
strophic experiences with Ariane 5 and Therac 25 have shown, however, that
this is not necessarily so: The explosion of the Ariane carrier rocket [1, 2],
and the accidents due to excessive dosages administered by the Therac 25

265

radiotherapy apparatus [3] were all due to misconceptions, or disregard, of
changes in the target environment from earlier uses of the software (in Ariane
4 and Therac 20). The assumed proven reliability of the components had no
relevance in the new environments in which they were reused. The belief in
the reliability of the components meant, in the cases of Ariane 5 and Therac
25, that retesting was neglected.

One lesson learned from these accidents is that if components are to be
reused, testing cannot be eliminated. However, testing and maintenance are
the two most resource-consuming activities in software development proj-
ects, especially in those that are safety critical. We will address this problem
by presenting a framework for determining when components in real-time
systems can be reused immediately, when complete retesting is necessary, or
when only parts of the system need additional testing.

The framework deals with testing on the component level. The com-
plete system must always be minutely tested even when reusing components
that have been proven correct in previous applications. However, if compo-
nent testing, as part of the total verification process, can be reduced, time and
money will be saved.

There is no single, commonly accepted definition of a component in
the software engineering community. Therefore we must specify what we
consider a component to be. We refer to a component as being an encapsu-
lation of services implemented in software and other subcomponents. The
data processed by a component and the data it produces are specified in its
data interface. The execution of a component is controlled by a task, which
specifies the temporal constraints associated with the particular compo-
nent. Tasks are connected to a component through the component�s con-
trol interface. For a more exhaustive description of our component model,
we refer to [4]. Components usually have contracts that specify the envi-
ronment where they are defined to execute. Typically a contract specifies
pre- and postconditions for services provided by a component, as well as
invariants on, variables and infrastructure in which the component will
execute [5]. In the cases of the Therac 25 and the Ariane 5 accidents, the
contracts were not sufficiently defined or not adequately enforced. To rem-
edy this shortcoming, we propose in this chapter the inclusion of evidence
based on operational experiences of previous uses of a component in the
contract description. This additional information gives us the opportunity
to deem whether a component can be reused immediately or needs to be
retested.

266 Building Reliable Component-Based Software Systems

Reuse and Exhaustive Testing

We introduce here our approach in a comprehensible and simple manner.
The concept is further expanded in succeeding sections of this chapter to
encompass systems with real-time characteristics. The basic idea is to provide
evidence, based on the component�s contracts and the experience accumu-
lated, that a component can be reused immediately, that only parts can be
reused, or that it cannot be reused. We are only considering testing of the
component�s behavior in isolation. The complete system must also be veri-
fied according to the specification. This is very important because a reused
component may interact with components with which it was not initially
designed to interact. As a consequence of such a reuse, failures may reveal
themselves that were tolerated (masked) by the initial system, but are unac-
ceptable in the new context.

For example, assume that we have designed, exhaustively tested, and
debugged a component for cellular telephones, dual-band, with an input
domain I corresponding to a set of ranges of integer inputs, I(dual-band)
= [0,1027] × [G, � , P], and an output range O, O(dual-band) = [345, 640]
(see Figure 14.1). It is consequently believed that the behavior the compo-
nent is correct after testing all possible inputs.

Assume now that we reuse this component in a different environment, a
new telephone design, where the input domain is different. That is, the com-
ponent interacts with the same components, using the same infrastructure,
but with inputs different from previous uses (see Figure 14.2). A system�s

Testing Reusable Software Components 267

Dual
band

G...P

345�640

Necessary tests

0�1027

G�P

Figure 14.1 The dual-band component in its first use.

Dual
band

A...P

45�723

Necessary tests

−27� 1−

A�P

Figure 14.2 The dual-band component in the new environment.

infrastructure consists of the operating system, the hardware architecture, and
other parts necessary for executing the system�s implementation.

This reuse of the component warrants no confidence in the correctness
of the component because there are new possible inputs, and therefore possi-
bly incorrect outputs. Consequently, we should exhaustively test the compo-
nent with those new inputs with which it was not tested previously
I(dual-band) = [0,1027] × [A, �, E] ∪ [−27, −1] × [A, �, P].

If we should subsequently reuse the dual-band component in a third
telephone for which the input domain overlaps those domains tested for the
previous uses, the component may be reused without further testing as
shown in Figure 14.3.

To record each component�s history we can, by means of defensive pro-
gramming, define the intervals of input for which the component has been
tested. These defensive mechanisms, for example, pre- and postconditions,
may be implemented in the component itself. If the component is later used
in a different environment with a different input domain, the defensive
mechanisms will detect this. If the new inputs give correct results we can
expand the input domain experienced by changing the pre- and postcondi-
tions to encompass the new environment (see Figure 14.4).

As illustrated in Figure 14.5, the pre- and postconditions would be
released and indicate a change in the new environment. If the new input
domain is successfully verified, the pre- and postconditions can be updated
to reflect the new domain experienced.

For components for which exhaustive testing is feasible, the above is
sufficient, but for most systems in practice exhaustive testing is not possible,
due to the size of the state space to explore. We could for such systems make
use of probabilistic testing such that the reliability of the component could
be estimated with a certain confidence. The estimated reliability of a software
component is defined as the probability of the component functioning cor-
rectly, according to the specification, over a given period of time under a
given set of operating conditions [6]. The confidence indicates how much we

268 Building Reliable Component-Based Software Systems

Dual
band

B...N

95�700

Necessary tests

−3�913

B�N

Figure 14.3 The third reuse of the dual-band component with an overlapping input
domain.

can trust the estimated reliability. However, due to data storage issues, we
need an external database containing the individual test cases executed
because we cannot store them in the component itself.

So far, we have made use of a rather simplistic approach where only
changes in the inputs and outputs have been considered. However, it is likely
that a component will be reused in an infrastructure for which it was not ini-
tially designed. Components must therefore be reverified in some cases, even
if the new input domains are completely within the verified domains. These
matters are discussed later in this chapter.

Testing Reusable Software Components 269

G...P

0...1027

345�640

Precondition ((0 input1 1027) && (�G� input2 �P�)) // precondition≤ ≤ ≤ ≤
statement 1;

.

.

.
statement n;

Postcondition (345 output 640)≤ ≤ // postcondition

Telephone A

Figure 14.4 A component with pre- and postconditions.

A...F

−17...778

45�123

Precondition ((17 input1 1027) && (�A� input2 �P�)) // precondition− ≤ ≤ ≤ ≤
statement 1;

.

.

.
statement n;

Postcondition (45 output 640)≤ ≤ // postcondition

Telephone B

Figure 14.5 A new environment would violate the pre- and postconditions unless they
are updated.

Reuse and Statistical Evidence

To elaborate on the approach in the previous section, we now consider com-
ponents for which we have gathered statistical evidence regarding reliability
through testing. Assume that we have tested a dual-band component with an
input domain I = [0,1027], nonexhaustively to a measured reliability of R
with confidence C (Figure 14.6). If the component is reused in an environ-
ment in which the reliability requirement is lower than that in the original
application (Figure 14.7), it is possible to reuse the component immediately.

If we are now to reuse the component in an application with the same I
but with a need for greater reliability, as shown in Figure 14.8, we must test
the component further until it is demonstrated statistically that the compo-
nent has the required reliability.

If, however, the reused component�s input domain differs from the
previous one (although with a lower reliability than that previously ascer-
tained), we must test these unexplored inputs until the required level of reli-
ability is achieved (see Figure 14.9).

Component Reuse, Statistical Evidence, and Failure Behavior

When we test a component we always test the component with certain fault
hypotheses in mind (i.e., we always look for certain types of faults). Depend-
ing on the architecture of the system, we can assume different degrees, and
classes, of failure behavior. Certain types of failures are extremely improbable
(impossible) in some systems, but are very likely to occur in others. If we are

270 Building Reliable Component-Based Software Systems

R(c)

C(c)

I(c)0 1027

Figure 14.6 A graph representing the reliability and the confidence for an input domain.

Testing Reusable Software Components 271

R(c)

C(c)

I(c)0 1027

Figure 14.7 A component reused in a context with lower reliability requirements.

R(c)

C(c)

I(c)0 1027

Figure 14.8 The component must be run for a longer time to reach the desired reliability.

R(c)

C(c)

I(c)0 1027

Figure 14.9 Previously experienced reliability cannot be utilized if input domains are
outside historical use of the component.

aware of the system�s possible failure behavior, we can reduce the testing
effort because certain failures can be excluded and need not be searched for.

We define a failure as the inability of a system or component to per-
form its intended function as defined by the specification. A failure is a con-
sequence of a fault, (i.e., a defect within the system or component), a bug,
that has been executed. When a fault in a computer program is executed an
error arises [7]. Finally, if the error propagates and becomes externally visible
for an observer of a system or component, a failure occurs.

Components can fail in different ways and the ways in which they fail
can be categorized as failure modes. The assumptions on how they fail are
named fault hypotheses. We present failure modes ranging from failure behav-
ior that sequential programs or single tasks can experience, to failure behavior
that is only significant in multitasking real-time systems, where more than
one task is competing for the same resources (e.g., processing power and
memory). Failure modes are defined through their effects, as perceived by the
component user.

We begin by defining the weakest assumption, namely, byzantine and
arbitrary failure behavior:

Byzantine and arbitrary failures: This failure mode is characterized by a
nonassumption, meaning that there is absolutely no restriction with
respect to which effects the component user may perceive. The failure
mode has therefore been called malicious or fail-uncontrolled. This failure
mode includes two-faced behavior: A component can output �X is true�
to one component user, and �X is false� to another component user.

In the following sections we will gradually extend the list of failure
behaviors. A system�s failure behaviors constitute a partially ordered set in
which real-time systems may exhibit sequential failure behavior and concur-
rent real-time systems may exhibit both sequential failure behavior and tim-
ing failure behavior.

Sequential Systems

Components in sequential programs exhibit the least number of possible fail-
ure behaviors among the classes of systems discussed in this chapter. We
introduce sequential failure behaviors in the following list [7]:

• Control failures, for example, selecting the wrong branch in an if�
then�else statement;

272 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

• Value failures, for example, assigning an incorrect value to a correct
(intended) variable;

• Addressing failures, for example, assigning a correct (intended) value
to an incorrect variable;

• Termination failures, for example, a loop statement failing to com-
plete because the termination condition is never satisfied;

• Input failures, for example, receiving an (undetected) erroneous
value from a sensor.

As an example of how the failure behavior for a sequential system may
vary, consider a system that eliminates the possibility of a function errone-
ously overwriting the memory space used by other functions (i.e., addressing
failures). Using hardware with memory management units (MMU), we can
eliminate an entire class of failures and can, therefore, during testing, elimi-
nate the search for them. On the other hand, when reusing the same compo-
nent in a platform with no MMU support, the confidence regarding correct
behavior is very low, because we have no evidence that the component will
function. To increase our confidence, we must test the component with
respect to addressing failures. In contrast, if the component has been proven
in a system with no MMU support, the component may be reused immedi-
ately, because the failure semantics of the previous use are more pessimistic
than in the new context (see Figure 14.10).

Testing Reusable Software Components 273

R(c)

C(c)

F ailure behaviorAddressing failure

Figure 14.10 The confidence in the measured reliability is decreased when new failure
behaviors can develop.

Real-Time Systems

We now add time to sequential programs. Real-time systems are character-
ized by the required temporal correctness, that is, correct operation at the cor-
rect time. Data, correct in itself, but delivered too late or too early is
incorrect. Consequently, the reliability and confidence of a component will
be negatively affected if the temporal behavior of a component is altered.

The usual temporal constraints for a sequential program are execution
times, deadlines, period times, jitter constraints (variations in execution time,
variations in the time span from sampling to actuation), and so forth. We
now introduce timing failure behavior:

Timing failure behavior: This failure mode yields a correct result (value),
although the procurement of the result is time-wise incorrect. For exam-
ple, if deadline violations, starting a task too early, an incorrect period of
time, too much jitter, too many interrupts (interarrival time is too short
between consecutive interrupt occurrences) occur.

A typical instance of the degrading of confidence in the temporal cor-
rectness of a component may occur when a component is reused on another
hardware platform. For example, if the new system executes on different
hardware, the execution time may change (e.g., due to a slower CPU), and as
a consequence the deadline may be violated.

We next provide examples of reuse in real-time systems with respect to
three typical cases: deadline requirements, response time requirements, and
periodicity requirements. The first two cases are discussed in the context of
changing the execution time for a component by running it on a different
CPU. The third case relates to possible effects of changing the period time
(the frequency), of a component in a control system.

• Deadline requirements. If we reuse a component with only a dead-
line requirement in a new environment in which the execution
time is shorter, the component can be reused without retesting (see
Figure 14.11).

• Response time requirements. If the component is reused on a faster
CPU and we have an end-to-end deadline, the reuse may result in a
response time that is too short (e.g., an airbag in a car deflated too
soon after initial inflation at crash). On the contrary, a slower CPU
might prolong the response time. In this case it is not easy to decide
whether or not retesting can be ignored. However, if tolerances are

274 Building Reliable Component-Based Software Systems

specified in terms of response times (end-to-end deadlines), it might
be possible to argue that a component can be reused in a new envi-
ronment provided the tolerances are not violated (see Figure 14.12).

• Periodicity/frequency requirements. If the component is a periodic
controller in a control system, and we change the periodicity of its
activation, the controlled system might become unstable, typically if
we decrease the frequency of the component�s activation. However,
if we reuse the component and run it with a higher frequency, retest-
ing may be ignored if the resulting system remains schedulable (i.e.,
the component still meets its deadline).

Testing Reusable Software Components 275

R(c)

C(c)

WCETNew old

Figure 14.11 The deadline requirement is still fulfilled because the new execution time
is shorter.

R(c)

C(c)

Response timeTol min Tol Max

Figure 14.12 The response time for the reused component is within the tolerance.

Concurrent Real-Time Systems

If we now add concurrency (the running of several components simultane-
ously), either on the same CPU or on different CPUs, we must consider syn-
chronization. Synchronization of component execution is used in concurrent
real-time systems for several reasons, two of which are to resolve mutual
exclusion or to resolve precedence relations.

Mutual exclusion solves the problem of protecting critical resources
from being accessed by multiple components simultaneously. As an example
consider writing data in a database. To keep the data consistent, only one
component is allowed to write at a time. Multiple simultaneous readers,
however, present no problem.

The precedence relation defines the order in which two components
must execute. Typically, control systems consist of a component sampling
process values and other components performing calculations based on the
sampled values. In such a case, the sampling component might be required to
execute before any of the calculating components.

Depending on the RTOS used, we can either make necessary synchro-
nizations between tasks off-line if the RTOS is time triggered and supports
offsets, or if we can synchronize tasks on-line using primitives such as sema-
phores. In the off-line case we guarantee precedence and mutual exclusion
relations by separating tasks time-wise, using offsets.

Communication between tasks in real-time systems can be achieved in
many ways. We can make use of shared memory, which is guarded by sema-
phores, or time synchronization, or we can, via the operating system, send
messages or signals between tasks. Depending on the relation between the
communicating tasks with respect to periodicity, the communication can vary
between totally synchronous communications to totally asynchronous com-
munication. That is, if task i sends data to task j, and both tasks have equal
periodicity, Tj = Ti, we can make use of one shared memory buffer only.
However, if Tj > Ti or Tj < Ti, the issue becomes more complicated. Either we
make use of overwriting semantics (state-based communication), using just a
few buffers, or we record all data that have been sent by the higher frequency
task so that it can be processed by the lower frequency task when it is acti-
vated. There are several approaches to solving this problem [8�10].

Continuing the list of possible failure behaviors we can now add three
more items inherited from the characteristics exhibited by concurrent systems:

1. Ordering failures, for example, violations of precedence relations or
mutual exclusion relations;

276 Building Reliable Component-Based Software Systems

2. Synchronization failures, that is, ordering failures but also deadlocks;

3. Interleaving failures, for example, unwanted side effects caused by
nonreentrant code, and shared data, in preemptively scheduled
systems.

Synchronization is discussed later with respect to changes in the sys-
tem�s infrastructure, which includes the operating system and the synchroni-
zation mechanisms it provides.

• Original environment: off-line synchronized. Reusing a component
that in its original environment resolved synchronization by separa-
tion in time in a system that also resolves synchronization by separa-
tion in time without retesting is acceptable if the new system is
schedulable. If, however, the same component is reused in an envi-
ronment that uses semaphores for synchronization, the system must
be reverified. This is because we can make no assumptions about
synchronization failures because the original component is only
tested for ordering failures, which is a more relaxed assumption than
synchronization failures. For example, deadlocks are impossible in
off-line scheduled, time-synchronized systems.

• Original environment: on-line synchronized. Reusing a component
that has been using on-line synchronization (semaphores) in an envi-
ronment that resolved synchronization by separation in time is war-
ranted as long as the system is schedulable. Reusing the component
in an on-line synchronization environment does not warrant the
omission of retesting even though the system is proven schedulable
because the coupling between components in an on-line synchro-
nized system is much tighter than in an off-line synchronized system.
We cannot, for example, guarantee that the other components in the
new environment are correct with respect to synchronization.

Note that reuse across synchronization paradigms in general requires
rewriting code that results in a behavior that has not been tested.

The failure modes listed for sequential systems, real-time systems, and
concurrent systems build up a hierarchy in which byzantine failures are based
on the weakest assumption (a nonassumption) regarding the behavior of the
components and the infrastructure, and sequential failures are based on the
strongest assumptions. Consequently, byzantine failures are the most severe
and sequential failures the least severe failure mode. The byzantine failure

Testing Reusable Software Components 277

mode includes all failures classified as timing failures, which in turn include
synchronization and other failures.

Summary

In this chapter we have presented a framework for arguments with respect to
the reuse and retesting of components in safety-critical real-time systems.
The arguments for reuse of software (components) are usually arguments for
rapid prototyping (reusing code), arguments for outsourcing, and arguments
for greater reliability. In the latter case, it is assumed that testing of the com-
ponents can be eliminated and that the reliability of the component can be
�inherited� from previous uses. Expensive and catastrophic experiences have
shown, however, that this is not necessarily so (e.g., Ariane 5, and Therac 25
[1�3]). In this framework, we formally described component contracts in
terms of temporal constraints specified in the design phase (the design task
model) and the temporal attributes available in the implementation (the
infrastructure). Furthermore, the input�output domain for a component is
specified in the contract. By relating the input�output domain, fault
hypotheses, probabilistic reliability levels, and the temporal behavior of the
component, we can determine if a component can be reused without retest-
ing or not. It is of great significance that we can determine how much of, and
which subsets, of, say, input�output domains, need additional testing based
on reliability requirements in the environment in which the reuse is
intended. Faced with complete retesting, the possibility of decreasing the
testing effort is attractive. Decreasing the cost for testing is especially attrac-
tive when developing safety-critical real-time systems where testing is a major
activity.

References

[1] Le Lann, G., �An Analysis of the Ariane 5 Flight 501 Failure�A System Engineering
Perspective,� Proc. 4th Int. Conf. Engineering of Computer-Based Systems, Boston, MA:
IEEE Computer Society, 1997.

[2] Inquiry Board, �ARIANE 5�Flight 501 Failure,� http://wxtnu.inria.fr/actualirdsfra
.htrnl.

[3] Leveson, N., and C. Turner, �An Investigation of the Therac-25 Accidents,� IEEE
Computer, Vol. 26, No. 7, 1993, pp. 18�41.

278 Building Reliable Component-Based Software Systems

[4] Wall, A., and C. Norström, �A Component Model for Embedded Real-Time Software
Product Lines,� Proc. 4th IFAC Conf. Fieldbus Systems and Their Applications, Nancy,
France, 2001.

[5] Meyer, B., �Applying Design by Contracts,� IEEE Computer, Vol. 25, No. 10, 1992,
pp. 41�50.

[6] Storey, N., Safety-Critical Computer Systems, Reading, MA: Addison-Wesley-Longman,
1996.

[7] Clarke, S. J., and J. A. McDermid, �Software Fault Trees and Weakest Precondi-
tions: A Comparison and Analysis,� Software Engineering J., Vol. 8, No. 4, 1993,
pp. 255�236.

[8] Chen, J., and A. Burns, �Asynchronous Data Sharing in Multiprocessor Real-Time Sys-
tems Using Process Consensus,� Proc. 10th Euromicro Workshop on Real-Time Systems,
Madrid, Spain, IEEE Computer Society, 1998.

[9] Eriksson, C., et al., �An Overview of RTT: A Design Framework for Real-Time Sys-
tems,� J. Parallel and Distributed Computing, Vol. 36, 1996, pp. 66�80.

[10] Kopetz, H., and J. Reisinger, �The Non-Blocking Write Protocol NBW: A Solution to
a Real-Time Synchronization Problem,� Proc. 14th Real-Time Systems Symp., Orlando,
FL, IEEE Computer Society, 1993.

Testing Reusable Software Components 279

.

15
Providing Real-Time Services for COTS
Components

Oscar Javier Gonzalez Gomez, Krithi Ramamritham, Chia Shen,
and Gerhard Fohler

Introduction

In an ideal situation, a real-time operating system should be used for sup-
porting a real-time application. However, market forces and the acceptance
of COTS OSs in industrial applications have generated a need for achieving
real-time functionality. A COTS OS is preferred in many real-time systems
and applications to avoid the overhead of either the installation of other ker-
nels and facilities beyond those provided in the standard OSs or the usage of
some other APIs running parallel with these.

This chapter describes how to build real-time systems using commer-
cially available off-the-shelf components, focusing on operating systems and
scheduling algorithms. In our experiment we use two COTS, one large�the
operating system, Windows NT, which does not provide genuine real-time
services�and a small one�the video player application. We build a third
component that bounds the unpredictability of the underlying compo-
nent, Windows NT, to provide soft real-time services to the application
component.

281

Specifically, a characterization of Windows NT is presented from the
perspective of real-time constraints. We have also analyzed Windows 2000 in
a separate study and obtained results similar to those presented here. In our
study, we systematically develop guidelines and recommendations that will
be useful to real-time system designers building applications using Windows
NT. The observations are validated by the use of Windows NT for a proto-
type application involving real-time control, which includes multimedia
information processing. A key result of this study is that the unpredictability
of NT can be bounded by the use of a user level-scheduling scheme [1].

Although the benefits of using Windows NT are many, there are cer-
tain limitations to its use in real-time applications. The reasons for these
limitations can be found in a few key Windows NT kernel policies and
mechanisms. In this chapter, we study the source of these limitations from
the perspective of real-time constraints and systematically develop guidelines
and recommendations that will be useful in the development of predictable
communication services. A key element of our study is to address the follow-
ing two questions:

1. What type of applications can use Windows NT as is? Because Win-
dows NT was not designed with predictability in mind, it is neither
advisable nor feasible to use NT for hard real-time applications.
However, we show that when used judiciously, Windows NT may
be useful for applications that (a) can tolerate occasional deadline
misses, and (b) have delay/response time requirements in the tens
to hundreds of milliseconds range such as those described in [2�4].

2. Can the unpredictable parts of Windows NT be �masked�? One of the
results of our study is that we provide guidelines and insights
needed to overcome some of the limitations of Windows NT with-
out having to make changes in the operating system. This knowl-
edge enables us to develop techniques to support the needs of tasks
having a variety of real-time and non-real-time requirements.

We begin this chapter with an overview of the capabilities of Windows
NT that are potentially useful to real-time system builders. We then critically
evaluate their performance characteristics via a series of experiments. The
experiments and the observations derived from them are summarized in the
�Real-Time Features of Windows NT� section of this chapter. We then use
these observations to build a prototype of an application involving real-time
control, which includes multimedia information processing. The �Windows

282 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

NT in a Real-Time Setting� section in this chapter describes the components
of the prototype along with the resulting assessment of NT�s suitability for
such real-time applications. This section also contains a set of guidelines and
recommendations that emerged from the experimental evaluation of NT for
real-time uses. Finally, a conclusion summarizes the chapter.

Windows NT as an RTOS

To determine the shortcomings of Windows NT, it is important to have
some understanding of its architecture. The original design of NT was based
on a microkernel, common to many real-time operating systems (e.g., RT-
Mach, VxWorks, QNX). For performance reasons, the architecture has
evolved from the original design and a limited number of real-time features
have been incorporated. Because NT�s use of threads and 32 possible priority
levels can be helpful in constructing real-time applications, we will discuss
these first.

Each process belongs in one of the following priority classes: IDLE,
NORMAL, HIGH, and REAL_TIME. By default, the priority class of a
process is NORMAL. Processes that monitor the system, such as screen sav-
ers or applications that periodically update a display, are in the priority class
IDLE. A process in the HIGH priority class takes precedence over a process
in the NORMAL priority class. The REAL_TIME priority class is available
as support for real-time applications.

Windows NT assigns a scheduling base priority to each thread. This
base priority is determined by the combination of the priority class of its
process and the priority level of the thread. A thread can be on any of the fol-
lowing seven priority levels: IDLE, LOWEST, BELOW_NORMAL,
NORMAL, ABOVE_NORMAL, HIGHEST, and TIME_CRITICAL. The
base priorities range from zero (lowest priority) to 31 (highest priority). The
base priority for the REAL_TIME class includes levels 16 to 31. Levels 17 to
21 and 27 to 30 are currently not used by the scheduler. Base priority levels
from 0 to 15 are reserved by the dynamic classes as shown in Figure 15.1.

Given this priority structure, Windows NT performs priority-based pre-
emptive scheduling (i.e., the highest priority active task is chosen for execu-
tion), possibly interrupting the execution of another task. When two threads
have the same base priority, a time-sharing approach is used. REAL_TIME
priority class threads have nondegradable priorities, while NORMAL and
HIGH priorities threads can be delayed by the NT scheduler. For this rea-
son the latter priority classes are commonly referred to as dynamic classes.

Providing Real-Time Services for COTS Components 283

However, at a fundamental level, Windows NT was designed as a
general-purpose OS and many of the policies/mechanisms are geared toward
optimizing the average case, this being at odds with the high predictability
requirements of many real-time environments. We next discuss some of
the limitations in Windows NT�due mainly to the lack of provision
for various services/mechanisms to take into account the priority of an
event/object�which may contribute to unpredictable delays in user applica-
tions [4�6].

The priority levels of interrupts are always higher than that of a user-
level thread, including threads in the real-time class. When an interrupt
occurs, the trap handler saves the machine�s state and calls the interrupt dis-
patcher. The interrupt dispatcher makes the system execute an interrupt
service routine (ISR). Only critical processing is performed in the ISR and
the bulk of the processing is performed in a deferred procedure call (DPC).

DPCs are queued in the system DPC queue, in a first-in, first-out
(FIFO) manner. While this separation of ISR and DPC ensures quick

284 Building Reliable Component-Based Software Systems

Interrupts
Deferred procedure calls (DPC)

Time critical
NA

Highest
Above normal

Normal
Below normal

Lowest
NA
Idle

31

26
25
24
23
22

16
15

0

Time critical

Real-tim
e

priority
class

Dynam
ic-tim

e
priority

classes

Normal foreground

Normal background
Below normal

Idle
Idle thread

Figure 15.1 Windows NT priority structure.

response to any further interrupts, it has the disadvantage that the priority
structure at the interrupt level is not maintained in the DPC queues. A DPC
is not preemptable by another DPC, but can be preempted by an (unimpor-
tant) interrupt. As a consequence, the interrupt handling and the DPC
mechanisms introduce unpredictable delays both for interrupt processing
and for real-time computations. More generally, the lack of provision for
avoiding priority inversions is the primary problem for real-time applica-
tions. Windows CE, another operating system from Microsoft, designed for
embedded communication and entertainment applications, supports priority
inheritance (see the �Windows NT in a Real-Time Setting� section in this
chapter).

Threads executing in kernel mode are not preemptable by user-level
threads and execute with dispatching temporarily disabled, but interrupts
can occur during the execution of the kernel. Because kernel-level threads
can mask some or all interrupts by raising the CPU�s current interrupt
request levels (IRQL), the responsiveness at any point in time to an interrupt
depends on the mask set by kernel entities at that time, and the execution
time of the corresponding kernel entities. Also, because only kernel level
threads are permitted to mask and unmask interrupts, even an unimportant
interrupt can adversely affect a real-time priority user-level thread. All of
these factors do not bode well for real-time processing. Unpredictability also
occurs because some system calls (e.g., some GUI calls) are synchronous and
are executed by system processes, running at a non-real-time class priority.

Given these, the natural question to ask is this: What are the conditions
under which NT can, in fact, be used for real-time applications? This is what
we intend to explore in the remainder of this chapter, by first studying the
behavior of the real-time-related NT components and then by using them in
a prototype real-time application.

Real-Time Features of Windows NT

In this section we report the results of experiments conducted to evaluate the
real-time features of Windows NT Workstation 4.0.

