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Preface

This volume can be considered a direct outcome of the special scientific “meeting-
in-the-fortress” on “Advances in Control Theory and Applications” organized in
Bertinoro, Italy, by the Centre of research on Complex Automated Systems
(CASY), Department of Electronics Computer and Systems of the University
of Bologna, during the week May 22–26, 2006. The inspiring idea of that work-
shop was to provide a forum for exchange of ideas between theory-oriented and
application-oriented researchers working on various systems and control prob-
lems. The meeting offered an opportunity for formal presentations of research
results as well as for informal discussions about ideas and problems, case-studies,
limitations and potentials of existing and emerging theories. The main goal of
the meeting was to facilitate cross-fertilization between different theoretical and
applicative areas. Emphasis was put on identification of new theoretical develop-
ments and research directions, as needed by recent progresses in applications and
problems which are still looking for a theoretical support and effective rigorous
solutions. The technical programme consisted of twenty-five main lectures de-
livered by distinguished scholars and was complemented by a number of poster
presentations prepared by post doctoral fellows and PhD students currently
working at CASY. Out of the twenty five lectures given in Bertinoro, fifteen are
reported here in written form. They are organized as separate contributions and
listed according to the alphabetic order of the first author, as follows.

Modeling and Control of Autonomous Helicopters by Manuel Béjar, Anibal
Ollero, Federico Cuesta, presents an overview on the modeling and model-based
control of autonomous helicopters.

Efficient Quantization in the Average Consensus Problem by Ruggero Carli,
Sandro Zampieri deals with the average consensus problem where a set of linear
systems has to be driven to the same final state which corresponds to the average
of their initial states.

Human-Robot Interaction Control Using Force and Vision by Agostino De
Santis, Vincenzo Lippiello, Bruno Siciliano, Luigi Villani focuses on techniques
for augmenting safety by means of control systems, starting from the idea of
mimicking sensing and actuation of humans.
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A Dissipation Inequality for the Minimum Phase Property of Nonlinear Con-
trol Systems by Christian Ebenbauer, Frank Allgöwer discusses a new charac-
terization of the minimum phase property of nonlinear control systems in terms
of a dissipation inequality.

Input disturbance suppression for port-Hamiltonian systems: an internal model
approach by Luca Gentili, Andrea Paoli, Claudio Bonivento presents a compre-
hensive port-Hamiltonian systems framework to deal with input disturbance
suppression problems.

A Systems Theory View of Petri nets by Alessandro Giua, Carla Seatzu fo-
cuses on Petri nets as a family of powerful discrete event models whose interest
has grown in parallel with the development of the theory of discrete event sys-
tems.

Wireless Sensing with Power Constraints by Orhan C. Imer, Tamer Başar
introduces two conceptual models for wireless sensing and control with power-
limited sensors and controllers.

The Important State Coordinates of a Nonlinear System by Arthur J. Krener
offers an alternative way of evaluating the relative importance of the state coor-
dinates of a nonlinear control system.

On Decentralized and Distributed Control of Partially-Observed Discrete Event
Systems by Stéphane Lafortune surveys recent work of the author with several
collaborators on decentralized control of discrete event systems.

A Unifying Approach to the Design of Nonlinear Output Regulators by
Lorenzo Marconi, Alberto Isidori aims to propose a unique vision able to frame
a number of results recently proposed in literature to tackle problems of output
regulation for nonlinear systems.

Controller Design through Random Sampling: an Example by Maria Prandini,
Marco C. Campi, Simone Garatti presents the ’scenario approach’, an innovative
technology for solving convex optimization problems with an infinite number of
constraints.

Digital Control of High Performance Power Supplies for a Synchrotron Light
Source by Carlo Rossi, Andrea Tilli, Manuel Toniato discusses some aspects of
an advanced control strategy for a class of quadrupole magnet power supply,
where variable output current has to be imposed.

Distributed PCHD-Systems, from the Lumped to the Distributed Parameter
Case by Kurt Schlacher extends the Hamiltonian approach to a class of dis-
tributed parameter Hamiltonian systems, which preserves some useful properties
of the well known class of Port Controlled Hamiltonian systems with dissipation.

Observability and the Design of Fault Tolerant Estimation Using Structural
Analysis by Marcel Staroswiecki presents a structural analysis approach for the
design of fault tolerant estimation algorithms.

Robust hybrid control systems: an overview of some recent results by Andrew
R. Teel gives an overview of a new framework for analyzing hybrid dynamical
systems.

We are grateful to all the outstanding colleagues and friends who accepted
to participate to the Bertinoro workshop and to contribute to the success of



Preface VII

that initiative with inspiring presentations, fruitful interactions and technical
discussions, namely Frank Allgöwer, Karl Åström, Tamer Başar, Marco Campi,
Tryphon Georgiou, Alessandro Giua, Lino Guzzella, Arthur Krener, Stéphane
Lafortune, Manfred Morari, Steve Morse, Anibal Ollero, Laurent Praly, Anders
Rantzer, Giorgio Rizzoni, Kurt Schlacher, Bruno Siciliano, Marcel Staroswiecki,
Andrew Teel, Roberto Tempo, Arijan van der Schaft, Yutaka Yamamoto, Sandro
Zampieri. We warmly thank in particular those of them who spend time in
addition in order to prepare their revised written texts collected in this volume.
We are sure that this effort will be useful for many young scientists and skilled
professionals operating in different technical areas around the world.

We are indebted with many individuals and institutions for their support and
help. In particular, we thank Manfred Morari who promptly accepted our idea of
publishing this book in the LNCIS series, Thomas Ditzinger and Heather King,
Engineering Editorial of Springer-Verlag, for the precious assistance, Roberto
Naldi for the accurate editing work. Finally, the funding supports given by the
Institue of Advanced Studies and the Department DEIS both of the University
of Bologna, and the hospitality offered by the Bertinoro Residential Centre are
gratefully acknowledged.

Bologna, Claudio Bonivento
28 November, 2006 Alberto Isidori

Lorenzo Marconi
Carlo Rossi
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Modeling and Control of Autonomous
Helicopters

Manuel Béjar1, Anibal Ollero2, and Federico Cuesta2

1 Universidad Pablo de Olavide
mbejdom@upo.es

2 Universidad de Sevilla
{aollero,fede}@cartuja.us.es

Summary. This chapter presents an overview on the modeling and model-based con-
trol of autonomous helicopters. Firstly it introduces some of the platforms and control
architectures that has been developed in the last 15 years. Later, the Chapter consid-
ers the modeling of the helicopter and the identification techniques. Then, it overviews
different linear and non-linear model-based control approaches. This section also in-
cludes experiments on the control of the helicopter vertical motion that illustrate the
presented techniques and point out the interest of nonlinear analysis methods to study
the dynamic behavior of the helicopter. Finally, the Chapter presents open research
lines coming from two challenging applications: the autonomous landing in oscillating
platforms and the lifting and transporting of a single load with several helicopters.

Keywords: Autonomous Helicopter, Helicopter Modeling and Identification, Au-
tonomous Helicopter Control, Autonomous Landing.

1 Introduction

In the last decade Unmanned Aerial Vehicles (UAVs) have attracted a significant
interest. UAVs avoid the human risk inherent to human-piloted aerial vehicles,
particularly in missions in hostile environments, and they can be smaller and
more maneuverable. The exploitation costs can be also lower that the in manned
aircrafts.

UAVs have been widely used for military applications. Recently, the evolution
of UAV technologies, the miniaturization of the sensors and cameras and the
new advances in communication and control systems, point to a wide range
of civilian applications such as natural disasters, inspection, search and rescue,
traffic surveillance and law enforcement.

Remotely piloted and autonomous helicopters have been extensively used for
applications involving aerial and lateral views including aerial photography, cin-
ematography, inspection and other aerial robotic applications. The maneuver-
ability and hovering ability of helicopters and other VTOL design are main re-
quirements in many of these applications. However, helicopters are more difficult
to control than fixed wing aircrafts. In fact, they require critically stabilization
loops which are coupled to the displacement behaviors.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 1–29, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



2 M. Béjar, A. Ollero, and F. Cuesta

Fig. 1 shows the reference systems used in helicopter control. The position and
orientation of a helicopter is usually controlled by means of 5 control inputs: the
main rotor collective pitch which has a direct effect on the helicopter height (z
axis in the X-Y-Z system); the longitudinal cyclic which modifies the helicopter
pitch angle (rotation about the yb axis in the xb − yb − zb system) and the
longitudinal translation; the lateral cyclic, which affects the helicopter roll angle
(rotation about the xb axis in xb−yb−zb system) and the lateral translation; the
tail rotor which controls the heading (yaw motion) of the helicopter (rotation
about the zb axis in xb − yb − zb system) and compensates the anti-torque
generated by the main rotor; and the throttle control. It is a multivariable non-
linear system with strong coupling in some control loops.

xb

xb

yb

yb

zb

zb

X

X

Y

Y

Z

Z

Right View

Rear View

Top View

Fig. 1. Inertial (XYZ) and body (xbybzb) coordinate systems of the helicopter

Autonomous helicopter control has been a well known control benchmark.
Different approaches can be used including model based control and other ap-
proaches based on learning from human operators and rule-based techniques.
Thus, fuzzy logic with rules generated by the observation of a human pilot and
consultation with helicopter experts is the approach used in [5]. In [30] PD con-
trol loops with gains tuned by trial and error are implemented. In [29], the
controller is generated by using training data gathered while a human teacher
controls the helicopter. In [4] learning is based on the direct mapping of sensor
inputs to actuator control via an artificial neural network. Then, the neural net-
work controller was used for the helicopter hovering. The analysis of the pilot’s
execution of aggressive manoeuvres from flight test data is the base of the method
presented in [12] to develop a full-non-linear dynamic model of a helicopter. In
this Chapter only model-based analysis and control techniques are considered.

Section 2 of this Chapter introduces some of the platforms that have been
used for the experimentation of control techniques and also the control architec-
tures developed for aerial robotics. Section 3 is devoted to modeling including
model development and identification. Section 4 deals with model based control
techniques and Section 5 points to open research lines. Finally, sections 6 and 7
are devoted to the Conclusions and References.
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2 Platforms

Autonomous helicopters are very valuable platforms for aerial robotic. Thus,
many different Universities and Research Centers have developed experimenta-
tion platforms since the beginning of the nineties. The usual approach has been
the adaptation of remotely piloted helicopters that are available in the hobby
and aerial photography market. Furthermore, commercial platforms designed
and implemented by companies have been also used. The most well known and
widely used autonomous helicopters are the Yamaha R50 and Rmax platforms
(see Fig. 2). They have been commercially used in Japan for crop spraying.
Other commercial platforms developed mainly for military applications are the
Fire Scout from Northrop Grumman and the Camcopter from Schiebel.

Fig. 2. Yamaha Rmax platform

The Robotics Institute at Carnegie Mellon University (CMU) conducted since
the early nineties an autonomous helicopter project. They have developed dif-
ferent prototypes from small electrical radio controlled vehicles to autonomous
helicopters using the Yamaha R50 platform. The autonomous CMU helicopter
won the AUVSI aerial robotic competition in 1997.

The University of Southern California (USC) carried out several autonomous
helicopter projects since 1991, developing prototypes, such as the AVATAR (Au-
tonomous Vehicle Aerial Tracking and Retrieval/Reconnaissance) prototypes
presented in 1994 and 1997. The AVATAR helicopter won the AUVSI Aerial
Robotics competition in 1994.

The University of Berkeley also developed autonomous helicopters in the
Berkeley AeRobot project, BEAR, in which the autonomous aerial robot is a
test bed for an integrated approach to intelligent systems.

The Georgia Institute of Technology (GIT) has the Unmanned Aerial Vehicle
Research facility and developed several platforms and aerial autonomous systems
during the last decade. GIT also won the AUVSI aerial robotics competition.

In Europe the University of Linköping leaded the WITAS project which was
a long term basic research project involving cooperation with other Univer-
sities and private companies [8]. The Yamaha Rmax helicopter was used for
demonstration in the WITAS project. Moreover, several Universities such as the
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Technical University of Berlin, ETH Zurich [9], and Universidad Politécnica de
Madrid [1] are using the adaptation of conventional radio controlled helicopters
with different autonomous capabilities.

Fig. 3 shows MARVIN developed by the Technical University of Berlin [33],
which won the AUVSI Aerial Robotics Competition in 2000. Later, they devel-
oped Marvin II in the framework of the COMETS European IST project on the
coordination and control of multiple heterogeneous vehicles (http://grvc.us.es/
comets). These helicopters are shown in Fig. 3.

Marvin I Marvin II

Fig. 3. The Marvin autonomous helicopters flying in experiments of the COMETS
project

The GRVC group of the University of Seville (http://grvc.us.es) developed
several teleoperated and autonomous platforms in the framework of the above
mentioned COMETS project, which was coordinated by the researchers of this
University, and the Spanish CROMAT project on the coordination of aerial and
ground robots (http://grvc.us.es/cromat). Fig. 4 shows some of these platforms.

Control Architectures

On board control architectures for UAV integrate a variety of sensor information
including GPS, 3-axis rate gyro, 3-axis accelerometer, aircraft attitude reference
sensor, compass, altitude sensors among others. Furthermore, low level motion
servo-controllers are implemented to control the vehicle typically in different con-
trol modes. Intelligent control architectures also include environment perception,
object tracking, and local reactive (obstacle avoidance) and planning capabili-
ties. The on-board control hardware is linked to an operator ground controller
which is used to send commands and GPS corrections to the on-board controller
and to visualize information transmitted from the UAV. In many projects these
controllers are now implemented by means of laptops.

The University of Southern California (USC) developed a behavior-based ar-
chitecture for the control of the AVATAR autonomous helicopter [10]. The low-
level behaviors correspond to the generation of the four input commands of the
helicopter (collective throttle, tail rotor, longitudinal and lateral cyclic). The
second level implements short-term goal behaviors: transition to altitude and
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HELIV jointly developed
by the University of
Seville and Helivision in
the COMETS project.

HERO 1 developed by
the University of Seville
(2004)

HERO 3 developed by the
University of Seville in the
CROMAT project

Fig. 4. Helicopters developed at the University of Seville

lateral velocity. The highest-level behavior, navigation control, is responsible for
long-term goals such as moving to a particular position and heading.

Intelligent control architectures for unmanned air vehicles (helicopters) are
also researched at Berkeley. The hierarchical architecture segments the control
tasks into different layer of abstraction in which planning, interaction with the
environment and control activities are involved. The hierarchical flight manage-
ment system [19] has a stabilization/tracking layer, a trajectory generation layer,
responsible for generating a desired trajectory or a sequence of flight modes, and
a layer which switches between several strategy planners. Both continuous and
discrete event systems are considered. In order to model these control systems,
hybrid system theory has been proposed (see for example [21]).

GIT also developed autonomous helicopter control systems and research in
flight controls, avionics and software systems.

The control architecture developed at the University of Seville includes a low
level control system based on the DSP TMI2812 and a PC104 to implement
complex control strategies eventually involving environment perception func-
tions. Several control strategies can be implemented including manual guidance
with automatic stabilization and hovering, and fully autonomous flight.

To conclude this section it should be noted that a practical difficulty in most
autonomous helicopter projects is the need of experienced pilots for their devel-
opment and application. Other relevant issues are the following:

- Strong need of mechanical maintenance and testing of platforms, particularly
in the low cost platforms built by adapting small radio control helicopters.

- Relevance of the weight and power consumption particularly in small heli-
copters. This issue imposes strict requirements on the hardware to be used
on-board. Thus, on-board UAV control hardware is an ideal application for
new embedded control systems involving microcontrollers, DSPs, and em-
bedded PCs with real-time Operating Systems.

- Relevance of the mechatronic design involving mechanical, sensing and con-
trol joint design.
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- Strict safety and reliability constraints imposing extensive testing before im-
plementation which may involve the application of hardware in the loop
techniques.

3 Modeling

Modeling UAV dynamics is a challenging research area. The full model of a heli-
copter, including flexibility of the rotors and fuselage, dynamics of the actuators
and combustion engine, is very complex.

In most cases, the helicopter is considered as a rigid body, whose inputs are
forces and torques applied to the center of mass and whose outputs are the linear
position and velocity of the center of mass, as well as the rotation angles and
angular velocities.

Furthermore, the relations between the actual control inputs of the helicopter
and the above mentioned forces and torques should be considered in the model.
In general, these relations involve the aerodynamics of the fuselage and the effect
of stabilizers. However, it has been pointed out that these stabilizers effects can
be ignored at low speeds [22].

In [20] a mathematical model and its experimental identification for a model
helicopter are presented. The model of the interactions between the stabilizer
flybar and the main rotor blade is also included, showing its effects on the stabil-
ity of the model helicopter. The identification from input-output data, collected
when a human pilot is controlling the vehicle, is difficult because it is not possible
to study the individual effect of each control input (the pilot has to apply more
than one input to maintain the stability). To overcome this, the identification of
the parameters is performed on a SISO basis, using four specially-built stands to
restrict the motion of the helicopter to one degree of freedom. For example, one
of these stands only allowed vertical motion. Thus only the main rotor collective
input was excited and only the vertical displacement was measured. In these
conditions, the simplified linear transfer SISO function from collective input to
the vertical motion was identified using standard identification techniques.

In [28] a parameterized model of the Yamaha R-50 autonomous helicopter is
identified using frequency domain methods. The stabilizer bar is also taken into
account. The model was validated with special flight experiments using doublet-
like control inputs in hover and forward flight, showing its ability to predict the
time domain response of the helicopter to control inputs. At CMU, a high-order
linear model of the R-50 Yamaha helicopter is used for control. This model was
extracted by using the MOSCA (Modeling for Flight Simulation and Control
Analysis) with a non-linear simulation model of the helicopter [25].

The work in [7] also presents a complete nonlinear helicopter model. Modeling
is based on the Blade Element Momentum Theory which is a combination of
the Blade Element Theory and Momentum Theory. Aerodynamic effects such
as effective translational lift, traverse flow and ground effect, are considered.
In contrast to previous works, the author highlights the presence of gyroscopic
effect in pitching and rolling movements of rotors. The influence of wind gust is
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also studied. It shows the strong effect of wind disturbances on lateral position
and how the altitude is also affected due to the Effective Translational lift. The
complete model has been validated by means of several experiments with the
MARVIN I autonomous helicopter, shown in Fig. 3.

3.1 Model Development

Generally, the model of a helicopter can be divided into five different subsystems:
Servo Dynamics, Engine Dynamics, Aerodynamics (Main Rotor, Tail Rotor and
Fuselage), Force and Moment Generation, and Rigid Body Dynamics. Connec-
tions between these subsystems are shown in Fig. 5. In this figure, Pc (main
rotor collective pitch), Pt (tail rotor collective pitch), Px (longitudinal cyclic
pitch), Py (lateral cyclic pitch), and Pth (Throttle control), are the input signals
mentioned in Section 1 of this Chapter. Pcmd comprises the five corresponding
commanded signals before actuator dynamics.

Rigid Body
Dynamics

Force &
Moment

Generation

Main
Rotor

Tail
Rotor

Fuselage

Engine
Dynamics

Servo
Dynamics

s
v

φ

ωb

F b

τ b

Fm

τm

Ft

τt

Ff

ωe

ω̇e

Pc

Px

Py

Pt

P th

Pcmd

Fig. 5. Helicopter Dynamics

Likewise, s =
[
x y z

]T and v =
[
vx vy vz

]T are, respectively, the linear

position and velocity of the helicopter. On the other hand, φ =
[
φx φy φz

]T are
the Euler angles whilst ωb ∈ R3 is the angular velocity in the body frame.

Rigid Body Dynamics

By regarding the helicopter as a rigid body, equations of motion of a model
helicopter can be derived by applying Newton-Euler equation. Thus, the trans-
lational and rotational movements of a rigid body are described by the conser-
vation of linear and angular momentum. For translation this yields to

mv̇ = F (1)

where m is the helicopter mass and F ∈ R3 is the force applied to the center of
mass. All the vectors are given in the inertial frame.

For rotation, it is easier to switch to the body fixed frame. In this case the
equation of motion yields to
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Jω̇b + ωb × Jωb = τb (2)

where J ∈ R3×3 is the inertial matrix and τb ∈ R3 the torque applied to the
helicopter body.

The transformation from body to inertial frame can be parameterized by Euler
angles φ and yields to a rotation matrix R(φ) that makes possible the conversion
F = R(φ)F b. By differentiating R(φ) with respect to time, state equations of
the Euler angles are obtained φ̇ = Ψ̂(φ)ωb.

Therefore, the motion equations of a rigid body can be written as:⎡⎢⎢⎣
ṡ
v̇

φ̇

ω̇b

⎤⎥⎥⎦ =

⎡⎢⎢⎣
v

1
mR(φ)F b

Ψ(φ)ωb

J−1(τb − ωb × Jωb)

⎤⎥⎥⎦ (3)

Force and Moment Generation

The force experienced by the helicopter is the sum of the thrust generated by
main (Fm) and tail (Ft) rotors and the gravitational force. An additional term
Ff for the air resistance of the fuselage is also added:

F b = Fm + Ft + Ff +RT (φ)

⎡⎣ 0
0

−mg

⎤⎦ (4)

The torque is composed of the torques generated by the main rotor (τm), tail
rotor (τt) and the torques generated by the forces, since their point of attack is
displaced from the center of mass:

τb = τm + τt + rm × Fm + rt × Ft (5)

where rm, rt are the positions of the main and the tail rotors and g is the
acceleration of the gravity.

Aerodynamics

Fuselage Air Resistance

Air resistance of the fuselage (Ff ) can be approximated by the 3× 1 vector

Ff =

⎡⎣Kfxv
b
ax
|vb

ax
|

Kfyv
b
ay
|vb

ay
|

Kfzv
b
az
|vb

az
|

⎤⎦ (6)

where Kfi are aerodynamical parameters, vb
a is the air velocity in body fixed

frame and | − | denotes absolute value.
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Dynamics of a General Rotor

In this subsection, equations for a general rotor with collective and cyclic pitch
inputs are derived [6] [7]. Subsequently, these equations should be applied to
each rotor to obtain the forces (Fm, Ft) and the torques (τm, τt) indicated in
Equations (4) and (5).

Forces and torques generated by a rotor will be calculated as mean values of
the forces of a single rotating blade. Due to wind and pitch, these forces will be
changing during one cycle. Therefore, integrating these forces along each blade
and for one cycle will yield to the mean lift force FL and the mean drag MD,
both along zr axe of the rotor disk, and the mean torques Mx, My along axes
xr and yr of the rotor disk, respectively.

Fig. 6. Rotor disk for integration

Mean lift force (FL). For the determination of mean lift, all lift components of
each rotor element are integrated according to Fig. 6. Blades are assumed to be
non-twisted and of constant chord from radius R1 to R2.

The mean lift yields to

FL =
∫ 2π

0

∫ R2

R1

F ′
Ldrdα (7)

where F ′
L depends on several values such as the pitch of the blade and the air

velocity vr relative and orthogonal to the blade.

Mean torque (Mx and My). Torques are produced by the same forces F ′
L as lift.

Since these forces are applied asymmetrically, two different torques are produced
along axes xr and yr. To obtain these toques, forces must be integrated as follows:

Mx =
∫ 2π

0

∫ R2

R1

F ′
Lr

2sin(α)drdα (8)

My =
∫ 2π

0

∫ R2

R1

−F ′
Lr

2cos(α)drdα (9)
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Mean drag (MD). Estimating drag of a rotor is very similar to estimating lift.
In this case, the second force exerting on the blade (drag force F ′

D) is integrated
along each blade and for one cycle. Thus, the mean drag of the rotor can be
expressed as

MD =
∫ 2π

0

∫ R2

R1

F ′
Dr

2drdα (10)

where the drag force F ′
D is assumed to be proportional to the square of the pitch.

Engine Dynamics

For the dynamics of the main engine a first order linear differential equation
is considered. As a simplification, it is assumed that the engine (ωe) and the
main rotor (ωm) have the same angle velocity. This means that the real ratio is
identified within the other engine parameters. The torque Me generated by the
engine is assumed to be proportional to the throttle input pth and the friction
Mg of the gear is assumed to be viscose.

The equation for the engine now yields to (recall that ωe = ωm):

ω̇e =
Me −MDm − ηtMDt −Mg

Jm + ηtJt + Jg
(11)

where Jm, Jt, Jg are the moments of inertia for main rotor, tail rotor and gear,
respectively, MDm and MDt are mean drags of main and tail rotor and ηt is the
ration between tail rotor and main rotor angular velocities.

Servo Dynamics

For each control servo, the same first order behavior is assumed:

Ṗ i = −αPi+ αPCMDi i = c, x, y, t, th (12)

where α is a parameter representing the damping behavior of the servo and
PCMDi is the commanded value for the servo i.

3.2 Model Identification

The main difficulties of helicopter model identification are due to the instabil-
ity and coupling inherent characteristics associated to the system. These in-
conveniences can be avoided with some modifications of classic identification
approaches.

Mathematically, the identification task can be formulated as an optimization
problem:

min
Θ

F (Θ,Γ ), (13)

where Θ is the set of parameters to be identified, Γ the captured reference flight
(Γu inputs, Γx states, Γy outputs) and F a fitness function which is decreasing
for a better approximation of the model.



Modeling and Control of Autonomous Helicopters 11

In order to obtain data for solving this optimization problem, it will be nec-
essary to record the helicopter responses and the corresponding control signals
given by a pilot at a reference flight.

Rest of this section is devoted to illustrate an identification tool for au-
tonomous helicopters recently developed by the GRVC.

Fitness Function

To define the fitness function there are different methods whose applicability
depends on the characteristics of the model to be identified.

For further discussions we assume a general non-linear model in state-space-
form

ẋ = f(x, u), (14)
y = h(x), (15)

where x ∈ Rn is the state vector, u ∈ Rp the control vector and y ∈ Rq the
observation vector.

The parametersΘ are included in the system function f(x, u) and the observa-
tion function h(x). To compare a captured reference flight Γ with the identified
model response, the model has to be simulated with the same control signal Γu

and the same initial condition Γx(t0).

ẋ = f(x, Γu), x(t0) = Γx(t0), (16)
y = h(x).

Output Error Method (OEM)

Fitness is seen as the error between the simulated and the actual trajectories of
the outputs measured in the system.

In particular, the parameter fitness can now be written as a weighted mean-
square-error:

FOEM (Θ,Γ ) =
N∑

k=1

(y(tk)− Γy(tk))TW (y(tk)− Γy(tk)) (17)

where N is the number of data points and W a weighting matrix.
This method is the most widely used, since it has many desirable statistical

properties. However it poses difficulties when applied to inherent unstable sys-
tems. In this case, numerical integration leads to diverging solutions even if the
correct parameters are used, due to the open-loop character of the simulation.

Stabilized Output Error Method (SOEM)

The instability caused by numerical divergence in OEM can be solved by incor-
porating stabilization using some states that can be measured.

The fitness function to be minimized is the same used in the normal OEM
and is given above by equation (17). Only the simulation structure (Fig. 7) is
modified by replacing some states with those of the measured trajectory. Thus
x̂(l) is the combination of measured states Γx and simulated states x.



12 M. Béjar, A. Ollero, and F. Cuesta

Γx(t0)

ẋ

x̂(l)

Γu

Γx

x

Combination Mask

1
sfl(x̂(l), u)

Fig. 7. Structure of a stabilized simulation used with the SOEM

Preprocessing

Parameter Range

Before applying optimization algorithms, the proper choice of the helicopter
parameters range is crucial for a successful identification. If the range is chosen
too small, the parameters may be outside, and if it is too large the search may
take very long or will not converge. This choice of the ranges can be challenging
and requires good knowledge of the helicopter model.

Reference Flights

Another important step is the specification of the reference flights. On the one
hand, sometimes several parameter combinations could adapt well to a partic-
ular reference flight; to overcome this, some flights are captured with a known
parameter offset, like mounting a mass with known weight and moments of in-
ertia. On the other hand, trajectories commanded in reference flights should be
those that excite as much helicopter dynamics as possible. This last specification
can be tested performing a sensitivity analysis for each parameter.

Parameter Sensitivity

Analyzing the sensitivity of the fitness function with respect to each parameter
gives an estimate of how every parameter is involved in the behavior of the heli-
copter and therefore how precise each can be identified. A sensitivity analysis is
performed for a specific reference flight, assuming a set of parameters. The data
corresponding to the reference flight are used to evaluate the fitness function
while varying each parameter around its assumed default values. Due to neglect-
ing the coupling between the parameters, the result is only an estimate, but it
helps to get a feeling of how suitable a particular maneuver will be to identify
all the parameters.

Fig. 8 shows a sensitivity analysis. The vertical line represents the default
value of the parameter and the curve shows the fitness while modifying each
parameter.
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Fig. 8. Sensitivity analysis for a particular manoeuver. Each subgraph shows the vari-
ation of the fitness function (gray line) while modifying a parameter around its default
value (black vertical line). One possible conclusion is that parameters CQ

t and DQ
t

have small influence in this manoeuver (and therefore, it would be more complicated
to identify them) since their fitness variation is less than in other cases.

Optimization Algorithm

To solve Equation (13), the functions provided by [27] have been implemented.
These functions are designed to find the minimum of a constrained nonlinear
multivariable function of several variables. In our case, the multivariable function
is the fitness described in Equation (17) and the parameters values associated
to the minimum are those that make the model response be more similar to the
reference flight.

Notice that an observed limitation of these functions is that might only give
local solutions. This highlights the importance of the remarks made previously
about parameter range choice.

Validating the Model

After having found an optimal set of parameters, it is desirable to see how good
this model will predict different behaviors of the real helicopter. This can be
done by plotting and comparing the real and the simulated trajectory.

The set of data used in the identification process (reference data) should not
be the same that is used in this validation process (evaluation data). This way,
parameter adaptation to a particular set of data is avoided.
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When simulating a set of evaluation data, the same problem of diverging
solutions occurs for unstable systems. This problem can be solved with the same
approach used in SOEM.

Results

The proposed identification framework has been tested with the reference model
introduced in Section 3.1. To this end, three flights are captured: two reference
flights of 4 seconds, used in the identification process, and one evaluation flight
of 6 seconds, used to evaluate the identified parameters. For the second reference
flight, a parameter offset has been used to represent an additional mounted mass
with known weight and inertia matrix.

Results obtained applying SOEM method are shown in Fig. 9.
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Fig. 9. Comparison between actual evaluation data and simulation data with param-
eters identified with SOEM

4 Control Techniques

In this section model-based control techniques are considered. Firstly, a general
perspective is given. Then, the model described in previous sections is used to
design control strategies that illustrate the concepts explained in the mentioned
overview.

Although a helicopter is a coupled nonlinear multivariable and underactuated
system, simplification of some coupling terms leads to a first simplified scheme
of main relations between input-ouput variables of Fig. 5, as shown in Table 1.

Notice that translational variables are expressed in the body coordinate frame
defined in Fig. 1. This set of relationships is the base of the typical control
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Table 1. Basic input-output relations in a helicopter

Control Input Translation Rotation
Pc zb -
Pt - φz

Px xb φy

Py yb φx

scheme shown in Fig. 10. This control scheme not only takes into account the
main relationships in Table 1 but also considers the most important couplings,
such us the lateral and longitudinal movement effect on vertical dynamics.

Fig. 10. Basic control scheme

4.1 Model-Based Techniques

Both linear and nonlinear control strategies have been applied to autonomous
helicopters. However, even when linear control laws are applied to the inputs
defined in Fig. 5, some authors add nonlinear transformations in particular con-
ditions. Thus, in [13] a nonlinear rotation matrix is considered to deal with yaw
angles not equal to zero. This rotation matrix converts x and y deviations (global
system) into xb and yb deviations (local system).

In [36] linear robust multivariable control, fuzzy logic control and nonlin-
ear tracking control are compared in the simulation of two scenarios: vertical
climb and simultaneous longitudinal and lateral motion. In order to design the
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multivariable linear control law, Equations (3) together with the corresponding
nonlinear expressions for forces and torques given by (4) and (5), are linearized.
Fuzzy control is based on the generation by means of fuzzy logic of the param-
eters of four separated PID chains, which correspond to each of the inputs of
Fig. 5, excluding Pth since engine dynamics are not modeled. The nonlinear
approach consists of feedback linearization, assuming the simplification of the
coupling effects between forces and torques of Equations (4) and (5). This ap-
proach is shown to be more general and to cover wider ranges of flight envelopes.
However, it also requires accurate knowledge about the system and is sensitive
to model disparities, such as changes in the payload, or to the aero-dynamic
thrust-torque model.

In [19] multiloop linear PID techniques obtained good results when applied
to the Yamaha R-50. Using variables of Fig. 5, the control laws can be outlined
as follows:

Pc(t) = −Pvzvz(t)− Pzez(t)− Iz

∫
ez(t)dt

P t(t) = −Pφzφz(t)− Iφz

∫
eφz(t)dt

Px(t) = −Pφyφy(t)− Pvxvx(t)− Pxex(t)− Ix

∫
ex(t)dt

Py(t) = −Pφxφx(t)− Pvyvy(t)− Pyey(t)− Iy

∫
ey(t)dt (18)

where ei(t) denotes deviation in variable i. Pj and Ij are respectively propor-
tional and integral control constants associated to variable j. Notice that these
expressions also reflect the main relations shown in Table 1. Analyzing per-
formance, if large perturbations should be compensated, or significant tracking
abilities are required, this strategy could be not enough. In this case further im-
provements can be obtained by adding nonlinear control terms that compensate
significant deviations with respect to the hovering conditions.

At CMU a high-order linear model of the R-50 Yamaha helicopter is used
for control in [23] [24]. The controller consists of one multivariable (MIMO) in-
ner loop for stabilization and four separate (SISO) guidance loops for velocity
and position control. Several manoeuvre tests have been conducted with the
helicopter (square, forward turn, backward turn and nose-out circle). The con-
troller is designed for hovering but its robustness leads the helicopter to perform
the manoeuvres efficiently even if the trajectories are not optimal. Videos and
further information can be accessed in http://www.roboticflight.org.

The work at [18] aimed at achieving aggressive manoeuvrability at the level of
attitude angles, whose dynamics are defined by the fourth element of Equation
(3). However the authors do not consider the contribution of tail rotor force in
terms of the tail rotor torque, shown in (5). Likewise, engine dynamics block in
Fig. 5 are not considered, which implies the assumption of a constant angular
velocity ωm. After these assumptions, the nonlinear model is approximated by
a Takagi-Sugeno fuzzy model, which boils down to convex combination of linear
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submodels. Finally, a gain scheduled output feedback H∞ controller for the
approximated model is designed.

Fig. 11 outlines the control scheme adopted in [17] and [32], using the same
notation of Fig. 5 for inputs and outputs.

Fig. 11. Adaptive control scheme

The proposed structure is based in feedback linearization and combines the
helicopter attitude inner control loop and the outer trajectory control loop. It
also applies adaptive techniques (aad , αad) to cancel model errors. Furthermore,
Pseudo-Control-Hedging (ah , αh) is used to prevent unwanted adaptation to
actuator limits and dynamics in the inner loop. The commanded references are
sc , vc, φc and ωc whereas φdes and ωdes are the values imposed to the inner
loop by the outer loop.

In general no guarantee of robustness against model uncertainties or distur-
bances and no adaptive capabilities are provided by many feedback linearization
techniques. However, in some cases, nonlinear controller robustness properties
are increased using sliding mode and Lyapunov based control [26]. Typically,
these techniques trade the controller performance against uncertainty, but re-
quire a priori estimates of parameter bounds, which may be difficult to obtain.
However, research efforts to design new robust nonlinear control laws are pur-
sued. Then in [15] the vertical motion of a nonlinear model of a helicopter tracks
a reference signal, while stabilizing the lateral and longitudinal position.

In [19] the application of nonlinear model predictive control is proposed. At
each sample time, the controller computes a finite control sequence which min-
imizes a quadratic index. This index includes the errors of the outputs (x, y, z
and φz variables in Fig. 5) with respect to desired trajectories, additional state
variables, which should be bounded, and the control actions (Pc, Pt, Px and Py
in Fig. 5). A gradient descent technique is used to compute the optimal values
of the control variable. The method improves the tracking performance at the
expenses of heavy computing load.
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In [11] the control of underactuated systems including helicopters and Planar
VTOL (PVTOL) is studied. Several control techniques are presented including
backstepping, energy based controllers and Lyapunov-based controllers.

4.2 Vertical Movement

This subsection is focused on the control of the vertical motion of the autonomous
helicopter. It will present the results of simulations and experiments that will
illustrate two control strategies (CS1 and CS2) and will point out the nonlinear
behavior existing in the helicopter motion.

Vertical movement implies excitement of all the dynamics present in the he-
licopter, including nonlinear behaviors. Indeed, due to the strong couplings ob-
served in a helicopter, controlling vertical dynamics requires a control effort in
all the input variables to maintain stabilized the helicopter while performing the
desired vertical maneuver. On the other hand, the study of vertical dynamics
will lead to a better knowledge of landing scenarios, such as the one proposed in
next section.

With respect to the particular choice of the control strategies, noting that
an important point to consider is the applicability of control methods, which in
its turn is highly dependent on the capabilities of the on-board hardware. CS1
and CS2 strategies are simpler than other approaches referenced in the previous
survey, showing a good performance and robustness with low computational cost.
More complex control laws, with an improved performance, have been considered
but the main problem is its practical application within the actual platform used
in the experiments (fixed point micro-controller).

Control Strategy 1 (CS1)

This strategy is based on a linear control approach described in [6]. The complete
control hierarchy consists of several elementary controllers, each one controlling
a single scalar state variable. Two of these elementary controllers, those more
directly related to vertical dynamics, will be described in the following.

Trajectory and System Model

Let z and φz in Fig. 5 be the controlled variables and Pc and Pt the associated
control variables, as indicated in Fig. 10. For controller design purposes, Equation
(3) can be simplified and the following second order model can be assumed for
the variables involved in translational vertical dynamics:

z̈(t) =
1
fz
Pc(t)

φ̈(t) =
1
fφz

Pt(t) (19)

where fz and fφz are system parameters that can be measured.
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When fixing a desired trajectory for z(t) and φz(t) to be followed by this
system to reach some command values z|ref(t) and φz |ref (t), two free parameters
are necessary in each case to adapt to the current state (z(t0), ż(t0), φz(t0),
φ̇z(t0)) given as initial condition at the current time t0. On the other hand, z̈(t0)
and φ̈z(t0) must be chosen by the controller according to Equation 19.

In order to allow smooth convergence, the expressions adopted for the desired
trajectories of z(t) and φz(t) are:

z(t) = z|ref (t) +Aze
−K1zt +Bze

−K2zt

φz(t) = φz |ref (t) +Aφze
−K1φz t +Bφze

−K2φz t (20)

where K1i and K2i (for i = z, φz) are constants strictly positive that adjust
the rate of convergence towards z|ref (t) and φz|ref (t). Ai and Bi (for i = z, φz)
represent the two free parameters in each case to fix the initial conditions.

Basic control law can be expressed as follows:

Pc(t) = fz z̈
∗(t)

Pt(t) = fφz φ̈
∗
z(t) (21)

z̈∗ = −K1zK2z(z − z|ref )− (K1z +K2z)(ż − ż|ref )

φ̈z
∗

= −K1φzK2φz(φz − φz |ref )− (K1φz +K2φz)(φ̇z − φ̇z |ref ) (22)

where Equation (22) is interpreted as the desired accelerations to generate the
intended trajectories according to Equation (20). Time dependence has been
removed for clarity.

Model Error

It would also be desirable to add some term to eliminate steady state errors. The
reason for the necessity of such compensation is that real systems differ from the
ideal equations (19). These equations change for real systems with model errors
mez(t) and meφz(t) into:

z̈(t) =
1
fz
Pc(t)−mez(t)

φ̈z(t) =
1
fφz

Pt(t)−meφz(t) (23)

This lead to the following new expression for the controller output:

Pc(t) = fz[z̈∗(t) +mez|est(t)]

Pt(t) = fφz [φ̈z
∗
(t) +meφz |est(t)] (24)

where mez|est(t) and meφz |est(t) are estimators of the model error. These esti-
mators are gradually adjusted at selectable rates az and aφz by integrating the
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deviation between the current desired accelerations, z̈∗(t) and φ̈z
∗
(t), and the

current actual observed accelerations z̈(t) and φ̈z(t):

ṁez|est(t) = az(z̈∗(t)− z̈(t))

ṁeφz |est(t) = aφz(φ̈z
∗
(t)− φ̈z(t)) (25)

Couplings

Finally, the aforementioned couplings should also be taken into account. To this
end, the coupling terms included in Fig. 10 are added to the control laws.

Pc(t) = fz[z̈∗(t) +mez|est(t) + cz(t)]

Pt(t) = fφz [φ̈z
∗
(t) +meφz |est(t) + cφz(t)] (26)

where the coupling terms, cz(t) and cφz(t), are functions of the main coupled
variables in each case:

cz(t) = f(φx, φy)
cφz(t) = f(Pc) (27)

Conclusions

Analyzing the structure proposed in this section, it can be stated that it is
similar to PID structure. However, there are some differences that make CS1 a
better approach than conventional PID implementations. Controllers designed
following CS1 are stable by design and oscillation-free, having also step response
without overshooting. This result has been proven experimentally in the MAR-
VIN helicopter shown in Fig. 3.

Control Strategy 2 (CS2)

The values of the coefficients of the Control Strategy 1 (CS1) previously de-
scribed (K1z, K1φz , K2z, K2φz , az and aφz) are fixed. In this second section,
a nonlinear improvement of CS1 is shown [2].

The CS1 is possibly one of the simplest approach that shows a good per-
formance and can be used for both hovering and trajectory tracking exhibiting
good robustness in most cases. Another advantage is its very low computational
cost. Its main drawback is that the control gains are fixed for all the operation
range and then low values have to be used due to saturations and large errors,
although this could be partially solved by using different controllers for position
and velocity control.

Control strategy 2 (CS2) developed by GRVC at the University of Seville pro-
poses a nonlinear strategy, based on CS1 structure, that applies different control
laws according to the operation conditions. In fact, CS1 could be considered as
a particular case of a more general structure CS2, where gains vary around the
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fixed values proposed for CS1. This more general structure of CS2 can be defined
substituting Equations (22) and (26) by:

Pc

fz
= +Υ1(z, φz)(z − z|ref ) + Υ2(z, φz)(ż − ż|ref )

+Υ3(z, φz)
∫

(z − z|ref)dt + cz(φx, φy)

Pt

fφz

= +Υ4(z, φz)(φz − φz|ref ) + Υ5(z, φz)(φ̇z − φ̇z |ref )

+Υ6(z, φz)
∫

(φz − φz |ref )dt + cφz (Pc) (28)

where Υi(z, φz) are nonlinear feedback functions of z and φz. Time dependence
has been removed for clarity.

Notice that other nonlinear approaches for Υi could be considered in Equation
(28), what highlights its generality and flexibility in the study of the vertical
dynamics. For instance, Υi could become dependent of other variables of the
system, thus reflecting also the couplings mentioned in previous sections.

CS2 can lead to improve overall controller performance, as shown in [2]. Fur-
thermore, this approach can also be used to deal with saturations or even to
induce nonlinear behaviors on the helicopter flight for testing issues. Lastly, not-
ing that since CS2 design is based on CS1, it can also be implemented with low
computational cost, quite similar to the required by CS1.

Nonlinear Study of the Model

The following will show how CS2 can be used to validate the nonlinear behav-
iors associated to the model. Thus CS2 is designed to induce those nonlinear
behaviors (including multiple equilibriums, limit cycles, etc), that will be vali-
dated with experimental flights. To this end, the proposed nonlinear law CS2 is
mainly a variation of the CS1 structure in the vertical dynamics. Thus, instead
of using fixed gains (Equations 21 and 22) in the computation of both collective
input of main rotor and tail rotor control signals Pc(t) and Pt(t), respectively),
a nonlinear gain-scheduling approach has been applied taking into account the
altitude error ez(t).

Under CS2, the system exhibit the behavior shown in Fig. 12 corresponding
to the ”altitude error vs. vertical velocity” phase plane. As it can be observed,
the system presents five equilibrium points (the origin is the only one stable
equilibrium, but it is only locally stable; there are also two unstable equilibrium
points and two saddle points between the stable and the unstable equilibria),
which are surrounded by a stable limit cycle.

In this way, if the helicopter starts close to the target altitude, i.e., with a
small altitude error, it will be able to reach the origin (it achieves null altitude
error). However, if the error is a little bit larger (see dashed line in Fig. 12), or
a disturbance brings the helicopter far from the target point, it can be out of
the attraction basin of the origin and then the helicopter will tend to go away
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from the origin. Notice that the existence of the stable limit cycle prevents the
helicopter from becoming totally unstable. Instead of this, the helicopter will
exhibit a permanent stable oscillation. If the error is even larger, the stable limit
cycle will attract the helicopter preventing again from instability (see Fig. 12).

Fig. 12. Altitude error vs. vertical velocity phase plane

Clearly, from the point of view of model validation, testing a controller like this
one on the real helicopter has several advantages. On the one hand, it makes it
possible to compare the response of the real helicopter and the model in the face
of non globally stable controllers. On the other hand, it makes it also possible to
test the capabilities of the model to reflect the nonlinear behavior of the actual
helicopter by comparing the predicted oscillations and the real ones. Moreover,
if the model is not good enough, the predicted limit cycle could not exist with
the actual helicopter.

Experiments

A series of experiments with CS2 have been performed to validate the aforemen-
tioned simulation results. Some of these experiments are depicted below.

In order to analyze the behavior close to the origin an experiment was per-
formed starting at 2.66 meters from the equilibrium point. As can be observed
in Fig. 13, black continuous line corresponding to LOCAL STABILITY, when
the real helicopter starts at 2.66 m from the origin it tends to the stable equilib-
rium. However, that stability is only local. A perturbation (gray continuous line
corresponding to PERTURBATION) appeared during the real flight bringing
the real helicopter out of the attraction basin of the origin, so it evolved to an
stable limit cycle of 4 meters error amplitude (black dashed line corresponding
to STABLE LIMIT CYCLE). In a similar experiment, with an initial altitude
error of 5 meters, i.e. starting out of the limit cycle, it was observed that the
helicopter tends to the same stable limit cycle than in the previous experiment.
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Conclusions

The final conclusion is that the nonlinear qualitative behavior of the model with
CS2 is quite similar to that of the real helicopter with CS2. However, some
differences on the quantitative velocity behavior have been found, probably due
to non modeled effects of induced velocity. Videos of real experiments can be
accessed in http://www.esi.us.es/ fcuesta/videos/helicopter.html.

Fig. 13. Real experiment: it starts 2.66m far from the origin and it tends to the equi-
librium (black continuous line corresponding to LOCAL STABILITY); a perturbation
(gray continuous line corresponding to PERTURBATION) brings the helicopter to the
stable limit cycle (black dashed line corresponding to STABLE LIMIT CYCLE).

5 Open Research Lines

There are still many open problems in autonomous helicopter design. To mention
some of them, noting the lack of a standard methodology for controller specifi-
cation and its subsequent automated controller synthesis against multiple and
conflicting specifications. Likewise, in navigation and guidance research areas,
aspects such as considering vehicle dynamics in path planing or usage of online
optimization (according to vehicle constraints like time, fuel, efficiency, etc.),
focus the attention of many researchers.

Amongst these open points, it can be highlighted two relevant applications
that do imply the design and testing of new techniques and algorithms. These
are autonomous landing on oscillating platforms and transporting a single load
with several helicopters. In the following the research work in these two problems
is reviewed.

Autonomous Landing on Oscillating Platforms

Autonomous landing on the deck of a ship is a matter of importance when sea
is rough or other bad weather conditions arise (lack of visibility, etc.). Many
accidents have taken place under these circumstances.
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This is complex goal, which implies a continuous feedback of ship position
and pose. To this end, elaborated position estimation techniques are required.
On the other hand, it is also necessary the design of control algorithms that
deal with the tracking of the complex trajectories imposed by ship movements
and that lead to smooth landing. For this second point, works previously shown
on vertical motion can also help in the understanding of the inherent nonlinear
problem.

In [35] it is presented a multiple view algorithm that could be used for vision
based landing of an unmanned aerial vehicle. The algorithm is based in results of
multiple view geometry that exploit the rank deficiency of the so called multiple
view matrix. It is also shown how the use of multiple views improves significantly
motion and structure estimation. Final results show that the vision-based state
estimates are accurate to within 7 cm in each axis of translation and 4o in each
axis of rotation.

The work at [31] addresses the design of an autopilot for autonomous landing
of a helicopter on a rocking ship, due to rough sea. A tether is used for landing
and securing a helicopter to the deck of the ship in rough weather. Two con-
trollers are proposed. In the first (A), the rotation time scale is chosen much
shorter than the translation, and the rotation reference signals are created to
achieve a desired controlled behavior of the translation. In the second (B), due to
coupling of the translation of the helicopter to the rotation through the tether,
the translation reference rates are created to achieve a desired controlled be-
havior of the attitude and altitude. Controller A is proposed for use when the
helicopter is far away from the goal, while Controller B is for the case when the
helicopter is close to the ship. The proposed control schemes are proved to be
robust to the tracking error of its internal loop and results in local exponential
stability.

Even though the tether is used to increase the safety of the landing manoeu-
ver, its usage also implies some drawbacks that require further research. As
mentioned before, coupling between position and orientation variables, which is
normally absent in a helicopter free of a tether, appear in this case. Thus, the
variation range of x and y is influenced by attitude control, which could take
helicopter out of the landing area of the ship. To control this, the authors point
out that cable tension should be as high as possible. However an analysis in
more depth, aiming at real implementation, should be considered since excessive
tension could provoke the breaking of the tether or damages to the helicopter.

In [16] it is considered the problem of controlling the vertical motion of a non-
linear model of a helicopter, while stabilizing the lateral and horizontal position
and maintaining a constant attitude. The vertical reference to be tracked is a
sum of a constant and a fixed number of sinusoidal signals:

z|ref = zo +
n∑

i=1

Aisin(Ωit+ φt) (29)

This reference is assumed not to be available to the controller. This represents
a possible situation in which the controller is required to synchronize the vehicle
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motion with that of an oscillating platform, such as the deck of a ship in high
seas. The authors design a nonlinear controller which combines recent results
on nonlinear adaptive output regulations and robust stabilization of systems in
feedforward form by means of saturated controls.

Although [16] outlines a complete set of techniques to carry out the au-
tonomous landing of a helicopter on a ship, some points are still open. On the
one hand, the achieved control goal allows vertical position tracking but longi-
tudinal and lateral position, as well as attitude, are only stabilized to a constant
configuration. It would be desirable to impose some tracking requirements on
attitude. Thus, the effect of strong oscillations in the deck due to rather rough
sea could be better avoided. On the other hand, the reduction of the longitu-
dinal and translational stabilization phase would also improve the performance.
Notice also that [16] did not consider the modeling of engine dynamics; however
the work presented in [3] shows that the technique also works well when they
are taken into account. Finally, recall that only simulation results are available
until the moment. These simulations show the effectiveness of the method and
its ability to cope with uncertainties on the plant and actuator model. However,
implementation in a real UAV should be carried out to obtain the definitive
validation of the algorithm.

Lastly, noting also that some experimental efforts have been already done.
The U.S. Navy and Northrop Grumman Corporation developed some prelim-
inary tests (http://www.northropgrumman.com) with two MQ-8B Fire Scout
prototypes. The MQ-8B is the aircraft element of a complete system called the
Vertical takeoff and landing Tactical Unmanned Aerial Vehicle (VTUAV) sys-
tem. After it was launched from the naval air station, the Fire Scout flew to the
designated test area, where a ship was waiting for the air vehicle to land and take
off under its own control. The flight was monitored from a ship-based control
station called a tactical control system, and the air vehicle was guided onto the
ship using an unmanned air vehicle common automatic recovery system. These
preliminary tests only dealt with moderate conditions of sea. Therefore, further
efforts in control algorithms development are needed for the scenario of rough
sea mentioned at the beginning of this section.

Lifting and Transporting a Single Load with Several Helicopters

Development of new techniques that lead to helicopters working together in load
transport missions would increase the load capacity of single low cost platforms.
Civil Security and Disaster Management activities could be reinforced by apply-
ing these cooperative approaches.

Main challenges involved in this goal stem from the presence of strong nonlin-
earities in the complete system, unknown disturbances due to gust of winds and
the necessity of high gain controllers, which in its turn implies saturated inputs.

In [34], two H∞ controller designs are presented for a twin lift helicopter
system (TLHS). The TLHS configuration consists of two UH-GOA Sikorsky
Blackhawk helicopters jointly lifting a heavy payload. The first design presented
considers the case in which the tethers connecting each helicopter to the load are
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equal in length, and the second considers the case in which the tether lengths are
unequal. Both designs are based on a seven degree of freedom model linearized
about hover. The primary objective of each controller is to minimize the control
action and pitching motion required to stabilize the helicopters as they perform
elementary maneuvers. A simulation of a typical TLHS command scenario is
used to evaluate stability and robustness of the resulting two feedback systems
with respect to structured parametric uncertainty.

In [14], a twin lift system is also studied. Because of the special structure of
the these systems, controllability, observability, stability and existence of decen-
tralized fixed modes of such systems can be tested on matrices of lower order.

The Technical University of Berlin (TUB) is also conducting a project on
the lifting and transporting of a single load by means of several UAVs, in-
volving experimental validation. They plan to apply this system in the self-
deployment of the communication network elements involved in AWARE project
(http://grvc.us.es/aware). AWARE is a research project whose objective is the
design, development and experimentation of a platform for the cooperation
among aerial flying objects and a ground sensor-actuator wireless network, in-
cluding mobile nodes carried by people and vehicles. The project considers the
validation in two different applications: Civil Security / Disaster Management
and Filming dynamically evolving scenes.

6 Conclusions

This chapter has been devoted to autonomous helicopters. These kind of aerial
vehicles have been extensively used for aerial robotic applications such as cine-
matography, inspection, search and rescue operations and others. Their manoeu-
vrability and hovering ability explain their use in those contexts.

The chapter surveys the main aspects involved in the design and implementa-
tion of an autonomous helicopter: platforms, architectures for control, derivation
of physical models and their identification for a particular helicopter and model-
based control methods. Along the survey, specific references to works developed
by several research groups including the GRVC in the University of Seville were
also highlighted. Thus, a model identification tool and different control tech-
niques have been implemented with real helicopters. Furthermore the control
strategy CS2 in Section 4 has been used to validate the identified model and
the nonlinear behaviors observed in simulation. This model will lead to the im-
plementation of new control laws that will be able to increase performance and
robustness.

Some specific points that require further research arise as a consequence of
a global analysis of the work reviewed in this chapter. Thus, for example, in
the control of vertical motion it could be interesting to design controllers that
can compensate the effect of wind gusts on the altitude (due to the Effective
Translational Lift). Likewise, the modeling of different induced velocity fields
should be carried out to consider the case of a helicopter flying near vertical
obstacles, such as the wall of a building. There exists also a lack of research
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concerning the determination of the wind regimes that can be afforded by a
helicopter with a given controller. To this end, nonlinear techniques such as the
mentioned CS2 could be used to analyze and improve the performance. Lastly,
noting that most of the presented works assume that all the state variables are
measurable. Since this assumption is not always true in real implementations,
it is necessary the consideration in the close loop of state estimation techniques
as well as an analysis of their effect on the performance of the overall control
scheme.

As final conclusion, it can be stated that designing and implementing an
autonomous helicopter is a complex task that implies efforts in varied work
areas. Analyzing the state of the art, it can be concluded that even though there
are many works already done in this direction, some aspects are not covered yet.
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Summary. In the average consensus a set of linear systems has to be driven to the
same final state which corresponds to the average of their initial states. This mathe-
matical problem can be seen as the simplest example of coordination task and in fact it
can be used to model both the control of multiple autonomous vehicles which all have
to be driven to the centroid of the initial positions, and to model the decentralized
estimation of a quantity from multiple measure coming from distributed sensors. In
general we can expect that the performance of a consensus strategy will be strongly
related to the amount of information the agents exchange each other. This contribution
presents a consensus strategy in which the exchanged data are symbols and not real
numbers. This is based on a logarithmic quantizer based state estimator. The stability
of this technique is then analyzed.

Keywords: Distributed Estimations, Quantization, Distributed Algorithms, Consen-
sus, Multiagent Systems.

1 Introduction

The design of coordination algorithms for multiple autonomous vehicles and of
decentralized estimation techniques for handling data coming from distributed
sensor networks is attracting large attention in recent years [13, 14, 16, 15, 1, 3, 4].
In fact both in coordinated control and in distributed estimation the agents need
to communicate data in order to execute the task. In particular they may need
to agree on the value of certain coordination state variables. One expects that,
in order to achieve coordination, the variables shared by the agents, converge
to a common value, asymptotically. The problem of designing controllers that
lead to such asymptotic coordination is called coordinated consensus, see for
example [2, 3, 7] and references therein. The interest in this type of problems is
not limited to the field of mobile vehicles coordination but also in the field of
synchronization theory [10, 9].

One of the simplest consensus problems that has been mostly studied in the
literature consists in starting from systems described by an integrator and in
finding a feedback control driving all the states to the same value [3]. The
information exchange is modelled by a directed graph describing in which pair
of agents the data transmission is allowed. Many variations of this problems
has been considered namely depending on the properties of the data exchange.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 31–49, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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In [13, 14, 7] the problem of designing control strategies for mobile agents leading
consensus when the communication graph is time-varying and depending of the
agents positions. Robustness to communication link failure [6] and the effects
of time delays [3] has also been considered recently. Randomly time-varying
networks have also been analyzed in [11].

In [19, 20] the consensus problem is treated in case the agents are allowed to
exchange not real numbers by instead only quantized information. This paper
continues the analysis proposed in [19]. More precisely we consider the aver-
age consensus problem for simple first-order dynamics linear systems which can
exchange information according to a fixed strongly connected digital communi-
cation network. Hence, besides the decentralized computational aspects induced
by the choice of the communication network, we have to face the quantization
effects due to the digital links. In order to achieve the consensus, some encoding
of the data to be transmitted is necessary. Here we present a encoding/decoding
strategy based on the exchange of logarithmically quantized information. Then
the stability analysis is provided.

The paper is organized as follows. In Section 2 we provide some basic notions
of graph theory and some notational conventions. In Section 3 we formally define
the average consensus problem. We then propose a model of the encoder/decoder
structure through which the systems exchange information. In Section 4 we in-
troduce the logarithmic quantizer based encoder/decoder. In section 5 we discuss
the stability of this technique, first presenting some general theoretical results
and then restricting our attention to two particular structures of communica-
tion graph allowed us to determine some simple results. Finally we gather our
conclusions in Section 6.

2 Preliminaries

Before defining the problem we want to solve, we summarize some notions on
graph theory and we provide some notational conventions that will be useful
throughout the rest of the paper.

Let G = (V,W) be a directed graph where V = (1, . . . , N) is the set of
vertices and W ⊂ V × V is the set of arcs. If (i, j) ∈ W we say that the arc
(i, j) is outgoing from i and incoming in j. In our setup we admit the presence of
self-loops. The adjacency matrix A is a {0, 1}-valued square matrix indexed by
the elements in V defined by letting Aij = 1 if and only (j, i) ∈ W. Define the
in-degree of a vertex i as indeg(i) :=

∑
j Aij and the out-degree of a vertex j as

outdeg(j) :=
∑

i Aij . A path in G consists of a sequence of vertices i1i2 . . . . . . ir
such that (i�, i�+1) ∈ W for every � = 1, . . . , r − 1; i1 (resp. ir) is said to be the
initial (resp. terminal) vertex of the path. A cycle is a path in which the initial
and the terminal vertices coincide. A vertex i is said to be connected to a vertex
j if there exists a path with initial vertex i and terminal vertex j. A directed
graph is said to be connected if, given any pair of vertices i and j, either i is
connected to j or j is connected to i. A directed graph is said to be strongly
connected if, given any pair of vertices i and j, i is connected to j. A direct
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graph G = (V,W) is said to be a circulant directed graph if (i, j) ∈ W implies
that (i+ p, j + p) ∈ W for any p ∈ N, where the sum is meant mod N . A graph
is said to be undirected if (i, j) ∈ W implies that also (j, i) ∈ W.

Now some notational conventions. Given a matrix M ∈ RN×N , diag {M}
means a diagonal matrix with the same diagonal elements of the matrix M . Given
a vector m ∈ RN , diag {m} means a diagonal matrix having the components
of m as diagonal elements. Given a matrix M ∈ RN×N , with the symbol M †

we denote the pseudo-inverse of M , with rkM and with σ {M} we indicate
respectively the rank and the set of eigenvalues of the matrix.

3 Problem Formulation

Consider N > 1 identical systems whose dynamics are described by the following
discrete time state equations

x+
i = xi + ui i = 1, . . . , N

where xi ∈ R is the state of the i-th system, x+
i represents the updated state

and ui ∈ R is the control input. More compactly we can write

x+ = x+ u (1)

where x, u ∈ RN . The goal is to design an input control u yielding the consensus
of the states, namely a control such that all the xi’s become equal asymptotically,
i.e.

lim
t→∞

x(t) = α1 (2)

where 1 := (1, . . . , 1)T and α is a scalar depending on x(0). Moreover, we also
require that x(t) = x(0) for all t ∈ N if x(0) = λ1.

An interesting case that has been widely studied in literature (see [3, 12, 18])
corresponds to the case in which x is a static feedback function of u

u = Kx, K ∈ RN×N (3)

In such case the system (1) is described by the following closed loop system

x+ = (I +K)x . (4)

It is easy to see that the consensus problem for system (4) is solved if and only
if the following three conditions hold:

(A) the only eigenvalue of I +K on the unit circle is 1;
(B) the eigenvalue 1 has algebraic multiplicity one (namely it is a simple root

of the characteristic polynomial of I +K) and 1 is its eigenvector;
(C) all the other eigenvalues are strictly inside the unit circle.
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In the sequel we will restrict to matrices K such that I + K is a nonnegative
matrix, namely a matrix with all elements nonnegative. Condition (B) then says
that I +K is a stochastic matrix. Conditions (A) and (C) yield the asymptotic
behavior

(I + K)t → 1vT

where v ∈ RN is the unique probability vector such that vT (I +K) = vT . This
implies that

x(t) → vTx(0)1.

In the special case when v = N−11 we obtain that the consensus is achieved at
the average of the initial conditions. In this case I + K is said to be a doubly
stochastic matrix and K a average consensus controller.

We observe that the use of control law as in Equation (3) implies the exchange
of perfect information through the communication network. More precisely, the
fact that the element in position i, j of the matrix K is different from zero, means
that the system i needs to know exactly the state of the system j in order to
compute its feedback action. This implies that the agent j-th must communicate
his state xj to the system i. A good description of the communication effort
required by a specific feedback K is given by the directed graph GK with set of
vertices {1, . . . , N} in which there is an arc from j to i whenever in the feedback
matrix K the element Kij �= 0. The graph GK is said to be the communication
graph associated with K. Conversely, given any directed graph G with set of
vertices {1, . . . , N}, a feedback K is said to be compatible with G if GK is a
subgraph of G (we will use the notation GK ⊆ G). The average consensus problem
is said to be solvable on a graph G if there exists a feedback K compatible
with G solving the average consensus problem. The following result completely
characterize those graphs for which the average consensus problem is solvable.

Proposition 1. Let G be a directed graph and assume that G contains all loops
(i, i). The following conditions are equivalent:

(A) The average consensus problem is solvable on G.
(B) G is strongly connected.

Furthermore, if the above conditions are satisfied, any K such that I + K is
doubly stochastic and GI+K = G, solves the average consensus problem.

Now in our setup we assume that the communication network is constituted only
of digital links. This implies that the exchange of perfect information between
the systems is not allowed. In fact, through a digital channel, the i-th agent can
only send to the j-th agent symbolic data that will be used by the j-th agent to
built at most an estimate of the i-th agent’s state. Here we consider a control
law which has the same form of (3) where, in place of the exact knowledge of
the states of the systems, we substitute estimates calculated according to the
symbols sent through the communication network.

More precisely, first we assume we have a fixed strongly connected graph G
and a matrix K such that I+K is doubly stochastic and GI+K = G. The control
input ui has then the following form
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ui = Kiixi +
N∑

j=1
j �=i

Kij x̂ij , (5)

where x̂ij is the estimate of the state xj which has been obtained by the agent i.
Now we proceed to explain how the estimate x̂ij is obtained. Suppose that

the j-th agent sends to the i-th agent, through a digital channel, at each time
instant t, a symbol sij(t) belonging to a finite or denumerable alphabet Sij . It
is assumed that each symbol transmitted is received without error. In general,
see [21], the structure of the coder by which the j-th agent produces the symbol
to be sent to the i-th agent can be described by the following equations{

ξij(t+ 1) = Fij(ξij(t), sij(t))
sij(t) = Qij(ξij(t), xj(t), uj(t))

(6)

where sij(t) ∈ Sij , ξij(t) ∈ Ξij , Qij : Ξij×R×R→ Sij , and Fij : Ξ×Sij → Ξij

and where also the set Ξij is finite or denumerable. The decoder, placed at the
system i, coincides with the system{

ξij(t + 1) = Fij(ξij(t), sij(t))
x̂ij(t) = Hij(ξij(t), sij(t)),

(7)

where Hij : Ξij × Sij → R.
In general, we may have different encoders at system j, according to the

various systems the system j wants to send its data. For the sake of notational
convenience, we assume however, in this paper, that system j uses the same
encoder for all data transmissions. Thus, system j will send the same symbol
sj(t) := sij(t) to all the other systems i which receive information from it. In
this case all systems receiving data from j, will obtain the same estimate of xj ,
namely we can define a single state estimate x̂j := x̂ij . In this way the previous
coder/decoder couple can be represented by the following state estimator with
memory ⎧⎨⎩

ξj(t + 1) = Fj(ξj(t), sj(t))
sj(t) = Qj(ξj(t), xj(t), uj(t))
x̂j(t) = Hj(ξj(t), sj(t))

(8)

We point out that all the result presented in this paper can be extended to the
more general case.

The main objective of the present paper is to understand whether it is possible
to design some smart encoding/decoding strategies such that a control law of the
form (5) yields the consensus for the overall system. In the sequel we concentrate
our attention on a particular way of exchanging information which fits into the
previous scheme: the logarithmic quantized strategy.

4 Logarithmic Quantizers

This strategy is based on the techniques proposed in [17]. In this case we assume
the following form for equation (8)
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ξj(t+ 1) = ξj(t) + sj(t)

sj(t) = qL(xj(t)− ξj(t))
x̂j(t) = ξj(t) + sj(t)

(9)

where qL is a logarithmic quantizer depending on a parameter δ ∈]0, 1[, precisely
defined as follows. Suppose that x ∈ R+ and that 0 < δ < 1 and let k ∈ Z be
such that (1+δ)k−1

(1−δ)k ≤ x ≤ (1+δ)k

(1−δ)k+1 . We then define

qL(x) =
(

1 + δ

1− δ

)k

.

If x < 0, then we define qL(x) = −qL(−x). The graph of the logarithmic quan-
tizer is depicted in Figure 1.

Fig. 1. Logarithmic quantizer

Notice that the logarithmic quantizer is such that

|qL(x)− x| ≤ δ|x|

and so the parameter δ can be seen as the precision of the quantizer. Moreover
δ determines also the number of quantization intervals we have in any finite
subset of R. It is clear that the sets Sj are denumerable. We impose the initial
condition ξj(0) = 0. One can verify immediately that the estimate x̂j(t) satisfies
the following recursive relation

x̂j(t + 1) = x̂j(t) + qL (xj(t + 1)− x̂j(t)) . (10)
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Notice that ξj(0) = 0 implies x̂j(0) = qL (xj(0)). Now if we define

εj(t) =
qL(xj(t+ 1)− x̂j(t))− (xj(t + 1)− x̂j(t))

xj(t+ 1)− x̂j(t)

we obtain that

x̂j(t+ 1) = x̂j(t) + (1 + εj(t))(xj(t + 1)− x̂j(t)). (11)

where −δ ≤ εj(t) ≤ +δ.
By defining the matrix E(t) = diag {ε1(t), . . . , εN (t)} the equations (1), (5)

and (11) can be rewritten in the following vector form[
x(t + 1)
x̂(t + 1)

]
=
[
diag {K}+ I K − diag {K}
diag {K}+ I K − diag {K}

] [
x(t)
x̂(t)

]
+

+
[

0 0
E(t)(diag {K}+ I) E(t)(K − diag {K} − I)

] [
x(t)
x̂(t)

]
. (12)

In order to analyze the previous system, it is useful to introduce the new variables
y(t) = Kx(t), e(t) = x(t) − x̂(t), where e(t) expresses the estimation error.
Assumptions (A), (B), and (C) made on K implies that the consensus problem
is solved if and only if y(t) → 0. Moreover, observe that y(t)T1 = 0, ∀t ≥ 0. By
straightforward calculations we obtain[

y(t + 1)
e(t + 1)

]
=
[
I +K K(−K + diag {K})

0 0

] [
y(t)
e(t)

]
+

+
[

0 0
−E(t) −E(t)(I + diag {K} −K)

] [
y(t)
e(t)

]
(13)

From now on, for the sake of the notational convenience we denote A = I +K,
B = K(−K + diag {K}), C = −I and D = −(I + diag {K} −K). Hence[

y(t + 1)
e(t + 1)

]
=
[
I 0
0 −E(t)

] [
A B
C D

] [
y(t)
e(t)

]
. (14)

Finally let

A(t) =
[
I 0
0 −E(t)

] [
A B
C D

]
(15)

and

v(t) =
[
y(t)
e(t)

]
(16)

from which
v(t + 1) = A(t)v(t). (17)

The question we want to address now is if there exist some conditions on
the magnitude of δ, which guarantee that the consensus can be reached. This
analysis is carried out in the following section where the system (14) is treated
as a linear parameter varying (LPV) system [22].
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5 Convergence Analysis

We start by rewriting (14) in a more suitable way. Let

E =
{
E ∈ RN×N : E = diag {e1, . . . , eN} , ei = ±1 1 ≤ i ≤ N

}
Notice that E contains 2N elements. Hence we can write E = {E1, . . . , E2N },
where we are assuming that some suitable way to enumerate the matrices inside
E is used. We assume that E1 = I. By means of the above definitions we can
introduce an another set of matrices

R =
{
Ri =

[
I 0
0 δEi

] [
A B
C D

]
: Ei ∈ E

}
.

