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Preface

This volume can be considered a direct outcome of the special scientific “meeting-
in-the-fortress” on “Advances in Control Theory and Applications” organized in
Bertinoro, Italy, by the Centre of research on Complex Automated Systems
(CASY), Department of Electronics Computer and Systems of the University
of Bologna, during the week May 22-26, 2006. The inspiring idea of that work-
shop was to provide a forum for exchange of ideas between theory-oriented and
application-oriented researchers working on various systems and control prob-
lems. The meeting offered an opportunity for formal presentations of research
results as well as for informal discussions about ideas and problems, case-studies,
limitations and potentials of existing and emerging theories. The main goal of
the meeting was to facilitate cross-fertilization between different theoretical and
applicative areas. Emphasis was put on identification of new theoretical develop-
ments and research directions, as needed by recent progresses in applications and
problems which are still looking for a theoretical support and effective rigorous
solutions. The technical programme consisted of twenty-five main lectures de-
livered by distinguished scholars and was complemented by a number of poster
presentations prepared by post doctoral fellows and PhD students currently
working at CASY. Out of the twenty five lectures given in Bertinoro, fifteen are
reported here in written form. They are organized as separate contributions and
listed according to the alphabetic order of the first author, as follows.

Modeling and Control of Autonomous Helicopters by Manuel Béjar, Anibal
Ollero, Federico Cuesta, presents an overview on the modeling and model-based
control of autonomous helicopters.

Efficient Quantization in the Average Consensus Problem by Ruggero Carli,
Sandro Zampieri deals with the average consensus problem where a set of linear
systems has to be driven to the same final state which corresponds to the average
of their initial states.

Human-Robot Interaction Control Using Force and Vision by Agostino De
Santis, Vincenzo Lippiello, Bruno Siciliano, Luigi Villani focuses on techniques
for augmenting safety by means of control systems, starting from the idea of
mimicking sensing and actuation of humans.
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A Dissipation Inequality for the Minimum Phase Property of Nonlinear Con-
trol Systems by Christian Ebenbauer, Frank Allgower discusses a new charac-
terization of the minimum phase property of nonlinear control systems in terms
of a dissipation inequality.

Input disturbance suppression for port-Hamiltonian systems: an internal model
approach by Luca Gentili, Andrea Paoli, Claudio Bonivento presents a compre-
hensive port-Hamiltonian systems framework to deal with input disturbance
suppression problems.

A Systems Theory View of Petri nets by Alessandro Giua, Carla Seatzu fo-
cuses on Petri nets as a family of powerful discrete event models whose interest
has grown in parallel with the development of the theory of discrete event sys-
tems.

Wireless Sensing with Power Constraints by Orhan C. Imer, Tamer Basar
introduces two conceptual models for wireless sensing and control with power-
limited sensors and controllers.

The Important State Coordinates of a Nonlinear System by Arthur J. Krener
offers an alternative way of evaluating the relative importance of the state coor-
dinates of a nonlinear control system.

On Decentralized and Distributed Control of Partially-Observed Discrete Event
Systems by Stéphane Lafortune surveys recent work of the author with several
collaborators on decentralized control of discrete event systems.

A Unifying Approach to the Design of Nonlinear Output Regulators by
Lorenzo Marconi, Alberto Isidori aims to propose a unique vision able to frame
a number of results recently proposed in literature to tackle problems of output
regulation for nonlinear systems.

Controller Design through Random Sampling: an Example by Maria Prandini,
Marco C. Campi, Simone Garatti presents the ’scenario approach’, an innovative
technology for solving convex optimization problems with an infinite number of
constraints.

Digital Control of High Performance Power Supplies for a Synchrotron Light
Source by Carlo Rossi, Andrea Tilli, Manuel Toniato discusses some aspects of
an advanced control strategy for a class of quadrupole magnet power supply,
where variable output current has to be imposed.

Distributed PCHD-Systems, from the Lumped to the Distributed Parameter
Case by Kurt Schlacher extends the Hamiltonian approach to a class of dis-
tributed parameter Hamiltonian systems, which preserves some useful properties
of the well known class of Port Controlled Hamiltonian systems with dissipation.

Observability and the Design of Fault Tolerant Estimation Using Structural
Analysis by Marcel Staroswiecki presents a structural analysis approach for the
design of fault tolerant estimation algorithms.

Robust hybrid control systems: an overview of some recent results by Andrew
R. Teel gives an overview of a new framework for analyzing hybrid dynamical
systems.

We are grateful to all the outstanding colleagues and friends who accepted
to participate to the Bertinoro workshop and to contribute to the success of



Preface VII

that initiative with inspiring presentations, fruitful interactions and technical
discussions, namely Frank Allgower, Karl Astrom, Tamer Bagar, Marco Campi,
Tryphon Georgiou, Alessandro Giua, Lino Guzzella, Arthur Krener, Stéphane
Lafortune, Manfred Morari, Steve Morse, Anibal Ollero, Laurent Praly, Anders
Rantzer, Giorgio Rizzoni, Kurt Schlacher, Bruno Siciliano, Marcel Staroswiecki,
Andrew Teel, Roberto Tempo, Arijan van der Schaft, Yutaka Yamamoto, Sandro
Zampieri. We warmly thank in particular those of them who spend time in
addition in order to prepare their revised written texts collected in this volume.
We are sure that this effort will be useful for many young scientists and skilled
professionals operating in different technical areas around the world.

We are indebted with many individuals and institutions for their support and
help. In particular, we thank Manfred Morari who promptly accepted our idea of
publishing this book in the LNCIS series, Thomas Ditzinger and Heather King,
Engineering Editorial of Springer-Verlag, for the precious assistance, Roberto
Naldi for the accurate editing work. Finally, the funding supports given by the
Institue of Advanced Studies and the Department DEIS both of the University
of Bologna, and the hospitality offered by the Bertinoro Residential Centre are
gratefully acknowledged.

Bologna, Claudio Bonivento
28 November, 2006 Alberto Isidori
Lorenzo Marconi

Carlo Rossi
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Modeling and Control of Autonomous
Helicopters

Manuel Béjar®, Anibal Ollero?, and Federico Cuesta?

1 Universidad Pablo de Olavide
mbe jdomQupo.es
2 Universidad de Sevilla

{aollero,fede}@cartuja.us.es

Summary. This chapter presents an overview on the modeling and model-based con-
trol of autonomous helicopters. Firstly it introduces some of the platforms and control
architectures that has been developed in the last 15 years. Later, the Chapter consid-
ers the modeling of the helicopter and the identification techniques. Then, it overviews
different linear and non-linear model-based control approaches. This section also in-
cludes experiments on the control of the helicopter vertical motion that illustrate the
presented techniques and point out the interest of nonlinear analysis methods to study
the dynamic behavior of the helicopter. Finally, the Chapter presents open research
lines coming from two challenging applications: the autonomous landing in oscillating
platforms and the lifting and transporting of a single load with several helicopters.

Keywords: Autonomous Helicopter, Helicopter Modeling and Identification, Au-
tonomous Helicopter Control, Autonomous Landing.

1 Introduction

In the last decade Unmanned Aerial Vehicles (UAVs) have attracted a significant
interest. UAVs avoid the human risk inherent to human-piloted aerial vehicles,
particularly in missions in hostile environments, and they can be smaller and
more maneuverable. The exploitation costs can be also lower that the in manned
aircrafts.

UAVs have been widely used for military applications. Recently, the evolution
of UAV technologies, the miniaturization of the sensors and cameras and the
new advances in communication and control systems, point to a wide range
of civilian applications such as natural disasters, inspection, search and rescue,
traffic surveillance and law enforcement.

Remotely piloted and autonomous helicopters have been extensively used for
applications involving aerial and lateral views including aerial photography, cin-
ematography, inspection and other aerial robotic applications. The maneuver-
ability and hovering ability of helicopters and other VTOL design are main re-
quirements in many of these applications. However, helicopters are more difficult
to control than fixed wing aircrafts. In fact, they require critically stabilization
loops which are coupled to the displacement behaviors.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 1-29, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007



2 M. Béjar, A. Ollero, and F. Cuesta

Fig. 1 shows the reference systems used in helicopter control. The position and
orientation of a helicopter is usually controlled by means of 5 control inputs: the
main rotor collective pitch which has a direct effect on the helicopter height (z
axis in the X-Y-Z system); the longitudinal cyclic which modifies the helicopter
pitch angle (rotation about the y® axis in the 2® — y® — 2 system) and the
longitudinal translation; the lateral cyclic, which affects the helicopter roll angle
(rotation about the z° axis in 2° —y® — 2° system) and the lateral translation; the
tail rotor which controls the heading (yaw motion) of the helicopter (rotation
about the z° axis in 2” — y® — 2 system) and compensates the anti-torque
generated by the main rotor; and the throttle control. It is a multivariable non-
linear system with strong coupling in some control loops.

Rear View

Right View
z
b

Z
L.X
Y Z
"
Top View g
Y
Y
Lﬁ(
Fig. 1. Inertial (XYZ) and body (2°y°2%) coordinate systems of the helicopter

Autonomous helicopter control has been a well known control benchmark.
Different approaches can be used including model based control and other ap-
proaches based on learning from human operators and rule-based techniques.
Thus, fuzzy logic with rules generated by the observation of a human pilot and
consultation with helicopter experts is the approach used in [5]. In [30] PD con-
trol loops with gains tuned by trial and error are implemented. In [29], the
controller is generated by using training data gathered while a human teacher
controls the helicopter. In [4] learning is based on the direct mapping of sensor
inputs to actuator control via an artificial neural network. Then, the neural net-
work controller was used for the helicopter hovering. The analysis of the pilot’s
execution of aggressive manoeuvres from flight test data is the base of the method
presented in [12] to develop a full-non-linear dynamic model of a helicopter. In
this Chapter only model-based analysis and control techniques are considered.

Section 2 of this Chapter introduces some of the platforms that have been
used for the experimentation of control techniques and also the control architec-
tures developed for aerial robotics. Section 3 is devoted to modeling including
model development and identification. Section 4 deals with model based control
techniques and Section 5 points to open research lines. Finally, sections 6 and 7
are devoted to the Conclusions and References.
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2 Platforms

Autonomous helicopters are very valuable platforms for aerial robotic. Thus,
many different Universities and Research Centers have developed experimenta-
tion platforms since the beginning of the nineties. The usual approach has been
the adaptation of remotely piloted helicopters that are available in the hobby
and aerial photography market. Furthermore, commercial platforms designed
and implemented by companies have been also used. The most well known and
widely used autonomous helicopters are the Yamaha R50 and Rmax platforms
(see Fig. 2). They have been commercially used in Japan for crop spraying.
Other commercial platforms developed mainly for military applications are the
Fire Scout from Northrop Grumman and the Camcopter from Schiebel.

Fig. 2. Yamaha Rmax platform

The Robotics Institute at Carnegie Mellon University (CMU) conducted since
the early nineties an autonomous helicopter project. They have developed dif-
ferent prototypes from small electrical radio controlled vehicles to autonomous
helicopters using the Yamaha R50 platform. The autonomous CMU helicopter
won the AUVSI aerial robotic competition in 1997.

The University of Southern California (USC) carried out several autonomous
helicopter projects since 1991, developing prototypes, such as the AVATAR (Au-
tonomous Vehicle Aerial Tracking and Retrieval/Reconnaissance) prototypes
presented in 1994 and 1997. The AVATAR helicopter won the AUVSI Aerial
Robotics competition in 1994.

The University of Berkeley also developed autonomous helicopters in the
Berkeley AeRobot project, BEAR, in which the autonomous aerial robot is a
test bed for an integrated approach to intelligent systems.

The Georgia Institute of Technology (GIT) has the Unmanned Aerial Vehicle
Research facility and developed several platforms and aerial autonomous systems
during the last decade. GIT also won the AUVSI aerial robotics competition.

In Europe the University of Linkoping leaded the WITAS project which was
a long term basic research project involving cooperation with other Univer-
sities and private companies [8]. The Yamaha Rmax helicopter was used for
demonstration in the WITAS project. Moreover, several Universities such as the
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Technical University of Berlin, ETH Zurich [9], and Universidad Politécnica de
Madrid [1] are using the adaptation of conventional radio controlled helicopters
with different autonomous capabilities.

Fig. 3 shows MARVIN developed by the Technical University of Berlin [33],
which won the AUVSI Aerial Robotics Competition in 2000. Later, they devel-
oped Marvin II in the framework of the COMETS European IST project on the
coordination and control of multiple heterogeneous vehicles (http://grve.us.es/
comets). These helicopters are shown in Fig. 3.

Marvin 1 Marvin II

Fig. 3. The Marvin autonomous helicopters flying in experiments of the COMETS
project

The GRVC group of the University of Seville (http://grvc.us.es) developed
several teleoperated and autonomous platforms in the framework of the above
mentioned COMETS project, which was coordinated by the researchers of this
University, and the Spanish CROMAT project on the coordination of aerial and
ground robots (http://grve.us.es/cromat). Fig. 4 shows some of these platforms.

Control Architectures

On board control architectures for UAV integrate a variety of sensor information
including GPS, 3-axis rate gyro, 3-axis accelerometer, aircraft attitude reference
sensor, compass, altitude sensors among others. Furthermore, low level motion
servo-controllers are implemented to control the vehicle typically in different con-
trol modes. Intelligent control architectures also include environment perception,
object tracking, and local reactive (obstacle avoidance) and planning capabili-
ties. The on-board control hardware is linked to an operator ground controller
which is used to send commands and GPS corrections to the on-board controller
and to visualize information transmitted from the UAV. In many projects these
controllers are now implemented by means of laptops.

The University of Southern California (USC) developed a behavior-based ar-
chitecture for the control of the AVATAR autonomous helicopter [10]. The low-
level behaviors correspond to the generation of the four input commands of the
helicopter (collective throttle, tail rotor, longitudinal and lateral cyclic). The
second level implements short-term goal behaviors: transition to altitude and
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HELIV jointly developed HERO 1 developed by HERO 3 developed by the
by the University of the University of Seville  University of Seville in the
Seville and Helivision in  (2004) CROMAT project

the COMETS project.

Fig. 4. Helicopters developed at the University of Seville

lateral velocity. The highest-level behavior, navigation control, is responsible for
long-term goals such as moving to a particular position and heading.

Intelligent control architectures for unmanned air vehicles (helicopters) are
also researched at Berkeley. The hierarchical architecture segments the control
tasks into different layer of abstraction in which planning, interaction with the
environment and control activities are involved. The hierarchical flight manage-
ment system [19] has a stabilization/tracking layer, a trajectory generation layer,
responsible for generating a desired trajectory or a sequence of flight modes, and
a layer which switches between several strategy planners. Both continuous and
discrete event systems are considered. In order to model these control systems,
hybrid system theory has been proposed (see for example [21]).

GIT also developed autonomous helicopter control systems and research in
flight controls, avionics and software systems.

The control architecture developed at the University of Seville includes a low
level control system based on the DSP TMI2812 and a PC104 to implement
complex control strategies eventually involving environment perception func-
tions. Several control strategies can be implemented including manual guidance
with automatic stabilization and hovering, and fully autonomous flight.

To conclude this section it should be noted that a practical difficulty in most
autonomous helicopter projects is the need of experienced pilots for their devel-
opment and application. Other relevant issues are the following:

- Strong need of mechanical maintenance and testing of platforms, particularly
in the low cost platforms built by adapting small radio control helicopters.

- Relevance of the weight and power consumption particularly in small heli-
copters. This issue imposes strict requirements on the hardware to be used
on-board. Thus, on-board UAV control hardware is an ideal application for
new embedded control systems involving microcontrollers, DSPs, and em-
bedded PCs with real-time Operating Systems.

- Relevance of the mechatronic design involving mechanical, sensing and con-
trol joint design.
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- Strict safety and reliability constraints imposing extensive testing before im-
plementation which may involve the application of hardware in the loop
techniques.

3 Modeling

Modeling UAV dynamics is a challenging research area. The full model of a heli-
copter, including flexibility of the rotors and fuselage, dynamics of the actuators
and combustion engine, is very complex.

In most cases, the helicopter is considered as a rigid body, whose inputs are
forces and torques applied to the center of mass and whose outputs are the linear
position and velocity of the center of mass, as well as the rotation angles and
angular velocities.

Furthermore, the relations between the actual control inputs of the helicopter
and the above mentioned forces and torques should be considered in the model.
In general, these relations involve the aerodynamics of the fuselage and the effect
of stabilizers. However, it has been pointed out that these stabilizers effects can
be ignored at low speeds [22].

In [20] a mathematical model and its experimental identification for a model
helicopter are presented. The model of the interactions between the stabilizer
flybar and the main rotor blade is also included, showing its effects on the stabil-
ity of the model helicopter. The identification from input-output data, collected
when a human pilot is controlling the vehicle, is difficult because it is not possible
to study the individual effect of each control input (the pilot has to apply more
than one input to maintain the stability). To overcome this, the identification of
the parameters is performed on a SISO basis, using four specially-built stands to
restrict the motion of the helicopter to one degree of freedom. For example, one
of these stands only allowed vertical motion. Thus only the main rotor collective
input was excited and only the vertical displacement was measured. In these
conditions, the simplified linear transfer SISO function from collective input to
the vertical motion was identified using standard identification techniques.

In [28] a parameterized model of the Yamaha R-50 autonomous helicopter is
identified using frequency domain methods. The stabilizer bar is also taken into
account. The model was validated with special flight experiments using doublet-
like control inputs in hover and forward flight, showing its ability to predict the
time domain response of the helicopter to control inputs. At CMU, a high-order
linear model of the R-50 Yamaha helicopter is used for control. This model was
extracted by using the MOSCA (Modeling for Flight Simulation and Control
Analysis) with a non-linear simulation model of the helicopter [25].

The work in [7] also presents a complete nonlinear helicopter model. Modeling
is based on the Blade Element Momentum Theory which is a combination of
the Blade Element Theory and Momentum Theory. Aerodynamic effects such
as effective translational lift, traverse flow and ground effect, are considered.
In contrast to previous works, the author highlights the presence of gyroscopic
effect in pitching and rolling movements of rotors. The influence of wind gust is
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also studied. It shows the strong effect of wind disturbances on lateral position
and how the altitude is also affected due to the Effective Translational lift. The
complete model has been validated by means of several experiments with the
MARVIN I autonomous helicopter, shown in Fig. 3.

3.1 Model Development

Generally, the model of a helicopter can be divided into five different subsystems:
Servo Dynamics, Engine Dynamics, Aerodynamics (Main Rotor, Tail Rotor and
Fuselage), Force and Moment Generation, and Rigid Body Dynamics. Connec-
tions between these subsystems are shown in Fig. 5. In this figure, Pc (main
rotor collective pitch), Pt (tail rotor collective pitch), Pz (longitudinal cyclic
pitch), Py (lateral cyclic pitch), and Pth (Throttle control), are the input signals
mentioned in Section 1 of this Chapter. Pcmd comprises the five corresponding
commanded signals before actuator dynamics.

Fb —

Rigid Body é
Dynamics ——m

'

\'

A

Fin

Pth i » i >

Engine Main
. ¢ . Force &
Dynamics | we Rotor M Moment

F
Tt
Fy

Generation
Pem Servo Pc Tail
Dynamics Pa Rotor

Fuselage

Fig. 5. Helicopter Dynamics

oo T T . .
Likewise, s = [(E Y z] and v = [mc vY vz] are, respectively, the linear

position and velocity of the helicopter. On the other hand, ¢ = [gzﬁx Py - ] T are
the Euler angles whilst w” € R? is the angular velocity in the body frame.

Rigid Body Dynamics

By regarding the helicopter as a rigid body, equations of motion of a model
helicopter can be derived by applying Newton-Euler equation. Thus, the trans-
lational and rotational movements of a rigid body are described by the conser-
vation of linear and angular momentum. For translation this yields to

mi = F (1)

where m is the helicopter mass and F' € R3 is the force applied to the center of
mass. All the vectors are given in the inertial frame.

For rotation, it is easier to switch to the body fixed frame. In this case the
equation of motion yields to
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JoP +wb x Jwb =1° (2)

where J € R3*3 is the inertial matrix and 7% € R? the torque applied to the
helicopter body.

The transformation from body to inertial frame can be parameterized by Euler
angles ¢ and yields to a rotation matrix R(¢) that makes possible the conversion
F = R(¢)F". By differentiating R(¢) with respect to time, state equations of
the Euler angles are obtained ¢ = &@(@wb.

Therefore, the motion equations of a rigid body can be written as:

S v

v m B(O)F?

o]~ (o)’ ®)
wb J7H b — Wb x Jwb)

Force and Moment Generation

The force experienced by the helicopter is the sum of the thrust generated by
main (F,,,) and tail (F}) rotors and the gravitational force. An additional term
F¢ for the air resistance of the fuselage is also added:

0
F'=F,+F+F;+R"¢)| O (4)
—mg

The torque is composed of the torques generated by the main rotor (7,,,), tail
rotor (7¢) and the torques generated by the forces, since their point of attack is
displaced from the center of mass:

Tb:Tm+Tt+meFm+Tt><Ft (5)

where r,,, r; are the positions of the main and the tail rotors and ¢ is the
acceleration of the gravity.

Aerodynamics

Fuselage Air Resistance
Air resistance of the fuselage (Fy) can be approximated by the 3 x 1 vector

Ky, v%m |v%m
Fy = Kfy%ngy (6)

az

where Ky, are aerodynamical parameters, v% is the air velocity in body fixed
frame and | — | denotes absolute value.
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Dynamics of a General Rotor

In this subsection, equations for a general rotor with collective and cyclic pitch
inputs are derived [6] [7]. Subsequently, these equations should be applied to
each rotor to obtain the forces (F,, F;) and the torques (7,,,, 7¢) indicated in
Equations (4) and (5).

Forces and torques generated by a rotor will be calculated as mean values of
the forces of a single rotating blade. Due to wind and pitch, these forces will be
changing during one cycle. Therefore, integrating these forces along each blade
and for one cycle will yield to the mean lift force F7, and the mean drag Mp,
both along 2" axe of the rotor disk, and the mean torques M,, M, along axes
x" and y” of the rotor disk, respectively.

A X _axis

Fig. 6. Rotor disk for integration

Mean lift force (Fr,). For the determination of mean lift, all lift components of
each rotor element are integrated according to Fig. 6. Blades are assumed to be
non-twisted and of constant chord from radius R; to R.

The mean lift yields to
27 R2
Fp = / / F} drda (7)
0o JR,

where F] depends on several values such as the pitch of the blade and the air
velocity v, relative and orthogonal to the blade.

Mean torque (M, and M, ). Torques are produced by the same forces F; as lift.
Since these forces are applied asymmetrically, two different torques are produced
along axes " and y”. To obtain these toques, forces must be integrated as follows:

M, /Qﬁ/ T r?sin(a)drdo (8)

M, = / 7 / "t 12cos(a)drda )
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Mean drag (Mp). Estimating drag of a rotor is very similar to estimating lift.
In this case, the second force exerting on the blade (drag force F7,) is integrated
along each blade and for one cycle. Thus, the mean drag of the rotor can be
expressed as
27 RQ
Mp = / Fhr?drda (10)
0 JR;

where the drag force F, is assumed to be proportional to the square of the pitch.

Engine Dynamics

For the dynamics of the main engine a first order linear differential equation
is considered. As a simplification, it is assumed that the engine (w.) and the
main rotor (wy,) have the same angle velocity. This means that the real ratio is
identified within the other engine parameters. The torque M. generated by the
engine is assumed to be proportional to the throttle input p;;, and the friction
M, of the gear is assumed to be viscose.

The equation for the engine now yields to (recall that we = wyy,):

_ M.~ Mp,, —nMp, — M,

11
Jm+’l7tJt+Jg ( )

We
where J,,,, Ji, J, are the moments of inertia for main rotor, tail rotor and gear,
respectively, Mp,, and Mp, are mean drags of main and tail rotor and 7 is the
ration between tail rotor and main rotor angular velocities.

Servo Dynamics

For each control servo, the same first order behavior is assumed:

Pi=—aPi+aPCMDi i=cx,y,t,th (12)

where « is a parameter representing the damping behavior of the servo and
PCM D:i is the commanded value for the servo 1.

3.2 Model Identification

The main difficulties of helicopter model identification are due to the instabil-
ity and coupling inherent characteristics associated to the system. These in-
conveniences can be avoided with some modifications of classic identification
approaches.

Mathematically, the identification task can be formulated as an optimization
problem:

m(gn Fe,I), (13)
where O is the set of parameters to be identified, I" the captured reference flight

(I, inputs, I, states, I, outputs) and F' a fitness function which is decreasing
for a better approximation of the model.
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In order to obtain data for solving this optimization problem, it will be nec-
essary to record the helicopter responses and the corresponding control signals
given by a pilot at a reference flight.

Rest of this section is devoted to illustrate an identification tool for au-
tonomous helicopters recently developed by the GRVC.

Fitness Function

To define the fitness function there are different methods whose applicability
depends on the characteristics of the model to be identified.

For further discussions we assume a general non-linear model in state-space-
form

& = f(z,u), (14)

y = h(z), (15)
where z € R™ is the state vector, u € RP the control vector and y € R? the
observation vector.

The parameters O are included in the system function f(z,u) and the observa-
tion function h(z). To compare a captured reference flight I" with the identified
model response, the model has to be simulated with the same control signal I,
and the same initial condition I, (¢p).

&= f(x,Iy), z(to) = Lu(to), (16)
y = h(z).

Output Error Method (OEM)

Fitness is seen as the error between the simulated and the actual trajectories of
the outputs measured in the system.

In particular, the parameter fitness can now be written as a weighted mean-
square-error:

N
Fopm(©.1) = 3 (y(tr) — T, (te) "W (y(ts) — Ty (1)) (17)
k=1
where N is the number of data points and W a weighting matrix.

This method is the most widely used, since it has many desirable statistical
properties. However it poses difficulties when applied to inherent unstable sys-
tems. In this case, numerical integration leads to diverging solutions even if the
correct parameters are used, due to the open-loop character of the simulation.

Stabilized Output Error Method (SOEM)

The instability caused by numerical divergence in OEM can be solved by incor-
porating stabilization using some states that can be measured.

The fitness function to be minimized is the same used in the normal OEM
and is given above by equation (17). Only the simulation structure (Fig. 7) is
modified by replacing some states with those of the measured trajectory. Thus
71 is the combination of measured states I, and simulated states x.
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Fig. 7. Structure of a stabilized simulation used with the SOEM

Preprocessing

Parameter Range

Before applying optimization algorithms, the proper choice of the helicopter
parameters range is crucial for a successful identification. If the range is chosen
too small, the parameters may be outside, and if it is too large the search may
take very long or will not converge. This choice of the ranges can be challenging
and requires good knowledge of the helicopter model.