Empirical Characterization of NT Features That Affect Real-Time Activities

The first set of experiments was targeted toward the behavior of threads at
REALTIME priority class and their effect on the I/O subsystem and vice versa.
To this end, we used two threads with the same thread priority in the
REALTIME class, one performing I/O and another, a CPU-intensive thread,

Providing Real-Time Services for COTS Components 285

performing a continuous FOR loop. The following three experiments were
conducted:

• Experiment 1. To study the effect on keyboard and mouse I/O, the
I/O thread was made to read from the keyboard/mouse. When the
CPU-intensive thread was running, no I/O activity was observed.
After the CPU-intensive thread completed running, all the keyboard
inputs were processed. This showed that the CPU-intensive real-
time thread essentially shuts out keyboard/mouse I/O even when
this I/O is from/to a real-time thread.

• Experiment 2. To study the effect on disk I/O, the I/O thread was
made to write a file with 40,000 64-bit values. The time stamps for
the I/O and CPU-intensive activities were found to be interleaved,
indicating time sharing between the two threads. This showed that a
CPU-intensive real-time thread did not shut out disk I/O.

• Experiment 3. To study the effect on network I/O, the I/O thread
was made to read data from a remote server using Windows Sockets
API. Here again, the time stamps for the two activities were found to
be interleaved, this indicating time sharing between the two threads.
This showed that a CPU-intensive real-time thread has no adverse
impact on network I/O.

To explain these observations, we must explain how NT handles
I/O�beyond the use of DPCs. In the Windows NT I/O subsystem, I/O
requests pass through several stages of processing:

1. The I/O manager sends the request in the form of an I/O request
packet (IRP) to the device driver. The driver starts the I/O
operation.

2. The device completes the I/O operation and interrupts. The device
driver then services the interrupt. (This involves execution of ISR
and queuing of a DPC.)

3. The I/O manager completes the I/O request.

In the third step of I/O processing, the system writes the data from the
I/O operation into the address space of the thread which requested the I/O.
In this step, two mechanisms are used (for more details see [7]):

286 Building Reliable Component-Based Software Systems

1. Buffered I/O. Used for slower I/O devices in which the data is first
transferred into the system memory area and an asynchronous pro-
cedure call (APC) is queued to copy this data into the local area of
the user thread.

2. Direct I/O. Used for faster devices such as the disk. The data is
transferred directly into the local address space of the user thread,
which is locked by the system.

In experiment 1, because the keyboard and mouse I/O are performed
as buffered I/O, the execution of APCs responsible for copying the data into
the address space of the user thread address space was not possible until the
CPU-intensive thread was completed. This is because the input from the
keyboard/mouse is actually processed by threads in the kernel that are not
running with real-time priority. Because there is no priority inheritance, the
threads processing the input do not execute until the CPU-intensive thread
completes.

On the other hand, for experiments 2 and 3, because the disk and net-
work I/O are performed as direct I/O, the system locks the buffer space of
the corresponding thread into the memory. This ensures that the I/O is per-
formed even if a CPU-intensive real-time thread of the same priority is run-
ning, which is possible due to time sharing between threads of the same
priority.

One way to counter the lack of complete predictability while using
Windows NT is to have user-level control over the scheduling and execution
of real-time activities. Hence, we next describe the overheads inherent in
Windows NT�s API calls. We subsequently examine the hidden overheads
due to the execution of various system-level activities in NT.

To perform such user-level scheduling of real-time threads, which we
consider to be a necessary approach to running real-time applications on
Windows NT, it is a prerequisite that the time taken for the completion of
various process/thread related API calls be determined. We measured these
times experimentally and the values obtained are listed in Table 15.1. The
times listed (in microseconds) fall within the 90th percentile, that is, 90% of
the 1,000 observations had values that were equal to or less than the reported
number. We report these times and not worst case (or average) times because
of our interest in soft real-time and not hard real-time (or time-sharing)
applications.

The next set of experiments was performed to identify the system
activities taking place in the background and the worst-case processor time

Providing Real-Time Services for COTS Components 287

needed to perform these activities. This is necessary to determine the
unpredictability introduced by system-related activities�activities over
which users may have no control. The schedule constructed must be
designed to take these system activities into account to achieve predictability.
To this end, we observed the system with no other application running and
logged the activity every second for a continuous period of 30 min. The fol-
lowing were (individually) observed in at least one of the logs:

• Process system had 23 threads, thread 1 getting a maximum of
53 ms.

• Process csrss had 10 threads, thread 4 getting a maximum of 50 ms.

• Process services had 18 threads, thread 15 getting a maximum of
50 ms.

• Process perfmon had 2 threads, thread 1 getting a maximum of
53 ms.

Other threads of these processes occupied negligible processor time.
Even though the preceding time periods were not observed within the same
second, the observations mean that system activities can take at most a total
of 153 ms in a 1-sec interval (discounting the time process perfmon takes
because this is a performance monitor we instantiated, not a system activity).

288 Building Reliable Component-Based Software Systems

Table 15.1
Time Taken for System Operations*

Win32API Function Name Time (µs)

CreateProcess() 2,600

SetPriorityClass()�from normal to real-time priority class 2,240

SetPriorityClass()�for all other combinations 2,125

SetThreadPriority()�for a thread to set its own priority 112,9

SetThreadPriority()�for a thread to set priority of another thread
of the same process

11,10

QueryPerformanceCounter()�to obtain the current time stamp 112,6

*The platform used was a PC equipped with a 233-MHz Pentium processor, 64 MB of RAM,
and 256 KB of cache. Where communication is called for, the network used was a 10-Mb
Ethernet. Each PC uses a 3Com3C590 combo Ethernet card connected via a department-
wide network. Events were timed and the time taken for various activities was determined
using NT�s QueryPerformanceCounter.

Note that when user processes are running in the system, they may generate
some system activity such as page-faults.

Observations and Recommendations

It might appear from our experimental results that Windows NT is unsuit-
able for real-time applications because of Windows NT�s hidden and unpre-
dictable system activities, priority hierarchy for I/O and system interrupts,
and handling of I/O. Because Windows NT was not designed with predict-
ability in mind, it is neither advisable nor feasible to use Windows NT for
hard real-time applications. However, we show in the next section that when
used judiciously, Windows NT may be useful for applications that (1) can
tolerate occasional missed deadlines and (2) have delay/response time
requirements in the tens to hundreds of millisecond range such as those
described in the following.

Next, we provide the guidelines and insights needed to overcome some
of the limitations of Windows NT without having to make changes in the
operating system. This knowledge enables us to develop techniques to sup-
port the needs of tasks having a variety of real-time and non-real-time
requirements. These observations indicate that the following principles
should be practiced when Windows NT is used for real-time applications:

• The potential blocking time due to Windows NT system activity
must be taken into consideration when accounting for the delays
incurred by an application thread. If processes or threads are per-
forming network or disk I/O, the effect of system-wide FIFO DPC
queues may lead to unbounded response times, even for real-time
threads. If the duration of I/O activity in a given period can be char-
acterized, it may be possible to compute the response times
conservatively.

• One should not depend on the Windows NT scheduler to achieve
correct �fair sharing� behavior in cases where screen, keyboard, and
mouse interactions are at the same level of priority as the other real-
time CPU-intensive tasks.

To achieve more predictability for real-time tasks in general, and to
achieve responsiveness to operator/human inputs in particular, a real-time
system designer must avoid a real-time thread monopoly of the CPU and
I/O. Some computation and I/O time must remain available for execution of

Providing Real-Time Services for COTS Components 289

such important but non-real-time Windows NT tasks as servicing the inter-
active I/O activities. These non-real-time Windows NT tasks are not under
our (user-level) control, but there will be adverse effects on the intended
real-time tasks if they are not executed on time.

To accomplish this goal, one approach is to use periodic execution with
user-level-controlled cooperative preemptions, that is, to design all threads in
the real-time class as periodic tasks using a heartbeat timer mechanism
described in the next section, such that real-time threads voluntarily relin-
quish CPU time to permit the completion of interactive I/O operations.

It is also good practice for real-time applications to lock pages in the
memory. With this done, we are ensured that real-time threads are not inac-
tive for a longer time, because Windows NT may unlock pages of inactive
threads.

In the next section, we show how an industrial application can be
designed making use of the above insights and recommendations. This appli-
cation has many time constraints that, while important to meet and in some
ways soft, make the application suitable for use with Windows NT.

Windows NT in a Real-Time Setting

To understand Windows NT better, we developed a real-time industrial con-
trol scenario involving multimedia information. In particular, the focus was
on the operator�s workstation in an industrial control setting [4]. The software
running in the workstation has the following components:

• Operator input. The operator inputs control messages and actuator
settings. An input must be recognized, processed, and sent to a
remote destination through the network. The control message is
processed at the remote node and the necessary control action is
taken. After this, an acknowledgment will be returned to the opera-
tor station.

• Incoming sensor data. Data arrives from sensors at regular intervals
and must be stored in a ring buffer in the main memory. A con-
sumer process reads a single record from the buffer, performs some
computation, and displays the result on the screen in a graphical for-
mat.

• Incoming video streams. Also executing at the operator workstation is
one video process responsible for retrieving streaming video from
the network and displaying it on the screen. It is reasonable to

290 Building Reliable Component-Based Software Systems

assume that such software will most likely be a commercial product.
In fact, in our experimental setup this is a single COTS product.
Thus we have one COTS product being used on top of another. As
distinct from Windows NT where we have some control over the
scheduling of activities and the load applied, we must use this
COTS product, the RealVideo player, as is. Fortunately, as we will
see, our setup placed much less demand on the RealVideo player and
any constraints it imposed had no perceivable effects on the rest of
the real-time activities, given our adherence to the principles out-
lined at the end of the previous section.

Design of the Real-Time Application

The following general principles were followed in designing the prototype
application:

• Efficiency through threads. For reasons of efficiency we attempted to
use threads wherever possible, and processes elsewhere.

• Achieving periodicity. Some of the processing, for example, sensor
data processing, is periodic. We achieved this periodicity by imple-
menting a heartbeat timer. This is a process running with the high-
est real-time priority. It periodically sets events for which different
processes or threads are waiting. Each time an event is set, the corre-
sponding thread or process can execute one periodic instance and
then once again wait for the event to be set. The heartbeat timer uses
Windows NT�s multimedia timers to suspend itself until it is time to
signal the next event.

In addition to designing the operator workstation, we needed to model
the entity with which the operator interacts. This entity may correspond, for
example, to the local controller on the factory work floor, which actually car-
ries out the operator�s instructions, monitors the local state, and sends state
information back to the operator. Such an entity was modeled as a remote
server. UDP was used for communicating between operator station and the
remote server. The source of the video stream was just another node on the
network to which the operator workstation is connected.

The software architecture of the prototype is shown in Figure 15.2.
Besides the heartbeat timer at each node, the main entities at the remote
server are as follows:

Providing Real-Time Services for COTS Components 291

292
Building

Reliable
Com

ponent-Based
Softw

are
System

s

Producer

Receiver ConsumerBuffer

Heartbeat Ti
Heartbeat Ti

Acknowledgment

Operator input

Operator ack

Real
video

Figure 15.2 Software architecture of industrial control prototype.
TEAMFL

Y

Team-Fly®

• Producer. This periodically generates sensor data and sends it to the
operator workstation.

• Acknowledgment. This entity waits for operator input data from the
operator workstation. In our setting, this entity acknowledges a
command by sending the same data back to another thread on the
operator workstation.

The main entities at the operator workstation are as follows:

• Receiver. This is a periodic process that receives sensor data from the
remote server. It then stores the same data in a circular buffer.

• Consumer. This is a periodic process with the same period as the
receiver. It reads sensor data from the circular buffer and stores it in
memory. A precedence relation exists between the receiver and con-
sumer, enforced by using an event that the receiver must set to permit
the consumer to proceed. The buffer management protocol has the
following retrieval semantics: The consumer always receives the most
recent data. Many consumers will require this type of semantics. For
example, the operator is interested in the most recent speed measured
within a turbine. However, the implemented buffer data structure is
general enough to accommodate a wide variety of retrieval semantics.

• Operator input. This entity waits for the operator to provide com-
mands and sends them to the remote server. To avoid being affected
by NT�s inability to handle mouse/keyboard processing and screen
displays in a timely fashion, all of the operator interactions with the
system were simulated via memory reads/writes. Specifically, opera-
tor input was implemented by reading 1K bytes of information from
a specified memory location. At the end of this section, we discuss
approaches to the accommodation of such operator interactions and
experiment with one possible approach.

• Operator ack. This entity waits for acknowledgments sent by the
remote server in response to operator input messages. It stores the
received acknowledgments in memory.

Experimental Results

Of particular interest to us are the timing properties of the three types of
processes�video display, sensor data processing, and operator command

Providing Real-Time Services for COTS Components 293

processing�as a function of the priority level at the operator side, the offered
load, and the size of data sent by the operator. As for the workload tested, we
have experimented with a real workload characterizing a typical operator
workstation that experiences periodic sensor data input in 1K byte sizes,
sends out sporadic operator commands not more often than every 100 ms,
and displays one video window.

The quality of the video output was used as an indicator of the effect on
the video player�s performance. We saw, however, no perceivable differences
in the quality of the video output as we experimented with different parame-
ters. Similarly, in all cases, the processing of sensor data (by the receiver�con-
sumer pair) was not affected. This pair was found to execute at the specified
frequency with almost no jitter. So we focus on the round-trip time (RTT) as
seen by the operator input process.

In this set of experiments, operator input and receiver�consumer enti-
ties run at the same frequency. Results clearly indicate that:

• The round-trip delay for the operator input varies much more if the
operator input processes have NORMAL priority. There is signifi-
cantly less variance if HIGH or REAL_TIME priorities are used.

• Even though the average round-trip delay is very similar in all cases,
the average decreases as priority increases. For example, for an opera-
tor input period of 50 ms, the average round-trip delay ranges from
3.356 ms, corresponding to NORMAL priority, to 2.428 ms for
REAL_TIME priority.

• The maximum value also tends to decrease with increasing priority.

• The most dramatic change is in the variance. For example, for a
50-ms operator input period, it decreases from 19.721 (normal) to
5.879 (high) to 0.242 (real time). This augurs well for predictability.

These results indicate that even with all the processes running, the sys-
tem has enough processing power to handle all tasks. The large variance at
NORMAL priority, therefore, can be at least partially attributed to the Real-
Video player as well as system activities that are running at a higher priority.
As the process priority is increased, this effect diminishes, resulting in lower
variance. The real-time processes in the prototype are typically not computa-
tionally intensive, but have strict delay requirements. System activities on the
other hand can suffer some amount of jitter. As such, it makes sense to

294 Building Reliable Component-Based Software Systems

elevate the priority of these real-time processes to ensure that their delay
requirements can be met.

To exercise the system even further, we experimented with different
message lengths (corresponding to differing amounts of operator input) and
a higher rate of operator input (needless to say, operator input every 10 ms is
humanly impossible, but helps stress the system).

In the experiments discussed thus far, the threads in the operator and
remote processes were on the same priority level (NORMAL) and therefore
ran in a time-shared fashion. With a view to improving the responsiveness to
operator threads, we experimented with an alternative approach in which the
priority of the operator input and acknowledgment was raised to HIGHEST
as soon as the operator input thread was given a ticket to run, thereby giving
them a priority higher than the sensor data threads. This ensures that the
operator input and acknowledgment are processed with a higher priority
than the sensor data threads. No effect on the timeliness of sensor data
threads was observed.

The maximum delay was considerably lower when we increased the
priority of the operator thread from NORMAL to the HIGHEST level. In
fact, because the maximum was greater than the period when NORMAL pri-
ority level was used, some of the messages missed their deadlines. Even
though the mean delays do not differ by much, the variance becomes very
small when the operator thread�s priority is increased to HIGHEST. For
example, for a 1.5-K message size, an order of magnitude improvement is
seen. These experiments suggest that by systematic manipulation of thread
priorities, better and more predictable response times can be achieved.

Finally, because no deadlines were missed even with the period set to
10 ms for both operator and sensor, we decided to evaluate the effect of key-
board/screen I/O from the operator thread. To this end, we made the opera-
tor thread display the acknowledgment from the remote server on the
operator�s screen. This experiment was performed with a message size of 1K
and as described earlier, the whole message is returned as the acknowledg-
ment and is then displayed to the operator. The results indicate that when
the period is set to 10 or 20 ms, because screen I/O is handled at lower priori-
ties, many of the deadlines are missed and this has a cascading effect. How-
ever, increasing the period of the operator thread to 100 ms alleviates these
problems. At this period, even with screen I/O, no deadlines are missed and
the variance in the round-trip delay is low. These results are very encouraging
in that, given human response times, operator interactions are likely to occur
at relatively low frequencies (i.e., longer periods) and it should therefore be
possible to accommodate them in many situations.

Providing Real-Time Services for COTS Components 295

An alternative to assigning or requiring higher periods for operator
threads is to permit controlled preemption of different real-time threads so
that operator interactions can take place.

Summary of Results

The prototype implementation models a simple multimedia operator work-
station for factory operations. The prototype is parameterized, so different
configurations and workloads can be tested. In particular, the frequency of
the operator input as well as the receiver�consumer pair are tunable parame-
ters, as is the message size.

A simple heartbeat timer mechanism along with events was used to
emulate periodic processes. This heartbeat timer is an ideal candidate for
implementing metalevel scheduling functionality in Windows NT. Even
without using specialized scheduling, it was observed that using HIGH or
REAL_TIME priority alone significantly reduces the variability in response
times, without any observable degradation in system performance. This sug-
gests that as long as the application tasks do not monopolize the CPU for
long duration and there is sufficient CPU capacity, using these priority
assignments may be sufficient to meet the performance requirements of these
processes�even when I/O is involved. However, if the periodic workload
per process is high, or if a process is a COTS application whose workload
varies, it will be necessary to impose some additional controls on the amount
of time allocated to a task. Our findings indicate that a scheduling approach
combined with an admission control policy is needed to meet timeliness
requirements with higher loads.

Conclusion

In this chapter, we have presented evidence that it is possible to use Windows
NT for certain types of real-time applications. By measuring the delays
involved in Windows NT�s real-time functions we have gained a number of
insights regarding the feasibility of Windows NT for real-time applications.
By building a prototype application that models a simple multimedia opera-
tor workstation, we have also demonstrated how to use these insights in the
design of such real-time applications. With the use of real-time priorities, we
have shown that it is possible to improve the stability of certain real-time
tasks.

296 Building Reliable Component-Based Software Systems

Windows NT is very platform dependent only with respect to the han-
dling of I/O interrupts. A designer must be aware of the effect of the system-
wide FIFO DPC queue on any user thread. This queue has priority over all
user-level threads. This may lead to unbounded delays if a badly designed
driver is used. This is the part of Windows NT about which general analyti-
cal or quantitative statements for all potential platforms can be made. A user
needs to know what devices and what drivers he or she is using and what per-
formance characteristics a particular driver will induce in the system. It is
possible to characterize various I/O activities and their contributions to the
DPC queue, and some pessimistic bounds can be placed on the response
time for real-time threads. Soft real-time applications that can tolerate occa-
sional delays due to factors such as system-wide DPC queues can be realized
using Windows NT.

To achieve more predictability for real-time tasks in general in Win-
dows NT, and to achieve responsiveness to operator/human inputs in par-
ticular, we offer the following key recommendation to a real-time system
designer using Windows NT.

Design the system such that real-time threads do not monopolize the
CPU and I/O at all times. Some computation and I/O time must remain
available for executing important but non-real-time Windows NT activities,
such as those servicing interactive I/O. These non-real-time Windows NT
tasks are not under our (user-level) control; if they are not executed on time,
the intended real-time tasks may suffer adverse effects. To this end, we experi-
mented with one approach in this chapter: facilitating periodic execution with
user-level controlled cooperative preemption. All threads in the real-time class
were designed to execute periodically using a heartbeat timer mechanism such
that real-time threads voluntarily gave up CPU time to permit the completion
of interactive I/O operations. We had mentioned earlier that one way to
counter the lack of explicit support in Windows NT for scheduling real-time
activities is the use of user-level scheduling.

We have investigated the suitability of Windows NT and MidART�s
user-level scheduler [2] for slot-based scheduling. In a first step, we replaced
the MidART user-level scheduler with another scheduler with a modular
interface, providing for a variety of scheduling schemes to be included. We
then implemented a slot-based scheduling scheme and tested the variation in
slot lengths. This experiment also demonstrates another attempt to use
COTS components, in particular, using one COTS component to supersede
another. Our results indicate, not surprisingly, that whereas slots lengths are
adhered to whenever the lengths are in the tens of milliseconds range or

Providing Real-Time Services for COTS Components 297

when the system is not heavily loaded, wide fluctuations in the slot lengths
are observed otherwise.

This observation is consistent with our observation from the industrial
plant application�that leaving enough free time is one way to achieve higher
predictability for real-time applications built using Windows NT.

References

[1] Ramamritham, K., et al., �Using Windows NT for Real-Time Applications: Experi-
mental Observations and Recommendations,� Proc. 4th Real-Time Technology and
Applications Symp., Denver, CO, IEEE Computer Society, 1998.

[2] Gonzalez, O., et al., �Implementation and Performance of MidART,� Proc. IEEE
Workshop on Middleware for Distributed Real-Time Systems and Services, San Francisco,
CA, IEEE Computer Society, 1997.

[3] Mizunuma, I., C. Shen, and M. Takegaki, �Middleware for Distributed Industrial
Real-Time Systems on ATM Networks,� Proc. 17th IEEE Real-Time Systems Symp.,
Washington, D.C., IEEE Computer Society, 1996.

[4] Shen, C., and I. Mizunuma, �RT-CRM: Real-Time Channel-Based Reflective Mem-
ory,� IEEE Trans. on Computers, Vol. 49, No. 11, 2000, pp. 1202�1214.

[5] Timmerman, M., �Windows NT as Real-Time OS,� Real Time Magazine, Vol. 1,
1997.

[6] VenturCom, �Real-Time Extension 4.1 for Windows NT,� http://www.ventur-
com.com.

[7] Custer, H., Inside Windows NT, Redmond, WA: Microsoft Press, 1993.

298 Building Reliable Component-Based Software Systems

Part 7:
Case Studies�CBD in Industrial
Applications

During recent years, component-based software has been used frequently in
the development of desktop applications. A comparable approach in the area
of industrial and embedded real-time systems, with the reuse of tested and
robust parts of previous applications, is of increasing interest. However, addi-
tional requirements such as low-power design and real-time constraints make
it difficult to use the component frameworks that are well-known in the
desktop area. Either they must be used in a very strict and limited way, or
new models must be developed.

In the previous part related to real-time components, we were exposed
to an academic approach to the building of real-time component-based sys-
tems. This part extends this approach to using components in industrial
applications by presenting four different industrial case studies. Experience
gained using de facto standard component models and using in-house devel-
oped models are presented here.

Chapter 16 discusses the requirements of embedded omnipresent
devices (e.g., cell phones, personal digital assistants, and home or industrial
automation devices) with a focus on resource constraints. These require-
ments impact on the component model, the composition environment, and
the run-time environment. The problems of component-based software
development for embedded real-time systems are discussed and the

299

requirements of a component framework for this domain are derived. The
chapter concludes with a presentation of a CBD of an embedded real-time
system. The example presented is based on the synchronous approach to the
design of reactive systems.

Chapter 17 presents the current state of practice in architecting
component-based, industrial automation platforms tuned for both reuse
within and reuse across application domains. After a brief introduction to
industrial automation systems, the motivation for building a platform that
can be used to create industrial automation systems is explained. The chapter
describes ABB�s next-generation automation system architecture. The plat-
form that implements the base of the architecture is also presented. The
chapter particularly elaborates on an architectural approach that introduces
AspectObjects and Aspects together with flexible structuring hierarchies as
the fundamental concepts. In addition, it discusses the different dimensions
of component-based reuse achieved by the architectural approach presented.

Chapter 18 describes an object model with a framework supporting
component-based system development and application integration. The
object model is very similar to the one presented in Chapter 17 with the
notion of AspectObjects. The framework has been used to develop a number
of different components, such as components for document handling, work-
flow functionality, and general database integration. These components are
presented more in detail together with a framework that is implemented in a
product designated Information Organizer. The case study covers the archi-
tecture and a number of tools that enable the arrangement and structuring of
information. The framework presented provides support for different levels
of reuse, ranging from smaller components to complete applications. The
basic concept in implementing Information Organizer is, as far as possible,
to follow standards and de facto standards, which are defined with respect to
both concept and implementation. The de facto standards used and how
they are applied are described in more detail.

Chapter 19 discusses the component model Object Modeler (OM)
developed for Dassault Systèmes. The rationale behind the introduction of
component technology at Dassault Systèmes is interesting. The objective was
not primarily to sell isolated OM components, nor to sell the OM compo-
nent framework, nor to make their component model a standard. The pri-
mary objective of Dassault Systèmes was to find a way to develop its software
under the best conditions and to provide its customers with powerful adapt-
ability facilities. Actually, Dassault Systèmes sells a family of highly custom-
izable applications. The customers are not informed of the topology of the

300 Building Reliable Component-Based Software Systems

architecture of these applications. Applications are customized by extending
existing components or adding new components.

This chapter presents the OM component model and explains how
components are used to build applications. The use of different architectures,
such as logical, physical, and packaging architectures, are discussed in con-
nection with the component model. The second part of the chapter describes
the lessons learned during the years during which the model was elaborated
and used. Essentially, the design of a powerful component model is shown to
be a complex task that involves many facets of technology in ways that are
not always obvious.

Case Studies�CBD in Industrial Applications 301

.

TEAMFL
Y

Team-Fly®

16
Component-Based Embedded Systems

Peter O. Müller, Christian M. Stich, and Christian Zeidler

Introduction

Embedded systems are facing their own software crisis because plummeting
hardware costs are leading to rapid growth in new application domains and
increased demands for application interconnectivity between, for example,
smart cell phones, personal digital assistants, and home or industrial automa-
tion devices. This in turn leads to increased demands for more complex soft-
ware built in ever-shorter time frames. Embedded real-time systems like
those used in industrial field devices must be correct and deterministic,
because they must always react the same way to the same inputs.

Traditionally such systems are still developed in an assembler or in C.
Today�s monolithic, platform-dependent embedded systems are diffi-

cult to port, upgrade, and customize, and offer limited opportunities for
reuse, even within a single application domain. Component technology
offers an opportunity to increase productivity by providing natural units for
reuse (components and architectures), by raising the level of abstraction for
system construction, and by separating services from their configurations to
facilitate evolution.

Within this chapter we provide a short introduction to the applica-
tion domain and then present the foundation of programming embedded

303

systems. A case study presents the first results from modeling embedded sys-
tems with components. We also derive and postulate requirements for
component-based embedded system programming and describe the goals of
the pervasive component systems (PECOS) project [1] under which all the
investigations were made. We conclude with an outlook and description of
future activities.

Problem Domain

ABB�s Instruments Business Unit develops a large number of different indus-
trial field devices (e.g., temperature, pressure, and flow sensors and actuators
and positioners). As field device hardware becomes more and more common
and affordable, the software determines the competitiveness of embedded
products. Today�s field devices have to provide increasing functionality in
their areas of responsibility. The market demands the following additional
functionality in ever-shorter time cycles:

• Local and remote human/machine interface;

• Automation processes;

• Remote control options via a fieldbus.

These requirements mean that software dominates the development
and maintenance costs of field devices.

The state of the art in software engineering for embedded systems is far
behind other application areas. Software for embedded systems is typically
monolithic and platform dependent. CBSE would bring a number of advan-
tages to the embedded systems world such as fast development times, the
ability to secure investments through reuse of existing components, and the
ability for domain experts to interactively compose sophisticated embedded
systems software.

Visual techniques have been proven to be very effective in specific
domains such as GUI software composition. Composition of embedded sys-
tems software still has a long way to go to reach that level. At the very least,
users would benefit greatly from the effective use of visual techniques for pro-
viding feedback in the development process (during the design, composition,
installation, and run-time validation processes). Unfortunately CBSE cannot
yet be easily applied to embedded systems development today for a number
of reasons.

304 Building Reliable Component-Based Software Systems

To date, mainstream IT players have not paid much attention to the
relatively small but quickly growing, embedded systems market and conse-
quently have not provided it with suitable technologies or off-the-shelf soft-
ware (such as operating systems or suitable component models). From a
technical point of view, these choices were justified by considering the major
characteristics of embedded devices, such as limited system resources (CPU
power, memory, etc.), human/machine interface functionality, the typically
harsh environmental conditions, and the fact that the development and tar-
get systems were not the same.

The rapidly changing market makes investment in CBSE for embed-
ded systems not only viable but also essential for the business success of
technology appliers and providers. The key for industries to benefit from
the increasingly powerful and less expensive hardware is the ability to
develop and port embedded software more quickly and at acceptable costs.
Vendors of embedded devices would benefit by being able to offer scalable
product families, whose functionality could be tailored by flexible composi-
tion of reusable building blocks. These families are differentiated by the
performance of the hardware and the provided functionality, but are based
on reuse of many identical software components. All of this requires
that the embedded systems software be modular and composed of loosely
coupled, largely self-sufficient, and independently deployable software
components.

