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1. Introduction 

ROBERTO FERRARI and JAN WILLEM DE JONG 

Introduction 

Carnitine was discovered in the first part of this century. It turned out to be 
essential for fatty acid metabolism. The compound is also known as vitamin 
BT because the mealworm Tenebrio moUtor cannot synthesize it. Although 
carnitine is vital for man [1], it is not actually a vitamin. Carnitine can, 
however, be considered a vitamin for heart muscle, which relies on its 
synthesis taking place in other organs [2]. The compound has been used 
successfully in the treatment of a variety of diseases. In the last few years, 
derivatives of L-qlrnitine such as acetyl-L-carnitine and propionyl-L-carnitine 
have been made available to doctors for treatment of specific pathologies. 
The effects of this family of related carnitine compounds on cardiovascular 
systems and diseases constitute the major issue addressed in this book. 

Aim of this book 

In the last two decades, several books on carnitine have been published. 
Some deal with carnitine in general [3-7], others describe specific aspects. 
for instance, its effect on morphology [8] and carnitine deficiency [9]. Re
cently, also a video on L-carnitine and cardiac metabolism was released [10]. 
A treatise focussing on experimental and clinical aspects of the carnitine 
family and cardiovascular diseases was lacking. We believe that the present 
book provides the reader with a concise update in this field. Hopefully, 
clinicians and basic scientists will appreciate the information collected from 
experts on various aspects of the fascinating compound, carnitine. 

Nomenclature: What's in a word? 

Carnitine is a relatively simple molecule with a carboxylic acid group and an 
alcohol group (Figure 1). Esters can thus be formed between the acid group 

l. W. de long and R. Ferrari (eds): The carnitine system. 1-3. 
© 1995 Kluwer Academic Publishers. 
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OH 

Figure 1. Structure of carnitine (L-3-hydroxy-4-N-trimethylaminobutyric acid), showing a car
boxylic acid group and an alcohol group. Naturally occurring esters form between the alcohol 
group of carnitine and a (fatty) acid. 

of carnitine and an alcohol, or between the alcohol group of carnitine and an 
acid. The naturally occurring esters, acetyl-L-carnitine, propionyl-L-carnitine 
and the acylcarnitines with a longer fatty acid chain, all belong to the second 
category (the first should be called ethyl-L-carnitine, propyl-L-carnitine and 
medium/long-chain alkylcarnitines). In this book, reference is made to L
palmitylcarnitine, palmityl-L-carnitine, L-palmitoylcarnitine, palmitoyl-L
carnitine. All refer to the ester between palmitic acid and L-carnitine, al
though palmitylcarnitine is, strictly speaking, less correct. However, this 
nomenclature is so widespread in the literature that we have asked the 
Chapter authors of this book to be consistent in the terminology they use in 
their own chapter. 

Carnitine and its derivatives exist in the form of two steroisomeres (enanti
omeres). Only the L-form is active with certain enzymes (see Chapter 26). 
The D- and the L-form show similar non-enzymatic effects on free-radical 
scavenging, for example, as discussed in Chapter 12 (see also [11, 12]). We 
refer to Roden's recent editorial for the advantage of enantiospecific therapy 
[13]. 

Editorial comment 

Each chapter was reviewed by the editors and adaptations were made in 
agreement with the authors. We take this opportunity to thank the authors 
for their constant intellectual input, patience and collaboration. In addition, 
we as editors have taken the liberty of highlighting some important aspects 
of each chapter. 



Introduction 3 

Acknowledgements 

We gratefully acknowledge the secretarial contribution of Carina D.M. 
Poleon-Weghorst and the editorial assistance of Dr Bill Dotson Smith. 

We would also like to thank Dr A. Koverech (Pomezia/Rome) for his 
encouragement and support towards the publication of this volume. 

References 

1. Pande SV, Murthy MSR. Carnitine: vitamin for an insect, vital for man. Biochem Cell BioI 
1989; 67: 671-3. 

2. Siliprandi N, Sartorelli L, Ciman M, Di Lisa F. Carnitine: metabolism and clinical chemistry. 
Clin Chim Acta 1989; 183: 3-11. 

3. Frenkel RA, McGarry JD, editors. Carnitine biosynthesis, metabolism, and functions. New 
York: Academic Press, 1980. 

4. Gitzelman R, Baerlocker K, Steinmann B, editors. Carnitine in der Medizine. Stuttgart: 
Schattauer, 1987. 

5. Kaiser J, editor. Carnitine - its role in lung and heart disorders. Munich: Karger, 1987. 
6. Ferrari R, DiMauro S, Sherwood G, editors. L-Carnitine and its role in medicine: From 

function to therapy. London: Academic Press, 1992. 
7. Carter AL, editor. Current concepts in carnitine research. Boca Raton: CRC Press, 1992. 
8. Laschi R. L-Carnitine and ischaemia - A morphological atlas of the heart and muscle. 

Pomezia: Biblioteca ScientificalFondazione Sigma-Tau, 1987. 
9. Borum PR, editor. Clinical aspects of human carnitine deficiency. New York: Pergamon 

Press, 1986. 
10. Bayes de Luna A, Rizzon P, Hugenholtz PG, editors. L-Carnitine and cardiac metabolism: 

Modern concepts. Eur Video J Cardiol 1994; 2(2). 
11. Di Giacomo C, Latteri F, Fichera C et al. Effect of acetyl-L-carnitine on lipid peroxidation 

and xanthine oxidase activity in rat skeletal muscle. Neurochem Res 1993; 18: 1157-62. 
12. Hiilsmann WC, Peschechera A, Arrigoni-Martelli E. Carnitine and cardiac interstitium. 

Cardioscience 1994; 5: 67-72. 
13. Roden DM. Mirror, mirror on the wall ... Stereochemistry in therapeutics. Circulation 

1994; 89: 2451-3. 

Corresponding Author: Dr Jan Willem de Jong, Erasmus University Rotterdam, Cardiochemical 
Laboratory, Thorax Centre EE2371, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands 



PART ONE 

The carnitine system in the heart: molecular aspects 



2. Carnitine-dependent pathways in heart muscle 
Dedicated to the memory of E. Jack Davis (1930-1993) 

JON BREMER 

"Malonyl-CoA in the heart probably participates in the regulation of fatty acid 
oxidation since the heart carnitine palmitoyl-CoA transferase I is extremely sensitive 
to malonyl-CoA." 

Introduction 

Heart and skeletal muscle normally cover most of their energy needs by 
oxidizing fatty acids. When rat heart is offered both glucose and high concen
trations of fatty acids, fatty acids are the preferred substrate even in the 
presence of insulin. Under such conditions 90% of the CO2 produced will 
derive from fatty acids [1, 2]. 

In animal tissues the oxidation of long-chain fatty acids in mitochondria 
depends on the presence of carnitine. The heart therefore depends on carni
tine for most of its energy production. This follows from the localization of 
the long-chain acyl-CoA synthetase in the outer membrane of the mitochon
dria [3] while the f3-oxidation enzymes are found in the matrix. Since the 
inner mitochondrial membrane is impermeable to CoA esters, the carnitine 
palmitoyltransferases I and II (CPT I and CPT II), and the carnitine translo
case are required to transport the activated long chain fatty acids as carnitine 
esters into the mitochondria for oxidation (Figure 1). 

In the heart short-chain fatty acid oxidation does not depend on carnitine 
because these fatty acids are activated in the matrix of the mitochondria by 
a butyryl-CoA synthetase able to activate fatty acids up to hexanoate [4]. In 
this tissue therefore octanoate and longer fatty acids depend on carnitine for 
their oxidation. In the liver the distribution of fatty acid activation depending 
on chain length is somewhat different. In the matrix of liver mitochondria 
there is an octanoate activating enzyme active with acids of chain lengths up 
to CIO or C12 [5]. In this tissue therefore also medium chain length fatty acids 
can be oxidized without participation of carnitine. 

With the key role of carnitine in fatty acid metabolism in mind it is not 

1. W. de long and R. Ferrari (eds): The carnitine system. 7-20. 
© 1995 Kluwer Academic Publishers. 
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Figure 1. The organization of activated fatty acid transfer in mitochondria. A, acyl-CoA synthet
ase; B, carnitine palmitoyltransferase I (CPT I); C, carnitine translocase; D, carnitine palmitoyl
transferase II (CPT II); FFA, free fatty acids; Ox, oxidation; PP, inorganic pyrophosphate. 

surprising that loss of carnitine leads to accumulation of triacylglycerol in 
the heart. Bressler and Wittels [6] found that the heart lipidosis in diphtheria 
may be explained by a loss of carnitine, and MlZllstad and BlZlhmer [7] found 
that diphtheria toxin probably promotes carnitine loss by inhibiting the syn
thesis of the carnitine carrier in the cell membrane. Later a series of inborn 
errors with loss of heart carnitine and lipidosis have been reported, the first 
case in 1973 [8]. 

Carnitine acyltransferases in the heart 

In animal tissues at least four different carnitine acyltransferases have been 
identified, carnitine acetyltransferase in the inner membrane of the mitochon
dria [9] and in the peroxisomes [10], a carnitine medium-chain acyltransferase 
in the peroxisomes [11], carnitine palmitoyltransferase I in the outer mem
brane of the mitochondria [12], and carnitine palmitoyltransferase II in the 
inner membrane of the mitochondria [13]. All these enzymes except CPT I 
have been purified from liver. The CPT I and CPT II are membrane bound 
and require detergents for their solubilization. However, CPT I is labile to 
detergents, and this lability has prevented its purification and characterization 
in active form. 

In liver carnitine acyltransferases are found also in the endoplasmic reticu
lum, but these enzymes are still insufficiently characterized and their possible 
functions are unknown. 

Carnitine acetyltransferase has a high activity in heart and muscle [14]. In 
rat liver this enzyme is found in both mitochondria and peroxisomes with 
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low activity, but it is induced by clofibrate [15]. The same carnitine acetyl
transferase seems to be present in both organelles [9]. 

In heart the carnitine acyltransferases so far have been found only in the 
mitochondria. However, it is possible that also heart peroxisomes contain 
carnitine acyltransferases, although this has not been directly demonstrated. 

Careful enzyme purification and chain length specificity studies have led 
to the isolation of two purified carnitine acyltransferases from heart mito
chondria, one carnitine short -chain acyl transferase (the acetyltransferase) 
and one carnitine medium-chain acyltransferase [14]. The latter enzyme most 
likely is identical with the CPT II, and it is the same in all tissues [16]. It is 
interesting that this enzyme shows different chain length specificities de
pending on reaction direction. In the direction of acylcarnitine formation the 
optimum chain length of the acyl-CoA is decanoyl-CoA while in the direction 
of acyl-CoA formation the optimum chain length of the acylcarnitine sub
strate is myristoyl- or palmitoyl-carnitine [14]. This change in chain length 
specificity depending on reaction direction may be connected with a kinetic 
peculiarity of the enzyme. Long-chain acyl-CoA is, beside being substrate 
for the enzyme, also a competitive inhibitor to the second substrate carnitine. 
Therefore the apparent Km for carnitine increases with increasing concentra
tions of long-chain acyl-Co A [17]. When the freely reversible reaction is run 
in the opposite direction the long-chain acyl-CoA becomes a product in the 
reaction, and now a strong product inhibition is observed [17]. It is not 
established whether this product inhibition has any physiological significance. 
However, it should be kept in mind that the normal reaction direction for 
CPT II is acyl-CoA formation in the mitochondria (Figure 1). The product 
inhibition by long-chain acyl-CoA therefore may limit the acyl-CoA level in 
the matrix of the mitochondria when the acyl-CoAICoA ratio is high in the 
cytosol, thus saving free CoA for the thiolase- and other CoA dependent 
reactions in the mitochondria. 

The carnitine medium-chain acyltransferase has been localized to the per
oxisomes in liver [11]. This enzyme as well as carnitine acetyltransferase may 
have functions in fatty acid shortening in the heart and other tissues (see 
later). Recent studies have shown that this peroxisome enzyme of liver, like 
CPT I, is sensitive to malonyl-CoA [18] and to tetradecylglycidoyl
CoA (TDG-CoA) [19]. However, the properties of the putative heart peroxi
somal enzymes have not been studied. 

Carnitine palmitoyltransferase I and its regulation 

Beside the two purified carnitine acyltransferases of the inner membrane, 
heart mitochondria contain the malonyl-CoA sensitive CPT I in the outer 
membrane. This enzyme is rapidly inactivated when extracted with detergents 
[20]. Chain length specificity studies on purified malonyl-CoA sensitive 
CPT I therefore have not been performed, but early chain length studies on 
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whole mitochondria suggest that the CPT I has a broad chain length speci
ficity including both medium-chain- and long-chain fatty acids [15]. Its lability 
suggests that CPT I and CPT II are different enzymes. In the fetal heart 
CPT I has a low activity - or is latent [21]. The switch from carbohydrate 
to fatty acid oxidation in the newborn coincides with an increase in CPT I 
activity [22]. 

There is still no general agreement about the nature of CPT I and its 
regulation. We originally suggested that CPT I is regulated by a separate 
malonyl-CoA binding peptide in the mitochondrial membrane, and we found 
that malonyl-CoA binding protein(s) could be separated from the enzyme 
[23]. In liver a malonyl-CoA binding fraction can confer malonyl-CoA sensi
tivity on CPT II [24]. Similar results have been obtained with heart extracts 
[25]. From heart mitochondria a CPT/ f3-oxidation enzyme complex has also 
been extracted which is sensitive to malonyl-CoA [26]. This complex loses 
its sensitivity to malonyl-CoA when it is treated with salts. The isolation of 
such a complex does not agree well with the established localization of the 
CPT I in the outer membrane of mitochondria [12]. In other studies Woeltje 
and coworkers [16] have identified a protein in liver, heart and skeletal 
muscle mitochondria which binds tetradecylglycidic-CoA (TDG-CoA), a 
CPT I inhibitor. They assume that this protein is CPT I, while Chung and 
coworkers [25] assume that it is the malonyl-CoA binding regulatory unit. 
From binding studies Woeltje and coworkers [16] concluded that substrate 
(palmitoyl-CoA), malonyl-CoA, and tetradecylglycidyl-CoA (TDG-CoA) all 
bind to the same site on this putative CPT 1. However, Zierz and Engel [27] 
concluded from kinetic studies on normal and mutant muscle CPT I that 
malonyl-CoA inhibits the enzyme by binding to a site different from the 
acyl-CoA binding substrate site. The heart TDG-CoA binding protein has a 
lower molecular weight than the corresponding liver protein (approximately 
86 kDa against 90-94 kDa ), but they are both bigger than CPT II (approxi
mately 68 kDa). The amino acid sequence of the liver protein is related to 
that of CPT II with 30% overlap in identity. In some parts (substrate binding 
sites?) of liver CPT I and CPT II, the amino acid sequence is virtually 
identical [28] a finding which supports the hypothesis that this protein repre
sents CPT 1. This identity is also supported by Kolodziej and coworkers [29] 
who have obtained an antibody against the liver protein which inactivates 
liver CPT I and which also interacts weakly with the smaller heart enzyme. 

Further studies are needed to elucidate the exact nature of the malonyl
CoA regulation of CPT 1. 

The heart CPT I is more sensitive to malonyl-CoA than is liver CPT I [30, 
31]. Also, the liver enzyme is less sensitive to malonyl-CoA in fasted animals 
while no such change in sensitivity is observed in the heart [32, 33]. 
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Distribution of carnitine and coenzyme A 

More than 90% of the total carnitine in the body is found in skeletal muscle 
and heart in mM concentrations (the concentration varies in different spe
cies). Almost all the carnitine in the heart is found in the cytosol while the 
mitochondria contain only a small pool corresponding to the small matrix 
space [34]. This small pool is in equilibrium with the great cytosolic pool via 
the carnitine translocase in the inner membrane of the mitochondria. This 
translocase permits a rapid 1:1 exchange of carnitine and acylcarnitines across 
the membrane, but only a slow one-way net transport of carnitine [35]. Part 
of the carnitine is found as long-chain acylcarnitines and acetylcarnitine in 
both pools. Small amounts of other carnitine esters (e.g. propionylcarnitine 
and branched chain acylcarnitines formed from branched chain amino acids) 
may also be present [36]. All the carnitine esters are more or less in equilib
rium with the corresponding CoA esters via CPT I and II and carnitine 
acetyl transferase . 

CoA has a distribution very different from that of carnitine in the heart. 
Most of the CoA (90%) is localized in the mitochondrial matrix while only 
about 10% is found in the far more voluminous cytosol [34]. These distribu
tions of carnitine and CoA in the tissue probably facilitate the creation of 
an inward gradient of activated fatty acids with a rapid flux into the mitochon
dria for oxidation. More details on the distribution of carnitine and CoA are 
present in Chapter 5. 

Interdependence of f3-oxidation and the citric acid cycle 

The complete oxidation of acylcarnitines in the mitochondria can be seen 
as the result of two oxidation cycles, the f3-oxidation cycle in which a fatty 
acid is shortened by two carbons with the formation of one acetyl-CoA per 
turn, and the citric acid cycle in which one acetyl-CoA per turn is oxidized 
to CO2 and water (Figure 2). In liver the f3-oxidation cycle can operate 
independent of the citric acid cycle because the acetyl-CoA formed can be 
converted to ketone bodies, but in heart mitochondria the two cycles have 
to operate almost like two cogwheels because almost all the acetyl-CoA 
formed has to be disposed of in the citric acid cycle. A little acetyl-CoA can 
be hydrolysed to free acetate [38], and another small amount of acetyl groups 
can be transferred to carnitine in the intact cell by carnitine acetyltransferase 
(the physiological significance of this acetylcarnitine formation will be dis
cussed below). This domination of the citric acid cycle in the disposal of 
acyl-CoA in heart mitochondria is easily demonstrated. If the citric acid cycle 
is blocked by inhibition of the aconitase with flu oro citrate (formed from 
fluoroacetylcarnitine), the oxidation of palmitoylcarnitine is almost com
pletely blocked except for a slow oxidation due to formation of some free 
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Figure 2. The interaction of fatty acid {3-oxidation with the citric acid cycle in the mitochondria. 
FFA, free fatty acids; glycero-P, glycerophosphate; etc., electron transport chain; Fp, flavopro
tein; {3-0H-acyl-CoA, {3-hydroxyacyl-CoA; Mit., Mitochondrial. 

acetate by acetyl-CoA hydrolase [37]. In isolated heart mitochondria a 
further loosening of the two cycles can be obtained by addition of free 
carnitine to the reaction medium. This permits disposal of acetyl-CoA by 
acetylcarnitine formation [38]. However, it must be kept in mind that in 
the intact tissue the amount of acetyl groups which can be disposed of as 
acetylcarnitine formation is limited by the size of the carnitine pool. This 
pool is about lO-fold bigger than the CoA pool of the mitochondria, but it 
is still small in relation to the total flux of acetyl groups in heart metabolism. 
There is no quantitatively important extramitochondrial use of acetylcarnitine 
in heart or skeletal muscle, and uptake and release of carnitine and its esters 
are relatively slow processes in these tissues [39]. High intensity exercise may 
lead to a 5-fold increase of the acetylcarnitine level in skeletal muscle with 
only an insignificant increase in the blood plasma level in spite of the great 
muscle mass in relation to plasma volume [40]. Acetylcarnitine in the cytosol 
therefore has to be transferred back to the matrix of the mitochondria for 
oxidation in the citric acid cycle. 

Since the citric acid cycle is so dominating in the disposal of acetyl-CoA 
and acetylcarnitine in the heart, it may be physiologically important that 
fatty acids and other efficient precursors of acetyl-CoA and acetylcarnitine 
seem to "secure" their own total oxidation in heart and skeletal muscle by 
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increasing the level of citric acid cycle intermediates [41]. The acetyl-CoA
stimulated pyruvate carboxylase may represent an important mechanism by 
which the level of cycle intermediates increases [42, 43]. However, by ex
treme accumulation of long chain acylcarnitines they can be excreted from 
perfused rat hearts [44]. 

Respiratory control of fatty acid oxidation 

The utilization of fatty acids (acylcarnitines) and other substrates (glucose, 
pyruvate, lactate) in mitochondria is controlled by the work load on the 
heart, i.e. when the utilization of ATP is slow, a more reduced state in the 
mitochondria will develop and slow down the rate of substrate oxidation 
(respiratory control). Pyruvate oxidation and the citric acid cycle reactions 
(except succinate oxidation) are rapidly inhibited when the NADHINAD 
ratio increases in the mitochondria [45, 46]. This means that these reactions 
are under efficient respiratory control. This is not the case for fatty acid 13-
oxidation, either in the liver or in the heart. In liver mitochondria fatty acid 
f3-oxidation coupled to ketogenesis continues almost unabated at unphysio
logically high NADHINAD ratios [47]. In this tissue the rate of fatty acid 
oxidation therefore is determined mainly by the level of acylcarnitine in the 
tissue, i.e. by the extramitochondrial acyl-CoAiCoA ratio and the activity 
of CPT I, not by the redox state. Neither in heart is the fatty acid f3-oxidation 
under direct respiratory control. This is demonstrated in Figure 3 which is a 
graphical presentation of experiments previously published [48]. When 
[1-14C] palmitoyl-CoA is oxidized in heart mitochondria in the presence of 
free carnitine, ADP and phosphate (respiratory state 3), radioactive CO2 is 
rapidly formed (Figure 3). The isolated heart mitochondria contain sufficient 
citric acid cycle intermediates to permit this CO2 formation. When ADP is 
left out (respiratory state 4), the CO2 formation disappears, showing that 
the citric acid cycle is completely inhibited. However, the formation of acid 
soluble products, mainly acetylcarnitine, is now increased (Figure 3), showing 
that fatty acid f3-oxidation is poorly suppressed [48]. When radioactive palmi
toylcarnitine is the substrate (with no free carnitine present) its oxidation is 
suppressed in state 4, even in the presence of malate. Concomitantly almost 
all the free CoA in the mitochondria is converted to acetyl-CoA [38], again 
showing that the oxidation of acetyl-CoA in the citric acid cycle is suppressed 
because of respiratory control. Addition of free carnitine now accelerates 13-
oxidation showing that the slow oxidation of palmitoylcarnitine was due to 
a lack of free CoA for CPT II and/or the thiolase, not because of a direct 
respiratory redox control of f3-oxidation. These and other studies show that 
once fatty acids are available for oxidation in the mitochondria, the rate of 
oxidation is determined by the availability of free CoA more than by the 
redox state (NADHINAD ratio) in the mitochondria [48]. 

Observations by Oram and coworkers [49] suggest a mechanism through 
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Figure 3. The effect of respiratory state on the oxidation of palmitoyl-CoA in the presence of 
carnitine in rat heart mitochondria. Incubation conditions: [1-14CJ-palmitoyl-CoA, 37 J.LM; 
(- )carnitine, 1 mM; and rat heart mitochondria, 0.5 mg of protein; were incubated at 25° with 
Hepes, pH 7.4, 25 mM; potassium phosphate, 5 mM; mannitol, 60 mM; KC\, 50-60 mM; and 
where noted, ADP, 2.5 mM (respiratory state 3), or without ADP (respiratory state 4). The 
maximum rate of f3-oxidation in the presence of ADP (C02 + acid soluble products) equals 
100. The fraction of "acid soluble products" recovered as acetylcarnitine was measured in a 
second experiment as radioactivity precipitated as Reinecke salt. This figure is a graphical 
presentation of previously published experiments [48]. 

which fatty acid oxidation in the heart is under indirect respiratory control 
when high concentrations of fatty acids are present. The formation of acetyl
carnitine mentioned above is probably of importance in this indirect control. 
In perfused rat hearts they found that the levels of acetyl-CoA and acetylcar
nitine are higher with a small workload than with a high workload, while 
the level of long-chain acyl-CoA and long-chain acylcarnitines paradoxically 
increased with a high workload, in spite of an increased rate of oxidation. 
These results show that the workload primarily regulates the rate of acetyl
CoA oxidation in the citric acid cycle. When the citric acid cycle slows 
down because of a more reduced state in the mitochondria, acetyl-CoA 
accumulates. This leads to a low level of free CoA and to increased acety
lation of carnitine. The carnitine translocase will equilibrate this high acetyl
carnitine/carnitine ratio in the mitochondria with the greater carnitine pool 
in the cytosol, and the low level of free carnitine will lead to the observed 
drop in long-chain acylcarnitine [49]. The combination of a low acylcarnitine 



Carnitine-dependent pathways in heart muscle 15 

and a low free CoA in the mitochondria will slow down the transfer of 
activated fatty acids into the mitochondria. 

Wang and coworkers [38] have suggested an additional mechanism to 
control the fatty acid oxidation rate. The accumulated acetyl-CoA in the 
mitochondrial matrix may inhibit 3-ketoacyl-CoA thiolase, and the accumu
lated 3-ketoacyl-CoA will then inhibit the acyl-CoA dehydrogenase(s). This 
mechanism may contribute to the slowdown of f3-oxidation, although Latipaa 
[50] found no accumulation of 3-hydroxy-acyl-CoA and enoyl-CoA in ar
rested oleate perfused hearts (no work load). He suggested that the transport 
of fatty acids into the mitochondria was inhibited, more in agreement with 
the mechanisms suggested by Oram and coworkers [49]. 

Malonyl-CoA in heart 

Heart is not an organ with significant synthesis of fatty acids. It is surprising 
therefore that rat hearts contain about as much malonyl-CoA as rat liver 
[51]. The rate of turnover of heart malonyl-CoA is unknown, but it may 
have a function in fatty acid elongation, and evidently it may be important 
in regulation of fatty acid oxidation since heart CTP I is extremely sensitive 
to malonyl-CoA. Like in the liver, the level of malonyl-CoA decreases in 
fasting animals [51]. Variations in malonyl-CoA may thus explain that glucose 
plus insulin is more inhibitory on fatty acid oxidation in normal heart than 
in diabetic heart [52]. However, the role of malonyl-CoA as a regulator of 
fatty acid oxidation in the heart is not established. When isolated heart 
mitochondria oxidized palmitoyl-CoA in the presence of carnitine we found 
less inhibition by malonyl-CoA than with liver mitochondria [48]. However, 
exposure of CPT II in damaged mitochondria may explain this result since 
the CPT II is insensitive to malonyl-CoA. 

The function of peroxisomal l3-oxidation in heart 

When rape seed oil with high levels of erucic acid is fed to rats, the animals 
get a temporary lipidosis of the heart [53]. Hydrogenated fish oil with a high 
content of brassidic acid and other monoene 22 carbon fatty acids cause a 
similar although weaker lipidosis [54]. In heart cells in culture erucic acid is 
slowly oxidized after a primary chain shortening which is rate limiting [55]. 
The basic cause of the lipidosis probably is a poor ability of the mitochondria 
to handle these long chain fatty acids. The erucoyl-CoA and erucoylcarnitine 
are poor substrates for CPT and for oxidation in mitochondria [56], and for 
the acyl-CoA dehydrogenase [57]. 

The heart lipidosis due to rape seed oil is temporary. In continued feeding 
an adaptation takes place and the lipidosis disappears. This adaptation is 
mainly caused by increased peroxisomal f3-oxidation, mainly in the liver, but 
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also in the heart [58]. The peroxisomal oxidation of erucic acid and other 
fatty acids is incomplete. In the intact cell fatty acids usually undergo only 
1 to 3 f3-oxidation cycles, thus erucic acid is converted to oleic acid. Most 
studies suggest that peroxisomal oxidation is carnitine independent [59]. 
However, the peroxisomes, at least in liver, contain both a carnitine acetyl
transferase and a carnitine medium chain acyltransferase. The function of 
these acyltransferases have not been established. A suggestion is that carnit
ine is required for transfer of the fatty acids into the peroxisomes [60], but 
it is an equally reasonable assumption that they are active in transfer of 
peroxisomal products (acetyl groups and shortened fatty acids) to the mito
chondria for complete oxidation. Thus, in the liver the peroxisomal shorten
ing of erucic acid seems to be independent of carnitine while its complete 
oxidation does depend on carnitine [59]. For shorter fatty acids it has turned 
out to be difficult to establish such a mechanism because after induction of 
peroxisomal activity there is also increased activity of acyl-CoA hydrolases 
[61]. Thus peroxisomal f3-oxidation in liver leads to formation of free acetate 
[62], possibly also to free shortened fatty acids. The putative function of 
carnitine in transport of acyl groups to and from the peroxisomes in the heart 
so far remains unestablished. 

Conclusions 

The formation of carnitine esters of fatty acids has an established function 
in the mitochondrial oxidation of medium and long-chain fatty acids in the 
heart and other tissues. 

The formation of acetylcarnitine in heart is probably involved in the regu
lation of the rate of fatty acid oxidation which depends on workload [49]. 
Carnitine as an acceptor of acetyl and other acyl groups may also "buffer" 
the acetyl-CoAifree CoA ratio of the mitochondria. 

Malonyl-CoA in the heart [51] probably participates in the regulation of 
fatty acid oxidation since the heart CPT I is extremely sensitive to malonyl
CoA [30, 31]. 

Propionylcarnitine and branched chain acylcarnitines may be formed in 
the heart [36]. The physiological significance is uncertain. Release of carnitine 
or acylcarnitines is slow from muscle tissues [39]. The increased formation 
of these carnitine esters in inborn errors of metabolism probably leads to 
loss of carnitine primarily from kidneys, blood plasma and liver [63,64]. The 
resulting low serum carnitine level then leads to a slow depletion of carnitine 
from skeletal muscle and heart. 

This chapter has been dedicated to the memory of E. Jack Davis (1930-93), Department of 
Biochemistry and Molecular Biology, Indiana University. Many of the considerations in this 
chapter come from our discussions and common publications on heart and muscle metabolism 
through more than 20 years. 
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3. Carnitine and carnitine esters in mitochondrial 
metabolism and function 

FABIO DI LISA, ROBERTA BARBATO, ROBERTA MENABO 
and NORIS SILIPRANDI 

"Under physiological conditions, long-chain acy1carnitines are formed mostly in the 
mitochondrial intermembrane space and imported into the matrix, whereas short
chain acy1carnitines are formed within the matrix space and exported into the cytosol. " 

Abbreviations: ANT - adenine nucleotide translocase, CAT - carnitine acetyl trans
ferases, CoASH - free (unesterified) coenzyme A, COT - carnitine octanoyl transfer
ase, CPT - carnitine palmitoyl transferase, CT - carnitine translocase, FFA - free 
fatty acid, IYC - isovalery1carnitine, LCACar - long-chain acy1carnitines, LCACoA 
-long-chain acyl-CoAs, MTP - membrane transition pore, PDH - pyruvate dehydro
genase, PLC - propiony1carnitine, SCACar - short-chain acy1carnitines, SCACoA -
short-chain acyl-CoAs, TCA - tricarboxylic acid(s) 

Introduction 

Under physiological conditions, myocardial energy production is almost en
tirely dependent on mitochondrial oxidative phosphorylation [1]. At rest, 
in the post-absorptive state, the major fuel for mitochondrial oxidation is 
represented by long-chain fatty acids [2]. The degradation of these substrates 
occurs in mitochondria and carnitine is required for the transport of activated 
acyls, namely acyl-CoAs, across the inner mitochondrial membrane [3, 4]. 
The alteration of this process may result in cytosolic accumulation of trigly
cerides leading eventually to heart failure [5, 6]. Thus, it is hardly surprising 
that cardiologists focused their attention on carnitine, linking this factor 
exclusively to lipid metabolism. However, by its interaction with coenzyme 
A (CoA), carnitine exerts a role in any CoA-dependent process [7-9]. The 
modulation of the ratio between free CoA (CoASH) and esterified CoA can 
be seen as the main task accomplished by carnitine. An increase in CoASH 
availability or a decrease in acyl-CoA levels expands the roles of carnitine 
to substrate choice [10], removal of inhibitory metabolites [11] or modulation 
of key enzymatic steps [7, 9, 12, 13]. In addition, some carnitine esters 
appear to specifically modify cell metabolism and function [7, 14]. 

l. W. de long and R. Ferrari (eds): The carnitine system. 21-38. 
© 1995 Kluwer Academic Publishers. 
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Carnitine-dependent enzymes 

The reversible exchange of acyl moieties between CoA and carmtme is 
catalyzed by several carnitine acyl transferases. The differences among these 
enzymes can be described in terms of cellular localization, substrate speci
ficity, structure and reactivity with inhibitors. Generally, these transferases 
are classified on the basis of their affinity for acyl-CoA [8, 15]. Carnitine 
acetyl transferases (CAT) catalyze those reactions involving short-chain acyl 
esters with a chain length ranging from 2 to 10 carbon atoms. Regarding the 
transferases for the long-chain acyl esters (> 10 C), the term COT (carnitine 
octanoyl transferase) is used for the extramitochondrial proteins, whereas 
CPT (carnitine palmitoyl transferase) is generally adopted to indicate the 
mitochondrial enzymes. Despite the different names, these two subgroups 
of enzymes show a similar broad range of specificity towards medium-chain 
and long-chain acyl-CoA with the highest affinity for decanoyl-CoA [8]. 

Carnitine palmitoyl transferase 

The topology, the structure and even the number of possible isoforms of 
CPT are still under debate (Figure 1). Presently one of the two major 
hypotheses proposed (reviewed in [16]) suggests that the overall CPT activity 
results from the integrated activity of two different proteins: an oligomer 
made up of 68 kDa subunits [17-19] which is inserted in the inner mitochon
drial membrane (CPT II). Another protein (CPT I) which is responsible for 
malonyl-Co A inhibition is present on either the outer side of the inner 
mitochondrial membrane or on the outer mitochondrial membrane [20]. In 
the alternative hypothesis only one protein possessing CPT activity is regu
lated by interacting with one or more malonyl-CoA binding proteins [21]. 
Nevertheless, these different schools of thought share the following well
established points: i) in the inner membrane of mitochondria there is at least 
one form of CPT (classified as CPT II) which has been isolated [17], cloned 
and sequenced [18, 19], and ii) the inhibition of CPT by malonyl-CoA is a 
crucial step in the overall control of intracellular lipid metabolism [22]. More 
recently the relevance of this regulation, crucial in liver metabolism, has 
been emphasized for the heart [23]. In addition, CPT has been reported to 
be stimulated by a cyclic AMP-dependent phosphorylation [24] and, accord
ingly, by phosphatase inhibition [25]. 

Carnitine acetyl transferase 

CAT is a monomer associated with the inner mitochondrial membrane. Up 
to this point no regulatory mechanism has been described, so CAT appears 
to function as a simple Michaelis-Menten enzyme. It was the first carnitine
dependent enzyme to be isolated [26]. Its commercial availability made the 
enzymatic assay of carnitine possible, thus disclosing the clinical interest for 
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["[(lire 1. Long-chain acyl esters traffic across the mitochondrial membranes. The two major 
hypotheses concerning the structure and the function of carnitine palmitoyl transferase(s) are 
summarized in the two panels (adapted from [8. 16]). The upper panel shows the point of view 
supported mainly by McGarry for which the inner and the outer CPT are completely different 
proteins with different catalytic activities. The outer CPT should be responsible for malonyl
CoA sensitivity. Conversely, as shown in the lower panel, according to Bieber et aI., there is 
only one CPT which is regulated by interacting with malonyl-Co A binding protein(s). CPT, 
carnitine palmitoyl transferase; 1M, inner membrane; LCACar, long-chain acylcarnitine; LCA
CoA, long-chain acyl-CoA; OM, outer membrane. Note inhibition by malonyl-CoA. 

this compound and allowing the discovery of carnitine related defects [27, 
28]. Among CoA esters, CAT affinity for propionyl CoA is slightly higher 
than that for acetyl-CoA and butyryl-CoA. A progressive decrease in its 
activity is observed when chain length is increased to about Cs or Cw . The 
following KO.5 values for the four substrates (2 in each direction) have been 
reported: carnitine 0.1-0.3mM; acetyl-CoA 32-70 f.LM; acetylcarnitine 0.3-
0.7 mM; CoASH 10-30 f.LM [8]. Although the enzyme binds both carnitine 
isomers, only R-carnitine, the natural (-) isomer (commonly denominated 
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L-carnitine), is active in enzyme-catalyzed acetyl transfer. The same applies 
for CPT, even though both isomers are transported with similar kinetic 
patterns across the plasma and the mitochondrial membranes. 

Long-chain acyl-CoAs (LCACoA) inhibit CAT which is also inhibited by 
sulfhydryl-binding divalent cations, such as Zn2+ and Hg2+, and sulfhydryl
specific reagents such as N-ethylmaleimide [8]. 

Carnitine transiocase 

The transport of carnitine or acylcarnitines across the inner mitochondrial 
membrane is catalyzed by an antiport exchange system, namely carnitine 
transiocase (CT), which operates with a rigorous 1:1 stoichiometry [29, 30] 
and is inhibited by the reactants of -SH groups [31, 32]. The transport 
capacity of CT, which in heart mitochondria is >100 nmol/min/mg protein 
[33,34] rules out a rate-limiting role for which was previously proposed [35]. 

Acylcarnitines and mitochondrial function 

Both CPT and CAT are abundant in heart mitochondria. The former enzyme 
promotes fatty acid oxidation by translocating activated long-chain fatty acids 
into the mitochondrial matrix space. The latter allows the utilization of a 
large variety of substrates accounting for the efflux of various short-chain 
acylcarnitines from isolated mitochondria incubated in the presence of carnit
ine (Table 1). 

Under physiological conditions, long-chain acylcarnitines (LCACar) are 
formed mostly in the intermembrane space and imported into the matrix, 
whereas short-chain acylcarnitines (SCACar) are formed within the matrix 
space and exported into the cytosol (Figure 2). All these carnitine-dependent 
processes implicate modulation of the acyl-CoNCoASH ratio and the buffer
ing of CoASH availability [7-9]. This role of carnitine is especially evident 
within the matrix space, where the scarce cellular amounts of CoA 
(120 nmol/g wet weight, 2.5 nmol/mg mitochondrial protein) are almost en
tirely compartmentalized (95% in cardiac myocytes) [36]. In contrast, the 
total carnitine content of the cell is >7-fold higher, but due to the equilibrium 
imposed by CT, the concentrations of CoA and carnitine in the matrix are 
similar, whereas in the cytosol the carnitine/CoASH ratio is always very high 
[36]. This may result in a different extent of carnitine and CoA esterification 
inside and outside the mitochondrion [9]. Thus, changes in the cell content 
of carnitine are accompanied by an immediate adjustment of the acyl-Co
NCoASH ratio in the matrix space. Accordingly, it has been widely demon
strated that the addition of carnitine to isolated mitochondria induces a 
profound decrease of the acyl-CoNCoASH ratio [37, 38]. 
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Figure 2. Movement of substrates and acylcarnitines across cellular membranes. Under physio
logical conditions long-chain acylcarnitines (LCACar) and short-chain acylcarnitines (SCACar) 
are likely to move in opposite directions. LCACoA, long-chain acyl-CoA; SCACoA, short
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tricarboxylic acid cycle; PM, plasma membrane; 1M, inner mitochondrial membrane; PPi, 
inorganic pyrophosphate. 

Long-chain acylcarnitines 

Profound alterations of mitochondrial physiology are produced by LCACoA 
[39] which accumulate during ischemia [6, 36, 40]. These CoA esters are 
amphipatic molecules which can insert themselves in the phospholipid bilayer 
altering both membrane architecture and permeability [39,41]. These 
changes are more likely to occur at LCACoA concentrations above the 
critical micellar concentration which in the case of palmitoyl-CoA is about 
30 ).LM. At lower concentrations, LCACoA are able to specifically affect the 
activity of various transport systems of the inner mitochondrial membrane 
without perturbing its permeability [42]. The most classical example of these 
modifications is the inhibition of adenine nucleotide translocase (ANT) [43]. 
The inhibitory effects of LCACoA are exacerbated by Ca2+ and blunted by 
several cations such as Mg2+ and polyamines [42, 44] which are present in 
millimolar concentrations within the matrix space. The protective effect ex
erted by these cations, which are usually present in mitochondria, may 
explain the lack of ANT inhibition which was obtained by increasing 
LCACoA matrix content [45]. 
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Carnitine addition is able to restore ANT function and hence, oxidative 
phosphorylation, by changing LCACoA to LCACar which are devoid of 
inhibitory effects. More recently, LCACoA have been added to the long list 
of promoters of the cyclosporine-sensitive membrane transition pore (MTP) 
[46, 47]. Also, the abrupt changes of membrane permeability and function 
brought about by MTP opening can be prevented or partially restored by 
carnitine [47]. 

LCACoA accumulation might playa central role in the well-documented 
free fatty acid (FFA) myocardial toxicity [6, 41, 48, 49]. However, besides 
the Mg2+ effect, it is worthwhile considering that the Kjs for transport 
inhibitions (>5 j.lM) are well above the mitochondrial content of total CoA 
(free + esterified). Furthermore, the concentration of "free" LCACoA is 
likely to be reduced by the more or less specific binding with various proteins 
[50], although it is possible that these esters do not accumulate homogen
eously, reaching very high local concentrations within the hydrophobic core 
of the membranes. 

Short-chain acylcarnitines 

The CoA-carnitine relationship is pivotal for energy metabolism. CoA is 
required for f3-oxidation, for the catabolism of several amino acids, for the 
detoxification of organic acids and xenobiotics, for pyruvate dehydrogenase 
(PDH) [51], for a-ketoglutarate dehydrogenase [12, 52] and thus for the 
TCA (tricarboxylic acid) cycle [7]. A reduced availability of carnitine induces 
a decrease of matrix CoASH and a parallel increase of the acyl-CoA/CoASH 
ratio, both of which are inhibitory in the aforementioned mitochondrial 
dehydrogenases. 

Unlike the corresponding acyl-CoAs, acylcarnitines, especially SCACar, 
are capable of diffusing across cellular membranes and may be eliminated in 
the urine. The urinary excretion of specific acylcarnitines is relevant for the 
diagnosis of several inborn errors of metabolism [53]. 

Large amounts of acetylcarnitine are produced by isolated rat heart mito
chondria utilizing pyruvate as a substrate (Table 1). When mitochondria are 
incubated in the absence of a TCA cycle sparker, such as malate, and in the 
presence of a large carnitine availability, the rate of acetylcarnitine formation 
is almost superimposable to that of pyruvate decarboxylation and oxygen 
consumption [54]. Under these conditions, carnitine induces a > lO-fold de
crease in the acyl-CoAiCoASH ratio [38] and stimulates pyruvate oxidation 
even more than dichloroacetate, the well-known inhibitor of PDH kinase 
[7]. 

The effect of carnitine on pyruvate utilization is less evident in liver mito
chondria which have intrinsically low amounts of CAT. It is conceivable that 
in the liver the utilization of acetyl-CoA for ketogenesis renders the forma
tion of acetylcarnitine less compelling. 

In the isolated mitochondria, the process of acetylcarnitine production 



Acylcarnitines and mitochondria 27 

Table 1. Short-chain acylcarnitine production from different substrates in rat heart 
mitochondria. 

Substrate Acylcarnitine Production 
produced rate 

Pyruvate (2.5 mM) acetyl 93.0 ± 8.2 
Pyruvate + malate (1 mM) acetyl 48.0 ± 4.2 
Decanoyl-CoA (40 fLM) acetyl 25.4 ± 3.7 
Palmitoyl-CoA (40 fLM) acetyl 18.3 ± 2.9 
a-Ketoisovalerate (1 mM) isobutyryl + propionyl 11.9 ± 1.5 
a-Ketoisocaproate (1 mM) isovaleryl 2.6 ± 0.5 
a-Methyl-{3-ketovalerate (1 mM) isovaleryl + propionyl 4.5 ± 0.9 

Mitochondria were incubated in the presence of 5 mM [3H]-L-carnitine. Values are nmol/min/mg 

mitochondrial protein, mean ± S.D. of at least 4 different experiments. 

from pyruvate shows an apparent Km for carnitine of about 1 mM which is 
higher than that reported for the isolated enzyme [54]. Although so far no 
mechanism has been postulated to explain this difference, it may be suggested 
that in vivo CAT activity is not saturated by carnitine. 

Carnitine and CoA availability may also influence the choice of the sub
strate utilized for energy production. Although the heart can oxidize either 
carbohydrate, amino acids or fat, it is generally accepted that free fatty acids 
(FFA) are the preferred metabolic fuels [2]. Fatty acids can predominate 
over carbohydrates by means of a coordinated inhibition at three control 
sites: i) glucose entry, ii) hexokinase-phosphofructokinase, iii) PDH [1]. 
Nevertheless, after carbohydrate feeding, the heart switches its fuel prefer
ence from fatty acids to glucose. Brosnan and Reid [55] demonstrated that 
in the isolated rat heart oleate oxidation is inhibited by either pyruvate or 
lactate addition to the perfusate. Lactate was less efficient than pyruvate, 
but the difference disappeared in the presence of dichloroacetate. In fact, 
unlike lactate, pyruvate activates the complex per se and makes dichloroacet
ate activation superfluous. The question then arises as to how acetyl-CoA 
produced by pyruvate decarboxylation may reduce FFA oxidation. The most 
plausible mechanism could be envisaged as an intramitochondrial competi
tion for CoASH at the level of both the CPT and the thiolase reaction (Figure 
3). Indeed the latter enzyme is inhibited by a high acetyl-CoAiCoASH ratio 
[56]. As shown by Table 2, in rat heart mitochondria pyruvate decreases 
both decanoyl-CoA utilization (reduction of the radioactivity incorporated 
in metabolic products) and acety1carnitine formation from the decanoyl 
moiety. The former can be interpreted as a consequence of a reduced CPT 
activity, whereas a reduced rate of f3-oxidation might explain the decrease 
in acety1carnitine. Hence CoASH and carnitine availability could be con
sidered a major regulating factor in the decision making concerning the 
substrate to be used. These mitochondrial processes could reinforce the 
inhibition of FF A oxidation operated by malonyl-CoA in the cytosol [23]. 
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Figure 3. Competition between mitochondrial Co A-requiring reactions related to lipid and 
carbohydrate oxidation. LCACar, long-chain acylcarnitine; LCACoA, long-chain acyl-CoA; 
CPT, carnitine palmitoyl transferase; PDH, pyruvate dehydrogenase. 

Table 2. Effect of pyruvate on the metabolism of decanoyl-CoA in rat heart mitochondria. 

Product -Pyruvate + Pyruvate 

Acetylcarnitine 25.34 12.27 
Decanoylcarnitine 2.99 13.20 
ASM 3.18 1.84 
CO2 2.20 0.97 
Total 33.71 28.28 

Values are nmol/min/mg mitochondrial protein. Mitochondria were incubated in an isoosmotic 
medium containing 0.1 mM [1-14CJdecanoyl-CoA and 5 mM L-carnitine in the absence or in 
the presence of 0.5 mM pyruvate. ASM, acid-soluble metabolites. 

The inhibition of several mitochondrial dehydrogenases by an elevated 
acyl-CoAfCoASH ratio prevents substrate utilization leading to a sort of 
energy starvation. For instance, the oxygen uptake for a-ketoglutarate oxid
ation is blunted by the addition of acetoacetate which traps the available 
CoASH in the form of acetoacetyl- and acetyl-CoA [12]. On the other hand, 
pyruvate oxidation is inhibited by acetyl-CoA which accumulates when the 
TCA cycle is blocked by malonate [57,58]. In both these conditions, carnitine 
addition restores mitochondrial function by converting the inhibitory meta
bolites into their corresponding acylcarnitines [12, 57, 58]. 

Acylcarnitines and myocardial function 

In isolated mitochondria as well as in the intact heart, LCACoA toxicity 
could be ascribed, at least in part, to a decreased CoASH availability. The 
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Table 3. Effect of propionate perfusion on the metabolic profile of isolated rat hearts. 

Metabolite - Propionate 

CoASH 46.7 ± 3.9 
SCACoA 19.0 ± 2.6 
LCACoA 12.7 ± 2.7 

Carnitine 661.3 ± 29.9 
SCACar 85.1 ± 7.0 
LCACar 38.5 ± 3.8 

ATP 2.6 ± 0.1 
PCr 3.5 ± 0.2 

Lactate release 23.1 ± 5.6 

+ Propionate 

*6.9 ± 1.3 
*51.2±5.7 
*20.5 ± 4.0 

*276.0 ± 39.4 
*471.1 ± 31.2 

40.4 ± 4.1 

*1.8 ± 0.2 
*1.9 ± 0.2 

*82.0 ± 13.1 

+ Propionate + Carnitine 

*29.0 ± 2.2 
*32.4 ± 3.8 
11.9 ± 2.4 

2.6 ± 0.1 
3.6 ± 0.2 

49.7 ± 14.4 

Hearts were perfused for 90 min with a saline buffer containing 11 mM glucose under normoxic 
conditions. Propionate (2 mM) was added in the absence or in the presence of 5 mM carnitine 
to the perfusion medium. Values are nmoVg wet weight for CoA and carnitine fractions, fLmoVg 
for ATP and phosphocreatine (PCr) and fLmoVg/15 min for lactate release (mean ± S.E., n = 

6). *p < 0.05 vs control (without propionate). Carnitine contents were omitted in the group 
receiving carnitine, since in the presence of massive amounts of exogenous carnitines the 
evaluation of endogenous ones appeared unreliable. For abbreviations of esters, see legend to 
Figure 2. 

role of CoASHIesterified-CoA and carnitine/esterified carnitine ratios in the 
evolution of ischemic damage has been investigated in isolated rat hearts 
perfused with a saline solution containing glucose in both the presence and 
absence of propionate [14]. During post-ischemic reperfusion contractile 
recovery was strongly impaired by propionate. The damaging effect of pro
pionate was prevented by carnitine, indicating an impairment of mitochon
drial processes dependent on CoA and carnitine. Even in normoxic hearts, 
CoASH was severely depleted by propionate perfusion. Propionyl-CoA and 
methylmalonyl-CoA, barely present in control hearts, were produced in 
amounts accounting for CoASH disappearance. Also, free carnitine was 
severely reduced (about 30% of control values) and concomitantly a large 
increase in propionylcarnitine was observed (Table 3). The consequent imbal
ance of energy metabolism was reflected by a significant decrease of tissue 
content of ATP and phosphocreatine. As expected, the increase in acyl
CoA/CoA ratio inhibited PDH as demonstrated by the increase in myocardial 
lactate efflux to values comparable to those induced by the inhibition of the 
respiratory chain. Despite these large changes of CoA and carnitine status, 
both inotropism and chronotropism were unaffected, suggesting that in the 
Langendorff model glycolysis alone can sustain the contractile activity. This 
hypothesis was tested directly by measuring left ventricular pressure using 
pyruvate as substrate and inhibiting glycogenolysis with iodoacetate. Under 
these conditions, propionate resulted in a gradual decrease in the developed 
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Figure 4. Effect of ischemia on the principal reactions producing and utilizing acyl-CoA. The 
width of the arrows indicates the estimated quantitative importance of the various reactions. 

pressure which was followed by cardiac arrest [59]. Both the high rates of 
lactate release and the contractile failure were prevented by carnitine. 

Thus, in propionate perfused hearts, both the lowered tissue ATP content 
plus free CoA create unfavorable conditions which worsen ischemic injury. 
These impairments in energy metabolism may in turn be responsible for the 
decline in cardiac contractility observed in the reperfusion phase. 

The relevance of CoASH and carnitine availability for a regular myocardial 
function is also supported by other reports. In working hearts, a model which 
implies a higher energy consumption, propionate affects cardiac performance 
even under aerobic conditions and in the presence of glucose [60]. In ad
dition, in working hearts perfused with acetoacetate, a fall in TCA cycle 
intermediates induced by inhibition of a-ketoglutarate dehydrogenase was 
associated with contractile failure [52]. 

Anoxia or ischemia also result in an increase of esterified/free carnitine 
ratio [36]. This metabolic shift, which reproduces the analogous modification 
of CoA status, is caused by the inhibition of mitochondrial dehydrogenases 
consequent to the excess of reduced flavin and pyridine coenzymes. The 
reduced rates of f3-oxidation and the TCA cycle freeze CoA in the form of 
LCACoA or SCACoA, and available carnitine acts as a scavenger of acyl 
moieties in order to liberate CoA (Figure 4). This action of carnitine appears 
to be pertinent for pyruvate utilization. In fact, in hypoxic tissues pyruvate 
is mostly converted to lactate due to PDH inhibition. By decreasing the 
acetyl-CoA/CoA ratio, carnitine might stimulate PDH, thus diverting pyru
vate from its reduction to lactate and causing its oxidation to acetyl-CoA 
and then into acetylcarnitine (Figure 5). Experimental and clinical evidence 
support these concepts. As reported elsewhere in this book, Ferrari et al. 
[61] were the first group to demonstrate that carnitine administration can 
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Figure 5. Alternative pathways of pyruvate utilization depending on carnitine availability in 
ischemic tissues (alanine is omitted). PDH, pyruvate dehydrogenase; CAT, carnitine acetyl 
transferase; TCA, tricarboxylic acid cycle; PM, plasma membrane; 1M, inner mitochondrial 
membrane. 

reduce lactate formation in subjects suffering from coronary artery disease. 
Similar results were obtained also in patients suffering from intermittent 
claudication [62]. In normal persons subjected to maximal cycle ergometer 
exercise, we demonstrated that plasma lactate reduction is linearly correlated 
with an increase in acetylcarnitine [63]. 

The possibility that carnitine might be able to influence muscle metabolism 
has been argued [64] by considering steady-state carnitine contents rather 
than metabolic fluxes. Due to the low rates of carnitine absorption into 
plasma and eventually into muscles, during the time of our exercise protocol, 
muscle carnitine content would have been increased by less than 2% [64]. 
Obviously such an increase is unlikely to modify CAT activity. However, 
carnitine transport across the sarcolemma seems to occur mainly by a 1: 1 
exchange with intracellular carnitine or carnitine esters [65]. Thus when 
acetylcarnitine accumulates in the cytosol, a large availability of extracellular 
carnitine could promote the exchange and consequently the washout of 
carnitine esters without major changes in carnitine tissue content [66]. This 
also appears to be the case in inborn errors of metabolism treated with 
carnitine. Indeed carnitine, given orally to patients with isovaleric acidemia, 
rapidly induced a large increase in plasma and urine isovalerylcarnitine [67]. 
This increase is most likely the result of an exchange of exogenous free 
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carnitine with tissue isovalerylcarnitine formed from the excess isovaleryl
CoA. 

Acylcarnitines as pharmacological agents 

The ability of SCACar to cross cellular membranes suggests the possibility 
that administered SCACar could reach the mitochondrial matrix space. Here, 
their transformation into the corresponding acyl-CoA may contribute to a 
useful integration of the acyls in mitochondrial metabolic pathways. Further
more, SCACar administration could add some degree of specificity to carnit
ine therapy. In fact, at least theoretically, the more a tissue is endowed with 
CAT (myocardium being one of the richest) the more it should benefit from 
SCACar administration. 

Acetylcarnitine 

The oxidation of either endogenous fatty acids or added acetate, which is 
impaired in aged mitochondria, was promptly restored by the addition of 
catalytic amounts (1 f,Lmole) of acetylcarnitine [68]. Conceivably, this minute 
quantity supplied the initial amount of ATP needed for the activation and 
subsequent oxidation of fatty acids. Once started, the process proceeds auto
catalytically. This capability of acetylcarnitine to spark mitochondrial energy
linked processes, together with its property to be promptly transported into 
cardiac cells, might be relevant to the restoration of dampened functions in 
deenergized tissue. 

Prop ion y lcarnitine 

Detailed descriptions of various effects of this carnitine ester on the cardiova
scular system are reported in the last section of this book. The biochemical 
rationale for propionylcarnitine (PLC) administration concerns the possibility 
of feeding the TCA cycle (anaplerosis) with the carbon skeleton of propion
ate without altering the energy metabolism. These effects were initially docu
mented in rat liver mitochondria [69]. When oleate was the oxidizable sub
strate, propionate induced a decrease of both CO2 production and A TP 
content with a concomitant AMP increase, as is expected from propionate 
activation into propionyl-CoA. Unlike propionate, PLC, which is converted 
into propionyl-CoA without energy expenditure, did not alter the adenine 
nucleotide pool and increased the oxidation rate of oleate. This latter effect 
might depend upon both the accelerated flux in the TCA cycle, promoted 
by the anaplerotic effect of the newly formed propionyl-CoA and on the 
larger availability of intramitochondrial carnitine derived from PLC in the 
CAT-catalyzed reaction. 

More recently the anaplerotic effect was demonstrated in rat heart mito-
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chondri a utilizing [2_14C]pyruvate in the presence of either PLC or carnitine 
[70]. CO2 production, which in these conditions is a tracer of acetyl-CoA 
utilization in the TCA cycle, was increased more by PLC than by equimolar 
amounts of carnitine. The utilization of the propionyl moiety emerges as a 
conceivable mechanism underlying PLC action. Propionyl-CoA may be rap
idly transformed into oxaloacetate which in turn would stimulate pyruvate 
oxidation by promoting the entry of acetyl units in the TCA cycle. The 
inhibition of this PLC effect by malonate further supports this mechanism. 
On the other hand, acety1carnitine formation was much lower in PLC treated 
mitochondria, ruling out the possibility that the decrease in acetyl-CoAiCoA 
ratio could be involved. 

Opposing effects of propionate and PLC were also obtained in isolated 
and perfused rat hearts [14, 71]. In agreement with analogous results obtained 
by other authors on different experimental models [72-75], we demonstrated 
a protective effect of PLC on the ischemic heart, which is in sharp contrast 
with the above mentioned exacerbation of the ischemic damage induced 
by propionate. Concurrently, when propionate was replaced by equimolar 
amounts (2 mM) of PLC in the perfusing medium, adenine nucleotide, CoA 
and carnitine contents as well as lactate release were not different from 
control hearts. Thus, the protective effect of PLC may be a consequence of 
the anaplerotic utilization of propionate in the presence of optimal amounts 
of ATP, CoASH and carnitine. Obviously, the involvement of mitochondrial 
function in PLC effects does not exclude other mechanisms. It is likely that 
the protective action exerted by PLC might result from a positive interaction 
between i) improved mitochondrial function; ii) iron chelation [75]; iii) pre
servation of vascular patency [76]. 