Reference Flights

Another important step is the specification of the reference flights. On the one
hand, sometimes several parameter combinations could adapt well to a partic-
ular reference flight; to overcome this, some flights are captured with a known
parameter offset, like mounting a mass with known weight and moments of in-
ertia. On the other hand, trajectories commanded in reference flights should be
those that excite as much helicopter dynamics as possible. This last specification
can be tested performing a sensitivity analysis for each parameter.

Parameter Sensitivity

Analyzing the sensitivity of the fitness function with respect to each parameter
gives an estimate of how every parameter is involved in the behavior of the heli-
copter and therefore how precise each can be identified. A sensitivity analysis is
performed for a specific reference flight, assuming a set of parameters. The data
corresponding to the reference flight are used to evaluate the fitness function
while varying each parameter around its assumed default values. Due to neglect-
ing the coupling between the parameters, the result is only an estimate, but it
helps to get a feeling of how suitable a particular maneuver will be to identify
all the parameters.

Fig. 8 shows a sensitivity analysis. The vertical line represents the default
value of the parameter and the curve shows the fitness while modifying each
parameter.
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Fig. 8. Sensitivity analysis for a particular manoeuver. Each subgraph shows the vari-
ation of the fitness function (gray line) while modifying a parameter around its default
value (black vertical line). One possible conclusion is that parameters CtQ and DtQ
have small influence in this manoeuver (and therefore, it would be more complicated
to identify them) since their fitness variation is less than in other cases.

Optimization Algorithm

To solve Equation (13), the functions provided by [27] have been implemented.
These functions are designed to find the minimum of a constrained nonlinear
multivariable function of several variables. In our case, the multivariable function
is the fitness described in Equation (17) and the parameters values associated
to the minimum are those that make the model response be more similar to the
reference flight.

Notice that an observed limitation of these functions is that might only give
local solutions. This highlights the importance of the remarks made previously
about parameter range choice.

Validating the Model

After having found an optimal set of parameters, it is desirable to see how good
this model will predict different behaviors of the real helicopter. This can be
done by plotting and comparing the real and the simulated trajectory.

The set of data used in the identification process (reference data) should not
be the same that is used in this validation process (evaluation data). This way,
parameter adaptation to a particular set of data is avoided.
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When simulating a set of evaluation data, the same problem of diverging
solutions occurs for unstable systems. This problem can be solved with the same
approach used in SOEM.

Results

The proposed identification framework has been tested with the reference model
introduced in Section 3.1. To this end, three flights are captured: two reference
flights of 4 seconds, used in the identification process, and one evaluation flight
of 6 seconds, used to evaluate the identified parameters. For the second reference
flight, a parameter offset has been used to represent an additional mounted mass
with known weight and inertia matrix.

Results obtained applying SOEM method are shown in Fig. 9.
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Fig. 9. Comparison between actual evaluation data and simulation data with param-
eters identified with SOEM

4 Control Techniques

In this section model-based control techniques are considered. Firstly, a general
perspective is given. Then, the model described in previous sections is used to
design control strategies that illustrate the concepts explained in the mentioned
overview.

Although a helicopter is a coupled nonlinear multivariable and underactuated
system, simplification of some coupling terms leads to a first simplified scheme
of main relations between input-ouput variables of Fig. 5, as shown in Table 1.

Notice that translational variables are expressed in the body coordinate frame
defined in Fig. 1. This set of relationships is the base of the typical control
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Table 1. Basic input-output relations in a helicopter

Control Input Translation Rotation

Pc 2 -

Pt - ¢=
Pz xb by
Py y’ o

scheme shown in Fig. 10. This control scheme not only takes into account the
main relationships in Table 1 but also considers the most important couplings,
such us the lateral and longitudinal movement effect on vertical dynamics.

Current value of Deviation in Deviation in ~ Current value of Deviation in Deviation in
b, y X P, zi di
Control Conitrol
block block

[
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_|_
Control

Coupling + )
= term
block
-y + * +

Desired value of  Desired value of
o, 0,
Control Control
block block
\J Y
Actuator Actuator Acnlator Achlator

Py Px Pc Pt

Fig. 10. Basic control scheme

4.1 Model-Based Techniques

Both linear and nonlinear control strategies have been applied to autonomous
helicopters. However, even when linear control laws are applied to the inputs
defined in Fig. 5, some authors add nonlinear transformations in particular con-
ditions. Thus, in [13] a nonlinear rotation matrix is considered to deal with yaw
angles not equal to zero. This rotation matrix converts x and y deviations (global
system) into x° and y° deviations (local system).

In [36] linear robust multivariable control, fuzzy logic control and nonlin-
ear tracking control are compared in the simulation of two scenarios: vertical
climb and simultaneous longitudinal and lateral motion. In order to design the
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multivariable linear control law, Equations (3) together with the corresponding
nonlinear expressions for forces and torques given by (4) and (5), are linearized.
Fuzzy control is based on the generation by means of fuzzy logic of the param-
eters of four separated PID chains, which correspond to each of the inputs of
Fig. 5, excluding Pth since engine dynamics are not modeled. The nonlinear
approach consists of feedback linearization, assuming the simplification of the
coupling effects between forces and torques of Equations (4) and (5). This ap-
proach is shown to be more general and to cover wider ranges of flight envelopes.
However, it also requires accurate knowledge about the system and is sensitive
to model disparities, such as changes in the payload, or to the aero-dynamic
thrust-torque model.

In [19] multiloop linear PID techniques obtained good results when applied
to the Yamaha R-50. Using variables of Fig. 5, the control laws can be outlined
as follows:

Pe(t) = — Py v, (t) — Poes(t) — L. / e.(t)dt

PH(t) = = Pp.6:(0) ~ L. [ co. (0t

Pa(t) = — Py, ¢y(t) — Povu(t) — Poeo(t) — I / ex(t)dt

Py(t) = — Py, du(t) — Py, vy(t) — Pyey(t) — I, / e, (1)dt (18)

where e;(t) denotes deviation in variable i. P; and I; are respectively propor-
tional and integral control constants associated to variable j. Notice that these
expressions also reflect the main relations shown in Table 1. Analyzing per-
formance, if large perturbations should be compensated, or significant tracking
abilities are required, this strategy could be not enough. In this case further im-
provements can be obtained by adding nonlinear control terms that compensate
significant deviations with respect to the hovering conditions.

At CMU a high-order linear model of the R-50 Yamaha helicopter is used
for control in [23] [24]. The controller consists of one multivariable (MIMO) in-
ner loop for stabilization and four separate (SISO) guidance loops for velocity
and position control. Several manoeuvre tests have been conducted with the
helicopter (square, forward turn, backward turn and nose-out circle). The con-
troller is designed for hovering but its robustness leads the helicopter to perform
the manoeuvres efficiently even if the trajectories are not optimal. Videos and
further information can be accessed in http://www.roboticflight.org.

The work at [18] aimed at achieving aggressive manoeuvrability at the level of
attitude angles, whose dynamics are defined by the fourth element of Equation
(3). However the authors do not consider the contribution of tail rotor force in
terms of the tail rotor torque, shown in (5). Likewise, engine dynamics block in
Fig. 5 are not considered, which implies the assumption of a constant angular
velocity wy,. After these assumptions, the nonlinear model is approximated by
a Takagi-Sugeno fuzzy model, which boils down to convex combination of linear
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submodels. Finally, a gain scheduled output feedback Hoo controller for the
approximated model is designed.

Fig. 11 outlines the control scheme adopted in [17] and [32], using the same
notation of Fig. 5 for inputs and outputs.

OuterLoop InnerLoop
Hedge Hedge
a11 ah
.. O,
So¥e Outer Bites » Dy ; Inner PtLPx,Py o Plant
s, v, 0,0 Loop s,v,0,® | Loop ¢
o A o A
a'.u] aud
Adaptive Pec
element |«— S V.0, 0,2, 0

Fig. 11. Adaptive control scheme

The proposed structure is based in feedback linearization and combines the
helicopter attitude inner control loop and the outer trajectory control loop. It
also applies adaptive techniques (aqqd , @taq) to cancel model errors. Furthermore,
Pseudo-Control-Hedging (aj, , ay,) is used to prevent unwanted adaptation to
actuator limits and dynamics in the inner loop. The commanded references are
Se 5 Ve, ¢ and w, whereas ¢ges and wges are the values imposed to the inner
loop by the outer loop.

In general no guarantee of robustness against model uncertainties or distur-
bances and no adaptive capabilities are provided by many feedback linearization
techniques. However, in some cases, nonlinear controller robustness properties
are increased using sliding mode and Lyapunov based control [26]. Typically,
these techniques trade the controller performance against uncertainty, but re-
quire a priori estimates of parameter bounds, which may be difficult to obtain.
However, research efforts to design new robust nonlinear control laws are pur-
sued. Then in [15] the vertical motion of a nonlinear model of a helicopter tracks
a reference signal, while stabilizing the lateral and longitudinal position.

In [19] the application of nonlinear model predictive control is proposed. At
each sample time, the controller computes a finite control sequence which min-
imizes a quadratic index. This index includes the errors of the outputs (z, y, z
and ¢, variables in Fig. 5) with respect to desired trajectories, additional state
variables, which should be bounded, and the control actions (Pe¢, Pt, Px and Py
in Fig. 5). A gradient descent technique is used to compute the optimal values
of the control variable. The method improves the tracking performance at the
expenses of heavy computing load.
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In [11] the control of underactuated systems including helicopters and Planar
VTOL (PVTOL) is studied. Several control techniques are presented including
backstepping, energy based controllers and Lyapunov-based controllers.

4.2 Vertical Movement

This subsection is focused on the control of the vertical motion of the autonomous
helicopter. It will present the results of simulations and experiments that will
illustrate two control strategies (CS1 and CS2) and will point out the nonlinear
behavior existing in the helicopter motion.

Vertical movement implies excitement of all the dynamics present in the he-
licopter, including nonlinear behaviors. Indeed, due to the strong couplings ob-
served in a helicopter, controlling vertical dynamics requires a control effort in
all the input variables to maintain stabilized the helicopter while performing the
desired vertical maneuver. On the other hand, the study of vertical dynamics
will lead to a better knowledge of landing scenarios, such as the one proposed in
next section.

With respect to the particular choice of the control strategies, noting that
an important point to consider is the applicability of control methods, which in
its turn is highly dependent on the capabilities of the on-board hardware. CS1
and CS2 strategies are simpler than other approaches referenced in the previous
survey, showing a good performance and robustness with low computational cost.
More complex control laws, with an improved performance, have been considered
but the main problem is its practical application within the actual platform used
in the experiments (fixed point micro-controller).

Control Strategy 1 (CS1)

This strategy is based on a linear control approach described in [6]. The complete
control hierarchy consists of several elementary controllers, each one controlling
a single scalar state variable. Two of these elementary controllers, those more
directly related to vertical dynamics, will be described in the following.

Trajectory and System Model

Let z and ¢, in Fig. 5 be the controlled variables and Pc and Pt the associated
control variables, as indicated in Fig. 10. For controller design purposes, Equation
(3) can be simplified and the following second order model can be assumed for
the variables involved in translational vertical dynamics:

5(t) = ; Pe(t)
Pt(t) (19)

where f, and fy, are system parameters that can be measured.



Modeling and Control of Autonomous Helicopters 19

When fixing a desired trajectory for z(t) and ¢.(t) to be followed by this
system to reach some command values z|,cf(t) and ¢.|cf(t), two free parameters
are necessary in each case to adapt to the current state (z(to), Z(to), ¢.(to),
- (to)) given as initial condition at the current time to. On the other hand, Z(to)
and ¢, (tg) must be chosen by the controller according to Equation 19.

In order to allow smooth convergence, the expressions adopted for the desired
trajectories of z(t) and ¢,(t) are:

z(t) = z|rer(t) + Aye K1t 4 B e~ K2:t
() = bylrer(t) + Ag e Kozt 4+ By e K202t 20
f P [oF

where K1, and K2; (for i = z,¢,) are constants strictly positive that adjust

the rate of convergence towards z|pcf(t) and ¢.|ref(t). A; and B; (for i = z,¢.)

represent the two free parameters in each case to fix the initial conditions.
Basic control law can be expressed as follows:

Pe(t) = f22°(t)

Pt(t) = fo.9:(t) (21)

2= —K1,K2,(2 — z|pef) — (K1, + K2,)(2 — Z|yef)

b, = —K1ly K2 (6. — bzlrer) — (K, + K2.) (6. — dalrer)  (22)

where Equation (22) is interpreted as the desired accelerations to generate the
intended trajectories according to Equation (20). Time dependence has been
removed for clarity.

Model Error

It would also be desirable to add some term to eliminate steady state errors. The
reason for the necessity of such compensation is that real systems differ from the
ideal equations (19). These equations change for real systems with model errors
me.(t) and mey_(t) into:

Z(t) = ;z Pe(t) — me.(t)
d.(t) = fl PH(t) — meg. (1) (23)
b

This lead to the following new expression for the controller output:
Pe(t) = f[£7(t) + mezlest ()]
PH(t) = fo.[:" (1) +meg. |est ()] (24)

where me;|est(t) and meg, |est(t) are estimators of the model error. These esti-
mators are gradually adjusted at selectable rates a, and ag, by integrating the
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deviation between the current desired accelerations, £*(t) and (bz*(t), and the
current actual observed accelerations 2(t) and ¢,(t):

meZ|est (t) = a-(2"(t) — £(t))
nieg. |est (1) = ag. (9= (t) — §=(t)) (25)

Couplings

Finally, the aforementioned couplings should also be taken into account. To this
end, the coupling terms included in Fig. 10 are added to the control laws.

Pc(t) = fz [Z*(t) + mezlest (t) +c; (t)]
PH(t) = fo.[d: (£) + meg, |est(t) + co. (t)] (26)

where the coupling terms, ¢, (t) and ¢4, (t), are functions of the main coupled
variables in each case:

Cz(t) = f(¢m7 ¢y)
cy.(t) = f(Pc) (27)

Conclusions

Analyzing the structure proposed in this section, it can be stated that it is
similar to PID structure. However, there are some differences that make CS1 a
better approach than conventional PID implementations. Controllers designed
following CS1 are stable by design and oscillation-free, having also step response
without overshooting. This result has been proven experimentally in the MAR-
VIN helicopter shown in Fig. 3.

Control Strategy 2 (CS2)

The values of the coefficients of the Control Strategy 1 (CS1) previously de-
scribed (K1,, K14, K2,, K24_, a, and ag,) are fixed. In this second section,
a nonlinear improvement of CS1 is shown [2].

The CS1 is possibly one of the simplest approach that shows a good per-
formance and can be used for both hovering and trajectory tracking exhibiting
good robustness in most cases. Another advantage is its very low computational
cost. Its main drawback is that the control gains are fixed for all the operation
range and then low values have to be used due to saturations and large errors,
although this could be partially solved by using different controllers for position
and velocity control.

Control strategy 2 (CS2) developed by GRVC at the University of Seville pro-
poses a nonlinear strategy, based on CS1 structure, that applies different control
laws according to the operation conditions. In fact, CS1 could be considered as
a particular case of a more general structure CS2, where gains vary around the
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fixed values proposed for CS1. This more general structure of CS2 can be defined
substituting Equations (22) and (26) by:

J;C = (2, 62)(2 — 2lres) + To(262)(E — Zlrer)
+T3(Za ¢z) /(z - Z|ref)dt + Cz(¢:pa ¢y)
ff;t = +Yu(2, ¢.) (¢ — Gzlrer) + Ts5(z, ¢Z)(¢z - qulref)

(2 62) / (62 — Galreg )t + . (PC) (28)

where 7;(z, ¢.) are nonlinear feedback functions of z and ¢,. Time dependence
has been removed for clarity.

Notice that other nonlinear approaches for 7; could be considered in Equation
(28), what highlights its generality and flexibility in the study of the vertical
dynamics. For instance, 7; could become dependent of other variables of the
system, thus reflecting also the couplings mentioned in previous sections.

CS2 can lead to improve overall controller performance, as shown in [2]. Fur-
thermore, this approach can also be used to deal with saturations or even to
induce nonlinear behaviors on the helicopter flight for testing issues. Lastly, not-
ing that since CS2 design is based on CS1, it can also be implemented with low
computational cost, quite similar to the required by CS1.

Nonlinear Study of the Model

The following will show how CS2 can be used to validate the nonlinear behav-
iors associated to the model. Thus CS2 is designed to induce those nonlinear
behaviors (including multiple equilibriums, limit cycles, etc), that will be vali-
dated with experimental flights. To this end, the proposed nonlinear law CS2 is
mainly a variation of the CS1 structure in the vertical dynamics. Thus, instead
of using fixed gains (Equations 21 and 22) in the computation of both collective
input of main rotor and tail rotor control signals Pc(t) and Pt(t), respectively),
a nonlinear gain-scheduling approach has been applied taking into account the
altitude error e,(t).

Under CS2, the system exhibit the behavior shown in Fig. 12 corresponding
to the ”altitude error vs. vertical velocity” phase plane. As it can be observed,
the system presents five equilibrium points (the origin is the only one stable
equilibrium, but it is only locally stable; there are also two unstable equilibrium
points and two saddle points between the stable and the unstable equilibria),
which are surrounded by a stable limit cycle.

In this way, if the helicopter starts close to the target altitude, i.e., with a
small altitude error, it will be able to reach the origin (it achieves null altitude
error). However, if the error is a little bit larger (see dashed line in Fig. 12), or
a disturbance brings the helicopter far from the target point, it can be out of
the attraction basin of the origin and then the helicopter will tend to go away
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from the origin. Notice that the existence of the stable limit cycle prevents the
helicopter from becoming totally unstable. Instead of this, the helicopter will
exhibit a permanent stable oscillation. If the error is even larger, the stable limit
cycle will attract the helicopter preventing again from instability (see Fig. 12).

© Stable Equilbrim
* Sadde Points
# Unstable Equiibria

wzi{mis)

wim

Fig. 12. Altitude error vs. vertical velocity phase plane

Clearly, from the point of view of model validation, testing a controller like this
one on the real helicopter has several advantages. On the one hand, it makes it
possible to compare the response of the real helicopter and the model in the face
of non globally stable controllers. On the other hand, it makes it also possible to
test the capabilities of the model to reflect the nonlinear behavior of the actual
helicopter by comparing the predicted oscillations and the real ones. Moreover,
if the model is not good enough, the predicted limit cycle could not exist with
the actual helicopter.

FExperiments

A series of experiments with CS2 have been performed to validate the aforemen-
tioned simulation results. Some of these experiments are depicted below.

In order to analyze the behavior close to the origin an experiment was per-
formed starting at 2.66 meters from the equilibrium point. As can be observed
in Fig. 13, black continuous line corresponding to LOCAL STABILITY, when
the real helicopter starts at 2.66 m from the origin it tends to the stable equilib-
rium. However, that stability is only local. A perturbation (gray continuous line
corresponding to PERTURBATION) appeared during the real flight bringing
the real helicopter out of the attraction basin of the origin, so it evolved to an
stable limit cycle of 4 meters error amplitude (black dashed line corresponding
to STABLE LIMIT CYCLE). In a similar experiment, with an initial altitude
error of 5 meters, i.e. starting out of the limit cycle, it was observed that the
helicopter tends to the same stable limit cycle than in the previous experiment.
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Conclusions

The final conclusion is that the nonlinear qualitative behavior of the model with
CS2 is quite similar to that of the real helicopter with CS2. However, some
differences on the quantitative velocity behavior have been found, probably due
to non modeled effects of induced velocity. Videos of real experiments can be
accessed in http://www.esi.us.es/ fcuesta/videos/helicopter.html.

MARVIN gxpanmart

Fig. 13. Real experiment: it starts 2.66m far from the origin and it tends to the equi-
librium (black continuous line corresponding to LOCAL STABILITY); a perturbation
(gray continuous line corresponding to PERTURBATION) brings the helicopter to the
stable limit cycle (black dashed line corresponding to STABLE LIMIT CYCLE).

5 Open Research Lines

There are still many open problems in autonomous helicopter design. To mention
some of them, noting the lack of a standard methodology for controller specifi-
cation and its subsequent automated controller synthesis against multiple and
conflicting specifications. Likewise, in navigation and guidance research areas,
aspects such as considering vehicle dynamics in path planing or usage of online
optimization (according to vehicle constraints like time, fuel, efficiency, etc.),
focus the attention of many researchers.

Amongst these open points, it can be highlighted two relevant applications
that do imply the design and testing of new techniques and algorithms. These
are autonomous landing on oscillating platforms and transporting a single load
with several helicopters. In the following the research work in these two problems
is reviewed.

Autonomous Landing on Oscillating Platforms

Autonomous landing on the deck of a ship is a matter of importance when sea
is rough or other bad weather conditions arise (lack of visibility, etc.). Many
accidents have taken place under these circumstances.
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This is complex goal, which implies a continuous feedback of ship position
and pose. To this end, elaborated position estimation techniques are required.
On the other hand, it is also necessary the design of control algorithms that
deal with the tracking of the complex trajectories imposed by ship movements
and that lead to smooth landing. For this second point, works previously shown
on vertical motion can also help in the understanding of the inherent nonlinear
problem.

In [35] it is presented a multiple view algorithm that could be used for vision
based landing of an unmanned aerial vehicle. The algorithm is based in results of
multiple view geometry that exploit the rank deficiency of the so called multiple
view matrix. It is also shown how the use of multiple views improves significantly
motion and structure estimation. Final results show that the vision-based state
estimates are accurate to within 7 cm in each axis of translation and 4° in each
axis of rotation.

The work at [31] addresses the design of an autopilot for autonomous landing
of a helicopter on a rocking ship, due to rough sea. A tether is used for landing
and securing a helicopter to the deck of the ship in rough weather. Two con-
trollers are proposed. In the first (A), the rotation time scale is chosen much
shorter than the translation, and the rotation reference signals are created to
achieve a desired controlled behavior of the translation. In the second (B), due to
coupling of the translation of the helicopter to the rotation through the tether,
the translation reference rates are created to achieve a desired controlled be-
havior of the attitude and altitude. Controller A is proposed for use when the
helicopter is far away from the goal, while Controller B is for the case when the
helicopter is close to the ship. The proposed control schemes are proved to be
robust to the tracking error of its internal loop and results in local exponential
stability.

Even though the tether is used to increase the safety of the landing manoeu-
ver, its usage also implies some drawbacks that require further research. As
mentioned before, coupling between position and orientation variables, which is
normally absent in a helicopter free of a tether, appear in this case. Thus, the
variation range of x and y is influenced by attitude control, which could take
helicopter out of the landing area of the ship. To control this, the authors point
out that cable tension should be as high as possible. However an analysis in
more depth, aiming at real implementation, should be considered since excessive
tension could provoke the breaking of the tether or damages to the helicopter.

In [16] it is considered the problem of controlling the vertical motion of a non-
linear model of a helicopter, while stabilizing the lateral and horizontal position
and maintaining a constant attitude. The vertical reference to be tracked is a
sum of a constant and a fixed number of sinusoidal signals:

Zlref = Zo + Z A;sin(£2;t + ¢r) (29)
i=1

This reference is assumed not to be available to the controller. This represents
a possible situation in which the controller is required to synchronize the vehicle
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motion with that of an oscillating platform, such as the deck of a ship in high
seas. The authors design a nonlinear controller which combines recent results
on nonlinear adaptive output regulations and robust stabilization of systems in
feedforward form by means of saturated controls.

Although [16] outlines a complete set of techniques to carry out the au-
tonomous landing of a helicopter on a ship, some points are still open. On the
one hand, the achieved control goal allows vertical position tracking but longi-
tudinal and lateral position, as well as attitude, are only stabilized to a constant
configuration. It would be desirable to impose some tracking requirements on
attitude. Thus, the effect of strong oscillations in the deck due to rather rough
sea could be better avoided. On the other hand, the reduction of the longitu-
dinal and translational stabilization phase would also improve the performance.
Notice also that [16] did not consider the modeling of engine dynamics; however
the work presented in [3] shows that the technique also works well when they
are taken into account. Finally, recall that only simulation results are available
until the moment. These simulations show the effectiveness of the method and
its ability to cope with uncertainties on the plant and actuator model. However,
implementation in a real UAV should be carried out to obtain the definitive
validation of the algorithm.

Lastly, noting also that some experimental efforts have been already done.
The U.S. Navy and Northrop Grumman Corporation developed some prelim-
inary tests (http://www.northropgrumman.com) with two MQ-8B Fire Scout
prototypes. The MQ-8B is the aircraft element of a complete system called the
Vertical takeoff and landing Tactical Unmanned Aerial Vehicle (VIUAV) sys-
tem. After it was launched from the naval air station, the Fire Scout flew to the
designated test area, where a ship was waiting for the air vehicle to land and take
off under its own control. The flight was monitored from a ship-based control
station called a tactical control system, and the air vehicle was guided onto the
ship using an unmanned air vehicle common automatic recovery system. These
preliminary tests only dealt with moderate conditions of sea. Therefore, further
efforts in control algorithms development are needed for the scenario of rough
sea mentioned at the beginning of this section.

Lifting and Transporting a Single Load with Several Helicopters

Development of new techniques that lead to helicopters working together in load
transport missions would increase the load capacity of single low cost platforms.
Civil Security and Disaster Management activities could be reinforced by apply-
ing these cooperative approaches.

Main challenges involved in this goal stem from the presence of strong nonlin-
earities in the complete system, unknown disturbances due to gust of winds and
the necessity of high gain controllers, which in its turn implies saturated inputs.

In [34], two Hoo controller designs are presented for a twin lift helicopter
system (TLHS). The TLHS configuration consists of two UH-GOA Sikorsky
Blackhawk helicopters jointly lifting a heavy payload. The first design presented
considers the case in which the tethers connecting each helicopter to the load are
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equal in length, and the second considers the case in which the tether lengths are
unequal. Both designs are based on a seven degree of freedom model linearized
about hover. The primary objective of each controller is to minimize the control
action and pitching motion required to stabilize the helicopters as they perform
elementary maneuvers. A simulation of a typical TLHS command scenario is
used to evaluate stability and robustness of the resulting two feedback systems
with respect to structured parametric uncertainty.

In [14], a twin lift system is also studied. Because of the special structure of
the these systems, controllability, observability, stability and existence of decen-
tralized fixed modes of such systems can be tested on matrices of lower order.