However, today�s embedded device software is monolithic software
developed specifically for each product (e.g., field device type). Monolithic
software prevents companies from serving the field device market with
value-added features in a cost-efficient way. The same functions needed by
different field devices are implemented repeatedly at different development
locations in different ways (e.g., fieldbus drivers, nonvolatile memory man-
ager, fast Fourier transformation algorithm).

In addition, functions and modules are implemented for a specific
environment with no standardized interface (e.g., interrupt driven, port
I/O). These systems are hard to maintain, upgrade, and customize, and they
are almost impossible to port to other platforms.

Implications for Component Technology

While component technology promises an escape from monolithic software
that is expensive and hard to maintain for general-purpose IT solutions,
the question remains of whether it can do the same for programming of

Component-Based Embedded Systems 305

embedded devices. Moreover, it is unlikely that state-of-the-art component
technology like COM, CORBA, JavaBeans/EJB, and component technology
as it is currently discussed in the literature (e.g., [2, 3]) can be applied as it is
to field devices.

In the following sections, aspects of component technology are dis-
cussed in the context of the requirements for field devices. We discuss the
major issues of Szyperski�s component definition in Chapter 1 of [2], in the
context of embedded systems.

Contractually Specified Interfaces

State-of-the-art component technologies specify interfaces as pure collection
of methods (events and attributes are finally modeled as interface methods
as well). However, for embedded software and especially embedded real-
time software, nonfunctional specifications such as memory consumption of
a component, WCET of a method, and expected power consumption of
a component under a certain execution schedule are an equally important
part of the contract. The currently progressing UML profile for scheduling,
performance, and time [4] may provide a specification means, which com-
pletes the first step toward expressive interface declarations. As discussed in
Chapter 13, specifying the WCET of function blocks will allow us to verify
that the overall schedule of all function blocks can be met.

Component interfaces are usually implemented as object interfaces
supporting polymorphism by late binding. Whereas late binding allows us to
connect components that are completely unaware of each other beside the
connecting interface, this flexibility comes with a performance penalty. A
component model for embedded devices should allow for procedural inter-
faces and object interfaces with and without polymorphism. Procedural
interfaces can be used for stateless component instances and component sin-
gletons. Object interfaces without polymorphism can be applied if the target
component implementation can be determined at design time. Such optimi-
zation reduces overhead at run time.

Semantic specifications, like pre- and postconditions, are of great value
for the software quality especially if they are checked during run time. How-
ever, for embedded devices these additional run-time checks may turn out
not to be feasible if microcontroller resources are limited. Alternatively,
design-time checking using a composition environment, which either simu-
lates or calculates the correctness of connected components with given pre-
and postconditions, could be a viable method. But today there are only a few

306 Building Reliable Component-Based Software Systems

investigations of design-time checks in progress and most of them are not
related to any component model.

Unit of Composition and Independent Deployment

�Components are for composition� [2]. State-of-the-art component tech-
nologies allow for component composition at design time and at run time.
Both [2] and [3] take the position that components are binary units of
deployment that should be deployable to a component system at run time.
To fulfill these requirements, support from the component model (e.g., late
binding), support from the run-time environment (e.g., life-cycle manage-
ment, dynamic loading, garbage collection, or reference counting), and
dynamic communication mechanisms such as the JavaBeans� events or COM
connection points are needed.

Having the limited resources of field devices in mind, we argue that
such a run-time infrastructure is too expensive in terms of processing power.
Embedded devices of the discussed class cannot afford the overhead of gar-
bage collection or reference counting, the overhead of late binding for every
interface method especially for fine-grained components, and the memory
overhead required for the infrastructure itself and for each component
needed to support the infrastructure. Therefore, complete stripping of this
functionality or sensible degradation is required.

Because embedded devices as discussed in this chapter have a static
software configuration, design-time composition should be sufficient. Limit-
ing component composition and deployment to design time allows composi-
tion tools to generate monolithic firmware for the device from the
component-based design. This concept of generative components allows us
to adapt component implementations. For example, depending on the stor-
age class of a parameter, the parameter value can be put into ROM for con-
stant parameters or into RAM for dynamic and nonvolatile parameters. For
nonvolatile parameters, an appropriate interaction code with the persistent
storage for saving and loading the parameter can be generated.

In addition, design-time composition allows for optimization. In a
static component composition known at design time, connections between
components could be translated into direct function calls instead of using
dynamic event notifications. Such optimizations probably require compo-
nents to be available in source language or at least introspection abilities at
design time. Composition tools are required that can inspect and adapt such
components. On the other hand, source code components can provide

Component-Based Embedded Systems 307

support for composition tools in the form of metainformation and scripts to
be executed by the composition tool.

Finally, design-time composition could be the instance of specific
adaptation of components and generated code toward specific microcontrol-
ler families and RTOS APIs [5].

Explicit Context Dependencies

Besides other interfaces and components that are required for a component
to work, context dependencies also include the required run-time environ-
ment such as CPU, real-time operating system, and component implementa-
tion language (with respect to the binary interface). From the viewpoint
of state-of-the-art component technology, this run-time environment can
become quite basic for embedded devices due to the resource and real-time
constraints.

Besides JavaBeans, component models provide programming language
independence by a binary object model or by different language bindings.
We argue that abandoning programming language independence in favor of
higher performance is acceptable for embedded devices.

In the case of source language components as discussed in an earlier
section, the composition support in the form of metainformation and scripts
to be executed in the composition environment appears as an additional con-
text dependency.

Component Granularity

According to [3], coarse-grained components up to complete server applica-
tions promise better reusability (megaprogramming), which stands in con-
trast to what the Business Component Factory approach [6] states. Both
statements are right to some extent. Heavyweight components contain, of
course, much functionality that could be reused, but not even exclusively
within resource-sensitive real-time applications will they be reused if the ratio
of used against not used features is too small. But this scenario is most likely
for coarse-grained components.

Addressing large-scale distributed applications, state-of-the-art com-
ponent technology often includes object request broker functionality
(DCOM, CORBA, RMI). However, communication capabilities of field
devices are restricted (bandwidth) and specified by standards [7, 8] in order
to achieve interoperability of the devices within a system. This means that

308 Building Reliable Component-Based Software Systems

those distributed components are out of scope for this class of embedded
devices. Consequently, component technology could only be applied for
building the firmware of one field device.

Limiting the use of component technology to one device and the
smaller application size of embedded devices will lead to more fine-grained
components compared with business applications. Finding the right compo-
nent size to support optimal component reuse is a critical design decision
that can only be decided in the context of the embedded device�s application
and its architecture (see also the �Architecture� section in this chapter).

Some papers (e.g., [9]) present real-time operating systems, protocol
stacks, and embedded databases as typical components. Such components
build up the infrastructure or run-time environment. Most often, they are
commercial components that have hardly been formally specified according
to a component model for embedded devices. An open issue is how to inte-
grate them into a component model for embedded devices and to which
part such infrastructure components should be wrapped into an abstraction
layer (see also the section on �Portability and Platform Independence� in
this chapter).

Nevertheless, we want to put the focus on components as building
blocks of the application of the embedded device. In this context, architec-
tural styles and the ability to describe architecture and how components
should fit into it gain increasing importance.

Reuse

Black-box component reuse seems to be the best solution because it hides
component implementation completely from the client. Source language
components require parts of their implementation to be opened, leading to
gray-box or even white-box reuse. According to [2], gray-box and white-box
reuse very likely prevents the substitution of the reused component by other
components. However, establishing clear conventions about the available
knowledge of the implementation and the allowed changes of the implemen-
tation should help to overcome this problem. If this knowledge can be cap-
tured completely in architectural styles (e.g., component connectors) or in
composition scripts belonging to the component, one could reach gray-box
reuse from the composition environment�s point of view but black-box reuse
from the component user�s point of view. Only the composition environ-
ment would be allowed to use knowledge about the component�s
implementation.

Component-Based Embedded Systems 309

Architecture and Frameworks

Defining components alone will not lead to reuse.1 In addition, a common
architecture for a family of embedded devices is needed that guides the usage
of components and their interaction. Such an architecture can be captured in
a framework for the device family consisting of, for example, standardized
interfaces, container components, and architectural styles (component con-
nectors). The framework also defines the primary dimensions of independent
extensibility [2], that is, the points where the framework is open for new,
independently developed components. In our example an architecture for
field devices is discussed in a later section as the basis for such a framework.

Location Transparency

As mentioned in the �Component Granularity� section of this chapter, we
deal with the construction of the firmware for one embedded device. There-
fore, location transparency is not an issue. For embedded devices as discussed
in this chapter, component technology is not intended to be used as or in
conjunction with communication middleware such as CORBA, DCOM, or
RMI.

Portability and Platform Independence

The demand for reusable software components leads directly to the require-
ment of platform independence and portability because software compo-
nents as abstractions of application functions will have a longer lifetime than
the hardware and the microcontroller used. But that leads directly to an
either conceptually provided abstraction layer in terms of programming stan-
dards or an implementation-based solution such as a virtual machine.

We argue that source-level portability will be sufficient (or, better yet,
must be sufficient). Source-level portability requires agreement on the imple-
mentation language (e.g., ANSI C or C++). Microcontroller-specific lan-
guage extensions provided by many compilers for the embedded domain
prevent source-level portability, require manual porting effort, and finally
lead to a version explosion of the component. Source-level portability also
requires agreement with the available libraries such as the ANSI C run-time
library, operating system API, hardware access, and device drivers. One way

310 Building Reliable Component-Based Software Systems

1. We are fully aware that reuse is a major topic of software process and organizational
issues. But due to this chapter�s scope we restrict the discussion to technology issues.

to achieve this is to provide proper abstractions, for example, for the RTOS
APIs, which are specified according to the component model used.

Binary platform independence as provided, for example, by the Java
platform is not a requirement for the discussed class of field devices. How-
ever, this may change in the future if run-time component composition and
deployment become a requirement. Also, from a development productivity
perspective, it would be very desirable to have a Java platform available.

Component Wiring

Component wiring experiences an emphasized role. Once the components
are present, efficient and flexible composition of new applications out of
existing components becomes the first priority. Therefore, composing an
application in a drag-and-drop manner, while preserving the consistency of
the new composed application pops-up is one of the most challenging tasks.
On one hand, it requires an advanced component model and at the same
time support for expression of architectural styles in order to provide a pre-
scription about how to construct according to given domain rules. On the
other hand, it gives us the ability to optimize component interactions by
means of source code adaptation or interweaving of component glue code.
For performance reasons, we argue that component glue code must be gener-
ated in the implementation language (e.g., C or C++). Script languages
known from state-of-the-art component technologies used as glue code, will
not be affordable.

Embedded Systems with Synchronous Components

Synchronous Approach

Synchronous languages [10] have been developed to simplify the program-
ming of reactive systems. They were born from the recognition that broad-
casting was the way to handle communication in reactive systems, making it
possible to handle together concurrency, determinism, and response time
control. They are based on the synchrony hypothesis, which makes the fol-
lowing abstractions:

• The computer is infinitely fast.

• Each reaction is instantaneous2 and atomic, dividing time into
sequences of discrete instants.

• A system�s reaction to input appears in the same instant as the input.

Component-Based Embedded Systems 311

A real system can behave synchronously if it is fast enough. It must
always finish its computations before events are recognized. This requires the
minimum interevent time as well as the WCET. The synchrony hypothesis is
a generalization of the synchronous model used for digital circuits in which
each reaction must be finished in one clock cycle.

Tools for reactive systems do not develop in the same way as tools for
desktop systems. One reason for this is that high-level reasoning and pro-
gramming tools promoted by computer scientists were considered to be quite
useless by many control engineers, whose main problem was (and still is) to
pack code in small ROM for cheap microprocessors [11].

Synchronous Software Components

On the basis of the synchrony hypothesis, we can define components that
can easily be composed to larger systems. Because the components commu-
nicate through signals being sent as broadcast, the components are not
required to make any assumptions about each other. They work independ-
ently in the same way as software ICs [12]. Usually synchronous software
components consist of a reactive part and a transformational part. The reac-
tive part is usually specified in a synchronous language. The transformational
part is optional and consists of data-type specifications and several data-
handling functions [13].

In the synchronous programming language Esterel [13], for example,
all reactive parts of all synchronous software components are assembled in a
single program. The Esterel compiler translates this program into a finite-
state machine, called a reactive kernel. All transformational parts together
form the data processing layer. In our approach the reactive part is developed
in C or C++. Reasons for this include the following:

• Wide acceptance of C/C++ as an implementation language. Syn-
chronous languages such as Esterel are not very common, so a large
training effort is necessary.

• In terms of memory usage, as described in [11], current Esterel com-
pilers generate much more code in comparison with a handwritten
C component.

312 Building Reliable Component-Based Software Systems

2. A statement starts in some instant t, remains active for a while, and may terminate in
some instant t´ ≥ t. A statement is instantaneous if t´= t [11].

TEAMFL
Y

Team-Fly®

• As mentioned, the reactive parts of all components in Esterel are
assembled to one single Esterel program. This is a drawback if binary
components should be used to protect knowledge.

In a C or C++ implementation where input I occurs at t(n) it must be
asserted that output O occurs at time t´(n) > t(n) with the constraint t´(n)
< t(n + 1) for the reactive system to behave properly. An additional bounded
delay such that t´(n) − t(n) < d for all n may be additionally required [11].
The favorable case is when the maximum delay can be computed for a given
implementation. In that case, if the delay is small enough, synchronous
behavior is assured. Otherwise the implementation must be improved.

Case Study Description

In our example we refer to implementation of industrial field devices. An
analysis of different existing field devices revealed seven main components
with different variations (up to 14). The potential business impact by
domain reuse differs from (1) very high (e.g., fieldbus function blocks3)
to (2) more or less small (process application) according to the reuse over
device families or over device generations. These identified components are
illustrated in Figure 16.1. The two main functional blocks of the field device
are the analog output function block (AO) and the transducer block. They
are mainly responsible for the current state, converting and scaling
of parameters, and the closed-loop control of the motor. One block in
Figure 16.1 is the Profibus PA Mapper block, which acts as wrapper for the
bus communication.

The market for embedded systems has been analyzed for two trends:
(1) A 32-bit microcontroller will soon overtake the 16-bit microcontroller,
and (2) the availability of the EC++ [14] compiler is increasing constantly.
Based on these trends, our case study device has been defined as an electric
actuator4 with a Motorola 32-bit microcontroller and the Profibus fieldbus
system. (Today about 1 million Profibus devices are used in process

Component-Based Embedded Systems 313

3. Function blocks represent the basic automation functions of a fieldbus device. Each func-
tion block processes input parameters according to a specified algorithm and an internal
set of control parameters. They produce output parameters that are available for use
within the same function block application or by other function block applications.

4. An actuator transmits a torque to a valve for a defined output movement.

engineering.) The implementation will be done with C++ and Java to get a
meaningfulness evaluation about these main embedded languages for the
future.

According to the requirements of the selected domain the basics of the
synchrony hypothesis to define components, which can easily be composed
to systems, are applied. The component interaction for the selected domain
requires most often a horizontal and vertical channel for the interaction with
other components as well as the interaction with the operating system and
system hardware. Therefore the separation in application interfaces and plat-
form interfaces must be evaluated.

Architecture

In this section an architecture for reactive control systems is presented that
directly supports the synchronous approach. Figure 16.2(a) shows a typical

314 Building Reliable Component-Based Software Systems

Block container
Scheduler

Profibus PA Mapper

Profibus PA stack Local operation

Display, buttons

AccessManager

Persistent storage

AO function block Transducer block

SP

MODE

READ-
BACK

OUT

OUT_CHAN

IN_CHAN

POS_VALUE

FEEDBACK

POS
control

POS
measure

I/O
HW

CTRL_PAR
AO
algorithm

PC/handheld-interface

Figure 16.1 Architecture of field device.

control layout. The setpoint is the desired value typically coming from a
superior control system. The controller realizes a control strategy to achieve
its desired behavior. Figure 16.2(b) displays the software components build-
ing the control loop. In this case controller (2) uses a PID closed-loop con-
trol algorithm to achieve its goal. It reads the actual speed and calculates the
speed error. Based on timing and amplification parameters (Tn, Tv, kp), the
error, and the actual setpoint, a new output value is calculated. This value is
used from the actuator to manipulate the controlled system.

Signals available on the signal-bus (see the �Signal Bus� section in this
chapter) are public and can be used from all components connected to the
bus (broadcast). A component can either be the sink or the source of a signal.

In addition to a traditional interface, a controller has interfaces to the
process (including sensors and actuators). A modern real-time computer
interacts with the environment in a number of other ways, including inter-
faces with a plant operator, mass storage (database), and computer network.
A detailed view of these interfaces is presented in a unified diagram shown in
Figure 16.3.

In practice, a number of real-time systems exist that do not represent a
complete system in the sense of Figure 16.3, but nevertheless fit very well
into this concept. For our domain, the field devices, all of the interfaces listed
exist.

Component-Based Embedded Systems 315

Setpoint

(a)

Controller
(2)

Manipulated
variable

(3) Controlled
system

Actual
value

(1)

(b) Signalbus
Sp

ee
d

Tv
,T

v,
kp

Se
tp

oi
nt

Er
ro

r

Ou
t

Ou
t

Sp
ee

d

Sensors
(1)

PID
(2)

Actuator
(3)

Figure 16.2 Typical layout of a control application: (a) a control layout and (b) software
components building the control loop.

Dynamic Behavior

To behave as a reactive kernel, a control application must fulfill several
requirements as shown in Figure 16.2(b). As explained in the section about
synchronous software components, all outputs O emitted from component
C must occur within a specified reaction time.

The following condition must be valid: Ttot ≥ T whereby T = Σm

1 nm

× tm. The sum of all component reaction times tm must be shorter than the
specified total execution time Ttot. The term n 1 indicates that a component
is executed more than once in a cycle. For an application to be composed of
three components, we assume that the execution time of C1 = ½C2 = 2C3

= 10 ms and C1 must be executed twice. Let�s further assume that T = 100
ms. For the given execution times Ttot = 2 × 10 ms + 20 ms + 5 ms = 45 ms.
This means that the CPU has a load of 45%. The execution time includes
the time for the reactive part and the data handling part of the components.
The engineering environment must ensure that the real-time computer can
perform the schedule of the components.

For the scheduling of components, a simple round-robin scheduler can
be used. In [15] the strategy pattern is used to decouple real-time specific
constraints and the application service to which they apply. This allows one
to adapt the real-time related aspects in a system-specific manner.

Active Components

The example from Figure 16.3 covers only part of the components typically
available in an embedded real-time computer. It covers only components of
which the transformational part is short enough to be executed each time the
component gets execution time. This is not always possible.

Active components typically have their own thread5 of control. Exam-
ples for such components include communication handlers or mass storage
handlers. References [16] and [17] present a solution for PBOs. For each
PBO a local table of the used variables is available. The variables correspond-
ing to input ports are updated prior to execution of each cycle of a periodic
PBO. During its execution, a PBO may update the state variable correspond-
ing to output ports at any time. These values are updated in the global table
after the PBO completes its processing for that cycle or event.

In our approach only active components need a local signal table. In
this case, the execute method of a component copies the required input

316 Building Reliable Component-Based Software Systems

5. Most real-time systems do not know the term thread. They use the term task instead, but
the meaning is very similar.

signal values in a local buffer and copies updated output signals to the signal
bus. For this action some kind of synchronization inside the component is
necessary.

Intercomponent Communication

Signal Bus

The signal bus is the communication backbone in our approach. Data avail-
able on the bus can be used from all components. The engineering environ-
ment must make sure that there is only one source per signal. In contrast to
the synchronous approach, signals are not like events that can be associated
with data; in our definition signals simply represent data items. Access to the
signal bus is open to the general public. This means that there is no access
control on this level (read and write access). Each signal on the bus represents
a data type. Data types are not limited in general. Depending on the type of
application, different sets of types may be necessary. For our application the
types used are based on the data types specified in the fieldbus specs of Pro-
fibus [7] and Fieldbus Foundation [8]. A typical type looks like this:

typedef struct{

unsigned short status; /* current status */

unsigned float; /* value */

} t_analogValue;

Component-Based Embedded Systems 317

User
interface

Real-time
system

Communication
link

Mass storage
interface

(1)

(2)

(3)

(4)
Process
interface

Figure 16.3 Real-time computer systems with example interfaces. (1) 216-character LCD
display, (2) RS422 link to a frequency converter, (3) E2PROM, and (4)
Ethernet.

Signals can have different requirements in relation to persistency. Sup-
ported levels include these:

• Persistent. Variables marked as persistent are stored frequently
(counters, etc.) or on user request (�save settings�) using the mass
storage interface shown in Figure 16.3.

• RAM. The state of variables in this group is lost when the system is
restarted.

• ROM. Variables in this group are read only.

The idea behind the last group is simply to save RAM. For all three types of
signals default values can be specified.

Events

Events represent the more functionally oriented way in which intercompo-
nent communication occurs. An event can be based on message queues or
can be a simple method or function call. Events can have parameters and sev-
eral nonfunctional properties. Properties can be evaluated in the engineering
environment during system construction time. A mandatory property is the
execution time. The execution time can be specified as infinite if the call is
blocking.

Object Manager

The Object Manager is simply the owner of the signal bus. It must provide at
least the following functionality:

• Provide definitions of the signal types;

• Reserve memory for the signals on the signal bus;

• Initialize the signals on the signal bus;

• Provide an event interface for accessing the signal bus from the out-
side world.

This means that the Object Manager acts as wrapper using the media-
tor pattern. Tasks that it handles include security and type conversions. For
security tasks, access restrictions may be dependent on the system state or
user rights. Consider these examples: (1) If state-dependent, the setpoint
only is evaluated if the computer is in the Regular Operation state. (2) If

318 Building Reliable Component-Based Software Systems

user-dependent, the serial number of the device can only be updated if the
user belongs to the group Service Staff.

The Object Manager also handles type conversions. A component can
specify the data type of a requested signal. Several benefits accrue from per-
forming type conversion in the Object Manager. Figure 16.4 shows two
components accessing signals from the Object Manager. For communication
components like Profibus in this example, mapping of types is an important
issue because most of the communication links use their own proprietary
data types. The GUI handler is connected this way mainly to make sure that
signals are only changed by those who are authorized.

By discussing the realization of those components identified during the
case study analysis, we have discovered a significant lack of support for the
development of component-based systems in general, not just component-
based embedded systems. Our view on these deficiencies is presented in the
next section.

Prerequisites of Effective Development

Our scenario depicts just a few of the aspects essential to field device realiza-
tion, which are used to implement the framework outlined in this section.
Because building of frameworks is difficult [18] we have tried to spend as
much time as possible in obtaining in-depth knowledge about the problem
domain and analyzing code from the domain to find patterns that solve typi-
cal problems.

The framework has a better chance of being successful when several
iterations are made. Therefore we have started to develop a series of proto-
types that utilize different architectural styles. A more detailed description of
the first example case study can be found in [19]. The second presented in
this section gave us additional insights, which we summarize together with
those gained before.

The scenario in the case study presented gives us an indication of what
kinds of functionality and abilities a component model should be provided
with from the point of view of the application domain. To name just one, a
component should be able to handle resource constraints and their implica-
tions for the component technology.

Coping with the resource limitations is one domain-specific problem.
Another one is to support development of real-time application assembled
out of components. This is a challenge in itself and has been a topic of inves-
tigation for many years. The most prominent approaches are RoseRT by

Component-Based Embedded Systems 319

Rational [20] and Rhapsody by Ilogix [17]. Both of them apply the event-
based programming style and support implementation based on state auto-
mata, but do not consider reuse or component orientation to be their major
drivers. Composition of applications out of components and active reuse
support by appropriate repository implementation is not offered adequately
either. For more details of state-of-the-art tools such as Rhapsody or Ros-
eRT, see the appropriate section in this chapter.

To use CBSE successfully, and to achieve a reduction of development
cost and time by reuse of established and proven components, it is not enough
to solve only problems related to field devices. An overall approach for the
development of component-based embedded software is needed. We believe
this approach must comprise several main features, depicted in Figure 16.5,
which we have categorized in five groups and describe next.

In a first outline the identified groups should concentrate on the fol-
lowing issues:

Component Model

• Addresses nonfunctional properties and constraints such as WCET
and memory consumption;

• Allows us to specify efficient functional interfaces (e.g., procedural
interfaces);

• Allows us to specify architectural styles that describe component
connections and containment relations;

• Allows for code generation and controlled component adaptation
when architectural styles are applied to components (source lan-
guage or generative components);

320 Building Reliable Component-Based Software Systems

Two components
defining their own
data types

Object
manager

GUI
handler

Profibus
mapper Signal bus

<<uses>>

Figure 16.4 Two components defining their own data types.

Component-Based Architecture for Field Devices

• Expresses a framework for field devices as standard interfaces, com-
ponents, and architectural styles based on field bus architecture;

• Expresses compile-time optimization abilities, which could be
applied during target code preparation.

Component Repository

• Allows for storage and retrieval of components during analysis,
design, implementation, and composition;

• Stores components and architectural styles according to the compo-
nent model including interface descriptions, nonfunctional proper-
ties, implementation (potentially for different microcontrollers),
support scripts for composition environment, and test cases;

• Supports component versioning.

Composition Environment

• Supports composition techniques (visual or script based);

• Checks composition rules attached to architectural styles in order to
verify that a component configuration meets their constraints;

• Performs component adaptation and code generation for the
application;

Component-Based Embedded Systems 321

Component
repository

Composition
environment

Run-time
environment

Component
model

Component-based
architecture for
field devices

Figure 16.5 Component technology for embedded devices.

• Supports definition of composition rules, which in a subsequent
step could be compiled to architectural styles description.

Run-Time Environment

• Provides an efficient implementation model for components;

• Addresses the constraints for field devices: low available memory,
implementation possibly necessary in C or optimized C++;

• Supports the approach for compiling a component-based design
into optimized firmware for the embedded device, thus eliminating
the run-time environment except for the RTOS;

• Allows for a hardware- and RTOS-independent implementation of
components (e.g., by an RTOS abstraction layer).

Based on these five categories, which make up the major ingredients for
component-based system (CBS) development, we investigate a vision of a
software development process taking these considerations into account [13].

Summary

To bring the advantages of CBSE to embedded systems, special domain
characteristics must be taken into account. To manage the development of
the components, a comprehensive systematic approach to embedded soft-
ware is needed. We divided this component-based software development
process into five categories in which the requirements of field devices are
concentrated.

To build a case study for a usable CBSE system for field devices, the
ability to retain the special needs and requirements of the field devices in
each step is necessary. We have begun exploration of these needs in a case
study and drafted first component models, which enables us to reason about
the specified constraints of the components and their composition.

References

[1] PECOS, �PECOS Project Web Site,� http://www.pecos-project.org.

322 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[2] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

[3] Griffel, F., Componentware: Konzepte und Techniken eines Softwareparadigmas, Berlin:
dPunkt-Verlag, 1998.

[4] OMG, �UML Profile for Scheduling, Performance, and Time�Request for Proposal,�
Report ad/99-03-13, OMG, 1999.

[5] Maurice, S. F., and J. Larmour, �Source Level Configuration in Embedded Systems,�
Proc. Embedded Systems Conf., San Jose, CA, CMP, Inc., 1999.

[6] Sims, O., and P. Herzum, Business Component Factory, New York: John Wiley and
Sons, 2000.

[7] PNO, �Profibus PA: Draft Profile for Process Control Devices, General Require-
ments,� Report V 3.0, PNO, 1999.

[8] Fieldbus Foundation, �FF Specification,� Report V 1.1, Fieldbus Foundation, 1999.

[9] Rhodes, A., �Component Based Development for Embedded Systems,� 1999.

[10] Halbwachs, N., Synchronous Programming of Reactive Systems, Dordrecht, The Nether-
lands: Kluwer, 1993.

[11] �The Esterel v5 Language Primer,� Centre de Mathematiques Appliquees, Ecole des
Mines and Inria, 2000.

[12] Naegele, A., and M. Gunzert, �Component-Based Development and Verification of
Safety Critical Software for a Brake-by-Wire System with Synchronous Software Com-
ponents,� Proc. Symp. on Parallel and Distributed Systems Engineering, Los Angeles, CA,
IEEE Computer Society, 1999.

[13] Berry, G., �The Esterel v5.91 System Manual,� Centre de Mathematiques Appliquees,
2000.

[14] Caravan, �Embedded C++ Specification,� http://www.caravan.net/ec2plus.

[15] Schmidt, D. C., �Real-Time Constraints as Strategies,� www.cs.wustl.edu/~schmidt.

[16] Stewart, D. B., �Designing Software for Real-Time Applications,� Proc. Embedded Sys-
tems Conf., San Jose, CA, CMP, Inc., 1999.

[17] Ilogix, �Rhapsody,� http://www.ilogix.com.