Isovalerylcarnitine 

Both a-ketoisocaproate and its parent amino acid, leucine, are known to 
inhibit lysosomal proteolysis in rat liver perfused in the absence of amino 
acids [77]. This raises the question as to whether leucine is responsible for 
the inhibition per se, or via some of its catabolites. We focused our attention 
on isovalery1carnitine (IVC) which proved to reproduce the leucine effect 
with a similar dose-dependency [7S]. Since only a negligible amount of added 
IVC is detectable within liver cells, either in perfused liver or in isolated 
hepatocytes, the inhibition of proteolysis could be mediated by a receptor 
located on the plasma membrane [79]. 

Successively we considered possible effects of IVC on some of the cytosolic 
proteolytic systems, particularly that of calpains which are Ubiquitous Ca2 +

dependent proteases present in mammalian cells and subject to regulation 
by a variety of mechanisms [SO]. 

Surprisingly IVC proved to be a potent activator rather than an inhibitor 
of calpain in different tissues including muscles [Sl]. The D isomer of IVC 
and both L-isobutyryl- and L-methylbutyryl-carnitine, derivatives of valine 
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and isoleucine respectively, were almost ineffective [82]. The activating ac
tion of IVC on calpain has been envisaged in a remarkable increase in 
the affinity of calpain for Ca 2+. Furthermore it was shown that IVC acts 
synergistically with the cytoskeleton activator and that the two activators 
bind to different sites of the calpain molecule [82]. 

We also verified this stimulation in vivo by studying erythrocyte calpain in 
a patient suffering from isovaleric acidemia who is currently under carnitine 
treatment [83]. As already mentioned, in this metabolic error carnitine ad
ministration induces a marked rise of IVC in both plasma and urine. The 
continuous exposure of erythrocytes to high IVC concentrations was associ
ated with a stimulation of calpain activity which returned to control levels 
when carnitine was replaced with glycine. 

The circumstance that IVC inhibits lysosomal proteolysis and stimulates 
the limited Ca2+ -dependent proteolysis, mediated by calpains, appears as a 
paradox. Hypothetically, IVC might initiate a process of limited proteolysis 
in order to promote a remodelling rather than a degradation of cytosolic 
proteins. For this purpose the activation of calpains and the inhibition of 
lysosomal proteases are equally well-suited. Finally, since the proteins most 
susceptible to the calpain attack are those of the cytoskeleton fibres, which 
make extensive connections to mitochondria and other organelles [84), it is 
also conceivable that cytoskeleton disconnection promoted by calpain acti
vation could render lysosomal proteases less accessible to the target proteins. 
Considering the mechanisms herein discussed, IVC might represent a specific 
signal to initiate these structural and functional modifications. 
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4. The effects of carnitine on myocardial 
carbohydrate metabolism 

BRETT o. SCHONEKESS and GARY D. LOPASCHUK 

"L-propionylcarnitine administration to intact hearts increases myocardial carnitine 
content and results in a dramatic increase in the contribution of glucose oxidation to 
ATP production. Stimulation of carbohydrate oxidation may partly explain the ben
eficial effects of L-carnitine and L-propionylcarnitine in diabetes and hypertrophy." 

Introduction 

The mammalian heart primarily meets its requirements for energy through 
the oxidation of fatty acids [1]. The oxidation of glucose and lactate provides 
most of the remaining energy needs, with glycolysis providing an additional 
small amount of ATP production [1, 2, 3]. An important step in the oxidation 
of fatty acids is the translocation of fatty acyl-CoA into the inner mitochon
drial space. This is achieved by a carnitine mediated translocation involving 
carnitine palmitoyltransferase (CPT) I, carnitine acyltranslocase and CPT II 
(see Figure 1). By virtue of its role as a carrier, therefore, carnitine is 
essential for the oxidation of long chain fatty acids. 

In addition to this critical metabolic role, carnitine can also transport acetyl 
groups from within the mitochondrial matrix to the cytosol [5-7]. Carnitine 
acetyltransferase catalyzes the transfer of acetyl groups from acetyl-CoA to 
carnitine forming acetylcarnitine (Figure 1). The acetylcarnitine can then be 
transported into the cytosol, where the acetyl groups are transferred back 
onto CoA. Recent interest has stemmed from this proposed role of carnitine 
as a modulator of the intramitochondrial acetyl-CoA/CoA ratio [4-6]. In 
isolated heart mitochondria, carnitine has been shown to increase free CoA 
levels and to reduce acetyl-CoA levels, resulting in a 10- to 20-fold decrease 
in the ratio of acetyl-CoA/CoA [5, 6]. In human skeletal muscle mitochondria 
this decrease in acetyl-CoA/CoA stimulates pyruvate oxidation, secondary 
to an increase in pyruvate dehydrogenase complex (PDq activity [8]. 
Changes in the ratio of acetyl-CoA/CoA in the presence of L-carnitine are 
associated with an increased efflux of acetylcarnitine from the mitochondria 

l. W. de long and R. Ferrari (eds): The carnitine system, 39-52. 
© 1995 Kluwer Academic Publishers. 
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Figure 1. Key sites at which L-carnitine potentially modulates fatty acid and carbohydrate 
oxidation in the heart. Carnitine ensures an adequate supply of intramitochondrial acetyl-CoA 
from fatty acids at the level of 4, 8, and 9. In situations of an adequate acetyl-CoA supply from 
.a-oxidation, carnitine can also act to lower the intramitochondrial acetyl-CoNCoA ratio at the 
level of 5 and 7. This will increase pyruvate dehydrogenase complex activity. and therefore 
glucose oxidation. We propose that increasing the activity of 5 and 7 will also increase cytosolic 
acetyl-CoA levels, resulting in an increase in acetyl-CoA carboxylase activity (2). Increased 
malonyl-Co A production will then inhibit carnitine palmitoyltransferase 1 activity [4], resulting 
in a decrease in fatty acid oxidation. 1, lactate dehydrogenase complex; 2, acetyl-CoA carboxy
lase; 3, acyl-Co A synthetase; 4, carnitine palmitoyltransferase I; 5, carnitine acetyltransferase; 
6, pyruvate dehydrogenase complex; 7, carnitine-acetylcarnitine translocase; 8, carnitine-acylcar
nitine translocase; 9, carnitine palmitoyltransferase II; 10, .a-oxidation. TCA = Tricarboxylic 
acid. 
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[5], which is consistent with the suggestion that carnitine increases the activity 
of the carnitine acetyltransferase present on mitochondrial membranes. 

A role for L-carnitine in regulating the intramitochondrial acetyl-CoAl 
CoA ratio is supported by direct measurements of carbohydrate oxidation 
in the intact heart. Recently we have shown that carnitine supplementation 
of isolated working rat hearts will substantially increase glucose oxidation 
rates [4]. This increase in glucose oxidation probably occurs secondary to an 
increase in PDC activity, which results from the lowering of the intramito
chondrial acetyl-CoAiCoA ratio (Figure 1). Of interest is the observation 
that this L-carnitine induced increase in glucose oxidation is accompanied by 
a concomitant decrease in fatty acid oxidation rates, such that overall ATP 
production rates remain similar [4]. While this effect of L-carnitine on fatty 
acid oxidation would appear paradoxical, it isn't if one considers the primary 
role of L-carnitine is to ensure an adequate supply of acetyl-CoA for the 
tricarboxylic acid (TCA) cycle. As shown in Figure 1, L-carnitine has a 
critical role in regulating the supply of acetyl-CoA from both PDC and from 
l3-oxidation of fatty acids. Since the primary supply of acetyl-CoA is normally 
derived from fatty acid oxidation, an increase in TCA cycle activity (i.e. such 
as by increasing myocardial workload) will increase the supply of acetyl
CoA derived from fatty acid oxidation [1]. As will be discussed, adequate 
myocardial levels of carnitine are required to ensure that fatty acid oxidation 
is able to meet mitochondrial acetyl-CoA demand. Provided that intramito
chondrial acetyl-CoA supply from fatty acid oxidation is not limited, we 
propose that the primary effect of L-carnitine supplementation is to regulate 
the supply of TCA cycle acetyl-CoA that is derived from PDC. By shuttling 
iIitramitochondrial acetyl-CoA out of the mitochondria and into the cytosol, 
via the carnitine acetyltransferase and carnitine acetyltranslocase pathway 
intramitochondrial levels of acetyl-CoA will decrease (Figure 1). The de
crease acetyl-CoAiCoA ratio will result in a stimulation of PDC activity [9]. 
This in turn will result in increased rates of glucose oxidation [4]. Since the 
need for A TP at a given workload is constant, an increase in acetyl-CoA 
derived from PDC would be expected to result in a decrease in the require
ments of acetyl-CoA derived from l3-oxidation. This would explain the ob
served decrease in myocardial fatty acid oxidation that accompanies the 
increase in glucose oxidation following L-carnitine supplementation to iso
lated perfused hearts [4]. 

It is clear that the role of L-carnitine is complex in its regulation of fatty 
acid and carbohydrate metabolism. We believe that in severe tissue carnitine 
deficiencies the effects of L-carnitine supplementation on overall myocardial 
metabolism differs from the effects of L-carnitine supplementation when a 
carnitine deficiency does not exist. Whether the primary effect of L-carnitine 
is to stimulate fatty acid oxidation or glucose oxidation is primarily dependent 
on the intramitochondrial acetyl-CoAiCoA ratio. 
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Potential link between the regulation of fatty acid oxidation and 
carbohydrate oxidation 

As discussed, L-carnitine supplementation to intact hearts increases glucose 
oxidation and decreases fatty acid oxidation, such that overall ATP produc
tion is maintained [4]. As shown in Figure 1, the effects of L-carnitine on 
glucose oxidation can be explained by a decrease in the intramitochondrial 
acetyl-CoA/CoA ratio. However, the effects of L-carnitine supplementation 
on fatty acid oxidation are less obvious, since a decrease in the acetyl
CoA/CoA ratio should also act as a stimulus to increase f3-oxidation of fatty 
acids. However, increasing both glucose and fatty acid oxidation at a given 
myocardial workload would decrease myocardial efficiency since A TP pro
duction (and O2 consumption) would increase in the absence of additional 
demands for ATP. To explain this apparent contradiction, we hypothesize 
that L-carnitine can inhibit fatty acid oxidation by increasing cytosolic acetyl
CoA supply to acetyl-CoA carboxylase, which by producing malonyl-CoA 
will inhibit CPT I activity (Figure 1). 

CPT I is a key regulatory point in the oxidation of fatty acids, and is the 
rate-limiting step of long-chain acyl-CoA translocation into mitochondria 
[10]. The fact that CPT I in the heart is extremely sensitive to inhibition by 
malonyl-CoA (Ki = 50 nM) [10, 11] and that malonyl-CoA is present in 
measurable quantities (10-15 nmol/g dry wt) in the heart [12, 13] has led to 
speculation that malonyl-CoA may be an important effector for the entry of 
long-chain acyl-CoA's into the mitochondria and therefore a potentially 
important regulator of myocardial fatty acid oxidation. 

Changes in the absolute levels of cytosolic malonyl-CoA may be responsi
ble for the changes in myocardial fatty acid oxidation that occur following 
carnitine supplementation [4]. We hypothesize that increasing the concentra
tion of L-carnitine in the heart will facilitate the export of intramitochondrial 
acetyl-CoA into the cytosol (Figure 1). The increased cytosolic levels of 
acetyl-CoA will then increase the activity of acetyl-CoA carboxylase (ACC). 
ACC catalyzes the transfer of CO2 from bicarbonate to acetyl-CoA to form 
malonyl-CoA [14, 15], and is widely distributed in a number of different 
mammalian tissues, including those where fatty acid oxidation is prominent, 
e.g. heart, brown adipose tissue, and skeletal muscle [16-19]. While ACC 
in liver and white adipose tissue primarily acts as the rate limiting step in 
fatty acid biosynthesis, in heart it appears that ACC primarily acts to regulate 
fatty acid oxidation [20]. Myocardial ACC has a low affinity for acetyl-CoA 
[20] and cytosolic acetyl-CoA levels are very low in the heart [21]. This 
suggests that cytosolic acetyl-CoA levels may be an important determinant 
of ACC activity in the heart. We hypothesize that stimulation of carnitine 
acetyitransferase by L-carnitine increases cytosolic acetyl-CoA levels, in
creasing ACC production of malonyl-CoA (Figure 1). This would then inhibit 
CPT I activity, thereby decreasing fatty acid oxidation. 

A role of L-carnitine and carnitine acetyltransferase as a link between 
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glucose and fatty acid oxidation is a particularly attractive hypothesis to 
explain how the heart ensures an adequate supply of acetyl-Co A for the 
TCA cycle. When intramitochondrial acetyl-CoA demand is high both fatty 
acid and carbohydrate oxidation would increase to meet this demand. How
ever, as supply exceeds demand and the acetyl-CoA/CoA ratio increases, 
acetyl-CoA would be shuttled out of the mitochondria via carnitine acetyl
transferase and carnitine acetyltranslocase. This would increase malonyl
CoA production from ACC, resulting in a decrease in fatty acid oxidation. 
Carbohydrate oxidation would decrease by a direct inhibition of PDC as the 
levels of intramitochondrial acetyl-CoA/CoA increases. 

This link between glucose and fatty acid oxidation is supported by our 
recent evidence demonstrating that when the supply of acetyl-CoA in the 
mitochondria is increased, a resultant decrease in fatty acid oxidation occurs 
[20]. Furthermore, we have observed a close relationship between myocardial 
acetyl-CoA levels and malonyl-CoA levels, with a close inverse correlation 
between malonyl-CoA levels and fatty acid oxidation. Evidence for the 
involvement of carnitine acetyltransferase in this process comes from recent 
studies with L-propionylcarnitine (LPC) supplementation of isolated rat 
hearts (SchOnekess et al., unpublished). LPC administration to intact hearts 
increases myocardial carnitine content and results in a dramatic increase in 
the contribution of glucose oxidation to ATP production. This is ac
companied by a decrease in the contribution of fatty acid oxidation to A TP 
production, and a marked increase in malonyl-CoA levels in the LPC treated 
hearts. This is consistent with an increase in carnitine acetyltransferase ac
tivity (Figure 1). 

L-carnitine and LPC have previously been shown to improve heart function 
in pathological conditions such as diabetes and myocardial hypertrophy [22-
26]. Because of the potential role of L-carnitine as a regulator of both 
carbohydrate and fatty acid oxidation we examined the effects of L-carnitine 
and LPC on energy metabolism in isolated fatty acid perfused hearts obtained 
from normal, diabetic, or aortic banded rats (Table 1). In normal hearts, L
carnitine or LPC pre-treatment results in a dramatic increase in the contribu
tion of carbohydrate oxidation as a source of A TP production. In diabetic 
rat hearts, where fatty acid oxidation provides almost all of the ATP require
ments [28-30], L-carnitine was also able to markedly increase glucose oxid
ation. Similarly, in hypertrophied hearts, LPC substantially increases carbo
hydrate oxidation. As a result, stimulation of carbohydrate oxidation may 
partly explain the beneficial effects of L-carnitine and LPC in diabetes and 
hypertrophy. 

Effects of myocardial carnitine deficiency on oxidative metabolism 

Alterations in the metabolism of fatty acids and carbohydrates can occur 
when perturbations such as tissue carnitine depletion occur [2, 31]. These 
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Table 1. Acute L-carnitine or L-propionylcarnitine loading of aerobically perfused normal, 
diabetic or hypertrophied rat hearts: the major effects on energy substrate preference and ATP 
contribution. 

Perfusion condition 

Normal rat heart 
- L-carnitine 

+ L-carnitine 

+ L-propionylcarnitine 

Diabetic rat heart 
- L-carnitine 

+ L-carnitine 

Hypertrophied rat heart 
- L-propionylcarnitine 

+ L-propionylcarnitine 

Energy preference and major A TP source 

Fatty acid oxidation primary source of A TP 
Carbohydrates supply 5-15% of ATP 
Increased carbohydrate contribution to ATP 
production mostly through an increased PDC flux 
(glucose oxidation) 
Decreased contribution of fatty acid oxidation to 
A TP production 
Increased carbohydrate contribution to A TP 
production via an increased PDC flux (glucose 
and lactate oxidation) 
Decreased contribution of fatty acids to ATP 
production 

Reference 

[4,10) 

Almost all ATP from fatty acid oxidation [27) 
Carbohydrate metabolism almost non-existant 
Dramatic increase in glucose contribution to ATP 
production (both glycolysis and glucose oxidation 
increase) 

Majority of ATP from fatty acid oxidation [10) 
Increased contribution of glycolysis and decreased 
contribution of glucose and lactate oxidation to 
A TP production 
No change in fatty acid oxidation 
Increased contribution of glucose and lactate 
oxidation to ATP production via an increased flux 
through PDC 

PDC = Pyruvate dehydrogenase complex. 

perturbations can lead to impairment of myocardial function [23]. Most 
known situations associated with myocardial carnitine deficiencies are associ
ated with a depression in myocardial function (Table 2). Whether fatty acid 
oxidation rates are depressed in carnitine deficient hearts probably depends 
to a large extent on the severity of the carnitine deficiency, as well as the 
presence of circulating carbon substrates. 

In primary and secondary carnitine deficiencies the depressed myocardial 
function is presumed to occur secondary to a depression of fatty acid oxi
dation. Experimentally induced carnitine deficiencies, such as following so
dium pivalate treatment of rats, also results in a depression of fatty acid 
oxidation (DJ Paulson, personal communication). Long term treatment with 
sodium pivalate can result in a 50-60% reduction in myocardial carnitine 
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Table 2. Effects of carnitine deficiencies on myocardial function and energy metabolism. 

Carnitine deficient Effect on myocardial Effect on energy Reference 
state function metabolism 

Primary and Depressed myocardial Presumed depression of [32] 
secondary carnitine function fatty acid oxidation 
deficiencies 

Experimental 
depletion: 

Na + pivalate Depressed myocardial Depressed fatty acid [pers. 
function with extended oxidation with enhanced comm.] 
treatment glucose oxidation rates 

D-carnitine Significant impairment of Probable depression of [22] 
supplementation myocardial function fatty acid oxidation 

Myocardial Depressed myocardial Fatty acid oxidation [2,10, 
hypertrophy function depressed 31] 

Glycolysis enhanced 
Carbohydrate oxidation 
depressed in presence of 
high fat 

Diabetes Depressed myocardial Primary source of A TP [22,33] 
function from fatty acid oxidation 

Depressed carbohydrate 
metabolism 

Reperfusion Depressed myocardial Fatty acid oxidation [34-37] 
following ischemia function increased 

Glucose oxidation 
depressed 

Personal communication, DJ. Paulson. 

content. This severe carnitine deficiency results in a depression of cardiac 
function when the treatment is extended for periods of 24-26 weeks. These 
results suggest that in severe carnitine deficiencies CPT I activity is inhibited, 
resulting in a decrease in fatty acid oxidation. 

Accompanying the decreased rates of fatty acid oxidation in sodium piva
late treated hearts is an increase in glucose oxidation rates. An increase in 
glucose oxidation in carnitine deficient hearts would appear to contradict the 
observations that L-carnitine supplementation to normal hearts also increases 
glucose oxidation rates [4]. However, these apparent contradictions can read
ily be explained by the importance of intramitochondrial acetyl-CoAiCoA 
in regulating glucose oxidation. In severe carnitine deficiencies, where fatty 
acid oxidation is inhibited, acetyl-CoA supply from f3-oxidation will decrease. 
This will decrease the ratio of intramitochondrial acetyl-CoAiCoA, relieving 
the inhibition of PDC. The end result is that the activity of PDC will increase 
and rates of glucose oxidation will accelerate. In normal hearts where fatty 
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acid oxidation rates are not depressed, the effects of L-carnitine on the 
intramitochondrial acetyl-CoAiCoA ratio would be expected to parallel what 
is seen in a severe carnitine deficiency, resulting a similar increase in glucose 
oxidation (Figure 1). As a result, the effects of a carnitine deficiency on 
glucose oxidation probably depends on whether the deficiency is severe 
enough to inhibit fatty acid oxidation. 

Decreased myocardial carnitine content can also be seen in hearts obtained 
from diabetic animals [7, 38]. However, despite this decrease in tissue carni
tine, almost all of the A TP requirements of the heart are met by the oxidation 
of fatty acids [28-30]. This is primarily due to the high circulating levels of 
fatty acids seen in uncontrolled diabetics. As a result, we believe that the 
mild carnitine deficiency seen in hearts from diabetic animals, when coupled 
to elevations in circulating fatty acids, is insufficient to cause a depression of 
fatty acid oxidation. Despite this observation, many studies have demon
strated that L-carnitine and LPC treatment can improve heart function in 
hearts from diabetic rats. We believe that the primary benefit of L-carnitine 
in these hearts is related to an increase in glucose oxidation (Table 1). In 
isolated working hearts obtained from diabetic rats, L-carnitine treatment 
dramatically increases glucose oxidation [27]. 

Decreased myocardial carnitine levels are also seen in hypertrophic hearts 
[39]. In severely hypertrophic hearts, carnitine depletion results in decreased 
rates of fatty acid oxidation [31]. In situations of mild hypertrophy, fatty 
acid oxidation can be depressed, but this is dependent on the perfusion 
conditions. In isolated working hypertrophied rat hearts, performing low 
work, fatty acid oxidation is depressed with a concomitant increase in glycoly
sis [2]. If these hearts are perfused with high levels of fatty acids, no decrease 
in fatty acid oxidation is observed [SchOnekess et al. unpublished]. This 
suggests that the carnitine deficiency seen in mild hypertrophy may only 
limit fatty acid oxidation if other sources of energy, such as carbohydrate 
metabolism, are able to be used as an alternate supply of ATP. In contrast, 
EI Alaoui-Talibi et al. [31] have found that the carnitine deficiency occurring 
in hypertrophic hearts does result in a decrease in fatty acid oxidation at 
both low and high work loads. Differences between our results and those of 
EI Alaoui-Talibi et al. [31] probably relate to differences in the severity of 
hypertrophy between the two experimental models used. Our model of 
pressure-overload hypertrophy resulted in a 38% increase in heart size [2], 
whereas the latter model of volume-overload hypertrophy resulted in nearly 
a 100% increase in heart size [31]. 

Effects of carnitine supplementation on myocardial oxidative metabolism 
and contractile function 

The supplementation of the myocardium with carnitine or LPC results in an 
increased tissue carnitine content, which lessens the severity of ischemic 
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Table 3. Effects of chronic L-carnitine or L-propionylcarnitine treatment on myocardial 
function. 

Treatment regimen 

L-carnitine treatment (oral 4 g/d for 1 
yr) of humans with recent myocardial 
infarction 

L-carnitine treatment of humans with 
cardiopathies 

L-carnitine treatment (oral 1.8 g/d for 
4-8 wk) of human patients with stable 
angina pectoris 

L-propionylcarnitine treatment (oral 
60 mg/kg for 8 wks) in aortic-banded 
rats 

L-propionylcarnitine treatment (ia 
50 mg/kg for 4 d) of aortic-banded rats 

L-propionylcarnitine treatment (ip 
100 mg/kg for 8 wk) of diabetic rats 

Unpublished data, Schonekess et al. 

Results on myocardial function 

Increased heart rate, systolic and 
diastolic pressure, lower mortality, 
decreased anginal attacks, and rhythm 
disorders 
Improved physical performance, 
decreased anginal attack rate and 
therapeutic use of nitrates 
Improves excercise tolerance 

Improved cardiac work at medium 
and maximal workloads (isolated 
working hearts) 

Improved cardiac function (in vivo) 
Lowered left ventricular end-diastolic 
pressure and increased relaxation rate 
(in vitro) 

Improved post-ischemic contractile 
performance 

Reference 

[45] 

[46] 

[47] 

unpubl. 

[26,44] 

[48] 

injury and improves the recovery heart function during reperfusion [24, 26, 
40-44]. The effects of L-carnitine or LPC administration in a variety of 
pathologies is shown in Table 3. Accumulating evidence suggests that the 
mechanism behind the beneficial effect of L-carnitine and LPC is not always 
via an increased rate of fatty acid oxidation or by decreasing the levels of 
potentially toxic levels of long-chain acyl-CoA. Carnitine mediated increases 
in the rates of carbohydrate metabolism (glucose and lactate oxidation) [4, 
43] provide an alternate mechanism by which L-carnitine and LPC exert 
their beneficial effects. 

If the heart is in a carnitine deficient state it would be expected that 
supplementation with carnitine or carnitine derivatives should result in a 
normalization of carnitine levels and therefore a normalization of fatty acid 
oxidation. However, we have found that in situations such as mild myocardial 
hypertrophy, where a decrease in tissue carnitine content is seen, the primary 
effect of increasing tissue carnitine content is to increase carbohydrate oxid
ation. Following acute LPC administration to hypertrophic hearts, the major 
metabolic response was an increased supply of A TP from the oxidation of 
glucose and lactate, suggesting that PDC activity was enhanced (Schonekess 
et aI., unpublished). In severely hypertrophic hearts, where a decrease in 
fatty acid oxidation occurs even in the presence of high levels of fatty acids, 
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it is possible that increasing carnitine levels in the heart will result in an 
increase in fatty acid oxidation. EI Alaoui-Talibi and Moravec have shown 
that LPC treatment will increase fatty acid oxidation rates (Z EI Alaoui
Talibi, personal communication). Regardless of whether LPC acts to increase 
carbohydrate or fatty acid oxidation, in both studies LPC treatment improves 
mechanical function in the hypertrophic hearts. 

Increasing myocardial tissue content can also alter heart metabolism even 
if a carnitine deficiency is not present. This can be seen in isolated working 
rat hearts which are perfused under conditions where fatty acid oxidation is 
the major source of ATP production. Increasing tissue carnitine content by 
L-carnitine pre-treatment results in a marked increase in glucose oxidation, 
with a parallel decrease in fatty acid oxidation [4]. Addition of LPC to hearts 
perfused under similar conditions also results in an increase in carbohydrate 
oxidation (both glucose and lactate) (Sch6nekess et al., unpublished). How
ever the effects of LPC on fatty acid oxidation rates are not as dramatic 
as they are with L-carnitine supplementation. This may be related to the 
observation that an increase in mechanical function occurs following adminis
tration of LPC. However, if rates of A TP production are normalized for 
differences in work, LPC does cause a shift in the metabolic profile away 
from fatty acid oxidation and towards carbohydrate oxidation. However, 
even when differences in work are considered, the major effect of LPC is to 
increase the amount of A TP derived from the oxidation of glucose and 
lactate. 

Beneficial effect of L-carnitine on glucose oxidation in the reperfused 
ischemic heart 

High levels of fatty acids have a detrimental effect on reperfusion recovery 
of hearts subjected to a severe episode of ischemia [30, 34]. While the exact 
mechanism by which fatty acid oxidation contributes to ischemic injury is 
not clear, our studies suggest that this may be related to their ability to 
inhibit glucose oxidation [34, 49-51]. High levels of fatty acid increase the 
intramitochondrial acetyl-CoAiCoA and NADHlNAD+ ratios [9], which in 
turn inhibits PDC through the activation of a pyruvate dehydrogenase kinase 
[9,52]. This inhibition of glucose oxidation during reperfusion can lead to a 
substantial imbalance between glycolysis and glucose oxidation during the 
actual reperfusion period [51]. This increases the production of H+ ions 
formed by the hydrolysis of glycolytically derived A TP. It is this imbalance 
and exaggerated production of H+ ions that we believe is mediating the 
detrimental effects of high levels of fatty acids on post-ischemic functional 
recovery. The production of H+ ions during ischemia and early in reperfusion 
could lead to increased activity of the N a + IH+ and the N a + ICa2+ -exchangers 
and result in a potentially damaging Ca2 + overload [53]. 

L-carnitine and LPC can improve functional recovery of hearts reperfused 
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following a severe episode of ischemia [4, 43]. However, although myocardial 
carnitine content decreases during ischemia [54, 55], the actions of carnitine 
and LPC cannot be explained secondary to a stimulation of fatty acid oxid
ation. This is because fatty acid oxidation rates are not depressed during 
reperfusion of ischemic hearts. In fact, due to the high circulating levels of 
fatty acids normally seen during reperfusion [56], fatty acid oxidation pro
vides over 90% of ATP production during reperfusion [34, 36, 37, 57]. In 
the presence of high levels of fatty acids, glucose oxidation provides only 5 
to 10% of the ATP requirements. As previously mentioned, if glucose oxid
ation is stimulated during reperfusion it is possible to overcome the detrimen
tal effect of high levels of fatty acids. Compounds which stimulate glucose 
oxidation directly by inhibiting the action of PDC kinase, such as dichlo
roacetate [50, 51], or indirectly such as CPT I inhibitors [34, 49] have the 
potential to improve post:ischemic functional recovery. Recently we have 
demonstrated that the beneficial effects of L-carnitine on functional recovery 
post-ischemia are also associated with a marked increase in glucose oxidation 
[43]. As a result, we hypothesize that the beneficial effects of L-carnitine 
and LPC in reperfused ischemic hearts occur secondary to a stimulation of 
glucose oxidation. 

Conclusions 

Carnitine is an essential co-factor for the transportation of fatty acyl groups 
into the mitochondrial matrix where they undergo ,B-oxidation and result in 
the production of A TP. It is becoming evident that carnitine also has an 
important role in the regulation of glucose oxidation. Secondary to facilitating 
the intramitochondrial transfer of acetyl groups from acetyl-CoA to acetylcar
nitine, L-carnitine can relieve inhibition of PDC. This role of L-carnitine 
may explain some of the beneficial effects associated with L-carnitine and 
LPC treatment in various pathological conditions. Furthermore, we believe 
that the well documented beneficial effects of L-carnitine and LPC in is
chemic hearts are best correlated with their ability to overcome fatty acid 
inhibition of glucose oxidation during reperfusion. 
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5. Accumulation of fatty acids and their carnitine 
derivatives during myocardial ischemia 

GER J. VAN DER VUSSE 

"The intracellular enzymatic machinery avidly converts fatty acids, keeping the cellu
lar level as low as possible. The latter condition promotes diffusion of fatty acids 
from the extracellular compartment to the cytoplasm of the cardiomyocyte by creating 
a concentration gradient across the sarcolemma and protects cellular structures against 
deleterious high levels of fatty acyl moieties." 

Introduction 

Fatty acids are important substrates for the heart. Under normal conditions 
fatty acids are continuously extracted from the extracellular space, trans
ported through the cytoplasm to the mitochondria by fatty acid-binding 
proteins (FABP), and converted to fatty acyl CoA. Part of acyl CoA is used 
for the formation of complex lipids (triacylglycerols and phospholipids), the 
majority of the acyl residues is channeled across the mitochondrial inner 
membrane into the mitochondrial matrix with the use of a carnitine-mediated 
transport system [1]. 

Inside the mitochondria the fatty acyl residues are oxidized to CO2 and 
H20 by the concerted action of enzymes in the f3-oxidation pathway, the 
citric acid cycle and the respiratory chain. In this way, energy present in the 
fatty acyl moieties is used for the regeneration of ATP from ADP. Fatty 
acid oxidation is fully dependent on molecular oxygen. When oxygen supply 
to the heart is hampered by, for instance, obstruction of blood flow in the 
coronary arteries (that is, ischemia) fatty acid oxidation is inhibited. Fatty 
acid intermediates of the f3-oxidative pathway readily accumulate in the 
ischemic tissue. Moreover, the tissue content of acyl carnitine and acyl CoA 
is found to be enhanced. Finally, fatty acids themselves accumulate in the 
oxygen-deprived myocardium. Increased levels of fatty acids and their CoA 
and carnitine derivatives might contribute to ischemia (and reperfusion) 
induced damage of the flow-deprived heart. 

In the present overview attention will be paid to the amount of these 
substances present in the normoxic and ischemic heart and to the mechan-

l. W. de long and R. Ferrari (eds): The carnitine system. 53-68. 
© 1995 Kluwer Academic Puhlishers. 
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ism(s) underlying accumulation of fatty acids and their eoA and carnitine 
derivatives, the time course of this process and the intracellular localization 
during the ischemic episode. 

Fatty acid uptake and utilization in the normoxic heart 

Supply of fatty acids to the heart 

Fatty acids are supplied to the heart either bound to plasma albumin or 
as triacylglycerols [2]. Triacylglycerols, forming the core of chylomicrons 
(released by the intestines) and very low density lipoproteins (produced by 
the liver), are hydrolyzed by lipoprotein lipase giving yield to fatty acids 
(Figure 1). Lipopotein lipase is synthetized in the cardiomyocytes and subse
quently transported to the endothelial cells. Attached to the luminal side 
of the endothelium, the enzyme exerts its hydrolytic action on lipoprotein 
triacylglycerols [2]. Fatty acids complexed to the fatty acid-carrier albumin 
originate from adipose tissue and from hydrolyzed lipoproteins. The trans
port of fatty acids across the endothelial wall is most likely a passive process 
driven by the concentration gradient between the vascular and interstitial 
space. It has been suggested that interaction sites at the luminal endothelial 
membrane promote the release of fatty acids from albumin [1]. 

Fatty acids cross the sarcolemma of the cardiomyocytes either by passive 
diffusion or by protein-mediated transport. Inside the cardiomyocytes fatty 
acid-binding proteins enhance the solubility of the fatty acid molecules in the 
aqueous cytoplasmic environment and, hence, facilitate the bulk transport of 
these substrates from the sarcolemma to the mitochondrial outer membrane 
(Figure 1). Acyl eoA synthetase, the bulk of which is attached to the 
cytoplasmic side of the mitochondrial outer membrane, promotes the conver
sion of fatty acids to fatty acyl eoA. The latter substance is at a cross-

FigureNl. Schematic representation of fatty acid uptake, transport and metabolic conversion in 
cardiac tissue. ALB refers to albumin, VLDL to very low density lipoproteins, chylo to chylo
microns, LPL to lipoprotein lipase, TG to triacylglycerol in the core of chylomicrons and VLDL, 
RC to respiratory chain, FA to fatty acid or fatty acyl, FABP to fatty acid-binding protein, CoA 
to Coenzyme A, fp to flavoprotein, FAD to flavine adenine dinucleotide, GDP to guanosine 
diphosphate, GTP to guanosine triphosphate, 0 to molecular oxygen, numbers in brackets to 
number of ATP moles produced. Other numbers refer to enzymes and transport proteins; 1, 
fatty acyl CoA synthetase; 2, carnitine acyl transferase (CAT -1); 3, carnitine-acylcarnitine 
translocase; 4, carnitine acyl transferase (CAT-II); 5, fatty acyl CoA dehydrogenase; 6, enoyl 
CoA hydratase; 7, 3-hydroxyacyl CoA dehydrogenase; 8, 3-ketothiolase; 9, acyltransferase I 

and II; 10, phosphatidate phosphatase and acyl transferase III; 11, phospholipid biosynthetic 
pathway; 12, triacylglycerol, diacylglycerol and monoacylglycerol lipases; 13, phospholipases. 
Solid and broken arrow lines refer to metabolic conversions and transport routes, respectively. 
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road of metabolic pathways. The fatty acyl residue can be incorporated in 
triacylglycerols, representing the store of fatty acids in the cardiac cell. Acyl 
CoA can also serve as substrate for synthesis of phospholipids, important 
building blocks of myocardial membranes. Under normal conditions the 
majority of fatty acids is used for regeneration of A TP from ADP in the 
mitochondrial matrix. Because the mitochondrial inner membrane is virtually 
impermeable for long-chain fatty acyl CoA, nature has designed an elegant 
transport mechanism to shuttle the fatty acyl moieties into the mitochondrial 
matrix. To this end, the CoA residue of acyl CoA is exchanged for carnitine 
by carnitine acyl transferase I, located at the innerside of the mitochondrial 
outer membrane (Figure 1). Fatty acyl carnitine is transported across the 
mitochondrial inner membrane in exchange for a molecule free carnitine in 
a 1:1 ratio. Inside the mitochondrial matrix, fatty acyl carnitine is converted 
to acyl CoA by carnitine acyl transferase II. This enzyme is located at the 
innerside of the mitochondrial inner membrane (Figure 1). Acyl CoA is 
subsequently degraded to acetyl CoA in a stepwise fashion (f3-oxidation). 
Acetyl CoA is catabolized in the citric acid cycle. Degradation of fatty acids 
is fully oxygen-dependent. It is uncertain which step in the overall oxidation 
of fatty acid is rate limiting. Under normal conditions all reaction steps seem 
to be very well fine-tuned by cytoplasmic and intramitochondrial levels of 
cofactors and intermediates, such as CoA, acyl CoA, carnitine and acyl 
carnitine, NADH and NAD+ [3]. As a consequence of the regulatory me
chanisms the enzymatic steps are in equilibrium and accumulation of substan
tial amounts of intermediates in the fatty acyl degradative pathway is pre
vented. It has been suggested that transport of fatty acyl residues across 
the mitochondrial inner membrane is the slowest step in cardiac fatty acid 
utilization when the supply of fatty acids from exogenous sources is increased. 

Rate of fatty acid oxidation in the normoxic heart 

In the normal functioning heart in situ on the order of 60 to 160 nmoles of 
fatty acids are consumed per gram tissue per minute [1]. The actual amount 
of fatty acids consumed by the heart depends on a variety of factors, including 
workload of the heart, blood levels of fatty acids, extracellular supply of 
competing substrates and the hormonal status of the animal or human person. 
In this regard it is noteworthy that the substrate lactate is an efficient inhibitor 
of cardiac fatty acid oxidation [4]. 

The content of fatty acids in the normoxic heart 

The content of fatty acids, that is, the fatty acids present in the cell in the 
unesterified form, either free or bound to cellular proteins, has been subject 
of extensive studies during the past decades. Although some investigators 
have claimed that the level of fatty acids is high (on the order of 1000 to 
25,000 nmol . g -1 wet weight; summarized in [5, 6]), carefully conducted 
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chemical analyses have revealed that the normal tissue content of fatty acids 
will not exceed 60 nmol . g -[ wet weight [6-9]. This observation stresses the 
notion that the intracellular enzymatic machinery avidly converts fatty acids, 
keeping the cellular level as low as possible. The latter condition promotes 
diffusion of fatty acids from the extracellular compartment to the cytoplasm 
of the cardiomyocyte by creating a concentration gradient across the sarco
lemma and protects cellular structures against deleterious effects of high 
levels of fatty acyl moieties [1]. 

The content of CoA and acyl CoA in normoxic myocardial tissue 

During the past two decades a host of investigators has reported on the tissue 
content of CoA and fatty acyl CoA derivatives. In Table 1 an arbitrary 
selection of data available in literature is presented. In general, the total 
amount of CoA (free and esterified to short, medium and long-chain fatty 
acyl residues) is on the order of 370 to 770 nmol per gram dry weight of 
tissue. Species differences appear to exist (Table 1). In the normoxic heart 
the majority of CoA is present in its free form. In dog and swine myocardial 
tissue, 25 to 30% of CoA is present as long-chain fatty acyl CoA (Table 1). 
In rat heart a smaller proportion appears to be esterified to fatty acyl residues, 
that is, on the order of 5 to 20%. The actual content of fatty acyl CoA 
depends on the concentration of fatty acids in the perfusion medium when 
isolated, buffer perfused rat hearts are considered. Addition of palmitate 
(up to 1.2 mM) to the perfusate increases the tissue content of fatty acyl 
CoA by approximately 60 to 300% [10-14]. 

The content of carnitine and fatty acyl carnitine in the normoxic heart 

The content of carnitine exceeds that of CoA severalfold. Table 2, repre
senting an arbitrary selection data published on cardiac carnitine levels, 
shows that total carnitine is on the order of 3000 to 10,000 nmol . g-1 dry 
weight in mammalian hearts. Species differences obviously exist. The data 
available suggest that the content in human heart is relatively high (varying 
from 6575 to 9600 nmol per gram dry weight of tissue), while mouse and 
swine hearts contain on the order of 4000 to 4500 nmol . g -1 dry weight 
(Table 2). Intermediate values are reported for cat and dog heart. The bulk 
of carnitine is present in its free, unesterified form. The actual tissue content 
of fatty acyl carnitine depends on a multitude of factors, while considerable 
inter-laboratory differences emerge from Table 2. In general, fatty acyl 
carnitine levels are low in isolated, glucose perfused rat hearts. Addition of 
palmitate to the perfusion buffer resulted in a significant increase of tissue 
acyl carnitine content. In one study this increase amounted to about 5000% , 
when palmitate in the perfusion buffer was increased from 0 to 2.0 mM [11]. 
Neely and Feuvray [13] observed in isolated rat hearts an increase of the 
acyl carnitine content from 303 to 872 nmol . g-1 dry weIght when 1.2 mM 
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Table 1. The content of free CoA and acyl CoA in the normoxic heart. 

Species Preparation CoA References 

Free Acyl Total 

Rat Unperfused 1 5112 59 570 Idell-Wenger et al. 
Perfused, palmitate 3952 179 574 1978 [10] 
(1.2 mM) 

Rat Perfused, glucose 351 28 698 Pieper et al. 1984 [11] 
Perfused, palmitate 196 105 484 
(2.0mM) 

Rat U nperfused 1 651 94 772 Lopaschuk and Neely 
Perfused, palmitate 165 254 706 1987 [12] 
(1.2 mM) 

Rat Perfused, glucose 95 Neely and Feuvray 
Perfused, palmitate 248 1981 [13] 
(0.4 mM) 
Perfused, palmitate 333 
(1.2mM) 

Rabbit U nperfused 1 42 Moore et al. 1984 [14] 
Perfused, glucose 71 
Perfused, palmitate 157 
(0.5 mM) 

Rabbit Unperfused 1 275 40 760 Ferrari et al. 1992 [15] 

Cat LV, in situ 3602 80 440 Reibel et al. 1983 [16] 

Dog LV, in situ 130 85 425 Shug et al. 1978 [17] 

Swine LV, e.c.p. 2532 118 372 Liedtke and Nellis 
1979 [18] 

Swine LV, e.c.p., FA 0.5 mM 143 Liedtke et al. 1988 [19] 
FA l.5mM 173 

1 Unperfused means immediately freeze-clamped after extirpation from the body. 2 Short-chain 
fatty acyl CoA esters are included. LV refers to left ventricular tissue; e.c.p. to extracorporal 
perfusion with blood; FA to fatty acids in blood. Data are expressed as nmol . g -1 dry weight 
of tissue. 

The conversion factor for the calculation of dry weight from wet weight was 5.0 for unperfused 
tissue. When the heart was perfused with a crystalloid buffer in a perfusion apparatus a factor 
of 6.0 was used. 
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Table 2. The content of free carnitine and acyl carnitine in the norm oxic heart. 

Species Preparation Carnitine References 

Free Acyl Total 

Mouse Unperfused 1 670 720 3960 Stearns 1983 [20] 

Rat Unperfused 1 1940 660 5385 Paulson et al. 1984 [21] 
Perfused, palmitate 3259 980 4241 
(1.2 mM) 

Rat U nperfused 1 4835 1275 7575 Shug et al. 1978 [17] 
Perfused, glucose 4510 550 5115 

Rat Unperfused 1 56452 48 5693 Idell-Wenger et al. 
1978 [10] 

Perfused, palmitate 58002 830 6600 
(1.2 mM) 

Rat Isolated cardiomyocytes 27002 40 2800 McHowat et al. 1993 
[22] 

Rat Perfused, glucose 3242 137 4804 Broderick et al. 1993 
[23] 

Rat Perfused, palmitate 2549 463 4276 Broderick et al. 1992 
(1.2 mM) [24] 

Rat Perfused, glucose 5771 32 6300 Pieper et al. 1984 [11] 
Perfused, palmitate 3071 131 4778 
(1.2 mM) 
Perfused, palmitate 1392 1679 6959 
(2.0mM) 

Rabbit Unperfused 1 2317 Moore et al. 1982 [25] 
Perfused, glucose 605 
Perfused, palmitate 1437 
(0.5 mM) 

Rabbit U nperfused 1 2350 25 4575 Ferrari et al. 1992 [15] 

Cat LV, in situ 5175 75 6150 Corr et al. 1989 [26] 

Dog LV, in situ 5215 1070 8465 Suzuki et al. 1981 [27] 

Dog LV, in situ 5115 565 6575 Shug 1979 [28] 

Dog LV. in situ 78072 279 8101 Vik-Mo et al. 1986 [29] 

Swine LV, e.c.p. 3545 167 4346 Molaparast -Saless et 
al. 1988 [30] 

Swine LV, e.c.p., FA 0.5mM 3787 157 4586 Liedtke et al. 1988 [19] 
FA l.5mM 3010 366 4746 

Human LV, in situ 7000 7700 Regitz et al. 1990 [31] 

Human LV, in situ 3845 1585 6575 Masumura et al. 1990 
[32] 

Human Right atrium in situ 2400 6750 9600 B6hles et al. 1986 [33] 

1 Unperfused means immediately freeze-clamped after extirpation from the body. 2 Short-chain 
fatty acyl carnitine esters are included. Data are expressed as nmol . g -1 dry weight of tissue. 
See also legend in Table 1. 
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palmitate was added to the perfusion medium. Striking inter-laboratory dif
ferences were found in rabbit hearts directly used for biochemical analysis 
after extirpation from the animal. Values measured varied from 25 to 
2317 nmol . g-l dry weight of tissue [15, 25]. No satisfactory explanations 
can be given for the observed differences. 

Very high acyl carnitine levels were found in human right atrial append
ages, collected during cardiopulmonary bypass operations [33]. 

Subcellular localization of fatty acids, eoA, carnitine and their derivatives in 
the normoxic heart 

No reliable information is available on the subcellular localization of fatty 
acids in normoxic myocardial tissue. Attempts to measure the content of 
fatty acids in subcellular fractions failed because lipolysis of endogenous 
lipids is stimulated during homogenization. An increase of a factor 3 in fatty 
acid content was observed when fresh rat cardiac tissue was homogenized 
in a sucrose-EDTA-Tris buffer (Van der Vusse and Roemen, unpublished 
results) . 

Earlier studies performed by Idell-Wenger and coworkers [10] have shown 
that over 95% of CoA is present in the mitochondrial compartment, mainly 
as free CoA. Only 5% of total CoA could be recovered from the cytoplasmic 
space. Acyl CoA was not detectable in the cytoplasm indicating that in the 
normoxic myocardium the majority of fatty acyl CoA is localized in the 
mitochondrial matrix. Later studies performed by Hutter and colleagues [34] 
revealed that total CoA is more equally distributed over the mitochondrial 
and cytoplasmic compartment (that is, 58 and 42%), respectively. On the 
order of 62% of long-chain acyl CoA was found to be present in the mito
chondria. 

According to the results of Idell-Wenger et al. [10] the majority of total 
carnitine is present in the cytoplasmic space. Approximately 8% of total 
carnitine was found to be associated with the mitochondria. No fatty acyl 
carnitine could be detected in the mitochondrial fraction, suggesting that 
almost all cellular fatty acyl carnitine molecules are present in the cytoplasm. 
In contrast, Hiitter and colleagues [34] reported that ~ 35% of total carnitine 
could be recovered from mitochondria, while on the order of 60% of all 
fatty acyl carnitine molecules are present in the mitochondrial compartment. 
The latter authors tried to explain the striking differences between their 
results and those published by the group of Neely by differences in techniques 
used to isolate mitochondria from cardiac tissue. 

Oram and coworkers [35] calculated a cytoplasmic carnitine to CoASH 
ratio of ~ 100 in normoxic rat hearts. This high ratio may function to channel 
fatty acids towards oxidation in the mitochondrial matrix rather than syn
thesis of complex lipids in the cytoplasmic compartment. 
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Fatty acid oxidation in the ischemic heart 

Uptake and utilization of fatty acids during ischemia 

Myocardial ischemia results from impeded blood flow through the coronary 
arteries. As a consequence supply of substrates, including fatty acids, and 
molecular oxygen is decreased which results in substantial alterations in 
energy conversion in the cardiac cells. Contractile function declines rapidly 
with a concomitant decrease in the energy requirement of the cardiomyocyte. 
Insufficient supply of oxygen leads to a shift from oxidative conversion of 
energy to the glycolytic production of A TP while lactate formation is in
creased. When ischemia is partial, that is, some blood is still flowing through 
the coronary vessels, glucose competes favorably with fatty acids for the 
residual amount of molecular oxygen [36]. Fatty acid uptake by the ischemic 
cells declines proportionally with the reduction in blood flow through the 
coronary arteries [37]. 

Lack of oxygen has a severe effect on fatty acid oxidation. Flavine adenine 
dinucleotide (FAD), the obligatory receptor of hydrogen atoms in the con
version step of fatty acyl CoA to trans-~-2 enoyl CoA (Figure 1), will 
accumulate in its reduced form, since the supply of molecular oxygen to 
convert FADH2 back to FAD is insufficient. A high FADH2IFAD ratio 
will hamper the catalytic activity of fatty acyl CoA dehydrogenase. Besides 
molecular oxygen is required for the regeneration of NAD+ from NADH in 
a subsequent step in the f3-oxidative pathway, that is, the conversion of 3-
hydroxy acyl CoA to 3-ketoacyl CoA. Finally, oxygen is indispensable for 
an adequate flux of the acetyl residue of acetyl CoA in the citric acid cycle 
(Figure 1). From these considerations, it will be clear that lack of molecular 
oxygen compromises a variety of steps in the overall degradation of fatty 
acids in the ischemic cardiomyocytes. When the supply of fatty acids, either 
from extracellular or intracellular sources, exceeds the compromised capacity 
to dispose the fatty acyl moieties in the oxidative pathway, intermediates of 
the metabolic pathway will accumulate in the affected cells. Furthermore, it 
cannot be excluded that changes in the intracellular milieu of the ischemic 
cardiomyocytes have a profound effect on the activity of enzymes and trans
port proteins involved in fatty acid catabolism. In this respect, Pauly and 
coworkers [38] indicated that carnitine palmitoyl transferase I in mitochon
dria isolated from ischemic hearts is less sensitive to the inhibitory action of 
malonyl CoA than in mitochondria of normoxic cardiac tissue, which may 
give rise to enhanced production of fatty acyl carnitine in the flow-deprived 
tissue. 

It should be realized that the ultimate effect of ischemia on cardiac fatty 
acid metabolism depends on a multitude of factors, such as the severity (no
flow vs. low-flow) and duration of ischemia, the concentration of fatty acids 
and the presence of competing substrates in the blood or perfusion medium 
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flowing through the coronary vessels and the level of hormones, known to 
exert an effect on cardiac lipid metabolism. 

Accumulation of fatty acyl CoA and carnitine esters in the ischemic heart 

Experimental findings indicate that in isolated rabbit hearts, perfused with 
palmitic acid, low-flow ischemia readily results in high tissue levels of f3-
hydroxypalmitate and f3-hydroxystearate. Moreover, accumulation of f3-hy
droxyacyl carnitine and f3-hydroxyacyl CoA occurred in the rabbit hearts 
within 2-5 minutes after the onset of ischemia [25, 39]. A host of investigators 
has shown that also fatty acyl CoA and fatty acyl carnitine accumulate in 
the ischemic heart [10, 17, 26-30, 40-44]. In general, the accumulation of 
fatty acyl carnitine was quantitatively more pronounced than fatty acyl CoA. 

Attempts to delineate the time courses of acyl CoA and acyl carnitine 
accumulation in flow-deprived tissue revealed that alterations in the tissue 
content of these fatty acyl esters occurred rapidly after the onset of ischemia. 
Shrago and colleagues [42] observed a doubling of the tissue content of acyl 
CoA within 15 minutes after ligation of the coronary artery. Comparable 
findings were obtained in isolated, low-flow ischemic rat hearts [21]. In the 
same study [21] the tissue content of acyl carnitine was found to be increased 
by ~ 150% within 30 minutes of low-flow ischemia. More detailed investi
gations performed by Idell-Wenger and Neely [3] indicate that in isolated 
rat hearts fatty acyl carnitine and fatty acyl CoA significantly accumulate 
already 5 minutes after the onset of ischemia. The notion that tissue levels of 
fatty acyl carnitine rapidly increase during ischemia is supported by findings 
published by Feuvray et al. [43]. 

Paulson and colleagues [21] have reported that the alterations in tissue 
levels of fatty acyl CoA and carnitine esters strongly depend on the presence 
of residual flow through the coronary arteries of the ischemic heart. When 
no-flow ischemia was applied, isolated rat hearts did not show any change 
in the level of fatty acyl CoA and fatty acyl carnitine in contrast to low-flow 
ischemic hearts. This observation is supported by earlier findings of Neely 
and coworkers, revealing that in autolysing rat heart tissue no significant 
increase in the level of fatty acyl CoA and fatty acyl carnitine occurs [45]. 
The observations suggest that the fatty acyl moieties of accumulating acyl 
CoA and acyl carnitine are mainly derived from extracellular sources, such 
as fatty acids complexed to albumin in the vascular and interstitial compart
ment [46]. 

Intracellular site of accumulation of fatty acyl CoA and acyl carnitine 

Several attempts have been made to delineate the intracellular site of ac
cumulation of acyl CoA and acyl carnitine during ischemia or hypoxia. Idell
Wenger and coworkers [10] found that increased tissue contents of fatty acyl 
CoA was associated with elevated mitochondrial levels of the fatty acyl ester. 
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These findings were corroborated by observations made by Kotaka and 
colleagues [40], Lochner et al. [41] and Feuvray and Plouet [46]. Detailed 
studies performed by Idell-Wenger and coworkers [10] and Hutter and col
leagues [34] revealed that in low-flow ischemic and hypoxic rat hearts 100 and 
80%, respectively, of total tissue acyl CoA was present in the mitochondrial 
fraction. With respect to fatty acyl carnitine deviant findings are reported in 
the literature. Idell-Wenger and colleagues [10] calculated that ~20% of the 
total fatty acyl carnitine pool of mildly ischemic rat hearts is located inside 
the mitochondria. Ischemia was applied for 20 minutes. In contrast, Hutter 
and co-investigators [34] estimated that in rat hearts made hypoxic for 90 
min, over 80% of fatty acyl carnitine is confined to the mitochondrial com
partment. It is uncertain whether the conflicting results regarding intracellular 
localization of fatty acyl carnitine can be ascribed to either differences be
tween hypoxia and mild ischemia or to differences in duration of oxygen 
deprivation. In this respect it is of interest to note that McHowat and cowork
ers [22] observed that the proportion of fatty acyl carnitine in the mitochon
drial compartment of isolated cardiomyocytes exposed to hypoxia increased 
from ~20% (normoxic control) to 30 and 60% when the hypoxic period 
lasted 10 and 20 minutes, respectively. In the latter study, the intracellular 
localization of fatty acyl carnitine was assessed by electron microscopical 
autoradiography. 

Lamers and coworkers [47] used a biochemical radioisotopic technique to 
assess the intracellular accumulation of fatty acyl carnitine in ischemic pig 
hearts. They concluded that fatty acyl carnitine preferentially accumulates 
in the sarcolemma of flow-deprived hearts. Besides they concluded that the 
content of acyl carnitine present in the cell membrane was insufficiently high 
to account for the alterations in sarcolemmal sodium and calcium perme
ability that readily occur during the ischemic episode. 

Recent studies performed by McHowat and coworkers [22] indicated that 
in isolated rat cardiomyocytes exposed to 20 minutes of hypoxia the content 
of fatty acyl carnitine in the sarcolemma increased ~-100 fold. The content 
in the mitochondrial compartment doubled, while no change occurred in the 
cytoplasmic and nuclear space. When the enzymatic activity of carnitine acyl 
transferase I was blocked by sodium 2-[5-( 4-chlorophenyl)-pentyl]-oxirane-
2-carboxylate (abbreviated POCA), the accumulation of fatty acyl carnitine 
in the sarcolemma was found to be completely prevented. Interestingly, 
Wu and colleagues [48] observed that the hypoxia-induced increase of the 
sarcolemmal content of fatty acyl carnitine preferentially took place in the 
membranes composing the gap junctions between two adjacent cardio
myocytes. This phenomenon was associated with a significant decline in 
electrical cellular coupling. 
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Figure 2. Time course of the accumulation of fatty acids in no-flow ischemic rat hearts [from 
ref. 58]. Hearts were obtained from male Lewis rats and perfused with a modified Krebs
Henseleit buffer containing glucose (11 mM) and pyruvate (5 mM) prior to ischemia. Hearts 
were freeze-clamped after 0, 10, 30, 45, 60 or 90 minutes of ischemia, respectively, and the 
tissue content of fatty acids was determined with a gas-chromatographic technique [54]. Fatty 
acids are denoted by their chemical notation. 

Accumulation of fatty acids in the ischemic heart 

In addition to fatty acyl CoA and fatty acyl carnitine, unesterified fatty acids 
accumulate in the ischemic heart [37, 49-57]. Unlike fatty acyl CoA and acyl 
carnitine fatty acid accumulation in oxygen-deprived hearts appears to be a 
relatively slow process. Experiments performed on regional ischemic dog 
hearts [49, 53] indicate that fatty acid accumulation does not occur earlier 
than 20 minutes after the onset of ischemia, In isolated, no-flow ischemic rat 
hearts fatty acids started to accumulate to a significant extent only after 30 
minutes of flow cessation (Figure 2) [58]. 