The Technical University of Berlin (TUB) is also conducting a project on
the lifting and transporting of a single load by means of several UAVs, in-
volving experimental validation. They plan to apply this system in the self-
deployment of the communication network elements involved in AWARE project
(http://grve.us.es/aware). AWARE is a research project whose objective is the
design, development and experimentation of a platform for the cooperation
among aerial flying objects and a ground sensor-actuator wireless network, in-
cluding mobile nodes carried by people and vehicles. The project considers the
validation in two different applications: Civil Security / Disaster Management
and Filming dynamically evolving scenes.

6 Conclusions

This chapter has been devoted to autonomous helicopters. These kind of aerial
vehicles have been extensively used for aerial robotic applications such as cine-
matography, inspection, search and rescue operations and others. Their manoeu-
vrability and hovering ability explain their use in those contexts.

The chapter surveys the main aspects involved in the design and implementa-
tion of an autonomous helicopter: platforms, architectures for control, derivation
of physical models and their identification for a particular helicopter and model-
based control methods. Along the survey, specific references to works developed
by several research groups including the GRVC in the University of Seville were
also highlighted. Thus, a model identification tool and different control tech-
niques have been implemented with real helicopters. Furthermore the control
strategy CS2 in Section 4 has been used to validate the identified model and
the nonlinear behaviors observed in simulation. This model will lead to the im-
plementation of new control laws that will be able to increase performance and
robustness.

Some specific points that require further research arise as a consequence of
a global analysis of the work reviewed in this chapter. Thus, for example, in
the control of vertical motion it could be interesting to design controllers that
can compensate the effect of wind gusts on the altitude (due to the Effective
Translational Lift). Likewise, the modeling of different induced velocity fields
should be carried out to consider the case of a helicopter flying near vertical
obstacles, such as the wall of a building. There exists also a lack of research
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concerning the determination of the wind regimes that can be afforded by a
helicopter with a given controller. To this end, nonlinear techniques such as the
mentioned CS2 could be used to analyze and improve the performance. Lastly,
noting that most of the presented works assume that all the state variables are
measurable. Since this assumption is not always true in real implementations,
it is necessary the consideration in the close loop of state estimation techniques
as well as an analysis of their effect on the performance of the overall control
scheme.

As final conclusion, it can be stated that designing and implementing an
autonomous helicopter is a complex task that implies efforts in varied work
areas. Analyzing the state of the art, it can be concluded that even though there
are many works already done in this direction, some aspects are not covered yet.
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Summary. In the average consensus a set of linear systems has to be driven to the
same final state which corresponds to the average of their initial states. This mathe-
matical problem can be seen as the simplest example of coordination task and in fact it
can be used to model both the control of multiple autonomous vehicles which all have
to be driven to the centroid of the initial positions, and to model the decentralized
estimation of a quantity from multiple measure coming from distributed sensors. In
general we can expect that the performance of a consensus strategy will be strongly
related to the amount of information the agents exchange each other. This contribution
presents a consensus strategy in which the exchanged data are symbols and not real
numbers. This is based on a logarithmic quantizer based state estimator. The stability
of this technique is then analyzed.

Keywords: Distributed Estimations, Quantization, Distributed Algorithms, Consen-
sus, Multiagent Systems.

1 Introduction

The design of coordination algorithms for multiple autonomous vehicles and of
decentralized estimation techniques for handling data coming from distributed
sensor networks is attracting large attention in recent years [13, 14, 16, 15, 1, 3, 4].
In fact both in coordinated control and in distributed estimation the agents need
to communicate data in order to execute the task. In particular they may need
to agree on the value of certain coordination state variables. One expects that,
in order to achieve coordination, the variables shared by the agents, converge
to a common value, asymptotically. The problem of designing controllers that
lead to such asymptotic coordination is called coordinated consensus, see for
example [2, 3, 7] and references therein. The interest in this type of problems is
not limited to the field of mobile vehicles coordination but also in the field of
synchronization theory [10, 9].

One of the simplest consensus problems that has been mostly studied in the
literature consists in starting from systems described by an integrator and in
finding a feedback control driving all the states to the same value [3]. The
information exchange is modelled by a directed graph describing in which pair
of agents the data transmission is allowed. Many variations of this problems
has been considered namely depending on the properties of the data exchange.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 31-49, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007
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In [13, 14, 7] the problem of designing control strategies for mobile agents leading
consensus when the communication graph is time-varying and depending of the
agents positions. Robustness to communication link failure [6] and the effects
of time delays [3] has also been considered recently. Randomly time-varying
networks have also been analyzed in [11].

In [19, 20] the consensus problem is treated in case the agents are allowed to
exchange not real numbers by instead only quantized information. This paper
continues the analysis proposed in [19]. More precisely we consider the aver-
age consensus problem for simple first-order dynamics linear systems which can
exchange information according to a fixed strongly connected digital communi-
cation network. Hence, besides the decentralized computational aspects induced
by the choice of the communication network, we have to face the quantization
effects due to the digital links. In order to achieve the consensus, some encoding
of the data to be transmitted is necessary. Here we present a encoding/decoding
strategy based on the exchange of logarithmically quantized information. Then
the stability analysis is provided.

The paper is organized as follows. In Section 2 we provide some basic notions
of graph theory and some notational conventions. In Section 3 we formally define
the average consensus problem. We then propose a model of the encoder /decoder
structure through which the systems exchange information. In Section 4 we in-
troduce the logarithmic quantizer based encoder/decoder. In section 5 we discuss
the stability of this technique, first presenting some general theoretical results
and then restricting our attention to two particular structures of communica-
tion graph allowed us to determine some simple results. Finally we gather our
conclusions in Section 6.

2 Preliminaries

Before defining the problem we want to solve, we summarize some notions on
graph theory and we provide some notational conventions that will be useful
throughout the rest of the paper.

Let G = (V,W) be a directed graph where V' = (1,...,N) is the set of
vertices and W C V' x V is the set of arcs. If (i,j) € W we say that the arc
(4, 4) is outgoing from ¢ and incoming in j. In our setup we admit the presence of
self-loops. The adjacency matrix A is a {0, 1}-valued square matrix indexed by
the elements in V' defined by letting A;; = 1 if and only (j,7) € W. Define the
in-degree of a vertex i as indeg(i) := Zj A;; and the out-degree of a vertex j as
outdeg(j) := >, Aij. A path in G consists of a sequence of vertices i1iz...... i
such that (ig,i¢41) € W for every £ =1,...,r —1; i1 (resp. i,) is said to be the
initial (resp. terminal) vertex of the path. A cycle is a path in which the initial
and the terminal vertices coincide. A vertex i is said to be connected to a vertex
j if there exists a path with initial vertex i and terminal vertex j. A directed
graph is said to be connected if, given any pair of vertices ¢ and j, either 7 is
connected to j or j is connected to i. A directed graph is said to be strongly
connected if, given any pair of vertices i and j, ¢ is connected to j. A direct
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graph G = (V, W) is said to be a circulant directed graph if (i,j) € W implies
that (i +p,7+p) € W for any p € IN, where the sum is meant mod N. A graph
is said to be undirected if (¢,5) € W implies that also (j,7) € W.

Now some notational conventions. Given a matrix M € RN*N | diag {M}
means a diagonal matrix with the same diagonal elements of the matrix M. Given
a vector m € RY, diag {m} means a diagonal matrix having the components
of m as diagonal elements. Given a matrix M € RN*Y | with the symbol M
we denote the pseudo-inverse of M, with rk M and with o {M} we indicate
respectively the rank and the set of eigenvalues of the matrix.

3 Problem Formulation

Consider N > 1 identical systems whose dynamics are described by the following
discrete time state equations

z;"::ci—kui i=1,....N

where z; € R is the state of the i-th system, CE:'_ represents the updated state
and u; € R is the control input. More compactly we can write

T =x+u (1)

where z,u € RV . The goal is to design an input control u yielding the consensus
of the states, namely a control such that all the z;’s become equal asymptotically,
ie.

tlim z(t) = ol (2)
where 1 := (1,...,1)7 and « is a scalar depending on z(0). Moreover, we also

require that z(t) = z(0) for all ¢t € IN if 2(0) = A1.
An interesting case that has been widely studied in literature (see [3, 12, 18])
corresponds to the case in which x is a static feedback function of u

u=Kz, K¢ RVN (3)
In such case the system (1) is described by the following closed loop system
=T+ K)z. (4)

It is easy to see that the consensus problem for system (4) is solved if and only
if the following three conditions hold:

(A) the only eigenvalue of I + K on the unit circle is 1;

(B) the eigenvalue 1 has algebraic multiplicity one (namely it is a simple root
of the characteristic polynomial of T + K) and 1 is its eigenvector;

(C) all the other eigenvalues are strictly inside the unit circle.
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In the sequel we will restrict to matrices K such that I + K is a nonnegative
matrix, namely a matrix with all elements nonnegative. Condition (B) then says
that I + K is a stochastic matrix. Conditions (A) and (C) yield the asymptotic
behavior

(I+K)"— 107

where v € R is the unique probability vector such that v7 (I + K) = vT. This
implies that
z(t) — vTz(0)1.

In the special case when v = N~'1 we obtain that the consensus is achieved at
the average of the initial conditions. In this case I + K is said to be a doubly
stochastic matrix and K a average consensus controller.

We observe that the use of control law as in Equation (3) implies the exchange
of perfect information through the communication network. More precisely, the
fact that the element in position 4, j of the matrix K is different from zero, means
that the system i needs to know exactly the state of the system j in order to
compute its feedback action. This implies that the agent j-th must communicate
his state x; to the system ¢. A good description of the communication effort
required by a specific feedback K is given by the directed graph Gx with set of
vertices {1,..., N} in which there is an arc from j to ¢ whenever in the feedback
matrix K the element K;; # 0. The graph Gk is said to be the communication
graph associated with K. Conversely, given any directed graph G with set of
vertices {1,..., N}, a feedback K is said to be compatible with G if Gk is a
subgraph of G (we will use the notation G C G). The average consensus problem
is said to be solvable on a graph G if there exists a feedback K compatible
with G solving the average consensus problem. The following result completely
characterize those graphs for which the average consensus problem is solvable.

Proposition 1. Let G be a directed graph and assume that G contains all loops
(i,1). The following conditions are equivalent:

(A) The average consensus problem is solvable on G.
(B) G is strongly connected.

Furthermore, if the above conditions are satisfied, any K such that I + K is
doubly stochastic and Gr+x = G, solves the average consensus problem.

Now in our setup we assume that the communication network is constituted only
of digital links. This implies that the exchange of perfect information between
the systems is not allowed. In fact, through a digital channel, the i-th agent can
only send to the j-th agent symbolic data that will be used by the j-th agent to
built at most an estimate of the i-th agent’s state. Here we consider a control
law which has the same form of (3) where, in place of the exact knowledge of
the states of the systems, we substitute estimates calculated according to the
symbols sent through the communication network.

More precisely, first we assume we have a fixed strongly connected graph G
and a matrix K such that I+ K is doubly stochastic and Gr4 x = G. The control
input u; has then the following form
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N
u; = Kiiz; + Z Kijfij , (5)

j=1

J#i
where £;; is the estimate of the state ; which has been obtained by the agent i.
Now we proceed to explain how the estimate Z;; is obtained. Suppose that
the j-th agent sends to the i-th agent, through a digital channel, at each time
instant ¢, a symbol s;;(t) belonging to a finite or denumerable alphabet S;;. It
is assumed that each symbol transmitted is received without error. In general,
see [21], the structure of the coder by which the j-th agent produces the symbol

to be sent to the i-th agent can be described by the following equations

{ §ij(t+1) = Fi(&i; (1), s45(1)) (©)
sij (1) = Quj (€5 (1), (1), u;(t))

where Sij(t) S Sij, §ij(t) S Eij, Qij : Eij XxRxR — Sij, and Ej : EXSZ'J' — Eij

and where also the set =;; is finite or denumerable. The decoder, placed at the

system ¢, coincides with the system

{ §ij(t+1) = Fij(&; (1), 5i5 (1)) )

i () = Hij(§i; (t), 515 (1)),
where Hij : Eij X Sij — R.

In general, we may have different encoders at system j, according to the
various systems the system j wants to send its data. For the sake of notational
convenience, we assume however, in this paper, that system j uses the same
encoder for all data transmissions. Thus, system j will send the same symbol
5j(t) == s4;(t) to all the other systems ¢ which receive information from it. In
this case all systems receiving data from j, will obtain the same estimate of x;,
namely we can define a single state estimate Z; := 2;;. In this way the previous
coder/decoder couple can be represented by the following state estimator with
memory

§(t+1) = F3(&(t), s5(t))
sj(t) = Q;(& (), 5 (), u;(t)) (8)
5(t) = H;(&;(t),55(1))
We point out that all the result presented in this paper can be extended to the
more general case.

The main objective of the present paper is to understand whether it is possible
to design some smart encoding/decoding strategies such that a control law of the
form (5) yields the consensus for the overall system. In the sequel we concentrate
our attention on a particular way of exchanging information which fits into the
previous scheme: the logarithmic quantized strategy.

4 Logarithmic Quantizers

This strategy is based on the techniques proposed in [17]. In this case we assume
the following form for equation (8)



36 R. Carli and S. Zampieri

i(t+1) = &(t) + 55(t)
5i(t) = qr(z;(t) — &(1)) (9)
T (t) = &(t) + s(t)

where ¢y, is a logarithmic quantizer depending on a parameter 6 €]0, 1], precisely
defined as follows. Suppose that € RT and that 0 < § < 1 and let k € Z be

such that(1+5)k7 <z< (1(“(;;5,2“ We then define

(1-8)
1+6\"
a(z) = (1 —6)

If 2 < 0, then we define q1,(x) = —qr(—z). The graph of the logarithmic quan-
tizer is depicted in Figure 1.

y=x
y=q,(x)

/ | l',/'/y:(‘l-ﬁ))(

Fig. 1. Logarithmic quantizer

Notice that the logarithmic quantizer is such that
lqr(z) — x| < 6|a]

and so the parameter ¢ can be seen as the precision of the quantizer. Moreover
6 determines also the number of quantization intervals we have in any finite
subset of R. It is clear that the sets S; are denumerable. We impose the initial
condition &;(0) = 0. One can verify immediately that the estimate &, (¢) satisfies
the following recursive relation

:ij(t + 1) = j?j(t) +qrL (:Ej(t + 1) — ifj(t)) . (10)
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Notice that £;(0) = 0 implies ;(0) = gz (x;(0)). Now if we define

_an(zi(t+1) = 2;(1) — (25t + 1) — 2;())

S0 (1) — (1)

we obtain that

Zj(t+1) = 2;(8) + (1 +¢;(8) (25 (t + 1) — (1)) (11)
where —6 < ¢;(t) < +96.
By defining the matrix E(t) = diag{e1(t),...,en(t)} the equations (1), (5)
and (11) can be rewritten in the following vector form

] = [t e s ) (56

0 0 (t)
+ {E(t)(diag{K} +1) E(t)(K — diag {K} — I)} [f(t)} - 12

In order to analyze the previous system, it is useful to introduce the new variables
y(t) = Kz(t),e(t) = x(t) — &(t), where e(t) expresses the estimation error.
Assumptions (A), (B), and (C) made on K implies that the consensus problem
is solved if and only if y(t) — 0. Moreover, observe that y(t)71 = 0, Vt > 0. By
straightforward calculations we obtain

[y(ti—l)} _ [14(-)1( K(-K +(;liag{K})} {z((g)} N

i [—fg(t) —E(t)(I—l—d?ag (K} - K)] [Z((:” (13)

From now on, for the sake of the notational convenience we denote A =1 + K,
B=K(-K+diag{K}),C=—1and D =—(I +diag{K} — K). Hence

L] =l sol [en] [0 w0
Finally let
wo=[i_2][22
and
=[]
from which
vt +1) = A(t)(t). (17)

The question we want to address now is if there exist some conditions on
the magnitude of §, which guarantee that the consensus can be reached. This
analysis is carried out in the following section where the system (14) is treated
as a linear parameter varying (LPV) system [22].
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5 Convergence Analysis

We start by rewriting (14) in a more suitable way. Let
E={E € RV*N : E =diag{ei,...,en}, e;==+1 1 <i< N}

Notice that £ contains 2V elements. Hence we can write & = {Fy,..., FEon},
where we are assuming that some suitable way to enumerate the matrices inside
£ is used. We assume that F; = I. By means of the above definitions we can
introduce an another set of matrices

- fa[f][22) 5 <o)

The set R is useful because it is easy to see that the matrix A(t), defined in (15),
belongs to Co{R}, Vt > 0, where Co{R} denote the convex hull of the set R.
In other words there exist A1 (t), A2(t), ..., Ao~ (t) nonnegative real numbers A;

such that ijl Ai(t) =1 and

2N
Alt) = Xi(t)Ri.
i=1

This problem formulation allows us to analyze (14) by means of Lyapunov ap-
proach proposed in [22]. In fact, it is well known in the literature that if we
consider the system

2(t+1) = F(Oz(t), z(t) € R*, F(t) € R™",

where F(t) € Co(F) with F = {F1,..., F,}, asufficient condition ensuring the
stability of the system is the existence of a definite positive matrix P € R™*"
such that

1
) (K PF; + F/ PF;) = P <0, V (F,,F;) € Fx F, (18)
or equivalently
1
) (F,PF] + F;PF]) - P <0, V(F,F;) € FxF. (19)

This last condition is called the dual condition. Our situation is slightly different,
since we are addressing the stability of (17) in the hyperplane {[y” e’]" € RV :
yT1 = 0}. However it is possible to provide sufficient conditions similar to (18)
and (19) that ensure the stability of (17). They are stated in the following
Lemma.

Lemma 1. Consider the system (17). If there exists a positive semidefinite ma-
triz P € R2N*2N sych that
2TPz>0, (20)
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and . .
r <RZ- PR+ R]PR;

) P)z<0, V(Ri,R;) € R X R, (21)

for each nonzero z € R*N such that [17 OT] 2z = 0 (O denotes the N dimensional
column, vector with all zeros), then limy_ o v(t) =0, V v(0) = [y(0)” e(O)T}T
such that y(0)T1 =0, and V {A(t)};, -

Equivalently if there exists P >0 € R2N*2N such that

TPz >0, (22)

and

T T
T <RZ-PRJ» + R; PR]
2

—P) 2<0, V(R;,R;) € RxR, (23)

for each nonzero z such that z ¢ span ([17 OT]T) then lim;— o v(t)=0, Yv(0)=
[(0)T e(0)T]" such that y(0)T1 =0, and ¥ {A(t)}:, -

Proof. We report here the proof only of the first part of the theorem. The dual
condition can be proved in an analogous way. Before proceeding, we introduce
the following notation that will be useful during the proof. With 1_; and
with Oy_1 we denote the N — 1 dimensional vectors having respectively all the
components equal to 1 and all the components equal to 0; with I_; we indicate
the (N — 1) x (N — 1) identity matrix. We start by considering the following
change of coordinates

T-10
w =75 7] =0
where .
1 1
71— N-1| ¢ RNxXN
{ON—l IN—J

Notice that

T-10

Let L~! denote the matrix [ 01

} . We have that

2N 2N
wt+1) =93 NOLTRL pw(t) = Y N(t)Gi p w(t)
i=1 =1

where

G = LRI — (1 0 } [AB}

06E; | |CD
_[r*AT T'B
~| BT ED

_[rof,
_>(< Rl '
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Notice that in the last expression * denote a suitable (N — 1) dimensional vector
whereas R; € RW-D*(V-1) is ohtained from R; by taking off the first row and
the first column. Now let [wq(t),. .., wan(t)] denote the 2N components of the
vector w(t). By the structure of L it is immediate to see that w;(0) = 0. More-
over, since w(t) = L7 u(t) = (T y@)T e®)T)T = (T'Kz(t)T e(t)T]T
and since it can be checked easily that the first row of T-'K has all the

components equal to 0, we have also wy(t) = 0,Vt > 0. Hence, letting
B(t) = [wa(t), ..., wan ()] € R2V=1 we have that
w(t+1) Z i w(t). (24)

Clearly lim;_. ;o v(t) = 0 if and only if lim; . @(t) = 0. Assume now that
there exist P € REN-Dx2N=1) guch that P > 0 and

RIPR; + RTPR;
9 — P <O.

As said before this is a sufficient condition in order to guarantee that (24) is
stable. It follows that n”diag {O, ]5} n >0, and

GT diag {0, 15} G, + GT diag {0, 15} Gi

n 2

— diag {0,15} n <0,

for any n € R2Y such that [1,0,...,0]n = 0. Hence, if we define
P = (L) diag {0, 15} Lt

one can verify, after some algebraic manipulations, that (Ln)T P(Ln) > 0 and

RTPR; + RTPR;
(Ln)T< ' J2 g

—P>L77<0

for any nonzero n such that [1,0,...,0]n = 0. In order to conclude the proof it
remains to prove that

{Ln : [1,0,...,0lp=0}={z € R* : 1T 0"]z =0},
but this is quite straightforward.

Now we will show that, under a certain condition on the magnitude of 6, it is
possible to exhibit a particular matrix P such that (22) and (23), i.e. the dual
conditions in Lemma 1, are satisfied. In order to do so, it is useful to introduce
the following set of matrices

T={TeRVN:T1=0,2"(T - ATA")2>0 Vz € span(1)"}.

The importance of this set is clarified by the following theorem.
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Theorem 1. Consider the system (17) and let T be any matriz in T . Let
a=max{\:\ € o ((T— ATA")'BB")}, (25)

and for any o € R, let X1(a) = oT — aATAT — BBT| X5(a) = a AT + BDT,
and X3(a) = oT + DDT. Finally let

1

5o = max . . (26)
=% max {/\ A Eo (Xg(O[) + ng(a)X[(a)Xg(a))}
Then for all & < 6y we have consensus, namely lim;_ . e(t) = 0, and

limy— oo 2(t) =L, V2(0) € RY and V{A(t)};=,.
In order to prove the above results we need the following technical results.

Lemma 2. Let S and R be semidefinite matrices belonging to RN*N such that
S1=0, R1=0and kS = N — 1. Let a be a real number. Then the following
facts are equivalent

(i) 2T (aS — R)z >0, Vz ¢ span(L).
(ii)) o >max{A: X € o(STR)}.

Proof. Tt is easy to decompose S as S = Q2 wherealso Q1 = 0andrk Q = N—1.

The following chain of equivalences holds

2T(aQ? — R)z > 0 Yz ¢ span(1)

T
2T (aQ? — R)z > 0V z € span(1)* {0}

2TQ(al — QTRQ)Qz > 0 V2 € span(1)+\ {0}
2T(al —QTRQM)z >0V 2z € span(1)* {0}.

The first equivalence is a consequence of the fact that (aQ — R)1 = 0 whereas
the other ones descend directly from the facts that QTQz = 2, Vz € span(1)~+
and Qspan(1)* = span(1)* and QTspan(1)* = span(1)+. Obviously the last
condition is satisfied if and only if max {A : A € 0(QTRQ)} < . It is not difficult
to prove that o(QTRQ) = o(QTQTRQQ) = 0(Q1QTR) = ¢(Q'*R) = ¢(STR).

This concludes the proof.

Lemma 3. Suppose that a symmetric matriz X s partitioned as

| X1 X
X [XQTXJ.

where X1 and X3 are square. Then the following facts are equivalent

1. 27Xz >0, Vz ¢ span ([17 OT]7)
2. (i) 2f X121 >0 V21 ¢ span(1)
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(ii) Xs — XT XXy >0
(iii) Ker X1 C Ker X7

Proof. First consider the sufficiency. Since Ker X; C Ker XJ we have that
Im Xy C ImX; and hence Xy = XK for a suitable matrix K. Now let Y =
—X}L X5 and calculate

I 0][Xx1 X ][IY] X, XY + X

YOI | XS X5 | [01] [YIXi+XTYTXhY +X]Y +YTXy 4 X3 |
_ X, ~X1X] X5 + Xo ]
~XTXTX + X7 XTXIX XXy — XT XX — XTXT X0 + X3 ]
B X, ~X1 X[ X1 K + X, ]
T -KTX XX+ XT XTXT Xy — XTXTXy — XTXT X + X3

_ X1 —Xo+ Xo
T X+ XT Xy - XTX!X, |

X 0
T l0 X3 - XxTx!x,

Since the right-hand side is semidefinite positive, the positive semidefiniteness
of X follows from the exhibited congruence.

Consider now the necessity. By choosing z = [z{ OT]T with z; ¢ span(1) it
is immediate to show that z{ X121 > 0, V2; ¢ span(1).

Suppose now that there exist z; such that v = X2Tz1 # 0 and X721 = 0. Let
23 be such that 2Jv =+ # 0. Then

0zl 2] {Xl X2:| {azl

Ty T T T T
azy z| | 1y = azy Xy z1+0z] Xozo+ 25 X329 = 2007+ 25 X32s.
2 A3 22

If we choose a = —+v whit ~ sufficiently large we have that the above quantity is
negative contradicting the hypothesis. Hence KerX; C KerXJ. The necessity
of X3 — XI'X I X follows from the congruence exhibited previously.

Proof (Proof of Theorem 1) B
In order to prove the statement of the theorem we show that, for 6 < ég, there
exists a suitable matrix P € R2V*2N guch that

P [H 0, (27)

and
2Pz >0 (28)
and )
T (2 (RTPR; + RTPR;) — P> 2<0, Y (R, Rj) € RxR, (29
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for each non zero z ¢ span([17 OT]7). The candidate matrix P has the following

form
aT 0
=[]

where T is any matrix in 7 and where « is a suitable positive scalar that we
will determine next. It is immediate to see that (27) is satisfied. Moreover one
can verify that P has an eigenvalue equal to 0 and all the other eigenvalues
positive. Furthermore, the eigenspace associate to the eigenvalue 0 is spanned
by the vector [17 OT]T. Hence P satisfies (28).