[18] Bushmann, F., et al., �Framework-Based Software Architectures for Process Automa-
tion Systems,� Proc. 9th IFAC Symp. on Automation in Mining, Mineral and Metal Proc-
essing�MMM�98, Braunschweig, Germany, 1998.

[19] Müller, P. O., C. Stich, and C. Zeidler, �Components [CIRCLEAT] Work: Compo-
nent Technology for Embedded Systems,� Proc. 27th Euromicro Conf. and Workshop on
Component-Based Software Engineering, Warsaw, Poland, IEEE Computer Society,
2001.

[20] Rational, �RoseRT,� http://www.rational.com/products/rosert/index.jsp.

Component-Based Embedded Systems 323

[2] Szyperski, C., Component Software Beyond Object-Oriented Programming, Reading, MA:
Addison-Wesley, 1998.

[3] Griffel, F., Componentware: Konzepte und Techniken eines Softwareparadigmas, Berlin:
dPunkt-Verlag, 1998.

[4] OMG, �UML Profile for Scheduling, Performance, and Time�Request for Proposal,�
Report ad/99-03-13, OMG, 1999.

[5] Maurice, S. F., and J. Larmour, �Source Level Configuration in Embedded Systems,�
Proc. Embedded Systems Conf., San Jose, CA, CMP, Inc., 1999.

[6] Sims, O., and P. Herzum, Business Component Factory, New York: John Wiley and
Sons, 2000.

[7] PNO, �Profibus PA: Draft Profile for Process Control Devices, General Require-
ments,� Report V 3.0, PNO, 1999.

[8] Fieldbus Foundation, �FF Specification,� Report V 1.1, Fieldbus Foundation, 1999.

[9] Rhodes, A., �Component Based Development for Embedded Systems,� 1999.

[10] Halbwachs, N., Synchronous Programming of Reactive Systems, Dordrecht, The Nether-
lands: Kluwer, 1993.

[11] �The Esterel v5 Language Primer,� Centre de Mathematiques Appliquees, Ecole des
Mines and Inria, 2000.

[12] Naegele, A., and M. Gunzert, �Component-Based Development and Verification of
Safety Critical Software for a Brake-by-Wire System with Synchronous Software Com-
ponents,� Proc. Symp. on Parallel and Distributed Systems Engineering, Los Angeles, CA,
IEEE Computer Society, 1999.

[13] Berry, G., �The Esterel v5.91 System Manual,� Centre de Mathematiques Appliquees,
2000.

[14] Caravan, �Embedded C++ Specification,� http://www.caravan.net/ec2plus.

[15] Schmidt, D. C., �Real-Time Constraints as Strategies,� www.cs.wustl.edu/~schmidt.

[16] Stewart, D. B., �Designing Software for Real-Time Applications,� Proc. Embedded Sys-
tems Conf., San Jose, CA, CMP, Inc., 1999.

[17] Ilogix, �Rhapsody,� http://www.ilogix.com.

[18] Bushmann, F., et al., �Framework-Based Software Architectures for Process Automa-
tion Systems,� Proc. 9th IFAC Symp. on Automation in Mining, Mineral and Metal Proc-
essing�MMM�98, Braunschweig, Germany, 1998.

[19] Müller, P. O., C. Stich, and C. Zeidler, �Components [CIRCLEAT] Work: Compo-
nent Technology for Embedded Systems,� Proc. 27th Euromicro Conf. and Workshop on
Component-Based Software Engineering, Warsaw, Poland, IEEE Computer Society,
2001.

[20] Rational, �RoseRT,� http://www.rational.com/products/rosert/index.jsp.

Component-Based Embedded Systems 323

17
Architectural Support for Reuse: A Case
Study in Industrial Automation

Otto Preiss and Martin Naedele

Introduction

This chapter presents the current state of practice in architecting
component-based industrial automation platforms tuned for both reuse
within and reuse across application domains. By definition, such a platform
must support the system family concept (i.e., it must provide basic capabili-
ties to aid product-line development). After a brief introduction to industrial
automation systems and the motivation for a platform approach to building
such systems, the chapter describes ABB�s next generation of automation sys-
tem architecture, which is called the Aspect Integrator Platform (AIP) and is
the basis for the design of automation systems such as open control systems
for continuous and batch-type processes, traditional supervisory control and
data acquisition systems, and others.

The chapter elaborates on an architectural approach that introduces
AspectObjects and Aspects together with flexible structuring hierarchies as
the fundamental concepts in accomplishing a unified object approach to
information representation. In addition, it discusses the different dimensions
of component-based reuse achieved by the architectural approach presented.

325

It supports the observation that reuse payoff correlates with domain effort, in
that the valuable assets of reuse are the domain-specific infrastructures and
conceptual components (sometimes also called business objects), both pref-
erably realized by means of technological components, that is, software com-
ponents.

Industrial Automation Systems

For historical reasons, different types of monitoring and process control
applications led to highly specialized, independent, and incompatible hard-
ware and software system solutions. However, the growing demand for open
systems blurred these borders. It is recognized that a flexible combination of
basic hardware and software components, communications infrastructure,
and application components would lead to the ability to build the majority
of monitoring and controlling applications. Furthermore, by integrating
information from different business processes, through the interoperation of
the dedicated systems that exist thus far, more complex tasks than controlling
an individual piece of process equipment can be automated. For example, if a
procurement system were interoperating with a manufacturing process con-
trol system, the latter could notify the procurement system that the reservoir
of an ingredient had reached a certain level so that a new supply of this ingre-
dient could be ordered automatically.

Frequently, the possible control hierarchy of a technical process is rep-
resented by a layered structure, in which the layers are referred to as levels or
enterprise levels. They represent the different levels of control of an enter-
prise whose business value depends on the control of a technical process (e.g.,
a manufacturing process or a utility with its gas, water, or electricity distribu-
tion). Each level has a predefined set of control tasks that are typically sup-
ported by some kind of computer systems and which may or may not involve
human interaction. A pyramid of layers is often used to depict the organiza-
tion of such levels (see Figure 17.1). Their meaning is as follows:

1. Enterprise management level. This level comprises systems and their
applications that deal with enterprise-wide control activities. These
tasks are usually subsumed under the term enterprise resource plan-
ning (ERP). They include human resources, supply chain manage-
ment, administrative order processing, and finance and accounting.

2. Production or manufacturing management level. This level comprises
systems and applications for production planning. They support

326 Building Reliable Component-Based Software Systems

the managerial/administrative tasks in preparing for the next batch
of work. The so-called manufacturing execution system is an
important representative for a system on this level.

3. Process control level. This level comprises the operator stations and
processing systems with their applications for plant-wide remote
supervision and control (manually or automatically) and hence
overview of the entire process to be controlled. It provides
human/machine interface applications for different types of super-
vision and control activities, such as process state visualization,
alarm processing, process event handling, and batch preparation.
As discussed later, an open control system is mainly concerned with
this level and its interfaces to the levels below and above. Conse-
quently the AIP presented in this chapter belongs to this level.

4. Group control level. This level comprises the controller devices and
applications that typically control a group of related process level
devices (e.g., those pertaining to a manufacturing robot) in a
closed-loop fashion.

Architectural Support for Reuse: A Case Study in Industrial Automation 327

Group control level

Production
management level

Process level

Field level

Enterprise
level

Process control level

Figure 17.1 The six-layer model of a technical process.

5. Field level (or single control level). This level contains sensors, actua-
tors, drives, and so forth. The level comprises the interfacing equip-
ment of a control system to the physical process. Typically, one
would find the different input/output modules and platforms on
this level.

6. Process level. This level contains the process equipment to be con-
trolled, for example, a valve in a water pipeline, a boiler, or a
high-voltage switch in a power transmission network.

While real-time performance, safety, and environmental capabilities are
increasingly important for the products and systems toward the bottom of
the pyramid, large-scale information processing and presentation capabilities
are gaining in importance toward the top. The types of systems involved span
from embedded systems with limited computing resources at the lowest lev-
els to full-fledged information processing systems with abundant computing
power at the upper levels.

Automation applications can now involve a single system on single
level or multiple systems on multiple levels. Abstractly speaking, the com-
plexity and information requirement of the control task at hand determines
whether the control loop is closed at lower or higher levels and with or with-
out human intervention. Although a homogeneous IT integration of all lev-
els seems to be desirable, current practice remains focused on the provision of
dedicated, homogeneous IT systems for subsets of these levels and of open
interfaces to interact with the systems on other levels.

In the context of industrial automation, the term automation system is
used to denote a set of systems that collaborate to perform some sort of auto-
mated activity. It is for this loose definition that the term is heavily over-
loaded and that vendors sell almost all process control-related systems as
industrial automation systems nowadays. The automation system architec-
ture discussed in the remainder of this chapter was essentially conceived as an
Open Control System (OCS) architecture. An OCS is a general-purpose
process control system platform that is used to build applications for the con-
trol of continuous or batch-type industrial processes in various vertical mar-
ket domains. These can be anything from a manufacturing process for
chocolate bars, to the continuous monitoring and remote control of an oil
refinery plant, to a group of robot cells to assemble and paint cars. The basic
end-user functionality of an OCS is process data acquisition, process visuali-
zation for operators, process alarm- and event handling, and local and remote
control.

328 Building Reliable Component-Based Software Systems

The predicate open indicates that building control applications are not
confined to a vendor-specific solution, but allows for some degree of flexibil-
ity with respect to the choice of hardware and software components. A user
of an OCS associates with the term open some basic capabilities of a control
system platform, such as portability, scalability, extendibility, exchangeabil-
ity, and interoperability. In the context of software systems, an OCS would
fall into the category of distributed, reactive, command-and-control type sys-
tems. Depending on the particular application domain, it is a safety-critical
and/or soft real-time application. A common demand on all of these types of
systems and their applications is a high degree of dependability.

The AIP, discussed in the remainder of this chapter, is a generic frame-
work for the realization of applications on the process control level, which
includes the means to interface the levels immediately below and above. The
AIP is intended to be used by applications in different vertical market
domains. As such, the AIP is the heart of the process control level�no more
and no less.

The Motivation for a Platform

A current buzzword in the industrial automation world is Industrial IT. It is
the all-encompassing term used when people refer to an envisioned seamless
link between front-end business processes and plant control processes (i.e.,
the link over all the control levels discussed earlier). In practice, the inte-
grated computerized support for such a seamless link is based on a collection
of different systems. A process automation system�this name is often used
as the more fashionable term for open control system�is only one type of
system in that collection.

Because the basic functionality of process automation systems (or
automation systems for short) is of a similar nature across vertical market
domains (recall the discussion of OCS above), building generic platforms
has always been a primary concern, but has been practiced with mixed suc-
cess. An automation system platform in this context is the application-
independent infrastructure of a distributed automation system, that is, it
consists of both the basic hardware infrastructure as well as the software
infrastructure. According to Figure 17.1, it covers the application-neutral
components for the process control level, and often also includes the group
control level and field level. Hence, the hardware infrastructure is the equip-
ment for process interfacing, instrumentation, data communications, con-
trol logic execution (e.g., programmable logic controllers), and operator

Architectural Support for Reuse: A Case Study in Industrial Automation 329

workstations. The software infrastructure consists not only of operating sys-
tems, communication stacks, I/O preprocessing, run-time infrastructure to
support distributed processing, and the above-mentioned basic functional-
ity, but also the application development environment.

The motivations for a large global company active in many vertical
market areas to invest in the development of a �single� platform are mani-
fold. Here are some of the more obvious objectives:

• Avoidance of parallel developments in different business segments;

• Harmonization of the diversity of �legacy� automation platforms
acquired through company mergers or resulting from previous par-
allel developments;

• Adoption of product-line business strategies (i.e., pursuing a system
family concept both within and across vertical market segments).

Inherent in all of these motivations is the implicit expectation of a reuse
payoff. Although the different approaches to software-related reuse have
changed over time, systematic software reuse is still the most attractive way to
shorten development time, save costs, and improve quality. CBSE is the soft-
ware community�s current attempt to encourage large-scale software reuse.
However, the success of reuse depends on a number of equally important fac-
tors [1]: organizational issues, component and system architectures, a more
or less stable market environment, existing domain and technology stan-
dards, and sustained managerial support.

In describing a substantial case study, the following sections are repre-
sentative of the current state of practice in dealing with only one of these
success factors, namely, the consideration of component and system architec-
tures required.

To be able to derive new products efficiently using a component-based
approach (i.e., by sharing components), the product structures must be simi-
lar. There must be a standard set of basic components with agreed-on
responsibilities, performance, coordination mechanisms, and so forth. The
agreements regarding such a structure, a basic set of components, and the
properties that must hold for all future developed components (and prod-
ucts) can be considered the platform architecture. Because these characteris-
tics are exactly those of a product line, an industrial automation platform is
an obvious candidate for a software product-line architecture, in which �a
collection of systems share a managed set of features constructed from a com-
mon set of core software assets� [2].

330 Building Reliable Component-Based Software Systems

The automation system architecture described below employs a
component-based reuse strategy, as opposed to a generative reuse approach.
For a good treatment of component-based reuse versus generative reuse, we
refer the interested reader to [3]. Component-based reuse is accomplished on
two levels: on the platform infrastructure and related services level, and on
the application domain-specific level. However, because the degree of reuse
payoff primarily correlates with the effort invested in domain-related work, a
platform architecture alone does not guarantee the success of, but merely
supports reuse efforts.

The Aspect Integrator Platform

The generic and fundamental functionality to be provided by an OCS is as
follows:

• Acquisition and presentation of information relating to the process
history;

• Acquisition and presentation of information relating to the current
status of the process;

• Provision of real-time facilities to control the process;

• Presentation of information to predict and influence the future of
the process.

This functionality must be provided in a very reliable manner, to mention
just one quality requirement.

Hence, the main task of an OCS is the reliable presentation of informa-
tion that pertains to domain objects and that reflects their past, current, and
future. In addition to the standard set of architectural challenges, this leaves
the architect of an OCS with three fundamental technical problems:

1. How do we cope with the diversity of information pertaining to
objects of interest in the domain? The fact that the underlying
mechanism must satisfy objects of various domains intensifies this
problem.

2. How do we provide user-type specific navigation to representations
of domain objects and context-related information?

Architectural Support for Reuse: A Case Study in Industrial Automation 331

3. How do we accomplish information acquisition and integration in
the distributed configurations of today�s control systems?

The architecture presented, designated Aspect Integrator Platform,
employs specific approaches to these problems. Objects with aspects are the
architectural means to deal with the first question above. An extendable set of
tree structures based on the concepts introduced in the IEC1346 standard1

[4] is used to cope with question 2. A selection of predominantly off-the-
shelf technologies [e.g., Microsoft COM-based OLE for Process Control
(OPC) [5]] provides a technical basis for dealing with question 3.

An OCS architecture and its embodiment as a run-time infrastructure
relegates the development complexity to the infrastructure developer and
thereby reduces the effort required for application development. On a high
level, the AIP is an object-structuring and programming model, a run-time
infrastructure, an application development environment, and a set of generic
control system applications.

The AspectObject Paradigm and Object Organization

The process control community separates the process into domain objects.
Thus, a natural model for information representation is an object-oriented
model. Domain objects can be associated with rather diverse (and often
orthogonal) information aspects, that is, data and behavior of different con-
cerns. The AIP introduces the notion of an AspectObject to represent a
domain object that has Aspects to denote explicit, stakeholder-specific infor-
mation concerns. Note that information not only refers to data but also to
concepts that encapsulate behavior (e.g., a control algorithm pertaining to an
AspectObject). Hence, objects and aspects are the fundamental concepts in
the architecture of the AIP to accomplish a unified high-level object
approach. In fact, an AspectObject can be understood as a conceptual object
in the problem domain, similar to those that are typically identified in con-
ceptual modeling. However, besides the terminology and the fact that aspects
are first-class design concepts that are applicable to different kinds of objects,
there is no commonality between the AspectObject approach presented in
this article and Aspect-Oriented Programming (AOP) [6]. For an illustrative

332 Building Reliable Component-Based Software Systems

1. The IEC 1346-1 standard defines three structures to designate an object. The structures
are compositional by nature, that is, �part-of� relationships, and divided into a function-
oriented structure, a product-oriented structure, and a location oriented structure.

TEAMFL
Y

Team-Fly®

example of the AspectObject model, see Figure 17.2, in which a Valve Aspect-
Object models a valve domain object and its five relevant aspects.

As mentioned above, flexible object structures are used to organize
objects for navigational purposes hierarchically. An AspectObject may appear
as a node in an arbitrary number of structures, typically three structures. As an
example consider the diary in Figure 17.3. A valve (FIC201 Valve) is part of
three structures. The functional structure identifies it as part of the milk sup-
ply function. The location structure identifies it as part of an unambiguously
defined location �B2.R3� (building B2 and processing area R3). Finally, the
valve is also part of a batch structure. In the example, it is part of a defined
batch procedure for mixing the milk for a product named BananaMilk100.

As opposed to other realizations of reference structures, in which refer-
ence holders will not normally be notified of changes in the object they refer-
ence (unless an explicit callback is programmed), the AspectObject structure
employs a central reference management that automatically informs refer-
ence holders of changes in the contents of referenced objects. Applications
can build on this feature and adapt a reactive programming style.

The Architecture of the Aspect Integrator Platform

In this section, the architecture of the AIP is described in more detail. Fur-
ther details can be found in [7]. The explanation of the architecture is struc-
tured according to the �4+1 views approach� [8] referring to the logical view,
the physical view, the development view, the process view, and the scenario

Architectural Support for Reuse: A Case Study in Industrial Automation 333

<<Domain Object>>
Valve

<<Aspect Object>>
Valve

<<Aspect>>
Control

<<Aspect>>
Mechanical

Drawing

<<Aspect>>
Maintenance
Instructions

<<Aspect>>
Operator
Graphics

<<is modeled by>>

<<Aspect>>
Operation

Report

1 1 1 1 1

Figure 17.2 Model objects and their aspects.

334 Building Reliable Component-Based Software Systems

Milko Chemical
Solid Processing
Liquid Processing

Mixing Unit BV1
Mixing Unit BV2

BV2TemperatureControl
BV2QuantityControl

BV2ProductTransfer
BV2Agitation

BV2MilkSupply

FIC201

FIC201FlowTxmitter

FIC201Valve
FIC201Control

EU201

BV2Additives
MilkDistributionManifold

ProductDistributionManifold

Fu
nc

tio
na

ls
tru

ct
ur

e

Milko Chemical
+B1, AdditiveWarehouse

+B2, LiquidProcessing

+B2.R1, ControlRoom
+B2.R2, ElectricalRoom

+B2.R3, EU101Motor

+B2.R3, FIC101Valve

+B2.R3, FIC101FlowTxmitter

+B2.R3, MixingUnitBV1

+B2.R3, MixingUnitBV2

B3, Packaging

+B2.R3, ProcessingArea

+B2.R3, EU201Motor

+B2.R3, FIC201Valve

+B2.R3, FIC201FlowTxmitter
Lo

ca
tio

n
st

ru
ct

ur
e

LP_ProdTransferProcedure

LP_ChargeProcedure

LP_ReactProcedure

Mixing Unit BV2

BV2MilkSupply

FIC201

FIC201Valve

Milko Chemical
Batches

BananaMilk100

ProductPackagingProcedure

LP_MixMilkProcedure
LiquidProcessingProcedure

BananaMilk

BananaMilk101
BananaMilk

ChocolateMilk200
ChocolateMilk

Ba
tc

h
st

ru
ct

ur
e

Figure 17.3 An AspectObject (FIC210 Valve) present in three structures.

view. Because the scenario view (the �+1�), which essentially models some
important use cases, is redundant for the other views, we omit it here for
brevity. Nevertheless, in the analysis and conception phase of an architecture,
it serves as the focal point for developing the other views as well as for testing
the consistency between views.

Logical View

As explained in the previous section, the concepts of objects and aspects are
fundamental for an understanding of the AIP architecture. The logical view
explains and puts into context the various elements that constitute the Aspect-
Object paradigm. Figure 17.4 shows the logical elements and their relation-
ships, discussed in the following sections.

AspectObject

The model element of a domain object is designated AspectObject in
ABB nomenclature to express the fact that its attributes, which refer to the
application domain, are separated into so-called Aspects. Except for some
framework-internal, administrative attributes, AspectObjects do not carry
data but serve only as reference keys and mediators between the domain
Aspects.

In an AIP-based system, AspectObjects represent all the concrete and
abstract concepts relevant within the system context and to the system func-
tionality, for example, machines, plant, hosts, devices, controllers, and
algorithms.

An AspectObject has a globally unique identifier, GUID (the Micro-
soft name for a universally unique identifier, UUID, defined by The Open
Group) and the basic property that it can be part of an arbitrary number
of hierarchical structures. Its position in a structure determines its Aspects,
that is, its associated data attributes and their initialization and modifica-
tion behavior. Hence, it resembles a configurable inheritance mechanism.
Aspects, Aspect Types, and even Object Types (all explained below) inherit
this basic ability due to the fact that they are technically AspectObjects
themselves, and thus first-class objects in specific system configuration
structures.

Object Type

Each AspectObject in an AIP-based application is of a certain type, a so-
called Object Type. As has been explained above, an Object Type is also an
AspectObject. Therefore, it can be created and modified at run time, effect-
ing corresponding changes in all AspectObjects of this Object Type. An

Architectural Support for Reuse: A Case Study in Industrial Automation 335

336 Building Reliable Component-Based Software Systems

AspectObject

Structure

Aspect

1..*

*

1

1..*

1

0..*

3 has

ObjectType

0..*

1

isOfType 4

AspectType

0..* 1

isOfType 4

Property

1

1..*

3 has

AspectSystem
1..*1

0..*

*

1..*

3 determines

AfwService AspectSystemObject

1..*

1..*

1..*

AspectCategory

0..*

1isOfType 4 *

3

contains4

has4

< conceptually contains

determines

*3 read/writes

1..*

behavior implemented by >

Figure 17.4 Elements of the AIP logical view.

Object Type determines which Aspect Types (see below) are associated with
an AspectObject and also how Aspects and their properties are initialized
and modified at AspectObject instance creation and modification, respec-
tively. Because an AspectObject comes into being through the creation of a
node in any of the hierarchical structures, the initialization/modification
configuration is referred to as an inheritance setting, because the Aspect ini-
tialization would normally propagate from the parent node.

Because Object Types are AspectObjects themselves, they are also
located in hierarchical structures that provide inheritance features.

While specific AspectObjects are presumably created for each individ-
ual AIP-based application project, domain-specific libraries of Object Types
(such as the valve Object Type of the �FIC210 Valve� instance in Figure
17.3) constitute one of the main domain-specific reuse mechanisms in the
AIP architecture; Aspect Types, as we will see, constitute the other. For
example, libraries for steel mills, power distribution substations, and so on,
can be developed and harvested.

Aspect

Each AspectObject has a number of Aspects. An Aspect encapsulates a subset
of the data and corresponding behavior. It relates to a common context or
purpose. Figure 17.2 above provided an illustrative example. Which Aspects
of an AspectObject should be accessible in a certain context is configurable.
The Aspect Category (discussed below under Aspect Type) defines the type
of an Aspect. So-called AspectSystemObjects (see below) implement the data
and behavior of an Aspect. A container for data, in the form of a binary large
object (Blob), is associated with each Aspect and is one means of storing its
data within certain size constraints. Only the Aspect can interpret the data in
its Blob. An Aspect, being an AspectObject itself, is directly accessible from
anywhere in the system via its GUID. However, in most cases it will be
located via the AspectObject that owns it.

Aspect Type

Each Aspect conforms to a certain Aspect Type. As any type definition does,
the Aspect Type defines the properties for a set of Aspects. With respect to
the Aspect behavior, it references the possibly multiple AspectSystemObjects
that implement the different behaviors of an Aspect (operational user inter-
face, configuration user interface, data persistence strategy, context menu
entry, etc.). The notion of an Aspect Category has been introduced to per-
mit the definition of variations of Aspect Types. An Aspect Cate-
gory behaves in exactly the same way but defines certain different static

Architectural Support for Reuse: A Case Study in Industrial Automation 337

parameters. They can be used for the sorting or classification of Aspects. For
instance, an Aspect Type �Web Page Reference,� whose behavior is to start a
browser and display a selected Web page, could be of Aspect Category
�Manufacturer Documentation Web Page� to denote the fact that all
Aspects of this category relate to manufacturer-provided on-line documen-
tation for a certain AspectObject.

Aspect System

An Aspect System is a collection of Aspect Types for a certain context or pur-
pose (e.g., a maintenance Aspect System may consist of a maintenance man-
ual Aspect Type), a maintenance work log Aspect Type, and an Aspect Type
to encapsulate access to a third-party maintenance management application
(e.g., scheduling, work order). The Aspect Types of an Aspect System should
be applicable to multiple Object Types. After Object Types, Aspect Types
organized in Aspect Systems are the second most important vector for
domain-related reuse in AIP-based applications.

AspectSystemObject

An Aspect contains data associated with an AspectObject. To work with this
data (create, view, modify them)�realized in classical object-oriented design
by methods�some Aspect-specific software is needed. The (binary) software
component, which provides the behavior for a particular Aspect, is an Aspect-
SystemObject (ASO). Technically, an ASO is a Microsoft COM [9] compo-
nent following specific rules (see the �Development View� section of this
chapter). An Aspect System itself is purely conceptual. It comes into exis-
tence only through the fact that a set of ASOs for the Aspect Types of the
Aspect System is registered with the AIP infrastructure.

The basic set of ASOs distributed with the AIP contains functionality
for alarming and event handling, historical data management and trending,
viewing Web/HTML pages, viewing PDFs, wrapping Win32 applications,
and wrapping Microsoft ActiveX components. The latter technology is easily
configured to encapsulate applications such as Microsoft Word and Micro-
soft Excel. An ASO can have (but does not need) a user interface. More than
one ASO can cooperate to implement one Aspect Type, as described previ-
ously. The implementation code of an ASO can make use of the AIP infra-
structure functionality to navigate to and access other ASOs of other Aspects.
For instance, an ASO being part of a service personnel support Aspect Sys-
tem provides the graphical representation of the list of all documents relating
to a particular Object Type used in the system. It might therefore need access

338 Building Reliable Component-Based Software Systems

to the ASO of the computer-aided design (CAD) tool Aspect to inquire
about the CAD-related documents and their file location.

Aspect Framework Services

Aspect Framework Services (AfwServices) can be considered as Aspects of the
AIP infrastructure. They provide GUI-less, continuously running infrastruc-
ture functionality, such as security access control, object locking, or name
lookup. An AfwService is basically a normal Aspect whose ASOs execute in
the server layer. One important framework service is the provision of an
infrastructure for consistency management (e.g., callback events). In this
way, Aspects can react to changes in other Aspects on which they depend.
This holds for both changes in content and changes in their position in
Structures (see below).

More details can be found in the discussion of the physical view of the
architecture.

Structures

The AIP provides structures as an important concept for ordering Aspect-
Objects in an AIP-based application. Structures are graphs (trees in the
most simple case) whose nodes are the AspectObjects in the system. The
important idea here is that each AspectObject may be referenced by multiple
structures and the AspectObject knows about these references. Figure 17.5
shows an example in which the AspectObject Maier (representing a human
resource) is both a child of the AspectObject CHCRC (an organizational unit
of a company) of the hierarchy formed by the Structure �OrgUnitStructure�
and of the AspectObject Gamma (a concrete development project) in the
hierarchy formed by the structure ProjectStructure.

Abstractly speaking, structures can be used to model objects and their
relations with is-a, has-a, is part of, or similar semantics, depending on the
application. Speaking in concrete terms, a structure is used as a hierarchical
organization of AspectObjects that describes the dependencies between (pri-
marily) domain concepts in a certain navigation context. Because an Aspect-
Object can exist in multiple structures, multidirectional navigation starting
from the object is possible. If the problem domain is broken down into struc-
tures so that each structure represents one meaningful context and notion of
relatedness between concepts (e.g., a manufacturing machine is part of a con-
trol system, located at a certain place, has a certain function in the purpose of
the whole plant, is from a certain manufacturer, etc.) then this paradigm of
multiple connected structures provides a powerful information navigation
mechanism.

Architectural Support for Reuse: A Case Study in Industrial Automation 339

340 Building Reliable Component-Based Software Systems

ProjectStructure : Structure

IndustrialIT : AspectObject

AdvancedTechnolgies : AspectObject

Gamma : AspectObject

ProjectNotes : Aspect

ConsolidatedFinancial : Aspect

OrgUnitStructure : Structure

SECRC : AspectObject

CHCRC : AspectObject

Maier : AspectObject

ProjectManager : Aspect

TimeRecordingPMView : LegacyWrapperAS

PMAspect : AspectType

Employee : ObjectType

Project : ObjectType

Figure 17.5 AspectObjects organized in structures.

Note that membership of an AspectObject in a certain structure is rep-
resented by a corresponding structure Aspect. If an AspectObject is a mem-
ber of several structures it will have several Structure Aspects.