The set R is useful because it is easy to see that the matrix A(t), defined in (15),
belongs to Co {R} , ∀ t ≥ 0, where Co {R} denote the convex hull of the set R.
In other words there exist λ1(t), λ2(t), . . . , λ2N (t) nonnegative real numbers λi

such that
∑2N

i=1 λi(t) = 1 and

A(t) =
2N∑
i=1

λi(t)Ri.

This problem formulation allows us to analyze (14) by means of Lyapunov ap-
proach proposed in [22]. In fact, it is well known in the literature that if we
consider the system

x(t + 1) = F (t)x(t), x(t) ∈ Rn, F (t) ∈ Rn×n,

where F (t) ∈ Co (F) with F = {F1, . . . , Fm}, a sufficient condition ensuring the
stability of the system is the existence of a definite positive matrix P ∈ Rn×n

such that

1
2
(
FT

i PFj + FT
j PFi

)
− P < 0, ∀ (Fi, Fj) ∈ F × F , (18)

or equivalently

1
2
(
FiPF

T
j + FjPF

T
i

)
− P < 0, ∀ (Fi, Fj) ∈ F × F . (19)

This last condition is called the dual condition. Our situation is slightly different,
since we are addressing the stability of (17) in the hyperplane

{
[yT eT ]T ∈ R2N :

yT1 = 0
}
. However it is possible to provide sufficient conditions similar to (18)

and (19) that ensure the stability of (17). They are stated in the following
Lemma.

Lemma 1. Consider the system (17). If there exists a positive semidefinite ma-
trix P ∈ R2N×2N such that

zTPz > 0, (20)
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and

zT

(
RT

i PRj +RT
j PRi

2
− P

)
z < 0, ∀ (Ri, Rj) ∈ R×R, (21)

for each nonzero z ∈ R2N such that [1T OT ] z = 0 (O denotes the N dimensional
column vector with all zeros), then limt→+∞ v(t) = 0, ∀ v(0) =

[
y(0)T e(0)T

]T
such that y(0)T1 = 0, and ∀ {A(t)}∞t=0 .

Equivalently if there exists P ≥ 0 ∈ R2N×2N such that

zTPz > 0, (22)

and

zT

(
RiPR

T
j +RjPR

T
i

2
− P

)
z < 0, ∀ (Ri, Rj) ∈ R×R, (23)

for each nonzero z such that z �∈ span
(
[1T OT ]T

)
then limt→+∞ v(t)=0, ∀ v(0)=[

y(0)T e(0)T
]T such that y(0)T1 = 0, and ∀ {A(t)}∞t=0 .

Proof. We report here the proof only of the first part of the theorem. The dual
condition can be proved in an analogous way. Before proceeding, we introduce
the following notation that will be useful during the proof. With 1N−1 and
with 0N−1 we denote the N − 1 dimensional vectors having respectively all the
components equal to 1 and all the components equal to 0; with IN−1 we indicate
the (N − 1) × (N − 1) identity matrix. We start by considering the following
change of coordinates

w(t) =
[
T−1 0
0 I

]
z(t)

where

T−1 =
[

1 1T
N−1

0N−1 IN−1

]
∈ RN×N .

Notice that

T =
[

1 −1T
N−1

0N−1 IN−1

]
Let L−1 denote the matrix

[
T−1 0
0 I

]
. We have that

w(t + 1) =

⎧⎨⎩
2N∑
i=1

λi(t)L−1RiL

⎫⎬⎭w(t) =

⎧⎨⎩
2N∑
i=1

λi(t)Gi

⎫⎬⎭w(t)

where

Gi = L−1RiL =
[
I 0
0 δEi

] [
A B
C D

]
=
[
T−1AT T−1B
EiT EiD

]
=
[

1 0T
N−1

∗ R̃i

]
.
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Notice that in the last expression ∗ denote a suitable (N −1) dimensional vector
whereas R̃i ∈ R(N−1)×(N−1) is obtained from Ri by taking off the first row and
the first column. Now let [w1(t), . . . , w2N (t)] denote the 2N components of the
vector w(t). By the structure of L it is immediate to see that w1(0) = 0. More-
over, since w(t) = L−1v(t) = [(T−1y(t))T e(t)T ]T = [(T−1Kx(t))T e(t)T ]T

and since it can be checked easily that the first row of T−1K has all the
components equal to 0, we have also w1(t) = 0, ∀ t > 0. Hence, letting
w̃(t) = [w2(t), . . . , w2N (t)]T ∈ R2N−1 we have that

w̃(t + 1) =

⎛⎝ 2N∑
i=1

λi(t)R̃i

⎞⎠ w̃(t). (24)

Clearly limt→+∞ v(t) = 0 if and only if limt→+∞ w̃(t) = 0. Assume now that
there exist P̃ ∈ R(2N−1)×(2N−1) such that P̃ > 0 and

R̃T
i P̃ R̃j + R̃T

j P̃ R̃i

2
− P̃ < 0.

As said before this is a sufficient condition in order to guarantee that (24) is
stable. It follows that ηTdiag

{
0, P̃
}
η > 0, and

ηT

⎡⎣GT
i diag

{
0, P̃
}
Gj +GT

j diag
{
0, P̃
}
Gi

2
− diag

{
0, P̃
}⎤⎦ η < 0,

for any η ∈ R2N such that [1, 0, . . . , 0] η = 0. Hence, if we define

P =
(
L−1)T diag

{
0, P̃
}
L−1,

one can verify, after some algebraic manipulations, that (Lη)T
P (Lη) > 0 and

(Lη)T

(
RT

i PRj +RT
j PRi

2
− P

)
Lη < 0

for any nonzero η such that [1, 0, . . . , 0] η = 0. In order to conclude the proof it
remains to prove that

{Lη : [1, 0, . . . , 0]η = 0} =
{
z ∈ R2N : [1T OT ] z = 0

}
,

but this is quite straightforward.

Now we will show that, under a certain condition on the magnitude of δ, it is
possible to exhibit a particular matrix P such that (22) and (23), i.e. the dual
conditions in Lemma 1, are satisfied. In order to do so, it is useful to introduce
the following set of matrices

T =
{
T ∈ RN×N : T 1 = 0, zT (T −ATAT )z > 0 ∀ z ∈ span(1)⊥

}
.

The importance of this set is clarified by the following theorem.
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Theorem 1. Consider the system (17) and let T be any matrix in T . Let

ᾱ = max
{
λ : λ ∈ σ

(
(T −ATAT )†BBT

)}
, (25)

and for any α ∈ R, let X1(α) = αT − αATAT − BBT , X2(α) = αAT +BDT ,
and X3(α) = αT +DDT . Finally let

δ̄0 = max
α>ᾱ

1

max
{
λ : λ ∈ σ

(
X3(α) + 1

4X
T
2 (α)X†

1(α)X2(α)
)} . (26)

Then for all δ ≤ δ̄0 we have consensus, namely limt→+∞ e(t) = 0, and
limt→+∞ x(t) = γ1, ∀x(0) ∈ RN and ∀ {A(t)}∞t=0 .

In order to prove the above results we need the following technical results.

Lemma 2. Let S and R be semidefinite matrices belonging to RN×N such that
S1 = 0, R1 = 0 and rk S = N − 1. Let α be a real number. Then the following
facts are equivalent

(i) zT (αS −R)z > 0, ∀ z /∈ span(1).
(ii) α > max

{
λ : λ ∈ σ(S†R)

}
.

Proof. It is easy to decompose S as S = Q2 where alsoQ1 = 0 and rkQ = N−1.
The following chain of equivalences holds

zT (αQ2 −R)z > 0 ∀ z /∈ span(1)
�

zT (αQ2 −R)z > 0 ∀ z ∈ span(1)⊥ {0}
�

zTQ(αI −Q†RQ†)Qz > 0 ∀ z ∈ span(1)⊥\ {0}
�

zT (αI −Q†RQ†)z > 0 ∀ z ∈ span(1)⊥ {0} .

The first equivalence is a consequence of the fact that (αQ − R)1 = 0 whereas
the other ones descend directly from the facts that Q†Qz = z, ∀z ∈ span(1)⊥

and Qspan(1)⊥ = span(1)⊥ and Q†span(1)⊥ = span(1)⊥. Obviously the last
condition is satisfied if and only if max

{
λ : λ ∈ σ(Q†RQ)

}
< α. It is not difficult

to prove that σ(Q†RQ) = σ(Q†Q†RQQ) = σ(Q†Q†R) = σ(Q†2R) = σ(S†R).
This concludes the proof.

Lemma 3. Suppose that a symmetric matrix X is partitioned as

X =
[
X1 X2
XT

2 X3

]
.

where X1 and X3 are square. Then the following facts are equivalent

1. zTXz > 0, ∀z /∈ span
(
[1T OT ]T

)
2. (i) zT

1 X1z1 > 0 ∀z1 /∈ span(1)
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(ii) X3 −XT
2 X

†
1X2 > 0

(iii) KerX1 ⊆ KerXT
2 .

Proof. First consider the sufficiency. Since KerX1 ⊆ KerXT
2 we have that

ImX2 ⊆ ImX1 and hence X2 = X1K for a suitable matrix K. Now let Y =
−X†

1X2 and calculate

[
I 0
Y T I

] [
X1 X2
XT

2 X3

] [
I Y
0 I

]
=
[

X1 X1Y +X2
Y TX1 +XT

2 Y TX1Y +XT
2 Y + Y TX2 +X3

]
=
[

X1 −X1X
†
1X2 +X2

−XT
2 X

†
1X1 +XT

2 XT
2 X

†
1X1X

†
1X2 −XT

2 X
†
1X2 −XT

2 X
†
1X2 +X3

]
=
[

X1 −X1X
†
1X1K +X2

−KTX1X
†
1X1 +XT

2 XT
2 X

†
1X2 −XT

2 X
†
1X2 −XT

2 X
†
1X2 +X3

]
=
[

X1 −X2 +X2

−X2 +XT
2 X3 −XT

2 X
†
1X2

]
=
[
X1 0
0 X3 −XT

2 X
†
1X2

]
Since the right-hand side is semidefinite positive, the positive semidefiniteness

of X follows from the exhibited congruence.
Consider now the necessity. By choosing z = [zT

1 OT ]T with z1 /∈ span(1) it
is immediate to show that zT

1 X1z1 > 0, ∀ z1 /∈ span(1).
Suppose now that there exist z1 such that v = XT

2 z1 �= 0 and X1z1 = 0. Let
z2 be such that zT

2 v = γ �= 0. Then

[
αzT

1 zT
2
] [ X1 X2

XT
2 X3

] [
αz1
z2

]
= αzT

2 X
T
2 z1+αzT

1 X2z2+zT
2 X3z2 = 2αγ+zT

2 X3z2.

If we choose α = −γ whit γ sufficiently large we have that the above quantity is
negative contradicting the hypothesis. Hence KerX1 ⊆ KerXT

2 . The necessity
of X3 −XT

2 X
†
1X2 follows from the congruence exhibited previously.

Proof (Proof of Theorem 1)
In order to prove the statement of the theorem we show that, for δ < δ̄0, there
exists a suitable matrix P ∈ R2N×2N such that

P

[
1

O

]
= 0, (27)

and
zTPz > 0 (28)

and

zT

(
1
2
(
RT

i PRj +RT
j PRi

)
− P

)
z < 0, ∀ (Ri, Rj) ∈ R×R, (29)
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for each non zero z /∈ span([1T OT ]T ). The candidate matrix P has the following
form

P =
[
αT 0
0 I

]
where T is any matrix in T and where α is a suitable positive scalar that we
will determine next. It is immediate to see that (27) is satisfied. Moreover one
can verify that P has an eigenvalue equal to 0 and all the other eigenvalues
positive. Furthermore, the eigenspace associate to the eigenvalue 0 is spanned
by the vector [1T OT ]T . Hence P satisfies (28).

Now we calculate 1
2

(
RiPR

T
j +RjPR

T
i

)
− P obtaining the following matrix[

αATAT +BBT −αT 1
2 δ(αAT+BDT )(Ei+Ej)

1
2 (Ei+Ej)δ(αTAT +DBT ) 1

2 δ2{Ei(αT+DDT )Ej+Ej(αT+DDT )Ei}−I

]
(30)

By Lemma 3 we have that (30) satisfies (29) if and only if

zT (αT − αATAT −BBT )z > 0, ∀ z /∈ span(1), (31)

and

I − 1
2
δ2 {Ei(αT +DDT )Ej + Ej(αT +DDT )Ei

}
−

−1
4
δ2(Ei + Ej)(αTAT +DBT )(αT − αATAT −BBT )† ·

(αAT +BDT )(Ei + Ej) > 0.

By Lemma 2, (31) holds if and only if

α > max σ
(
(T −ATAT )†BBT

)
. (32)

Now observe that

I − 1
2δ

2
{
Ei(αT +DDT )Ej + Ej(αT +DDT )Ei

}
− 1

4δ
2(Ei + Ej)·

·(αTAT +DBT )(αT − αATAT −BBT )†(αAT +BDT )(Ei + Ej) =

I − 1
4δ

2
{
4(Ei + Ej)(αT +DDT )(Ei + Ej)− 2Ej(αT +DDT )Ej

−2Ei(αT +DDT )Ei + (Ei + Ej)(αTAT +DBT )·
· (αT − αATAT −BBT )†(αAT +BDT )(Ei + Ej)

}
>

I − 1
4δ

2
{
4(Ei + Ej)(αT +DDT )(Ei + Ej) + (Ei + Ej)(αTAT +DBT )·

·(αT − αATAT −BBT )†(αAT +BDT )(Ei + Ej)
}
>

I − 1
4δ

2
{
4(αT +DDT ) + (αTAT +DBT )(αT − αATAT −BBT )†·

·(αAT +BDT )
}
.

Clearly

I − 1
4δ

2
{
4(αT +DDT ) + (αTAT +DBT )(αT − αATAT −BBT )†·

·(αAT +BDT )
}
> 0
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if and only if

δ <
4

max {λ : λ ∈ σ (4(αT +DDT ) + (αTAT +DBT )·
·(αT −ATAT −BBT )†(αAT +BDT ))} .

This concludes the proof.

In simple words Theorem 1 guarantees that the consensus can be reached by
using the same control law that solves the consensus problem when only ex-
changes of perfect information are assumed, although the systems can share
only logarithmically quantized information. This holds provided that a certain
condition on the magnitude of δ is satisfied. However for a general matrix K,
the expression of δ̄0 given in (26) is not of immediate interest. In the following,
in order to obtain some interesting consequences of this formula, we will restrict
our attention on two cases in which K exhibits a particular structure: when K
is a generic symmetric matrix and when K is symmetric and circulant.

5.1 K Symmetric

We start this section by recalling the following definition. Let P be any matrix
such that P1 = 1 and assume that its spectrum σ(P ) is contained in the closed
unit disk centered in 0. Define

ρ(P ) =
{

1 if dim ker(P − I) > 1
max{|λ| : λ ∈ σ(P ) \ {1}} if dim ker(P − I) = 1 , (33)

which is called the essential spectral radius of P . It is well known in litera-
ture [18], that in the case of average consensus controllers, this quantity is re-
sponsible of the speed of convergence to the equilibrium point.

Now let K be symmetric. Then the following result holds.

Theorem 2. Let K be symmetric and let ρ̄ = ρ̄. Let for any ε > 0

δ̄1 =
4ε (1− ρ̄)4

(ε+ 4)2 + 20(ε+ 4)(1− ρ̄)2 + 68(1− ρ̄)4
. (34)

Then for any δ ≤ δ1 we have consensus, namely limt→+∞ e(t) = 0, and
limt→+∞ x(t) = γ1, ∀x(0) ∈ RN and ∀ {A(t)}∞t=0 .

Proof. Consider the following particular matrix T ∈ T

T = I − 1
N

11T .

It is easy to see that T commute with any doubly stochastic matrix. We impose
that α is such that

α(I −A2)T −BBT ≥ εT (35)
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where ε is a fixed positive real number. (35) is satisfied if and only if

α ≥ max
{
σ
{[

(I −A2)T
]†

(εT +BBT )
}}

.

Moreover (35) implies α > ᾱ. Notice now that

max
{
σ
{[

(I −A2)T
]†

(εT +BBT )
}}

≤ ‖
[
(I −A2)T

]† ‖ ‖(εT +BBT )‖

≤
(

1
1− ρ̄

)2

(ε + 4) .

Hence we can assume that α =
(

1
1−ρ̄

)2
(ε+ 4). From (26) we obtain that

δ̄0 ≥
1

max
{
λ : λ ∈ σ

(
X3(α) + 1

4X
T
2 (α)X†

1(α)X2(α)
)}

≥ 4
max {λ : λ ∈ σ (4(αT +DDT ) + (αTAT +DBT )·

·(αT −ATAT −BBT )†(αAT +BDT ))}

≥ 4
‖4(αT +DDT )‖+ ‖αTA+DBT ‖2 ‖(αT − αATA−BBT )†‖

≥ 4

4α‖T ‖+ ‖DDT ‖+ (‖α‖‖T ‖ ‖A‖+ ‖DBT ‖)2 ‖(αT − αATA−BBT )†‖

Notice that condition (35) implies that ‖(αT−αATAT −BBT )†‖ < 1
ε . Moreover

we have ‖T ‖ = 1, ‖A‖ = 1, ‖DDT ‖ ≤ 4 and ‖DBT ‖ ≤ 8. Hence

δ̄0 ≥
4

4α + 4 + 1
ε (α + 8)2

.

By substituting the expression of α in the above expression we obtain (36).

5.2 K Symmetric and Circulant

The stability result proposed in the previous section is not the best one can
find. Indeed, consider a strongly connected circulant undirected graph G (V,W),
where V andW are respectively the set of vertices and the set of arcs, and where
|V | = N . Assume that the in-degree of the graph is ν + 1. We associate to the
graph G (V,W) the matrix K

Kij =

⎧⎨⎩
1

ν+1 if i �= j and i→ j

− ν
ν+1 if i = j

0 otherwise
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Since from [18] we have that

ρ(I +K) ≥ 1− CN−2/ν ,

where C is a constant independent of G, then in this case Theorem 5.5 guarantees
consensus stability only for all δ ≤ δ̄1 where however δ̄1 tends to 0 as N tends to
+∞. This seems to suggest that for this class consensus controllers the stability
occurs only with logarithmic quantizers having precision which tends to infinity.
We show in this section that this is not true as proved by the following theorem.

Theorem 3. Let K be the matrix defined above. Let for any ε > 0

δ̄2 =
8

ν + 1
. (36)

Then for any δ ≤ δ2 we have consensus, namely limt→+∞ e(t) = 0, and
limt→+∞ x(t) = γ1, ∀x(0) ∈ RN and ∀ {A(t)}∞t=0 .

Proof. Now let L be the Laplacian matrix corresponding to G (V,W), i.e.

Lij =

⎧⎨⎩
−1 if i �= j and i→ j
ν if i = j
0 otherwise

Finally let T = L. It is easy to verify that, letting A = I − K then B =
(A− I)

(
−A+ 1

1+ν I
)
, D = 2+ν

ν I − A and T = (ν + 1)(I − A). We recall that
any circulant matrix H can be diagonalized by the same matrix F , i.e.

F−1HF = diag {λ0(H), . . . , λN−1(H)} ,

where {λ0(H), . . . , λN−1(H)} is the set of eigenvalues of the matrix R. Then the
condition (32) can be rewritten as

ᾱ = max
{

0, max
1≤i≤N−1

{
λ2

i (I −A)λ2
i (1/(ν + 1)I −A)

(ν + 1)λ2
i (I −A)λi(I +A)

}}

= max
1≤i≤N−1

⎧⎨⎩ λ2
i

(
1

ν+1I −A
)

(ν + 1)λi(I +A)

⎫⎬⎭
By noticing that

σ {A} ⊆
[
−1 +

2
ν + 1

, 1
]
,

and

σ

{(
1

ν + 1
I −A

)}
⊆
[
− ν

ν + 1
,

ν

ν + 1

]
.

it is immediate to verify

ᾱ ≤ ν2

2(1 + ν)2
.
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Consider now the expression of δ̄. By reasoning as previously we obtain

δ̄0 = max
α>ᾱ

max
1≤i≤N−1

4α(ν + 1)λi(I +A)− 4
(
λi

(
− 1

1+ν I +A
))

[
α(ν + 1)λi(A) + λi

(
ν+2
ν+1I −A

)
λi

(
− 1

ν+1I +A
)]2

Let α = ν2

2(1+ν)2 + ε where ε is a fixed positive real number. Then

δ̄0 ≥
min1≤i≤N−1

{
4α(ν + 1)λi(I +A)− 4

(
λi

(
− 1

1+ν I +A
))}

max1≤i≤N−1

{[
α(ν + 1)λi(A) + λi

(
ν+2
ν+1I −A

)
λi

(
− 1

ν+1I +A
)]2}

Observe that

max
1≤i≤N−1

{[
α(ν + 1)λi(A) + λi

(
ν + 2
ν + 1

I −A

)
λi

(
− 1
ν + 1

I +A

)]2}

<
α(ν + 1)3 + ν2 + 3ν + 1

(ν + 1)2
.

Moreover

min
1≤i≤N−1

{
4α(ν + 1)λi(I +A)− 4

(
λi

(
− 1

1 + ν
I +A

))}
≥

4
(

ν2

2(ν + 1)2
+ ε

)
2(ν + 1)
ν + 1

−
(

1− 1
ν + 1

)2

= 8ε.

Hence
δ̄0 >

8ε
ε(ν + 1) + ν3+3ν2+6ν+2

2(ν+1)2
,

for all ε > 0. By taking ε→∞ we can argue that δ̄2 = 8
ν+1 .

6 Conclusions

In this paper we presented a new approach to the consensus problem, where we
considered only quantized exchanges of information. In particular we considered
a encoding-decoding strategy based on logarithmic quantizers. We restricted our
attention on the average consensus controllers and we proved that the consensus
problem is solvable even if the systems can share only logarithmically quantized
information. Obviously the use of logarithmic quantizers introduces an error
starting which prevents in general to obtain an consensus at the average of the
initials conditions. The distance from the average the systems will reach the
consensus will be the object of our future investigations. An another field of
future research will be to find encoding and decoding methods which work also
for digital noisy channels.
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Summary. The extension of application domains of robotics from factories to human
environments leads to implementing proper strategies for close interaction between
people and robots. In order to avoid dangerous collision, force and vision based control
can be used, while tracking human motion during such interaction.
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1 Introduction

Physical human-robot interaction (pHRI) is an interesting topic for small-scale
industrial robotics, where a user may need to share the workspace with a robot,
as well as for service robotics. In the elderly-dominated scenario of most indus-
trialized countries, service robotics is a solution for automatizing common daily
tasks, also due to the lack or high cost of human expertise.

The size of an industrial robot, or the necessary autonomous behaviour of a
service robot, can result in dangerous situations for humans co-existing in the
robot operational domain. Therefore, physical issues must be carefully consid-
ered, since “natural” or unexpected behaviours of people during interaction with
robots can result in injuries, which may be severe, when considering the current
mechanical structure of robots available on the market. In this special perspec-
tive, an improved analysis of the problems related to the physical interaction
with robots leads to rediscuss most of the topics of mechanical design, planning,
and control of robots [1].

The physical viewpoint is mainly focused on the risks of collisions or excessive
force exchange occurring between the robot and its user: a too high energy-to-
power ratio may be transferred by the robot, resulting in serious human damages.
Severity indices of injuries may be used to evaluate the safety of robots in pHRI.
These should take into account the possible damages occurring when a manip-
ulator collides with a human head, neck, chest or arm. Several standard indices
of injury severity exist in other, non-robotic, domains. The automotive industry
developed empirical/experimental formulas that correlate human body’s accel-
eration to injury severity, while the suitability of such formulas is still an open
issue in robotics.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 51–70, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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One possible issue to consider, in order to increase robot safety, is the proper
use of the two main “senses”: vision and touch. Vision and force based control for
physical interaction may include collision avoidance, control of close interaction,
fusion with other sensory modes, which all may lead to improving available
robots’ performance, without necessarily considering a novel mechanical design.

Possibly, the need for safety suggests complementing the proposed control
system with the adoption of compliant components in the structure. Compli-
ance can be introduced at the contact point by a soft covering of the whole arm
with visco-elastic materials or by adopting compliant transmissions at the robot
joints. Increasing in this way the robot mechanical compliance while reducing
its overall apparent inertia has been realized through different elastic actua-
tion/transmission arrangements which include: relocation of actuators close to
the robot base and transmission of motion through steel cables and pulleys, com-
bination of harmonic drives and lightweight link design, and use of parallel and
distributed macro-mini [2] or variable-impedance [3] actuation. Other improve-
ments for anticipating and reacting to collisions can be achieved through the
use of combinations of external/internal robot sensing, electronic hardware and
software safety procedures, which intelligently monitor, supervise, and control
manipulator operation.

Modern actuation strategies, as well as force/impedance control schemes, seem
to be anyway crucial in human-robot interaction. On the other hand, a more
complete set of external sensory devices can be used to monitor task execution
and reduce the risks of unexpected impacts. However, even the most robust ar-
chitecture is endangered by system faults and human unpredictable behaviours.
This suggests improving both passive and active safety for robots in anthropic
domains.

This work focuses on techniques for augmenting safety by means of control
systems. Human-like capabilities in close interaction can be considered as mim-
icking sensing and actuation of humans. This leads to consider fully integrated
vision and force based control. Thanks to the visual perception, the robotic sys-
tem may achieve global information on the surrounding environment that can
be used for task planning and obstacle avoidance. On the other hand, the per-
ception of the force applied to the robot allows adjusting the motion so that the
local constraints imposed by the environment during the interaction are satis-
fied. The safety and dependability of a robotic system are strictly connected to
the availability of sensing information on the external environment. Moreover,
vision system may substitute the complex infrastructure needed for “intelligent
environments” [4] to detect and track people in the operational domain.

Because of such complementary nature, it should be natural to believe that
vision and force could be used in an integrated and synergic way to design
suitable planning and control strategies for robotic systems. In the last years,
several papers on this subject have been presented. Some of them combine force
of vision in the same feedback control loop, such as hybrid visual/force control [5],
shared and traded control [6, 7] or visual impedance control [8, 9].



Human-Robot Interaction Control Using Force and Vision 53

2 Safety by Means of Control

The first important criterion to limit injuries due to collisions is to reduce the
weight of the moving parts of the robot. A prototypical example along this
direction is the design of the DLR-III Lightweight Robot [10], which is capable
of operating a payload equal to its own weight (13,5 kg). Advanced light but stiff
materials were used for the moving links, while motor transmission/reduction
is based on harmonic drives, which display high reduction ratio and efficient
power transmission capability. In addition, there is the possibility of relocating
all the relevant weights (mostly, the motors), at the robot base, like it was done
for the Barrett Whole Arm Manipulator (WAM) [11]. This is a very interesting
cable-actuated robot, which is also backdrivable, i.e., by pushing on the links, it
is possible to force motion of all mechanical transmission components, including
the motors’ rotors. In the case of a collision, the lighter links display lower inertia
and thus lower energy is transferred during the impact.

On the other hand, compliant transmissions tend to decouple mechanically
the larger inertias of the motors from those of the links. The presence of com-
pliant elements may thus be useful as a protection against unexpected contacts
during pHRI. More in general, a lightweight design and/or the use of compliant
transmissions introduce link [12] and, respectively, joint [13] elasticity. In order to
preserve performance while exploiting the potential offered by lightweight robot
arms, one must consider the effects of structural link flexibility. Distributed link
deformation in robot manipulators arises in the presence of very long and slender
arm design (without special care on materials); notice that “link rigidity” is al-
ways an ideal assumption and may fail when increasing payload-to-weight ratio.

In the presence of compliant transmissions, deformation can be assumed to
be instead concentrated at the joints of the manipulator. Neglected joint elas-
ticity or link flexibility limits static (steady-state error) or dynamic (vibrations,
poor tracking) task performance. Problems related to motion speed and con-
trol bandwidth must be also considered. Flexible modes of compliant systems
prevent obtaining control bandwidths greater than a limit; in addition, attenua-
tion/suppression of vibrations excited by disturbances can be difficult to achieve.
Intuitively, compliant transmissions tend to respond slowly to torque inputs on
the actuator and to oscillate around the goal position, so that it can be ex-
pected that the promptness of an elastically actuated arm is severely reduced if
compliance is high enough to be effective on safety.

From the control point of view, there is a basic difference between link and
joint elasticity. In the first case, we have non-colocation between input commands
and typical outputs to be controlled; for flexible joint robots, the co-location of
input commands and structural flexibility suggests to treat this case separately.

In order to introduce safety tactics for available robots, we can mainly act
on control; interaction control strategies can be grouped in two categories: those
performing indirect force control and those performing direct force control. The
main difference between the two categories is that the former achieve force con-
trol indirectly via a motion control loop, while the latter offers the possibility of
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controlling the contact force to a desired value, thanks to the closure of a force
feedback loop.

Force/impedance control [14] is important in pHRI because a compliant be-
haviour of a manipulator leads to a more natural physical interaction and re-
duces the risks of damages in case of unwanted collisions. Similarly, the capa-
bility of sensing and controlling exchanged forces is relevant for cooperating
tasks between humans and robots. To the category of indirect force control be-
longs impedance control, where the position error is related to the contact force
through a mechanical impedance of adjustable parameters. A robot manipula-
tor under impedance control is described by an equivalent mass-spring-damper
system, with the contact force as input (impedance may vary in the various task
space directions, typically in a nonlinear and coupled way).

The interaction between the robot and a human results then in a dynamic
balance between these two “systems”. This balance is influenced by the mutual
weight of the human and the robot compliant features. In principle, it is possible
to decrease the robot compliance so that it dominates in the pHRI and vice versa.
Cognitive information could be used for dynamically setting the parameters of
robot impedance, considering task-dependent safety issues. Certain interaction
tasks, however, do require the fulfilment of a precise value of the contact force.
This would be possible, in theory, by tuning the active compliance control action
and by selecting a proper reference location for the robot.

If force measurements are available (typically through a robot wrist sensor),
a direct force control loop could be also designed. Note that, a possible way to
measure contact forces occurring in any part of a serial robot manipulator is
to provide the robot with joint torque sensors. The integration of joint torque
control with high performance actuation and lightweight composite structure
can help merging the competing requirements of safety and performance. In all
cases, the control design should prevent to introduce in the robot system more
energy than strictly needed to complete the task. This rough requirement is
related to the intuitive consideration that robots with large kinetic and potential
energy are eventually more dangerous for a human in case of collision. An elegant
mathematical concept satisfying this requirement is passivity.

As already mentioned, compliant transmissions can negatively affect perfor-
mance during normal robot operation in free space, in terms of increased os-
cillations and settling times. However, more advanced motion control laws can
be designed which take joint elasticity of the robot into account. Moreover, in
robots with variable impedance actuation, the simultaneous and decoupled con-
trol of both the link motion and the joint stiffness is also possible in principle,
reaching a trade-off between performance and safety requirements.

3 Modelling

For pHRI it is necessary to model or track human motion, to get a model of
robot motion and of the objects to interact with. Consider a robot in contact
with an object, a wrist force sensor and a camera mounted on the end-effector
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(eye-in-hand configuration) or fixed in the workspace (eye-to-hand configura-
tion). In the following, some modelling assumption concerning the environemnt,
the robot and the camera are illustrated.

3.1 Robot

The case of a n-joints robot manipulator is considered, with n ≥ 3. The tip
position pq can be computed via the direct kinematics equation:

pq = k(q), (1)

where q is the (n × 1) vector of the joint variables. Also, the velocity of the
robot’s tip vPq can be expressed as

vPq = J(q)q̇

where J = ∂k(q)/∂q is the robot Jacobian matrix. The vector vPq can be
decomposed as

ovPq = oṗq + Λ(opq)
oνo, (2)

with Λ(·) = [I3 −S(·)], where I3 is the (3× 3) identity matrix and S(·) denotes
the (3×3) skew-symmetric matrix operator. In Eq. (2), oṗq is the relative velocity
of the tip point Pq with respect to the object frame while oνo = [ovT

Oo

oωT
o ]T

is the velocity screw characterizing the motion of the object frame with respect
to the base frame in terms of the translational velocity of the origin vOo and of
the angular velocity ωo; all the quantities are expressed in the object frame.

When the robot is in contact with the object, the normal component of the
relative velocity oṗq is null, i.e.:

onT (opq)
oṗq = 0. (3)

3.2 Human User

Positioning of critical parts of a human body may be addressed, like for robots,
considering the kinematics of the structure. However, joint measures are not
available on the human body; therefore, exteroceptive sensing by means of cam-
eras is used, obtaining the position in the space of some relevant features (hands,
head etc.). This leads to finding a simplified kinematic model, to be updated in
real time, with the novel “skeleton algorithm” [15]. This algorithm considers a
skeleton, composed of segments, as a simplified model of a human (or a robot or
even an object), exploiting the simple geometric structures in order to evaluate
analytically the distances between the segments, which can be used for collision
avoidance, considering all the points of the articulated structure of humans and
robots which may collide. For every link of the skeleton of a human figure, the
closest point to the robot or the object to be avoided is computed. The distance
information between the two closest points of human and obstacle can be used
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to avoid a collision, using “spheres” located in the selected closest points as pro-
tective hulls: these spheres can have a finite or infinite radius and can be the
source of repelling forces shaped as effects of virtual springs or potential fields.
Summarizing, the steps of the algorithm are:

• Create a skeleton of the human body, by using vision, and of the robot, by
using direct kinematics in order to find the extremal point of the segments.

• Compute analytically the distances between the different segments, finding
also the two closest points for each pair of links.

• Define intensity and shape of repelling forces between these two points and
use them as reference values in the position/force control system.

Fig. 1. Exemplification of the skeleton algorithm for the DLR lightweight arm

Almost all structures can be encapsulated by a finite skeleton with spheres,
as sketched in Fig. 1 for the DLR arm. The position of the closest point on each
link (continuous curves) varies continuously, preserving continuity of reference
values for any kind of control scheme. The key point of the proposed approach
is that only the two closest points (on each link) of the structure are considered
each time, leading to a simple generation of the Cartesian desired velocity (or
force) for only one of these points, which eventually is transformed in the corre-
sponding joint trajectory via proper inverse kinematics (or kinetics). Any point
on the structure can be considered as a control point. To simplify the problem,
there is also the possibility to choose only a subset of control points, e.g., the ar-
ticulation of the robot [16]. Moreover, it is possible to use an inverse kinematics,
an impedance control or whatever is desired, since the algorithm just adds with
continuity repelling forces or velocity, preserving stability of the control loops
used for the system.



Human-Robot Interaction Control Using Force and Vision 57

3.3 Camera

A frame Oc–xcyczc attached to the camera (either in eye-in-hand or in eye-to-
hand configuration) is considered. By using the classical pin-hole model, a point
P of the object with coordinates cp =

[
x y z

]T with respect to the camera frame
is projected onto the point of the image plane with coordinates[

X
Y

]
=

λc

z

[
x
y

]
(4)

where λc is the focal length of the lens of the camera.
Let Hc denote the homogeneous transformation matrix representing the pose

of the camera frame referred to the base frame. For eye-to-hand cameras, the
matrix Hc is constant, and can be computed through a suitable calibration
procedure, while for eye-in-hand cameras this matrix depends on the camera
current pose xc and can be computed as:

Hc(xc) = He(xe)eHc

where He is the homogeneous transformation matrix of the end effector frame
e with respect to the base frame, and eHc is the homogeneous transformation
matrix of camera frame with respect to end effector frame. Notice that eHc is
constant and can be estimated through suitable calibration procedures, while
He depends on the current end-effector pose xe and may be computed using
the robot kinematic model. The relevant frames and the transformation matrices
are illustrated in Fig. 2, where the more general case of multiple mobile and fixed
cameras is depicted.

Fig. 2. Relevant camera and object frames
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Therefore, the homogeneous coordinate vector of P with respect to the camera
frame can be expressed as

cp̃ = cHo(xo,xc)op̃ (5)

where cHo(xo,xc) = cH−1(xc)Ho(xo). Notice that xc is constant for eye-to-
hand cameras; moreover, the matrix cHo does not depend on xc and xo separately
but only on the relative pose of the object frame with respect to the camera frame.

The velocity of the camera frame with respect to the base frame can be
characterized in terms of the translational velocity of the origin vOc and of
angular velocity ωc. These vectors, expressed in camera frame, define the velocity
screw cνc = [cvT

Oc

cωT
c ]T . Analogously to (2), the absolute velocity of the origin

Oo of the object frame can be computed as

cvOo = cȯo + Λ(coo)cνc, (6)

where coo is the vector of the coordinates of Oo with respect to camera frame and
cȯo is the relative velocity of Oo with respect to camera frame; all the quantities
are expressed in camera frame. On the other hand, the absolute angular velocity
cωo of the object frame expressed in camera frame can be computed as

cωo = cωo,c + cωc (7)

where cωo,c represents the relative angular velocity of the object frame with
respect to the camera frame. The two equations (6) and (7) can be rewritten in
the compact form

cνo = cνo,c + Γ (coo)cνc (8)

where cνo = [cvT
Oo

cωT
o ]T is the velocity screw corresponding to the absolute mo-

tion of the object frame, cνo,c = [cȯT
o

cωT
o,c]

T is the velocity screw corresponding
to the relative motion of the object frame with respect to camera frame, and the
matrix Γ (·) is defined as

Γ (·) =
[
I3 −S(·)
O3 I3

]
,

where O3 denotes the (3× 3) null matrix.
The velocity screw rνs of a frame s with respect to a frame r can be expressed

in terms of the time derivative of the vector xs representing the pose of frame s
through the equation

rνs = rL(xs)ẋs (9)

where rL(·) is a Jacobian matrix depending on the particular choice of co-
ordinates for the orientation. The expressions of rL(·) for different kinds of
parametrization of the orientation can be found, e.g., in [17].

3.4 Object

The position and orientation of a frame attached to a rigid object Oo–xoyozo

with respect to a base coordinate frame O–xyz can be expressed in terms of
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the coordinate vector of the origin oo =
[
xo yo zo

]T
and of the rotation matrix

Ro(ϕo), where ϕo is a (p×1) vector corresponding to a suitable parametrization
of the orientation. In the case that a minimal representation of the orientation
is adopted, e.g., Euler angles, it is p = 3, while it is p = 4 if unit quaternions are
used. Hence, the (m × 1) vector xo =

[
oT

o ϕT
o

]T defines a representation of the
object pose with respect to the base frame in terms of m = 3 + p parameters.

The homogeneous coordinate vector p̃ =
[
pT 1

]T
of a point P of the object

with respect to the base frame can be computed as p̃ = Ho(xo)op̃, where õp
is the homogeneous coordinate vector of P with respect to the object frame
and Ho is the homogeneous transformation matrix representing the pose of the
object frame referred to the base frame:

Ho(xo) =
[
Ro(ϕo) oo

0T
3 1

]
,

where 03 is the (3× 1) null vector.
It is assumed that the geometry of the object is known and that the interac-

tion involves a portion of the external surface which satisfies the continuously
differentiable scalar equation ϕ(op) = 0.

The unit vector normal to the surface at the point op and pointing outwards
can be computed as:

on(op) =
(∂ϕ(op)/∂ op)T

‖(∂ϕ(op)/∂ op‖ , (10)

where on is expressed in the object frame.
Notice that the object pose xo is assumed to be unknown and may change

during the task execution. As an example, a compliant contact can be modelled
assuming that xo changes during the interaction according to an elastic law.

A further assumption is that the contact between the robot and the object
is of point type and frictionless. Therefore, when in contact, the tip point Pq of
the robot instantaneously coincides with a point P of the object, so that the tip
position opq satisfies the constraint equation:

ϕ(opq) = 0. (11)

Moreover, the (3× 1) contact force oh is aligned to the normal unit vector on.

4 Use of Vision, Force and Joint Measurements

When the robot moves in free space, the unknown object pose and the position
of the head of a human user can be estimated online by using the data provided
by the camera; when the robot is in contact to the object, also the force measure-
ments and the joint position measurements are used. Joint values are used for
evaluating the position of the links for collision avoidance. In the following, the
equations mapping the measurements to the unknown position and orientation
of the object are derived.
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4.1 Vision

Vision is used to measure the image features, i.e., any structural feature that
can be extracted from an image, corresponding to the projection of a physical
feature of the object onto the camera image plane. An image feature can be
characterized by a set of scalar parameters fj that can be grouped in a vector
f = [f1 · · · fk]T , where k is the dimension of the image feature parameter space.
The mapping from the position and orientation of the object to the corresponding
image feature vector can be computed using the projective geometry of the
camera and can be written in the form

f = gf (cHo(xo,xc)), (12)

where only the dependence from the relative pose of the object frame with respect
to camera frame has been explicitly evidenced.

For the estimation of the object pose, it is required the computation of the
Jacobian matrix

Jf =
∂gf

∂xo
.

To this purpose, the time derivative of (12) can be computed in the form

ḟ =
∂gf

∂xo
ẋo +

∂gf

∂xc
ẋc, (13)

where the second term on the right-hand side is null for eye-to-hand cameras.
On the other hand, the time derivative of (12) can be expressed also in the form

ḟ = Jo,c
cνo,c (14)

where the matrix Jo,c is the Jacobian mapping the relative velocity screw of the
object frame with respect to the camera frame into the variation of the image
feature parameters. The expression of Jo,c depends on the choice of the image
features; examples of computation can be found in [17].

By taking into account the velocity composition (8), Eq. (14) can be rewritten
in the form

ḟ = Jo,c
cνo − Jc

cνc (15)

where Jc = Jo,cΓ (coo) is the Jacobian corresponding to the contribution of
the absolute velocity screw of the camera frame, known in the literature as
interaction matrix [18]. In view of (9), the comparison of (15) with (13) yields

Jf = Jo,c
cL(xo). (16)

4.2 Force and Joint Measurements

In the case of frictionless point contact, the measure of the force h at the robot
tip during the interaction can be used to compute the unit vector normal to the
object surface at the contact point opq, i.e.,
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nh =
h

‖h‖ . (17)

On the other hand, the vector nh can be expressed as a function of the object
pose xo and of the robot position pq in the form

nh = Ro
on(opq) = gh(xo,pq), (18)

being opq = RT
o (pq − oo).

For the estimation of the object pose, it is required the computation of the
Jacobian matrix

Jh =
∂gh

∂xo
.

To this purpose, the time derivative of (18) can be expressed as

ṅh =
∂gh

∂xo
ẋo +

∂gh

∂pq

ṗq. (19)

On the other hand, the time derivative of (18) can be computed also in the form

ṅh = Ṙo
on(opq) + Ro

oN(opq)
oṗq, (20)

where oN(opq) = ∂on/∂opq depends on the surface curvature and oṗq can be
computed from (2). Hence, by comparing (19) with (20) and taking into ac-
count (9) and the equality Ṙo

on(opq) = −S(nh)ωo, the following expression
can be found:

Jh = −[N S(nh)−NS(pq−oo)]L(xo), (21)

where N = Ro
oN(opq)R

T
o .

The joint positions q are used not only to evaluate the configuration of the
robot, which can possibly collide with a user, but also to evaluate the position
of the point P of the object when in contact to the robot’s tip point Pq, using
the direct kinematics equation (1). In particular, it is significant computing the
scalar

δhq = nT
h pq = ghq(xo,pq), (22)

using also the force measurements via (17).
For the estimation of the object pose it is required the computation of the

Jacobian matrix
Jhq =

∂ghq

∂xo
.

As in the previous subsection, the time derivative of δhq can be expressed as

δ̇hq =
∂ghq

∂xo
ẋo +

∂ghq

∂pq

ṗq. (23)

On the other hand, the time derivative of δhq can be computed also as

δ̇hq = ṅT
h pq + nT

h Ro(oṗq + Λ(opq)
oνo)
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where the expression of the absolute velocity of the point Pq in (2) has been
used. Using identity (3), the above equation can be rewritten as

δ̇hq = pT
q ṅh + nT

h Λ(pq − oo)νo. (24)

Hence, by comparing (23) with (24) and taking into account (20), (21) and (9),
the following expression can be found

Jhq = pT
q Jh + nT

h Λ(pq − oo)L(xo). (25)

5 Vision-Based Pose Estimation

5.1 Human Operator’s Pose Estimation

In order to use the skeleton algorithm [15] for collision avoidance, simple fixed
cameras are employed to detect the positions of face and hands of an operator
in the operational space of the robot. In assembly tasks in cooperation with
the robot, the operator does not move fast, simplifying the tracking by means of
cameras. In preliminary experiments, markers are used to help the detection and
tracking. The detected positions of the human operator are to be tracked in order
to keep a safety volume around him/her, repelling the robot when it approaches
too much. Cameras mounted on the robot can be used as well. Potential fields or
optimization techniques are then to be designed, in order to create modifications
to the robot’s trajectory aimed at avoiding dangerous approaches. Simple virtual
springs or more complex modifications to trajectories, using null-space motion if
possible, can be adopted also while using an interaction control with an object,
which is considered in the following. The shape of the computed repelling force
or velocity must preserve continuity of reference values for the robot controllers.

5.2 Object Pose Estimation

In this section, the problem of the estimation of the pose vector xo of the object
with respect to the base frame using visual, force and joint position measure-
ments. The proposed solution is based on the EKF [19].

To this purpose, a discrete-time state space dynamic model has to be con-
sidered, describing the object motion. The state vector of the dynamic model is
chosen as w =

[
xT

o ẋT
o

]T
. For simplicity, the object velocity is assumed to be

constant over one sample period Ts. This approximation is reasonable in the hy-
pothesis that Ts is sufficiently small. The corresponding dynamic modeling error
can be considered as an input disturbance γ described by zero mean Gaussian
noise with covariance Q. The discrete-time dynamic model can be written as

wk = Awk−1 + γk, (26)

where A is the (2m× 2m) block matrix

A =
[
Im TsIm

Om Im

]
.
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The output of the Kalman filter, in the case that all the available data can
be used, is the vector of the measurements at time kTs

ζk =
[
ζT

f,k ζT
h,k ζhq,k

T
]T

,

where ζf,k = fk + µf,k, ζh,k = hk + µh,k, and ζhq,k = δk + µhq,k, being µ
the measurement noise. The measurement noise is assumed to be zero mean
Gaussian noise with covariance Π .

In view of (12), (18), and (22), the output model of the Kalman filter can be
written in the form:

ζk = g(wk) + µk,

where [µT
f,k µT

h,k µT
hq,k]T and

g(wk) =
[
gT

f (wk) gT
h (wk) gT

hq(wk)
]T

(27)

where only the explicit dependence on the state vector wk has been evidenced.
Since the output model is nonlinear in the system state, the EKF must be

adopted, which requires the computation of the Jacobian matrix of the output
equation

Ck =
∂g(w)
∂w

∣∣∣∣
w=ŵk,k−1

=
[
∂g(w)
∂xo

O

]
w=ŵk,k−1

,

where O is a null matrix of proper dimensions corresponding to the partial
derivative of g with respect to the velocity variables, which is null because the
function g does not depend on the velocity.

The Jacobian matrix ∂g(w)/∂xo, in view of (16), (21) and (25), has the
expression

∂g(w)
∂xo

=
[
JT

f JT
h JT

hq

]T
.

The equations of the recursive form of the EKF are standard and are omitted
here for brevity.

6 Interaction Control

The proposed algorithm can be used to estimate on-line the pose of an object
in the workspace; hence it allows the computation of the constraint (11) with
respect to the base frame in the form

ϕ(RT
o (pq − oo)) = 0.

This information can be suitably exploited to implement any kind of interaction
control strategy. In this work, an impedance control is adopted, according to a
position-based control scheme [14].

In detail, a position and orientation control is adopted for the robot end-
effector, and a pose trajectory for a desired frame d is specified in terms of pd

and Rd. To manage the interaction with the environment, a compliant frame r
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is introduced, specified in terms of pr and Rr. Then, a mechanical impedance
between the desired and the compliant frame is considered, so as to keep limited
the values of the interaction force h and moment m. In other words, the desired
position and orientation, together with the measured contact force and moment,
are input to the impedance equation which, via a suitable integration, generates
the position and orientation of the compliant frame to be used as a reference for
the pose control of the robot end effector.

As far as the compliant frame is concerned, the position pr can be computed
via the translational impedance equation

Mp∆p̈dr + Dp∆ṗdr + Kp∆pdr = h, (28)

where ∆pdr = pd − pr, and Mp, Dp and Kp are positive definite matrices
representing the mass, damping, and stiffness characterizing the impedance.

The orientation of the reference frame Rr is computed via a geometrically
consistent impedance equation similar to (28), in terms of an orientation error
based on the (3×1) vector rεdr, defined as the vector part of the unit quaternion
that can be extracted from rRd = RT

r Rd. The corresponding mass, damping
and inertia matrices are Mo, Do and Ko respectively. More details about the
geometrically consistent impedance based on the unit quaternion can be found
in [14].

Notice that, when the robot moves in free space, the proposed scheme is
equivalent to a position-based visual servoing [20]. Hence, it can be classified as
a position-based visual impedance control.

7 Case Studies

7.1 Interaction with an Object

A planar object surface is considered, described by the equation

onT op = 0,

assuming that the origin Oo of the object frame is a point of the plane and the
axis zo is aligned to the normal on. During the interaction with the robot, the
normal vector n remains constant in the base frame while the plane is elastically
compliant along n according to a simple elastic law. The contact force of the
object on the robot’s tip at pq is given by

h =

{
knnT (po − pq) if nT (po − p) ≥ 0
03 if nT (po − p) < 0

where pq is on the plane when h �= 03 while po is a constant vector representing
the position of a point of the plane when h = 03. The scalar k, representing the
stiffness of the surface, has been set to 10000 N/m.
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An industrial robot Comau SMART-3 S is considered. The robot has a six-
degree-of-freedom anthropomorphic geometry (see [14] for the kinematic and
dynamic model).

The end-effector tool is a rigid stick of 25 cm length ending with a circular
disk of 5 cm radius. The end-effector frame has its origin at the center of the disk
and its approach axis normal to the disk surface and pointing outwards. During
the interaction, when the disk surface and the plane are not parallel, the robot’s
tip point PQ is assumed to be the instantaneous contact point of the external
contour of the disk with the plane. In the case that the disk and the plane are
parallel and in contact, the instantaneous contact point is chosen as the center
of the disk.

The robot has a force/position sensor mounted at the wrist. Neglecting the
weight and inertia of the tool, the force at the robot’s tip point PQ and that at
the origin of the end-effector frame are the same, while a moment is present at
the origin of the end-effector frame due to the contact with the external contour
of the disk. Notice that both the impedance equation and the pose control law
are formulated for the end-effector frame.

O

p
q

O

h

z
O y

O

x
O

x
Oo

O

force/torque
sensor

Fig. 3. Sketch of the end-effector in contact with the plane

A camera is mounted on the robot end effector. It is assumed that the in-
trinsic parameters of the camera are affected by a 2% error, while the extrinsic
parameters are known. The object features are 4 landmark points lying on the
plane at the corners of a square of 10 cm side.

A sketch of the end-effector in contact with the plane is reported in Fig. 3.
The impedance parameters are chosen as: Mp = 9I3, Dp = 5I3 and Kp =

700I3, M o = 0.4I3, Do = 5I3 and Ko = 2I3; a 2 ms sampling time has been
selected for the impedance and the pose controller.

The desired task is planned in the object frame and consists in a straight-line
motion of the end-effector along the zo-axis keeping a fixed orientation with the
disk surface parallel to the xoyo-plane. The final position is:

opf = opi − on(onT opi − δ),
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where opi = [0.5 0 0]T m is the initial position of the end effector and δ = 0.033 m
is chosen to have a normal force of about 22 N at the equilibrium, with the
available estimate of the environment stiffness. A trapezoidal velocity profile
time-law is adopted, with a cruise velocity of 0.023 m/s. The absolute trajectory
is computed from the desired relative trajectory using the current object pose
estimation.

In the EKF, the non-null elements of the matrix Π have been set equal to
625 ·10−12 for f , 10−7 for nh and 6.5 ·10−5 for δhq. The state noise covariance
matrix has been selected so as to give a rough measure of the errors due to the
simplification introduced on the model (constant velocity), by considering only
velocity disturbance, i.e.

Q = diag{0, 0, 0, 0, 0, 0, 0, 5, 5, 0.5, 102, 103, 103, 103} · 10−12.

Notice that the unit quaternion has been used for the orientation in the EKF, to
avoid any occurrence of representation singularities. Moreover a 20 ms sampling
time has been set for the estimation algorithm, corresponding to the typical
camera frame rate of 50 Hz.

Two different case studies are presented, to show the effectiveness of the use
of force and joint position measurements, besides visual measurements.

[s]

[m]

[s]

Fig. 4. Pose estimation error in the first case study. Top: position error; bottom:
orientation error.

In the first case study only the visual measurements are used. The object
pose estimation errors are reported in Fig. 4. The position error is computed as
the difference between the real position of the origin of the objet frame and the
estimated position; the orientation error is defined as the norm of the vector part
of the quaternion that can be extracted from the rotation matrix representing
the mutual orientation of the real object frame with respect to the estimated
frame. The task starts at time to = 0 s, when an estimate of the object pose
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is available from visual measurements; notice that the initial value of the pose
estimation error in non null, due to the camera calibration error. From to to
t1 
 2 s the error varies slowly due to the robot motion. At time t1 the disk
comes into contact with the plane; the abrupt change of robot velocity causes
an increment of the estimation error that, after a transient, becomes constant
and approximatively equal to the initial value.

[s]

[N]

Fig. 5. Contact force in the first case study

The time history of the contact force in the object frame is reported in Fig. 5.
Notice that the contact force is null during the motion in free space and becomes
different from zero after the contact at time t1. The impedance control keeps the
force limited during the transient while, at steady state, the force reaches a value
of about 26 N, which is different from the desired value due to the presence of
the estimation error along to the zo-axis.

The same task is repeated using also the contact force and the joint position
measurements for object pose estimation; the results are reported in Fig. 6 and
Fig. 7. Before the contact (i.e. before time t1), the results are the same as in the
previous case study. After the contact, the benefit of using additional measure-
ments in the EKF produces a significant reduction of the pose estimation error,
especially for the zo component and for the orientation. Moreover, the peak of
the contact force is lower than before and the force value at steady state is near
to the expect value of 22 N.

7.2 Vision-Based Head Avoidance

During a task involving interaction with an object, there is the possibility that
a human operator is present in the workspace. In such a case, the robot has to
reconfigure in order to avoid the body of the operator, tracked by a camera. In a
simple case, it is possible to consider the head and the arms of a person present in
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[s]

[m]

[s]

Fig. 6. Pose estimation error in the second case study. Top: position error; bottom:
orientation error.

[s]

[N]

Fig. 7. Contact force in the second case study

the workspace as a source of a repelling elastic force. A volume is created around
the head and the arms: the robot is pushed with continuous reference values given
to force or velocity for a point on each link which is the closest to the considered
“safety volume”. Results of an experiment with the Comau SMART 3S industrial
robot are reported in Fig. 8. The planned trajectory (dotted line) is abandoned
for the presence of the arm (segment parallel to the axis x, with y = 1 and
z = 0.5). The bold trajectory is the path followed with an elastic constant
K = 0.5 for planning the desired velocity v of the closest points with the formula
v = K(dref − d) for d > dref , where dref is the radius of the protective sphere
and d is the distance between the robot links and the center of such a sphere.
The thin path in Fig. 8 is tracked for K = 0.5. This simple case study shows
the robustness of the skeleton algorithm, which gives continuous references to
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different inverse kinematics schemes (one for each link of a robot) in order to
push a robot in a certain direction during any kind of operation and with any
kind of motion/force controller.
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Fig. 8. Trajectory modifications for collision avoidance

8 Conclusion

The integration of force and visual control to achieve safe human-robot interac-
tion has been discussed. A position-based visual impedance control scheme has
been presented, employing a pose estimation algorithm on the basis of visual,
force and joint position data. The addition of collision avoidance facilities with
the so-called skeleton algorithm gives the opportunity of sharing the workspace
with a human operator.

References

1. De Santis A, Siciliano B, Villani L (2006) The Atlas of Physical Human-Robot
Interaction, Final Report of the EURON Perspective Research Project PHRIDOM

2. Zinn M, Khatib O, Roth B, Salisbury J K (2004) Playing it safe [human-friendly
robot], IEEE Robotics and Automation Magazine, 11(2):12–21

3. Bicchi A, Tonietti G (2004) Fast and “soft-arm” tactics, IEEE Robotics and Au-
tomation Magazine 11(2):22–33

4. Hashimoto H (2005) Intelligent interactive spaces - integration of IT and robotics,
In: Proceedings of 2005 IEEE Workshop on Advanced Robotics and its Social
Impacts, 85–90

5. Hosoda K, Igarashi K, Asada M (1998) Adaptive hybrid control for visual and force
servoing in an unknownenvironment, IEEE Robotics and Automation Magazine
5(4):39–43

6. Nelson BJ, Morrow JD, Khosla PK (1995) Improved force control through visual
servoing, In: Proceedings of 1995 American Control Conference, 380–386



70 A. De Santis et al.

7. Baeten J, De Schutter J (2004) Integrated Visual Servoing and Force Control. The
Task Frame Approach, Springer, Berlin Heidelberg New York

8. Morel G, Malis E, Boudet S (1998) Impedance based combination of visual and
force control, In: Proceedings of 1998 IEEE International Conference on Robotics
and Automation, 1743–1748

9. Olsson T, Johansson R, Robertsson A (2004) Flexible force-vision control for sur-
face following using multiple cameras, In: Proceedings of 2004 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and System, 798–803

10. Hirzinger G, Albu-Schaeffer A, Hahnle M, Schaefer I, Sporer N (2001) On a new
generation of torque controlled light-weight robots, In: Proceedings of 2001 IEEE
International Conference of Robotics and Automation, 3356–3363

11. http://www.barretttechnology.com/robot/products/arm/armfram.htm
12. De Luca A (2000) Feedforward/feedback laws for the control of flexible robots, In:

Proceedings of 2000 IEEE International Conference on Robotics and Automation,
233–240

13. De Luca A, Lucibello P (1998) A general algorithm for dynamic feedback lin-
earization of robots with elastic joint, In: Proceedings of 1998 IEEE International
Conference on Robotics and Automation, 504–510

14. Siciliano B, Villani L (1999) Robot Force Control, Kluwer, Dordrecht Boston
London

15. De Santis A, Albu-Schaeffer A, Ott C, Siciliano B, Hirzinger G (2007), The skeleton
algorithm for real-time collision avoidance of a humanoid manipulator interacting
with humans, Submitted to IEEE Transactions on Robotics

16. De Santis A, Pierro P, Siciliano B (2006) The virtual end-effectors approach for
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Summary. The minimum phase property is an important notion in systems and con-
trol theory. In this paper, a characterization of the minimum phase property of nonlin-
ear control systems in terms of a dissipation inequality is derived. It is shown that this
dissipation inequality is equivalent to the classical definition of the minimum phase
property in the sense of Byrnes and Isidori, if the control system is affine in the input
and the so-called input-output normal form exists.
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1 Introduction

Bode introduced the notion of minimum phase property in his seminal paper [4]
more than 60 years ago. Today, the minimum phase property plays an important
role in systems analysis and control design [12, 14, 13, 27]. For example, the
notion of the minimum phase property can be used to describe fundamental
performance limitations in feedback design (e.g., [4, 20, 15, 9, 8, 18, 23, 24,
2, 26, 1]) and thus allows, roughly speaking, to distinguish between easy and
difficult control problems. For linear time-invariant single-input-single-output
systems, the minimum phase property is characterized for example by all zeros
of the transfer function being in the open left half plane. The notion of zeros
was generalized by Byrnes and Isidori (cf. e.g. [12]) to nonlinear control systems.
For nonlinear control systems, loosely speaking, a system is said to be minimum
phase if it has asymptotically stable zero output constrained dynamics (zero
dynamics), which is obtained when the output of the system is kept identically
equal to zero. For the special class of nonlinear control systems that are affine in
the input and that posses a well-defined input-output normal form in the sense
of [12], a rigorous definition of the minimum phase property can be given. In
the following, this situation is referred to as the minimum phase property in
the sense of Byrnes-Isidori. The minimum phase property is then equivalent to
the situation that an equilibrium point, let’s say x = 0, is asymptotically stable
under the constraint that the output y(t) = 0, t ≥ 0. In general, however, a

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 71–83, 2007.
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precise definition of the minimum phase property for general nonlinear control
systems is not an easy task. The reason for this is that the zero dynamics may not
be well-defined, and even if this were the case, it makes no sense to speak about
stability without saying something about equilibrium points (or sets). Beside
this, it may be difficult to check if a control system is minimum phase or not.
In the literature (cf. e.g. [12]), there exist at least two strategies for a minimum
phase analysis: The first one makes use of a transformation of the control system
into the input-output normal form, if the normal form exists. The second one is
based on simply setting y(t), ẏ(t), . . . to zero, i.e, by setting the output and its
higher order Lie-derivatives to zero and by calculating the remaining dynamics,
which is equivalent to the zero dynamics. The second strategy is more general,
since it also works when a transformation into the input-output normal form
does not exist.

In this paper, a new third possibility is given to characterize the minimum
phase property, namely in terms of a dissipation inequality. It is shown that the
definition of the minimum phase property in the sense of Byrnes-Isidori for affine
control systems with a well-defined input-output normal form is equivalent to
the fact that a certain dissipation inequality is satisfied. Hence the minimum
phase property, which has its origin in the frequency domain world and in geo-
metric control, is expressed in terms of a Lyapunov-based language in this new
approach. Moreover, the dissipation inequality can be easily applied to general
nonlinear control systems that are not necessarily affine in the input. In addition
to the preliminary work [5], an additional result on the smoothness of a certain
function involved in the derived dissipation inequality is established. This result
plays an important role when using the dissipation inequality in a constructive
or in a computational way.

The only known results where the minimum phase property is expressed in
terms of a Lyapunov-based language, i.e., in terms of a dissipation inequality
are [16] and [5]. In [16] another alternative (stronger) notion of minimum phase
property is given, based on output-input-stability which is in the spirit of Son-
tag’s “input-to-state stability” philosophy. In particular a dissipation inequality
is used in [16], which is a sufficient condition for the minimum phase property.
The dissipation inequality there is, however, not a necessary condition, since the
notion used there is motivated by introducing additional robustness in the min-
imum phase property. Therefore, the dissipation inequality derived there does
not fully coincide with the well-established notion of minimum phase property in
the sense of Byrnes-Isidori. In the preliminary work [5], a dissipation inequality
is derived which is necessary and sufficient for the minimum phase property and
which is slightly different from the dissipation inequality derived below. However,
in contrast to [5], the results established in Section 3, in particular Theorem 2
allow an additional smoothness statement of a function that appears in the dis-
sipativity characterization of the minimum phase property.

The structure of the paper is as follows: In Section 2, results from the litera-
ture are revisited and the class of control systems to be considered, the input-
output normal form, and the definition of the minimum phase property in the
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sense of Byrnes-Isidori is given. In Section 3, the dissipation inequality which
characterizes the minimum phase property is derived. Some numerical examples
demonstrate the results of this paper in Section 4. Finally, Section 5 concludes
with a discussion and summary.

2 Preliminaries

The class of control systems studied in this paper is of the form

ẋ = f(x) +G(x)u
y = h(x),

(1)

where f : Rn → Rn, G : Rn → Rn×p, h : Rn → Rp and x ∈ Rn is the state,
u ∈ Rp is the input, and y ∈ Rp is the output.

The main assumption on the control system (1) is that an input-output normal
form exists, i.e., the following assumption is made:

Assumption 1. The functions f,G, h in (1) are assumed to be sufficiently
smooth with f(0) = 0, h(0) = 0 and furthermore, it is assumed that there exists
a local change of coordinates [ξ, η]T = Φ(x) with Φ(0) = 0, Φ sufficiently smooth,
such that the control system (1) with the same number of inputs and outputs can
be represented in input-output normal form ([12], p.224):

ξ̇i
1 = ξi

2

...

ξ̇i
ri−1 = ξi

ri

ξ̇i
ri

= bi(ξ, η) +
p∑

j=1

aij(ξ, η)uj

η̇ = q(ξ, η) + P (ξ, η)u

yi = ξi
1,

(2)

where ξ = [ξ1
1 . . . ξ

1
r1
, ξ2

1 . . .]
T , i = 1 . . . p. Moreover, it is assumed that q(0, η) −

P (0, η)A(0, η)−1b(0, η) is sufficiently smooth, with the square invertible (decou-
pling) matrix A(ξ, η) = (aij(ξ, η)), i, j = 1 . . . p and a vectorial relative degree
r = [r1, . . . , rp]. Note that the output zeroing feedback u = kz(ξ, η) is unique [12]
and is given by

u = kz(ξ, η) = −A(ξ, η)−1b(ξ, η) (3)

with b(ξ, η) = [b1(ξ, η) . . . bp(ξ, η)]T .

For example, if the control system (1) is a single-input-single-output system
with f,G, h sufficiently smooth and if the relative degree is well-defined, then
a local change of coordinates exists that transforms the control system into the
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given form. The multi-input-multi-output case is more involved [12]. However,
control systems that are minimum phase in the sense of Byrnes-Isidori exhibit
stable behavior under the constraint that the output is identically zero. More
precisely:

Definition 1. The control system (1) under the Assumption 1 is said to possess
the minimum phase property with respect to the equilibrium point x = 0, if x = 0
is asymptotically stable under the constraint y(t) = 0, t ≥ 0. In other words, the
zero dynamics

η̇ = q(0, η)− P (0, η)A(0, η)−1b(0, η) (4)

of the control system (1), respectively (2), is asymptotically stable at η = 0.

Further definitions and notations. A function V : Rn → R is called positive
definite, if V (0) = 0, V (x) > 0 for all nonzero x. V is called radially unbounded,
if V (x) →∞ whenever ‖x‖ → ∞. A continuously differentiable, positive definite,
radially unbounded function V is called a Lyapunov function candidate. For a
function V : Rn → R, the row vector ∂V

∂x (x) = ∇V (x) = [Vx1(x) . . . Vxn(x)]
denotes the derivative of V with respect to x.

3 A Dissipation Inequality for the Minimum Phase
Property

In the following, the main results of the paper are derived. In particular, a
characterization of the minimum phase property for the control system (1) under
the Assumption 1 is given in terms of a dissipation inequality, Theorem 1, and
an additional smoothness result for the dissipation inequality, Theorem 2, is
derived. To define the dissipation inequality for the minimum phase property,
the following so-called derivative array (cf. e.g. [10]) is used:

Definition 2. The derivative array Hr : Rn × Rq → Rr1+...+rp+p of the out-
put function y = h(x) = [h1(x) . . . hp(x)]T in (1) is defined by the first r Lie-
derivatives of the output, i.e.,

Hr(x, u) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1(x)
ḣ1(x)

...
h

(r1)
1 (x)
h2(x)

...
h

(rp)
p (x)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)

with ḣi(x) = ∂hi

∂x (x)(f(x) + G(x)u) = Lfhi(x) + LGhi(x)u etc., i.e., the Lie-
derivatives of hi with respect to (1) up to degree ri. Notice that Hr is a function
of x and u, since h

(ri)
i depends on u.
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Using the derivative array, the first result in this section is a characterization of
the minimum phase property in terms a dissipation inequality.

Theorem 1. The control system (1) under the Assumption 1 has the minimum
phase property according to Definition 1 if and only if there exists a Lyapunov
function V : Rn → R and a function ρ : Rn × Rp → Rr1+···+rp+p such that the
dissipation inequality

∇V (x)(f(x) +G(x)u) < Hr(x, u)T ρ(x, u) (6)

is satisfied for all u and all nonzero x in a neighborhood of x = 0.

Proof. The first part of the proof of Theorem 1 shows an explicit construction of
the functions V, ρ, in case the control system (1) is minimum phase. The second
part shows that if the dissipation inequality (6) is satisfied, then the minimum
phase property follows.

Part 1 ((1) is minimum phase
(2)⇒ (6) is satisfied): In the following, it is assumed

that the control system (1) is represented in the input-output normal form (2).
Since (1) is minimum phase, the zero dynamics of (1) is asymptotically stable
and is given by

η̇ = q(0, η)− P (0, η)A(0, η)−1b(0, η) = z(0, η), (7)

which follows by substituting the output zeroing feedback

kz(ξ, η) = −A(ξ, η)−1b(ξ, η) (8)

into (2) and by setting ξ = 0. Let W be a continuously differentiable Lyapunov
function of (7). The existence of such an Lyapunov function is guaranteed due to
Massera’s converse Lyapunov theorem [17, 25, 13]. Massera’s theorem assumes
a locally Lipschitz right-hand side of the differential equation for the existence
of a smooth differential Lyapunov function. Since this is assumed in Assumption
1, W exists. Define now a Lyapunov function candidate

V (ξ, η) = U(ξ) +W (η), (9)

where U is an arbitrary Lyapunov function candidate, i.e., a positive definite, ra-
dially unbounded, continuously differentiable scalar-valued function. The deriva-
tive of V along the trajectories of (2) is given by:

V̇ (ξ, η) = ∇U(ξ)ξ̇ +∇W (η)η̇. (10)

Next, two cases are distinguished: Case 1: Hr is zero in (6), i.e., ξi
1 = . . . =

ξi
ri

= ξ̇i
ri

= 0, (u = kz(ξ, η)), i = 1 . . . p. In this case define the value of ρ to be
zero, i.e.,

ρ(ξ, η, u) = 0. (11)

What remains to show that (6) is satisfied is that ∇W (η)η̇ < 0 holds for some
neighborhood around η = 0. But this is the case, since asymptotic stability of
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the zero dynamics is assumed. Case 2: Hr is not zero in (6), i.e., there exists
ξi
j �= 0 or ξ̇i

ri
�= 0 (u �= kz(ξ, η)). In this case define the value of ρ such that

ρ(ξ, η, u) = Hr(ξ, η, u) · ρ̃(ξ, η, u),

ρ̃(ξ, η, u) >
∇U(ξ)ξ̇ +∇W (η)η̇
‖Hr(ξ, η, u)‖2 .