Now we calculate % (RiPR;F + RjPR?) — P obtaining the following matrix

aATAT+BBT —aT 16(aAT+BD")(E;+E; )

L(Ei+E;)6(aTAT+DBT) 16*{Ei(aT+DD")E;+E;(aT+DDT)E; } —1I (30)

By Lemma 3 we have that (30) satisfies (29) if and only if
(T — aATAT — BBT)2 >0, V2 ¢ span(1), (31)
and
I- ;52 {Ei(aT + DD")E; + E;(aT + DD")E;} —
—iéQ(Ei + E;)(aT AT + DBT)(aT — aATAT — BBT)T.
(aAT + BDT)(E; + E;) > 0.
By Lemma 2, (31) holds if and only if
a>max o (T — ATAT)'BBT). (32)
Now observe that

I—16*{Ei(aT + DDT)E; + E;(aT + DDT)E;} — }6*(E; + E;)-
(aTAT + DBT)(aT — aATAT — BBT)(aAT + BDT)(E; + E;) =
I— 16 {A(E; + E;)(oT + DDT)(E; + E;) — 2E;(aT + DDT)E
—2E;(aT + DDT)E; + (E; + E;)(aT AT + DBT).
- (aT — aAT AT — BBT)1(«AT + BDT)(E; + E;)} >
I — 36°{A(E; + E;)(aT + DD )(B; + E;) + (E; + E;)(aT A" + DB"):
(T — aAT AT — BBT)I(aAT + BDT)(E; + E;)} >
I—162{4(aT + DDT) + («T A" + DBT)(aT — a ATAT — BBT).
(AT + BD™)} .

Clearly

I—162{4(aT + DDT) + (aT AT + DBT)(aT — aATAT — BBT)T.
(«AT + BDT)} >0
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if and only if

4
o
< max{A: X € o (4(aT + DDT) + (aTAT + DBT).

(aT — AT AT — BBT)t(aAT + BDT))}
This concludes the proof.

In simple words Theorem 1 guarantees that the consensus can be reached by
using the same control law that solves the consensus problem when only ex-
changes of perfect information are assumed, although the systems can share
only logarithmically quantized information. This holds provided that a certain
condition on the magnitude of ¢ is satisfied. However for a general matrix K,
the expression of 8y given in (26) is not of immediate interest. In the following,
in order to obtain some interesting consequences of this formula, we will restrict
our attention on two cases in which K exhibits a particular structure: when K
is a generic symmetric matrix and when K is symmetric and circulant.

5.1 K Symmetric

We start this section by recalling the following definition. Let P be any matrix
such that P1 = 1 and assume that its spectrum o(P) is contained in the closed
unit disk centered in 0. Define

1 if dim ker(P—1)>1
(P) = {max{|)\| ‘X eo(P)\{1}}if dim ker(P—1I)=1, (33)
which is called the essential spectral radius of P. It is well known in litera-
ture [18], that in the case of average consensus controllers, this quantity is re-
sponsible of the speed of convergence to the equilibrium point.

Now let K be symmetric. Then the following result holds.

Theorem 2. Let K be symmetric and let p = p. Let for any € > 0

_ 4e(1-p)
0= (e 4)2 4 20(e +4)(1 — §) + 68(1 — o) (34)

Then for any 6 < 61 we have consensus, namely lim;_, e(t) = 0, and
limy— o0 2(t) =L, V2(0) € RN and V{A(t)},=,.

Proof. Consider the following particular matrix T' € 7

It is easy to see that T' commute with any doubly stochastic matrix. We impose
that « is such that
oI — AHT — BBT > T (35)
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where € is a fixed positive real number. (35) is satisfied if and only if
a > max {0 { (I - AQ)T]T (eT + BBT)}} .
Moreover (35) implies @ > &. Notice now that

max {g { [(1— A7) (T + BBT)}} < || [ = 221" || |[(eT + BBT)||

< <1iﬁ>2(6+4).

2
Hence we can assume that o = (1ip) (e +4). From (26) we obtain that

_ 1
o
’ max {/\ A€o (Xg(a) + ng(a)XI(a)Xg(a))}
4
= max{A: A € o(4(aT + DDT) + (T AT + DBT).

v

(T — AT AT — BBT)f(a AT + BDT))}
4
>
~ || 4(aT + DDT)|| + ||aT A+ DBT|]? || (oI — «ATA — BBT)1||
S 4
= 2
Aa|| T+ [DDT] + (el T Al + [IDBT)” (T — aATA = BBT)T||
Notice that condition (35) implies that ||(aT — AT AT — BBT)|| < L. Moreover
we have |T|| =1, ||A]| =1, |DDT|| < 4 and ||[DBT|| < 8. Hence
- 4
b > .
da+4+ ! (a+38)

By substituting the expression of « in the above expression we obtain (36).

5.2 K Symmetric and Circulant

The stability result proposed in the previous section is not the best one can
find. Indeed, consider a strongly connected circulant undirected graph G (V, W),
where V and W are respectively the set of vertices and the set of arcs, and where
|[V| = N. Assume that the in-degree of the graph is v + 1. We associate to the
graph G (V, W) the matrix K

if i#7 and 1 —j
if i=3j
0 otherwise
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Since from [18] we have that
p(I+K)>1—-CN~?",

where C'is a constant independent of G, then in this case Theorem 5.5 guarantees
consensus stability only for all § < §; where however é; tends to 0 as N tends to
+o00. This seems to suggest that for this class consensus controllers the stability
occurs only with logarithmic quantizers having precision which tends to infinity.
We show in this section that this is not true as proved by the following theorem.

Theorem 3. Let K be the matriz defined above. Let for any € > 0

- 8

bg = . 36

2 v+1 (36)
Then for any § < b2 we have consensus, namely lim;_, e(t) = 0, and

limy— o0 2(t) =L, V2(0) € RN and V{A(t)};=,.
Proof. Now let L be the Laplacian matrix corresponding to G (V, W), i.e.

-1 if i#j and i —j

0 otherwise
Finally let T = L. It is easy to verify that, letting A = I — K then B =
(A1) (—A+ 1iyl), D=2I—Aand T = (v + 1)(I — A). We recall that
any circulant matrix H can be diagonalized by the same matrix F, i.e.

F_lHF: dmg{)\o(H), '7)‘N—1(H)}7

where {Ao(H),...,An—1(H)} is the set of eigenvalues of the matrix R. Then the
condition (32) can be rewritten as

o A2 (1= A) X2 (1/(v + 1)I — A)
@ =max (0, max (v+ 1A — AN+ A)

>\12 (uilj o A)

max
1<i<N-—1 (I/ + 1))‘1'([ + A)
By noticing that
o {A} C {—14— 2 ,1} ,
v

SR e

it is immediate to verify

and

2

o < .
=901 4 )2
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Consider now the expression of §. By reasoning as previously we obtain

o gy O ()

TS L nA) A (- ) A (-, LT 4)]

Let a = 2(1‘fu)2 + € where € is a fixed positive real number. Then

s ming <;<n-_1 {4a(l/ + NI +A)—4 ()\i <— Hl_yf + A))}

Max; <i<N—1 { [a(u F DN (A) + s (;ﬁf - A) A (—V}HI + A>]z}

%

Observe that

2
max {[a(v+1))\i(A)+>\i(V+2I—A> i (— ! I—i—A)} }
1<i<N-—1 v+1 v+1

alv+1)3+v2+3v+1
(v+1)2

Moreover
min {4a(u+ DA+ A) — 4 (/\i <_ ! I+A)>} >
1<i<N-—-1 1+v
2

v? 2(v+1) 1
4(2(y+1)2+6> v+1 _<1_y+1> = 8e.

Hence
5> 8e
0 k )
e(v+1)+ ”E%Zﬁ??“
for all € > 0. By taking ¢ — oo we can argue that 6, = Vf_l.

6 Conclusions

In this paper we presented a new approach to the consensus problem, where we
considered only quantized exchanges of information. In particular we considered
a encoding-decoding strategy based on logarithmic quantizers. We restricted our
attention on the average consensus controllers and we proved that the consensus
problem is solvable even if the systems can share only logarithmically quantized
information. Obviously the use of logarithmic quantizers introduces an error
starting which prevents in general to obtain an consensus at the average of the
initials conditions. The distance from the average the systems will reach the
consensus will be the object of our future investigations. An another field of
future research will be to find encoding and decoding methods which work also
for digital noisy channels.
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Human-Robot Interaction Control
Using Force and Vision
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Summary. The extension of application domains of robotics from factories to human
environments leads to implementing proper strategies for close interaction between
people and robots. In order to avoid dangerous collision, force and vision based control
can be used, while tracking human motion during such interaction.

Keywords: Physical Human-Robot Interaction, Interaction Control, Impedance Con-
trol, Visual Control, Extended Kalman Filter.

1 Introduction

Physical human-robot interaction (pHRI) is an interesting topic for small-scale
industrial robotics, where a user may need to share the workspace with a robot,
as well as for service robotics. In the elderly-dominated scenario of most indus-
trialized countries, service robotics is a solution for automatizing common daily
tasks, also due to the lack or high cost of human expertise.

The size of an industrial robot, or the necessary autonomous behaviour of a
service robot, can result in dangerous situations for humans co-existing in the
robot operational domain. Therefore, physical issues must be carefully consid-
ered, since “natural” or unexpected behaviours of people during interaction with
robots can result in injuries, which may be severe, when considering the current
mechanical structure of robots available on the market. In this special perspec-
tive, an improved analysis of the problems related to the physical interaction
with robots leads to rediscuss most of the topics of mechanical design, planning,
and control of robots [1].

The physical viewpoint is mainly focused on the risks of collisions or excessive
force exchange occurring between the robot and its user: a too high energy-to-
power ratio may be transferred by the robot, resulting in serious human damages.
Severity indices of injuries may be used to evaluate the safety of robots in pHRI.
These should take into account the possible damages occurring when a manip-
ulator collides with a human head, neck, chest or arm. Several standard indices
of injury severity exist in other, non-robotic, domains. The automotive industry
developed empirical/experimental formulas that correlate human body’s accel-
eration to injury severity, while the suitability of such formulas is still an open
issue in robotics.

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 51-70, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007
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One possible issue to consider, in order to increase robot safety, is the proper
use of the two main “senses”: vision and touch. Vision and force based control for
physical interaction may include collision avoidance, control of close interaction,
fusion with other sensory modes, which all may lead to improving available
robots’ performance, without necessarily considering a novel mechanical design.

Possibly, the need for safety suggests complementing the proposed control
system with the adoption of compliant components in the structure. Compli-
ance can be introduced at the contact point by a soft covering of the whole arm
with visco-elastic materials or by adopting compliant transmissions at the robot
joints. Increasing in this way the robot mechanical compliance while reducing
its overall apparent inertia has been realized through different elastic actua-
tion/transmission arrangements which include: relocation of actuators close to
the robot base and transmission of motion through steel cables and pulleys, com-
bination of harmonic drives and lightweight link design, and use of parallel and
distributed macro-mini [2] or variable-impedance [3] actuation. Other improve-
ments for anticipating and reacting to collisions can be achieved through the
use of combinations of external/internal robot sensing, electronic hardware and
software safety procedures, which intelligently monitor, supervise, and control
manipulator operation.

Modern actuation strategies, as well as force/impedance control schemes, seem
to be anyway crucial in human-robot interaction. On the other hand, a more
complete set of external sensory devices can be used to monitor task execution
and reduce the risks of unexpected impacts. However, even the most robust ar-
chitecture is endangered by system faults and human unpredictable behaviours.
This suggests improving both passive and active safety for robots in anthropic
domains.

This work focuses on techniques for augmenting safety by means of control
systems. Human-like capabilities in close interaction can be considered as mim-
icking sensing and actuation of humans. This leads to consider fully integrated
vision and force based control. Thanks to the visual perception, the robotic sys-
tem may achieve global information on the surrounding environment that can
be used for task planning and obstacle avoidance. On the other hand, the per-
ception of the force applied to the robot allows adjusting the motion so that the
local constraints imposed by the environment during the interaction are satis-
fied. The safety and dependability of a robotic system are strictly connected to
the availability of sensing information on the external environment. Moreover,
vision system may substitute the complex infrastructure needed for “intelligent
environments” [4] to detect and track people in the operational domain.

Because of such complementary nature, it should be natural to believe that
vision and force could be used in an integrated and synergic way to design
suitable planning and control strategies for robotic systems. In the last years,
several papers on this subject have been presented. Some of them combine force
of vision in the same feedback control loop, such as hybrid visual/force control [5],
shared and traded control [6, 7] or visual impedance control [8, 9].



Human-Robot Interaction Control Using Force and Vision 53

2 Safety by Means of Control

The first important criterion to limit injuries due to collisions is to reduce the
weight of the moving parts of the robot. A prototypical example along this
direction is the design of the DLR-III Lightweight Robot [10], which is capable
of operating a payload equal to its own weight (13,5 kg). Advanced light but stiff
materials were used for the moving links, while motor transmission/reduction
is based on harmonic drives, which display high reduction ratio and efficient
power transmission capability. In addition, there is the possibility of relocating
all the relevant weights (mostly, the motors), at the robot base, like it was done
for the Barrett Whole Arm Manipulator (WAM) [11]. This is a very interesting
cable-actuated robot, which is also backdrivable, i.e., by pushing on the links, it
is possible to force motion of all mechanical transmission components, including
the motors’ rotors. In the case of a collision, the lighter links display lower inertia
and thus lower energy is transferred during the impact.

On the other hand, compliant transmissions tend to decouple mechanically
the larger inertias of the motors from those of the links. The presence of com-
pliant elements may thus be useful as a protection against unexpected contacts
during pHRI. More in general, a lightweight design and/or the use of compliant
transmissions introduce link [12] and, respectively, joint [13] elasticity. In order to
preserve performance while exploiting the potential offered by lightweight robot
arms, one must consider the effects of structural link flexibility. Distributed link
deformation in robot manipulators arises in the presence of very long and slender
arm design (without special care on materials); notice that “link rigidity” is al-
ways an ideal assumption and may fail when increasing payload-to-weight ratio.

In the presence of compliant transmissions, deformation can be assumed to
be instead concentrated at the joints of the manipulator. Neglected joint elas-
ticity or link flexibility limits static (steady-state error) or dynamic (vibrations,
poor tracking) task performance. Problems related to motion speed and con-
trol bandwidth must be also considered. Flexible modes of compliant systems
prevent obtaining control bandwidths greater than a limit; in addition, attenua-
tion/suppression of vibrations excited by disturbances can be difficult to achieve.
Intuitively, compliant transmissions tend to respond slowly to torque inputs on
the actuator and to oscillate around the goal position, so that it can be ex-
pected that the promptness of an elastically actuated arm is severely reduced if
compliance is high enough to be effective on safety.

From the control point of view, there is a basic difference between link and
joint elasticity. In the first case, we have non-colocation between input commands
and typical outputs to be controlled; for flexible joint robots, the co-location of
input commands and structural flexibility suggests to treat this case separately.

In order to introduce safety tactics for available robots, we can mainly act
on control; interaction control strategies can be grouped in two categories: those
performing indirect force control and those performing direct force control. The
main difference between the two categories is that the former achieve force con-
trol indirectly via a motion control loop, while the latter offers the possibility of
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controlling the contact force to a desired value, thanks to the closure of a force
feedback loop.

Force/impedance control [14] is important in pHRI because a compliant be-
haviour of a manipulator leads to a more natural physical interaction and re-
duces the risks of damages in case of unwanted collisions. Similarly, the capa-
bility of sensing and controlling exchanged forces is relevant for cooperating
tasks between humans and robots. To the category of indirect force control be-
longs impedance control, where the position error is related to the contact force
through a mechanical impedance of adjustable parameters. A robot manipula-
tor under impedance control is described by an equivalent mass-spring-damper
system, with the contact force as input (impedance may vary in the various task
space directions, typically in a nonlinear and coupled way).

The interaction between the robot and a human results then in a dynamic
balance between these two “systems”. This balance is influenced by the mutual
weight of the human and the robot compliant features. In principle, it is possible
to decrease the robot compliance so that it dominates in the pHRI and vice versa.
Cognitive information could be used for dynamically setting the parameters of
robot impedance, considering task-dependent safety issues. Certain interaction
tasks, however, do require the fulfilment of a precise value of the contact force.
This would be possible, in theory, by tuning the active compliance control action
and by selecting a proper reference location for the robot.

If force measurements are available (typically through a robot wrist sensor),
a direct force control loop could be also designed. Note that, a possible way to
measure contact forces occurring in any part of a serial robot manipulator is
to provide the robot with joint torque sensors. The integration of joint torque
control with high performance actuation and lightweight composite structure
can help merging the competing requirements of safety and performance. In all
cases, the control design should prevent to introduce in the robot system more
energy than strictly needed to complete the task. This rough requirement is
related to the intuitive consideration that robots with large kinetic and potential
energy are eventually more dangerous for a human in case of collision. An elegant
mathematical concept satisfying this requirement is passivity.

As already mentioned, compliant transmissions can negatively affect perfor-
mance during normal robot operation in free space, in terms of increased os-
cillations and settling times. However, more advanced motion control laws can
be designed which take joint elasticity of the robot into account. Moreover, in
robots with variable impedance actuation, the simultaneous and decoupled con-
trol of both the link motion and the joint stiffness is also possible in principle,
reaching a trade-off between performance and safety requirements.

3 Modelling

For pHRI it is necessary to model or track human motion, to get a model of
robot motion and of the objects to interact with. Consider a robot in contact
with an object, a wrist force sensor and a camera mounted on the end-effector
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(eye-in-hand configuration) or fixed in the workspace (eye-to-hand configura-
tion). In the following, some modelling assumption concerning the environemnt,
the robot and the camera are illustrated.

3.1 Robot

The case of a n-joints robot manipulator is considered, with n > 3. The tip
position p, can be computed via the direct kinematics equation:

p, = k(q), (1)

where g is the (n x 1) vector of the joint variables. Also, the velocity of the
robot’s tip vp, can be expressed as

vp, = J(q)q

where J = 0k(q)/0q is the robot Jacobian matrix. The vector vp, can be
decomposed as
wp, = Py + AP Vo, (2)

with A(-) = [I3 —S(-)], where I3 is the (3 x 3) identity matrix and S(-) denotes
the (3 x 3) skew-symmetric matrix operator. In Eq. (2), %p, is the relative velocity
of the tip point P, with respect to the object frame while °v, = [*v{, °w!]”
is the velocity screw characterizing the motion of the object frame with respect
to the base frame in terms of the translational velocity of the origin vp, and of
the angular velocity w,; all the quantities are expressed in the object frame.

When the robot is in contact with the object, the normal component of the
relative velocity %p, is null, i.e.:

n" (‘p,) P, = 0. (3)

3.2 Human User

Positioning of critical parts of a human body may be addressed, like for robots,
considering the kinematics of the structure. However, joint measures are not
available on the human body; therefore, exteroceptive sensing by means of cam-
eras is used, obtaining the position in the space of some relevant features (hands,
head etc.). This leads to finding a simplified kinematic model, to be updated in
real time, with the novel “skeleton algorithm” [15]. This algorithm considers a
skeleton, composed of segments, as a simplified model of a human (or a robot or
even an object), exploiting the simple geometric structures in order to evaluate
analytically the distances between the segments, which can be used for collision
avoidance, considering all the points of the articulated structure of humans and
robots which may collide. For every link of the skeleton of a human figure, the
closest point to the robot or the object to be avoided is computed. The distance
information between the two closest points of human and obstacle can be used
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to avoid a collision, using “spheres” located in the selected closest points as pro-
tective hulls: these spheres can have a finite or infinite radius and can be the
source of repelling forces shaped as effects of virtual springs or potential fields.
Summarizing, the steps of the algorithm are:

e Create a skeleton of the human body, by using vision, and of the robot, by
using direct kinematics in order to find the extremal point of the segments.

e Compute analytically the distances between the different segments, finding
also the two closest points for each pair of links.

e Define intensity and shape of repelling forces between these two points and
use them as reference values in the position/force control system.

Fig. 1. Exemplification of the skeleton algorithm for the DLR lightweight arm

Almost all structures can be encapsulated by a finite skeleton with spheres,
as sketched in Fig. 1 for the DLR arm. The position of the closest point on each
link (continuous curves) varies continuously, preserving continuity of reference
values for any kind of control scheme. The key point of the proposed approach
is that only the two closest points (on each link) of the structure are considered
each time, leading to a simple generation of the Cartesian desired velocity (or
force) for only one of these points, which eventually is transformed in the corre-
sponding joint trajectory via proper inverse kinematics (or kinetics). Any point
on the structure can be considered as a control point. To simplify the problem,
there is also the possibility to choose only a subset of control points, e.g., the ar-
ticulation of the robot [16]. Moreover, it is possible to use an inverse kinematics,
an impedance control or whatever is desired, since the algorithm just adds with
continuity repelling forces or velocity, preserving stability of the control loops
used for the system.
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3.3 Camera

A frame O~z y.z. attached to the camera (either in eye-in-hand or in eye-to-
hand configuration) is considered. By using the classical pin-hole model, a point

P of the object with coordinates “p = [x Y z]T with respect to the camera frame
is projected onto the point of the image plane with coordinates

-1 g
Y z y
where ). is the focal length of the lens of the camera.

Let H. denote the homogeneous transformation matrix representing the pose
of the camera frame referred to the base frame. For eye-to-hand cameras, the
matrix H . is constant, and can be computed through a suitable calibration

procedure, while for eye-in-hand cameras this matrix depends on the camera
current pose . and can be computed as:

H. (x.)=H.(x.)*H.

where H . is the homogeneous transformation matrix of the end effector frame
e with respect to the base frame, and °H . is the homogeneous transformation
matrix of camera frame with respect to end effector frame. Notice that °H . is
constant and can be estimated through suitable calibration procedures, while
H, depends on the current end-effector pose . and may be computed using
the robot kinematic model. The relevant frames and the transformation matrices
are illustrated in Fig. 2, where the more general case of multiple mobile and fixed
cameras is depicted.

Robot £
mounting the b 4
cl-th camera

cl-th mobile
camera

ck-th fixed
camera

Base
frame

Fig. 2. Relevant camera and object frames
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Therefore, the homogeneous coordinate vector of P with respect to the camera
frame can be expressed as

‘p="H,(To,x:)’P (5)

where “H o(x,,x.) = “H '(x.)H,(x,). Notice that x. is constant for eye-to-
hand cameras; moreover, the matrix “H , does not depend on x. and x, separately
but only on the relative pose of the object frame with respect to the camera frame.

The velocity of the camera frame with respect to the base frame can be
characterized in terms of the translational velocity of the origin vp, and of
angular velocity w.. These vectors, expressed in camera frame, define the velocity
screw ‘v, = [“v}, “wl]T. Analogously to (2), the absolute velocity of the origin
O, of the object frame can be computed as

‘vo, = ‘0, + A(‘0,) Ve, (6)

where “0, is the vector of the coordinates of O, with respect to camera frame and
€0, is the relative velocity of O, with respect to camera frame; all the quantities
are expressed in camera frame. On the other hand, the absolute angular velocity
“w, of the object frame expressed in camera frame can be computed as

‘wo = “Wo e+ “We (7)
where “w, . represents the relative angular velocity of the object frame with
respect to the camera frame. The two equations (6) and (7) can be rewritten in
the compact form

cVo = cVo,c + F(coo)cl/c (8)
where ‘v, = [C'UCT)O w7 is the velocity screw corresponding to the absolute mo-
tion of the object frame, v, . = [¢6. ‘w? ] is the velocity screw corresponding

to the relative motion of the object frame with respect to camera frame, and the
matrix I'(+) is defined as
re = {13 —S(')] ,

03 I3

where O3 denotes the (3 x 3) null matrix.

The velocity screw "vg of a frame s with respect to a frame r can be expressed
in terms of the time derivative of the vector x, representing the pose of frame s
through the equation

"ve ="L(xs)ds 9)

where "L(-) is a Jacobian matrix depending on the particular choice of co-
ordinates for the orientation. The expressions of "L(-) for different kinds of
parametrization of the orientation can be found, e.g., in [17].

3.4 Object

The position and orientation of a frame attached to a rigid object O,—2,yo20
with respect to a base coordinate frame O—xyz can be expressed in terms of
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the coordinate vector of the origin o, = [:co Yo ZO}T and of the rotation matrix
R,(p,), where ¢, is a (p x 1) vector corresponding to a suitable parametrization
of the orientation. In the case that a minimal representation of the orientation
is adopted, e.g., Euler angles, it is p = 3, while it is p = 4 if unit quaternions are
used. Hence, the (m x 1) vector z, = [0} <pﬂT defines a representation of the
object pose with respect to the base frame in terms of m = 3 + p parameters.

The homogeneous coordinate vector p = [pT I}T of a point P of the object
with respect to the base frame can be computed as p = H,(x,)%, where °p
is the homogeneous coordinate vector of P with respect to the object frame
and H, is the homogeneous transformation matrix representing the pose of the
object frame referred to the base frame:

@) = [Tt %)

where 03 is the (3 x 1) null vector.

It is assumed that the geometry of the object is known and that the interac-
tion involves a portion of the external surface which satisfies the continuously
differentiable scalar equation ¢(°%p) = 0.

The unit vector normal to the surface at the point °p and pointing outwards

can be computed as:
o oy _ (0p(°P)/0P)"
") g (p) 0l

where °n is expressed in the object frame.

Notice that the object pose x, is assumed to be unknown and may change
during the task execution. As an example, a compliant contact can be modelled
assuming that x, changes during the interaction according to an elastic law.

A further assumption is that the contact between the robot and the object
is of point type and frictionless. Therefore, when in contact, the tip point P, of
the robot instantaneously coincides with a point P of the object, so that the tip
position °p, satisfies the constraint equation:

¢(p,) = 0. (11)

Moreover, the (3 x 1) contact force °h is aligned to the normal unit vector °n.

(10)

4 Use of Vision, Force and Joint Measurements

When the robot moves in free space, the unknown object pose and the position
of the head of a human user can be estimated online by using the data provided
by the camera; when the robot is in contact to the object, also the force measure-
ments and the joint position measurements are used. Joint values are used for
evaluating the position of the links for collision avoidance. In the following, the
equations mapping the measurements to the unknown position and orientation
of the object are derived.
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4.1 Vision

Vision is used to measure the image features, i.e., any structural feature that
can be extracted from an image, corresponding to the projection of a physical
feature of the object onto the camera image plane. An image feature can be
characterized by a set of scalar parameters f; that can be grouped in a vector
f=1[fi fr]", where k is the dimension of the image feature parameter space.
The mapping from the position and orientation of the object to the corresponding
image feature vector can be computed using the projective geometry of the
camera and can be written in the form

i :gf(CHO(:co,mc)), (12)

where only the dependence from the relative pose of the object frame with respect
to camera frame has been explicitly evidenced.