Physical View

This section describes how AIP-based applications consisting of AspectOb-
jects, Aspect Systems, and the AIP infrastructure can be distributed to multi-
ple hosts within a local-area network (LAN). As will be seen, the most
important qualities that must be addressed by an OCS architecture are:

• Reliability in the sense of fault tolerance, that is, avoidance of single
points of failure;

• Scalability and thus a means of load-balancing;

• Application relocation; the ability to move transparently a single
combined workplace/server configuration to a complex, distributed
multiserver topology without any changes in the AspectObjects and
AspectSystemObjects.

An AIP application is a client/server system with a variable number of
clients and servers. The minimum system consists of one host on which both
the server-side and the client-side applications are running. Process control
applications are often required to support the concurrent access of multiple
operators to the same control system. Hence, a need arises for multiple con-
current client applications (called workplaces) at different hosts. Several
workplaces can access the services running at one single server host. How-
ever, for improved scalability and reliability, system topologies with multiple
servers are often desirable. Servers and clients require Windows 2000 as the
operating system.

Figure 17.6 shows an example of a topology consisting of two work-
place hosts, one combined workplace/server host and three server hosts. Four
controllers are connected to the servers via the controller network. Further
elements of the figure are explained below.

Application and Data Distribution

In addition to the AIP run-time infrastructure, the binary code [Dynamic
LinkLibrary (DLLs)] for all Object Types, Aspect Types, and AspectSystem-
Objects required must be distributed to all workplace and server machines. If
any Aspect System accesses a third-party application (e.g., a CAD system),

Architectural Support for Reuse: A Case Study in Industrial Automation 341

342 Building Reliable Component-Based Software Systems

Controller network

ControllerController ControllerController ControllerController

Server
host

ASMASM

SP A

SP C

Server
host

ASMASM

SP A

SP B

SP C

Server
host

ASMASM

SP A

SP B

SP C

ASMASM

SP C

SH C

WP

SH A

SH B

SH CSH C

WP

SH ASH A

SH BSH B

WP host

SH CSH C

WP

SH ASH A

SH BSH B

WP host

SH CSH C

WP

SH ASH A

SH BSH B

Station network

Service group A

Service group B

Service group C1

Service group C2

Service group A

Service group B

Service group C1

Service group C2

SP: service provider

SH: service handler

ASM: Afw Service Manager

WP: workplace

Server/
WP host

Figure 17.6 Example of system topology with multiple AfwServices and server groups.

TEAMFL
Y

Team-Fly®

the respective client application must also be installed locally at each work-
place host.

The core of the AIP is the Aspect Directory, a distributed database of
names, GUIDs, and administrative data for AspectObject and Aspect
instances. In essence, it manages associations of AspectObjects, Aspects, and
Structures. The Aspect Directory identifies Aspects and AspectObjects via
GUIDs. The Aspect Directory is realized as an Aspect Framework Service.

An instance of an AIP-based application together with its data is desig-
nated a system. Multiple systems can coexist on a host, each with its own
run-time data structures and persistent data. AspectObjects and Aspects in
different systems are completely independent, both conceptually and at run
time. Each system has its own Aspect Directory instance.

Data associated with an Aspect can be stored at two places: either in a
Blob (as defined earlier) in the Aspect Directory itself, together with the
other information about the Aspect, or locally at the workplace host. The
first method is recommended for small amounts of data, the latter is espe-
cially relevant if the Aspect System makes use of a third-party application
that uses the file system for persistent data storage (e.g., Microsoft Word). In
the case of local data storage, the problem arises that the data files must be
distributed to all workplace machines so that each workplace has a continu-
ous, consistent, and identical system. The AIP offers support for that purpose
through the file set distribution service explained below.

Services

As mentioned above, the AIP infrastructure offers various services (aspect
framework services) that AspectSystemObjects can use to achieve location
transparency and reliability. The services are controlled by the AfwService-
Manager, which is implemented as a Windows 2000 service, and part of the
AIP run time. Currently, the AIP offers the following services:

• Aspect Directory. This is the basic service of the platform. It realizes
the functionality of the AspectObject concept, the structures and
bidirectional references between Aspects and AspectObjects.

• Structure and name service. This service is closely connected to the
Aspect Directory. It permits querying the Aspect Directory not only
via COM references, but also via complex query strings describing
paths in single or multiple Structures in the system.

• File set distribution (FSD) service. The FSD service addresses the
issue of replicating locally stored and changed files, for example,

Architectural Support for Reuse: A Case Study in Industrial Automation 343

persistent data edited with third-party applications, to all workplaces
and servers in the system. FSD supports preload and on-demand
replication and checks for modifications, automatic registration of
DLLs, and replication priorities.

• OPC data access server. Permits access to ASOs using the OPC pro-
tocol [5]. More specifically, it provides access to those COM/OLE
properties of ASOs that are declared for export.

• System message service. This AfwService provides system-wide central
logging, storage, and viewing of multiple-language, prioritized mes-
sages generated by the AIP-based application.

Further AfwServices such as lock service and time services are available
but are not discussed here.

Service Groups

To improve fault tolerance, an AfwService can be distributed over multiple
service providers that execute at different server hosts but provide the same
functionality (see Figure 17.6). A set of mutually redundant providers is
named a Service Group. The providers in a Service Group are responsible for
replicating state information between them. A client finds a provider in a
number of ways: (1) via a broadcast to a Service Group, (2) via a list of pre-
ferred workplace server mappings, or (3) via an explicitly configured provider
for a relevant AspectObject. However, the clients are responsible for recog-
nizing failure of a provider and for application-transparent switchover to
another within the Service Group. Figure 17.6 shows three AfwServices, A,
B, and C, in four Service Groups. The Service Group for AfwService A con-
tains three providers; that for B contains two providers. For AfwService C
there are two Service Groups (C1 and C2) with two providers each. There-
fore, there is only simple redundancy for C, but the configuration of two
groups permits better load balancing.

Development View

The development view of an architecture presents how the elements of the
logical view are arranged in terms of actual programming artifacts. Because
programming-level information is not within the scope of our discussion of
the architecture of the AIP in this case study, this section only briefly dis-
cusses the different notions of components used in the AIP and how they are
mapped to software technology.

344 Building Reliable Component-Based Software Systems

The AIP architecture distinguishes between conceptual and tech-
nological components. The conceptual components�AspectObjects and
Aspects�are manipulated, that is, created, modified, deleted, inside an AIP-
based application itself. The conceptual components are used to build the
application in terms of concepts known to the user and system engineer, who
is not necessarily a software developer. A conceptual component is internally
basically a data structure containing references to other conceptual and techno-
logical components.

The technological components of the AIP are mostly the Aspect-
SystemObjects described above. As mentioned previously, an ASO is a
Microsoft COM [9, 10] component following certain additional, AIP-
specific conventions with regard to the COM interfaces that it must imple-
ment. Both Aspects and AfwServices are implemented by means of ASOs. In
addition to ASOs, the AIP contains a number of other COM components
that together implement the basic platform infrastructure. Hence, this infra-
structure can also be considered a valuable high-level business object for
reuse.

Microsoft�s wire protocol called DCOM is not used for communica-
tion between distributed parts of an AIP-based application. A proprietary,
socket-based protocol has been developed, because DCOM lacked features
that were needed (e.g., with respect to redundancy and fault tolerance).

The AIP-based infrastructure and the ASO programming conventions
offer APIs for use with Microsoft Visual C++ and for more restricted use
with Microsoft Visual Basic and scripting languages. The AIP is delivered
with add-ons for Microsoft Visual Studio for the creation of AspectSystem-
Objects, which generate a large part of the AIP-specific COM conventions
and thus help to deal with the complexity of the development of ASOs.

Process View

Client and server tasks (AfwServices) in an AIP-based application communi-
cate via sockets. The implementation of an ASO must permit multiple con-
current accesses to the data of an Aspect. As an alternative, the locking service
provides infrastructure support for this purpose. Concurrency issues on the
implementation level are mostly relevant with respect to the Object Manager
and are discussed in [11]. Because ASOs map to COM components and the
AIP infrastructure is also realized with COM components, the Microsoft
COM and Windows 2000 conventions with respect to operating system
processes and threads apply.

Architectural Support for Reuse: A Case Study in Industrial Automation 345

Developing a Domain-Specific Application

In [1], Jacobson et al. have introduced the distinction between an application
system and a component system. In essence, application systems are built
from reusable sets of components2 and are the result of a reuse-based busi-
ness. Reusable components are organized into component systems. This
emphasizes the fact that reusing a single component is usually insufficient.
Obtaining meaningful and useful behavior requires the reuse of a set of com-
ponents, which in turn may have several relationships with each other. For
example, in the AIP, a set of components pertaining to an Aspect System
must be reused to obtain the alarm handling functionality. In Chapter 7 of
their book, Jacobson et al. also suggest a four-layer representation of the
static organization of software. While the top layer represents application sys-
tems with possible variants, all other layers contain component systems
according to the definition above. The semantics of the layers is that systems
on the same layer may interact and systems across layers have static depen-
dencies. In Figure 17.7, we classify the AIP concepts introduced in the previ-
ous sections by showing their association with these four layers. To aid the
understanding of the figure, we briefly summarize the definitions of the lay-
ers given by Jacobson and his colleagues:

• The application system layer contains several application systems,
each of which offers a coherent set of use cases to some end users.
Application systems may interoperate. This can be realized directly
by means of their interfaces or indirectly by means of some services
from underlying component systems.

• The business-specific layer contains several component systems that
are specific to the business. In our case, the term business refers to the
OCS type of business and to the OCS business that is specific to a
vertical market domain. Typically, this layer offers components that
are used by the application engineer.

• The middleware layer contains several component systems that are
independent of particular types of business. Among others, this layer
can include GUI builders, interfaces to database management
systems, OCS-foreign COM/Object Linking and Embedding
(OLE) components (spreadsheets, etc.). Because this layer offers

346 Building Reliable Component-Based Software Systems

2. In their basic definition a component can be any work product that has been engineered
for reuse. This includes any type of model element, templates, documents, COM com-
ponents, and so forth.

components for the development of business-specific component
and application systems, we also consider the AIP development
environment as middleware.

• The system software layer contains the basic computing and network-
ing software such as operating systems and TCP/IP stacks. The soft-
ware is usually platform dependent, but the use of platform-
independent software is increasing. The boundaries between the
middleware and system software layer are indistinct.

Within the well-known phases of software development, the develop-
ment of an AIP-based application (such as that described in [12]) requires
the following activities:

1. Requirements and possibly even domain engineering. The require-
ments of a particular customer project must be captured, or, if an
application family is envisioned, the features and feature variability
of an entire application domain must be analyzed. The result is a
requirements specification with a set of required applications and
their features. This activity is not supported by the AIP. However, a
mapping of aspect systems to applications is expected.

Architectural Support for Reuse: A Case Study in Industrial Automation 347

System software

Business-specific

Middleware

Application system
variants

Windows 2000,
VC , VB, COM++

Aspect and Object Types (both provided by
AIP and harvested by individual domains)

AIP base infrastructure (run-time base services
and development environment)

Aspect Systems
Application systems

Figure 17.7 AIP concepts assigned to the architectural layers as defined by Jacobson
et al. [1].

2. Analysis and design. This includes definition of the different kinds
of AspectObjects (Object Types), that is, the selection of the
domain objects to be modeled, and definition of the various Aspect
Types and their association with Object Types. This activity is sup-
ported by business-specific component systems. These are reusable
generic Aspect and Object Types as provided by the AIP as well as
those Aspect and Object Types specific to a vertical market
domain. The latter assumes that such a specific component system
has been developed. This phase also includes design of the physical
topology and distribution of client/server applications and services.

3. Implementation. AspectObject structures must be defined and
AspectObjects within them instantiated. New Aspect Types (i.e.,
development of AspectSystemObjects in the form of COM com-
ponents) must be implemented. Inheritance settings must be
configured and, in general, the utilization of component and
application system variability determined for customizing appli-
cations (e.g., a foreseen variability point of an Aspect System,
which provides function plan programming according to the
IEC61131-3 standard [13] is the code section that allows pro-
gramming of a custom control logic). The implementation activ-
ity is supported by the AIP through business-specific component
systems in the form of reusable ASOs, entire application systems
(i.e., Aspect Systems) with defined variability points, and the
development environment.

Deployment and testing activities are not discussed here.

Reuse in AIP-Based Applications

To make explicit the various components of reuse, Figure 17.8 gives a more
detailed view of the different levels of reuse for AIP-based applications and
the supportive means (�enablers�) provided by the AIP. The dark gray parts
are reusable artifacts supplied with the AIP, whereas the light gray parts rep-
resent the reusable assets that are potentially harvested for certain application
domains. The different levels correspond with layers depicted in Figure 17.7.
The system and middleware layer have been collapsed into the base level
while the business-specific layer has been expanded to an Aspect and Object
Type level, respectively. The reuse levels discussed are, therefore, base, Aspect
Types, Object Types, and experience.

348 Building Reliable Component-Based Software Systems

A
rchitecturalSupportfor

R
euse:A

C
ase

Study
in

IndustrialA
utom

ation
349

W2k

AIP base infrastructure

AIP base ASOs
Project-specific

ASOs

AIP base Services Project-specific
Services

AIP built-in admin
Aspect Types

Project-specific
Aspect TypesAIP built-in

general-
purpose

Aspect Types

AIP built-in
admin Object

Types

Project-specific
Object Types

AIP built-in
general-

purpose Object
Types

Domain-
specific

Aspect Types

Domain-
specific

Object Types

Domain-specific templates and patterns
Project-specific templates

and patterns

E nablers

Engineering
guidelines and tools

AIP library
concept

AIP
export and import

OT inheritance

AIP
export and import

AT inheritance

COM

VC++

Configuration

3rd party
applications

Figure. 17.8 AIP reuse hierarchy.

The AIP reuse base level consists of the Windows 2000 operating sys-
tem, the AIP basic run-time infrastructure, and the AspectSystemObjects, a
collection of COM objects. All of the levels discussed earlier use these by
means of either configuration or low-level programming.

The Aspect Type level includes client Aspect types and Services. The
AIP is delivered with Aspect Types used for internal configuration and a set
of Aspect Types with more generic functionality. In addition, the users of the
platform can realize their own Aspect Types�in the figure, a two-level
hierarchy of domain-specific and product/customer/project-specific Aspect
Types is shown symbolically. Aspect Types can be developed via implemen-
tation of ASOs, thus reusing from the lower level, or they can be realized via
inheritance from existing Aspect Types. Of course, exchange of Aspect Types
between projects requires the export/import facilities provided by the AIP.
Both newly implemented and refined Aspect Types may access the base-level
infrastructure and will often encapsulate non-AIP applications such as CAD
or office applications.

The Object Type and Aspect Type levels are similar. The latter is on a
higher level, because Object Types are specified in terms of Aspect Types. In
addition to inheritance and export/import, the AIP provides a versioning
facility for libraries of Object Types.

Whereas the three lower levels are concerned with the building blocks,
the top level refers to the building of the final applications. AIP engineering
tools support the assembly of applications from these building blocks. Except
for certain examples, the know-how for the most effective and efficient
building of systems is not delivered with the AIP. It is expected that platform
users will codify their experience in domain- and project-specific design
guidelines.

Some Words of Caution

While the development of a platform seems an attractive means of support-
ing the architecture and technology issues of a successful reuse business, some
words about possible risks are justified:

• If an enterprise (and thus its business segments) merely relies on a
platform as the reuse �silver bullet� and does not have a reuse-driven
process or product-line practice with a top-down and planned
approach to reuse, the potential payoff is restricted to �low-level
reuse� (platform services and technology). An opportunistic reuse of
domain-specific components, that is, components that were created

350 Building Reliable Component-Based Software Systems

during application system development without the explicit engi-
neering for reuse, will not succeed.

• Requirements management (i.e., requirements elicitation, prioritiza-
tion, and trade-offs across products, domains, and organizational
units) is extremely complex.

• Bugs in a released version of platform components and delays in the
platform development can have a major financial impact on even
a large organization because it may have negative effects on many
lines of business simultaneously. However, with the incorporation
of COTS components such as operating systems or database man-
agement systems in their products, companies are already facing
similar risks today and have learned to cope with them.

Summary

After an introduction to industrial automation systems and the rationale
for building such systems in a platform fashion, this chapter presented the
software architecture of the Aspect Integrator Platform in the �4+1 view�
style [8]. The AIP is an object structuring and programming model, a run-
time infrastructure, an application development environment, and a set of
generic control system applications for building open control systems.
Because automation system platforms strive for reuse within and across ver-
tical market domains, we emphasized those aspects of the architecture that
encourage reuse.

Because the control system domain is inherently domain-object-
centric, the AIP introduces the notion of AspectObjects with Aspects as the
fundamental modeling constructs. AspectObjects and Aspects are used for
the information representation of domain objects and its partitioning into
crosscutting information concerns.

The discussion in this chapter showed that component-based reuse is
not primarily a software component technology issue but requires compo-
nent systems in the form of coherent sets of business objects and infrastruc-
ture objects. In the AIP these are the Object Types and Aspect Systems and
framework services, respectively. Only these higher level components, which
we called conceptual components, are useful artifacts for reuse. They are the
result of a large domain and not technology-related efforts. However, tech-
nological software components (in the AIP the AspectSystemObjects realized
as COM components) provide a valuable packaging entity for realizing and
deploying conceptual components.

Architectural Support for Reuse: A Case Study in Industrial Automation 351

In the AIP, the run-time infrastructure and its services, the conceptual
components (Aspect Types, Object Types), and Aspect Systems (application
systems with well-defined variability) are the most valuable assets for reuse.
However, with the exception of the run-time infrastructure and some generic
Object and Aspect Types, the reuse business requires substantial domain
effort; that is, investments in the various business segments is required to har-
vest conceptual component libraries and to run a reuse-oriented process with
appropriate tool support. This is why ABB has launched several activities to
coordinate and support domain-specific reuse efforts on the basis of AIP.

References

[1] Jacobson, I., M. L. Griss, and P. Jonsson, Software Reuse, Architecture, Process and
Organization for Business Success, Reading, MA: Addison-Wesley and ACM Press, 1997.

[2] Bass, L., P. Clements, and R. Kazman, Software Architecture in Practice, Reading, MA:
Addison-Wesley, 1998.

[3] Biggerstaff, T. J., �A Perspective of Generative Reuse,� Annals of Software Engineering,
Vol. 5, 1998, pp. 169�226.

[4] IEC, �Industrial Systems, Installations and Equipment and Industrial Products�Struc-
turing Principles and Reference Designations, Part 1: Basic Rules,� International Stan-
dard IEC 1346-1, International Electrotechnical Commission, 1996.

[5] OPC, �OLE for Process Control,� Report v1.0, OPC Standards Collection, OPC
Foundation, 1998.

[6] Kiczalez, G., et al., �Aspect-Oriented Programming,� ACM Computing Surveys, Vol. 28,
1996, p. 154.

[7] Andersson, J., �Aspect Integrator Platform Architecture,� Internal Technical Report
3BSE012770, ABB Automation, Västerås, Sweden, 2001.

[8] Kruchten, P., �The 4+1 View Model of Architecture,� IEEE Software, Vol. 12, No. 6,
1995, pp. 42�50.

[9] Microsoft, �The Component Object Model Specification,� Report v0.99, Microsoft
Standards, Redmond, WA: Microsoft, 1996.

[10] Box, D., Essential COM, Reading, MA: Addison-Wesley, 1998.

[11] Hollender, M., �Aspect Integrator Platform Programmer�s Guide,� Internal Technical
Report 3BSE023959 R0101/-2, ABB Automation, Västerås, Sweden, 2001.

[12] Naedele, M., C. Vetter, and T. Werner, �A Framework for the Management of Virtual
Enterprises,� Proc. 5th World Multiconference on Systemics, Cybernetics and Informat-
ics�SCI 2001, Orlando, FL, 2001.

352 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[13] IEC, �Programmable Controllers, Part 3, Programming Languages,� Report IEC
1131-3, Geneva: IEC, 1992.

Architectural Support for Reuse: A Case Study in Industrial Automation 353

.

18
A Framework for Integrating Business
Applications

Erik Gyllenswärd and Mladen Kap

Introduction

A challenge to the software industry today is to encourage reuse of not only
components but also complete applications and information. This chapter
describes an object model and a framework providing a solution to this prob-
lem by supporting component-based system development, application inte-
gration, and the ability to organize and structure all information in a
company or organization in a uniform and simple manner, thus making it
readily available to different categories of users. The framework is imple-
mented in the product Information Organizer.

The basic concept in implementing Information Organizer is to exploit
the reuse approach as far as possible and to follow standards and de facto
standards, which are defined with respect to both concept and implementa-
tion. A number of component-based patterns have been implemented to
support the development of new applications such as patterns for document
handling, workflow functionality, and general database integration. Some of
these patterns are described in more detail, focusing on how Information
Organizer and its concepts have been used in the development.

355

Motivation

All information of importance, irrespective of its source, is to be made avail-
able to different categories of users, both in the workshop and in the office.
This is to ensure that all concerned have access to correct information to
enable them to perform their work most effectively. An employee in a manu-
facturing industry will find assembled together all information regarding, for
example, a pump: drawings, specification, installation instructions, manuals,
operating instructions, invoices, and production logs. The same applies with
respect to an employee in a governmental office with, for example, an issue
management system. All information relating to an issue must be easily
accessible, and the employee should be able to present and obtain informa-
tion from different issue management systems in a uniform manner.

Companies frequently develop various information systems at different
periods in company history that contain information that, in pursuit of effi-
ciency, must be reused. Rewriting all existing systems to make the informa-
tion uniformly available is not likely to be practically or economically
acceptable. Another method for accessing and interrelating associated infor-
mation in different systems is called for�a common specification model,
regardless of the origin of the information, and reuse of existing application-
specific tools to access and manipulate the information in a familiar manner,
as shown in Figure 18.1. A concept and support for integrating existing infor-
mation systems in a simple manner and on the appropriate level is required.
Satisfying these requirements and providing the possibility of building new
functionality using existing components and applications makes possible a
greater degree of reuse than can be achieved using existing component-based
technologies.

A number of software vendors have recognized this. For example,
Microsoft has made available the Active Directory [1] as a tool for sharing
information between different applications. The term directory-enabled appli-
cations is most often used to describe an application built in such a way that it
can make use of information available via the Active Directory. Almost all
new applications developed by Microsoft (for example, Exchange 2000)
are directory-enabled. The ABB concepts of Aspects and AspectObjects,
described in Chapter 17, are other examples of this approach and are mainly
intended to be used in the automation industry, whereas Information
Organizer is mainly intended to be used in the office automation domain.
The two concepts are quite similar due to the fact that they both are based on
the same standard, IEC1346 [2] but their implementations are completely
different.

356 Building Reliable Component-Based Software Systems

Compfab [3], the producer of Information Organizer, has further
developed the concept of directory-enabled applications by adding a number
of important properties defined in standards such as IEC1346, OMG [4, 5],
and research projects such as IT4 [6]. The two most important of these prop-
erties are the possibility of holding together all aspects belonging to an
object, regardless of which application provides the feature, and a powerful
relation model that makes it possible to create a high-level information
model covering a number of applications (see the �BOM� section in this
chapter). The relation model makes it possible for an object to be included in
many structures at the same time, for example, an organizational structure
and a functional structure, and for structures to be removed from a system or
for new structures to be added at any time during the lifetime of the system.
The relation model is largely obtained from the OMG relation model but is
implemented on top of the Active Directory. The concept has been imple-
mented in a framework with associated tools for simple navigation and pres-
entation of structures and objects.

A Framework for Integrating Business Applications 357

Presentation layer

Data/application
layer

Integration layer

System-wide information model

Business explorer

Application-
specific user
interface

Issue management system Document management system CAD system

Figure 18.1 Information Organizer, an architecture for application integration.

The architecture has been adapted to exploit the functionality supplied
with Microsoft Windows 2000 as exemplified by the use of the Active Direc-
tory and a close integration with the development environment (see the
�Practical Experience� section in this chapter). Information Organizer makes
reuse possible in two different ways. First, in the more traditional way, it
functions as a framework for building component-based applications with
the possible advantage of a shortened development time. Second, it serves as
a framework for integration and presentation of existing applications by
offering a model and a number of tools.

Information Organizer: Support for Building Integrated Systems

The architecture of Information Organizer is a three-layer architecture, con-
sisting of a user interface layer, a business layer, and a data layer. Software
components mainly from Microsoft are used throughout the implementation.

Information Organizer Basic Parts

Information Organizer consists of two basic parts: a BOM and a BOF.
A BOM can represent in a uniform way different entities of importance

to the user. BOM defines five basic concepts: objects, aspects, roles, relations,
and views. Objects represent quite large-grained entities and can be described
as empty containers; business logic is added in the form of aspects. An object
can perform a number of roles. One or more aspects implement a role. A
relation connects roles in two different objects. The concept of views pro-
vides means to restrict access to a system and all its information.

BOM is implemented with the help of the Microsoft Active Directory
and thus builds on the concept of directory-enabled applications. Features
such as a powerful relation model and a concept to keep all parts of an object
together have been added to this to create a powerful model for integration
and reuse. BOM is based on the COM technology defined by Microsoft.

A BOF is provided as assistance to application programmers in build-
ing components and applications and integrating existing applications.
BOF implements the BOM concept, thus providing an implementation of
objects, aspects, relations, views, and roles. It also contains tools for creating
instances of these, finding them in a distributed environment and commu-
nicating with them. BOF can be described as a toolbox with a number of
tools and software components common to different applications for effec-
tive reuse.

358 Building Reliable Component-Based Software Systems

The primary user interface for a user of the system is a standard
browser, Microsoft Internet Explorer. The system is largely based on the con-
cept of thin clients, even if fat clients are used with respect to certain func-
tions and applications (see Figure 18.2). An advantage with thin clients is
that no code need be installed and maintained on the client machine. The
system handles integration of legacy applications built without the Internet
being taken into consideration. These applications must then be installed in
each client machine. The level of integration is discussed later in the section
on modeling and integration. The system also provides support for access to
information via wireless application protocol (WAP).

BOM

The BOM provides support for the presentation and arrangement of all the
information in a system. The basic concepts of BOM introduced earlier are
explained next:

• Objects. BOM objects represent complex real entities that are of
interest in one or several applications. Examples of such are organiza-
tions, departments, issues, steps in a workflow, pumps, and valves. A
BOM object is most often an object with little functionality imple-
mented. A BOM object offers a uniform way to assemble related
information that is most often defined in different applications. For

A Framework for Integrating Business Applications 359

Application Document Database

BOF

BOM

WAPIntranetInternet

Figure 18.2 Uniform presentation of heterogeneous information systems.

an issue, examples of related information can include mail, docu-
ments, reports, notes, persons dealing with issues, and video
sequences.

• Aspects. Instead of attempting to permit an object itself to represent
all of its behavior, part of its behavior is delegated to different
aspects. This means that new aspects can be added to the object at
any time during its entire life without this necessarily affecting other
aspects or the object itself. BOM objects and aspects offer the possi-
bility of working with components of applications in a simple man-
ner due to the fact that new business logic can be added to the object
when the object is ready for a new role. Aspects are typed and added
to objects as instances. Aspects can either contain all business logic
themselves or be used to associate existing applications or parts of
existing applications with an object and thereby facilitate their reuse.
An aspect used to associate an existing application has no own busi-
ness logic and can therefore only be an instance of a generic aspect
type. Examples of aspects include process dialogues (to present and
access, for example, a pump), Excel sheets, PowerPoint presenta-
tions, CAD drawings, and invoices.

• Relations. Objects seldom exist independently but are related to other
objects to provide certain functionality. BOM offers a relation model
with both generic relations and typed relations, that is, relations with
a strong semantic significance. New relation types can be defined in
the system during its service life. Many relations can be associated
with an object. The relations are used to build both hierarchic struc-
tures and net structures. New relation instances can be associated
with an object at any time. This means that new relations can be
associated with an object even if the object cannot utilize them,
because the object is not aware of the relation and not implemented
in such a way that the relation can be used. These relations can, how-
ever, be useful because an external user understands them and can
interpret their semantic significance. An �external user� can be
another application or person browsing information with a graphic
tool. Relations and aspects often occur in pairs because aspects pro-
vide the semantics that can interpret and utilize the relation. By
extracting the relations and locating them outside the object, an
architecture is obtained that is adaptable in a changing world as new
types of relation and instances are added to the system, without
affecting the existing functionality. However, this introduces a risk

360 Building Reliable Component-Based Software Systems

because relations that are expected to be present can be removed
without the object being informed.

• Roles. A role defines a certain function that can be offered by an
object. The function is provided as a number of interfaces. One or
more aspects implement a role. The term role is similar to that of
interface in a component model such as Microsoft COM. A relation
type associates two roles. A generic relation can associate any type of
object because all objects are of the generic type.