Relation between fatty acid accumulation and tissue fatty acyl CoA and 
carnitine levels in the ischemic heart 

The above mentioned findings suggest that inhibition of fatty acid oxidation 
in the ischemic myocardium results initially in storage of excess fatty acid 
moieties in the acyl carnitine and to a lesser extent the acyl CoA pool. It 
cannot be excluded that part of the fatty acid residues are stored in intracellu
lar triacylglycerol due to enhanced levels of acyl CoA and glycerol-3-phos-
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phate, the precursors of myocardial triacylglycerol synthesis [1]. Fatty acids, 
accumulating during prolonged myocardial ischemia, are most likely derived 
from the intracellular phospholipid pool, since arachidonic acid contributes 
substantially to the accumulating fatty acids [37, 49, 53, 54]. In normal 
conditions arachidonic acid is predominantly incorporated in membrane pho
spholipids and enhanced levels of this fatty acid in cardiac cells is commonly 
taken as a measure of intracellular phospholipid hydrolysis. The fact that in 
isolated, no-flow ischemic rat hearts, accumulation of fatty acyl carnitine is 
virtually absent [21, 45], while fatty acid levels are significantly enhanced 
[54, 57], strongly suggests that fatty acids liberated from endogenous stores 
have no access to the enzymatic machinery to convert fatty acids to their 
respective carnitine esters. Alternatively, the enzymes involved in acyl carni
tine formation may become blocked under prolonged ischemic conditions. 
Detailed experiments are needed to elucidate the relationship between the 
source of fatty acids and the accumulation of acyl CoA and acyl carnitine in 
flow-deprived cardiac tissue as a function of time. 

Concluding remarks 

Accumulation of the fatty acyl CoA and fatty acyl carnitine rapidly occurs 
in oxygen-deprived cardiac tissue. The cellular increase of un-esterified fatty 
acids is a relatively slow process indicating that excess fatty acids are preferen
tially stored as their CoA and carnitine esters during the acute phase of 
ischemia. Acyl CoA predominantly accumulates in the mitochondrial matrix, 
while the majority of acyl carnitine moieties preferentially accumulates in 
the sarcolemma of the oxygen deprived cardiomyocytes. 
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6. Carnitine acy1carnitine translocase in ischemia 

JEANIE B. McMILLIN 

"The expression of a limitation in carnitine acylcarnitine translocase activity relevant 
to human ischemic heart disease may be found only in those myocardial cells which 
are severely compromised and thus, may only be part of the end-stage sequellae of 
injury and cell death." 

Introduction 

Fatty aeid oxidation in the heart: role of the earnitine transloease 

The role of fatty acid oxidation as a major source of energy to the contractile, 
working heart is well-established. However, the mechanism( s) by which the 
r:ltes of long-chain fatty acid oxidation are controlled in the heart is (are) 
not as well understood as in the liver where the lipogenic substrate, malonyl
CoA, acts as a switch to partition fatty acids between synthesis and degra
dation [1]. Early studies in the working heart concluded that, at low levels 
of pressure development, rates of J3-oxidation are limited by the disposal of 
acetyl-CoA through the citric acid cycle [2]. Recent evidence from the per
fused, working rat heart [3] suggests that, similar to liver, the level of fatty 
acid oxidation directly reftects changes in activity of the tissue-specific acetyl
CoA carboxylase activity present in the cardiac myocyte. These results sup
port the view that in the heart, the primary role for malonyl-CoA is the 
regulation of fatty acid flux through J3-oxidation by inhibition of carnitine 
palmitoyltransferase I (CPT-I) on the outer mitochondrial membrane [4]. 
This situation may vary, however, depending upon the work load to the 
heart. When levels of cardiac work are increased, increases in fatty acylcarnit
ine and decreases in fatty acyl-CoA are observed concomittent with an 
acceleration of J3-oxidation [2]. Since the long-chain acylcarnitine produced 
by CPT-I must be transported across the mitochondrial membrane to CPT
II in exchange for one molecule of carnitine from the matrix, these authors 
suggested that the increase in acylcarnitine accumulation observed at high 

l. W. de long and R. Ferrari (eds): The carnitine system. 69-82. 
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Table 1. Carnitine acy1carnitine translocase activities in ischemic heart mitochondria: 
a comparison to aging. 

Condition 

Controla 

Ischemica 

Menhaden oil 
Controlb 

Ischemicb 

Mature rate (12 mos) 
Aged rat" (30 mos) 
Young ratd (6 mos) 
Aged ratd (24 mos) 

Carnitine 
exchange activity 

nmollmin/mg protein 

(n = 4) 0.54 ± 0.08 
(n = 9) 0.31 ± 0.05 

(n = 8) 0.47 ± 0.04 
(n = 4) 0.35 ± 0.09 
(n = 5) 0.88 ± 0.10 
(n = 5) 0.49 ± 0.03* 
(n = 7) 0.71 ± 0.03 
(n = 5) 0.46 ± 0.04" 

Values represent the mean ± SE. 
a [60]. b [63]. e [9]. d [8]. 

Palmitoy1carnitine 
exchange activity 

(n = 7) 0.13 ± 0.03 
(n = 6) 0.10 ± 0.02 

(n = 4) 0.24 ± 0.04 
(n = 4) 0.07 ± 0.02" 
(n = 5) 0.24 ± 0.01 
(n = 5) 0.07 ± 0.01 t 
Not determined 
Not determined 

* Significantly different from control values p < 0.05. 
" Significantly different from control values, p < 0.001. 

[Carnitine] 

nmol/mg 

(n = 12) 1.54 ± 0.15 
(n = 8) 1.28 ± 0.42 

(n = 4) 2.27 ± 0.22 
(n = 4) 1.02 ± 0.10" 
(n = 7) 1.40 ± 0.18 
(n = 5) 0.96 ± 0.19* 
(n = 5) 1.05 ± 0.03 
(n = 5) 0.82 ± 0.02* 

work loads reflects a limitation in the carnitine-dependent pathway at the 
carnitine acy1carnitine translocase (CAT). The speculation that CAT may 
exert rate-limitation on fatty acy1carnitine oxidation under certain conditions 
has drawn support from observations that diabetic ketosis [5], and substrate
dependent activation [6] can up-regulate the rate of acy1carnitine translo
cation in liver and heart mitochondria, respectively. In the majority of these 
studies, it is likely that the expression of CAT activity is greatly influenced 
by variations in the matrix content of carnitine, the latter present at concen
trations which are subsaturating under normal transport conditions [5, 71. A 
decrement in matrix carnitine with aging [8,9] has been proposed to account 
for the decreased rates of CAT activity and palmitoy1carnitine oxidation in 
heart mitochondria from 24-30 month-old rats (Table 1). A related inability 
of palmitate to depress glucose extraction in the perfused working old rat 
heart suggests a direct physiological consequence of diminished acy1carnitine 
exchange on cardiac energy metabolism in aging [9]. The physiological impor
tance of CAT has been further emphasized in clinical cases of genetic defici
encies reported in the translocase (see below). The functional ramifications 
of decreased or limiting CAT activity will be discussed below in relation to 
cardiac-specific effects. 

Fatty acid metabolism in ischemia 

Research on substrate metabolism in models of cardiac ischemic injury de
monstrates the following changes. In substrate extraction studies following 
coronary artery ligation, glucose uptake and metabolism are accelerated 
relative to that of fatty acid, even in areas where residual oxidative metabol-
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ism continues to contribute to 14C02 production [10]. This pattern is consis
tent with a decreased aerobic production of A TP by mitochondrial oxidative 
phosphorylation due to lowered cellular oxygen tension, and an increase in 
glycolytic metabolism. As a result, tissue levels of acetyl-CoA (from fatty 
acids and glucose) and citrate acid cycle intermediates decrease as a result 
of pyruvate conversion to lactate and esterification of extracted long-chain 
fatty acids. The first major consequence of ischemia on metabolism in the 
heart is the inability of glycolysis to maintain cellular A TP at levels required 
for continuation of contractile function. With accumulation of lactate in the 
cell and increases in the myocyte NADHlNAD+ ratio, glycolysis eventually 
becomes inhibited as a consequence of limitation at the glyceraldehyde-3-P 
dehydrogenase step [11]. With restoration of blood flow and oxygen to the 
ischemic myocardium, consistent beneficial effects of glycolytic substrates on 
the recovery of contractile function have been reported in a variety of models 
and conditions [12, 13]. In contrast, the presence of fatty acids in the serum 
or perfusate of ischemic heart appears to be associated with deleterious 
effects on cardiac contractility and rhythm. 

In 1972, the British cardiologist, M.F. Oliver observed that "there is 
increasing evidence that high arterial blood concentrations of free fatty acids 
can depress myocardial performance by leading to ventricular arrhythmias 
and decreased contractility" [14]. Since the level of free fatty acids in the 
serum is important in determining the substrate selectivity of the heart, 
and since these fatty acids increase dramatically following ischemia, the 
relationship between fatty acid metabolism and the recovery of contractile 
function in the ischemic heart has been extensively investigated. It is estab
lished that fatty acid oxidation decreases relative to glucose utilization during 
ischemia [10]. As a result, the entire tissue content of CoA (95% mitochon
drial) is present as long-chain acyl-CoA (299 nmol/g dry weight heart) and 
aclycarnitines increase five fold from 0.83 f.Lmollg in normoxia to 4.4 f.Lmollg 
in severe ischemia [15]. The latter levels of acylcarnitine are well within the 
concentration range known to affect both sarcolemmal and sarcoplasmic 
reticulum ion transporters, thereby potentially contributing to changes in the 
cellular ionic gradients during ischemia (see discussion below) [16, 17]. Free 
fatty acids also increase in the heart, the levels being dependent on the time 
of ischemia. The observation that fatty acids increase infarct size [18] has 
been attributed to increases in residual oxygen utilization and to ATP wasting 
via a proposed "triacylglycerol cycle" [19]. 

Physiological role of CAT in ischemic fatty acid metabolism 

Although the majority of the acy1carnitines accumulated during the ischemic 
interval are extramitochondrial, a net transfer of long-chain and acid-soluble 
carnitine into the mitochondrial matrix occurs, suggesting that a net inward 
translocation of acy1carnitines can take place independent of the 1: 1 exchange 
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stoichiometry of the carrier, possibly by a unidirectional mechanism of facili
tated diffusion as proposed by Schulz and Racker [20] and Pande and Parvin 
[21]. Based on experiments with liver mitochondria from ketotic rats [5] and 
on the decreased tissue and mitochondrial carnitine levels found in aging 
rats [22, 23], it seems likely that the purpose of the unidirectional movement 
of carnitine is to adjust mitochondrial levels to changes in tissue carnitine 
concentration. Since long-chain acylcarnitines have a higher affinity for the 
translocase compared to free carnitine, the concentration gradient of long
chain acylcarnitine (either free or bound to the mitochondria) may appreci
ably influence the inward movement of carnitine and carnitine esters into 
the mitochondrial matrix. Thus, in ischemia, where cytosolic free carnitine 
concentrations decrease and acylcarnitine levels rise from 0.4 to 1.95 mM, 
the observed doubling of the matrix content of carnitine should reflect this 
inward transport of acylcarnitines into the mitochondria [15, 24]. The in
creased mitochondrial content of acyl-CoA and acylcarnitine is a physiologi
cal response to the pathology of ischemia where f3-oxidation is slowed or 
inhibited. The proximity of fatty acyl groups to matrix enzymes of oxidative 
metabolism increases the probability of rapid catabolism upon the restoration 
of oxygen with reflow after ischemia (see below). 

CA T and ischemic reperfusion 

With the exception of a few studies which suggest decreased extraction and 
oxidation of fatty acids in the heart following ischemia using positron imaging 
[25] and 14C-palmitate infusion studies in humans [26), the majority of evi
dence from animal models of ischemia suggests that fatty acids are preferen
tially extracted and oxidized compared to glucose in the post-ischemic, reper
fused heart [12, 27]. When both endogenous and exogenous fatty acid pools 
were labelled with [l-14C)palmitate and [9,10-3H]palmitate, respectively, 
measurement of fatty acid oxidation in the ischemic, reperfused hearts ex
ceeded the steady-state, pre-ischemic rates [28]. Other investigators have 
also shown an increase in fatty acid oxidation during reperfusion of ischemic 
swine hearts [29]. Interestingly, the "burst" of endogenous fatty acid oxid
ation does not reflect an increased rate of endogenous tissue triacylglyceride 
lipolysis [28]. Although it has been suggested that the accelerated endogenous 
fatty acid oxidation may be explained by the presence of more than one 
triglyceride pool [30), it is also likely that the observed brief increase in 
[1-14C)palmitate oxidation reflects, in part, immediate metabolism of the 
accumulated mitochondrial long-chain acyl-CoA and acylcarnitine deriva
tives. The sustained acceleration in the rates of oxidation of exogenous 
fatty acid indicates a rapid drop in cytosolic ratios of acyl-CoA/CoA and 
acylcarnitine/carnitine (from the elevated ischemic ratios) to facilitate fatty 
acid activation and f3-oxidation during reperfusion [31]. It is also possible 
that an additional consequence of the oxidation of matrix acylcarnitine is a 
unidirectional efflux of free carnitine from the mitochondria to reestablish 
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matrix:cytosol CAT equilibrium. The extent to which CAT limits f3-oxidation 
when fatty acid metabolism is accelerated during reperfusion has not been 
specifically addressed. However, the small but significant elevation of long
chain acylcarnitine with reperfusion [12] is similar to the pattern observed in 
aerobic hearts at high work load suggesting that the rate of acylcarnitine 
oxidation may also become rate-limiting to acetyl-CoA production [2] under 
conditions of ischemic reperfusion. 

Acylcarnitine accumulation and contraction of the postischemic heart 

As discussed above, there now appears to be a consensus that fatty acid 
oxidation contributes significantly to energy metabolism in the reperfused 
ischemic heart [12,27]. However, in distinction to the aerobic heart, reper
fusion of the ischemic heart with fatty acids does not support the return of 
contractile function as well as reperfusion of hearts with glucose alone as an 
energy substrate. In fact, inhibition of fatty acid metabolism by specific 
inhibitors of CPT-I appears to be beneficial to the mechanical recovery of 
the ischemic heart [12, 27, 32]. These observations have been explained by 
the arrhythmogenic effects of membrane long-chain acylcarnitine accumu
lation [27, 33, 34]. The deleterious consequences of acylcarnitines on cardiac 
function have been proposed to result from disrupted cardiac ion homeostasis 
by specific inhibition of sarcolemmal Na +, K+ -ATPase [16, 35] as well as of 
the Ca2 + -ATPase of the sarcoplasmic reticulum [17]. Inhibition of these 
membrane pumps has been proposed to account for the rise in cellular Ca2 + 
documented in ischemic and postischemic heart [36, 37]. Increased cellular 
Ca2 + occurs as a result of a stimulation of N a + _Ca2 + exchange activity 
subsequent to Na + pump inhibition [37], and increased Ca2+ efflux from the 
sarcoplasmic reticulum [17]. In a cultured myocyte model of hypoxia, long
chain acylcarnitine concentrations increase 70-fold in the sarcolemma with 
concomittant depression of cell membrane potentials [33]. These effects were 
prevented by incubation of the cells with the CPT -I inhibitor, phenylalkyloxi
rane carboxylic acid (POCA). The effects of palmitoylcarnitine may also be 
explained by its inhibitory action on cytosolic lysophospholipase [38] thereby 
permitting lysophosphatidylcholine to accumulate and exert additive electro
physiological effects [38]. Meszaros and Pappano have speculated that palmi
toylcarnitine may also affect the voltage and time-dependent Ca2+ currents 
by lengthening the action potential duration and eventually producing cellular 
Ca2+ overload [39]. In addition, the ability of palmitoylcarnitine to reduce 
the negative surface charge of the sarcolemma appears to shift the voltage
dependent activation of the calcium current to less negative potentials [40]. 
Alterations in cellular Ca2 + metabolism in cardiac ischemia [37] and the role 
of metabolic amp hip hiles in this process have been reviewed in detail by Katz 
and Messineo [41]. Although the accumulation of long-chain acylcarnitines 
appears to be contributory to the onset of arrhythmias, other workers have 
dissociated the cellular accumulation of these compounds from the overall 
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depression in mechanical performance ("stunning") which occurs during 
ischemic reperfusion [42, 43]. Other studies also in the isolated, perfused rat 
heart employed a presumptive inhibitor of CAT which prevents mitochon
drial, but not cytosolic acylcarnitine accumulation. In the presence of this 
inhibitor, the accelerating effects of fatty acids on cardiac injury were not 
observed [44]. Despite an elevation of cytosolic palmitoylcarnitine, no causal 
effects between this accumulation and ischemic cell injury could be shown. 

Clinical findings in carnitine translocase deficiency 

Conditions which mimic the interrupted fatty acid metabolism of myocardial 
ischemia are genetic deficiencies in carnitine palmitoyltransferase II and in 
the carnitine acylcarnitine translocase. Loss in the expression of either of 
these activities would result in acylcarnitine accumulation, either by an in
ability to trans esterify acylcarnitine to coenzyme A via CPT-II, or by the 
inhibition of acylcarnitine transfer to the mitochondrial matrix on the trans
locase, respectively. In the first example, CPT-II deficiency was suspected 
following the inability of a 3 month-old boy to produce ketone bodies follow
ing a long-chain triacylglyceride loading. A greater than 90% CPT-II defici
ency, diagnosed in fibroblasts from the patient was associated with elevated 
plasma creatine kinase, indicating muscle cell damage [45]. Consistent with 
the experimental findings of electrophysiological abnormalities accompanied 
by long-chain acylcarnitine accumulation, the affected child demonstrated 
"premature ventricular complexes, auriculoventricular block, and ventricular 
tachycardia". Sudden death followed an overnight fast. 

The capability of measuring mitochondrial CAT activity in fibroblasts and 
in whole muscle biopsies from patients was developed by Murthy et al. 
[46]. By monitoring [14C]acetylcarnitine synthesis from [2_ 14C]pyruvate, it is 
possible to detect possible deficiencies in CAT activity in small samples 
without the need to isolate mitochondria. Using this methodology, a virtually 
complete blockage of f3-oxidation in an infant was localized to the relative 
absence of CAT, but not CPT-lor CPT-II, in the patient's fibroblasts [47]. 
At early onset of the disorder, the patient exhibited recurrent premature 
ventricular contractions, tachycardia and hypotension. Before death at 3 
years of age, plasma creatine kinase was elevated and mild ventricular hyper
trophy was noted. In a related report on a male infant who died 8 days after 
birth, the deficiency in CAT content was total [48]. Again, oxidation of long
chain fatty acids was almost absent although both CPT-I and CPT-II levels 
were normal as described in the preceding case. Although not measured, a 
marked build-up of long-chain acylcarnitines is to be expected. Consistent 
with this prediction, cardiac abnormalities consisted of a first degree auriculo
ventricular block and left bundle branch block. It follows that a deficiency 
in the cardiac isoform of CPT-I should not be associated with electrophysiol
ogical abnormalities. Such a specific lesion localized specifically to muscle 
has not yet been reported. However, a defect in CPT-I expression in the 
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liver is not associated with palmitoylcarnitine accumulation and cardiac in
volvement is lacking [49, 50]. Therefore, drawing from the body of knowl
edge concerning the relationship between accumulation of cellular amphi
philes in ischemia, and associated arrhythmias, it has been suggested that 
neonates and infants presenting with cardiovascular symptoms and cardiac 
arrest should be considered as candidates for potential genetic defects in 
long-chain fatty acid oxidation [48]. 

Physiological factors as modifiers of CAT activity 

Apart from genetic mechanisms which act to alter CAT levels and activity 
in the mitochondria, cellular factors may also playa role in carrier function. 
Mitochondria isolated from ischemic heart show markedly depressed oxid
ation of palmitic acid [51] as well as palmitoylcarnitine [52]. While decreased 
,B-oxidation in ischemia can be attributed to decreased oxygen tension in the 
affected tissue, mitochondria are still unable to oxidize long-chain fatty acids 
at control rates when they are subsequently isolated and exposed to oxygen
ated medium. Other studies on mitochondria isolated from chronically is
chemic dog heart demonstrate unaltered oxidation of medium-chain fatty acid 
substrates, suggesting a potential defect in the carnitine palmitoyltransferase
translocase system [53]. Changes in the kinetics of both CPT-I and CPT-II 
have been detected in mitochondria from ischemic heart [54]; however, 
only a few studies have examined the activity of CAT as a consequence of 
myocardial ischemia. The observation that the rate constant for liver CAT 
exceeds that of cardiac mitochondria by IS-fold [21] suggests that any further 
decrement of CAT activity in heart could potentially limit fatty acid oxidation 
when fatty acid pressure is high, e.g. during initial stages of ischemic reper
fusion. 

Thiol reduction 

An early characterization of the properties of the translocase demonstrated 
that the protein activity is very sensitive to thiol modification [55]. Approxi
mately 4 thiol residues appear to be intimately associated with the carnitine 
binding site since inhibition by the reversible SH inhibitor, mersalyl, is 
competitive with respect to carnitine [55]. For optimal activity, it appears 
that CAT must retain these thiols in a reduced state. In the physiological 
setting, the high intracellular concentration of glutathione (GSH) appears to 
act as the major intracellular protein disulfide reductant [56]. Although large 
changes in cellular redox do not occur normally in most tissues, a proposed 
role for oxidative stress during ischemia and ischemic-reperfusion injury [57] 
is consistent with the lowered ischemic tissue levels of glutathione [58, 59]. 
A decrease in mitochondrial matrix glutathione (GSH) correlates with de
creased CAT activity following one hour of total circumflex artery occlusion 
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Figure 1. The relationship between ischemia-associated changes in heart mitochondria and 
carnitine acylcarnitine translocase activity. The quantitative values for the control parameters 
are found on the appropriate control (open) bars. All results are the mean ± SE. Subsequent 
changes in matrix reduced glutathione (GSH), mitochondrial membrane cardiolipin, and carni
tine acylcarnitine translocase (CAT) are expressed as % Control following either sixty minutes 
left circumflex occlusion (striped bar), occlusion followed by twenty minutes reperfusion (closed 
bar), or mitochondria isolated from sixty-minute ischemic canine heart and incubated with the 
thiol reductant, dithiothreitol (DIT, cross-hatched bar). For the GSH measurements, the 
number of animals are: Control, N = 6; Ischemic, N = 4; Reperfused, N = 5. For cardiolipin 
determinations: Control, N = 7; Ischemic, N = 6; Reperfused, N = 6, and for carnitine aclycarni
tine translocase activities (CAT), the numbers of animals are: Control, N = 4; Ischemic, N =9; 
and Reperfused, N = 2. 

[60] (Figure 1). Protein thiols from mitochondria isolated from ischemic 
hearts are also significantly decreased from the preocclusion value [54]. 
Furthermore, incubation of ischemic mitochondria with either GSH or the 
chemical reducing agent, dithiothreitol, reverses the loss in activity measured 
(Figure 1). Although similar reducing protocols were not carried out on 
mitochondrial CAT from reperfused hearts, it was anticipated that the partial 
restoration of matrix GSH observed on reperfusion (Figure 1) would increase 
CAT activity, at least slightly. However, CAT activity remains depressed 
after 20 minutes of reflow [60]. Since the high redox states representative of 
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tissue GSHlGSSG are more than adequate to maintain a range of enzyme 
activities in vitro, it is presumed that the normal matrix GSHlGSSG redox 
also reflects the CAT protein's sulhydryl redox. On the other hand, since 
cytosolic GSH/GSSG appears to be oxidized further with reperfusion in some 
studies [58], the extramitochondrial pool of glutathione may playa role in 
the sustained activity decrease. 

Relevance of membrane phospholipid composition to CA T activity 

Another important cellular factor essential to CAT expression is the phos
pholipid milieu of the protein. A mixture of phosphatidylcholine, phosphati
dylethanolamine and cardiolipin is most effective for reconstitution of octyl
glucoside-solubilized protein [61]. Cardiolipin itself was shown to be essential 
for reconstitution of activity as well as for the activity of CAT in intact 
mitochondria [61]. That myocardial membrane structure and phospholipid 
composition are altered in ischemia is supported by several reports. First, 
total concentrations of tissue free linoleic and arachidonic acids in ischemic 
heart are thought to reflect membrane phospholipase A2 activation (for 
review, see Van der Vusse et al. [19]). Changes in myocardial Ca2+ levels 
with ischemia as well as peroxidation of polyunsaturated fatty acids by isch
emic generation of oxygen free radicals are likely forerunners to the phospho
lipase Armediated excision of the affected fatty acids and consequent mem
brane phospholipid depletion [19]. Mitochondrial membrane phospholipid 
composition is also specifically affected by ischemia, presumably from a 
combination of oxidative stress as exemplified by the significant fall in the 
GSH/GSSG ratio, and by subsequent mitochondrial Ca2+ uptake due to 
cellular Ca2+ overload [62]. In mitochondria isolated from ischemic and 
ischemic/reperfused hearts, the total phospholipid content is significantly 
decreased with ischemia and reperfusion from 298.2 ± 15.0 nmol/mg protein 
in control hearts to 265.4 ± 27.9 and 236.8 ± 16.0 nmol/mg in ischemia and 
reperfusion, respectively. Of that decrease, a 30% decrease was observed in 
the mitochondrial content of cardiolipin (Figure 1). No change in the mem
brane content of phosphatidylcholine and only a 15% decrease in phosphatid
ylethanolamine was seen with ischemia, suggesting that the lack of change 
in these phospholipids could be dissociated from effects of ischemia on CAT 
activity. The lack of return of CAT activity with reperfusion mirrors the 
decreased cardiolipin content during both ischemia and reperfusion (Figure 
1). A similar correlation between decreased CAT activity and mitochondrial 
cardiolipin content is observed in the aging Fischer rat (30 months) [9]. 
However, in contrast to ischemic mitochondria where carnitine content is 
not significantly altered from control, carnitine content in mitochondria from 
the old rats is diminished by 30% (Table 1 and [9]). This decreased pool of 
exchangeable carnitine is believed to be the primary cause of decreased 
exchange activity in the aging rat [8]. Thus, it is difficult to assign any 
contributory role of cardiolipin to altered CAT activity in this setting. Further 
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studies designed to understand the possible role of phospholipid composition 
on CAT have been carried out in dogs fed a diet that has been supplemented 
with menhaden oil [63]. The mitochondrial membrane phospholipids demon
strate a decrease in the mole percent of arachidonic acid with a concomittant 
increase in eicosapentaenoic and docosahexaenoic acids, increasing the n-3 
to n-6 ratio of fatty acids over 3.5-fold with no alteration in the unsaturation 
index. In this case the only significant change in the mitochondrial membrane 
phospholipid classes is a 50% increase in cardiolipin. Neither palmitoylcarnit
ine oxidation nor CAT activity (carnitine-carnitine and palmitoylcarnitine
carnitine exchange were measured, Table 1) is affected by this altered lipid 
environment. However, in mitochondria isolated from ischemic hearts of 
menhaden oil-fed dogs, the matrix levels of carnitine are decreased by 50%, 
in contrast to a maintained carnitine content in mitochondria isolated from 
normal dog hearts made ischemic for a similar period of time (Table 1 and 
[60]). Because of the decreased carnitine in the mitochondrial matrix of the 
menhaden oil-fed dogs and the apparent susceptibility of the same mem
branes to permeability alterations in the presence of palmitoylcarnitine, it 
was concluded that mitochondrial membranes enriched in n-3 fatty acids 
may become more labile following ischemia. In this case, the decrease in 
mitochondrial oxygen uptake with palmitoylcarnitine in ischemia appears to 
reflect a smaller pool of matrix carnitine available for exchange. 

The question still is unsettled as to whether the modifications observed in 
CAT activity in vitro have a physiological impact on fatty acid oxidation in 
ischemia. Reports that palmitic acid is the preferred substrate with ischemic 
reperfusion, supplying over 90% of the energy to the isolated, perfused rat 
heart do not support the concept that there are any meaningful alterations 
in CPT or CAT activity in this model [12]. A decrease in CAT activity in 
the aging rat heart, however, does correlate with an inability of perfusate 
fatty acid to suppress glucose oxidation. These findings suggest that the 
senescent heart prefers glucose as an energy substrate, and that this prefer
ence might be explained mechanistically by lowered carnitine exchange across 
the mitochondrial inner membrane. Thus, protocols to augment carnitine 
content in hearts from old animals would be a valuable approach for protec
tion against ischemic injury in the aging population. There are few relevant 
studies on human which address this issue. However, in heart muscle biopsies 
from patients with congestive heart failure and in cardiomyopathic hamster 
heart, the levels of cardiac free carnitine are decreased [64]. Significant 
elevations in long-chain acylcarnitines are suggestive of a defect in f3-oxid
ation distal to CPT-I. Although the diminished CAT activity in mitochondria 
from ischemic canine heart is not as dramatic as reported in the aging rat 
model, the rates are sufficiently diminished in vitro when palmitoylcarnitine 
concentrations that are consistent with the ischemic milieu are added to 
stimulate exchange activity [54]. This decrease in CAT can account fully for 
the depressed oxygen consumption in isolated mitochondria with palmitoyl
carnitine as substrate. In summary, it is clear that certain pathophysiological 
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conditions can impact on CAT activity in the heart. However, studies using 
either the rat or swine models of ischemia and reperfusion suggest that under 
the specific experimental conditions used [12, 27], neither CAT nor any 
component of the carnitine-mediated pathway appears to exert inhibitory 
effects on fatty acid flux through f3-oxidation. Therefore, the expression of 
a limitation in CAT activity relevant to human ischemic heart disease may 
be found only in those myocardial cells which are severely compromised and 
thus, may only be part of the end-stage sequellae of injury and cell death. 
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7. Amphiphilic interactions of long-chain fatty 
acy1carnitines with membranes: potential 
involvement in ischemic injury 

JOS M.J. LAMERS 

"Altogether, definitive evidence for long chain fatty acylcarnitine as a mediator of 
impaired contractile function is still lacking, but experimental evidence for 
arrhythmogenicity of accumulated acylcarnitine seems rather convincing." 

Introduction 

Under physiological conditions, the heart preferentially utilizes fatty acids to 
meet its energy requirements. Non-esterified free fatty acids (NEFA) in 
plasma are bound to albumin with only small quantities free in solution, in 
equilibrium with the albumin-bound NEFA [1]. A significant portion of 
NEF A utilized by the cardiomyocyte originates from hydrolysis by endo
thelial surface-bound lipoprotein lipase of triacylglycerols of the circulating 
lipoproteins [2]. Unbound NEFA transverses the sarcolemma (SL) either 
passively or facilitated by specific membrane proteins such as SL fatty acid 
binding protein [3]. Like plasma NEF A, cytosolic unbound NEF A exist in 
equilibrium with a larger quantity of intracellular NEF A bound to fatty acid 
binding protein [3]. Metabolism of cytosolic NEF A proceeds initially by 
thioesterification into fatty acyl-CoA esters catalyzed by acyl-CoA synthetase 
that is localized predominantly on the outer mitochondrial membrane (Figure 
1, normoxia). Due to the limited availability of CoA, most of which is 
contained in the mitochondrial matrix, the fatty acyl-CoA synthetase activity 
is substrate dependent. Long chain fatty acyl-CoA cannot pass the inner 
mitochondrial membrane to become degraded by the {:l-oxidation. The cyto
solic and matrix pools of CoA are also strictly separated and the cytosolic 
long chain fatty acyl-CoA is first converted to long chain fatty acylcarnitine 
(LCAC) by carnitine fatty acyltransferase I, localized at the inner surface of 
the mitochondrial outer membrane [4]. LCAC thus generated is translocated 
across the mitochondrial inner membrane via the specific acylcarnitine-carni
tine antiporter (translocase) [5]. Inside the mitochondrial matrix the LCAC 
is transesterified to yield free carnitine and fatty acyl-CoA by carnitine 
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Figure 1. Schematical representation of carnitine-linked non-esterified fatty acid oxidation in 
normoxic and ischemic heart. The size of the letters is meant to symbolize the relative concentra
tion of the metabolites which changes dramatically during myocardial ischemia. The numbers 
refer to the following enzymes/carriers involved: 1) fatty acyl-CoA synthetase; 2) carnitine 
fatty acyltransferase I; 3) carnitine acylcarnitinetranslocase; 4) carnitine fatty acyltransferase II. 
Abbreviations: cycle = tricarboxylic acid cycle. which operates in conjunction with the O2 requir
ing oxidative phosphorylation to yield ATP from oxidation of acetyl-CoA; NEF A = non
esterified fatty acids. 
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Table 1. Factors determining the extent of accumulation of non-esterified fatty acids (NEFA) 
and long-chain fatty acylcarnitines (LCAC) in the ischemic heart. 

Factor 

Elevated plasma NEF A 

Elevated intracellular formation of NEF A 

Blocked NEFA utilization 

Pathogenic mechanism involved 

Stress-induced fatty acid mobilization from 
adipose tissue 
Impaired cardiac tissue perfusion 
Activation of cardiac phospholipases 
Activation of cardiac lipases 
O2 deficiency causing inhibition of cardiac f3-
oxidation 

acyltransferase II localized at the inner surface of the mitochondrial inner 
membrane [3]. Total carnitine content (free and esterified) on each side of 
the inner mitochondrial membrane remains relatively constant. Complete {3-
oxidation of fatty acyl-CoA results in the production of acetyl-CoA fragments 
with concomitant reduction of NAD+ and FAD. Acetyl-CoA enters the 
citric acid cycle with production of additional NADH and FADH2. The 
reducing equivalents formed yield A TP in the mitochondrial electron trans
port chain tightly coupled to the ATP synthetase. 

In the normoxic myocardium NEF A can be partially stored in tissue triacyl
glycerols by esterification reactions [3]. It is evident that the NEF A fraction 
that is incorporated in the cardiomyocyte into triacylglycerol and membrane 
phospholipids, or is oxidized to CO2 changes in response to myocardial 
energy requirements and availability of circulating NEF A. 

When oxygen is limited during myocardial ischemia or hypoxia, cellular 
NADH and FADH2 accumulate, inhibiting the stepwise degradation of fatty 
acid by {3-oxidation and diminishing the rate of formation of acetyl-CoA. As 
a consequence accumulation of intermediates of the pathway of fatty acid 
oxidation, such as fatty acyl-CoA and LCAC, readily occurs (Table 1; Figure 
1, ischemia) [6]. This accumulation of lipid intermediates is further aug
mented in the presence of excess NEF A which occur in ischemic myocar
dium, in part by increased intracellular phospholipid and neutral lipid break
down [3] and in part by increase in serum NEF A which are released by 
hormonal effects on the peripheral adipose tissue stores (Table 1) [7]. It is 
the Ca2+ dependent phospholipase A2 that is generally believed to partially 
contribute to the NEFA accumulation during ischemia [3]. There is now 
abundant evidence that the cellular accumulation of the amphiphilic lipid 
intermediates NEF A, long chain fatty acyl-CoA, LCAC and lysophospholi
pid that occur in patients with ischemic heart disease, produce significant 
abnormalities in cardiac function by modifying the structure and function of 
membranes. In the last decade several excellent reviews have appeared on 
the effects of lipid burden on ischemic myocardium [3, 8-13]. The aim of 
this report will be to focus particularly on membrane disturbing actions of 
amphiphilic LCAC with emphasis on recent advances in this field. 
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Membrane functions, critically involved in myocardial excitability and 
excitation-contraction coupling 

For understanding the potential hazards of interference by amphiphilic 
LCAC on cardiac membranes, it is important first to consider the critical 
role of membrane systems in excitability and excitation-contraction coupling 
of myocardium. In the absence of excitation, cardiac myocytes maintain a 
resting membrane potential of -80 to -95 mV [14]. The resting potential 
(Vr) arises as a result of the selective permeability of the SL to K+ and the 
transmembrane K+ gradient, which in turn is maintained by the SL Na +, 
K+ -pump. When an excitatory stimulus depolarizes the membrane beyond 
the threshold potential (about -70 m V) an action potential is generated 
which successively causes opening of N a + - and L-type Ca2+ channels with 
concomitant further depolarization of the membrane [14]. Following the 
peak of the upstroke of the action potential, cardiomyocytes undergo a phase 
of repolarization to Vr during which Na+ and Ca2+ channels close and K+ 
channels reopen. The Na + IK+ -pump contributes also to repolarization by 
restoring the N a + gradient. 

Depolarization of the Vr from the normal level by accumulation of extra
cellular K+ appears to be a prominent feature of ischemia associated with 
cardiac arrhythmias. The ischemic heart is electrically unstable and more 
prone to arrhythmias and disturbances in electrical conduction [14-17]. 
Changes in membrane excitability and cell-to-cell uncoupling through mem
brane gapjunctions are likely to represent the basic electrophysiological alter
ations leading to arrhythmias and disturbances of propagation. Moreover, the 
increase in aradrenergic responsiveness has been implicated in the electrical 
instability of ischemic myocardium as blockade of the al-adrenoceptors was 
found to be anti-arrhythmic [18]. 

Normal systolic and diastolic function of myocardium requires the release 
and reuptake of Ca2 +. There are two major Ca2 + dependent mechanisms 
that alter the contractile state of the heart: changing the availability of Ca2 + 
to the contractile proteins and changing the responsiveness of the contractile 
proteins to activation by intracellular Ca2 + [19]. The availability of intracellu
lar Ca2+ is regulated by the SL and sarcoplasmic reticulum (SR) membrane 
systems and the Ca2+ responsiveness is controlled by the myofilaments and 
regulatory troponin-tropomyosin complex. Excitation-contraction coupling is 
initiated when L-type Ca2+ channels are opened and the Na + ICa2+ exchanger 
operates in a reversed manner by depolarization of SL, permitting Ca2+ to 
enter the cytosol. This small amount of Ca2+ entering induces a release of 
a much larger quantity of activated Ca2 + from the intracellular stores in the 
SR [20]. The released Ca2+ interacts with troponin C, which is a part of the 
regulatory complex of the myofilaments thereby initiating cardiac contrac
tion. Relaxation starts when Ca2 + is sequestered by the SR Ca2 + pump, so 
that Ca2 + dissociates from the contractile apparatus. Some Ca2 + is also 
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extruded from the cardiomyocyte by the SL Na + ICa2+ exchanger and the 
Ca2 + pump. 

Abnormal handling of intracellular Ca2+ at any of the afore-mentioned 
steps of the excitation-contraction coupling will cause contractile dysfunction. 
This will occur for instance, when a membrane-active compound slightly 
increases the passive Ca2 + permeability of the membrane. The signalling 
function of Ca2+ demands a very low ionic concentration (during the resting 
state 10,000 fold lower than outside) of Ca2 + inside the myocardial cell. It 
is only a very small amount of Ca2+ entering the cell during each depolariz
ation that needs to be extruded to prevent Ca2+ overloading of the myocytes. 
It is the bulk of Ca2+ released from the SR that must be taken up again to 
its site of origin, the binding sites at calsequestrin inside the SR, in order to 
be released in the next cardiac cycle. On an integrated level, the SR can be 
considered as the transport system presiding over the rapid and fine regu
lation of intracellular Ca2 + linked to the contraction/relaxation cycle [21]. For 
instance, a depression of the SR Ca2 + pump will primarily cause relaxation 
abnormalities but it will secondarily decrease the availability of activator 
Ca2+, resulting in contractile dysfunction. 

In vitro effects of long-chain fatty acylcarnitine on cardiac membranes 

A large body of evidence has indicated that LCAC can alter functional 
properties of myocardial membranes in vitro (reviewed in [8-12]). Examples 
of important enzymatic interactions include inhibition of the SL N a + / 
K+ -pumping ATPase [22, 23] and Na+ICa2 + antiporter [23, 24] and the SL 
[23] and SR Ca2 +-pumping ATPase [24,25]. Inhibition of Na+, K+-ATPase 
was observed when LCAC was added to detergent-(pre )treated SL mem
branes whereas no effect was seen with intact SL membrane vesicles [22, 23, 
26]. These findings may indicate that Na+j K+-ATPase is not a target for 
LCAC interaction in vivo. In this regard the recent work on voltage-clamped 
intact single guinea pig ventricular myocytes should obtain attention. The 
specific Na + IK+ -pump inhibitor ouabain and 1-5/-LM L-palmitoylcarnitine 
reversibly suppressed and reduced the rate constant for the decline of a 
transient outward N a + IK + antiport current [27]. This result is consistent with 
the observed suppression by L-palmitoylcarnitine of Na+/K+-ATPase in SL 
vesicles isolated from cardiac muscle [22, 23, 26]. Moreover, we and others 
showed that palmitoylcarnitine at relatively low concentrations also enhances 
the passive Ca2 + and Na+ permeability of SL and SR membrane vesicles 
[23, 25]. Although LCAC has been found to be a potent inhibitor of Na+j 
K+ -ATPase in detergent-treated SL vesicles, the micromolar concentrations 
required to inhibit the enzyme appeared to be higher than those needed to 
alter the passive Ca2+ and Na + permeability of the intact SL membrane 
vesicles (Figure 2) [23]. We could show by studying the latency of major 
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Figure 2, Palmitoylcarnitine (LCAC) effects on the Na + /Ca2+ exchanger activity and the passive 
Ca2+ permeability of isolated cardiac sarcolemmal vesicles, Sarcolemmal (SL) vesicles were 
isolated from pig heart by the procedure described in [23], Prior to the experiment the SL 
vesicles were loaded with 160 mM NaCI in 20 mM 4-morpholinepropanesulfonic acid (Mops), 
pH = 7.4, For measuring Na+/Ca2+ exchange or antiport activity (A) a 10 f11 aliquot (12,5 f1g 
SL protein) was rapidly diluted into 200 f11160 mM KCI in 20 mM Mops (pH = 7.4) containing 
50 f1M 4SCa (0,1 Cilmmol) to which various concentrations of L-palmitoylcarnitine (10 and 
25 f1M LCAC) were added, The 21-fold downhill Na + gradient drives the uphill Ca2+ transport 
into the SL vesicles via the Na+/Ca2+ antiporteL For measuring the passive Ca2+ transport (B), 
a 50 f11 aliquot (6,25 f1g) of sarcolemmal Na+/Ca2+ antiport reaction after 2 min (see above) 
was rapidly diluted into 1200 f11 160 mM KCI, 100 f1M EGTA, 20 mM Mops (pH = 7.4) and 
various concentrations of L-palmitoylcarnitine (2, 5 and 25 f1M LCAC) , Note that the concentra
tion of membrane protein in the Ca2+ uptake reaction mixtures used in A was 12,5 higher than 
in passive Ca2+ efflux reaction mixtures used in B, It means that, in spite of its presence at 
the same absolute concentration (f1M), L-palmitoylcarnitine (LCAC) concentration expressed 
in nmol - mg ~1 protein differed by a factor 12,5 comparing reactions A and B, This difference 
could not be avoided due to the necessary extra dilution step (into KCI and EGTA containing 
medium) of SL vesicles to assure the pure measurement of passive Ca2+ efflux, 

cyclic AMP-dependent protein phosphorylation sites (e.g. 15 and 9 kDa 
proteins) of SL that palmitoylcarnitine did increase the SL vesicle perme
ability for N a + and Ca2 + ions but not for small molecules such as ATP 
and heat-stable inhibitor of cyclic AMP-dependent protein kinase [23]. The 
observed inhibition of Na+/Ca2+ exchange by LCAC may be indirectly 
caused by increases in membrane Ca2+ and Na + ion permeabilities [23, 24]. 
This conclusion is based on the results on SL vesicles isolated from porcine 
heart as illustrated in Figure 2. Ca2 + accumulated by Na + /Ca2+ exchange 
activity was released by L-palmitoylcarnitine (LCAC) depending on its con
centration (10 and 25 flM). These results demonstrate that the mechanism 
of action of LCAC cannot only be ascribed to inhibition of the N a + /Ca2 + 
anti porter. Apparently, there is also a marked effect of LCAC on the Ca2 + 
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permeability. The conditions of no external free Ca2+ level, created by 
the presence of 100 fLM ethylene glycol bis (f3-aminoethylether)-N ,N,N' ,N'
tetraacetic acid (EGTA), and of the absence of external Na+, excluded the 
contribution of the Na + /Ca2 + antiporter activity to the measured Ca2+ efflux. 
This Ca2+ efflux can therefore be seen as a pure passive unidirectional 
process (Figure 2B). Under this condition already the lowest concentration 
of LCAC (2 fLM) increased the rate of Ca2+ efflux during the first 2 min. 
Others [25] demonstrated that the extent of inhibition of the Ca2 + pump in 
isolated SR vesicles mostly depended on the ratio of LCAC to SR membrane 
protein. It was also shown that almost 90% of the LCAC added to an SL 
vesicle suspension was bound to an LCAC concentration of 200 to 
1500 nmol.mg -1 SL protein [26]. Therefore, in the experiments described 
and illustrated in Figure 2 not only the absolute concentrations of LCAC 
but also the membrane-associated LCAC . mg- 1 protein should be taken 
into account in comparing LCAC effects of N a + /Ca2+ antiporter activity and 
passive Ca2+ efflux rate. If this consideration is correct, it means that the 
inhibitory effect of LCAC on N a + /Ca2 + exchanger cannot be completely 
ascribed to an increase of SL Ca2 + permeability. In [23] we demonstrated 
that LCAC also increased Na+ permeability of SL vesicles which might 
explain why the Na+/Ca2 + antiporter is blocked by LCAC. The observed 
effects of LCAC on Ca2 + and Na + permeability of SL membrane raise the 
question by which mechanism( s) transmembrane passive ion diffusion is 
facilitated by LCAC. Likely targets for LCAC action are ion-specific chan
nels. L-Palmitoy1carnitine affected the fast N a + channel and slow Ca2+ chan
nel in avian ventricular muscle strips and single ventricular myocytes [28, 
29]. Concentrations of 30-300 fLM L-palmitoy1carnitine influenced Na + and 
Ca2 + channel operation by an effect on membrane surface charge recorded 
by action potential measurements. Both L-and D-palmitoy1carnitine can 
mimic the actions of the specific slow Ca2+ channel activator, Bay K8644, 
and can counteract the effects of Ca2 + entry blockers on chick embryonic 
myocytes [30]. It is unlikely that the LCAC effects on passive N a + and Ca2 + 
efflux, observed in isolated SL vesicles, are related to the LCAC effects seen 
on action potentials or L-type Ca2 + channel activity in intact cells. For 
instance, voltage-operated Ca2 + channels are kept in the inactivated closed 
state [31, 32] in isolated SL vesicles. Depolarization can be elicited in vitro 
in SL vesicles inducing the uptake of Ca2 +, but the characteristics of this 
Ca2 + entry (e.g. sensitivity to inhibition by Ca2 + entry blockers) are not 
alike those of Ca2 + entry through L-type Ca2+ channels [31,32]. Moreover, 
recently it was shown in whole cell voltage-clamp procedures in isolated adult 
guinea pig ventricular myocytes that LCAC [1-25 fLM] suppresses rather 
than stimulates the voltage-dependent L-type Ca2+ channel current [16]. In 
these experiments it was shown that LCAC induces afterdepolarizations and 
triggered activity which could contribute to the arrhythmogenic effects during 
ischemia [16]. Insertion of various amphiphilic compounds in the outer leaflet 
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of the SL lipid bilayer produces shifts in current-voltage relationship and 
inactivation curves of L-type Ca2 + channel current. Some of these effects 
can be explained by changes in the actual Vr of the membrane [33]. 

Low concentrations of LCAC stimulate the SL and SR Ca2 + -ATPase, 
whereas higher concentrations inhibit [23,25]. Lower concentrations of palmi
toylcarnitine stimulate Ca2+ -ATPases likely by uncoupling the active Ca2 + 

uptake process from the ATP hydrolysis through an increase of the passive 
Ca2 + permeability of the membrane vesicles. At present it is still unknown 
if the micro molar concentration of long chain acylcarnitines tested in the in 
vitro experiments are indeed reached during ischemia in the heart. From 
values reported by others for the intact heart it was calculated that the 
cytoplasmic content of LCAC in normal and ischemic heart is 150 and 
780 nmol/g wet weight, respectively [6]. It is important to recognize that the 
affinity of LCAC for the membrane bilayer is such that there will be very 
little free of this acylcarnitine either within the cell or in in vitro SL vesicle 
suspensions. The ratio of palmitoylcarnitine to SR protein was calculated by 
assuming the presence of about 3 mg SRig wet weight of heart and a contribu
tion of 60% of the total cellular membrane area by the network SR [25]. 
Based upon these assumptions membrane concentrations of 30 and 160 nmol 
LCAC per mg SR protein in normal and ischemic hearts were calculated, 
respectively. If these estimations are true for SR and SL it is evident from 
the previous in vitro studies on isolated membrane vesicles [22-25] that 
LCAC concentrations in the ischemic heart become high enough to affect 
significantly the passive Ca2 + and Na + permeability of SL and SR (compare 
also the effective LCAC concentrations in the in vitro studies on isolated 
SL vesicles as illustrated in Figure 2). Alternatively, if the total cellular 
phospholipid pool is taken as the main dissolving compartment into which 
LCAC distributes (see also later), it can be calculated that accumulation of 
780 nmol LCAC/g wet weight equals to 1 nmol LCAC/25 nmol phospholipid. 
This is close to the molar ratios of LCAC per membrane phospholipid that 
are found to be effective in the in vitro studies on isolated membrane vesicle 
[22-25]. 

The question arises by which mechanisms LCAC alters the passive ion 
permeability, apart from its possible direct effects on Na + and Ca2 + channels, 
and ion pump activities of cardiac membranes. At relatively low concentra
tions, below the cricital micelle concentration (13 fJ.M according to [34]), 
LCAC exist in solution as monomers that can be inserted into the hydropho
bic environment of the lipid membrane. It has been suggested that insertion 
of "wedge shaped" molecules can result in an abnormal shape or curvature 
of the membrane and thereby alter membrane fluidity [10]. These "wedge 
shaped" structures can also disrupt SL by their effect on overall membrane 
topography [8]. LCAC-induced fluidity changes in canine myocardial SL [35, 
36] and human erythrocyte membranes [37] have been demonstrated using 
the spin-label technique. Calcium and L-palmitoylcarnitine reduce erythro
cyte electrophoretic mobility which was ascribed to an alteration in mem-



Acylcarnitines and cardiovascular membranes 91 

brane surface charge [38]. Another team of investigators has elucidated the 
transbilayer reorientation (flip-flop) of LCAC in erythrocytes after addition 
of 3 nmol labelled LCAC/lOOO nmol membrane phospholipid [39]. These 
authors showed that LCAC is incorporated into the membrane in alignement 
with the head groups and the acyl chains of the membrane phospholipids, 
and reorient from one leaflet of the bilayer to the other by a slow process 
(2.6 h at 37°q, termed "flip rate" [39]. This means that during cytosolic 
accumulation of LCAC during ischemia in vivo the inner leaflet of the SL 
will be overloaded with LCAC molecules which slowly "flip" to the outer 
bilayer leaflet. The incorporation of amphiphilic molecules into the mem
brane may not only modify membrane functions by fluidity change but also 
directly influence integral membrane protein functions by altering the compo
sition of the boundary lipids (or lipid annulus) of the particular membrane
bound enzyme, G-protein modulated ion channel, membrane receptor pro
tein or transport carrier protein [8]. At a high concentration of LCAC (> 13 
f,LM), the monomers aggregate into micelles in which the hydrophilic region 
of the molecule remains in contact with the aqueous medium and the lipo
philic portions are clustered into the hydrophobic core. On the one hand 
these micelles may act as a reservoir continuously providing monomers for 
insertion [10]. These LCAC micelles also have the ability to incorporate 
membrane phospholipid into their structure, thereby forming mixed micelles 
[8]. The latter LCAC effect will lead to po;rtial disruption of the membrane 
bilayer, liberating endogenous membrane phospholipids. In fact, it may re
present a detergent-like action destroying the integrity of the membrane 
by mixed micelle formation. The detergent-like action, of LCAC could be 
responsible for the changes in passive Ca2+ and N a + ion permeability, as we 
and others observed them [23, 25]. 

Other useful criteria for evaluating the potential role of long-chain fatty 
acylcarnitine in ischemia 

The data on isolated membranes reviewed above indicate that LCAC-in
duced loss of the ability of myocardial membranes to act as a permeability 
barrier to Ca2+ and N a + plays a significant role in the pathogenesis of cell 
death in the ischemic or hypoxic heart. However, definite conclusions cannot 
be drawn from results of these in vitro membrane preparations. In evaluating 
the potential importance of LCAC in producing abnormalities of ischemic 
myocardium, the following criteria, as previously outlined for candidate 
metabolites in general [35], become particularly useful: 

1. Increase or decrease of LCAC accumulation by an exogenously adminis
tered compound with respective parallel exacerbating or ameliorating 
loss of function, arrhythmias, increase of aI-adrenergic responsiveness or 
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lactate dehydrogenase (LDH) release despite induction of comparably 
severe ischemia. 

2. Demonstration of a time-course relationship between accumulation of 
LCAC and the development of abnormal function or tissue damage (e.g. 
contractile dysfunction, arrhythmias, £lradrenergic responsiveness and 
enzyme leakage). 

3. Localization of the accumulated LCAC to a cellular site where it most 
likely interacts with certain membrane(proteins) during ischema. 

4. Induction of biological effects comparable to those seen during ischemia 
by exposure of normal myocardium to exogenous LCAC at concentrations 
comparable to those encountered in the vicinity of sarcolemma in vivo. 

During the past decade numerous studies on the possible role of LCAC 
during ischemia have been carried out, in each of which the evaluation of 
the effects of LCAC was based upon one of the criteria 1, 3 or 4. Below we 
will summarize these experimental data. It is curious to see that no investi
gations on the potential role of LCAC during ischemia are available that 
were based on the second criterium. This is likely due to the fact that the 
myocardial LCAC concentration increases immediately after the onset of 
ischemia, rapidly reaching a steady state level. At least this is what we 
observed in porcine myocardium during coronary ligation [40]. The level of 
LCAC increases with myocardial ischemia and remains elevated for hours 
even after reperfusion of the ischemic heart [41-43]. It is postulated that a 
decrease in sensitivity of carnitine fatty acyl-CoA transferase I to malonyl
CoA inhibition would blunt the regulatory role of malonyl-CoA and result 
in increased quantities of LCAC synthetized from any given concentration 
of malonyl-CoA [44]. Therefore elevation in the activity of carnitine fatty 
acyl-CoA transferase I or alteration in its regulation by malonyl-CoA may 
keep the LCAC levels high. Criterium 2 seems not applicable to define the 
influence of accumulated LCAC on cardiac performance. Apparently, a 
certain period of time is required for the amphiphilic interactions of LCAC 
with membranes to become deteriorating. In the previous in vitro studies on 
isolated SL membranes [22-26] or intact single cardiomyocytes [27-30], 
however, no indications were given for any need of long-lasting preincubation 
of the membrane- or cell preparation with exogenous LCAC. 

Inhibitors of specific steps in fatty acid metabolism as tools to investigate the 
role of long-chain fatty acylcarnitine 

One of the strategies to investigate the potential role of LCAC accumulation 
in ischemia was the use of several naturally occurring and synthetic com
pounds which selectively block either carnitine acyltransferase I and II on 
the outer- and inner surfaces of the mitochondrial membrane, respectively 
(Table 2). Representatives include the carnitine acyltransferase I inhibitors, 
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Table 2. Inhibitors of enzymatic reactions involved in fatty acyl-CoA metabolism. 

Enzymatic reaction 

Camitine fatty 
acyltransferase I 

Camitine fatty 
acyl transferase II 

Inhibitors [References] 

POCA* 
[17,45,50,56,57,59] 
Etomoxir* [46] 
Oxfenicine* [47-49, 51] 
TDGA* [47-49] 
Aminocamitine [54] 
D-Octanoylcamitine [53] 

Likely consequence during 
ischemia 

LCAC accumulation is decreased 

LCAC accumulation is increased 

* Abbreviations: POCA = sodium 2-(5-(4-chlorophenyl)pentyl)-oxirane-2-carboxylate); eto
moxir = ethyl-2-[6-(4-chlorophenoxy)hexyl] oxirane-2-carboxylate; oxfenicine = 2-tetradecylgly
cidic acid; TDGA = tetradecylglycidic acid. 

POCA, etomoxir, oxfenicine and TDGA. POCA and the even more potent 
analogue of POCA, etomoxir, are esterified to CoA derivatives in the cyto
sol. The thioesters strongly bind to carnitine fatty acyltransferase I, thereby 
inhibiting the enzyme [45, 46]. As a consequence, the ischemia-induced 
accumulation of LCAC will be reduced. Oxfenicine is transaminated to 4-
hydroxyphenylglyoxylate and this metabolite inhibits fatty acid oxidation at 
the level of carnitine fatty acyltransferase I [47]. Several studies have ap
peared which demonstrate that agents blocking the carnitine fatty acyl
transferase I can protect ischemic myocardium, using recovery of mechanical 
function during reperfusion as a parameter of beneficial action. Oxfenicine 
and TDGA were shown to selectively reduce the LCAC level in intact 
myocardium. The trend was noted toward improved mechanical performance 
in aerobic and ischemic perfused heart muscle [47-49]. Others demonstrated 
protective effects of POCA [50] and oxfenicine [51] in in situ pig hearts. In 
contrast, yet other groups [45, 46, 52] failed to demonstrate a protective 
effect of carnitine acyltransferase I inhibitors. In one of the latter studies the 
investigators looked at the effect of a low (10-9 M) and high (10-6 M) dose 
of etomoxir on fatty acid-induced ischemic injury [46]. It was demonstrated 
that etomoxir indeed can prevent the fatty acid-induced failure of ischemic 
hearts. However, unlike the other studies recovery of heart contractility 
was not correlated with the attenuation of accumulation of LCAC. Thus 
a dissociation was found between LCAC accumulation and post-ischemic 
recovery. A decrease in oxygen consumption per unit heartwork, due to an 
increase in glucose utilization, was postulated to account for the beneficial 
action of etomoxir [46]. More recently it was confirmed that administration 
of POCA does not affect functional recovery and LDH release, but results 
in about 2-fold increase of NEFA levels upon reperfusion as compared to 
glucose-perfused hearts [45]. The accumulation of NEFA could be explained 
by assuming that the oxidation of NEF A released from endogenous lipid 
pools is inhibited by POCA [45]. In the latter study the tissue levels of LCAC 
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were not measured; hence here the role of LCAC in ischemic injury cannot 
be evaluated. In conclusion, further studies are required to unravel the role 
of these inhibitors in myocardial ischemia. 