For the estimation of the object pose, it is required the computation of the
Jacobian matrix

Jr= .
f ox,
To this purpose, the time derivative of (12) can be computed in the form
= o Cc, 13
! oz, To oz, * (13)

where the second term on the right-hand side is null for eye-to-hand cameras.
On the other hand, the time derivative of (12) can be expressed also in the form

f = Jo,cCVo,c (14)

where the matrix J, . is the Jacobian mapping the relative velocity screw of the
object frame with respect to the camera frame into the variation of the image
feature parameters. The expression of J, . depends on the choice of the image
features; examples of computation can be found in [17].
By taking into account the velocity composition (8), Eq. (14) can be rewritten
in the form
f =Joc Vo — IV, (15)

where J. = J,I'(°0,) is the Jacobian corresponding to the contribution of
the absolute velocity screw of the camera frame, known in the literature as
interaction matrix [18]. In view of (9), the comparison of (15) with (13) yields

Jr=J, L(w,). (16)

4.2 Force and Joint Measurements

In the case of frictionless point contact, the measure of the force h at the robot
tip during the interaction can be used to compute the unit vector normal to the
object surface at the contact point %p,, i.e.,
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h

np = .
il

(17)

On the other hand, the vector n; can be expressed as a function of the object
pose , and of the robot position p, in the form

np = Roon(opq) = gh(mmpq)7 (18)
being p, = R, (p, — 0,)-

For the estimation of the object pose, it is required the computation of the
Jacobian matrix

gy,
Jp = .
h oz,
To this purpose, the time derivative of (18) can be expressed as
. gy, . gy, .
- . , 19
" amow +3p Pq (19)

q

On the other hand, the time derivative of (18) can be computed also in the form
,’:Lh = Roon(opq) + ROON(Opq)Opq7 (20)

where °N (°p,) = 9°n/9%,, depends on the surface curvature and %, can be
computed from (2). Hence, by comparing (19) with (20) and taking into ac-
count (9) and the equality Roon("pq) = —S(np)w,, the following expression
can be found:

Jp,=—[N S(nh)—NS(pq—oo)]L(:co), (21)

where N = R,°N (°p,)RL.

The joint positions g are used not only to evaluate the configuration of the
robot, which can possibly collide with a user, but also to evaluate the position
of the point P of the object when in contact to the robot’s tip point F,, using
the direct kinematics equation (1). In particular, it is significant computing the
scalar

Shg = M4 Py = Gng(To: Py); (22)

using also the force measurements via (17).
For the estimation of the object pose it is required the computation of the
Jacobian matrix

agn
Jhg = 7,
hq oz,
As in the previous subsection, the time derivative of 6y, can be expressed as
OGhq ., O9nq .
Ohg = T, + p.. 23
hq 82130 o 8pq pq ( )

On the other hand, the time derivative of 054 can be computed also as

Shq = h{pq + n{RO("pq + A(°p,) Vo)
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where the expression of the absolute velocity of the point P, in (2) has been
used. Using identity (3), the above equation can be rewritten as

Shq = p?hh + n{A(pq — 0,)V,. (24)

Hence, by comparing (23) with (24) and taking into account (20), (21) and (9),
the following expression can be found

Thq = Pg I + 15, A(p, — 00) L(o). (25)

5 Vision-Based Pose Estimation

5.1 Human Operator’s Pose Estimation

In order to use the skeleton algorithm [15] for collision avoidance, simple fixed
cameras are employed to detect the positions of face and hands of an operator
in the operational space of the robot. In assembly tasks in cooperation with
the robot, the operator does not move fast, simplifying the tracking by means of
cameras. In preliminary experiments, markers are used to help the detection and
tracking. The detected positions of the human operator are to be tracked in order
to keep a safety volume around him/her, repelling the robot when it approaches
too much. Cameras mounted on the robot can be used as well. Potential fields or
optimization techniques are then to be designed, in order to create modifications
to the robot’s trajectory aimed at avoiding dangerous approaches. Simple virtual
springs or more complex modifications to trajectories, using null-space motion if
possible, can be adopted also while using an interaction control with an object,
which is considered in the following. The shape of the computed repelling force
or velocity must preserve continuity of reference values for the robot controllers.

5.2 Object Pose Estimation

In this section, the problem of the estimation of the pose vector x, of the object
with respect to the base frame using visual, force and joint position measure-
ments. The proposed solution is based on the EKF [19].

To this purpose, a discrete-time state space dynamic model has to be con-
sidered, describing the object motion. The state vector of the dynamic model is
chosen as w = [mf w;F]T For simplicity, the object velocity is assumed to be
constant over one sample period T§. This approximation is reasonable in the hy-
pothesis that T is sufficiently small. The corresponding dynamic modeling error
can be considered as an input disturbance « described by zero mean Gaussian
noise with covariance Q. The discrete-time dynamic model can be written as

wy = Awg_1 + vy, (26)

where A is the (2m x 2m) block matrix

1, T.I,,
a= [ ],
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The output of the Kalman filter, in the case that all the available data can
be used, is the vector of the measurements at time k7
T AT ™7T
Cr = [Cf,k Ch,k Cha,k }
where Crp = fi + By Chp = Pe + My, and Cugk = Ok + fhgk, being p
the measurement noise. The measurement noise is assumed to be zero mean
Gaussian noise with covariance IT.

In view of (12), (18), and (22), the output model of the Kalman filter can be
written in the form:

9

Cr = g(wk) + py,

where [} ). pi. g, )7 and

g(wy) = [gF (wy) gF (wi) gF, (wi)]" (27)

where only the explicit dependence on the state vector wy has been evidenced.
Since the output model is nonlinear in the system state, the EKF must be
adopted, which requires the computation of the Jacobian matrix of the output
equation
c. - 99w dg(w)
L=

8w ’w_wk,kl B |: 8:B0 0:| ’w:’ll}k,k,17

where O is a null matrix of proper dimensions corresponding to the partial
derivative of g with respect to the velocity variables, which is null because the
function g does not depend on the velocity.

The Jacobian matrix dg(w)/0z,, in view of (16), (21) and (25), has the

expression
dg(w)

oz,

The equations of the recursive form of the EKF are standard and are omitted
here for brevity.

= [J? J{ ng}T

6 Interaction Control

The proposed algorithm can be used to estimate on-line the pose of an object
in the workspace; hence it allows the computation of the constraint (11) with
respect to the base frame in the form

¢(RY(p, — 0,)) = 0.

This information can be suitably exploited to implement any kind of interaction
control strategy. In this work, an impedance control is adopted, according to a
position-based control scheme [14].

In detail, a position and orientation control is adopted for the robot end-
effector, and a pose trajectory for a desired frame d is specified in terms of p,
and R;. To manage the interaction with the environment, a compliant frame r
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is introduced, specified in terms of p, and R,. Then, a mechanical impedance
between the desired and the compliant frame is considered, so as to keep limited
the values of the interaction force h and moment m. In other words, the desired
position and orientation, together with the measured contact force and moment,
are input to the impedance equation which, via a suitable integration, generates
the position and orientation of the compliant frame to be used as a reference for
the pose control of the robot end effector.

As far as the compliant frame is concerned, the position p, can be computed
via the translational impedance equation

MPAIN)dT + DPApdr + KPApdr = h7 (28)

where Ap,,. = p; — p,., and M,, D, and K, are positive definite matrices
representing the mass, damping, and stiffness characterizing the impedance.

The orientation of the reference frame R, is computed via a geometrically
consistent impedance equation similar to (28), in terms of an orientation error
based on the (3 x 1) vector "€g4,., defined as the vector part of the unit quaternion
that can be extracted from "R; = RfRd. The corresponding mass, damping
and inertia matrices are M,, D, and K, respectively. More details about the
geometrically consistent impedance based on the unit quaternion can be found
in [14].

Notice that, when the robot moves in free space, the proposed scheme is
equivalent to a position-based visual servoing [20]. Hence, it can be classified as
a position-based visual impedance control.

7 Case Studies

7.1 Interaction with an Object

A planar object surface is considered, described by the equation
onTop =0

assuming that the origin O, of the object frame is a point of the plane and the
axis z, is aligned to the normal °n. During the interaction with the robot, the
normal vector n remains constant in the base frame while the plane is elastically
compliant along n according to a simple elastic law. The contact force of the
object on the robot’s tip at p, is given by

b knn'™ (p, —p,) if n"(p,—p) >0
R if n”(p,—p)<0

where p, is on the plane when h # 03 while p,, is a constant vector representing
the position of a point of the plane when h = 03. The scalar k, representing the
stiffness of the surface, has been set to 10000 N/m.
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An industrial robot Comau SMART-3S is considered. The robot has a six-
degree-of-freedom anthropomorphic geometry (see [14] for the kinematic and
dynamic model).

The end-effector tool is a rigid stick of 25 c¢m length ending with a circular
disk of 5 cm radius. The end-effector frame has its origin at the center of the disk
and its approach axis normal to the disk surface and pointing outwards. During
the interaction, when the disk surface and the plane are not parallel, the robot’s
tip point Pg is assumed to be the instantaneous contact point of the external
contour of the disk with the plane. In the case that the disk and the plane are
parallel and in contact, the instantaneous contact point is chosen as the center
of the disk.

The robot has a force/position sensor mounted at the wrist. Neglecting the
weight and inertia of the tool, the force at the robot’s tip point Pg and that at
the origin of the end-effector frame are the same, while a moment is present at
the origin of the end-effector frame due to the contact with the external contour
of the disk. Notice that both the impedance equation and the pose control law
are formulated for the end-effector frame.

Zo

Yo

Sy

force/tori]ue

Fig. 3. Sketch of the end-effector in contact with the plane

A camera is mounted on the robot end effector. It is assumed that the in-
trinsic parameters of the camera are affected by a 2% error, while the extrinsic
parameters are known. The object features are 4 landmark points lying on the
plane at the corners of a square of 10 cm side.

A sketch of the end-effector in contact with the plane is reported in Fig. 3.

The impedance parameters are chosen as: M, = 913, D, = 5I3 and K, =
70013, M, = 0413, D, = 5I3 and K, = 2I3; a 2 ms sampling time has been
selected for the impedance and the pose controller.

The desired task is planned in the object frame and consists in a straight-line
motion of the end-effector along the z,-axis keeping a fixed orientation with the
disk surface parallel to the z,y,-plane. The final position is:

°py="°p; — O"(O"Topi —9),
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where °p; = [0.5 0 0]T'm is the initial position of the end effector and § = 0.033 m
is chosen to have a normal force of about 22 N at the equilibrium, with the
available estimate of the environment stiffness. A trapezoidal velocity profile
time-law is adopted, with a cruise velocity of 0.023 m/s. The absolute trajectory
is computed from the desired relative trajectory using the current object pose
estimation.

In the EKF, the non-null elements of the matrix IT have been set equal to
625-10712 for £, 10~7 for n;, and 6.5-107° for Onq. The state noise covariance
matrix has been selected so as to give a rough measure of the errors due to the
simplification introduced on the model (constant velocity), by considering only
velocity disturbance, i.e.

Q = diag{0,0,0,0,0,0,0,5,5,0.5,10% 103,103,103} - 1072

Notice that the unit quaternion has been used for the orientation in the EKF, to
avoid any occurrence of representation singularities. Moreover a 20 ms sampling
time has been set for the estimation algorithm, corresponding to the typical
camera frame rate of 50 Hz.

Two different case studies are presented, to show the effectiveness of the use
of force and joint position measurements, besides visual measurements.

'\rx;v_.x

[s]

4 5 8

Fig. 4. Pose estimation error in the first case study. Top: position error; bottom:
orientation error.

In the first case study only the visual measurements are used. The object
pose estimation errors are reported in Fig. 4. The position error is computed as
the difference between the real position of the origin of the objet frame and the
estimated position; the orientation error is defined as the norm of the vector part
of the quaternion that can be extracted from the rotation matrix representing
the mutual orientation of the real object frame with respect to the estimated
frame. The task starts at time ¢, = Os, when an estimate of the object pose
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is available from visual measurements; notice that the initial value of the pose
estimation error in non null, due to the camera calibration error. From t, to
t1 ~ 2s the error varies slowly due to the robot motion. At time ¢; the disk
comes into contact with the plane; the abrupt change of robot velocity causes
an increment of the estimation error that, after a transient, becomes constant
and approximatively equal to the initial value.

Fig. 5. Contact force in the first case study

The time history of the contact force in the object frame is reported in Fig. 5.
Notice that the contact force is null during the motion in free space and becomes
different from zero after the contact at time ¢;. The impedance control keeps the
force limited during the transient while, at steady state, the force reaches a value
of about 26 N, which is different from the desired value due to the presence of
the estimation error along to the z,-axis.

The same task is repeated using also the contact force and the joint position
measurements for object pose estimation; the results are reported in Fig. 6 and
Fig. 7. Before the contact (i.e. before time ¢1), the results are the same as in the
previous case study. After the contact, the benefit of using additional measure-
ments in the EKF produces a significant reduction of the pose estimation error,
especially for the z, component and for the orientation. Moreover, the peak of
the contact force is lower than before and the force value at steady state is near
to the expect value of 22 N.

7.2 Vision-Based Head Avoidance

During a task involving interaction with an object, there is the possibility that
a human operator is present in the workspace. In such a case, the robot has to
reconfigure in order to avoid the body of the operator, tracked by a camera. In a
simple case, it is possible to consider the head and the arms of a person present in
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Fig. 6. Pose estimation error in the second case study. Top: position error; bottom:
orientation error.

Fig. 7. Contact force in the second case study

the workspace as a source of a repelling elastic force. A volume is created around
the head and the arms: the robot is pushed with continuous reference values given
to force or velocity for a point on each link which is the closest to the considered
“safety volume”. Results of an experiment with the Comau SMART 3S industrial
robot are reported in Fig. 8. The planned trajectory (dotted line) is abandoned
for the presence of the arm (segment parallel to the axis x, with y = 1 and
z = 0.5). The bold trajectory is the path followed with an elastic constant
K = 0.5 for planning the desired velocity v of the closest points with the formula
v = K(dref —d) for d > dycy, where d,.s is the radius of the protective sphere
and d is the distance between the robot links and the center of such a sphere.
The thin path in Fig. 8 is tracked for K = 0.5. This simple case study shows
the robustness of the skeleton algorithm, which gives continuous references to
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different inverse kinematics schemes (one for each link of a robot) in order to
push a robot in a certain direction during any kind of operation and with any
kind of motion/force controller.

05
0.4+
03
02+

0.1+

0.1+

02

~0.3+

0.4

05+

_09 o1 -0.05

-1 —
-1.1 -0.2 0.18

Fig. 8. Trajectory modifications for collision avoidance

8 Conclusion

The integration of force and visual control to achieve safe human-robot interac-
tion has been discussed. A position-based visual impedance control scheme has
been presented, employing a pose estimation algorithm on the basis of visual,
force and joint position data. The addition of collision avoidance facilities with
the so-called skeleton algorithm gives the opportunity of sharing the workspace
with a human operator.
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Summary. The minimum phase property is an important notion in systems and con-
trol theory. In this paper, a characterization of the minimum phase property of nonlin-
ear control systems in terms of a dissipation inequality is derived. It is shown that this
dissipation inequality is equivalent to the classical definition of the minimum phase
property in the sense of Byrnes and Isidori, if the control system is affine in the input
and the so-called input-output normal form exists.
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1 Introduction

Bode introduced the notion of minimum phase property in his seminal paper [4]
more than 60 years ago. Today, the minimum phase property plays an important
role in systems analysis and control design [12, 14, 13, 27]. For example, the
notion of the minimum phase property can be used to describe fundamental
performance limitations in feedback design (e.g., [4, 20, 15, 9, 8, 18, 23, 24,
2, 26, 1]) and thus allows, roughly speaking, to distinguish between easy and
difficult control problems. For linear time-invariant single-input-single-output
systems, the minimum phase property is characterized for example by all zeros
of the transfer function being in the open left half plane. The notion of zeros
was generalized by Byrnes and Isidori (cf. e.g. [12]) to nonlinear control systems.
For nonlinear control systems, loosely speaking, a system is said to be minimum
phase if it has asymptotically stable zero output constrained dynamics (zero
dynamics), which is obtained when the output of the system is kept identically
equal to zero. For the special class of nonlinear control systems that are affine in
the input and that posses a well-defined input-output normal form in the sense
of [12], a rigorous definition of the minimum phase property can be given. In
the following, this situation is referred to as the minimum phase property in
the sense of Byrnes-Isidori. The minimum phase property is then equivalent to
the situation that an equilibrium point, let’s say x = 0, is asymptotically stable
under the constraint that the output y(¢t) = 0, ¢ > 0. In general, however, a
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precise definition of the minimum phase property for general nonlinear control
systems is not an easy task. The reason for this is that the zero dynamics may not
be well-defined, and even if this were the case, it makes no sense to speak about
stability without saying something about equilibrium points (or sets). Beside
this, it may be difficult to check if a control system is minimum phase or not.
In the literature (cf. e.g. [12]), there exist at least two strategies for a minimum
phase analysis: The first one makes use of a transformation of the control system
into the input-output normal form, if the normal form exists. The second one is
based on simply setting y(t), y(t), ... to zero, i.e, by setting the output and its
higher order Lie-derivatives to zero and by calculating the remaining dynamics,
which is equivalent to the zero dynamics. The second strategy is more general,
since it also works when a transformation into the input-output normal form
does not exist.

In this paper, a new third possibility is given to characterize the minimum
phase property, namely in terms of a dissipation inequality. It is shown that the
definition of the minimum phase property in the sense of Byrnes-Isidori for affine
control systems with a well-defined input-output normal form is equivalent to
the fact that a certain dissipation inequality is satisfied. Hence the minimum
phase property, which has its origin in the frequency domain world and in geo-
metric control, is expressed in terms of a Lyapunov-based language in this new
approach. Moreover, the dissipation inequality can be easily applied to general
nonlinear control systems that are not necessarily affine in the input. In addition
to the preliminary work [5], an additional result on the smoothness of a certain
function involved in the derived dissipation inequality is established. This result
plays an important role when using the dissipation inequality in a constructive
or in a computational way.

The only known results where the minimum phase property is expressed in
terms of a Lyapunov-based language, i.e., in terms of a dissipation inequality
are [16] and [5]. In [16] another alternative (stronger) notion of minimum phase
property is given, based on output-input-stability which is in the spirit of Son-
tag’s “input-to-state stability” philosophy. In particular a dissipation inequality
is used in [16], which is a sufficient condition for the minimum phase property.
The dissipation inequality there is, however, not a necessary condition, since the
notion used there is motivated by introducing additional robustness in the min-
imum phase property. Therefore, the dissipation inequality derived there does
not fully coincide with the well-established notion of minimum phase property in
the sense of Byrnes-Isidori. In the preliminary work [5], a dissipation inequality
is derived which is necessary and sufficient for the minimum phase property and
which is slightly different from the dissipation inequality derived below. However,
in contrast to [5], the results established in Section 3, in particular Theorem 2
allow an additional smoothness statement of a function that appears in the dis-
sipativity characterization of the minimum phase property.

The structure of the paper is as follows: In Section 2, results from the litera-
ture are revisited and the class of control systems to be considered, the input-
output normal form, and the definition of the minimum phase property in the
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sense of Byrnes-Isidori is given. In Section 3, the dissipation inequality which
characterizes the minimum phase property is derived. Some numerical examples
demonstrate the results of this paper in Section 4. Finally, Section 5 concludes
with a discussion and summary.

2 Preliminaries

The class of control systems studied in this paper is of the form

z = f(z)+ G(z)u )
y = h(x),
where f: R" - R", G : R" — R"P_h : R" — RP and = € R" is the state,
u € RP is the input, and y € RP is the output.
The main assumption on the control system (1) is that an input-output normal
form exists, i.e., the following assumption is made:

Assumption 1. The functions f,G,h in (1) are assumed to be sufficiently
smooth with f(0) =0, h(0) =0 and furthermore, it is assumed that there exists
a local change of coordinates [€,n]T = ®(x) with ®(0) = 0, & sufficiently smooth,
such that the control system (1) with the same number of inputs and outputs can
be represented in input-output normal form ([12], p.224):

&=6
éﬁi—l = 5;
N P (2)
& =bi&m + Y ay (€
j=1
n=q(&n) + P& nu
Y = gia

where £ = [¢1 ..., &8 .. )T, i = 1...p. Moreover, it is assumed that q(0,n) —
P(0,1m)A(0,7)716(0,n) is sufficiently smooth, with the square invertible (decou-
pling) matriz A(E,n) = (ai;(&,n)), 4,5 = 1...p and a vectorial relative degree
r=[r1,...,rp]. Note that the output zeroing feedback u = k,(§,n) is unique [12]
and is given by

u=ks(€n) = —A&n) "0, n) (3)

with b(&,m) = [b1(&,m) ... bp(& )T

For example, if the control system (1) is a single-input-single-output system
with f, G, h sufficiently smooth and if the relative degree is well-defined, then
a local change of coordinates exists that transforms the control system into the
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given form. The multi-input-multi-output case is more involved [12]. However,
control systems that are minimum phase in the sense of Byrnes-Isidori exhibit
stable behavior under the constraint that the output is identically zero. More
precisely:

Definition 1. The control system (1) under the Assumption 1 is said to possess
the minimum phase property with respect to the equilibrium point x =0, if x =0
is asymptotically stable under the constraint y(t) = 0, t > 0. In other words, the
zero dynamics

i = q(0,m) — P(0,1)A(0,7)~"b(0, ) (4)
of the control system (1), respectively (2), is asymptotically stable at n = 0.

Further definitions and notations. A function V : R™ — R is called positive
definite, if V/(0) = 0, V() > 0 for all nonzero x. V' is called radially unbounded,
if V(z) — oo whenever ||z|| — co. A continuously differentiable, positive definite,
radially unbounded function V is called a Lyapunov function candidate. For a
function V' : R® — R, the row vector %‘; () = VV(z) = [V, (x) ...V, ()]
denotes the derivative of V' with respect to x.

3 A Dissipation Inequality for the Minimum Phase
Property

In the following, the main results of the paper are derived. In particular, a
characterization of the minimum phase property for the control system (1) under
the Assumption 1 is given in terms of a dissipation inequality, Theorem 1, and
an additional smoothness result for the dissipation inequality, Theorem 2, is
derived. To define the dissipation inequality for the minimum phase property,
the following so-called derivative array (cf. e.g. [10]) is used:

Definition 2. The derivative array H, : R™ x RY — R™TFP of the out-
put function y = h(z) = [h(x)... hy(x)]T in (1) is defined by the first r Lie-
derivatives of the output, i.e.,

ha ()
hl(x)

Hy(z,u) = | B (@) (5)
h2 (CL‘)

| by () ]

with hi(z) = %’; (x)(f(x) + G(z)u) = Lthi(x) + Lghi(x)u etc., i.e., the Lie-
derivatives of h; with respect to (1) up to degree ;. Notice that H, is a function

)

. Ti
of x and u, since hl(- 7 depends on u.
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Using the derivative array, the first result in this section is a characterization of
the minimum phase property in terms a dissipation inequality.

Theorem 1. The control system (1) under the Assumption 1 has the minimum
phase property according to Definition 1 if and only if there exists a Lyapunov
function V : R® — R and a function p : R™ x RP — R™ T+ "+ gych that the
dissipation inequality

VV () (f(z) + Gla)u) < Hy(z,u)" p(z, u) (6)
is satisfied for all u and all nonzero x in a neighborhood of x = 0.

Proof. The first part of the proof of Theorem 1 shows an explicit construction of
the functions V| p, in case the control system (1) is minimum phase. The second
part shows that if the dissipation inequality (6) is satisfied, then the minimum
phase property follows.

Part 1 ((1) is minimum phase @ (6) is satisfied): In the following, it is assumed
that the control system (1) is represented in the input-output normal form (2).
Since (1) is minimum phase, the zero dynamics of (1) is asymptotically stable
and is given by

1= q(0,7) — P(0,7)A(0,7)”'b(0,7) = 2(0,7), (7)
which follows by substituting the output zeroing feedback
kz (57 77) = _A(€7 77)_117(57 77) (8)

into (2) and by setting £ = 0. Let W be a continuously differentiable Lyapunov
function of (7). The existence of such an Lyapunov function is guaranteed due to
Massera’s converse Lyapunov theorem [17, 25, 13]. Massera’s theorem assumes
a locally Lipschitz right-hand side of the differential equation for the existence
of a smooth differential Lyapunov function. Since this is assumed in Assumption
1, W exists. Define now a Lyapunov function candidate

V(&) =U(E)+W(n), 9)

where U is an arbitrary Lyapunov function candidate, i.e., a positive definite, ra-
dially unbounded, continuously differentiable scalar-valued function. The deriva-
tive of V' along the trajectories of (2) is given by:

V(&) = VU(E)E + VW (n). (10)

Next, two cases are distinguished: Case 1: H, is zero in (6), i.e., & =...=
=& =0, (u=~k.(&n)), i=1...p. In this case define the value of p to be
Zero, i.e.,

p(&;m,u) = 0. (11)

What remains to show that (6) is satisfied is that V¥ (n)n < 0 holds for some
neighborhood around n = 0. But this is the case, since asymptotic stability of
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the zero dynamics is assumed. Case 2: H, is not zero in (6), i.e., there exists
f} #0or & #0 (u#k.(&n)). In this case define the value of p such that

P(fﬂlvu) = Hr(ganvu) ' ﬁ(ganvu)a

. VU ()€ + VW ()i "
P> g el

The value of p is finite since H,.(§,n,u) # 0. With the definition of p by (11),
(12) and V according to (9), the dissipation inequality (6) is satisfied (in (&, n)-
coordinates). Note that the dissipation inequality in the original coordinates can
be obtained by the inverse transformation x = @~1(£, 7).

Part 2 ((6) is satisfied & (1) is minimum phase): To show this, consider the
zero dynamics, i.e., consider the dynamics which is defined by initial conditions
(€0, m0) with & = 0 and by the output zeroing feedback u = k. (&, 7). Under these
initial conditions and under the output zeroing feedback u = k.(£,7), y(t) =0
for all ¢ > 0. Hence H,-(0,7n(t),u(t)) = 0, t > 0 because of £(¢t) = 0, t > 0.
Thus the dissipation inequality (6) turns into V(0,7(t)) < 0 and therefore V is
a Lyapunov function and the equilibrium point 7 = 0 of the zero dynamics is
asymptotically stable.