• Views. Views make possible the arrangement of objects, aspects, and
relations to limit the extent to which they are accessible to different
categories of users. This is necessary, partly because certain informa-
tion is classified but also to reduce the volume of information pre-
sented to make it easier for the user to understand. Initially, a system
most often contains a number of predefined views. A selected object
will remain in focus when the view is changed. This characteristic
can be used to navigate between different views. Views can be added
in the same dynamic manner as objects, aspects, and relations.

We can illustrate the relationship between the basic concepts specified
above by an example. Figure 18.3 shows an object representing an issue in an
issue management system. An issue management system can have the follow-
ing views: a personal view, which shows all the persons dealing with issues
and the issues for which they are responsible; a process view, which shows an
existing workflow and where in a workflow an issue is located; and an organ-
izational view, which shows the organization and all its employees. In the
personal view, issue A and a relation to a user of that issue are shown. In the
personal view, the object has also an aspect A-Note, which indicates that per-
sonal notes can be added to an issue and that these are only visible in the per-
sonal view. One role can be the ability to participate in a workflow. To be
able to fulfill that role, the issue has been allocated an aspect, A-Workflow,
and a relation that indicates where in the workflow concerned the issue is
located. When the issue is processed, this relation will move to the next step.
The aspect A-Document is visible in both the organizational view and the
process view. A user of the system who is interested in where in the workflow
an issue is located can either proceed via the process view and browse forward
to the issue in which he is interested or enter via another view (e.g., the per-
sonal view), find the object, select the object, and then change view. The
issue will then be in focus but visible in the process view with the relevant
relations and aspects. The organizational view shows how the organization is

A Framework for Integrating Business Applications 361

structured and, for each organizational unit such as a department, the issues
associated with the department concerned.

BOF

The BOF provides a set of tools for building business objects. Here are some
of these tools and functions:

• An implementation of a generic aspect type, object type, and rela-
tion type.

• A configuration environment with tools and models for the simple
creation of new instances of existing types and the easy configura-
tion of new types. New views and roles can also be defined.

• A development environment that makes possible the programmatic
addition of new components in the form of objects and aspects. The
development environment of BOF is completely integrated with
Microsoft Visual Studio, which permits the programming of objects
and aspects, simply and in an optional language. The BOF also
makes available an API for creating new relations and views.

362 Building Reliable Component-Based Software Systems

A

Process view

Personal
view

Organizational
view

Issue A

A-Workflow BO A

BO

Personal view

Process view

Organizational view

A-

A

A A
BO: business object instance
A: aspect instance

A-Document

BO

A Note
BO

Figure 18.3 An issue object and its views, aspects, and relations.

TEAMFL
Y

Team-Fly®

• A run-time environment that makes it possible to execute compo-
nents locally on a client machine or centrally on one or more server
machines. The BOF also provides services for finding and calling
components over both the Internet and intranets.

Modeling and Integration

Information Organizer provides a framework not only for building with
components but also for integrating external systems and applications.
Aspects are used to associate information and business logic originating from
these different systems and applications with an object. Objects, views, and
relations are used to model the activity in a way that can be said to be system
and application independent. It is important to stress that this model is a
high-level model that often spans several applications and systems and is
independent of the manner in which the different external systems model
their part of the entire activity.

The aspects represent information that is included in the integrated
system. The aspects can integrate information on different levels. At least
three levels of integration can be identified: application level, business logic
level, and data level. On the application level, the application does not pro-
vide an API to its internal parts. When the application is referred to from an
aspect, the application will be activated and the user will enter at the top level
and is required to navigate to that part of the application at which the object
concerned is located. Consider an external database application such as a
document and issue management system. By using Information Organizer it
is possible to create views and define structures that are not present in the
integrated system. Figure 18.3 shows such an example: a personal view show-
ing all issues per individual. If the system is integrated on the application
level, the complete external application will be invoked when one issue is to
be studied and the user must use application tools to navigate to the correct
issue.

To be able to integrate on the level of business logic, the application
must be componentized or provide an API permitting access to its different
parts. That is, when called, the application could itself receive a number of
input parameters that describe the part in which the user is actually interested
and, with the help of this information, navigate to the part concerned. The
input parameters very much depend on the application to be integrated and
are often stored in the aspect instance. The aspect can be seen as a gateway
between the framework and the integrated application. The complexity of the

A Framework for Integrating Business Applications 363

aspect implementation very much depends on the level of integration but also
on which kind of application is to be integrated. If the application is COM
based, it is very likely to be easier because the framework itself is COM based.
A well-integrated application must provide all methods required by the BOF
interface to manipulate the data that the application�s own dialogues use (i.e.,
its own business logic).

Integration at the data level means that data is accessed directly without
invoking the business logic (code), which the integrated system itself makes
available for the presentation and processing of data. In many applications,
this is an appropriate level of integration. It can be used to present informa-
tion from many different systems but to change data, system dialogues
already available should be used. The relational database connector is an
example of a number of cooperating components providing support for the
integration of applications on this level. By using the connector, information
stored in a relational database can be easily integrated. If data is stored in
some other data source, a specific connector for that particular data source
must be implemented. In practice, this level has been found to be very useful
because a rapid integration can be performed and BOF features such as secu-
rity can be applied to each row in the database because they are represented
as business objects.

Integration at the data level is most often a suitable level of ambition at
which to begin. The level of ambition can be raised subsequently and inte-
gration can then be performed on the business logic level.

Structure of Aspects and Objects

In BOF, both aspects and objects are components with the same structure. A
BOF object can in most cases be characterized as a relatively empty container
and new functionality is added by the implementation of new aspects and
their attachment to an instance of a generic object type. Much of the follow-
ing discussion will therefore be focused on aspects, even if most of what can
be said about aspects also applies to objects.

Both objects and aspects have a three-layered implementation architec-
ture, a user interface part, a logic part, and a data part as shown in Figure
18.4. The user interface consists of a number of services. As a default, the
BOF makes available a number of services that have more of a management
character. Figure 18.4 shows examples of these services, the deletion of a
component, the presentation of properties, and the definition of new serv-
ices. New user-defined services such as a Web camera and a Word document

364 Building Reliable Component-Based Software Systems

describing the Web camera can be easily attached as in this figure. They are
presented in the menu with the text Camera and Help. The services can be
activated by selection from the menu.

To this point, we have discussed the left-hand side of Figure 18.4. A
number of default services and new services, very loosely coupled to the
aspect, can be attached to a generic aspect type. Neither the Web camera nor
the Word document is aware that it is attached to an aspect. The existing
implementation is sufficient in this situation. If more logic is to be associated
with a component, or changes are to be made in the existing logic, an ActiveX
component with a number of predefined interfaces should be implemented.
For an aspect, the COM interface called IbofAspect must be implemented.
This interface defines methods that enable the aspect to play an active role in
the BOF. Examples of relevant methods include AfterCreate, Initialize,
BeforeDelete, OnActivate, OnChange, OnDeactivate, and GetName. The
framework will call these methods during the lifetime of an aspect.

A programmer can add new interfaces with user-defined business logic.
These methods thus define user-defined business logic. MyService (presented
in the menu of Figure 18.4) is an example of such method.

Each component has its data storage in Active Directory, which can be
accessed via the interface IbofIADS. The BOF allocates data in the Active
Directory for each component and saves important information such as
name and the date of the component creation. The BOF provides binary
data storage in the Active Directory that enables a programmer to store her
own data easily in the Active Directory. Relevant data can also be saved in
some other data storage as indicated in Figure 18.4. Word documents, for
example, will naturally save their data in a file and not in the Active
Directory.

Up to now, new services have been added to an instance by using dia-
logues provided by the service Services. If services are to be added to a type,
the IbofServiceProvider interface must be implemented. A service can either
be implemented as a thin, fat, or ultra-thin client. A fat client is often imple-
mented in Visual Basic and communicates over an intranet. A thin client is
implemented with technologies suitable for Intranet. An ultra-thin client is a
WAP client.

Patterns Constructed Using the BOF

A pattern is a recurring solution to a recurring problem (see Chapter 1 and
[7, 8]). An implementation of a pattern consists most often of a number of

A Framework for Integrating Business Applications 365

366
Building

Reliable
Com

ponent-Based
Softw

are
System

s

DS

BO

UI UI

Aspect

UI

Business

Data File

Word

UI

File

Web-
Cam

UI

Relations
Properties

Camera
Help

Change
Services

Delete

DB
fileDS

BO

UI UI

Aspect

UIUI

Business

Data File

Note-
pad

UI

dll

Relations
Properties
MyService

Notepad
Change
Services

Delete

DS: Data storage
UI: User interface
BO: Business object
Dll: Dynamic linked library

Figure 18.4 Components have a three-layered implementation architecture.

interacting components in the form of objects and aspects that are connected
by a number of relations. A number of patterns have been identified and
implemented with the help of BOF and used in practice in developing a
document and issue management system [3]:

• Business process support (BPS) is an example of a pattern that pro-
vides general support in building workflow applications. A feature
of BPS, thanks to its component-based implementation, is its abil-
ity to provide workflow functionality that extends beyond applica-
tion limits.

• Document management support (DMS) provides support for the
handling of and generation of documents over the Internet. It pro-
vides the ability to create documents from different templates.
When a document is generated from a template, information is
obtained from objects with which the document is associated. For
example, when the object is an issue, the issue text and the person
dealing with the issue can be obtained and included in the docu-
ment. If the object is a motorcar, the chassis number and registra-
tion number can be obtained if available in the system. With this
function, information need only be inserted at one place in the
system. The system supports the locking of a document by the
user who is currently working with the document. DMS is inte-
grated with an archive system so that documents can be easily filed.
DMS is componentized so that its functionality can be coupled to
any other object, for example, documents related to an issue or a
pump.

• Relational database connector (RDC) provides a function by means
of which, with the assistance of XML, external relational databases
can be defined and imported. To import a database means that all
the database objects are represented in Information Organizer but
the data itself remains in the database. The RDC also provides sup-
port for building dialogues, which can present information from
one or more data sources, and support for simple navigation
between different lines in a database. All such navigation is per-
formed with the help of URLs. In an imported database, all rows
are represented as BOF objects, which in turn means that they
acquire all of the properties that characterize a BOF object, such as
strong security and the ability to maintain the cohesion of all
aspects of an object.

A Framework for Integrating Business Applications 367

BPS

The BPS pattern implements support for a general workflow functionality,
partly as support for configuring a workflow and partly as run-time support
that enables any object to follow a workflow. A possible way to model an
issue was described earlier when BOM was discussed. In the following, using
this example, the components required to create a workflow and to permit an
issue to follow the workflow concerned are considered. The following com-
ponent types are defined:

• BpsProcessor aspect type. Any object can become a step in a workflow
by creating an instance of this aspect type and attaching it to the
object. A number of dialogues have been defined to create user-
defined actions. These actions, together with the existing system-
defined actions, define what is to be performed in each step.

• BpsProcessFlow relation type. A workflow is built by connecting two
objects with a relation of the type BpsProcessFlow.

• BpsTarget aspect type. If an instance of this aspect type is attached to
an object, the object can participate in a workflow. This means that
all types of objects can participate in a workflow even if they were
not initially designed to do so. In addition to attaching the aspect to
the object, the object must be associated with a step in a workflow
and a new relation type is required for this.

• BpsSession relation type. This relation type associates an object in a
workflow and defines where in the workflow the object is located.

• BpsProcess object type. This defines the start node for a workflow.
Two aspects are attached to this object, one of BpsFactory type and
one of BpsRecycler type. A relation of the BpsProcessEntry type
points out the first step and a relation of the BpsProcessExit type
points out the last step.

Figure 18.5 shows a simple workflow consisting of three steps. The
workflow is reached primarily via the process view. Two users are involved
with the system, each being responsible for one issue. Issue A is in step 2 and
Issue B is in step 3 of the workflow. When the processing of an object in one
step is completed, the object is moved to the next step. The activities in each
step and the transport from one step to the next can be initiated by a graphic
user dialogue or programmatically, by another object/aspect or application in
the system. If BPS is combined with RDS, it is easy to integrate external

368 Building Reliable Component-Based Software Systems

A Framework for Integrating Business Applications 369

1

2

3

Issue B

Process
view

User 2

A

A

A

Personal
view

A

BOA

BOA BO

A

A

Issue A
A

BO

A

BO

BO BO

A

BO

Template
actions

Template
actions

Template
actions

Performed
actions

Performed
actions

User 1

BO: instances of different business object types
A: instances of different aspect types

Step

Step

Step

Figure 18.5 Using BOF components to build a workflow application.

database systems and represent them as BOF objects. Thus workflow func-
tionality can be obtained for systems without this functionality and the inter-
action in the same workflow of objects originating in different systems can be
obtained. This demonstrates the strength of the component-based approach.

Practical Experience

The following describes some of the lessons learned from practical experience
gained from the development of Information Organizer and the document
and issue management system Arch Issue [3]. The overall and certainly the
most important lesson learned is that CBD can be highly profitable. For
organizations with limited resources undertaking relatively ambitious devel-
opment projects, it is the only viable�and therefore practically manda-
tory�approach. With a very limited investment, Compfab was able to build
a functionally comprehensive framework for its intended purpose that, in
addition, is secure, scalable, and reliable. This would not have been possible
without total commitment to the reuse of not only platform components,
but also architectural and design patterns, as well as �best practices� known
for the platform [9�17]. Examples of platform components are the Microsoft
Active Directory, Internet Information Server, and Internet Explorer. The
decision to use the Active Directory was successful because the Active Direc-
tory is scalable up to millions of objects, is fully integrated with Microsoft
authority and security, has redundancy, has a query language, is well tested,
and is the heart of every Microsoft installation.

Microsoft Active Document Technology is one example of the many
important design patterns available for use. It not only provides a run-time
and design-time environment but also a large number of components and
knowledge of how to build user interface components. The word �build� is
used to emphasize that a significant part of the development time was spent
in learning the full capabilities and impacts of existing technologies and com-
ponents on functionality and features targeted in the resulting framework.
Development of custom functions for the framework actually occupied a
smaller part of the total project time. Our impression is that this is one of the
main reasons why verbal commitments to CBD often fall short in practice.

Experience from the application of the framework to real-world prob-
lems only reinforced most of the conclusions arrived at from experience from
the development of the framework itself. In general, integrating modern,
well-componentized applications is easy and straightforward, providing the
application is designed to run on the same platform at which the framework

370 Building Reliable Component-Based Software Systems

is targeted (or provides �proxies� for accessing it when running on other plat-
forms).

Integrating monolithic applications with poor or no defined applica-
tion programming interfaces is difficult and cumbersome�sometimes to
such a degree that the original motivation for integrating the application
becomes highly questionable. For example, if an order management applica-
tion encapsulates orders, customers, responsible personnel, and so on, into
well-defined components, and another invoice management application that
is monolithic and provides access to its logical parts only through the pro-
prietary user interface, there is no way to automate management of relations
between logically related objects in these two applications, even at the user
interface level.

Unfortunately, many database-centered applications that exist today
are precisely of that kind. Fortunately, many of these applications have very
little business logic and provide some kind of standard mechanism for access-
ing data directly (usually SQL). From the integration perspective, a viable
solution is to provide a generic front-end �connector� that understands the
target application�s data (relational database concepts in this case) and pro-
vides components capable of encapsulating data from external databases for
management, navigation, access, and manipulation purposes.

Because such a connector has no business logic whatsoever, it is unable
to replace the original application entirely, but it can usually provide 60%
to 80% of the original application functionality without any extension, in
our experience. It also does not make the target application any more
component-based internally, but it makes it component-based externally
(providing the application is of singleton character). Because it is generic, it is
also highly reusable because it can solve integration problems for many target
applications with similar problems. Two additional benefits are that connec-
tor components, which are fully integrated into the framework, offer a range
of functions much more extensive than that of the original application, and
that they represent a solid base for beginning the migration of the original
application to a truly component-based architecture, should the organization
depending on the application decide to do so.

Summary

Reuse by integration of applications and information and reuse by CBD are
two equally important ways to improve software development. Information
Organizer emphasizes this and provides an object model, a framework, and a

A Framework for Integrating Business Applications 371

number of components to encourage the building of integrated solutions. By
taking the concept of directory-enabled applications defined by Microsoft
further by adding a number of important properties defined in standards
such as IEC1346 (defining the concept of aspects, which relates all relevant
information to an object), OMG (defining a powerful relation model), and
IT4 (defining a way to build integrated industrial applications), a strong and
powerful environment based on a standard concept to build integrated sys-
tems has been achieved.

The total commitment to reuse not only platform components (mainly
from Windows 2000), but also architectural and design patterns and known
�best practices� for the platform has been vital to the success of building not
only the product itself (Information Organizer) but also components and
applications based on Information Organizer.

References

[1] King, R. R., Mastering Active Directory, Network Press, San Francisco, CA, Sybex,
1999.

[2] IEC, Industrial Systems, Installations and Equipment and Industrial Products�Struc-
turing Principles and Reference Designations, Part1: Basic Rules,� International Stan-
dard IEC 1346-1, International Electrotechnical Commission, 1996.

[3] Compfab, Västerås, Sweden, http://www.compfab.se.

[4] OMG, �The Common Object Request Broker: Architecture And Specification,�
Report v2.4, OMG Standards Collection, OMG, 2000, http://omg.org.

[5] OMG, �CORBA Services: Common Object Services Specification,� Object Manage-
ment Group, 1997, http://omg.org.

[6] ABB, Knowledge-Based Real-Time Control Systems IT4 Project: Phase II, Studentlittera-
tur, Västerås, Sweden, 1991.

[7] Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software, Read-
ing, MA: Addison-Wesley, 1995.

[8] Bushmann, F., et al., Pattern-Oriented Software Architecture�A System of Patterns, New
York: John Wiley & Sons, 1996.

[9] Microsoft, �DCOM Technical Overview,� http://msdn.microsoft.com.

[10] Microsoft, �DCOM: A Business Overview,� http://msdn.microsoft.com.

[11] Microsoft, �Microsoft Component Services: A Technology Overview,� http://msdn
.microsoft.com.

372 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

[12] Microsoft, �Integrating Web and Client/Server Computing with Microsoft Windows
DNA,� http://msdn.microsoft.com.

[13] Microsoft, �Reengineering Application Development,� http://msdn.microsoft.com.

[14] Stearns, D., �Migrating Existing Information Systems to Component Architectures,�
MSDN Magazine, Vol. 4, 1996.

[15] Booch, G., The Visual Modeling of Software Architecture for the Enterprise, Rational Soft-
ware Corporation, 1998, http://www.rational.com.

[16] Rauch, S., �Windows DNA: Building Windows Applications for the Internet Age,�
http://msdn.microsoft.com.

[17] Ambler, S., �A Realistic Look at Object-Oriented Reuse,� Software Development Maga-
zine, Vol. 1, 1998.

A Framework for Integrating Business Applications 373

.

19
Industrial Experience with Dassault
Système Component Model

Jacky Estublier, Jean-Marie Favre, and Rémy Sanlaville

Introduction

Dassault Systèmes (DS) is one of the major European software developers. Its
main software product, CATIA, alone has more than 5 million lines of code
and is the world leader for CAD/CAM with more than 19,000 clients and
180,000 workplaces. CATIA version 5 is a very interesting case study
because, on the one hand, 1,000 DS engineers are developing software, with
a commercial release every 4 months, and on the other hand, many CATIA
customers around the world are also developing large amounts of code for
extending and adapting CATIA to their specific needs.

CATIA has been purchased by companies with important know-how
in their respective domains, Boeing, for example, which knows how to build
aircraft. DS customers must be capable of adapting CATIA and integrating
their own functions into existing DS applications. These extensions may
constitute a significant part of the software; Boeing alone is said to have
developed more lines for CATIA adaptation and extension of CATIA than
DS has itself.

Some customers act as partners and use their know-how to use, build,
and sell applications based on CATIA. Whatever role a company plays with

375

respect to DS, partner or client, each company considers its own CATIA
extensions a fundamental part of its assets. The source code of CATIA appli-
cations and of customer extensions must not be made accessible to others.
Furthermore, due to the large amount of code involved, customer extensions
should not affect the stability of CATIA. Conversely, changes in CATIA
should have minimal impacts on customer code.

In the mid-1990�s, and even now, no technology was capable of sup-
porting a software product development with this adaptability requirement.
After studying early versions of COM and CORBA, DS decided to define
and implement its own component model, called the Object Modeler (OM).

The rationale behind the introduction of component technology at DS
is interesting. The DS objective was not primarily to sell isolated OM com-
ponents, nor to sell the OM component framework, nor to make their com-
ponent model a standard. The primary objective was to find a way to develop
its software under the best conditions, and to provide its customers with
powerful adaptability facilities. DS now sells a family of highly customizable
applications. The customers are not informed of the topology of the architec-
ture of these applications; the applications are extended by extending existing
components or adding new components.

The OM Component Model

The OM component model evolved significantly over a number of years,
often under pressure from the developer, both for functional and technical
reasons. We present here a simplified description of DS� component model,
which for years has supported all DS software development, including
CATIA Version 5.

From an external point of view, the OM is quite similar to COM [1].
However it also provides a rich set of original features, both at the conceptual
and implementation levels. This chapter focuses on the component model
rather than on the component infrastructure (see Chapter 4). We emphasize
the concepts rather than their technical realization and execution. This does
not mean that technical aspects and associated tools are not important. On
the contrary, they are of fundamental importance and the success of DS is
also due to the constant attention given to performance and technical issues.

The component model is presented below, using a structure similar to
the one used in Chapter 4: Components are presented first from an external
point of view. Then we describe how components are linked to build an

376 Building Reliable Component-Based Software Systems

application system. Finally, the concepts provided to implement a compo-
nent from elementary pieces of code are presented.

Defining an OM Component

From an external point of view OM components provide functionality
through a set of interfaces as shown in Figure 19.1(a). An interface is a set of
method signatures. A component may support more than one interface, just
as in most other component models. The interfaces play the role of ports as
described in Chapter 4.

Using OM Components to Build Applications

In practice, there is no boundary between traditional development and
CBD. DS applications are hybrids and contain OM components and tradi-
tional software entities. In particular, an OM component can be called by
another component, by a C++ class, by a Java class, by a Visual Basic script,
and so forth.

As illustrated in Figure 19.1(b), OM components can only be manipu-
lated through the interfaces they provide. The client does not have knowledge
of the component implementation. This independence is very important
because it makes possible the changing of the implementation of a compo-
nent used in an application without otherwise impacting the application.

As in COM, the connections between OM components, or between
traditional entities and OM components, are deeply buried in the code.
Typically, when a component, or another software entity, wants to use a
component, it calls the QueryInterface method, which returns a pointer to the
requested interface; this is very similar to COM. In other words, while a
component explicitly defines the interface it provides, it does not make
explicit the interfaces it requires. For example, there is no concept similar to

Industrial Experience with Dassault Système Component Model 377

(a)

Interfaces

(b)

Other software entities
OM components

Dependencies

Figure 19.1 (a) External view of OM components and (b) heterogeneous application.

CCM receptacle [2]. There is no concept of connections or connectors
declared outside the code.

As a result, there is no clear picture of the architecture of an application
built from OM components. DS follows a component-programming approach:
in which applications are built by programmers using existing components.
Connecting components is seen as a programming task. This contrasts with
the component-assembly approach exemplified by JavaBeans [3] or CCM [2]
in which new applications can be built by connecting existing components
either by means of a high-level declarative language or interactively.

The lack of support for explicit connections and assembly facilities is
mainly due to the fact that DS does not aim to sell components, but extensi-
ble applications. The problem is not to provide clients with the means to
assemble their own applications, but to extend an application provided with
its own components.

Implementing OM Components

Most features of the OM component model are therefore dedicated to easing
the implementation and extension of components. As shown below, the OM
model provides more facilities at this level than other component models
described in Chapter 4. The following is a simplified description of the DS
component model.

Implementations

Although many component models assume that a single team within a single
organization develops a component, DS components are typically developed
by different teams in different companies. A component cannot therefore be
implemented as a single piece of code. Components are in fact a collection of
elementary pieces of code, called implementations, each one implementing a
set of interfaces as illustrated in Figure 19.2.

Extensions

There are two kinds of implementations: base implementations and extensions.
A component is defined by a base implementation to which different exten-
sions can be attached by an extension relation (not shown in the figure). The
extension mechanism enables the behavior of an existing application provided
by DS to be extended by the addition of extensions to some of its components.
This mechanism has two advantageous properties: (1) It does not change the
identity of the component being extended, which contrasts with OO inheri-
tance; and (2) it does not change the code of the component being extended,

378 Building Reliable Component-Based Software Systems

which contrasts with COM. In COM, aggregation also seeks to extend a com-
ponent by adding an interface implemented by another component. Unfortu-
nately, in COM, changes in the source code of both components are required
(for the correct interpretation of the QueryInterface method).

The extension mechanism permits the addition of new interfaces to a
component, without overriding the definition of existing interfaces. Inheri-
tance in OO languages makes possible the definition of a new class with a
new name by adding functionality to a superclass. Both classes can then coex-
ist in future applications. If the goal is to substitute the original class with the
subclass in an existing application, all references to the original class should
be changed in the source code and the application must be recompiled.

In CATIA version 5, real-world objects are represented as components.
For instance, a Beam can be represented by an OM component. A team at
DS may develop the Beam basic behavior, and other DS teams develop
advanced functionalities to be sold independently. A team in a company may
develop extensions related to Beam aerodynamics, while a team in another
company may work on Beam vibration behavior. Finally the major advan-
tage of the OM component model is that it enables the assembly of some of,
or all of, these facets without making any change in CATIA applications.

Component Inheritance

The OM component model provides the notion of single inheritance, with
respect to both components and interfaces. Extensive experience with the

Industrial Experience with Dassault Système Component Model 379

Conditional implementation

Implementations

Delegationfdsq

Component inheritance

Bases

Extensions

c

c

? ?

Interfaces

Figure 19.2 Component implementation.

development of a large number of similar components reveals the importance
of this concept. When one component inherits from another, it inherits all
its interfaces and all its implementations.

Conditional Interfaces

The implementation relationship linking a component with an interface can
be combined with a condition. When a client requests an interface, the inter-
face will be returned to the client only if this expression evaluates to true. For
instance, depending on the point of view, a Beam can be seen in 2D as a rec-
tangle or in 3D. 2D interfaces are available depending on the point of view.

Delegation

A component can have some of its functionality performed by another
implementation simply by delegating the implementation of some interfaces
to the other implementation. The declaration of the component indicates
the implemented interfaces, but without providing the corresponding imple-
mentation. The association between that interface and an implementation is
performed by the application itself at run time (this can be done by clients of
this component), for each component instance individually.

Discussion

The features presented above constitute the concepts of the OM component
model. DS did not develop a new language to express these concepts.
Instead, to realize an OM component, these concepts are implemented in
terms of programming entities. The OM can be seen as a layer superimposed
on the C++ language. Interfaces and implementations are represented as
C++ classes and most OM constructions are indeed represented as code pat-
terns and macros in C++ source code.

For maximum efficiency, the developer can select from various realiza-
tions of the same concept; for example, the concept of extension can be
refined in code extension, data extension, cache extension, and so forth. Con-
sider the following file in which an extension is realized. This file contains,
before the C++ class itself, the following macros:

#include "TIE_CATIData.h"

CATImplementClass (MyDataExtension, DataExtension,

CATBaseUnknown, MyComponent);

TIE_CATIData (MyDataExtension);

380 Building Reliable Component-Based Software Systems

The CATImplementClass macro expresses that C++ class MyDataEx-
tension is a data extension that inherits from CATBaseUnknown and that
extends component MyComponent. The TIE_CATIData macro expresses that
MyDataExtension implements interface CATIData using a TIE pattern.

Different Kinds of Architecture

Following ANSI/IEEE Std 1471-2000 [4] and Hofmeister et al. [5] and
Kruchten [6], different architectures can be considered in CATIA Version 5.
The architecture in terms of OM components represents only one view, des-
ignated the logical architecture because OM components are logical units.

Small development projects typically consider only the logical architec-
ture. In particular, a unit of composition (a logical unit) can also be consid-
ered a unit of development, a unit of business, a unit of deployment, and so
on [7]. In practice, this is an oversimplification. When software expands,
many other architectures are of concern. Without going into details, it is
worth mentioning that DS has developed and uses not only a logical compo-
nent model (the OM component model described above), but also a number
of other models to organize the huge quantity of software entities.

We should mention the physical architecture that represents how source
code is organized in terms of files and directories, and eventually how code
objects are stored in DLLs. Figure 19.3 shows that the logical and physical
architectures are orthogonal. The packaging architecture describes how appli-
cations are packaged and sold, based on the concepts of products, configura-
tion, and media. A product is a consistent set of frameworks, a configuration is
a collection of products that collectively fulfill a set of needs, and media, such
as a CD-ROM, are a physical means of storing a set of products and
configurations.

Industrial Experience with Dassault Système Component Model 381

(a) (b)

Frameworks

Dependency

OMelements

Other entities

Figure 19.3 Logical and physical architectures: (a) physical architecture and (b) OM
components versus frameworks.