(12)

The value of ρ is finite since Hr(ξ, η, u) �= 0. With the definition of ρ by (11),
(12) and V according to (9), the dissipation inequality (6) is satisfied (in (ξ, η)-
coordinates). Note that the dissipation inequality in the original coordinates can
be obtained by the inverse transformation x = Φ−1(ξ, η).

Part 2 ((6) is satisfied
(2)⇒ (1) is minimum phase): To show this, consider the

zero dynamics, i.e., consider the dynamics which is defined by initial conditions
(ξ0, η0) with ξ0 = 0 and by the output zeroing feedback u = kz(ξ, η). Under these
initial conditions and under the output zeroing feedback u = kz(ξ, η), y(t) = 0
for all t ≥ 0. Hence Hr(0, η(t), u(t)) = 0, t ≥ 0 because of ξ(t) = 0, t ≥ 0.
Thus the dissipation inequality (6) turns into V̇ (0, η(t)) < 0 and therefore V is
a Lyapunov function and the equilibrium point η = 0 of the zero dynamics is
asymptotically stable.

Theorem 1 establishes a symmetric statement between the minimum phase prop-
erty and a dissipation inequality (6). To understand the dissipation inequality
(6) is not difficult. However, a few points have to be explained. Firstly, the role
of the derivative array Hr: The zero dynamics is the dynamics such that the
output is identically zero. This dynamics evolves on the zero dynamics mani-
fold, which is implicitly defined by ‖Hr(x, u)‖ = 0, since Hr is identically zero,
if y(t) = 0, t ≥ 0. Remember that ρ in the proof of Theorem 1 has the form
ρ(ξ, η, u) = Hr(ξ, η, u)ρ̃(ξ, η, u), which turns the inequality (6) into

∇V (x)(f(x) +G(x)u) < ‖Hr(x, u)‖2ρ̃(x, u) (13)

with x = [ξ η]T . Thus, stability on the manifold ‖Hr(x, u)‖ = 0 has to be stud-
ied, i.e., a Lyapunov function is needed subject to the constraint ‖Hr(x, u)‖ = 0.
‖Hr(x, u)‖ > 0 is not of interest. This situation is compactly expressed in in-
equality (6) ((13)), where ρ plays the role of a penalization function. Geometri-
cally speaking, inequality (6) guarantees negative definiteness of the derivative of
V only on a subset, namely on the set where ‖Hr(x, u)‖ = 0. For ‖Hr(x, u)‖ > 0,
one can find a function ρ such that the left side is dominated by the right side
of the dissipation inequality (6). Algebraically speaking, the right side of the
inequality (6) is the ideal generated by ‖Hr(x, u)‖, i.e, the left side is negative
definite modulo ‖Hr(x, u)‖ > 0.

Summarizing, the main ingredients to arrive at the dissipation inequality (6)
are the so-called derivative array, which defines the hidden constraints and which
finally defines the zero dynamics manifold, as well as a penalization argument,
a well-known argument from optimization theory. Furthermore, in contrast to
the ISS-like minimum phase characterization introduced in [16], Theorem 1 is
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necessary and sufficient to express the minimum phase property as defined by
Byrnes and Isidori. Hence, Theorem 1 represents a complete characterization of
the minimum phase property. It is also worthwile to remark that from the dissi-
pation inequality (6) it can be very clearly seen that the notion of the minimum
phase property is feedback invariant, since it must hold for all u. In Theorem 1,
no statement is made about the degree of smoothness of ρ. Even no statement
on the existence of a continuous ρ is made. However, for computational purposes
for example, a guarantee of the existence of a smooth ρ would be desirable. The
next theorem shows that under Assumption 1, there exists indeed a smooth ρ. In
particular the following proof of Theorem 2 is constructive and an explicit func-
tion ρ is constructed. Due to simplicity of exposition, the construction is carried
out for the case p = 1, i.e., Theorem 2 is stated for the single-input-single-output
case. The construction for the multi-input-multi-output is more tedious but goes
along the same lines.

Theorem 2. If the control system (1) under the Assumption 1 with p = 1 has the
minimum phase property according to Definition 1, then there exists a smooth
Lyapunov function V : Rn → R and a smooth function ρ : Rn ×R → Rr+1 such
that the dissipation inequality (6) is satisfied for all u and all nonzero x in a
neighborhood of x = 0.

Proof. As in the proof of Theorem 1, it is assumed that the control system (1) is
represented in the input-output normal form (2). Smoothness of the Lyapunov
function W for the zero dynamics (7) follows from Massera’s converse Lyapunov
theorem [17, 25]. In particular, it is assumed in Assumption 1 that the zero
dynamics is sufficiently smooth, hence a sufficiently smooth W exists. To show
that also ρ is sufficiently smooth, a smooth Lyapunov function candidate of the
form

V (ξ, η) =
1
2
ξT ξ +W (η) (14)

is chosen, i.e., U(ξ) = 1
2ξ

T ξ in (9). Hence, the dissipation inequality (6) for the
control system (2), with p = 1, is given by:

ξ1ξ2 + . . .+ ξr−1ξr + ξr(b(ξ, η) + a(ξ, η)u) +∇W (η)(q(ξ, η) + p(ξ, η)u)
< ξ1ρ1(ξ, η, u) + . . . + ξrρr(ξ, η, u) + (b(ξ, η) + a(ξ, η)u)ρr+1(ξ, η, u)

(15)

with ξ = [ξ1 . . . ξr]T . In a first step, ρ is chosen as

ρi(ξ, η, u) = ξi+1 + ρ̃i(ξ, η, u),
ρr(ξ, η, u) = (b(ξ, η) + a(ξ, η)u) + ρ̃r(ξ, η, u)

(16)

i = 1 . . . r − 1, with ρ̃i as new auxiliary functions. Hence (15) turns into

∇W (η)(q(ξ, η) + p(ξ, η)u) < ξ1ρ̃1(ξ, η, u) + . . .+ ξrρ̃r(ξ, η, u)
+(b(ξ, η) + a(ξ, η)u)ρr+1(ξ, η, u).

(17)
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In a second step, u is replaced by

u = − 1
a(ξ, η)

(b(ξ, η) + v) (18)

with v as a new input. Therefore, one obtains from (17)

∇W (η)
(
q(ξ, η)− p(ξ, η)

a(ξ, η)
(b(ξ, η) + v)

)
< ξ1ρ̃1(ξ, η, v) + . . .+ ξrρ̃r(ξ, η, v) + vρr+1(ξ, η, v).

(19)

Due to the substitution (18), inequality (19) can be satisfied if and only if (17)
can be satisfied. In a next step, ρ is chosen as

ρr+1(ξ, η, v) = −∇W (η)
p(ξ, η)
a(ξ, η)

(20)

and after rewriting (19), one arrives at

∇W (η)z(0, η) +∇W (η) (z(ξ, η)− z(0, η))
< ξ1ρ̃1(ξ, η, v) + . . .+ ξrρ̃r(ξ, η, v),

(21)

where the expression that corresponds to the zero dynamics is given by

z(ξ, η) = q(ξ, η) − p(ξ, η)
b(ξ, η)
a(ξ, η)

. (22)

Since the control system is assumed to be minimum phase, the inequality

∇W (η)z(0, η) < 0 (23)

holds locally. Thus, it is sufficient to show that

∇W (η) (z(ξ, η)− z(0, η)) + ξT ξ ≤ ξ1ρ̃1(ξ, η, v) + . . .+ ξr ρ̃r(ξ, η, v) (24)

can be satisfied. Assumption 1 implies that the function z is sufficiently smooth
and therefore continuously differentiable. By applying a mean-value theorem for
vector-valued functions, the so-called Hadamard lemma [22, 3], the difference
z(ξ, η)− z(0, η) can be written as

z(ξ, η)− z(0, η) = Z(ξ, η)ξ (25)

with a continuous (smooth) matrix-valued function Z defined by

Z(ξ, η) =
∫ 1

0

∂z

∂x
((1 − θ)ξ, η)dθ. (26)

Hence, the inequality (24) can be written as

∇W (η)Z(ξ, η)ξ + ξT ξ ≤ ξ1ρ̃1(ξ, η, v) + . . .+ ξrρ̃r(ξ, η, v), (27)



A Dissipation Inequality for the Minimum Phase Property 79

from which the smooth functions ρ̃i easily follow such that (27) holds. For ex-
ample, choose the ρ̃i’s such that

∇W (η)Z(ξ, η) + ξT = [ρ̃1(ξ, η, v) . . . ρ̃r(ξ, η, v)]. (28)

Therefore, inequality (24) is satisfied and thus also the desired dissipation in-
equality (15). Finally, note again that the dissipation inequality in the original
coordinates can be obtained by the inverse transformation x = Φ−1(ξ, η) of the
input-output normal form transformation.

Notice that the converse statement of Theorem 2 follows immediately from the
proof of Theorem 1. Furthermore, Definition 1 and all established results are of
local nature with respect to the equilibrium point x = 0. From the proofs of
Theorem 1 and 2, however, global results can be easily established. Moreover,
the results in this paper can be easily extended to the more general input-output
normal form in [12] (p.310). In particular, this is one advantage of the established
dissipation inequality since it is in principle also applicable to general control
systems, as summarized next.

Remark 1. The affine structure of the control system (1) can be easily replaced
in (6) by a general, nonaffine control system, i.e.,

∇V (x)f(x, u) < Hr(x, u)Tρ(x, u), (29)

which leads to a possible extension of the minimum phase property to nonaffine
control systems. In this case, however, the zero dynamics might not be well-
defined and the output zeroing feedback is not unique anymore. For generalized
notions for the minimum phase property to control systems that are not affine
in the control input, one may also consult [19, 16]. Since the minimum phase
property is basically a matter of stability on manifolds, one may consult [6] which
provides a general Lyapunov-based approach for such questions.

Remark 2. It is well-known that the minimum phase property is an important
notion for describing fundamental performance limitations in feedback design.
In particular, well-known is the Bode integral of the inverse sensitivity function
(Bode T-integral), which relates the minimum phase property with limitations
in tracking problems [20, 15, 9, 8, 18, 23, 24, 2, 26, 1]. One may ask the ques-
tion, in how far the derived dissipation inequality in Section 3 reflects this fact.
One possible answer is given in [7]. The idea persuited there is to search for a
new output such that a given nonminimum phase control system becomes min-
imum phase and such that the new minimum phase output is the closest one
to the true nonminimum phase output in the L2-sense. In particular, for linear
time-invariant control systems it can be shown using duality theory from convex
optimization and by utilizing the established dissipation inequality for the min-
imum phase property, that this leads to an alternative deriviation of the Bode
integral for the inverse sensitivity. More details on that as well as its relation to
cheap control [24] can be found in [7].
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Summarizing, in this section a new characterization of the minimum phase prop-
erty for control systems which posses a well-defined input-output normal form is
derived. Moreover, the established characterization is suitable for computational
purposes (cf. Example 2, Section 4) and also applicable to control systems where
an input-output normal form does not exist or where the relative degree is not
well-defined (cf. Example 1, Section 4).

4 Examples

In the following, two examples are given which illustrate the results in the pre-
vious sections. In particular, attention is paid to the following two aspects: com-
putability and generalizability.

Example 1

This example illustrates that the dissipation inequality (6) can also be applied
in case the control system does not have a well-defined relative degree and is not
affine in the input. Consider the nonaffine control system

ẋ1 = −x1 + x3e
u

ẋ2 = x3

ẋ3 = x2u

y = x2,

(30)

which has relative degree two except for x2 = 0. Applying (6) with V = 1
2 (x2

1 +
x2

2 + x2
3) yields

− x2
1 + x1x3e

u + x2x3 + x2x3u

< x2ρ1(x, u) + x3ρ2(x, u) + x2uρ3(x, u).
(31)

For example, by choosing ρ1(x, u) = x3+x2, ρ2(x, u) = x1e
u+x2u+x3, ρ3(x, u) =

0, one obtains −x2
1 − x2

2 − x2
3 < 0. Thus global asymptotic stability of the

zero dynamics is established, i.e., the control system (30) is (globally) minimum
phase.

Example 2

This example illustrates that the dissipation inequality (6) for the minimum
phase property is particularly suited for a minimum phase test for control sys-
tems with polynomial nonlinearities. In general, it is very difficult to search
for a Lyapunov function V and a function ρ such that (6) holds However, re-
cently established methods from computational real algebraic geometry based on
semidefinite programming and the sum of squares decomposition allow to verify
the dissipation inequality (6) very efficiently in case all the functions involved
are of polynomial type (consult for example [21, 11] and references therein).
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In the special case of linear time-invariant control systems, (6) can be written
as an linear matrix inequality. The following example demonstrates this fact,
without going into the computational details. Consider the control system

ẋ1 = −x1 + x1x2 + x1x
2
2u

ẋ2 = −x2 + x4 − x1x4

ẋ3 = x2
1 + x2 + x3 + u

ẋ4 = −x4 + x1x2 + x1x2x3

y = x3,

(32)

which has relative degree one. By using semidefinite programming and sum of
squares techniques, the following quadratic Lyapunov function

V = 5.11x2
1 + 3.82x2

2 − 0.31x2x3 + 2.35x2
3

− 0.07x1x3 + 0.07x2x4 − 1.26x3x4 + 4.94x2
4

(33)

was found. Furthermore, a function ρ was found with monomials of degree one
to four. Therefore, it was possible to prove in a computationally efficient way
that the control system (32) is globally minimum phase.

5 Conclusions

The paper has two contributions. The first contribution is a characterization of
the minimum phase property of nonlinear control systems in terms of a dissipa-
tion inequality. This allows to describe the notion of the minimum phase prop-
erty, which was originally developed in nonlinear geometric control [12], with
the help of a Lyapunov-based argument, in case the control systems possesses
an input-output normal form. The main idea is the use of a so-called derivative
array and a penalizing function, which allows to characterize the stability of the
zero dynamics in terms of a dissipation inequality without an explicit knowledge
of the equations that define the zero dynamics.

The second contribution of this paper shows that if the control system is
sufficiently smooth, then the functions that appear in the derived dissipation in-
equality (6) can also be chosen smooth. Moreover, demonstrated on an example,
it has been shown that the derived dissipation inequality that characterizes the
minimum phase property is in particular suitable for a minimum phase analysis
using efficient numerical algorithms. It has also been shown by an example that
the dissipation inequality can be very easily applied to control systems that are
not affine in the input and thus allow a way to generalize the notion of the mini-
mum phase property very easily. Another advantage of the proposed dissipation
inequality is the conceptual simplicity.

There are several interesting points for future reseach. Since the penalizing
function ρ is motivated from optimization theory, one can also consider ρ as a
Lagrange multiplier or as a dual variable. This may be of particular interest in
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connection with performance limitations and further investigation in this direc-
tion is needed. Finally, the dissipation inequality (6) is similar to a generalized
phase or passivity condition [12, 14, 13], due to the appearence of the inner
product in the dissipation inequality. This similarity may be useful to extend
passivity-based results to minimum phase control systems with a higher relative
degree.

References
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Summary. In this paper an internal model based approach to periodic input dis-
turbance suppression for port-Hamiltonian systems is presented; more specifically, an
adaptive solution able to deal with unknown periodic signal belonging to a given class
is introduced.

After an introductive section, the adaptive internal model design procedure is pre-
sented in order to solve the input disturbance problem. This theoretical machinery
is specialized for the energy-based port-Hamiltonian framework in order to prove the
global asymptotical stability of the solution.

Finally, in order to clearly point out the effectiveness of the presented design proce-
dure a tracking problem is solved for a robotic manipulator affected by torque ripples.

Keywords: Port-Hamiltonian systems, Internal Model Control, Adaptive Control, In-
put Disturbance Suppression, Robot Manipulator.

1 Introduction

Input disturbance suppression is a very important topic in control theory as
it represents the case in which malfunctions on the systems can be modeled
as signals superimposed to the input channels; in real case it is possible to
assume that the malfunction effect belongs to a known class of signals while
their parameters (amplitude and even phase and frequencies in case of periodic
signals) are unknown. For example malfunctioning on rotating systems driven by
a power electronic part (e.g. electrical drives, magnetic levitation systems etc.)
leads to asymmetries reflecting in spurious harmonics in the electrical variables
(see [21], [3], [20], [16], [15]).

In this paper a comprehensive port-Hamiltonian systems (pHs) framework to
deal with input disturbance suppression problems is considered. The main idea
is to cast the problem into a regulation one and to solve it with an adaptive
internal model based regulator. The design procedure turns out to be able to
obtain a fault tolerant behavior: the asymptotic regulation is assured even in
presence of a fault, and hence in presence of the resulting disturbances. The the-
oretical machinery exploited in order to prove the global asymptotical stability of

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 85–98, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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the solution is the nonlinear regulation theory, specialized for the energy-based
port-Hamiltonian formalism in order to take advantage of its peculiar prop-
erties. In [10] pHs were introduced as a generalization of Hamiltonian systems,
described by Hamilton’s canonical equations, which may represent general physi-
cal systems, i.e. mechanical, electric and electro-mechanical systems, nonholomic
systems and their combinations (see [14] for further references).

In Section 2, a general exogenous input disturbance problem is considered
for a generic pHs. The regulation problem is stated and an adaptive internal
model based design procedure able to globally asymptotically solve this problem
is introduced under proper assumption regarding the system into account.

It is worth to remark that the design procedure presented in this section is
able to deal with disturbances that can be modeled as functions of time within a
finitely-parametrized family: i.e. exogenous constant and sinusoidal disturbances
characterized by unknown amplitude, phase and frequency. The hypothesis of
not perfect knowledge of the characteristic frequencies introduces a complex
issue to deal with: in the last years this problem has been pointed out and
addressed using different design techniques (see [13], [9], [17], [11], [18] and ref-
erences therein). In this work a solution to this issue, relying on simple Lyapunov
based consideration, is presented.

In order to enlighten the practical effectiveness of the solution presented, in
Section 3, a tracking control problem is solved for a robotic manipulator affected
by torque ripples. The same example studied in [2] is here suitably modified in
the solution according to the general framework presented.

2 Adaptive Input Disturbance Suppression Control for
Port-Hamiltonian Systems

In this section we present a design approach to solve a disturbance suppression
problem for pHs. The class of disturbance considered consists in addictive ac-
tuators disturbances modeled as exogenous input signals belonging to the class
of constant and sinusoidal disturbances characterized by unknown amplitude,
phase and frequency.

Consider a pHs with an exogenous disturbance δ(t) acting through the input
channel:

ẋ = (J(x) −R(x))
∂H

∂x
+ gu− gδ (1)

where x ∈ IRn, u ∈ IRm, H : IRn → IR is the energy function (Hamiltonian func-
tion), J(x) is a skew symmetric matrix (J(x) = −JT(x)), R(x) is a symmetric
semi-positive definite matrix (R(x) = RT(x)) and g ∈ IRn×m.

The disturbance δ(t) is generated by a neutrally stable exosystem defined by{
ẇ = Sw

δ = Γw
(2)
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with s = 2k + 1, w ∈ IRs; Γ ∈ IRs×m is a known matrix and S is defined by

S = diag{S0, S1, . . . , Sk} (3)

where S0 = 0,

Si =
[

0 ωi

−ωi 0

]
ωi > 0 i = 1, . . . , k . (4)

The initial condition of the exosystem is w(0) ∈ W, with W ⊆ IRs bounded
compact set.

In this discussion the dimension s of matrix S is known but all characteristic
frequencies ωi are unknown but ranging within known compact sets, i.e. ωmin

i ≤
ωi ≤ ωmax

i . In this set up the lack of knowledge of the exogenous disturbance
reflects into the lack of knowledge of the initial state w(0) of the exosystem and of
the characteristic frequencies. Any disturbance obtained by linear combination
of a constant term and sinusoidal signals with unknown frequencies, amplitudes
and phases are therefore considered.

The problem to address is to regulate the system to the origin in despite of the
presence of exogenous disturbances; it will be remarked later that the solution
presented is even able to supply estimates of the disturbances acting on the
system.

All above assumptions allow to cast the problem of disturbance suppression
as a nonlinear regulation problem (see [8], [4], [7], [1]) complicated by the lack
of knowledge of the matrix S and suggests to look for a controller which embeds
an internal model of the exogenous disturbances augmented by an adaptive part
in order to estimate the characteristic frequencies of the disturbances.

The hypothesis of not perfect knowledge of the characteristic frequencies in-
troduces a key issue to deal with (see [13], [9], [17], [11], [18] and references
therein); here it is shown how, under some hypotheses regarding the pHs (1),
this problem can be overcome introducing an adaptation law, designed exploit-
ing the properties of the pHs structure, able to globally asymptotically stabilize
the feedback system.

As discussed in the introduction, the regulator to be designed will embed the
internal model of the exogenous disturbance: this internal model unit is designed
according to the procedure proposed in [11] (canonical internal model). Given
a symmetric, negative definite Hurwitz matrix F and any matrix G such that
the couple (F,G) is controllable, denote by Y the unique nonsingular matrix
solution of the Sylvester equation1

Y S − FY = GΓ (5)

and define Ψ := ΓY −1.
1 Existence and uniqueness of the matrix Y follow from the fact that S and F have

disjoint spectrum. The fact that Y is nonsingular can be easily proved using observ-
ability of the pairs (S, Γ ) and controllability of the pair (F, G).
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Let us introduce the adaptive internal model unit as⎧⎪⎨⎪⎩
ξ̇ = (F +GΨ̂)ξ +N(x)

˙̂
Ψ ij = ϕij(ξ, x) , i = (1, · · · ,m)

j = (1, · · · , s)
(6)

where Ψ̂ij represents the ij-th element of matrix Ψ̂ , and set the control law as

u = Ψ̂ξ + ust (7)

where N(x) and ust are additional terms that will be designed later. The adap-
tation laws ϕij(ξ, x) will be designed in order to assure that, asymptotically, the
internal model unit will provide a control able to accommodate all disturbances.

Defining the changes of coordinate

χ = ξ − Y w −Ax

Ψ̃ij = Ψ̂ij − Ψij ,
i = (1, · · · ,m)
j = (1, · · · , s)

(8)

where matrix A is chosen according to Ag = G, system (1) with controller (6)
becomes ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ẋ = (J(x) −R(x))
∂H

∂x
+ gΨ̃ξ + gΨξ + gust − gΓw

χ̇ = (F +GΨ̂)ξ +N(x)− Y Sw −Aẋ

˙̂
Ψij = ϕij(ξ, x) ,

i = (1, · · · ,m)
j = (1, · · · , s) .

(9)

Note that

ẋ = (J(x)− R(x))
∂H

∂x
+ gΨ̃ξ + gΨ(ξ − Y w −Ax) + gΨAx+ gust

= (J(x)− R(x))
∂H

∂x
+ gΨ̃ξ + gΨχ+ gΨ̂Ax− gΨ̃Ax+ gust ,

hence, choosing ust = −Ψ̂Ax, it is possible to write

ẋ = (J(x) −R(x))
∂H

∂x
+ gΨ̃(ξ −Ax) + gΨχ .

Considering now the following two vectors containing every element of matrix Ψ
and Ψ̂

Φ =
(
Ψ11 · · · Ψ1s · · · Ψm1 · · · Ψms

)T
Φ̂ =

(
Ψ̂11 · · · Ψ̂1s · · · Ψ̂m1 · · · Ψ̂ms

)T (10)

and defining Φ̃ = Φ̂− Φ, it is possible to design a matrix Π(x, ξ) such that
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Π(x, ξ)Φ̃ = gΨ̃(ξ −Ax) = gΨ̃(χ + Y w)

and write
ẋ = (J(x) −R(x))

∂H

∂x
+Π(x, ξ)Φ̃+ gΨχ . (11)

Let us concentrate now on the χ-dynamic in order to suitably design the update
term N(x):

χ̇ = (F +GΨ̂ )ξ +N(x) − YMz −GΓw −A

[
(J(x)−R(x))

∂H

∂x
+ gΨ̂ξ

−gΓw − gΨ̂Ax
]

=

= Fχ+ FAx+N(x)−A(J(x) −R(x))
∂H

∂x
+AgΨ̂Ax .

Choosing

N(x) = −FAx+A(J(x) −R(x))
∂H

∂x
−AgΨ̂Ax (12)

the obtained χ-dynamic is
χ̇ = Fχ . (13)

As all dynamics of (9) have been investigated, it is now possible to design an
adaptation law for Ψ̂T. In order to obtain a system fitting the pHs framework,
this adaptation law must be chosen to satisfy the skew-symmetric property:

˙̂
Φ = −Π(x, ξ)T

∂H

∂x
.

With this in mind it is immediate to write the Φ̃-dynamic as

˙̃Φ = ˙̂
Φ− Φ̇ = −Π(x, ξ)T

∂H

∂x
. (14)

Consider now equations (2), (11), (13) and (14). The overall new system identifies
an interconnection described by:

˙̄x = [J̄(x̄)− R̄(x̄)]
∂Hx(x̄)
∂x̄

+ Λ (15)

with
x̄ =

(
x χ Φ̃ w

)T
,

and characterized by the Hamiltonian function Hx(x) defined by

Hx(x̄) = H(x) +
1
2
χTχ+

1
2
Φ̃TΦ̃+

1
2
wTw ,

the skew-symmetric interconnection matrix J̄(x̄) defined by

J̄(x̄) =

⎛⎜⎜⎝
J 0 Π 0
0 0 0 0

−ΠT 0 0 0
0 0 0 S

⎞⎟⎟⎠ ,
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the damping matrix R̄ defined as

R̄ =

⎛⎜⎜⎝
R(x) 0 0 0

0 −F 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ ,

and finally Λ as
Λ =

(
gΨχ 0 0 0

)T
.

At this point the main result of the paper can be stated.

Theorem 1. Consider the pHs (1), affected by exogenous signals generated by
the autonomous system (2), (3), (4).

If the following hypotheses H1 and H2 hold:

H1: there exists two numbers ηx ∈ IR− and ηΨ ∈ IR and a matrix Q ∈ IRn×n

such that for all χ ∈ IRs the following holds

−∂
TH

∂x
R(x)

∂H

∂x
+
∂TH

∂x
gΨχ ≤ ηx‖Qx‖2 + ηΨ‖Qx‖‖χ‖ ; (16)

H2: the origin of (1) is the largest invariant set of the auxiliary system

ẋ = (J(x) −R(x))
∂H

∂x
+ gσ

σ̇ = −gT ∂H

∂x

characterized by
∂TH

∂x
R(x)

∂H

∂x
= 0 .

Define the controller (adaptive internal model unit)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ξ̇ = (F +GΨ̂)ξ − FAx+A(J(x) −R(x))

∂H

∂x
−AgΨ̂Ax

˙̂
Φ = −Π(x, ξ)T

∂H

∂x

u = Ψ̂ξ − Ψ̂Ax ,

(17)

where A is chosen according to Ag = G, Π(x, ξ) is a suitably defined updating
term designed such that

Π(x, ξ)Φ̃ = gΨ̃(ξ −Ax) ,

F is a suitably defined symmetric Hurwitz matrix designed according the con-
structive proof presented in the following and G is a suitably defined matrix such
that the couple (F,G) is controllable.

Then controller (17) is able to asymptotically stabilize the origin of system
(1), zeroing the effect of the exogenous disturbances.
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Proof. Consider system (15) (obtained connecting (1) with (17)) and the follow-
ing Lyapunov function:

V = Hx(x) .

Simple computations show that the time derivative of this Lyapunov function is
defined by

V̇ = −∂
TH

∂x
R
∂H

∂x
+
∂TH

∂x
gΨχ+ χTFχ .

As (16) holds, there exist real numbers ηx ∈ IR− and ηΨ ∈ IR, a matrixQ ∈ IRn×n

and ηF ∈ IR−, such that

V̇ ≤ ηx‖Qx‖2 + ηF ‖χ‖2 + ηΨ‖Qx‖‖χ‖ .

Using a Young’s inequality argumentation it is possible to state that

V̇ ≤ ηx‖Qx‖2 + ηF ‖χ‖2 +
ηΨ

2
ε‖Qx‖2 +

ηΨ

2ε
‖χ‖2 ,

for a certain value of ε. Choosing ε = −ηkp/ηΨ , it comes out that

V̇ ≤ ηx‖Qx‖2 +
(
ηF −

η2
Ψ

2ηx

)
‖χ‖2 , (18)

hence, choosing matrix F such that

ηF <
η2

Ψ

2ηx
,

it turns out that V̇ ≤ 0 and, for LaSalle invariance principle, system’s trajectory
are asymptotically captured by the largest invariant set characterized by V̇ =
0. Considering this, by (18) and hypothesis H2, the system (1) asymptotically
converge to the origin proving the statement.

Remark 1. It is worth to remark that, though the main hypotheses H1 and H2
could appear rather conservative, they refer to a system of the form (1) that
could be not the original plant but the port-Hamiltonian formulation of the
original system already controlled to attain specific tasks; this a priori control
action could be suitably designed such that the resulting system satisfies condi-
tions H1 and H2. In particular, it could be easily shown that hypothesis H1 is
always verified if the system into account is characterized by a quadratic Hamil-
tonian function. To enlighten the effectiveness of the property remarked here,
in section 3 a n-degree of freedom robotic manipulator is taken into account:
the original system does not satisfy both conditions but, with a suitably defined
control action able to perform even a tracking objective and a proper change
of coordinates, the resulting system turns out in the form (1) satisfying H1 and
H2; hence the control algorithm introduced can be used to solve the input dis-
turbance suppression problem.

A further control procedure able to impose particular shape and properties to
the controlled system is the well known IDA-PBC (see [19], [12] and reference
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therein for a survey about this control strategy): this control strategy is able
to design a suitable port-Hamiltonian controller such that the interconnected
system (original plant and IDA-PBC controller) assumes the form of a desired
reference pHs. It is easy to realize that one of the characteristic step of the IDA-
PBC control strategy is just the definition of a target system, usually described
by the classical port-Hamiltonian structure, characterizing the resulting dynamic
after that the controller is designed and connected: this target system could
be assumed of the form (1), imposing moreover that all the assumptions in
Theorem 1 are satisfied.

An interesting research topic, that is still under investigation, regards the
conditions to impose to the original system and to the original problem, such
that, for example, an IDA-PBC control strategy makes it possible to cast the
problem in the presented framework.

Remark 2. Following the discussion of remark 1, it is important to stress the
fact that, in some case, system (1) can be time varying. A typical situation is
when (1) represents the error system in a tracking problem; in this case the
time depending trajectories could appear in the skew-symmetric matrix J(x, t).
Clearly LaSalle invariance principle cannot be used to show convergence; never-
theless the approach can be used again and the asymptotic convergence proved
by means of Barbalat Lemma when its hypotheses are satisfied (see [22]). This
is the case, for example, of having Q = I in Theorem 1.

Remark 3. In some cases, the arise of periodical disturbances superimposed to
the control variable represents the effect of a fault occurred in the system: for
example electrical motors as well as magnetic levitation systems can be subject
to some asymmetries (e.g. due to some electrical or mechanical faults) that
cause the arise of spurious harmonics in the electrical variables (see [3], [20],
[16], [15]). In these cases, the design procedure introduced is able to obtain a
fault tolerant behavior: the asymptotic regulation is assured even in presence of
a fault, and hence in presence of the resulting disturbances superimposed to the
control inputs.

In this viewpoint the design procedure can be cast into the so-called implicit
Fault Tolerant Control framework introduced in [3]. According to this approach
the control reconfiguration does not relay on an explicit Fault Detection and
Isolation design but is achieved by a proper design of a dynamic controller which
is implicitly fault tolerant to all the possible faults whose model is embedded in
the regulator by means of an internal model.

It is interesting to see that, thanks to Theorem 1, even the Fault Detection and
Isolation phase can be carried out by testing the state of the internal model unit
which automatically activates to offset the presence of disturbances representing
the effect of a fault. Let us remember the definition of error variable χ: its
asymptotic convergence to the origin implies that the internal model state ξ tends
to the disturbance Y w. Hence this phase, which is usually the starting point for
the design of the FTC system is now a consequence of the reconfiguration phase.
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In the next section an interesting example is presented to point out the main
properties of the input disturbance suppression design procedure presented in
this paper. More precisely, a n degree of freedom manipulator is controlled in
presence of torque disturbances assuring in the meantime a tracking property.

3 An Example: Application to a Robot Manipulator

Consider an n degree of freedom fully-actuated robot manipulator with gen-
eralized coordinates q = (q1, · · · , qn)T. If p = M(q)q̇ = (p1, · · · , pn)T are the
generalized momenta, with M(q) the inertia matrix, symmetric and positive
definite for all q, an explicit port-Hamiltonian representation of this system can
be obtained defining the whole state (q, p)T, the Hamiltonian function as the
total energy of the system (sum of kinetic energy and potential energy)

H(q, p) :=
1
2
pTM−1(q)p + P (q)

and, finally, the matrices

J =
(

0 In

−In 0

)
, R(q) =

(
0 0
0 D(q)

)
, γ =

(
0
g

)
=
(

0
In

)
with D(q) = DT (q) ≥ 0 taking into account the dissipation effects. Let us call ν
the input effort representing the actuation torques. These positions lead to the
following port-Hamiltonian model

[
q̇
ṗ

]
= [J −R(q)]

⎡⎢⎢⎣
∂H

∂q

∂H

∂p

⎤⎥⎥⎦+ γ(ν + δ(t)) .

This system is affected by an external torque ripple δ(t) acting through the
control input channel (i.e. the torque applied to the system will be the sum of
the control torque and the external disturbance ν + δ(t)); the main objective to
be pursued by this system is to track a known trajectory while compensating
this disturbance, detecting and isolating in the meanwhile its entity.

The tracking control is developed following the main idea introduced in [6],
but the characteristic change of error-coordinates is suitably modified in order
to obtain an error system still described as a pHs and satisfying the conditions
imposed by Theorem 1. Note that in our previous paper [2] those conditions
were not satisfied and the design procedure was not able to overcome constant
torque disturbances.

3.1 Tracking Control

In this subsection a state feedback tracking control algorithm is presented to
make the robot manipulator, in absence of fault disturbances, tracks a known
target trajectory (defined in generalized coordinates by (q�(t), p�(t))).
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To define new error variables, consider the following change of coordinates

q̄ = q − q�(t)

p̄ = p−M(q)q̇�(t) +M(q)kq q̄
(19)

where kq is a positive definite symmetric design gain matrix.
Computing time derivatives of new error coordinates we obtain:

˙̄q = M−1(q)p̄− kq q̄

˙̄p = −1
2
pT ∂M

−1(q)
∂q

p−D(q)M−1(q)p− ∂P (q)
∂q

+ν + v(t)−Π(q, p, q�(t), q̇�(t), q̈�(t))

(20)

where

Π(q, p, q�(t), q̇�(t), q̈�(t)) =
∂TM(q)

∂q
M−1(q)pq̇� +M(q)q̈�

−∂
TM(q)
∂q

M−1(q)pkq(q − q�)

+M(q)kq(M−1(q)p− q̇�) .

It is now possible to obtain a perfect global asymptotic tracking in absence of
disturbances (δ(t) = 0): this can be done by designing the control torque ν in
order to delete the “bad” term Π(·), to shape the energy of the error system
to have a minimum in the origin2 and to add some damping action in order to
have this minimum globally attractive. Keeping this in mind, the control action
is defined to be

ν = Π(q, p, q�(t), q̇�(t), q̈�(t)) +D(q)M−1(q)p +
∂P (q)
∂q

− kpM
−1(q̄)p̄ + τ

−[M−1(q)M(q̄) + kq
1
2
p̄
∂M(q̄)−1

∂q̄
M(q̄)]T

(
1
2
p̄T ∂M(q̄)−1

∂q̄
p̄+ q̄

)
(21)

where kp is a symmetric positive definite design matrix (−kp is Hurwitz) and τ
is an additional control torque that will be used in the following to compensate
the presence of additional torque disturbances.

The error system with the controller (21) writes as

˙̄q = −kq
∂H ′

∂q̄
+ J1(q̄, p̄, q�(t))

∂H ′

∂p̄

˙̄p = −J1(q̄, p̄, q�(t))T
∂H ′

∂q̄
− kp

∂H ′

∂p̄
+ τ + v(t)

(22)

2 Note that q̄ = 0 means that the tracking is achieved as q → q�(t).
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with

J1(q̄, p̄, q�(t)) =
[
M−1(q)M(q̄) + kq

1
2
p̄
∂M(q̄)−1

∂q̄
M(q̄)

]
and the new Hamiltonian function defined as

H ′ =
1
2
p̄TM−1(q̄)p̄ +

1
2
q̄Tq̄ . (23)

It is easy to realize that the tracking objective is globally asymptotically achieved
in absence of external disturbances (δ = 0 and hence τ = 0): it is, in fact,
straightforward to choose the Hamiltonian function H ′ as a Lyapunov function
and to state, thanks to Barbalat Lemma, that

lim
t→∞

q(t) = q�(t) , lim
t→∞

p(t) = p�(t) .

3.2 Problem Statement and Internal Model Design

It is now possible to state the input disturbance suppression problem considering
the torque disturbance δ(t) = Γw as generated by a neutrally stable autonomous
exosystem like the one defined by (2), (3) and (4): the problem fits now in the
framework presented in section 2 and it is possible to design an adaptive internal
model controller following the procedure stated by Theorem 1.

Remark 4. It is important to point out the instrumental role played by the change
of coordinates (19) and in particular by the additional term M(q)kq q̄ that makes
the presented solution different from the one in [6] and [2]. The effect of this
term is to introduce a new damping action in the generalized error coordinates
q̄. The error system (22) satisfies all conditions imposed by Theorem 1 and, as
J1(q̄, p̄, q�(t)) depends on time, by remark 2. In particular, (22) is now charac-
terized by a dissipation matrix R′ defined as

R′ =
(
kq 0
0 kp

)
and hence matrix Q in Theorem 1 is equal to the identity (Q = I); moreover
the origin of (22) is globally asymptotically attractive in force of the Barbalat
Lemma applied to the auxiliary system

˙̄q = −kq
∂H ′

∂q̄
+ J1

∂H ′

∂p̄

˙̄p = −JT
1
∂H ′

∂q̄
− kp

∂H ′

∂p̄
+ σ

σ̇ = −∂H
′

∂p̄
.

The resulting control law generated by the adaptive internal model unit (17) is
defined by
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ξ̇ = (F +GΨ̂)ξ − FGp̄−GJT
1

(
1
2
p̄T ∂M(q)

∂q

−1

p̄ + q̄

)
−GkpM

−1(q)p̄

−GΨ̂Gp̄

˙̂
Φ = −

⎛⎜⎜⎜⎝
(ξ −Gp̄) 0 . . . 0

0 (ξ −Gp̄) . . . 0
...

...
...

...
0 0 . . . (ξ −Gp̄)

⎞⎟⎟⎟⎠ (M(q̄)−1p̄) = −J2(ξ, p̄)(M(q̄)−1p̄)

τ = Ψ̂ξ − Ψ̂Gp̄ .

(24)
where A = G and Φ̂ is defined by (10).

To conclude the discussion of this example it is worth to define in this partic-
ular case the whole error system (15) and to proceed to the effective design of
the characteristic gain matrices to point out the constructive part of the proof
of Theorem 1.

To this aim, apply again the changes of coordinates (8). The new error system
identifies an interconnection described by:

˙̃x = [J̃(x̃)− R̃(x̃)]
∂Hx(x̃)
∂x̃

+ Λ(x̃) (25)

with state
x̃ =

(
q̄ p̄ χ Φ̄ w

)T
,

the Hamiltonian function Hx(x̃) defined by

Hx(x̃) =
1
2
p̄TM(q̄)−1p̄ +

1
2
q̄Tq̄ +

1
2
χTχ+

1
2
Φ̄TΦ̄+

1
2
wTw ,

the skew-symmetric interconnection matrix J̃(x) defined by

J̃(x̃) =

⎛⎜⎜⎜⎜⎝
0 J1 0 0 0
−JT

1 0 Ψ JT
2 0

0 −ΨT 0 0 0
0 −J2 0 0 0
0 0 0 0 S

⎞⎟⎟⎟⎟⎠ ,

the damping matrix R̃ defined by

R̃ =

⎛⎜⎜⎜⎜⎝
kq 0 0 0 0
0 kp 0 0 0
0 0 −F 0 0
0 0 0 0 0
0 0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

and finally Λ(x̃) defined by

Λ(x̃) =
(
0 0 ΨTp̄ 0 0

)T
.

Specializing for system (25) the proof of Theorem 1, choose the Hamiltonian
function as Lyapunov function V = Hx(x̃) and compute its time derivative:
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V̇ = −∂
THx̃(x̃)
∂x̃

R̃
∂Hx̃(x̃)
∂x̃

+
∂THx̃(x̃)

∂x̃
Λ(x̃) =

= −
(

1
2
p̄T ∂M

−1(q̄)
∂q̄

p̄

)T

kq

(
1
2
p̄T ∂M

−1(q̄)
∂q̄

p̄

)
− q̄Tkq q̄

−(M−1(q̄)p̄)Tkp(M−1(q̄)p̄) + χTFχ + χTΨTp̄ .

There exist real numbers ηkp ∈ IR−, ηF ∈ IR−, ηkq ∈ IR− (depending on design
matrices kp, F , kq) and ηΨ ∈ IR, such that

V̇ ≤ ηkq‖q̄‖2 + ηkp‖p̄‖2 + ηF ‖χ‖2 + ηΨ‖p̄‖‖χ‖ .

Using a Young’s inequality argumentation we can write:

V̇ ≤ ηkq‖q̄‖2 + ηkp‖p̄‖2 + ηF ‖χ‖2 +
ηΨ

2
ε‖p̄‖2 +

ηΨ

2ε
‖χ‖2 ,

for a certain value of ε. Now choosing ε = −ηkp/ηΨ , we obtain

V̇ ≤ ηkq‖q̄‖2 +
ηkp

2
‖p̄‖2 +

(
ηF −

η2
Ψ

2ηkp

)
‖χ‖2 .

Hence choosing matrix F such that

ηF <
η2

Ψ

2ηkp

we have that V̇ ≤ 0.
The asymptotic behavior of this error system is then defined by Barbalat

Lemma that assures the asymptotic convergence of q̄, p̄ and χ to the origin.
The original tracking problem is then asymptotically solved and the exogenous
disturbances are perfectly compensated by the adaptive internal model unit.

Remark 5. As pointed out in [2] and [3], the disturbance estimation phase can be
performed by comparing the state of the internal compensation unit which auto-
matically offsets the disturbance effect with a suitably tuned threshold. In fact,
notice that ξ(t) asymptotically converge to Y z(t) which is zero in the nominal
case and different from zero when a disturbance is acting.

4 Conclusions

In this paper an internal model approach to input disturbance suppression for
pHs is presented. The main contribution of the paper is the introduction of an
adaptive internal model design procedure able to solve a regulation problem in
presence of periodic input disturbances for a generic pHs, exploiting the energy-
based characteristic properties of this formalism in order to prove the global
asymptotical stability of the solution.

To point out the effectiveness of the design procedure, a tracking control
problem is discussed for a robotic manipulator affected by torque ripples.
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Summary. Petri nets are a family of powerful discrete event models whose interest has grown,
within the automatic control community, in parallel with the development of the theory of dis-
crete event systems. In this tutorial paper our goal is that of giving a flavor, by means of simple
examples, of the features that make Petri nets a good model for systems theory and of pointing out
at a few open areas for research. We focus on Place/Transitions nets, the simplest Petri net model.
In particular we compare Petri nets with automata, and show that the former model has several
advantages over the latter, not only because it is more general but also because it offers a better
structure that has been used for developing computationally efficient algorithms for analysis and
synthesis.

Keywords: Discrete Event Systems, Petri Nets, Models of Concurrency, Controllability.

1 Introduction

The object of the study of traditional control theory have been time-driven systems, i.e.,
systems of continuous and synchronous discrete variables, modeled by differential or
difference equations. However, as the scope of control theory is being extended into
the domains of manufacturing, robotics, computer and communication networks, and
so on, there is an increasing need for different models, capable of describing systems
that evolve in accordance with the abrupt occurrence, at possibly unknown irregular in-
tervals, of physical events. Such systems, whose states have logical or symbolic, rather
than numerical, values that change in response to events which may also be described
in nonnumerical terms, are called discrete event systems and the corresponding models
are called discrete event models [5].

These systems require control and coordination to ensure the orderly flow of events.
As controlled (or potentially controllable) dynamic systems, discrete event systems
qualify as a proper subject for control theory. Hence a fundamental issue arises: we
need classes of formal models that are capable of capturing the essential features of dis-
crete, asynchronous and possibly nondeterministic systems and that are endowed with
efficient mathematical tools for analysis and control.

Petri nets are a family of models developed from the original model presented in
1962 by Carl Adam Petri in his doctoral dissertation: “Kommunikation mit Automaten”
(Communication with Automata). The theory of Petri nets is now well established and
many different Petri net models have been defined, capable of describing: logical (i.e.,
untimed) systems; timed systems, both deterministic and stochastic; hybrid systems.

We claim that Petri nets are a powerful discrete event model and, in fact, the interest
for this model has grown, within the automatic control community, in parallel with the

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 99–127, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



100 A. Giua and C. Seatzu

development of the theory of discrete event systems. In this tutorial paper the goal is
not that of providing a comprehensive survey of the research in this area, but rather that
of giving a flavor, by means of simple examples, of the features that make Petri nets a
good model for systems theory and of pointing out at a few open areas for research.

We compare Petri nets with automata, and show that the former model has several
advantages over the latter, not only because it is more general but also because it offers
a better structure that has been used for developing computationally efficient algorithms
for analysis and synthesis. This gives credit to our belief that the study of automata —
that is an integral part of the introductory courses on discrete event systems — should
always be complemented with the presentation of Petri nets.

The paper is structured as follows. In Section 2 the definition of Place/Transition net
(the most well-known Petri net model) is given and its dynamic behavior is described.
Section 3 deals with the modeling of physical systems with Petri nets, with an example
taken from the manufacturing domain. In Section 4 the main analysis techniques per-
taining to this model are discussed, with a particular focus on the techniques based on
the state equation and on the reachability graph. In Section 5 we look at Petri nets as
language generators and characterize the classes of languages accepted and generated
by this model. In Section 6 we show that Petri nets are a generalization of automata and
point out some of advantages the first model has with respect to the latter. In Section 7
we discuss how many classical control properties may be extended to the context of
discrete event systems and, as an example, discuss controllability in the framework of
Petri nets. Finally, in Section 8 a few areas of research that are still opened in the Petri
net domain are presented.

2 Petri Nets: Main Definitions

In this paper we consider the basic Petri net model called Place/Transition net (P/T net
for short). It is a purely logic model that takes into account the order of occurrence of
events, without associating time to them. For a comprehensive introduction to Petri nets
see also the paper by Murata [27], and the books by Peterson [32] and by David and
Alla [9].

2.1 Net Structure

Definition 1. A Place/Transition net is a structure N = (P, T, Pre, Post) where:

• P = {p1, p2, . . . , pm} is a set of places represented by circles;
• T = {t1, t2, . . . , tn} is a set of transitions represented by bars;
• Pre : P ×T → N is the pre-incidence function that specifies the weight of the arcs

directed from places to transitions;
• Post : P × T → N is the post-incidence function that specifies the weight of the

arcs directed from transitions to places. �

Example 1. Fig. 1 shows a net N = (P, T, Pre, Post) with set of places P =
{p1, p2, p3}, and set of transitions T = {t1, t2, t3, t4}. Here
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Pre =

⎡⎣ 1 0 0 0
0 1 1 0
0 0 0 1

⎤⎦ p1
p2
p3

t1 t2 t3 t4

Post =

⎡⎣ 0 1 0 0
1 0 0 0
0 0 2 1

⎤⎦ p1
p2
p3

t1 t2 t3 t4 �

The information contained in the two matrices Pre and Post is often summarized
in a single matrix, defined as

C = Post− Pre : P × T → Z (1)

and called incidence matrix. Note however that the incidence matrix does not contain
the same information of Pre and Post, namely the structure of the net cannot be uni-
vocally determined starting from C. This is clearly illustrated in the following example.

Example 2. The incidence matrix of the net in Fig. 1 is

C =

⎡⎣−1 1 0 0
1 −1 −1 0
0 0 2 0

⎤⎦ p1
p2
p3

t1 t2 t3 t4

In this matrix a negative element corresponds to a pre arc, and a positive element to a
post arc. Note, however, that when a transition and a place form a loop, the weight of
the pre and post arc may cancel out. In this net such is the case for the loop formed by
p3 and t4: since C(p3, t4) = 0 no information on this loop is contained in C. �

p1

t1

t2

t3 p3p2
t4

2

Fig. 1. A Place/Transition net

In the following we denote as •t the set of input places of transition t, namely the set
of places p ∈ P that have an arc going from p to t, and t• the set of output places of
transition t, namely the set of places p ∈ P that have an arc going from t to p.

Analogously, •p and p• denote respectively, the set of input and output transitions of
place p, namely the set of transitions t ∈ T that have an arc going from t to p, and from
p to t, respectively.

Example 3. Let consider the net in Fig. 1. It holds •t1 = {p1}, t•1 = {p2}, •p3 =
{t3, t4} and p•3 = {t4}. �
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2.2 Dynamic Behavior

Definition 1 only refers to the structure of the net. To associate a dynamic behavior
to it, we need to introduce the notion of state and to definite the rules that govern
the occurrence of the discrete events. In particular, in the P/T framework, the state
corresponds to the marking of the net, and the evolution corresponds to the firing of
transitions that may occur provided that appropriate enabling conditions are verified.

Definition 2. A marking is a function M : P → N that associates to each place a non
negative number of tokens. The initial marking is denoted M0. �

Definition 3. A net N with initial marking M0 is a dynamical system. It is called net
system and is denoted as 〈N,M0〉. �

Graphically, tokens are represented as black dots within places.

Example 4. Let us consider the net in Fig. 1. A possible initial marking is

M0 = [M0(p1) M0(p2) M0(p3)]T = [1 0 0]T

that is shown in Fig. 2.(a). Here the only marked place is p1, that contains one token.
Another possible initial marking is M0 = [0 1 0]T that is shown in Fig. 2.(b). Here the
only marked place is p2 that contains one token. �

p1

t1
t3 p3p2

t4

2

(a)

t1
t3 p3p2

t4

2

(b)

t2

t2

t1
t3 p3p2

t4

2

(c)
t2

p1

p1

Fig. 2. Place/Transition net systems
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Definition 4. A transition t is enabled at marking M if

M ≥ Pre(·, t)

where Pre(·, t) denotes the column of matrix Pre relative to transition t. We write
M [t〉 to denote this condition . �

In simple words, the enabling condition of a transition only depends on the marking of
its input places. In particular, t is enabled at M if each place p ∈ •t contains at least
Pre(p, t) tokens, i.e., place p contains a number of tokens greater or equal to the weight
of the arc going from p to t.

Example 5. Let us consider the net system in Fig. 2.(a). The only enabled transition
is t1. �

Definition 5. A transition t that is enabled at M may fire. The firing of t removes
Pre(p, t) tokens from each place p ∈ P and adds Post(p, t) tokens to each place
p ∈ P . Thus the firing of t at M determines a new marking

M ′ = M − Pre(·, t) + Post(·, t) = M + C(·, t). (2)

To denote this we write M [t〉M ′. �

Note that, since Pre(p, t) �= 0 only if p ∈• t, and Post(p, t) �= 0 only if p ∈ t•, then
the firing of t at M removes Pre(p, t) tokens from each input place p to t, and adds
Post(p, t) tokens to each output place p to t.

Moreover, by looking at Definition 5 it is immediate to observe that the enabling
condition given by Definition 4 guarantees the non-negativity of the marking.

Example 6. Let us consider the net system 〈N,M0〉 in Fig. 2.(a). If transition t1 fires
the net reaches the new marking in Fig. 2.(b) because one token is removed from p1 and
added to p2.

Now, both transitions t2 and t3 are enabled. If t3 fires, the net reaches the new mark-
ing in Fig. 2.(c) because one token is removed from p2 and two tokens are added to p3,
being 2 the weight of the arc going from t3 to p3.

Now, the only enabled transition is t4, but its firing does not change the marking
being C(p3, t4) = 0. �

Definition 6. A sequence σ = tj1tj2 . . . tjk
∈ T ∗ is enabled at M if: tj1 is enabled at

M and its firing brings to a new marking M1 that enables tj2 ; the firing of tj2 at M1
brings to a new marking M2 that enables tj3 , and so on.

In such a case we write

M [tj1〉M1[tj2〉 . . .Mk−1[tjk
〉Mk

or simply M [σ〉Mk. An enabled sequence σ is called a firing sequence. �

Definition 7. A marking M is reachable in 〈N,M0〉 if there exists a firing sequence σ
such that M0[σ〉M .
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The reachability set of 〈N,M0〉, denoted as R(N,M0), is the set of markings that
are reachable from M0, i.e.,

R(N,M0) = {M ∈ Nm | ∃σ ∈ T ∗ : M0[σ〉M}.

�

The reachability set may never be an empty set because it always includes at least the
initial marking. Moreover, it may either be finite or infinite.

Example 7. In the case of the P/T net system in Fig. 2.(a) it is easy to verify that

R(N,M0) = {[1 0 0]T , [0 1 0]T , [0 0 2]T }.

Consider now the P/T net system in Fig. 3. In this case the initial marking is M0 = [0]
but transition t1 has no input arcs (it is a source transition) hence it is always enabled
and can fire as many times as desired, adding each time a token to place p. On the
contrary transition t2 is only enabled if place p is marked: its firing removes one to-
ken from p. This simple net thus describes an unbounded queueing system: the initial
marking in the figure corresponds to a queue initially empty. The reachability set is thus
R(N,M0) = N. �

t1 p t2

Fig. 3. The P/T net of an unbounded queueing system

The fact that the reachability set of a P/T system may be infinite is one of the main
advantages of Petri nets with respect to other discrete event models, such as automata.
In fact, using Petri nets we are able to represent with a finite structure a discrete event
system with an infinite number of states.

3 Modeling with Petri Nets

Petri nets have been applied in a large variety of application domains, such as opera-
tional research, manufacturing systems, flexible production systems, transportation sys-
tems, and so on. The book by DiCesare et al. [10] provides a nice survey of Petri net
approaches for the modeling and control of manufacturing systems.

In this section we first discuss the main primitives of concurrent systems that can be
modeled using Petri nets. If one is interested in the order of event occurrences, the basic
structures are sequency, choice, and concurrency. On the contrary, if one is interested
in describing the use of available resources, the three most common structures are dis-
assembly, assembly, mutual exclusion. Finally, we present in detail an example taken
from the manufacturing domain, representing an assembly system.
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3.1 Main Structures

Let us consider the Petri net systems in Fig. 4. Figure 4.(a) models sequency. Given
the initial marking, only event e1 may occur. Then, event e2 may only occur after the
occurrence of event e1, and event e3 may only occur after the firing of e2. Note that
here we are talking indifferently of events and transition firings.

e1 e2 e3

(a)

e1

e2

e3

e1

e2

e3

(b)

e1

e2

e3

e1

e2

e3

(c)

Fig. 4. Three main Petri net structures: (a) sequency, (b) choice, (c) concurrency

Fig. 4.(b) models the choice among events. Given the actual marking, all the events
e1, e2, and e3 are enabled. However, if any of such events occurs, then the others are
disabled. We also say that these events are in conflict among them.

Finally, Fig. 4.(c) models concurrency. After the firing of the only enabled transition
at the initial marking, all the events e1, e2 and e3 are independently enabled and may
occur in any order, even simultaneously.

If tokens represent available resources, three other main structures can be defined, as
summarized in Fig. 5.

Fig. 5.(a) provides an example of a disassembly operation. If a vehicle is disassem-
bled, then we get 4 wheels and one chassis.

Fig. 5.(b) provides an example of an assembly operation. If milk, espresso and cocoa
are appropriately combined, then a cappuccino is obtained.

Fig. 5.(c) models mutual exclusion. Assume that two machines, M1 and M2, share a
resource, namely a robot, whose task is that of loading them. At the initial marking the
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robot may either loadM1 orM2. However, if it starts loadingM1, then it is not available
for M2. It is ready to load M2 only after it has finished to process M1. Analogously, if
it is working on M2, it cannot load M1 until the loading of M2 is finished.

4vehicle

chassis

wheels
milk

cocoa

espresso cappuccino

(a) (b)

load 
M1

load
M2

robot
t1

t4t2

t3

(c)

Fig. 5. Three main Petri net structures: (a) disassembly, (b) assembly, (c) mutual exclusion

3.2 An Assembly System

Let us consider the Petri net model in Figure 6, that models an assembly system [15, 10].

 p10

 p3  p4

 p5  p6

 p1

 p7

 p8 p9

 p2

 t6

 t7

 t1

 t4

  t2

 t3

 t5

 p11  p12

Fig. 6. The Petri net model of the assembly system in Subsection 3.2

It consists of five machines,M1,M2,M3,M4 andM5 whose operational process
is modeled by the firing of transitions t1, t2, t3, t4 and t5, respectively. Two principal
types of operations are involved in this manufacturing system: regular operations and
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assembly operations. Regular operations (modeled by transitions t1, t2 and t5) just
transform a component of the intermediate product. Assembly operations (modeled by
transitions t3 and t4) put components together to obtain a more complex component of
a final product or the final product itself.

Note that this model uses transitions (t6 and t7) which do not represent operations
but the beginning of the manufacturing of components which are required to assemble
a more complex component or the final product.

In this example there are two manufacturing levels, the primary one, performed by
M3, leads to finite product, the secondary one, performed by M4, leads to semi–
finished (in–working) product.

The markings of places p1 and p2 represent the number of assembly servers for t4 and
t3 respectively. The marking of places p3, p5, and p9 represent the availability of parts
to be processed (raw materials), while the marking of places p4, p6, p7 and p8 represent
the availability of semi–finished products. Places p11 and p12 ensure that machinesM1
andM2 work alternatively.

4 Analysis Techniques

As discussed in the previous section, P/T nets are a formal model that allows one to
describe many interesting features of concurrent systems. Once a physical system has
been modeled by a P/T net, the properties of interest of the system map fairly well
into properties of the corresponding model. The formal definition of these properties,
such as reachability, boundedness, reversibility, liveness, deadlock-freeness, fairness,
etc., goes beyond the scope of this paper, but we address to [5] for a comprehensive
discussion of this topic.

Many algorithms, with a well developed mathematical and practical foundation, have
been developed to study these properties. The analysis techniques for Petri nets may be
divided into the following groups.

• Structural analysis. It permits the demonstration of several properties almost inde-
pendently of the initial marking. Structural analysis may be based on the study of
the state equation of the net or on the study of the net graph.

• Analysis by enumeration. It requires the construction of the reachability graph rep-
resenting the set of reachable markings and transition firings. If this set is not finite,
a finite coverability graph may be constructed.

• Analysis by transformation. A net N1 is transformed, according to particular rules,
into a netN2 while maintaining the properties of interest. The analysis of the net N2
is assumed to be simpler than the analysis of the net N1. Examples of this analysis
technique are reduction methods, that permit the simplification of the structure of a
net.

• Simulation analysis. It is useful to study the behavior of nets that interact with an
external environment.

An extensive literature on these topics has appeared in last decades. In particular, we
address to [9, 32, 34, 36] for more details. In the rest of this section, only the first two
techniques will be partially described. Furthermore, we will limit our analysis to the
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basic reachability problem, that consists in establishing if a given marking is reachable
starting from the initial marking.

4.1 State Equation

A linear algebraic equation can be written to describe the evolution of the net system
after the firing of a sequence σ ∈ T ∗. Such equation is based on Definition 5 and on the
definition of firing vector.

Definition 8. Given a net N with set of transitions T = {t1, t2, . . . , tn} and a firing
sequence σ ∈ T ∗, we call firing vector relative to σ, the vector σ ∈ Nn whose i-th
component is equal to the number of times ti appears in σ. �

Next result follows immediately from Definition 5.

Proposition 1. Let us consider a net system 〈N,M0〉 with incidence matrix C. If M is
reachable from M0 firing σ, then

M = M0 + C · σ. (3)

�
Eq. (2), or sometimes its transitive closure given by Eq. (3), is called the state equation
of 〈N,M0〉.

Example 8. Let us consider the net system in Fig. 2.(a) and the firing sequence σ =
t1t2t1t2t1t3. The firing vector associated to σ is σ = [3 2 1 0]T and we can easily
verify that the marking M = [0 2 0]T obtained from M0 firing σ satisfies eq. (3) where
C is given in Example 2. �

It is important to stress that the state equation only provides a necessary (but not suf-
ficient) condition for reachability. Indeed, the existence of a vector σ ∈ Nn such that
M = M0 + C · σ ∈ Nm does not imply the existence of a firing sequence σ whose
firing vector is σ, and that is enabled at M0.

Example 9. Let us consider the net system in Fig. 7 where M0 = [1 0 0 0]T , and σ =
[1 1]T . The markingM = M0+C ·σ = [0 0 0 1]T is a non-negative marking however it
is not reachable from M0. In fact, no transition is enabled at the initial marking. Hence
neither σ′ = t1t2 nor σ′′ = t2t1, i.e., no sequence whose firing sequence is σ, may fire
from M0. �

p4

p2

p3

t1 t2

p1

Fig. 7. The P/T system in Example 9
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4.2 Reachability Graph

In this section we focus on a particular class of P/T nets, namely bounded Petri nets,
for which the reachability problem can be solved constructing the so-called reachability
graph.

Definition 9. A Petri net system 〈N,M0〉 is bounded if and only if there exists a finite
constant K such that ∀p ∈ P and ∀M ∈ R(N,M0), M(p) ≤ K . �

Thus a Petri net system is bounded if and only if the marking of each place is bounded
for any reachable marking. An obvious result is the following.

Proposition 2. A Petri net system is bounded if and only if its reachability set is finite. �
For bounded Petri net systems, it is possible to enumerate in a systematic way the
reachability set by means of the reachability graph. Here each node corresponds to
a reachable marking, and each arc corresponds to a transition. The reachability graph
may be constructed using the following algorithm that terminates in a finite number of
steps if the reachability set is finite.

Algorithm 1 (Reachability graph). Let 〈N,M0〉 be a marked net with incidence
matrix C.

1. The root node is M0. This node has initially no label.
2. Let us consider a node M with no label.

(a) For each transition t enabled at M :
i. Let M ′ = M + C(·, t).
ii. If there does not exists a node M ′ in the graph, add it.
iii. Add an arc t from M to M ′.

(b) Label the node M ”old”.
3. It there are nodes with no label, goto step 2.
4. Remove all labels from nodes. �

Example 10. Let us consider the P/T system in Fig. 2.(a). Using Algorithm 1 we obtain
the reachability graph in Fig. 8. �

[1 0 0] [0 1 0]
t1

t2

[0 0 2]
t3 t4

Fig. 8. The reachability graph of the P/T net system in Fig. 2.(a)

Looking at the reachability graph of a P/T system 〈N,M0〉, one can immediately
determine which markings are reachable, because a node M is reachable from M0 if
and only if it belongs to the graph. Furthermore:

(1) a marking M ′ is reachable from a reachable marking M iff there exist two nodes
M and M ′ in the graph and there exists an oriented path that goes from M to M ′;
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(2) a sequence σ is firable from a reachable marking M iff there exists an oriented path
that starts from M whose sequence of arc labels is σ.

If the reachability set is infinite, then obviously the reachability graph is infinite
as well. In such a case a different algorithm can be used to compute a finite graph,
called the coverability graph, where each arc still corresponds to a transition, while
each node either corresponds to a single reachable marking, or it represents an infinite
set of reachable markings. Note, however, that in such a case there is a price to pay for
representing with a finite graph an infinite set: the coverability graph usually provides
only necessary (but not sufficient) conditions for determining if a marking is reachable
or if a sequence is firable. See [9, 32] for details.

5 Petri Net Languages

In the previous section we introduced the notion of reachability and highlighted the
importance of characterizing the reachability set of a net system. However, the modeling
power of a discrete event system is also strictly related to the sequences of events it can
generate, i.e., in the Petri net framework, to the sequences of transitions that can fire.
A sequence of transitions is a string, and a set of strings is a language. In this section
we focus on the classes of languages defined by Petri nets. In particular, we first recall
the notion of generated and accepted languages, and define labeled Petri nets. Then,
we provide the definition of L-type, G-type and P -type Petri net languages. Finally,
we provide some important relationships among these classes and the class of regular
languages.

A good introduction to Petri net languages can be found in the classic book of Peter-
son [32], while some generalizations and more recent results can be found in the paper
by Gaubert and Giua [12]. All the material presented in this section is taken from these
two references.

5.1 Generated and Accepted Languages

Definition 10. The language generated by 〈N,M0〉 is the set of sequences that are en-
abled at the initial marking M0, i.e.,

L(N,M0) = {σ ∈ T ∗ | M0[σ〉}. �

The language generated by a P/T net system is thus a prefix-closed language. Note that
it always includes the empty word (usually denoted as ε) because for any M ∈ Nm, it
holds M [ε〉M .

Example 11. Let us consider the net system in Fig. 2.(a). The language of this net can
be easily described with a regular expression as

L(N,M0) = (t1t2)∗[ε+ t1 + t1t3t
∗
4].

This means that the sequence t1t2 may fire indefinitely from the initial marking. Then,
either no other sequence fires, or it fires t1, or it fires the sequence t1t3: at this point the
only enabled transition is t4 that can fire indefinitely. �
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Definition 11. Let us consider a P/T system 〈N,M0〉. Let F be a set of final (or ac-
cepting) markings. The language accepted by 〈N,M0〉 is the set of sequences that are
enabled at the initial marking M0 and that lead to a marking M ∈ F , i.e.,

LF (N,M0) = {σ ∈ T ∗ | (∃M ∈ F ) M0[σ〉M}. �

Depending on the final set F , the language accepted by a P/T net system may not be
prefix-closed. Moreover, it includes the empty word if and only if M0 ∈ F .

Example 12. Let us consider the net system in Fig. 2.(a). Assume F = {[0 1 0]T}. The
language accepted by 〈N,M0〉 is LF (N,M0) = (t1t2)∗t1. �

5.2 Labeled P/T Nets

When observing the evolution of a net, it is common to assume that each transition t is
assigned a label �(t) and that the occurrence of t generates an observable output �(t).
This leads to the definition of labeled nets.

Definition 12. Given a Petri net N with set of transitions T , a labeling function � :
T → Σ assigns to each transition t ∈ T a symbol from a given set of labels Σ, that
may also include the empty string ε.

A Σ-labeled Petri net system is a 3-tuple G = 〈N,M0, �〉 where N = (P, T, Pre,
Post), M0 is the initial marking, and � : T → Σ is the labeling function. �

Also in the case of labeled P/T nets we can distinguish among generated and accepted
language. In particular, the following definitions hold.

Definition 13. The language generated by a Σ-labeled P/T net system 〈N, M0, �〉 is the
�-image of the set of firing sequences that are enabled at M0, i.e.,

L(N,M0, �) = {�(σ) | σ ∈ T ∗, M0[σ〉}. �

Definition 14. Let us consider a Σ-labeled P/T net system 〈N,M0, �〉. Let F be a set of
final markings. The language accepted by 〈N,M0, �〉 is the �-image of the set of firing
sequences leading to a final marking, i.e.,

LF (N,M0, �) = {�(σ) | σ ∈ T ∗, (∃M ∈ F ) M0[σ〉M}. �

Example 13. Let us consider again the net system in Fig. 2.(a). Assume �(t1) = �(t4) =
a, �(t2) = �(t3) = b. Then L(N,M0, �) = (ab)∗[ε + a + aba∗]. Moreover, if F =
{[0 1 0]T , the accepted language is LF (N,M0, �) = (ab)∗a. �

5.3 Classes of Languages

Different classes of accepted Petri net languages may be defined depending on the set
of final markings F and on the labeling function � [32].

Definition 15. The accepted language of a Petri net system 〈N,M0〉 with set of accept-
ing markings F , can be classified as follows.
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• L-type: LF (N,M0) is an L-type Petri net language if the set of final markings F is
finite.

• G-type: LF (N,M0) is a G-type Petri net language if the set of final markings F
is the covering set of a given finite set F̄ . This means that a marking M is final if
and only if M ≥ M̄ for a given M̄ ∈ F̄ . Languages in this class are usually called
weak languages.

• P -type: LF (N,M0) is a P -type Petri net language if the set of final markings F
coincides with the reachability set R(N,M0). In such a case the accepted language
is equal to the generated language and it is obviously prefix-closed. �

Moreover, four classes of labeling functions may be defined.

Definition 16. The labeling function of a labeled Petri net system 〈N,M0, �〉 can be
classified as follows.

• free: if all transitions are labeled distinctly, namely a different label is associated to
each transition, and no transition is labeled with the empty string.

• deterministic: if no transition is labeled with the empty string, and the following
condition1 holds: for all t, t′ ∈ T , with t �= t′, and for all M ∈ R(N,M0): M [t〉 ∧
M [t′〉 ⇒ [�(t) �= �(t′)] i.e., two transitions simultaneously enabled may not share
the same label. This ensures that the knowledge of the firing labels �(σ) is sufficient
to reconstruct the marking M that the firing of σ yields.