Theorem 1 establishes a symmetric statement between the minimum phase prop-
erty and a dissipation inequality (6). To understand the dissipation inequality
(6) is not difficult. However, a few points have to be explained. Firstly, the role
of the derivative array H,: The zero dynamics is the dynamics such that the
output is identically zero. This dynamics evolves on the zero dynamics mani-
fold, which is implicitly defined by ||H,(x,u)| = 0, since H, is identically zero,
if y(t) = 0, t > 0. Remember that p in the proof of Theorem 1 has the form
p(&,n,u) = Hp(§,m,u)p(E,n,u), which turns the inequality (6) into

VV(@)(f(z) + G(x)u) < || He(z,u)|*p(z, u) (13)

with 2 = [¢ ]T. Thus, stability on the manifold ||H,.(z,u)| = 0 has to be stud-
ied, i.e., a Lyapunov function is needed subject to the constraint || H,(z,u)|| = 0.
|[H,(x,u)|| > 0 is not of interest. This situation is compactly expressed in in-
equality (6) ((13)), where p plays the role of a penalization function. Geometri-
cally speaking, inequality (6) guarantees negative definiteness of the derivative of
V only on a subset, namely on the set where || H,.(z,u)| = 0. For || H,(x, u)|| > 0,
one can find a function p such that the left side is dominated by the right side
of the dissipation inequality (6). Algebraically speaking, the right side of the
inequality (6) is the ideal generated by || H,(z,u)]|, i.e, the left side is negative
definite modulo ||H,.(z,u)|| > 0.

Summarizing, the main ingredients to arrive at the dissipation inequality (6)
are the so-called derivative array, which defines the hidden constraints and which
finally defines the zero dynamics manifold, as well as a penalization argument,
a well-known argument from optimization theory. Furthermore, in contrast to
the ISS-like minimum phase characterization introduced in [16], Theorem 1 is
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necessary and sufficient to express the minimum phase property as defined by
Byrnes and Isidori. Hence, Theorem 1 represents a complete characterization of
the minimum phase property. It is also worthwile to remark that from the dissi-
pation inequality (6) it can be very clearly seen that the notion of the minimum
phase property is feedback invariant, since it must hold for all u. In Theorem 1,
no statement is made about the degree of smoothness of p. Even no statement
on the existence of a continuous p is made. However, for computational purposes
for example, a guarantee of the existence of a smooth p would be desirable. The
next theorem shows that under Assumption 1, there exists indeed a smooth p. In
particular the following proof of Theorem 2 is constructive and an explicit func-
tion p is constructed. Due to simplicity of exposition, the construction is carried
out for the case p = 1, i.e., Theorem 2 is stated for the single-input-single-output
case. The construction for the multi-input-multi-output is more tedious but goes
along the same lines.

Theorem 2. If the control system (1) under the Assumption 1 with p =1 has the
minimum phase property according to Definition 1, then there exists a smooth
Lyapunov function V : R™ — R and a smooth function p : R™ x R — R™! such
that the dissipation inequality (6) is satisfied for all w and all nonzero x in a
neighborhood of x = 0.

Proof. As in the proof of Theorem 1, it is assumed that the control system (1) is
represented in the input-output normal form (2). Smoothness of the Lyapunov
function W for the zero dynamics (7) follows from Massera’s converse Lyapunov
theorem [17, 25]. In particular, it is assumed in Assumption 1 that the zero
dynamics is sufficiently smooth, hence a sufficiently smooth W exists. To show
that also p is sufficiently smooth, a smooth Lyapunov function candidate of the
form

ViEn) = €€+ W () (14)

is chosen, i.e., U(&) = 1¢7¢ in (9). Hence, the dissipation inequality (6) for the
control system (2), with p = 1, is given by:

§i&a + .+ o1& +6:(0(E,m) + al§m)u) + VW (n)(q(§,m) + p(§,n)u)

< EPE D W+t Eopr(Em )+ (BE )+ A€M (En) )
with € = [¢1...&]T. In a first step, p is chosen as
pi(&,msu) = &iv1 + pi(€ M, u), ) (16)
pr(&,m,u) = (b(§,m) + a(é n)u) + pr(§, 1, u)
i=1...r— 1, with j; as new auxiliary functions. Hence (15) turns into
VW (n)(a(&n) +p&mu) <&pr(nu) +...+ &pr(€n,u) (17)

+(b(§v 77) + a({, W)U)Pr+1(§a , u)
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In a second step, u is replaced by

1
U= — b(&,n) +v 18
) HEM +0) (18)
with v as a new input. Therefore, one obtains from (17)

p(&,m)
) (ot - 11E ) 0t +0))

< flﬁl(fﬂ?:”) ot &ﬁr(fﬂ?:”) + Upr+1(§a77711)-

Due to the substitution (18), inequality (19) can be satisfied if and only if (17)
can be satisfied. In a next step, p is chosen as

(19)

p(&n)
r ,n,v) =—VW 20
and after rewriting (19), one arrives at
VW (n)z(0,n) + VW(n) (2(§,m) — 2(0,1)) (21)
< 51[)1(577771}) +o gTﬁT(ga 7]7“)7
where the expression that corresponds to the zero dynamics is given by
b(&:n)
Z\Ss = 4q\s; — PpS, . 22
(&m) = a(&m) —p(¢ n)a(&n) (22)
Since the control system is assumed to be minimum phase, the inequality
VW ()z(0,1) <0 (23)

holds locally. Thus, it is sufficient to show that

VW () (2(&m) = 2(0,) + 7€ < &p1(&m,0) + .o+ Epr(Emv)  (24)

can be satisfied. Assumption 1 implies that the function z is sufficiently smooth
and therefore continuously differentiable. By applying a mean-value theorem for
vector-valued functions, the so-called Hadamard lemma [22, 3], the difference
z(&,m) — 2(0,m) can be written as

2(&m) = 2(0,n) = Z(§,n)¢ (25)

with a continuous (smooth) matrix-valued function Z defined by

Loz

o (1= 0)¢, )b, (26)
o Oz

Z(&n) =

Hence, the inequality (24) can be written as

VW) Z(&nE+E7E < &api(€m,v) + .o+ &pr(€m,0), (27)
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from which the smooth functions p; easily follow such that (27) holds. For ex-

ample, choose the p;’s such that

VW) Z(E&n) +&" = [p(&mv) ... pe(&n,0)]. (28)

Therefore, inequality (24) is satisfied and thus also the desired dissipation in-
equality (15). Finally, note again that the dissipation inequality in the original
coordinates can be obtained by the inverse transformation z = ®~1(£, ) of the
input-output normal form transformation.

Notice that the converse statement of Theorem 2 follows immediately from the
proof of Theorem 1. Furthermore, Definition 1 and all established results are of
local nature with respect to the equilibrium point x = 0. From the proofs of
Theorem 1 and 2, however, global results can be easily established. Moreover,
the results in this paper can be easily extended to the more general input-output
normal form in [12] (p.310). In particular, this is one advantage of the established
dissipation inequality since it is in principle also applicable to general control
systems, as summarized next.

Remark 1. The affine structure of the control system (1) can be easily replaced
in (6) by a general, nonaffine control system, i.e.,

VV(z)f(x,u) < Hp(z,u)T p(z,u), (29)

which leads to a possible extension of the minimum phase property to nonaffine
control systems. In this case, however, the zero dynamics might not be well-
defined and the output zeroing feedback is not unique anymore. For generalized
notions for the minimum phase property to control systems that are not affine
in the control input, one may also consult [19, 16]. Since the minimum phase
property is basically a matter of stability on manifolds, one may consult [6] which
provides a general Lyapunov-based approach for such questions.

Remark 2. 1t is well-known that the minimum phase property is an important
notion for describing fundamental performance limitations in feedback design.
In particular, well-known is the Bode integral of the inverse sensitivity function
(Bode T-integral), which relates the minimum phase property with limitations
in tracking problems [20, 15, 9, 8, 18, 23, 24, 2, 26, 1]. One may ask the ques-
tion, in how far the derived dissipation inequality in Section 3 reflects this fact.
One possible answer is given in [7]. The idea persuited there is to search for a
new output such that a given nonminimum phase control system becomes min-
imum phase and such that the new minimum phase output is the closest one
to the true nonminimum phase output in the Lo-sense. In particular, for linear
time-invariant control systems it can be shown using duality theory from convex
optimization and by utilizing the established dissipation inequality for the min-
imum phase property, that this leads to an alternative deriviation of the Bode
integral for the inverse sensitivity. More details on that as well as its relation to
cheap control [24] can be found in [7].



80 C. Ebenbauer and F. Allgéwer

Summarizing, in this section a new characterization of the minimum phase prop-
erty for control systems which posses a well-defined input-output normal form is
derived. Moreover, the established characterization is suitable for computational
purposes (cf. Example 2, Section 4) and also applicable to control systems where
an input-output normal form does not exist or where the relative degree is not
well-defined (cf. Example 1, Section 4).

4 Examples

In the following, two examples are given which illustrate the results in the pre-
vious sections. In particular, attention is paid to the following two aspects: com-
putability and generalizability.

Example 1

This example illustrates that the dissipation inequality (6) can also be applied
in case the control system does not have a well-defined relative degree and is not
affine in the input. Consider the nonaffine control system

T1 = —x1 + 236"
i‘g = I3 (30)
I3 = U

Yy = T2,

which has relative degree two except for 2o = 0. Applying (6) with V = %(x% +
23 + z3) yields

— 3:? + r1w3e” + 123 + T2T3U (31)
< wop1(z,u) + x3p2(x, u) + xoups(x, u).

For example, by choosing p1(x, u) = x3+x2, p2(x,u) = r1e¥+xoutrs, p3(r,u) =
0, one obtains —zf — 23 — 22 < 0. Thus global asymptotic stability of the
zero dynamics is established, i.e., the control system (30) is (globally) minimum
phase.

Example 2

This example illustrates that the dissipation inequality (6) for the minimum
phase property is particularly suited for a minimum phase test for control sys-
tems with polynomial nonlinearities. In general, it is very difficult to search
for a Lyapunov function V' and a function p such that (6) holds However, re-
cently established methods from computational real algebraic geometry based on
semidefinite programming and the sum of squares decomposition allow to verify
the dissipation inequality (6) very efficiently in case all the functions involved
are of polynomial type (consult for example [21, 11] and references therein).
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In the special case of linear time-invariant control systems, (6) can be written
as an linear matrix inequality. The following example demonstrates this fact,
without going into the computational details. Consider the control system

T = —x1+x122 + :clz%u
To = —To+ X4 — X124
i3 =22 + T2+ a3+ u (32)
Ty = —X4 + T1T2 + T1T2T3
Yy = 3,

which has relative degree one. By using semidefinite programming and sum of
squares techniques, the following quadratic Lyapunov function

V = 5.112% + 3.8223 — 0.31x273 + 2.3523

) (33)

—0.07z123 + 0.07Tx924 — 1.2623204 + 4.942]
was found. Furthermore, a function p was found with monomials of degree one
to four. Therefore, it was possible to prove in a computationally efficient way
that the control system (32) is globally minimum phase.

5 Conclusions

The paper has two contributions. The first contribution is a characterization of
the minimum phase property of nonlinear control systems in terms of a dissipa-
tion inequality. This allows to describe the notion of the minimum phase prop-
erty, which was originally developed in nonlinear geometric control [12], with
the help of a Lyapunov-based argument, in case the control systems possesses
an input-output normal form. The main idea is the use of a so-called derivative
array and a penalizing function, which allows to characterize the stability of the
zero dynamics in terms of a dissipation inequality without an explicit knowledge
of the equations that define the zero dynamics.

The second contribution of this paper shows that if the control system is
sufficiently smooth, then the functions that appear in the derived dissipation in-
equality (6) can also be chosen smooth. Moreover, demonstrated on an example,
it has been shown that the derived dissipation inequality that characterizes the
minimum phase property is in particular suitable for a minimum phase analysis
using efficient numerical algorithms. It has also been shown by an example that
the dissipation inequality can be very easily applied to control systems that are
not affine in the input and thus allow a way to generalize the notion of the mini-
mum phase property very easily. Another advantage of the proposed dissipation
inequality is the conceptual simplicity.

There are several interesting points for future reseach. Since the penalizing
function p is motivated from optimization theory, one can also consider p as a
Lagrange multiplier or as a dual variable. This may be of particular interest in



82

C. Ebenbauer and F. Allgéwer

connection with performance limitations and further investigation in this direc-
tion is needed. Finally, the dissipation inequality (6) is similar to a generalized
phase or passivity condition [12, 14, 13], due to the appearence of the inner
product in the dissipation inequality. This similarity may be useful to extend
passivity-based results to minimum phase control systems with a higher relative
degree.
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Summary. In this paper an internal model based approach to periodic input dis-
turbance suppression for port-Hamiltonian systems is presented; more specifically, an
adaptive solution able to deal with unknown periodic signal belonging to a given class
is introduced.

After an introductive section, the adaptive internal model design procedure is pre-
sented in order to solve the input disturbance problem. This theoretical machinery
is specialized for the energy-based port-Hamiltonian framework in order to prove the
global asymptotical stability of the solution.

Finally, in order to clearly point out the effectiveness of the presented design proce-
dure a tracking problem is solved for a robotic manipulator affected by torque ripples.

Keywords: Port-Hamiltonian systems, Internal Model Control, Adaptive Control, In-
put Disturbance Suppression, Robot Manipulator.

1 Introduction

Input disturbance suppression is a very important topic in control theory as
it represents the case in which malfunctions on the systems can be modeled
as signals superimposed to the input channels; in real case it is possible to
assume that the malfunction effect belongs to a known class of signals while
their parameters (amplitude and even phase and frequencies in case of periodic
signals) are unknown. For example malfunctioning on rotating systems driven by
a power electronic part (e.g. electrical drives, magnetic levitation systems etc.)
leads to asymmetries reflecting in spurious harmonics in the electrical variables
(see [21], [3], [20], [16], [15])-

In this paper a comprehensive port-Hamiltonian systems (pHs) framework to
deal with input disturbance suppression problems is considered. The main idea
is to cast the problem into a regulation one and to solve it with an adaptive
internal model based regulator. The design procedure turns out to be able to
obtain a fault tolerant behavior: the asymptotic regulation is assured even in
presence of a fault, and hence in presence of the resulting disturbances. The the-
oretical machinery exploited in order to prove the global asymptotical stability of

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 85-98, 2007.
springerlink.com © Springer-Verlag Berlin Heidelberg 2007
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the solution is the nonlinear regulation theory, specialized for the energy-based
port-Hamiltonian formalism in order to take advantage of its peculiar prop-
erties. In [10] pHs were introduced as a generalization of Hamiltonian systems,
described by Hamilton’s canonical equations, which may represent general physi-
cal systems, i.e. mechanical, electric and electro-mechanical systems, nonholomic
systems and their combinations (see [14] for further references).

In Section 2, a general exogenous input disturbance problem is considered
for a generic pHs. The regulation problem is stated and an adaptive internal
model based design procedure able to globally asymptotically solve this problem
is introduced under proper assumption regarding the system into account.

It is worth to remark that the design procedure presented in this section is
able to deal with disturbances that can be modeled as functions of time within a
finitely-parametrized family: i.e. exogenous constant and sinusoidal disturbances
characterized by unknown amplitude, phase and frequency. The hypothesis of
not perfect knowledge of the characteristic frequencies introduces a complex
issue to deal with: in the last years this problem has been pointed out and
addressed using different design techniques (see [13], [9], [17], [11], [18] and ref-
erences therein). In this work a solution to this issue, relying on simple Lyapunov
based consideration, is presented.

In order to enlighten the practical effectiveness of the solution presented, in
Section 3, a tracking control problem is solved for a robotic manipulator affected
by torque ripples. The same example studied in [2] is here suitably modified in
the solution according to the general framework presented.

2 Adaptive Input Disturbance Suppression Control for
Port-Hamiltonian Systems

In this section we present a design approach to solve a disturbance suppression
problem for pHs. The class of disturbance considered consists in addictive ac-
tuators disturbances modeled as exogenous input signals belonging to the class
of constant and sinusoidal disturbances characterized by unknown amplitude,
phase and frequency.

Consider a pHs with an exogenous disturbance §(¢) acting through the input
channel:

. 0OH

b= ()~ R()) ) +gu— gb 1)
where x € R", u € R™, H : R" — R is the energy function (Hamiltonian func-
tion), J(z) is a skew symmetric matrix (J(z) = —JT(z)), R(z) is a symmetric

semi-positive definite matrix (R(z) = RT(z)) and g € R™*™.
The disturbance §(t) is generated by a neutrally stable exosystem defined by

w = Sw
{ (2)
6=Tw
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with s = 2k + 1, w € R®; I' € R®*™ is a known matrix and S is defined by
S:diag{SOaSh"'aSk} (3)

where Sp = 0,

&:[j%%} w; >0  i=1,...k. (4)
The initial condition of the exosystem is w(0) € W, with W C IR* bounded
compact set.

In this discussion the dimension s of matrix S is known but all characteristic
frequencies w; are unknown but ranging within known compact sets, i.e. w™® <
w; < Wi In this set up the lack of knowledge of the exogenous disturbance
reflects into the lack of knowledge of the initial state w(0) of the exosystem and of
the characteristic frequencies. Any disturbance obtained by linear combination
of a constant term and sinusoidal signals with unknown frequencies, amplitudes
and phases are therefore considered.

The problem to address is to regulate the system to the origin in despite of the
presence of exogenous disturbances; it will be remarked later that the solution
presented is even able to supply estimates of the disturbances acting on the
system.

All above assumptions allow to cast the problem of disturbance suppression
as a nonlinear regulation problem (see [8], [4], [7], [1]) complicated by the lack
of knowledge of the matrix S and suggests to look for a controller which embeds
an internal model of the exogenous disturbances augmented by an adaptive part
in order to estimate the characteristic frequencies of the disturbances.

The hypothesis of not perfect knowledge of the characteristic frequencies in-
troduces a key issue to deal with (see [13], [9], [17], [11], [18] and references
therein); here it is shown how, under some hypotheses regarding the pHs (1),
this problem can be overcome introducing an adaptation law, designed exploit-
ing the properties of the pHs structure, able to globally asymptotically stabilize
the feedback system.

As discussed in the introduction, the regulator to be designed will embed the
internal model of the exogenous disturbance: this internal model unit is designed
according to the procedure proposed in [11] (canonical internal model). Given
a symmetric, negative definite Hurwitz matrix F' and any matrix G such that
the couple (F,G) is controllable, denote by Y the unique nonsingular matrix
solution of the Sylvester equation!

YS—FY =GI (5)

and define ¥ := 'Y ~1.

! Existence and uniqueness of the matrix Y follow from the fact that S and F' have
disjoint spectrum. The fact that Y is nonsingular can be easily proved using observ-
ability of the pairs (S, I") and controllability of the pair (F, G).
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Let us introduce the adaptive internal model unit as

£=(F+GU)E+ N(x)

@ij = (€, ), _E

1,---,m) (6)
1,

) )

where ¥;; represents the ij-th element of matrix ¥, and set the control law as
u = @f + Ust (7)

where N(z) and ug are additional terms that will be designed later. The adap-

tation laws ¢;; (£, ) will be designed in order to assure that, asymptotically, the

internal model unit will provide a control able to accommodate all disturbances.
Defining the changes of coordinate

x =&—Yw-— Ax
~ - i=(1,---,m) (8)
J J oi=qQ,-

where matrix A is chosen according to Ag = G, system (1) with controller (6)
becomes

i = (J(2) — R@) O & gie 1+ g0e + guye — gT'w

or
X =(F+GP)E+ N(z)—YSw— Ai )
iy =eglen),

Note that

+ gUE + g¥ (€ — Yw — Ax) + gW AT + gug

0OH ~ . -
= (J(@) = R(2)) 5 +9¥E+g¥x + gV Az — gV Az + guse ,
hence, choosing ugs; = —lf/A:c, it is possible to write
0OH

i = (J(z) = R(x)) ,  +g¥(§ — Az) + gl .

ox

Considering now the following two vectors containing every element of matrix ¥
and ¥

P = (@11 e Wy e Wy e @mS)T

. . . . . 10
@:(gpll...g[/ls...gpml...gpms)T (10)

and defining =0 — &, itis possible to design a matrix IT(z, &) such that
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II(z,6)® = g¥(§ — Az) = g¥ (x + Yw)

and write OH
o + I (z,6)P + g¥x . (11)

Let us concentrate now on the y-dynamic in order to suitably design the update
term N (z):

& = (J(z) = R(z))

x=(F+G¥E+N@x)—YMz—Glw— A (J(z)—R(x))aH

o
9r TIYE
—gl'w — g@Ax} =
OH .
= Fx+ FAx + N(z) — A(J(z) — R(x)) or T Ag¥ Az .

Choosing

N(z) = —FAz + A(J(z) — R(x)) %H — AgW Az (12)

x
the obtained x-dynamic is
X=Fx. (13)

As all dynamics of (9) have been investigated, it is now possible to design an
adaptation law for ¥T. In order to obtain a system fitting the pHs framework,
this adaptation law must be chosen to satisfy the skew-symmetric property:

: OH
&= —I(z,&)" o

With this in mind it is immediate to write the @-dynamic as

5:5-4‘3:-17@,5)%5 .

Consider now equations (2), (11), (13) and (14). The overall new system identifies
an interconnection described by:

i = 17 - A@) T

(14)

"y (15)

with o
T = ((E x @ w) ,
and characterized by the Hamiltonian function H, (x) defined by
~ 1 ¢ leps 1 o
Hy(7) = H(x) + x x+ , 0 2+ jw w,

the skew-symmetric interconnection matrix .J(z) defined by

J 010

= _ 0 00
J((E): —HT
0

o o
o O
noo
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the damping matrix R defined as

R(z) 0 00
_ 0 —FO00
E=1 09 0 00l

0 000

and finally A as
A= (g¥x000)" .
At this point the main result of the paper can be stated.

Theorem 1. Consider the pHs (1), affected by exogenous signals generated by
the autonomous system (2), (3), (4).
If the following hypotheses H1 and H2 hold:

H1: there exists two numbers n, € R~ and ng € R and a matriz Q € R™*"
such that for all x € R® the following holds

oTH OH OYH

— Uy < 1y 2 ; 16
R+ O g <l Qal? £ mllQall; (6)
H2: the origin of (1) is the largest invariant set of the auziliary system
. o0H
i = (J@) —~ B@) " +go
0H
s T
7T oy
characterized by
oTH OH
=0.
ox h(@) ox
Define the controller (adaptive internal model unit)
. . OH s
¢ =(F+GY) — FAz + A(J(x) — R(z)) o Ag¥ Ax
2 OH (17)
_ T
u=WE— WAz,

where A is chosen according to Ag = G, II(x,§) is a suitably defined updating
term designed such that

I(z,6)® = g¥(& — Ax)

F is a suitably defined symmetric Hurwitz matrix designed according the con-
structive proof presented in the following and G is a suitably defined matriz such
that the couple (F,G) is controllable.

Then controller (17) is able to asymptotically stabilize the origin of system
(1), zeroing the effect of the exogenous disturbances.
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Proof. Consider system (15) (obtained connecting (1) with (17)) and the follow-
ing Lyapunov function:
V =H,(x).

Simple computations show that the time derivative of this Lyapunov function is
defined by
. O'H _oH O0'H
V=- R+ g¥x+x"Fy.
Jx =~ Oz ox

As (16) holds, there exist real numbers 7, € R™ and ng € IR, a matrix Q € R™*"
and np € IR, such that

V <02 |Qz 1 + e lIxll? + ol Qll x| -

Using a Young’s inequality argumentation it is possible to state that

' N Nw
V < [1Qz|1? + nelxl? + 5 el Qx| + 0 IxI1%

for a certain value of €. Choosing € = —n, /1w, it comes out that
y 2 g 2
v < nalQalf+ (me = ¥ ) I, (19)
N
hence, choosing matrix F' such that
2
Uiz
F < )
n M

it turns out that V < 0 and, for LaSalle invariance principle, system’s trajectory
are asymptotically captured by the largest invariant set characterized by V=
0. Considering this, by (18) and hypothesis H2, the system (1) asymptotically
converge to the origin proving the statement.

Remark 1.1t is worth to remark that, though the main hypotheses H1 and H2
could appear rather conservative, they refer to a system of the form (1) that
could be not the original plant but the port-Hamiltonian formulation of the
original system already controlled to attain specific tasks; this a priori control
action could be suitably designed such that the resulting system satisfies condi-
tions H1 and H2. In particular, it could be easily shown that hypothesis H1 is
always verified if the system into account is characterized by a quadratic Hamil-
tonian function. To enlighten the effectiveness of the property remarked here,
in section 3 a n-degree of freedom robotic manipulator is taken into account:
the original system does not satisfy both conditions but, with a suitably defined
control action able to perform even a tracking objective and a proper change
of coordinates, the resulting system turns out in the form (1) satisfying H1 and
H2; hence the control algorithm introduced can be used to solve the input dis-
turbance suppression problem.

A further control procedure able to impose particular shape and properties to
the controlled system is the well known IDA-PBC (see [19], [12] and reference
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therein for a survey about this control strategy): this control strategy is able
to design a suitable port-Hamiltonian controller such that the interconnected
system (original plant and IDA-PBC controller) assumes the form of a desired
reference pHs. It is easy to realize that one of the characteristic step of the IDA-
PBC control strategy is just the definition of a target system, usually described
by the classical port-Hamiltonian structure, characterizing the resulting dynamic
after that the controller is designed and connected: this target system could
be assumed of the form (1), imposing moreover that all the assumptions in
Theorem 1 are satisfied.

An interesting research topic, that is still under investigation, regards the
conditions to impose to the original system and to the original problem, such
that, for example, an IDA-PBC control strategy makes it possible to cast the
problem in the presented framework.

Remark 2. Following the discussion of remark 1, it is important to stress the
fact that, in some case, system (1) can be time varying. A typical situation is
when (1) represents the error system in a tracking problem; in this case the
time depending trajectories could appear in the skew-symmetric matrix J(z, t).
Clearly LaSalle invariance principle cannot be used to show convergence; never-
theless the approach can be used again and the asymptotic convergence proved
by means of Barbalat Lemma when its hypotheses are satisfied (see [22]). This
is the case, for example, of having Q = I in Theorem 1.

Remark 3. In some cases, the arise of periodical disturbances superimposed to
the control variable represents the effect of a fault occurred in the system: for
example electrical motors as well as magnetic levitation systems can be subject
to some asymmetries (e.g. due to some electrical or mechanical faults) that
cause the arise of spurious harmonics in the electrical variables (see [3], [20],
[16], [15]). In these cases, the design procedure introduced is able to obtain a
fault tolerant behavior: the asymptotic regulation is assured even in presence of
a fault, and hence in presence of the resulting disturbances superimposed to the
control inputs.