Carnitine fatty acyl-CoA transferase II inhibitors D-octanoyl- [53] and 
aminocarnitine [54] might also be interesting tools to investigate the role of 
LCAC accumulation. During normoxic Langendorff perfusion of rat heart 
with aminocarnitine, LCAC accumulates in heart cells, from which it is 
excreted. Heart function remaines intact during that process [54]. It appeared 
that LCAC had no membrane toxicity when acidosis was absent and coronary 
flow ensured continuous removal of LCAC. This need not be so when LCAC 
accumulates during ischemia when the coronary flow is zero and acidosis is 
present due to lactate accumulation [54]. At present no studies are available 
on the influence of carnitine fatty acyl-CoA transferase II inhibitors during 
ischemia. 

Subcellular accumulation sites of long-chain fatty acylcarnitine indicative for 
the mechanism of injurious action 

Another approach for studying the role of LCAC is to characterize the 
subcellular distribution of LCAC under normoxic and ischemic conditions. 
This can reveal the preferential accumulation sites and so the likely loci 
of their deteriorating actions during myocardial ischemia. One group of 
investigators produced a series of reports describing the subcellular distribu
tion of [3H]-carnitine( derivatives) in monolayer cultures of neonatal rat 
cardiomyocytes and collagenase-dissociated adult canine cardiomyocytes [17, 
18, 55-59]. Homogeneous cell preparations were used to overcome the 
difficulty of discrimination between LCAC present in myocardial and non
myocardial cellular elements. In one of their first reports, processing for 
electronmicroscopy of neonatal rat cardiomyocytes, prelabelled with [3H]_ 
carnitine, is described by a procedure specifically developed for selective 
extraction of endogenous tritiated short-chain and free carnitine but retention 
of endogenous tritiated LCAC [56]. (The authors used the term "endogenous 
tritiated LCAC" to describe tracer [3H]-carnitine incorporated into cellular 
membranes, "exogenous" for unincorporated [3H]-carnitine.) In normoxic
perfused cells, eH]-LCAC was concentrated in mitochondria and cytoplas
mic membranous components. Only very small amounts were present in the 
SL. Hypoxia increased mitochondrial eH]-LCAC lO-fold and SL eH]-LCAC 
70-fold. After 60 min of hypoxia, SL contained even 1.4 x 107 LCAC mol
ecules/f.Lm3 of membrane volume, a value corresponding to approximately 
3.5% of total SL phospholipid [56]. In this regard, it is interesting to note 
that these amounts are close to the molar ratios of LCAC per membrane 
phospholipid that were found to be effective in the in vitro studies on isolated 
membrane vesicles [22-26]. Hypoxia of the rat cardiomyocytes also produced 
electrophysiological abnormalities, such as decreased maximum diastolic po-
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tential, action potential amplitude and maximum upstroke velocity of phase 
zero [56]. Furthermore, the carnitine fatty acyltransferase I inhibitor POCA 
inhibited accumulation of [3H]-LCAC in each subcellular compartment and 
prevented the depression of electrophysiological function induced by hy
poxia. Recently, the same group has confirmed that a subcellular distribution 
pattern of accumulated LCAC similar to that in neonatal rat cardiomyocytes 
was found in adult canine cardiomyocytes exposed to 10-20 min hypoxia 
[58]. aI-Adrenergic receptor number has been shown to increase markedly 
with ischemia in cat, dog and guinea pig hearts. The increased aI-adrenergic 
responsivity is generally believed to be causally associated with the high 
incidence of ventricular fibrillation and frequence of premature ventricular 
complexes during coronary artery occlusion [18, 57]. A procedure was de
veloped for measuring ai-adrenergic receptors in isolated, Ca2 + -tolerant 
adult canine cardiomyocytes. Myocytes exposed to only 10 min hypoxia at 
37°C exhibited a two- to threefold increase in al-adrenoceptor number; this 
correlated well with a threefold increase of LCAC (normoxia vs ischemia: 
21 vs 66 pmol'mg- I protein, see [18]). Again, pretreatment with POCA 
completely abolished not only the increase of LCAC induced by hypoxia, 
but also prevented the increase in ai-adrenergic receptor number. Moreover, 
exogenous palmitoylcarnitine (1 f.1M), in the presence or absence of POCA 
(10 f.1M), led to a significant increase in aradrenergic receptor density. 
Accumulation of LCAC in SL membrane with subsequent alterations of SL 
fluidity and the microenvironment surrounding the al-adrenoceptors was 
postulated as the likely mechanism for the increased exposure of the recep
tors, by unmasking latent receptors closely associated with the sarcolemma 
[18, 57]. Protein synthesis of new receptors and subsequent transfer and 
externalization to the surface of SL could be excluded as these obviously 
require an extended period of time, at least substantially more than 10 min 
duration of hypoxia or exposure to exogenous LCAC [57]. Two recent studies 
demonstrated that SL accumulation of LCAC during ischemia might be 
responsible for the inhibition of gapjunctional conductance kading to cellular 
uncoupling [17, 59]. A change in cell-cell coupling likely represents the basic 
electrophysiological alteration leading to disturbances in propagation. Also 
here, POCA (10 f.1M) as well as oxfenicine (100 f.1M) pretreatment did not 
only prevent the LCAC accumulation but also markedly delayed the se
condary decrease in conduction velocity normally observed in response to 
ischemia [17]. 

We used a radioisotope procedure to determine LCAC concentrations in 
subcellular fractions of porcine myocardium that had been subjected to differ
ent periods of ischemia (0, 1, 2 and 3 h) [40]. In myocardial tissue from non
ligated hearts LCAC concentrations were 0.3 and 1.5 nmol . mg- 1 protein 
in homogenate and SL enriched membrane fractions respectively, findings 
in agreement with a preferential membrane localization of LCAC observed 
by electronmicoscopy/autoradiography before [17, 18,55-59]. Both the total 
and SL localized LCAC were increased twofold after 2 h of ischemia. How-
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ever, the accumulated LCAC was not correlated temporally with the decrease 
in the Ca2+ pumping activity, increase of N a + /Ca2 + antiporter activity and 
decrease of Ca2 + permeability measured in the isolated membrane prepara
tions [40]. In the same study it was shown that in vitro incubation of isolated 
SL membranes with [14C]-palmitoy1carnitine, labeled molecules (clearly iden
tified as [14C]-palmitoy1carnitine) remained associated with the SL mem
branes even after repeated washing. The absolute amounts (up to about 
6 nmol . mg-1 SL protein) of incorporated [14C]-palmitoy1carnitine were in 
the same range as endogenously incorporated LCAC in SL that was isolated 
from ischemic porcine myocardium [40]. However, no changes were observed 
in the intrinsic Na + /Ca2 + antiporter activity of the SL vesicles when in vitro 
6 nmol [14C]-palmitoy1carnitine per mg protein was bound to or incorporated 
into the membrane lipid phase. At any rate, these results suggested that the 
intracellular increase in LCAC during almost zero myocardial flow is not 
critical to sarcolemmal Na + and Ca2+ permeability and Ca2+ pumping ac
tivity. 

Effects of exposure of normoxic myocardium to exogenous long-chain fatty 
acylcarnitine 

If LCAC accumulation alone is responsible for injurious action on mem
branes during ischemia, it should be possible to evoke these effects by 
exogenous LCAC in normoxic myocardium. One investigation on the hy
poxia-induced increase in aradrenergic receptor number, proving this prin
ciple, has already been discussed [57]. 

In another study rat hearts were perfused by the Langendorff technique; 
cellular release of myoglobin (as an index of SL damage) was induced in a 
dose-dependent manner by exogenous palmitoy1carnitine in concentrations 
exceeding 1.6 f.LM in the perfusion solution [60]. The presence of albumin in 
the perfusion solution could prevent this LCAC effect. A concentration 
threshold between 1 and 5 f.LM exogenous palmitoy1carnitine for inducing 
hypercontracture was observed before by us using a similar model [61]. It 
should, however, be noted that a membrane stabilizing effect was found by 
perfusing rat hearts with 1 f.LM palmitoy1carnitine [61]. In summary, relatively 
low concentrations are necessary to cause SL disruption when the cells are 
allowed to accumulate LCAC from an external supply [60]. 

Concluding remarks 

This comprehensive analysis of literature data supporting or rejecting the 
potential role of amphiphilic interactions of accumulated LCAC during myo
cardial ischemia could help redirect many scientists who have carried out 
experimental studies in this field. Altogether, definitive evidence for LCAC 
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as a mediator of impaired contractile function is still lacking, but experi
mental evidence for arrhythmogenicity of accumulated LCAC seems rather 
convincing. Most of the studies focussed on the function of the cardiomyo
cyte(membranes), perhaps in vain. Ischemia-induced dysfunction of vascular 
endothelium causes loss of the ability to regulate vasomotor tone in the 
coronary vasculature and deterioration of myocardial damage in the ischemic 
area. In this context, very recent work showing accumulated LCAC to be a 
mediator of impaired vascular endothelial function, should receive attention 
[62]. The information in this review might also be of help in the search for 
therapeutical interventions aimed at attenuation of LCAC accumulation to 
ameliorate ischemic injury. 
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8. Mitochondrial injury in the ischemic-reoxygenated 
cardiomyocyte: the role of lipids and other 
. pathogenic factors 
HANS MICHAEL PIPER, THOMAS NOLL 
and BERTHOLD SIEGMUND 

"It seems questionable whether the interference of amphiphilic long-chain acyl deriva
tives with mitochondrial functions plays an important causal role for postischemic 
dysfunction or the onset of irreversibility in ischemic-reperfused myocardium." 

Introduction 

In human pathology, the most frequent cause for myocardial oxygen defi
ciency is regional ischemia, caused by a partial or complete occlusion of the 
supplying coronary artery. In the past 15 years four theories have been 
predominantly discussed that relate the onset of irreversibility to changes in 
the cells' biochemical state: (i) a critical energy loss; (ii) a critical accumu
lation of cellular calcium; (iii) deleterious effects of accumulation of long
chain acyl compounds; or (iv) the effects of free radical formation. These 
theories do not represent mutually exclusive alternatives, each of them may 
accentuate a certain part of the pathophysiological process leading to irrever
sible myocardial injury. Here, selected aspects of the second and third theory 
are discussed. 

In hypoxic and ischemic myocardial tissue, long-chain fatty acyl-CoA and 
carnitine esters were found to quickly accumulate even in the absence of 
exogenous fatty acids [1]. Most of the accumulating long-chain acyl deriva
tives are hydrolyzed from triglycerides and from membrane phospholipids 
[2]. Exogenous fatty acids, being the main fuel for the myocardium under 
aerobic conditions, are disadvantageous under oxygen deprivation since their 
presence further augments the concentration of long-chain acyl esters in the 
myocardial cell [3, 4] (Figure 1). In addition to these esters a number of 
other amphiphilic long-chain acyl derivatives also accumulate in ischemic 
myocardium [5, 6]. The accumulation of lipids as free amp hip hiles and 
the degradation of lipids from cellular membranes may contribute to the 
progression of injury. Both the detergent effect of the amphiphilic com
pounds and the loss of constituent phospholipids can alter the barrier and 

l.W. de long and R. Ferrari (eds): The carnitine system, 101-121. 
© 1995 Kluwer Academic Publishers. 
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Figure 1. Tissue and mitochondrial contents of long-chain acyl coenzyme A (FA Co A) and 
camitine (FA Cam) esters in ischemic hearts. Langendorff-hearts (guinea pig) were perfused 
for 60 min either with an 02-equilibrated saline perfusion fluid (flow 10 mllg wet weight per 
min) or an N2-equilibrated saline perfusion fluid (flow 0.3 mllg wet weight per min). Mitochon
dria were isolated at the end of perfusion. The anoxic perfusion fluid contained no fatty acid, 
palmitic (16:0) or oleic acid (18:1) (complexed in 1:5 molar ratio to albumin). Means ± SD, 
n = 5. pr = protein. 

transport functions of cellular membranes and lead, ultimately, to their 
physical destruction (reviews [7, 8]). The potential harm of the amphiphiles 
relates to their chemical nature, e.g. the type of the long-chain acyl moiety 
[3,4,9, 10]. 

Because of the central role of mitochondria in myocardial energy meta
bolism, numerous studies have addressed their pathophysiological role in 
ischemia-reperfusion and other conditions of oxygen depletion and reoxygen
ation. This review is focused on the injury of mitochondria in oxygen depleted 
and reoxygenated myocardium. Parts of this paper were published recently 
in another form [11]. Various defects have been found in mitochondria 
isolated from ischemic or hypoxic myocardial tissue. Such defects, if not 
reversible, may limit the recovery of mitochondrial function upon reoxygen
ation. The present knowledge of mitochondrial pathophysiology is mainly 
based on three types of experimental approaches: Experiments in which 
mitochondrial functions are inferred indirectly from the metabolism of whole 
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myocardium; experiments in which mitochondrial functions are investigated 
in single cardiomyocytes; and experiments in which the functional properties 
of mitochondria are investigated when isolated from tissue or cells under 
predetermined experimental conditions. In the latter experiments mitochon
drial functions are analyzed in greatest detail. It is however, unclear to 
what extent mitochondria after isolation continue to represent their previous 
functional state in the living myocardial cell. 

The effects of intracellularly accumulating amphiphilic lipids on the devel
opment of mitochondrial functional defects may be direct or indirect. If the 
noxious agents are harmful for the cell as a whole this can cause indirect 
effects also on mitochondrial integrity, e.g. as a consequence of an increase 
in cytosolic Ca2+ load. It must be noted that it is in general difficult to decide 
whether mitochondrial damage developing in tissue concomitantly with an 
increase in free lipids is influenced by these in a direct or indirect way. 

Mitochondrial functional failure in the oxygen deprived cell 

Due to variations of collateral flow, the residual oxygen supply and conse
quently the residual oxygen concentration varies in ischemic myocardium. 
The metabolic response of oxygen-depleted myocardium as a whole repre
sents only a statistical average. In the core of severely ischemic tissue the 
concentration of oxygen may fall to very low levels. As yet it is generally 
not known how rapidly the residual oxygen content of ischemic tissue further 
declines once it has reached a partial pressure of about 1 mm Hg, the practical 
limit of most techniques to measure oxygen in tissue [12]. A number of 
factors may oppose a rapid progression of oxygen depletion beyond this 
level: First, even in regionally ischemic tissue with a complete occlusion of 
the supplying vessel oxygen supply is not zero, due to some collateral flow 
and the mere diffusion of oxygen from outside into the ischemic core. Second, 
the more the oxygen tension falls the more the oxygen consumption of 
myocardial cells declines, due to the Michaelis-Menten-type kinetics of mito
chondrial respiration. From the studies on isolated cardiomyocytes it can be 
extrapolated that at p02:S; 0.1 mm Hg the oxygen consumption is reduced 
~100-fold compared to the normoxic control levels [13]. The combination 
of these factors should prevent the oxygen concentration in regionally isch
emic tissue from falling virtually indefinitely. In the ischemic myocardium 
this may have the implication that the oxygen supply is too low to satisfy the 
cellular demand for oxidative phosphorylation but still sufficient for a low rate 
of electron flux which preserves the polarized state of the inner mitochondrial 
membrane. 

When myocardial cells become deprived of oxygen due to a stop of per
fusion (ischemia) or to lack of oxygen in the perfusate (hypoxic perfusion), 
the respiratory generation of ATP is slowed down until it (virtually) ceases. 
Even though myocardial cells respond to the lack of oxygen with a pro-
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nounced acceleration of glycolytic flux, this anaerobic mechanism of energy 
production usually remains insufficient to fully compensate for the loss of 
respiratory ATP. The balance of energy therefore soon becomes negative 
and the cellular stores of high-energy phosphates are progressively depleted. 

The mitochondrial FI,Fo-proton ATPase is a multicomponent enzyme com
plex which reversibly catalyzes synthesis and hydrolysis of A TP. Under 
normal respiratory conditions the transport of electrons within the inner 
mitochondrial membrane builds up a membrane potential and a gradient of 
protons ("proton electrochemical gradient"). The energy ("protonmotive 
force", pmf) stored in the transmembrane distribution of charges and protons 
is used to drive the synthesis of ATP from ADP and Pi, which represents an 
"uphill" reaction in terms of energy. This reaction is catalyzed by the F I 
ATPase/synthase part ofthe FI,Fo-proton ATPase. In depolarized mitochon
dria as well as in non-polarized submitochondrial membrane fractions the 
pmf is zero. This enzyme complex then catalyzes the net hydrolysis of ATP. 
In terms of energy, net A TP hydrolysis may occur whenever the free energy 
of ATP hydrolysis in the matrix space, LlGATP , exceeds the free energy 
stored in the electrochemical gradient, LlGpmf ' The reversal of net ATP 
synthesis, i.e. ATP hydrolysis, can nevertheless be activated whenever the 
electrochemical gradient is somewhat reduced [14]. This may occur in is
chemic or hypoxic myocardial cells when the electron flow approaches zero. 

The maximal rate of mitochondrial A TP hydrolysis is so large that, theor
etically, it could degrade all ATP contained in a myocardial cell with a half
time of about 100 ms [15]. Accordingly, an extremely rapid depletion of 
cellular ATP reserves can be observed when mitochondria are depolarized 
by use of very effective chemical uncoup1ers, i.e. agents increasing the perme
ability of the inner mitochondrial membrane for protons. Oligomycin is a 
specific inhibitor of the mitochondrial ATPase/synthase. With the use of this 
inhibitor it has been demonstrated [16, 17] that in the ischemic dog heart 
mitochondrial ATP hydrolysis contributes to the progression of energy loss, 
but at a much slower rate than theoretically possible. This has been attributed 
to the beneficial action of the natural inhibitor protein IFI contained within 
the matrix space, which binds to the FI component of the ATPase complex 
when mitochondria become depolarized [18-20]. Acidotic conditions, as 
found in ischemia, favor the binding of the inhibitor protein and thus reduce 
the activity of mitochondrial ATP hydrolysis [16]. The binding of this protein 
is reversible. When mitochondria are re-polarized it can dissociate from its 
binding site [19] and may therefore not inhibit net ATP synthesis in re
oxygenated and re-polarized mitochondria. It is not known how rapid the 
process of dissociation is in the whole cell; it may occur with some delay [21, 
22]. It has also been suggested that under normoxic conditions a variable 
portion of the ATPase/synthase units are inhibited by binding of the inhibitor 
protein, in correspondence to the energy demand of the myocardial cell [23]. 

Rouslin et al. [17] found that activation of mitochondrial ATP hydrolysis 
can contribute to energy depletion in ischemic myocardium (from dog). They 
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hypothesized the following mechanism of activation [17, 24]: When the blood 
flow to the cardiac muscle is interrupted, the tissue is rapidly depleted of 
oxygen. Cessation of mitochondrial electron flow then leads to dissipation 
of the mitochondrial transmembrane electrochemical gradient and activation 
of net ATP hydrolysis within the mitochondria. This hypothesis is supported 
by the finding in isolated mitochondria that the forward reaction of mitochon
drial ATP synthase is reduced whereas its backward reaction (hydrolysis) is 
greatly stimulated when electron flux is low [14]. As argued above, it is an 
open question however, whether cessation or pronounced depression of 
electron flux is sufficient to cause net A TP hydrolysis in the living ischemic 
cell. Activation of glycolysis and the net production of lactate is often con
sidered to indicate the stop of mitochondrial respiration. It only indicates, 
however, that oxidative phosphorylation has decreased to an extent insuf
ficient to meet the cellular energy demand. In a study by our own group 
using isolated cardiomyocytes it was demonstrated [13] that the myocardial 
cell may fully activate glycolysis and yet retain a polarized mitochondrial 
state when the ambient oxygen pressure is reduced one-thousandfold below 
the normal arterial level, i.e. ~0.1 mm Hg. Even at this very low level of 
ambient oxygen some net synthesis of ATP took place. The activation of 
mitochondrial net ATP hydrolysis observed in ischemic tissue may alterna
tively be due to the accumulation of chemical factors such as lipids (and 
others, see below) which alter the permeability of the inner mitochondrial 
membrane. When the rate of proton pumping is Iowa relatively subtle 
increase in permeability can cause a substantial mitochondrial depolarization. 
In vitro long-chain acyl compounds have been found to inhibit and ultimately 
uncouple mitochondrial respiration if present at high concentrations [9, 10]. 
In the oxygen-deprived cells with minimal electron flux much lower concen
trations may be sufficient to induce mitochondrial depolarization. The experi
ments shown in Figure 2 demonstrate that in deep hypoxia depolarization of 
mitochondrial membranes can cause a substantial difference in the rate of 
ATP loss. 

Structural injury of mitochondria isolated from ischemic and 
reperfused tissue 

In ischemic myocardium, mitochondria as well as other cell structures become 
progressively injured and, under certain conditions, reoxygenation may even 
aggravate this damage. Since mitochondrial functions cannot be investigated 
in detail in experiments with whole cells or tissue, many studies have investi
gated in vitro the properties of mitochondria isolated from myocardium in 
various pathophysiological states. Results from such studies are reviewed in 
this section. 

In mitochondria isolated from ischemic tissue, components of the respira
tory chain are progressively lost or denatured (Figure 3). Among the cyto-
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Figure 2. Effect of mitochondrial depolarization on the rate of ATP depletion in cardiomyocytes 
(from adult rat) under deep hypoxia. Cardiomyocytes were incubated in substrate-free saline 
medium in which the P02 was reduced to ";0.1 torr. The time course of ATP loss under hypoxic 
control conditions is indicated by the broken line. When the depolarizing agent 2,4-dinitrophenol 
(DNP; 50 fLM) was added at time 0, i.e. 1 min after P02 ,,; 0.1 torr had been reached, the 
ATP loss was greatly accelerated (open symbols). This acceleration could be antagonized by 
simultaneous addition of oligomycin (20 fLM), a specific inhibitor of the F, ATPase (closed 
symbols). Data of 3 experiments (symbolized by squares, circles and triangles). Pr = protein. 
(From [13], with permission.) 

chromes [25], the loss is most pronounced for cytochrome c, known to be 
only loosely bound at the outer surface of the inner mitochondrial membrane, 
But integral components-of the membrane structure, such as cytochromes 
aa3, are also extensively lost. In low-flow ischemic hearts perfused with fatty 
acids, a characteristic loss of cytochrome b was observed [26]. 

NADH reductase (complex I of the respiratory chain) is impaired early in 
hypoxic and ischemic myocardium [25-30]. Since it is particularly sensitive 
to acidosis [28], the oxidation of NAD-dependent substrates is reduced most 
distinctly in mitochondria from ischemic tissue. The presence of exogenous 
fatty acids in the ischemic myocardium aggravates the loss of function (Figure 
4). This early impairment, however, is still a reversible phenomenon [25]. 
Subsequently, the functions of coenzyme Q-reductase (complex III) and of 
succinate dehydrogenase (complex II) also become affected so that both the 
oxidation of NAD- and FAD-dependent substrates are reduced [25]. The 
activity of the mitochondrial ATP synthase is found most reduced in ischemia 
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low-flow 

Figure 3. Schematic representation of the components of the respiratory chain and the major 
points of injury when hearts are perfused in low flow anoxia (5% of normal flow) with addition 
of fatty acids. Abbreviations: I to IV, complexes I to IV; b, Cl, c, aa3, cytochromes; Q, coenzyme 
Q; Fl , Fl ATPase/synthase; T, adenine nucleotide translocator; AN, mitochondrial content of 
adenine nucleotides. (From [3], with permission.) 

with pronounced acidosis [18], due to an enhanced binding of the inhibitor 
binding protein (see above). Other parts of the respiratory apparatus are 
only slightly affected, e.g. the activity of cytochrome c oxidase (complex IV) 
[25,29]. 

Parallel to the loss of adenine nucleotides from the whole tissue, a loss of 
adenine nucleotide contents can also be determined in mitochondria isolated 
from ischemic tissue [25, 31, 32]. The mechanism of this loss is not clear. 
The mitochondrial matrix is devoid of the enzymes catalyzing the breakdown 
of adenine nucleotides to nucleosides. In normal polarized mitochondria the 
mitochondrial pool of adenine nucleotides remains constant, since export of 
ATP and import of ADP mediated by the adenine nucleotide translocator 
strictly follows a 1:1 stoichiometry [33, 34]. However, under certain con
ditions a net release of adenine nuc1eotides can occur, e.g. when the extra
mitochondrial phosphate concentration increases [35]. The release seems to 
be the consequence of a permeability transition of the inner mitochondrial 
membrane (see below). 

Synthesis of ATP by the mitochondria is of use to the reoxygenated cell 
only if the ATP produced can also be exported to the cytosol, i.e. if the 
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Figure 4. Presence of fatty acids in ischemic hearts accelerates the decline in NAD-dependent 
(substrate glutamate) and FAD-dependent (substrate succinate) phosphorylating state 3 respir
ation. Mitochondria were isolated from oxygenated or anoxic perfused Langendorff-hearts 
(guinea pig). Conditions as for Figure 1. The anoxic perfusate contained no fatty acid, palmitic 
acid (16:0) or oleic acid (18:1) (complexed in 1:5 molar ratio to albumin). Means ± SD, n = 5. 
glut = glutamate; pr = protein; succ = succinate. 

adenine nucleotide translocator is still functioning. In mitochondria isolated 
from ischemic myocardium the activity of this carrier was found impaired 
[25-38]. This may be due to the reduction in intramitochondrial adenine 
nucleotide concentrations, falling below the Km of the inner binding site for 
adenine nucleotides of the carrier [32]. It has also been hypothesized that 
increased levels of long-chain coenzyme A (CoA) esters in the ischemic 
tissue are responsible for the reduction of activity [36, 39-41]. This hypothesis 
is based on the finding that long-chain acyl-CoA accumulates in the mitochon
drial matrix when l3-oxidation stops [1]. Using inner mitochondrial mem
branes turned inside-out (submitochondrial particles) it has been demon
strated that long-chain acyl-CoA indeed inhibits the translocase from its 
matrix side [42]. It is however, unclear whether free concentrations of these 
compounds ever reach inhibitory levels in mitochondria of ischemic cells. 
This is because the intracellular distribution of these amphiphilic compounds 
cannot be exactly determined. In the cell, long-chain acyl compounds bind 
not only to mitochondrial membranes but also to other cell structures and 
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soluble proteins, and there is no established way to preserve this distribution 
in cell fractionation [43, 44]. 

In mitochondria from ischemic hearts not only the function, but also the 
number of adenine nucleotide translocator proteins decreases, either by loss 
from the membrane or by denaturation. A close correspondence was found 
between the recovery of activity and the remaining amount of non-denatured 
protein of the adenine nucleotide translocator [25]. Thus in ischemia the 
mitochondrial content of adenine nucleotides and the activity of the adenine 
nucleotide translocator decrease. This may not be very important for the 
myocardial cells as long as oxygen remains absent, but it can limit the 
ability of the mitochondria to produce and export ATP when they become 
reoxygenated. 

Hyperpermeability of the inner mitochondrial membrane 

The inner membrane of energized cardiac mitochondria is normally perme
able to small solutes only in a very selective manner. A number of conditions 
[15,45-47] that cause a large increase in permeability of the inner membrane 
are however known. It then becomes permeable in a non-selective manner 
to solutes up to a molecular weight of about 1000, including adenine and 
pyridine nucleotides. Hyperpermeability of the inner membrane leads to 
rapid dissipation of the electrochemical potential and activation of mitochon
drial net A TP hydrolysis if the latter is not prevented by the binding of the 
inhibitor protein (see above). 

In vitro, mitochondrial hyperpermeability can be induced by a large 
number of conditions (many are listed in [46]). For example, the exposure 
of respiring mitochondria to high extra-mitochondrial concentrations of Ca2 + 

plus inorganic phosphate [15, 46] can induce mitochondrial hyperperme
ability. It has been demonstrated that the rise in the concentration of ionized 
Ca2 + within the matrix space is the decisive factor. A rise of Ca2 + alone is 
however not sufficient; additional factors are needed to induce hyperperme
ability. 

Besides a high concentration of inorganic phosphate, several other factors 
or complex conditions can also induce hyperpermeability in the presence of 
a high extramitochondrial Ca2 + concentration [44]. Among these "inducing 
factors" are: a depletion of mitochondrial adenine nucleotides [37-50] (see 
above); atractyloside blocking the nucleotide binding side of the adenine 
nucleotide translocator in outward orientation [51, 52]; long-chain acyl-CoA 
[53, 54]; lysophospholipids [49, 55]; pro-oxidants [52, 55-57]; and oxidation 
and hydrolysis of the mitochondrial pyridine nucleotides [57, 58]. 

The mechanism( s) causing the permeability transition is (are) known only 
partially. It may be due to the opening of a defined, non-selective proteina
ceous "pore" (estimated diameter approximately 2 nm) or "megachannel" 
[59] in the inner mitochondrial membrane, a hypothesis first proposed by 
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Haworth and Hunter [45]. The concept of a pre-existent structure of the 
inner mitochondrial membrane which can open and close is supported by 
the rapidity of induction and reversibility of the hyperpermeable state. Thus 
the effect of a rise of extramitochondrial Ca2+ (in the presence of phosphate) 
is rapidly reversed by addition of Ca2+ chelators [60]. The fact that hyperper
me ability can be blocked by a single agent, cyclosporin A [61], also argues 
for this concept. The fact that atractyloside, a blocker of the outward
oriented binding side of the adenine nucleotide translocator, can modulate 
a permeability transition [51] has led to speculations that the "pore" may 
represent the translocator in a special conformational state. The molecular 
nature of the hypothetical "pore" has not yet been identified. 

The group of Pfeiffer [46] has favored the concept that a lipid phase 
alternation causes the permeability transition. The main support for this 
hypothesis comes from the finding that conditions favoring a degradation of 
membrane phospholipids are also inducers of hyperpermeability whereas 
conditions stabilizing phospholipids, e.g. inhibitors of the mitochondrial 
Ca2+ -sensitive phospholipase A2, antagonize the induction of hyperperme
ability [46]. At present it seems unclear whether there are two different 
mechanisms leading to a similar end-result of permeability transition. In the 
following we will discuss the permeability transition in terms of the "pore" 
theory only. Since "pores" have not been identified at the molecular level, 
this is only a semantic decision in the context of this review. 

For a pathophysiological interpretation of the phenomenon of the perme
ability transition, the roles of Ca2+, Pi, adenine nucleotides and pH are 
worth considering. For the transition to occur, a combination of high Ca2+ 
(> 1 ILM), low ATP «1 mM) and high Pi (> 10 mM) concentrations in the 
extramitochondrial milieu is very effective [62]. These are conditions found 
in the cytosol of the cardiomyocytes after a prolonged time of oxygen deple
tion. Since the permeability transition requires accumulation of Ca2+ within 
the matrix space, early dissipation of the electrochemical potential and pres
ence of factors interfering with the mitochondrial mechanism of Ca2+ uptake, 
e.g. a high cytosolic concentration of Mg2+ [63], may lead to early (re)sealing 
of the mitochondria [64]. The opening of "pores" is inhibited by an extra
mitochondrial concentration of ATP > 1 mM [65] and also by a low pH [66]. 
Reversal of the opening is favored by elevated concentrations of ADP (KO.5 

30 ILM) [65] and a reduced state of pyridine nucleotides [54]. Ischemic 
conditions contain therefore both factors favoring and factors inhibiting 
"pore" opening. Since "pore" opening in a population of equally treated 
mitochondria seems to be statistically distributed [15], the combined action 
of these factors may lead to a gradual variation of the number of hyperperme
able mitochondria in ischemic and reoxygenated myocardial cells and tissue. 
Consistent with a deleterious role of "pore" opening in the energy-depleted 
cardiomyocyte is the recent finding that a blocker of the "pore", cyclosporin 
A, can retard severe cell damage in anoxic ally incubated isolated cardio
myocytes [62]. Protection against ischemia-reperfusion by cyclosporin A has 
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Figure 5. Presence of fatty acids in ischemic hearts increases mitochondrial leakiness for Ca2+ , 

an indicator for "pore opening". Rate of ruthenium-red induced Ca2+ efflux from mitochondria 
pre loaded with 100 nmol Ca2+ Img protein. Mitochondria were isolated from oxygenated or 
anoxic perfused Langendorff-hearts (guinea pig). Conditions as for Figure 1. The anoxic perfus
ate containing no fatty acid, palmitic acid (16:0) or oleic acid (18:1) (complexed in 1:5 molar 
ratio to albumin). Means ± SD, n = 5. 

also been achieved in other tissues [66-69]. More studies are needed before 
a judgement on the potential role of "pore opening" or "permeability trans
ition" in the pathophysiology of hypoxia-reoxygenation or ischemia-reper
fusion of the myocardial cell can be made. 

Induction of hyperpermeability of the inner mitochondrial membrane may 
thus be disadvantageous in the ischemic or hypoxic cell since it causes acti
vation of mitochondrial net ATP hydrolysis (Figure 5). Amphiphilic long
chain acyl compounds are possible inducers of this state of hyperpermeability. 

Mitochondrial Ca2 + overload 

The accumulation of Ca2 + within the mitochondria proceeds at the expense 
of the electrochemical potential. In order to keep this constant, respiratory 
energy must by diverted from oxidative phosphorylation. Mitochondria for-
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ced to accumulate Ca2+ do therefore produce less ATP [70] and may eventu
ally depolarize due to opening of "pores" (see above). 

Under certain experimental conditions, mitochondria can accumulate enor
mous amounts of Ca2+ [70, 71]. This can occur when the Ca2+ taken up is 
precipitated in a complex with phosphate (hydroxyapatite) which appears as 
crystalline electron-dense material in electron microscopy. Presence of ade
nine nucleotides is required for this process [70]. In contrast to a normal 
Ca2+ load of 1-2 nmol Ca2+ Img mitochondrial protein, loads up to 3000 nmol 
Ca2+ Img mitochondrial protein can be obtained, and after loading the mito
chondria can remain functionally competent. Preservation of functional com
petence is apparently possible [70, 71] when the concentration of ionized 
Ca2+ in the matrix space is low after the loading process. Mitochondria 
swell during the loading process, indicative of "pore" opening. It has been 
suggested that the role of ATP or ADP during the loading process consists 
in a facilitation of formation of the precipitate. It seems also possible that 
ADP (generated by hydrolysis of ATP) antagonizes "pore" opening to some 
extent to prevent an extensive loss of membrane polarization during the 
loading process [46]. 

Mitochondria with a manifest Ca2+ overload, isolated from ischemic-reper
fused myocardium were usually found to be functionally impaired. A higher 
total Ca2+ load was associated with larger reductions in the capability for 
oxidative phosphorylation [72, 73]. The failure could be partially reversed 
when the mitochondria were first exposed to an exogenous Ca2+ chelating 
agent [72]. As this treatment is now known to induce closure of hyperperme
able "pores" (see above), it seems possible that the functional failure of 
these Ca2+ -loaded mitochondrial preparations was due to a permeability 
transition. These studies on isolated mitochondria have, however, to be 
interpreted with some caution. If the massive overload of the isolated mito
chondria with Ca2+ originated from their history in the tissue, they could 
not have been hyperpermeable at the same time. It must therefore be con
sidered that the isolation process had artificially aggravated the degree of 
mitochondrial injury. Because of the methodological difficulties in evaluating 
the functions of mitochondria in tissue the pathophysiological significance of 
mitochondrial Ca2+ overload remains a contentious issue. 

It is clear from experiments using isolated mitochondria that mitochondria 
deteriorate when excess Ca2+ taken up cannot be deposited in the form of 
insoluble precipitates but when it elevates the intramitochondrial concentra
tion of ionized Ca2+. The causes for such damage may be manyfold; one is 
probably the activation of intramitochondrial phospholipase A2 [46, 74]. It 
must be emphasized that in ischemia-reperfusion this "suicidal" mechanism 
can occur only when the cells are reoxygenated because the accumulation of 
Ca2+ in the mitochondrial matrix requires respiratory energy. This has been 
confirmed by measurements of intracellular distribution of total Ca2 + in situ 
using electron probe microanalysis. Myocardial cells severely injured by 
ischemia-reperfusion developed a pronounced mitochondrial overload with 
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calcium only upon reperfusion [75, 76]. The ultrastructural equivalent of this 
overload is the appearance of characteristic granular densities in mitochon
drial matrices, documented by transmission electron microscopy by many 
investigators (e.g. [77]). 

Deterior ation of mitochondrial functional competence may be preventable 
when mitochondrial Ca2+ uptake is blocked at the onset of reoxygenation, 
e.g. with ruthenium red. Less respiratory energy should then be diverted 
from the oxidative production of A TP. Since this energy is needed for a re
activation of the pumps clearing the cytosol from excess Ca2+ this strategy 
should also remove the initial cause of mitochondrial Ca2+ accumulation, 
the Ca2+ overload of the ·cytosol. When this has been achieved, a further 
blockade of mitochondrial Ca2+ uptake becomes unnecessary. 

Mitochondrial contribution to stunning and the onset of irreversible injury 
in ischemic-reperfused myocardium 

In the previous section we discussed the results of studies investigating func
tions of mitochondria isolated from injured myocardium. These studies indi
cate that mitochondria are progressively damaged. It cannot however, be 
directly inferred from these studies that a deficit of recovery in reoxygenated 
myocardium is due to mitochondrial malfunction. Difficulties of interpreting 
these data arise for the following reasons: First, the isolation procedure may 
add something to or substract something from the functional state in vivo. 
Second, it is conceivable that injury affecting initially only part of the mito
chondria may remain undetected, if the isolation procedure is selective. 
Differences in selectivity may explain why in some studies ischemia seemed 
to cause distinct mitochondrial changes whereas in others, applying similar 
protocols of ischemia, mitochondrial functions seemed unaltered. Third, the 
reduction of mitochondrial function in an in-vitro assay, designed to measure 
a functional maximum, may not represent a relevant impairment within the 
living cell. One of the reasons is that the experimental conditions may not 
reflect the cytosolic milieu properly (in most studies, mitochondrial functions 
were tested in the absence of Ca2+, Mg2+ and Na+). Another is that the 
functional maximum may not normally be required for the myocardial cell. 
For these reasons, it is necessary to evaluate the recovery of mitochondrial 
function in intact myocardial cells and tissue (Figure 6). 

Prolonged but transient post-ischemic myocardial dysfunction has been 
termed "stunning" [78]. It characterizes a condition of the myocardial tissue 
which (i) has suffered from ischemia long enough to prevent an immediate 
full recovery but less than needed for manifest irreversible damage, (ii) has 
been reperfused adequately in relation to its actual energy demand, and (iii) 
has not yet recovered a normal contractile function. It has been reported in 
many studies that mitochondria isolated from ischemic or ischemic-reper
fused myocardium prone to exhibit "stunning" are functionally impaired. As 
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Figure 6. Hypothesis on the sequence of events leading to irreversible mitochondrial (Mito) 
and cell injury in ischemia/hypoxia and reoxygenation of myocardium. With time of ischemia, 
reserves of high-energy phosphates (HEP) are depleted, partly due to activation of mitochondrial 
net ATP hydrolysis. Cytosolic Ca2+ (Cae) rises in the energy-depleted cells. Development of 
mitochondrial structural injury progresses, reaching late a state of irreversibility. When ischemic 
myocardial cells are early reoxygenated, oxidative phosphorylation (Ox Phos) is re-initiated and 
the cells recover. Later, when a cytosolic Ca2+ overload has developed, reoxygenation provokes 
the deleterious "oxygen paradox" injury. This defines the usual practical limit of reversibility 
(dashed line). At a next stage, when other mechanisms for clearing excess Ca2+ from the cytosol 
are impaired, reoxygenated mitochon~ria are forced to actively accumulate large amounts of 
Ca2+. This accumulation causes a further increase of their injury. Finally, mitochondria have 
reached a state of irreversible injury already before reoxygenation. (From [11], with permission.) 

an example, mentioned above, a very early sign of mitochcndrial ischemic 
injury is a complex I defect, reducing the rate of oxidation of NAD-depen
dent substrates. Asimakis et al. [32] investigated several parameters of mito
chondrial integrity in mitochondria isolated from "stunned" myocardium. 
The reduction of translocator activity and of the respiratory activity under 
phosphorylating conditions (state 3) were found rapidly reversible, as also 
reported by others [25]. The extent of mitochondrial dysfunction did not 
correlate with the recovery of function, indicating that an insufficient rate of 
ATP generation is not responsible for the failure of function in "stunning". 
This conclusion is in accordance with measurements of A TP production in 
vivo using NMR techniques [79]. The key observation proving functional 
competence of mitochondria in reperfused "stunned myocardium" is that 
the energy can be provided for an increase in contractile performance. With 
inotropic stimulation, a normalization of function can be achieved without 
increasing the energy deficit [80-83]. The changes in the pattern of substrate 
oxidation found in "stunned myocardium" [84-86] cannot be the cause, 
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therefore, for its mechanical dysfunction. In the case of "stunned myocar
dium", therefore, post-ischemic dysfunction seems not causally related to 
mitochondrial injury, probably because it is not severe enough and therefore 
does not become the limiting factor for contractile activation. 

When energy-depletion in ischemia or hypoxia is extended in time beyond 
the stage where reoxygenation still leads to spontaneous recovery, reoxygen
ation may have a "paradoxical" result on myocardial cells. It can lead to an 
abrupt aggravation of tissue injury ("oxygen paradox") characterized by a 
sudden onset of contracture and massive enzyme release [87, 88]. Provocation 
of this lethal reoxygenation injury normally represents the practical limit for 
reversibility [88]. This form of acute and severe tissue injury is dependent 
on the ability of mitochondria to resume oxidative energy production; it is 
attenuated or does not occur when this ability is impaired or abolished, e.g. 
when tissue reoxygenation is performed in the presence of uncouplers or 
inhibitors of mitochondrial respiration [88, 89]. When the oxygen paradox 
develops in reoxygenated myocardial tissue, a disruption of the sarcolemma 
and a consecutive massive influx of Ca2 + into disrupted myocardial cells soon 
terminate mitochondrial ATP production. The explanation of the oxygen 
paradox seems to be the following: Under prolonged conditions of energy 
depletion cardiomyocytes develop a pronounced cytosolic Ca2 + overload 
[90-96]. This happens also in the ischemic heart [97-102]. At the myofibrils, 
the Ca2 + overload creates a state of potential activation, which remains 
without mechanical consequences as long as the energy of ATP hydrolysis 
is too low to drive the cross bridge cycle. When oxidative phosphorylation 
is re-initiated upon re-supply of oxygen, the energy for cross bridge cycling 
becomes available [103]. This causes a very forceful, uncontrolled contrac
tion, leading to disruptions within the cytoskeleton, i.e. the structural damage 
of "hypercontracture". In tissue, hypercontracture of adjacent cardiomy
ocytes leads to their mutual disruption, release of intracellular constituents 
and to a massive secondary influx of Ca2 + into the broken cells [104] which 
then determines the morphological picture of irreversibly damaged myocar
dium [77]. There is no indication that accumulation of fatty acid derivatives 
plays a crucial role in this sequence of events. It may nevertheless act 
indirectly by causing acceleration of energy loss, e.g. by inducing early 
mitochondrial depolarisation in the ischemic or hypoxic cell. 

At still later stages of ischemic or hypoxic cell injury the process of struc
tural disintegration has progressed so far that mitochondrial and other cell 
functions are irreversibly impaired already prior to the onset of reoxygen
ation. Such a state is reached, for example, if in ischemic tissue the sarco
lemma disintegrates. It seems possible that incorporation of amphiphilic 
lipids into cell membranes speeds up the process of disintegration by a 
detergent-like effect. As the practical limit of reversibility was reached be
fore, however, these autolytic phenomena are of only minor pathophysio
logical interest. 
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Conclusions 

In ischemic myocardium, mitochondria lose progressively their normal func
tional competence. Simultaneously amphiphilic long-chain acyl compounds 
with potentially deleterious actions on cell membranes accumulate. To date 
it has not been possible to determine the free concentrations of the relevant 
lipid moieties in the cytosol and it has therefore remained uncertain whether 
the concentrations found deleterious in vitro are comparable to those found 
in ischemic myocardial cells. Consequently a causal relationship between 
mitochondrial injury and accumulation of long-chain acyl compounds is un
proven. 

The pathophysiological significance of the defects found in mitochondria 
isolated from ischemic or hypoxic myocardium is also unclear. There is 
no convincing evidence that mitochondrial injury developed during energy
depletion represents the decisive cause for reversible contractile dysfunction 
("stunning"). A regular mitochondrial action in conjunction with unfavorable 
other circumstances is responsible for the deleterious result of "oxygen para
dox" injury. An increase in amphiphilic lipids is not part of these circum
stances. 

Presence of elevated levels of amphiphiles in the cytosol may accelerate 
the process of energy depletion in the oxygen-deprived myocardial cell as 
mitochondrial net ATP hydrolysis may become activated as a consequence 
of mitochondrial depolarisation. To initiate depolarisation a small increase 
in membrane permeability might be sufficient, e.g. caused by the incorpor
ation of amphiphilic long-chain acyl derivatives into the inner membrane of 
the mitochondria. 

In the reoxygenated, Ca2 + -overloaded cell respiring mitochondria can be 
forced to take up large amounts of Ca2 + which may terminate their metabolic 
survival together with that of the entire cell. A prerequisite for this accumu
lation is mitochondrial polarization. Since lipids at high concentration tend 
to depolarize mitochondria, there is no specific role for lipids in this patho
mechanism. The primary cause for irreversibility, a cellular state in which 
mitochondrial Ca2 + overload occurs, seems outside these organelles as persis
tently high cytosolic Ca2 + concentrations indicate severe dysfunction of the 
sarcolemma. 

In summary, it seems questionable whether the interference of amphiphilic 
long-chain acyl derivatives with mitochondrial functions plays an important 
causal role for postischemic dysfunction or the onset of irreversibility in 
ischemic-reperfused myocardium. 
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9. Free radical-mediated damage and carnitine esters 

JOHAN FOKKE KOSTER 

"The administration of propionylcarnitine leads to less hydrogen peroxide formation 
and less available free iron, resulting in attenuation of the free radical-mediated 
damage. It is, however, not unlikely that propionylcarnitine directly inhibits the 0;
generation, perhaps by stabilizing the membrane." 

Introduction 

It is now well recognized that oxygen free radicals are involved in the tissue 
damage occurring upon reperfusion after an ischemic period. Although it is 
quite obvious that oxygen supply must be restored as soon as possible, this 
beneficial effect is counteracted by the generation of free oxygen radicals. 

A free radical is by definition an atom or a molecule with one or more 
impaired electrons in its outer orbital. Molecular oxygen is a biradical by 
itself because it has two impaired electrons in its outer orbitals. These two 
impaired electrons have parallel spins. Therefore all reactions in which mole
cular oxygen is involved are spin restricted, resulting in rather slow reaction 
rates. 

Normally in biological oxygenation, oxygen is tetravalently reduced to 
water in the mitochondria by the enzyme cytochrome c oxidase. It is, how
ever, assumed that about 1 % of the oxygen consumption by the cell is not 
tetravalently reduced, but gives rise to oxygen free radicals generation. If 
oxygen is reduced in univalent steps, three types of reactive intermediates 
can be formed: 

(superoxide) 

O2 + e ~ + 2H+ ~ H 20 2 (hydrogen peroxide) 

f. W. de long and R. Ferrari (eds): The carniane system, 123-132. 
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The addition of a single electron results in the formation of superoxide anion 
(Oz), divalent reduction results in the formation of hydrogen peroxide 
(H20 2) and a trivalent reduction in the formation of hydroxyl radicals (OR). 
Superoxide anion and hydroxyl radicals are free radicals, but H20 2 although 
a strong oxidant, is not a free radical because all its electrons are paired. 

In biological systems, e.g. heart tissue, the toxicity of superoxide is not 
regarded as very high [1]. Nevertheless, the protonated form of Oz, the 
hydroperoxyl radical, is known to be more aggressive. It can cause the 
peroxidation of lipids. Hydrogen peroxide is a stable compound of limited 
reactivity and no further reduction takes place in the absence of a suitable 
catalyst. 

Protection against free radicals 

As already stated about 1 % of the oxygen consumed is not tetravalently 
reduced to water, but to intermediate oxygen free radicals. So during aerobic 
metabolism there is a continuous generation of Oz and H20 2 • These are 
even used in biosynthesis, intracellular signalling and in the defence against 
invading microorganisms [2, 3]. To cope with this generation of free oxygen 
radicals, and to prevent damage from them, the cell has several lines of 
defence, an enzymatical and a non-enzymatical system [4]. The detoxification 
of oxygen radicals by the enzymatic system occurs through an array of various 
enzymes (Figure 1). The dis mutation reaction of Oz is speeded up 10,000 
times by the enzyme superoxide dismutase to yield H20 2 and O2 . The H20 2 

is degraded to H20 and O2 by catalase. Physiologically more important is 
the glutathione peroxidase, which removes H20 2 at the expense of reduced 
glutathione (GSH). This enzyme can also detoxify lipid hydroperoxide in a 
similar reaction, but not lipid hydroperoxides in phospholipids. The latter 
compounds are detoxified by a membrane bound version of glutathione 
peroxidase [5]. It is clear that these lines of defence are strongly dependent 
on the availability of GSH. This makes the system dependent of the re
reduction of oxidized glutathione (GSSG). The reduction of GSSG is cata
lyzed by glutathione reductase at the expense of NADPH. The latter is 
provided by carbohydrate degradation through the pentose phosphate shunt. 

Figure 1 also shows a part of the non-enzymatic defence, namely alpha
tocopherol (vitamine E) and ascorbate (vitamine C) as direct scavengers and 
chain breakers. The product itself is a radical, however less reactive. But it 
has to be removed. It has been proposed that vitamine E radical reacts with 
vitamine C yielding dehydroascorbic acid [4]. These are very interesting 
reactions because they have to occur on the water-lipid surfaces in the 
membrane. 

Recently Winterbourne [6] proposed a cycle in which radicals react directly 
with oxygen to yield superoxide or through GSH to yield superoxide and 
GSSG. The hypothesis was put forward that in the absence of superoxide 
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Superoxlde Dismutase 

0;' + HOi ~ H20 2 + 02 
Catalase 

H202 + H20 2- 2 H20 + 02 
Glutathione Peroxldases 

ROOH + 2GSH ---+ ROH+GSSG+HP 

Scavenging by Vitamins 

ROO' +vItE·OH -----ROOH +VltE·O' 

VilE·O' + Vile· H _ vilE·OH + Vile·' 

Vile·' + 2 H+ -----+ vile· H + DHA 

Figure 1. Cellular defence against free radicals. Reactions catalyzed by superoxide dismutase, 
catalase and glutathione peroxidases. Non enzymatic removal occurs through a number of chain 
breaking scavengers. Here the concerted action of vitamin E (vitE) and vitamin C (vite) is 
presented. The end product of the ROO radicals is the non toxic dehydroascorbic acid (DHA). 
GSH and GSSG, reduced and oxidized glutathione, respectively. 

dismutase, superoxide would continue the cycle with GSH to yield hydrogen 
peroxide and GSSG. Removal of superoxide by superoxide dismutase would 
reduce the production of hydrogen peroxide and GSSG, In this way only 
one enzyme would be necessary to remove a whole range of radicals. 

Superoxide and hydrogen peroxide are not so toxic as is often claimed [1, 
7]. It is the availability of free transition metals which makes these agents 
so toxic, due to the formation of the highly aggressive hydroxyl radical 
(OR), according the following reactions: 

red + Fe3 + -4 Fe2 + + ox 

in which red and ox denote reductant and oxidant, respectively. 

(1) 

(2) 

(3) 

(4) 

The first reaction is catalyzed by superoxide dismutase. Reactions 2 and 3 
are known as the Haber-Weiss reaction. The reactions are written down for 
iron but also take place with copper. Ferritin, transferrin and lactoferrin are 
often mentioned as radical scavengers, but this is based on their iron chelating 
capacities which prevent the formation of hydroxyl radicals. Due to the 
extremely low solubility of ferric hydroxide, the Fe3+ ion concentration will 
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be very low under normal physiological pH. Therefore the Haber-Weiss 
(reactions 2 and 3) will not proceed [8, 9]. Only in the presence of a suitable 
chelator that keeps iron in solution, it can participate in these reactions. The 
chelator must allow one electron transfer so at least one coordination site 
must be occupied by an easy displace able ligand [10]. Therefore, the nature 
of the complex determines why some iron chela tors enhance and others 
completely prevent the iron driven radical reactions [11]. It is quite clear 
that under normal physiological conditions the amount of free iron is very 
low and almost all of the cellular iron is located in ferritin. Iron stored in 
ferritin is unable to initiate lipid peroxidation, but under pathological con
ditions, as e.g. inflammation, iron can be released from ferritin by superoxide 
[12]. It has also been shown that other reducing equivalents (e.g. NADPH) 
can release iron from ferritin in order to initiate lipid peroxidation of micro
somes [13]. 

The role of iron in ischemia-reperfusion syndrome 

A wide variety of experiments has substantiated the role of iron as catalytic 
transition metal in post-ischemic free radical mediated damage [8]. However, 
the role of iron was indirectly shown with the aid of iron chelators. These 
iron chelators, which also inhibit the lipid peroxidation process, were shown 
to attenuate the free radical mediated damage [14, 15]. The iron chelator 
desferal (desferoxamine) has been shown to decrease hydroxyl radical pro
duction [16] and preserve membrane phospholipid in post-ischemic rat hearts 
[17]. In vivo studies using dogs [18] and pigs [19] have confirmed the bene
ficial effect in whole animals. Smith et al. [20] have shown that the protective 
effect of desferal is due to its chelating capacities and not to a radical 
scavenging effect, since the beneficial effect is abolished by using the iron 
containing counterpart of desferal (ferrioxamine). More direct evidence for 
the important role of iron comes from iron loading of endothelial cells [21] 
and from the increased sensitivity towards mild anoxic insults of heart from 
iron overloaded rats [22]. 

Although the role of iron during post-ischemia from radical mediated 
damage is well established, it is unclear where the catalytic iron originates 
from or in which form it is present. As mentioned above only a very small 
amount of iron has to be present in the socalled low molecular weight pool 
(LMWP) [23, 24] in which the iron will be chelated to small molecules as 
ATP and/or AMP [24]. This form has been shown to catalyze hydroxyl 
radical formation and lipid peroxidation [25]. Also evidence was presented 
that iron is delocalized in this pool during ischemia in dog heart [26], gerbil 
brain [27] and rat kidneys [28]. Except for the last study [28] in the other 
studies [26, 27] it was not realized that the iron could have been released 
from ferritin during the procedures used. Healing et al. [28] have realized 
this possibility but argue that since the iron measured was chelatable, it must 
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have been loosely bound and therefore potentially catalytic. Modifying the 
method of Gower et al. [29], we have recently developed a method to 
measure the LMW iron pool directly [30]. With this method it was clearly 
shown that during ischemia there is a drastic increment of the LMW iron 
pool, even to a concentration of 40 fLM [30]. This concentration is high 
enough to initate the lipid peroxidation reaction. 

Source of oxygen radicals 

All aerobic life forms use oxygen through a stepwise enzymatic reduction of 
the molecule using transition metals to overcome the spin restrictions [31]. 
This causes a constant generation of superoxide and hydrogen peroxide 
from different sources, which may be accidently through leakage, or for the 
production of substrate for further reactions [32]. Some of these metabolic 
pathways contribute to radical generation during reperfusion. 

Mitochondrial respiration is one of the main sources of reactive oxygen in 
normal metabolism [33]. The last step in the mitochondrial respiratory chain 
is the tetravalent reduction of molecular oxygen in one step. Separate from 
leakage from respiring mitochondria, superoxide is generated through an 
NADH oxidase that may exist on the mitochondrial outermembrane. It is 
absent in liver mitochondria [34, 35]. The mitochondrial generation of reac
tive oxygen is enhanced by ischemia and reperfusion [35, 36]. The peroxiso
mal B oxidation accounts for an important part of the fatty acid oxidation 
and is therefore a constant source of hydrogen peroxide [37]. In the formation 
of prostaglandins and leukotrienes through cyclooxygenase and lipoxygenase, 
respectively, lipid peroxides as intermediates are involved. These pathways 
are stimulated by either free arachidonic acid, superoxide, hydrogen peroxide 
and lipid peroxide [38], and have been shown to generate reactive oxygen 
species [39]. Furthermore, ischemia leads to an elevation of free arachidonic 
acid [40], making these pathways a likely source of oxygen radicals during 
reperfusion [39]. The release of noradrenaline during reperfusion may contri
bute to the radical formation. Autooxidation of catecholamines generates 
superoxide [41]. The endothelium derived releasing factor nitric oxide (NO) 
is also a radical and reacts with superoxide. A balanced production of both 
radicals by the endothelium is a way to regulate the vascular tone [42]. It is 
also prognosed that the reaction between nitric oxide and superoxide leads 
to the formation of peroxynitrite, which is converted to a hydroxyl-like 
radical which could induce endothelial damage [43]. In vivo, the activation 
of granulocytes leads to a sudden increase in oxygen consumption. Ninety 
percent of this oxygen consumption (the so-called "respiratory burst") is 
converted to superoxide through the activated NAD(P)H oxidase. This 
superoxide is in turn converted to hydrogen peroxide. The latter is used for 
the formation of hypochlorous acid, which is toxic and kills the bacteria. 
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Granulocytes accumulate in the infarcted area after in vivo ischemia and can 
certainly contribute to the generation of superoxide upon reperfusion [44]. 