• λ-free: if no transition is labeled with the empty string2.
• arbitrary: if no restriction is posed on the labeling function �. �

Each of these type of labeling is a generalization of the previous one. Furthermore
all types of labeling only depend on the structure of the net, but for the deterministic
labeling, that depends both on the structure and on the behavior of the net.

Example 14. Let us consider the nets in Fig. 9. If we only look at the net structure
— that is the same in both nets — we can say that the labeling is λ-free. However,
in the first net the labeling is also deterministic because the two transitions labeled a
can never be simultaneously enabled from any reachable marking. The second net is
nondeterministic, because the two transitions labeled a can be simultaneously enabled.

Assume that the string aa is observed in the second net. The first a is certainly due
to the occurrence of transition t1, the only one enabled at M0, whose firing yields the
new marking M = [1 1 0]T . From this marking, however, both t1 and t2 are enabled
and one cannot determine if the second a yield M = [0 2 0]T or M = [1 0 1]T . �

1 A looser condition is sometimes given: for all t, t′ ∈ T , with t �= t′, and for all M ∈
R(N, M0): M [t〉 ∧ M [t′〉 ⇒ [�(t) �= �(t′)] ∨ [Post(·, t) − Pre(·, t) = Post(·, t′) −
Pre(·, t′)]. Thus two transitions with the same label may be simultaneously enabled at a
marking M , if the two markings reached from M by firing t and t′ are the same.

2 In the Petri net literature the empty string is denoted λ, while in the formal language literature
it is denoted ε. In this paper we denote the empty string ε but, for consistency with the Petri
net literature, we still use the term λ-free for a non erasing labeling function � : T → Σ.
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t1

p1 p2

t2

p3a a

t1

p1 p2

t2

p3a a

deterministic 

λ-free (nondeterministic)

Fig. 9. A deterministic labeled net (a) and a nondeterministic one

Twelve different classes of Petri net languages result from the cross product of the
three types of final marking sets in Definition 15 and the four types of labeling in Defi-
nition 16, as summarized in Table 1.

Here the classes of L-type, G-type, and P -type λ-free languages are denoted, re-
spectively, L, G, and P . An additional superscript f , det or λ denotes, respectively, the
corresponding classes of free, deterministic, and arbitrary languages.

Table 1. The 12 classes of Petri net languages

free deterministic λ-free arbitrary

L-type Lf Ldet L Lλ

G-type Gf Gdet G Gλ

P-type Pf Pdet P Pλ

5.4 Relationships Among Classes of Petri Net Languages

The above classes of Petri net languages are closely related. In particular, some intuitive
relationships hold:

Lf � Ldet � L � Lλ,
Gf � Gdet � G � Gλ,
Pf � Pdet � P � Pλ,

(4)

where the symbol � denotes strict inclusion.
Note that as a consequence of the strict inclusions (4), it is not possible to provide

determinization procedures to convert a nondeterministic Petri net (namely a Petri net
with an arbitrary labeling function) into an equivalent deterministic Petri net. On the
contrary, this is possible with finite state automata where a systematic approach exists
to convert a nondeterministic finite state automaton into an equivalent deterministic
one [5].
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Another quite intuitive relationship is the following

Pf � Gf , Pdet � Gdet, P � G, Pλ � Gλ. (5)

In fact, every P -type language is a G-type language if F is a singleton containing the
null marking.

Other less intuitive relationships have also been proved and can be summarized
graphically as in Fig. 10. Here for sake of simplicity we use→ to denote �, i.e.,A→ B
is equivalent to A � B. Note that classes that are unrelated in the table (such as Ldet

and Gdet, or such as Ldet and Pdet) are not comparable.

Lf → Ldet → L → Lλ

↑
Gf → Gdet → G → Gλ

↑ ↑ ↑ ↑
Pf → Pdet → P → Pλ

Fig. 10. Relationships among classes of Petri net languages

This plethora of Petri net languages may generate some confusion, even more con-
sidering the fact that additional classes can be defined as mentioned in [12]. Note, how-
ever, that not all these classes are useful in practice. In fact, the classes of free languages
are very restricted, in the sense they do not contain all regular languages. On the con-
trary, for the largest classes of λ-free or arbitrary languages the problems of language
equivalence or inclusion is not decidable. Thus we may conclude that the only interest-
ing classes of Petri net languages are the deterministic ones [12], and we will consider
them as representative of Petri net languages.

5.5 Relationships Among Petri Net Languages and Regular Languages

One of the classes of formal languages that has received most attention in the litera-
ture, is the class of regular languages [23] that we denote as R. Regular languages
are characterized by regular expressions and are generated by regular grammars. More-
over, it has been proved that the class of regular languages is coincident with the class
of languages accepted by finite state automata.

The following important result expresses the most important relationship among
Petri net languages and regular languages.

Theorem 2. [12] The intersection of the classes of L-type and G-type regular Petri net
is the class of regular languages, i.e.,R = Gdet ∩ Ldet. �
Therefore, Ldet and Gdet provide proper and distinct extensions of regular languages.

Other interesting relationships among Petri net languages and other classes of lan-
guages, such as contex-free languages, bounded contex-free languages, context-sensitive
languages, have been proved and are reported in Fig. 11. Here we can see that Petri net
languages are a subclass of context-sensitive languages, and a superclass of regular
languages. Petri net languages are not comparable with context-free languages.
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Recursively enumerable

Context-sensitive

Context-free

RegularLdet

Gdet

Fig. 11. Relationships among classes of formal languages

6 Comparison with Automata

The language analysis in the previous session shows that Petri nets are a generalization
of automata. In this section we want to focus on the relationship between P/T nets and
automata and show what are the main advantages the former model offers with respect
to the latter. Five different aspects will be considered: the state representation power,
the language power, the modularity, the structural representation of primitives, and the
linear algebraic structure.

6.1 State Representation Power

A Petri net is a finite state automaton additionally equipped with weak counters, i.e.,
with the possibility of testing if a counter has reached a fixed value:

M(p) ≥ k?

Example 15. Let us consider the net in Fig. 12. Place p is the counter, whose value is
increased by the firing of t1, and decreased by the firing of t2. If there are k or more
tokens in p, transition t3 is also enabled and may fire (test of the counter) without
changing the value of the counter. �

It is important to stress that places in a P/T net are weak counters, i.e., may be tested
only for inequalities of the type ≥ while a test for ≤ is not allowed. In fact, from the
enabling rule in Definition 4 follows this obvious result.

t1 p t2

t3

k k

Fig. 12. A weak counter
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Monotonicity property. If something can happen from M it can also happen from any
marking greater than M , i.e., for any sequence σ ∈ T ∗:

M [σ〉 and M ′ ≥M =⇒ M ′[σ〉.

This property can be violated adding an inhibitor arc that allows a transition to fire only
if a place is empty, thus testing a counter for zero [37]. However, this feature increases
the modeling power — and the analysis complexity — of Petri nets to that of a Turing
machine, making most properties of interest undecidable: we cannot properly consider
these models as P/T nets.

6.2 Language Power

A Petri net is a generator of regular languages with the additional feature of generating
one-sided Dyck languages, i.e., of testing if a string of parenthesis

((())()((· · ·

is well formed [31].

Example 16. Let us consider the net in Fig. 3. Here, the firing of t1 corresponds to
the opening of a parenthesis “(”, while the firing of t2 corresponds to the closing of a
parenthesis “)”. All firing sequences generated by this net correspond to well formed
strings of parenthesis. �

6.3 Modularity

With modular synthesis, complex systems may be constructed by aggregation of sim-
pler modules. The most common operator that allows to automatically construct the
model of a complex system from the models of the subsystems that compose it, is the
concurrent composition operator, that can be defined both for automata and Petri nets.

There are, however, two main advantages in using Petri nets rather than automata.

• When applying the concurrent composition operator to Petri nets, the structure of
the modules is kept in the composed net.

• The composition of k automata, each with a state space Qi of cardinality n, yields a
composed model with state space Q ⊆ Q1× · · · ×Qk, i.e., the composed automata
has a state space of cardinality up to nk (exponential growth). On the contrary, the
composition of k Petri nets, each with set of place Pi of cardinality m yields a
composed model with set of places P = P1 ∪ · · · ∪ Pk, i.e., the composed net has
a set of places of cardinality k ·m (linear growth).

Example 17. Let us consider the automata in Fig. 13.(a) that represent two machines
with state space Q′ and Q′′ respectively. Here event t2 is shared between the two mod-
ules and their concurrent composition is shown in Fig. 13.(b). Note that each state of
the new automaton is a pair (q′, q′′) ∈ Q′ × Q′′. The structure of the two modules is
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lost in the composed system in Fig. 13.(b), in the sense that it is not possible to partition
its structure into two parts, each corresponding to one of the two modules.

In Fig. 13.(c) we have represented the P/T net models of the two machines, whose
concurrent composition is given by the net in Fig. 13.(d). Note that the composed model
is obtained by the modules simply fusing the transitions with the same label. The set
of places of the composed net is the union of the set of places of the modules, whose
structure can still be clearly identified in Fig. 13.(d). �

t1

t2p1 p2

t3 t4

p3 p4

t1

t1

t2

t3t3 t4t4

q0 = (q'0,q"0)t1

t2

t3

t2

t4

t1

t2

p1 p2

t3 t4

p3 p4
t2

(a) (b)

(c) (d)

q'0 q'1

q"0 q"1

q1 = (q'1,q"0)

q2 = (q'0,q"1) q3 = (q'1,q"1)

Fig. 13. The automata models of two machines (a) and their concurrent composition (b); the Petri
net models of two machines (c) and their concurrent composition (d)

6.4 Structural Representation of Primitives

In Section 3.1 we have discussed several primitives that can be represented by Petri nets,
such as “sequency”, “choice”, “concurrency”. Each of these primitives correspond to a
clear Petri net structure: sequency corresponds to a path in the graph, choice to a place
inputting to more than one transition, concurrency to parallel transitions.

In the case of automata concurrency may not be represented, because an automa-
ton can only describe the interleaving of events and not their simultaneous occurrence.
However, one may think that the other primitives can be well described by structures
similar to those described in Section 3.1. Here we point out that this is not always true
with a simple example.

Example 18. Let us consider again the system composed by two machines whose au-
tomaton and Petri net model are shown in Fig. 13.(b) and Fig. 13.(d).
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In the automaton structure we identify the path q0 − t1 − q1 − t3 − q3. Can we
conclude that events t1 and t3 are in a sequency relation?

In the automaton structure, from state q0 both event t1 and t3 are enabled. Can we
conclude that events t1 and t3 are in a choice relation?

The answer to both questions is no: transitions t1 and t3 are concurrent as can be seen
from the Petri net model. In fact, the two transitions belong to different subsystems and
can fire concurrently when both are enabled. �

6.5 Linear Algebraic Structure

One of the main advantages of Petri nets is that the state is a vector of non-negative
integers, while it is usually non numerical in other discrete event models, such as
automata.

Example 19. Let us consider again the system composed by two machines whose au-
tomaton and Petri net model are shown in Fig. 13.(b) and Fig. 13.(d). State q′0 (resp.,
q′′0 ) denotes that the first (resp., second) machine is idle; state q′1 (resp., q′′1 ) denotes that
the first (resp., second) machine is working.

In the Petri net a state is represented by a non-negative vector. Marking [1 0 1 0]T

corresponds to the state in which both machines are idle; the marking [0 1 1 0]T cor-
responds to the state in which the first machine is working and the second is idle, and
so on. Using a Petri net model the state space of this system, that is a series of la-
bels with no algebraic structure, can be described by a set of vectors, i.e., by a highly
structured set.

This also allows to describe logical specifications in a numerical form. Assume for
instance, that we want to impose that the first machine should never be working if the
second machine is idle. Using the notation in Fig. 13 such a constraint can be imposed
forcing the constraint M(p2) +M(p3) ≤ 1. �

The possibility offered by Petri nets to describe the state space of a discrete event sys-
tem that may have absolutely no algebraic structure, with a set of integers vectors has
an important implication. In fact, it is possible to apply algebraic formalisms such as
integer programming for the analysis and control of these systems. Within this area
of research that, as we mentioned before, is called structural analysis, several well-
founded formal approaches have been developed. Unfortunately a survey of this area is
still missing, and we cannot provide comprehensive references; see however [22, 36]
for a few interesting examples.

7 Mapping Classical Properties into Discrete Event Systems

Classical control theory deals with time-driven systems modeled by difference or dif-
ferential equations. However, many properties of dynamical systems have been defined
in very general terms that are model independent.

It seems natural to study these properties in the context of discrete event systems, and
more specifically in the context of Petri nets. This rather standard approach has been
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used by many researchers, and it has proved to be extremely fruitful, inspiring many of
the current research areas in Petri nets.

It is important, however, to point out that the extension from time-driven to discrete
event systems must be taken with care. To give a flavor of the problems one may face,
in this section we discuss the classical property of controllability and the way in which
it has been handled in the framework of Petri nets.

Note that much of this discussion is essentially due to Murata [26]. As far as we
know, his 1977 work was the first paper dealing with Petri nets published in an IEEE
journal. The fact that this paper was published on an Automatic Control journal is em-
blematic of the appeal that the algebraic structure of Petri nets has to control engineers.

7.1 Controllability

In Subsection 4.1 we introduced the state equation of a Petri net system, that can be
rewritten as

Mk+1 = Mk + C · σk (6)

where σk ∈ {0, 1}n is the firing vector relative to the transition that has fired at the
marking Mk, thus leading to the new marking Mk+1.

This clearly reminds one of the state equation of a discrete-time linear stationary
time-driven system, namely

xk+1 = Axk +Buk (7)

where xk ∈ Rm (resp., xk+1 ∈ Rm) is the state vector at the sampling time k (resp.,
k + 1), and uk ∈ Rn is the control input vector at sampling time k. More precisely,
equation (6) is a particular case of (7) with A = I and B = C, where I denotes the
identity matrix.

As well known, the following definition of controllability holds.

Definition 17. A discrete-time linear stationary system is controllable if and only if it is
possible, by appropriately acting on the input, to transfer the state of the system from
any initial state x0 to any other state xf , called the target state, in a finite number of
sampling steps f ≥ 0. �
Theorem 3. Given the discrete-time linear stationary system (7), we call controllability
matrix the (m× n ·m) matrix

Γ =
[
B AB A2B . . . Am−1B

]
.

A necessary and sufficient condition for the controllability of (7) is that

nc � rank Γ = m. �
Therefore, using Theorem 3, the controllability matrix of a Petri net is

Γ =
[
C C C . . . C

]
,

thus
rank Γ = rank C,

i.e., the rank of the controllability matrix always coincides with the rank of the incidence
matrix.
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We now observe that:

• the condition rank Γ = m is only a necessary condition for controllability if we
restrict the control input to uk ∈ {0, 1}m and to Mk + C · σk ≥ 0;

• moreover, as already discussed above (see Example 9), the state equation of a Petri
net system only provides a necessary condition for reachability.

Therefore, as a result of this analysis, the following conclusion may be drawn: in
the Petri net framework, rank Γ = m only provides a necessary (but not sufficient)
condition for controllability.

This conclusion is not surprising — discrete event systems are much more difficult
to study than linear systems — but, as Murata observes, does not address the real is-
sue. What in fact is totally missing from this analysis is a discussion of how significant
for a discrete event system is the property of controllability that derives from Defini-
tion 17. In fact, this classical notion does not fit well with discrete event systems, and
it is hardly meaningful. As an example, consider a Petri net model of a manufacturing
system where the marking of a place denotes the availability of a resource. It is not
meaningful to investigate if the marking of such a place may reach any value starting
from any other marking. As a trivial example, in an assembly system described by a
Petri net starting from a state in which there are only two wheels available, it may be
possible to reach state in which one bicycle has been assembled, but not a state in which
ten bicycles have been assembled.

It seems thus natural to introduce different notions of controllability, more suited
to describe the desired properties of discrete event systems. Here are some possible
examples.

• Given a Petri net with incidence matrix C of dimension m×n, we say that x ∈ Zm

is a P-flow if xT · C = 0.
A P-flow imposes an invariant law on the reachability set of a net: in fact if

marking M is reachable from the initial marking M0 it must hold

xT ·M = xT ·M0

as can be seen multiplying the state equation (3) by xT from the left.
This condition, however, is necessary but not sufficient for reachability. Given a

net system 〈N,M0〉 with incidence matrix C, let X be a matrix whose columns are
P-flows forming a basis of the left-null space of matrix C. It holds

R(N,M0) ⊆ IX(N,M0)
def= {M ∈ Nm | XT ·M = XT ·M0}.

Thus a meaningful definition for a Petri net system may be the following: a Petri
net system 〈N,M0〉 is controllable if R(N,M0) = IX(N,M0).

• Yet a different definition of controllability may be given for timed Petri nets, namely
P/T nets in which a time interval is associated to transitions: an enabled transition
may fire provided that it has been enabled for a time that belongs to its time interval.
Such a model is particularly useful when making performance analysis. Clearly
imposing a timing structure over a logical model influences its reachability set. In
fact, since a timed model can be seen as a logical model with additional timing
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constraints, the reachability set of the timed net is usually a subset of that of the
underlying untimed one. One may define a timed Petri net system controllable if its
reachability set coincides with that of the underlying untimed model.

• Finally, in Supervisory Control — one of the most interesting approaches to the
control of discrete event systems — controllability is not defined as a property of a
system alone, but is defined with respect to a given specification, i.e., with respect
to a set of legal states or to a set of legal words. This definition has often been used
to define a Petri net system controllable if its evolution can be restricted to a given
set of legal markings or to a given set of legal words.

8 Current Research Areas in Petri Nets

In the last two decades a large number of researchers from the automatic control com-
munity have devoted their effort to the study of Petri nets. There are, however, a certain
number of basic problems that are still open. Here, we mention the following four sig-
nificant areas of on-going research.

• Control: as in classical control, the control problem consists in finding a control law
that constraints the controlled system behavior to satisfy a given specification.

• Deadlock: a deadlock represents an anomalous state from which no further evo-
lution is possible. This is an issue that appears in most practical applications, and
appropriate strategies should be adopted in order to prevent it.

• Observability: the problem is that of determining efficient ways of reconstructing
the state of a net based on observed events occurrence and/or on partial marking
observation.

• Identification: this problem consists in determining a Petri net system starting from
examples/counterexamples of its language, or from the structure of its reachability
(or coverability) graph.

In the following we recall the main results that have been proposed in the above
areas.

8.1 Control

The most interesting and original approach to the control of discrete event systems,
that has directly or indirectly shaped much of the research in this area, is Supervisory
Control Theory (SCT), originated by the work of P.J. Ramadge and W.M. Wonham [33].
According to the paradigm of SCT, a discrete event system G is a language generator
whose behavior, i.e., language, is denoted L(G). Given a legal language K , the basic
control problem is to design a supervisor that restricts the closed loop behavior of the
plant to K∩L(G), disabling controllable events; the events whose occurrence cannot be
disabled are called uncontrollable. It is also usually required that the closed loop system
satisfies additional qualitative specifications, such as absence of blocking, reversibility,
etc. Since Petri nets can be seen as language generators, it is also possible to use them
as discrete event models for SCT; in this case it is assumed that some transitions, that
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we call controllable, can be disabled by an external agent. See [5, 20] for a review of
this topic.

A similar approach can also be taken when considering the state evolution of a dis-
crete event system, rather than the traces of events it generates. This approach, that we
call state-based, is particularly attractive when Petri nets are used to represent the plant
and was used by several authors, as reviewed in [20]. Let us consider a Petri net sys-
tem 〈N,M0〉 with m places, whose set of reachable markings is R(N,M0). Assume
we are given a set of legal markings M ⊆ Nm: the basic control problem consisting
in designing a supervisor that restricts the reachability set of plant in closed loop to
M∩R(N,M0), while satisfying some qualitative properties of interest.

Of particular interest are those Petri net state-based control problems where the set
of legal markings M is expressed by one — or more — linear inequality constraints
called Generalized Mutual Exclusion Constraints (GMEC) [13]. In this case we write
M(w, k) = {M ∈ Nm | wTM ≤ k} to denote that M is expressed by the GMEC
(w, k) with w ∈ Zm, k ∈ Z. Problems of this kind have been considered by several
authors and this special structure of the legal set has the advantage that the supervisor
for this class of problems takes the form of a place, called monitor, which has arcs
going to and coming from some transitions of the plant net. The plant and the controller
are both described by a net in order to have a useful linear algebraic model for control
analysis and synthesis. Moreover the synthesis is not computationally demanding since
it involves only a matrix multiplication. See [22] for a recent survey.

The use of Petri nets for the control of discrete event systems is still an active research
area and we believe that it will continue to remain central during the next decade. In fact,
there exist many interesting Petri net analysis tools — as an example, the partial order
based techniques, such as unfolding — whose applicability to control is still largely
unexplored.

8.2 Deadlock

Deadlock is a major issue to be addressed when designing a supervisory controller.
A Petri net is said to be deadlocked if no transition is enabled. Clearly, this is an un-
desirable condition in quite all real applications. This is the reason why this problem
has been largely investigated in the literature, particularly within the area of flexible
manufacturing systems.

Deadlock problems may be seen from two different prospectives: deadlock preven-
tion refers to static policies — usually coded in the net structure — for eliminating
deadlocks, whereas deadlock avoidance refers to dynamic policies applied on-line.

The first significant contribution in this area dates back to 1990 and is due to
Viswanadham et. al [39]. Here the authors used the reachability graph of the Petri net
model to arrive at static resource allocation policies. For deadlock avoidance, they pro-
posed an on-line monitoring and control system.

Many other significant contributions on deadlock prevention are based on a linear
algebraic characterization of deadlock in ordinary3 net. In fact, it is well know that a
necessary and sufficient condition for an ordinary net to be deadlocked is the following:

3 A net is ordinary if all the arc weight are unitary.
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the set of empty places of the net forms a siphon4 and each transitions has at least one
empty input place. An interesting deadlock prevention procedure has been proposed by
Iordache, Moody, and Antsaklis in [21]: the approach consists in adding to the Petri
net that models the plant a number of additional places that prevent reaching empty
siphons, thus ensuring deadlock freeness. Other significant contributions on deadlock
prevention based on a linear algebraic characterization of empty siphons are due to
Ezpeleta et al. [11], to Chu and Xie [6], to Li and Zhou [24], and more recently to
Reveliotis [35]. In particular, in [11] the authors consider a particular class of Petri nets
and proved that for such a class deadlock prevention also ensures liveness. Finally, in
[35] Reveliotis develop a general theory that provides a unifying framework for all the
relevant existing results based on siphon analysis, and reveals the key structures and
mechanisms that connect the resource allocation systems (RAS) non-liveness to the
concept of deadly marked and empty siphon.

The most important contributions in the development of deadlock avoidance strate-
gies are due to Park and Reveliotis. In [28] the authors shown that a significant class
of deadlock avoidance policies, known as algebraic polynomial kernel–deadlock avoid-
ance policies, originally developed in the finite-state automata paradigm, can be ana-
lyzed using results from Petri net structural analysis. Other interesting results in this
framework have been given by Park and Reveliotis in [29, 30].

Despite the above important contributions, deadlock prevention and deadlock avoid-
ance are still open research areas because in the case of very large scale problems the
computational complexity of most of the existing approaches may be prohibitive and,
in the case of deadlock prevention, the number of places that should be added is too
large. Moreover, using the above approaches it is not always possible to deal with the
case of uncontrollable and unobservable transitions.

8.3 Observability

If the marking of a Petri net system is not measurable, different information can be used
to reconstruct it, or at least to estimate it.

Benasser in [1] has studied the possibility of defining the set of markings reached
firing a “partially specified” set of transitions using logical formulas, without having to
enumerate this set.

Meda et al. in [25] have discussed the problem of estimating the marking of a Petri
net using a mix of transition firings and place observations. Finally, Zhang and Hol-
loway [40] used a Controlled Petri Net model for forbidden state avoidance under par-
tial event observation assuming that the initial marking is known.

We have also worked in this area and studied the following cases.

• The initial marking of the net is not known (or only a partial information of it is
available) but all events are observable.

• The initial marking of the net is known but the events occurrence is observed though
a labeling function, i.e., a mask, that makes some events undistinguishable or silent.

4 A siphon is a set of places S ⊆ P such that
⋃

p∈S
•p ⊆ ⋃

p∈S p•, i.e., all transitions out-
putting to one place of the set are also inputting from one place of the set.
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While the first case can be studied using unlabeled Petri nets, the second case re-
quires labeled models. In particular, undistinguishable events are modeled with transi-
tions that share the same label; silent events are modeled with transitions whose label
is equal to the empty string.

In all cases the goal is that of characterizing the set of markings in which the system
may be, given the actual observation, and the information, if any, on the initial marking
and on the structure of the net. We denote this set as C(w), where w is the word of
observed events, and we call it the set of markings consistent with w.

Some important contributions in this topic have been given in [7, 14, 18] where it has
been proved that in all the above cases the set C(w) may be characterized by a finite set
of linear algebraic constraints whose structure keeps the same regardless of the length
of the observed word w, and depends on some parameters that can be easily computed
using appropriate recursive algorithms. The main advantage of such an approach is that
it does not require the enumeration of the set of consistent markings.

In [15, 16] it has also been shown how such characterizations can be efficiently used
when the observer is included in a control loop, and when designing a diagnoser for
fault detection.

8.4 Identification

The first partial but interesting approach to identification is due Hiraishi [19] on the
synthesis of safe Petri nets. Bourdeaud’huy and Yim [2] have presented an approach
based on logic constraints that can deal with positive examples of firing sequences but
not with counterexamples.

A different approach is based on the theory of regions whose objective is that of
deciding whether a given graph is isomorphic to the reachability graph of some free
labeled net and then constructing it. An excellent survey of this approach, that also
presents some efficient algorithms for net synthesis based on linear algebra, can be
found in the paper by Badouel and Darondeau [8].

Recently, in a series of paper [3, 4, 17] we have presented a general approach to
identification based on integer programming. In particular, in [17] the problem of iden-
tifying a Petri net system, given a finite language that it generates, has been considered.
Note that this approach allows one to specify not only examples of the systems behavior
(i.e., strings that belong to the language) but also counterexamples (i.e., strings that do
not belong to the language). It has been shown that the identification problem can be
solved via an integer programming problem, and additional structural constraints can
also be easily imposed to the net. The above results have been extended in [3] to the
case of labeled Petri nets.

In [4] the following identification problem has been dealt with: given an automaton
that represents the coverability graph of a net, determine a net system whose coverabil-
ity graph is isomorph to the automaton. Again the proposed approach requires solving
an integer programming problem whose set of unknowns contains the elements of the
pre and post incidence matrices and the initial marking of the net.

Finally, in a recent paper Sreenivas [38] dealt with a related topic: the minimization
of Petri net models. Given a λ-free labeled Petri net generator and a measure function
— that associates to it, say, a non negative integer — the objective is that of finding a
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Petri net that generates the same language of the original net while minimizing the given
measure. Unfortunately, these minimization procedures only exist for restricted families
of Petri net languages where language-containment is decidable, and for a restricted
class of measures.

9 Conclusions

In this paper we considered Petri nets, an efficient and powerful formalism for the sim-
ulation, analysis, and control of discrete event systems. The purpose of this paper is
that of presenting the main features of such a model to the automatic control commu-
nity, whose interest in the area of discrete event systems has been constantly increasing
during the last years. In particular, we focus on the basic Petri net model, namely on
Place/Transition nets, and discuss via some simple but intuitive examples, its modeling
power, and its main advantages with respect to other formalisms, such as automata. A
discussion on the main current research area is also presented, together with a survey of
the classical results in this framework.
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Summary. We introduce two conceptual models for wireless sensing and control with
power-limited sensors and controllers. The limited battery power of the wireless device
is captured in the models by imposing hard constraints on either the number of available
transmissions the device can make, or on the number of cycles it can stay awake. Such
hard constraints can be viewed as a measurement budget, under which estimation or
control policies will have to be developed over a given decision horizon. Among the two
representative models studied here, the first one is one of optimal scheduling of a finite
measurement budget for a Gauss-Markov process over an observation horizon. The
second one is an optimal estimation problem where the number of transmissions the
wireless sensor can make is limited to a number, M, which is less than the observation
horizon, N. It is shown that both problems can be solved by employing dynamic-
programming type arguments, and their solutions have a threshold characterization.

Keywords: Wireless Sensing and Control, Optimal Scheduling, Power-Limited Esti-
mation, Dynamic Programming, Threshold Policies.

1 Introduction

Recent advances in wireless technology and standards, such as ZigBee and IEEE
802.15.4, have made wireless sensing solutions feasible for industrial applications
[1, 2, 3, 4]. Most of these applications use battery-powered integrated wireless
sensing/communication devices, also called motes, for data logging and moni-
toring purposes [2]. Often times, data collected from sensors is relayed back to
a central processing unit where it is analyzed for trends. In most monitoring
applications, the data is collected on a near real-time basis. Early adapters of
this wireless technology in industry have been combating several design and per-
formance challenges for a reliably operating system. First and foremost is the
issue of data reliability which is intricately linked to the reliability of the commu-
nication channel. Interference from other RF sources, such as IEEE 802.11b/g
devices or microwave ovens, and multipath effects can severely degrade the per-
formance of the wireless monitoring system. A careful study of all these effects is
essential [4]. Another very important issue that needs to be addressed in design-
ing these systems is the power-limited nature of the wireless devices, which is
the focus of this paper. In most industrial applications a battery lifespan in the
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order of several years is required for feasible commercial operation [1]. This re-
quirement imposes severe restrictions on the duration of time the wireless device
can be on/awake and the number of transmissions it can make. This is because
the radio frequency (RF) communication consumes a significant portion of the
battery power when the wireless unit is awake. Therefore, life of the wireless
device can be lengthened by optimizing the duty cycle (or reporting frequency)
of the unit as well as by transmitting data only when it is necessary.

In this paper, we introduce two conceptual models for wireless sensing with
power-limited sensors. The focus is on wireless systems where the sensor can only
make a limited number of transmissions [5, 6, 7]. The models we consider here
are idealized for ease of presentation and mathematical tractability. However,
the basic thinking behind these models can easily be adopted to some real-world
applications. When doing so, one needs to consider several other requirements
imposed on the system, such as communication requirements to keep connectiv-
ity and time synchronization, which we ignore in this paper.

In both conceptual models considered, we start with a mathematical descrip-
tion of the process that is under observation. In most applications a model for
the process is available, or can be developed from historic data using some re-
gression analysis. In this paper, the process model is assumed to be discrete-time
and Markovian [8]. The limited battery power of the wireless device is modeled
by imposing a hard constraint on either the number of available transmissions
it can make, or on the number of cycles it can stay awake [5, 6, 7]. We think of
this hard constraint as a measurement budget, and determine as to how to best
spend this budget by scheduling the measurements over a decision horizon.

The rest of the paper is organized as follows. In Section 2, we introduce the
problem of optimal scheduling of a finite measurement budget over an obser-
vation horizon. Section 3 discusses the optimal estimation problem where the
number of transmissions the wireless sensor can make is limited to a number
M , which less than the observation horizon, N > M . The paper ends with the
concluding remarks of Section 4.

2 Optimal Measurement Scheduling with Limited
Measurements

In this section, we introduce the problem of estimating a process with limited
measurement resources. Under different performance criteria, we show how to
best spend a finite measurement budget by scheduling the measurement times
over a time horizon.

2.1 Problem Definition

Let {Xn, n ≥ 0} be a Markov process, where X0 = x0 is known a priori. We
would like to measure Xn over a measurement horizon of length N , i.e., 1 ≤ n ≤
N , but measurements are expensive. We are given a measurement budget which
allows us to make M < N observations of the process. We assume that there is
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no measurement noise, i.e. when we decide to measure the process we can do it
with infinite precision1.

Let {X̂n, n ≥ 0} be the sequence of estimates of the process {Xn}. Since
X0 is known a priori, we have X̂0 = x0, and X̂n = Xn for n ∈ M, where
M ⊂ [1, N ] denotes the set of times a measurement is made. The estimates at
other times n /∈ M are determined through an optimization process whereby
some estimation error criteria is minimized.

In this section, we will consider two types of estimation criteria. The first one
is the standard mean-square error criterion where the performance index is the
average cumulative estimation error over the decision horizon [1, N ]:

N∑
n=1

E{(Xn − X̂n)2}

where the expectation is taken over the statistics of {Xn}.
We will also consider a “threshold-error” criterion, which is defined as follows2.

If {Xn} is a discrete-state process taking values on Z, we let TL be the stopping
time

TL := inf{k ≥ 1 : Xk ∈ L}
where L ⊂ Z3.

The objective of the threshold-error estimation criterion is to have an accurate
estimate of the process as it crosses into the threshold set L. Thus, we would
like to pick the measurement instances such that the following probability is
maximized:

P [XTL = X̂TL |X0 = x0]

The continuous-time counterpart of this error criterion is defined when {Xn}
is a continuous-state process taking values on R. In this case, we define the
stopping time

Nτ := inf{k ≥ 1 : |Xk| ≥ τ}
and determine the time instances we should observe Xn so that the estimation
error

E{(XNτ − X̂Nτ )2|X0 = x0}

is minimized.
Finally, we would like to draw attention to the difference between open-loop

and closed-loop measurement system designs. In an open-loop design, the mea-
surement times are determined a priori before any value of the process is ob-
served (except X0 = x0). Since there is no penalty in waiting to decide what time
the next measurement should be taken, in a closed-loop design, we wait until a
measurement is made to decide on the next measurement time. The advantage
of closed-loop design is that it is more robust to process noise, and it can lead
1 Results of this paper can be extended to the case when there is measurement noise.
2 The threshold-error criterion is defined over an infinite-time horizon, i.e., N → ∞.
3 We assume that the Markov process {Xn} is irreducible.
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to lower values for the performance metrics. Note that the available information
about the process increases only when it is observed. Hence, the decision as to
when to observe the process next can be made with maximum information at
the end of the current observation period. In the context of wireless sensing, this
corresponds to the sensor deciding on when to wake-up next before it goes into
the sleep-mode to conserve energy.

More precisely, we assume that the information In available at time n to
decide on the estimate X̂n is limited to the observed process values up until
time n. So, if no measurement is made between times n and m > n, there
is no additional information gained, i.e., Im = In. Thus, if we measure the
process say at time nk and again at time nk+1, at time nk we can decide on
the sequence of estimates X̂n between the times nk and nk+1 − 1. In the case
of threshold-error estimation criterion, an additional information structure may
be considered where the event {Xk /∈ L}4 at time k is observable (measurable)
by the decision maker. In this case, at a measurement instance we cannot decide
on the sequence of estimates until the next measurement instance, since as the
process evolves in time our information about it increases. The time of the next
measurement cannot be determined at the time of the current measurement
for the same reason. This type of information structure may be well-suited for
certain applications, but in the case of wireless sensing, there is no opportunity
for the wireless sensors to make intermediate observations about the process
between the measurements. Hence, the former information structure, where the
event {Xk /∈ L} is not observable, is more applicable in this case.

In what follows we describe and provide solutions to three class of measure-
ment design problems representative of the more general problems in their re-
spective classes.

2.2 Measurement Schedule Optimization Problems

Problem I

Consider the Gauss-Markov process defined by

Xn+1 = AXn +Wn, n = 0, 1, . . . (1)

where Xn, A,Wn ∈ R, X0 = x0 is known, and {Wn} is an i.i.d. Gaussian se-
quence with zero mean and variance σ2

w. The first problem we consider is es-
timating the process {Xn} over a decision horizon of length N with M < N
measurement opportunities. The objective is to minimize the mean-square error

e =
N∑

n=1

E{(Xn − X̂n)2}

As we will see next, this is one of the problems where due to symmetry, the
open-loop measurement design will coincide with the closed-loop one. To see
4 Or {|Xk| < τ} for a continuous-state process.
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this, we first note that if n is a time of measurement, then the estimation error
component

en = E{(Xn − X̂n)2]}
is zero, as X̂n = Xn for n ∈M.

The optimal estimator that minimizes the estimation error e for those times
when no measurement is made is given by the conditional expectation

X̂n = E{Xn|In}, n /∈M (2)

where In denotes the information available at time n. Since information is ob-
tained only at measurement times, In will include the measured process values
Xn up to time n. However, due to the Markov nature of the process, knowing
the most recent measurement prior to time n is sufficient in determining the
conditional expectation in (2). Therefore, we have

X̂n = An−mnxmn , n /∈M

where mn denotes the time of the last measurement prior to time n. With this
estimator structure, the estimation-error component en becomes

en =
n−mn∑
k=1

A2(k−1)σ2
w, n /∈M

Note that en is not a function of the absolute time n, but only of the difference
n−mn, i.e., the time since the last measurement. Also, en does not depend on
any of the measurements made up until time n. Since en = en−mn increases
with the difference n −mn, to minimize the error we must keep this difference
as small as possible for all n /∈M. Thus, minimizing the mean-square error e is
equivalent to minimizing

M =
∑
n/∈M

n−mn

over the M -element subsets of [1, N ], i.e., M.
Now, it can be seen that the minimum value of M is attained when M∗ is

the set with its M elements evenly distributed over the measurement interval
[1, N ]. Note that the solution may not be unique, as there may be more than one
way to achieve a uniform distribution of M measurement times over the interval
[1, N ]. For example, when N = 4 and M = 2, M∗ = {1, 3} = {2, 3} = {2, 4} all
achieve the minimum M∗ = 2.

In summary, the optimal measurement schedule for the Gauss-Markov process
(1) can be determined offline5, and is given by a uniform distribution of the
measurement opportunities over the measurement horizon.
5 Therefore, the open-loop and closed-loop schedules are identical.
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Problem II

Let {Xn, n ≥ 0} be a simple walk6 on integers defined by

Xn+1 =
{
Xn + 1, w.p. p
Xn, w.p. 1− p

where p ∈ (0, 1) is the probability of an up-move, and X0 = x0 is given.
Let TL be the stopping time

TL := inf{k ≥ 1 : Xk = L}

where L > x0 is a given integer.
The objective is to detect the process as it crosses the threshold L. Therefore,

we want to maximize the probability

P = P [XTL = X̂TL |X0 = x0}

If we were given an infinite number of observation opportunities, we could make
this probability as close to 1 as possible by continuously observing the process.
However, measurements are expensive, and therefore we are only allowed to
make M of them. In this paper, we only consider the case when M = 1, but
the results can be extended to an arbitrary M > 1. We also assume that the
information available at time k to decide on the estimate X̂k is limited to the
observed process values up until time k, i.e., {Xk �= L} is not measurable at
time k.

Let m ≥ 1 be the time of the measurement. The probability P can be written
as

P = Px0 [XTL = X̂TL ] =
∞∑

k=L−x0

Px0 [Xk = X̂k]Px0 [TL = k]

We would like to minimize this expression over m ≥ 1 and {X̂n, n ≥ 1}. Note
that for a given m ≥ 1, the estimate of Xn that maximizes P is its maximum
likelihood (ML) estimate. For n < m, Xn−x0 is Binomial with (n, p), for n = m,
Xn = xm, and for n > m, Xn − xm is Binomial with (n − m, p). Since the
maximum likelihood estimate of a Binomial random variable with parameters
(n, p) is given by �(n + 1)p�, we have

X̂n =
{
xm + �(n−m+ 1)p�, n ≥ m
x0 + �(n+ 1)p�, n < m

Now, the probabilities Px0 [Xk = X̂k] can be calculated as follows: for k < m

Px0 [Xk = X̂k] =
(

k

�(k + 1)p�

)
p
(k+1)p�(1− p)k−
(k+1)p�

6 One may also consider the symmetric random walk version of this problem.
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for k = m

Px0 [Xk = X̂k] = 1

and for k > m:

Px0 [Xk = X̂k] =
(

k −m

�(k −m+ 1)p�

)
p
(k−m+1)p�(1− p)k−m−
(k−m+1)p�

We next calculate P [TL = k]:

Px0 [TL = k] = Px0 [Xk−1 = L− 1, Xk = L]
= Px0 [Xk = L|Xk−1 = L− 1]Px0 [Xk−1 = L− 1]
= pPx0 [Xk−1 = L− 1]

=
(

k − 1
L− 1− x0

)
pL−x0(1− p)k−L+x0

Now, m can be found by solving the optimization problem

max
m≥1

∞∑
k=L−x0

Px0 [Xk = X̂k]
(

k − 1
L− 1− x0

)
pL−x0(1− p)k−L+x0

The solution to this optimization problem depends on the difference L−x0, and
a numerical solution can be obtained using Matlab.

In Figure 1, we plot the successful estimation probability P at time TL as a
function of the measurement time, m ≥ 1. The threshold is set at L = 10, the
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walk starts at x0 = 0, and the probability of an up-move is p = 0.5. Note that, the
probability is maximized when m∗ = 17. Therefore, if we make a measurement
at time m = 17, we have approximately 38% chance of being able to catch the
process crossing the threshold L = 10.

Problem III

Problem III is the continuous-time counterpart of the Problem II. Let Xn be the
Gauss-Markov process defined by

Xn+1 = Xn +Wn, n = 0, 1, . . .

where X0 = x0 is known, and {Wn} is an i.i.d. Gaussian sequence with zero
mean and variance σ2

w.
Let Nτ be the stopping time

Nτ := inf{k ≥ 1 : |Xk| ≥ τ}

where τ > |x0| is a given threshold. We would like to estimate Xn but again
the observations are costly. Say we are allowed to observe the process only once.
What time instance should we observe Xn so that the estimation error

e(τ, x0) = E{(XNτ − X̂Nτ )2|X0 = x0} (3)

is minimized. In (3), X̂n denotes the estimate of Xn at time n, and for n ≥ 1 it
is given by7

X̂n =
{
X̂n−1, m �= k
Xn, m = k

(4)

with X̂0 = x0. In (4), m denotes the time where the observation is made, and
we would like to solve the optimization problem:

min
m≥1

E{(XNτ − X̂Nτ )2 | X0 = x0}

Conditioning on Nτ , we can equivalently write

min
m≥1

E{E{(XNτ − X̂Nτ )2 | Nτ , X0 = x0}}

Now, for a given m ≥ 1 and Nτ ≥ 1, the conditional cost equals

E{(XNτ − X̂Nτ )2 | Nτ ,m,X0 = x0} =

⎧⎨⎩
(Nτ −m)σ2

w , 1 ≤ m < Nτ

0, m = Nτ

Nτσ
2
w , m > Nτ

7 Since the event {|Xk | < τ} is not measurable at time k.
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Hence, the average cost for m ≥ 2 can be written as

em(τ, x0) =
m−1∑
k=1

kP [Nτ = k|X0 = x0]σ2
w

+
∞∑

k=m+1

(k −m)P [Nτ = k|X0 = x0]σ2
w

and for m = 1

e1(τ, x0) =
∞∑

k=m+1

(k −m)P [Nτ = k|X0 = x0]σ2
w

Note that for m ≥ 2, we have

em(τ, x0) = E{Nτ |X0 = x0}σ2
w −m

∞∑
k=m

P [Nτ = k|X0 = x0]σ2
w

= E{Nτ |X0 = x0}σ2
w −m

(
1−

m−1∑
k=1

P [Nτ = k|X0 = x0]

)
σ2

w

and for m = 1
e1(τ, x0) = E{Nτ |X0 = x0}σ2

w − σ2
w

Since {Xk} is a Markov chain, we write P [Nτ = k|X0 = x0] as

P [Nτ = k|X0 = x0] = Px0 [|Xk| ≥ τ, |X[1,k]| < τ ]
= Px0 [|Xk| ≥ τ, |X1| < τ, . . . , |Xk−1| < τ ]
= Px0 [|Xk| ≥ τ ||Xk−1| < τ ]
· · ·Px0 [|X2| < τ ||X1| < τ ]Px0 [|X1| < τ ]

Let pk(τ, x0) denote the conditional probability

pk(τ, x0) = P [|X +W | < τ ||X | < τ ]

where W ∼ N(0, σ2
w), and X ∼ N(x0, kσ

2
w), k ≥ 1, and (X,W ) are independent.

By definition

pk(τ, x0) =
P [|X +W | < τ, |X | < τ ]

P [|X | < τ ]
Now,

P [|X | < τ ] = Φ

(
τ − x0√
kσw

)
− Φ

(
−τ − x0√

kσw

)
where Φ(·) is the CDF of the standard Gaussian random variable. Also, note
that

P [|X +W | < τ, |X | < τ ]

=
∫ τ

−τ

1√
2πkσ2

w

e
− (x−x0)2

2kσ2
w

[
Φ

(
τ − x

σw

)
− Φ

(
−τ − x

σw

)]
dx
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Thus,

pk(τ, x0) =

∫ τ

−τ
1√

2πkσ2
w

e
− (x−x0)2

2kσ2
w

[
Φ
(

τ−x
σw

)
− Φ

(
−τ−x

σw

)]
dx

Φ
(

τ−x0√
kσw

)
− Φ

(
−τ−x0√

kσw

)
Let p0(τ, x0) denote

p0(τ, x0) = P [|X1| < τ |X0 = x0] = Φ

(
τ − x0

σw

)
− Φ

(
−τ − x0

σw

)
Using pk(τ, x0)’s, we write the probability distribution of Nτ as

P [Nτ = k|X0 = x0] =
{

1− p0(τ, x0), k = 1
(1− pk−1(τ, x0))

∏k−2
n=0 pn(τ, x0), k ≥ 2

Substituting the expression for P [Nτ = k|X0 = x0] into the error expression
em(τ, x0) for m ≥ 3 yields

em(τ, x0) = E{Nτ |X0 = x0}σ2
w

−m
(

1−
m−1∑
k=1

(1− pk−1(τ, x0))
k−2∏
n=0

pn(τ, x0)

)
σ2

w

and for m = 1, 2, we have

e1(τ, x0) = E{Nτ |X0 = x0}σ2
w − σ2

w

e2(τ, x0) = E{Nτ |X0 = x0}σ2
w − 2p0(τ, x0)σ2

w

We next look at the normalized difference

δm(τ, x0) :=
em+1(τ, x0)− em(τ, x0)

σ2
w

For m ≥ 2, calculating this difference yields

δm(τ, x0) = mP [Nτ = m|X0 = x0] +
m∑

k=1

P [Nτ = k|X0 = x0]− 1

and for m = 1, we have
δ1(τ) = 1− 2p0(τ, x0)

Note that, by telescoping the last term, δm(τ, x0),m ≥ 2 can be written as

δm(τ, x0) = m(1− pm−1(τ, x0))
m−2∏
n=0

pn(τ, x0)− 1

+
m∑

k=1

(1 − pk−1(τ, x0))
k−2∏
n=0

pn(τ, x0)
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= m(1−pm−1(τ, x0))
m−2∏
n=0

pn(τ, x0)−1+1−
m−1∏
n=0

pn(τ, x0)

= m
m−2∏
n=0

pn(τ, x0)− (m+ 1)
m−1∏
n=0

pn(τ, x0)

The error sequence {em(τ, x0)} for m ≥ 1 is decreasing if and only if

δm(τ, x0) < 0

Therefore, the estimation error is minimum for m∗(τ, x0) such that

m∗(τ, x0) = inf{m ≥ 1 : δm(τ, x0) > 0}

The comparison δm(τ, x0) > 0 is equivalent to, for m = 1

δ1(τ, x0) > 0 ⇔ 1− 2p0(τ, x0) > 0 ⇔ p0(τ, x0) <
1
2

and for m ≥ 2

δm(τ, x0) > 0 ⇔ m

m−2∏
n=0

pn(τ, x0)− (m+ 1)
m−1∏
n=0

pn(τ, x0) > 0

⇔ pm−1(τ, x0) <
m

m + 1

Hence, to minimize the estimation error we pick m∗(τ, x0) such that

m∗(τ, x0) = inf
{
m ≥ 1 : pm−1(τ, x0) <

m

m+ 1

}
Note that a solution always exists, since pm(τ, x0) ↓ as m ↑, and m

m+1 →
1, as m → ∞. This feature of the solution is illustrated in Figure 2, where
both pm−1(τ, x0) (red-square) and the function m

m+1 (blue-diamond) are plotted
against m. In Figure 2, the threshold is set as τ = 3, x0 = 0, and σ2

w = 1. For
these parameters, the optimal measurement time is given by m∗ = 9.

3 Optimal Estimation with Limited Measurements

In this section, we turn our attention into a sequential estimation problem with
two decision makers who work as members of a team [6]. One of the decision
makers is the wireless sensor and it makes sequential measurements about the
state of an underlying stochastic process for a fixed period of time. Note that
this is different than the setup considered in Section 2 where the wireless sensor
schedules its measurements across time each time before it goes to sleep. The
sensor (or observer) upon measuring the process makes a decision as to whether
to transmit some information about the process to the estimator. The estimator
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Fig. 2. m vs. pm−1(τ, x0) (red-square) and m
m+1 (blue-diamond). x0 = 0, τ = 3.

sequentially estimates the state of the process. The objective is to minimize a
performance criterion with the constraint that the sensor may only transmit a
limited number of measurements.

More specifically, we consider estimating a stochastic process over a decision
horizon of length N using only M ≤ N measurements. Both the measurement
and estimation of the process is carried out sequentially by two different decision
makers called the observer and the estimator8, respectively. Over the decision
horizon of length N , the observer agent has exactly M opportunities to dis-
close some information about the process to the estimator. These information
disclosures, or transmissions, are assumed to be error and noise free, and the
problem is to jointly determine the best observation and estimation policies that
minimize the average estimation error between the process and its estimate.

3.1 Problem Statement

Problem Definition

The problem of optimal estimation with limited measurements can be treated
in the more general framework of a communication system with limited channel
uses. For this purpose, consider the generic communication system whose block
diagram is given in Figure 3 [9]. The source outputs some data bk for 0 ≤ k ≤
N − 1, that needs to be communicated to the user over a channel. The data bk

are generated according to some a priori known stochastic process, {bk}, which
8 As we show next, in a communication-theoretic setting we may call them an encoder

and a decoder, respectively.
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may be i.i.d., or correlated as in a Markov process. An encoder (or an observer)
and a decoder (or an estimator) is placed after the source output and the channel
output, respectively, to communicate the data to the user efficiently. In the most
general case, the encoder/observer may have access to a noise-corrupted version
of the source output:

zk = bk + vk, 0 ≤ k ≤ N − 1

where {vk} is an independent9 noise process.
The main constraint is that the encoder/observer can access the channel only

a limited, M ≤ N , number of times. The goal is to design an observer-estimator
pair10, (O, E), that will “causally” (or sequentially) observe/encode the data
measurements, zk, and estimate/decode the channel output, yk, so as to minimize
the average distortion or error between the observed data, bk, and estimated
data, b̂k.

Source Channel User

b x y b̂

Length N M Uses
k k k k

Decoder/Encoder/

Observer Estimator

Fig. 3. Communication with limited channel use

The channel is assumed to be memoryless, and is completely characterized by
the conditional probability distribution Pc(y|x) on y ∈ Y for each x ∈ X , where
X and Y are the set of allowable channel inputs, and the set of possible channel
outputs, respectively.

The average distortion D(M,N) depends on the distortion measure and may
vary depending on the underlying application. Some examples are the average
mean-square error

D(M,N) = E

{
1
N

N−1∑
k=0

(bk − b̂k)2
}

(5)

or the Hamming (probability of error) distortion measure

D(M,N) = E

{
1
N

N−1∑
k=0

Ibk �=b̂k

}
(6)

where IS denotes the indicator function of the set S.
From a communication-theoretic standpoint, with the channel, source, and

the distortion measure defined, we can formally state our main problem: Given a
source and a memoryless channel, for a given decision-horizon N , and number of
9 Independent across time and from the source output process bk.

10 Or depending on the application, an encoder-decoder pair (E ,D).
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channel uses M , what is the minimum attainable value of the average distortion
D(M,N)? This minimization is carried out over the choice of possible encoder-
decoder (observer-estimator) pairs which are causal.

In this paper, we present a solution to this problem when the source process
is i.i.d. with a continuous or discrete probability density function, and the en-
coder/observer has access to the noiseless or a noisy version of the source output.
We assume that the channel is noiseless, and hence, it is completely characterized
by the probability distribution Pc(y|x) = δ(y − x). We also present the solution
to the case when the source process is Gauss-Markov.

Note that, in wireless sensing applications the desired length of time the wire-
less device will be in operation can be related to the decision horizon N in some
appropriate time unit, and the size of the battery installed in the sensor can be
related to the possible number of transmissions or channel uses M (see Figure 4).

Estimator  SensorTXRX

RF Channel

MN

Fig. 4. Optimal transmission scheduling with limited channel access

Hence, given an underlying performance criterion D(M,N), the problem is to
design the best transmission schedule, and estimation policies for the wireless
device and the remote monitoring station, respectively.

3.2 Estimating an i.i.d. Random Sequence with Limited
Measurements

Problem Definition

Consider the special case of the general problem defined in Section 3.1, where
the source outputs a zero-mean11 i.i.d. random sequence bk, 0 ≤ k ≤ N − 1. Let
B denote the range of the random variable bk. We assume that bk’s have a finite
second moment, σ2

b <∞, but their probability distribution remains unspecified
for now. At time k, the encoder/observer makes a sequential measurement of bk,
and determines whether to access the channel for transmission, which it can only
do a limited, M ≤ N , number of times. The channel is noiseless and thus has
a capacity to transmit the source output error-free when it is used to transmit.
Note that, even when it decides not to use the channel for transmission, the
observer/encoder may still convey a 1-bit information to the estimator/decoder.
In view of this, the channel input xk belongs to the set X := B ∪ {NT}, where
NT stands for “no transmission.”
11 This is not restrictive, as the known mean can be subtracted out by the estimator.
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More precisely, we let sk denote the number of channel uses (or transmissions)
left at time k. Now if sk ≥ 1, we have yk = xk for xk ∈ B∪{NT}. If sk = 0, on the
other hand, the channel is useless, since we have exhausted the allocated number
of channel uses. Note that, when the channel is noiseless, both the encoder and
the decoder can keep track of sk by initializing s0 = M and decrementing it by
1 every time a transmission decision is taken.

We want to design an estimator/decoder

b̂k = µ̂k(Id
k ) for 0 ≤ k ≤ N − 1

based on the available information Id
k at time k. Clearly, the information available

to the estimator is controlled by the observer. The average distortion between the
observed and estimated processes can be taken to be the average mean square
error as given by (5), or the probability of error distortion measure which is
given by (6).

The information Id
k available to the estimator at time k is a result of an

outcome of decisions taken by the observer up until time k. Let the observer’s
decision at time k be

xk = µk(Ie
k)

where Ie
k is the information available to the observer at time k. Assuming perfect

recall, we have

Ie
0 = {(s0, t0); b0}
Ie
k = {(sk, tk); bk

0 ;xk−1
0 }, 1 ≤ k ≤ N − 1

where tk denotes the number of time, or decision slots left at time k. We have

tk+1 = tk − 1, 0 ≤ k ≤ N − 2

with t0 = N .
The range of µk(·) is the space X = B ∪ {NT}. Let σk denote the decision

whether the observer has decided to transmit or not. Assume sk ≥ 1, and let
σk = 1 if a transmission takes place; i.e., xk ∈ B, and σk = 0 if no transmission
takes place. We have

sk+1 = sk − σk, 0 ≤ k ≤ N − 2

with s0 = M .
The observer’s decision at time k is a function of its k past measurements,

and k − 1 past decisions, i.e.,

µk(Ie
k) : Bk ×X k−1 → X , 0 ≤ k ≤ N − 1

Now, the information Id
k available to the estimator at time k can be written as

Id
k = {(sk, tk); yk

0}, 0 ≤ k ≤ N − 1

By definition, the channel output yk satisfies yk = xk if sk ≥ 1, and yk ∈ ∅ (i.e.,
no information) if sk = 0.
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Consider the class of observer-estimator (encoder-decoder) policies consisting
of a sequence of functions

Π = {µ0, µ̂0, . . . , µN−1, µ̂N−1}

where each function µk maps Ie
k into X , and µ̂k maps Id

k into B12, with the
additional restriction that µk can map to B at most M times. Such policies are
called admissible.

We want to find an admissible policy π∗ ∈ Π that minimizes the average
N -stage distortion, or estimation error:

eπ
(M,N) = E

{
N−1∑
k=0

(bk − µ̂k(Id
k ))2

}
(7)

or for source processes, bk, with discrete probability densities:

eπ
(M,N) = E

{
N−1∑
k=0

Ibk �=µ̂k(Id
k )

}
(8)

That is
e∗(M,N) = min

π∈Π
eπ
(M,N)

Note that, we omitted the factor of 1
N from the average error expressions for

convenience.
If M ≥ N , this problem has the trivial solution where the observer writes the

source output bk directly into the channel at each time k (i.e., µ∗
k(bk) = bk), and

since the channel is noiseless, the estimator can use an identity mapping (i.e.,
µ̂∗

k(Id
k ) = bk), resulting in zero distortion. Therefore, we only consider the case

when M < N .
Before closing our account on this section, we would like to note the nonclas-

sical nature of the information in this problem. Clearly, the observer’s action
affects the information available to the estimator, and there is no way in which
the estimator can infer the information available to the observer. Also note the
order of actions between the decision makers in the problem. At time k, first the
random variable bk becomes available, then the observer acts by transmitting
some data or not, and finally, the estimator acts by estimating the state with
µ̂k, the cost is incurred, and we move to the next time k + 1.

Structure of the Solution

We first consider the problem of finding the optimal estimator µ̂∗
k at time k. Note

that the estimator µ̂k appears only in a single term in the error expressions (7)-
(8). Thus, for the mean-square error criterion, the optimal estimator is simply
the solution of the quadratic minimization problem
12 Note that we do not distinguish between the source and user sets.
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min
µ̂k(Id

k
)
E
{
(bk − µ̂k(Id

k ))2|Id
k

}
which is given by the conditional expectation of bk given the available informa-
tion at time k:

µ̂∗
k(Id

k ) = E{bk|Id
k} = E{bk|(sk, tk); yk

0} (9)

Similarly, for the probability of error distortion criterion, the optimal estimator
is the solution of the minimization problem

min
µ̂k(Id

k)
E
{
Ibk �=µ̂k(Id

k)|Id
k

}
If at time k the channel can still be used (sk ≥ 1), the solution to this problem is
given by the maximum a posteriori probability (MAP) estimate of the random
variable bk given the available information at time k:

µ̂∗
k(Id

k ) = arg max
mi∈Bk(Id

k )
δ(yk − i)pi = arg max

mi∈Bk((sk,tk);yk
0 )
pi (10)

where Bk(Id
k ) ⊂ B is some subset of the range of the random variable bk, which

we assume is countable. Let mi denote the values the random variable bk takes.
Then, pi’s denote the probability mass function of the random variable bk, i.e.,
pi = P [bk = mi].

Note that, for the probability of error distortion criterion, if the channel is
useless at time k (i.e., sk = 0), the best estimate of bk is simply given by

µ̂∗
k(Id

k ) = arg max
mi∈B

pi (11)

since the past channel outputs, yk−1
0 , are independent of bk.

Similarly, for the mean-square error criterion, the channel output yk has no
information on bk if sk = 0. Thus, in this case, the conditional expectation in
(9) equals

µ̂∗
k(Id

k ) = E{bk|(0, tk); yk−1
0 , yk} = E{bk} = 0 (12)

since again the past channel outputs, yk−1
0 , are generated by the σ-algebra of

random variables bk−1
0 , and hence are independent from bk.

If sk ≥ 1, the channel output yk = xk, but since yk−1
0 = xk−1

0 is the outcome
of a Borel-measurable function defined on the σ-algebra generated by bk−1

0 , the
conditional expectation in (9) is equivalent to

µ̂∗
k(Id

k ) = E{bk|(sk, tk);xk} (13)

By a similar argument we can write (10) as

µ̂∗
k(Id

k ) = arg max
mi∈Bk((sk,tk);xk)

pi (14)

Now, substituting the optimal estimators (13)-(14) back into the estimation
error expressions (7)-(8) yields
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eπ
(M,N) = E

{
N−1∑
k=0

(bk − E{bk|(sk, tk);xk})2
}

(15)

and

eπ
(M,N) = E

{
N−1∑
k=0

Ibk �=arg maxmi∈Bk((sk,tk);xk) pi

}
(16)

which we seek to minimize over the observer/encoder policies µk(Ie
k), 0 ≤ k ≤

N − 1. Since xk = µk(Ie
k), we see that the choice of an observer policy affects

the cost only through the information made available to the estimator.
In general, the observer’s decision µk at time k depends on (sk, tk), all past

measurements bk−1
0 , the present measurement bk, and its past actions xk−1

0 .
However, as we show next, there is nothing the observer can gain by having
access to its past measurements bk−1

0 and its past actions xk−1
0 as far as the

optimization of the criteria (15)-(16) are concerned. Thus, a sufficient statistics
for the observer are the current measurement bk and the remaining number of
channel uses (transmission opportunities) and decision instances, i.e. (sk, tk).

Proposition 1. The set Se
k = {(sk, tk); bk} constitutes sufficient statistics Se

k(Ie
k)

for the optimal policy µ∗
k of the observer. In other words,

µ∗
k(Ie

k) = µ̄(Se
k(Ie

k))

for some function µ̄.

Proof. Suppose we would like to determine the optimal observer policy µ∗
k(Ie

k)
at time k, where 0 ≤ k ≤ N − 1 is arbitrary. Due to the sequential nature of the
decision problem, any observer policy we decide on at time k will only affect the
error ek incurred after time k, i.e.13,

ek = E

{
N−1∑
n=k

(bn − E{bn|(sn, tn);xn})2
}

Taking the conditional expectation given the available information Ie
k, under any

observer policy µk(Ie
k) we have

E{ek|(sk, tk); bk
0 ;xk−1

0 } = E{ek|(sk, tk); bk}

because bN−1
k is independent of bk−1

0 , and xk−1
0 is the outcome of a Borel-

measurable function defined on the σ-algebra generated by bk−1
0 . Hence, at time

k, the knowledge of bk−1
0 and xk−1

0 is redundant.

A consequence of Proposition 1 is that the observer’s decision to use the chan-
nel to transmit a source measurement or not is based purely on the current
observation bk and its past actions only through (sk, tk).
13 Here, we give the proof only for the error criterion (15). An identical proof can be

constructed for the probability of error distortion criterion (16).
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Since µk depends explicitly only on the current source output bk, the search
for an optimal observer policy can be narrowed down to the class of policies of
the form14

µk(Ie
k) = µ̄((sk, tk); bk) =

{
bk if bk ∈ T(sk,tk)
NT if bk ∈ T c

(sk,tk)
(17)

where T(sk,tk) is a measurable set on B and is a function of (sk, tk). The com-
plement of the set T(sk,tk) is taken with respect to B, i.e., T c

(sk,tk) = B\T(sk,tk).
When probability of error distortion criterion is used, Proposition 1 implies that
Bk((sk, tk); NT) = T c

(sk,tk), and Bk((sk, tk);mi) = mi.
Note that the optimal estimators (13) and (14) have access to (sk, tk) as well.

Thus, even when the observer chooses not to transmit bk, it can still pass a 1-bit
information about bk to the estimator provided that sk ≥ 1. If k is such that all
M transmissions are concluded prior to time k (i.e., sk = 0), the estimators are
given by (11)-(12), irrespective of bk.

Now, observe that the optimization over the observer policies is equivalent to
optimization over the sets T(sk,tk) for all k such that

max{0,M − k} ≤ sk ≤ min{tk,M}

and tk = N − k. The nonnegativity of sk is a result of the limited channel
use constraint. Note that if sk0 = 0 for some k0, then sk = 0 for all k such
that k0 ≤ k ≤ N − 1. At the other extreme, we must have sk ≤ N − k, since
if sk = N − k, this means there are as many channel uses left as there are
decision instances, and the optimal observer and estimator policies in this case
are obvious.

The Solution with the Mean-Square Error Criterion

Let (sk, tk) = (s, t), and e∗(s,t) denote the optimal value of the estimation error
(or distortion) (15) when the decision horizon is of length t, and the observer
is limited to s channel uses, where s ≤ t. We know that at time k, the optimal
observation policy will be of the form (17).

Now, at time k + 1, depending on the realization of the random variable bk,
the remaining (t−1)-stage estimation error is either e∗(s−1,t−1), or e∗(s,t−1). Thus,
inductively by the DP equation [10], we can write15

e∗(s,t) = min
T(s,t)

{
e∗(s−1,t−1)

∫
b∈T(s,t)

f(b)db+ e∗(s,t−1)

∫
b∈T c

(s,t)

f(b)db

+
∫

b∈T c
(s,t)

[
b− E{b|b ∈ T c

(s,t)}
]2
f(b)db

}
14 As long as k is such that all M measurements are not exhausted, i.e., sk ≥ 1.
15 Assuming that the random variables {bk} are continuous with a well-defined prob-

ability density function (pdf) f(b).
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where f(b) is the pdf of the random variables bk. If bk’s are discrete random
variables with a probability mass function (pmf), one has to replace the integrals
in the above expression with sums. Expanding out the expectation yields

e∗(s,t) = min
T(s,t)

{
e∗(s−1,t−1)

∫
b∈T(s,t)

f(b)db+ e∗(s,t−1)

∫
b∈T c

(s,t)

f(b)db

+
∫

b∈T c
(s,t)

⎡⎣b−
∫

b∈T c
(s,t)

bf(b)db∫
b∈T c

(s,t)
f(b)db

⎤⎦2

f(b)db

⎫⎪⎬⎪⎭ (18)

To solve for e∗(s,t), we first note the boundary conditions e∗(t,t) = 0, and e∗(0,t) =
tσ2

b , ∀t ≥ 0, where σ2
b is the variance of bk. The term e∗(s,t) remains undefined for

s > t. The optimal sets satisfy the boundary conditions T ∗
(t,t) = B, and T ∗

(0,t) = ∅,
∀t ≥ 0. The recursion of (18) needs to be solved offline and the optimal sets T ∗

(s,t)

must be tabulated starting with smaller values of (s, t)16. The solution to the
original problem can then be determined as follows:

Initialize s0 = M , t0 = N . For each k in 0 ≤ k ≤ N − 1 do the following:

1. Look up the optimal set T ∗
(sk,tk) from the table that was determined offline.

2. Observe bk, and apply the observation policy

µ̄∗((sk, tk); bk) =

{
bk if bk ∈ T ∗

(sk,tk)
NT if bk ∈ T ∗c

(sk,tk)

3. Apply the estimation policy

µ̂∗
k(T ∗

(sk,tk)) = E{bk|bk ∈ T ∗c
(sk,tk)} =

∫
b∈T ∗c

(sk,tk)
bf(b)db∫

b∈T ∗c
(sk,tk)

f(b)db

4. Update
sk+1 = sk − σk, tk+1 = tk − 1

In tabulating T ∗
(s,t) one should start with solving for T ∗

(1,2), and the corresponding
estimation error e∗(1,2). To determine the optimal set at (s, t), we need to know
the optimal costs at (s, t − 1), and (s − 1, t − 1). Hence, we can propagate our
calculations as shown in Figure 5 starting with (s, t) = (1, 2).

Now, we come back to the problem of minimizing (18) over T(s,t). Expanding
out the expression inside the minimization we get

e∗(s,t) = e∗(s−1,t−1) + min
T c
(s,t)

{
−
(
e∗(s−1,t−1) − e∗(s,t−1)

)∫
b∈T c

(s,t)

f(b)db

+
∫

b∈T c
(s,t)

b2f(b)db−

[∫
b∈T c

(s,t)
bf(b)db

]2
∫

b∈T c
(s,t)

f(b)db

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (19)

16 Note that (1, 2) is the smallest possible nontrivial value.
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Fig. 5. Recursive calculation of e∗
(s,t)

where we used the fact that
∫

b∈T(s,t)
f(b)db = 1−

∫
b∈T c

(s,t)
f(b)db.

This an optimization problem over measurable sets T c
(s,t) on the real line, and

since these sets are not countable, there is no known method for carrying out this
minimization in a systematic manner. Therefore, we restrict our search to the sets
that are in the form of simple symmetric intervals, i.e., T c

(s,t) = [−β(s,t), β(s,t)],
where 0 ≤ β(s,t) ≤ ∞.

Now, because of symmetry, the last term on the right-hand side of (19) dis-
appears from the minimization. Differentiating the remaining terms inside the
curly brackets, we obtain the first-order necessary condition:

−
(
e∗(s−1,t−1) − e∗(s,t−1)

)
f(β(s,t)) + β2

(s,t)f(β(s,t)) = 0

From which the critical point β∗
(s,t) can be determined as17

β∗
(s,t) =

√
e∗(s−1,t−1) − e∗(s,t−1) (20)

Note that, we always have e∗(s,t−1) ≤ e∗(s−1,t−1), since for the same decision
horizon, t − 1, the minimum average distortion achieved by s channel uses, is
always less than that achieved by s− 1 channel uses. So, β∗

(s,t) always exists.
From the first-order condition, we observe that the objective function is

strictly decreasing on the interval [0, β∗
(s,t)), and it is strictly increasing on the

interval (β∗
(s,t),∞). Thus, β∗

(s,t) must be a strict global minimizer. Thus, in the
class of symmetric intervals, the best set T c

(s,t) is given by the interval

T ∗c
(s,t) = [−

√
e∗(s−1,t−1) − e∗(s,t−1),

√
e∗(s−1,t−1) − e∗(s,t−1)] (21)

The Solution with the Probability of Error Criterion

As in Section 3.2, let (sk, tk) = (s, t), and let e∗(s,t) denote the optimal value of
the estimation error (or distortion) (16) when the decision horizon is of length
17 The other critical point, namely β(s,t) = +∞, yields a larger cost.
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t, and the observer is limited to s channel uses, where s ≤ t. We know that at
time k, the optimal observation (transmission) policy will be of the form (17).