In this viewpoint the design procedure can be cast into the so-called implicit
Fault Tolerant Control framework introduced in [3]. According to this approach
the control reconfiguration does not relay on an explicit Fault Detection and
Isolation design but is achieved by a proper design of a dynamic controller which
is implicitly fault tolerant to all the possible faults whose model is embedded in
the regulator by means of an internal model.

It is interesting to see that, thanks to Theorem 1, even the Fault Detection and
Isolation phase can be carried out by testing the state of the internal model unit
which automatically activates to offset the presence of disturbances representing
the effect of a fault. Let us remember the definition of error variable x: its
asymptotic convergence to the origin implies that the internal model state £ tends
to the disturbance Yw. Hence this phase, which is usually the starting point for
the design of the FTC system is now a consequence of the reconfiguration phase.
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In the next section an interesting example is presented to point out the main
properties of the input disturbance suppression design procedure presented in
this paper. More precisely, a n degree of freedom manipulator is controlled in
presence of torque disturbances assuring in the meantime a tracking property.

3 An Example: Application to a Robot Manipulator

Consider an n degree of freedom fully-actuated robot manipulator with gen-
eralized coordinates ¢ = (q1, -+ ,q,)T. If p = M(q)¢ = (p1, -+ ,pn)T are the
generalized momenta, with M(q) the inertia matrix, symmetric and positive
definite for all ¢, an explicit port-Hamiltonian representation of this system can
be obtained defining the whole state (¢, p)T, the Hamiltonian function as the
total energy of the system (sum of kinetic energy and potential energy)

H(q,p) := ;pTM‘l(q)p + P(q)

and, finally, the matrices

J= (_(}n Ig) » Rlg) = (8 D(()q)) C 0T (2> - GD

with D(q) = DT (q) > 0 taking into account the dissipation effects. Let us call v
the input effort representing the actuation torques. These positions lead to the
following port-Hamiltonian model

A =v-rar| g |+ a0).

Op

This system is affected by an external torque ripple 6(¢) acting through the
control input channel (i.e. the torque applied to the system will be the sum of
the control torque and the external disturbance v + §(¢)); the main objective to
be pursued by this system is to track a known trajectory while compensating
this disturbance, detecting and isolating in the meanwhile its entity.

The tracking control is developed following the main idea introduced in [6],
but the characteristic change of error-coordinates is suitably modified in order
to obtain an error system still described as a pHs and satisfying the conditions
imposed by Theorem 1. Note that in our previous paper [2] those conditions
were not satisfied and the design procedure was not able to overcome constant
torque disturbances.

3.1 Tracking Control

In this subsection a state feedback tracking control algorithm is presented to
make the robot manipulator, in absence of fault disturbances, tracks a known
target trajectory (defined in generalized coordinates by (g*(¢),p*(¢))).
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To define new error variables, consider the following change of coordinates

a=q—q"(t) (19)
p=p—M(qQ)q*(t) + M(q)keq
where k; is a positive definite symmetric design gain matrix.
Computing time derivatives of new error coordinates we obtain:
G = M"Y (q)p — kqd
.1 p0M™(q) 1 9P (q)
= — —D(g)M — 20
P=—yp P D@MT -y (20)
+v+ ’U(t) - H(Qap7 q*(t)a q*(t)v q*(t))
where o1 )
i . M(q), _ . .
II(q,p,q*(t),q* (1), G*(t)) = 8q( M~ q)pg" + M(q)*
OT™M(q) . .
- Bq( ) M g)phyl — o)

+M(q)ke(M ™ (@)p — ¢*) -
It is now possible to obtain a perfect global asymptotic tracking in absence of
disturbances (6(t) = 0): this can be done by designing the control torque v in
order to delete the “bad” term I7(-), to shape the energy of the error system
to have a minimum in the origin? and to add some damping action in order to
have this minimum globally attractive. Keeping this in mind, the control action
is defined to be

= 1g.p.a" (0,400 (0) + D@ @+ Y — 0 @p 47

where kj, is a symmetric positive definite design matrix (—k, is Hurwitz) and 7
is an additional control torque that will be used in the following to compensate
the presence of additional torque disturbances.

The error system with the controller (21) writes as

. OH' OH'
q = _kq _+ Jl((jaﬁv q*(t)) —
aq op (22)
5= — @O k2
b= 14,DP,9 8(} P 31_)

2 Note that § = 0 means that the tracking is achieved as ¢ — ¢*(t).
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with oM@ .
- _ _ 1_0M(q)~ _
J1(@,p,q" (1) = | M~ H(g)M(q) + kq P 97 M(q)
and the new Hamiltonian function defined as
1.~ 1 4
H = p"M ™ @)p+ ,07- (23)

It is easy to realize that the tracking objective is globally asymptotically achieved
in absence of external disturbances (6 = 0 and hence 7 = 0): it is, in fact,
straightforward to choose the Hamiltonian function H' as a Lyapunov function
and to state, thanks to Barbalat Lemma, that

lim ¢(t) =¢*(t), lim p(t) =p*(¢).

t—o0 t—o0

3.2 Problem Statement and Internal Model Design

It is now possible to state the input disturbance suppression problem considering
the torque disturbance 6(t) = I'w as generated by a neutrally stable autonomous
exosystem like the one defined by (2), (3) and (4): the problem fits now in the
framework presented in section 2 and it is possible to design an adaptive internal
model controller following the procedure stated by Theorem 1.

Remark 4. It is important to point out the instrumental role played by the change
of coordinates (19) and in particular by the additional term M (q)k,q that makes
the presented solution different from the one in [6] and [2]. The effect of this
term is to introduce a new damping action in the generalized error coordinates
d. The error system (22) satisfies all conditions imposed by Theorem 1 and, as
J1(q, P, q*(t)) depends on time, by remark 2. In particular, (22) is now charac-
terized by a dissipation matrix R’ defined as

(kg O
= (vs)

and hence matrix ) in Theorem 1 is equal to the identity (@ = I); moreover
the origin of (22) is globally asymptotically attractive in force of the Barbalat
Lemma applied to the auxiliary system

. OH' OH'
q=—Fk J
q q 04 + J1 op
. OH' OH'
b= _—J% —k
p h 94 * o +o
. OH'
6 =- .

op

The resulting control law generated by the adaptive internal model unit (17) is
defined by
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-1
£ =(F+G¥)E—FGp—GJT (;pT ng(q) P+ q) — Gk,M~'(q)p
—GUGp
E-Gp) 0 ... 0
: 0 ¢-Gp)... 0 L ORI
b =— : : : : (M(q)~'p) = —J2(&,p)(M(q)""P)
Lo 0 ...(E—-Gp)
T =0E—UGp.

(24)
where A = G and @ is defined by (10).

To conclude the discussion of this example it is worth to define in this partic-
ular case the whole error system (15) and to proceed to the effective design of
the characteristic gain matrices to point out the constructive part of the proof
of Theorem 1.

To this aim, apply again the changes of coordinates (8). The new error system
identifies an interconnection described by:

T >, aHI(‘%)

=@ - k@) 5+ @) (25)

with state ot
T=(gpxPw)
the Hamiltonian function H,(Z) defined by

ol 1 1 1op- 1
Ho(#) = ,p" M@ 7'p+ ,0 0+ X x+ , 870+ julw,

the skew-symmetric interconnection matrix .J (2) defined by

0 J 000

—Jr 0 wJlo
J@=| o —wTo0 00|,

0 —J> 000

0 0 00S

the damping matrix R defined by

Pl
<

josll

I
cooFT o

|

S
cocoococo

o

o O o o

and finally A(Z) defined by
A@F) = (00wT500)" .

Specializing for system (25) the proof of Theorem 1, choose the Hamiltonian
function as Lyapunov function V' = H,(Z) and compute its time derivative:
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9T Hz (1) RaHj(f) N 0T Hz(%)

V== 0F or @)=
(1M N (10 OMTY@) g,
= — <2p 6q D kq 2p 6Cj p|)—4q qu

—(M=Y)p) kpy(M~1(@)p) + XTFx + X" p.

There exist real numbers 7, € R™, np € R™, np, € R™ (depending on design
matrices kp, F, ky) and e € IR, such that

V< e, 1017 A+ e, 18117 + el + o l1BN X1

Using a Young’s inequality argumentation we can write:
y - - ne w
V< e 1617+, 1817 + me ® + 75 elpl® + 5 Il

for a certain value of e. Now choosing ¢ = —n, /7w, we obtain
2
. _ Mk 1112 U7 2
V< Py + - .
< i, llall” + 75 1Pl + { e 2., x|

Hence choosing matrix F' such that

g

P <
K 21k,

we have that V < 0.

The asymptotic behavior of this error system is then defined by Barbalat
Lemma that assures the asymptotic convergence of ¢, p and x to the origin.
The original tracking problem is then asymptotically solved and the exogenous
disturbances are perfectly compensated by the adaptive internal model unit.

Remark 5. As pointed out in [2] and [3], the disturbance estimation phase can be
performed by comparing the state of the internal compensation unit which auto-
matically offsets the disturbance effect with a suitably tuned threshold. In fact,
notice that £(¢) asymptotically converge to Yz(t) which is zero in the nominal
case and different from zero when a disturbance is acting.

4 Conclusions

In this paper an internal model approach to input disturbance suppression for
pHs is presented. The main contribution of the paper is the introduction of an
adaptive internal model design procedure able to solve a regulation problem in
presence of periodic input disturbances for a generic pHs, exploiting the energy-
based characteristic properties of this formalism in order to prove the global
asymptotical stability of the solution.

To point out the effectiveness of the design procedure, a tracking control
problem is discussed for a robotic manipulator affected by torque ripples.
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Summary. Petri nets are a family of powerful discrete event models whose interest has grown,
within the automatic control community, in parallel with the development of the theory of dis-
crete event systems. In this tutorial paper our goal is that of giving a flavor, by means of simple
examples, of the features that make Petri nets a good model for systems theory and of pointing out
at a few open areas for research. We focus on Place/Transitions nets, the simplest Petri net model.
In particular we compare Petri nets with automata, and show that the former model has several
advantages over the latter, not only because it is more general but also because it offers a better
structure that has been used for developing computationally efficient algorithms for analysis and
synthesis.

Keywords: Discrete Event Systems, Petri Nets, Models of Concurrency, Controllability.

1 Introduction

The object of the study of traditional control theory have been time-driven systems, i.e.,
systems of continuous and synchronous discrete variables, modeled by differential or
difference equations. However, as the scope of control theory is being extended into
the domains of manufacturing, robotics, computer and communication networks, and
so on, there is an increasing need for different models, capable of describing systems
that evolve in accordance with the abrupt occurrence, at possibly unknown irregular in-
tervals, of physical events. Such systems, whose states have logical or symbolic, rather
than numerical, values that change in response to events which may also be described
in nonnumerical terms, are called discrete event systems and the corresponding models
are called discrete event models [5].

These systems require control and coordination to ensure the orderly flow of events.
As controlled (or potentially controllable) dynamic systems, discrete event systems
qualify as a proper subject for control theory. Hence a fundamental issue arises: we
need classes of formal models that are capable of capturing the essential features of dis-
crete, asynchronous and possibly nondeterministic systems and that are endowed with
efficient mathematical tools for analysis and control.

Petri nets are a family of models developed from the original model presented in
1962 by Carl Adam Petri in his doctoral dissertation: “Kommunikation mit Automaten”
(Communication with Automata). The theory of Petri nets is now well established and
many different Petri net models have been defined, capable of describing: logical (i.e.,
untimed) systems; timed systems, both deterministic and stochastic; hybrid systems.

We claim that Petri nets are a powerful discrete event model and, in fact, the interest
for this model has grown, within the automatic control community, in parallel with the

C. Bonivento et al. (Eds.): Adv. in Control Theory and Applications, LNCIS 353, pp. 99-127, 2007.
springerlink.com (© Springer-Verlag Berlin Heidelberg 2007
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development of the theory of discrete event systems. In this tutorial paper the goal is
not that of providing a comprehensive survey of the research in this area, but rather that
of giving a flavor, by means of simple examples, of the features that make Petri nets a
good model for systems theory and of pointing out at a few open areas for research.

We compare Petri nets with automata, and show that the former model has several
advantages over the latter, not only because it is more general but also because it offers
a better structure that has been used for developing computationally efficient algorithms
for analysis and synthesis. This gives credit to our belief that the study of automata —
that is an integral part of the introductory courses on discrete event systems — should
always be complemented with the presentation of Petri nets.

The paper is structured as follows. In Section 2 the definition of Place/Transition net
(the most well-known Petri net model) is given and its dynamic behavior is described.
Section 3 deals with the modeling of physical systems with Petri nets, with an example
taken from the manufacturing domain. In Section 4 the main analysis techniques per-
taining to this model are discussed, with a particular focus on the techniques based on
the state equation and on the reachability graph. In Section 5 we look at Petri nets as
language generators and characterize the classes of languages accepted and generated
by this model. In Section 6 we show that Petri nets are a generalization of automata and
point out some of advantages the first model has with respect to the latter. In Section 7
we discuss how many classical control properties may be extended to the context of
discrete event systems and, as an example, discuss controllability in the framework of
Petri nets. Finally, in Section 8 a few areas of research that are still opened in the Petri
net domain are presented.

2 Petri Nets: Main Definitions

In this paper we consider the basic Petri net model called Place/Transition net (P/T net
for short). It is a purely logic model that takes into account the order of occurrence of
events, without associating time to them. For a comprehensive introduction to Petri nets
see also the paper by Murata [27], and the books by Peterson [32] and by David and
Alla [9].

2.1 Net Structure

Definition 1. A Place/Transition net is a structure N = (P, T, Pre, Post) where:

P ={p1,p2,...,pm} is a set of places represented by circles;
T = {t1,ta,...,t,} is a set of transitions represented by bars;
Pre: PxT — Nis the pre-incidence function that specifies the weight of the arcs
directed from places to transitions;

e Post : P xT — N is the post-incidence function that specifies the weight of the
arcs directed from transitions to places. A

Example 1. Fig. 1 shows a net N = (P, T, Pre, Post) with set of places P =
{p1,p2,p3}, and set of transitions T' = {t1, to, t3,t4}. Here
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1 00 0] p1 01 00| p1

Pre={0 1 1 0] po Post=11 0 0 0| po
000 1] ps3 00 2 1| ps
t1 to t3 t4 t1 to t3 ty

The information contained in the two matrices Pre and Post is often summarized
in a single matrix, defined as

C = Post — Pre: P xT — 7 )

and called incidence matrix. Note however that the incidence matrix does not contain
the same information of Pre and Post, namely the structure of the net cannot be uni-
vocally determined starting from C'. This is clearly illustrated in the following example.

Example 2. The incidence matrix of the net in Fig. 1 is

-1 1 00 D1
C=| 1-1-10]| po

0 0 20| ps

ty to t3 ty

In this matrix a negative element corresponds to a pre arc, and a positive element to a
post arc. Note, however, that when a transition and a place form a loop, the weight of
the pre and post arc may cancel out. In this net such is the case for the loop formed by
ps and t4: since C'(ps,t4) = 0 no information on this loop is contained in C. [ |

L5

153

Fig. 1. A Place/Transition net

In the following we denote as °¢ the set of input places of transition ¢, namely the set
of places p € P that have an arc going from p to ¢, and ¢® the set of output places of
transition ¢, namely the set of places p € P that have an arc going from ¢ to p.

Analogously, *p and p*® denote respectively, the set of input and output transitions of
place p, namely the set of transitions ¢ € I’ that have an arc going from ¢ to p, and from
p to t, respectively.

Example 3. Let consider the net in Fig. 1. It holds °t; = {p1}, t} = {p=2}, *p3 =
{t3, s} and p§ = {ts}. u
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2.2 Dynamic Behavior

Definition 1 only refers to the structure of the net. To associate a dynamic behavior
to it, we need to introduce the notion of state and to definite the rules that govern
the occurrence of the discrete events. In particular, in the P/T framework, the state
corresponds to the marking of the net, and the evolution corresponds to the firing of
transitions that may occur provided that appropriate enabling conditions are verified.

Definition 2. A marking is a function M : P — N that associates to each place a non
negative number of tokens. The initial marking is denoted M. A

Definition 3. A net N with initial marking My is a dynamical system. It is called net
system and is denoted as (N, My). A

Graphically, tokens are represented as black dots within places.
Example 4. Let us consider the net in Fig. 1. A possible initial marking is
Mo = [Mo(p1) Mo(p2) Mo(p3)]" = [100]"

that is shown in Fig. 2.(a). Here the only marked place is p;, that contains one token.
Another possible initial marking is My = [0 1 0] that is shown in Fig. 2.(b). Here the
only marked place is py that contains one token. |

151

(©)
153

Fig. 2. Place/Transition net systems
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Definition 4. A transition t is enabled at marking M if
M > Pre(-,t)

where Pre(-,t) denotes the column of matrix Pre relative to transition t. We write
M t) to denote this condition . A

In simple words, the enabling condition of a transition only depends on the marking of
its input places. In particular, ¢ is enabled at M if each place p € °¢ contains at least
Pre(p,t) tokens, i.e., place p contains a number of tokens greater or equal to the weight
of the arc going from p to ¢.

Example 5. Let us consider the net system in Fig. 2.(a). The only enabled transition
is tl. [ |

Definition 5. A transition t that is enabled at M may fire. The firing of t removes
Pre(p,t) tokens from each place p € P and adds Post(p,t) tokens to each place
p € P. Thus the firing of t at M determines a new marking

M’ = M — Pre(-,t) + Post(-,t) = M + C(-,t). ()
To denote this we write M[t)M'. A

Note that, since Pre(p,t) # 0 only if p €° ¢, and Post(p,t) # 0 only if p € ¢°, then
the firing of ¢ at M removes Pre(p,t) tokens from each input place p to ¢, and adds
Post(p,t) tokens to each output place p to ¢.

Moreover, by looking at Definition 5 it is immediate to observe that the enabling
condition given by Definition 4 guarantees the non-negativity of the marking.

Example 6. Let us consider the net system (N, My) in Fig. 2.(a). If transition ¢; fires
the net reaches the new marking in Fig. 2.(b) because one token is removed from p; and
added to po.

Now, both transitions ¢ and ¢3 are enabled. If ¢35 fires, the net reaches the new mark-
ing in Fig. 2.(c) because one token is removed from p, and two tokens are added to ps,
being 2 the weight of the arc going from ¢35 to ps.

Now, the only enabled transition is t4, but its firing does not change the marking
being C'(ps, t4) = 0. [ |

Definition 6. A sequence o = t; t;, ...t; € 1™ is enabled at M if: t;, is enabled at
M and its firing brings to a new marking M, that enables t;,; the firing of t;, at M
brings to a new marking My that enables t;,, and so on.

In such a case we write

Mty ) Mitg,) . .. My—1[t;, ) My
or simply M[o)My,. An enabled sequence o is called a firing sequence. A

Definition 7. A marking M is reachable in (N, My) if there exists a firing sequence o
such that My[o) M.
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The reachability set of (N, My), denoted as R(N, My), is the set of markings that
are reachable from M, i.e.,

R(N,Mg)={M € N™ | 3o € T* : My[o)M}.
A

The reachability set may never be an empty set because it always includes at least the
initial marking. Moreover, it may either be finite or infinite.

Example 7. In the case of the P/T net system in Fig. 2.(a) it is easy to verify that
R(N,My) ={[100]7,[010]7,[002]T}.

Consider now the P/T net system in Fig. 3. In this case the initial marking is M = [0]
but transition ¢; has no input arcs (it is a source transition) hence it is always enabled
and can fire as many times as desired, adding each time a token to place p. On the
contrary transition t; is only enabled if place p is marked: its firing removes one to-
ken from p. This simple net thus describes an unbounded queueing system: the initial
marking in the figure corresponds to a queue initially empty. The reachability set is thus
R(N, M) = N. |

1] p 12

-0

Fig. 3. The P/T net of an unbounded queueing system

The fact that the reachability set of a P/T system may be infinite is one of the main
advantages of Petri nets with respect to other discrete event models, such as automata.
In fact, using Petri nets we are able to represent with a finite structure a discrete event
system with an infinite number of states.

3 Modeling with Petri Nets

Petri nets have been applied in a large variety of application domains, such as opera-
tional research, manufacturing systems, flexible production systems, transportation sys-
tems, and so on. The book by DiCesare et al. [10] provides a nice survey of Petri net
approaches for the modeling and control of manufacturing systems.

In this section we first discuss the main primitives of concurrent systems that can be
modeled using Petri nets. If one is interested in the order of event occurrences, the basic
structures are sequency, choice, and concurrency. On the contrary, if one is interested
in describing the use of available resources, the three most common structures are dis-
assembly, assembly, mutual exclusion. Finally, we present in detail an example taken
from the manufacturing domain, representing an assembly system.
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3.1 Main Structures

Let us consider the Petri net systems in Fig. 4. Figure 4.(a) models sequency. Given
the initial marking, only event e; may occur. Then, event e5 may only occur after the
occurrence of event e, and event e3 may only occur after the firing of ey. Note that
here we are talking indifferently of events and transition firings.

(4] [} es
()
e el
() €
=>
e3 €3
(b)
e (4]
€ €
=>
€3 €3
(©

Fig. 4. Three main Petri net structures: (a) sequency, (b) choice, (c) concurrency

Fig. 4.(b) models the choice among events. Given the actual marking, all the events
e1, e2, and e3 are enabled. However, if any of such events occurs, then the others are
disabled. We also say that these events are in conflict among them.

Finally, Fig. 4.(c) models concurrency. After the firing of the only enabled transition
at the initial marking, all the events e;, ex and es are independently enabled and may
occur in any order, even simultaneously.

If tokens represent available resources, three other main structures can be defined, as
summarized in Fig. 5.

Fig. 5.(a) provides an example of a disassembly operation. If a vehicle is disassem-
bled, then we get 4 wheels and one chassis.

Fig. 5.(b) provides an example of an assembly operation. If milk, espresso and cocoa
are appropriately combined, then a cappuccino is obtained.

Fig. 5.(c) models mutual exclusion. Assume that two machines, M; and Ms, share a
resource, namely a robot, whose task is that of loading them. At the initial marking the
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robot may either load M; or M>. However, if it starts loading M7, then it is not available
for M. It is ready to load M> only after it has finished to process M;. Analogously, if
it is working on Mo, it cannot load M until the loading of M5 is finished.

milk
wheels
, 4 .
vehicle espresso cappuccino
cocoa
chassis
(a) (b)
t 3
robot
load load
M 1 M 2

[5) 7]

(©

Fig. 5. Three main Petri net structures: (a) disassembly, (b) assembly, (c) mutual exclusion

3.2 An Assembly System

Let us consider the Petri net model in Figure 6, that models an assembly system [15, 10].

Ly p7

Ps

Fig. 6. The Petri net model of the assembly system in Subsection 3.2

It consists of five machines, My, Ms, M3, M4 and M5 whose operational process
is modeled by the firing of transitions 1, to, t3, t4 and t5, respectively. Two principal
types of operations are involved in this manufacturing system: regular operations and
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assembly operations. Regular operations (modeled by transitions ¢;, 2 and £5) just
transform a component of the intermediate product. Assembly operations (modeled by
transitions ¢3 and t4) put components together to obtain a more complex component of
a final product or the final product itself.

Note that this model uses transitions (g and ¢7) which do not represent operations
but the beginning of the manufacturing of components which are required to assemble
a more complex component or the final product.

In this example there are two manufacturing levels, the primary one, performed by
M, leads to finite product, the secondary one, performed by My, leads to semi—
finished (in—working) product.

The markings of places p; and p, represent the number of assembly servers for ¢4 and
t3 respectively. The marking of places ps, ps, and pg represent the availability of parts
to be processed (raw materials), while the marking of places py4, ps, p7 and pg represent
the availability of semi—finished products. Places p1; and p12 ensure that machines M;
and M work alternatively.

4 Analysis Techniques

As discussed in the previous section, P/T nets are a formal model that allows one to
describe many interesting features of concurrent systems. Once a physical system has
been modeled by a P/T net, the properties of interest of the system map fairly well
into properties of the corresponding model. The formal definition of these properties,
such as reachability, boundedness, reversibility, liveness, deadlock-freeness, fairness,
etc., goes beyond the scope of this paper, but we address to [5] for a comprehensive
discussion of this topic.

Many algorithms, with a well developed mathematical and practical foundation, have
been developed to study these properties. The analysis techniques for Petri nets may be
divided into the following groups.

e Structural analysis. It permits the demonstration of several properties almost inde-
pendently of the initial marking. Structural analysis may be based on the study of
the state equation of the net or on the study of the net graph.

o Analysis by enumeration. It requires the construction of the reachability graph rep-
resenting the set of reachable markings and transition firings. If this set is not finite,
a finite coverability graph may be constructed.

o Analysis by transformation. A net N, is transformed, according to particular rules,
into a net /N, while maintaining the properties of interest. The analysis of the net N,
is assumed to be simpler than the analysis of the net N;. Examples of this analysis
technique are reduction methods, that permit the simplification of the structure of a
net.

o Simulation analysis. It is useful to study the behavior of nets that interact with an
external environment.

An extensive literature on these topics has appeared in last decades. In particular, we
address to [9, 32, 34, 36] for more details. In the rest of this section, only the first two
techniques will be partially described. Furthermore, we will limit our analysis to the
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basic reachability problem, that consists in establishing if a given marking is reachable
starting from the initial marking.

4.1 State Equation

A linear algebraic equation can be written to describe the evolution of the net system
after the firing of a sequence o € T™. Such equation is based on Definition 5 and on the
definition of firing vector.

Definition 8. Given a net N with set of transitions T = {t1,ta,...,t,} and a firing
sequence o € T, we call firing vector relative to o, the vector o € N" whose i-th
component is equal to the number of times t; appears in o. A

Next result follows immediately from Definition 5.

Proposition 1. Let us consider a net system (N, My) with incidence matrix C. If M is
reachable from M firing o, then

M=My+C - o. 3)
A

Eq. (2), or sometimes its transitive closure given by Eq. (3), is called the state equation
of (N, My).

Example 8. Let us consider the net system in Fig. 2.(a) and the firing sequence o =

titatitatits. The firing vector associated to o is o = [32 1 O]T and we can easily
verify that the marking M = [0 2 0] obtained from M| firing o satisfies eq. (3) where
C' is given in Example 2. |

It is important to stress that the state equation only provides a necessary (but not suf-
ficient) condition for reachability. Indeed, the existence of a vector & € N" such that
M = My + C -0 € N™ does not imply the existence of a firing sequence ¢ whose
firing vector is o, and that is enabled at M.