It has been described that during ischemia xanthine dehydrogenase is 
converted to xanthine oxidase by ischemia [45]. However this possibility is 
strongly debated [46]. For the human heart is is quite evident that this tissue 
has a low activity of xanthine oxidase [47]. So the contribution of free radicals 
by xanthine oxidase in the human heart will be negligible. 

The effect of carnitine ester on free radical-mediated tissue damage 

Tong Mak et al. [48] have demonstrated that the lipid peroxidation of sarco
lemma is enhanced by the addition of palmitoyl-CoA, palmitoyl-L-carnitine 
and lysophosphatidy1choline, while free fatty acid, coenzyme A and L-carni
tine have no effect. Palmitoyl-CoA ester has a greater promoting effect on 
the lipid peroxidation than palmitoyl-L-carnitine ester. It is interesting to 
note that both acyl esters increase during ischemia. In contrast to the long
chain acyl esters, acetyl-L-carnitine seems to have a protective effect on the 
NADPH induced lipid peroxidation of heart micro somes [49]. This effect on 
lipid peroxidation is measured on the chemiluminiscence signal. It has also 
been shown that acetyl-L-carnitine does not inhibit the O2 production from 
granulocytes activated by phorbolester. 

Provoking mitochondrial lipid peroxidation with ferrous ions as catalyst, 
Ferrari et al. [50] showed the L-carnitine and acetyl-L-carnitine failed to 
prevent mitochondrial damage. However, propionyl-L-carnitine improved 
the mitochondrial functions significantly, but this was not reflected in a 
decrease of malondialdehyde formation. This can indicate that inhibition of 
lipid peroxidation is not involved but that propionyl-L-carnitine inhibits other 
radical mediated damage, e.g. on proteins. Shug et al. [51] claimed that 
acetyl-L-carnitine as well as propionyl-L-carnitine inhibit the mitochondrial 
O2 production while L-carnitine does not affect it. These authors also report 
a beneficial effect of acetyl-L-carnitine and propionyl-L-carnitine on the 
cardiac functions upon reperfusion after a 90 min low flow ischemia. 

More experimental evidence for the beneficial effects of propionyl-L-carni
tine is provided by the group of Packer [52, 53]. They show that propionyl
L-carnitine does prevent the formation of carbonyls in the protein, which 
strengthened the findings of Ferrari et al. [50] who found an improvement 
of mitochondrial functions without a decrease of malondialdehyde, as men
tioned before. However, in contrast to Shug et al. [51], the Packer group 
failed to find any inhibition of O2 production by submitochondrial particles. 
In a model system of hydrogen peroxide with FeS04 with measurement 
of the luminal chemiluminiscence, propionyl-L-carnitine and propionyl-D
carnitine equally inhibit the chemiluminiscence response. It should be real
ized that high concentrations of either carnitine ester are necessary (75 mM) 
to obtain this inhibitory effect. To inhibit the ascorbate oxidation by iron, 
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high concentrations of the carnitine esters are needed. The reaction of hydro
gen peroxide and ferrous ion reveals radicals which can be detected by 
electron spin resonance. The radical is stabilized by and trapped with 5,5'
dimethyl-l-pyroline-N-oxide (DMPO). High concentrations (75 mM) of 
either propionyl-L-carnitine or the D-form are necessary to block the DMPO
OH signal. It should be considered that they used adventitious iron or added 
75 j.LM FeS04. The more surprising is their finding that for the generation 
of the DPMO spin adducts in the heart perfusate after 40 min of ischemia, 
only 10 mM propionyl-L-carnitine is needed [52, 53]. Voogd et al. [30] have 
found that the LMW iron is then about 40 j.LM. Based on these findings we 
suggested that a part of the beneficial effect of propionylcarnitine is due to 
an iron-chelating capacity. However, if this is the case one would expect that 
instead of the DMPO-OH spin adduct the DMPO-OOH spin adduct is seen, 
which is not the case. The latter is found if O2 is generated. It is therefore 
more likely that in some way propionyl-L-carnitine blocks the formation of 
O2. 

It is known that ischemic hearts are more susceptible to hydrogen peroxide 
than normoxic hearts [54]. Voogd et al. [55] have shown that this increased 
susceptibility is due to the increase of LMW iron. It is estimated [56] that 
the relative contribution of peroxisomes to the total oxidation capacity is 10-
30% for common fatty acids and about 45% for fatty acids with a chain 
length of more than 22 C. Oxidation through the peroxisomes leads to 
the formation of hydrogen peroxide. Acyl-CoA esters do enhance the lipid 
peroxidation more than acylcarnitine [48], raising the possibility that the 
addition of propionyl-L-carnitine increases the L-carnitine level. This can 
result in the conversion of acyl-CoA to acylcarnitine, which also decreases 
the substrate supply in the cytosol for peroxisomal oxidation. The latter 
results also in less hydrogen peroxide formation. As mentioned before, 
during ischemia also the LMW iron is increased. Propionyl-L-carnitine may 
chelate a part of this iron pool. Altogether the administration of propionyl
carnitine leads to less hydrogen peroxide formation and less available free 
iron, resulting in an attenuation of the free radical-mediated damage. It is, 
however, not unlikely that propionylcarnitine directly inhibits the O2 gen
eration, perhaps by stabilizing the membrane. 
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10. Carnitine transport in volume-overloaded 
rat hearts 
JOSEF MORAVEC, ZAINAB EL ALAOUI-T ABLIBI 
and CHRISTIAN BRUNOLD 

"An alteration of active carnitine transport did occur during the development of 
cardiac hypertrophy: both total and carrier-mediated carnitine transport were signifi
cantly depressed. The alterations of carrier-mediated transport might be related to a 
decreased affinity of membrane carrier for L-carnitine (higher apparent KM for carnit
ine) rather than to a decreased number of carriers (Vmax unchanged)." 

Introduction 

Carnitine concentration in tissue is generally related to mitochondrial volu
me-density and ability to oxidize fatty acids. The highest tissue carnitine has 
been detected in ventricular myocardium which, compared to other tissues, 
presents elevated rates of oxidative phosphorylation [1]. The ability of cardiac 
mitochondria to oxidize long chain fatty acids is also much higher when 
compared to skeletal muscle or liver sarcosomes (Table 1). Paradoxically 
enough, it has been known for many years [3-5] that the heart is missing y
butyrobetaine hydroxylase [6, 7], the last enzyme of carnitine synthesizing 
pathway, and that in the myocardium of different species including man, the 
carnitine synthesis stops at the level of deoxycarnitine (y-butyrobetaine). 
The tissue presenting the highest carnitine concentrations must therefore 
take up this essential co-factor of lipid metabolism from the blood where it 
is supplied by liver and, in some species, by kidney [6, 8]. 

Carnitine transport across cardiac cell membrane 

Since carnitine concentration in cardiac muscle is considerably higher than 
in the blood (Table 1), carnitine transport against a large concentration 
gradient is necessary [9]. The mechanism of carnitine transport has been 
studied in a variety of experimental systems: human fetal heart cells in culture 
[10, 11], adult rat cardiomyocytes [12], isolated skeletal muscle [13], heart 

l. W. de long and R. Ferrari (eds): The carnitine system, 133-144. 
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Table 1. Total tissue carnitine and rate of fatty acid oxidation by isolated mitochondria from 
different tissues of the rat. 

Tissue 

Heart 
Muscle 
Liver 
Blood 

Carnitine (fLmol/g wet wt) 

1.00-1.40 
0.50-1.00 
0.20-0.40 
0.05-0.08 

State 3 Q02 (fLmol/min/mg protein) 

180 
80 
60 

From Siliprandi et al. [1] and Bode & Klingenberg [2]. 

slices [14] and perfused rat hearts [9]. Despite heterogeneity of these prepara
tions, the existence of a saturable carrier-mediated transport could always 
be established. This latter process is optimally active at physiological concen
trations of extracellular carnitine: at 50 fLM extracellular carnitine about 80% 
of uptake occurs by carrier-mediated system. At higher concentrations (100-
1000 fLM), free diffusion of L-carnitine can significantly contribute to carni
tine uptake by tissue [9, 15]. At 200 fLM extracellular carnitine, about half 
of the L-carnitine transported is taken up by the saturable carrier-mediated 
process, the remaining 50% cross the membrane by passive diffusion [9, 12]. 

Cardiac carrier-mediated carnitine transport was initially characterized on 
an established line (CCL-27) of fetal cardiac cells in culture [10] and on 
isolated adult rat heart myocytes [12, 16]. According to these studies, the 
carnitine transport was found three- to ten-fold faster in heart cells than in 
fibroblasts. y-Butyrobetaine was taken up to the same extent as carnitine 
[10], and other compounds that contained trimethylamino- and carboxylic 
groups reduced carnitine uptake. The substances without quaternary am
monia were found without effect. The membrane carrier had about 25-fold 
higher affinity for L-carnitine than for the D-isomer [10]. A similar situation 
also occurred in the intact rat heart [9] where, on the other hand, the 
membrane carrier proved to have higher affinity for short-chain acylcarnitine 
than for L-carnitine itself [17]. This may explain why upon a single injection 
of propionyl-L-carnitine in vivo the myocardial carnitine levels attain higher 
levels than after the administration of L-carnitine per se (Moravec et aI., 
unpublished observation). 

The kinetic parameters for the carrier-mediated carnitine transport differ 
according to the preparation used [8, 9]. The apparent KM for carnitine is 
about 5 fLM in Girardi heart cells [10]. It is close to 60 fLM for isolated 
myocytes from adult rats [16] and, in isolated rat hearts, it ranges from about 
25 fLM [9] to 83 fLM [18]. Recently, it has been suggested that, at least in 
human cultured myoblasts [15], two distinct components of carrier-mediated 
saturable transport can be distinguished: a high affinity uptake occurs be
tween 0.5 and 10 fLM carnitine, and a low affinity uptake of carnitine operates 
at carnitine concentrations between 25 and 200 fLM. The high affinity uptake 
(KM 4.17-5.50 fLM, Vmax 11.80 -19.60 pmol/h/mg protein) does not change 
during maturation of cells in culture. On the other hand, the low affinity 



Carnitine transport in volume-overloaded rat hearts 135 

uptake is influenced by muscle maturation in vitro. The decrease in Vmax 
(from 140 to 39 pmollh/mg protein) was interpreted to suggest a reduction 
in total number of carriers available. The concomitant decrease of apparent 
KM (from 160 to 14 j.LM) compensated for this former change by increased 
specificity. The authors concluded that the maturation of muscle cultures 
may be accompanied by a dedifferentiation of carnitine binding protein of 
Cantrell & Borum [19]. They also suggested that a similar defect of low 
affinity carnitine uptake may be the cause of the primary carnitine deficiency 
syndromes and lipid storage myopathies. In this respect it is of interest to 
note that alterations of carnitine binding protein may occur in hereditary 
cardiomyopathies [20] and that prednisolone and other glucocorticoids 
proved to have therapeutic effects on different carnitine deficiency syndromes 
[21]. When 10-8 to 10-5 M prednisolone was added into the established cell 
line in culture, it actually increased the carnitine uptake and intracellular 
carnitine concentration to about 160 and 120%, respectively [21]. 

The results obtained by different authors are consistent with the idea that 
the uphill transport of L-carnitine by muscle cells needs energy. However, 
a careful review of the literature reveals that carnitine transport, as studied 
on different muscle cell preparations, does not require a direct mobilization 
of energy production. For instance, in the experiments of Molstad et al. [11], 
inhibitors of glycolysis or oxidative phosphorylation did not consistently 
inhibit the uphill transport of carnitine in human cultured cells. In the experi
ments of Rebouche [13] on isolated rat muscle, CN- had only a slight 
inhibitory effect. Similarly, severe anoxia did not affect the carnitine trans
port by isolated rat hearts [9]. All these experiments seem to suggest that 
the energy source required for carnitine transport is not A TP directly. Alter
natively, the uptake could occur by a functional trapping of newly transported 
intracellular carnitine through acylation [9] or by carnitine/deoxycarnitine 
exchange [22]. The fact that total tissue carnitine did not change significantly 
during carnitine loading experiments [13] argues against an excessive carni
tine trapping by acylation [23]. Therefore, the existence of an antiport insen
sitive to metabolic inhibitors but sensitive to sulfydryl group blocking agents 
was suggested [14, 22]. According to Siliprandi et al. [1] who worked on 
rat heart slices, the exchange between internal deoxycarnitine and external 
carnitine is a saturable process with an apparent KM (carnitine) of 23 j.LM. 
The temperature dependence of the exchange does not fit with a simple 
diffusion mechanism, but suggests a facilitated transport [22]. This concept 
may be integrated in a more general schema of carnitine/deoxycarnitine 
exchange between different organs such as liver (kidney) on one hand and 
muscle and heart on the other hand [6, 8]. 

However, in kidney [24], brain [25] and skeletal muscle [13], carnitine 
transport has been suggested to occur down the Na + concentration gradient, 
perhaps involving a co-transport system similar to that of amino acids [26]. 
According to Vary and Neely [27] this could also be the case in cardiac 
muscle. These authors suggested that carnitine transport into the intact per-
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fused rat hearts was influenced strongly by the membrane electrochemical 
potential: lowering of extracellular Na+ (from 140 to 25 mM) led to a de
crease of carnitine transport whereas reduction of extracellular K+ (from 5.9 
to 0.6 mM) stimulated the carnitine transport by 35%. These effects were 
visible over a range of extracellular carnitine concentrations examined (15 
to 100 /-LM) and resulted primarly from changes of maximal rate of transport 
(Vmax) and not the apparent KM for carnitine [27]. To determine whether 
the effects of Na + and K+ were due to changes in the Na + flux across the 
sarcolemmel membrane, Vary and Neely [26] also tested various compounds 
known to alter Na + movements. Ouabain (1O~3 M) did not reduce carnitine 
uptake, suggesting that carnitine transport was independent of the Na + IK+
ATPase activity. Tetrodotoxin (10~5 M), a fast channel blocker, induced 
cardiac arrest and stimulated carnitine transport by about 40%. This indi
cated that inward carnitine transport was not dependent on the fast N a + 
channel and that it could be dissociated from membrane depolarization. 
Gramicidin (5 . 1O~6 M) inhibited slightly carnitine transport as it reduced 
Na + transmembrane gradient. All these experiments are in qualitative agree
ment that ventricular myocardium, like the brain [25], kidney [24] and skel
etal muscle [13], may accumulate L-carnitine and its analogs without direct 
hydrolysis of ATP. According to this hypothesis, the energy for carnitine 
transport against a large concentration gradient is derived from the move
ment of Na + down its electrochemical gradient. 

Carnitine deficiency cardiomyopathies 

One of the principal consequences of well-regulated carnitine uptake by the 
heart consists in relatively constant tissue levels of L-carnitine [9]. This is 
necessary in order to ensure an appropriate control of lipid [28-30] and 
carbohydrate [31] metabolism (see also Chapter 4). In fact, carnitine concen
trations were shown to decrease under a variety of experimental conditions 
that are also characterized by altered myocardial fatty acid utilization. In 
rats, carnitine content of the heart is relatively low at birth [32]. It increases 
rapidly during postnatal life and decreases again in old animals [33]. In 
addition to these physiological fluctuations, tissue L-carnitine content has 
been found to decrease under different pathological conditions [34, 35]. In 
some cases, myocardial carnitine deficiency results from a hereditary defect 
of carnitine synthesis in the liver which leads to a dramatic decrease of 
circulating blood carnitine (primarily systemic carnitine deficiency syn
dromes). In other conditions, the defect of carnitine liberation from the liver 
may be acquired during late postnatal life (secondary systemic carnitine 
deficiency syndromes). This seems to be the case of experimental diabetes 
characterized by a retention of carnitine in the liver and by decreased circula
ting levels of free carnitine [34]. According to Vary and Neely [23], reduced 
levels of carnitine in hearts of alloxan-treated rats may result from a lower 



Carnitine transport in volume-overloaded rat hearts 137 

transport rate due to decreased serum carnitine concentrations (below the 
apparent KM for carnitine). The kinetics of carrier-mediated carnitine trans
port per se is supposed to be unchanged. 

In other conditions, a selective muscle carnitine deficiency is attributed to 
intrinsic defects of carrier-mediated carnitine transport occurring in the ab
sence of any alteration of carnitine synthesis in the liver [35]. Carnitine 
distribution in the body is also unaffected (circulating carnitine concentra
tions are in the range of physiological values). There are several case reports 
of human carnitine deficiency syndromes [35, 36] which enter into this special 
category (primary muscle carnitine deficiencies). As concerns the cardiac 
muscle, it may become carnitine deficient under a variety of pathological 
conditions. Syrian cardiomyopathic hamsters which develop cardiac hyper
trophy and failure [29, 37] were shown to have reduced cardiac carnitine 
concentrations that probably resulted from impaired transport of carnitine 
into the myocytes [20]. A similar situation may also occur in hearts of 
other species in response to a chronic mechanical overloading [28, 38-41]. 
However, systematic studies of the kinetics of carrier-mediated carnitine 
transport in hypertrophied and dilated hearts still remain quite scarce [18, 
41, 42]. 

After the demonstration that banding of abdominal aorta results in a 
significant decrease of total tissue L-carnitine [39], Reibel and co-workers 
have studied carnitine transport in the hearts of rats with 4-wk-old aortic 
stenosis [42]. According to this work, there was a 20% reduction of carrier
mediated transport of carnitine at all concentrations examined, i.e. 45, 100 
and 200 ILM, whereas there was no change in carnitine uptake by diffusion. 
Total tissue carnitine was decreased by about 20%, while there was no 
change in serum carnitine concentrations. A similar situation also prevailed 
in hearts of rats with chronic volume-overload related to a surgically created 
aorto-caval communication [18]. The principal results of this series of experi
ments are described in the following section. 

Carnitine transport in volume-overloaded rat hearts 

A chronic volume-overload was induced in 2-mo-old Wistar rats by a surgical 
opening of the aorto-caval fistula [43]. Sham-operated animals from the same 
litters were used as controls. The animals were sacrificed 3 months after 
surgery; their hearts were used for in vitro experiments [18]. After the initial 
lO-min period, which is necessary to remove blood and stabilize the heart 
rate at about 240 beats/min, Langendorff-perfused hearts were recirculated 
for variable periods (10, 15, 20, 30, 45 min) with 200 ml of Krebs-Henseleit 
buffer containing 11 mM glucose and 50 ILM L-14C-carnitine (specific activity 
about 450 cpmlnmol). In experiments designed to study the kinetic properties 
of carrier-mediated carnitine transport, the hearts were perfused for 30 min 
with the same buffer containing variable concentrations of L_14C_ carnitine 
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Figure 1. L-14C-Carnitine uptake as function oftime. Hearts were perfused with Krebs-Henseleit 
bicarbonate buffer containing 11 mM glucose and 50 fLM L-carnitine (specific activity 450 counts 
. min- 1 . nmol- 1) for various periods of time (10-45 min). After this loading period, the hearts 
were perfused for an additional 6 min with a buffer that did not contain carnitine. They were 
then frozen for analysis of tissue radioactivity. Carnitine uptake rate was calculated from tissue 
radioactivity and perfusate specific activity. Each point represents 5-10 observations. Note 
decreased slope of carnitine uptake rate in volume-overloaded hearts. 

(10, 20, 50, 70, 100, 200 and 250 /-LM). At the end of the perfusion with 
labelled carnitine the hearts were perfused for an additional 6 min with a 
carnitine-free buffer. This proved to be necessary for the complete elimin
ation of radioactive label from the extracellular spaces [9]. Beyond this point, 
tissue radioactivity in both control and volume-overloaded hearts remained 
steady for a further 10 min, suggesting that no major leaks of the intracellular 
L-14C-carnitine occurred during the washout period. Following this washout 
perfusion, the hearts were rapidly frozen by cool Wollenberger clamps and 
stored in liquid nitrogen. The tissue was then lyophilized and aliquots of 
about 100 mg dry wt were introduced into the polycarbonate capsules. The 
samples were mineralized in a catalytic oven and 14C02 quantitatively 
trapped in a scintillation liquid containing phenyl ethyl amine [IS]. The 
amount of L-carnitine taken by the hearts was expressed in nmol . g -1 dry 
wt . h - \ after the radioactivity of the tissue and the specific activity of 
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Figure 2. Uptake of L}4C-carnitine by control and volume-overloaded hearts as function of 
perfusate L-carnitine concentrations. Hearts were recirculated for 20 min with a Krebs-Henseleit 
buffer containing 11 mM glucose and variable concentrations of L-14C-carnitine. In some experi
ments, 0.05 mM mersalyl acid was added to the perfusion medium in order to assess passive 
carnitine transport. Mean values for 5-10 measurements are indicated. 

L-carnitine in the perfusion medium (cpm . nmole- I ) were determined. In 
some experiments, 0.05 mM mersalyl acid was added to the perfusate in 
order to subtract the passive component from total carnitine transport to the 
heart [9]. The analysis of the saturation curves thus obtained allowed to 
compare the respective kinetics of carrier-mediated transport in control and 
overloaded hearts. The Vmax and apparent KM of saturable carnitine trans
port were determined from the Lineweaver-Burk reciprocal plot. 

The heart weights of rats exposed to a chronic aorto-caval fistula were 
increased by about 85% when compared to those of sham-operated controls. 
Serum carnitine concentrations and tissue contents of total tissue L-carnitine 
are given in Table 2. It can be seen that chronic volume-overload resulted 
in similar changes as banding of abdominal aorta [42]: a 30% depletion of 
tissue carnitine occurred in the absence of any alteration of circulating L
carnitine suggesting thus an impaired carnitine transport to tissue. The mea
surements of carnitine uptake rate by control and volume-overload hearts 
confirmed that this was really the case (Figure 1). When the control hearts 
were perfused with 50 fLM L_14C_ carnitine, their tissue radioactivity progress
ively increased. A similar linear relationship also occurred in mechanically 
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Figure 3. Saturation curves of carrier-mediated carnitine transport as observed in control and 
volume-overloaded rat hearts. Curves generated from data given in Figure 2 by substraction of 
diffusion component from total carnitine uptake. Mean values ± SEM (n = 5-10). 

Table 2. Myocardial and blood plasma carnitine in control and volume-overloaded rats 

Condition 

Controls 
Fistulae 

Total tissue carnitine (nmol . g -1 dry wt) 

5550 ± 150 
3864 ± 175* 

The values are mean ± SEM for n = 10; * p < 0.001. 

Blood plasma carnitine (fLM) 

45.8 ± 1.2 
44.0 ± 2.4 

overloaded hearts. However, in this case, the slope of L-carnitine accumu
lation was considerably depressed (Figure 1). This decrease in L-carnitine 
uptake did not seem to be related to changes in coronary flow rate which 
was quite comparable in control and overloaded hearts. Figures 2 and 3 show 
clearly that an alteration of active carnitine transport did occur during the 
development of cardiac hypertrophy: both total and carrier-mediated carnit
ine transport were significantly depressed over the range of exogenous carnit
ine concentrations examined (10-200 f.LM). On the other hand, the passive 
diffusion of L-carnitine was unchanged. According to Lineweaver-Burk 
analysis of the respective saturation curves (Figure 4), the alterations of 
carrier-mediated transport might be related to a decreased affinity of mem
brane carrier for L-carnitine (higher apparent KM for carnitine) rather than 
to a decreased number of carriers (Vmax unchanged). These data argue 
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Figure 4. Kinetic analysis of saturable carnitine transport by reciprocal plots of Lineweaver and 
Burk. Note increase of apparent KM in volume-overloaded hearts (125 instead of 83 fLM). On 
the other hand, Vmax of carnitine transport is unchanged (380 nmol . g - J dry wt per h). These 
alterations suggest that a decreased affinity of membrane carrier for L-carnitine occurs during 
the development of cardiac hypertrophy. 

against any major accumulation of intracellular N a + (extracellular sodium 
concentration was kept constant by use of a freshly prepared medium contain
ing 138 mM Na+): the decrease of the Na+ electrochemical gradient was 
shown to affect primarily the maximal rate of transport and not the apparent 
Michaelis constant for carnitine [27]. In fact, to date, there is no direct 
evidence indicating that the N a + electrochemical gradient is altered in hyper
trophied hearts [41, 42]. 

Recently, the carnitine-binding protein prepared from hearts of cardio
myopathic hamsters has been shown to have a lower maximal carnitine 
binding and an increased dissociation constant when compared with the 
protein prepared from hearts of normal hamsters [20]. It is not excluded that 
similar alterations of the cardiac carnitine-binding protein occur in other 
models of hypertrophic and dilated cardiomyopathies. They could then con
tribute to the reduced affinity of carnitine carrier for L-carnitine that we 
described in chronically volume-overloaded hearts. However, the alterations 
of membrane lipids that also interfere with carrier-mediated transport pro
cesses [44] should also be considered. In this respect, the report of Reibel 
et al. [45] is of interest. These authors have found that the fatty acyl composi
tion of total membrane phospholipids changes during the development of 
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pressure-induced cardiac hypertrophy. Three weeks after the constriction of 
abdominal aorta in rats, the content of myocardial phosphatidylcholine, 
phosphatidylinositol and sphingomyelin increased by 10-20%. The essential 
fatty acid, linoleic acid, was markedly reduced in major classes of cardiac 
phospholipids, while arachidonic acid tended to increase [45]. The authors 
concluded that these alterations may influence the function of membrane
bound enzymes and mainly that of carnitine carrier. However, systematic 
studies of sarcolemmal membranes are still needed in order to verify whether 
the alterations of phospholipid and essential fatty acid composition affect 
this particular membrane and whether they really interfere with carnitine 
transport. 

In conclusion, the data presented in this work confirm the contention of 
other authors [28, 29, 38, 39] concerning the mechanism of decreased carni
tine content in mechanically overloaded hearts. In hearts of rats with aortic 
banding [42] as well as in those with an aorto-caval fistula [18, 41], decreased 
tissue L-carnitine relies on altered carrier-mediated carnitine uptake by the 
myocardium. In vivo, cardiac carnitine depletion occurs in the presence of 
normal circulating levels of L-carnitine. This suggests that hypertrophied and 
failing hearts may develop a secondary carnitine deficiency resulting from a 
dysfunction of carnitine-binding protein [19]. One of the principal conse
quences of decreased tissue levels of L-carnitine consists in impaired long
chain fatty acid utilization [28, 43]. The latter can be partly corrected by 
the administration of exogenous L-carnitine [28] or of its short-chain acyl 
derivatives such as propionyl-L-carnitine [46, 47]. 
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11. Myocardial carnitine deficiency in 
human cardiomyopathy 
VERA REGITZ-ZAGROSEK and ECKART FLECK 

"In heart failure, the myocardial carnitine level can decrease to concentrations in the 
range of the KM of carnitine palmityltransferase for free carnitine. Thus, in these 
cases a reduced availability of free carnitine may limit the transferase reaction and 
thereby fatty acid oxidation." 

Introduction 

In the literature an important role for carnitine has been discussed in myocar
dial ischemia and several non-ischemic heart diseases. The presumably broad 
spectrum of carnitine effects in the heart is based on the central role of this 
compound in fatty acid oxidation and in the control of intermediary metabol
ism [1-3]. Long-chain acyl-CoA esters may only penetrate into the mitochon
drial matrix in the form of their carnitine esters, and intracellular concentra
tions of long-chain acyl-CoA and long-chain acylcarnitine as well as free 
CoA depend on the availability of free carnitine. Thus, this availability 
controls basic cellular functions such as energy production and energy trans
port from the mitochondria into cytoplasm. The interaction between carnitine 
and potentially toxic products of fatty acid metabolism, as long-chain acyl
CoA esters, may explain the protection of mitochondrial function and the 
modulation of the adenine nucleotide translocator activity by carnitine as 
well as its effects on the integrity and fluidity of sarcolemmal membranes. 

Systemic carnitine deficiency with low plasma and tissue carnitine levels 
represents an undisputed indication for the therapeutic use of carnitine, 
independent of the cause of carnitine deficiency. In inborn organ-specific 
carnitine deficiency with elevated plasma and reduced tissue carnitine levels, 
the therapeutic use of carnitine is still questionable. Secondary acquired 
myocardial carnitine deficiency may occur in ischemia, in diphtheria, un
treated diabetes mellitus and adriamycin toxicity and responds to carnitine 
substitution in some animal models [4-6]. Patients in the end-stage of heart 

f. W. de long and R. Ferrari (eds): The carnitine system. 145-166. 
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failure also exhibit disturbances of carnitine metabolism; elevated serum 
carnitine and low myocardial carnitine levels have been documented [7, 8]. 

The purpose of this chapter is to review the different forms of carnitine 
deficiency that are associated with impaired cardiac function or the clinical 
syndrome of heart failure. Inborn systemic and organ-specific carnitine de
ficiency in humans and animal models will be discussed as well as acquired 
forms of myocardial carnitine deficiency in adult heart failure. 

Human primary systemic carnitine deficiency 

In the 1970s and 1980s a number of cases of systemic carnitine deficiency 
have been described [9-14]. The case presented by our own group in 1982 
fulfills all the classic criteria for systemic carnitine deficiency [15]. Four out 
of 5 children from healthy, non-related parents developed dilated cardio
myopathy. The two oldest children died in respiratory failure at the age of 
15 and 22 months. The third child showed cardiomyopathy at the age of 11 
months, progressing to open heart failure [New York Heart Association 
(NYHA) class III] with exercise tolerance far below the 10% percentile at 
8 years. A skeletal muscle biopsy was taken and the carnitine concentrations 
were determined in plasma and skeletal muscle. As carnitine was low in both 
compartments, the patient received carnitine substitution. The 4th child was 
healthy. In the 5th child respiratory infection led to death at the age of 2 
years. Plasma carnitine levels were low normal in their parents and severely 
decreased in the 3rd and 5th child. Tissue carnitine concentrations in patient 
5, where samples were obtained at autopsy, were 1% below normal in heart 
and liver. Light and electron microscopy of muscle biopsies showed excessive 
accumulation of lipids together with anomalous mitochondria in patients 3 
and 5 (Figure 1). 

Oral substitution with L-carnitine in patient 3 led to a significant clinical 
improvement within two weeks, with NYHA class III going to IIA. Mitral 
valve regurgitation disappeared, left atrial and ventricular sizes decreased 
and the ejection fraction increased. In a repeated skeletal muscle biopsy after 
6 months of carnitine substitution, vacuolation disappeared, mitochondria 
normalized, and the amount of accumulated lipids was reduced (Figure 1). 
Correspondingly, the carnitine content of the skeletal muscle rose from 
30 nmol/g before therapy to 300 nmol/g, which is still below normal. Low 
tissue carnitine levels in the presence of elevated plasma carnitine concentra
tions support the idea of a transport defect, particularly a defect in the 
accumulation of carnitine in muscles. Such a defect has indeed been found 
in fibroblasts from carnitine-deficient children [16]. 

Comparable patients with severely reduced systemic carnitine levels have 
been described by Chapoy et al. [11] and Waber et al. [17]. All symptoms 
in these cases can be explained by the low carnitine levels and the impossi
bility to utilize long-chain fatty acids. Classical symptoms are hypotension, 
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Figure 1. Skeletal muscle biopsy in a carnitine-deficient patient (child 3) before carnitine therapy 
showed variations in the fiber diameter (hematoxilin eosin stain) [AJ, and a large number of 
vacuoles, identified by the NADH stain as mitochondria [C]. Staining with Sudan red gave 
evidence of the accumulation of lipids in type 1 fibers [E].2A and 2B refer to sUbtypes of type 
2 muscle fibers; the latter were atrophic. After 6 months of carnitine therapy, fiber diameters 
normalized [B], and vacuoles [D] and lipid accumulation [F] were reversed. 
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muscle weakness, and excessive accumulation of lipids in the skeletal 
muscles. Hypoglycemia occurs frequently, as energy utilization depends al
most completely on carbohydrates. The participation of the myocardium in 
the form of a cardiomyopathy leading to heart failure determines the prog
nosis. Diagnosis is easy to obtain by measurements of carnitine levels in the 
blood, and improvement can be achieved by carnitine substitution. 

Human primary organ-specific carnitine-deficiency syndromes 

In contrast to systemic carnitine deficiency, organ-specific carnitine-deficiency 
syndromes are characterized by a low organ carnitine content and normal or 
elevated plasma levels. The pathogenesis is not clear; organ-specific defects 
in the transport system for carnitine have been discussed. Normally, carnitine 
concentrations in the myocytes of skeletal muscle or heart are 20 to SO-fold 
above the blood concentrations [18, 19]. Increased leakage of carnitine from 
the respective cells can cause tissue carnitine deficiency. The best docu
mentation has been obtained for skeletal muscle carnitine-deficiency syn
dromes [9, 20]. Heart and skeletal muscles are frequently affected together, 
but isolated myocardial carnitine deficiency has also been described [21-23] 
in a family where normal carnitine levels were found in the plasma and the 
skeletal muscles, but where myocardial carnitine content was extremely low. 
This probably corresponds to an inborn isolated myocardial carnitine defi
ciency. Different expression of the carnitine carrier in different organs can 
explain the clinical and laboratory features in the mentioned patient groups. 
Inborn defects of palmityl carnitine transferase may manifest with features 
similar to organ-specific carnitine deficiency, such as muscle weakness, renal 
failure, and elevated serum lipids [24, 2S]. 

Secondary carnitine-deficiency syndromes and animal models 

Acquired carnitine-deficiency sYlldromes in children are frequently caused 
by antiepileptic treatment or defects in branched-chain amino acid metabol
ism [26-28]. In adults, ischemia, thermal injury, and shock are frequent 
causes of carnitine deficiency [6, 29]. In addition, a SO% to 7S% reduction 
in myocardial carnitine levels was found in heart- muscle biopsies of patients 
treated with adriamycin [AL Shug, unpublished data]. Pathophysiological 
aspects of adriamycin-induced cardiomyopathy have been studied in a rat 
model [30]. Rats were treated for 6 weeks with adriamycin and carnitine, 
adriamycin and placebo, or carnitine and placebo. After 6 weeks of treatment 
hearts were studied in an isolated working heart system. Adriamycin-treated 
hearts showed reduced cardiac output and left ventricular systolic pressure 
compared to controls or to adriamycin- and carnitine-treated hearts. The 
myocardial carnitine content in the non-perfused hearts was not influenced 
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by adriamycin therapy, and muscle, kidney, and liver carnitine levels were 
unchanged. However, total plasma carnitine in the adriamycin group was 
significantly elevated, based on increased carnitine esters. This suggests that 
adriamycin induced mitochondrial damage and interferes with fatty acid 
oxidation. The mechanism by which carnitine protects the heart against 
adriamycin-induced cardiomyopathy is unclear, but light- and electron-micro
scopic histology indicates that carnitine prevents mitochondrial damage. Ad
riamycin probably forms a complex at the inner mitochondrial membrane and 
disturbs mitochondrial calcium uptake. Free radicals are probably involved in 
this process, and it is speculated that L-carnitine prevents mitochondrial 
damage by adriamycin by preventing free radical formation. 

A different pharmacological way to cause myocardial carnitine deficiency 
and functional impairment is the induction of diabetes by streptozotocin 
in rats. Streptozotocin-treated diabetic rats develop myocardial carnitine 
deficiency, associated with functional impairment, as can be measured in an 
isolated heart model [31, 32]. Parallel to functional impairment and the 
myocardial carnitine loss, long-chain acyl-CoA esters increase significantly 
in the myocardium. When myocardial carnitine levels are reduced to only 
about 74% of normal, long-chain acyl-CoA esters rise to 150% of controls. 
Thus, small changes in myocardial carnitine concentrations are associated 
with other significant biochemical defects in this model. Substitution of carni
tine improves myocardial function as well as tolerance to ischemia. The 
concentration of long-chain acyl carnitine increases, whereas that of long
chain acyl-CoA decreases with carnitine treatment. 

In contrast to these models with acquired carnitine deficiency, other animal 
models exist where carnitine deficiency is inherited. Spontaneous dilated 
cardiomyopathy has been reported recently in dogs [33]. One canine family 
showed characteristic signs of severe congestive heart failure: peripheral and 
pulmonary edema, atrial fibrillation and reduced fractional shortening in 
echocardiography. The myocardial carnitine content was severely reduced in 
comparison with normal controls. Treatment with high doses of L-carnitine 
led to an increase of myocardial L-carnitine concentrations together with an 
improvement in clinical status and myocardial function. Withdrawal of L
carnitine caused myocardial dysfunction and clinical signs of heart failure to 
recur. Thus myocardial function in this dog model of familial cardiomyopathy 
was parallelled by the myocardial carnitine content. 

Syrian hamsters with inborn hypertrophic and dilated cardiomyopathy 
develop myocardial carnitine deficiency early in their lifes. Reduced myocar
dial carnitine content is associated with significant alterations in myocardial 
energy metabolism. Carnitine substitution restores myocardial carnitine con
centrations to normal, improves myocardial function, and restores myocar
dial ATP-concentrations [34]. 
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Figure 2. Plasma total (a) and free (b) carnitine concentrations in controls and in patients 
with moderate and end-stage heart failure . CHD = coronary heart disease; DCM = dilated 
cardiomyopathy; NYHA = New York Heart Association class. Mean:t SD, with n below bars. 

Plasma carnitine in human cardiovascular diseases 

Based on the experience that systemic carnitine deficiency can cause the 
clinical and hemodynamic features of cardiomyopathy in children, several 
investigators studied the carnitine concentrations in adult dilated cardio
myopathy, expecting that at least in some of the patients systemic carnitine 
deficiency might cause heart failure. However, changes in plasma carnitine 
were found in most patients, but were in the opposite direction than ex
pected. Plasma carnitine concentrations in adults with dilated cardiomyopa
thy were increased in patients with heart failure [35-37]. Conte et al. [36] 
even claimed an association between the increase in plasma carnitine levels 
and prognostic impairment in human heart failure. In our own study, plasma 
carnitine in heart failure was increased with the highest concentrations occur
ring in end-stage heart failure [7, 35]. No difference was found between 
different origins of heart failure, i.e. cardiomyopathy or coronary heart 
disease (Figure 2). Free carnitine in the patients with moderate heart failure 



Myocardial carnitine deficiency 151 

or end-stage heart failure was also significantly elevated in comparison with 
controls. The ratio of free carnitine to total carnitine in the heart-failure 
patients (0.71 ± 0.03) was slightly lower than in the control group 
(0.81 ± 0.05, ns). Thus, there was a tendency towards an increased per
centage of carnitine esters, which could be induced by the accumulation of 
long-chain acyl-CoA esters, but this tendency was not significant. The rise 
in plasma carnitine occurred independently of serum creatinine. Increased 
plasma carnitine levels (>mean ± 1 SD, corresponding to 52 fLM) were 
found in 12 patients. Of these 12, 8 had normal serum creatinine levels 
«1.2 mgJdl). No significant correlation was found between the plasma carnit
ine content and serum creatinine levels. 

The reasons for the increased plasma carnitine levels in heart failure are 
not yet clear. Impaired renal function, which is frequently found in such 
patients, could certainly lead to increased plasma carnitine concentrations 
[38]. In this case, however, a correlation between an increase in creatinine 
levels and an increase in plasma carnitine levels would have been expected. 
The lack of such a correlation and the fact that most of our patients had 
normal or only moderately impaired renal function argues against a signifi
cant contribution of decreased renal elimination to increased plasma carnitine 
levels in heart failure. An increase in carnitine synthesis in the liver could 
also increase plasma carnitine levels; however, no experimental evidence has 
been obtained for such a mechanism. Finally, leakage from tissues with 
high carnitine concentrations should be considered. Usually, carnitine, after 
synthesis in the liver, is taken up from the plasma by the myocardium and 
skeletal muscles with the help of specialized transport systems, and it is 
accumulated in these tissues to concentrations up to 20 to 50 times the plasma 
levels. High myocardial carnitine concentrations are maintained by the action 
of a specific carnitine carrier and the relative impermeability of the myocyte 
membrane for carnitine [1, 3, 9, 19, 39, 40]. Defects in the carrier system, 
as well as non-specific membrane damage, for example ischemia, can both 
lead to reduced myocardial carnitine concentrations and probably a number 
of different toxic mechanisms can affect carnitine transport in a comparable 
way [6, 41, 42]. Thus, the observed increase in plasma carnitine in adult 
heart failure could result from a leakage of carnitine from the heart or 
skeletal muscle. To ascertain such a hypothesis, measurements of carnitine 
concentrations in tissue are necessary. 

Measurement of carnitine concentrations in human myocardium 

To prove the hypothesis of a carnitine leakage from the muscles into the 
plasma in heart failure, tissue concentrations must be determined. Care must 
be taken to obtain adequate diseased and control tissues. Explanted hearts 
are frequently used as a model for diseased tissues. This is valid, if the time 
between explantation of the heart and freezing of the tissue samples remains 
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short. A delay of only a few minutes induces ischemia and will change the 
ratio between free carnitine and esterified carnitine to a significant degree. 
Long-chain acyl-CoA esters accumulate during ischemia and are transferred 
to carnitine forming long-chain acylcarnitines, thus confounding the in-vivo 
concentrations of free and esterified carnitine. Carnitine itself is only slowly 
broken down enzymatically and if no washout of the tissue occurs, it can be 
measured safely even 1 or 2 h after explantation of the heart. 

Our own studies in hearts obtained at autopsy, however, indicate that 
longer delays of about 12 or 24 h are not tolerable, because degradation does 
occur [43]. Thus, the measurement of valid carnitine levels in end-stage 
failing hearts, obtained at transplantation, appears safe, but the determina
tion of normal control levels from autopsy hearts is obsolete and therefore, 
the determination of normal values remains a problem. The so-called 
"healthy donor hearts" are also subjected to a number of medical procedures 
and therapies and are usually not completely healthy. Further, there is often 
a considerable delay for medical reasons before freezing of the hearts is 
possible. Explanted hearts are particularly useful to study the regional distri
bution of carnitine. We found the highest concentrations in the left ventricle 
and the lowest in the right atrium. Within the left ventricle, there was a 
gradient with highest carnitine concentrations at the base and lowest at the 
apex. The differences between local carnitine concentrations in explanted 
human hearts were small as carnitine in all areas ranged between 7 and 
5 nmol/mg non-collagen protein (NCP, Figure 3) [35,43]. 

Establishment of normal human myocardial carnitine concentrations 

As pointed out, normal values for free and total carnitine cannot be obtained 
at autopsy, and as hearts undergoing surgery are usually not healthy, control 
values are best obtained by endomyocardial biopsy. The assessment of carni
tine concentrations in endomyocardial biopsies requires, in addition to vali
dated micromethods for the determination of carnitine, the search for an 
adequate reference system [44]. Relating measured metabolites to wet weight 
leads to artefacts caused by varying water and fibrous tissue content of the 
samples and blood contamination. Using total protein will lead to errors 
based on varying fibrous tissue content. The introduction of tissue creatinine 
or mitochondrial marker enzymes did not improve the precision of measure
ments. Different investigators used non-collagen protein as one of the best 
compromises [34, 45, 46]. This reduced the variability considerably. In our 
experience, the coefficient of variance in a group of normal controls was 
huge (70%) if wet weight was used as a reference system, whereas the 
variance was significantly decreased if non-collagen protein was used (30%) 
(Figure 4). Using non-collagen protein as a reference system, we determined 
the content of total and free carnitine in a group of patients undergoing 
endomyocardial biopsy for suspected myocarditis. In these patients, left 
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Figure 3. Regional distribution of camitine in explanted human hearts with end-stage failure 
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ventricular function and coronary arteries were normal and the suspected 
myocarditis was excluded histologically. Therefore, they may be regarded as 
healthy controls. 

Myocardial carnitine concentrations in patients with heart failure 

Suzuki et al. [47] measured myocardial carnitine concentrations in papillary 
muscle obtained at surgery from 16 patients with mitral valve disease. Total 
myocardial carnitine was found to be normal, whereas free carnitine was 
decreased. Although, these patients were supposed to have congestive heart 
failure, myocardial failure may not have been present, because mitral valve 
disease usually leads to heart failure independent of myocardial function. 
Thus, carnitine concentrations in mitral valve patients do not necessarily 
reflect those in failing myocardium. Spagnoli et al. [48] measured carnitine 
concentrations at autopsy in patients with myocardial infarction. They found 
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Figure 4. Variance of carnitine determinations in endomyocardial biopsies depending on the 
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low free carnitine concentrations in comparison with healthy myocardium. 
In these cases, ischemia may have significantly contributed to the loss of 
carnitine from the border zone. Pierpoint et al. [8] investigated patients with 
dilated cardiomyopathy, coronary artery disease and myocarditis undergoing 
cardiac transplantation. Low total myocardial carnitine was found in the left 
ventricle; the reduction of carnitine was more pronounced in the left than 
in the right ventricle. Free carnitine was not measured, plasma carnitine was 
high, and no correlation with hemodynamic parameters was found. In this 
study, the difference between controls and heart failure was only significant 
in 7 of 51 patients. The reason for this may have been that the control levels 
were obtained at autopsy and were rather low (left ventricle 5.7 ± 1.0, right 
ventricle 6.2 ± 1.8 nmollmg NCP). Neither the underlying disease nor the 
interval between death and autopsy were mentioned. As several systemic 
diseases are associated with altered carnitine handling and as a degradation 
of carnitine occurs after 12 to 24 h, the use of autopsy material may have 
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led to a systematic underestimation of normal carnitine levels and therefore 
to an underestimation of the differences between controls and heart failure. 
Patel et al. [49] investigated 10 patients with cardiomyopathy and 8 with 
heart failure of different origin. Endomyocardial biopsy was used to study 
right ventricular septum. Total as well as free myocardial carnitine were 
reduced in comparison with controls. No correlation was found between 
myocardial carnitine content and the degree of left ventricular dysfunction. 
In summary, the 4 studies argue in favor of a reduction of myocardial 
carnitine concentrations in human heart failure. However, the statistical 
significance remains weak. The use of improper controls is probably the 
reason for the failure of the studies mentioned to show decreased myocardial 
carnitine concentrations in human heart failure. 

Our own studies, where endomyocardial biopsies from 28 patients with 
dilated cardiomyopathy and 9 with coronary artery disease, valvular heart 
disease or hypertension were investigated, showed a decrease of myocardial 
carnitine concentrations in patients with heart failure in comparison with 
controls (HF 6.2 ± 2.4, controls 10.1 ± 3.1 nmoVmg NCP, p < 0.001) [7]. 
The loss of myocardial carnitine in patients with left ventricular ejection 
fractions below 30% was bigger than that in patients with left-ventricular 
ejection fractions from 30% to 55% (Figure Sa). Patients with heart failure 
due to dilated cardiomyopathy and heart failure due to other origins showed 
a comparable loss of myocardial carnitine (Figure 5b). In addition, free 
myocardial carnitine in these patients was studied. Patients with heart failure 
(n = 22) had significantly lower free myocardial carnitine concentrations than 
11 controls (heart failure 4.6 ± 1.4, controls 9.7 ± 2.7 nmoVmg NCP, 
p < 0.0001). There was no difference in free myocardial carnitine content in 
patients with heart failure due to dilated cardiomyopathy or coronary or 
valvular heart disease. A significant non-linear correlation was shown to 
exist between the myocardial free carnitine content and the left-ventricular 
ejection fraction (Figure 6). The ratio of free to total carnitine in the myocar
dium was 0.81 ± 0.05 in the heart failure group in comparison with 
0.91 ± 0.03 in the control group. Although this difference was not statistically 
significant, it may reflect an interesting tendency. 

Measurements in explanted hearts by our group yielded comparable re
sults. A significant loss of myocardial carnitine concentrations was found in 
patients with dilated cardiomyopathy or coronary heart disease undergoing 
heart transplantation for end-stage failure (Figure 7) [35, 43]. This loss of 
myocardial carnitine was comparable in patients with dilated cardiomyopathy 
and coronary heart disease. In both groups, the loss of myocardial carnitine 
affected all areas of the failing hearts. Only total carnitine has been studied 
in these explanted hearts, because, as discussed previously, esterification of 
free carnitine may take place very quickly and therefore ratios of free to 
esterified carnitine may not be usable. 

The ratio of free carnitine to total carnitine was decreased in the plasma 
as well as in the tissue of heart-failure patients in comparison with controls. 
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Figure 5. Loss of total myocardial carnitine in patients with heart failure and left-ventricular 
ejection fraction (LVEF) < 30% or LVEF 30-55% (a) and in patients with dilated cardiomyo
pathy and other heart diseases (b) in comparison with controls. Mean ± SD. 

Although these differences were not significant, the tendency that increased 
amounts of long-chain acy1carnitine esters are produced in the diseased 
patients should at least be taken into account. The free carnitine that is 
available for reaction with CoA-esters decreases. 

Compartmentalization of carnitine in the myocardium 

The loss of carnitine that is measured in tissue homogenates does not allow 
any conclusions regarding the compartments that are mainly affected: cyto
sol, membranes or mitochondria. From animal experiments it is, however, 
known that more than 90% of total carnitine in the non-ischemic heart is 
contained in the cytosol and less than 10% in the mitochondria [50]. There
fore, the loss of myocardial carnitine in heart failure probably affects mainly 
the cytosol. It cannot be explained by a reduction of mitochondrial volume 
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that is shown to occur in heart failure. Thus, in patients with heart failure, 
a reduction of the effective carnitine concentrations in the cytoplasm must 
be considered. 

Carnitine palmityltransferase activity in heart failure 

Carnitine palmityltransferase (CPT, EC 2.3.1.21) plays a key role in myocar
dial fatty acid oxidation. The enzyme catalyses the reaction of long-chain 
acyl-CoA esters and free carnitine to form long-chain acylcarnitine esters, 
entering the mitochondria and undergoing fatty acid oxidation [3]. The 
enzyme has several allosteric regulators. Usually, free carnitine is not 
rate-limiting [2]. Only if free carnitine concentrations decrease below the 
Michaelis-Menton constant (KM ) of carnitine palmityltransferase for free 
carnitine, is the reaction velocity controlled by the availability of carnitine. 
The KM of carnitine palmityltransferase for free carnitine is significantly 
below the physiological concentration of human myocardial free carnitine. 
However, in heart failure, the myocardial carnitine level can decrease to 
concentrations in the range of the KM of carnitine palmityltransferase for 
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Figure 7. Loss of total myocardial carnitine in explanted hearts from patients with end-stage 
dilated cardiomyopathy or coronary heart disease in comparison with controls. For abbrevi
ations, see legend to Figure 3. Means ± SD. 

free carnitine. Thus, in these cases a reduced availability of free carnitine 
may limit the transferase reaction and thereby fatty acid oxidation. 

Long-chain acylcarnitines and arrhythmia 

Spontaneous ventricular arrhythmia represent a major problem in human 
heart failure. Altered membrane function probably facilitates arrhythmo
genesis by reentry loops and from autonomous foci [51]. Free and esterified 
fatty acids and acy1carnitines have been shown to alter membrane function 
by a number of different mechanisms. The compounds exist at relatively low 
concentrations as monomers and can insert into the inner portion of the 
lipid bilayer, thereby altering the physical properties and functions of the 
membranes. At higher concentrations, the compounds can aggregate into 
micelles, and these can also insert into the lipid bilayer or can damage the 
membranes by their detergent effects. By these mechanisms, conformation 



Myocardial carnitine deficiency 159 

and function of membrane proteins may be modified substantially. Further, 
insertion of amphiphiles into membranes may displace calcium from nega
tively charged sites on membrane phospholipids, because of a change in 
orientation of the polar head group [52,53]. Long-chain acylcarnitines can 
alter membrane function by "wedging" into the membrane. Their lytic ac
tivity is determined by the length of the hydrophobic acyl chain. Monomer 
insertion into the membranes affects ionic movement and enzyme activity of 
integral membrane proteins. 

The effect of long-chain acylcarnitines on membrane function and arrhyth
mia has been studied in several animal models. In adult canine myocytes the 
expression of alpha-I-adrenergic receptors was increased significantly without 
change in receptor affinity by exposure to ischemia [54]. The concentration 
of long-chain acylcarnitine in these myocytes also increased in parallel. Inhi
bition of carnitine acyltransferase-I abolished the accumulation of long-chain 
acylcarnitine and the increase in alpha-I-adrenergic receptor number induced 
by 30 min of hypoxia. Incubation of normoxic cells with exogenous palmityl
carnitine also increased alpha-I-adrenergic receptor number in the presence 
or absence of acyltransferase inhibitors. Thus, hypoxia results in an increase 
in alpha-I-adrenergic receptors based on an increase in endogenous long
chain aCYlcarnitines, and the inhibition of carnitine acyltransferase prevents 
both events [54]. Comparable effects were obtained in rat myocytes [55]. 
The administration of a carnitine acyltransferase inhibitor inhibited the ac
cumulation of long-chain acylcarnitine induced by hypoxia and prevented 
the depression of electrophysiological function by hypoxia. In a cat model 
with occlusion of the left anterior coronary artery, the inhibition of carnitine 
acyltransferase-I reduced the incidence of lethal arrhythmia induced after 
the onset of ischemia. It also prevented the increase of both long-chain 
acylcarnitine and lysophosphatidylcholin. 

Multiple lines of evidence support the capability of long-chain acylcarni
tines to cause arrhythmia in animal models. It may be concluded that long
chain acylcarnitines may also contribute to arrhythmia in human diseases. 
Long-chain acylcarnitines can be eliminated from the cell via the carnitine 
transporter in the sarcolemmal membrane in exchange with free carnitine on 
the outside. Therefore, the increase in extracellular free carnitine available 
for exchange with intracellular long-chain acylcarnitine esters might be tested 
in order to reduce arrhythmia in human heart failure. 

Biochemical consequences of reduced myocardial carnitine content 

Altered myocardial lipid metabolism has already been described in human 
heart failure [56]. We have found some evidence that reduced myocardial 
carnitine concentration might limit fatty acid utilization. Fatty acids provide 
about 70% of the energy needs of the human myocardium whereas the 
remaining 30% are covered by glucose and lactate. An increase in glucose 
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Figure 8. Myocardial lactate dehydrogenase (LDH) activity (a) and {3-hydroxybutyrate dehydro
genase (HBDH) activity (b) in explanted human hearts with end-stage heart failure. For abbrevi
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and lactate utilization may compensate for impaired fatty acid oxidation [57, 
58]. However, an increase in anerobic glycolysis - i.e. lactate production 
from glucose - can only cover about 5% of the total myocardial energy 
demand [59]. Oxidative utilization of glucose and lactate via pyruvate de
hydrogenase are much more efficient. The equilibrium between glucose and 
lactate is determined by lactate dehydrogenase (LDH) isoenzyme activity. 
Isoenzyme 1 and 2 J3-hydroxybutyrate dehydrogenase (HBDH) favor the 
formation of pyruvate from lactate [60]. 

The activity of glucose and lactate utilization have been measured in 
explanted hearts as well as in endomyocardial biopsies from patients with 
moderate heart failure [43]. Total LDH activity in the explanted hearts was 
significantly increased in comparison with controls. No significant difference 
between patients with dilated cardiomyopathy and coronary heart disease 
was found (Figure 8a). In biopsies from patients with moderate heart failure, 
a significant increase of LDH activity was also found in comparison with 
normal controls. LDH activities in the atria from healthy donor hearts and 
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in the right ventricles from patients with normal left ventricular function 
were within the same range, and so were the LOH activities in the atria and 
ventricles of the explanted hearts. A significant increase of HBOH was also 
found in heart failure patients in comparison with controls. Again, there was 
no significant difference between cardiomyopathy and coronary artery dis
ease (Figure 8b). The ratio of HBDH to LDH was comparable in the atria 
of controls and heart failure patients (0.72). In both ventricles of heart failure 
patients, the ratio HBDHlLDH was increased to 0.80. Thus, an increase in 
total glucose utilization and probably a more pronounced increase in oxid
ative glucose utilization occurs in human-heart failure. 

As lipids provide the main substrate for energy utilization in the normal 
heart and as there is evidence for a shift from lipid to glucose utilization in 
heart failure, it has been speculated that this may induce energy deficiency 
in heart failure. We therefore determined the myocardial adenine-nucleotide 
content in heart-failure patients in comparison with controls [61]. In 18 
patients with heart failure due to dilated cardiomyopathy, the myocardial 
adenosine triphosphate (ATP) concentrations and total adenine nucleotides 
(ATP + AOP + AMP) in comparison with controls were not significantly 
different (Figure 9). Patients with dilated cardiomyopathy and a left ventricu
lar ejection fraction below 30% also showed normal adenine-nucleotide con
centrations in the myocardium, as did patients with cardiomyopathy and 
increased left-ventricular end-diastolic pressures. In patients with heart fail
ure due to other origins, myocardial ATP concentrations were also not 
significantly different from controls. As normal myocardial adenine-nucleo
tide concentrations are maintained in patients with severely depressed left
ventricular ejection fraction and severely reduced myocardial carnitine con
centrations, the alterations in carnitine concentrations are probably not the 
cause of impaired energy metabolism. Probably, increased glucose utilization 
is able to compensate for a potential decrease in lipid utilization in energy 
metabolism. 