Now, at time k + 1, depending on the realization of the random variable bk,
the remaining (t−1)-stage estimation error is either e∗(s−1,t−1), or e∗(s,t−1). Thus,
assuming that s ≥ 1, inductively by the DP equation, we can write

e∗(s,t) = min
T(s,t)

{
P [bk ∈ T(s,t)]e∗(s−1,t−1) + P [bk ∈ T c

(s,t)]e
∗
(s,t−1) + P [bk ∈ T c

(s,t)]

− max
mj∈T c

(s,t)

pj

}

or equivalently

e∗(s,t) = min
T c
(s,t)

{(
1− P [bk ∈ T c

(s,t)]
)
e∗(s−1,t−1)

+P [bk ∈ T c
(s,t)]e

∗
(s,t−1) + P [bk ∈ T c

(s,t)]− max
mj∈T c

(s,t)

pj

}

Plugging in P [bk ∈ T c
(s,t)] =

∑
mi∈T c

(s,t)
pi, and rearranging the terms, we obtain

the following error recursion:

e∗(s,t) = e∗(s−1,t−1) + min
T c
(s,t)

⎧⎨⎩−(e∗(s−1,t−1) − e∗(s,t−1))
∑

mi∈T c
(s,t)

pi +
∑

mi∈T c
(s,t)

pi

− max
mj∈T c

(s,t)

pj

}
(22)

We next show that the error difference, e∗(s−1,t−1) − e∗(s,t−1), can be bounded
from below and above.

Proposition 2. Suppose 1 ≤ s ≤ t. Then, the error difference e∗(s−1,t−1) −
e∗(s,t−1) satisfies:

0 ≤ e∗(s−1,t−1) − e∗(s,t−1) ≤ 1

Proof. The lower bound can be established by observing that for the same deci-
sion horizon, t− 1, the minimum average distortion achieved by s channel uses,
is always at least as small as the one that can be achieved by s − 1 channel
uses. For the upper bound, one needs to observe that the maximum stage-wise
estimation error is bounded by 1.

Using Proposition 2, we will next show that the optimum choice for the sets
T c

(s,t) is the singleton T c∗
(s,t) = {mi∗}, where i∗ = argmaxmi∈B pi.

In other words, the optimal solution is not to transmit the most likely outcome,
and transmit all the other outcomes of the source process bk. Moreover, this
policy is independent of the number of decision instances left, tk, and the number
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of transmission opportunities left, sk, provided that sk ≥ 1. Recall that, the
optimum estimator is the MAP estimator and is given by (14).

In order to show that this is indeed the optimal observer (or transmission)
policy, we first set the cardinality of the set T(s,t) to |T c

(s,t)| = 0, and determine
that the expression inside the curly brackets in (22) is just 0.

We next set |T c
(s,t)| = 1, and note that the minimization of the function inside

the curly brackets in (22) is equivalent to the following minimization:

min
i

{
(1− pi)e∗(s−1,t−1) + pie

∗
(s,t−1) + pi − pi

}
Here i is such that mi ∈ B. Canceling pi’s and rearranging, we obtain an equiv-
alent minimization problem:

min
i
−pi(e∗(s−1,t−1) − e∗(s,t−1))

By Proposition 2, the error difference, e∗(s−1,t−1)− e∗(s,t−1), is nonnegative; thus,
the minimum is achieved by picking i as

i∗ = arg max
mi∈B

pi

This choice yields a minimum value of −(e∗(s−1,t−1)− e∗(s,t−1))pi∗ . Note that this
value is at least as good as the value we obtained when we set the cardinality of
the set |T c

(s,t)| = 0. Thus, we never pick T c
(s,t) such that it has zero cardinality.

Finally, we let |T c
(s,t)| ≥ 2, and let pmax denote the element of T c

(s,t) with the
maximal probability. That is,

pmax = max
mj∈T c

(s,t)

pj

Since the number of elements of T c
(s,t) is at least 2, the minimization problem

inside the curly brackets in (22) can be written as

min
T c
(s,t)

⎧⎨⎩−(e∗(s−1,t−1)−e∗(s,t−1))pmax + (1−(e∗(s−1,t−1) − e∗(s,t−1)))
∑

mi∈T c
(s,t)\mj∗

pi

⎫⎬⎭
where

mj∗ = arg max
mi∈T c

(s,t)

pi

Now, by Proposition 2, the term multiplying the sum
∑

mi∈T c
(s,t)\mj∗ pi is always

nonnegative; hence, we can conclude that the above minimum is bounded from
below by

−(e∗(s−1,t−1) − e∗(s,t−1))pmax

for any choice of the set T c
(s,t) with cardinality |T c

(s,t)| ≥ 2. However the expression
−(e∗(s−1,t−1) − e∗(s,t−1))pmax satisfies
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−(e∗(s−1,t−1) − e∗(s,t−1))pmax ≥ −(e∗(s−1,t−1) − e∗(s,t−1))pi∗

since pi∗ ≥ pmax. Therefore, the minimum value of the function inside the curly
brackets in (22) is achieved when T c

(s,t) = {mi∗}, as claimed.
In summary, when the distortion criterion is the probability of error, at time

k, the optimal observer first observes the source output bk. Then, it checks to
see if sk ≥ 1; if so, it transmits bk unless bk = mi∗ , i.e., the most likely outcome.
The estimator (or decoder), on the other hand, employs the MAP estimation
rule given the output of the channel.

Gaussian Case

Suppose bk’s are zero-mean, i.i.d. Gaussian. Let Φ(·) denote the cumulative den-
sity function (CDF) of the standard Gaussian random variable with zero mean
and unit variance. In the Gaussian case, we can generalize our search for an op-
timum in (19) to more general intervals of the form T c

(s,t) = [α(s,t), β(s,t)], where
−∞ ≤ α(s,t) ≤ β(s,t) +∞.

Figure 6 shows the plot of the objective function on the right-hand side of (19)
for the case when T(s,t) = [a, b], σ2

b = 1, e∗(s−1,t−1) = 3, and e∗(s,t−1) = 1. Note
that the minimum occurs at b∗ = −a∗ =

√
3− 1 =

√
2 = 1.4142. Thus, even

though we did not restrict ourselves to symmetric intervals, the solution is still a
symmetric interval around zero. To show that this is indeed the case in general,
one needs to differentiate the objective function inside the curly brackets in (19)
with respect to both α(s,t) and β(s,t), and show that the minimum occurs at
β∗

(s,t) = −α∗
(s,t) when f(b) is the Gaussian pdf [5].

To evaluate the optimum estimation error e∗(s,t) in terms of e∗(s−1,t−1) and
e∗(s,t−1), we substitute the optimum interval solution (21) into the right-hand
side of (19), and use the standard properties of the Gaussian density that we
listed above to obtain

e∗(s,t) = e∗(s−1,t−1) −
[
e∗(s−1,t−1) − e∗(s,t−1) − σ2

b

]
×

⎡⎣2Φ

⎛⎝√e∗(s−1,t−1) − e∗(s,t−1)

σ2
b

⎞⎠− 1

⎤⎦
− 2σ2

b√
2πσ2

b

√
e∗(s−1,t−1) − e∗(s,t−1)e

−
e∗
(s−1,t−1)−e∗

(s,t−1)
2σ2

b (23)

We can normalize the optimal estimation error by letting

ε(s,t) =
e∗(s,t)

σ2
b

(24)

and rewrite the recursion (23) in a simpler form:

ε(s,t) = ε(s−1,t−1) −
[
ε(s−1,t−1) − ε(s,t−1) − 1

] [
2Φ
(√

ε(s−1,t−1) − ε(s,t−1)
)
− 1
]

− 2√
2π

√
ε(s−1,t−1) − ε(s,t−1)e

−
ε(s−1,t−1)−ε(s,t−1)

2 (25)
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Fig. 6. Plot of the objective function in the Gaussian case with T(s,t) = [a, b] when
σ2

b = 1, e∗
(s−1,t−1) = 3, and e∗

(s,t−1) = 1

with the initial conditions

ε(t, t) = 0, ε(0, t) = t, ∀t ≥ 0

and ε(s, t) is undefined for s > t.
Hence, we can provide a solution to the problem of optimal sequential esti-

mation of an i.i.d. Gaussian process of finite length over a noiseless channel that
can only be used a limited number of times. First, a table has to be formed by
an offline numerical computation of the recursion (25). Then, the table can be
scaled, if needed, to the actual variance of the process through (24). Next, the
transmission intervals for the observer are determined via (20), and tabulated for
all feasible pairs (s, t). For the online computation, as illustrated in Section 3.2,
the observer has to keep two states, (sk, tk). Each time unit k, after observing
the realization of the random variable bk, the observer compares the realized
value of the random variable to the optimum decision interval corresponding
to the current state (sk, tk), and makes a transmission decision. The estimator,
on the other hand, has access to the same tabulated values of the transmission
intervals, T ∗

(s,t), and it keeps track of the states (sk, tk) in the same way the
observer does. Upon receiving the transmitted data, yk, from the channel, the
estimator simply applies the estimation policy given in Section 3.2.

Gaussian Case with Noisy Measurements

Let the source process bk be i.i.d. Gaussian. If the observer has access to a noisy
version of the source output, i.e.,
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zk = bk + vk

where vk is zero-mean, i.i.d. Gaussian18 with variance σ2
v, the optimization prob-

lem with the mean-square distortion measure can be solved using a similar ap-
proach. In this case, the observer’s decision as to whether to use the channel
to transmit or not depends on the available data zk. In the derivation of the
optimal observer-estimator pair, most of the analysis of Section 3.2 carries over.

In order to see that the structure of the solution is preserved, first observe
that when sk = 0, µ̂∗

k = 0, and for sk ≥ 1, the optimal estimator has the form:

µ̂∗
k(Id

k ) = E{bk|(sk, tk);xk}

Substituting this into the error expression, and following along the lines of
Proposition 1, one can see that the optimal observer policy has the form

µk(Ie
k) = µ̄((sk, tk); zk)

In other words {(sk, tk); zk} is a sufficient statistics for the optimal policy µ∗
k(Ie

k).
Since µk depends explicitly only on the current measurement zk, for sk ≥ 1,

the search for an optimal encoder policy can be narrowed down to the class of
policies of the form

µk(Ie
k) = µ̄((sk, tk); zk) =

{
zk if zk ∈ T(sk,tk)
NT if zk ∈ T c

(sk,tk)

where T(sk,tk) is a measurable set on B, and is a function of (sk, tk). Since xk =
µk(Ie

k), for sk ≥ 1, we can write the optimal estimator as

µ̂k((sk, tk);xk) =

⎧⎨⎩
σ2

b

σ2
b+σ2

v
zk if zk ∈ T(sk,tk)

E
{
bk|zk ∈ T c

(sk,tk)

}
if zk ∈ T c

(sk,tk)

We proceed as in Section 3.2, and write the dynamic programming recursion
governing the evolution of the optimal estimation error as follows:

e∗(s,t) = min
T c
(s,t)

{
e∗(s−1,t−1)P [z ∈ T(s,t)] + σ2

b +
(

σ2
b

σ2
b + σ2

v

)2 ∫
z∈T(s,t)

z2fZ(z)dz

+e∗(s,t−1)P [z ∈ T c
(s,t)]− 2

σ2
b

σ2
b + σ2

v

∫
z∈T(s,t)

zE[b|z]fZ(z)dz

}

where fZ(z) ∼ N(0, σ2
b +σ2

v), and fB|Z(b|z) ∼ N( σ2
b

σ2
b+σ2

v
z,

σ2
b σ2

v

σ2
b+σ2

v
). The recursion

can be simplified as

e∗(s,t) = min
T c
(s,t)

{
e∗(s−1,t−1) + σ2

b − (e∗(s−1,t−1) − e∗(s,t−1))
∫

z∈T c
(s,t)

fZ(z)dz

−
(

σ2
b

σ2
b + σ2

v

)2

(σ2
b + σ2

v) +
(

σ2
b

σ2
b + σ2

v

)2 ∫
z∈T c

(s,t)

z2fZ(z)dz

}
18 We also assume that the processes {bk} and {vk} are independent.
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Following along the lines of Section 3.2, we restrict our search for an optimum
set to simple intervals, i.e., T c

(s,t) = [α(s,t), β(s,t)]. The same analysis gives the
optimum choice for β(s,t)

β∗
(s,t) =

σ2
b + σ2

v

σ2
b

√
e∗(s−1,t−1) − e∗(s,t−1)

and α∗
(s,t) = −β∗

(s,t). Substituting these values into the error recursion, we obtain
the two-dimensional recursion for the estimation error:

e∗(s,t) = e∗(s−1,t−1) −
[
e∗(s−1,t−1) − e(s,t−1) −

(σ2
b )2

σ2
b + σ2

v

]

×

⎡⎣2Φ

⎛⎝√σ2
b + σ2

v

√
e∗(s−1,t−1) − e∗(s,t−1)

σ2
b

⎞⎠− 1

⎤⎦

− 2σ2
b√

2π(σ2
b + σ2

v)

√
e∗(s−1,t−1) − e∗(s,t−1)e

−

(
σ2

b+σ2
v

σ2
b

)2
(e∗

(s−1,t−1)−e∗
(s,t−1))

2(σ2
b
+σ2

v)

+σ2
b −

(σ2
b )2

σ2
b + σ2

v

Note that, for σ2
v = 0 this recursion simplifies to (23), which is the recursion for

the perfect state measurements.
We can normalize the optimal estimation error by letting

ε(s,t) =
σ2

b + σ2
v

(σ2
b )2

e∗(s,t) (26)

and rewrite the above recursion in a simpler form:

ε(s,t) = ε(s−1,t−1) −
[
ε(s−1,t−1) − ε(s,t−1) − 1

] [
2Φ
(√

ε(s−1,t−1) − ε(s,t−1)
)
− 1
]

− 2√
2π

√
ε(s−1,t−1) − ε(s,t−1)e

−
ε(s−1,t−1)−ε(s,t−1)

2 +
σ2

v

σ2
b

(27)

with the initial conditions

ε(t, t) =
σ2

v

σ2
b

t, ε(0, t) =
(

1 +
σ2

v

σ2
b

)
t, ∀t ≥ 0

and ε(s, t) is undefined for s > t.
We note that the recursion (27) reduces to the recursion (25), as the noise

variance σ2
v → 0.

3.3 Estimating a Gauss-Markov Process with Limited
Measurements

In this section, we discuss the case when the source process is Markov

bk+1 = Abk + wk
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driven by an i.i.d. Gaussian process {wk} with zero-mean. The solution to this
case is similar to the Gaussian i.i.d. case when the observer has access to the
source output bk without noise. The only difference is that, now the observer-
estimator pair has to keep track of three variables (rk, sk, tk), where rk keeps
track of the number of time units passed since the last use of the channel for
transmission. A similar DP recursion, now in three dimensions, can be obtained.

Let r denote the number of time units passed since the last transmission of
a source output. Reasoning as in Section 3.2, we can deduce that for s ≥ 1, the
optimal estimator has the form

µ̂((r, s, t); bN−t) =

{
bN−t bN−t ∈ T(r,s,t)

E
{
bN−t|bN−t ∈ T c

(r,s,t)

}
bN−t ∈ T c

(r,s,t)

With the estimator structure in place, the error recursion can be derived follow-
ing along the lines of previous sections:

e∗(r,s,t) = min
T(r,s,t)

{
e∗(1,s−1,t−1)P [bN−t ∈ T(r,s,t)] + e∗(r+1,s,t−1)P [bN−t ∈ T C

(r,s,t)]

+
∫

bN−t∈T c
(r,s,t)

[bN−t −ArbN−t−r]
2
fbN−t(bN−t)dbN−t

}

where bN−t ∼ N(ArbN−t−r,
(∑r

k=1 A
2(k−1)

)
σ2

b ).
Now if we let T c

(r,s,t) = [α(r,s,t) β(r,s,t)], the optimal choices for the parameters
α(r,s,t) and β(r,s,t) are

α∗
(r,s,t) = ArbN−t−r +

√
e∗(1,s−1,t−1) − e∗(r+1,s,t−1)

β∗
(r,s,t) = ArbN−t−r −

√
e∗(1,s−1,t−1) − e∗(r+1,s,t−1)

Substituting these choices back into the error recursion and simplifying yields

e∗(r,s,t) = e∗(1, s−1, t−1)−
[
e∗(1,s−1,t−1)−e∗(r+1,s,t−1) −

(
r∑

k=1

A2(k−1)

)
σ2

b

]

×

⎡⎣2Φ

⎛⎝√e∗(1,s−1,t−1) − e∗(r+1,s,t−1)∑r
k=1 A

2(k−1)σ2
b

⎞⎠− 1

⎤⎦ (28)

−
2
√∑r

k=1 A
2(k−1)σ2

b

2π

√
e∗(1,s−1,t−1)−e∗(r+1,s,t−1)e

−
e∗
(1,s−1,t−1)−e∗

(r+1,s,t−1)

2
∑r

k=1 A2(k−1)σ2
b

where we have made use of the fact that for a Gaussian random variable x with
mean m and variance k2, and for a ≥ 0, we have the expression∫ m+

√
a

m−
√

a

(x−m)2fx(x)dx = −2
√
ak√
2π

e−
a

2k2 + k2
(

2Φ
(√

a

k

)
− 1
)
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The recursion (28) is defined for r ≥ 1, and 0 ≤ s ≤ t with the boundary
conditions given by

e∗(r,t,t) = 0, e∗(r,0,t) =

(
r+t−1∑

l=r

l∑
k=1

A2(k−1)

)
σ2

b

Note that, as in Section 3.2, one can define the normalized estimation error by

ε(r,s,t) =
1(∑r

k=1 A
2(k−1)

)
σ2

b

e∗(r,s,t) (29)

and simplify the recursion (28) further as follows:

ε(r,s,t) = ε(1,s−1,t−1) −
[
ε(1,s−1,t−1) − ε(r+1,s,t−1) − 1

]
×
[
2Φ
(√

ε(1,s−1,t−1) − ε(r+1,s,t−1)
)
− 1
]

− 2√
2π

√
ε(1,s−1,t−1) − ε(r+1,s,t−1)e

−
ε(1,s−1,t−1)−ε(r+1,s,t−1)

2

Note that when r = 0, this is the exact same recursion as in the case of estimat-
ing an i.i.d. Gaussian process with no measurement noise. The only difference
between this case and the i.i.d. case is in scaling back into the original estimation
error via (29). However, unlike the i.i.d. case, this recursion must be solved offline
for all feasible (r, s, t) triplets, and a three-dimensional table has to be formed.

3.4 Illustrative Examples

Example 1

As an example for the case when the source is binary, i.e., bk ∈ {0, 1}, consider
the problem of sequentially estimating a Bernoulli process of length N with
M opportunities to transmit over a noiseless binary channel. This problem is
a special case of the general problem we solved in Section 3.2. The probability
distribution of the source is given, and say, without loss of any generality, that
1 is a more likely outcome than 0. In this case, the best observation policy is to
start at time k = 0 not transmit the likely outcome 1, and to use the channel
to transmit only the unlikely outcome 0. And the best estimation scheme is to
employ the MAP estimator which estimates NT as 1, and 0 as 0, as long as
sk ≥ 1. If sk = 0, on the other hand, then the best estimator should estimate 1
regardless of the channel output.

Example 2

The second example is just solving the problem of Section 3.2 for (s, t) = (1, 2).
So, the observer can use the channel for transmission only once, at time k = 0 or
1, and the observer and the estimator are jointly trying to minimize the average
distortion (or estimation error):

e = E
{

(b0 − b̂0)2 + (b1 − b̂1)2
}
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where b0, b1 are i.i.d. Gaussian with zero mean, and variance σ2
b . If we arbitrar-

ily choose to transmit the first source output, or the second one, the estimation
error would be

e∗no−observer = σ2
b

which is the best error that can be achieved without a decision maker that
observes the source output. Now, suppose the observer is aware of the fact that
the estimator knows the a priori distribution of b0. So, it makes sense for the
observer not to transmit the realized value of b0 if this value happens to be close
to the a priori estimate of it, which in this case is the mean value of b0, i.e., zero.

Motivated by this intuition, the observer decides to adopt a policy in which
it will not use the channel to transmit b0 if it lies in an interval [α, β] around
zero. Note that the decision for the second stage would already have been made
once α and β are determined, because, if b0 ∈ [α, β], then the observer cannot
use the channel to transmit at time 1, and if b0 /∈ [α, β], there is no reason why
it should not transmit at time 1.

Now, the optimization problem faced by the observer is to choose α and β
such that the following error is minimized:

e(α,β) =
∫ β

α

(b− E {b|b ∈ [α, β]})2 f(b)db+ σ2
bP {b0 /∈ [α, β]}

where f(b) is the standard Gaussian density. The solution can be easily obtained
by checking the first and second order optimality conditions, and is given by

(α∗, β∗) = (−σb, σb)

Thus, the observer should not use the channel to transmit the source output b0
if it falls within one standard deviation of its mean. For these values of α and
β, the optimal value of the estimation error can be calculated as

e(α∗,β∗) = σ2
b

[
1−
√

2
πe

]

Comparing this error to the no-observer policy, e∗no−observer = σ2
b , we see that

there is an approximately
√

2
πe ≈ 48% improvement in the estimation error.

Example 3

The third and final example we will discuss considers the following design prob-
lem. We are given a time-horizon of a fixed length N , say 100 For this N = 100
time units, we would like to sequentially estimate the state of a zero-mean, i.i.d.
Gaussian process with unit variance. We have a design criterion which says that
the aggregate estimation error should not exceed 20. The solution to this problem
without an observer agent is to reveal 80 arbitrary observations to the estima-
tor and achieve an aggregate estimation error of 20. Suppose, now we use the
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Fig. 7. Optimal 100-stage estimation error vs. the number of allowed channel uses
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Fig. 8. A typical sample path of the number of channel uses left under the optimal
observer-estimator policies. (N, M) = (100, 34)

optimal observer-estimator pair. In Figure 7, we plot the optimal value of the
100-stage estimation error for different values of M .

It is striking that a cumulative estimation error of 20 can be achieved with
only 34 transmissions. This is approximately a 80−34

80 × 100 ≈ 58% improvement
over the no-observer policy.
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In order to verify our design, we simulate the optimal observer and estimator
policies in Matlab. Figure 8 shows a typical sample path of the optimal number
of channel uses left for a decision horizon of length N = 100, and a limited,
M = 34, number of channel uses. The sample paths depend on the realization
of the random sequence {bk}N−1

0 .

4 Conclusions

In this paper, we introduced some new hard-constrained sequential estimation
problems with applications in wireless sensing. We showed that the problems can
be solved using dynamic-programming type arguments, and their solutions have
a threshold characterization. The process models considered in this paper were
idealized for ease of presentation and mathematical tractability. However, the
basic thinking behind these models can be easily adopted to real-world wireless
sensing problems with power constraints. When doing so, one needs to consider
several other design requirements imposed on the system, such as network-level
connectivity and time synchronization. Current research effort is directed to-
wards developing algorithms that take some of these cross-layer design issues
into account.
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Summary. We offer an alternative way of evaluating the relative importance of the
state coordinates of a nonlinear control system. Our approach is based on making
changes of state coordinates to bring the controllability and observability functions
into input normal form. These changes of coordinates are done degree by degree and
the resulting normal form is unique through terms of degree seven.

Keywords: Nonlinear Control Systems, Model Reduction.

1 The Problem

The theory of model reduction for linear control systems was initiated by B. C.
Moore [6]. His method is applicable to controllable, observable and exponentially
stable linear systems. The reduction is accomplished by making a linear change
of state coordinates to simultaneously diagonalize the controllability and observ-
ability gramians and make them equal. The diagonal entries of the gramians are
the singular values of the Hankel map from past inputs to future outputs. The
reduction is accomplished by Galerkin projection onto the states associated to
large singular values. The method is intrinsic, the reduced order model depends
only on the dimension of the reduced state space.

Jonckheere and Silverman [4] extended Moore’s methodology to controllable,
observable but not necessarily stable linear system. Their method is based on
simultaneously diagonalizing the positive definite solutions of the control and fil-
tering Riccati equations and making them equal. The diagonal entries are called
the characteristic values of the system and reduction is achieved by Galerkin
projection onto the states associated to large characteristic values. The method
is sometimes called LQG balancing and reduction. Two nice features of their
approach is that it is applicable to unstable systems and LQG controller of the
reduced order model is the Galerkin projection of the LQG controller of the
high order model. This method is intrinsic. Mustafa and Glover [7] extended
Jonckheere and Silverman using H∞ rather than LQG methods. This method
is intrinsic once the attenuation level, γ has been specified.

Moore’s method was extended to asymptotically stable nonlinear systems by
Scherpen [8]. Scherpen and Van der Schaft [10] extended Jonckheere and Sil-
verman to nonlinear systems and Scherpen [9] extended Mustafa and Glover.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 161–170, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Unfortunately none of the nonlinear extensions are intrinsic, the reduced order
model depends on choices made during the reduction process.

We build on the fundamental method of Scherpen and offer an alternative way
of computing the reduced order model. Because of space limitations we shall re-
strict our attention to Moore’s method and Scherpen’s nonlinear generalization.

2 Linear Balancing and Reduction

2.1 Minimal Realizations

Consider an autonomous finite dimensional linear system

ẋ = Fx+Gu
y = Hx

(1)

where x ∈ IRn, u ∈ IRm, y ∈ IRp. The linear system (1) initialized at x(−∞) = 0
defines a mapping from past inputs {u(s) : −∞ < s ≤ 0} to future outputs
{y(t) : 0 ≤ t < ∞} called the Hankel map. The map factors through the state
x(0) at time t = 0. This map has infinite dimensional domain and infinite dimen-
sional range but it factors through the finite dimensional state space x(0) ∈ IRn

although n might be very large. The state space representation is a very succint
way of describing an infinite dimensional mapping. One goal of model reduction
is to reduce the state dimension as much as possible while keeping the essential
features of the Hankel map.

The first step in linear model reduction is to check whether the system (1)
is a minimal realization of the Hankel mapping and if it is not minimal then to
reduce it to a minimal realization. This procedure is classical and goes back to
Kalman and others circa 1960. We check whether the system is controllable, i.e.,
the system can be excited to any state x(0) when started at x(−∞) = 0 by using
an appropriate control trajectory {u(s) : −∞ < s ≤ 0}. This will be possible iff
F,G is a controllable pair, i.e., the smallest F -invariant subspace Vc containing
the columns of G is the whole state space. If the system cannot be excited to
every state then we should restrict the state space to Vc. The restricted system
is controllable and has the same Hankel map.

Then we check whether this reduced system is observable in the sense that any
changes in the initial condition x(0) can be detected by changes in the resulting
output tajectory. The system is observable iff H,F is an observable pair, i.e.,
the largest F -invariant subspace Vu contained in the kernel of H is zero. If
the system is not observable then x(0) can be perturbed in the directions of
Vu without changing the output trajectory. To make the system observable we
must project Vu to zero. The projecteded system is observable and has the same
Hankel map.

In summary, a linear system (1) is a minimal realization (of smallest state
dimension) of the Hankel map iff it is controllable and observable. Any realization
can be made minimal by restricting to its controllable directions and projecting
out its unobservable directions.
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2.2 Linear Input-Output Balancing

So far we have discussed linear systems that exactly realize the Hankel map. B.
C. Moore [6] considered reduced order systems that approximately realize the
Hankel map. His basic intuition was that we should ignore directions that are
difficult to reach and that don’t affect the output much.

To quantify these ideas, he introduced the controllablity and observability
functions of the system. The controllability function is

πc(x0) = inf
1
2

∫ 0

−∞
|u(s)|2 ds (2)

subject to the system dynamics (1) and

x(−∞) = 0, x(0) = x0.

If πc(x0) is large then it takes a lot of input energy to excite the system in the
direction x0 and so this direction might be ignored in a reduced order model.

The observability function is

πo(x0) =
1
2

∫ ∞

0
|y(t)|2 dt (3)

subject to the system dynamics (1) and

x(0) = x0, u(t) = 0.

If πo(x0) is small then changes in this direction lead to small changes in the
output energy and so this direction might be ignored in a reduced order model.

If F is Hurwitz, F,G is a controllable pair and H,F is an observable pair then
it is not hard to see that

πc(x) =
1
2
x′P−1

c x, πo(x) =
1
2
x′Pox

for some positive definite matrices Pc, Po that are the unique solutions of the
linear Lyapunov equations,

0 = FPc + PcF
′ +GG′

0 = F ′Po + PoF +H ′H.

Pc, Po are called the controllablity and observability gramians of the system.
Moore realized that large and small are relative terms and one needs scales

to measure such things. This can be accomplished by using one gramian to scale
the other and vice versa. Trivally there is a linear change of state coordinates so
that, in the new coordinates also denoted by x,

Pc = Po =

⎡⎢⎣σ1 0
. . .

0 σn

⎤⎥⎦
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where σ1 ≥ σ2 ≥ . . . ≥ σn > 0. These are called the Hankel singular values and
they are the nonzero singular values of the Hankel map.

A reduced model can be obtained by only keeping the states corresponding to
large σi. More pecisely suppose σk >> σk+1, let x1 denote the first k coordinates
of x and x2 denote the remaining n − k coordinates. We partition the system
matrices accordingly [

ẋ1
ẋ2

]
=
[
F11 F12
F21 F22

] [
x1
x2

]
+
[
G1
G2

]
u

y =
[
H1 H2

] [x1
x2

] (4)

The reduced model is then obtained by Galerkin projection onto the x1 subspace,

ẋ1 = F11x1 +G1u
y = H1x1.

(5)

Notice several things. Viewed abstractly model reduction of a linear system
involves injection and a surjection that is similar to minimal realiztion theory.
The major difference is that in the former we need a sense of scale on IRn that
is supplied to one gramian by the other. In minimal realization theory we did
not need a scale because a direction is either controllable or not, a direction is
either unobservable or not.

The eigenvalues of F play an indirect role in the reduction process. By as-
sumption they are all in the open left half plane. It is very hard to excite the
system in a direction corresponding to a very stable eigenvalue and so πc tends
to be very large in such a direction. Moreover, a state direction corresponding
to a very stable eigenvalue tends to damp out quickly and so it has very little
output energy as measured by πo. Hence the very stable directions of F tend
to correspond to small Hankel singular values and they tend to drop out of the
reduced model.

3 Nonlinear Balancing and Reduction

Scherpen [8] generalized Moore to affine nonlinear systems of form

ẋ = f(x) + g(x)u
y = h(x). (6)

where the unforced dynamics u = 0 is asymptotically stable. She defined the
controllability and observability functions (2, 3) as did Moore subject to the
nonlinear system (6).

She noted that if πc is smooth then it satisfies the Hamilton-Jacobi-Bellman
equation

0 = ∂πc

∂x (x)f(x) + 1
2

(
∂πc

∂x (x)g(x)
) (

∂πc

∂x (x)g(x)
)′

and if it πo smooth then it satisfies the Lyapunov equation
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0 = ∂πo

∂x (x)f(x) + 1
2 |h(x)|2. (7)

Suppose that the system has a Taylor series expansion

ẋ = f(x) + g(x)u = Fx+Gu+O(x, u)2

y = h(x) = Hx+O(x)2. (8)

If F is Hurwitz, F,G is a controllable pair, and H,F is a observable pair then
it is not hard to prove that there exists locally smooth, positive definite solutions
to the above PDEs and

πc(x) =
1
2
x′P−1

c x+O(x)3

πo(x) =
1
2
x′Pox+O(x)3

where Pc, Po are the controllability and observability gramians defined above.
So far nonlinear balancing looks very much like linear balancing but, in gen-

eral, there is not a nonlinear change of state coordinates that simultaneously
“diagonalizes” both πc(x) and πo(x).

So Scherpen invoked the Morse lemma to show that after a nonlinear change
of state coordinates

πc(x) =
1
2
|x|2,

πo(x) =
1
2
x′Q(x)x, Q(0) = Po.

Then after a further nonlinear change of coordinates πc(x) is unchanged and

πo(x) =
1
2
x′

⎡⎢⎣ τ1(x) 0
. . .

0 τn(x)

⎤⎥⎦ x
where τi(x) are called the singular value functions. It is not hard to see that
τi(0) = σ2

i where σi are the Hankel singular values of the linear part of the
system.

The Hankel singular values σi of the linear part of the system are intrinsic
and hence so are their squares, τi(0). But the singular value functions τi(x) are
not [3]. For example, choose any two distinct indices i �= j and any c ∈ IR. Define
τ̄i(x) = τi(x)+cx2

j , τ̄j(x) = τj(x)−cx2
i and τ̄k(x) = τk(x) otherwise. Then πc(x)

is unchanged and

πo(x) =
1
2
x′

⎡⎢⎣ τ̄1(x) 0
. . .

0 τ̄n(x)

⎤⎥⎦ x
Scherpen’s next step was to make an additional change of coordinates so that

if x is in a coordinate direction x = (0, . . . , xi, . . . , 0) then
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πc(x) =
1
2
σ̄i(xi)−1x2

i

πo(x) =
1
2
σ̄i(xi)x2

i

where σ̄i(0) = σi and σ̄i(xi)2 ≈ τi(x).
Scherpen obtain a reduced order model by neglecting states with small σ̄i(x).

Suppose for all x ∈ X , a neighborhood of 0 ∈ IRn,

σ̄1(x) ≥ . . . ≥ σ̄k(x) >> σ̄k+1(x) ≥ . . . ≥ σ̄n(x) > 0

then as before we partition x = (x1, x2) and Galerkin project onto the states
cooresponding to large σ̄i(0).

Unfortuantely this approach to obtaining a reduced order model is not in-
trinsic. The resulting reduced order system is not independent of the particular
coordinate changes that led to it. Also it depends on the choice of singular value
functions τi(x).

One nice feature of this approach is that the controllability function of the
reduced order model is the restriction of the controllability function of the full
order model. However this is not true for the observability functions but they
do agree to O(x)3.

4 The New Approach

Following Moore and Scherpen we consider the optimal control problem of steer-
ing from x = 0 at t = −∞ to an arbitrary x at t = 0 while minimizing the energy
of the input

πc(x) = inf
1
2

∫ 0

−∞
|u|2dt

for the system
ẋ = f(x, u) = Fx+Gu+ f [2](x, u) + . . .

y = h(x) = Hx+ h[2](x) + . . . .
(9)

where f [d](x, u), h[2](x) denotes homogeneous polynomials of degree d. Scherpen
only considered systems affine in u but it is an easy generalization to the above.

If F is Hurwitz and F,G is a controllable pair then there is an unique, locally
smooth and positive definite optimal cost πc(x) and an unique, locally smooth
optimal control u = κ(x) which solve the HJB equations

0 =
∂πc

∂x
(x)f(x, κ(x)) − 1

2
|κ(x)|2 (10)

κ(x) =
(
∂πc

∂x
(x)

∂f

∂u
(x, κ(x))

)′
(11)

Moreover, following Al’brecht [1], the Taylor series of πc(x), κ(x) can be com-
puted term by term from the Taylor series of f(x, u),
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πc(x) =
1
2
x′P−1

c x+ π[3]
c (x) + . . .+ π[r]

c (x) +O(x)r+1

κ(x) = Kx+ κ[2](x) + . . .+ κ[r−1](x) +O(x)r

where Pc > 0 and K = G′P−1
c are the controllability gramian and the optimal

feedback of the linear part of the system.
As before we also consider the output energy released by the system when it

starts at an arbitrary x at t = 0 and decays to 0 as t→∞,

πo(x) =
1
2

∫ ∞

0
|y|2dt.

If F is Hurwitz and H,F is an observable pair then there is a unique locally
smooth and positive definite solution πo(x) to the corresponding Lyapunov equa-
tion

0 =
∂πo

∂x
(x)f(x) +

1
2
h′(x)h(x) (12)

Again the Taylor series of πo(x) can be computed term by term from the Taylor
series of f and h,

πo(x) =
1
2
x′Pox+ π[3]

o (x) + . . .+ π[r]
o (x) +O(x)r+1

where Po > 0 is the observability gramianof the linear part of the system.
From [6], [8] we know that we can choose a linear change of coordinates so

that in the new coordinates also denoted by x

πc(x) =
1
2
|x|2 + π[3]

c (x) +O(x)4

πo(x) =
1
2
x′

⎡⎢⎣ τ1 0
. . .

0 τn

⎤⎥⎦ x+ π[3]
o (x) +O(x)4

where the so called singular values τ1 ≥ τ2 ≥ . . . ≥ τn > 0 are the ordered
eigenvalues of PoPc. If this holds then we say that the system is in input normal
form of degree one. Because of space limitations we shall restrict our attention
to the generic case where the singular values τ1 > τ2 > . . . > τn > 0 are distinct.

A system with distinct singular values is in input normal form of degree d if

πc(x) =
1
2

n∑
i=1

x2
i +O(x)d+2

πo(x) =
1
2

n∑
i=1

η
[0:d−1]
i (xi)x2

i +O(x)d+2

(13)

where η[0:d−1]
i (xi) = τi+. . . is a polynomial in xi with terms of degrees 0 through

d− 1. They are called the squared singular value polynomials of degree d− 1.
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There is also an output normal form of degree d where the forms of πc(x)
and πo(x) are reversed.

The proof of the following is omitted because of page limitations. The full
details can be found in [5].

Theorem. Suppose the system (9) is Cr, r ≥ 2 with controllable, observable
and exponentially stable linear part. If the τi are distinct and if d < r − 1 then
there is a change of state coordinates that takes the system into input normal
form of degree d (13). The change of coordinates that achieves the input normal
form of degree d is not necessarily unique but the input normal form of degree
d ≤ 6 is unique. If f, h are odd functions the input normal form of degree d ≤ 12
is unique.

The differences between input normal form of degree d and Scherpen’s normal
form are threefold. First the former is only approximate through terms of degree
d + 1 while the latter is exact. The second difference is that in the former the
parameters η[0:d−1]

i (xi) only depend on xi while in the latter the parameters τi(x)
can depend on all the components of of x. Thirdly the parameters η[0:d−1]

i (xi)
of the former are unique if d ≤ 6 while the parameters τi(x) of the latter are not
unique except at x = 0 [3] .

Recently Fujimoto and Scherpen [2] have shown the existence of a normal
form where πc is one half the sum of squares of the state coordinates and

∂πo

∂xi
(x) = 0 iff xi = 0. (14)

It is closer to our input normal form of degree d (13) which has similar proper-
ties. The controllability function πc is one half the sum of squares of the state
coordinates through terms of degree d + 1 and

∂πo

∂xi
(x) = O(x)d+1

if xi = 0. But the normal form of Fujimoto and Scherpen is not unique while
the input normal form of degree d ≤ 6 is unique.

Notice that if a system with distinct singular values τi = τi(0) is in input
normal form of degree d then its controllability and observability functions are
”diagonalized” through terms of degree d+1. They contain no cross terms where
one coordinate multiplies a different coordinate. This is reminiscent of the bal-
ancing of linear systems by B. C. Moore [6].

For linear systems the singular value τi is a measure of the importance of the
coordinate xi. The ”input energy” needed to reach the state x is πc(x) and the
”output energy” released by system from the state x is πo(x). The states that
are most important are those with the most ”output energy” for fixed ”input
energy”. Therefore in constructing the reduced order model, Moore kept the
states with largest τi for they have the most ”output energy” per unit ”input
energy”.

In Scherpen’s generalization [8] of Moore, the singular value functions τi(x)
measure the importance of the state xi. To obtain a reduced order model, she
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assumed τi(x) > τj(x) whenever 1 ≤ i ≤ k < j ≤ n and x is in a neighborhood
of the origin. Then she kept the states x1, . . . , xk in the reduced order model.
But the τi(x) are not unique.

For nonlinear systems in input normal form of degree d, the polynomial
η
[0:d−1]
i (xi) is a measure of the importance of the coordinate xi for moderate

sized x. If the τi are distinct and d ≤ 6 then η
[0:d−1]
i (xi) is unique. The leading

coefficient of this polynomial is the singular value τi so in constructing a reduced
order model we will want to keep the states with the largest τi. But τi can be
small yet η[0:d−1]

i (xi) can be large for moderate sized xi. If we are interested in
capturing the behavior of the system for moderate sized inputs, we may also
want to keep such states in the reduced order model.

To obtain a reduced order model we proceed as follows. We start by making
a linear change of coordinates to take the system into input normal form of
degree 1. If the singular values are distinct this change of coordinates is uniquely
determined up to the signs of the coordinates. In other words replacing xi by −xi

does not change the input normal form of degree 1. Next one computes the Taylor
series expansions to degree d+1 of the controllability and observability functions,
πc(x), πo(x). Then degree by degree one makes changes of state coordinates to
bring the system into input normal form of degree d. The input normal form of
degree d are intrinsic but the changes of state coordinates that achieve are not.
We defer for a later paper [5] the discussion of which changes should be used .
Suppose that the input energies that we shall use are all less than c2

2 for some
constant c > 0. Then we expect the system to operate in |x| < c where x are the
input normal coordinates of degree d. We compare the sizes of η[0:d−1]

i (xi) for
|xi| < c and split them into two categories, large and small. The reduced order
model is obtained by Galerkin projection onto the coordinates corresponding to
the large η[0:d−1]

i (xi).

5 Conclusion

We have developed a way of finding state coordinates that lend themselves to
measuring there relative importance. The measure of importance is unique up
to degree 6 (degree 12 for odd systems). Unfortunately the coordinates are not
unique beyond degree one. Since a reduced order model is obtained by Galerkin
projection in these coordinates, it is not unique. Further research is needed to
clarify these issues.

Research supported in part by NSF DMS-0505677.
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Summary. This paper surveys recent work of the author with several collaborators,
principally Feng Lin, Weilin Wang, and Tae-Sic Yoo; they are kindly acknowledged.
Decentralized control of discrete event systems, where local controllers cannot explic-
itly communicate in real-time, is considered in the first part of the paper. Then the
problem of real-time communication among a set of local discrete-event controllers (or
diagnosers) is discussed. The writing is descriptive and is meant to inform the reader
about important conceptual issues and some recently-completed or on-going research
efforts.

Keywords: Discrete Event Systems, Decentralized control, Communicating Con-
trollers.

1 Introduction

Distributed dynamic systems are pervasive in today’s technological society. They
are often referred to as “networked systems” when the different system mod-
ules (i.e., components) are able to communicate with one another. Distributed
networked systems occur in many different application areas nowadays, ranging
from communication and transportation to manufacturing, building automation,
computing, software, automotive, and aerospace, to mention but a few key areas.
The development of appropriate control architectures and associated controller
design algorithms for such complex systems are crucial and challenging tasks,
due in particular to the distribution of the sensors and actuators and the po-
tentially large size of the entire system. An important element in the design of
integrated control strategies for complex engineering and computing systems is
the consideration of logical specifications that must be enforced by high-level
supervisory control modules regarding safety, liveness, diagnosability, modular-
ity, reconfigurability, and fault tolerance. This is the realm of discrete-event
system and control theory, where the system behavior is abstracted in terms of
event-driven transitions that cause changes to the discrete states of the modules
in the system.

This paper surveys some recent work of the author with several collabora-
tors (principally Feng Lin, Weilin Wang, and Tae-Sic Yoo) on decentralized and

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 171–184, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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distributed control of discrete event systems (DES). It is based on the invited
lecture of the author at the “2006 CASY Workshop on Advances in Control
Theory and Applications” held in Bertinoro, Italy, in May 2006. The writing is
descriptive and is meant to inform the reader about important conceptual issues
and some recently-completed or on-going research efforts. Precise technical for-
mulations and associated results can be found in the references cited. For the
benefit of the reader with little familiarity with the area of DES, Section 2 dis-
cusses some salient features of the theory of supevisory control theory of DES.
The survey that follows consists of two parts. Decentralized control, where local
controllers cannot explicitly communicate in real-time, is considered in Section 3.
Then, the problem of real-time communication among a set of local controllers
(or diagnosers) is discussed in Section 4. Some comments on the decentralization
of information in networked systems conclude this introductory section.

1.1 Decentralized Information Structures

Distributed networked systems occur commonly in engineering systems [19]. The
distributed networked systems considered in this paper possess a decentralized
information structure in the sense that sensors do not (or cannot in general)
report their observations to all sites. That is, each site may only monitor directly
a subset of the entire set of sensor readings. Sites may be able to communicate in
order to share “raw” data (sensor readings) or “processed” data (e.g., “observer”
or “diagnoser” states); hence, the terminology “networked systems” is often used
in this case. In the setting considered in this paper, all sites participate in the
same control task; the respective controllers must work in concert. Hence, this
is a instance of “cooperative control.”

Communication networks and sensor networks are by nature networked sys-
tems with decentralized information. The above-described system structures also
arise in many types of “centralized” engineering systems where distributed con-
trol and monitoring is deemed preferable for practical reasons, such as recon-
figurability, reliability, safety, scalability, and security. In addition, distributed
implementations of monitoring and control functions often permit to perform
maintenance and reconfiguration tasks at the subsystem level. Many problems
in automotive control systems, building automation systems, and automated
manufacturing systems for instance fall in that category. Automobiles nowadays
have a large number of microprocessors for performing the necessary control
tasks for the different subsystems, such as engine control, transmission con-
trol, antilock braking, steering, climate control, entertainment, and so forth.
The same occurs in automated manufacturing, where machines in a line or a
cell each have their own controller modules. Today’s “smart building” technolo-
gies incorporate several networked control systems within a building, and often
across multiple buildings, in order to provide enhanced security, reduce energy
consumption, and increase the comfort of the occupants. In these application ar-
eas, monolithic control implementations are impractical for the reasons described
above. The MoBIES program [36] provides several examples of system/software
technologies that are being developed for integration, analysis, and control of
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distributed/modular embedded systems. All of the above considerations moti-
vate the research discussed in Sections 3 and 4.

2 Supervisory Control Theory

The modeling formalism considered in this paper is based on regular languages
and their associated finite-state automata representations. This is arguably the
most common and widely used formalism in DES nowadays. The control objec-
tive is to design supervisory controllers that are provably correct with respect to
a formal specification, despite the presence of uncontrollable and unobservable
events. This control paradigm is generally known as supervisory control theory
in the area of Systems and Control and it was initiated by Ramadge and Won-
ham [41]; see [67] and Chapter 3 in [10] for textbook treatments of supervisory
control theory and [42, 57] for excellent surveys of this theory. The notions of
uncontrollable events and unobservable events are used to model the limitations
of the actuators and sensors, respectively. The control problems that can be
addressed using the concepts and algorithmic techniques of supervisory control
theory include safety and so-called nonblocking specifications. Safety specifica-
tions pertain to the avoidance of illegal states or of illegal subsequences of events.
The nonblocking property is a form of liveness that is captured using the no-
tion of marked states in the system and the concept of nonblocking supervisors;
see [10]. Roughly speaking, nonblockingness implies the absence of “deadlocks”
and “livelocks” and guarantees that the system performs the tasks at hand to
completion.

The principal advantage of the framework of supervisory control theory is that
it “separates” the “uncontrolled system” from the “controller”. In this context,
one is able to analyze the system-theoretic properties of the system under consid-
eration together with safety, nonblockingness, and diagnosability requirements
imposed on it. The most important properties studied to-date are: controllabil-
ity properties (in view of the presence of uncontrollable events), observability
properties (in view of the presence of unobservable events), non-conflict prop-
erties (pertaining to the issue of nonblockingness), coobservability properties (in
the context of decentralized-information systems), and diagnosability properties
(in the context of detection and isolation of significant unobservable events).
(Chapter 3 of [10] may be consulted for precise definitions of these notions; the
original references are, respectively, [41, 30, 68, 12, 51, 53].) These properties
arise in the necessary and sufficient conditions for the existence of controllers
that achieve the given safety, nonblockingness, and diagnosability specifications.
After analysis of these properties with respect to the set of specifications, algo-
rithms exist to “automatically” synthesize controllers that are guaranteed to be
correct with respect to these specifications and the system model. Thus, it is
not necessary to perform an additional phase of verification for the controlled
system.

With the exception of the large body of literature on the control of Petri nets
(see, e.g., [18, 37]), the author is not aware of another approach for designing
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supervisory control laws for dynamic systems with uncontrollable and unob-
servable events that is comparable to supervisory control theory in terms of
the above-mentioned analytical and computational results. Other state-based
approaches to modeling and analyzing controlled discrete event systems (e.g.,
more general types of state-transition systems, such as [2, 16, 26]), or the el-
egant work of Hoare, Milner, and others on process-algebraic models (e.g.,
[4, 17, 21, 32, 33, 34, 35]), yield more expressive and compact models of the
controlled system behavior that may be preferable for verification purposes (i.e.,
verification of the properties of a controlled system). However, these formalisms
do not generally enjoy the same analytical power as supervisory control theory
does for the study of system-theoretic properties or for controller synthesis. In
fact, supervisory control theory has been the subject of recent attention in theo-
retical computer science research [3, 39] and some of its results have been recast
in more general logic-based frameworks; at present however, these generaliza-
tions do not support general-purpose controller synthesis algorithms.

The key results of supervisory control theory have been used in a variety of
areas for understanding better the salient features of supervisory control soft-
ware in engineering and computing dynamic systems (the references mentioned
below are representative but not meant to be exhaustive): database concurrency
control [27]; feature interactions in telecommunications networks [11, 58]; pro-
tocol verification and synthesis in communication networks [49, 50]; protocol
conversion and gateway synthesis in computer networks [20, 23]; logic control
in automated manufacturing systems [5, 9, 31, 14]. In particular, diagnosabil-
ity theory of DES has been successfully applied in heating, ventilation, and
air conditioning systems [55], document processing systems [52], and intelligent
transportation systems [54], among other areas.

Several software tools have been developed for creating, manipulating, and
analyzing DES modeled by automata and for implementing the main results of
supervisory control theory. The proceedings of the 8th International Workshop
on Discrete Event Systems - WODES’06 (available through IEEE) contain pa-
pers describing six such tools, among them the tool DESUMA developed by
Laurie Ricker and the author [43, 13].

3 Decentralized Control

Considerable progress has been made in the last decade in the field of DES re-
garding the development of a comprehensive theory for designing decentralized
controllers. The problem formulation is as follows. Several controllers, termed
supervisors and denoted by Si, i = 1, . . . , n, act together to control a given
system, denoted by G, in order to enforce a given logical specification (incor-
porating safety and nonblockingness). Each supervisor knows the entire system
model G and the specification. However, the supervisors see and control differ-
ent (complementary) aspects of the behavior of the system. Let the event set
of G be denoted by E and let Eo be the set of events of E that are observ-
able (by one of more supervisors); similarly, let Ec be the set of events of E
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that are controllable (by one of more supervisors) Associated with each super-
visor Si are Ei,o ⊂ Eo and Ei,c ⊂ Ec, its observable and controllable event
set, respectively. The goal is to design the set of Sis so that their joint control
actions result in a controlled system that is guaranteed to satisfy the specifica-
tion. Many works have addressed this general problem formulation, among them
[29, 12, 66, 51, 8, 40, 24, 62, 56, 44, 28, 38, 69].

One key challenge in decentralized control is an observational one: the super-
visors see a different aspect of the system behavior since they observe different
sets of events through their sensors. Another challenge is the decentralization
of the control authority. Clearly, these two issues are coupled. The conditions
that capture informational and control constraints at each supervisor are known
under the name of coobservability conditions. Several notions of coobservability
have been characterized according to the assumptions made about the specifics
of the decentralized control architecture employed. These types of coobservabil-
ity include C&P-coobservability, D&A-coobservability, and mixed versions of
these where C&P and D&A notions are combined; see, e.g., [51, 40, 69]. Coob-
servability is one of the necessary and sufficient conditions for the existence of
Si, i = 1, . . . , n, such that the controlled system satisfies the given specification
exactly, in the sense of language equality. (The other necessary and sufficient
conditions are the same ones that appear in the centralized supervisory con-
trol problem under full observation: controllability and relative-closure of the
specification.)

The different notions of coobservability capture the effect of (i) the fusion rule
employed at the actuator when its associated controllable event is controllable
by more than one supervisors and (ii) the default control action issued by a
supervisor when its knowledge is insufficient to unambiguously determine the
next control action. In a nutshell, in C&P-coobservability, (i) the fusion rule
is conjunction of enabled events and (ii) the default action is to enable (per-
missive). In D&A-coobservability, (i) the fusion rule is disjunction of enabled
events and (ii) the default action is to disable (anti-permissive). It is important
to emphasize that the above notions of coobservability all assume architectures
where there is no explicit real-time communication among supervisors. The com-
putational complexity of verifying C&P-coobservability is addressed in [48, 46];
similar results hold for D&A-coobservability [69].

The recent work on conditional coobservability in [70, 71] is now discussed.
In the control architecture considered in [70], each supervisor makes inferences
about the knowledge and/or actions of other supervisors when computing its
own control actions. In addition, the architecture allows the use of more compli-
cated fusion rules at each actuator for the events that are controlled by two or
more supevisors. More precisely, the supervisors are allowed to make four deci-
sions: “enable”, “disable”, “enable if nobody disables”, and “disable if nobody
enables”. In addition, it is decided a priori that some controllable events should
be disabled by default and the remaining controllable events should be enabled
by default if no local decision (of any of the four above types) is made over
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those events. We refer to this architecture as the architecture with conditional
decisions or simply the conditional architecture.

There are many motivations for considering the conditional architecture. Ar-
guably the most important one is the following result proved independently in
[28] and [61]. In the basic decentralized architecture (with fusion by conjunc-
tion of enabled events and permissive default rule), if the given specification
does not possess the property of C&P-coobservability, then the decision prob-
lem “Does there exist a solution to the decentralized control problem that is
both safe and nonblocking?” is undecidable. This motivates the goal of relaxing
C&P-coobservability and identifying weaker notions of coobservability that are
satisfied by larger classes of specification languages and are decidable. Allowing
supervisors to issue conditional decisions is one way of achieving that goal.

In [70], three notions of conditional coobservability are introduced to character-
ize the necessary and sufficient conditions for the existence of a set of supervisors
that jointly achieve a given desired specification language in the context of the
conditional architecture. They are conditional C&P-coobservability, conditional
D&A-coobservability, and a joint version of these two simply called conditional
coobservability. It is shown that the notions of conditional coobservability gen-
eralize the “unconditional” ones and are decidable. The synthesis of supervisors
that implement the conditional architecture for specification languages that are
coobservable is the topic of [71]. The work in [45] also considers inferencing and
conditional decisions, but in the framework of knowledge theory [15].

While the work reported in [70, 71] considers one level of conditional decisions,
it is possible to extend the approach to multiple levels of inferecing by enlarging
the class of conditional decisions and suitably refining the fusion rule. Recent
work in this regard is reported in [25]. It is known however that even if one
allows an “infinite” number of levels of inferencing, the class of specifications
that can be achieved is still a proper subset of the class of architectures that can
be achieved if a single centralized supervisor, that has access to the entire sets
Eo and Ec, is used.

One could argue that one limitation of decentralized architectures is the fact
that they do not allow real-time communication among supervisors. Allowing
real-time communication could greatly enhance the classes of specifications that
can be achieved under control; in fact, by communicating every observation to
all supervisors, centralized architectures could be replicated. However, in many
applications, such distributed architectures could be costly in terms of commu-
nications required. The next section discusses issues that arise in distributed
control with communication.

4 Distributed Control

In order to address objectives of distributed implementation, reconfigurability,
and fault tolerance in networked systems, as well as in order to tackle the problem
of undecidability in decentralized control, it becomes necessary to consider ex-
plicitly real-time communication among sites of the distributed system, namely
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among the various supervisors, when solving control problems for systems with
decentralized information. This means moving significantly beyond the scope of
current decentralized discrete-event control theory and the existing notions of
coobservability discussed in the preceding section. In principle, sites could be
required to exchange all of their (raw or processed) data, thereby transforming a
decentralized-information problem into a centralized-information one. However,
this is not practical since it is often imperative for reliability and reconfigurabil-
ity reasons to avoid a centralized implementation of control. Moreover, there are
many instances of networked systems in wireless communications, transporta-
tion, telephony, and so forth, where communication among nodes (or agents) in
the system is costly due to one or more of the following considerations: power,
bandwidth, security, or network topology. For these reasons, there is a long-
standing interest in minimizing communication among sites in distributed dy-
namic systems. In this regard, it becomes imperative to first determine which
communications among local controllers are “essential” for achieving a given
global specification. Then, in the second step, the goal is to introduce some
amount of redundancy in the communication strategy in order to fulfill the ob-
jectives of reconfiguration and fault tolerance.

The joint design of control and communication strategies in decentralized-
information systems is well known to be very difficult for most classes of dynamic
systems, due to the “dual role” of control and the mutual dependency of control
and communication (see, e.g., [22]). Of course, the same difficulties arise in DES
(see, e.g., [6, 7]). There has been a large amount of interest lately in solving joint
control and communication problems for cooperative networked systems, prin-
cipally in the context of continuous-state models of dynamic systems; see, e.g.,
[1]. This problem can take many forms depending upon the modeling formalism
chosen to describe the system, the structural assumptions about the distribution
of the sensors, the decentralization of information in the system, and the cost
function to be minimized regarding communication. Interest in this problem in
the context of distributed DES is relatively recent and the emerging approaches
are discussed in the survey paper [63].

The works reviewed in [63] concern the minimization of communication in the
context of diagnosis or control of DES where the information is decentralized.
The recent work in [59, 60] is also of interest. It solves the problem of turning
on/off sensors dynamically for achieving diagnosability for DES in the context
of a general formulation based on information structures.

Due to the mutual coupling in partially-observed systems between the state
estimation policy, the communication policy, and, in the case of control problems,
the control policy, most of the work in the area of distributed systems with
communicating agents (i.e., controllers or diagnosers) attacks the problem by
forcing a separation of estimation, communication, and control. For instance,
a specific minimum-communication problem where the diagnosis and control
policies are assumed fixed and given a priori was formulated and solved in [47]
for DES modeled by finite-state automata. An algorithm that finds a minimal
set of communication policies among two agents that exchange event occurrences
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was proposed. The notion of minimality is a logical one: a communication policy
is minimal if removing one or more communications of event occurrences in the
dynamic evolution of the system renders the otherwise feasible solution infeasible
(see [47] for a precise definitions). The solution in [47] suffers from computational
difficulties and to a certain amount of asymmetry in the solution procedure.

In recent work reported in [64, 65], it is shown that it is possible under certain
conditions to synthesize communication strategies for a set of communicating
agents in polynomial-time in the number of states in the system model and in
the number of events. This is an important result and to the best of our knowl-
edge the first of its kind for communication problems in DES. The problem
considered in [64, 65] borrows some of the features of the problem treated in
[47], including a similar notion of minimality of communication. However, the
approach is more general than that in [47] in many respects: number of agents,
communication structure, state disambiguation, and algorithmic procedure. This
more general formulation is one of the contributions of this work. In order to
obtain a more computationally-efficient solution procedure than that of [47],
additional assumptions are made on the structure of the system as compared
with those made in [47], specifically regarding the absence of cycles other than
self-loops in G.

Consider a distributed networked DES modeled by automaton G. There are
n agents observing the behavior of G using their own sets of sensors. The agents
may be supervisors or diagnosers. The agents are able to communicate among
each other with negligible delay as compared with the dynamics of the system.
Agents communicate event occurrences to each other. The communication struc-
ture considered is general and allows agent j to immediately relay to agent k
information it just received from agent i about an event occurrence. This formu-
lation is adopted for the sake of generality and the solution procedure proposed is
easily adaptable to more restricted contexts. The agents are working as a team to
accomplish some given task: monitoring, diagnosis, or control. For this purpose,
they need to be able to distinguish unambiguously among certain pairs of states
in the state space of G; the pairs that need to be distinguished are assumed spec-
ified at the outset. This requirement is called the state disambiguation condition
and it necessitates the exchange of information about event occurrences in real
time among agents. Moreover, for the purpose of realizing the communication
policy to be designed for each agent, the agent will need to distinguish further
pairs of states if these have different communication decisions associated with
them; this latter requirement is called feasibility of the communication policy.
We discuss these two requirements in the following paragraphs.

Feasibility is a key concept that arises in situations involving communicating
agents and it can be paraphrased as follows: “I have to know enough to tell you
what you expect me to tell you and only when you expect me to tell it to you.”Here,
what an agent “knows” is not only a function of its own observations, but also of the
communications it receives from other agents. As was pointed out in prior works
(see, e.g., [6, 47]), the interdependence of the communication policies of the agents
for the purpose of feasibility makes any type of minimization-of-communication
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problem quite intricate, no matter what modeling formalism it is cast into. Indeed,
an interesting example presented in [64] shows a “lack of monotonicity” of feasi-
ble solutions when communications of event occurrences are removed one-by-one.
Namely, it is shown that in some cases the communications of event occurrences
A and B cannot be removed individually but can be jointly removed. This is a
counter-intuitive result as it says that “seeing less is better”! To the best of our
knowledge, this problem had not been previously identified in the DES literature.

In order to illustrate the phenomenon of lack of monotonicity in a simple
context, consider the DES G whose language model is

L(G) = {a1a2, eua1a2}

where the event eu is unobservable. In this case, the two traces s1 = a1a2 and
s2 = eua1a2 cannot be distinguished. In particular, the occurrence of unobserv-
able event eu cannot be diagnosed since the observed trace a1a2 is inconclusive.
However, let us suppose that the occurrence of a1 after eu can no longer be
observed, while the other occurrence of a1 remains observed. (For instance, one
might have decided to remove the communication to the observer site of the
occurrence of a1 after eu ). In this case, s1 and s2 can now be distinguished,
since the new projected version of s1 is a1a2 and the new projected version of s2
is a2. The two traces can be distinguished since their projections are different.
In other words, if the occurrence of a1 after eu can no longer be observed, then
the occurrence or not of unobservable event eu can be diagnosed: we know that
eu did not occur if we see a1a2 and we know that eu did occur if we see a2. Thus,
in this example, seeing less leads to knowing more!

The difficulties resulting from the above lack of monotonicity of solutions was
avoided in [47] because the algorithm in there essentially proceeds by exhaustive
enumeration of candidate solutions in a certain range (hence its high computa-
tional cost). In [64, 65] it is shown that it is possible to eliminate the undesirable
lack of monotonicity by making suitable structural assumptions on G and ex-
amining the states one-by-one in a certain order. One such assumption is the
absence of cycles other than self-loops in the graphical representation of G. A
very important benefit of overcoming the lack of monotonicity is that it is now
possible to synthesize communication policies in polynomial-time complexity in
the size of the state space of G for a large class of minimum-communication
problems. This is in contrast to all prior works on minimum-communication
problems [63]. At this point, it remains to understand more clearly the sources
of the lack of monotonicity and to identify other structural assumptions on G
that permit its elimination. Then one can seek to exploit monotonicity properties
for the development of efficient algorithms for the synthesis of communication
policies.

The results in [64, 65] lead us to propose the following overall approach for
solving the distributed controller synthesis problem under a global specification.
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Algorithm for distributed control of DES

1. Build a model of the entire distributed system on the basis of the global
specification. Call the resulting model Ggs.

Since we are concerned with a global specification (typically, high-level),
it is expected that a lot of the internal behavior of each system component
can be abstracted away. In such situations, building the monolithic model
Ggs will not be computationally prohibitive.

2. Solve the control problem for the global specification as a “full-observation
partial-controllability” problem, assuming that each controller fully observes
the behavior of Ggs, but taking into account the distribution of the actuators
in the system.

The state disambiguation condition mentioned in the above discussion
of the minimum-communication problem will arise as a consequence of the
solution of the control problem.

3. Synthesize communication policies among the resulting set of controllers
subject to the state disambiguation and feasibility requirements using the
results in [64].

This will guarantee that the control policies obtained in the second step
are “implementable” and “correct.” An implementable control policy is one
where the information available to each controller given its own sensors and
the communications it receives satisfies the feasibility condition of the mini-
mum communication problem. A set of control policies is correct if it satisfies
the global specification. The set of control policies that ensure that the global
specification is satisfied specifies the state disambiguation condition used to
solve the minimum-communication problem.

The above steps represent a new paradigm for solving control problems for
decentralized-information systems. It is a departure from prior works that are
based on the various concepts of coobservability. We believe that this paradigm
is better-suited to deal with many classes of networked systems.

5 Conclusion

The purpose of this paper was to discuss, in a descriptive non-technical man-
ner, some important issues that arise in decentralized and distributed control of
DES. Research results of the author, in joint work with Feng Lin, Weilin Wang,
and Tae-Sic Yoo, were emphasized. Many challenges remain in future research on
these problems. Among them we mention: (i) a better understanding and charac-
terization of the boundary between decidable and undecidable controller synthe-
sis problems in decentralized control architectures; (ii) the identification of other
classes of systems where structural assumptions lead to computationally-efficient
algorithms for the synthesis of communication policies in distributed control; and
(iii) the ability to move away from monolithic models and judiciously exploit the
modular structure of the system when solving controller synthesis problems for
distributed systems.
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Summary. The goal of this paper is to propose a unique vision able to frame a number
of results recently proposed in literature to tackle problems of output regulation for
nonlinear systems. This is achieved by introducing the so-called asymptotic internal
model property as the crucial property which, if fulfilled, leads to the design of the
regulator for a fairly general class of nonlinear systems satisfying a proper minimum-
phase condition. It is shown that recent frameworks based upon the use of nonlinear
high-gain and adaptive observer techniques for the regulator design can be cast in this
setting. A recently proposed technique for output regulation without immersion is also
framed in these terms.

1 Introduction

This paper focuses on the problem of output regulation for nonlinear systems,
namely the problem of designing an output feedback controller able to offset
the effect of exogenous signals, which could be references to be tracked and/or
disturbances to be rejected, generated by an autonomous system usually referred
to as the “exosystem”.

Besides specific meaningful control applications (see [3], [17]) which motivate
the formulation and the interest of the problem at hand, the historical impor-
tance of the output regulation theory relies in fact that it studies control design
paradigms which directly employ the a-priori knowledge of the environment in
which the plant operates (provided, in the classical framework, by the structure
of the exosystem) to obtain regulators with guaranteed asymptotic performances.
This has led to the concept, of paramount importance in the linear (see [13]) as
well as nonlinear ([18]) control theory, of internal model and to the identification
of design procedures for internal-model based regulators.

It is a well-known fact that the ability of solving the problem at issue passes
through the fulfillment of two key properties which should be achieved by a can-
didate controller. The first is the so-called “internal model property”, required to
any regulator solving the problem at hand (see [4]), which is related to the ability
of generating, by means of the regulator’s output, all the possible ‘feed-forward
inputs” which force an identically zero regulation error and, in turn, to guaran-
tee the existence of a zero-error manifold which is invariant for the closed-loop
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dynamics. Additionally, the candidate controller is required to exhibit a further
crucial property asking that the “zero error manifold” is asymptotically stable
for the closed-loop dynamics with a domain of attraction which, according to
the specific output regulation problem dealt with, can be local or global.

In the case of linear systems, it is a well-known fact (see [12]-[13]) that a
crucial role in the ability of fulfilling simultaneously the previous two properties
is played by the so-called “non-resonance condition” asking, in plain words, that
zeros of the controlled plant are disjoint from modes of the exosystem. This,
under the obvious additional assumption that the plant is controllable, allows
one to obtain constructive design procedures of internal model-based regulators.

For nonlinear systems the problem, as expected, is much more involved and
challenging. This has motivated a number of works published on the related liter-
ature in the last fifteen years or so, all relying on the formulation of the so-called
“immersion assumption” which consists in the requirement that the dynami-
cal system defining all possible “feed-forward inputs” which force an identically
zero regulation error be “immersed” into a system exhibiting certain structural
properties. In this respect the past literature witnessed a steady development
of less stringent assumptions: immersion into a linear known observable system
(see [16], [20], [6], [23]), immersion into a linear un-known (but linearly parame-
terized) system ([24]), immersion into a linear system having a nonlinear output
map ([7]), immersion into a nonlinear system linearizable by output injection
([10]), immersion into a system in canonical observability form ([5]), immersion
into a system in a nonlinear adaptive observability form ([8], [9]), are only a few
examples testifying the richness and liveliness of the past literature on this topic.
This escalation of even more general and less restrictive conditions is then cul-
minated in the result [21], in which, by taking advantage of the observer theory
pioneered in [19] and developed in [1], it has been shown how the immersion as-
sumption can be completely dropped. It must be noted, though, that the results
in [21] lead to a non-constructive regulation theory and that immersion assump-
tions are still needed if one is willing to practically implement the regulator.

The goal of this paper is to put a bit in order this rich and apparently untidy
scenario of contributions, by proposing a unique vision able to frame a number
of previously mentioned results. More specifically we introduce the so-called
asymptotic internal model property as the crucial property which, if fulfilled,
allows one to design the regulator for a fairly general class of minimum-phase
systems and we show how a number of (apparently un-correlated) immersion
assumptions proposed so far, can be thought as conditions under which the
asymptotic internal model property can be achieved. In particular we show how
in the frameworks proposed in [5] and [8] (and all the frameworks encompassed
by these works) the asymptotic internal model property can be constructively
fulfilled and thus the regulator constructively designed. We also show how the
recent framework of output regulation without immersion proposed in [21] can
be cast in these terms.

The work is organized as follows. In the next section we present the framework
of the problem. The definition of “asymptotic internal model property” and the
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result claiming that this property is sufficient for the regulator design are deferred
in Section 3. The practical fulfilment of the asymptotic internal model property
under the frameworks of [5], [8] and [21] is discussed in Section 4 while Section
5 concludes with final remarks.