Example 9. Let us consider the net system in Fig. 7 where My = [1 00 0]7, and o =
[11]T. The marking M = My+C-o = [000 1] is a non-negative marking however it
is not reachable from M. In fact, no transition is enabled at the initial marking. Hence
neither o’ = t1ts nor o’ = toty, i.e., no sequence whose firing sequence is o, may fire
from M. |

P2 Di

P4 P3

Fig. 7. The P/T system in Example 9
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4.2 Reachability Graph

In this section we focus on a particular class of P/T nets, namely bounded Petri nets,
for which the reachability problem can be solved constructing the so-called reachability
graph.

Definition 9. A Petri net system (N, M) is bounded if and only if there exists a finite
constant K such thatVp € P and VM € R(N, M), M(p) < K. A

Thus a Petri net system is bounded if and only if the marking of each place is bounded
for any reachable marking. An obvious result is the following.

Proposition 2. A Petri net system is bounded if and only if its reachability set is finite. A

For bounded Petri net systems, it is possible to enumerate in a systematic way the
reachability set by means of the reachability graph. Here each node corresponds to
a reachable marking, and each arc corresponds to a transition. The reachability graph
may be constructed using the following algorithm that terminates in a finite number of
steps if the reachability set is finite.

Algorithm 1 (Reachability graph). Let (N, My) be a marked net with incidence
matrix C.

1. The root node is My. This node has initially no label.
2. Let us consider a node M with no label.
(a) For each transition t enabled at M :
i. Let M'=M+ C(-t).
ii. If there does not exists a node M’ in the graph, add it.
iii. Add an arct from M to M.
(b) Label the node M ”old”.

3. It there are nodes with no label, goto step 2.
4. Remove all labels from nodes. A

Example 10. Let us consider the P/T system in Fig. 2.(a). Using Algorithm 1 we obtain
the reachability graph in Fig. 8. |

153

[100] — [010]L>[002]<> ly
151

Fig. 8. The reachability graph of the P/T net system in Fig. 2.(a)

Looking at the reachability graph of a P/T system (N, Mj), one can immediately
determine which markings are reachable, because a node M is reachable from M if
and only if it belongs to the graph. Furthermore:

(1) a marking M’ is reachable from a reachable marking M iff there exist two nodes
M and M’ in the graph and there exists an oriented path that goes from M to M’;
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(2) asequence o is firable from a reachable marking M iff there exists an oriented path
that starts from M whose sequence of arc labels is o.

If the reachability set is infinite, then obviously the reachability graph is infinite
as well. In such a case a different algorithm can be used to compute a finite graph,
called the coverability graph, where each arc still corresponds to a transition, while
each node either corresponds to a single reachable marking, or it represents an infinite
set of reachable markings. Note, however, that in such a case there is a price to pay for
representing with a finite graph an infinite set: the coverability graph usually provides
only necessary (but not sufficient) conditions for determining if a marking is reachable
or if a sequence is firable. See [9, 32] for details.

5 Petri Net Languages

In the previous section we introduced the notion of reachability and highlighted the
importance of characterizing the reachability set of a net system. However, the modeling
power of a discrete event system is also strictly related to the sequences of events it can
generate, i.e., in the Petri net framework, to the sequences of transitions that can fire.
A sequence of transitions is a string, and a set of strings is a language. In this section
we focus on the classes of languages defined by Petri nets. In particular, we first recall
the notion of generated and accepted languages, and define labeled Petri nets. Then,
we provide the definition of L-type, G-type and P-type Petri net languages. Finally,
we provide some important relationships among these classes and the class of regular
languages.

A good introduction to Petri net languages can be found in the classic book of Peter-
son [32], while some generalizations and more recent results can be found in the paper
by Gaubert and Giua [12]. All the material presented in this section is taken from these
two references.

5.1 Generated and Accepted Languages

Definition 10. The language generated by (N, M) is the set of sequences that are en-
abled at the initial marking M, i.e.,

L(]\/v7 MO) = {O’ erT* | M0[0>} A

The language generated by a P/T net system is thus a prefix-closed language. Note that
it always includes the empty word (usually denoted as €) because for any M € N™, it
holds M{e) M.

Example 11. Let us consider the net system in Fig. 2.(a). The language of this net can
be easily described with a regular expression as

L(N, My) = (t1t2)*[e + t1 + tatsty].

This means that the sequence ¢t may fire indefinitely from the initial marking. Then,
either no other sequence fires, or it fires ¢, or it fires the sequence ¢1¢3: at this point the
only enabled transition is ¢4 that can fire indefinitely. |
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Definition 11. Ler us consider a P/T system (N, My). Let F be a set of final (or ac-
cepting) markings. The language accepted by (N, My) is the set of sequences that are
enabled at the initial marking My and that lead to a marking M € F), i.e.,

Lp(N,My) ={o € T* | (M € F) My[o)M}. A

Depending on the final set F', the language accepted by a P/T net system may not be
prefix-closed. Moreover, it includes the empty word if and only if M, € F.

Example 12. Let us consider the net system in Fig. 2.(a). Assume F' = {[0 1 0]7}. The
language accepted by (N, My) is Lp(N, My) = (t1t2)*t1. [ |

5.2 Labeled P/T Nets

When observing the evolution of a net, it is common to assume that each transition ¢ is
assigned a label /() and that the occurrence of ¢ generates an observable output ¢(¢).
This leads to the definition of labeled nets.

Definition 12. Given a Petri net N with set of transitions T, a labeling function ¢ :
T — X assigns to each transition t € T' a symbol from a given set of labels X, that
may also include the empty string €.

A X-labeled Petri net system is a 3-tuple G = (N, My, ) where N = (P, T, Pre,
Post), My is the initial marking, and ¢ : T — X is the labeling function. A

Also in the case of labeled P/T nets we can distinguish among generated and accepted
language. In particular, the following definitions hold.

Definition 13. The language generated by a X-labeled P/T net system (N, My, {) is the
L-image of the set of firing sequences that are enabled at My, i.e.,

L(N, My, t) ={l(o) | o €T, Mylo)}. A

Definition 14. Let us consider a X -labeled P/T net system (N, My, (). Let F' be a set of
final markings. The language accepted by (N, My, {) is the (-image of the set of firing
sequences leading to a final marking, i.e.,

Le(N, M, 0) = {(c) | 0 €T* (3M € F) My|o)M}. A

Example 13. Let us consider again the net system in Fig. 2.(a). Assume £(t1) = £(t4) =
a, U(ta) = £(t3) = b. Then L(N, My, ¢) = (ab)*[e + a + aba*]. Moreover, if F' =
{[0 1 0]%, the accepted language is Lr (N, Mo, £) = (ab)*a. |

5.3 Classes of Languages

Different classes of accepted Petri net languages may be defined depending on the set
of final markings F' and on the labeling function ¢ [32].

Definition 15. The accepted language of a Petri net system (N, My) with set of accept-
ing markings F', can be classified as follows.
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e [L-type: Lp(N, My) is an L-type Petri net language if the set of final markings F is
finite.

e G-type: Lp(N, My) is a G-type Petri net language if the set of final markings F'
is the covering set of a given finite set F. This means that a marking M is final if
and only if M > M for a given M € F. Languages in this class are usually called
weak languages.

e P-type: Lp(N, My) is a P-type Petri net language if the set of final markings F
coincides with the reachability set R(N, My). In such a case the accepted language
is equal to the generated language and it is obviously prefix-closed. A

Moreover, four classes of labeling functions may be defined.

Definition 16. The labeling function of a labeled Petri net system (N, My, {) can be
classified as follows.

o free: if all transitions are labeled distinctly, namely a different label is associated to
each transition, and no transition is labeled with the empty string.

e deterministic: if no transition is labeled with the empty string, and the following
condition" holds: for all t,t' € T, with t # t', and for all M € R(N, My): M[t) A
MIt"y = [£(t) # L(t)] ie., two transitions simultaneously enabled may not share
the same label. This ensures that the knowledge of the firing labels {(o) is sufficient
to reconstruct the marking M that the firing of o yields.

M-free: if no transition is labeled with the empty string?.
arbitrary: if no restriction is posed on the labeling function (. A

Each of these type of labeling is a generalization of the previous one. Furthermore
all types of labeling only depend on the structure of the net, but for the deterministic
labeling, that depends both on the structure and on the behavior of the net.

Example 14. Let us consider the nets in Fig. 9. If we only look at the net structure
— that is the same in both nets — we can say that the labeling is A-free. However,
in the first net the labeling is also deterministic because the two transitions labeled a
can never be simultaneously enabled from any reachable marking. The second net is
nondeterministic, because the two transitions labeled a can be simultaneously enabled.

Assume that the string aa is observed in the second net. The first a is certainly due
to the occurrence of transition ¢, the only one enabled at M, whose firing yields the
new marking M = [1 1 O]T. From this marking, however, both ¢; and ¢, are enabled
and one cannot determine if the second a yield M = [02 0]T or M = [1 0 1]T. [

L A looser condition is sometimes given: for all t,¢' € T, with t # t, and for all M €
R(N, My): M|ty A M[t'y = [€(t) # £(t)] V [Post(-,t) — Pre(-,t) = Post(-,t") —
Pre(-,t")]. Thus two transitions with the same label may be simultaneously enabled at a
marking M, if the two markings reached from M by firing ¢ and ¢’ are the same.

2 In the Petri net literature the empty string is denoted A, while in the formal language literature
it is denoted . In this paper we denote the empty string € but, for consistency with the Petri
net literature, we still use the term A-free for a non erasing labeling function ¢ : 7" — X
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t t
pi a p2 a ps
deterministic
t t

Cor—t—O——0

pi a p2 a ps

A-free (nondeterministic)

Fig. 9. A deterministic labeled net (a) and a nondeterministic one

Twelve different classes of Petri net languages result from the cross product of the
three types of final marking sets in Definition 15 and the four types of labeling in Defi-
nition 16, as summarized in Table 1.

Here the classes of L-type, G-type, and P-type A-free languages are denoted, re-
spectively, £, G, and P. An additional superscript f, det or A denotes, respectively, the
corresponding classes of free, deterministic, and arbitrary languages.

Table 1. The 12 classes of Petri net languages

free  deterministic =~ A-free  arbitrary

L-type  LF Ldet L L
G-type G’ g g g*
P-type Pf pet P P>

5.4 Relationships Among Classes of Petri Net Languages

The above classes of Petri net languages are closely related. In particular, some intuitive
relationships hold:
Ef gﬁdet QEQEA,
gregrtcgeg, “)
fPf g deet g P g 7))\7

where the symbol C denotes strict inclusion.

Note that as a consequence of the strict inclusions (4), it is not possible to provide
determinization procedures to convert a nondeterministic Petri net (namely a Petri net
with an arbitrary labeling function) into an equivalent deterministic Petri net. On the
contrary, this is possible with finite state automata where a systematic approach exists
to convert a nondeterministic finite state automaton into an equivalent deterministic
one [5].
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Another quite intuitive relationship is the following
P'f ,C,_ gf’ deet ,C,_ gdet7 P ,C,_ g7 fPA ,C,_ gA. (5)

In fact, every P-type language is a G-type language if I is a singleton containing the
null marking.

Other less intuitive relationships have also been proved and can be summarized
graphically as in Fig. 10. Here for sake of simplicity we use — to denote C,i.e., A — B
is equivalent to A C B. Note that classes that are unrelated in the table (such as £
and G, or such as £%* and P?°!) are not comparable.

Lf _ Ldet L - LA

T
gf N gdet N g N gA
7 7 7 7
Pf _ Pdﬁt S P = P)\

Fig. 10. Relationships among classes of Petri net languages

This plethora of Petri net languages may generate some confusion, even more con-
sidering the fact that additional classes can be defined as mentioned in [12]. Note, how-
ever, that not all these classes are useful in practice. In fact, the classes of free languages
are very restricted, in the sense they do not contain all regular languages. On the con-
trary, for the largest classes of A-free or arbitrary languages the problems of language
equivalence or inclusion is not decidable. Thus we may conclude that the only interest-
ing classes of Petri net languages are the deterministic ones [12], and we will consider
them as representative of Petri net languages.

5.5 Relationships Among Petri Net Languages and Regular Languages

One of the classes of formal languages that has received most attention in the litera-
ture, is the class of regular languages [23] that we denote as R. Regular languages
are characterized by regular expressions and are generated by regular grammars. More-
over, it has been proved that the class of regular languages is coincident with the class
of languages accepted by finite state automata.

The following important result expresses the most important relationship among
Petri net languages and regular languages.

Theorem 2. [12] The intersection of the classes of L-type and G-type regular Petri net
is the class of regular languages, i.e., R = Gt N £t A

Therefore, £9¢* and G9! provide proper and distinct extensions of regular languages.
Other interesting relationships among Petri net languages and other classes of lan-
guages, such as contex-free languages, bounded contex-free languages, context-sensitive
languages, have been proved and are reported in Fig. 11. Here we can see that Petri net
languages are a subclass of context-sensitive languages, and a superclass of regular
languages. Petri net languages are not comparable with context-free languages.
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Context-sensitive

Context-free
det
L Regular

Fig. 11. Relationships among classes of formal languages

6 Comparison with Automata

The language analysis in the previous session shows that Petri nets are a generalization
of automata. In this section we want to focus on the relationship between P/T nets and
automata and show what are the main advantages the former model offers with respect
to the latter. Five different aspects will be considered: the state representation power,
the language power, the modularity, the structural representation of primitives, and the
linear algebraic structure.

6.1 State Representation Power

A Petri net is a finite state automaton additionally equipped with weak counters, i.e.,
with the possibility of testing if a counter has reached a fixed value:

M(p) > k?

Example 15. Let us consider the net in Fig. 12. Place p is the counter, whose value is
increased by the firing of ¢;, and decreased by the firing of ¢s. If there are k or more
tokens in p, transition t3 is also enabled and may fire (test of the counter) without
changing the value of the counter. |

It is important to stress that places in a P/T net are weak counters, i.e., may be tested
only for inequalities of the type > while a test for < is not allowed. In fact, from the
enabling rule in Definition 4 follows this obvious result.

I I

k k
13

Fig. 12. A weak counter
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Monotonicity property. If something can happen from M it can also happen from any
marking greater than M, i.e., for any sequence o € T™:

Mlo) and M'>M = M'[o).

This property can be violated adding an inhibitor arc that allows a transition to fire only
if a place is empty, thus testing a counter for zero [37]. However, this feature increases
the modeling power — and the analysis complexity — of Petri nets to that of a Turing
machine, making most properties of interest undecidable: we cannot properly consider
these models as P/T nets.

6.2 Language Power

A Petri net is a generator of regular languages with the additional feature of generating
one-sided Dyck languages, i.e., of testing if a string of parenthesis

(OO
is well formed [31].

Example 16. Let us consider the net in Fig. 3. Here, the firing of ¢; corresponds to
the opening of a parenthesis “(”, while the firing of ¢5 corresponds to the closing of a
parenthesis “)”. All firing sequences generated by this net correspond to well formed
strings of parenthesis. |

6.3 Modularity

With modular synthesis, complex systems may be constructed by aggregation of sim-
pler modules. The most common operator that allows to automatically construct the
model of a complex system from the models of the subsystems that compose it, is the
concurrent composition operator, that can be defined both for automata and Petri nets.
There are, however, two main advantages in using Petri nets rather than automata.

e When applying the concurrent composition operator to Petri nets, the structure of
the modules is kept in the composed net.

e The composition of k automata, each with a state space (); of cardinality n, yields a
composed model with state space @ C @1 X - -+ X Q, i.e., the composed automata
has a state space of cardinality up to n* (exponential growth). On the contrary, the
composition of k Petri nets, each with set of place P; of cardinality m yields a
composed model with set of places P = P, U - - - U Py, i.e., the composed net has
a set of places of cardinality k - m (linear growth).

Example 17. Let us consider the automata in Fig. 13.(a) that represent two machines
with state space Q" and Q" respectively. Here event ¢5 is shared between the two mod-
ules and their concurrent composition is shown in Fig. 13.(b). Note that each state of
the new automaton is a pair (¢’,¢"”) € Q' x Q". The structure of the two modules is
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lost in the composed system in Fig. 13.(b), in the sense that it is not possible to partition
its structure into two parts, each corresponding to one of the two modules.

In Fig. 13.(c) we have represented the P/T net models of the two machines, whose
concurrent composition is given by the net in Fig. 13.(d). Note that the composed model
is obtained by the modules simply fusing the transitions with the same label. The set
of places of the composed net is the union of the set of places of the modules, whose

structure can still be clearly identified in Fig. 13.(d). [ |
Qo h q qo=(q',9"0) a1 =(q1,9")
&)
g 2 q"
O
s Q2 =(q',q"1) 93 =(q',9")
(a) (b)
13
pl I ]72 tl
1)
pi (O p2
ps 2 p ps (o) 2
° . 7
7
(c) (d)

Fig. 13. The automata models of two machines (a) and their concurrent composition (b); the Petri
net models of two machines (c) and their concurrent composition (d)

6.4 Structural Representation of Primitives

In Section 3.1 we have discussed several primitives that can be represented by Petri nets,
such as “sequency”, “choice”, “concurrency”’. Each of these primitives correspond to a
clear Petri net structure: sequency corresponds to a path in the graph, choice to a place
inputting to more than one transition, concurrency to parallel transitions.

In the case of automata concurrency may not be represented, because an automa-
ton can only describe the interleaving of events and not their simultaneous occurrence.
However, one may think that the other primitives can be well described by structures
similar to those described in Section 3.1. Here we point out that this is not always true
with a simple example.

Example 18. Let us consider again the system composed by two machines whose au-
tomaton and Petri net model are shown in Fig. 13.(b) and Fig. 13.(d).
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In the automaton structure we identify the path g9 — t1 — g1 — t3 — q3. Can we
conclude that events t1 and ts are in a sequency relation?

In the automaton structure, from state gy both event ¢; and t3 are enabled. Can we
conclude that events t1 and t3 are in a choice relation?

The answer to both questions is no: transitions ¢; and ¢3 are concurrent as can be seen
from the Petri net model. In fact, the two transitions belong to different subsystems and
can fire concurrently when both are enabled. |

6.5 Linear Algebraic Structure

One of the main advantages of Petri nets is that the state is a vector of non-negative
integers, while it is usually non numerical in other discrete event models, such as
automata.

Example 19. Let us consider again the system composed by two machines whose au-
tomaton and Petri net model are shown in Fig. 13.(b) and Fig. 13.(d). State ¢/, (resp.,
q(}) denotes that the first (resp., second) machine is idle; state ¢} (resp., ¢;) denotes that
the first (resp., second) machine is working.

In the Petri net a state is represented by a non-negative vector. Marking [1 0 1 0]
corresponds to the state in which both machines are idle; the marking [0 1 1 0] cor-
responds to the state in which the first machine is working and the second is idle, and
so on. Using a Petri net model the state space of this system, that is a series of la-
bels with no algebraic structure, can be described by a set of vectors, i.e., by a highly
structured set.

This also allows to describe logical specifications in a numerical form. Assume for
instance, that we want to impose that the first machine should never be working if the
second machine is idle. Using the notation in Fig. 13 such a constraint can be imposed
forcing the constraint M (p2) + M (ps) < 1. |

The possibility offered by Petri nets to describe the state space of a discrete event sys-
tem that may have absolutely no algebraic structure, with a set of integers vectors has
an important implication. In fact, it is possible to apply algebraic formalisms such as
integer programming for the analysis and control of these systems. Within this area
of research that, as we mentioned before, is called structural analysis, several well-
founded formal approaches have been developed. Unfortunately a survey of this area is
still missing, and we cannot provide comprehensive references; see however [22, 36]
for a few interesting examples.

7 Mapping Classical Properties into Discrete Event Systems

Classical control theory deals with time-driven systems modeled by difference or dif-
ferential equations. However, many properties of dynamical systems have been defined
in very general terms that are model independent.

It seems natural to study these properties in the context of discrete event systems, and
more specifically in the context of Petri nets. This rather standard approach has been
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used by many researchers, and it has proved to be extremely fruitful, inspiring many of
the current research areas in Petri nets.

It is important, however, to point out that the extension from time-driven to discrete
event systems must be taken with care. To give a flavor of the problems one may face,
in this section we discuss the classical property of controllability and the way in which
it has been handled in the framework of Petri nets.

Note that much of this discussion is essentially due to Murata [26]. As far as we
know, his 1977 work was the first paper dealing with Petri nets published in an IEEE
journal. The fact that this paper was published on an Automatic Control journal is em-
blematic of the appeal that the algebraic structure of Petri nets has to control engineers.

7.1 Controllability

In Subsection 4.1 we introduced the state equation of a Petri net system, that can be
rewritten as
Myy1 =M +C -0y, (6)

where o, € {0,1}™ is the firing vector relative to the transition that has fired at the
marking My, thus leading to the new marking M.
This clearly reminds one of the state equation of a discrete-time linear stationary
time-driven system, namely
X1 = Axy + Buy, @)

where x5, € R™ (resp., xi+1 € R™) is the state vector at the sampling time k (resp.,
k + 1), and u, € R" is the control input vector at sampling time k. More precisely,
equation (6) is a particular case of (7) with A = [ and B = C, where I denotes the
identity matrix.

As well known, the following definition of controllability holds.

Definition 17. A discrete-time linear stationary system is controllable if and only if it is
possible, by appropriately acting on the input, to transfer the state of the system from
any initial state X to any other state xy, called the target state, in a finite number of
sampling steps f > 0. A

Theorem 3. Given the discrete-time linear stationary system (7), we call controllability
matrix the (m X n - m) matrix

I = [B AB A%B ... Am_lB] .
A necessary and sufficient condition for the controllability of (7) is that
ne £ rank I' = m. A
Therefore, using Theorem 3, the controllability matrix of a Petri net is
I'= [C’C’C’...C’]7

thus
rank I = rank C,

i.e., the rank of the controllability matrix always coincides with the rank of the incidence
matrix.
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We now observe that:

e the condition rank I = m is only a necessary condition for controllability if we
restrict the control input to ug € {0,1}™ and to My + C - o) > 0;

e moreover, as already discussed above (see Example 9), the state equation of a Petri
net system only provides a necessary condition for reachability.

Therefore, as a result of this analysis, the following conclusion may be drawn: in
the Petri net framework, rank I" = m only provides a necessary (but not sufficient)
condition for controllability.

This conclusion is not surprising — discrete event systems are much more difficult
to study than linear systems — but, as Murata observes, does not address the real is-
sue. What in fact is totally missing from this analysis is a discussion of how significant
for a discrete event system is the property of controllability that derives from Defini-
tion 17. In fact, this classical notion does not fit well with discrete event systems, and
it is hardly meaningful. As an example, consider a Petri net model of a manufacturing
system where the marking of a place denotes the availability of a resource. It is not
meaningful to investigate if the marking of such a place may reach any value starting
from any other marking. As a trivial example, in an assembly system described by a
Petri net starting from a state in which there are only two wheels available, it may be
possible to reach state in which one bicycle has been assembled, but not a state in which
ten bicycles have been assembled.

It seems thus natural to introduce different notions of controllability, more suited
to describe the desired properties of discrete event systems. Here are some possible
examples.

e Given a Petri net with incidence matrix C' of dimension m X n, we say thatx € Z™
is a P-flowif xT - C' = 0.
A P-flow imposes an invariant law on the reachability set of a net: in fact if
marking M is reachable from the initial marking M it must hold

xT-M:xT-MO

as can be seen multiplying the state equation (3) by x” from the left.

This condition, however, is necessary but not sufficient for reachability. Given a
net system (N, M) with incidence matrix C, let X be a matrix whose columns are
P-flows forming a basis of the left-null space of matrix C. It holds

R(N, My) C Ix(N, My) &

{(MeN™ | XT.M=XT. M)}

Thus a meaningful definition for a Petri net system may be the following: a Petri
net system (N, My) is controllable if R(N, My) = Ix (N, My).

e Yet a different definition of controllability may be given for timed Petri nets, namely
P/T nets in which a time interval is associated to transitions: an enabled transition
may fire provided that it has been enabled for a time that belongs to its time interval.
Such a model is particularly useful when making performance analysis. Clearly
imposing a timing structure over a logical model influences its reachability set. In
fact, since a timed model can be seen as a logical model with additional timing
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constraints, the reachability set of the timed net is usually a subset of that of the
underlying untimed one. One may define a timed Petri net system controllable if its
reachability set coincides with that of the underlying untimed model.

e Finally, in Supervisory Control — one of the most interesting approaches to the
control of discrete event systems — controllability is not defined as a property of a
system alone, but is defined with respect to a given specification, i.e., with respect
to a set of legal states or to a set of legal words. This definition has often been used
to define a Petri net system controllable if its evolution can be restricted to a given
set of legal markings or to a given set of legal words.

8 Current Research Areas in Petri Nets

In the last two decades a large number of researchers from the automatic control com-
munity have devoted their effort to the study of Petri nets. There are, however, a certain
number of basic problems that are still open. Here, we mention the following four sig-
nificant areas of on-going research.

e Control: as in classical control, the control problem consists in finding a control law
that constraints the controlled system behavior to satisfy a given specification.

e Deadlock: a deadlock represents an anomalous state from which no further evo-
lution is possible. This is an issue that appears in most practical applications, and
appropriate strategies should be adopted in order to prevent it.

e Observability: the problem is that of determining efficient ways of reconstructing
the state of a net based on observed events occurrence and/or on partial marking
observation.

e Identification: this problem consists in determining a Petri net system starting from
examples/counterexamples of its language, or from the structure of its reachability
(or coverability) graph.

In the following we recall the main results that have been proposed in the above
areas.

8.1 Control

The most interesting and original approach to the control of discrete event systems,
that has directly or indirectly shaped much of the research in this area, is Supervisory
Control Theory (SCT), originated by the work of P.J. Ramadge and W.M. Wonham [33].
According to the paradigm of SCT, a discrete event system G is a language generator
whose behavior, i.e., language, is denoted L(G). Given a legal language K, the basic
control problem is to design a supervisor that restricts the closed loop behavior of the
plantto K NL(G), disabling controllable events; the events whose occurrence cannot be
disabled are called uncontrollable. 1t is also usually required that the closed loop system
satisfies additional qualitative specifications, such as absence of blocking, reversibility,
etc. Since Petri nets can be seen as language generators, it is also possible to use them
as discrete event models for SCT; in this case it is assumed that some transitions, that
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we call controllable, can be disabled by an external agent. See [5, 20] for a review of
this topic.

A similar approach can also be taken when considering the state evolution of a dis-
crete event system, rather than the traces of events it generates. This approach, that we
call state-based, is p