Summary and conclusions 

The association between carnitine metabolism and myocardial function is 
based on the central role of carnitine in lipid utilization and membrane 
function and has been documented in several human diseases and animal 
models. Systemic carnitine deficiency is characterized by muscle weakness, 
accumulation of lipids, hypoglycemia, and cardiomyopathy. It is probably 
caused by a transport defect and is rapidly improved by carnitine substitution. 
Transport defects can probably also concern single organs, like skeletal 
muscle or heart, and lead to organ-specific carnitine-deficiency. A number 
of secondary or organ-specific carnitine-deficiency syndromes has been 
described in humans, such as treatment with valproic acid and defects in 
branched-chain amino-acid metabolism, and in animal models, where a loss 
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Figure 9. Unchanged myocardial adenine-nucleotide concentrations (AN: ATP, ADP and 
AMP) in patients with heart failure due to dilated or ischemic cardiomyopathy in comparison 
with controls. DCM = dilated cardiomyopathy; HF = heart failure; NCP = non-collagen pro
tein. Means ± SD. 

of carnitine from the myocardium associated with functional impairment was 
documented for adriamycin-induced cardiomyopathy, streptozotocin-induced 
diabetes and for the inherited cardiomyopathy of Syrian hamster tribes. 
Substitution of carnitine in these syndromes usually improves function, but 
does not normalize all physiological and biochemical changes. In human 
heart failure, plasma free and total carnitine levels are usually increased. 
The percentage of carnitine esters is slightly elevated, possibly indicating an 
increased production of carnitine esters. As increased leakage from the 
myocardium or skeletal muscles in heart failure has been suspected to cause 
the increased plasma carnitine concentrations, myocardial carnitine levels 
have been determined in endomyocardial biopsies as well as in larger samples 
from explanted hearts. The establishment of valid normal values for these 
studies is of major importance. The failure of several groups to document 
reduced myocardial carnitine levels in heart failure and to observe only 
trends towards decreased myocardial carnitine content, although a significant 
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decrease was probably present, is due to improper controls. Indeed, clear 
decrease in myocardial carnitine concentrations occurs in human heart failure 
of different origins. A non-linear correlation exists between myocardial carni
tine concentrations and left-ventricular function. Free carnitine is reduced as 
well as total carnitine, and the percentage of carnitine esters tends to be 
increased in human heart failure. The decrease in myocardial carnitine in 
human heart failure might limit the velocity of the carnitine palmityltransfer
ase reaction and thus of lipid oxidation. Long-chain acylcarnitines may play 
a major role in arrhythmogenesis, as they may decrease membrane stability 
and may increase the automaticity of arrhythmogenic foci. Biochemical 
consequences of reduced myocardial carnitine content have been sought. 
Decreased utilization of lipids is probably compensated for by increased 
utilization of glucose, as indicated by an increase in myocardial LDH-activity. 
However, myocardial adenine-nucleotide concentrations are not altered in 
human heart failure, indicating that the compensation is effective and the 
loss of myocardial carnitine does not limit energy metabolism and does not 
cause energy deficiency as a mechanism of heart failure. 
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12. Is the carnitine system part of the heart 
antioxidant network? 
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"Carnitine and carnitine palmitoyltransferase can be considered integral components 
of membrane phospholipid fatty acid turnover in human erythrocytes and neuronal 
rat cells. Since this pathway is essentially related to the secondary antioxidant response 
to oxidatively damaged membrane phospholipids, one may envisage that the carnitine 
system takes part in the heart antioxidant network as a member of the secondary 
defence line." 

Introduction 

Free radical reactions are considered to be an important pathophysiologic 
determinant of a broad range of inflammatory and ischemic diseases. The 
latter disease state, in particular, is still a very active area of free radical 
research since the discovery of the so-called oxygen paradox [1, 2]. Indeed, 
the sudden reoxygenation of the myocardium after a transient period of 
global ischemia results in cellular necrosis and intracellular calcium overload. 
Current hypotheses on the involvement of oxygen-derived free radicals in 
the course of the reperfusion event are essentially based on animal studies, 
in which the inclusion of free radical scavengers in the perfusion medium 
significantly improved hemodynamic and biochemical parameters [3-6]. In 
addition, electron spin resonance, low level chemiluminescence and reflec
tance studies on perfused rat heart suggest that free radical production is 
already present in the ischemic phase and that shortly after the onset of the 
oxygen readmission, a burst of free radical generation occurs [7-9]. 

The heart contains a well-integrated enzymatic and non-enzymatic anti
oxidant defence system, which in principle should prevent the noxious effect 
of a free radical attack. The antioxidant enzymatic system, which includes 
the Cu-Zn- and Mn-containing superoxide dismutases, selenium-dependent 
and non-selenium-dependent glutathione peroxidases, and catalase, is lo
calized in different cellular compartments [10,11]. The non-enzymatic de
fence system encompasses an array of molecules able to counteract oxygen
derived free radicals in both lipophilic (vitamins E and A) and hydrophilic 
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(ascorbic acid, reduced glutathione, uric acid, etc.) molecular environments 
[12]. According to the above postulated antioxidant network, it would seem 
unlikely that a free radical reaction is capable of exerting its deleterious 
action on heart cells. However, several lines of evidence indicate that in the 
course of the ischemic/reperfusion injury, oxidative changes toward lipid and 
protein components of the cell still take place [11, 13-16]. In other words, 
the primary antioxidant network does not seem to fully protect the cell 
from a free radical attack. Under these circumstances, a system capable of 
eventually removing and possibly repairing aberrant products of the oxidative 
insult would be further beneficial for cellular survival. It is becoming more 
and more evident that such a system, commonly regarded as the secondary 
antioxidant defence line, is operative towards damaged proteins, lipids, and 
DNA. Thus, enzymes promptly remove oxidatively damaged proteins [17-
19], repair peroxidized phospholipids [20-22], and repair oxidatively dam
aged DNA [23-25]. 

Several groups have recently addressed the possibility that carnitine and 
its acyl-esters may act as antioxidants, and that this action may partly explain 
the therapeutical efficacy of these compounds in the ischemic heart [26-32]. 
Although the concept of a potential involvement of carnitine and/or its 
congeners in the antioxidant network may be appealing, it certainly raises a 
number of intriguing questions. For example, is there any chemical rationale 
that allows the consideration of these compounds as true primary antioxi
dants? On the other hand, is there direct experimental evidence that clearly 
shows that the carnitines possess a scavenging action toward free radicals? 
Is it instead possible that some of the anti-radical findings of carnitine are 
simply related to the proposed metabolic improvement of the heart bioener
getics in the course of ischemic disease [33, 34]? In fact, such an amelioration 
would most likely make the heart cell more resistant to a free radical attack 
and/or reduce free radical production. 

We have recently shown that carnitine and carnitine palmitoyltransferase 
can be considered integral components of membrane phospholipid fatty acid 
turnover in human erythrocytes and neuronal rat cells [35-37]. Since this 
pathway is essentially related to the secondary antioxidant response to oxid
atively damaged membrane phospholipids, one may envisage that the carnit
ine system takes part in the heart antioxidant network as a member of the 
secondary defence line. This chapter will try to dissect in some detail the 
possible location of the carnitine system in the antioxidant network, and to 
hopefully offer answers and new elements of discussion. 

Is the carnitine family a member of the primary antioxidant system? 

By definition, an antioxidant is a compound capable of efficiently preventing 
or delaying the oxidation of another compound. The oxidation of biologically 
relevant molecules is commonly thought to be caused by oxygen-derived free 
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radicals. There are various mechanisms by which an antioxidant may exert 
its action [12]. An important aspect of the antioxidant action is related to 
the concentration at which the molecule is active: the antioxidant level should 
be low, at least as low as the oxidizable target. Of course, thermodynamic 
and kinetic properties of the reaction between an antioxidant and a free 
radical essentially dictate such a quantitative feature. Another indispensable 
requirement for those antioxidants which are consumed in the course of their 
action is that the product is either a less reactive free radical species or a 
non-radical species unable to cause damage. 

Among the oxidative effects caused by oxygen-derived free radicals toward 
cellular components, lipid peroxidation is probably the most popular and 
well studied example. Consequently, most of the non-enzymatic antioxidants 
are best known as agents able to significantly quench the peroxidation of 
polyunsatured fatty acids. According to Figure 1, an antioxidant may prevent 
the first-chain initiation of lipid peroxidation by removing the initiator radical 
(i.e. hydroxyl radical scavenger), by chelating transition metal ions (iron or 
copper), to prevent Fenton-type reactions responsible for the formation of 
initiating species and/or by decomposition of lipid peroxide to peroxy or 
alcoxy radicals [12, 38]. The decomposition of lipid peroxide to the corre
sponding unreactive lipid alcohol, instead, is another mechanism of antioxi
dant activity carried out by enzymes such as glutathione-dependent peroxi
dases [39, 40]. Finally, chain-breaking antioxidants interrupt the peroxidative 
sequence by scavenging lipid peroxy or alkoxy radicals able to propagate the 
peroxidation of polyunsatured fatty acids [41, 42]. 

From the chemical point of view, both monosubstituted and polysubsti
tuted phenols with electron-releasing groups are among the best non-enzy
matic antioxidants used in biological systems. Carnitine and its short- and 
long-chain esters do not belong to this category of molecules, and it does 
not seem likely that the chemical functional groups present in the carnitines 
have an antioxidant action. However, several studies suggest that carnitine 
and some of its short-chain derivatives, namely acetyl-L-carnitine and pro
pionyl-L-carnitine, could act as agents able to slow down lipid peroxidative 
processes [26, 28, 29, 32, 43]. In addition, protein carbonyl levels, an index 
of protein oxidative injury, were significantly reduced by treating ischemic
reperfused rat heart with either the D- or L-stereoisomer of propionylcarni
tine in comparison to untreated ischemic-reperfused heart [16, 31]. An impor
tant common denominator in most of these studies is that to observe any 
significant protecting effect of L-carnitine and its congeners toward oxidative 
phenomena the concentration of these molecules has to be in a high milli
molar range (lO-lOOmM). On the other hand, Ferrari et al. have shown 
that the iron-induced in vitro peroxidation of cardiac mitochondria was not 
affected by the inclusion in the reaction mixture of 1 mM propionyl-L-carnit
ine [44]. It is clear that the physiological or pharmacological value of these 
antioxidant effects is dubious, since the same effect can be obtained with 
either naturally-occurring antioxidants or synthetic ones at much lower con-
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Figure 1. Lipid peroxidation of polyunsaturated fatty acid (PUFA). The scheme is mainly 
intended to show the primary site of action of antioxidants, which are indicated by circled 
numbers. 1) compounds able to block the initiation of the peroxidation process, such as hydroxyl 
radical scavengers; 2) & 4) chain·breaking antioxidants, such as monosubstituted and polysubsti
tuted phenols; 3) iron-chelating agents able to block the Fenton-driven decomposition of lipid 
peroxide; 5) enzymatic reduction of lipid peroxide (LOOH) to the corresponding lipid alcohol 
(LOH) catalyzed by GSH-peroxidases. In the first peroxidative reaction the initial hydrogen 
abstraction is shown. Other abbreviations used are: R", free radical; L', carbon radical present 
in the PUFA; LOO', peroxy radical; LO', alkoxy radical. 
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centration (usually in the micromolar range), with a broader spectrum of 
action [12]. With respect to a specific scavenging action of the carnitines 
toward oxygen-derived free radicals, there is unequivocal evidence that such 
compounds are not effective. We have studied the reactivity of both hydroxyl 
radicals and superoxide anions with regard to L-carnitine and some of its 
short-chain esters [43]. In this report, hydroxyl radicals and superoxide anions 
were produced through the radio lysis of water: by irradiating aqueous 
samples with X-rays generated by a linear accelerator. The antioxidant ac
tivity of L-carnitine, acetyl-L-carnitine and propionyl-L-carnitine was evalu
ated by following the fragmentation of bovine serum albumin, the free radical 
target, present in the irradiated aqueous samples. Any scavenger able to 
remove oxygen free radicals would significantly decrease the fragmentation 
of the bovine serum albumin. The presence of L-carnitine, acetyl-L-carnitine 
or propionyl-L-carnitine at concentrations up to 10 mM did not affect the 
fragmentation. In addition, by using two different sources of superoxide 
anion, it has been shown that there is no decrease in superoxide anion 
production in the presence of millimolar concentration of carnitine or its 
short-chain esters [16, 45]. However, acetyl-L-carnitine was capable to parti
ally inhibit the activity of xanthine oxidase, an enzyme often used as a 
superoxide anion-generating system, though at concentrations higher than 
40 mM [32]. Also, these molecules did not act as chain-breaking antioxidants, 
when, in a phycoerythrin-fluorescence based assay, peroxyl radicals were 
generated in an incubation mixture containing carnitine or propionyl-L-carni
tine [16]. It is worth noting that chain-breaking antioxidants represent in the 
lipid peroxidation chemistry the most common and efficient scavengers of 
lipid radicals. 

Nevertheless, several pieces of experimental evidence suggest that both L
carnitine and propionyl-L-carnitine are effective in protecting the heart 
against the ischemia-reperfusion injury, even though the ester derivative 
provided better results. Although the mechanism of action is not entirely 
clear, a metabolic effect devoted to the improvement of myocyte bioener
getics is the most credited hypothesis [33, 34, see also this book]. If this is 
the case, one may also expect a reduced susceptibility of the heart to the 
free radical insult in the course of ischemia-reperfusion event. This would 
also explain why in the propionyl-L-carnitine perfused heart, the myocardial 
levels of lipid peroxidation by-products are lower than in the untreated 
sample at the end of the post-ischemic reperfusion. 

An interesting aspect of the proposed antiradical effect of propionyl-L
carnitine in the ischemia-reperfusion injury of the heart is the potential role 
in iron chelation. As mentioned above, when iron is complexed with certain 
chelating agents, inorganic or organic hydroperoxide cannot be decomposed 
to the respective harmful hydroxyl or peroxyl radicals. Thus, the inclusion 
of desferrioxamine, an iron-chelating drug successfully used in the therapy 
of thalassemic patients, completely blocks lipid peroxidation in an in vitro 
system where the oxidative insult is triggered by iron salts [46]. Reznick et 
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al. have shown that the propionate ester of carnitine, either the L- or D
stereoisomer, was active in decreasing hydroxyl radical formation in two 
different Fenton systems [16]. In addition, these compounds inhibited the 
iron-induced ascorbate oxidation, an indirect estimate for iron chelation. 
Interestingly, L-carnitine resulted essentially inactive in both the experi
mental models of iron chelation, whereas, from a chemical standpoint, it is 
not clear why the presence of the propionate ester moiety is critical for 
carnitine to manifest such iron-chelating activity. When the propionyl-L
carnitine data are compared with those obtained in the same experimental 
models with desferrioxamine, however, the latter compound was always 
more efficient in inhibiting the iron-driven Fenton reaction, even at concen
trations one thousand times lower than the carnitine derivatives. 

Membrane phospholipid repair process: A potential link between the 
carnitine system and the heart antioxidant network 

The oxidative deterioration of membrane phospholipids may compromise a 
variety of cellular functions, which normally rely on the integrity of the 
chemico-physical status of the membrane bilayer. This is chemically mani
fested by the peroxidation of polyunsatured fatty acids esterified on the 
glycerol backbone of membrane phospholipids. A biochemically relevant 
feature observed in the course of membrane phospholipid peroxidation is 
the concurrent increased activity of different phospholipases [21, 22, 47-56]. 
In particular, phospholipase Az activity seems to be mainly involved in the 
excision of the fatty acid hydroperoxide, when tissues are subjected to oxi
dative stress. This enzymatic process is considered the first response of the 
secondary antioxidant defence line against the oxidative insult of membrane 
lipids. It has been also shown that the action of glutathione peroxidase, a 
component of the primary defence system, is greatly enhanced by phospholi
pase Az [39]. This concerted enzymatic action is based on the fact that 
glutathione peroxidase enzymes (either selenium- or non-selenium-depen
dent) are capable of reducing lipid hydroperoxide to the corresponding non
reactive lipid alcohol only if the peroxide group is present in the unesterified 
fatty acid. The ability of phospholipase Az to remove the peroxidized fatty 
acid present in phospholipids has been shown to occur in purified lipid 
mixtures [50, 52, 55]. In these kinds of studies it was possible to demonstrate 
that the alteration of lipid fluidity induced by the peroxidation of liposomes 
composed of unsaturated phospholipids is associated with an enhanced phos
pholipase Az attack, suggesting a possible structural link between peroxidized 
lipid and activation of the hydrolytic enzyme [52, 55]. In addition, once 
the peroxidative event triggered the phospholipase Az activity, peroxidized 
phospholipids were hydrolyzed at higher rates and peroxidation of host 
phospholipid did not affect the hydrolytic rate of non-oxidized phospholipids 
[55]. 
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If the removal of the peroxidized fatty acid represents an important stage 
in the membrane phospholipid repair process, a further step is required to 
fulfil the repair action: the reacylation of the lysophospholipid. This step 
is accomplished by the action of the enzyme lysophospholipid acyl-CoA 
transferase (LAT), which catalyzes the transfer of the fatty acid from CoA 
to lysophospholipid. The overall process of membrane phospholipid repair 
activity is essentially a deacylation-reacylation cycle, a metabolic pathway 
devoted to tailoring the fatty acid composition of membrane phospholipids 
[57]. It should be taken into account that the reacylation step requires an 
adequate supply of acyl-CoA, which in turn is generated by the ATP-depen
dent enzyme acyl-CoA synthetase (ACS). 

An experimental model successfully used to study the membrane phospho
lipid repair process is the erythrocyte. Lubin et al. provided the first experi
mental evidence that membrane phospholipid reacylation was greatly en
hanced in intact vitamin E-deficient human red cells exposed to hydrogen 
peroxide [20]. The enhanced radioactive fatty acid incorporation was higher 
in membrane phosphatidylethanolamine (PE) than phosphatidylcholine 
(PC). Dise and Goodman have shown that the exposure of human red cells 
to t-butylhydroperoxide (t-BOOH) caused an increased incorporation of 
radioactive oleate or palmitate into membrane PE, although, the reacylation 
of membrane PC in t-BOOH-treated red cells was partially depressed [58]. 
We have observed that the incorporation of saturated and monounsatured 
fatty acids into membrane phospholipids of oxidatively challenged red cells 
was greatly enhanced in comparison to control cells [59]. On the other hand, 
the incorporation rates of polyunsatured fatty acids in such cells were lower 
than in control ones (Arduini et al., submitted). In support of the notion 
that during oxidative challenge, polyunsaturated fatty acids are not good 
reacylating substrates, Allen et al. found that the incorporation of arachi
donic acid into membrane PC and PE of red cells treated with different 
oxidizing agents was inhibited [60]. The inhibition of polyunsaturated fatty 
acid incorporation into membrane phospholipids was also seen in alveolar 
macrophages and brain synaptosomes exposed to hydroperoxides [61, 62]. 
The reasons for a reduced ability of these different biological systems to 
repair membrane phospholipids with polyunsatured fatty acids are diverse, 
though it is not possible to recognize a common underlying mechanism. 

A closer look at the proposed membrane phospholipid repair mechanism 
poses, in our opinion, some relevant questions on the biochemical require
ments for the physiological expression of the reacylation step. For example, 
the increased demand of activated acyl-units to reacylate lysolipids generated 
by the phospholipase A2 action on oxidatively challenged phospholipids may 
exceed the intracellular availability of acyl-CoA. This suggests that the ac
tivity of the reacylating enzyme has to be finely assisted in terms of activated 
acyl-unit supply. Since ACS is the enzyme devoted to the production of 
activated acyl-units, one would predict that either ACS generates large 
amounts of acyl-CoA to buffer any potential LAT substrate request, or ACS 
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Figure 2. The carnitine system and membrane phospholipid repair reactions. Abbreviations 
used are: PLP, phospholipids; PLP-OOH, phospholipid hydroperoxide; PLA2 , phospholipase 
A2 ; LAT, lysophospholipid acyl-CoA transferase; Cn, carnitine; acyl-Cn, acy1carnitine; CPT, 
carnitine palmitoyltransferase; ACS, acyl-CoA synthetase. 

and LAT rates are somehow coupled to guarantee the phospholipid repair 
process can respond adequately to oxidative challenge. The first prediction 
is difficult to sustain, for the simple reason that the cellular free CoA levels 
are usually low and compartmentalized (i.e. in the heart 95% of total CoA 
is present in the mitochondrial matrix) [63]. In addition, an extensive free 
CoA acylation may impair several metabolic pathways. The second sugges
tion presents some kinetic impediment, as the specific activities of ACS and 
LA T are in several cases very diverse for a given fatty acid and its correspond
ing CoA ester [36]. Rate differences of these two enzymes also imply an 
alteration of the acyl-CoAifree CoA ratio, which may be an additional 
deterrent for the membrane phospholipid reacylation [64]. LA T and glycero
phosphate acyl-CoA transferase activities can be inhibited in vitro by rela
tively high levels of free CoA [35, 64]. It is worth noting that the oxidative 
insult occurring in ischemic disease is also associated with a drop of intracellu
lar ATP levels, which in turn is expected to limit the activity of ACS. In 
addition, the increased breakdown of ATP gives rise to AMP and adenosine, 
compounds able to inhibit ACS [65]. 

A possible way to surmount such a metabolic stall is to introduce carnitine 
and carnitine palmitoyltransferase (CPT) in the membrane phospholipid re
pair scenario (Figure 2). This enzyme, known for its role played in mitochon
drial fatty acid oxidation, catalyzes the reversible transfer of long-chain fatty 
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acids from CoA to carnitine [66]. Given the sensitivity of CPT to the mass 
action ratio of the substrates, any variation of the acyl-CoAifree CoA ratio 
can be compensated by this enzyme. CPT action would be twofold: provide 
acyl-units at no ATP-cost and buffer the harmful elevation of free CoA. 

We have shown that CPT can be considered as an integral component of 
the pathway for membrane phospholipid and triglyceride fatty acid turnover 
in both human erythrocytes and neuronal cells [36, 37]. In these biological 
models, the inhibition of CPT caused a depression of the reacylating cap
ability of membrane complex lipids. It was also demonstrated that the long
chain acylcarnitine pool is an important reservoir of acyl-units, which are 
actively utilized when the cell is in a deenergized state. Furthermore, CPT 
buffered the excess of acyl-CoA produced by ACS, to prevent free CoA 
depletion and to maintain an optimal acyl-CoAifree CoA ratio for the mem
brane phospholipid and triglyceride fatty acid turnover. Since this pathway 
represents the physiological expression of the reacylation process, one may 
extend these concepts to the membrane phospholipid repair activity. Thus, 
human red cells, treated with either reversible or irreversible CPT inhibitors 
and exposed to t-BOOH, incorporated significantly less amounts of radio
active fatty acids into membrane PE and PC than untreated cells exposed to 
t-BOOH (Arduini et al., submitted). Pulse-chase experiments with t-BOOH
treated red cells showed an increased acyl-trafficking between the acylcar
nitine pool and the reacylation step of membrane phospholipids, which could 
be abolished by inhibiting CPT [67]. Also, when ATP-depleted red cells were 
incubated with radioactive fatty acid complexed to bovive serum albumin, a 
reduced radioactive acylcarnitine formation was observed [36]. On the other 
hand, A TP-depleted red cells incubated with radiolabeled palmitoyl-L-car
nitine incorporated more radioactive palmitate into membrane PC and PE 
than control cells [36]. Finally, preliminary data from our laboratory suggest 
that the membrane phospholipid repair process is operative in oxidatively 
challenged endothelial cells, and that the inhibition of CPT activity is ac
companied by a decreased ability of these cells to properly repair membrane 
phospholipids. 

In conclusion, the data and concepts illustrated above, and the biochemical 
analogies existing between ischemic disease and oxidative challenge, should 
more easily orient future work to ascertain involvement of the carnitine 
system in the secondary antioxidant network of the heart. 
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13. Experimental evidence of the anti-ischemic effect 
of L-carnitine 
DENNIS J. PAULSON and AUSTIN L. SHUG 

"It seems likely that L-camitine will exhibit the greatest beneficial effect in situations 
where it is possible to pretreat the heart with this compound for sufficient duration 
such that intracellular L-camitine levels are elevated." 

Introduction 

There is considerable evidence that L-carnitine and some of its short-chain 
acyl derivatives (acetyl-L-carnitine, propionyl-L-carnitine and propiony1car
nitine taurine amide) are capable of protecting the heart against ischemic! 
reperfusion injury. However, despite these findings, the efficacy of L-carnit
ine and these derivatives is still controversial. The purpose of this chapter is 
to review the experimental evidence concerning the anti-ischemic effects of 
L-carnitine, since other chapters in this book will deal with the actions of 
acetyl-L-carnitine and propionyl-L-carnitine. Possible mechanisms that may 
account for these beneficial effects of L-carnitine will be summarized. In 
addition, new data and explanations will be provided which may help clarify 
some of the experimental discrepancies reported among various studies. 

Anti-ischemic effect of L-carnitine 

The first study to investigate the anti-ischemic effects of L-carnitine was 
performed by Folts et al. [1] in dogs. This group found that the epicardial 
S-T segment deviations produced by regional ischemia were diminished by 
infusion of L-carnitine into the ischemic tissue. The incidence of ventricular 
fibrillation was also dramatically decreased by L-carnitine. This anti
arrhythmic effect of L-carnitine has been subsequently confirmed by a 
number of studies using a variety of experimental protocols [2-5]. However, 
these results were not supported in a study by Gilmour et a1. [6]. Using a 
protocol similar to that of Folts et al. [1], this study was unable to demon-
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strate a positive effect of L-carnitine in attenuating ischemia-induced ECG 
alterations. The explanation for this discrepancy remains uncertain, although 
it may be due to subtle, yet important, differences in the experimental 
protocols. For example, the Gilmour et al. [6] study used paced hearts; 
whereas in the Folts et al. [1] study, heart rate was not controlled. Therefore, 
the incidence of arrhythmias may have been different between these two 
studies. 

Further evidence for the anti-ischemic effect of L-carnitine has been ob
tained in the ischemic dog heart. L-Carnitine has been reported to enhance 
the recovery of peak developed left ventricular pressure and prevent the 
postischemic increase in left ventricular diastolic pressure in dogs subjected 
to regional ischemia and reperfusion [7]. This study along with others [8] has 
shown the beneficial effects of L-carnitine during ischemia and reperfusion 
to be associated with an increased level of myocardial A TP. L-Carnitine has 
also been shown to preserve mitochondrial function in dogs and rabbits 
exposed to elevated plasma free fatty acids [9, 10]. The preservation of 
mitochondrial function may be related to a lowering of intracellular long
chain acyl-coenzyme A (CoA) and carnitine esters [8], as well as a preserva
tion of myocardial phospholipid content [11]. 

In a series of studies using the swine model of ischemia, Liedtke et al. 
[12-15] provided additional data supporting the anti-ischemic effects of carni
tine. In these experiments, plasma fatty acids were elevated with Intralipid 
infusion. This condition caused a greater impairment of cardiac contractile 
function when these hearts were exposed to a period of low-flow ischemia. 
D ,L-Carnitine had no apparent effect in improving the overall hemodynamic 
performance in hearts with normal levels of plasma free fatty acids. However, 
in hearts with elevated free fatty acids, several hemodynamic parameters 
were improved during ischemia: left ventricular pressure, +dP/dt, regional 
wall shortening, and global mechanical efficiency. This beneficial effect of 
D,L-carnitine was associated with a decrease in fatty acid uptake, fatty acid 
oxidation and tissue stores of long-chain acyl-CoA, while high energy stores 
were increased. 

Studies using the isolated perfused rat heart have produced inconsistent 
findings concerning the anti-ischemic effect of L-carnitine [16-21]. Paulson 
et al. [16] showed that adding L-carnitine to the perfusion medium had no 
effect on the recovery of mechanical function of isolated hearts subjected to 
15 min of working heart perfusion, 90 min of low-flow ischemia, and 15 min 
of reperfusion. While L-carnitine was not beneficial in protecting the ischemic 
rat heart, acetyl-L-carnitine and propionyl-L-carnitine were able to signifi
cantly enhance the recovery of contractile function. These two compounds 
were also more effective in inhibiting the uptake of L-carnitine by isolated 
cardiac myocytes, suggesting that acetyl-L-carnitine and propionyl-L-carni
tine may be taken up with greater affinity than L-carnitine. It was suggested 
that the slow rate of L-carnitine uptake by the cardiac myocyte may explain 
the lack of an anti-ischemic action in this model. 
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This hypothesis was supported by other studies. For example, Duan & 
Karmazyn [19] demonstrated a beneficial effect of D,L-carnitine using the 
isolated rat heart model. These hearts were exposed to 30 min constant flow 
perfusion, 30 min of low-flow ischemia, and followed by 30 min of reper
fusion. D ,L-Carnitine treatment produced no effect on either the contractile 
depression or elevation in resting tension during ischemia, but significantly 
decreased the incidence of arrhythmias at the termination of ischemia. The 
recovery of contractile function was also significantly increased. This bene
ficial effect of D ,L-carnitine was associated with a partial preservation of 
mitochondrial function. The longer duration of pre-ischemic perfusion may 
explain why this study [19] was able to demonstrate an anti-ischemic effect 
of D,L-carnitine. Paulson et al. [16] may not have been able to demonstrate 
a significant anti-ischemic effect because the hearts were perfused for only 
15 min prior to ischemia. Because of the slow rate of carnitine uptake by 
the perfused rat heart [22], it may take 30 min or longer before sufficient 
carnitine enters the myocyte to exert a measurable effect. This explanation 
is further supported recently by Broderick et al. [21]. In this study, hearts 
were initially perfused for a period of 60 min in the presence of 10 mM L
carnitine in order to increase intracellular carnitine content. The resultant 
elevation in myocardial carnitine content enhanced the recovery of mechan
ical function when these hearts were exposed to 35 min of zero-flow ischemia 
followed by 40 min of reperfusion. A stimulation of glucose oxidation without 
an increase in the rate of glycolysis was associated with the beneficial effect 
of L-carnitine. 

A number of human studies have also provided evidence for the anti
ischemic effect of L-carnitine. Early studies evaluated the effect of D,L
carnitine in patients with coronary artery disease who were subjected to 
sequential rapid coronary sinus pacing protocols, 15 min apart [23]. The 
infusion of D ,L-carnitine before the second pacing protocol resulted in sig
nificant increases in mean heart rate, pressure-rate product, and pacing 
duration. The treated group also had improvement in myocardial lactate 
extraction and left ventricular end-diastolic pressure, as well as less S-T 
segment depression. This anti-ischemic effect of L-carnitine was again con
firmed in a study where patients with coronary artery disease were subjected 
to an exercise stress test [24, 25]. Subsequent studies using the L-isomer 
found similar beneficial results in patients given an exercise tolerance test 
[26] or pacing-induced ischemia [27-29]. In a double blind study on fifty six 
patients suffering from acute myocardial infarction, it was shown that L
carnitine administration reduced the number of premature ventricular beats 
after two days of treatment [30]. Another study showed that the adminis
tration of carnitine improved ECG alterations suggesting that the infarct size 
may have been limited [31]. In elderly patients with ischemia or hypertension
induced heart failure, L-carnitine therapy resulted in reduced heart rate, 
edema and dyspnea, increased diuresis and reduced digitalis consumption 
compared with the group not treated with carnitine [32]. 



186 D.l. Paulson and A.L. Shug 

In contrast to these positive studies, other clinical studies have suggested 
that L-carnitine's anti-ischemic effect may be small or absent. Martina et al. 
[33] studied the effects of intravenous L-carnitine treatment on patients with 
acute myocardial infarction. These treatments were initiated 4-12 h after 
onset of pain and were given over a 7-day period. Holter-ECG analysis 
indicated no differences in the incidence of ventricular premature beats over 
most of this period. However, on the second day after the acute myocardial 
infarction, there appeared to be some decrease in the number of arrhythmias 
compared to the placebo group. Demeyere et al. [34] investigated the cardio
protective effects of L-carnitine in patients undergoing multiple aortocoron
ary bypass grafting. Transmural left ventricular biopsy specimens were taken 
at the beginning and end of cardiopulmonary bypass, and assayed for A TP 
and creatine phosphate. Intravenous infusion of L-carnitine had no effect on 
either hemodynamic parameters or tissue levels of A TP and creatine phos
phate. It was concluded that treatment with carnitine neither facilitates wean
ing from cardiopulmonary bypass in patients undergoing aortocoronay bypass 
surgery nor favorably affects hemodynamic function during the next 24 h. 
The lack of an anti-ischemic effect of L-carnitine in these studies may be 
due to the dose of carnitine used and whether tissue levels of L-carnitine 
were increased. As indicated by the animal studies, the slow rate of carnitine 
uptake may be a limiting factor in the beneficial effect of L-carnitine against 
ischemic/reperfusion injury. The rapid clearance of carnitine from the body 
is another limiting factor for the anti-ischemic effect of L-carnitine. In order 
to exert such an effect it may be necessary to pretreat the patient with 
sufficient L-carnitine at multiple treatment intervals prior to an ischemic 
episode to increase myocardial L-carnitine levels. Thus, L-carnitine pretreat
ment may be most beneficial in patients who will be undergoing bypass 
surgery or patients who are at a greater risk of developing ischemic heart 
disease such as diabetics or patients with a history of coronary artery disease. 

Mechanisms for the anti-ischemic effects of L-carnitine 

There have been several mechanisms suggested by different investigators 
for the anti-ischemic effects of L-carnitine. We have broadly classified and 
summarized the evidence for the various proposed mechanisms below: 

Loss of carnitine 

Carnitine and its esters are mainly located in the cytosolic compartment of 
the myocytes and are present in concentrations much higher than those found 
in plasma. Myocardial carnitine levels are lowered by a number of situations 
such as aging, pressure-overload hypertrophy, diabetes, and some forms of 
cardiomyopathy [35]. The cardiac depression associated with these conditions 
may be related to the lowered levels of intracellular carnitine. Carnitine is 
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Figure 1. Changes in myocardial carnitine in subepicardium and subendocardium of open-chest 
dog heart subjected to 3 h of ischemia (I) with and without 1 h reperfusion (R). The lower 
portion of the bar represents free carnitine (F) , and the upper portion represents the esterified 
form (E) . Values represent the mean ± SE for = to 13 . * indicates significant difference from 
control, p < 0.05. 

also reportedly lost from the ischemic myocardium. However, there is some 
controversy in the literature as to whether this occurs in all animal models. 
A number of studies have shown that myocardial ischemia will induce a loss 
of carnitine in the dog [1, 36], pig [12] and human heart [37, 38]; but not all 
studies in the ischemic rat heart [39, 40] have been able to demonstrate a 
loss of carnitine with ischemia. There are also other issues which have not 
been resolved. It is uncertain whether carnitine is lost from both irreversibly 
and reversibly damaged tissues. Ischemia causes damage to the sarcolemmal 
membrane resulting in the diffusion of intracellular carnitine down its concen
tration gradient into the extracellular space. Presumably, reperfusion is re
quired to washout this carnitine. 

To help resolve these issues, we have examined the effects of 3 h of 
regional ischemia and 1 h of reperfusion on total myocardial L-carnitine 
content in the dog heart. Staining with p-nitro blue tetrazolium (pNBT) was 
used to determine whether the tissue was irreversibly or reversibly damaged. 
This duration of ischemia and reperfusion produced a 25% decrease in 
myocardial total carnitine content in reversibly damaged subepicardium tis
sue (Figure 1). In irreversibly damaged subendocardial tissue, the loss of 
carnitine was greater at 40% . Three hours of ischemia without reperfusion 
produced no change in total carnitine content, although free carnitine was 
significantly reduced with a commensurate increase in esterified carnitine . 
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Table 1. Effects of working heart perfusion, global ischemia, and anoxia on myocardial carnitine 
content in rats. 

Group (n) 

Unperfused (12) 
85'WH (4) 
30'1, 15'R (6) 
45'1, 15'R (13) 
60'1, 15'R (13) 
90'1, 15'R (8) 
90' Anoxia (8) 

Recovery of cardiac 
output (mllmin) 

Prior to ischemia 

54 ± 6 
67 ± 3 
61 ± 3 
59 ± 3 
60 ± 4 
64 ± 6 

After ischemia 

52 ± 9 
54 ± 4 
54 ± 3 
40 ± 6 
37 ± 7 
6 ± 1 

All values are mean ± SE for number shown in parentheses. 
WH = working heart; I = ischemia; R = reperfusion. 

Total myocardial carnitine 
content (nmol/g dry wt) 

5507 ± 293 
5437 ± 819 
4965 ± 502 
5011 ± 233 
5265 ± 309 
4815 ± 249 
4841 ± 464 

As indicated above, conflicting reports have appeared concerning carnitine 
levels in the ischemic rat heart [39, 40]. To resolve this controversy, the 
effects of global ischemia and reperfusion on myocardial carnitine content 
of isolated perfused rat, rabbit and guinea-pig hearts were determined. The 
effects of working rat-heart perfusion, global ischemia, and anoxia on myo
cardial carnitine content are shown in Table 1. Ischemic hearts were perfused 
with 1.2 mM palmitate and 5.5 mM glucose as substrates. Anoxic hearts 
were perfused in a nonrecirculating manner with 11 mM glucose as the only 
exogenous substrate. Cardiac output did not change with 85 min of normal 
working heart perfusion, nor did working heart perfusion affect tissue carni
tine content. Increasing periods of global ischemia decreased the recovery 
of cardiac output, but had no statistically significant effect on total myocardial 
carnitine content despite the appearance of carnitine in the perfusion me
dium. On average, 170/-Lmol of carnitine were detected in the perfusion 
medium per heart. Nonrecirculating anoxic perfusion for 90 min caused a 
complete loss of cardiac contractile function, but did not change cardiac 
carnitine levels. 

Myocardial carnitine content in vivo is higher in the dog, guinea- pig and 
rabbit than that found in the rat (8000, 6595, 7340, 5507 nmol/g dry wt, 
respectively). In the guinea-pig working heart perfusion for 60 min had no 
effect on cardiac output or carnitine content (Table 2). However, both 30 
min of reversible and 90 min of irreversible ischemia significantly decreased 
myocardial carnitine content. Similarly, 60 min of anoxia in both guinea-pig 
and rabbit decreased myocardial carnitine content. 

These findings are in line with previous reports of carnitine loss from the 
ischemic canine heart [1, 36]. In addition, it shows significant amounts of 
carnitine are lost from reversibly injured tissue as well as necrotic areas. This 
finding is of particular importance, because loss of carnitine from the rever
sibly damaged heart may render this tissue more vulnerable to a subsequent 
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Table 2. Effects of working heart perfusion, ischemia, and anoxia on myocardial carnitine 
content in guinea pigs and rabbits. 

Group (n) 

Guinea pig 
Unperfused (5) 
60'WH (5) 
30'1, 15'R (5) 
90' I, 15'R (6) 
60' Anoxia 
Rabbit 
Unperfused (4) 
60' Anoxia (4) 

Recovery of cardiac 
output (ml/min) 

Prior to ischemia 

84 ± 3 
71 ± 4 
77 ± 7 
64 ± 10 

After ischemia 

81 ± 3 
53 ± 10 
18 ± 3 
14 ± 1 

All values are mean ± SE for number shown in parentheses. 
WH = working heart; I = ischemia; R = reperfusion. 
* Significant difference from unperfused value, p '" 0.05. 

Total myocardial carnitine 
content (nmol/g dry wt) 

6595 ± 394 
6284 ± 504 
5058 ± 634* 
4953 ± 448* 
5183 ± 388* 

6272 ± 645 
3777 ± 493* 

episode of ischemia. Although reflow is required for recovery of heart func
tion, it may also exert a harmful effect by washing out important metabolites. 
Carnitine from ischemic tissue is a low-molecular weight, nonmetabolizable, 
water-soluble compound. Consequently it is most likely lost from oxygen
deficient tissues by leakage down its concentration gradient. 

The isolated perfused rabbit and guinea-pig hearts both exhibited a loss 
of carnitine in response to oxygen deficiency. In contrast, the isolated per
fused rat heart showed no significant loss of carnitine after ischemialreper
fusion or anoxia. Nevertheless, a small amount of carnitine was detected in 
the perfusion medium. This finding may explain why mean tissue carnitine 
levels were found to be lower in this, as well as previous studies [39] after 
ischemia and reperfusion. However, the loss of carnitine was not large en
ough to affect tissue levels significantly. In addition, previous studies, that 
suggested carnitine was lost from the ischemic/reperfused rat heart, expressed 
the data on a per gram wet weight. Since the ischemic heart may accumulate 
water due to capillary damage, this method of expressing the result may be 
inaccurate and may have led to an artifactual decrease in total carnitine 
content when expressed on a per gram wet weight basis. 

These results indicate that L-carnitine is lost in most animal models of 
ischemialreperfusion. Since carnitine participates in several metabolic path
ways, the loss of carnitine may lead to a critical disruption in overall meta
bolic functions of the heart. This assertion is supported by the study by Patel 
et al. [41]. This study evaluated 40 patients with various types of acquired 
heart disease to assess the impact of myocardial carnitine concentration on 
prognosis. Myocardial carnitine concentration was normal in 22 patients and 
low in 18. Three patients in the normal myocardial carnitine group died; one 
of these was a cardiac death. In the low myocardial carnitine concentration 
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group seven patients died; six from cardiac causes. These findings provide 
evidence that myocardial carnitine levels may have a significant prognostic 
implication in determining the long-term survival of patients with ischemia
induced depletion of myocardial carnitine content. L-Carnitine treatment 
may, therefore, be beneficial in preventing the ischemia-induced loss of 
carnitine. 

Lipid intermediates 

A number of investigators have shown that low-flow ischemia results in the 
accumulation of long-chain acylcarnitine and CoA esters [39, 40]. In contrast, 
zero-flow ischemia causes no change in the levels of long-chain acylcarnitine 
and only a small transient increase in long-chain acyl-CoA [42]. Since in 
vitro experiments (with isolated enzymes and subcellular fractions) have 
shown that these compounds can inhibit a number of enzyme activities and 
mitochondrial energy production, it has been suggested that the accumulation 
of these lipid intermediates may contribute to the genesis of irreversible 
ischemic damage. For example, long-chain acylcarnitine alters voltage-depen
dent calcium channels, inhibits sodium-pump activity, and interferes with 
gap-junction conductance [43, 44]. The increase of this compound during 
ischemia has been directly implicated in the ventricular arrhythmias induced 
by ischemia [45, 46]. Most of the total tissue CoA is located in the mitochon
drial compartment [40]. Therefore the accumulation of long-chain acyl-Co A 
is thought to occur primarily within the mitochondria, although there may 
be a small but important accumulation between the inner and outer mito
chondrial membrane. It has been shown that long-chain acyl-CoA can in
terfere with mitochondrial energy metabolism by inhibiting the adenine nu
cleotide trans locator [47]. This inhibition occurs from both sides of the 
mitochondrial membrane. There is also evidence that accumulation of long
chain acyl-CoA may enhance free-radical production by damaged ischemic 
mitochondria when reperfusion is instituted [48]. 

L-Carnitine may protect the ischemic heart by preventing the accumulation 
of these lipid intermediates. L-Carnitine can react with long-chain acyl-CoA 
through the enzyme carnitine palmitoyltransferase I and can be converted 
into long-chain acylcarnitine. L-Carnitine may lower the accumulation of 
long-chain acyl-CoA within the mitochondrial compartment via the carnitine 
palmitoyltransferase II. The decrease in long-chain acylcarnitine may be 
mediated generalized improvement in fatty acid oxidation. An alternative 
explanation is that carnitine treatment may cause the efflux of excess acylcar
nitine esters from the myocardium via an exchange transport mechanism. 
Studies by Rizzon et al. [30] have shown that carnitine treatment of ischemic 
patients results in an increased urinary excretion of long- and short-chain 
carnitine esters. Another explanation for the effects of L-carnitine on the 
accumulation of lipid intermediates may be through the enzyme carnitine 
acetyltransferase. By catalyzing the reaction of carnitine and acetyl-Co A to 
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Figure 2. Malonyl-CoA regulation of fatty-acid oxidation in the heart. CPT-! and CPT-II: 
carnitine palmitoyltransferase-! and -II, respectively, CAT: carnitine acetyltransferase, PDH: 
pyruvate dehydrogenase, ACC: acetyl-CoA carboxylase, TCA: tricarboxylic acid. 

produce acetyicarnitine, this reaction may lead to a stimulation of both 
glucose oxidation and glycolysis [21]. High levels of acetyl-CoA will feed 
back and inhibit these pathways. This mechanism is discussed in detail in the 
following section. 

Substrate metabolism 

L-Carnitine is an essential component in the transport of long-chain fatty 
acids into mitochondria, where they undergo l3-oxidation [49]. Although it 
is assumed that ischemic-induced alterations in myocardial carnitine content 
will impair the ability of the heart to oxidize fatty acids, there is little direct 
evidence to support this hypothesis. L-Carnitine will stimulate fatty-acid 
oxidation of tissue homogenates or isolated mitochondria, but when it is 
added to the perfusion medium of isolated perfused rat hearts, a depression 
in palmitate uptake and oxidation occurs [50, 51]. Glucose oxidation is 
increased in these carnitine-perfused hearts. As suggested by Broderick et 
al. [21], this stimulation of glucose oxidation by L-carnitine may be an 
important mechanism for the anti-ischemic effect of L-carnitine. 

The mechanism by which carnitine can stimulate glucose oxidation has 
only recently been revealed. Carnitine, by modulating tissue malonyl-CoA 
synthesis, may reciprocally alter glucose and fatty-acid oxidation [52-55] 
(Figure 2). Malonyl-CoA has been shown to be a potent inhibitor of the 
enzyme carnitine palmitoyltransferase-I (CPT-I). This enzyme converts long-
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chain acyl-CoA to long-chain acylcarnitine which has been suggested to be 
the rate-limiting step in fatty acid oxidation. It has been postulated that 
cytoplasmic malonyl-CoA is derived from acetyl-CoA via the enzyme, acetyl
CoA carboxylase (ACC) [56]. The acetyl-CoA is transported from the mito
chondria to the cytosol via the carnitine acetyltransferase (CAT) and carni
tine acetyltranslocase pathway. The link between glucose and fatty acid 
oxidation occurs at this point. The acetyl-CoA used to produce malonyl
CoA is derived primarily from glucose oxidation via the enzyme pyruvate 
dehydrogenase (PDH) [52, 57, 58]. Carnitine stimulates glucose oxidation 
by converting acetyl-CoA to acetylcarnitine which removes the feedback 
inhibition on PDH. This, in turn, leads to increased production of cytoplas
mic acetylcarnitine, acetyl-CoA, and malonyl-CoA. Thus, carnitine increases 
levels of cytoplasmic malonyl-CoA which causes an inhibition of fatty acid 
oxidation [52] and a stimulation of glucose utilization. In addition, the inhi
bition of CPT-I may be the mechanism by which carnitine prevents the 
accumulation of long-chain acylcarnitine and long-chain acyl-CoA esters 
within the ischemic heart. 

Free radical production 

Reperfusion of ischemic tissue is believed to cause cellular damage through 
the production of free radicals. A number of sources of free radicals have 
been suggested. Of these, mitochondria are probably a major source. Recent 
studies have indicated that the accumulation of long-chain acyl-CoA in is
chemic tissue may facilitate the production of free radicals by damaged 
mitochondria [48, 59]. L-Carnitine, by preventing the accumulation of these 
esters, may be beneficial for this reason. It has also been suggested that L
carnitine may be involved in a repair mechanism for oxidative-induced dam
age to membrane phospholipids [60]. Free radical damage to membrane 
phospholipids is thought to cause the accumulation of lysophospholipids 
which may result in electrophysiologic derangement and malignant arrhyth
mias. Carnitine may facilitate the formation of long-chain acylcarnitine which 
can be used to reacylate these lysophospholipids. Several studies have sug
gested that the cardioprotective effect of propionyl-L-carnitine may also be 
mediated via mechanisms preventing free radical damage. Both propionyl
L-carnitine and propionyl-D-carnitine have been shown to inhibit hydroxyl 
radical production by chelating iron required for the generation of hydroxyl 
radicals [61]. 

Membrane interaction 

It has been proposed that L-carnitine and its short-chain acyl derivatives 
may provide protection from ischemic reperfusion injury by rendering cell 
membranes more resistant to the harmful effects of free radicals or other 
toxic agents [44]. The basis for this hypothesis comes from a number of 
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studies indicating that L-carnitine possesses a stabilizing effect on cell mem
branes. For example, Batelli et al. [62] provides indirect evidence that the 
positively charged molecule of carnitine may interact with the negatively 
charged molecule of cardiolipin in liver mitochondrial membranes. This bind
ing may induce some changes in the phase organization of the cardiolipin 
molecule, within the membrane structure, which has a stabilizing effect. 
Arduini et al. [63] showed that both L-carnitine and acety1carnitine enhances 
membrane stability of mature erythrocytes. This effect most likely occurs via 
a specific interaction with one or more cytoskeletal protein(s). 

Further support for this hypothesis comes from a more recent study in 
cultured hepatocytes by Pastorino et al. [64]. In this study, L-carnitine and 
cyclosporin A protect cultured hepatocytes from the death produced by 
anoxia and rotenone. There is strong evidence that this protection is a 
consequence of the ability of these compounds to prevent mitochondrial 
permeability transition. The accumulation of long-chain acyl-CoA in the 
hepatocyte (as a result of the inhibition of fatty acid oxidation following 
mitochondrial de-energization) is an essential cofactor in the induction of 
the permeability transition. Thus, the ability of L-carnitine and its esters to 
stabilize cell membranes may also account for their anti-ischemic actions. 

Conclnsions 

Studies in both animals and humans provide evidence that L-carnitine does 
possess an anti-ischemic action. However, the cardioprotective effect appears 
to be relatively modest. There remains some inconsistencies in the literature 
which need to be examined further. First, the anti-ischemic effect of L
carnitine may be limited by the slow rate of uptake of carnitine by the heart. 
It seems likely that L-carnitine will exhibit the greatest beneficial effect in 
situations where it is possible to pretreat the heart with this compound for 
sufficient duration such that intracellular L-carnitine levels are first elevated 
[21]. During an acute emergency situation after an ischemic episode, carnitine 
may have limited efficacy due to the slow rate of transport. Since, short
chain carnitine esters may be taken up with greater affinity by the myocar
dium, they may have greater clinical efficacy. This assertion is strongly 
supported by a growing body of basic and clinical evidence on the anti
ischemic effects of propionyl-L-carnitine [65-70]. There are several mechan
isms that may account for the anti-ischemic effect of L-carnitine, all of which 
may ultimately benefit the ischemic heart. The actions of L-carnitine on 
myocardial substrate metabolism are strongly supported. In addition, the 
effect of L-carnitine upon the sarcolemmal membrane is intriguing and cer
tainly merits further investigation. 
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14. Carnitine metabolism during diabetes 
and hyperthyroidy 
DANIELLE FEUVRA Y 

"L-Carnitine treatment of diabetic rats significantly reduced plasma glucose and lipid 
levels." 

Introduction 

Interest in the function of carnitine has increased greatly since the demonstra
tion in 1955 that carnitine could be reversibly acetylated by acetyl coenzyme 
A (acetyl-CoA) [1] and that it caused a marked stimulation of long-chain 
fatty acid oxidation in liver homogenates [2]. Since these initial studies, it 
has been clearly established that L-carnitine is a required participant in the 
transport of long-chain acyl-residues across the inner mitochondrial mem
brane, and the literature has been extensively covered in several reviews [3-
5]. Because most tissues, which do not synthesize L-carnitine (the naturally 
occurring form of carnitine) such as cardiac muscle [7], have an intracellular 
concentration of free carnitine that is about 40-fold higher than the plasma 
concentration, active uptake must take place. This carnitine uptake in muscle 
has been studied in heart myocytes [6], and characterized in isolated perfused 
adult rat hearts [7]. The study by Vary and Neely [7] demonstrated that 
carnitine uptake across the sarcolemma occurs by both diffusion and carrier
mediated transport systems. Indeed, at physiological concentrations of extra
cellular carnitine (44 /-LM) about 80% of uptake occurs by the carrier
mediated system. Also, at this extracellular carnitine concentration, carnitine 
transport into the cell is slow and the turnover of total tissue carnitine would 
require about 60 h. Thus changes in the myocardial levels would not be 
expected to occur rapidly. This is consistent with the observation that the 
carnitine concentration in normal cardiac muscle is fairly constant over a 
wide range of physiological conditions [7]. However, carnitine deficiency has 
been recognized in several muscle tissues including cardiac muscle. 

l. W. de long and R. Ferrari (eds): The carnitine system. 199-208. 
© 1995 Kluwer Academic Publishers. 
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Table 1. Effects of mild and acute diabetes on tissue levels of carnitine and CoA. 

Condition Days Tissue levels (nmol/g dry wt) 

Carnitine CoA 

Control o (11) 5785 :±: 78 498:±: 17 
Mild diabetes 7 (3) 5476:±: 100 743 :±: 30 

19 (4) 4958 :±: 239 589 :±: 26 
34 (4) 4246:±: 109 607:±: 27 

Acute diabetes 2 (22) 5114 :±: 96 570:±: 19 

Mild or acute diabetes was induced by injection of alloxan (37.5 and 60 mg/kg body weight, 
respectively). Mildly diabetic rats were maintained without insulin treatment for the times 
indicated before they were killed. The hearts were removed from the rats, trimmed and blotted, 
and the ventricles were quickly frozen in liquid nitrogen. Hearts from acutely diabetic rats were 
removed 48 h after alloxan injection. They were perfused for 10, 30 and 60 min with buffer 
containing 11 mM glucose, then quick-frozen in liquid nitrogen. Total tissue carnitine and CoA 
were determined on the homogenized tissue, after alkaline hydrolysis of the acyl esters. In acute 
diabetic perfused hearts, there were no noticeable differences in the levels at various perfusion 
times and the data have been combined. The number of hearts in each group is shown in 
parentheses. (Reprinted with permission from Circ Res [8).) 

Carnitine metabolism and diabetes 

In cardiac muscle, such a deficiency is associated with diabetes and this has 
been demonstrated in mild or acute chemically-induced diabetic rats [8]. The 
decrease was observed after 48 h of severe diabetes and after several weeks 
of mild diabetes (Table 1). In this study [8], we found that total carnitine 
levels in rat hearts were decreased as a function of time after induction of 
diabetes (from 7 through 34 days). The level of total coenzyme A (CoA) on 
the other hand, another essential cofactor for fatty acid metabolism, had 
increased by 7 days and remained high throughout 34 days. When those 
diabetic rat hearts were perfused under aerobic conditions, they still had 
lower tissue levels of total carnitine and higher levels of total CoA (Table 
1). In addition, this study first showed that this was associated with higher 
levels of both long-chain acyl-carnitine and acyl-CoA esters. Furthermore, 
this increase in long-chain acyl-carnitine and acyl-CoA levels was accentuated 
after a period of ischemia as compared to that of non-diabetic hearts (Table 
2). Changes in the total tissue pool of CoA or carnitine in diabetic hearts 
may be expected to alter cellular metabolism. About 95% of the CoA in 
normal cardiac muscle is located .in the mitochondrial matrix whereas 95% 
of the carnitine is cytosolic [9]. These distributions in normal hearts are likely 
to cause activated fatty acids to be funnelled toward oxidation rather than 
toward lipid synthesis. But, when carnitine is substantially decreased, fatty 
acids could be partially diverted from oxidation to esterification, contributing 
to the accumulation of triglycerides in the diabetic cardiac cells. As will be 
stated below, carnitine deficiency in diabetic hearts may have important 
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Table 2. Effects of short-term and long-term ischemia in vitro on long-chain acyl esters of 
carnitine and CoA in isolated hearts. 

Condition Tissue levels (nmoVg dry wt) 

Acyl-carnitine Acyl-CoA 

Normal hearts Control (6) 130 ± 13 92 ± 2 
Short-term ischemia (9) 240 ± 32 99 ± 8 
Long-term ischemia (6) 532 ± 58 104 ± 9 

Diabetic hearts Control (8) 277 ± 79 167 ± 10 
Short-term ischemia (7) 1087 ± 272 244 ± 15 
Long-term ischemia (8) 830 ± 109 243 ± 33 

Control hearts from both groups of rats were perfused for 10 min. During short-term ischemia 
induced by reducing coronary flow by about 50% hearts were electrically paced, and the 
average time of ischemic perfusion was 3 min in the diabetic and 7 min in the normal hearts 
(corresponding to the beginning of ventricular failure). Long-term ischemia was induced by the 
same reduction in coronary flow, but without electrical pacing, and continued for 60 min. The 
number of hearts in each group is shown in parentheses. (Reprinted with permission from Circ 
Res [8].) 

Table 3. Effects of diabetes on plasma and myocardial levels of carnitine. 

Condition Duration Serum carnitine (nmol . ml- 1) 

Total Free 

Control 62 ± 2 44 ± 1 
Mild diabetes 1 day 69 ± 5 43 ± 3 

7 days 59 ± 4 38 ± 2 
21 days 47 ± 2* 27 ± 2* 

Acute diabetes 6h 55 ± 4 26 ± 2 
12 h 41 ± 4* 17 ± 2* 
48 h 31 ± 2* 12 ± 2* 

Mild or acute diabetes was induced by injection of alloxan (37:5 and 60 mg/kg body weight, 
respectively). Values are means ± SE of 12-22 animals at each time point. * P < 0.005 compared 
with control. (After Vary & Neely, with permission from Am J Physiol [10].) 

functional consequences, especially if those hearts are submitted to ischemia 
or ischemia and reperfusion. 