Lessons Learned

The DS OM case study is interesting because it shows the whole story, from
needs to design, implementation, use, and enhancements. It shows the issues
and potential pitfalls when designing and using a component model on a
very large scale. Despite several problems, the DS experience is a success.
Today, at DS, CATIA version 5, consists of more than 50,000 C++ classes
and 8,000 components.

The major lesson we have learned is that there is a large gap between a
component model on paper and its actual use for large-scale industrial devel-
opment. This is especially worrying, because the component model is a critical
element for the success (or failure) of your system development. The following
is a summary of the main lessons that can be drawn from the DS experience.
Most of these lessons may also apply in other industrial contexts.

Framework Evolution

What does the term good component framework mean? Our answer is that it is
a framework that satisfies development and maintenance needs. It must pro-
vide powerful concepts and mechanisms for building efficient and reliable
applications. More important, it must be easily mastered and understood by
developers in their day-to-day practice.

Definition Versus Use

It is incorrect to believe that if a concept is simple, its use will also be simple,
as illustrated by �goto� and pointers. In component technology we can men-
tion the AddRef and Release features of COM [1], used to count the refer-
ences to a component instance in order to control deallocation. Experience
shows that it is extremely difficult, in a large development, to ensure that all
AddRef and Release statements have been properly executed, which may
result in unwelcome errors. Without considerable experience with a feature,
its darker side effects can be very difficult to forecast. The cost of using a dan-
gerous feature in a large development and the migration cost of eliminating
that feature are extremely high and can be fatal to a project. Thus in-house
design and development of a component model is very risky!

Evolution

DS�s component model followed an incremental process. The concept of
extension was its starting point and concepts such as delegation, conditional
adhesion, or inheritance were added as solutions to practical problems.

382 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

Similarly, different implementations of the same concepts were developed as
an answer to performance or stability issues. The fact that the model evolved
permanently while CATIA software was in development required the coexis-
tence of different concepts and constructs, which created problems.

The interaction between concepts creates a number of combinations
that are inherently complex and may have unclear semantics. In the case of
DS, experience showed that some recurring bugs are the side effects of spe-
cific (mis)use of concepts. A bug may be due to faulty implementation of the
concept, to an undefined semantic hole in semantics when the concept is
used in that way, or to inherent complexity. In the last two cases, it is the
component model that is faulty. At DS, once identified, a list of �anti-
patterns� was established, documented and a troubleshooter tool realized to
automatically detect anti-patterns in the code.

Training

Practice shows that it is not a simple task to conduct the development process
using a component model; it takes time to become a competent component
programmer. Both the component model and its best practice must be
taught. Initially, for productivity reasons, and because DS engineers are very
skilled, it was not considered necessary to teach the component model, so
blind cut and paste of existing pieces of code became common. DS therefore
decided to create specific training courses explaining how to use the compo-
nent model correctly.

Architecture and Components from an Industrial Perspective

Researchers working with software architecture and CBSE are very active
[4, 8, 9]. An important contribution of the software architecture community
was to consider connectors as first-class citizens and to promote the formal
description of behavior. In CBSE and ADL domains, many definitions of
what a component is and what it is not have been published. We feel uncom-
fortable with these definitions because none covers the different facets of
component technology, at least as experienced in the DS context.

Connectors

Until now, the notion of connector has not found its way into industry.
Considering procedure calls or other elementary relationships as connectors
is obviously possible, but this has no large practical benefit. The match
between more complex connectors and the code is not necessarily direct and

Industrial Experience with Dassault Système Component Model 383

software engineers do not consider this notion as essential. DS engineers do
not feel they need this concept.

Behavior

CATIA is a huge software project, evolving rapidly with a high level of con-
current development. Even if all the world�s software engineers developing
OM components had the skill to describe formally the behavior of each com-
ponent, behavioral analysis would probably be intractable at this scale.
Therefore, DS has never attempted to specify formally the behavior of com-
ponents nor a fortiori of the whole system; conversely, DS is very interested
in impact analysis.

Architecture

What exactly is the architecture of a system? This question has provoked
many definitive answers from many authors. In the case of DS, as well as in
claims from other authors [4�6], many architectures appear, each one dedi-
cated to a task or to a life-cycle need. In this short chapter, we have discussed
logical architecture (with components and extensions), physical architecture
(with frameworks and modules), and packaging architecture (with solutions
and media), but not cooperative architecture (with workspaces). These archi-
tectures obviously coexist and fulfill a different purpose.

Components

Because different kinds of architecture should be considered, and because
components are often defined as an architectural unit, what are components?
In the views of different authors, components are seen as units of design,
reuse, development, deployment, packaging, and so forth. Many authors
even consider the component to be all of these simultaneously. Unfortu-
nately, this is not compatible with the DS reality, at least. Are there as many
component concepts as architectures?

Summary

This chapter has shown the issues raised when DS designed their proprietary
component model. The first part describes the component model, which
offers services not found in other industrial component models. The second
part describes the lessons learned during the years when the model was elabo-
rated on and used. Essentially, the design of a powerful component model is
shown to be a complex task that involves many facets of technology, for

384 Building Reliable Component-Based Software Systems

which the use is not so obvious. The model has been improved progressively
over the years both conceptually and technically through enhancements and
adjustments.

Among the practical difficulties experienced, we can mention that very
large systems must live with inconsistencies produced by unexpected uses
and misuses of the technology proposed. On the one hand, training is
needed, and on the other hand, tools for tracking invalid constructions are
required.

The last major lesson is that very large software must be managed by
different people, at different points in time, and with different perspectives.
A different architecture, with different goals, concepts, and tools in each of
these perspectives can be seen. It is an oversimplification to see the compo-
nent concept as unique and capable of supporting all of the different facets.

As Robert Balzer claims, �Elevating system development from module
to the architecture level requires a corresponding elevation in our tools�.
While we have a long history and mature technology for the former, we have
just begun to recreate these capabilities at the software architecture level�
[10]. We have still to invent the CBSE environments of the future.

References

[1] Box, D., Essential COM, Reading, MA: Addison-Wesley, 1998.

[2] OMG, �CORBA Components,� Report orbos/99-02-01, OMG, 1998, http://omg.org.

[3] Sun Microsystems, �JavaBeans 1.01 Specification,� http://java.sun.com/beans.

[4] IEEE Architecture Working Group, �IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems,� IEEE Std. 1471-2000, Piscataway, NJ:
IEEE, 2000.

[5] Hofmeister, C., R. Nord, and D. Soni, Applied Software Architecture, Reading, MA:
Addison-Wesley, 2000.

[6] Kruchten, P., �The 4+1 View Model of Architecture,� IEEE Software, Vol. 12, No. 6,
1995, pp. 42�50.

[7] Szyperski, C., and Pfister, C., �Why Objects Are Not Enough,� Proc. Int. Component
Users Conf., Munich, Germany, SIG Publisher, 1996.

[8] Shaw, M., and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline,
Upper Saddle River, NJ: Prentice-Hall, 1996.

[9] Garlan, D., and D. E. Perry, �Introduction to the Special Issue on Software Architec-
ture,� IEEE Transaction on Software Engineering, Vol. 21, No. 4, 1995, pp. 269�274.

Industrial Experience with Dassault Système Component Model 385

[10] Balzer, R., �Instrumenting, Monitoring, & Debugging Software Architectures,� Report
from Information Sciences Institute, http://www.isi.edu/software-sciences/papers/
instrumenting-software-architectures.doc.

386 Building Reliable Component-Based Software Systems

Contributors

About the Editors

Ivica Crnkovic, Mälardalen University, Department of Computer Engi-
neering, Västerås, Sweden

Ivica Crnkovic is a professor of software engineering at Mälardalen
University. He is the administrative leader of the computer science labora-
tory and the scientific leader of the industrial IT research group of the same
department. His research interests include component-based software engi-
neering, software configuration management, software development envi-
ronments and tools, and software engineering in general. Professor
Crnkovic is the author of more than 30 refereed articles and papers on soft-
ware engineering topics. He has co-organized several workshops and confer-
ences related to software engineering (particularly component-based
software engineering). He participated in several projects organized by the
Association of Swedish Engineering Industries.

From 1985 to 1998, Professor Crnkovic worked at ABB, Sweden,
where he was responsible for software development environments and tools.
He was a project leader and manager of a group developing software configu-
ration management and other software development environment tools and
methods for distributed development and maintenance of real-time systems.
From 1980 to 1984, he worked for the Rade Koncar company in Zagreb,
Croatia.

387

Professor Crnkovic received an M.Sc. in electrical engineering in 1979,
an M.Sc. in theoretical physics in 1984, and a Ph.D. in computer science in
1991, all from the University of Zagreb.

He can be reached at ivica.crnkovic@mdh.se or http://www.idt.mdh
.se/~icc.

Magnus Larsson, Mälardalen University, Department of Computer Engi-
neering, Västerås, Sweden; ABB Automation Technology Products AB,
Sweden

Magnus Larsson has been employed by ABB Automation Technology
Products AB since 1993, working on several software development projects,
both as a developer and as a project manager. He received his B.Sc. in com-
puter engineering from Mälardalen University in 1993 and an M.Sc. in com-
puter science from Uppsala University, Sweden, in 1995. Mr. Larsson�s
current research interests are component-based software engineering and
software configuration management. His licentiate thesis, �Applying Con-
figuration Management Techniques to Component-Based Systems,� which
he presented in 2000, includes selected topics from these fields.

During his years at ABB, Mr. Larsson has participated in the develop-
ment of object management facility (OMF), a distributed object-oriented
middleware, which was awarded second prize in the 1997 OMG/Object
Worlds competition for the best use of object technology. Mr. Larsson has
also developed bridges between ABB�s proprietary object request broker
OMF and COM/CORBA. In 1998 Mr. Larsson worked with Digital Equip-
ment on a project that investigated the use of DCOM in real-time applica-
tions. Since 1999, he has been a committee member of the configuration
management group working for the Association of Swedish Engineering
Industries.

Mr. Larsson can be reached at Magnus.Larsson@mdh.se or http://www
.idt.mdh.se/~mlo.

About the Authors

Martin Blom, Karlstad University, Department of Computer Science,
Sweden

Martin Blom is the director of the software engineering undergraduate
program at Karlstad University, where he received an M.Sc. in 1999. His
research interests include software development in general, and semantic
aspects of software development in particular.

388 Building Reliable Component-Based Software Systems

Mr. Blom can be reached at martin.blom@kau.se or http://www.cs
.kau.se/~martin.

Jan Bosch, University of Groningen, Department of Mathematics and
Computing Science, The Netherlands

Professor Jan Bosch is a professor of software engineering at the Uni-
versity of Groningen, where he heads the software engineering research
group. Professor Bosch holds an M.Sc. from the University of Twente, the
Netherlands, and a Ph.D. from Lund University, Sweden. His research
activities include software architecture design, software product lines,
object-oriented frameworks and component-oriented programming. He is
the author of Design and Use of Software Architectures: Adopting and Evolving
a Product Line Approach (published by Pearson Education) and the coeditor
of three volumes in the Springer LNCS series, and has authored or
coauthored more than 50 refereed journal and conference publications. Pro-
fessor Bosch has organized numerous workshops, served on program com-
mittees of many conferences, and is a member of the steering groups and the
program committee cochairman of several conferences.

He can be reached at Jan.Bosch@cs.rug.nl or http://www.cs.rug
.nl/~bosch.

Benneth Christiansson, Karlstad University, Department of Information
Technology, Sweden

Benneth Christiansson is a Ph.D. student at Karlstad University, from
which he also obtained a licentiate in philosophy (Ph.Lic.). His main subject
is component-based systems development, with a particular emphasis on
working methods.

Mr. Christiansson can be reached at benneth.christiansson@kau.se.

Jacky Estublier, Domaine Universitaire Grenoble, Department LSR,
France

Dr. Jacky Estublier is a senior researcher (DR CNRS) at Grenoble Uni-
versity, where he leads the research group Tools and Environments for
Industrial Software Engineering: Adèle. His research originated in the field
of software configuration management. He developed the Adèle Software
Configuration Management when he explored virtually all areas of software
configuration management and developed a process support system. His sub-
sequent research areas evolved toward federations of commercial tools and
component-based frameworks. Currently, his team develops an open, large

About the Contributors 389

spectrum, component framework that extends CCM in different directions
(product-line support, hierarchical model, open containers, dynamic con-
nection, and large-scale deployment). He has authored more than 100
research papers and has been a program committee member of many confer-
ences, often acting as chairman.

Dr. Estublier can be reached at jacky@imag.fr or http://www-adele
.imag.fr.

Jean-Marie Favre, University of Grenoble 1, Laboratoire LSR-IMAG,
France

Jean-Marie Favre is an assistant professor at the University of Greno-
ble 1, where he received a Ph.D. in 1994. His current research interests
include reverse-engineering, component-based software, and component-
based reverse-engineering.

Dr. Favre can be reached at jmfavre@imag.fr or http://www-adele
.imag.fr/~jmfavre.

Gerhard Fohler, Mälardalen University, Department of Computer Engi-
neering, Sweden

Gerhard Fohler is a professor at Mälardalen University and the director
of the SALSART predictably flexible real-time systems laboratory in the
Department of Computer Engineering. He received a Ph.D. from the
Vienna University of Technology in 1994, for research into flexibility of off-
line scheduling.

Professor Fohler can be reached at gerhard.fohler@mdh.se or http://
www.idt.mdh.se/personal/gfr.

Oscar Javier Gonzalez Gomez, Bell Laboratories, Services Management
Department, Holmdel, New Jersey

Oscar Javier Gonzalez Gomez is a member of the technical staff at Bell
Laboratories. He received a Ph.D. from the University of Massachusetts at
Amherst in 2001. He is actively involved in the definition of software
processes that reduce the development effort required to make Lucent Tech-
nologies� network element applications highly available, scalable, and easily
maintainable.

Dr. Gonzalez Gomez can be reached at ogonzale@research.bell-
labs.com.

390 Building Reliable Component-Based Software Systems

Jilles van Gurp, University of Groningen, Department of Mathematics and
Computing Science, The Netherlands

Jilles van Gurp is a Ph.D. student at the University of Groningen. He
obtained his M.Sc. at the University of Utrecht, the Netherlands. Mr. van
Gurp has published papers about framework design, software product lines,
and software development issues, including variability and design erosion.

He can be reached at jilles@cs.rug.nl or http://www.xs4all.nl/~jgurp.

Erik Gyllenswärd, Mälardalen University, Department of Computer Engi-
neering, Västerås, Sweden; Compfab AB, Sweden

Erik Gyllenswärd is the president of Compfab AB, and a researcher at
Mälardalen University. He received his M.Sc. from Linköping Technical
University, Sweden, in 1983 and his Ph.Lic. from the Royal Institute of
Technology (KTH), Stockholm, Sweden, in 1994. Mr. Gyllenswärd worked
for ABB from 1983 to 2000 as a system architect and manager. He also lec-
tured and has been engaged in research at Mälardalen University and at
KTH. He is the owner of Compfab AB, the company he founded in 2000.
His fields of competence include distributed object-orientated architectures,
middleware technologies, application integration, information management
systems, and componentware.

Mr. Gyllenswärd can be reached at erik.gyllensward@compfab.se or
http://www.compfab.se.

Brahim Hnich, Uppsala University, Information Science Department,
Sweden

Brahim Hnich is a Ph.D. student at Uppsala University and a lecturer
at the University of Gaevle high school, Sweden. He earned his B.Sc. in 1997
from Bilkent University, Ankara, Turkey. His research interests include
combinatorial optimization problems, artificial intelligence, constraint pro-
gramming, and automated software engineering.

Mr. Hnich can be reached at Brahim.Hnich@dis.uu.se or http://www
.dis.uu.se/~brahim.

Shui-Ming Ho, University of Manchester, Department of Computer Sci-
ence, England

Shui-Ming Ho is a Ph.D. student at the University of Manchester,
where he also received an M.Sc. His research interests are formal methods
for frameworks in component-based software development. Shui-Ming Ho
would like to acknowledge that his work has been supported by the Engi-
neering and Physical Sciences Research Council, United Kingdom.

About the Contributors 391

Mr. Ho can be reached at sho@cs.man.ac.uk.

Damir Isovic, Mälardalen University, Department of Computer Engineer-
ing, Sweden

Damir Isovic is a lecturer and a Ph.D. student at Mälardalen Univer-
sity, where he also received an M.Sc. and a Ph.Lic. His research interests
include real-time systems and scheduling theory, with a specific emphasis on
combining flexibility and reliability in the design of schedule and real-time
components.

Mr. Isovic can be reached at damir.isovic@mdh.se or http://www.idt
.mdh.se/salsart/.

Lars Jakobsson, Karlstad University, Department of Information Technol-
ogy, Sweden

Mr. Jakobsson is the director of the information systems undergraduate
program and a Ph.D. student at Karlstad University. His research is focused
on describing software components for compatibility verification.

He can be reached at Lars.Jakobsson@kau.se or http://www.cs.kau.se/
~lars/.

Torsten Jonsson, Uppsala University, Information Science Department,
Sweden

Torsten Jonsson is a Ph.D. student at Uppsala University. He received
a B.A. in systems analysis from Uppsala University in 1984. His research
topic concerns programming methods based on formal compositional and
visual techniques.

Mr. Jonsson can be reached at tjo@hig.se.

Kung-Kiu Lau, University of Manchester, Department of Computer Sci-
ence, Manchester, England

Kung-Kiu Lau holds a B.Sc. and a Ph.D. from the University of Leeds,
United Kingdom. He is currently a senior lecturer in the Department of
Computer Science at the University of Manchester, England. His main
research interests are component-based software development and formal pro-
gram development in computational logic. He is the editor of a book series on
component-based software development, published by World Scientific.

Dr. Lau can be reached at kung-kiu@cs.man.ac.uk or http://www.cs
.man.ac.uk/~kung-kiu.

392 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

Mladen Kap, Mälardalen University, Department of Computer Engineer-
ing, Västerås, Sweden; Compfab AB, Sweden

Mladen Kap is a development leader at Compfab AB and a researcher
at Mälardalen University. He graduated from the University of Zagreb,
Croatia, in 1975, and received an M.Sc. from the University of London in
1977. His fields of competence cover distributed component-based develop-
ment, middleware technologies, and application integration.

Mr. Kap can be reached at mladen.kap@mdh.se or www.compfab.se.

Zeynep Kiziltan, Uppsala University, Information Science Department,
Sweden

Zeynep Kiziltan is a Ph.D. student in computer science at Uppsala
University, where she obtained an M.Sc. in 2000. Her research interests
include combinatorial optimization problems, artificial intelligence, con-
straint programming, and automated software engineering.

Ms. Kiziltan can be reached at Zeynep.Kiziltan@dis.uu.se or http://
www.dis.uu.se/~zeykiz.

Frank Lüders, Mälardalen University, Department of Computer Engineer-
ing, Västerås, Sweden

Frank Lüders is an industrial Ph.D. student, employed jointly by
Mälardalen University and ABB Automation Products AB. Mr. Lüders
received an M.Sc. from the Technical University of Denmark in 1997. His
research interests include software engineering, software architecture, and
distributed real-time systems.

He can be reached at frank.luders@mdh.se.

Peter O. Müller, ABB AG, Corporate Research, Germany
Peter O. Müller has an M.Sc. in telecommunications engineering and

is currently working as a research employee at ABB Corporate Research in
Germany. His research interests include distributed middleware and Internet
connectivity for real-time systems.

Mr. Müller can be reached at peter.o.muller@de.abb.com.

Martin Naedele, ABB Corporate Research Ltd., Department of Informa-
tion Technologies, Switzerland

Martin Naedele is a member of the research staff at ABB Corporate
Research. He received an M.Sc. from Ruhr-University in 1997 and a Ph.D.
from the Swiss Federal Institute of Technology (ETH), Zurich, in 2000. His

About the Contributors 393

research interests include embedded systems, fault-tolerant real-time com-
puting, software engineering, component software, and IT security.

Dr. Naedele can be reached at martin.naedele@ch.abb.com.

Eivind J. Nordby, Karlstad University, Department of Computer Science,
Sweden

Eivind J. Nordby is a senior lecturer at Karlstad University. He
received an M.Sc. in computer science in 1979. His current research interests
include semantic aspects of software development, software quality, and
object-orientation. He is currently participating in the research project,
�Improved Software Quality Through Semantic Descriptions.� Mr. Nordby
also served as manager of the Department of Computer Science at Karlstad.

He can be reached at eivind.nordby@kau.se or http://www.cs.kau
.se/~eivind.

Christer Norström, Mälardalen University, Department of Computer
Engineering, Sweden

Christer Norström is a manager at ABB Technology Partners/Robotics,
Västerås, Sweden. He is also a part-time senior lecturer at Mälardalen Uni-
versity, and is one of the founding members of the Department of Computer
Engineering. He has presented numerous courses on real-time system for
industry in Sweden and in Europe. His research interests include the design
of real-time systems, reliability and safety methods, software engineering,
and architectures for real-time systems. He is also interested in technology
transfer from academia to industry, which he manifested through several suc-
cessful transfers to the automotive industry. Dr. Norström received a Ph.D.
from KTH in 1997 and became a docent there in 2001. He won the student
body award for best teacher at Mälardalan University.

Dr. Norström can be reached at christer.norstrom@mdh.se.

Rob van Ommering, Philips NatLab, the Netherlands
Rob van Ommering is a principal research scientist at Philips Research

Laboratories, Eindhoven, the Netherlands. He graduated from the Technical
University of Eindhoven in 1982. Since then, his research has embraced
robotics; computer vision; machine learning; formal specification techniques;
and formalization, visualization, and verification of software architectures.
His current interests are in aspects of software architecture, with an emphasis
on component technology and component-based architectures, particularly
product families and populations of resource-constrained consumer products.

394 Building Reliable Component-Based Software Systems

As such, he is actively involved in the definition of software architectures, and
the Philips� range of analog and digital video products.

Mr. van Ommering can be reached at Rob.van.Ommering@philips
.com.

Otto Preiss, ABB Corporate Research Ltd., Department of Information
Technologies, Switzerland

Otto Preiss is a member of the research staff at ABB Corporate
Research Ltd. He holds a B.Sc. from FH Aargau, Switzerland, and an M.Sc.
from the University of Colorado at Boulder. He has worked in the area of
distributed systems, primarily in the application domains of data acquisition
and process control for power systems. Mr. Preiss has held different positions
in development, engineering, commissioning, and product management
enterprises. Before joining ABB Corporate Research in 1998, he was the
head of the ABB Power Automation R&D department for product and sys-
tem development of substation automation and protection systems. He is
currently a registered Ph.D. candidate at the Swiss Federal Institute of Tech-
nology, Lausanne, Switzerland, with research focused on component-based
software engineering and software architecture.

Mr. Preiss can be reached at otto.preiss@ch.abb.com or http://icapeople
.epfl.ch/opreiss

Krithi Ramamritham, Indian Institute of Technology, Computer Science
and Engineering, India

Professor Krithi Ramamritham received a Ph.D. from the University of
Utah. He then joined the University of Massachusetts, and now holds a visit-
ing position at the Indian Institute of Technology, Bombay, as the Verifone
chair professor. He was a Science and Engineering Research Council (United
Kingdom) visiting fellow at the University of Newcastle upon Tyne, United
Kingdom, and has held visiting positions at the Technical University of
Vienna, Austria, and at the Indian Institute of Technology, Madras. Profes-
sor Ramamritham�s interests span the areas of real-time systems, transaction
processing in database systems, real-time databases systems, mobile comput-
ing, e-commerce, intelligent Internet, and the Web. He has been chairman
of many conferences. His editorial board contributions include IEEE Trans-
actions on Parallel and Distributed Systems and the Real-Time Systems Journal.
He has coauthored two IEEE tutorial texts on real-time systems.

Professor Ramamritham can be reached at krithi@cse.iitb.ac.in.

About the Contributors 395

Rémy Sanlaville, Dassault Systèmes Research Lab, LSR-IMAG Research
Lab, France

Rémy Sanlaville is a Ph.D. student at the University of Grenoble,
France. He is a member of the Adèle team and has been working for Das-
sault Systèmes for 3 years. His current research interests include large-scale
software, software architecture, component-based software engineering and
reverse engineering.

Mr. Sanlaville can be reached at Remy.Sanlaville@imag.fr or http://
www-adele .imag.fr/~sanlavil.

Chia Shen, Cambridge Research Lab, Mitsubishi Electric Research Labs,
Cambridge, Massachusetts

Dr. Chia Shen is an associate director and senior research scientist at
the MERL Cambridge Research Laboratory, Cambridge, Massachusetts. She
received a Ph.D. from the University of Massachusetts, Amherst, in 1992.
Dr. Shen�s research interest has been in distributed real-time and multimedia
systems.

She can be reached at shen@merl.com or http://www.merl.com/peo-
ple/shen.

Judith A. Stafford, Software Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania

Judith Stafford is a senior member of the technical staff at the Software
Engineering Institute (SEI), Carnegie Mellon University. For several years,
Dr. Stafford has worked in the areas of software architecture, compositional
reasoning, and component-based systems. She currently coleads the Predict-
able Assembly from Certifiable Components project at the SEI.

Dr. Stafford can be reached at jas@sei.cmu.edu or http://www.sei.cmu
.edu/staff/jas.

Christian M. Stich, ABB, Corporate Research, Ladenburg/Mannheim,
Germany

Christian M. Stich is a scientist at ABB Corporate Research in Laden-
burg/Mannheim. He received an M.Sc. from the University of Applied Sci-
ence, Harz, Germany. His competences are in embedded systems,
microcontrollers, DSPs, field devices, and real-time operating systems.

Mr. Stich can be reached at christian.stich@de.abb.com.

396 Building Reliable Component-Based Software Systems

Henrik Thane, Mälardalen University, Department of Computer Engi-
neering, Sweden

Dr. Henrik Thane is a senior lecturer at Mälardalen University. He
received an M.Sc. in computer science from Uppsala University, Sweden, in
1995, a technical licentiate in mechatronics from KTH, Stockholm, in 1997,
and a Ph.D. in mechatronics in 2000. His research interests include the
design and verification of safety-critical systems; monitoring, testing and
debugging of distributed real-time systems; and real-time operating system
design, and scheduling.

Dr. Thane can be reached at henrik.thane@mdh.se.

Jeffrey Voas, Cigital, Dulles, Virgina
Jeffrey Voas is the chief scientist at Cigital. He is a senior member of

the IEEE, he received a Ph.D. from the College of William & Mary in 1990,
and was named the 1999 Young Engineer of the Year by the District of
Columbia Council of Engineering and Architectural Societies. Dr. Voas was
a corecipient of the IEEE�s Reliability Engineer of the Year award in 2000,
and he received a Third Millennium Medal from the IEEE in 2000. In 2000,
he also received a Meritorious Service award from the IEEE Computer Soci-
ety. Dr. Voas was the general and program chair for several conferences. He
has coauthored two books: Software Assessment: Reliability, Safety, Testability
(Wiley, 1995) and Software Fault Injection: Inoculating Programs Against
Errors(Wiley, 1998).

Dr. Voas can be reached at voas@cigital.com or http://www.cigital
.com/research/jmv.html.

Anders Wall, Mälardalen University, Department of Computer Engineer-
ing, Västerås, Sweden

Anders Wall is a Ph.D. student at Mälardalen University. He received
an M.Sc. in 1994, and a Ph.Lic. from Uppsala University, Sweden, in 2000.
His research interests include the design of real-time systems, software archi-
tectures, product-line architectures, and component-based software engineer-
ing for real-time systems and formal methods for real-time systems.

Mr. Wall can be reached at anders.wall@mdh.se.

Kurt Wallnau, Software Engineering Institute (SEI), Dynamic Systems
Program, Pittsburgh, Pennsylvania

Kurt Wallnau has 15 years of software development experience in
industry, defense, and research. His principal interests are commercial off-
the-shelf (COTS) software integration and component-based software

About the Contributors 397

engineering. Mr. Wallnau�s most recent tour at the SEI, Carnegie Mellon
University, began in 1994. His primary areas of investigation at the SEI have
been the techniques and technologies of COTS software integration and
component-based software engineering. He co-organized the 1998 Interna-
tional Conference on Software Engineering (ICSE) workshop on
component-based software engineering and he is co-organizing the follow-up
workshop, also affiliated with the 2001 ICSE. Mr. Wallnau has published
several articles in the area of COTS and component-based software engineer-
ing. He is the coauthor of Building Systems from Commercial Components
(Addison-Wesley, 2002), and he currently coleads the Predictable Assembly
from the Certifiable Components project.

Mr. Wallnau can be reached at kcw@sei.cmu.edu or http://www.sei
.cmu.edu/staff/kcw.

Christian Zeidler, ABB, Corporate Research, Germany
Christian Zeidler received a Ph.D. in computer science from the Uni-

versity of Karlsruhe, Germany, in 1994. Within the context of DOCASE he
has investigated metaprogramming-based dynamic configuration manage-
ment of object-oriented distributed applications. Since 1994 he has been
working for ABB Corporate Research in different positions, including the
department leader for industrial IT. Dr. Zeidler�s fields of IT competence
cover distributed systems/application, middleware technologies, application
integration, and componentware with a strong software engineering perspec-
tive. He is a member of the German Computer Society and the leader of the
object-oriented software development group. He is also ABB�s corporate
research representative for all OMG-related activities.