2 The Framework

In this paper we consider nonlinear systems modeled by equations of the form

ż = f0(w, z) + f1(w, z, e1)e1
ė1 = e2

...
ėr−1 = er

ėr = q(w, z, e1, . . . , er) + u
e = e1
y = col(e1, . . . , er) ,

(1)

with state (z, e1, . . . , er) ∈ Rn×Rr, control input u ∈ R, regulated output e ∈ R,
measured output y ∈ Rr, in which the exogenous (disturbance) input w ∈ Rs is
generated by an exosystem

ẇ = s(w) . (2)

The functions f0(·), f1(·), q(·), s(·) in (1) and (2) are assumed to be at least
continuously differentiable. The initial conditions of (1) range on a set Z×E, in
which Z is a fixed compact subset of Rn and E = {(e1, . . . , er) ∈ Rr : |ei| ≤ c},
with c a fixed number. The initial conditions of the exosystem (2) range on a
compact subset W of Rs. In this framework we address the so-called problem of
output regulation which consists in the design of an output feedback regulator
of the form

ζ̇ = ϕ(ζ, y)
u = γ(ζ, y)

(3)

such that, in the corresponding closed loop system (1)-(3), for all initial condi-
tions w(0) ∈ W and (z(0), e1(0), . . . , er(0)) ∈ Z × E trajectories are bounded in
forward time and limt→∞ e(t) = 0.

Augmenting (1) with (2) yields a system which, viewing u as input and e as
output, has relative degree r. The associated “augmented” zero dynamics, which
is forced by the control

c(w, z) = −q(w, z, 0, . . . , 0) , (4)

is given by
ẇ = s(w)

ż = f0(w, z) .
(5)

In what follows, we assume that system (5) satisfies the following three as-
sumptions.
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Assumption (i) : the set W is (forward and backward) invariant for (2). �
Note that, since W is invariant for ẇ = s(w), the closed cylinder

C := W ×Rn

is locally invariant for (5). Hence, it is natural regard (5) as a system defined on
C and endow the latter with the subset topology.

Assumption (ii) : there exists a compact subset Z of C which contains the positive
orbit of the set W × Z under the flow of (5) and the resulting omega-limit set
ω(W × Z) satisfies

(w, z) ∈ C , |(w, z)|ω(W×Z) ≤ d0 ⇒ z ∈ Z (6)

where d0 is a positive number. �
As a remark on the above hypotheses, note that, since the positive orbit of the
set W × Z under the flow of (5) is bounded, the set ω(W × Z), namely the
ω-limit set of W ×Z under the flow of (5), is a nonempty, compact and invariant
subset of C which uniformly attracts all trajectories of (5) with initial conditions
in W ×Z. It can also be shown (as in [4]) that for every w ∈ W there is z ∈ Rn

such that (w, z) ∈ ω(W ×Z). In what follows, for convenience, we introduce the
notation

A := ω(W × Z) .

Condition (6) in assumption (ii) implies that A, besides uniformly attracting
trajectories of (5) originating from W×Z, is also stable in the sense of Lyapunov
(see [15]). In the next assumption we strengthen this property by also requiring
the set A is locally exponentially stable.

Assumption (iii) : there exist M ≥ 1, λ > 0 such that

(w0, z0) ∈ C , |(w0, z0)|A ≤ d0 ⇒ |(w(t), z(t))|A ≤Me−λt|(w0, z0)|A

in which (w(t), z(t)) denotes the solution of (5) passing through (w0, z0) at time
t = 0. �

For sake of simplicity, in the next part of the paper we address the problem
at hand under assumptions (i) - (ii) - (iii) in the simplified case of plants with
relative degree r = 1, i.e. in the special case in which system (1) is a system of
the form

ż = f0(w, z) + f1(w, z, e)e
ė = q(w, z, e) + u
y = e .

(7)

As shown in [8], this can be done without loss of generality, since a wise use
of the tools proposed in [25] allows one to reduce the higher relative case to an
equivalent problem of output regulation for a system of form (7). The interested
reader is referred to these references for details which are omitted here for
reasons of space.
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3 The Asymptotic Internal Model Property

We begin by rewriting the zero dynamics of the augmented system (2), (7),
given by

ẇ = s(w)
ż = f0(w, z) ,

(8)

in the more compact form
ż = f0(z) (9)

where z := col(w, z). Moreover, consistently with this notation, we rewrite the
term q(w, z, e) in (7) as

q(w, z, e) = q0(z) + q1(z, e)e

in which q0(z) = q(w, z, 0), and we denote by Z := W × Z the compact set
where the initial condition z(0) is supposed to range. In view of this the overall
system (2), (7) is rewritten as

ż = f0(z) + f1(z, e)e
ė = q0(z) + q1(z, e)e + u

(10)

where f1(z, e) = col(0, f1(w, z, e)) and the initial conditions (z(0), e(0)) range in
the set Z× E.

System (10) being affine in the control input u, it seems natural to look for a
controller having a similar structure, namely a controller of the form

ξ̇ = ϕ(ξ) + ψ(ξ)v
u = γ(ξ) + v

(11)

with state ξ ∈ Rd, in which v is a residual control input, to be eventually
chosen as a function of the measured output e. For consistency with the earlier
assumptions, the initial condition ξ(0) of (11) is allowed to range on a fixed
compact set Ξ of Rd. Here ϕ(·), ψ(·) and γ(·) are at least continuous functions
to be determined.

The main result of the section is to show that, if the triplet {ϕ(ξ), ψ(ξ), γ(ξ)}
possesses what we now define as asymptotic internal model property, the choice
of the residual control v in (11) as

v = −ke

solves the problem of output regulation, provided that the gain coefficient k is
large enough.

Definition 1. The triplet {ϕ(ξ), ψ(ξ), γ(ξ)} has the asymptotic internal model
property if there exists a C1 map τ : Z → Rd such that:

(i) the vector fields f0|A and ϕ are τ-related, namely

∂τ(z)
∂z

f0(z) = ϕ(τ(z)) ∀ z ∈ A , (12)
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and
q0(z) + γ ◦ τ(z) = 0 ∀ z ∈ A ; (13)

(ii)in the composite system

ż = f0(z)
ξ̇ = ϕ(ξ)− ψ(ξ)[γ(ξ) + q0(z)]

(14)

the set
graph(τ |A) = {(z, ξ) : z ∈ A, ξ = τ(z)}

uniformly and locally exponentially attracts Z×Ξ.

Note that conditions (12) and (13), in the terminology of [11], simply express
the property that the restriction to A of the autonomous system with output

ż = f0(z), y = q0(z) (15)

is immersed into the system

ξ̇ = ϕ(ξ), y = γ(ξ) . (16)

As a remark to this definition, note that the conditions indicated in (i) imply
the invariance of the compact set graph(τ |A) under the flow of (14). If condition
(ii) also holds, the set in question can be identified with ω(Z×Ξ), the limit set
of Z ×Ξ under the flow of (14), as shown below in the proof of Lemma 1. The
use of the adjective “asymptotic” in previous definition is meant to highlight
the fact that it is only the set A – which, in turn, characterizes the asymptotic
behavior of the augmented zero dynamics (9) – that matters in the conditions
(i) and (ii).

We postpone to the next section the presentation of relevant cases in which a
controller which possesses the asymptotic internal model property can be con-
structively designed. In this section we are mostly interested to the conceptual
result that properties (i), (ii) and (iii) involving the augmented zero dynamics
and the asymptotic internal model property of the triplet {ϕ(ξ), ψ(ξ), γ(ξ)} are
indeed sufficient for solving the problem in question with a regulator of the form
(11). This is formally stated and proved in the next lemma.

Lemma 1. Pick compact sets Z, E and Ξ for the initial conditions of the closed-
loop system (2), (7), (11). Assume that (i)-(ii)-(iii) hold and that the triplet
{ϕ, ψ, γ} has the asymptotic internal model property. Assume, in addition, that
the vector field ψ(ξ) is complete. Then there exists k� > 0 such that for all k ≥ k�

the controller (11) with v = −ke solves the problem of output regulation.

Proof. Consider the closed-loop system

ż = f0(z) + f1(z, e)e
ė = q0(z) + q1(z, e)e + γ(ξ) + v

ξ̇ = ϕ(ξ) + ψ(ξ)v
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which, regarded as a system with input v and output e, has relative degree 1
and zero dynamics given by

ż = f0(z)
ξ̇ = ϕ(ξ)− ψ(ξ)(γ(ξ) + q0(z)) .

(17)

The first crucial step to prove the lemma is to show that the trajectories of (17)
originating from Z × Ξ are bounded and the consequent ω-limit set ω(Z × Ξ)
is precisely graph(τ |A). To this end note that boundedness of the trajectories
is a consequence of requirement (ii) in the definition of the asymptotic internal
model property. To show that ω(Z×Ξ) = graph(τ |A) note that, by the triangular
structure of (17), it turns out that

ω(Z×Ξ) ⊂ C .

Furthermore, by requirement (i) in definition 1, it follows that graph(τ |A) is
an invariant set for (17) and thus graph(τ |A) ⊂ ω(Z × Ξ). To prove that
graph(τ |A) ≡ ω(Z × Ξ) we proceed by contradiction. For, suppose that there
exists (z′0, ξ

′
0) ∈ ω(Z×Ξ) such that

|(z′0, ξ′0)|graph(τ |A) = c > 0 (18)

and denote by (z′(t), ξ′(t)) the solution of (17) at time t passing through (z′0, ξ
′
0)

at time t = 0. As ω(Z ×Ξ) is (backward) invariant and compact there exists a
number K1 > 0 such that

|(z′(t), ξ′(t))|graph(τ |A) ≤ K1 for all t ≤ 0 . (19)

Now note that by uniform attractiveness in requirement (ii) of definition 1, it
turns out that for all positive K2 ≤ K1 there exists T > 0 such that for all
(z0, ξ0) ∈ Z×Ξ satisfying

|(z0, ξ0)|graph( τ |A) ≤ K1 (20)

the trajectory (z(t), ξ(t)) of (14) passing through (z0, ξ0) at time t = 0 is such
that

|(z(T ), ξ(T ))|graph( τ |A) ≤ K2 . (21)

Moreover local exponential stability in the second requirement of the previous
definition implies the existence of positive d, M , λ such that for all (z0, ξ0)
satisfying

|(z0, ξ0)|graph( τ |A) ≤ d

the trajectory is such that

|(z(t), ξ(t))|graph(τ |A) ≤Me−λt |(z0, ξ0)|graph( τ |A) .

Combining the previous two properties with K2 chosen so that K2 ≤ d and T
consequently, it is possible to check that
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|(z(0), ξ(0))|graph( τ |A) ≤ K1 ⇒

|(z(t), ξ(t))|graph( τ |A) ≤ M̄e−λt |(z(0), ξ(0))|graph( τ |A)

where M̄ := max{M, K1/e
−λT }. From this, choosing T ′ such that M̄e−λT ′

K1 ≤
0.5c and using (19), it turns out that

|(z′0, ξ′0)|graph(τ |A) ≤ M̄e−λT ′ |(z′(−T ′), ξ′(−T ′))|graph(τ |A)

≤ M̄e−λT ′
K1 ≤ 0.5c

which contradicts (18). This proves that graph(τ |A) ≡ ω(Z×Ξ).
Let now Φt

ψ(ξ) denote the flow of the complete vector field ψ(ξ) and consider
the (partial) change of coordinates

η := Φ−e
ψ (ξ) .

Since, by definition,

∂Φ−e
ψ (ξ)
∂e

+
∂Φ−e

ψ (ξ)
∂ξ

ψ(ξ) =
∂Φ−e

ψ (Φe
ψ(η))

∂e
= 0

and Φ0
ψ(η) = η, it is easy to see that the system in the new coordinates reads as

ṗ = f(p) + �(p, e)
ė = q(p) + r(p, e) + v

(22)

in which p := col(z, η),

f(p) =
(

f0(z)
ϕ(η)− ψ(η)(q0(z) + γ(η))

)
q(p) = q0(z) + γ(η)

and �(p, e), r(p, e) are suitably defined smooth functions of their arguments such
that �(p, 0) = r(p, 0) = 0 for all p. In particular, by the first part of the proof, it
turns out that the zero dynamics ṗ = f(p) of (22) posses an uniformly attractive
(locally exponentially) compact set on which q(p) is identically zero. From this
and the choice v = −ke the claim of the Lemma follows by high-gain results such
as the ones proposed in [21] (see Theorems 2 and 3 in the quoted reference). �

4 Achieving the Asymptotic Internal Model Property

Goal of this section is to present relevant cases, taken from existing literature,
in which a controller satisfying the asymptotic internal model property can be
identified. By bearing in mind the definition, the property in question is easily
seen to be related to the capability of reproducing, by means of the output γ(ξ)
of the system ξ̇ = ϕ(ξ) − ψ(ξ)(γ(ξ) + q0(z)), the asymptotic behavior of the
output q0(z) of the system ż = f0(z). This, in particular, shows up through the
two requirements detailed in the definition: the first which asks for the existence
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of the invariant compact set graph(τ |A) for the two systems on which the two
outputs coincide, and the second in which this set is required to be (locally
exponentially) attractive for the composite system (14).

It is apparent that the problem in question is intimately related to the problem
of designing nonlinear observers for the system ż = f0(z) with output y = q0(z).
As a matter of fact, with an eye to the composite system (14), one would be
tempted to design the triplet (ϕ, ψ, γ) looking at the ξ-subsystem as an observer
of the z-subsystem, with ϕ(ξ) playing the role of observer dynamics, ψ(ξ) the
role of output injection “gain” and γ(ξ) + q0(z) the role of innovation term. In
the following part of the section we follow this intuition by showing how, indeed,
the theory of nonlinear observers is helpful to identify a triplet (ϕ, ψ, γ) satis-
fying the asymptotic internal model property. More specifically, in the next two
subsections, we show how the theory of nonlinear high gain observers (see [14])
and, respectively, nonlinear adaptive observers (see [2], [22]) can be successfully
employed to obtain constructive design procedures for the triplet in question. In
doing this we follow design procedures which have been proposed respectively
in [5] and [8]. These results rely upon the extra observability assumption that
the “observed” system (f0,q0) is immersed into a system in nonlinear uniform
observability form and, respectively, nonlinear adaptive observability form.

Furthermore, in subsection 3.3, following [21], the observer theory of [19] (see
also [1]) is taken as theoretical tool to present a result claiming the existence of
the triplet in question without any specific observability assumption. As opposite
to the procedures presented in subsections 3.1 and 3.2, this result is not con-
structive but it applies to a fairly general class of nonlinear systems only fulfilling
hypotheses (i)-(iii) in section 2 without any extra immersion assumption.

4.1 Nonlinear Immersion (See [5])

Assume the existence of an integer d > 0, of a locally Lipschitz function f :
Rd → R such that, for any z ∈ A, the solution z(t) of passing through z at time
t = 0 is such that the function ρ(t) := q0(z(t)) satisfies

ρ(d)(t) = f(ρ(t), ρ(1)(t), . . . , ρ(d−1)(t))

for all t ∈ R.
Let τ ′ : Z → Rd be the map defined as

τ ′(z) := col(q0(z), Lf0q0(z), . . . , Ld−1
f0 q0(z)) (23)

and let fc : Rd → R be a function with compact support which agrees with f(·)
on τ ′(A), namely

fc|τ ′(A) = f |τ ′(A) and |fc(s)| ≤ K <∞ for all s ∈ Rd .

Then, it easy to check that the properties indicated in item (i) of the definition
are fulfilled by choosing
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ϕ(ξ) =

⎛⎜⎜⎜⎝
ξ2
...
ξd

fc(ξ1, ξ2, . . . , ξd)

⎞⎟⎟⎟⎠ , γ(ξ) = ξ1, (24)

with τ(z) = τ ′(z). Comparing this construction with the remark after Definition
1 we observe, in particular, that system (15) is immersed into a system which
is uniformly observable, in the sense of [14] (even though system (15) might not
have had such a property). It is precisely this that makes it possible to choose
ψ(ξ) in such a way that also the property indicated in item (ii) of the definition
can be achieved.

As a matter of fact, the property in question is achieved by choosing

ψ(ξ) = Dk

⎛⎜⎝ c0
...

cd−1

⎞⎟⎠
where Dk = diag(k, k2, · · · , kd), k is a design parameter, and the ci’s are such
that the polynomial λd + c0λ

d−1 + · · ·+ cd−1 = 0 is Hurwitz, as formally proved
in Lemmas 1 and 2 of [5] to which the interested reader is referred for details.

It is worth noting that the assumption in question clearly covers the interesting
(and widely addressed in the recent past literature, see [16]) case in which the
function f(·) is linear, namely the case in which (15) is immersed into a linear
observable system. In this case, although the choice indicated above is clearly
still valid, a more direct way of designing the regulator is to use f(·) instead of
fc(·) in the definition of ϕ(ξ), to set ψ(ξ) = G and simply choose G in such a
way that ξ̇ = ϕ(ξ)−Gγ(ξ) is a stable linear system.

4.2 Adaptive Immersion (See [8])

Implicit in the setup of the problem of output regulation is the possibility that
the vector w of exogenous inputs includes a set of uncertain constant parameters.
The latter can be uncertain parameters in the model of the controlled plant (1)
but also uncertain parameters affecting the dynamics of some other exogenous
inputs. In this case, in fact, one can still consider a set (w1, w2) of exogenous
inputs obeying

ẇ1 = s1(w1, w2)
ẇ2 = 0

in which s1(w1, w2) explicitly depends on w2. If this is the case, it is unlikely that
an assumption such as the one introduced at the beginning of the earlier section
is going to be fulfilled, and different scenarios have to be considered. A an obvious
option would be to assume the existence of a function f : Rd × Rq → R and of a
map θ : A → Rq such that, for any z ∈ A, the solution z(t) of passing through z
at time t = 0 is such that the functions ρ(t) := q0(z(t)) and θ(t) := θ(z(t)) satisfy

ρ(d)(t) = f(ρ(t), ρ(1)(t), . . . , ρ(d−1)(t), θ(t)) and θ(1)(t) = 0
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for all t ∈ R. In this case, though, while the immersion property (i) is easily
fulfilled (exactly as in the previous case), it becomes quite hard to have property
(ii) fulfilled. In order to make this possible, some extra (stringent) assumptions,
on the function f , must be imposed.

Note that, if the hypothesis indicated above holds, system (15) is immersed
into the (d + q) – dimensional system

η̇ =

⎛⎜⎜⎜⎝
η2
...
ηd

f(η1, η2, . . . , ηd, θ)

⎞⎟⎟⎟⎠ , y = η1 (25)

θ̇ = 0 (26)

via the pair of maps
η = τ ′(z), θ = θ(z) ,

in which τ ′(z) is the map defined in (23). The assumption that we make now is
that there is a globally defined diffeomorphism η̃ = Φ(η) that changes system
(25) into a system in adaptive observability form, in the sense of [22], namely a
system of the form

˙̃η = Aη̃ + φ(Cη̃) + Ω(Cη̃)θ, y = Cη̃ (27)

in which A,C is an observable pair, and φ : R → Rd and Ω : R → Rd×q are
smooth functions. Conditions under which this is possible are well-known and
can be found, for instance, in [22]. Note that, if this assumption holds, the map
τ̃ (z) := Φ(τ ′(z)) satisfies

∂τ̃

∂z
f0(z) = Aτ̃ (z) + φ(Cτ̃ (z)) +Ω(Cτ̃ (z))θ(z) , q0(z) = Cτ̃ (z) . (28)

This being said, we define now the triplet {ϕ(ξ), ψ(ξ), γ(ξ)} as follows (see
[8])

ξ = col(ξ1, ξ2, ξ3) with ξ1 ∈ Rd, ξ2 ∈ Rq, ξ3 ∈ Rd−1 ×Rq,

ϕ(ξ) =

⎛⎝Aξ1 + φc(Cξ1) + Ωc(Cξ1)ξ2 −M(ξ3)dzv�(ξ2)
−dzv�(ξ2)

Fξ3 +GΩc(Cξ1)

⎞⎠ ,

ψ(ξ) =

⎛⎝H(ξ3, ξ1)
β(ξ3, ξ1)

0

⎞⎠ , γ(ξ) = Cξ1

(29)

in which φc(·) and Ωc(·) denote functions with compact support which agree
with φ(·) and Ω(·) on Cτ̃ (A), F ∈ Rd−1×d−1 and G ∈ Rd−1×d are chosen as
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F =

⎛⎜⎜⎝
−b2 1 · · · 0 0
· · · · · · ·

−bd−1 0 · · · 0 1
−bd 0 · · · 0 0

⎞⎟⎟⎠ , G =

⎛⎜⎜⎝
−b2 1 · · · 0 0 0
· · · · · · · ·

−bd−1 0 · · · 0 1 0
−bd 0 · · · 0 0 1

⎞⎟⎟⎠ (30)

and M(·), β(·, ·), H(·, ·) as

M(ξ3) =
(

0
ξ3

)
,

βT(ξ3, ξ1) = CAM(ξ3) + CΩc(Cξ1) ,

H(ξ3, ξ1) = M(ξ3)β(ξ3, ξ1) +K ,

where the bi’s, i = 2, · · · , d, and K are design parameters. Finally, dzv�(·) is the
vector-valued dead-zone function defined as

dzv�(col(s1, . . . , sd)) = col(dz�(s1), . . . ,dz�(sd)) (31)

in which dz�(·) is any continuously differentiable function satisfying

dz�(x) =
{

0 if |x| ≤ �
x if |x| ≥ �+ 1 .

Lengthy, but not difficult, computations can be used to check that if the
coefficients bi’s are chosen so that the matrix F is Hurwitz and � so that � ≥
maxz∈A |θ(z)|, then the map

τ(z) = col(τ̃ (z), θ(z), σ(z)) where σ(z) =
∫ 0

−∞
e−FsGΩ(Cτ̃ (z(s, z)))ds

(32)
is such that graph(τ |A) is invariant for ξ̇ = ϕ(ξ) and q0|A = γ ◦ τ |A and
thus the first requirement in the Definition 1 is fulfilled. Furthermore it can
be proved that, if K is appropriately chosen, graph(τ |A) also uniformly (and
locally exponentially) attracts Z × Ξ under the flow of (14), namely that the
triplet (29) also fulfills the second requirement of Definition 1. The result in
question is presented in the next proposition, whose proof – which relies upon a
persistence of excitation condition – can be found in [8] .

Proposition 1. Fix (ϕ(ξ), γ(ξ), ψ(ξ)) as in (29) and τ(z) as in (32). Set b =
col(1, b2, . . . , bq1) and choose

K = Ab+ λb

with λ a design parameter. If for all z0 ∈ A the following implication is true
(persistence of excitation condition)

ςTβ (σ (z(t, z0)) , τ̃ (z(t, z0)) ) = 0 ∀ t ≥ 0 ⇒ ς ≡ 0 ,

then there exists λ� > 0 such that for all λ ≥ λ� the set graph(τ |A) uniformly
(locally exponentially) attracts Z×Ξ under the flow of (14).

It is interesting to note that the analysis discussed above covers also the particu-
lar case in which the exosystem state z includes a vector % of constant uncertain
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parameters ranging in a compact set P ⊂ Rp and there exists a differentiable
map τ ′ : Z → Rd such that1

∂τ ′(z)
∂z

f0(z) = S(%)τ ′(z)

q0(z) = Γ (%)τ ′(z)
(33)

in which (S(%), Γ (%)) ∈ Rd×d×R1×d is an observable pair for all % ∈ P . In fact,
note that, since the pair (S(%), Γ (%)) is observable for all %, standard arguments
can be used to show that there exist a nonsingular matrix M(%) ∈ Rd×d, a
column vector L(%) ∈ Rd×1, and an observable (parameter independent) pair
(A,C) ∈ Rd×d ×R1×d such that

M(%)S(%)M(%)−1 = A+ L(%)C
Γ (ρ)M(%)−1 = C .

From this, it turns out that relation (28) holds with q = d, φ(s) = 0, Ω(s) = sId,
τ(z) = M(%)τ ′(z) and θ(z) = L(%). This, in particular, shows that general
design procedure leading to chioce of the triplet (ϕ(ξ), γ(ξ), ψ(ξ)) in (29) can be
successfully adopted. It is interesting to note, however, that in this particular
case the general procedure detailed above can be simplified to obtain the triplet
fulfilling the asymptotic internal model property in a more direct and effective
way. How this is possible is explained in the following (see [9] for details).

Let (F,G) ⊂ Rd×d × R1×d be an arbitrary controllable pair with F Hurwitz
and let T (%) denote the unique nonsingular solution of the Sylvester equation

FT (%)− T (%)S(%) = −GΓ (%)

and Ψ(%) the row vector Ψ(%) = Γ (%)T−1(%). By bearing in mind the definition
(31), set ξ = col(ξ1, ξ2) with ξ1 ∈ Rd and ξ2 ∈ Rd, and choose the triplet as

ϕ(ξ) =
(

(F +GξT
2 )ξ1

−dzv� (ξ2)

)
, γ(ξ) = ξT

2 ξ1 , ψ(ξ) =
(
G
ξ1

)
. (34)

Simple, though lengthy, algebra can be used to show that if � is chosen so that

� ≥ max
�∈P

|ΨT(%)|

then the first requirement of Definition 1 is satisfied by the triplet (34) through
the map

τ(z) =

(
T (%) τ ′(z)

ΨT(%)

)
, (35)

in which, as also stressed above, the constant parameters % can be though as
trivial components of z. Moreover also the second requirement of Definition 1
can be shown to be satisfied provided that a persistence of excitation condition,
1 This scenario is representative of the important case in which q0(z(t)) is the sum of

a finite number of periodic signals of uncertain amplitude, phase and frequency (see
[24]).
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detailed in the next proposition, is fulfilled. For the proof of this proposition the
interested reader is referred to [9].

Proposition 2. Fix (ϕ(ξ), γ(ξ), ψ(ξ)) as in (34) and τ(z) as in (35). If there
exist positive T and K such that∫ t+T

t

τ ′(z(s, z0)) τ ′
T(z(s, z0)) ds ≥ KI

for all t ≥ 0 and for all z0 ∈ A, then the set graph(τ |A) uniformly (locally
exponentially) attracts Z×Ξ under the flow of (14).

4.3 Asymptotic Internal Model Property Without Immersion
(See [21])

In this section we follow the theory presented in [21] to show that no immersion
assumptions are needed at all in order to fulfill the asymptotic internal model
property. As opposite to the frameworks discussed in the previous two subsec-
tions, this kind theory leads to non constructive results for the design of the
regulator which, furthermore, is not guaranteed to be smooth.

Let (F,G) ∈ Rd×d ×Rd×1 be a controllable pair and set

ϕ(ξ) = Fξ +Gγ(ξ), ψ(ξ) = G

with γ : Rd → R a continuous function to be chosen in such a way that the
proposed triplet has the required properties.

With this choice it turns out that the composite system (14) assumes the form

ż = f0(z)
ξ̇ = Fξ −Gq0(z) .

(36)

The first step instrumental to prove that the triplet in question can be made
to satisfy the asymptotic internal model property is presented in the following
proposition whose only requirement is that the matrix F is Hurwitz. For the
proof the reader is referred to [21].

Proposition 3. Consider system (36) under the assumption (i)-(ii)-(iii) in Sec-
tion 2. There exists an � > 0 such that if the eigenvalues of F have real parts
lower than −�, then the map

τ(z) =
∫ 0

−∞
e−FsGq0(z(s, z))ds (37)

is differentiable, satisfies

∂τ

∂z
f0(z) = Fτ(z) −Gq0(z) ∀ z ∈ A , (38)

and it is such that the set graph(τ |A) is locally exponentially stable for (36) with
a domain of attraction containing Z× Ξ.

It is worth stressing that the requirement of choosing F , besides being Hurwitz,
with a certain stability margin fixed by the integer �, represents only a technical
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assumption needed to guarantee differentiability of the function τ (see the proof
of Proposition 2 in [21]). In this sense the assumption in question must be not
confused with an “high gain” requirement on the choice of F . Note, moreover,
that the function γ and the dimension d of the pair (F,G) do not play any role
in establishing this result.

By its own the previous result only guarantees the fulfillment of the require-
ment (ii) in definition 1, namely the existence of the exponentially stable set
graph(τ |A) for system (14) but it says nothing regarding requirement (i). In this
respect it is easy to realize that also requirement (i) is fulfilled in the case the
function γ can be designed in such a way that (13) is satisfied. As a matter of
fact, by bearing in mind that ϕ(ξ) = Fξ +Gγ(ξ), (12) reads as

∂τ

∂z
f0(z) = Fz−Gγ ◦ τ(z) ∀ z ∈ A

which, if (13) holds, reduces to (38). This, along with Proposition 3, yields that
the proposed triplet satisfies the asymptotic internal model property in the case
the function γ(·) can be chosen so that (13) holds. Here is where the dimension
d of the pair (F,G) plays a role, as formalized in the next proposition whose
proof can be found in [21].

Proposition 4. Let
d ≥ 2(n+ s) + 2

and (F,G) be a controllable pair, with F chosen as indicated in Proposition 3.
Then there exist a continuous function γ : Rd → R fulfilling (13), with τ(·) the
map defined by (37).

5 Conclusions

The Asymptotic Internal Model Property has been introduced as natural prop-
erty to be achieved in order to solve a problem of nonlinear output regulation
in the case high-gain error feedback techniques are used as stabilization tool. It
has been shown how a number of results and frameworks recently proposed in
the related literature can be re-formulated in these terms by thus presenting a
common vision able to frame apparently different design techniques. Specifically,
results relying on the use of nonlinear high-gain, nonlinear adaptive, and non-
linear Luenberger observers design techniques have been re-interpreted in the
proposed framework. It is expected that the proposed property can be useful
to identify other relevant cases in which the regulator can be successfully and
constructively designed.
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Summary. In this chapter, we present the scenario approach, an innovative technology
for solving convex optimization problems with an infinite number of constraints. This
technology relies on random sampling of constraints, and provides a powerful means
for solving a variety of design problems in systems and control. Specifically, the virtues
of this approach are here illustrated by focusing on optimal control design in presence
of input saturation constraints.

Keywords: Constrained Control, Noise Rejection, Convex Optimization, Scenario
Optimization, Randomized Methods.

1 Introduction

Many problems in systems and control can be formulated as optimization prob-
lems, often times of convex type, [1, 2]. Convexity is appealing since ‘convex’ -
as opposed to ‘non-convex’ - means ‘solvable’ in many cases.

In practical problems, an often-encountered feature is that the environment is
uncertain, i.e. some elements and/or variables are not known with precision. This
leads naturally to robust convex optimization. Similarly, design against uncertain
signals and/or disturbances gives rise to optimization of the robust type.

A robust convex optimization problem is expressed in mathematical terms as

RCP : min
x∈Rn

g(x) subject to: (1)

fδ(x) ≤ 0, ∀δ ∈ ∆,

where δ is the uncertain parameter, and g(x) and fδ(x) are convex functions in
the n-dimensional optimization variable x for every δ within the uncertainty set
∆. An example of formalization of a control problem as RCP is provided in the
next section.
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Often times, ∆ is a set containing an infinite number of instances. If e.g. δ
represents the uncertain gain of a plant and this gain is known to take on value
in some interval, ∆ is such an interval. In the example discussed in this chapter,
∆ is the infinite set of possible disturbances entering a given system.

Problems with a finite number of optimization variables and an infinite num-
ber of constraints are called semi-infinite optimization problems in the mathe-
matical programming literature. It is well known that these problems are difficult
to solve and they have been proven NP-hard in many cases, [3, 4, 5, 6].

In [7, 8], an innovative technology called ‘scenario approach’ has been intro-
duced to deal with semi-infinite convex programming at a very general level.
The main thrust of this technology is that solvability can be obtained through
random sampling of constraints provided that a probabilistic relaxation of the
worst-case robust paradigm of (1) is accepted. When dealing with problems in
systems and control, the scenario approach opens up new avenues for working
out solutions in many different contexts.

The scenario approach is presented in this chapter in an easy-to-follow manner
by way of an example in optimal control with input saturation constraints.

2 An Optimal Control Problem with Constraints

Consider the following control problem: given a linear system affected by a dis-
turbance belonging to some class, design a feedback controller that attenuates
the effect of the disturbance on the system output, while avoiding saturation of
the control action due to actuator limitations.

Although quite standard in practice, this design problem is generally difficult
to solve because of the presence of saturation constraints, and trial-and-error
solutions are often adopted.

In this section, we illustrate a new approach to address this control problem in
a systematic and optimal way. As we shall see, the proposed design methodology
relies on the re-formulation of the problem as a robust convex optimization pro-
gram by adopting an appropriate parametrization of the controller. Solvability
of this robust convex optimization program is then attained through the scenario
optimization technology.

2.1 Problem Formulation

We consider a discrete time linear system with scalar input and scalar output,
u(t) and y(t), governed by the following equation:

y(t) = G(z)u(t) + d(t), (2)

where G(z) is a stable transfer function and d(t) is an additive disturbance.
Our objective is to determine a feedback control law

u(t) = C(z)y(t) (3)
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such that the disturbance d(t) is optimally attenuated for every realization of
d(t) in some set of possible realizations D, and such that the control input keeps
within certain saturation limits. For example, D can be the set of step functions
with specified maximum amplitude or the set of sinusoids with frequency in a
certain range. A precise formalization of the optimization problem is next given.

Consider the finite-horizon 2-norm
∑M

t=1 y(t)
2 of the closed-loop system out-

put. This norm quantifies the effect of the disturbance d(t). For simplicity, we
here consider (2) and (3) initially at rest, namely G(z)u(t) represents an infinite
backwards expansion

∑∞
j=1 gju(t − j) where u(t − j) = 0 for t − j ≤ 0, and

similarly for C(z)y(t).
The goal is to minimize the worst-case disturbance effect

max
d(t)∈D

M∑
t=1

y(t)2, (4)

while maintaining the control input u(t) within a saturation limit ubound:

max
1≤t≤M

|u(t)| ≤ ubound, ∀d(t) ∈ D. (5)

Controller C(z) is expressed in terms of an Internal Model Control (IMC)
parametrization, [9]:

C(z) =
Q(z)

1 +G(z)Q(z)
, (6)

where G(z) is the system transfer function and Q(z) is a free-to-choose transfer
function (see Figure 1).

Fig. 1. The IMC parameterization
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Expression of C(z) in (6) is totally generic, in that, given a C(z), a Q(z) can
be always found generating that C(z) through expression (6). The advantage
of (6) is that the set of all controllers that closed-loop stabilize G(z) is simply
obtained from (6) by letting Q(z) vary over the set of all stable transfer functions
(see [9] for more details).

With (6) in place, the control input u(t) and the controlled output y(t) are
given by:

u(t) = Q(z)d(t) (7)
y(t) = [G(z)Q(z) + 1]d(t). (8)

The distinctive feature of these expressions is that u(t) and y(t) are affine in
Q(z). Consequently, (4) is a convex cost in Q(z) and (5) are convex constraints.

In the sequel, we refer to the case where Q(z) is selected from a family of
stable transfer functions linearly parameterized in γ := [γ0 γ1 . . . , γk]T ∈ Rk+1,
i.e.

Q(z) = γ0β0(z) + γ1β1(z) + γ2β2(z) + · · ·+ γkβk(z), (9)

where βi(z)’s are pre-specified stable transfer functions. Note that linearity in γ
is important because, due to convexity of (4) and (5) in Q(z), it translates into
convexity of the problem in γ.

A common choice for the βi(z)’s functions is to set them equal to pure ‘delays’:
βi(z) = z−i, leading to

Q(z) = γ0 + γ1z
−1 + γ2z

−2 + · · ·+ γkz
−k.

Another possibility is to let βi(z)’s be Laguerre polynomials, [10, 11].
The control design problem can now be precisely formulated as follows:

min
γ,h∈Rk+2

h subject to: (10)

M∑
t=1

y(t)2 ≤ h, ∀d(t) ∈ D, (11)

max
1≤t≤M

|u(t)| ≤ ubound, ∀d(t) ∈ D. (12)

Due to (11), h represents an upper bound to the output 2-norm
∑M

t=1 y(t)
2 for

any realization of d(t). Such an upper bound is minimized in (10) under the
additional constraint (12) that u(t) does not exceed the saturation limits.

2.2 Rewriting Problem (10)–(12) in a More Explicit Form

By (7) and (8) and the parametrization of Q(z) in (9), the input and the output
of the controlled system can be expressed as

u(t) =
(
γoβ0(z) + . . .+ γkβk(z)

)
d(t) (13)

y(t) = G(z)
(
γoβ0(z) + . . .+ γkβk(z)

)
d(t) + d(t). (14)
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Let us define the following vectors containing filtered versions of the distur-
bance d(t):

φ(t) :=

⎡⎢⎢⎢⎣
β0(z)d(t)
β1(z)d(t)

...
βk(z)d(t)

⎤⎥⎥⎥⎦ and ψ(t) :=

⎡⎢⎢⎢⎣
G(z)β0(z)d(t)
G(z)β1(z)d(t)

...
G(z)βk(z)d(t)

⎤⎥⎥⎥⎦ . (15)

Then, (13) and (14) can be re-written as

u(t) = φ(t)T γ

y(t) = ψ(t)T γ + d(t),

and
∑M

t=1 y(t)
2 = γTAγ +Bγ + C, where

A =
M∑

t=1

ψ(t)ψ(t)T B = 2
M∑

t=1

d(t)ψ(t)T C =
M∑

t=1

d(t)2 (16)

are matrices that depend on d(t) only.
With all these positions, (10)–(12) rewrites as

min
γ,h∈Rk+2

h subject to: (17)

γTAγ +Bγ + C ≤ h, ∀d(t) ∈ D
− ubound ≤ φ(t)T γ ≤ ubound, ∀t ∈ {1, 2, . . . ,M}, ∀d(t) ∈ D.

Compared with the general form (1), the optimization variable x is here (γ, h)
and has size n = k + 2, and the uncertain parameter δ is the disturbance real-
ization d(t) taking value in the set ∆ = D. Note that, given d(t), quantities A,
B, C, and φ(t) are fixed so that the first constraint in (17) is quadratic, while
the others are linear.

Typically, the set D of disturbance realizations has infinite cardinality. Hence,
problem (17) is a semi-infinite convex optimization problem.

2.3 Randomized Solution Through the Scenario Technology

As already pointed out in the introduction, semi-infinite convex optimization
problems like (17) are difficult to solve. The idea of the scenario approach is
that solvability can be recovered if some relaxation in the concept of solution
is accepted. In the context of our control design problem, this means requiring
that the constraints in (17) are satisfied for all disturbance realizations but a
small fraction of them (chance-constrained approach).

The scenario approach goes as follows. Since we are unable to deal with the
wealth of constraints in (17), we concentrate attention on just a few of them and
extract at random N disturbance realizations d(t) according to some probability
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distribution P introduced over D. This probability distribution should reflect
the likelihood of the different disturbance realizations. If no hint is available on
which realization is more likely to occur, then the uniform distribution can be
adopted. Only these extracted instances (‘scenarios’) are considered in the sce-
nario optimization:

SCENARIO OPTIMIZATION

extract N independent identically distributed realizations d(t)1,
d(t)2, . . . , d(t)N from D according to P . Then, solve the scenario
convex program:

SCPN : min
γ,h∈Rk+2

h subject to: (18)

γTAiγ +Biγ + Ci ≤ h, i = 1, . . . , N,

− ubound ≤ φ(t)T
i γ ≤ ubound, ∀t ∈ {1, 2, . . . ,M},

i = 1, . . . , N,

where Ai, Bi, Ci, and φ(t)i are as in (16) and (15) for d(t) = d(t)i.

Letting (γ∗N , h
∗
N ) be the solution to SCPN , γ∗N returns the designed controller

parameter.
The implementation of the scenario optimization requires that one picks N

realizations of the disturbance and computes Ai, Bi, Ci, and φ(t)i in correspon-
dence of the extracted realizations. Since these quantities are artificially gener-
ated (that is they are not actual measurements coming from the system, but,
instead, they are computer-generated), the proposed control design methodology
can as well be seen as a simulation-based approach.

SCPN is a standard convex optimization problem with a finite number of
constraints, and therefore easily solvable. On the other hand, it is spontaneous
to ask: what kind of solution is one provided by SCPN? Specifically, what can
we claim regarding the behavior of the designed control system for all other
disturbance realizations, those we have not taken into consideration while solving
the control design problem?

The above question is of the ‘generalization’ type in a learning-theoretic sense:
we want to know whether and to what extent the solution generalizes in con-
straints satisfaction, from seen constraints to unseen ones. Certainly, any gen-
eralization result calls for some structure as no generalization is possible if no
structure linking what has been seen to what has not been seen is present. The
formidable fact in the context of convex optimization is that - by underlying
hidden links - the solution of SCPN always generalizes well, with no extra as-
sumptions.

We have the following theorem (see Corollary 1 in [8]).
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Theorem 1. Select a ‘violation parameter’ ε ∈ (0, 1) and a ‘confidence parame-
ter’ β ∈ (0, 1). Let n = k + 2.

If

N =
⌈

2
ε

ln
1
β

+ 2n+
2n
ε

ln
2
ε

⌉
(19)

(!·" denotes the smaller integer greater than or equal to the argument), then,
with probability no smaller than 1− β, the solution (γ∗N , h

∗
N) to (18) satisfies all

constraints of problem (17) with the exception of those corresponding to a set of
disturbance realizations whose probability is at most ε. �

Let us read through the statement of this theorem in some detail. If we neglect
the part associated with β, then, the result simply says that, by sampling a
number of disturbance realizations as given by (19), the solution (γ∗N , h∗N) to (18)
violates the constraints corresponding to other realizations with a probability
that does not exceed a user-chosen level ε. This corresponds to say that – for
other, unseen, d(t)’s – constraints (11) and (12) are violated with a probability at
most ε. From (11) we therefore see that the found h∗N provides an upper bound
for the output 2-norm

∑M
t=1 y(t)

2 valid for any realizations of the disturbance
with exclusion of at most an ε-probability set, while (12) guarantees that, with
the same probability, the saturation limits are not exceeded.

As for the probability 1 − β, one should note that (γ∗N , h
∗
N ) is a random

quantity because it depends on the randomly extracted disturbance realizations.
It may happen that the extracted realizations are not representative enough
(one can even stumble on an extraction as bad as selecting N times the same
realization!). In this case no generalization is certainly expected, and the portion
of unseen realizations violated by (γ∗N , h

∗
N ) is larger than ε. Parameter β controls

the probability of extracting ‘bad’ realizations, and the final result that (γ∗N , h
∗
N)

violates at most an ε-fraction of realizations holds with probability 1− β.
In theory, β plays an important role and selecting β = 0 yields N = ∞. For

any practical purpose, however, β has very marginal importance since it appears
in (19) under the sign of logarithm: we can select β to be such a small number
as 10−10 or even 10−20, in practice zero, and still N does not grow significantly.

3 Numerical Example

A simple example illustrates the controller design procedure.
With reference to (2), let

G(z) =
0.2

z − 0.8
,

and let the additive output disturbance be a piecewise constant signal that varies
from time to time, at a low rate, of an amount bounded by some given constant.
Specifically, let the set of admissible realizations D consists of piecewise constant
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signals changing at most once over any time interval of length 50, and taking
value in [−1, 1].

As for the IMC parametrization Q(z) in (9), we choose k = 1 and Q(z) =
γ0 + γ1z

−1.
A control design problem (10)–(12) is considered with M = 300, and for

two different values of the saturation limit ubound: 10 and 1. Probability P is
implicitly assigned by the recursive equation

d(t + 1) =
(
1− µ(t)

)
d(t) + µ(t)v(t + 1),

initialized with d(1) = v(1), where µ(t) is a {0, 1}-valued process (µ(t) = 1 at
times where a jump occurs), and v(t) is a sequence of i.i.d. random variables
uniformly distributed in [−1, 1] (v(t) is the new d(t) value). µ(t) is generated
according to

µ(t) = α(t)
50∏

k=1

(
1− µ(t− k)

)
,

initialized with µ(0) = µ(−1) = · · · = µ(−49) = 0, where α(t) is a sequence
of i.i.d. {0, 1}-valued random variables taking value 1 with probability 0.01. An
admissible realization of d(t) in D is reported in Figure 2.

1 50 100 150 200 250 300
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 2. A disturbance realization

In the scenario approach we let ε = 5 · 10−2 and β = 10−10. Correspondingly,
N given by (19) is N = 1370.

From Theorem 1, with probability no smaller than 1 − 10−10, the obtained
controller achieves the minimum of

∑M
t=1 y(t)

2 over all disturbance realizations,
except a fraction of them of size smaller than or equal to 5%. At the same time,
the control input u(t) is guaranteed not to exceed the saturation limit ubound
except for the same fraction of disturbance realizations.
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3.1 Simulation Results

For ubound = 10, we obtained Q(z) = −4.9931+4.0241z−1 and, correspondingly,
the transfer function F (z) = 1 + Q(z)G(z) between d(t) and y(t) (closed-loop
sensitivity function) was

F (z) = 1 + (−4.993 + 4.024z−1)
0.2

z − 0.8

 1− z−1.

The pole-zero plot of F (z) is in Figure 3.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 3. Pole-zero plot of F (z) when ubound = 10. The poles are plotted as x’s and the
zeros are plotted as o’s.

Since y(t) = F (z)d(t) 
 d(t)− d(t− 1), then, when d(t) has a step variation,
y(t) changes of the same amount and, when the disturbance gets constant, y(t)
is immediately brought back to zero and maintained equal to zero until the
next step variation in d(t) (see Figure 4). The obtained solution that F (z) is
approximately a FIR (Finite Impulse Response) of order 1 with zero DC-gain is
not surprising considering that d(t) varies at a low rate.

In the controller design just described, the limit ubound = 10 played no role
in that constraints −ubound ≤ φ(t)T

i γ ≤ ubound in problem (18) were not active
at the found solution. As ubound is decreased, the saturation limits become more
stringent and affect the solution.

For ubound = 1, the following scenario solution was found Q(z) = −0.991 +
0.011z−1, which corresponds to the sensitivity function:

F (z) = 1 + (−0.991 + 0.011z−1)
0.2

z − 0.8

 z − 0.9960

z − 0.8
.

The pole-zero plot of F (z) is in Figure 5, while Figure 6 represents y(t) obtained
through this new controller for the same disturbance realization as in Figure 4.
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d(t)

y(t)

Fig. 4. Disturbance realization and corresponding output of the controlled system for
ubound = 10
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Fig. 5. Pole-zero plot of F (z) when ubound = 1. The poles are plotted as x’s and the
zeros are plotted as o’s.

Note that the time required to bring y(t) back to zero after a disturbance jump
is now longer than 1 time unit, owing to saturation constraints on u(t).

The optimal control cost value h∗
N is h∗

N = 9.4564 for ubound = 10 and
h∗

N = 27.4912 for ubound = 1. As expected, the control cost increases as ubound
becomes more stringent.

The numerical example of this section is just one instance of application of
the scenario approach to controller selection. The introduced methodology is
of general applicability to diverse situations with constraints of different type,
presence of reference signals, etc.
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Fig. 6. Disturbance realization and corresponding output of the controlled system for
ubound = 1

4 Conclusions: A Final Glance over the Scenario World

In this chapter, we considered an optimal disturbance rejection problem with
limitations on the control action and showed how it can be effectively addressed
by means of the so-called scenario technology. This approach basically consists
of the following main steps:

- reformulation of the problem as a robust (usually with infinite constraints)
convex optimization problem;

- randomization over constraints and resolution (by means of standard numer-
ical methods) of the so obtained finite optimization problem;

- evaluation of the constraint satisfaction level of the obtained solution through
Theorem 1.

The applicability of the scenario methodology is certainly not limited to op-
timal disturbance rejection problems and, indeed, this same methodology has
been applied to a number of different endeavors in systems and control.

Robust control, for example, is a natural setting for the scenario approach,
since robust control performance requirements can be often translated into op-
timization with an infinite number of constraints. The reader is referred to
[12, 13, 8], where the scenario methodology has been applied to robust stabiliza-
tion, LPV (Linear Parameter Varying) control, and robust pole assignment.

Another setting in which the scenario approach proved powerful is the identi-
fication of interval predictor models (i.e. models returning a prediction interval
instead of a single prediction value), [14, 15]. Here, constraints are given by ob-
served data and optimization is performed to shrink the interval model as tightly
as possible around data.

Finally, the scenario approach is currently being applied to system identifica-
tion through an innovative min-max perspective.
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Summary. Design and control of Power Supplies (PSs) feeding the magnets of a
Synchrotron Light Source have to match severe specifications; high accuracy in the
range of ppm in output current tracking is required for the correct operation of the
magnets, while a Power Factor (PF) close to the unit is demanded at the input section
due to the high power involved.

In this paper an advanced control strategy is presented for a particular kind of
Quadrupole Magnet Power Supply, where variable output current has to be imposed.
The case of the “switch-mode” multilevel power converter for booster quadrupole mag-
nets of the DIAMOND synchrotron radiation facility under construction at the Harwell
Chilton Science Campus, Didcot, has been considered.

High accuracy in the tracking of the desired output current reference is reached by
means of a digital internal model-based controller. A multivariable controller is adopted
in order to ensure current balancing between the stages of the multilevel converter.

Front-end topology selection, proper dimensioning and control design are exploited
to guarantee high power factor and low harmonic distortion of the input currents,
and to avoid low-frequency components related to the quadrupole magnets’ oscillating
currents. For this purpose, confined oscillatory behavior imposed to the voltage of the
DC-link capacitors plays a key role.

Simulations and experimental validations are reported that confirm the expected
results.

Keywords: Internal Model Control, Multilevel AC-AC Converters, Digital Control of
Power Converters.

1 Introduction

Recent advances in many fields as medicine, chemistry, electronics and nano-
technologies have promoted the design and construction of many third generation
synchrotron radiation facilities at the intermediate energies of 2.5-3.5 GeV [1, 2]
worldwide. Synchrotron radiation is an extremely intense and coherent light
beam emitted when charged particles traveling close to the speed of the light are
bent by a magnetic field generated by multi-pole magnets as dipoles, quadrupoles
and sextupoles. The design and control of Power Supplies (PSs) feeding the
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magnets have to match two main specifications: an high accuracy in current
tracking (due to the requirements on the magnetic fields) and a Power Factor
(PF) close to the unit (due to high power involved).

Two classical solutions for variable currents PSs are the direct connection
between the booster magnets and the local electricity distribution by means of
a transformer and the “White Circuit”, which adopts an inductive/capacitive
resonant scheme. The first one was early considered, for example, for the DIA-
MOND Synchrotron [3], Didcot, Oxfordshire and for the booster of BESSY II,
Berlin [4] but was soon discarded in both cases because of its large costs. The
second solution is utilized to empower the booster of the aforementioned BESSY
II, and the one of SSRL, Stanford [5].

In the last decade the availability of fast high-power switching devices has dra-
matically increased, permitting to consider different type of topologies for high
power applications and revaluating the “Switch Mode technology”. The “Switch-
Mode technology” is a multilevel architecture made up of a series and/or parallel
connection of many lower power modules. This solution is well established for
ring magnets PSs with required constant current [6, 7], whereas it is the most
innovative architecture for booster magnet PSs in which variable current are
expected.

A breakthrough for the “Switch Mode” was the solution proposed by Jenni
and his coauthors [8] for the Swiss Light Source (SLS). Its success made the
switching solution the first choice for the synchrotron manufacturing companies
as DIAMOND Ltd Company [2]. Another company that has already developed
a similar solution for its booster dipole PS is CANDLE, Yerevan, Armenia [1].

The SLS control solutions of [8] were shown in latter works: [9, 10]. In partic-
ular, [9] describes the features of a digital PI regulator for current control where
the aim is to ensure a good tracking for a biased sine-wave current reference. This
PI solution represents the digital version of the widespread analog controllers al-
ready presented in literature [7]. The digital solution is becoming widespread
because it allows the implementation of more complex and sophisticated con-
trol algorithms able to ensure good reference tracking, robustness to parameters
variations from thermal effects and aging, and less sensitivity to noise. For in-
stance, in [11] and [12] Pett and his coauthors adopt a modern RST approach
and a digital PII plus feed-forward action to comply with a requirement of an
accuracy of 1 ppm (part per million).

The other problem that control has to face with is to get a PF close to the unit.
The requirement of a variable current running through the magnet involves an
exchange of reactive energy between the magnet system and the PS. Without
counter measures, this leads to a strong pulsation on the DC-link capacitor
voltage. An high distorted current is drawn into the mains and an high PF can
not be achieved. To cope with this problem in [8] 12-pulse bridges and buck
converters, properly controlled by means of a pole placement, are inserted [10].

Although definitively interesting, the solutions proposed in [9] and in [10] leave
open problems that have to be faced. The digital PI solution of [9] is a simple
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approach that can be substituted by more modern algorithms while in [10] the
ultimate goal of a constant current flow from the mains is not achieved.

Aim of this paper is to present an advanced control strategy for a particu-
lar kind of quadrupole magnet PS. The case of the booster quadrupole magnet
power converter of the DIAMOND synchrotron radiation facility under construc-
tion at the Harwell Chilton Science Campus, Didcot, has been considered [13].
The PS adopted in this case-study exploits a switch mode solution. Very high
accuracy in the tracking of the desired current reference is reached by means of a
digital internal model-based controller. The circuit and the control architecture
of the front-end system is carefully considered. In particular, to achieve an high
PF, the task of the input section is twofold: to guarantee low harmonic distor-
tion of the current drawn from the line and to avoid low frequency components
(usually referred to as “subharmonics”), related to the quadrupole magnet oscil-
lating current. In order to comply with these requirements, 12-pulse bridges and
booster circuits are adopted. In particular, dimensioning and control design of
the booster controller effectively allows to fulfill the requirement of constant in-
put power from the line, while stationary oscillations are imposed to the magnet.
For this purpose, confined oscillatory behavior imposed to the DC-link voltage
of the booster stage plays a key role.

The paper is organized as follows. In Section 2, the overall system is described:
the control requirements, the structure of the adopted PS and the features of
the input and output section. In Sections 4 and 3, motivations which lead to
the adopted control design approaches are deeply discussed and the proposed
control solutions are presented. Simulation results find address in Section 5 while
experimental results are shown and discussed in Section 6.

2 Control Specification and System Analysis

2.1 Control Specification

Control specifications concern the following topics.

1. Current reference. The magnet has to track a sinusoidal biased current
bounded within the range 2A− 200A expressed as:

i∗lm(t) = I0 + (IAC sin(2πfrt) + IAC) (1)

with I0 = 2A, IAC variable from 0A to 99A and fr = 5Hz. An accuracy
equal to ±50ppm of the rated current, i.e. a current tracking error smaller
than 10mA, is required.

2. The PS topology has to adopt a switching solution. This requirement calls
for a specification on the current ripple accuracy; a limit of ±10ppm of the
rated current, i.e. 2mA, is demanded.

3. The connection between PS and mains has to be characterized by a PF close
to the unit and low current distortion.
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2.2 System Analysis

The PS architecture, depicted in Fig. 1, consists of an input section and an
output one connected with the magnet load, Zl. A current sharing topology
is implemented by three modules, each one exploiting an AC/DC rectifier, a
booster converter and an H-Bridge. The sum of the three output currents is
filtered by an output filter connected to the magnet load and composed by the
inductors Lof , the capacitor Cof and the resistor Rof .
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Input Section

To ensure a good PF, the distortion of mains current and voltage waveforms and
the displacement between mains current vector and mains voltage vector have
to be as low as possible. AC/DC rectifiers exploiting a 12-pulse bridge in their
front-end can fulfill this need. Three devices are used instead of a unique one in
order to avoid parasitic currents and to ensure galvanic isolation. The electrical
scheme of Fig. 2 sketches the main features of the converters. In ideal conditions
the voltage vif,i delivered by this device is constant and ripple free as well as
the currents running through the inductances Lif . Such type of current ensures
correct operation both for the rectifiers and the transformer and the distortion
of the currents iA,i, iB,i and iC,i is kept small. Conversely, when the ripple of
the current iif1,i and iif2,i is appreciable, the distortion of the mains currents
grows. In the worst case the ripple is such that the current flowing trough the
diodes reaches negative values turning them off. Hence a worse PF has to be
tolerated.

The capacitor Cif cannot be directly connected to the output section since
the current reference to be tracked calls for an energy exchange between the
magnet and the PS that, without counter measures, leads to a strong pulsation
of the Cif voltage and a considerable ripple on the current iif1,i and iif2,i. To
cope with this problem every module is endowed with a booster converter (see
Fig. 1) whose architecture is sketched in Fig. 3. The converter task is twofold:

1. to keep the current ibos,i flowing trough the booster inductance of the i-th
module constant in order to comply with the PF specification as explained
above;

2. to control the oscillations of the DC-link voltage in order to keep vdc,i

bounded within a safe range [V ∗
min, V ∗

max]. In fact, V ∗
max cannot be over-

run to respect capacitor physical constraints. Moreover, a minimal voltage
level is necessary to drive the load current.



218 C. Rossi, A. Tilli, and M. Toniato

With respect to the buck topology, exploited for example in [10], the booster one
has a lower voltage level on the rectifier, on the input filter and on the converter
itself, thus allowing the adoption of more standard power switches.

The input section, made up of AC/DC rectifier, input filter and booster con-
verter, is modeled as follows. Let vr1, vr2 be the voltages and iif1, iif1 be the
currents at the end of the AC/DC rectifier1. The equations of the input filters
made by the two inductances Lif,i and the capacitor Cif are.

vif,i = vr1,i − Lif
d iif1,i

dt
= vr2,i − Lif

d iif2,i

dt

iif1,i + iif2,i = Cif
d vif,i

dt
+ ibos,i

(2)

or, alternatively, in state space form:

d

dt

⎡⎣iif1,i

iif2,i

vif,i

⎤⎦ =

⎡⎢⎣ 0 0 − 1
Lif

0 0 − 1
Lif

1
Cif

1
Cif

0

⎤⎥⎦
⎡⎣iif1,i

iif2,i

vif,i

⎤⎦+

⎡⎣ 1
Lif

0
0 1

Lif

0 0

⎤⎦[vr1
vr2

]
+

⎡⎣ 0
0

− ibos,i

Cif

⎤⎦ (3)

The i-th booster can be modeled as follows:

vif,i = Lbos
dibos,i

dt
+ (1− ρi)vdc,i

(1− ρi)ibos,i = Cdc
dvdc,i

dt
+ iinH,i

(4)

Its state space representation is:

d

dt

[
ibos,i

vdc,i

]
=

[
0 − (1−ρi)

Lbos
(1−ρi)

Cdc
0

][
ibos,i

vdc,i

]
+

[
vif,i

Lbos

− iinH,i

Cdc

]
(5)

where:

• ibos,i, the current running through the booster inductance, is the first state
variable;

• vdc,i the DC-link voltage, is the second state variable;
• ρi, the modulation index of the switch Sbos,i, is the input variable;
• vif,i is the voltage delivered by the AC/DC rectifier;
• iinH,i is the current flowing towards the H-bridge.

Output Section

Every module adopts a two quadrant H-bridge (positive and negative voltages,
positive currents) in its outer section (see Fig. 3). This kind of implementation

1 The relations between output voltages and currents vr1,2, iif1,2 and input three-
phase voltages and currents are omitted since they follows from standard results on
AC/DC converters.
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has a drawback: the switching behavior generates a current ripple that has to
be damped. This is usually done introducing an output filter after the H-bridge.
In this project, besides the filter, a current sharing and optimal interleaving
technique have been added to improve overall performances [14].

Let write the output currents (see Fig. 1) as:

iM,i(t) = IM,i + ∆iM,i(t) with i ∈ {1, 2, 3}
iM (t) = iM,1 + iM,2 + iM,3 = IM + ∆iM (t) (6)

where IM,i and IM represent the mean values while ∆iM,i(t) and ∆iM (t) the
current ripples. Using an optimal interleaving among N modules, the module
commands are staggered in phase of 2π/N . The resulting equivalent frequency
of ∆iM (t) is N times the frequency of ∆iM,i(t) yielding a less stringent output
filter dimensioning. Moreover, the split of the total current into N paralleled
converters reduces by N times each module current allowing the use of more
standard, faster and cheaper switches.

The model of the outer section can be obtained as follows. The voltage and
current equations of the i-th module are:

vM,i = u′
M,i vdc,i

iinH,i = u′
M,i iM,i with i ∈ {1, 2, 3} (7)

where u′
M,i is the modulation index belonging to the set [−1, 1]. The input filter

voltages and currents are expressed as:

vM,i = Lof
d iM,i

dt
+ vl with i ∈ {1, 2, 3}

vl = vcof + RofCof
d vcof

dt
(8)

Load Model

Bending effects of the electron beam, focusing and defocusing, are achieved by
means of a set of magnets connected through a cable. The electrical model of
the load has to capture the different behaviors coming out both at high and low
frequencies. A simpler representation is chosen since the current reference has
only two components: a continuous component and a sinusoidal one at 5 Hz.
The load equivalent circuit Zl takes into account the load impedance Rlm and
Llm and the cable characterization Rc and Cc. The final load model is:

vl = Rcil + vlm

vlm = Rlmilm + Llm
dilm
dt

il = ilm + Cc
dvlm

dt
(9)

The final state space representation can be obtained coupling the output section
equations (8) and the load model relations (9):
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ẋout = Aout xout + Bout vM

il = Cout xout (10)

where:
xout =

[
iM,1 iM,2 iM,3 ilm vof vc

]T
vM =

[
vM,1 vM,2 vM,3

]T

Aout =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α α α 0 α
Rof

α
Rc

α α α 0 α
Rof

α
Rc

α α α 0 α
Rof

α
Rc

0 0 0 −Rlm

Llm
0 1

Llm

βRc βRc βRc 0 −β β
κRof κRof κRof − 1

Cc
κ −κ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Bout =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1
Lof

0 0
0 1

Lof
0

0 0 1
Lof

0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Cout =

[
1−Rcγ 1−Rcγ 1−Rcγ 0 γ −γ

]
γ =

1
Rc + Rof

, α = −γRcRof

Lof

β =
γ

Cof
, κ =

γ

Cc

It is worth noting that the current balance is not intrinsically guaranteed due to
the asymmetry of the modules. Therefore a suitable control has to be provided.

3 Internal Model Current Control

The choice of an internal model approach for the power supply control is strictly
related to the high accuracy requirements and to the requested interleaving
coordination of the current sharing topology. In this section, the main features
of this controller are deeply analyzed.

The control objective is twofold:

1. the current flowing in the load magnet has to track asymptotically the sinu-
soidal reference (1) with a steady-state error lower than 50 ppm;

2. currents drawn from each module of the proposed topology have to be equal.

The first control objective can be pursued by means of an high-gain/large-
bandwidth controller with sufficiently large gain at the frequencies where the
reference harmonic content is relevant (0Hz, 5Hz). This solution is generally
realized using an analog hysteresis current controller for each module of the pro-
posed structure with a supervising controller. The second control objective is
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guaranteed imposing equal references to each module. Anyway, it is well known
that hysteresis solutions could generate unpredictable converter switching se-
quences, weakening the interleaving technique effects and leading to high current
ripples [15]. A digital implementation of PID controllers could be exploited as
well but, owing to the high gain requirements and unless complicated lag net-
work are added, the resulting controller will have a large bandwidth forcing a
very small sampling time.

As a final result, an internal model based solution is clearly the preferable one
because

• it is simple (no compensation network is needed) and suitable for digital
implementation;

• a small sampling time is not needed since the resulting bandwidth can be kept
very narrow (this is admissible because no requirement on the convergence
rate is present);

• it guarantees excellent performances in terms of asymptotic tracking.

3.1 System Model and Control Design

The overall output section model represented by equations (10) take into ac-
count cable parasitic elements and dynamics related to capacitor Cof . However
the effects of these elements are not relevant in the control frequency range so a
simplified Linear Time-Invariant (LTI) model can be adopted in the control de-
sign, since internal model approach guarantees steady-state tracking robustness.
The following simplified model represents the basic behavior of the PS combined
with the load.

d

dt

⎡⎣ iM,1
iM,2
iM,3

⎤⎦ = − Rlm

3Llm + Lof
AR

out

⎡⎣ iM,1
iM,2
iM,3

⎤⎦+ BR
out

⎡⎣ vM,1
vM,2
vM,3

⎤⎦ (11)

with:

AR
out =

⎡⎣ 1 1 1
1 1 1
1 1 1

⎤⎦ , BR
out =

⎡⎣ δ ζ ζ
ζ δ ζ
ζ ζ δ

⎤⎦
δ =

2Llm + Lof

3LlmLof + L2
of

, ζ = − Llm

3LlmLof + L2
of

(12)

Let define uM,i as:
uM,i = u′

M,i

vdc,i

V ∗
max

=
vM,i

V ∗
max

(13)

where u′
M,i ∈ [−1, 1] is the modulation index of the i-th module.

According to the above equations, the control indexes uMt, ud1 and ud2 are
designed to control ilm, id1 and id2 respectively by means of a digital implemen-
tation of the internal model principle.



222 C. Rossi, A. Tilli, and M. Toniato

Magnet Current Controller

Sampling Dynamic System ZOH

x(k + 1) = Φx(k) + Θinm(k)

uMt(k) = Γx(k) + Jinm(k)

V ∗
max

3(Rlm + sLlm)
Klm

i∗lm(s) ilm(s)e(k)

inm(k)

UMt(s)+

−

Fig. 4. Load current controller and correspondent plant

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
R oot Locus

R eal Axis

Im
ag

in
ar

y
A

xi
s

Fig. 5. Root locus of the magnet current controller and its plant

Load Current Controller

The internal model based load current controller is made up of a digital dynamic
system and a simple gain Klm as sketched in Fig. 4. The digital dynamic system
is designed as follows:

x(k + 1) = Φx(k) + ΘKlme(k)
uMt(k) = Γx(k) + JKlme(k) (14)

with:

e(k) = i∗lm(k)− ilm(k)

Φ =

⎡⎣ 1 0 0
0 cos(2π5Ts) sin(2π5Ts)
0 − sin(2π5Ts) cos(2π5Ts)

⎤⎦ , Θ =

⎡⎣ b0
b1
b2

⎤⎦
Γ =

[
−1 −1 0

]
, J = 1 (15)

The matrix Φ represents the digital internal model of the current reference: the
term 1 in the first row is the model of the DC component I0 while the other not
null terms play the role of a digital oscillator with frequency 5Hz. The value
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of Γ is chosen to guarantee the observability of the couple (Φ,Γ) and J is the
proportional part of the controller which ensures robustness.

Assume that the discrete time plant is obtained from the continuous one
by means of a zero holder method discretization with sampling time equal to
0.533ms (fs = 1875Hz = 1/4fPWM). The zeros of the dynamic system transfer
function are chosen to guarantee stability for the closed loop system. The first
zero cancels the plant pole while the other two act like attractors for the imagi-
nary poles of the controller ensuring stability. The controller gain is selected as
Klm = 0.176 and the corresponding poles of the closed loop system are marked
with squares. The root locus of Fig. 5 is obtained. Then, the resulting Θ is:

zt1,2,3 =

⎡⎢⎣ e
(−Rlm

Llm
Ts)

0.97 + 0.02j
0.97− 0.02j

⎤⎥⎦⇒ Θ =

⎡⎣−0.0117
−0.0506
−0.0692

⎤⎦ (16)

In conclusion, the load current controller transfer function is:

Gc(z) =
UMt(z)

I∗(z)− Ilm(z)
=

0.176(z − 0.9975)(z2 − 1.94z + 0.9413)
(z − 1)(z2 − 2z + 1)

(17)

where I∗(z) is the Z-transform of the sampled magnet current reference.

Difference Current Controllers

The structure of the difference current controllers is the same of (14) with equal
values for Φd, Γd, Jd of the correspondent matrices. However, the different
plants (Fig. 6) imply a different choice of the zeros of the controller transfer
function and, consequently, of Θd and Kdif :

zd1,2,3 =

⎡⎢⎣ e
(−Rlm+Rc

Llm
Ts)

0.97 + 0.02j
0.97− 0.02j

⎤⎥⎦⇒ Θd =

⎡⎣−0.0160
−0.0471
−0.0726

⎤⎦ (18)

The closed loop root locus is depicted in Fig. 7(a) and Fig. 7(b). The squares spot
the system poles for the gain selected, Kdif = 0.0039. In the end, the difference
current controller transfer functions are:

Gcd(z) =
Udi(z)
Idi(z)

= −0.00392(z− 0.9965)(z2 − 1.94z + 0.9413)
(z − 1)(z2 − 2z + 1)

, i = 1, 2 (19)

Remark 1. The control actions ud1 and ud2 should be equal to zero in ideal condi-
tions, in fact current balancing control is inserted only to cope with asymmetries
of the power modules.

Remark 2. The uM,i commands imposed by the controllers have to be trans-
formed in modulation indexes for the interleaving PWM of the H-bridge switches.
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Difference Current Controller

Sampling Dynamic System ZOH

x(k + 1) = Φdx(k) + Θdinm(k)
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V ∗
max
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i∗di(s) idi(s)e(k)

inm(k)

Udi(s)+

−

Fig. 6. Difference current controller and correspondent plant

0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 1.01
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
R oot Locus

R eal Axis

Im
ag

in
ar

y
A

xi
s

(a) Root locus

0.993 0.994 0.995 0.996 0.997 0.998 0.999 1 1.001
-4

-3

-2

-1

0

1

2

3

4
x 10-3 Root Locus

Real Axis

Im
ag

in
ar

y 
A

xi
s

(b) Zoom of the root locus
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This task is quite critical since, as stated in section 2, the vdc,i have relevant os-
cillations owing to exchange of reactive power with the load magnet.

The final version of the internal model controller, implemented in suitable digital
cards, is depicted in Fig 8. Its design takes into account that the values directly
sensed are ilm, iM,1 and iM,2 (see Fig. 1) and that the modulation indexes de-
livered to the PWM modulators have to be u

′
M,i and not uM,i.