The demonstration of a reduction in myocardial carnitine levels during 
diabetes naturally led to examining possible mechanisms responsible for it. 
It was found that in each case, i.e. either after 48 h of severe diabetes induced 
by alloxan (60 mg alloxan/kg) as well as after several weeks of mild diabetes 
(37.5 mg alloxan/kg), low tissue levels of carnitine were associated with 
reduced plasma carnitine (both total and free carnitine) (Table 3) [10]. 
Similar changes in the plasma and myocardial levels of carnitine have been 
reported in rats rendered diabetic for 14 days by injection of streptozotocin 
[11]. Thus, a decreased rate of uptake due to lower plasma carnitine may 
contribute to the reduced levels of carnitine seen in diabetic hearts. However, 
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Table 4. Intracellular sodium activity (aiNa) in quiescent papillary muscles from normal and 
diabetic rat hearts. 

Condition 

Control 
Diabetic 

Blood glucose (mM) 

9.52 ± 0.72 
35.74 ± 2.12* 

11.31 ± 0.40 
17.63 ± 0.54* 

Rats were made diabetic by injection of 40 mg/kg streptozotocin and hearts excised three weeks 
later. Samples for blood glucose were collected from control (n = 20) and diabetic (n = 20) 
animals at time of heart excision. Measurements of aiNa were obtained using microelectrodes 
filled with Na + -selective ligand. * P < vs. control. (Reprinted with permission from Exp Physiol 
[13].) 

defects or changes other than decreased plasma carnitine concentration may 
associate in order to account for myocardial carnitine deficiency associated 
with diabetes. Indeed, carnitine transport by cardiac cells has been demon
strated to be dependent on the Na+ electrochemical gradient [12]. Using 
Na + -selective microelectrodes in papillary muscles from hearts of rats with 
streptozotocin-induced diabetes, we have clearly shown that resting intra
cellular sodium activity was about 56% greater than in muscles from normal 
rats (Table 4) [13]. The decrease in transmembrane Na+ gradient associated 
with the higher intracellular sodium activity may then be another contributing 
factor to decreased carnitine uptake by cardiac cells and consequently to 
carnitine deficiency. 

Carnitine metabolism and hyperthyroidy 

The heart is a major target for the thyroid hormones and myocardial metabol
ism is influenced by the hyperthyroid state. Long-chain fatty acid metabolism 
is elevated in hyperthyroid guinea-pig [14] and rat [15] heart, and the activity 
of carnitine acyl transferase I, the rate-limiting enzyme in fatty acid metabol
ism, is enhanced [14]. Studies performed on two different species (i.e. mouse 
[16] and rat [15]) demonstrated a decrease in free carnitine levels associated 
with the hyperthyroid state. On the other hand, it has been reported that 
free carnitine was increased in hyperthyroid guinea-pig heart [14]. This dis
crepancy in free carnitine data may represent a species variation in thyroid
hormone mediated alterations in carnitine metabolism. Alternatively, and 
more likely, it may be related to differences in the thyroid hormone treatment 
(i.e. differences in doses and duration) and/or in the nutrition state at the 
time of measurement. This is illustrated by the results obtained in short
chain acyl-carnitine levels. Short-chain acyl-carnitine levels were found to be 
decreased in hyperthyroid mouse heart [16] whereas they were either in
creased or decreased in the rat heart, depending on the conditions of mea
surement, i.e. in the fed state or after starvation (48 h), respectively [17]. 
Such a discrepancy was also encountered for total myocardial carnitine con-
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tent which was found to be either decreased [18] or unchanged [17]. On the 
other hand, myocardial long-chain acyl-carnitine levels were consistently 
found to be increased in the hyperthyroid guinea-pig [14] and rat heart [17]. 
In the latter study [17] that used thriiodothyronine (T 3)-treated rats, the 
significant increase in long-chain acyl-carnitine was associated, in the fed 
state, with an increase in short-chain acyl-carnitine and with a corresponding 
decrease in the concentration of free carnitine. As a consequence of changes 
in carnitine distribution, the ratio of free to acylated carnitine dramatically 
declined, whereas that of short-chain acyl-carnitine to free carnitine in
creased. In the heart, short-chain acyl-carnitine is predominantly acetylcarni
tine [19]. Since the activity of carnitine acetyltransferase is high in these 
conditions of hyperthyroidism [20], it may be inferred that the acetyl
CoA/CoASH concentration ratio is increased by hyperthyroidism in the fed 
state [17]. The observed pattern of change in the concentration of free 
and acylated carnitine, and the implied change in the acetyl-CoA/CoASH 
concentration ratio, indicate an increased rate of cardiac fatty acid oxidation 
in the fed state in hyperthyroidism. This is, in addition, associated with an 
increased plasma fatty acid concentration in the fed state [17]. In contrast to 
the diabetic situation, the results of this study also suggested that rates of 
cardiac glycolysis remain at least as high in the hyperthyroid as in the euthy
roid state [17]. Concomitant degradation of both fatty acids and glucose at 
high rates is consistent with the known effects of thyroid hormone to increase 
energy demand as a consequence of increased heart work. 

Since lipid metabolic intermediates were shown to influence sarcoplasmic 
reticulum transport in the diabetic myocardium, (see below), the levels of 
carnitine derivatives were also determined in sarcoplasmic reticulum fractions 
isolated from T 3-treated rats [21]. The results showed a strong negative 
correlation between the level of long-chain acyl-carnitine associated with the 
sarcoplasmic reticulum and the calcium transport rate of the organelle, such 
that the T3-treatment led to a reduction in the long-chain acyl-carnitine 
level in the sarcoplasmic reticulum concomitant with an increase in calcium 
transport activity. However, the temporal association of these alterations as 
well as the biochemical mechanism by which a reduction in long-chain acyl
carnitine could contribute to the augmented sarcoplasmic reticulum calcium 
transport rate in the T3-treated rats remain to be determined. 

Effect of L-carnitine treatment on metabolism and cardiac performance 

It has been suggested that carnitine therapy may be beneficial to the diabetic 
heart. Indeed, depressed contractile function associated with diabetes has 
been clearly shown. The defects in contractile performance include, in parti
cular, a depressed velocity of shortening and a delayed onset of relaxation 
observed in the isolated papillary muscle [22], as well as a decreased ability 
to respond to increased filling pressures and increasing afterload in isolated 
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working hearts from diabetic rats [23-25]. Adequate carnitine levels are 
required for normal fatty acid and energy metabolism in heart muscle, and 
changes in its level may affect energy production and thus mechanical perfor
mance. Rodrigues et al. [26] have studied the effects of L-carnitine adminis
tration (3g . kg -1 i. p., daily for 6 wk) in isolated perfused working hearts 
from streptozotocin-induced diabetic rats. They found that exogenous L
carnitine treatment of the diabetic rats increased myocardial free-carnitine 
levels, which were comparable with those of control rats. Moreover, after 
six weeks of diabetes in hearts from treated rats, there was no depression of 
mechanical performance whereas untreated diabetic rats exhibited depressed 
left ventricular developed pressure, cardiac contractility, and ventricular 
relaxation rates. In addition, L-carnitine treatment of diabetic rats signifi
cantly reduced plasma glucose and lipid levels but had no effect on control 
rats. The effects of L-carnitine on blood glucose were consistent with a 
previous observation that acute L-carnitine treatment of diabetic rats for 2 
wk significantly reduced plasma glucose [27]. The ability of L-carnitine to 
lower blood lipids may participate in the improvement of cardiac function 
since the increased reliance of the diabetic heart on fatty acid metabolism 
is partly due to an increase in circulating fatty acids. Nevertheless, other 
possibilities to explain the beneficial effects of L-carnitine have been con
sidered, such as its effects in reducing myocardial levels of long-chain acyl
CoA secondary to a stimulation in fatty acid oxidation. In fact, diabetes, 
which accelerates the rate of lipid metabolism in the heart, results in an 
elevation of the levels of intermediates of fatty acid metabolism as mentioned 
above, including long-chain acyl-CoA and acyl-carnitine [8]. The amphiphilic 
properties of these long-chain acyl-derivatives, especially long-chain acyl
carnitine, may facilitate their incorporation into membranes [28], with conse
quent perturbations in membrane proteins of sarcolemma and subcellular 
membranes, including those involved in transmembrane transport processes. 
For example, it has been reported that levels of long-chain acyl-carnitine are 
elevated in the microsomal sarcoplasmic reticulum preparations derived from 
chronically diabetic rats [29]. The increase in long-chain acyl-carnitine associ
ated with the sarcoplasmic reticulum paralleled the increase in total tissue 
levels of long-chain acyl-carnitine observed previously in diabetic rat hearts 
[8]. Also, this study by Lopaschuk et al. [29] showed that cardiac sarcoplasmic 
reticulum microsomes isolated from chronically diabetic rats had a depressed 
A TP-dependent calcium transport. A further study by the same group [30] 
which determined various parameters of heart function, demonstrated that 
if carnitine treatment (i.e. a high oral dose of D,L-carnitine administered 
for a 42-day period) did not prevent the onset of heart dysfunction in diabetic 
rats, it did, however, prevent the depression in cardiac sarcoplasmic reticu
lum calcium transport from occurring. Furthermore, the accumulation of 
long-chain acyl-carnitine in the sarcoplasmic reticulum membrane of diabetic 
rats was prevented by carnitine treatment [30]. The depression in sarco
plasmic reticulum function probably explains the prolonged duration of the 
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systolic calcium-transient that Lagadic-Gossmann et al. (unpublished) re
cently demonstrated in ventricular myocytes isolated from diabetic rats. This 
is also consistent with the decreased sarcoplasmic reticulum content reported 
in diabetes [31]. 

When intracellular concentration of long-chain acyl-carnitine is high, not 
only may acyl-carnitine redistribute in subcellular membranes such as the 
sarcoplasmic reticulum membrane but it may also, and even preferentially, 
concentrate in myocytes sarcolemma [28]. The resulting alterations in compo
sition of the cardiac sarcolemmal membrane may then affect the function of 
membrane systems as already mentioned. In this respect, the diabetes
induced membrane defects that have been shown include a marked depres
sion in the activity of the amiloride-sensitive Na + -H+ exchange in papillary 
muscles [32] and a decrease in the calcium-independent potassium perme
ability in isolated ventricular myocytes [33]. However, the mechanism of 
these defects is as yet unknown and long-chain acyl-carnitine accumulation 
may only be one contributing factor among others. In addition, neither of 
these defects has yet proved to be corrected by carnitine treatment. 

One possibility that has been proposed for the beneficial effects of L
carnitine is related to its actions in reducing myocardial levels of long-chain 
acyl-CoA and consequently the long-chain acyl-CoA-induced inhibition of 
the mitochondrial adenine nucleotide translocase [34]. Indeed, studies by 
Pieper et al. [35] have shown that addition of L-carnitine to isolated working 
hearts from diabetic rats perfused with fatty acids, attenuated both the 
increase in long-chain acyl-CoA and the loss of ATP observed in these 
particular conditions. Paulson et al. [27] have also suggested that the bene
ficial effects of carnitine were due to its lowering of the myocardial acyl-CoA 
level. 

More recently, the attractive explanation that the beneficial effect of L
carnitine may be mediated by a secondary stimulation of glucose utilization 
has been proposed by Broderick at al. [36]. As mentioned before, the in
creased reliance on fatty acids as an energy substrate is purported to be an 
important contributing factor to the development of biochemical changes 
that occur in the diabetic myocardium [37, 38]. Increasing evidence suggests 
that these detrimental effects of fatty acids are correlated with their ability to 
inhibit overall myocardial glucose utilization. In support of this, interventions 
aimed at overcoming fatty acid inhibition of glucose oxidation are beneficial 
to diabetic rat heart function [39-41]. It is known that the oxidation of 
glucose as a source of A TP production is essentially abolished in uncontrolled 
diabetes [42]. This is due to a marked inhibition of the pyruvate dehydro
genase complex [43]. L-Carnitine supplementation in non-diabetic rat hearts 
has been shown to decrease fatty acid oxidation in parallel with a stimulation 
of glucose oxidation [44]. The effects of L-carnitine on myocardial glucose 
metabolism probably occur secondary to a decrease in the intramitochondrial 
acetyl CoA/CoASH ratio [45], resulting in a stimulation of pyruvate dehydro
genase complex activity [46] and, consequently, in a stimulation of glucose 
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oxidation. In working hearts from diabetic rats, an acute loading perfusion 
with L-carnitine significantly increases free and total myocardial carnitine 
content (by approximately twofold) [36]. Moreover, glucose oxidation rate 
during aerobic perfusion of these hearts loaded with carnitine and perfused 
with a high concentration of fatty acids (i.e. a concentration that can be seen 
in uncontrolled diabetic animals) was dramatically increased, whereas it was 
essentially abolished in untreated diabetic rat hearts. Treatment with L
carnitine also significantly increased glycolytic rates [36] which are depressed 
in diabetic rat hearts compared to control hearts [8]. 

In conclusion, on the basis of the data summarized here, carnitine treat
ment should be beneficial to cardiac muscle in which carnitine deficiency has 
been clearly demonstrated, especially as a consequence of diabetes. Among 
possible mechanisms that may be responsible for the beneficial effects of 
carnitine supplementation, its ability to overcome fatty acid inhibition of 
glucose metabolism is most likely. 

Acknowledgement 

We wish to thank the valuable assistance of Mrs Fran~oise James in manu
script preparation. 

References 

1. Friedman S, Fraenkel G. Reversible enzymatic acetylation of carnitine. Arch Biochem 
Biophys 1955; 59: 491-501. 

2. Fritz lB. The effect of muscle extracts on the oxidation of palmitic acid by liver slices and 
homogenates. Acta Physiol Scand 1955; 34: 367-85. 

3. Bremer J. Carnitine-metabolism and functions. Physiol Rev 1983; 63: 1420-80. 
4. Fritz lB. Carnitine and its role in fatty acid metabolism. Adv Lipid Res 1963; 1: 285-334. 
5. Frenkel RA, McGarry JD. Carnitine biosynthesis, metabolism and functions. New York: 

Academic Press, 1980; 1-356. 
6. Bahl J, Navin T, Manian AA, Bressler R. Carnitine transport in isolated adult rat heart 

myocytes and the effect of 7,8-diOH chlorpromazine. Circ Res 1981; 48: 378-85. 
7. Vary TC, Neely JR. Characterization of carnitine transport in isolated perfused adult rat 

hearts. Am J Physiol 1982; 242: H585-92. 
8. Feuvray D, Idell-Wenger JA, Neely JR. Effects of ischemia on rat myocardial function and 

metabolism in diabetes. Circ Res 1979; 44: 322-9. 
9. Idell-Wenger JA, Grotyohann LW, Neely JR. Coenzyme A and carnitine distribution in 

normal and ischemic hearts. J BioI Chern 1978; 253: 4310-8. 
10. Vary TC, Neely JR. A mechanism for reduced myocardial carnitine levels in diabetic 

animals. Am J Physiol 1982; 243: HI54-8. 
11. Fogle PJ, Bieber LL. Effect of streptozotocin on carnitine and carnitine acyl transferases 

in rat heart, liver, and kidney. Biochem Med 1976; 22: 119-26. 
12. Vary TC, Neely JR. Sodium dependence of carnitine transport in isolated perfused adult 

rat hearts. Am J Physiol 1983; 244: H247-52. 
13. Lagadic-Gossmann D, Feuvray D. Intracellular sodium activity in papillary muscle from 

diabetic rat hearts. Exp Physiol 1991; 76: 147-9. 



Carnitine metabolism during diabetes and hyperthyroidy 207 

14. Bressler R, Wittels B. The effect of thyroxine on lipid and carbohydrate metabolism in the 
heart. J Clin Invest 1966; 45: 1326-33. 

15. Fintel M, Burns AH. Effect of thyroxine treatment on exogenous myocardial lactate oxid
ation. Am J Physiol 1982; 243: H722-8. 

16. Cederblad G, Engstrom G. Effect of thyroxine treatment on carnitine levels in mice. Acta 
Pharmacol Toxico11978; 43: 1-5. 

17. Sugden MC, Holness MJ, Liu YL, Smith DM, Fryer LG, Kruszynska YT. Mechanisms 
regulating cardiac fuel selection in hyperthyroidism. Biochem J 1992; 286: 513-7. 

18. Suzuki M, Tokuyama K, Yamane A. Carnitine metabolism in thyroid hormone treated rats 
and mice. J Nutr Sci Vitaminol 1983; 29: 413-28. 

19. Pearson DJ, Tubbs PK. Carnitine and derivatives in rat tissues. Biochem J 1967; 105: 953-
63. 

20. Tanaka T, Morita H, Koide H, Kawamura K, Takatsu T. Biochemical and morphological 
study of cardiac hypertrophy. Effects of thyroxine on enzyme activities in the rat myocar
dium. Basic Res Cardiol 1985; 80: 165-74. 

21. Black SC, McNeill JH, Katz S. Sarcoplasmic reticulum Ca2+ transport and long chain 
acylcarnitines in hyperthyroidism. Can J Physiol Pharmacol 1988; 66: 159-65. 

22. Fein FS, Kornstein LB, Strobeck JE, Capasso JM, Sonnenblick EH. Altered myocardial 
mechanics in diabetic rats. Circ Res 1980; 47: 922-33. 

23. Penpargkul S, Schaible T, Yipintsoi T, Scheuer J. The effect of diabetes on performance 
and metabolism of rat hearts. Circ Res 1980; 47: 911-21. 

24. Vadlamudi RVSV, Rodgers RL, McNeill JH. The effect of chronic alloxan- and streptozot
ocin-induced diabetes on isolated rat heart performance. Can J Physiol Pharmacol 1982; 
60: 902-11. 

25. Garber DW, Neely JR. Decreased myocardial function and myosin ATPase in hearts from 
diabetic rats. Am J Physiol 1983; 244: H586-91. 

26. Rodrigues B, Xiang H, McNeill JH. Effect of L-carnitine treatment on lipid metabolism 
and cardiac performance in chronically diabetic rats. Diabetes 1988; 37: 1358-64. 

27. Paulson DJ, Schmidt MJ, Traxler JS, Ramacci MT, Shug AL. Improvement of myocardial 
function in diabetic rats after treatment with L-carnitine. Metabolism 1984; 33: 358-63. 

28. Knabb MT, Saffitz JE, Corr PB, Sobel BE. The dependence of electrophysiological derange
ments on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat 
myocytes. Circ Res 1986; 58: 230-40. 

29. Lopaschuk GD, Katz S, McNeill JH. The effect of alloxan- and streptozotocin-induced 
diabetes on calcium transport in rat cardiac sarcoplasmic reticulum. The possible involve
ment of long chain acy\carnitines. Can J Physiol Pharmacol 1983; 61: 439-48. 

30. Lopaschuk GD, Tahiliani AG, Vadlamudi RVSV, Katz S, McNeill JH. Cardiac sarcoplasmic 
reticulum function in insulin- or carnitine-treated diabetic rats. Am J Physiol 1983; 245: 
H969-76. 

31. Bouchard RA, Bose D. Influence of experimental diabetes on sarcoplasmic reticulum 
function in rat ventricular muscle. Am J Physiol1991; 260: H341-54. 

32. Lagadic-Gossmann D, Chesnais JM, Feuvray D. Intracellular pH regulation in papillary 
muscle cells from streptozotocin diabetic rats: an ion-sensitive microelectrode study. Pfliigers 
Arch 1988; 412: 613-7. 

33. Jourdon P, Feuvray D. Calcium and potassium currents in ventricular myocytes isolated 
from diabetic rats. J Physiol (Lond) 1993; 470: 411-29. 

34. Shug AL, Shrago E, Bittar N, Folts JD, Koke JR. Acyl-CoA inhibition of adenine nucleo
tide translocation in ischemic myocardium. Am J Physiol 1975; 228: 689-92. 

35. Pieper GM, Murray WJ, Salhany JM, Wu ST, Eliot RS. Salient effects of L-carnitine on 
adenine-nucleotide loss and coenzyme A acetylation in the diabetic heart perfused with 
excess palmitic acid. A phosphorus-31 NMR and chemical extraction study. Biochim Bi
ophys Acta 1984; 803: 241-9. 

36. Broderick TL, Quinney HA, Lopaschuk GD. Protection of the ischemic diabetic myocar-



208 D. Feuvray 

dium by L-carnitine: effects on glycolysis, glucose oxidation, and functional recovery. 
Diabetes 1994. In press. 

37. Tahiliani AG, McNeill JH. Diabetes-induced abnormalities in the myocardium. Life Sci 
1986; 38: 959-74. 

38. Lopaschuk GD. Alterations in myocardial fatty acid metabolism contribute to ischemic 
injury in the diabetic. Can J Cardiol 1989; 5: 315-20. 

39. Hekimian G, Feuvray D. Reduction of ischemia-induced acyl carnitine accumulation by 
TDGA and its influence on lactate dehydrogenase release in diabetic rat hearts. Diabetes 
1986; 35: 906-10. 

40. Lopaschuk GD, Spafford M. Response of isolated working hearts to fatty acids and carnitine 
palmitoyl transferase I inhibition during reduction of coronary flow in acutely and chronically 
diabetic rats. Circ Res 1989; 65: 378-87. 

41. Nicholl TA, Lopaschuk GD, McNeill JH. Effects of free fatty acids and dichloroacetate on 
isolated working diabetic rat heart. Am J Physiol 1991; 261: H1053-9. 

42. Wall SR, Lopaschuk GD. Glucose oxidation rates in fatty acid-perfused isolated working 
hearts from diabetic rats. Biochim Biophys Acta 1989; 1006: 97-103. 

43. Kerbey AL, Vary TC, Randle PJ. Molecular mechanisms regulating glucose oxidation. 
Basic Res Cardiol 1985; 80(Suppl 2): 93-6. 

44. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxidation in 
the fatty acid perfused isolated working heart. J Bioi Chern 1992; 267: 3758-63. 

45. Lysiak W, Lilly K, DiLisa F, Toth PP, Bieber LL. Quantitation of the effect of L-carnitine 
on the levels of acid-soluble short-chain acyl-CoA and CoASH in rat heart and liver 
mitochondria. J Bioi Chern 1988; 263: 1151-6. 

46. Uziel G, Garavaglia B, Di Donato S. Carnitine stimulation of pyruvate dehydrogenase 
complex (PDHC) in isolated human skeletal muscle mitochondria. Muscle Nerve 1988; 11: 
720-4. 

Corresponding Author: Professor Danielle Feuvray, Laboratoire de Physioiogie Cellulaire, 
Universite Paris XI, Bat. 443, F-9140S Orsay cedex, France 



15. Carnitine and lactate metabolism 

ROBERTO FERRARI and ODOARDO VISIOLI 

"In all studies L-carnitine converted lactate production at peak pacing stress into 
extraction, thus preventing anaerobiosis. In addition, there was an increase in the 
uptake of free fatty acids as well as in that of glucose, confirming the role of L
carnitine as a metabolic modulator, improving not only FFA, but also carbohydrate 
metabolism. " 

Introduction 

The pharmacological activity of L-carnitine presents various aspects. The 
best known function of L-carnitine is the transport of long-chain fatty acids 
from cytosol across the inner mitochondrial membrane into the mitochondrial 
matrix, the site of J3-oxidation [1]. Long-chain acyl-CoA cannot pass through 
the inner mitochondrial membrane, but their metabolic product, acylcarni
tine, formed by the action of carnitine palmitoyltransferase I, an enzyme 
located on the outer surface of the inner mitochondrial membrane, can. 
Another enzyme, carnitine-acylcarnitine translocase exchanges carnitine 
(out) with acyl-carnitine (in) in a stoichiometric ratio of 1:1 and ensures the 
constancy of the intramitochondrial carnitine pool. The incoming acylcarni
tine reacts with CoA. This reaction is catalyzed by the enzyme carnitine 
palmitoyltransferase II, which is attached to the inside of the inner mem
brane. Thus, acyl-CoA is reformed in the mitochondrial matrix, and carnitine 
is made available for exchange by the translocase [2, 3]. 

Another enzyme, carnitine-CoA acetyltransferase, is located at the inner 
surface of the inner mitochondrial membrane. This enzyme might be involved 
in: 1) "buffering" the mitochondrial pool of acetyl-moieties; 2) restoring the 
metabolic flux in the tricarboxylic acid cycle by releasing CoA from its 
thioesters; 3) stimulating the activity of pyruvate dehydrogenase which is 
also controlled by the acetyl-CoA/CoA ratio. 

Thus, carnitine has the following functions [4]: 

1. W. de fong and R. Ferrari (eds): The carnitine system. 209-224. 
© 1995 Kluwer Academic Publishers. 
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• Facilitation of f3-oxidation by transporting activated long-chain fatty acids 
into mitochondria. 

• Enhancement of the metabolic flux in the tricarboxylic acid cycle by sparing 
free CoA. 

• Activation of the transport of adenine nucleotides across the inner mito
chondrial membrane by preventing adenylate translocase inhibition by 
long-chain acyl-CoA. 

• Stimulation of the activity of pyruvate dehydrogenase by decreasing the 
acetyl-CoAiCoA ratio, thus enhancing the oxidative utilization of glucose. 

It follows that besides lipid oxidation L-carnitine also influences glucose 
metabolism. 

We have just mentioned its capacity to (re )activate pyruvate-dehydro
genase with a consequent increase in the flow of pyruvate in the citric acid 
cycle. Accordingly, administration of L-carnitine by various routes gives rise 
to a reduction in blood glucose levels induced by glucose loading [4]. 

L-Carnitine does not modify glycaemia in normal animals, though it re
duces this parameter in animals with streptozotocin-induced diabetes, having 
an effect similar to that of insulin [5]. It is important to note that rats with 
streptozotocin- or alloxane-induced diabetes also have reduced levels of 
carnitine in heart, serum and muscle, and high levels in the liver [6]. 

Correctly, in the 1990s, carnitine was recognized to act as "metabolic 
modulator". This aspect is particularly important within the heart and skel
etal muscles, which are respiring tissues second only to the brain in their 
obligate aerobic needs. The most important substrates for these muscles are 
fatty acids and carbohydrates although amino acids and ketone bodies also 
contribute under certain circumstances. A series of untoward metabolic and 
functional consequences of restricted oxygen delivery to both the heart and 
skeletal muscles has been reported, the production of lactate being one of 
typical metabolic markers of anaerobiosis [7, 8]. Administration of L-carni
tine has been shown to reduce the production of lactate in several experi
mental and clinical conditions such as: sports medicine, peripheral arterial 
disease, acid-base disorders, myocardial ischaemia and heart failure. 

These concepts form the basis of the present chapter. The existing data 
on the role of L-carnitine in reducing lactate production are critically exam
ined to assess its therapeutic potential and to define its mechanism of action. 
For clarity the effects on skeletal and cardiac muscles are kept separate as, 
although similar, the metabolism and function of these tissues show some 
differences. 

Effect of L-carnitine on lactate production from skeletal muscle 

In aerobic metabolism, the rate-limiting step for energy turnover by the 
muscle system is the maximum metabolic flux in the tricarboxylic acid cycle. 
This, in turn depends on three basic factors: 1) concentration of substrates; 
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2) mitochondrial mass and consequently concentration of rate-limiting en
zymes; and 3) availability of oxygen which is related to maximal cardiac 
output and/or maximal local blood flow. 

The flow of substrates or that of acetyl-CoA, the product of their degra
dation in general, is in excess compared to the potential of the tricarboxylic 
acid cycle. Acetyl-CoA supply varies with changes in the overall metabolic 
rate of the muscles. Acetyl-CoA production in the muscle is, in fact, almost 
exclusively lipid-dependent at rest and at moderate work loads. It is, how
ever, up to 85% dependent on carbohydrates at maximal aerobic work rates 
[7]. 

When the muscle exceeds the so-called "anaerobic threshold", it starts 
utilizing energy obtained anaerobically. In this condition reoxidation of 
NADH by transfer of reducing equivalents through the respiratory chain to 
oxygen is prevented and pyruvate is reduced by lactate dehydrogenase to 
lactate, which is then released in the venous system. The reoxidation of 
NADH via lactate formation allows glycolysis to proceed in the absence of 
oxygen by regenerating sufficient NAD+, for another cycle of the reaction 
catalyzed by glyceraldehyde 3-phosphate dehydrogenase. Thus the muscle 
tends to produce lactate, of which the rate of accumulation and release is an 
index of the rate of ATP generation by way of anaerobic glycolysis. In 
practice, 2 mol of ATP is generated per mol of glucose transformed into 
lactate. 

In the course of maximal work load, not only glycolysis is stimulated to 
generate lactate but also lipolysis, as suggested by the increased glycerol and 
glycerol-3-phosphate levels found in human skeletal muscle [9]. Acetyl-CoA 
so generated tends to accumulate in the cytosol and within the mitochon
drion, increasing the acetyl-CoAiCoA ratio and thus inhibiting the oxidative 
utilization of glucose which cannot operate at the rate required by the meta
bolic demand. 

Carnitine, by functioning as an acetyl-group buffer [10-12], offers a 
number of potential advantages to cells functioning at or above their anae
robic threshold [9]: 

• It allows the transport of long-chain fatty acids into the mitochondrion 
preventing "flooding" of the mitochondrial matrix by acetyl-CoA esters 
and further depletion of the free CoA pool. 

• It maintains a viable pool of CoA even when the rate of acetyl-CoA 
formation exceeds that of condensation of the above metabolite with ox
aloacetate. This is essential for assuring the oxidation of a-ketoglutarate to 
succinate within the tricarboxylic acid cycle. Lack of CoA due to excessive 
accumulation of acyl-CoA would lead to a rapid fall in oxaloacetate and 
further accumulation of acetyl-CoA and, thus, to a vicious circle. 

• It constitutes an additional sink for pyruvate. In fact acetylcarnitine is an 
accumulation product of anaerobic metabolism alternative to lactate and 
represents a pathway for increasing the oxygen debt of the muscles. In 
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practice, part of the pyruvate excess, instead of being transformed into 
lactate, can be decarboxylated and stored as acetylcarnitine. 

• It improves the transport of adenine nucleotides across the inner mitochon
drial membrane in conditions of "flooding" of long-chain acyl-CoA at the 
inner mitochondrial membrane level. 

Thus, at least theoretically, L-carnitine in exercise metabolism provides a 
more efficient regulation of the energy flow from the different oxidative 
sources. During maximal work load it is expected to: 

• increase the subject's maximal aerobic power (V02 max); 
• spare glycogen degradation and utilization by enhancing l3-oxidation of 

fatty acids; 
• reduce the size of "lactic acid O2 debt" contracted by the subject; 
• improve an "acetylcarnitine O2 debt" with the advantage of providing the 

subject with a greater working potential during short bursts of supramaxi
mal exercise. 

Equally, carnitine could optimize the oxidative pathway during muscular 
exercise carried out in acute or chronic hypoxic conditions. 

Effect of L-carnitine on lactate production in sports medicine 

The effects of L-carnitine on physical performance have been investigated 
on subjects in varying conditions of physical efficiency, at different dosages 
and for different periods of time [13-34]. For this reason it is difficult to 
draw in equivocal conclusions from the data obtained. 

In general L-carnitine supplementation raises maximal aerobic power, and 
in well-trained individuals there is also evidence of increased V02 max [35, 
36]. This most likely is due to a removal of part of the short-chain acyl-CoA 
by L-carnitine in the muscles heavily involved in exercise with a concurrent 
release of free CoA. The consequent stimulation of pyruvate dehydrogenase 
would enhance the flux in the Krebs cycle. Thus L-carnitine supplementation 
plays a positive role in augmenting the capacity of buffering pyruvate and 
reducing the accumulation of muscle lactate with a limitation of the adverse 
effects of an increased lactate accumulation in the muscle. The effects of L
carnitine on lactate production in athletes, however, are variable, although 
in general a reduction of lactate release has been found [7]. This probably 
is due to the existence of muscles or muscle regions undergoing loads ex
ceeding their maximum aerobic potential, while most of the residual muscle 
mass is still below this threshold. Thus the lactate produced by anaerobic 
muscle is diluted and not easily detected in the venous circulation. The 
crucial experiment would be one in which the balance of the various energy 
sources of a muscle stimulated supramaximally could be established. 

The results of studies carried out the following particular protocols or in 
special situations are also very interesting; Ferretti [23] examined the effects 
of administration of a single dose of L-carnitine in normal respiratory con-
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ditions and in acute or chronic hypoxia: the test consisted in carrying out 
physical exercise immediately after transfer of volunteers to an altitude of 
5,050 meters and subsequently after a month's acclimatisation. Adminis
tration of L-carnitine (2 g per os) induced a reduction in venous lactate and 
an increase in the anaerobic threshold, implying the possibility of improving 
athletic performance during prolonged anaerobic activity; similar conclusions 
were drawn by Wyss et al. [34] in volunteers where high altitude physical 
exercise was simulated by a reduction in O2 from 20.9 to 13.0% obtained by 
the gradual introduction of nitrogen in a closed circuit spirometer. These 
results can be connected to the data of Angelini et al. [13] who demonstrated 
that physical exercise carried out at high altitudes results in a significant 
increase in long- and short-chain acylcarnitine in plasma and urine, in relation 
to intense lipolysis and production of ketone bodies. 

Effect of L-carnitine on lactate production in peripheral arterial disease 

The impact of L-carnitine supplementation on skeletal muscle metabolism 
in patients with obstructive vascular disease is more pronounced than in 
evidently healthy trained or untrained individuals. This could be for two 
reasons: 1) as a consequence of that obstructed peripheral arterial circulation, 
patients with peripheral vascular disease develop ischaemia in their legs; 
and 2) patients with advanced peripheral vascular disease are in a condition 
of relative carnitine insufficiency or even of muscle carnitine deficiency [37]. 
Interestingly, even in patients with Fontaine's stage II, plasma short-chain 
acylcarnitine levels at maximally tolerated walking distance are increased, 
compared with resting values [38]. In these patients there is a statistically 
significant correlation between the concentration of short-chain acylcarnitine 
plasma level at rest and subsequent exercise performance. Therefore, pa
tients who have the lowest walking capacity also have the greatest resting 
concentration of short-chain acylcarnitine. This suggests that the more severe 
the ischaemic heart disease, the greater the amount of carnitine required to 
remove the accumulation of acyl-CoA esters produced by chronic ischaemia. 
Equally, the more severe the disease is, the higher the production of lactate 
[37]. Thus, altered carnitine homeostasis may playa prime role in the patho
physiology of intermittent claudication and of the associated excess lactate 
production [37, 38]. This is strongly supported by the demonstration [39] 
that in claudicant patients, training-induced improvement in walking ability 
does not increase blood flow. The improvement is accompanied by a reduc
tion in resting plasma concentrations of short-chain acylcarnitines and ame
lioration of lactate metabolism. Usually, the positive effects of training are 
attributed to increased blood flow. Hiatt and coworkers [39], however, have 
shown that training may improve walking capacity simply by ameliorating 
carnitine, and, consequently, lactate metabolism. They have also observed 
that, compared to normal subjects, patients with unilateral arterial disease 
of the lower limbs have normal muscle levels of carnitine (gastrocnemic 



214 R. Ferrari and O. Visioli 

muscle biopsy) and lactate in the healthy limb, whilst in the diseased leg 
long-chain acy1carnitine and lactate are significantly higher with a further 
increase during exercise [39]. 

Oral administration of L-carnitine (4 g/die for three weeks in a double
blind cross-over vs placebo study) in 20 patients with peripheral arterial 
disease with intermittent claudication increases the maximum distance 
walked by 75% compared to placebo and reduces the frequency and the 
severity of subjective symptoms such as paresthesia, feelings of cold extremi
ties, asthenia and pain on walking. General and regional haemodynamic 
parameters show no change and the effects must therefore be attributed to 
metabolic changes. A reduction in the increase in lactate production during 
maximum exercise is always reported (from 107 ± 16 to 54 ± 32%) [40,41]. 

Effect of L-carnitine on lactate production in acid-base disorders 

Acid-base derangements are encountered frequently in clinical practice and 
many have life-threatening implications. Treatment is dependent on correctly 
identifying the acid-base disorder, and, whenever possible, repairing the 
underlying causal process. 

The carbonic acid-bicarbonate buffer system plays a central role in acid
base balance because of its prevalence and its relation to physiological regula
tory mechanisms. The hydration of dissolved CO2 forms carbonic acid which 
then dissociates to yield bicarbonate and hydrogen ions. These chemical 
reactions rapidly achieve equilibrium conditions, allowing a simple expression 
of their relationship [42]: [H+] = 24 (paC02/[HC03 -]). 

Thus, the hydrogen ion concentration is a function of the ratio of the 
arterial carbon dioxide tension (paC02 ) to the bicarbonate concentration. It 
follows that changes in hydrogen ion concentration, and, consequently, all 
acid-base disorders, result from changes in one or other of these two vari
ables. 

Acid-base disturbances are classified into four primary disorders: metabolic 
acidosis, metabolic alkalosis, respiratory acidosis and respiratory alkalosis -
and various combinations of these disorders categorised as mixed disturb
ances. 

Three distinct pathological processes work alone or in combination to 
produce metabolic acidosis: 1) loss of bicarbonate; 2) addition of acid (lac
tate); and 3) reduced capacity of the kidney to excrete acid [43]. Lactic 
acidosis in general is due to low cardiac-output states, septic shock and acute 
volume deficts. 

Prompt treatment of low cardiac-output states, repletion of volume deficits, 
correction of shock and administration of antibiotics (in the septic patient) 
should be given the highest priority. The use of vasoconstrictive substances 
should be minimised to avoid aggravation of ischaemia of peripheral tissues. 
Invasive haemodynamic monitoring in an intensive care unit should be em-
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ployed to guide the use of volume replacement, cardiotropic agents and 
pressors [44]. 

Controversy surrounds the use of alkali therapy in the treatment of lactic 
acidosis. Experimental studies in dogs suggest that administering sodium 
bicarbonate may augment the accumulation of lactic acid by stimulating its 
production or interfering with its metabolism by the liver [45]. 

Carnitine has been shown to be effective in normalizing blood levels of 
lactate in dogs with acidosis and ketosis induced by lipid perfusions during 
starvation [46]. In addition, the evidence in humans of an adverse effect of 
alkali therapy in lactic acidosis is not convincing. Sodium bicarbonate should 
be administered for severe, life-threatening lactic acidosis, that is, when the 
pH falls below 7.20 (which usually corresponds to a plasma bicarbonate 
below 10 mM). Certainly, at a pH below this value, the negative inotropic 
and arrhythmogenic effects of acidaemia are substantial, and alkali therapy 
gains time to address the principal disorder. No specific guidelines can be 
given regarding the amount of alkali to be administered because the rate of 
lactate production varies tremendously. As a general rule, however, it is 
desirable to give sufficient alkali to maintain plasma bicarbonate concentra
tion at 15 to 18 mM. Acid-base parameters should be assessed frequently 
and therapy modified accordingly. 

Adjunctive or alternative therapy to sodium bicarbonate in the treatment 
of lactic acidosis with dichloroacetate also has been proposed. While dichlor
acetate augments the oxidation of lactate to acetyl-CoA, and evidence from 
human studies is promising [47], toxicity may be a major drawback to its 
use. Thus, there is the need for other, safer compounds to be used to treat 
lactic acidosis. 

Interestingly Corbucci et al. [48] administered L-carnitine to 80 patients 
with cardiogenic shock in an open study randomized against bicarbonate. L
Carnitine significantly improved survival over bicarbonate. Whilst these re
sults are clearly of interest, particularly considering that mortality in cardio
genic shock is highly correlated to acidosis and to plasma lactate concentra
tion [49], further evidence is needed before the role of L-carnitine as an 
adjuvant to the treatment of cardiogenic shock is defined. 

Effect of L-carnitine on lactate production from the myocardium 

A crude estimate of the type of substrate used by the heart can be achieved 
by the respiratory quotient which is calculated by comparing the rate of 
oxygen uptake with the rate of carbon dioxide production. A respiratory 
quotient near one implies oxidation of glucose and/or lactate, whereas a 
lower value implies fatty acid oxidation. Because the myocardial respiratory 
quotient is frequently low, it is believed that lipids are the major myocardial 
fuel, although there is still some controversy concerning the preferred myo
cardial substrate. In this chapter we will briefly review myocardial glucose 
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metabolism under aerobic and ischaemic conditions as it plays an essential 
role in lactate production. 

Energy from glucose utilization is derived from anaerobic or the Embden
Meyerhof portion of glycolysis, the citric acid cycle, and the respiratory 
chain. The pentose phosphate shunt pathway is of little consequence in heart 
muscle. Glucose utilization is controlled at key steps outside the mitochon
dria, including glucose transport and reactions regulated by hexokinase, 
glycogen synthase, glycogen phosphorylase, fructokinase, and pyruvate kin
ase and dehydrogenase [50-53]. Glycolysis is limited by the rates of disposal 
of glycolytically produced NADH in the cytosol (true for both glucose and 
lactate as substrate) and, at high flux rates, the activity of glyceraldehyde-3-
phosphate dehydrogenase is the first major regulatory restraint [54]. Glucose 
as a sole substrate in experiments in rat hearts fixes the availability of acetyl
CoA, and the citric acid cycle behaves in a "run-down" manner, as reflected 
by reduced levels of acetyl-CoA, citrate, and isocitrate; decreased mitochon
drial NADHlNAD+ ratios; and increased oxaloacetate levels [54]. Oxidative 
phosphorylation is limited by availability of NADH, and anaerobic glycolysis 
provides for only trivial amounts of A TP for myocardial energy needs. 

Increasing plasma glucose concentrations, the presence of NADH in an
oxia, high cardiac work, growth hormone, adrenaline, insuline and uncoup
lers of oxidative phosphorylation all stimulate transport. Conversely, avail
ability of competing substrate and oxidation of fatty acids, ketones, and 
pyruvate all inhibit transport. Glucose-6-phosphate at concentrations that 
inhibit the hexokinase reaction does not inhibit transport. 

The second major step for glucose transport in general is hexokinase
mediated phosphorylation, a rate-limiting step at high transport rates [50-
53, 55]. Although it is accelerated by rising levels of intracellular glucose, 
its rate is strongly inhibited by glucose-6-phosphate as well as ATP, ADP, 
AMP, inorganic phosphate (Pi), oxidation of fatty acids and ketones, star
vation, and diabetes. The reaction is essentially irreversible in heart muscle 
[51] and governed predominantly by two hexokinase isoenzymes bound to 
mitochondria [52]. 

Neely and Morgan [51] considered glucose metabolism (utilization) in 
five steps: glucose uptake (transport and the hexokinase reaction), glycogen 
metabolism (reactions between the formation of glucose-6-phosphate and 
glycogen); glycolysis (glucose-6-phosphate to pyruvate); pyruvate metabol
ism (pyruvate to either lactate, acetyl-CoA, or alanine); and the citric acid 
cycle. In brain, in the absence of glycogen formation, flux rates of glucose 
uptake are tightly linked to those of glycolysis. This is not the case in 
myocardium, in which glycogen formation exists in competition with glycoly
sis. Indeed, most of the glucose extracted by heart muscle is converted to 
glycogen both in fasting and fed states. 

Glucose uptake may be influenced by free fatty acid, lactate and pyruvate. 
Lactate is normally extracted from the aerobic myocardium, and sufficiently 
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high arterial concentrations (4.5 mM) of lactate have been shown in normal 
dog hearts to be preferentially utilized even with respect to both glucose and 
fatty acids [56]. It is well-known that lactate in plasma increases appreciably 
during exercise. Gertz et al. [57] reported in normal subjects during moder
ately intense exercise that myocardial lactate uptake rose more than threefold 
and that all of it underwent oxidative decarboxylation. Glucose oxidation 
increased twofold. 

Pyruvate is a higly competitive substrate that, if utilized preferentially as 
an oxidizable substrate, could also allosterically influence glucose uptake 
and glycolysis. Pyruvate dehydrogenase is the key regulatory enzyme in its 
metabolism and is stimulated by increasing concentrations of pyruvate and 
inhibited by the presence of fatty acy1carnitine derivatives and ketones [58, 
59]. 

Under ischaemic conditions not only is oxygen supply threatened in this 
aerobic organ, but critical washout of inhibitory intermediate products is 
curtailed, impairing overall flux within metabolic pathways. Key steps within 
glucose utilization and glycolytic pathway respond in a disparate fashion, 
with increases occurring in glucose transport and the hexokinase, fructo
kinase, and glycogen phosphorylase reactions and decreases in the glycer
aldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenase. Overall 
rates of glycolysis are determined by the absolute restriction of coronary 
flow. Glyceraldehyde-3-phosphate dehydrogenase, because of its inhibition 
by rising intracellular concentrations of NADH, hydrogen ion, and lactate 
with ischaemia, is considered the chief rate-limiting enzyme in glycolysis. Its 
continued activity is dependent on the washout of these metabolites. 

Thus, at the beginning of ischaemia or under conditions of mild ischaemia 
(ex moderate reduction of coronary flow), lactate production and release 
from the heart into the coronary sinus is abundant. This phenomenon should 
be viewed as a positive, protective mechanism, lactate production contribut
ing to a reduction of intracellular acidosis and providing two molecules of 
ATP produced in the absence of oxygen expenditure. When ischaemia per
sists or becomes more severe, intracellular acidosis inhibits glyceraldehyde-
3-phosphate dehydrogenase and the flux of lactate production is reduced. 
This coincides with a deterioration of the ischaemic condition [60]. 

In the clinic, lactate production can be estimated by measuring the arterial
coronary sinus difference of this metabolite before, during and after an acute 
ischaemic insult. Usually ischaemia is induced by an atrial pacing. Exercise
induced ischaemia is usually carefully avoided as exercise induces production 
of lactate from skeletal muscle. Consequently plasma lactate rises and affects 
lactate uptake from the aerobic zone of the myocardium, thus making the 
interpretation of the overall results difficult. 

Data on lactate production in coronary artery diseased (CAD) patients 
subjected to an atrial pacing are also difficult to interpret as several complica
tions exist with the technique, such as changes in coronary flow, timing of 
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sampling, positioning of the catheter in the coronary sinus, dilution of lactate 
and balance between lactate uptake from aerobic regions and production 
from the ischaemic one. 

In general, however, it is the behaviour of lactate metabolism with a 
positive uptake before ischaemia converted into a net release during pacing 
and then gradually returning to a positive uptake during recovery which 
allows diagnosis of development of anaerobic metabolism [61]. 

A reduction of net uptake release in the same patients after drug treatment 
is considered a beneficial metabolic effect of the treatment. Usually, but not 
necessarily, this is associated with an increase in pacing time to angina and 
with a smaller increase in diastolic left ventricular pressure [62]. 

Effects of L-carnitine on lactate metabolism at rest 

Although L-carnitine has little effect on heart function at rest, it exerts 
important changes on its metabolism. This information, however, is rare, 
mainly because measurements of heart metabolism in man are strictly depen
dent upon invasive methodology, i.e. catheterization of the coronary sinus. 

We had the opportunity to investigate the effects of a central venous 
infusion of L-carnitine (40 mg kg -1) on resting heart metabolism in 25 se
lected CAD patients without previous myocardial infarction and with normal 
myocardial function [63, 64]. Myocardial metabolism was measured in terms 
of arterial-coronary sinus difference, myocardial percentage of extraction 
and myocardial uptake of free fatty acids (FFA), lactate and glucose [65]. 

In our patients there was a linear relationship between myocardial arterial
coronary sinus difference for the different substrates and their availability in 
the arterial blood [63, 64]. As expected, the two major substrates metabolized 
from the heart before administration of L-carnitine were glucose and FF A. 
The oxygen extraction ratio for carbohydrates in the form of glucose and 
lactate accounted for up to 11 % of oxygen consumption and that of FF A for 
about 39%. 

Administration of L-carnitine had several important effects: 

• a significant reduction in arterial concentration of FF A; 
• a significant increase in myocardial uptake of FF A; 
• a reduction in myocardial uptake of glucose; 
• no major changes in myocardial uptake of lactate; 
• no significant increase in the overall oxygen consumption of the heart. 

The reduction of circulating FF A occurred in the absence of major systemic 
haemodynamic changes that could account for an increased utilization of 
these substrates. Thus, this effect appears to be primarily dependent on the 
metabolic and systemic action of L-carnitine. 

The finding that acute administration of L-carnitine increases myocardial 
utilization of FF A at the expense of glucose is also a very important effect 
with clinical relevance, particularly in relation to chronic treatment with L-
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carmtme. Carbohydrates, especially those stored in the form of glycogen, 
represent a pool of emergency substrates utilized anaerobically by the myo
cardium under conditions of acute and severe energy need, like stress, exer
cise or, more relevant to this discussion, during acute ischaemia. The rela
tively high myocardial glucose utilization in CAD patients due to L-carnitine 
deficiency might lead to a depletion of glycogen stores, thus reducing the 
myocardial metabolic defence against attacks of acute ischaemia. Conversely, 
administration of L-carnitine for prolonged periods of time improves FF A 
consumption and reduces myocardial glucose utilization, thus restoring glyco
gen stores. A clear relationship between carnitine concentration and enzyme 
activities representative of different metabolic pathways has been demon
strated in skeletal muscle of healthy volunteers [66]. In particular, a highly 
significant correlation was found between carnitine concentration and muscle 
glycogen content as well as with the overall anaerobic glycolytic activity. We 
are at present investigating whether this correlation is also valid for heart 
muscle. If this turns out to be the case, chronic administration of L-carnitine 
to CAD patients will exert a favourable metabolic preconditioning, restoring 
the natural metabolic defence against ischaemia. It is also relevant to recall 
here that it has been suggested recently that shifting myocardial metabolism 
from lipids to carbohydrates induces cardiac hypertrophy and diastolic dys
function [67]. L-Carnitine acting as a metabolic modulator restores a bal
anced myocadial metabolism and should avoid these negatives events. 

Effects of L-carnitine on myocardial metabolism during induced tachycardia 

Myocardial metabolism under stress conditions has been investigated in con
trolled studies in CAD patients subject to atrial pacing [63, 64, 68, 69]. 

Single intravenous doses of L-carnitine (40 or 140 mg kg -1) or DL-carnitine 
(20 or 40 mg kg -1) decreased production of lactate from the myocardium or 
maintained a positive extraction of the substrate at peak sinus pacing relative 
to that seen in untreated or placebo-treated control groups. Moreover, the 
mean myocardial FFA extraction ratio increased significantly [63,64]. 

In all studies L-carnitine converted lactate production at peak pacing 
stress into extraction, thus preventing anaerobiosis. In addition, there was an 
increase in the uptake of FFA as well as in that of glucose, confirming the 
role of L-carnitine as a metabolic modulator, improving not only FFA, but 
also carbohydrate metabolism. The finding that glucose and lactate uptake 
were maintained confirms the data of Lopaschuk [70] and supports the 
concept that L-carnitine is important in the critical condition of energy need. 
All these alterations are due to the metabolic properties of L-carnitine, since 
the increase in coronary flow induced by atrial pacing was not affected. 

There is no simple explanation for these effects of L-carnitine. During 
ischaemia, the reduced oxygen availability leads to a decrease in mitochon
drial electron transport, which, in turn, causes an accumulation of NADH 
and long-chain acyl-CoA. Increased NADHINAD and acyl-CoA/CoA ratios 
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inhibit the activity of pyruvate dehydrogenase, the enzyme which regulates 
the entry of pyruvate into the citric acid cycle. Under these conditions 
pyruvate is preferentially converted to lactate with consequent lactate pro
duction. 

L-Carnitine can reduce lactate production under ischaemic conditions 
either by activating pyruvate dehydrogenase directly or by provoking a de
crease in the acetyl-CoA/CoA ratio, as a consequence of acetyl removal from 
CoA, mediated by carnitine-CoA acetyltransferase. Therefore, the utilization 
of pyruvate and consequently of lactate in the oxidative pathway, induced by 
L-carnitine, may be attributed to enhanced pyruvate dehydrogenase activity, 
rather than to an increase in oxygen availability induced by L-carnitine. 

Another possible explanation for the effects of L-carnitine on lactate meta
bolism is an indirect effect on fructokinase activity, the enzyme regulating 
the rate of anaerobic glycolysis. The activity of this enzyme is inhibited by 
a high cytosolic ATP concentration, whilst it is stimulated by low cytosolic 
ATP concentrations. Under ischaemic conditions the ATP concentration in 
the cytosol decreases either as a result of reduced oxidative metabolism or 
because the activity of adenine-nucleotide translocase is inhibited by long
chain acyl-CoA. This causes sequestration of A TP into the mitochondrial 
matrix with a decrease of cytosolic A TP and a consequent stimulation of 
fructokinase. By removing long-chain acyl-CoA, carnitine prevents its inhibi
tory action of adenine-nucleotide translocase, thus improving the ATP trans
fer to the cytosolic compartment. The increased cytosolic A TP levels might 
decrease fructokinase activity and lactate production. 

Effects of L-carnitine in patients subjected to heart surgery and with 
cardiogenic shock 

Pre-operative administration of L-carnitine has been attempted to improve 
the metabolic alterations caused by total and global ischaemia imposed on 
CAD patients during aorto-coronary bypass surgery. The rationale of this 
use of carnitine is provided by the favourable results obtained in animal 
models with ischaemia [71-75] and in CAD patients exposed to tests aimed 
to induce ischaemia. Bohles et al. [76] studied 40 patients undergoing aorto
coronary bypass surgery who received either oral L-carnitine (1 g daily in 
three doses, for two days prior to surgery) plus 0.5 g intravenously imme
diately before surgery, or no treatment. The concentration of myocardial 
free carnitine significantly increased, and that of long-chain acylcarnitine 
decreased in patients receiving carnitine therapy. Treated patients showed a 
reduced concentration of lactate in the myocardium correlated with signifi
cantly elevated concentrations of ATP, suggesting that metabolism of long
chain FFA was improved. 

Administration of L-carnitine reduces the increase in plasma lactate con
centration caused by heart surgery [77]. 

The results indicate clearly that L-carnitine reduces the generalized cellular 
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acidosis consequent to heart surgery, probably by reducing the inhibition of 
pyruvate dehydrogenase caused by accumulation of long-chain CoA. 
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16. Therapeutic potential of L-carnitine in patients 
with angina pectoris 

CARL J. PEPINE and MICHAEL A. WELSCH 

"There seems to be strong evidence to suggest that carnitine supplementation (imme
diate and short-term [<30 days]) may be beneficial in patients with ischemic heart 
disease. However, the mechanisms involved in the improved clinical status are pre
sently not clear. There is evidence to suggest that long-term (up to 12 months) 
L-carnitine supplementation in patients with ischemic heart disease may have ben
eficial effects on clinical outcomes. Improvements in symptoms, exercise tolerance as 
well as reductions in mortality have been suggested". 

Introduction 

Coronary artery disease (CAD) is responsible for a large proportion of the 
deaths and disabilities observed in western countries and its costs to the 
health care budgets of these societies are enormous. Typically, CAD exerts 
its deleterious effects through myocardial ischemia which may be sympto
matic (e.g. angina or its equivalents) or asymptomatic. Usually myocardial 
ischemia results due to an increase in myocardial oxygen demand (e.g. 
secondary to increases in physical or emotional activity) with a limited myo
cardial oxygen delivery. Oxygen delivery is limited by an inability to raise 
coronary flow beyond the ceiling imposed by coronary artery atherosclerotic 
obstruction or dynamic constriction. This results in tissue hypoxia and inade
quate energy production (e.g. t [ATPD in the myocardial regions supplied 
by the narrowed coronary artery. Myocardial ischemia leads to a regional 
accumulation of metabolites which are also potentially damaging [1]. The lack 
of A TP and the accumulation of metabolites result in mechanical dysfunction 
manifest by abnormalities in systolic and diastolic function. Thus, in addition 
to the chest pressure or tightness referred to as angina, patients may also 
complain of dyspnea or shortness of breath [2]. 

Inadequate production of A TP impairs regional myocardial function 
through a variety of mechanisms including loss of sodium and potassium 
gradients, calcium accumulation, and activation of phospholipases and pro
teases [1]. Accumulation of metabolites may also impair myocardial function 
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as a result of inhibition of enzyme systems which block oxidative metabolism. 
Of particular importance is the acyl-CoA carnitine transferase (ACCT) sys
tem, which is pivotal in facilitating the transportation of free fatty acids 
(FFA) into mitochondria. A decrease in free carnitine and an increase in 
acyl groups occur in myocardial tissue of animals with experimentally induced 
ischemia [3]. and in the necrotic zone of infarcted myocardium in humans 
at autopsy [4, 5]. These findings suggest that lipid metabolism is altered in 
myocardial ischemia. Since the preferred pathway for energy production in 
the normally perfused heart is oxidation of FF A, an impaired carnitine 
transport system may playa key role in the loss of myocardial function. 

The purpose of this chapter is to review the potential role of L-carnitine 
supplementation on lipid metabolism and the ACCT system in coronary 
artery disease. The specific objectives are to examine both the acute and 
long-term effects of L-carnitine supplementation in patients with angina 
pectoris. 

Lipid metabolism and the myocardium 

Cardiac muscle metabolism is reviewed in detail in several other chapters. 
In brief, cardiac muscle can use a wide variety of substrates for energy 
production; however, under normal coronary flow conditions, oxidation of 
FFA accounts for 60% to 90% of ATP production [6]. Uptake of FFA from 
plasma is concentration dependent [7] and utilization of FF A is dependent 
on many factors. Among these are the relationship between coronary flow 
and myocardial oxygen demand, the action of specific plasma hormones, the 
status of oxidative respiration, and the activity of several enzyme systems, 
including the ACCT system [8]. 

In addition to its role in energy production, FF A are essential components 
of membrane phospholipids, which play an important role in the structural 
integrity of the heart and blood vessels. FFA are involved in the maintenance 
of membrane stability, calcium storage, regulation of enzyme activity, signal 
transduction and propagation, storage and anchoring enzymes and proteins 
in the lipid bilayer of the membrane [8]. 