Dr. Zeidler can be reached at zeidler@decrc.abb.de.

398 Building Reliable Component-Based Software Systems

Index

Abstract classes, 146
Acme ADL, 62�66

components and ports, 63
connectors and roles, 63�64
defined, 62�63
discussion, 65�66
properties, constraints, types, styles, 65
representations and bindings, 64�65
systems and attachments, 64
See also Architecture description

languages (ADLs)
Active components, 316�17
Active Directory, 356, 358, 370
Active Document Technology, 370
Addressing failures, 273
AIP-based applications

analysis and design, 348
development requirements, 347�48
domain engineering, 347
implementation, 348
reuse in, 348�50
See also Aspect Integrator Platform (AIP)

Application programming interface (API), 8
Application-specific component models,

246
Application system layer, 346

Architectural analysis, 251
Architectural components, 34�35

commercial, 51
custom, 50
defined, 34
extrafunctional properties, 35�37
reusable, 50�51
types of, 49
using, 35
See also Components

Architectural mismatch, 33, 184
Architectural patterns, 13
Architecture

AIP, 333�45
blackboard, 47
component-based embedded systems,

310, 314�15
component-driven development, 51�53
design process, 45�46
design process illustration, 45
field device, 314
object-oriented, 48�49
OCS, 328�29
packaging, 381
physical, 381
pipe-filter, 47

399

Architecture (continued)
styles, 46�49
transformation categories, 47
variant-free, 213
See also Software architecture

Architecture-based analysis, 187�88
Architecture description languages (ADLs),

57, 58, 85
Acme, 62�66
issues addressed by, 59

Architecture-driven component
development, 49�51

custom components, 50
preexisting components, 50�51

Aspect Directory, 343
Aspect Framework Services (AfwServices),

339, 343
Aspect Directory, 343
file set distribution (FSD) service,

343�44
OPC data access server, 344
Service Groups, 344
structure and name service, 343
system message service, 344

Aspect Integrator Platform (AIP), 325, 329,
331�45

application and data distribution,
341�43

applications, 341
architecture, 333�45
ASOs, 338�39
bugs, 351
caution, 350�51
defined, 325
development view, 344�45
domain-specific application

development, 346�51
logical view, 335�41
motivation for, 329�31
as object-structuring/programming

model, 332
physical view, 341�44
process view, 345
requirements management, 351
reuse hierarchy, 349
services, 343�44
structures, 339�41

summary, 351�52
system topology example, 342
See also Case studies

AspectObjects, 325
defined, 332
GUID, 335
hierarchical organization of, 339
illustrated, 334
membership, 341
Object Type, 335�37
paradigm, 332�33
structure, 333
structure organization, 339�41

Aspect-Oriented Programming (AOP), 332
Aspects, 325

data, 343
defined, 337
types of, 337

Aspect System, 338
AspectSystemObject (ASO), 338�39, 345

implementation, 345
mapping to COM components, 345

Aspect Types, 337�38
Assemblies

bundle components, 80�83
CCM, 75
defined, 157�58
JavaBeans, 69�70
.NET, 77�78
predictable, 185�86
properties, 168, 169, 172
reconfigurations of, 105

Assembly evaluation, 159, 173�74
risk potential, 173
value and, 174
See also Evaluation

Assessment, 42�43
expert-based, 43
quality-attribute-oriented, 43
stakeholder-based, 43

Attachments, 64
Attributes

evaluation, 161�62, 163
measured, 162
virtual timing, 255

Audience, this book, xxiii
Availability, xxxiv

400 Building Reliable Component-Based Software Systems

Base priority, 283
Bean Box, 69
Beans

assembly, 69�70
defined, 66
implementation of, 68�69
interface, 67�68
packaging, 70
See also JavaBeans

Behavioral mismatch, 183
Binding(s)

defined, 65
flexibility, 225
at link time, 225
�normal,� 229
principle illustration, 225
scheme, 225�26

Blackboard architecture, 47
Blackbox Component Framework (BCF),

14�15
Black-box framework, 148
BOF, 362�63

components for workflow application,
369

configuration environment, 362
defined, 358
development environment, 362
objects, 364
patterns constructed using, 365�70
run-time environment, 363
tools, 362�63
See also Information Organizer

BOM, 359�62
aspects, 360
defined, 358
objects, 359�60
relations, 360�61
roles, 361
views, 361
See also Information Organizer

Bundle components, 79�83
assembly, 80�83
defined, 79�80
dynamic connection, 81, 82
implementation, 83
implementation illustration, 82
interface, 80

interface illustration, 81
See also Open Service Gateway Initiative

(OSGI)
Business process support (BPS), 367,

368�70
combined with RDS, 368�70
component types, 368
defined, 368

Business-specific layer, 346

Case studies
application integration framework,

355�72
component-based embedded systems,

303�22
Dassault Systéme component model,

375�85
industrial automation, 325�52
overview, 299�301

Catalysis, 143, 150
CATIA

changes in, 376
defined, 375
See also Dassault Systéme component

model
CBD

advantages, xxviii
consumer perspective, 99
defined, xxviii
disadvantages, xxviii�xxix
introduction, 89�90
life cycle steps, 61
process, 89�111
producer perspective, 99�100
reuse, 97�98, 371
semantic integrity in, 115�31
separation of development processes,

98�100
CBSE

challenges, xxx�xxxiii
concept basis, 3
defined, xxi
dependable systems and, xxxiii
extensions for, 258�59
goals, xxix�xxx
problems faced by, xxxiv

CCM, 57, 73�77

Index 401

CCM (continued)
advantages, 73
assemblies, 75
component implementation, 75�76
components, 73
container approach, 76
defined, 73
framework, 75, 76
homes, 74
Implementation Definition Language

(CIDL), 75
interface and assembly, 73�75
life cycle, 77
navigation, 75
ports, 74
service generalization, 60
See also Component models

Certifiable components, 185�86
Certification, 188�89
Classes, 147

abstract, 146
coupling between, 139, 140
defined, 147
multiple views of, 139
relations between, 143
responses for, 140

ClassifierRoles, 142�43
Collaboration interaction diagrams, 34
COM+, 57

life cycle, 72
remote procedure call (RPC), 60
See also Component Object Model

Commercial components, 51
Commercial-off-the-shelf. See COTS
Common Object Request Broker

Architecture (CORBA), 24, 27
component interface, 74
Component Model. See CCM

Component-based development. See CBD
Component-based embedded systems,

303�22
active components, 316�17
architecture, 314�15
architecture and frameworks, 310
case study description, 313�19
component granularity, 308�9
component model, 320

component technology, 321
component wiring, 311
composition environment, 321�22
contractually specified interfaces, 306�7
control application layout, 315
development prerequisites, 319�22
dynamic behavior, 316�17
explicit context dependencies, 308
implications for component technology,

305�11
intercomponent communication,

317�19
introduction to, 303�4
investment in, 305
location transparency, 310
portability/platform independence,

310�11
pre-/postconditions and, 306
problem domain, 304�5
repository, 321
reuse, 309
run-time environment, 322
synchronous approach, 311�12
synchronous software components,

312�13
unit of composition, 307�8
See also Case studies

Component-based software, xxxi�xxxii
engineering. See CBSE
life cycle, 100�111

Component development, 87�88, 108�11
component specification, 111
process, 108�9
requirements analysis and definition,

109�10
for reusability, 110

Component-driven architecture
development, 51�53

Component models, xxxi, 57�86, 181
Acme ADL, 62�66
application-specific, 246
architectural styles and, 189
assembly, 84
CCM, 73�77
COM+, 71�72
COM, 71�72

402 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

component-based embedded systems,
320

DCOM, 71�72
defined, 17
framework, 84�85
framework implementations, 17
historical perspective, 58�59
implementation, 84
interface, 83�84
interface and connections, 59�60
introduction to, 57�58
JavaBeans, 66�70
Koala, 219, 223�36
MTS, 71�72
.NET, 77�79
notation and plan, 61�62
OM, 376�80
OSGI, 79�83
service transparency, 60�61
summary, 83�85

Component Object Model (COM), 4,
71�72

aggregation, 60
classes, 26
component specification, 26
containment, 59
Distributed (DCOM), 72, 345
framework, 72
implementation, 71�72
interface, 71, 72
life cycle, 72
See also COM+

Component phases, 126�28
creation, 126�27
defined, 126
maintenance, 128
use, 127�28

Component-programming approach, 378
Components, 4�9, 146�47

active, 316�17
architectural, 34�35
behavior, 12
bundle, 79�83
CCM, 73
certifiable, 185�86
certification, xxxii
coarse-grained, 308

collaborations, 137
commercial, 51
composition. See Composition
configurations, xxxii�xxxiii
custom, 50, 52
defined, 1, 3, 5�8, 157
dependencies, 151
development with, 101�8
dual-band, 267
elements, 7
evaluation. See Evaluation
frameworks as, 219
granularity, 308�9
inheritance, 379�80
integration. See Integration
Koala, 226�27
markets, 209�11
misunderstandings, 6
objects and, 8�9
OM, 377�80
product-line architecture, 207�20
quality, improving, 7
real-time, 237�38, 239�62
in reliable systems, xxxiii�xxxvi
representation of, 64�65
reusable, 50�51, 265�78
risk potential, 173
selection. See Selection
software, 87�88
synchronous, 312�13
technology focus, 39
trusted, xxx
verification and validation, 106
wiring, 311

Component specification, xxxi, 23�37, 111
achieving, 4
diagram example, 31
extrafunctional properties, 34�37
interface dependency, 34
inter-interface constraints, 32
introduction, 23�24
semantics, 27�34
techniques, 24�27
usefulness, 24

Composition, 179�90
defined, 179�80
design-time, 307�8

Index 403

Composition (continued)
of framework control, 148
with legacy code, 148
mechanisms, 136
predictability, xxxii
problem, 240
real-time component, 255�56
simplifying, 60
unit of, 307�8
See also Components

Compressing proxy, 184
Concurrent real-time systems, 276�78
Conditional interfaces, 380
Configuration management (CM), 43�44,

233�34
Connectors

decomposition, 65
defined, 63

Constraints, 65
Containers, CCM, 76
Contracts, 10�12

defined, 2, 4, 10
frameworks and, 18
realization, 34
specifications, 11
strong, 117�18
use of, 11
weak, 117�18

Contractually specified interfaces, 306�7
Control application layout, 315
Control failures, 272
Core software, 211
COTS

components, real-time services and,
281�98

OSs, 281
Coupling

between classes, 139, 140
dealing with, 150�52

Coupling between object classes (CBO)
defined, 140
role effects, 141

Creation phase, 126�27
Credentials, 35�36
Custom components, 50, 52
Custom design, 89

Dassault Systéme component model, 60,
375�85

Deferred procedure call (DPC), 284�85
preemption and, 285
queue, 284

Dependable systems, xxxiv
Dependencies, 151

explicit context, 308
implementation, 151
interface, 151

Dependency checks, 245�46
Depth of inheritance tree (DIT)

defined, 140
role effects, 141

Design by Contract, 28
Design patterns, 12

defined, 13
frameworks and, 18�19
uses, 13

Detailed design, 251
Development with components, 101�8

component selection/evaluation, 102�3
requirements analysis and definition,

101
system design, 103�4
system development process, 107�8
system implementation, 104
system integration, 104�5
system operation support/maintenance,

107
verification and validation, 105�7

Directory-enabled applications, 356
Distributed COM (DCOM)

defined, 345
framework, 72
See also Component Object Model

(COM)
Diversity interfaces, 229
Document management support (DMS),

367
Dual-band components, 267
Dynamic software architectures, 44

Encapsulation, 136
Ensemble

credentials, 36
defined, 35

404 Building Reliable Component-Based Software Systems

postulates, 36
Enterprise resource planning (ERP), 326
Established reuse, 211�12
Evaluation, 103

argument for, 158
assembly, 159, 173�74
breakdown, 171
defined, 158, 168
inconsequential, 169�70
multiple-attribute, 166�67, 175�76
multiple-criteria, 159�67
myth, 157�76
variance, accommodating, 172
See also Components

Evaluation attributes, 161�62, 163
definition of, 161
illustrated, 161, 163
partial satisfaction of, 171�72

Events, 318
Event sources, 68
Evolutionary development, 92�95

disadvantage, 92�93
incremental model, 93
iterative approach, 93
principle, 92
prototyping model, 93�95
See also Software process models

Executable semantics, 122�24
defined, 122
early error detection/removal, 124
specification example, 122
use in client component, 124

Execution time
graph, 253�54
maximum, per subdomain, 254

Expert-based assessment, 43
Extrafunctional properties

defined, 35
different natures of, 37
specifying, 34�37
UML metamodel for specifying, 36

Failure(s)
addressing, 273
behavior, 270�78
control, 272
defined, 272

input, 273
interleaving, 277
modes, 277�78
ordering, 276
software, simulating, 198
synchronization, 277
system, 196
termination, 273
value, 273

Fault hypotheses, 272
File set distribution (FSD) service, 343�44
Formal semantics, 124�26

defined, 124
for security-critical applications, 125
See also Semantics

Fragile base class problem, 217
Framelets, 149�50
Frameworks, 14�16, 217�18

abstract classes, 146
addresses, 149
black-box, 148
CCM, 75, 76
classes, 147
COM, 72
component-based embedded systems,

310
component model, 84�85
components and, 17, 146�47, 219
contracts and, 18
DCOM, 72
decomposition of, 148
defined, 2, 4, 181
design documents, 146
disadvantages, 217
elements, 146�47
evolution, 382�84
examples, 14�15
gap, 148
key contribution of, 15
model for, 148�50
MTS, 72
.NET, 78�79
object-oriented, 16, 216�17
overlap of functionality, 149
patterns and, 18�19
with plug-ins, 218
purpose of, 19

Index 405

Frameworks (continued)
role interfaces, 146
roles and, 145�46
Swing, 145
white-box, 148
See also Components

Function block diagrams (FBDs), 247

Gluing, 228�29
Granularity, 136
Graphical user interfaces (GUIs), 66

Hidden interfaces, 173�74
Hollywood principle, 145�46
Homes, 74

IbofAspect, 365
Idioms, 13
IEC 61131, 246�47
Implementation dependencies, 151
Incremental model, 93
Independence

component-based embedded systems,
310�11

defined, 215
variability vs., 216

Industrial automation systems, 326�29
enterprise management level, 326
field level, 328
group control level, 327
process control level, 327
process level, 328
production/manufacturing management

level, 326�27
Industrial control prototype

acknowledgement, 293
consumer, 293
efficiency through treads, 291
illustrated, 292
operator ack, 293
operator input, 293
periodicity, 291
producer, 293
receiver, 293

Industrial IT, 329
Information Organizer

architecture illustration, 357
aspect/object structure, 364�65

basic parts, 358�59
BOF, 358, 362�63
BOM, 358, 359�62
component architecture, 366
implementation concept, 355
integration, 364
modeling, 363�64
motivation, 356�58
reuse, 358
See also Case studies

Input failures, 273
Integration, 179�90

to composition, 182�89
defined, 180
inconsistent, 108
process, 181
See also Components

Intercomponent communication, 317�19
events, 318
Object Manager, 318�19
signal bus, 317�18
See also Component-based embedded

systems
Interface definition language (IDL), 10
Interface propagation analysis (IPA), 156,

197
process, 198�200
summary, 200

Interfaces, 9�10
abstract, 170�71
bean component, 67
bundle component, 80
C++ and, 144
CCM, 73�75
COM, 71, 72
component model, 83�84
concrete, 170�71
conditional, 380
contractually specified, 306�7
defined, 1, 4, 9, 136
dependencies, 34, 151
diversity, 229
functional properties, 9�10
hidden, 173�74, 195
implementation, 306
instances of, 227
Java and, 144

406 Building Reliable Component-Based Software Systems

Koala, 227�29
library-independent, 215
�narrower,� 235
.NET, 77�78
optional, 229
provided, 118
provides, 227�28
required, 118
requires, 227�28
specification, 32�33
specification diagram, 30
types of, 10
UML definition of, 32
versions, 10
�wider,� 235
See also Components

Interleaving failures, 277
Internet Explorer, 370
Internet Information Server, 370
Interoperability prediction techniques,

200�202
Interrupt request levels (IRQL), 285
Interrupt service routine (ISR), 284
Intuitive semantics, 120�21

JavaBeans, 57
Bean Box, 69
beans, 66, 67�70
component assembly, 69�70
component implementation, 68�69
component interface, 67�68
component model, 66�70
composition capabilities, 60
key features, 66�67
packaging and deployment, 70

JBurton class, 145

Key software, 211
Koala component model, 219, 223�36

auxiliary requirements, 224
binding/bind time, 224�26, 228�29
component example, 227
component functionality, 230
components, 226�27
conclusion, 235�36
configuration, 226
defined, 223
diversity interfaces, 229

gluing, 228�29
interfaces, 227�29
introduction, 223
layers and subsystems, 232
multithreading and, 230
product creation, 223
product-line architecture, 229�32
pump engines, 231
requirements, 223�24
in resource-constrained environments,

225
subtyping, 234�35
switches, 229
thread sharing, 231
version/variant management, 233�34
See also Component models

Lack of cohesiveness in methods (LCOM)
defined, 140
role effects, 141

Ladder diagrams, 247
Lego, 218�19
Libraries, 215�16

defined, 26
examples, 215
parameterization of, 216
real-time component, 254�55

Life cycle
CBD, 61
CCM, 77
COM/COM+, 72
component-based software, 100�111
generic activities, 91
.NET, 79

Maintenance phase, 128
Markets, 209�11
Measurement scales, 162�63
Memory management units (MMU), 273
MidART�s user-level scheduler, 297
Middleware layer, 346�47
Mismatch

architectural, 184
behavioral, 184

Monolithic software, 305
MTS framework, 72
Multiple-attribute evaluation, 166�67,

175�76

Index 407

Multiple-criteria evaluation, 159�67
multiple-attribute utility, 166�67
preference structure-based, 160�65
See also Evaluation

Multithreading, 230

.NET, 57, 77�79
component illustration, 78
defined, 77
framework, 78�79
implementation, 78
interfaces and assembly, 77�78
life cycle, 79
See also Component models

Number of children (NOC)
defined, 140
role effects, 141

Object Constraint Language (OCL), 2, 28,
123

Object Manager, 318�19
defined, 318
functionality, 318
type conversions, 319

Object Modeler (OM)
component model, 376�80
COM vs., 376
defined, 376
lessons learned, 382�84
See also OM components

Object-oriented architecture, 48�49
Object-oriented frameworks, 216�17

combination of, 217
defined, 216
See also Frameworks

Objects
BOF, 364
BOM, 359�60
components and, 8�9
defined, 8
port-based (PBOs), 246, 248

Off-line scheduling, 241
OM components

in application building, 377�78
conditional interfaces, 380
connection between, 377
defining, 377
delegation, 380

extensions, 378�79
external view of, 377
implementations, 378
implementing, 378�80
inheritance, 379�80
as logical units, 381
See also Object Modeler (OM)

On-line component upgrades, 260�61
On-line scheduling, 241
Open Control System (OCS) architecture,

328�29
functionality, 331
main task, 331
qualities addressed by, 341
as run-time infrastructure, 332

Open Service Gateway Initiative (OSGI),
57, 79�83

assembly of bundle components, 80�83
component levels, 79�80
defined, 79
implementation of bundle component,

83
interface of bundle component, 80
See also Component models

Operational profile, 201
Ordering failures, 276
Organization, this book, xxii�xxiii

Packaging
architecture, 381
JavaBeans, 70

Parameterization, 216
Partial correctness, 12
Patterns, 12�13

architectural, 13
BPS, 367, 368�70
constructed using BOF, 365�70
defined, 2, 4, 12
design, 12, 13
DMS, 367
frameworks and, 18�19
idioms, 13
RDC, 367
system designers and, 19�20

Periodicity, 291
Pervasive component systems (PECOS)
project, 304

408 Building Reliable Component-Based Software Systems

Physical architecture, 381
Pipe-and-filter architecture, 47
Port-based objects (PBOs), 246, 248

development, 248
illustrated, 248

Ports
CCM, 74
defined, 63

Postconditions, 31
assertions for expressing, 123
component with, 269
defined, 28
for software quality, 306
updating and, 269

Postulates, 36
Preconditions, 31

assertions for expressing, 123
component with, 269
defined, 28
executable, 123
for software quality, 306
updating and, 269

Predictable assembly from certifiable
components (PACC), 180

Prediction-enabled component
technologies (PECTs), 180,
186�89

architectural styles and component
models, 189

architecture-based analysis, 187�88
component certification, 188�89
defined, 186
illustrated, 186

Preference structure-based evaluation,
160�65

aggregation, 161, 165
evaluation attributes, 161�62
measurement scales, 162�63
preference relation, 163
preference structure, 161, 164�65

Procurement-oriented requirements
engineering, 102

Product families, 212�13, 214
Product-line architectures, 205

components, 207�20
introduction, 207�8
Koala, 229�32

layers and subsystems, 232
summary, 220

Product lines, 205�6, 212�13
basic arguments for, 208
characteristics, 209�11
defined, 212

Products
developing, 209
development characteristics, 209�11
Koala, creating, 233
populations, 213�14

Properties
assembly, 168, 169, 172
bound, 67
constrained, 67
defined, 65
emerging, 105
extrafunctional, 34�37
hidden, inevitability of, 172

Prototyping model, 93�95
defined, 93
illustrated, 94
problem, 95
See also Evolutionary development

Provides interfaces, 227�28
Pump engines, 231

Quality-attribute-oriented assessment, 43

Rapide ADL, 75
Rate monotonic analyses (RMAs), 187
Reaction time, 316
Real-time applications design, 291�93
Real-time components, 237�38, 239�62

application-specific models, 246
architectural analysis, 251
composability problem, 240
composition, 255�56
design model, 250
detailed design, 251
example, 257�59
execution-time graph, 253
implementation, 253�55
infrastructure, 244�46
library, 254�55
model examples, 246�49
models, 243�49
on-line upgrades of, 260�61

Index 409

Real-time components (continued)
reuse of, 239, 259�61
Rubus OS, 257�59
scheduling, 251�52
summary, 261�62
system build and test, 254
top-level design, 250�51
See also Components

Real-time operating system (RTOS), 244,
248, 276

temporal predictability, 244
Windows NT as, 283�90

Real-time systems
challenges, 241�43
characteristics, 241�43
components in, 239�62
concurrent, 276�78
defined, 237, 239
designing, 249�52
embedded, 239
introduction to, 239�41
scheduling policy, 241
summary, 261�62
tasks, 241
testing reusable software components in,

265�78
timing failure behavior, 274
WCET verification, 252�53
See also Real-time components

Relational database connector (RDC), 367
Relations, BOM, 360�61
Remote procedure call (RPC), 60
Repository, 321
Requirements

analysis, 101�2, 109�10
management, 351

Requires interfaces, 227�28
Response for a class (RFC)

defined, 140
role effects, 141

Reusable components, 50�51
input domain, 270
with lower reliability requirements, 271
response time, 275
testing, 265�78
See also Components

Reuse
AIP-based application, 348�50
approach, 97�98
architectural support for, 325�52
assumptions, 97
by application integration, 371
by CBD, 371
component-based embedded systems,

309
established, 211�12
Information Organizer, 358
opportunistic, 350
principles, 98
real-time components, 239, 259�61
software, xxxiii
statistical evidence and, 270
testing and, 267�69
within organization, 214

Rhapsody, 320
Risk potential, 173
Robustness, xxxiv
Role-based component engineering,

135�52
defined, 135
introduction to, 135�38
summary, 152

Role models, 138
Roles

BOM, 361
component relationship, 138
concept basis, 136
conclusions, 141
defined, 64
at design level, 142�43
effects, 140�41
encouraging use of, 138�41
frameworks and, 145�46
impact of, 137
at implementation level, 143�45
mapped in IDL interfaces, 144
technology, 142�45

RoseRT, 319�20
Rubus

composed system, 258
composition of components, 259
defined, 257

410 Building Reliable Component-Based Software Systems

extensions for CBSE, 258�59
real-time components in, 257�59
task/interface, 257

Schedulability analysis, 240
Scheduling, 251�52

base priority, 283
integration check during, 252
policy, 241
priority-based preemptive, 283
user-level, 287

Security, xxxiv
Selection, 102�3

defined, 158
example, 102�3
�wrong,� 102

Semantic fragile base class problem, 7�8
Semantic integrity, 115�31

component life phases, 126�28
defined, 116
general issues, 116�18
introduction, 115�16
levels of formalism for, 118�26
summary, 130�31
taxonomy, 128�30

Semantics
executable, 122�24
formal, 124�26
intuitive, 120�21
no, 119�20
structured, 121�22
taxonomy of, 128�30

Semantic specification, 27�34
examples, 28
levels of formalism, 118�26
need, 27�28
UML metamodel of concepts, 29
utility, 32
See also Component specification

Sequential model, 91�92
defined, 91
illustrated, 92
importance, 92
See also Software process models

Service Groups, 344
Smalltalk Model-View-Controller

(MVC), 14

Software
core, 211
fault injection, 197, 199
key, 211
monolithic, 305
quality assessment techniques, 197
reuse. See Reuse

Software architecture, 41�54
assessment and evaluation, 42�43
blackboard, 47
component-driven development, 51�53
configuration management, 43�44
designing, 44�49
design process, 45�46
dynamic, 44
focus, 39
introduction to, 41�42
object-oriented, 48�49
pipe-and-filter, 47
role of, 42�44
styles, 46�49
summary, 53�54
transformation categories, 47

Software Architecture Analysis Model
(SAAM), 251

Software development environment
(SDE), 233

Software process models, 90�97
evolutionary development, 92�95
sequential model, 91�92
Unified Process (UP), 95�96

Software reliability engineering, 200
Specification levels, 117
Spiral model, 95
Stakeholder-based assessment, 43
Statistical evidence, 270�78
Structured semantics, 121�22

defined, 121
specification example, 121
without formal requirements, 122
See also Semantics

Structures, 339�41
defined, 339
illustrated, 340
See also Aspect Integrator Platform

(AIP)
Subtyping, 234�35

Index 411

Swing framework, 145
Switches, 229
Synchronization failures, 277
Synchronous languages, 311, 312
Syntactic fragile base class problem, 7
System(s)

design, 103�4
development process, 107�8
failure, 196
implementation, 104
integration, 104�5
maintenance, 107
operation support, 107
real-time, 239�62, 274�76
verification and validation, 106�7

System software layer, 347

Tasks
deadlines, 241
defined, 241
nonperiodic, 241
periodic, 241
Rubus, 257

Termination failures, 273
Testing, 265�78

exhaustive, 267�69
reuse and, 267�69

Threads, 287�88
efficiency through, 291
real-time, 287, 297
sharing, 231

Timing analysis
defined, 240
performance levels, 243

Tool support, xxxiii
Top-level design, 250�51
Total correctness, 12
Trusted components, xxxii
Trusted computer security evaluation

criteria (TCSEC), 188
Trustworthiness, xxxiv, 193�203
Types, 65

UML class diagrams, 142
extrafunctional properties, 36
semantic specification, 29
syntactic specification, 25

Unified Modeling Language (UML), 2, 11

extension, 142
interface definition, 32
refinement relation, 142
standard component concept, 32
See also UML class diagrams

Unified Process (UP), 95�97
defined, 95
incremental part, 97
iterative part, 97
phases, 95, 96
workflows, 96
See also Software process models

User phase, 127�28

Validation, 106�7
Value failures, 273
Variability

defined, 215
independence vs., 216

Variant-free architecture, 213
Variants, managing, 233�34
Verification, 105�7

component, 106
system, 106�7
WCET, 252�53

Versions, managing, 233�34
VEST, 245
Vienna Development Method, 28
Viewpoints, 139
Views, BOM, 361
Visual Basic, 210, 211

WCET
of function blocks, 306
test cases, 253, 255
verification, 252�53

Web site, this book, xxiv
Weighted methods per class (WMC)

defined, 139�40
role effects, 140�41

White-box framework, 148
Windows NT

application use of, 282
characterization of, 282
experimental results, 293�96
as general-purpose OS, 284
incoming sensor data, 290
incoming video streams, 290�91

412 Building Reliable Component-Based Software Systems

TEAMFL
Y

Team-Fly®

I/O subsystem, 286�87
non real-time tasks, 290
observations and recommendations,

289�90
operator input, 290
potential blocking time, 289
priority-based preemptive scheduling,

283
priority structure, 284

real-time application design, 291�93
real-time features, 285�89
real-time function delays, 296
in real-time setting, 290�96
as RTOS, 283�90
scheduler, 289
summary of results, 296
unpredictable parts of, 282

Wireless application protocol (WAP), 359

Index 413