4 Cascade Booster Controller

The control systems of the booster converters have to fulfil two main objectives:

• to comply with the requirement on the PF (see Section 2)
• to keep the DC-link voltage oscillations inside a safe range

The booster converter equations (20) that follow are obtained by elaborating (5)
and (7):

d vdc,i

dt
= −

(
iM,ivM,i

Cdc

)
1

vdc,i
+

(1− ρi)
Cdc

ibos,i

d ibos,i

dt
= − (1− ρi)

Lbos
vdc,i +

vif,i

Lbos
(20)

This system is clearly a nonlinear underactuated system. It is a nonlinear system
due to the presence of the term 1/vdc,i and of the product between the control
input ρi and the state [vdc,i ibos,i]T ; it is underactuated because there are one
input, ρi, and two control targets, vdc,i and ibos,i.

Another important feature of the booster converter is the term vM,iiM,i

Cdc
. As

discussed in the previous Section, the internal model-based controller ensures
the asymptotic convergence of each module output current iM,i to i∗lm/3 and of

ibos ibos

i∗bos

i∗bos

vdc

vdc

vinvin vsampled

V ∗
maxV ∗

max

ρ(t)

Inner Loop Controller

Outer Loop Controller

Peak Voltage
Detector

DC-Link Voltage
Controller

Booster Current
Controller

Fig. 9. Architecture of the DC-link controllers
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the total current ilm to i∗lm. The single module voltage vM,i can be computed
through (11) and therefore vM,iiM,i

Cdc
, although time-variant, is asymptotically

known and periodic with period equal to Tr = 1/fr. Bearing in mind all these
system features, the booster controllers are designed using a cascade configura-
tion (see Fig. 9).

4.1 Outer Loop Controller

The Outer Loop Controller (OLC) is designed to control the maximum value
of DC-link voltage trajectory, meanwhile allowing vdc,i to freewheel under this
value.

This fact has two consequences. On the one hand, when the maximum value
of the DC-link voltage is under control, a suitable dimensioning of the DC-link
capacitors ensures bounded oscillations inside a safe range [V ∗

min, V ∗
max] even in

the worst case, i.e. when the load draws the maximum current from the DC-link.
On the other hand the control of the maximum value of vdc,i without taking into
account its whole dynamics can be simply pursued introducing a PI controller
whose equilibrium state is pointed out by a continuous control action, ibos,i,
ensuring a good PF, as asserted in Section 2.

The architecture of the OLC consists of two blocks: a peak voltage detector
and a DC-link voltage controller (Fig. 9). The former device detects the maxi-
mum value of the voltage trajectory over the previous 200 ms time window. The
obtained value is elaborated by the latter device as follows. First of all, the model
of the maximum value of vdc,i has to be introduced. From (20) is straightforward
to obtain:

Cdc
1
2

d

dt

(
v2

dc,i

)
=
(

vif − Lbos
d ibos,i

dt

)
ibos,i − iM,ivM,i (21)
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This equation represents the power balance of the i-th booster: the left hand
is the power on the capacitor Cdc, the right hand is the sum of the power flowing
inside the booster, the power stored inside the inductance Lbos and the power
flowing into the H-bridge (a losses free bridge is assumed). Integrating (21) over
a time window equal to Tr = 1/fr = 200 ms and assuming that the current run-
ning through Lbos is constant for the period taken into account, the following
relation is obtained:

Cdc

2

∫ (k+1)Tr

kTr

d

dt

(
v2

dc,i

)
dt =

Cdc

2

(
v2

dc,i(k + 1)− v2
dc,i(k)

)
=

= Ec(k + 1)− Ec(k) =
= ∆Ein(k + 1, k)−∆ELbos

(k + 1, k)−∆Eout(k + 1, k)

(22)

where:

∆Ein(k + 1, k) =
∫ (k+1)Tr

kTr

vif ibosdt 
 Trv̄if ibos,i(k)

∆ELbos
(k + 1, k) =

∫ (k+1)Tr

kTr

Lbos
d ibos,i

dt
ibos,idt =

=
1
2
Lbos

(
i2bos,i(k + 1)− i2bos,i(k)

)
∆Eout(k + 1, k) =

∫ (k+1)Tr

kTr

iM,ivM,idt

(23)

v̄if is the mean value of vif over a period. Equation (22) is an energy balance
and, properly rearranged, yields to the discrete time model of vdc,i. The current
reference (1) is periodic and therefore the voltage vdc,i oscillates with the same
frequency at steady-state. On the other hand, during the transient the time
interval between two consecutive peaks varies from a minimum of 0 ms and
400 ms. Since the mean value between these two bounds is 200 ms, the best
choice for the sampling time of the discrete model is equal to 200 ms as well.
Then, being kTr and (k + 1)Tr the instants when the vdc,i reaches its maximum
value, the following expression can be achieved:

(vmax
dc,i (k + 1))2 = (vmax

dc,i (k))2 +
2

Cdc

(
Trv̄if ibos,i(k)+

− 1
2
Lbos

(
i2bos,i(k + 1)− i2bos,i(k)

)
+

−
∫ (k+1)Tr

kTr

iM,ivM,idt

) (24)

Linearizing the above model with an initial point equal to V ∗
max, the discrete

time model of the maximum value of vdc,i is:
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vmax
dc,i (k + 1) = vmax

dc,i (k) +
1

Cdc

(
Tr

v̄if

V ∗
max

ibos,i(k)+

− 1
2

Lbos

V ∗
max

(
i2bos,i(k + 1)− i2bos,i(k)

)
+

− 1
V ∗

max

∫ (k+1)Tr

kTr

iM,ivM,idt

) (25)

The term 1
2

Lbos

V ∗
max

(
i2bos,i(k + 1)− i2bos,i(k)

)
is negligible with respect to

Tr
v̄if

V ∗
max

ibos,i(k) since in steady state condition ibos,i(k) 
 ibos,i(k + 1). The last
term is a disturbance that has to be rejected.

In the end the discrete time model of the maximum voltage of the DC-link is:

vmax
dc,i (k + 1) = vmax

dc,i (k) +
1

Cdc

(
Tr

v̄if

V ∗
max

ibos,i(k)− diinH,i(k, k + 1)
)

(26)

Defining the voltage error:

ṽdc,i(k) = vmax
dc,i (k) + V ∗

max (27)

the following plant is obtained:

ṽdc,i(k + 1) = ṽdc,i(k) +
1

Cdc

(
Tr

v̄if

V ∗
max

ibos,i(k)− diinH,i(k, k + 1)
)

(28)

To stabilize this system and to reject the mean value of the disturb diinH,i(k, k+
1), a simple proportional-integral controller is designed:

ROLC(z) =
I∗bos,i(z)

Ṽdc,i(z)
= −

(
kdc

p + Tr
kdc

i

z − 1

)
(29)

where the operator z is related to a sample frequency equal to Tr = 1/fr = 0.2 s.
The control variable delivered by the regulator is the current reference i∗bos,i that
will be tracked by the Intenal Loop Controller. The parameters of Table 1 are
considered and the gains of the regulator are set equal to kdc

i = 16.5 · 10−3 and
kdc

p = 49.6 · 10−3. The values of kdc
i and kdc

p are selected to keep the fastest
dynamics of the open loop far from fr = 5Hz and to obtain a satisfactory phase
margin of about 700 at a frequency near to 0.3Hz: Fig. 10.

4.2 Inner Loop Controller

The aim of the ILC is to track the desired current reference generated by the
OLC. To perform this task a simple PI controller with a PWM modulator is
designed as follows.

The inductor behavior is described by the equation:

Lbos
dibos,i

dt
= vif − (1 − ρi)vdc,i
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where ρi is the modulation index of the switch Sbos,i. Defining:

ρi = 1− vif

vdc,i
+

1
vdc,i

ρ̂i

and the current error:
ĩbos,i = ibos,i − i∗bos,i

the plant to be controlled is:

dĩbos,i

dt
=

1
Lbos

ρ̂i −
di∗bos,i

dt

and the following PI control is exploited:

RILC(s) =
P̂i(s)

Ĩbos,i(s)
= −

(
kidc

p +
kidc

i

s

)
(30)

The corresponding discrete time version is obtained by means of a Forward Euler
method with sampling frequency fs.

The parameters of Table 1 are considered and the modulation index ρi is
performed by a simple PWM modulator with frequency fPWM . The gains kidc

p =
5.0329 and kidc

i = 316.23 are tuned to obtain the desired phase margins of 86.40

at frequency 161Hz: Fig. 11.

4.3 Capacitor Design

Key point of the PS design is the dimensioning of the DC-links. Their correct
behavior does not depend on the voltage trajectories but only on the bound-
edness of voltages vdc,i between an upper value V ∗

max and a lower value V ∗
min.

V ∗
max cannot be overrun to respect capacitor physical constraints and V ∗

min has
to ensure the possibility of driving the current on the load. Moreover, if vdc,i

becomes too small, modulation indexes u′
M,i bigger than one could be requested

thus introducing saturation phenomena. The formerly designed OLCs and ILCs
keep under control the maximum values of vdc,i.

The values of Cdc are obtained balancing the energies when the maximum
current is drawn from the load. In this way, when references with smaller IAC

have to be tracked, the energy exchanged between the magnet and the capacitors
Cdc is reduced and the oscillations of the DC-link voltages are reduced too. So,
the minimum vdc,i value is greater than V ∗

min.
Now assume that losses on the whole outer section are compensated by the

power delivered by the booster converters and that the power stored in the active
elements of the cable and in the output filter is negligible. So, the energy balance
can be done taking into account only the DC-link capacitors and the magnet
equivalent inductor. The energy stored in the magnet in the charging half period
of the sinusoidal ilm can be calculated as:
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∆ELlm
=
∫ Tr/4

−Tr/4
ilm(t)Llm

dilm(t)
dt

dt =
1
2
Llm(Imax

2 − Imin
2) (31)

where ilm is approximated with i∗lm with IAC = 99A and Tr = 1/fr. Let Ĉdc =
3Cdc be the parallel of the three capacitors. In the same time interval the energy
delivered by the three modules is:

∆EĈdc
=
∫ Tr/4

−Tr/4
vdc(t)Ĉdc

dvdc(t)
dt

dt =
1
2
Ĉdc(V ∗

max
2 − V ∗

min
2) (32)

Given the values of V ∗
max and V ∗

min, the value of Ĉdc, and therefore of Cdc, is
straightforward.

The previous procedure yields useful results for the dimensioning of the DC-
link capacitors. However it is worth to mention that this type of results is a little
rough and should be refined through simulative or experimental tests.

5 Simulation Results

Extensive simulations were carried out to test the adopted control strategies. The
overall system has been considered and the parameters of Table 1 were assumed.
First of all, the performances of the internal model current controller are dis-
cussed and its effectiveness demonstrated. Then, the cascade booster controller
is analyzed.
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The proposed results refer to a simulation in full output power (i.e. the ref-
erence current is the maximum allowable, IAC = 99A). The current reference,
the load current il and the current tracking error are shown in Fig. 12. Thanks
to the internal model based control the tracking of the current is very good.
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Table 1. Parameters for Booster Quadrupole Magnet Power Converter

Parameters Values Units
Rlm 0.496 Ω
Llm 105 mH
Rc 0.187 Ω
Cc 16 nF
Rof 12.5 Ω
Cof 350 µF
Lof 10 mH
Cdc 16 mF
Lbos 5 mH

Parameters Values Units
V ∗

max 600 V
V ∗

min 510 V
fs 1875 Hz
fPWM 7500 Hz
Cif 5 mF
Lif 10 mH
VF D 0.9 V
Vline 294 V

Error is kept below the admissible limit of 10mA as requested by the control
specification 1), in 2.1. The satisfaction of the requirement of a ripple equal or
less 2mA is shown in Fig. 13. The currents of the three modules are depicted in
Fig. 14. It is possible to appreciate that the currents iM1 and iM2 are definitively
similar. The current iM3 is slightly different since it is not directly sensed and a
small current is drawn into Cof .

The DC-link voltage trajectory of the 1-st module is shown in Fig. 15. The
maximum value of vdc,1 is close to the maximum value V ∗

max as expected while the
minimum value of the oscillations is approximately 508V and the requirements on
the upper and lower bounds of the safe voltage range are substantially satisfied.

The value of the DC-link capacitance Cdc needs further analysis. As asserted
in 4.3 the algorithm for the dimensioning of the DC-link is a little rough and
has to be tuned by means of simulations. Considering the specifications stated
in 2.1, the value of Imax and Imin are respectively 200A and 2A in full output
power conditions. Adopting the values of V ∗

max and V ∗
min of Table 1, a Cdc value

of 14mF is computed through (31) and (32). Simulations highlighted that Cdc

value has to be increased to take into account the reactive power of output
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Fig. 18. Mains current and voltage. Fourier analysis of iA.

filter and cables. A slightly larger value of 16mF are selected. Similar results are
obtained for the 2-nd and 3-rd module.

The ibos,1 and its reference i∗bos,1, delivered by the OLC, are sketched in Fig. 16.
The OLC control objective of null error and constant output is not reached
because of the approximations introduced: the i∗bos,1 reference denotes a tiny
residual oscillation less of 0.4%. Anyway, this oscillation can be tolerated. The
Fourier analysis of ibos,1 (Fig 17) denotes a main continuous component of 12.86A
and two spurious harmonics.

Finally, the analysis of the PF is reported. The mains voltage and current
of phase A are depicted in Fig. 18. Analogous results can be shown for the
phases B and C. The dominant component of the mains current is the 5Hz fun-
damental (second picture of Fig. 18). The values of the mains voltages and
currents yield the following PF for the connection between the PS and the
line:

PF =
Pin

(vrms)T(irms)
= 0.988 (33)

where:

vrms =

⎡⎣ vrms
A

vrms
B

vrms
C

⎤⎦ , irms =

⎡⎣ irms
B

irms
B

irms
C

⎤⎦ (34)

Hence, requirement 3) of 2.1 is substantially fulfilled and a PF close to the unit
is achieved.
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6 Prototype and Experimental Results

Fig. 19. Architecture of the control card

6.1 Prototype Digital Control

A prototype of the whole power supplier of Fig. 1 was built in collaboration
with O.C.E.M. S.p.A, a company located in San Giorgio di Piano, Bologna. In
particular the control above described was implemented by means of suitable
DSP- and ADC-cards developed for this type of applications and furnished by
Diamond Light Source Ltd. The main advantages of using these cards are:

• they are fully developed and have been shown to meet the required perfor-
mance;

• they provide a common interface for all power supplies to the Control System,
and can make use of the EPICS drivers that have already been developed.

DSP-cards exploit an Analog Devices SHARC digital signal processor with
floating point capability, 60MHz clock frequency. The flexibility of the card is
ensured by a Field Programmable Gate Array (FPGA) which performs all the
communications and act as a really precise PWM modulator. Pulse Repetition
Modulation technique is coupled with PWM to comply with the requested high
accuracy. The communications with the control system and PWM signals are
delivered by means of optical fibres. Two fast serial links are provided: one for
communications between DSP-card and ADC-card, the other one for communi-
cations between more DSP-cards to get multiprocessor capability.

The ADC-cards are the key parts to obtain the precision requested by the con-
trol specifications. The requirement of a precision greater than 10 ppm asks for
17 bits plus sign for the current measurement: this resolution could be provided
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Fig. 21. Experimental results: il, vdc,1

and vdc,2

by two 16 bit two-channel ADCs. Another 16 bit four-channel ADC is provided
for DC-link voltage measurement. Finally, two 14 bit DAC-channels are used to
monitor any internal variable of the controller as well as for maintenance and
troubleshooting. For more details see [9].

The cards are organized in the master-slave architecture depicted in Fig. 19.
The master controls the load current and delivers the H-bridge switch commands
performing the internal model control described in Section 3 while the slave cards
controls the DC-link voltage (29) and (30).
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Fig. 22. Experimental results: il, vdc,1 and ibos,1

6.2 Experimental Results

The experimental tests obtained both in transitory and steady state confirm
the quality of the control design. In Fig. 20 the load current il and the module
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currents iM,1 and iM,2 are reported. It is possible to appreciate the quality of the
load current tracking. The burden is equally shared among the three branches of
the PS. In particular iM,1 and iM,2 are definitively similar and are equal to the
third part of il. iM,3 is equal to the third part of il too apart from the current
flowing in Cof .

In Fig. 21 the load current and DC-link voltages waveforms show the ex-
pected trend. Due to the introduced approximation, the minimum value of vdc,i

is slightly smaller than the one expected and depicted in Fig. 15 but the ultimate
goal of a controlled voltage pulsation is ensured.

The transient performances of the device are depicted in Fig. 22. At t =
0.26sec the load is switched on. The DC-link voltage reaches a value of 400V
but the OLC is able to drive the voltage into the desired set [500V, 600V ] and
keeps it under control. The corresponding booster current is depicted in the third
picture. After a first phase in which the value of 20A is reached, the current
running through Lbos decreases to a constant value.
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Distributed PCHD-Systems,
from the Lumped to the Distributed Parameter
Case

Kurt Schlacher

Institute of Automatic Control and Control Systems Technology, Johannes Kepler
University Linz
kurt.schlacher@jku.at

Summary. The Hamiltonian approach has turned out to be an effective tool for mod-
eling, system analysis and controller design in the lumped parameter case. There exist
also several extensions to the distributed parameter case. This contribution presents
a class of extended distributed parameter Hamiltonian systems, which preserves some
useful properties of the well known class of Port Controlled Hamiltonian systems with
Dissipation. In addition, special ports are introduced to take the boundary condi-
tions into account. Finally, an introductory example and the example of a piezoelectric
structure, a problem with two physical domains, show, how one can use the presented
approach for modeling and design.

Keywords: Distributed Parameter Systems, Hamiltonian Systems with Input and
Dissipation.

1 Introduction

Modern model based control requires accurate mathematical models of the plant
to be controlled. Since the modern theory can deal with many different classes
of models, we restrict ourselves here to a certain class of models, which appears
often in classical physics. These models have a rich structure, they are much more
than a set of arbitrary differential equations. Roughly speaking, these models are
derived from two sets of laws. The first one encompasses the so called balance
equations and/or conservation laws. Typical representatives are the balance of
linear momentum, of energy, the conservation of mass, of charge etc. Such a law
consists of a storage and a flow to the storage. A discrete storage is described by
ordinary differential equations, a distributed storage leads to partial differential
equations. In the ODE case the flows are also discrete quantities, whereas we have
to deal with flows over surfaces in the PDE case. The second set of laws contains
the so called constitutive equations, which describe the flows in dependence of
the behavior of the matter. If one looks back to the models, which describe
dynamic systems of classical physics, then it is no wonder, why Lagrangian and
Hamiltonian methods are so successful in this field.

This contribution deals with an Hamiltonian approach to lumped and dis-
tributed parameter systems. In Section 2 we give a short overview of the lumped

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 239–255, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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parameter case, where the main ingredients and tools for the construction of a
port controlled Hamiltonian system with dissipation or PCHD system are pre-
sented. In Section 3 we extend this approach to distributed parameter systems.
This extension is not unique at all, but the presented approach has the capability
to cover several physical systems of interest. We use differential geometry as the
basic mathematical tool. Since the methods for PDEs are not so well known like
the methods for ODEs, the reader will find a short summary of these methods
in the Appendix. It is worth mentioning that the presented approach is a formal
one, where we assume the existence of several maps and the correctness of our
manipulations, but we show neither their existence nor we prove the correct-
ness from the functional analysis point of view. We will use the tensor notation
with Einstein’s convention for sums to keep the formulas as short as possible. In
addition, we confine ourselves to the time invariant case.

2 The Finite Dimensional Case

Let us consider the following system

ẋα =
(
Jαβ (x) −Rαβ (x)

)
∂βH (x) + Bα

ς (x) uς , (1)

α, β = 1, . . . , q, ς = 1, . . . , r, also called a PCHD-system, with the q-dimensional
state x ∈ �q and the r-dimensional input u ∈ �r. The skew symmetric matrix[
Jαβ
]

is the structure matrix, the positive semi definite matrix
[
Rαβ

]
is the dis-

sipation matrix, and H is called the Hamiltonian, see also [11] and the citations
therein. From the relations

d
dt

H = ∂αHJαβ∂βH︸ ︷︷ ︸
=0

− ∂αHRαβ∂βH︸ ︷︷ ︸
≥0

+ ∂αHBα
ς︸ ︷︷ ︸

yς

uς (2)

we see that H is a constant of motion for vanishing dissipation Rαβ = 0 and no
input. If the system is completed by the outputs

yς = ∂αHBα
ς , (3)

then the pair (yς , u
ς), also called a port, describes a discrete flow to the system,

which changes the stored quantity H . One uses R to cover internal losses of H .
Since the equation (1) describes the dynamical system in special coordinates,

we work out the coordinate free description first. We assume, the state x lives
in a q-dimensional smooth manifold X equipped locally with coordinates (xα),
α = 1, . . . , q. Let T (X ), T ∗ (X ) denote the tangent and cotangent bundle of
X equipped with the coordinates (ẋα) and (ẋα) according to the bases {∂α},
{dxα} respectively. Given a function H ∈ C∞ (X ) and a tangent vector field
v = vα∂α ∈ Γ (T (X )), then the change of H into the direction v at the point x
follows as

v (H) = v�dH = vα∂α�∂βHdxβ = vα∂αH (4)
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Obviously, the one form dH ∈ Γ (T ∗ (X )) is the image of H by the exterior
derivative d, and the contraction � describes the canonical product T (X ) ×
T ∗ (X ) → C∞ (X ). The matrices

[
Jαβ
]
,
[
Rαβ

]
represent linear maps of the type

J, R : T ∗ (X ) → T (X ) (5)

with J skew symmetric and R positive semi definite. Obviously, the construction
of the autonomous system is based on the sequence

C∞ (X ) d−→ T ∗ (X )
J,R−→ T (X ) . (6)

It is worth mentioning that v ∈ Γ (T (X )) with

vα =
(
Jαβ −Rαβ

)
∂βH (7)

is met.
To incorporate the input u and output y, we choose two linear spaces U ,

Y = U∗ dual to each other, equipped with coordinates (uς),
(
yς

)
, ς = 1, . . . , r.

Obviously, the natural product uςyς describes the total flow to the system for
the choice of (3). It is also worth mentioning that v

vα =
(
Jαβ −Rαβ

)
∂βH + Bα

ς uς (8)

is not a tangent vector field on X in contrast to (7). Let us introduce the bundle
X × U ρ→ X , where ρ = pr1 is the projection on the first factor, then a section
of this bundle is state feedback. Therefore, v ∈ Γ (ρ∗ (T (X ))) is met, where
ρ∗ (T (X )) is the pullback of T (X ) by ρ∗, see the Appendix. Now, it is easy to
show that v is a true tensor object. Obviously, the matrix [Bα

ς ] describes the
input map B : U → T (X ), as well as its dual B∗ : T ∗ (X ) → Y.

Of special physical interest is the case of the existence of functions Hς ∈
C∞ (X ) such that

Bα
ς = −Jαβ∂βHς , Rαβ∂βHς = 0 , ∂αHςJ

αβ∂βHτ = 0 (9)

is met, because then one can rewrite the system (1) as

ẋα = vα =
(
Jαβ −Rαβ

)
∂β (H −Hςu

ς) =
(
Jαβ −Rαβ

)
∂βH + Bα

ς uς ,
yς = v (Hς) = Bα

ς ∂αH
(10)

with the extended Hamiltonian He,

He = H −Hςu
ς . (11)

If one chooses Yς = Hς for the output, then yς follows from yς = d
dtYς = v (Yς).

In many cases one can measure Yς and yς simultaneously. Therefore, a control
law of the type

uς = −P ςτYτ −Dςτyτ , τ = 1, . . . , r (12)
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with positive (semi) definite matrices [P ςτ ], [Dςτ ], P ςτ , Dςτ ∈ � is easy to
implement. It is straightforward to show, that the equations of motion of the
closed loop follow from

Hc = H +
1
2
HςP

ςτHτ , Jαβ
c = J , Rαβ

c = Rαβ + Bα
ς DςτBβ

τ , (13)

where the index c points to quantities of the closed loop. It is worth mentioning
that the PD control law (12) is very often applied to mechanical systems.

We will not discuss further control strategies for lumped PCHD systems, the
reader is kindly asked to consult the very rich literature, see e.g. [11] and the
citations therein.

3 The Infinite Dimensional Case

To extend the consideration from the finite dimensional case to the infinite di-
mensional one, we have to find counterparts for the state and the state mani-
fold, for the Hamiltonian and for the relations (4), (8) and the maps (5), (6). If
we think of physical examples like beams, strings, etc., then it will be clear,
that a state of a distributed parameter system is given by a certain set of
functions defined on a domain D. Therefore, we introduce a compact set D
with coordinates (X i), i = 1, . . . , p, which is equipped with the global volume
form dX =

∧p
i=1 dX i. Since D is orientable, ∂D denotes the coherently ori-

ented boundary with coordinates
(
X̄ ī
)
, ī = 1, . . . , p−1. We call the coordinates

adapted to the boundary, if X
ī

= X ī is met. Since a state is given by a set of
functions on D, we introduce the state bundle X π→ D, see the Appendix, with
coordinates

(
X i, xα

)
, α = 1, . . . , q, such that a section σ of X defines a state x

by xα = σα (X), X ∈ D. Let i : ∂D → D denote the inclusion map, then i∗ (X )
is the pull back of X to the boundary ∂D.

To proceed with our program, we have to find a counterpart for the Hamil-
tonian. Again from physics it is evident, that we introduce the Hamiltonian
functional H : Γ (X ) → � by

H (σ) =
∫
D

H ◦ jm (σ) dX , σ ∈ Γ (X ) , H ∈ C∞ (Jm (X )) , (14)

where the Hamiltonian density depends not only on xα but also on the jet
coordinates xα

I , #I ≤ m > 0 in general, see also the Appendix.
To define a counterpart for (4), we replace the tangent vector field by a so

called evolutionary vector field v = vα∂α ∈ Γ
(
πn,∗

0 (V (X ))
)
, vα ∈ C∞ (Jn (X )),

see also the Appendix, which corresponds to the set of partial differential
equations

Ẋ = 0, ẋα = vα . (15)

Now, one can show, see the Appendix, that the change v (H) of H into the
direction of v at σ is given by the formula
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v (H) (σ) =
∫
D

jm+n (σ)∗ (jm (v) (HdX)) , (16)

which is the wanted counterpart of (4). Here, we confine ourselves to the case
m = 1, since it can be solved by the straightforward application of the integration
by part technique. The general case m ≥ 1 can be found in [3].

3.1 First Order Hamiltonian

To find a manageable expression for (16) with H ∈ C∞ (J (X )), we look at the
relations

j (v) (HdX) = j (v)�dH ∧ dX =
(
vα∂αH + di (vα) ∂1i

α H
)
dX

and derive by integration by parts, see the Appendix for the horizontal differen-
tial dH , the expression

j (v) (HdX) =
((

vα∂αH − vαdi∂
1i
α H
)

+ di

(
vα∂1i

α H
))

dX

= v�
(
∂αH − di∂

1i
α H
)
dxα ∧ dX

+dH

(
v�∂1i

α Hdxα ∧ ∂i�dX
)

.

From this relation we extract two new maps. The variational derivative δ is the
map

δ : π1,∗
0

(∧p

p
(T ∗ (X ))

)
→ π2,∗

0

(∧p+1

p
(T ∗ (X ))

)
(17)

given in coordinates by

δα (H) =
(
∂αH − di(∂1i

α

)
H . (18)

The second map ∂δ,

∂δ : π1,∗
0

(∧p

p
(T ∗ (X ))

)
→ i∗

(
π1,∗

0

(∧p

p−1
(T ∗ (X ))

))
(19)

follows in coordinates as

i∗
(
∂1i

α Hdxα ∧ ∂i�dX
)

= ∂δα (H) dxα ∧ dX . (20)

Since coordinates adapted to the boundary simplifies several expressions, we use
them from now on. E.g. expression (20) takes the simpler form

i∗
(
∂i

αHdxα ∧ ∂i�dX
)

= ∂1p
α Hdxα ∧ dX .

Two interesting facts are worth mentioning. If we compare the bundles i∗ (J (X )),
J (i∗ (X )) with coordinates adapted to the boundary

(
X ī, xα, xα

1i

)
,
(
X ī, xα, xα

1ī

)
,

then they differ by the variables xα
1p

. Just the derivatives of H with respect to
xα

1p
enter the map ∂δ.
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With the help of (17, 18) and (19, 20) we obtain the required expression for
(16) for first order Hamiltonians as

v (H) (σ) =
∫
D

jn+2 (σ)∗ (v�δ (HdX)) +
∫

∂D
jn+1 (σ)∗ (v�δ∂ (HdX)) (21)

given in coordinates by

v (H) (σ) =
∫
D

jn+2 (σ)∗ (vαδα (H) dX) +
∫

∂D
jn+1 (σ)∗

(
vα∂1p

α (H) dX
)

. (22)

These relations, they are the counterpart of (4), are the basis for the following
investigations.

3.2 Evolutionary Equations for First Order Hamiltonian

Here, we propose the following set of equations

Ẋ
i
= 0 , ẋα = vα =

(
Jαβ −Rαβ

)
δβH + Bα

ς uς (23)

as generalization of (1) to the distributed parameter case. The matrices J , R
describe a skew symmetric and a positive semi definite map

J, R : π2,∗
0

(∧p+1

p
(T ∗ (X ))

)
→ π2,∗

0 (V (X )) ,

which are the counterpart of (5). In addition, there is a natural product given
by the contraction �,

� : π2,∗
0 (V (X ))× π2,∗

0

(∧p+1

p
(T ∗ (X ))

)
→ π2,∗

0

(∧p

p
(T ∗ (X ))

)
.

The evaluation of the volume integral of (22) for v from (23) leads to∫
D

vαδα (H) dX =
∫
D

(
δα (H)JαβδβH︸ ︷︷ ︸

=0

− δα (H)RαβδβH︸ ︷︷ ︸
≥0

+δα (H) Bα
ς uς
)
dX ,

which is the counterpart of (2). Again, there is a canonical output yς ,

yς = Bα
ς δα (H) , (24)

see (3) for the lumped parameter case. Following these considerations we choose
the vector bundle U ρ→ D with coordinates

(
X i, uς

)
, ς = 1, . . . , r for the input

space. Then the output space Y is the bundle Y ρ∗
→ D with coordinates

(
X i, yς

)
dual to U with respect to the product 〈·, ·〉 : Y × U →

∧p (T ∗ (D)) given in
coordinates by yςu

ςdX. Obviously, the pair (yς , u
ς) is nothing else than a port
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distributed over D. Here, the matrix [Bα
ς ] describes the input map B : U →

π2,∗
0 (V (X )), as well as its dual B∗ : π2,∗

0

(∧p+1
p (T ∗ (X ))

)
→ Y.

It must be mentioned here, that there are other generalizations of Hamil-
tonian systems to the distributed parameter case than (23), see [5], [9], [12].
A straightforward extension would be the replacement of the maps J, R, B by
suitable vector valued differential operators.

The introduction of ports distributed over ∂D is more tricky than the previous
case and it is based on the following considerations. We have to add initial and
boundary conditions to (23) to complete the problem. The initial conditions are
simply given by xα = σα

0 , σ0 ∈ Γ (X ) for t = 0. To proceed, we assume the
existence of a special subset of the dependent variables. Let {x̄ς̄} be a subset
of the variables {xα} with the following properties. From the relations ˙̄xς̄ =
f ς̄
(
t, X ī

)
met on ∂D, one is able to determine ẋα = fα

(
t, X ī

)
by differentiation

and elimination with the help of (23). The functions f ς̄ can be chosen freely, there
do not exist hidden constraints between them and their derivatives and/or the
initial conditions and their derivatives.1 Finally, the surface integral of (22) can
be rewritten as ∫

∂D
vα∂1p

α (H) dX =
∫

∂D
˙̄xς̄∂

1p

ς̄ (H) dX . (25)

Now, one possibility for the choice of ports on ∂D is given by

ūς̄ = ˙̄xς̄ , ȳς̄ = −∂
1p

ς̄ (H) , (26)

since it meets ∫
∂D

(
vς̄∂

1p

ς̄ (H) + ȳς̄ ū
ς̄
)

dX̄ = 0 .

But the choice
ūς̄ = −∂

1p

ς̄ (H) , ȳς̄ = ˙̄xς̄ (27)

is also possible. One has to decide in the light of the actual problem, whether
(26), (27) or a combination of them is the correct choice. Analogously to above
we choose the vector bundle Ū ρ̄→ ∂D with coordinates

(
X ī, ūς̄

)
, ς̄ = 1, . . . , r̄

for the input space. The output space Y is the bundle Ȳ ρ̄∗
→ ∂D with coordinates(

X ī, ȳς̄

)
dual to U with respect to the product 〈·, ·〉 : Y × U →

∧p (T ∗ (∂D))

given in coordinates by ȳς̄ ū
ς̄dX. Further constructions of ports on ∂D following

physical considerations can be found in [4].
Before we continue, let us summarize the proposed construction of an au-

tonomous Hamiltonian system with dissipation. The lumped parameter case
was based on the sequence (6). Since we have the two maps δ, ∂δ, see (17), (19),
now, the distributed parameter counterpart of (6) splits in the following manner

1 This may be violated on a set of measure zero.
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π2,∗
0

(∧p+1
p (T ∗ (X ))

)
J,R−→ π2,∗

0 (V (X ))
δ

↗
π1,∗

0

(∧p
p (T ∗ (X ))

)
↘
∂δ

i∗
(
π1,∗

0

(∧p
p−1 (T ∗ (X ))

))
. (28)

In addition, one has to add suitable boundary conditions to complete the system.
Also in the distributed parameter case there exists a more special choice for

the inputs than (23). If there exist functions Hς ∈ C∞ (X ), such that

Bα
ς = −JαβδβHς , RαβδβHς = 0 , δα (Hς)JαβδβHς = 0

is met, then one can rewrite the system as

ẋα = vα =
(
Jαβ −Rαβ

)
δβ (H −Hςu

ς) =
(
Jαβ −Rαβ

)
δβH + Bα

ς uς

yς = v (Hς) = Bα
ς δαH .

(29)

with the extended Hamiltonian density He,

He = H −Hςu
ς . (30)

Obviously, this is the distributed parameter counterpart of (9), (10). Again, if
one chooses Yς = Hς for the output, then yς follows from yς = d

dtYς = v (Yς).
Finally, an interesting case is worth mentioning. If the functions Hς meet Hς ∈

C∞ (J (X )) only, then the input map B contains already differential operators
because of

Jαβδβ (Hςu
ς) = Jαβ

(
∂β (Hς)uς − di

(
∂1i

β (Hς)uς
))

, (31)

where di denotes a total derivative of the jet manifold J2 (X ×D U). Because of
the complexity of this problem, we will not dicuss this problem further, but we
will present an example.

Also here we discuss simple PD control laws for the system (29) only. An
introduction to more complex approaches can be found in [10]. Let us assume,
we can measure Yς and yς simultaneously, and it is possible to implement the
distributed control law

uς = −P ςτYτ −Dςτyτ , P ςτ , Dςτ ∈ C∞ (D) , (32)

with positive (semi) definite matrices [P ςτ ], [Dςτ ]. A short calculation shows,
that the equations of motion of the closed loop follow from

Hc = H +
1
2
HςP

ςτHτ , Jαβ
c = J , Rαβ

c = Rαβ + Bα
ς DςτBβ

τ . (33)

Obviously, the equations (32), (33) are the counterpart of (12), (13). To complete
the problem, we connect the systems on ∂D by ports of the type (27) to a PD
controller
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ūς̄ = P̄ ς̄ τ̄ Ȳτ̄ + D̄ς̄ τ̄ ȳτ̄ (34)

with ȳς̄ = ˙̄xς̄ , Ȳς̄ = x̄ς̄ and positive (semi) definite matrices
[
P̄ ς̄ τ̄
]
,
[
D̄ς̄ τ̄
]
,

P̄ ς̄ τ̄ , D̄ς̄ τ̄ ∈ C∞ (∂D). Of course, it must be possible to measure ȳς̄ and Ȳς̄ .
Finally, the Hamiltonian functional H of the closed loop follows as

H =
∫
D

HcdX +
∫

∂D

1
2
Ȳς̄ P̄

ς̄ τ̄ Ȳτ̄dX

after a short calculation. In a similar way one derives v (H),

v (H) = −
∫
D

δα (Hc)Rαβ
c δβHcdX−

∫
∂D

ȳς̄D̄
ς̄ τ̄ ȳτ̄dX ,

where vα = ẋα denotes the evolutionary field generated by the equations of
motion. From these relations it follows, that H is a candidate for a Liapunov
function, provided H is a positive definite functional.

4 Examples

In this section we present two examples, the first one is the one dimensional wave
equation, the second one deals with a piezoelectric mechanical structure. The
purpose of the first example, which is quite simple, is to show the application
of the previous introduced mathematical machinery, whereas the second one is
supposed to prove the applicability of the proposed approach to problems with
at least two physical domains.

4.1 Wave Equation

Let us consider a rod of length L. Therefore, we chooseD = [0, L] with coordinate
X . The dependent variables are the displacement u and the linear momentum p.
Therefore, (X, u, p) are the coordinates of the state bundle X . The Hamiltonian
functional is given by the total energy of the rod H

H =
∫ L

0

(
1
2ρ

(p)2 +
E

2
(u11)

2
)

︸ ︷︷ ︸
=H

dX , H ∈ C∞ (J (X )) ,

where ρ ∈ R+ is the mass density and E Young’s modulus. The structure matrix
J is

J =
[

0 1
−1 0

]
.

With the variational derivatives for this problem

δu = ∂u − d1∂
1
u , δp = ∂p , d1 = ∂x + u11∂u + u11+11∂

11
u
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the evolutionary equations of the free system without dissipation (R = 0) are[
u̇
ṗ

]
=
[

0 1
−1 0

] [
δuH
δpH

]
=
[

p/ρ
Eu11+11

]
. (35)

With the boundary maps

∂δu = ∂11
u , ∂δp = ∂11

p

one derives the pair u̇, Eu11 according to (25). Please note, that ṗ can be derived
form u̇ by differentiation and that ∂δpH = 0 is met. Since u̇ need not to be
continuous, one can assign any L2 function to u̇ at ∂D. Here, we choose the
boundary condition

u̇ = 0 for X = 0 and Eu11 = 0 for X = L (36)

to prohibit energy exchange over the boundary.
Now we assume, there exists a distributed input F , such that the equation

(23) takes the form [
u̇
ṗ

]
=
[

p/ρ
Eu11+11

]
+
[

0
1

]
F . (37)

The input can also be absorbed into the Hamiltonian density He = H − uF , see
(29). A short calculation shows that the collocated output is given by y = u̇ =
p/ρ, see (24). Let us choose the control law, see (32),

F = −Ku−Du̇ , K, D ∈ �+ , (38)

then the closed loop has again the structure of a PCHD system with Hamiltonian
functional

H =
∫ L

0

(
1
2ρ

(p)2 +
K

2
(u)2 +

E

2
(u11)

2
)

︸ ︷︷ ︸
Hc

dX

and evolutionary equations[
u̇
ṗ

]
=
([

0 1
−1 0

]
−
[

0 0
0 D

])[
δuHc

δpHc

]
.

With the boundary conditions from above, we derive the relation

v (H) = −
∫ L

0
D

(
p

ρ

)2

dX ≤ 0 .

Therefore, H is a candidate for a Liapunov functional.
Often, a distributed input like (37) is impossible to implement, but boundary

control is possible. Therefore, we change the boundary conditions (36) at X = L,
see (34), to

E u11 |X=L = −K̄ u|X=L − D̄ u̇|X=L , K̄, D̄ ∈ �+ , (39)
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and introduce the new Hamiltonian functional H,

H =
∫ L

0

(
1
2ρ

(p)2 +
E

2
(u11)

2
)

dX +
K̄

2
(u|X=L)2 .

The equations of motion are the same like (35). Again, we conclude from the
relation

v (H) = −D̄
(
u̇|X=L)2 ≤ 0 ,

that H is a candidate for a Liapunov functional. Of course, one can combine the
control laws (38) and (39).

4.2 Piezoelectric Structures

Although we confine ourselves to models of linearized elasticity, linearized quasi
static electrodynamics combined with linear constitutive relations, the models
are already quite complex, see [8]. Therefore, we present two approaches only,
how one can set up such a model from a Hamiltonian point of view, but we will
not explain the fundamental basics.

Let D denote the domain of the 3-dimensional mechanical structure equipped
with the Euclidean coordinates

(
X i
)
, i = 1, 2, 3, which are used to mark the

positions of the mass points. The actual position of a mass point X is given by
uα + δα

i X i, where uα, α = 1, 2, 3 are the displacements. The state of the elastic
structure, is given by the positions, or equivalently by the displacements uα, and
linear momenta p = ρu̇ with the mass density 0 < ρ ∈ C∞ (D). Therefore, we
choose the state bundle (X , π,D) equipped with local coordinates

(
X i, uα, pα

)
.

Let us assume, the piezoelectric material admits a stored energy density eE ,∫
S

deE ∧ dX =
∫
S

(
σijdεij + EςdDς

)
∧ dX ,

which holds for any nice subset S ⊂ D. Here, Eς , ς = 1, 2, 3 are the components of
electrical field strength E, Dς are the components of the electrical flux density
D, σij , j = 1, 2, 3 are the components of the stress tensor σ and εij , 2εij =
δjαuα

i + δiβuβ
j , are the components of the strain tensor ε. Since we choose the

electrical field strength E for the plant input, we rewrite the relation from above
as ∫

S
d
(
eE −DiEi

)︸ ︷︷ ︸
êE

∧dX =
∫
S

(
σijdεαβ −DidEi

)
∧ dX

and derive the modified stored energy density êE . The linearized constitutive
equations

σij = Cijklεkl −GijςEς , Dς = Gijςεij + F ςτEτ

with k, l, τ = 1, 2, 3 and Cijkl , Gijς , F ςτ ∈ C∞ (D) follow from the density êE ,

êE =
1
2
εijC

ijklεkl − εijG
ijςEς −

1
2
EςF

ςτEτ ,
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because the integrability conditions Cijkl = Cjikl = Cij lk = Cklij , Gijς =
Gijς , F ςτ = F τς are met.

To derive the Hamiltonian density H of the free system, we combine the
kinetic energy density eK ,

eK =
1
2ρ

pαδαβpβ

with êE , for Eς = 0 and get

H =
1
2ρ

pαδαβpβ +
1
2
εijC

ijklεkl . (40)

To take the input E into account, we choose the input bundle U with coordinates(
X i, Eς

)
and introduce the extended Hamiltonian density He, see (30),

He = H −HςEς = H −GijςεijEς .

After a short calculation the equations of motion, see (29), follow in the form

u̇α = δαHe =
1
ρ
δαβpβ , δα =

∂

∂pα

ṗα = −δαHe = di

(
δαj

(
εklC

ijkl − δαjG
ijςEς

))
, δα =

∂

∂uα
− di

∂

∂uα
1i

,

Here, J takes the canonical form

J =
[

0 I3×3
−I3×3 0

]
the matrix R vanishes and di is a total derivative of J2 (X ×D U).

Several facts are worth mentioning. This example shows, how total derivatives
di may appear in the input map. Since the basic equations belong also to quasi
static electrodynamics, the electrical field E admits a potential P with Ei =
−∂iP . Obviously, the input E must meet certain integrability conditions, and a
better choice for the input space starts is a bundle U with coordinates

(
X i, P

)
.

Its first jet manifold J (U) with coordinates
(
X i, P, P1i

)
contains the coordinates

Eς in a natural manner because of Ei = −P1i . If the piezoelectric material is
a non insulator, then the volume charge density must vanish. Therefore, the
additional equation dςD

ς = dς

(
Gijςεij + F ςτEτ

)
= 0 must be fulfilled. This

relation has been omitted.
In the model from above we have taken into account the influence of the

electrical field on the mechanical field, but we neglected the opposite influence.
In addition, the choice of P or E for the input is of little practical interest. A
more adequate choice for the input are the electrical voltages U ς , ς = 1, . . . , r
applied to the electrodes, which are embedded in the structure. A special case
of practical interest is the case

P = ΦςU
ς , Φς ∈ C∞ (X ) .
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with the extended Hamiltonian density He,

He = H −HςEς = H + Gijkεijdj (Φς)U ς .

Fortunately, it is often possible to design sensors, which measure Y ς = Hς and
yς = d

dtY
ς . In this case the implementation of a control law of the type

U ς = −P ςτYτ −Dςτyτ , τ = 1, . . . , r ,

is a simple task. But it must be mentioned, that the expensive part of the
modeling and design problem is the determination of “optimal” functions Φς .

5 Conclusions

The main goal of this contribution is to present an extension of port controlled
description of Hamiltonian with dissipation from the lumped to the distributed
parameter case. There exist several extensions, see [5], [9], [12], which start from
different descriptions of lumped parameter Hamiltonian systems. The presented
approach is aimed to be as close as possible to the lumped parameter class given
in coordinates by (1). Roughly speaking, this problem is solved by the equations
(23). The construction is mainly based on the diagram (28), which replaces
the diagram (6) of the lumped parameter case. This diagram also shows how
boundary conditions come up in a natural manner. In addition, it shows also
that one can replace the linear maps J , R by suitable vector valued differential
operators. The same applies to the input map B. Since this extension increases
the complexity of the problem by far, only an example, a piezoelectric structure,
has been presented.

The required mathematical machinery, specific for distributed parameter sys-
tems, has been summed up in the Appendix. Since the presented approach is a
formal one, based on differential geometric considerations, several aspects from
functional analysis are missing. E.g. Sobolev norms on linear spaces and mani-
folds have not been introduced, see e.g. [6], [13], also the existence of solutions
and their uniqueness have not been discussed. Nevertheless, the author thinks
that the presented approach is an interesting field of research for modeling, sys-
tem analysis and controller design from a Hamiltonian point of view.

6 Appendix

An introduction to the basics of differential geometry can be found in many
textbooks, e.g. in [1], or in books about non linear systems and control, like
[7]. Here, we summarize after an introduction some facts about bundles, jet
manifolds and semi groups only. The reader is kindly asked to consult the books
[5], [9] and [2], to find out more about these topics.

The tangent and cotangent bundle of a q-dimensional manifold M with co-
ordinates

(
xi
)
, i = 1, . . . , q are denoted by T (M), T ∗ (M), where we use
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the standard coordinates
(
xi, ẋi

)
,
(
xi, ẋi

)
according to the bases span({∂i}),

span({dxi}). The symbol C∞ (M) stands for the set of smooth functions on
M. The bundles of p-forms on M are denoted by

∧p (T ∗ (M)) and we set∧0 (T ∗ (M)) = C∞ (M),
∧1 (T ∗ (M)) = T ∗ (M) and

∧
(T ∗ (M)) for the exte-

rior algebra generated by T ∗ (M). We use the symbol d for the exterior derivative
d :
∧r (T ∗ (M)) →

∧r+1 (T ∗ (M)), r ≥ 0 and denote the contraction of a form
along a field by � : T (M)×

∧r (T ∗ (M))→
∧r−1 (T ∗ (M)), r ≥ 1.

6.1 Bundles

A bundle is the triple E π→ B with the p-dimensional base manifold B, the (p + q)-
dimensional total manifold E and a surjective submersion π : E → B. All fibers
FX = π−1 (X), X ∈ B are isomorphic to the typical fiber F . We use so called
adapted coordinates, where

(
X i, xα

)
, i = 1, . . . , p, α = 1, . . . , q are coordinates

for E and
(
X i
)

are coordinates for B. A section2 of E is a map σ : B → E with
π◦σ = idB with the identity map idB on B. The set of all sections of E is denoted
by Γ (E).

The vertical bundle V (E) of E is the subbundle of T (E), which meets, v ∈
V (E) implies π∗ (v) = 0. Obviously, V (E) is a vector bundle. From the cotangent
bundle T ∗ (E) we derive the subbundles

∧s+r
r (T ∗ (E)) with bases dxα(1) ∧ · · · ∧

dxα(s) ∧ dX i(1) ∧ · · · ∧ dX i(r). A short calculation shows that
∧r

r (T ∗ (E)), 1 ≤
r ≤ p and

∧p+s
p (T ∗ (E)), 1 ≤ s ≤ q are vector bundles. Of special interest

are the annihilator of V (E) given by
∧1

1 (T ∗ (E)), the space of densities given
by
∧p

p (T ∗ (E)) with basis {dX}, dX =
∧p

i=1 dX i and the space of densities with
direction given by

∧p+1
p (T ∗ (E)) and basis {dxα ∧ dX}.

6.2 Jet Manifolds

Since we have to determine several partial derivatives of order n, we use the
notation of an ordered multi index I with

∂I = (∂1)
I(1) · · ·

(
∂p

)I(p)
,

∂

∂X i
= ∂i

and I = I (1) , . . . , I (p) and #I =
∑p

i=1 I (i). The special index I, I (i) = δij
3

is denoted by 1j . Finally, the sum I + J of two indices is the sum of their
components. Given a bundle E π→ B and a section σ then its n-order prolongation
jn (σ) of σ is given by

xα
I = ∂Iσ

α , 1 ≤ #I ≤ n ,

where we already used the jet coordinates xα
I . One can show that the space of

all prolongations of n-th order is a manifold Jn (E) , called the n-th order jet

2 We use the abbreviation E for the bundle E π→B, whenever the base manifold B and
the projection π are clear from the context.

3 δij denotes the Kronecker symbol with δij = 0 for i �= j and otherweise δii = 1.
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manifold. Also here we use the adapted coordinates
(
X i, xα

I ) , 0 ≤ #I ≤ n,
where we set xα

I = xα for #I = 0. These jet manifolds are connected by the
following sequence

Jn (E)
πn

n−1→ Jn−1 (E) → · · · → J1 (E) = J (E)
π1
0→ J0 (E) = E π→ B .

We also use the abbreviation πk
l = πk

k−1 ◦ · · · ◦ πl−1
l and πk = πk

k−1 ◦ · · · ◦ π.
These maps will be used to pull back several bundles. Given a bundle E → B
with adapted coordinates (X, x) and a manifoldM with coordinates (z) together
with a map f :M→ B, we call the bundle f∗ (E)

pr1→ M, f∗ (E) = {(z, (X, x)) ∈
M × E , π ((X, x)) = X = f (z)} the pull back of E by f . The diagram

f∗ (E)
pr2→ E

pr1↓ ↓π

M f→ B
,

visualizes this construction. If M is a bundle E ρ̄→ B and f = ρ̄ is met, then we
write E ×B E instead of ρ̄∗ (E).

It is an important fact, that span{dX i} and the contact forms

θα
I = dxα

I − xα
I+1i

dX i

form a basis of πn+1,∗
n (

∧
T ∗ (Jn (E))). In addition, the n-th order prolongation

of σ ∈ Γ (E) meets
jn (σ)∗ (θα

I ) = 0 , 0 ≤ #I < n . (41)

Elements of the annihilator of span{θα
I } are called total derivatives, a basis is

given by span{di} with

di = ∂i + xα
I+1i

∂I
α , ∂I

α =
∂

∂xα
I

, (42)

where di is called the total derivative into the direction of X i. Obviously, di is
also a map di : C∞ (Jn (E))→ C∞ (Jn+1 (E)

)
, which meets

jn+1 (σ)∗ (di(f)) = ∂i

(
jn (σ)∗ f) , f ∈ C∞ (Jn (E)) .

With the help of di one derives the horizontal differential dH given by

dH

(
ω) = dX i ∧ di (ω) (43)

in coordinates. It meets for ω = hi∂i�dX ∈ πn,∗
0

(∧p−1
p−1 (T (E))

)
∫
D

jn+1 (σ)∗ (dHω) =
∫

∂D
d
(
jn (σ)∗ (ω)

)
,

which is nothing else than Stokes’ theorem adapted to bundles.
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6.3 Semi Groups on Bundles

Let us consider a semi group φτ : �+ × Γ (E) → Γ (E) that maps sections to
sections of the bundle E → B according to

στ = φτ (σ) , σ = σ0, στ ∈ Γ (E) , τ ∈ [0, T ]
στ1+τ2 = φτ1 ◦ φτ2 (σ) , στ1+τ2 ∈ Γ (E) , τ1, τ2, τ1 + τ2 ∈ [0, T ]

for a certain T ∈ �+. We assume the existence of functions vα ∈ C∞ (Jn (E))
such that

vα ◦ jn (σ) = ∂τφα
τ (σ)|τ=0 (44)

is met. It is straightforward to show that v = vα∂α meets v ∈ Γ
(
πn,∗

0 (V (E))
)
.

In the case n > 0 the field v is not a tangent vector field and does not generate a
flow, but it generates the semi group φτ by the set of partial differential equations

Ẋ i = 0 , ẋα = v , (45)

provided suitable boundary conditions are added.
To prolong v to a field j (v) = v + vα

i ∂i
α ∈ Γ

(
πn+1,∗

0 (V (J (E)))
)
, we prolong

φt (σ) to j (φt (σ)). From the relation

j (φτ ◦ σ)∗ (θα) = 0 ,

we derive immediately

∂τ j (φτ ◦ σ)∗ (θα)
∣∣
τ=0 = j (σ)∗ (j (v) (θ)) = 0 .

The Lie derivative of a contact form along j (v) must be the sum of contact forms,
since it lies in the kernel of j (σ)∗. After some calculations one derives the result
vα

i = di (vα). This result can easily be extended to higher order prolongations
and one gets the prolongation formula

jn (v) = vα∂i +
n∑

#I=1

dI (vα) ∂I
α , dI = (d1)

I(1) ◦ · · · ◦ (dp)
I(p) (46)

for v ∈ Γ
(
πn,∗

0 (V (E))
)
.

Let us consider the functional F : Γ (E)→ �,

F (σ) =
∫
D

f ◦ jm (σ) dX , σ ∈ Γ (E) , f ∈ C∞ (Jm (E)) . (47)

The change of (47) along a semi flow φt, which meets (44), follows after a short
calculation as

∂tF (φt ◦ σ)t=0 =
∫
D

jm+n (σ)∗ (jm (v) (fdX)) .

Therefore, we introduce the new functional v (F) (σ),

v(F) (σ) =
∫
D

jm+n (σ)∗ (jm (v) (fdX)) , (48)

which measures the change of F into the direction of v at the point σ. It is worth
mentioning, that (48) does not require that v is linked to a semi group by (45).
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Observability and the Design of Fault Tolerant
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Summary. This chapter presents a structural analysis approach for the design of fault
tolerant estimation algorithms. The general fault tolerance problem setting is first
given, and structural analysis is presented in the component based modeling frame.
An original condition for structural observability is developed, which is constructive,
since it allows to identify those Data Flow Diagrams by which unknown variables
can be estimated, both in healthy and in faulty conditions. The link with two basic
dependability concepts, namely critical faults and reliability is shown.

Keywords: Structural Analysis, Observability, Fault Tolerance.

1 Introduction

In increasingly complex systems, faults may lead to performance degradation,
instability, loss of control. Fault tolerance is needed to preserve the ability of
the system to achieve the objectives it has been assigned, or if this turns out
to be impossible, to assign new (achievable) objectives and avoid catastrophic
behaviors.

The design of Fault Tolerant Systems (FTS) is a recent research field [1], [14],
[19], [29]. Most works use the quantitative system behavior model, for exam-
ple, state and output equations in the time or in the symbolic domain, in order
to design automatic procedures by which faults can be handled. However, inte-
grating such approaches in large scale, complex, partially automated systems,
where control and maintenance performances are dependent, needs the analysis
to be carried out at the components / subsystems level. Structural analysis uses
graph-theoretical based tools that allow this kind of analysis. It has been used
for the decomposition of large scale systems [28], [13], [7], [8], the analysis of
observability and controllability [16], [17], [12], [21], the design of control and
diagnostic systems [23], [22], [5], [3], [24], [4], including sensor placement [2], [20].

This paper develops a structural analysis approach to the design of fault
tolerant estimation. A clear setting of the Fault Tolerance (FT) design problem,
based on behavior models, is first given in Section 2. In Section 3, the structural
model of a system is presented at the component / subsystems level. Section 4
establishes an original condition for structural observability, which is applied in

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 257–278, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
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Section 5 to the design of Fault Tolerant Estimation of observable variables. By
establishing the link with the basic concept of critical faults, it is also shown
that this approach allows a clear definition and evaluation of the achieved FT
performance level.

2 Fault Tolerance

This section introduces the basic concepts that are needed to properly address
the design of fault tolerant systems.

Given a set of nominal systems SN = {Σn, n ∈ N}, a (disjoint) set of faulty
systems SF = {Σf , f ∈ F} , and a property P , we wish to design control and
estimation algorithms such that P is true for every Σn ∈ SN (robustness) and
for every Σf ∈ SF (fault tolerance - FT) [1]. In this paper, we are interested only
in FT. The set SF is the FT specification, i.e. the faults under which property P
is wished to be invariant, while P is the design objective, e.g. stability, dynamic
performance, etc. Obviously, SF ⊆ SF where SF is a set of faults that are
likely to occur (obtained via approaches like fault trees, fault modes and effects
analysis). In the sequel, the notation P (Σ, a) stands for ”Property P is true for
system Σ equipped with algorithm a”.

2.1 Passive and Active Fault Tolerance

There are two ways to set the FT problem [1].
Passive fault tolerance (PFT), aims at designing an algorithm a that achieves

property P in all cases:

∀Σ ∈ SN ∪ SF : P (Σ, a) (1)

Note that this problem is identical to the robust control problem, where SN has
been replaced by SN ∪ SF .

In active fault tolerance (AFT), property P is obtained (when possible) by
designing an algorithm a for each post-fault system. Assume that fault f ∈ F
has occurred, the post-fault system may be chosen as the faulty system itself -
Σf - or as the subsystem Σ̃f that is obtained by switching-off the faulty compo-
nents. The first strategy: adapt the algorithm to the faulty system, is called fault
accommodation (FA). It is defined by the statement

∀Σf ∈ SF : P (Σf , a (Σf )) (2)

and it obviously needs the model Σf to be known in order to design a(Σf ).
The second strategy: adapt the algorithm to the healthy subsystem of the faulty
system, is named system reconfiguration (SR). It is defined by the statement

∀Σf ∈ SF : P (Σ̃f , a
(
Σ̃f

)
) (3)

and since the models of the healthy components are known, it only needs the
isolation of the faulty ones (to be switched-off). Note that SR may be impossible
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(e.g. there is no mechanism in the system to switch-off some of the faulty com-
ponents). Therefore, mixed FA/SR strategies must often be used. In the sequel
we are only interested in Active Fault Tolerance.

2.2 Recoverable Faults

A fault Σf ∈ SF is FA-recoverable (resp. SR-recoverable) if there exists a solution
to the FA problem (resp. to the SR problem). Let Fr (P ) be the set of all
recoverable faults for property P , i.e.

Fr (P ) =
{
Σf ∈ SF : ∃af s.t. P (Σf , af ) ∨ P (Σ̃f , af )

}
The FT specification is met if and only if SF ⊆ Fr (P ).

2.3 Objective Reconfiguration

For non recoverable faults the original objective cannot be satisfied. Objective
reconfiguration is then the only behaviour that makes sense from a control point
of view. Objectives can be changed in two ways:

(1) by accepting performance degradation [15], i.e. by specifying a new prop-
erty P− which is weaker than P in the following sense

∀a, ∀Σ ∈ SN ∪ SF : P (Σ, a) =⇒ P− (Σ, a)

(2) by abandoning the current mission and changing the users expectations,
which results in an objective associated with a brand new set of properties P ′ [1].

The new objective P ∗ (which stands here either for P− or for P ′) must be con-
sistent, i.e. if fault Σf was not recoverable for P, it must be recoverable for P ∗ :

∀Σ /∈ Fr (P ) , P ∗ consistent =⇒ Σ ∈ Fr (P ∗) .

A critical situation is reached when there is no consistent objective reconfigura-
tion for some fault Σf .

3 Component Based Model and Structural Analysis

This section presents the component based modeling frame as the natural frame
in which both fault tolerance and structural analysis can be clearly set.

3.1 Components, Systems and Subsystems

A system Σ is a set of interconnected (hardware and software) components.
The normal behavior of each component comp ∈ Σ is described by a pair
(C(comp), V (comp)) where V (comp) is a set of variables, whose values belong
to some set V(comp) and C(comp) is a set of dynamic and/or static constraints
which apply to these variables. Interconnections imply that some variables are
common to several components.
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The behavior model of the system is the pair (C (Σ) , V (Σ)), where

V (Σ) =
⋃

comp∈Σ

V (comp) (4)

is the set of the system variables, while

V (Σ)=
∏

comp∈Σ

V(comp) (5)

is the set of their possible values, and

C (Σ) =
⋃

comp∈Σ

C(comp) (6)

is the set of the system constraints. When necessary, parameters are taken into
account, by including them as system variables.

The variables in V (Σ) are inputs, outputs or internal variables, which can be
decomposed into

V (Σ) = K (Σ) ∪X (Σ) (7)

where K (Σ) are known (computed or measured) and X (Σ) are unknown. The
set K (Σ) can be expanded to K̄ (Σ) by considering also, for each variable in
K (Σ), a number of its time derivatives (if continuous time is considered) or its
shifted time values (if discrete time is considered). The size of the expansion
need not be specified here.

A subsystem σ ⊂ Σ is a subset of components along with their interconnec-
tions. Its variables V (σ), set of values V(σ)and constraints C(σ) are defined by
(4), (5) and (6), replacing Σ by σ. More generally, subsystems are defined as
subset of constraints along with the variables they are associated with. Intercon-
necting two subsystems whose behavior is (C1, V1) and (C2, V2) boils down to
create the subsystem whose behavior is (C, V ) where C = C1∪C2 and V = V1∪V2
(without repetitions of the shared variables).

In the sequel, since there is no ambiguity, the notations will be simplified into
C, V, V, K, X , and both the system and its behavior will be noted as (C, V ).
Deterministic behavior models are usually under the state-space form

ẋ = f(x, u, t) (8)
y = g(x, u, t)

where x is the state, u is the control inputs, y is the sensors outputs. Then C =
{f, g} , V = {x, u, y} , K = {u, y} , X = {x} . When static equations are included,
internal variables are decomposed into static ones xs and dynamic ones xd:

ẋd = f(xd, xs, u, t) (9)
0 = h(xd, xs, u, t)
y = g(xd, xs, u, t)

Then C = {f, g, h} , V = {xd, xs, u, y} , K = {u, y} , X = {xd, xs} . A canonical
form is obtained by introducing a new set of variables and constraints
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z = δ (xd) � dxd

dt
(10)

and replacing ẋd by z in (9). The system becomes

z = f(xd, xs, u, t) (11)
0 = h(xd, xs, u, t)
y = g(xd, xs, u, t)
z = δ (xd)

Then C = {f, g, h, δ} where {f, g, h} are static constraints and δ � d
dt is the set

of dynamic constraints, V = {xd, z, xs, u, y} , X = {xd, z, xs}, K = {u, y} .

3.2 Faults

No matter whether a component comp, a subsystem σ or the whole system Σ is
considered, denote by C and V its sets of constraints and variables and by H0,
H1 = ¬H0 the propositions ”comp/σ/Σ is healthy” and ” comp/σ/Σ is faulty”.

Let V̂ ∈ V be a realization of the variables V , it is consistent with re-
spect to the constraints C iff all the constraints are satisfied - this is noted
True

[
C, V̂

]
- otherwise it is inconsistent (i.e. at least one constraint is falsified

by V̂ ) - this is noted False
[
C, V̂

]
. Introducing True [C, V ] /False [C, V ] instead

of True
[
C, V̂

]
/False

[
C, V̂

]
means that any realization V̂ of the variables V is

considered. Then one obviously has:

Definition. A healthy component / subsystem / system is defined by (12). A
faulty component / subsystem / system is defined by (13):

H0 ⇐⇒ True [C, V ] (12)
H1 ⇐⇒ ∃c ∈ C : False [c, V ] (13)

A fault is therefore defined as the violation of one or several constraints in C.
As there are

∣∣2C
∣∣− 1 different ways to falsify the constraints C, it follows that

any non empty subset of C is a theoretically possible fault mode.

Remark. At this stage, no model of the falsified constraints is necessary (for
example additive or multiplicative). A model will only be needed when a fault
accommodation algorithm will be designed.

3.3 Structure

The structure of a system (C, V ) is an abstract representation of its behavior,
where we are interested only in the existence of constraints, but not in their
mathematical expression1.
1 Being independent on the mathematical expression of the constraints, structural

analysis results are valid both for linear and for nonlinear systems.
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Definition. The structure of the system (C, V ) - or its structural graph - is a
bi-partite graph G(C, V, E) with the two sets of nodes C and V and the set of
edges E ⊂ C × V defined by (ci, vj) ∈ E if and only if the variable vj appears
in the constraint ci.

The bi-partite graph is not oriented: it only expresses that all the variables
adjacent to a given node satisfy the (static or dynamic) constraint this node
represents (whatever its form and parameters). System structures can be repre-
sented by their incidence matrix where the intersection of row i and column j is
1 if and only if (ci, vj) ∈ E otherwise it is 0. Any chain between two nodes is an
alternated chain because a node in C can only be adjacent to nodes in V and
vice-versa.

Subsets of rows and columns of the incidence matrix define subgraphs of the
bi-partite graph. Practical interpretations of some subgraphs are as follows:

- the set of rows associated with the constraints in C (comp) represent the
component comp, a subset of them represents a fault mode of component comp,

- several such sets are a subsystem formed by the interconnection of several
components (by extension, a subsystem is a subset of rows),

- a subset of columns represents a subset of variables that may be known (con-
trolled inputs, measured outputs), or unknown (non measured inputs, states),
observable or not, controllable or not.

Remark. System structures can also be defined by directed graphs (digraphs)
[5], [16], [17]. The set of nodes is then restricted to the set of variables, and edges
become arcs that represent causal influences between variables. We use bi-partite
graphs for their capability to integrate static as well as dynamic constraints.

It is usefull to define the two projections:

PV : C → V
c '→ PV (c) = {v ∈ V : (c, v) ∈ E}

PC : V → C
v '→ PC(v) = {c ∈ C : (c, v) ∈ E}

PV associates with each constraint c the set of variables to which it applies, and
PC associates to each variable v the set of constraints to which it is submitted.

3.4 Matching

Let G (C, V, E) be the structure of the system (C, V ).

- A matching M is a subset of disjoint edges of E (any two edges have no
common node, neither in C nor in V ). The set M of all matchings is a subset of
the lattice 2E, therefore it has maximal elements.

- A maximal matching M is such that: ∀N ∈ 2E, M ⊂ N , N is not a matching
(no edge can be added without violating the no common node property). The set
M being partially ordered, there is in general more than one maximal matching.
Let M∗ ⊆ M be the set of maximal matchings. Each matching can be associated
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with the subsets πC(M) and πZ(M) of its matched constraints and matched
variables. From the definition, maximal matchings obviously satisfy

∀M ∈ M∗
{

πC(M) ⊆ C
πZ(M) ⊆ V

from where it follows that

|M | ≤ min{|C| , |V |}.
Matchings for which the equality holds are called complete, namely a complete

matching on C is such that |M | = |C| while a complete matching on V is such
that |M | = |V |.

3.5 Oriented Graph Associated with a Matching

Orientation. A matching on a structure graph defines an oriented graph as
follows:

- if constraint c is matched, i.e. ∃v ∈ V : (c, v) ∈M , the edge (c, v) is oriented
from c to v (v is the output) and for any other variable w ∈ PV (c) \ {v} the
edge (c, w) is oriented from w to c (the w are inputs),

- if constraint c is not matched, all edges (c, w) , w ∈ PV (c) are oriented from
w to c (inputs), the constraint has no output.

Paths. When oriented, alternated chains in G(C, V, E) produce alternated paths.
The alternated chain zi − δi − xi associated with the ith dynamic constraint in
(11) becomes a path in integral causality, if the matching contains (δi, xi), and
a path in derivative causality if the matching contains (δi, zi).

Reachability. A variable v is reachable from a variable w iff there exists an
alternated path from w to v. A variable v is reachable from a subset χ ⊆ V \ {v}
iff there exists w ∈ χ such that v is reachable from w.

Loops. An alternated path from v to v is a loop. A loop that contains only static
constraints is a static loop. Otherwise it is a differential loop (which means that
it contains at least one path xi → δi → zi, or zi → δi → xi for some index i,
according to the fact that δi is in derivative or integral causality). An alternated
path may include loops.

Example. Figure 1 shows a bi-partite graph where cercles are variables and bars
are constraints. The matchings n◦1 : {(c1, x1) , (c3, y)}, n◦2 : {(c2, x2) , (c3, x1)},
and n◦3 : {(c1, x1) , (c2, u) , (c3, y)} are respectively non-maximal, maximal, and
complete w.r.t. the constraints.

Matching n◦3 gives an oriented graph in which x2 → c1 → x1 → c3 → y
is an alternated path. Assume that constraint c1 writes c1 : x2 = d

dtx1, then
it is matched in integral causality. Variable y is reachable from x1 and x2,
but not from u. Under the above form of c1 the complete matching n◦4 :
{(c1, x2) , (c2, x1) , (c3, y)} would give the differential loop x1 → c1 → x2 →
c2 → x1 with c1 in derivative causality.
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(a) (b)

Fig. 1. Matching and oriented graph: (a) bi-partite graph; (b) oriented graph associ-
ated with matching n◦3

4 Structural Observability

Given an unknown variable x, this section introduces specific subgraphs of the
structural graph, namely x-rooted elementary graphs, and shows that they pro-
vide a constructive means to decide about the observability of x.

4.1 Elementary Graph

Let G (C, V, E) be a bi-partite graph and Ge(Ce, Ve, Ee) be a connected oriented
sub-graph such that:

(i) each variable v ∈ Ve satisfies di(v) ≤ 1
(ii) each constraint c ∈ Ce satisfies de(c) = 1

where di(s) - resp. de(s) - is the in-degree (resp. the out-degree) of node s.
Let us decompose the variables into:

- inputs: {v ∈ Ve : di(v) = 0, de(v) ≥ 1},
- internal variables: {v ∈ Ve : di(v) = 1, de(v) ≥ 1} ,
- outputs: {v ∈ Ve : di(v) = 1, de(v) = 0} .

Ge(Ce, Ve, Ee) is called elementary graph. It follows from (i) and (ii) that it
is associated with a complete matching on the set of its internal and output
variables. An elementary graph may be without any input (it is then called
autonomous) and/or without any output.

Example. Figure 2 shows some elementary graphs: the simple path (a) has
one input {y} , one internal variable {x1}, one output {x2}, and it is associ-
ated with the matching {(c1, x1) , (c2, x2)} ; the tree (b) has 2 inputs {u, y} ,
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one internal variable {x1} , one output {x2} , and is associated with the
matching {(c1, x1) , (c2, x2)} ; the loop (c) has 3 inputs {x1, x2, x6} , 3 inter-
nal variables {x3, x4, x5} , no output, and is associated with the matching
{(c3, x3) , (c4, x4) , (c5, x5)}. Deleting the variables {x1, x2, x6} in graph (c) would
create an autonomous graph. Superposing the 2 nodes x1 and the 2 nodes x2
of (b) and (c) would provide another elementary graph, with inputs {u, y, x6} ,
internal variables {x1, x2, x3, x4, x5} , no output, associated with the matching
{(c1, x1) , (c2, x2) , (c3, x3) , (c4, x4) , (c5, x5)}.

(a) (b)

(c)

Fig. 2. Examples of elementary graphs: (a) simple path; (b) tree; (c) loop

4.2 Constraint Propagation

Resolution

Let Ge({c} , PV (c), E (c)) be an elementary graph with the single constraint
c and let x ∈ PV (c) be the matched variable, one has E (c) = {(c, x)} ∪
{(w, c) , w ∈ PV (c)\ {x}}.

Constraint c writes c(PV (c)) = 0, but it can also be represented by x −
γ(PV (c)\ {x}) = 0 where γ is a function that results from its resolution w.r.t. x.
In other terms:

(c, x) ∈ E(c) : c (PV (c)) = 0 ⇐⇒ x = γ(PV (c)\ {x}) (14)

In the structural frame, this resolution is always possible. Indeed, if constraint
c is static, one has generically
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x ∈ PV (c) ⇐⇒ ∂c (PV (c))
∂x

�= 0

and there exists a γ satisfying (14), at least locally (from the implicit functions
theorem). If constraint c is dynamic, then from (11) it writes z − d

dtx = 0. The
2 possible matchings are:

(1) derivative causality: (c, z) ∈ E(c) : x → c → z ⇐⇒ z(t) = d
dtx(t),

(2) integral causality: (c, x) ∈ E(c) : z → c → x ⇐⇒ x(t) = x(0)+
∫ t

0 z (τ) dτ.

Note that, if the input is assumed to be known (and derivable), the derivative
causality path defines z uniquely, while the path in integral causality defines x
only up to the constant x(0).

Propagation and Equivalent Graph

Consider an elementary non autonomous graph with more than one constraint.
Constraint propagation consists of replacing each internal or output variable,
everywhere it appears, by the result of the resolution of the constraint where it
is matched. The result is a graph whose constraints are structurally equivalent,
where each internal or output variable is expressed as a combination of functions
of the inputs only.

For graphs without loops, the propagation directly results from their decompo-
sition into hierarchical levels (level 0 includes the input variables, level 1 includes
the variables that are matched to constraints whose inputs are all at level 0, ..
level i includes the variables that are matched to constraints whose inputs are
all at levels below i, etc.)

In the case of loops, a path initiated on any variable matched in the loop
terminates on the variable itself, therefore the propagation provides a constraint
which links this variable only to the inputs of the loop, and can be generically
solved.

Example. Let us illustrate constraint propagation and equivalent graphs on
the three examples of Figure 2, the equivalent graphs are respectively shown on
Figures 3, 4 and 5.

Simple path (a): c1(x1, y) = 0 gives x1 = γ1(y). The second constraint
c2(x1, x2)=0 gives x2 =γ2(x1) and by replacing x1 we get x2 =γ2(γ1(y)) � Γ2(y).

Tree (b): According to the same process, one successively gets c1(x1, y) =
0 → x1 = γ1(y), then c2(x1, x2, u) = 0 → x2 = γ2(x1, u) and finally x2 =
γ2(γ1(y), u) � Γ2(y, u).

Loop (c): Starting for example with x3 one has c3(x1, x3, x5) = 0 → x3 =
γ3(x1, x5). Then c4(x3, x4) = 0 → x4 = γ4 (γ3(x1, x5)) and c5(x2, x4, x5, x6) =
0→ x5 =γ5(x2, γ4 (γ3(x1, x5)) , x6) from which it follows that x5 =Γ5 (x1, x2, x6) .
The same process, repeated from the starting nodes x5 and x4, gives respectively
x4 =γ4(γ3(x1, γ5(x2, x6, x4))�Γ4(x1, x2, x6) and x3 =γ3(x1, γ5(x2, x6, γ4(x3)))�
Γ3(x1, x2, x6).
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Fig. 3. Simple path (a) and its equivalent graph

Fig. 4. Tree (b) and its equivalent graph

Fig. 5. Loop (c) and its equivalent graph

Static and Dynamic Constraints

In an elementary graph, a given path will cross a number of static and dynamic
constraints. Constraint propagation between two nodes produces a resultant
constraint whose dynamic order is the number of dynamic constraints crossed
between the two nodes. Therefore, it may happen that, even when the inputs
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of the elementary graph are known, the terminal node is defined only up to a
constant.

Example. Let us consider again cases (a) and (c) of our example, using different
causalities.

Simple path (a): assume the input y is known (for example, y is the output
signal of a sensor measuring the unknown variable x1; note that γ1(y) is there-
fore the inverse of the sensor static model). The table below presents the three
possible cases associated with constraint c2 that links x1 and x2, namely ”s”
(static constraint), or ”d” (dynamic under derivative causality), or ”i” (dynamic
under integral causality). As already noticed in 4.2, the function Γ2(y) that re-
sults from constraint propagation defines x2 only up to a constant in the last
case.

c2 : s x2 = γ2(γ1(y))

c2 : d x2 =
[

∂
∂yγ1(y)

]
ẏ

c2 : i x2 = x2(0) +
∫ t

0 γ1(y)dτ

Loop (c): the inputs x1, x2 and x6 being known, the table below shows that
when c4 is a dynamic constraint, the matching under integral causality gives the
result only up to a constant, as previously.

c4 : i

⎧⎪⎨⎪⎩
x3 = γ3(x1, γ5(x2, x6, x3(0) +

∫ t

0 x3dτ))
x4 = x4(0) +

∫ t

0 γ3(x1, γ5(x2, x6, x4)dτ

x5 = γ5(x2, x3(0) +
∫ t

0 γ3(x1, x5)dτ, x6)

Maybe more surprisingly, this indetermination also holds for derivative causality.
Indeed, since it includes constraint c4, loop (c) is differential, that means that
both x3 and its derivative x4 belong to it. The result is that each expression
produced by constraint propagation is a differential equation, whose resolution
will introduce an (unknown) initial condition.

c4 : d

⎧⎨⎩
x3 = γ3(x1, γ5(x2, x6,

d
dtx3))

x4 = d
dt(γ3(x1, γ5(x2, x6, x4))

x5 = γ5(x2,
d
dt (γ3(x1, x5)) , x6)

4.3 Elementary Graph on x

Let x ∈ X ⊂ V . This variable is observable if and only if its value can be
estimated as a function of the extended known variables K̄ ([6], [10]). Let O(x)
be the property ”x is structurally observable”, we now show that its analysis
follows simply from the analysis of specific elementary graphs.

Definition. Let x ∈ X ⊂ V . An elementary graph on x, Ge(x) - or x-rooted
elementary graph (x-REG) - is a maximal elementary graph such that x is its
only output or it is an internal variable (if the graph has no output).
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An x-REG is noted Ge(x) = (Cx, Vx, Ex) . Let V i
x be the internal variables. It

follows from the definition that the known variables Vx ∩K can only be inputs.
Note that the set of inputs may be empty (the graph is autonomous), and that
some input variables may be unknown. Remind that Ge(x) defines a complete
matching on the set of its constraints and on the set of variables V i

x ∪ {x} (if
there is an output) or V i

x (if there is no output). Finally, it is clear that a given
unknown variable x can possibly be the root of several elementary graphs.

Example. Figure 6 gives two examples of x1-REG, the first one (a) with an
output, and the second one (b) without output.

(a) (b)

Fig. 6. Two examples of elementary graphs on x1: (a) x1 is an output; (b) x1 is internal

Obtaining x-Rooted Elementary Graphs

The following algorithm builds an x-REG. It manipulates 4 sets: the roots of
the current iteration Rcurrent, the roots for the next iteration Rnext, the labelled
variables V L and the labelled constraints CL.

Algorithm. Initialise Rcurrent = {x}, Rnext = ∅, V L = ∅ et CL = ∅.
Start If Rcurrent �= ∅

1 select one variable v ∈ Rcurrent

2 update V L = V L ∪ {v} and Rcurrent = Rcurrent\ {v}
3 If PC(v) ∩ CL = ∅ go to Start

If PC(v) ∩ CL �= ∅
a) select a non labelled constraint c ∈ PC(v) ∩CL
b) update CL = CL ∪ {c} and Rnext = Rnext ∪ PV (c)
c) match v to c
d) go to Start

If Rcurrent = ∅
4 If Rnext �= ∅

a) initialise the next ieration with Rcurrent = Rnext

b) go to Start
If Rnext = ∅ an x-REG has been obtained.
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This algorithm can obviously be repeated to construct all the x-REG associ-
ated with any x ∈ X, by selecting each time a different constraint at step 3.a)
(following a depth-first search, for example).

Observability and Elementary Graphs

The interest of x-REG is motivated by the following theorem:

Theorem. x is structurally observable if there is at least one non autonomous
x-REG such that

(1) all its inputs belong to K,
(2) it is in derivative causality and contains no differential loop.

Proof. Since a variable x can admit several x-REG, let respectively X [Ge(x)] ,
K [Ge(x)] and C [Ge(x)] be the unknown variables, the known variables and the
constraints of the x-REG Ge(x). Remind that any Ge(x) defines a complete
matching on C [Ge(x)] and on X [Ge(x)].

All the inputs of Ge(x) being known, the unknown variables X [Ge(x)] are
therefore internal or output variables. Since Ge(x) is non autonomous, all the
unknown variables can be expressed as functions of the inputs using constraint
propagation. Since there is no integral causality and no differential loop, no
initial condition is needed for constraint resolution.

An x-REG that satisfies conditions (1) - (2) of the above theorem is said to
be valid. Note that if Ge(x) is a valid x-REG, then all the variables X [Ge(x)]
are observable. A valid x-REG is a data flow diagramm (DFD) [9], [18] asso-
ciated with one possible way to compute x as a function of the known vari-
ables. Call it a version of the estimation service of x (this is the link with
the fonctional models of the system [11]). Note also that the order of deriva-
tion that is necessary in K̄ [Ge(x)] for the estimation of x automatically follows
from the number of dynamic constraints that are crossed along the alternated
paths of Ge(x). Finally, translating the DFD associated with Ge(x) into an algo-
rithm is possible if and only if the models of all the constraints in C [Ge(x)] are
known.

5 Fault Tolerant Estimation

5.1 Versions of the Estimation Algorithm

Let x ∈ X and let G(x) =
{
G1

e (x),G2
e (x), ...

}
be the set of the valid x-REG.

There are |G(x)| different DFDs that allow the computation of x from K, i.e.
|G(x)| different versions of the estimation algorithm. Note that these versions are
minimal in the sense that the results provided by different DFDs could always
be merged (by any fusion procedure e.g. taking the means). This also implies
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minimality in the sense that it is necessary and sufficient to know the models of
the constraints in C

[
Gi

e(x)
]

to implement version n◦i of the algorithm.

Example. The sequel will be illustrated by the system whose structure appears
on Figure 7. The unknown variables are noted x, the known ones are noted y.
We are interested in the observability of x1.

Fig. 7. Structure of the example

The elementary graphs on x1 are drawn on Figure 8, we assume they are all
valid. There are 4 versions of the estimation algorithm for x1, namely:

v1 : x1 − c1(c4(x1, y2), c5 (y2, y3)) = 0 (15)
v2 : x1 − c2 (c6 (y2, y3) , y2) = 0
v3 : x1 − c2 (c7 (y4) , y2) = 0
v4 : x1 − c3 (c2 (x1, y2) , y5) = 0

Remark. Versions v2 and v3 give x1 explicitely because they are provided by
two x1-REG without loop, while versions v1 and v4 give x1 implicitely. By con-
struction, all versions imply only static operations and derivations. This is of
course a well known problem in practical implementations, where inputs might
be very noisy. A practical implementation could rely on a realization of the in-
put/output relation that is given by the DFD by means of a filter. The present
analysis provides all the possibilities allowed by the system structure to esti-
mate an unknown variable. The problem of their realization is not addressed
here.

5.2 Fault Recovery

Assume that the version associated with the ith elementary graph Gi
e(x) is the one

currently in use at time t, and that fault mode n◦ f of component comp occurs,
thus falsifying the subset of constraints Cf (comp). This fault would obviously
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Fig. 8. The four valid elementary graphs on x1

have no incidence on property O (x) if C
[
Gi

e(x)
]
∩ Cf (comp) = ∅, and the

estimation functionality would still be available, under its version Gi
e(x). On the

contrary, if C
[
Gi

e(x)
]
∩Cf (comp) �= ∅ the conclusions will be different according

to whether the constraints Cf (comp) - i.e. the model of the faulty system - are
known or not.

Fault accommodation. If the model of the faulty system is identified, the
variable x ∈ X is still structuraly observable, and its estimation is still possible
by all the versions of the estimation algorithm 2. Indeed, it is enough to replace
the nominal models of the constraints in C

[
Gi

e(x)
]
∩ Cf (comp) by their model

under fault f to adapt the DFD Gi
e(x) to the new situation.

System reconfiguration. If the model of the faulty system is not available, the
DFD Gi

e(x) can obviously not be used any longer. Fault tolerance of property
O(x) can only result from the existence of another valid x-REG for exemple
Gj

e(x), that does not contain any faulty constraint. Replacing the algorithm

2 The choice of the version to be used under given circumstances is not developed here.
One can easily imagine that a pre-order is defined on the set of versions, according
to their performances in specific operation conditions [11].



Observability and the Design of Fault Tolerant Estimation 273

associated with the DFD Gi
e(x) by the one associated with Gj

e(x) is the recon-
figuration strategy.

Example. Assume that x1 is currently estimated by version v3 of the algorithm,
and that a fault occurs that changes constraint c7 into the new c̃7 (for example,
c7 was y4 = x4 and it becomes y4 = x4 + bias).

1) First note that if the fault would have concerned neither c2 nor c7, it would
have had no impact on the estimation of x1 using v3.

2) Whatever the new expression c̃7, as soon as it is identified by the diagnostic
algorithm3, the accommodated estimation

x1 − c2 (c̃7 (y4) , y2) = 0

can be used to recover from the fault 4.
3) if the new expression c̃7 is unknown, it is still possible to estimate x1 by

using one of the versions v1, v2 or v4, that rely on subsets of constraints that
do not include c7.

5.3 Critical Faults

Since structural properties are invariant under the fault accommodation strategy,
we are interested in the sequel only in system reconfiguration (SR). At time t, the
system components can be decomposed into two classes, the healthy ones (index
0) and the faulty ones (index 1). The resulting constraints decomposition is

C = C0(t) ∪ C1(t)

where only the constraints in C0(t) are usable by DFDs for the estimation of the
unknown variables.

Let x ∈ X and G(x) =
{
G1

e (x),G2
e (x), ...

}
the set of all x-REG. The necessary

and sufficient condition for version Gi
e(x) of the estimation service of x to be

available at time t is that:

C
[
Gi

e(x)
]
⊆ C0(t).

As a result, any fault situation C1(t) such that:

∀Gi
e(x) ∈ Ge(x) : C

[
Gi

e(x)
]
∩ C1(t) �= ∅ (16)

is not SR-recoverable.

Definition. A critical fault for property O(x) is a minimal subset of constraints
C̄(x) ⊆ C such that subsystem C\C̄(x) has property ¬O(x).
3 Structural identifiability conditions are not developed here: the possibility to identify

the new model of the faulty constraint c7 is assumed.
4 A transient period is obviously to be considered between the time at which the fault

occurs and the time at which it is accommodated. This aspect is not addressed here
(see [30], [27] for example, for proposals of control strategies during this transient).
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Remark. From (16) critical faults are minimal hitting sets 5 of the set G(x).
Once G(x) has been determined (by the algorithm in 4.3 for example) the critical
faults are easily computed by associating with G(x) the logical expression:

O(x) =

⎡⎣ ∨
Gi

e(x)∈G(x)

⎛⎝ ∧
c∈C[Gi

e(x)]

H0(c)

⎞⎠⎤⎦ (17)

which reads ”x is structuraly observable if and only if the logical expression is
true” (with H0(c) true iff constraint c is not falsified). It is easily seen that there
may exist several critical faults for O(x). Let C̄cr(x) =

{
C̄1

cr(x), C̄2
cr(x), ...

}
be

the set of all critical faults.

Example. From the 4 versions of the estimation algorithms of x1 given by (15),
O(x1) is described by the Boolean expression:

O(x1) = c2.c3 + c2.c6 + c2.c7 + c1.c4.c5

where ci.cj (resp. ci + cj ) are condensed notations for H0(ci) ∧ H0(cj) (resp.
H0(ci) ∨H0(cj) ). The set of critical faults is easily found to be:

Ccr(x)={{c1, c2} , {c2, c4} , {c2,c5} , {c1, c3,c6, c7} , {c3, c4,c6, c7} , {c3, c5,c6, c7}} .
(18)

5.4 Evaluating the Fault Tolerance Level

Property O(x) is fault tolerant as long as

∃C̄i
cr(x) ∈ C̄cr(x) : C̄i

cr(x) � C1(t)

Since C̄cr(x) is determined off-line, one can easily check on-line, when compo-
nents fail and are switched-off by the reconfiguration procedure, if the set C1(t)
satisfies this condition. Even better, it is possible to evaluate the ”residual fault
tolerance” of O(x), at time t, as follows.

Redundancy degrees. The cardinal of each element of C̄k
cr(x) ∈ C̄cr(x), k =

1, 2, ... is the number of constraints whose violation is needed to falsify O(x).
An evaluation of the residual fault tolerance level at time t, is therefore given
by the number of components 6 whose switching-off would lead to a set C1(t)
such that:

∃C̄i
cr(x) ∈ C̄cr(x) : C̄i

cr(x) ⊆ C1(t).
5 A minimal hitting set of G(x) =

{
G1

e(x), G2
e(x), ...

}
is a set that has a non empty

intersection with every Gi
e(x), i = 1, 2, ...

6 A fault mode is the falsification of a subset of constraints. The link between subsets
of constraints and subsets of components is straightforward: the reconfiguration
strategy, by switching-off a component, deletes all the constraints that are associated
with it from the set of constraints that are usable by the estimation algorithm (note
that some non-faulty constraints are deleted too).
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The smallest number of such components is called ”strong redundancy degree”,
the largest one is the ”weak redundancy degree” [26], [25].

Reliability. Strong and weak redundancy degrees evaluate the residual fault
tolerance by the number of components (respectively in the ”pessimistic” and
the ”optimistic” case) whose fault falsifies the observability property. However,
more elaborate indexes can be used, since faults are events whose probability can
be evaluated, namely through reliability data, if available. Thus, fault tolerance
of property O(x) can be evaluated by [26]:

- Rx(C0(t), t, T ), the probability for O(x) to remain true on the time interval
[t, T [, under initial non-falsified constraints C0(t) at time t,

- MTOFx(C0(t), t), the mean time to property ¬O(x) to become true, under
initial condition C0(t), t.

Example. Assume that the 7 constraints of the example model a system of
3 interconnected components C(comp1) = {c1, c2} , C(comp2) = {c3, c4, c5} ,
and C(comp3) = {c6, c7} . Figure 9 shows for each configuration of in-service
components (identified on the first line of the box), the set of available versions of
the estimation algorithm of x1 (on the second line of the box). Top-down arrows
show configuration changes that result of switching-off components after faults,
while bottom-up arrows show configuration changes that result from switching
components on again (e.g. after repair).

Fig. 9. Possible configurations and available estimation versions

In this system, the strong redundancy degree is 1, since the single fault of
comp1 is enough to falsify O(x1); the weak redundancy degree is 2 since there
are cases where two components must be faulty for the property to be lost. On
another hand, if all three components are assumed to be healthy at time 0 and
their reliabilities are known, the reliability of the estimation function of x1 is
computed by:
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Rx1({comp1, comp2, comp3} , 0, T ) = ...

... = P[0,T ](comp1, comp2, comp3)+P[0,T ](comp1, comp3)+P[0,T ](comp1, comp2)

where P[0,T ](a, b, c) is the probability for the 3 components a, b, c, that are heathy
at time 0, to remain healthy during the whole time interval [0, T ]. Classical
computations also give the mean time to non-observability

MTOFx1({comp1, comp2, comp3} , 0).

6 Conclusion

The general problem of fault tolerance, and the contribution of structural anal-
ysis to the design of fault tolerant systems have been presented in this paper,
in a component-based modeling frame. Through the specific application to the
design of estimation algorithms, it has been shown that strutural analysis pro-
vides a simple and constructive approach to identify the observable part of a
system, as well as the possible reconfigurations of the estimation scheme when
faults occur. The approach can be extended to other structural properties like
e.g. controlability, monitorability, etc.

More generally, fault tolerance can be considered from at least two points of
view. The functional point of view is qualitative: when a fault occurs, is the
system still able to accomplish its mission ? (here estimate a given unknown
variable x ); if it is, how to proceed ? (use a DFD defined by a valid x-REG); if
not, what to do ? (change the objective, i.e. estimate some other variable than
x, or try to do without any estimation, a problem that has not been addressed
in this paper since it goes beyond the estimation application). The quantitative
point of view is concerned with algorithms and performance evaluation: how to
design fault accommodation ? (identify the model of the faulty constraints in
the currently used DFD); how to reconfigure the system ? (use a DFD where no
faulty constraint is present); how to evaluate the obtained fault tolerance level ?
(analyze critical faults, compute redundancy degrees and reliability indexes).

The two points of view are obviously related, but the analysis and design
approaches rely in general on completely different models and tools. The struc-
ture of the system, established in a component-based framework, is a design
model that allows to unify the architectural (components and interconnections),
the behavioral (variables and constraints), and the functional (existence of a
property) points of view, and to design fault tolerance strategies that are clear
and integrate well established dependability concepts (critical faults, reliability,
etc.). Note that this is not the case in classical approaches based on state space
or input/output models, where the components are ”rubbed out”. The presented
approach also provides a frame for architecture design, by identifying the con-
straints (i.e. the components) that must be added to a given architecture in order
to obtain a given property, or to improve the fault tolerance level of an existing
property [26]. An obvious by-product is the definition of maintenance strategies
that allow to obtain a specified fault tolerance level [25].
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Summary. This paper gives an overview of a framework for analyzing hybrid dy-
namical systems. The emphasis is on modeling assumptions that guarantee robustness.
These conditions lead to a general invariance principle and to results on the existence
of smooth Lyapunov functions (converse theorems) for hybrid systems. In turn, the
stability analysis tools motivate novel hybrid control algorithms for nonlinear systems.

Keywords: Hybrid Systems, Robustness, Stability Theory, Hybrid Control Systems.

1 Hybrid Systems

The capabilities of nonlinear feedback control can be enhanced by using dy-
namic controllers with states that can make jumps. Such controllers are called
“hybrid” controllers and yield “hybrid control systems”. Until recently, an open
question has been whether hybrid controllers enjoy the same generic robustness
properties as their “non-hybrid” counterparts. This paper will review certain
recent advances in the development of hybrid control systems with a focus on
robustness. The scope is narrow, focusing on results in which the author has
participated.

To begin, the notion of “hybrid” is clarified. A continuous-time arc is an abso-
lutely continuous function defined on the nonnegative real numbers. An illustra-
tion is depicted in Figure 1(a). A discrete-time arc is a function defined on the
nonnegative integers, as in Figure 1(b). A “hybrid-time arc” (or simply, “hybrid
arc”) is, intuitively, a combination of a continuous-time arc and a discrete-time
arc, like in Figure 2. A hybrid arc is defined on a hybrid time domain, which is
a set of points of the form (t, j) where t is a nonnegative real number and j is
a nonnegative integer. A hybrid time domain E has the property that, for each
(T, J) ∈ E there exists times {ti}J+1

i=0 satisfying 0 = t0 ≤ t1 ≤ · · · tJ+1 < ∞ such
that

E
⋂

([0, T ]× {0, . . . , J}) =
J⋃

j=0

([tj , tj+1]× {j}) .

A hybrid arc is a function, defined on a hybrid time domain, that is absolutely
continuous with respect to continuous time t for each discrete time index j.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 279–302, 2007.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2007



280 A.R. Teel

(a) A continuous-time arc. (b) A discrete-time arc.

Fig. 1. Arcs

Fig. 2. Hybrid arc

The hybrid time domain/arc characterization of functions that make jumps is
very convenient for bookkeeping purposes. For example, it easily allows for the
possibility of multiple jumps at the same continuous time instant. It is also nat-
ural from a pedagogical point of view. However, these are not its biggest selling
points. The biggest selling point for hybrid arcs is that they provide a natural
way of characterizing when a sequence of arcs has a subsequence converging to
a hybrid arc. Indeed, the notion of set and graphical convergence is well-suited
for such studies. For more details, the reader should consult [12], and also the
fundamental reference [23]. Hybrid time domains were also considered in [7] and
[10]. They appear implicitly in [20].

To make the idea of graphical convergence more concrete, consider the se-
quence of hybrid arcs depicted in Figure 3. They are solutions of a hybrid “bounc-
ing ball” model (see Example 3) showing the position of the ball when dropped
for successively lower heights, each time with zero velocity. The sequence of
graphs created by these hybrid arcs converges to a graph of a hybrid arc with
hybrid time domain given by {0} × {nonnegative integers} where the value of
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Fig. 3. Solutions to the bouncing ball system

the arc is zero everywhere on its domain. If this hybrid arc is a solution then the
hybrid system is said to have a “compactness” property. This attribute for the
solutions of hybrid systems is critical for robustness properties. It is the hybrid
generalization of a property that automatically holds for continuous differen-
tial equations and difference equations, where nominal robustness of asymptotic
stability is guaranteed. (For more details, see [9, §7 and §8].)

Solutions of hybrid systems are hybrid arcs that are generated in the following
way: Let C and D be subsets of Rn and let f , respectively g, be mappings from
C, respectively D, to Rn. The hybrid system H := (f, g, C, D) can be written in
the form

ẋ = f(x) x ∈ C
x+ = g(x) x ∈ D .

(1)

The map f is called the “flow map”, the map g is called the “jump map”, the
set C is called the “flow set”, and the set D is called the “jump set”. The state
x may contain variables taking values in a discrete set (logic variables), timers,
etc. Consistent with such a situation is the possibility that C ∪ D is a strict
subset of Rn. For simplicity, assume that f and g are continuous functions. At
times it is useful to allow these functions to be set-valued mappings, which will
denote by F and G, in which case F and G should have a closed graph and be
locally bounded, and F should have convex values. (For more information, see
[12].) In this case, we will write

ẋ ∈ F (x) x ∈ C
x+ ∈ G(x) x ∈ D .

(2)

A solution to the hybrid system (2) starting at a point x◦ ∈ C ∪D is a hybrid
arc x with the following properties:
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1. x(0, 0) = x◦;
2. given (s, j) ∈ dom x, if there exists τ > s such that (τ, j) ∈ dom x, then, for

all t ∈ [s, τ ], x(t, j) ∈ C and, for almost all t ∈ [s, τ ], ẋ(t, j) ∈ F (x(t, j));
3. given (t, j) ∈ dom x, if (t, j + 1) ∈ dom x then x(t, j) ∈ D and x(t, j + 1) ∈

G(x(t, j)).

Solutions from a given initial condition are not necessarily unique, even if the flow
map is a smooth function. The examples below will show how non-uniqueness
can arise and will illustrate how the framework considered here can be related to
hybrid automata and to switching systems considered over a class of switching
signals. Additional examples can be found in [10] and [12].

Example 1 (Hybrid Automata; see, e.g., [20]). The hybrid automaton depicted
in Figure 4 is such that, while operating in a particular discrete mode q, a jump
is enabled when any of the “guard” conditions di(q, z) ≥ 0 is satisfied, in which
case the mode can transition to mode i with the state being reset to the value
gq,i(z). Otherwise, flows are enabled and satisfy the equation ż = fq(z). The
overall hybrid system can be written as

ż = fq(z) z ∈ Cq :=
⋂
i

Cq,i[
z
q

]+
∈
{[

gq,i(z)
i

]
, z ∈ Dq,i

}
z ∈ Dq :=

⋃
i

Dq,i .

where Cq,i := {z : dq,i(z) ≤ 0} and Dq,i := {z : dq,i(z) ≥ 0}. Thus, the overall
state is x := [zT q]T , the flow map is

f(x) :=
[

fq(z)
0

]
the flow set is C := {(z, q) : z ∈ Cq}, the jump set is D := {(z, q) : z ∈ Dq},
and the jump map is the set-valued mapping given above. The solutions of the
hybrid system are not necessarily unique, since more than one guard condition
may be satisfied at the same time, and because it may be possible to “graze”
the guard condition dq,i(z) ≥ 0, meaning that it may be possible to flow from
the condition dq,i(z) = 0 by keeping dq,i(z) ≤ 0. �

Example 2 (Average dwell-time switching). Consider the switching system ż =
fq(z) where q makes jumps in a discrete set Q and its hybrid time domain is
required to satisfy the constraint

j − i ≤ δ(t− s) + N ∀(t, j), (s, i) ∈ dom q , t + j > s + i

where δ ≥ 0 and N is a positive integer. This constraint on jumps was introduced
in [16] (though not expressed in terms of hybrid time domains) and was called an
“average dwell-time condition”. Moreover, if q jumps then the state z is allowed
to jump according to the rule z+ = gq(z). It has been shown in [4] that this class
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Fig. 4. A hybrid automaton

of switching signals and the resulting dynamics is captured completely by the
hybrid system

ż = fq(z)
q̇ = 0

τ̇ ∈
{

δ τ ∈ [0, N)
[0, δ] τ = N

⎫⎪⎪⎬⎪⎪⎭ τ ∈ [0, N ]

z+ = gq(z)
q+ ∈ Q
τ+ = τ − 1

⎫⎬⎭ τ ∈ [1, N ] .

Clearly, the solutions of this hybrid system are not unique since the flow and
jump sets overlap and q+ is set valued. A similar hybrid system can be written
down to cover the case of “reverse average dwell-time” switching introduced in
[15]. For details, see [4]. �

2 Compactness and Generalized Solutions

2.1 Compactness [12]

A natural question to ask is: What conditions on the system data (f, g, C, D)
guarantee that each sequence of (locally eventually bounded1) solutions has a
subsequence converging to a solution?

Example 3 (Bouncing Ball). To see what can go wrong, consider a possible model
for a bouncing ball, as depicted in Figure 5. Taking x1 := h and x2 := ḣ, this
system has the data
1 See [12, p. 579] for a definition of this phrase. Roughly speaking, by restricting the

domains of the solutions to a given compact set, the solutions should be uniformly
bounded for all sufficiently large index numbers.
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g(x) :=
[

0
−γx2

]
, D := {x : x1 = 0 , x2 < 0}

f(x) :=
[

x2
−g

]
, C := {x : x1 ≥ 0} \D .

This model generates the sequence of hybrid arcs shown in Figure 3. However,
it does not generate the hybrid arc to which this sequence of solutions con-
verges since the origin does not belong to the jump set D. This situation can be

Fig. 5. Diagram for the bouncing ball system

remedied by including the origin in the jump set D. This amounts to replacing
the jump set D by its closure. One can also replace the flow set C by its closure,
although this has no effect on the solutions. �

It turns out that whenever the flow set and jump set are closed, the solutions
of the corresponding hybrid system enjoy a useful compactness property: every
locally eventually bounded sequence of solutions has a subsequence converging to
a solution. For more details, see [12, Theorem 4.4].

2.2 Generalized Solutions [26]

If a hybrid system is given with a flow or jump set that is not closed, it may
be worthwhile to redefine the system data, taking the new flow and jump sets
to be the closure of the original sets (and extending the definition of f and g to
the closure of the original flow and jump set if necessary; for simplicity, assume
that f and g were already defined on the closures). As with the bouncing ball
system, using the closures may introduce new solutions. The set of solutions one
gets when using the closures will be called “generalized solutions” of the original
hybrid system. The generalized solutions, i.e., the solutions to

ẋ = f(x) x ∈ C
x+ = g(x) x ∈ D

(3)

enjoy the sequential compactness property, as indicated at the end of the previ-
ous subsection. Moreover, generalized solutions have a natural interpretation in
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terms of hybrid control systems with measurement noise. They are equivalent to
the limiting solutions one gets to the hybrid system

ẋ = f(x + e) x + e ∈ C
x+ = g(x + e) x + e ∈ D

(4)

when letting the noise signal e converge to zero. For more specifics, see [26]
where this result was first reported, as a generalization of an analogous result for
discontinuous continuous-time systems in [14, 13, 8]. This equivalence suggests
that the behavior of generalized solutions will be a good indicator of robustness.
If the generalized solutions of a hybrid control system are not well behaved then
it should be expected that arbitrarily small measurement noise can produce
ill-behaved solutions in the closed-loop system. This will be illustrated next.

2.3 Robustness [10, 12]

Example 4 (Non-robust zero-cross detection). Let 0 < ε ( 1 and consider the
hybrid system with the following data:

g(x) :=
[

0 0
−ε 0

]
x D := {x : x2 = 0}

f(x) =

[
1 1

−1 1

]
x C := R2\D .

As depicted in Figure 6, solutions initially spiral away from the origin in the
clockwise direction. When a solution reaches the x1-axis, it jumps to the x2-axis,
with a significant reduction in magnitude. The net effect is to cause the solution
to tend toward the origin. In fact, the origin is global exponentially stable. (One
may also observe that each initial condition xi := (1,−1/i) produces a solution
that flows around to a point on the negative x1 axis, whereas the limiting initial
condition x∞ := (1, 0) produces a unique solution that jumps to (0,−ε). So,
not every sequence of locally eventually bounded solutions has a subsequence
converging to a solution.)

Now consider the behavior of generalized solutions. Since the closure of the
flow set is R2, there now exist solutions that never jump, and thus spiral out to
infinity. See Figure 7. Thus, when considering generalized solutions, the origin
is unstable. This is consistent with the fact that detecting whether the state is
on the x1-axis is not a robust operation as modeled in the given hybrid system.
Indeed, it is easy to inject arbitrarily small measurement noise into the system
so that x2 + e is never equal to zero. �

Example 5 (Robust zero-cross detection). When simulating the previous example
in a software package like matlab/simulink, one would most likely simulate the
system with “zero-cross detection” activated and would only see the behavior
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Fig. 6. Unstable spiral with stabilizing jumps

Fig. 7. Unstable spiral without stabilizing jumps

depicted in Figure 6. Implementing the hybrid system (4) with zero-cross de-
tection corresponds to simulating a hybrid system that is an extension of the
system (4) with an extra state x3 that is used to keep track of which side of the
x2-axis the solution has been on recently. Flows are only allowed when x3 and
x2 have the same sign. The extra state x3 remains constant during flows and
is updated at jumps according to the rule x+

3 ∈ SGN(x+
2 ), where SGN is one

when its argument is positive, negative one when its argument is negative, and
equal to the set {−1, 1} when its argument is zero. (Note that the two-point set
{−1, 1} is forward invariant for the state x3). The flow condition is modified to
the condition C := {x : x2x3 ≥ 0}. The jump set is left unchanged. These flow
and jump sets are already closed, so the generalized solutions match the regular
solutions. Moreover, it is not possible for a solution to flow through the x1-axis,
as this would correspond to x2 changing sign without x3 changing sign. �

Example 4 illustrates that generalized solutions can lead to non-uniqueness:
generalized solutions starting on the x1-axis can either jump or flow. One may
be compelled to ask: “Isn’t non-uniqueness the ultimate in non-robustness?” A
reasonable answer is: “Yes and no. Non-uniqueness will make it impossible to
predict exactly which course is going to be taken, but it may still be possible
to accurately (robustly) predict the final outcome.” To explain this statement,
consider the problem of stabilizing a point on a circle using a hybrid controller.
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Example 6 (Global stabilization of a point on a circle). The control system is
taken to be

ẋ =
[

0 −1
1 0

]
xu x ∈ C◦ :=

{
x : x2

1 + x2
2 = 1

}
where u ∈ [−1, 1]. The goal is to globally asymptotically stabilize the point
(x1, x2) = (0,−1) as indicated in Figure 8. Consider the hybrid controller with
logic state q ∈ {−1, 1} where flows and jumps are enabled in the sets

C := {(x, q) : x ∈ C◦, |x2| ≥ −qx1} , D := C◦\C .

The feedback law is chosen to be a continuous function that moves the solution
toward the desired point on the circle, as shown in Figure 8. In the region
where −x2 ≥ |x1|, where flowing in either mode is possible, the control can
be independent of q: the flow is clockwise for x1 > 0 and counterclockwise for
x1 < 0. In the region where x2 ≥ |x1|, which is also where flowing in either
mode is possible, the flow with q = 1 is in the clockwise direction whereas the
flow with q = −1 is in the counterclockwise direction. Solutions are not unique
for the initial condition (corresponding to θ2 in Figure 8) satisfying x2 = x1,
q = −1 and the initial condition (corresponding to θ1 in Figure 8) satisfying
x2 = −x1, q = 1. From these points it is possible to have no jumps while flowing
to the desired point in a direction consistent with the initial value for q. It is also
possible to have one jump immediately and then to flow to the desired point in a
direction consistent with the negative of the initial value for q. In the presence of
measurement noise, one cannot be sure which of these two solutions would occur.
Nevertheless, one can be sure of the final outcome: each solution will approach
the desired point on the circle. It is typical in hybrid control systems that make
decisions (in this case, whether to approach the point on the circle by going
clockwise or counterclockwise) that there will be points at which generalized

Fig. 8. Robustly stabilizing a point on a circle
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solutions are not unique, so that the particular solution with measurement noise
will be ambiguous, and yet certainly a decision will be made. �

3 Value Added: Invariance Principles, Converse
Lyapunov Theorems, and Robust Stability

The price paid for considering generalized solutions is that extra solutions are in-
troduced. It has been argued that these extra solutions are quite reasonable from
a control point of view so that, in a sense, this price paid is low. Conversely, the
advantages gained from considering generalized solutions are tremendous. This
section will emphasize the availability of general invariance principles, converse
Lyapunov theorems, and generic robustness for asymptotically stable compact
sets.

3.1 Invariance Principles [25]

Certain invariance principles for hybrid systems have appeared in [20] and [6].
Both of these results require, among other things, unique solutions which is not
generic for hybrid control systems. In [25], general invariance principles were
established that do not require uniqueness. The work in [25] includes several
invariance results, some involving integrals of functions, like for continuous-time
systems in [2] or [24], and some involving nonincreasing energy functions, like in
the work of LaSalle [18] or [19]. One such result will be described here.

Suppose one can find a continuously differentiable function V : Rn → R such
that

uc(x) := 〈∇V (x), f(x)〉 ≤ 0 ∀x ∈ C
ud(x) := V (g(x))− V (x) ≤ 0 ∀x ∈ D .

(5)

Let x(·, ·) be a bounded solution with an unbounded hybrid time domain. Then
there exists a value r in the range of V such that x tends to the largest weakly2

invariant set inside the set3

Mr := V −1(r) ∩
(
u−1

c (0) ∪
(
u−1

d (0) ∩ g(u−1
d (0))

))
. (6)

The naive combination of continuous-time and discrete-time results would omit
the intersection with g(u−1

d (0)). This term, however, can be quite useful for
zeroing in on the set to which trajectories converge, as illustrated in the next
example.
2 This term is used since solutions are not necessarily unique. “Weakly” indicates that

the property this term modifies should hold for at least one solution rather than for
all solutions. For more details, see [25].

3 The notation u−1
d (0) (similarly for u−1

c (0) and V −1(r)) means the set of points x
satisfying ud(x) = 0. The notation g(u−1

d (0)) means the set of points g(y) where
y ∈ u−1

d (0).
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Example 7 (Illustrating the invariance principle). Consider the hybrid system
with data

f(x) = g(x) :=
[

x2
−x1

]
, C := {x : x2 ≥ 0} , D := R2\C .

Note that C = C and D = D, i.e., the flow set and jump set are closed. Solutions
of this system with initial conditions x1◦ ≤ 0, x2◦ = 0 are not unique, since
both flowing and jumping are possible from such points. Solutions that start
in a given circle remain in that circle for all time. The asymptotic behavior of
solutions can be established as follows. Consider the function V (x) := xT x. The
function uc(x) defined in (5) is zero for all x ∈ C and it can be taken to be
−∞ for x /∈ C. Thus u−1

c (0) = C. The function ud(x) defined in (5) is zero
for all x ∈ D and it can be taken to be −∞ for x /∈ D. Thus u−1

d (0) = D.
Moreover, g(u−1

d (0)) = g(D) = {x : x1 ≤ 0}. Then, u−1
d (0) ∩ g(u−1

d (0)) is equal
to the lower left quadrant. The invariance principle then states that the solutions
starting in a given circle converge to the largest weakly invariant set in the circle
intersected with top half plane and the lower left quadrant. However, points in
the strict lower left quadrant can be excluded because they cannot be part of
a weakly invariant set: to reach these points requires starting in the lower right
quadrant. One concludes that the trajectories converge to the circle intersected
with the top half plane and the negative x2-axis. In fact, this statement is not
conservative. This is exactly the ω-limit set of each trajectory starting on the
given circle. �

Fig. 9. The three-quarters circle on the left represents the set Mr in (6) for Example 7.
On the right, the semicircle plus the point at (0, −1) represent the largest weakly
invariant set contained in Mr.

3.2 Converse Lyapunov Theorems [5, 3, 4]

Some early results on the existence of nonsmooth Lyapunov functions for hybrid
systems appeared in [32]. The first results on the existence of smooth Lyapunov
functions, which are intimately linked to robustness, appeared in [5]. These re-
sults required open basins of attraction, but this requirement has since been
relaxed in [3]. The simplified discussion here is borrowed from this later work.

Let O be an open subset of the state space containing a given compact set
A. and let ω : O → R≥0 be a continuous function that is zero for all x ∈ A, is
positive otherwise, and that grows unbounded as its argument grows unbounded
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or approaches the boundary of O. Such a function is called a proper indicator
for the compact set A on the open set O. An example of such a function is the
norm function defined on Rn which is a proper indicator for the origin. More
generally, the distance to a compact set A is a proper indicator for the set A
on Rn.

Given an open set O, a proper indicator ω and hybrid data (f, g, C, D), a func-
tion V : O → R≥0 is said to be a smooth Lyapunov function for (f, g, C, D, ω,O)
if it is smooth and there exist functions α1, α2 belonging to class-K∞ such that

α1(ω(x)) ≤ V (x) ≤ α2(ω(x)) ∀x ∈ O
〈∇V (x), f(x)〉 ≤ −V (x) ∀x ∈ C ∩O

V (g(x)) ≤ e−1V (x) ∀x ∈ D ∩O .

(7)

Supposing that such a function exists, it is easy to verify that every (generalized)
solution to the hybrid system (f, g, C, D) starting in O ∩ (C ∪D) satisfies

ω(x(t, j)) ≤ α−1
1

(
e−t−jα2(ω(x(0, 0)))

)
∀(t, j) ∈ dom x .

In particular,4

• (pre-stability of A) for each ε > 0 there exists δ > 0 such that x(0, 0) ∈
A + δB implies, for every generalized solution, that x(t, j) ∈ A + εB for all
(t, j) ∈ dom x, and

• (pre-attractivity of A on O) every generalized solution starting in O∩(C∪D)
is bounded and if its time domain is unbounded then it converges to A.

According to one of the main results in [4] there exists a smooth Lyapunov func-
tion for (f, g, C, D, ω,O) if and only if the set A is pre-stable and pre-attractive
on O (as defined above) and O is forward invariant (i.e., x(0, 0) ∈ O ∩ (C ∪D)
implies x(t, j) ∈ O for all (t, j) ∈ dom x).

One of the primary interests in converse Lyapunov theorems is that they
can be used to establish robustness of asymptotic stability to various types of
perturbations. Some such perturbations are recalled in the next subsection.

3.3 Robust Stability [12, 5, 3, 4]

General Observations [4]

If the function V satisfies the first inequality in (7) then, for each pair (�1, �2)
with 0 < �1 < �2 < ∞, the set {x ∈ O : �1 ≤ V (x) ≤ �2} is a compact subset of
4 The prefix “pre-” is used here to distinguish from the case where it is assumed that

all solutions are complete. The distinction is important, since systems that might
seem to be unstable may actually be pre-stable in the sense defined below. For
example, a planar linear flow map with system matrix having complex eigenvalues
with positive real part is unstable as a continuous-time system but is stable as part
of a hybrid system with a flow set that excludes a cone emanating from the origin
and with an empty jump set. For more details, see [4].
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O\A. If V also satisfies the remaining inequalities in (7), perhaps with f and g
replaced by a set-valued mappings F and G satisfying appropriate assumptions,
then, given 0 < �1 < �2 < ∞, there exists ρ > 0 such that

max
f∈Fρ(x)

〈∇V (x), f〉 ≤ − 1
2V (x) ∀x ∈ Cρ ∩ {x ∈ O : �1 ≤ V (x) ≤ �2}

max
g∈Gρ(x)

V (g) ≤ e−1/2V (x) ∀x ∈ Dρ ∩ {x ∈ O : �1 ≤ V (x) ≤ �2}

max
g∈Gρ(x)

V (g) ≤ �1 ∀x ∈ Dρ ∩ {x ∈ O : V (x) ≤ �1} .

(8)

where

Fρ(x) := coF ((x + ρB) ∩ C) + ρB, ∀x ∈ O,

Gρ(x) := {v ∈ O : v ∈ g + ρB, g ∈ G((x + ρB) ∩D)}, ∀x ∈ O,

Cρ := {x ∈ O : (x + ρB) ∩ C �= ∅},
Dρ := {x ∈ O : (x + ρB) ∩D �= ∅}

and co denotes the closed convex hull. It follows from (8) that, for the system

Hρ :=

{
ẋ ∈ Fρ(x) x ∈ Cρ

x+ ∈ Gρ(x) x ∈ Dρ ,
(9)

the compact set {x ∈ O : V (x) ≤ �1} is pre-stable and pre-attractive from the
forward invariant open set {x ∈ O : V (x) < �2}. It also follows from (7) that the
set {x ∈ O : V (x) ≤ �1} converges toA as �1 → 0 and the set {x∈O : V (x) < �2}
converges to O as �2 → ∞. Using terminology from parameterized differential
equations, the set A is said to be semiglobally (with respect to O) practically
pre-asymptotically stable in the parameter ρ. These ideas are now applied to
robustness with respect to slowly-varying, weakly-jumping parameters, to tem-
poral regularization, and to “average dwell-time” perturbations.

3.4 Slowly-Varying, Weakly-Jumping Parameters

Consider a parameterized hybrid system

H :=

{
ξ̇ = f(ξ, p) (ξ, p) ∈ C

ξ+ = g(ξ, p) (ξ, p) ∈ D ,
(10)

where the state is taken to be (ξ, p) and C and D are assumed to be closed.
Suppose this system has the compact set A pre-stable and pre-attractive on Rn.
Since A is pre-attractive and p does not change along solutions, the parameter
vector p is restricted to a compact set. Using converse Lyapunov theorems, one
can establish robustness to slow variations in the parameter p and also small
jumps in the parameter p, even those that are not synchronized with jumps of the
hybrid system. So, for example, the original system may not have any jumps (a
constrained differential equation) and yet the hybrid systems framework permits
showing robustness to small jumps in the parameter.
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In order to allow jumps in the parameter p that are not synchronized with the
jumps of the system, add a timer state τ that limits how often these extra jumps
can be inserted. The parameter τ∗ > 0 is used to determine this separation. It
can be arbitrarily small. Then, based on the value of τ∗ > 0 and the data of
the system, a perturbation level δ > 0 will be determined for the allowed size of
the jumps and variations in the parameter. To see how this works, let τ∗ > 0
and δ ≥ 0, and consider the hybrid system Hδ,τ∗ := (F, G, C̃, D̃) with the state
x := (ξ, p, τ) where

C̃ := C × R≥0 , D̃ := (D × R≥0) ∪ ((C ∪D)× [τ∗,∞))

F (x) :=

[
f(ξ, p)

δB
1− τ + τ∗

]
, G(x) :=

{
G1(x) for x ∈ D × [0, τ∗)
G1(x)

⋃
G2(x) for x ∈ D × [τ∗,∞)

G2(x) for x ∈ (C\D)× [τ∗,∞) ,

where

G1(x) =

[
g(ξ, p)
p + δB

τ

]
, G2(x) =

[
ξ

p + δB
0

]
.

When δ = 0, the parameter p is constant along solutions and all of the solutions
of (10) are enabled as the (ξ, p) component of the solution. The new enabled
solutions are those containing “jumps” via G2(·), but these jumps are separated
by a flow with at least ln

(
1+τ∗

τ∗

)
seconds, since that is the amount of time

required for τ̇ = 1 − τ + τ∗ to increase from 0 to τ∗. So H0,τ∗ has the set Ã :=
A× [0, 1 + τ∗] pre-stable and pre-attractive on Rn+1. This system then admits
a smooth Lyapunov function from which robustness of asymptotic stability for
for δ > 0 sufficiently small can be deduced. This corresponds to the situation
where the parameter p is allowed to change slowly during flows, it is allowed to
make small jumps when the hybrid system would be jumping anyway, and it is
also allowed to make additional jumps when the timer τ reaches or exceeds the
value τ∗.

3.5 Temporal Regularization

A hybrid arc is said to be Zeno if its hybrid time domain is bounded in the
ordinary time direction. Zeno behavior is frequently encountered in hybrid or
switched control systems. To eliminate Zeno behavior in applications, temporal
regularization (i.e. to force the interval between jumps to be at least some amount
of time) is an effective recipe. This subsection shows how to recover the result on
semiglobal practical robustness under temporal regularization, reported in [12,
Example 6.8], via converse Lyapunov theorems.

Suppose one is given a hybrid system H := (f, g, C, D) where C and D are
closed and suppose that the compact set A is pre-stable and pre-attractive on
Rn. Now let δ ≥ 0 and consider a related system Hδ := (f̃ , g̃, Cδ, Dδ) with the
state x̃ := (x, τ) where
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f̃(x̃) :=
[

f(x)
1− τ

]
, Cδ := (C × R≥0) ∪ (Rn × [0, δ]) ,

g̃(x̃) :=
[

g(x)
0

]
, Dδ := D × [δ,∞) .

When δ = 0, flowing is possible only if x ∈ C, since τ̇ = 1 − τ and the flow
set for τ when x /∈ C is the point τ = 0. Thus the x component of the solution
with δ = 0 matches the solution of H and the τ component converges to the
interval [0, 1]. So the system H0 has the compact set Ã := A× [0, 1] pre-stable
and pre-attractive from Rn+1.

When δ > 0, in each hybrid time domain of each solution, each time interval is
at least δ seconds long, since τ̇ ≤ 1 for all τ ∈ [0, δ]. In particular, Zeno solutions,
if there were some, have been eliminated. Nevertheless, using converse Lyapunov
theorems, it follows that the set Ã is semiglobally practically pre-stable and pre-
attractive with respect to δ.

3.6 Average Dwell Time

Consider the differential equation ẋ = f(x) where the state x may contain
logical modes that remain constant. Suppose that the compact set A is stable
and attractive from Rn, and that there is interest in injecting jumps, on occasion,
through a jump inclusion x+ ∈ G(x) while maintaining (semiglobal practical)
pre-stability and pre-attractivity. In order to achieve this goal, suppose

G(A ∩D) ⊂ A (11)

and that the jumps satisfy an average dwell-time condition, as discussed in Ex-
ample 2. Thus, augment the system as in Example 2 (where (z, q) of Example 2
is associated with x here.) In the special case where δ = 0, at most N jumps are
allowed in the time domain of a solution. It follows from (11) that these jumps do
not destroy global asymptotic stability of A for the x component of the solution.
For the composite system, we have that the set Ã := A× [0, N ] is pre-stable and
pre-attractive from Rn+1. It follows, via converse Lyapunov theorems, that this
set is semiglobally practically pre-asymptotically stable in the parameter δ > 0
that quantifies the average dwell-time condition.

4 Feedback Control Applications

4.1 Hybrid Stabilization Implies Input-to-State Stabilization [3, 4]

In the pioneering paper [29] it was shown, for continuous-time control systems,
that smooth stabilization implies smooth input-to-state stabilization with re-
spect to input additive disturbances. The proof relied on converse Lyapunov
theorems for continuous-time systems. As shown in [4, 3], the result generalizes
to hybrid control systems via the converse Lyapunov theorem mentioned earlier.
In particular, if one can find a hybrid controller, with the type of regularity
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used throughout this paper, to achieve asymptotic stability (for example, see
Sections 4.2 and 4.3) then input-to-state stability with respect to input additive
disturbances can also be achieved. (The reader may also wish to compare this
idea with the ideas in [21] where input-to-state stabilization is established using
discontinuous, continuous-time feedback and nonsmooth Lyapunov functions.)

Here consider the special case where the hybrid controller is a logic-based
controller where the logic variable takes values in a finite set. Consider the hybrid
control system

H :=

⎧⎨⎩
ξ̇ = fq(ξ) + ηq(ξ)(uq + vqd) ξ ∈ Cq , q ∈ Q[

ξ
q

]+
∈ Gq(ξ) ξ ∈ Dq , q ∈ Q

(12)

where Q is a finite index set, for each q ∈ Q, fq, ηq : Cq → Rn are continuous
functions, Cq and Dq are closed and Gq has a closed graph and is locally bounded.
The signal uq is the control, and d is the disturbance, while vq is vector that is
independent of the state, input, and disturbance. Suppose H is stabilizable by
logic-based continuous feedback; that is, for the case where d = 0, there exist
continuous functions kq defined on Cq such that, with uq := kq(ξ), the nonempty
and compact set A =

⋃
q∈QAq × {q} is pre-stable and globally pre-attractive.

Converse Lyapunov theorems can then be used to establish the existence of a
logic-based continuous feedback that renders the closed-loop system input-to-
state stable with respect to d. The feedback has the form

uq = κq,ε(ξ) := kq(ξ)− εηT
q (ξ)∇Vq(ξ)

where ε > 0 and Vq(ξ) is a smooth Lyapunov function that follows from the
assumed asymptotic stability when d ≡ 0. There exist class-K∞ functions α1
and α2 such that, with this feedback control, the following estimate holds:

|ξ(t, j)|Aq(t,j) ≤
max

{
α−1

1 (2 exp(−t− j)α2(|ξ(0, 0)|Aq(0,0))), α
−1
1

(
maxq∈Q |vq|2

2ε ||d||2∞
)}

where ||d||∞ := sup(s,i)∈dom d |d(s, i)|.

4.2 Patchy Smooth Control Lyapunov Functions [11]

While control design by means of a continuously differentiable control-Lyapunov
function (clf) is well established for input-affine nonlinear control systems, it is
well known that not every controllable input-affine nonlinear control system
admits a continuously differentiable clf. A prominent example where no such
clf exists is the so-called “Brockett” or “nonholonomic” integrator, which is
described in the example below. While this system does not admit a continuously
differentiable control Lyapunov function, it has been established recently that it
admits a smooth “patchy” control-Lyapunov function.

The patchy clf concept, which was introduced in [11], is inspired not only by
the classical clf idea but also by the approach to feedback stabilization based
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on patchy vector fields proposed in [1]. The patchy clf idea was conceived to
overcome a limitation of discontinuous feedbacks like those coming from patchy
feedbacks, which is a lack of robustness to measurement noise. In [11] it has been
shown that every asymptotically controllable nonlinear system admits a smooth
patchy clf if one allows for the possibility that the number of patches may need to
be infinite. Moreover, it has been shown how to construct a robustly stabilizing
hybrid feedback from a patchy clf. Here the idea when the number of patches is
finite is outlined and then specialized to the nonholonomic integrator.

In general, a global patchy smooth control-Lyapunov function for the origin
for the control system ẋ = f(x, u) in the case of a finite number of patches is a
collection of functions Vq and sets Ωq and Ω′

q where q ∈ Q := {1, . . . , m}, such
that

1. for each q ∈ Q, Ωq and Ω′
q are open and

a) O := Rn\ {0} =
⋃

q∈Q Ωq =
⋃

q∈Q Ω′
q

b) for each q ∈ Q, the outward unit normal to ∂Ωq is continuous on(
∂Ωq\

⋃
r>q Ω′

r

)
∩O,

c) for each q ∈ Q, Ω′
q ∩ O ⊂ Ωq;

2. for each q ∈ Q, Vq is a smooth function defined on a neighborhood (relative
to O) of Ωq.

3. there exist a continuous positive definite function α and class-K∞ functions
γ and γ such that

a) γ(|x|) ≤ Vq(x) ≤ γ(|x|) ∀q ∈ Q , x ∈
(
Ωq\

⋃
r>q Ω′

r

)
∩ O;

b) for each q ∈ Q and x ∈ Ωq\
⋃

r>q Ω′
r there exists ux,q such that

〈∇Vq(x), f(x, ux,q)〉 ≤ −α(x) ;

c) for each q ∈ Q and x ∈
(
∂Ωq\

⋃
r>q Ω′

r

)
∩O there exists ux,q such that

〈∇Vq(x), f(x, ux,q)〉 ≤ −α(x)
〈nq(x), f(x, ux,q))〉 ≤ −α(x)

where x '→ nq(x) denotes the outward unit normal to ∂Ωq.

From this patchy clf one can construct a robust hybrid feedback stabilizer, at
least when the set {u : v · f(x, u) ≤ c} is convex for each real number c and each
real vector v, with the following data

uq := κq(x) , Cq =

(
Ωq\

⋃
r>q

Ω′
r

)
∩ O

where κq is defined on Cq, continuous and such that

〈∇Vq(x), f(x, κq(x))〉 ≤ −0.5α(x) ∀x ∈ Cq

〈nq(x), f(x, κq(x))〉 ≤ −0.5α(x) ∀x ∈
(
∂Ωq\

⋃
r>q Ω′

r

)
∩ O .

(13)
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The jump set is given by

Dq = (O\Ωq) ∪
(⋃

r>q

Ω′
r ∩O

)

and the jump map is

Gq(x) =

{{
r ∈ Q : x ∈ Ω′

r ∩ O , r > q
}

x ∈
(⋃

r>q Ω′
r ∩O

)
∩Ωq{

r ∈ Q : x ∈ Ω′
r ∩ O

}
x ∈ O\Ωq .

With this control, the index increases at each jump except possibly the first one.
Thus, the number of jumps is finite (possibly zero), and the state converges to
the origin, which is also stable.

Example 8 (Nonholonomic integrator). A patchy smooth control-Lyapunov func-
tion for the nonholonomic integrator system

ẋa = ua

ẋb = ub

ẋc = xaub − xbua

⎫⎬⎭ =: B(x)u

will be demonstrated. Only two patches are needed, as indicated in Figure 10.
Pick ρ so that ρ > 1 and ρ + 0.5ρ1/2 < 2. Then define

V1(x) :=
(
ρ1/2 + 0.5

)
|xc|1/2 − xa

Ω1 := R3\ {0}
Ω′

1 := R3\ {0}

V2(x) := 0.5xT x
Ω2 :=

{
x : x2

a + x2
b > |xc|

}
Ω′

2 :=
{
x : x2

a + x2
b > ρ|xc|

}
.

Note that V1 is smooth on Ω1\Ω′
2 and, with u1(x) =

[
1 0
]T , for all x ∈

Ω1\Ω′
2, it follows that

〈∇V1(x), B(x)u1〉 = −0.5
(
ρ1/2 + 0.5

)
|xc|−1/2xb − 1

≤ 0.5
(
ρ1/2 + 0.5

)
ρ1/2 − 1

< 0 .

In addition, V2 is smooth and, with

u2(x) = −
[

xa

xb

]
+

3xc

x2
a + x2

b

[
xb

−xa

]
it follows that (cf. (13))

〈∇V2(x), B(x)u2(x)〉 = −x2
a − x2

b − 3x2
c x ∈ Ω2 ∩ O

〈n2(x), B(x)u2(x)〉 < 0 x ∈ ∂Ω2 ∩O

where x '→ n2(x) denotes the outward unit normal to ∂Ω2. The resulting robustly
stabilizing hybrid controller is u := uq(x), C1 :=

{
x : x2

a + x2
b ≤ ρ|xc|

}
, C2 :={

x : x2
a + x2

b ≥ |xc|
}

, D1 = R3\C1, D2 : R3\C2, and gq = toggle(q). This is
similar to the controller proposed in [17]; see also [10]. �
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Fig. 10. Smooth patchy clf for nonholonomic integrator

4.3 “Throw-and-Catch” Control

Hysteresis Switching Between Global and Local Stabilizers

In the paper [22], it was shown how to combine local and global state feedbacks to
achieve global stabilization and local performance. The idea, which exploits hys-
teresis switching, is quite simple. Two continuous functions, κglobal and κlocal, are
given where the feedback u = κglobal(x) renders the origin of the control system
ẋ = f(x, u) globally asymptotically stable whereas the feedback u = κlocal(x)
renders the origin of the control system locally asymptotically stable with basin
of attraction containing the open set O, which contains the origin. Then one
takes Clocal to be a compact subset of the O that contains the origin in its inte-
rior and one takes Dglobal to be a compact subset of Clocal, again containing the
origin in its interior and such that, when using the controller κlocal, trajectories
starting in Dglobal never reach the boundary of Clocal. See Figure 11. Finally,
the hybrid control that achieves global asymptotic stabilization while using the
controller κ2 for small signals is the following: Define Dlocal := Rn\Clocal and
Cglobal := Rn\Dglobal and

u := κq(x) C := {(x, q) : x ∈ Cq}
g(q, x) := toggle(q) D := {(x, q) : x ∈ Dq} .

Hysteresis Switching Between a Global Controller, Local Stabilizers
at Different Locations, and Open-Loop Controls [28]

In the problem of uniting local and global controllers, one can view the global
controller as a type of “bootstrap” controller that is guaranteed to bring the
system to a region where another controller can control the system adequately.
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Fig. 11. Combining local and global controllers

An extension of the idea of combining local and global controllers is to assume
the existence of a continuous, “bootstrap” controller that is guaranteed to bring
the system, in finite time, into a neighborhood of a set of points, not just a
neighborhood of the desired final destination (the controller doesn’t need to be
able to keep the state in this neighborhood); moreover, these sets of points form
chains that terminate at the desired final destination and along which controls
are known to steer (or “throw”) from one point in the chain to the next point in
the chain. Moreover, in order to minimize the propagation error along a chain, a
local stabilizer is known for each point, except perhaps those points at the start
of a chain. These can be used to “catch” each throw. To make this idea clearer,
consider the problem of globally asymptotically stabilizing the upright position
for the pendubot system.

Example 9 (Pendubot). The “pendubot”, introduced in [30], corresponds to a
two-link arm where a control torque τ can be applied at the end of the first link
(shoulder) while the second link is free to rotate at the other end of the first
link (elbow). One can think of the state of the pendubot system as evolving on
(S1×R)2 where S1 denotes the unit circle in the plane, as depicted in Figure 12.
The goal here is to stabilize the position corresponding to both links oriented
upward, with zero velocity.

Fig. 12. Pendubot: diagram (left) and state space (right)



Robust Hybrid Control Systems: An Overview of Some Recent Results 299

Fig. 13. Throw-and-catch control for the pendubot

The pendubot has four open-loop equilibria, corresponding to both links ori-
ented in the up position, both links oriented in the down position, and two
additional equilibria where one link is up and the other is down. The “boot-
strap” controller for this system is of the “−LgV ” type where V is the kinetic
plus potential energy of the system. This feedback causes every initial condition
to eventually reach a neighborhood of one of the four open-loop equilibrium in
finite time, but not necessarily stay there. For example, only the straight down
equilibrium point is stable under “−LgV ” control. This bootstrap controller thus
brings the state of the system close to a point from which signals are known to
steer to the desired final destination by following a “chain” of points. See Figure
13. Indeed, it is not difficult to find control signals to steer the system from
either of the “mixed” equilibrium to the down equilibrium, and to find a third
control signal to steer the system from the equilibrium with both links down to
the equilibrium with both links up. Moreover, one can construct local asymp-
totic stabilizers for the point corresponding to both links oriented downward
and for the point corresponding to both links oriented upward. The latter is use-
ful for when the state of the system gets close to the desired final destination.
The former is useful for “catching” the throw from a mixed equilibrium point
to the down equilibrium point, helping to ensure that the subsequent throw to
the up position is successful. See Figure 13 for a graphical depiction. These sim-
ple ingredients can be used to build a hybrid feedback controller that globally
asymptotically stabilizes the up equilibrium for the pendubot. The hybrid con-
trol involves logic states to keep track of when the bootstrap controller should
be used, when a control signal to “throw” from near one point to another point
in a chain can be used, and when a particular local stabilizer should be used to
“catch” a throw. It also involves a timer that is used to keep track of when a
control signal that throws the state from one point to another should have com-
pleted its task. If this timer runs out before a catch is executed, the controller
defaults to the “bootstrap” controller. The details of the control construction
are beyond the scope of this paper, but can be found in [28]. �
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4.4 Decision-Making Control [31, 27]

The problem of global stabilization of a point on a circle provides a canonical
example of a robust decision-making requirement for a control system. Other
similar examples correspond to determining, for a planar vehicle, whether to go
to the left or to the right of a moving obstacle, or on the occurrence of a traffic
light turning yellow, whether to proceed through the intersection or stop before
the intersection. The introduction of hysteresis decision making through hybrid
feedback control has been shown to significantly increase robustness to noise in
[31]. Another similar situation corresponds to the problem of picking between two
possible planar destinations in the presence of drift. This situation is depicted
in Figure 14 and reveals that it may be possible to produce trajectories that
correspond to several changes in the target destination over time, even in the
absence of disturbances, but with a guarantee that a decision is eventually made
and convergence is achieved.

Fig. 14. Robust stabilization of a disconnected set of points

The behavior in Figure 14 is in contrast to the situation that could occur
when using a discontinuous feedback. In that case, the boundaries of D1 and
D2 would coalesce into a single decision line that would necessarily contain a
Filippov equilibrium point, i.e., a point at which arbitrarily small measurement
noise could keep the state of the system. For more details, see [27].

5 Conclusion

When it comes to stabilization with some guaranteed level of robustness, there
are some problems that cannot be solved with ordinary (possibly discontinuous)
feedback but can be solved with hybrid feedback. In order to grow familiar with
such control methodologies, it is important to gain a firm understanding of the
behavior of hybrid systems and the basic convergence and stability properties
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that are available for them. In this particular paper, some of the basic results
have been given along with references to where more details can be found in the
literature.
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20. Lygeros J, Johansson K H, Simić S N, Zhang J, Sastry S S (2003) Dynamical
properties of hybrid automata, IEEE Transactions on Automatic Control, 48:2–17

21. Malisoff M, Rifford L, Sontag E D (2004) Global asymptotic controllability implies
input-to-state stabilization, SIAM Journal on Control and Optimization, 42:2221–
2238

22. Prieur C (2001) Uniting local and global controllers with robustness to vanishing
noise, Mathematics Control Signals Systems, 14:143–172

23. Rockafellar R T, Wets R J B (1998) Variational Analysis. Springer Verlag
24. Ryan E P (1998) An integral invariance principle for differential inclusions with

applications in adaptive control, SIAM Journal on Control and Optimization,
36:960–980

25. Sanfelice R G, Goebel R, Teel A R (2005) Results on convergence in hybrid systems
via detectability and an invariance principle, Proceedings of 2005 American Control
Conference, 551–556

26. Sanfelice R G, Goebel R, Teel A R (2006) A feedback control motivation for
generalized solutions to hybrid systems, In J. P. Hespanha and A. Tiwari, editors,
Hybrid Systems: Computation and Control: 9th International Workshop, volume
LNCS 3927, 522–536

27. Sanfelice R G, Messina M J, Tuna S E, Teel A R (2006) Robust hybrid controllers
for continuous-time systems with applications to obstacle avoidance and regulation
to disconnected set of points, Proceedings of 2006 American Control Conference,
3352–3357

28. Sanfelice R G, Teel A R (2007) A “throw-and-catch” hybrid control strategy for
robust stabilization of nonlinear systems, submitted to the 2007 American Control
Conference.

29. Sontag E (1989) Smooth stabilization implies coprime factorization, IEEE Trans-
actions on Automatic Control, 34:435–443

30. Spong M W, Block D J (1995) The pendubot: A mechatronic system for control
research and education, Proceedings of 34th Conference on Decision and Control,
555–556

31. Tuna S E, Sanfelice R G, Messina M J, Teel A R (2005) Hybrid MPC: Open-
minded but not easily swayed, in L. Biegler R. Findeisen, F. Allgower, editor,
Preprints of the International Workshop on Assessment and Future Directions of
Nonlinear Model Predictive Control, Freudenstadt-Lauterbad, Germany, 169–180

32. Ye H, Michel A N, Hou L (1998) Stability theory for hybrid dynamical systems.
IEEE Transactions on Automatic Control, 43:461–474



List of Contributors

Frank Allgöwer
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