During episodes of myocardial ischemia striking changes in FF A metabol
ism occur. Beta-oxidation is inhibited when oxygen supply is reduced. During 
prolonged ischemia (>30 min) oxidation of FFA is further inhibited due to 
a loss in free carnitine [9, 10]. which results in a loss of activity in the 
ACCT system [6]. Moreover, there appears to be a "lipid paradox" in the 
myocardium, in the sense that low concentrations of FF A are essential 
for proper functioning of the heart whereas excessive amounts seem to be 
deleterious [8]. Inhibition of fat metabolism, in ischemic myocardium, results 
in accumulation of oxidative intermediates, in particular long-chain acyl-CoA 
esters which impair myocardial metabolic and mechanical function [11, 12]. 
The accumulation of acyl-CoA reduces the availability of intramitochondrial 
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Carnitine Status 
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Cell Death 

Figure 1. Proposed pathways through which carnitine deficiency may effect myocardial function 
in patients with ischemic heart disease. ACCT = Acyl-CoA carnitine transferase system; ANT = 

Adenine nucleotide translocase; PDH = Pyruvate dehydrogenase complex; ADP = Adenosine 
diphosphate; ATP = Adenosine triphosphate. 

free CoA which is a regulatory step in the conversion of a-ketoglutarate to 
succinyl-CoA [13]. The consequence of a reduction of free CoA is a slowing 
of oxidative metabolism. Under these conditions the intramitochondrial ace
tyl-CoA/CoA ratio also increases, which inhibits the activity of the pyruvate 
dehydrogenase (PDH) complex (an enzyme that facilitates oxidative utiliz
ation of pyruvate), and leads to the conversion of pyruvate to lactate (Figure 
1). Long-chain acyl-CoA esters have been proposed to be a precursor to 
sarcolemmal damage and irreversible myocardial cell injury [3, 13-15]. 
Further accumulation of long-chain acyl-CoA esters impairs the activity of 
the adenine nucleotide translocase which mediates the exchange of ATP for 
ADP across the mitochondrial membrane [9, 13, 14]. As a result ATP is 
sequestered in the mitochondria, thereby slowing metabolism, and cytosolic 
[ATP] falls [14, 15]. 

During myocardial ischemia long-chain acylcarnitines also accumulate and 
contribute to a decrease in conduction velocity and cell-to-cell uncoupling 
[16]. The accumulation of long-chain acylcarnitines that occurs in response 
to ischemia has a detergent action, inhibits cell membrane function, and is 
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associated with disturbances in impulse propagation and may lead to lethal 
arrhythmias [16]. 

Thus, during myocardial ischemia there is an overall slowing of mitochon
drial ATP production, a sequestration of ATP in mitochondria, a decrease 
in conduction velocity resulting in cell-to-cell uncoupling, and subsequent 
decline in myocardial function. The declining [ATP] and accumulation of 
long-chain acyl-CoA esters have many adverse influences on myocellular 
function including loss of Na/K gradients, calcium accumulation, activation 
of phospholipases and proteases, and ultimately deterioration of myocardial 
function, structural stability of the membranes and cell death (Figure 1) 
[1]. Although, the precise link between impaired myocardial metabolism, 
mechanical function and angina pectoris is not fully understood, the additive 
effects of tissue hypoxia, reduced oxidative metabolism, and amphophilic 
metabolite (acyl esters) accumulation are thought to playa role. 

Carnitine status in ischemic heart disease 

Carnitine is a naturally occurring compound (f3-hydroxy-y-trimethyl-amino 
butyric acid) found in high concentrations in myocardial and skeletal muscle 
[13]. Carnitine serves several important physiological functions in myocardial 
muscle [17]: 1) facilitation of f3-oxidation by transporting activated long-chain 
acyl-Co A esters into the mitochondria; 2) enhancement of the metabolic flux 
in the citric acid cycle by sparing free CoA, and decreasing the acetyl
CoA/CoA ratio, thereby stimulating the activity of PDH and oxidation of 
glucose; and 3) by preventing inhibition of adenylate translocase by long
chain acyl-CoA, which transports adenine nucleotides (ATP, ADP) across 
the inner mitochondrial membrane. 

Plasma carnitine in patients with ischemic heart disease is often within 
normal ranges or slightly elevated, although esterified carnitine (specifically 
long-chain acylcarnitine) is significantly elevated. The exact relevance of 
plasma (carnitine) and its derivatives to intracellular concentrations and 
function is not known except for patients with congenital defects. Elevated 
levels of plasma carnitine may reflect an impaired uptake or increased efflux 
of carnitine from the ischemic tissue [18]. 

Reduced levels of free carnitine have been observed in myocardial tissue 
of laboratory animals with experimentally induced ischemia [3] and patients 
with heart disease [4, 5; 18-21]. Generally, the reduced (carnitine) reflects 
free carnitine, whereas total myocardial carnitine is often normal due to an 
increase in esterified (bound) carnitine. After 10 to 30 min of ischemia, 
myocardial free carnitine decreases 30 to 50%, whereas acetyl- and long
chain acylcarnitine concentration (esterified) rises [3]. However, during pro
longed ischemia (>30 min) the (total carnitine) decreases as well [3]. Bohles 
et al. [5] found that myocardial (free carnitine) in patients with serious heart 
disease was only 60% of that of patients who had died from causes other 
than heart disease. Spagnoli et al. [4] also found significantly reduced levels 
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of free carnitine in the myocardium of humans who had died following acute 
myocardial infarction. The greatest reduction in myocardial (free carnitine) 
was seen in the necrotic area of the myocardium, with significant reductions 
in the peri-infarctual zone as compared to levels seen in the area of healthy 
tissue [4]. Reduced levels of carnitine have also been observed in the myocar
dium of patients with chronic heart failure [19, 21], dilated cardiomyopathy 
[19] or CAD [20], myocardial ischemia [5] and mitral valve disease [18]. 

In theory a decrease in [carnitine] can only have a role in the loss of 
myocardial function, if reductions in tissue carnitine are related to the Km 
of the ACCT system. In other words are the reduced levels of carnitine 
observed in ischemic myocardium low enough to inhibit the ACCT system? 
Pande [22] showed that maximal oxidation of acyl-CoA in heart mitochondria 
of the rat was achieved at a (carnitine) of 1.5 mM which is similar to normal 
tissue levels (1.0 J-Lmol/g wet weight). Therefore, a 50% reduction in tissue 
carnitine during ischemia would be expected to significantly reduce (3-oxi
dation [22]. In patients with heart failure, myocardial free carnitine was 
significantly lower than for controls, 4.5 vs. 9.7 nmol/g noncollagenous pro
tein, respectively [20]. A significant relationship existed between myocardial 
free carnitine and myocardial function, with a threshold at 6.5 nmol/g per 
noncollagenous protein, below which ejection fractions were markedly de
pressed. 

Despite evidence supporting a reduction in tissue (carnitine) in patients 
with heart disease, more recent research shows that even in the presence of 
normal levels of carnitine a significant elevation of long-chain acy1carnitine 
occurs during ischemic episodes [23, 24]. As previously stated long-chain 
acy1carnitine accumulation contributes to the loss in myocardial function due 
to a loss in various cell membrane functions, and a decrease in conduction 
velocity with subsequent cell-to-cell uncoupling [23]. Prevention of tissue 
accumulation of long-chain acy1carnitines markedly delays the onset and rate 
of electrical cell-to-cell uncoupling [23, 24]. 

The significant relationship between the concentration of carnitine and its 
derivatives and myocardial function and a decrease in (free carnitine) during 
ischemia, forms the rationale to hypothesize that exogenous carnitine supple
mentation may improve myocardial function in patients with ischemic heart 
disease. In addition, therapeutic interventions aimed at minimizing long
chain acy1carnitine accumulation may prevent or delay the functional (electri
cal and mechanical) derangements that occur during ischemia. This improved 
function may subsequently result in greater external activity before being 
limited by ischemia-related symptoms (e.g. angina) and could even impact 
on long-term outcome. 

Proposed mechanism of action of carnitine in ischemic heart disease 

The precise mechanism by which exogenous carnitine exerts its action on 
myocardial metabolism and function in patients with ischemic heart disease 
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is currently not well understood. However, based on the above it is postulated 
that exogenous carnitine restores free carnitine levels in the myocardium, 
acts as a modulator of metabolism and is a scavenger of acyl-esters that 
accumulate during ischemia. A recent study reported that cytosolic carnitine 
accounted for approximately 93% of the total cellular carnitine in the mito
chondria of heart muscle [10]. Following 60 min of ischemia, the [free carni
tine] in the cytosol decreased, whereas [long-chain acylcarnitine] was elevated 
in both the mitochondria and cytosol. Treatment with L-carnitine (30 and 
100 mg/kg IV) significantly inhibited the accumulation of mitochondrial long
chain acylcarnitine levels with a concomitant improvement in metabolism 
[10]. 

Therefore, the therapeutic potential of carnitine supplementation may be 
to reverse the various pathways, described in Figure 1, that result in myocar
dial dysfunction and cell injury or death. The availability of free carnitine 
will stimulate the ACCT system and f3-oxidation, thereby, reducing intra
mitochondrial levels of acyl-CoA and increasing ATP production. The reduc
tion of intramitochondrial acyl-esters will also unblock the adenine nucleotide 
translocase and activate the transport of ADP and ATP across the mitochon
drial membrane [13, 14, 25]. Furthermore, metabolic flux through the citric 
acid cycle will be enhanced and the oxidative utilization of pyruvate increased 
due to an increase in the availability of intramitochondrial free CoA, and a 
reduction in the acetyl-CoAiCoA ratio [13, 14,25]. 

An increase in the oxidative utilization of pyruvate may be of particular 
importance in maintaining [ATP] during periods of ischemia. Recent data 
indicate that the choice of substrate may influence cardiac muscle efficiency 
during low coronary blood flow [23]. In experimental models myocardial 
function and high-energy phosphates fall to a greater extent during low-flow 
states when the heart is infused with a solution containing only FF A. These 
findings suggest that the myocardium is more efficient in its utilization of O2 

under low-flow conditions when glucose is metabolized compared with FF A. 
Fatty acid metabolism yields less A TP per mole of O2 consumed than glucose 
metabolism (Table 1), so with equivalent O2 delivery and consumption more 
ATP will be generated. Although, in vivo lipid and glucose metabolism 
cannot be separated (they are interrelated), glucose must provide the frame
work by which acetyl-CoA, derived from f3-oxidation, is metabolized in the 
citric acid cycle. Thus, treatments which facilitate both lipid and glucose 
metabolism will yield more energy for cardiac work during periods of low 
flow (Table 2). Since carnitine indirectly preserves or stimulates PDH activity 
(by maintaining a low acetyl-CoAiCoA ratio) more glucose is available for 
metabolism. In support of this hypothesis other compounds (e.g. dichloro
acetate) that activate PDH have shown to be beneficial in ischemia [26, 27]. 
Clinically this could be translated to more external activity before ischemia
related, activity-limiting symptoms (angina, shortness of breath) occur. 
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Table 1. Fatty acid metabolism yields less ATP per oxygen consumed than glucose metabolism. 

Complete metabolism 
C6H1z02 + 802 ~ 6C02 + 6H20 
Yield = 44 ATP 

Fuel efficiency 
ATP/02 = 44 ATP/802 = 5.5 ATP/02 

Oxygen demand to generate equivalent energy 
44 ATP/5.5 ATP/02 = 802 

OH 0 
I II 

HOCH2-CH-CH-CH-CH-CH 
I I I 
OH OH OH 

C6H120 6 + 602 ~ 6C02 + 6H20 
Yield = 38 ATP 

ATP/02 = 38 ATP/602 = 6.3 ATP/02 

44 ATP/6.3 ATP/02 = 702 

Table 2. Carnitine, a novel mechanism of action in ischemia. 

Preservation of lipid metabolism and lack of inhibition of glucose oxidation 

· Improved energy production at equivalent oxygen delivery 
· Potential generation of equivalent energy at lower oxygen demand without depression of blood 

pressure, heart rate or cardiac function 
· Prevention or reduction of ischemia in cardiac or skeletal muscle 
· Prolongation of exercise times in patients with angina or intermittent claudication 

Immediate and short-term «30 days) effects of carnitine supplementation in 
patients with ischemic heart disease 

Several studies have evaluated the immediate effects of carnitine on cardio
dynamics in patients with ischemic heart disease (Table 3). In single-dose 
intravenous (IV) studies both L-carnitine and propionyl-L-carnitine are con
sistently associated with a favorable effect on cardiac function. However the 
magnitude of the response depends on such factors as: Type (L-carnitine, 
DL-carnitine or propionyl-L-carnitine), form (IV or oral) and dose of carni
tine administered, infusion time, type and severity of disease, and methods 
used to stress and evaluate the heart. 

Studies using pacing-induced tachycardia stress in patients with angina 
report a greater tolerance of tachycardia as well as significant increases in 
maximum heart rate (HR max) and rate-pressure product (RPP) after IV 
administration of either 20 or 40 mg/kg of DL-carnitine or L-carnitine [28, 
29], or bolus infusion of 140 mg/kg of L-carnitine [30]. Left ventricular end 
diastolic pressure and magnitude of ST-segment depression during tachycar
dia were also reduced in carnitine-treated patients. Further evidence suggests 
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improvement in myocardial metabolism as indicated by decreased production 
or increased extraction of lactate, and increased uptake of FFA from arterial 
blood [28, 29]. 

Carnitine infusion prior to exercise stress is associated with improvements 
in exercise tolerance in patients with angina. Koso1charoen et al. [31] used 
a 40 mg/kg infusate of DL-carnitine 30 min prior to a maximal exercise bout. 
Carnitine administration resulted in lower submaximal exercise heart rates 
and RPP, significantly less ST segment depression during exercise and re
covery, and increased exercise time prior to the onset of angina [31]. 

More recent studies also report the beneficial effects of carnitine infusion 
in patients with CAD [36-38]. During resting conditions, IV infusions of 
propionyl-L-carnitine (15 mg/kg over 5 min) did not appear to affect coronary 
hemodynamics, but lactate uptake increased and myocardial contractility, 
relaxation and cardiac output improved significantly [38]. Fujiwara et al. [36] 
further assessed the protective effect of L-carnitine infusion in 30 patients 
with angina and ischemic changes as determined by electrocardiography 
(ECG) during exercise. Prior to exercise, 60 mg/kg of L-carnitine or placebo 
was infused over a period of 30 min. The effect of carnitine on resting 
cardiodynamics was minimal. During exercise subjects receiving carnitine 
had significantly higher coronary blood flow, arterio-venous oxygen differ
ence and myocardial oxygen consumption (MV02) in comparison to un
treated patients [36]. In addition, whereas determinants of myocardial func
tion (MV02/left ventricular work index) decreased with exercise in the 
controls, they were unaffected in subjects receiving carnitine. 

When carnitine is administered to patients with ischemic heart disease, 
for up to 30 days (1,500 to 6,000 mg/day, oral), exercise capacity, time to 
exhaustion, maximal workload, and time to onset of ischemia and angina all 
increase [32-35, 39], while the degree of ST segment depression (during 
submaximal exercise), premature ventricular contractions and episodes of 
angina pectoris decrease [32-35, 39, 40]. Typically, the magnitude of change 
for exercise time and workload ranges from 5 to 10% increase. Results from 
a short-term controlled study in patients with stable angina reports that 23% 
of patients were free of angina following 4 weeks of treatment with L
carnitine (2,000 mg/day) [33]. 

Few studies have evaluated myocardial mechanical function following 
short-term carnitine supplementation. Canale and co-workers [34] used 
M-mode echo cardiography to evaluate myocardial function and noted im
provements in a number of ventricular function parameters in patients with 
exercise-induced angina after only 30 days of treatment with 2,000 mg/day 
of L-carnitine. 

Thus, there seems to be strong evidence to suggest that carnitine supple
mentation (immediate and short-term [<30 days]) may be beneficial in pa
tients with ischemic heart disease. However, the mechanisms involved in the 
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improved clinical status are presently not clear. Future studies designed to 
further identify the possible mechanisms involved as well as determine the 
optimal dosing strategies are needed. 

Long-term effect of carnitine therapy in patients with ischemic heart disease 

Eight clinical trials have evaluated the effect of prolonged carnitine therapy 
(>30 days) in patients with CAD (Table 4) [40-47]. Results from such 
trials are consistent with the findings from short-term studies. Preliminary 
controlled studies, using small sample sizes, indicate a reduction in electrocar
diographic manifestations of ischemia, an increase in maximal workload and 
total exercise time, an increase in the time to the onset of ischemia, and a 
decrease in anginal episodes [40, 41, 43]. L-carnitine (900 to 2,000 mg/day, 
oral) administered in combination with 40 mglday of isosorbide dinitrate 
significantly decreased the frequency of angina attacks (95%) and consump
tion of nitroglycerin (96%) after 8 weeks of treatment [40]. Kawikawa et al. 
[41] administered L-carnitine (900 mglday, oral) for 12 weeks in patients with 
stable effort angina and reported significant increases in maximal exercise 
time (from 11.4 to 12.8 min) and exercise time to 1 mm ST segment depres
sion (from 6.4 to 8.8 min). In both studies, the greatest improvement was 
seen within the first 2 to 4 weeks of therapy. 

In a large multicenter study conducted over a period of 12 months L
carnitine supplementation (2,000 mglday, oral) resulted in significant im
provements in clinical status in more than 1000 patients with stable angina 
pectoris [42]. The frequency of angina episodes decreased by 60%, approxi
mately 70% of patients discontinued use of nitroglycerin, and about one
third reduced consumption of other cardioactive drugs (nifedipine, f3-block
ers) [42]. Again, the greatest improvement in symptoms was noted in the 
first 6 months of the study, with only minor additional improvements at 12 
months. 

Cacciatore et al. [44] reported improvements similar to Fernandez et al. 
[45], following 6 months of L-carnitine supplementation (2,000 mg/day, oral) 
in 200 patients with exercise-induced angina. In addition, they noted a de
crease in premature ventricular contractions, a decrease in consumption of 
cardioactive drugs and an improved lipid profile. Recent clinical trials invol
ving different dosages, patient populations and durations of therapy, continue 
to support the above-mentioned findings [45-47]. Perhaps the most encoura
ging result concerning the pharmacologic effect of L-carnitine comes from 
Davini et al. [47]. In this study, 160 patients who were post-myocardial 
infarction were randomized to standard care or standard care plus L-carnitine 
(4,000 mglday, oral). Following 12 months of treatment, mortality was sig-
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nificantly lower in the carnitine treated patients (1.2%) versus those receiving 
standard care (12.5%). 

In conclusion, there is evidence to suggest that long-term (up to 12 months) 
L-carnitine supplementation in patients with ischemic heart disease may have 
beneficial effects on clinical outcomes. Improvements in symptoms, exercise 
tolerance as well as reductions in mortality have been suggested. Clearly 
larger and longer controlled clinical trials are needed before definitive con
clusions can be made. Since the greatest gains in clinical status are typically 
noted during the first few months of L-carnitine therapy, future trials should 
evaluate the need to continue to prescribe L-carnitine at high doses 
(>2,000 mg/day), or if supplementation using a lower dose is sufficient in 
maintaining the improved clinical status. In addition, long-term clinical trials 
(> 12 months) should further assess the role of L-carnitine supplementation 
on cardiac function and adverse outcomes (e.g. death, myocardial infarction 
and need for hospitalization) in patients with ischemic heart disease. 

Effect of carnitine on skeletal muscle function in patients ischemic 
heart disease 

There is increasing evidence that skeletal muscle undergoes considerable 
remodeling in patients with chronic and severe cardiovascular disease [48-
54]. Particularly, in patients with chronic heart failure due to CAD, a reduc
tion in oxidative capacity is due to ultrastructural abnormalities, a marked 
decline in mitochondrial volume and density [53, 54), and a decrease in 
skeletal muscle enzyme concentration and activity ([succinate dehydrogen
ase], [citrate synthetase), [cytochrome oxidase] and [{3-hydroxyacyl-CoA de
hydrogenase)) [49-51, 53, 54]. Histological changes include significant skel
etal muscle atrophy with a pronounced decline in Type I muscle fibers [50, 
51, 53, 54), whereas an accumulation of intracellular lipids has also been 
reported. Furthermore, reduced [free carnitine] have been observed in skel
etal muscle of patients with heart disease [48-50), and peripheral vascular 
disease [52]. 

The mechanisms responsible for alterations in skeletal muscle metabolism 
in these patients are presently not completely understood. However, in 
patients with chronic heart failure, a number of mechanisms is involved in 
limiting blood flow to exercising muscle and contributes to the reduced 
exercise tolerance and capacity. These factors include: neurohumoral com
pensation (increased sympathetic nervous activity and activation of renin
angiotensin-aldosterone), alterations in vascular vasodilatory capacity (vascu
lar stiffness and structural vascular changes), and chronic deconditioning 
[55]. Chronic deconditioning may be a key factor in the alterations in skeletal 
muscle metabolism of patients with heart disease, because many of the 
observed changes mimic those of detraining, and exercise training can im
prove exercise capacity and tolerance [56-58]. 
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Table 5. How carnitine may modulate cardiac metabolism in patients with angina. 

Summary: 

• Prevents inhibition of glucose metabolism 
• Preserves fatty acid metabolism 
• Removes toxic long-chain fatty acid metabolites 

However, a decrease in carnitine status must now also be considered as a 
possible factor in the impaired skeletal muscle oxidative metabolism. If a 
deficiency in skeletal muscle carnitine exists, it would follow that this could 
have a similar detrimental impact on oxidative metabolism and ATP produc
tion as observed in the myocardium. Furthermore, during submaximal exer
cise (55% of V02 max) there may be a progressive increase in short- and 
long-chain acylcarnitines in skeletal muscle that could subsequently lead to 
a secondary depletion of free muscle carnitine and further impair oxidative 
metabolism [59]. 

Preliminary data [60] suggests that skeletal muscle carnitine deficiency in 
patients with chronic heart failure may, indeed, be significant and exogenous 
carnitine (propionyl-L-carnitine) may improve skeletal muscle metabolism 
by increasing the flux of pyruvate into the Krebs cycle and decreasing the 
production of lactate. 

Thus, it may be hypothesized that the action of L-carnitine in patients 
with ischemic heart disease may both have a central (myocardial function) 
and peripheral (skeletal muscle) component. Perhaps an improvement in 
oxidative metabolism of skeletal muscle may indirectly improve cardiac func
tion as a result of a lower myocardial oxygen demand at submaximal exercise 
workloads. If so, such a "dual" mechanism of action may well contribute to 
the improved functional status of the patient. Since exercise training increases 
skeletal muscle oxidative capacity in patients with heart disease [56-58], 
future studies should address the question whether exercise training alone 
can improve the carnitine status in patients with heart disease or if L-carnitine 
supplementation can further augment the exercise training response. 

Conclusions 

A reduction in myocardial free carnitine could partially explain the rise in 
long-chain acyl CoA esters found in the ischemic heart. Reductions in free 
carnitine have been observed in myocardial tissue of laboratory animals 
with experimentally induced ischemia and patients with heart disease. Thus, 
exogenous carnitine supplementation could be a rational approach to im
prove cardiovascular function in patients with ischemic heart disease (Table 
5). 

There is increasing evidence that immediate, short- and long-term 
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L-carnitine supplementation in patients with ischemic heart disease may be 
beneficial and has the potential to result in significant improvement in exer
cise tolerance and capacity, as well as reductions in angina, use of cardioac
tive drugs, electrocardiographic manifestations of ischemia, dysrhythmias 
and perhaps even mortality. 

L-carnitine may also have therapeutic potential in skeletal muscle, since 
there is evidence for muscle carnitine deficiency in patients with chronic 
heart failure. This potential "dual" effect on cardiac as well as skeletal 
muscle energetics could make carnitine an attractive alternative in the man
agement of patient with ischemic heart disease. 

Thus, further clinical evaluation of the therapeutic potential of L-carnitine 
in patients with CAD is warranted. Future studies should aim to identify 
how myocardial and skeletal muscle function is affected by carnitine supple
mentation and determine the optimal dosing strategies and assess effects on 
adverse outcomes. 
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17. Carnitine and myocardial infarction 

PAOLO RIZZON, MATTEO DI BlASE, GIUSEPPINA BlASCO 
and MARIA VITTORIA PITZALIS 

"These data suggest that L-carnitine reduces the extent of the necrotic area during 
acute myocardial infarction; this effect seems linked to an improvement of mitochon
drial function in ischemic cells not yet irreversibly affected." 

Introduction 

Experimental studies have demonstrated that some drugs can interact with 
the myocardial metabolism deranged by prolonged ischemia, particularly at 
the level of the stunned and hibernating cells. On the basis of these obser
vations the possibility of performing a "metabolic intervention" for the treat
ment of acute and chronic myocardial infarction was suggested. 

A drug which interacts with the cardiac metabolism is L-carnitine, a water 
soluble amino acid which plays an important role in fatty acid metabolism. 
This compound is extracted from the blood by the myocardium [1]. 

In this review the data available on a therapeutic action of L-carnitine 
administered to patients during the acute phase of myocardial infarction and 
in the post-infarction period are reported. 

Loss of carnitine during acute ischemia 

A loss of free carnitine from the myocardium during acute ischemia, which 
creates a secondary deficiency of this compound, has been observed in experi
mental studies and in humans. Shug et al. [2] demonstrated a loss of free 
carnitine of between 20% and 60% in perfused anoxic rat hearts while Suzuki 
et al. [3] observed a loss of 40% of tissue carnitine in dog hearts after 25 
min ligation of the descending coronary artery. This secondary deficit of 
carnitine has also been observed in humans. Spagnoli et al. [4] observed a 
carnitine deficiency in infarcted areas at necroscopy. The same phenomenon 
has been observed by Bartels & Remme [5] by evaluating carnitine concentra-

l. W. de long and R. Ferrari (eds): The carnitine system. 245-249. 
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tions in the coronary sinus blood of ischemic patients submitted to atrial 
pacing. Rizzon et al. [6] showed a progressive increase in serum free carnitine 
concentrations during acute myocardial infarction in a group of 28 patients, 
reaching a statistically significant difference when compared to a control 
group, after 16 h from the onset of symptoms with a peak concentration of 
55 ± 17 f.LM (control 38 ± 13 f.LM) after 26 h. In the same group of patients 
the loss of carnitine was also confirmed by the abnormal increase in urinary 
excretion of free carnitine to 547 ± 631 f.LM (control group 126 ± 51 f.LM). 
From these data it becomes evident that during acute ischemia there is a loss 
of carnitine creating a secondary deficit of this compound. 

The role of carnitine supplement during myocardial ischemia and infarction 

Metabolic effects 
During acute myocardial ischemia the rate of B-oxidation is reduced, leading 
to a decrease in the levels of acetyl-CoA and an increase in acyl-CoA. 
Free carnitine reacts with acyl-CoA resulting in an increase in long-chain 
acylcarnitine. The role of free carnitine, consisting primarily in the transport 
of long-chain fatty acids from the cytoplasm to the mitochondrion, is strongly 
depressed due to reduced availability of the compound, firstly because of the 
formation of acylcarnitine esters and secondly because of the loss of free 
carnitine from the cells. 

In experimental studies the supplement of free carnitine during ischemia 
and anoxia gives rise to different changes: increased carnitine levels in in
farcted and non-infarcted areas [3, 7]; decreased levels of long-chain acyl
CoA and long-chain acylcarnitine in ischemic and infarcted areas [2, 3, 7]; 
increase in ATP levels in infarcted areas [7]. It seems that the supplement 
of free carnitine enters the cells and exerts two main activities: 1) it improves 
the production of A TP by restoring fatty acid transport into the mitochond
rion [3-7]; 2) it reduces the concentration of acyl-esters by transporting them 
outside the cells [3-7]. 

Based on these hypotheses, in 1988 Rizzon et al. [6] carried out a double
blind parallel and placebo controlled study in 56 patients with acute myocar
dial infarction admitted to the coronary care unit between 3 and 12 h from 
the onset of pain. Allocation of treatment was random after stratification 
based on the time from pain onset and infarction site. The treated group 
received intravenous L-carnitine at a dose of 100 mg/kg body weight every 
12h for 36 h. 

In this group of patients a significant increase (p < 0.01) in serum and urine 
levels of short- and long-chain acylcarnitine esters was observed compared to 
the control group. This increase resulted from esterification of supplemented 
carnitine with acyl-CoA to form acylcarnitine and allowed the release of acyl 
compound into the blood and consequently into the urine. By this mechanism 
carnitine prevents negative effects of excessive acyl compounds and exerts a 
detoxifying effect. 
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Antiarrhythmic effects 
Experimental studies have shown that an increased concentration of free 
fatty acids evokes arrhythmias, in particular a reduction of the ventricular 
fibrillation threshold, ventricular arrhythmias and conduction disturbances. 
Many mechanisms have been suggested to explain this phenomenon. One is 
a decreased mitochondrial Ca2 + binding activity which increases the intra
cellular Ca2 + concentrations [8]. Another is that fatty acids shorten the action 
potential duration during ischemia and interfere with glycolytically-derived 
ATP in the cytoplasm [9]. A further proposed mechanism is a biotoxic 
detergent effect on membranes enhanced by a high molar ratio of acid/albu
min which leads to a cation loss [10]. 

Oliver et al. [11] reported that, in humans, high plasma levels of free 
fatty acids could be a predictive index of the vulnerability of patients with 
myocardial infarction to lethal arrhythmias. In the aforementioned study 
Rizzon et al. demonstrated some antiarrhythmic effects of L-carnitine during 
the acute phase of myocardial infarction [6]. In the treated group, during 
the second day of treatment there was a statistically significant reduction in: 

• the mean number of premature ventricular beats per hour; 
• hours with multiform premature ventricular beats; 
• hours with couplets; 
• hours with non-sustained ventricular tachycardias; and 
• the total number of non-sustained ventricular tachycardias. 

A statistically significant increase in patients with less than 10 premature 
ventricular beats per hour was observed. 

Similar results, which confirm an antiarrhythmic effect of L-carnitine in 
man, were obtained by Martina et al. [12] in 12 patients with acute myocardial 
infarction treated with intravenous L-carnitine. 

These effects could be explained by the detoxification effect of exogenous 
carnitine in ischemic myocardium exerted by removing excess fatty acids 
from the cells and transporting them into the blood and the urine. 

Effects on necrotic area size 
Experimental studies have shown that supplements of carnitine can reduce 
ST-segment elevation during ischemia. Two clinical studies, by Rebuzzi et 
al. [13] and Chiariello et al. [14], have been performed to evaluate the effects 
of L-carnitine in reducing the extent of the necrotic area. 

Rebuzzi et al. [13], using creatine kinase (CK) and creatine kinase MB 
(MB-CK) plasma level measurements, showed a significantly reduced release 
in MB-CK and a minor CK maximum value, compared to placebo, in 12 
patients with acute myocardial infarction treated with 40 mg/kg/die L-carni
tine. 

Chiariello et al. [14], using an electrocardiographic method to evaluate 
the extension of myocardial infarction, evaluated 177 patients with acute 
myocardial infarction treated with L-carnitine 9 g/die for 2 days. Compared 
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to placebo, the treated group showed a statistically significant reduction in 
the decline of R-wave which was 26% less if the measurement was performed 
only in patients with acute anterior myocardial infarction. 

These data suggest that L-carnitine reduces the extent of the necrotic area 
during acute myocardial infarction; this effect seems linked to an improve
ment of mitochondrial function in ischemic cells not yet irreversibly affected. 

Effects on myocardial contractility 
In experimental studies Neely et al. [15] and Liedtke & Nellis [16] observed 
that the administration of carnitine to ischemic hearts with excess free fatty 
acids induced several hemodynamic improvements compared to the un
treated groups. In particular, left ventricular pressure (+25%), mean aortic 
pressure (+44%), left ventricular max dp/dt (+45%), regional left ventricular 
shortening (+24%) and left ventricular work (+72%) were increased at 
comparable levels of myocardial oxygen consumption. 

On the basis of these data it has been suggested that carnitine could exert 
a positive effect on myocardial contractility in patients with acute myocardial 
infarction. 

In an attempt to address this question the CEDIM study was undertaken 
[17, 18]. This is a double-blind, controlled, multicenter clinical trial, per
formed by 36 Italian universities and community hospital centers to assess 
the effect of L-carnitine on left ventricular function (left ventricular volumes 
and ejection fraction) after acute myocardial infarction. This study, begun 
in 1991, enrolled approximately five hundred patients with acute myocardial 
infarction of the anterior wall, with a follow-up period of one year. Patient 
enrollment criteria consisted in technically adequate two-dimensional echo
cardiographic imaging with randomized treatment with L-carnitine (9 g iv. 
for 5 days and 6 g o.s. during the following year) or placebo. Echocardio
graphic assessment was performed at admission (3 ± 1 h after symptom 
onset) at discharge «10 days from admission) and at 3, 6, 9 and 12 months 
after myocardial infarction. The results of this study are available in 1995. 
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18. Cardiac electrophysiology of 
propionyl-L-carnitine 
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"It could be hypothesized that action potential duration prolongation, which we have 
demonstrated to occur in papillary muscles isolated from the heart of rabbits treated 
for ten days with propionyl-L-carnitine (and which might be due to a reduction in 
transient outward potassium current), is somehow related to the observed improve
ment in the contractile properties of the intact myocardium." 

Introduction 

Propionyl-L-carnitine (PLC) is a carnitine derivative which has been reported 
to exert relevant cardiovascular effects. Results from several animal studies 
seem to indicate that PLC may directly influence the myocardium, thus 
improving its performance [1, 2]. The aim of this article is to review the 
cellular electrophysiological effects provoked by PLC. 

There are basically two kinds of studies in the literature: in the first kind, 
cardiac preparations, from which intracellular action potentials are recorded, 
are exposed to increasing concentrations of PLC. We will call these "acute" 
experiments. In a different kind of approach, experimental animals are 
treated for several days with PLC; after sacrifice, the papillary muscles are 
isolated and an electrophysiological study is performed. We will refer to 
these experiments as "chronic". 

Acute experiments 

Acute experiments have been carried out in guinea-pig papillary muscles [3-
5], dog [6] and sheep [7] Purkinje fibers. In these studies normal physiological 
conditions as well as conditions aimed at mimicking pathological situations 
(such as hypoxia, high [K+]o, low pH) or abnormal electrophysiological 
mechanisms (slow responses, delayed afterdepolarizations) have been used. 
This was done in an effort to explain the protective effect of PLC during 
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ischemia-reperfusion which results in better recovery of cardiac output [8] 
and in an antiarrhythmic effect [9]. 

In ischemia there is an increase in extracellular K+ concentrations [10] 
and the decrease in pH is unavoidable. PLC has practically no electrophysio
logic effects under any of these different experimental conditions (low pH, 
high [K+]o, hypoxia). An increase in action potential duration at 90% of full 
repolarization is observed in both normal and pathological conditions at a 
10 mM PLC. This high concentration is also able to lengthen the action 
potential duration recorded from dog Purkinje fibers exposed to a p02 of 
less than 40 mmHg as well as the duration of the slow response action 
potentials induced by high K+ [6]. However, this concentration does not 
seem to be pharmacologically relevant. Thirty mM PLC causes, in fact, a 
clear-cut toxic effect: the action potential progressively deteriorates and the 
preparations become unexcitable. 

The antiarrhythmic effect of PLC has been described in those arrhythmias 
associated with reoxygenation of the hypoxic myocardium [7, 9]. An anti
arrhythmic effect is observed for concentrations as low as 1-10 /-LM. Since 
reoxygenation and reperfusion arrhythmias have often been associated with 
the occurrence of delayed afterdepolarizations, it was reasoned that even if 
PLC does not affect action potentials either in normal or in hypoxic con
ditions, it could affect an arrhythmogenic mechanism, such as the delayed 
afterdepolarizations (DADs) and result in an antiarrhythmic effect. 

DADs can be induced by several interventions [11-13]; digitalis intoxi
cation is certainly one of the most studied [11, 14, 15]. PLC at the concentra
tion which exerts an antiarrhythmic effect on reoxygenation arrhythmias does 
not affect the action potential profile (as expected) nor the amplitude of 
DADs. The left panel of Figure 1 (upper traces) shows the last driven action 
potentials recorded from a Purkinje fiber intoxicated with strophanthidin. At 
the interruption of the stimulation a clear-cut delayed afterdepolarization 
superimposed on the diastolic depolarization and associated with an aftercon
traction (bottom trace) develops. 

PLC (10 /-LM) (middle and right panel) does not affect either DAD ampli
tude (which actually becomes bigger due to the progressive intoxication of 
the fiber) or contractile activity (bottom traces). It is concluded that appreci
able and direct electrophysiological effects are not involved in the anti
arrhythmic effect of PLC. However, it must be noted that the antiarrhythmic 
effect of PLC was apparent only on the late arrhythmias, i.e. those occurring 
during the 10th min of reperfusion. This behavior is completely different 
from that of other antiarrhythmic drugs, such as mexiletine, which promptly 
abolish reoxygenation or reperfusion arrhythmias [11, 14]. The antiarrhyth
mic effect of PLC is associated (and possibly due) to protective action on 
the hypoxic and reoxygenated myocardium: the release of creatine kinase 
(CK) and lactic dehydrogenase (LDH) is significantly reduced and the rise 
of diastolic left ventricular pressure prevented. The effect appears to be 
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Figure 1. Effect of 10 fLM propionyl-L-carnitine (PLC) on strophanthidin-induced delayed after
depolarizations. Each panel shows the electrical (upper traces) and mechanical (lower traces) 
activity recorded from a sheep Purkinje fiber during and after the interruption of stimulation, 
in control conditions (left) and 3 (middle) and 6 min (right panel) after PLC addition. Driving 
rate: 2 Hz. 

specific since neither L-carnitine, propionyl-D-carnitine nor propionic acid 
has any significant effects under the same experimental conditions. 

Chronic experiments 

In "chronic" experiments, rabbits were treated for 10 days with PLC (1 
mmollkg, i.p.), a schedule which provides plasma levels comparable to those 
obtained clinically [2]. L-carnitine- and saline-treated animals were used as 
controls. At the end of the treatment, animals were sacrificed and papillary 
muscles are isolated and mounted in a tissue bath for electrophysiological 
characterization. Basic electro physiological characteristics were assessed by 
measuring intracellular action potentials from papillary muscles driven at 1 
Hz and superfused with control (1.8 mM Ca2 +) Tyrode's solution. Action 
potentials recorded from preparations obtained,from the propionyl-L-carni
tine, control and L-carnitine groups were compared. A marked, statistically 
significant slowing of the repolarization phase between +20 and -40 mY, 
was observed in the PLC-treated group compared to the L-carnitine or 
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Figure 2. Effect of propionyl-L-carnitine (PLC) pre-treatment on action potential profile. Each 
panel shows superimposed action potentials recorded during pacing at 0.1. 1 and 2.5 Hz, from 
rabbit papillary muscles of the saline-treated group (control) and of the PLC-treated group (see 
[2]). 

control groups (see Figure 3 of [2]). Consequently, the action potential 
duration measured at -10 mV (APD- lO) was significantly (P < 0.001) longer 
in the PLC-treated (102 ± 6 ms) than in the saline- (63 ± 4 ms) or the L
carnitine-treated groups (56 ± 7 ms). This effect, which indicates an alter
ation in the plateau phase, was not accompanied by modifications in other 
electrophysiological parameters. 

An interpretation of this finding in terms of changes in transmembrane 
ionic currents is not obvious, since the plateau phase of the action potential 
in rabbit ventricular myocytes is controlled by several different ionic fluxes 
[16]. No voltage clamp data are presently available. Suggestions may, how
ever, come from the experiments shown in Figures 2 and 3, where the effects 
of changes in driving rate and extracellular calcium concentration on APD 
in control and "chronic" PLC preparations are reported. In Figure 2, action 
potentials recorded during stimulation at 0.1,1 or 2.5 Hz in a control prepara
tion (left panel) or in a PLC preparation (right panel) are superimposed. An 
increase in the stimulation rate from 0.1 to 1 Hz causes a lengthening of the 
action potential duration in both preparations. At 2.5 Hz, the duration of 
the plateau phase is further increased in the control papillary muscle (as 
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Figure 3. Effect of propionyl-L-carnitine (PLC) pre-treatment on action potential duration 
in rabbit papillary muscles: dependence on driving rate (left panels) and extracellular Ca2+ 
concentration ([Ca2 +1o ]) (right panels). Each point represents the mean±SEM value of the 
action potential duration measured at -10 m V (APD -10) (upper panels) or at 90% repolariz
ation (APD90). * P < 0.05 PLC-treated group vs saline-treated group (Control). n = 8 to 9 
(see [2]). 

expected [16]); in the PLC-chronically treated papillary muscle it is, however, 
shortened. This finding is consistent: in 9 control preparations, APD- IO was 
lengthened, compared to the value obtained at 0.1 Hz, by 66 ± 18% and 
94 ± 29% at 1 and 2.5 Hz, respectively. In contrast, in 9 PLC preparations, 
APD_ lO was increased by 43 ± 7% and 36 ± 13% at 1 and 2.5 Hz, respec
tively, over the values measured at 0.1 Hz. The upper left panel of Figure 
3 illustrates this frequency-dependent effect on APD -]0 measured over a 
wide range of driving rates. It is apparent that, at 0.1 Hz, the APD _to is 
significantly longer in chronic PLC preparations than in control preparations; 
the difference is maintained by increasing the driving rate up to 1.5 Hz, since 
in both groups a frequency-dependent increase in the duration of the plateau 
phase was observed. In the control group, the APD_ 1O continued to increase 
with the stimulation frequency up to 3 Hz; then for higher driving rates it 
started to diminish. In the PLC group the shortening began earlier; the 
consequence is a progressive disappearance of the difference between the 
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two groups and, at rates higher than 2 Hz, the effect of the treatment with 
PLC was completely lost. 

A possible electrophysiological interpretation of this phenomenon is that 
the "chronic" treatment with PLC causes a change in density for a current 
which shows a marked modulation by the driving rate. The most likely 
candidate is the transient outward potassium current (Ito), which is respon
sible for the earlier repolarization phase of the action potential in the rabbit 
ventricle [17]. A decrease in Ito density caused by the prolonged treatment 
of the rabbit with PLC would slow the early repolarization phase of the 
ventricular action potential, thus explaining the prolongation in APD in the 
plateau phase. Since the complete duration of the repolarization is not affec
ted, one should not expect relevant electrocardiographic alterations. Ito is 
markedly frequency-dependent [16, 18], being rapidly inactivated by increas
ing the driving rate. A smaller contribution of Ito, due to a decrease in its 
density, to the plateau phase duration is expected as the rate increases. This 
could also explain the smaller frequency-dependent increase in APD in the 
PLC group with respect to the control group. 

APD control in the rabbit ventricle is under the influence of other ionic 
currents such as the L-type calcium current (Ica,d [19], the calcium activated 
potassium current (IK,ca) and other potassium outward currents [17, 20, 21]. 
However, their contribution to the prolongation of APD in PLC-treated 
rabbits seems unlikely and can be excluded for at least three reasons. 

First, the prolongation of the plateau phase of the action potential at 
short diastolic intervals seems to be attributable to the slower recovery from 
inactivation of Ito rather than to an effect on Ica,L [19]. Second, an increase in 
the extracellular calcium concentration (and consequently the Ca-dependent 
outward and inward currents) reduces in a similar fashion the APD_ 1O in 
both control and PLC preparations (Figure 3, upper right panel); the differ
ence between the two groups remains the same at both low (0.9 mM) and 
high (8.1 mM) [Ca2 +]0. Since Ito in the rabbit ventricle is a Ca-independent 
current [17], it should not be affected by changes in extracellular (and/or 
intracellular) calcium concentrations. Third, the last phase of action potential 
repolarization (90% repolarization, APD90), which is also dependent on the 
balance of several currents (such as the delayed rectifier IK and the Na/Ca 
exchanger current) [22], is not modified by prolonged PLC treatment under 
the same experimental conditions (Figure 3, lower panels). These findings 
exclude their possible involvement in the slowing of the early phase of the 
repolarization process. 

Finally, it is worth noting that interventions which are known to affect Ito 
(such as 4-aminopyridine or rate) may affect contractility. It has been ob
served that superfusion with 4-aminopyridine [23], which selectively blocks 
the Ca-independent transient outward current, not only increases the action 
potential duration in rabbit papillary muscles, but also causes an increase in 
contractility. In the rabbit ventricle a decrease in the diastolic interval (in 
the range 10 to 0.2 s) causes an APD prolongation and an increase in 
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developed force [20]; high rate, as previously discussed, inactivates Ito. 
Therefore, it could be hypothesized that APD prolongation, which we have 
demonstrated to occur in papillary muscles isolated from the heart of rabbits 
treated for 10 days with PLC (and which might be due to a reduction in Ito), 
is somehow related to the observed improvement in the contractile properties 
of the intact myocardium. 

Acknowledgement 

Partly supported by a grant from MURST 60%, University of Ferrara. 

References 

1. Ferrari R, Ceconi C, Curello S, Pasini E, Visioli O. Protective effect of propionyl-L
carnitine against ischaemia and reperfusion-damage. Mol Cell Biochem 1989; 88: 161-8. 

2. Ferrari R, Di Lisa F, De Jong JW et al. Prolonged propionyl-L-carnitine pre-treatment of 
rabbit: biochemical, hemodynamic and electrophysiological effects on myocardium. J Mol 
Cell Cardiol 1992; 24: 219-32. 

3. Aomine M, Arita M. Differential effects of L-propionylcarnitine on the electrical and 
mechanical properties of guinea pig ventricular muscle in normal and acidic conditions. J 
Electrocardiol 1987; 20: 287-96. 

4. Aomine M, Arita M, Shimada T. Effects of L-propionylcarnitine on electrical and mechan
ical alterations induced by amphiphilic lipids in isolated guinea pig ventricular muscle. Heart 
Vessels 1988; 4: 197-206. 

5. Carbonin PU, Ramacci MT, Pahor M et al. Antiarrhythmic effect of L-propionylcarnitine 
in isolated cardiac preparations. Cardioscience 1991; 2: 109-14. 

6. Aomine M, Nobe S, Arita M. Electrophysiologic effects of a short-chain acyl carnitine, L
propionylcarnitine, on isolated canine Purkinje fibers. J Cardiovasc Pharmacol 1989; 13: 
494-501. 

7. Barbieri M, Carbonin PU, Cerbai E et al. Lack of correlation between the antiarrhythmic 
effect of L-propionylcarnitine on reoxygenation-induced arrhythmias and its electrophysiol
ogical properties. Br J Pharmacol 1991; 102: 73-8. 

8. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischaemic 
myocardium by L-propionylcarnitine: effects on the recovery of cardiac output after ischae
mia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 1986; 20: 
536-41. 

9. Carbonin PU, Ramacci MT, Pahor M et al. Antiarrhythmic profile of propionyl-L-carnitine 
in isolated cardiac preparations. Abstr Symp Focus on Propionyl-L-Carnitine, Rome, Italy, 
1988. 

10. Kleber AG. Resting membrane potential, extracellular potassium activity, and intracellular 
sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ 
Res 1983; 52: 442-50. 

11. Amerini S, Carbonin P, Cerbai E, Giotti A, Mugelli A, Pahor M. Electrophysiological 
mechanisms for the antiarrhythmic action of mexiletine on digitalis-, reperfusion- and 
reoxygenation-induced arrhythmias. Br J Pharmacol 1985; 86: 805-15. 

12. Ferrier GR, Moffat MP, Lukas A. Possible mechanisms of ventricular arrhythmias elicited 
by ischemia followed by reperfusion. Studies on isolated canine ventricular tissues. Circ 
Res 1985; 56: 184-94. 



260 A. Mugelli et ai. 

13. Mugelli A, Amerini S, Piazzesi G, Giotti A. Barium-induced spontaneous activity in sheep 
cardiac Purkinje fibers. J Mol Cell Cardiol1983; 13: 697-711. 

14. Amerini S, Bernabei R, Carbonin P, Cerbai E, Mugelli A, Pahor M. Electrophysiological 
mechanism for the antiarrhythmic action of propafenone: a comparison with mexiletine. Br 
J Pharmacol 1988; 95: 1039-46. 

15. Ferrier GR. Digitalis arrhythmias: role of oscillatory afterpotentials. Progr Cardiovasc Dis 
1977; 19: 459-74. 

16. Kukushkin NI, Gainullin RZ, Sosunov EA. Transient outward current and rate dependence 
of action potential duration in rabbit cardiac ventricular muscle. Pfiiigers Arch 1983; 399: 
87-92. 

17. Giles WR, Imaizumi Y. Comparison of potassium currents in rabbit atrial and ventricular 
cells. J Physiol (Lond) 1988; 405: 123-45. 

18. Boyett MR. Effect of rate-dependent changes in the transient outward current on the action 
potential in sheep Purkinje fibers. J Physiol (Lon d) 1981; 319: 23-41. 

19. Hiraoka M, Kawano S. Mechanism of increased amplitude and duration of the plateau with 
sudden shortening of diastolic intervals in rabbit ventricular cells. Circ Res 1987; 60: 14-
26. 

20. Wohlfart B. Relationships between peak force, action potential duration and stimulus 
interval in rabbit myocardium. Acta Physiol Scand 1979; 106: 395-409. 

21. Cohen IS, Daytner NB, Gintant GA, Kline RP. Time-dependent outward currents in the 
heart. In: Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE, editors. The heart 
and cardiovascular system. New York: Raven Press, 1986: 637-71. 

22. Hilgemann DW, Noble D. Excitation-contraction coupling and extracellular calcium tran
sients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc R Soc Lond (Bioi) 
1987; 230: 163-205. 

23. Wollmer P, Wohlfart B, Khan AR. Effects of 4-aminopyridine on contractile response and 
action potential of rabbit papillary muscle. Acta Physiol Scand 1981; 113: 183-7. 

Corresponding Author: Professor Alessandro Mugelli, Dipartimento di Farmacologia, Universita 
degli Studi di Firenze, Viale G.B. Morgagni, 65, 1-50134 Firenze, Italy 



19. Acute VS. chronic treatment with propionyl
L-carnitine: biochemical, hemodynamic and 
electrophysiological effects on rabbit heart 

JAN WILLEM DE JONG, ALESSANDRO MUGELLI, 
FABIO DI LISA and ROBERTO FERRARI 

"When added acutely to isolated and perfused heart, propionyl-L-carnitine does not 
improve mechanical function. When given chronically, for 10 days, to animals before 
the isolation of their heart, it results in a long-lasting increase of the Frank-Starling 
curve of the isolated myocardium." 

Introduction 

In various animal models, propionyl-L-carnitine (PLC) attenuates myocardial 
ischemic damage, reduces the degree of stunning and improves contractile 
recovery during reperfusion [1-7]. In addition, PLC increases myocardial 
performance of animals with cardiac hypertrophy [8-10] or cardiomyopathies 
due to several experimental protocols [11-13]. 

When tested for its effect on cardiac function, PLC produced controversial 
results. After acute administration to isolated preparations or intact animals, 
no major changes of left ventricular performance are detected [10, 14, 15]. 
In contrast, when administered chronically, PLC increases the performance 
of the isolated aerobic myocardium [14]. 

In the present article we review the litterature and our own data [14, 16-
18] on the effects of PLC on biochemistry, function and electrophysiology 
of the aerobic heart. The effects on the ischemic or failing heart are not 
discussed as they are extensively reviewed in other chapters of this volume. 

Acute short-term administration of propionyl-L-carnitine 

The effect of acute administration of PLC has been tested in isolated and 
perfused rat or rabbit heart [14, 18], in intact animals [19], and in patients 
with coronary heart disease and normal left ventricular function [20, 21]. 

l. W. de long and R. Ferrari (eds): The carnitine system. 261-273. 
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Figure 1. Millimolar concentrations of propionyl-L-carnitine, given to isolated and aerobically 
perfused rabbit hearts by the cumulative dose method, reduce left ventricular developed pressure 
to a minor extent, without an effect on heart rate and coronary pressure. The concomittant 
release of creatine kinase (CPK) suggests that this high dosage causes membrane damage. The 
calcium antagonist nifedipine, used as a pharmacological reference, affects function already in 
the micromolar range. Percentages refer to difference with untreated control hearts. Mean 
values ± SEM (n = 6). gww = gram wet weight. Data from [14). 

Effects on in vitro preparations 

The effects of PLC administered to isolated and aerobically perfused rabbit 
hearts are shown in Figure 1. Propionyl-L-carnitine was administered directly 
to the perfusate, according to the cumulative dose method. Results are 
expressed as percent inhibition of left ventricular developed pressure (Figure 
1A); heart rate (Figure lB); and coronary pressure (Figure 1C). Also creatine 
kinase release is depicted (Figure 1D). In addition, the effects of nifedipine, 
a typical dihydropyridine calcium antagonist, are reported as pharmacological 
reference. 

Clearly, PLC at doses of 1O~9 to 1O~4M does not modify the developed 
pressure. Only the highest dose of PLC (1O~3M) results in a minor reduction 
of developed pressure. This effect is independent of pH changes in the 
perfusion solution [14]. At this high dosage PLC causes a release of creatine 
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kinase, suggesting a membrane-damaging effect. Furthermore, PLC does not 
alter heart rate or coronary perfusion pressure, even at the maximum dose 
tested. Similar effects are detected in rats [18]. 

Effects on in vivo preparation 

The effects of intravenous administration of PLC were investigated in anes
thetized dogs instrumented for the analysis of general hemodynamic and 
electrocardiographic data, peripheral and coronary blood flow, and oxygen 
consumption [19]. 

Propionyl-L-carnitine causes a dose-dependent, short-lasting enhancement 
of cardiac output, both in open- and closed-chest conditions [15,19]. Arterial 
blood pressure, heart rate, and contractility vary slightly and unpredictably. 
The drug does not elicit electrocardiographic effects. These responses are not 
modified by (l- or ,B-adrenergic blockade, nor by administration of calcium 
antagonists. They are, however, abolished by the combination of all these 
interventions. Mesenteric and iliac blood flows are increased by both PLC 
and L-carnitine (LC); LC + propionic acid (P) increased these, and in ad
dition increased renal blood flow. A strong diuresis obtained with PLC, LC, 
and LC + P was due to osmotic clearance following the administration of 
hyperosmotic solutions. Propionyl-L-carnitine elicited coronary vasodilation 
with hyperosmotic solutions. It elicited coronary vasodilation with reduced 
oxygen extraction; this effect lasted longer than the general hemodynamic 
effects, and was not seen with LC. All the cardiovascular actions of PLC 
can be attributed to its pharmacologic properties, rather than to its role as 
a metabolic intermediate. 

Effects in humans 

The hemodynamic effect of PLC has been evaluated in ten patients with 
coronary artery disease but having normal left ventricular function [20, 21]. 
The drug was administered intravenously at a dose of 15 mg/kg. Propionyl
L-carnitine improves the stroke volume and reduces the ejection impedence 
as a result of a decrease in systemic and pulmonary resistance and of an 
increase in arterial compliance. Total external heart power improves with a 
proportionally smaller increase in the energy requirement, suggesting that 
PLC has a positive inotropic property. 

The same authors also investigated the effects of PLC on vasomotion of 
normal coronary arteries in 20 patients with atypical chest pain or angina 
but without previous myocardial infarction [20, 21]. 

Luminal area of the coronary arteries was measured using quantitative 
coronary arteriography in the proximal, middle, and distal thirds of a normal 
coronary vessel in basal conditions, and 2, 5, 10 min after 1.5 mg/kg intra
coronary injection PLC or after intravenous administration of 30 mg/kg PLC. 
The data obtained were analyzed against a placebo group. 
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Propionyl-L-carnitine causes a significant vasodilation in the proximal seg
ments already apparent 5 min after intracoronary injection and 15 min after 
intravenous administration. Placebo does not induce any changes. The drug 
does not modify heart rate, systolic blood pressure and coronary driving 
pressure. 

Chronic, prolonged administration of propionyl-L-carnitine 

When administered chronically to animals several days before the isolation 
of the heart, PLC increases the performance of the aerobic myocardium, 
independently from changes of peripheral hemodynamics or coronary flow. 

Effect on in vitro preparations 

We first noticed and reported that chronic administration of PLC improves 
the contractility of the isolated heart [18]. In further studies [14, 18), we 
investigated this effect in hearts which were isolated from rabbits or rats that 
had been treated for either two, five or ten days with saline or PLC (1 
mmollkg). During perfusion no further drug was administered to the isolated 
hearts. Two or five days of treatment with PLC has no effect on contractile 
function of the isolated hearts. On the contrary, the hearts harvested from 
rabbits that had been treated for ten days develop significantly more left 
ventricular pressure than controls. This effect is evident after 30, 60, or 90 
min of aerobic perfusion [14]. The same prolonged treatment has no effect 
on heart rate or coronary perfusion pressure. 

As these data can be strongly influenced by the positioning and degree of 
inflation of the intraventricular balloon, in a separate series of experiments 
we determined the rise in developed and diastolic pressure as a function of 
intraventricular volume, which was progressively increased by increments of 
600 fLl. The hearts utilized for these experiments were paced at the constant 
rate of 180 beats/min. The results obtained are shown in Figure 2. In control 
hearts volume loading from ° to 1.8 ml results, as expected, in an incremental 
rise in developed pressure. Optimum developed pressure occurs with volumes 
of 1.2-1.8 ml. A further increase in volume results in a precipitous decline 
in developed pressure (Figure 2A) and in a steep rise in end-diastolic pressure 
(Figure 2D), suggesting that in our preparation the region of overstretch is 
between 1.8 and 3.6 ml. 

Chronic treatment with PLC for two or five days fails to modify the 
volume-pressure curves of the left ventricle. However, when treatment is 
prolonged for as long as ten days, there is a significant increase of the 
optimum developed pressure (corresponding to volumes between 1.2 and 
1.8 ml). Thereafter developed pressure remains constant, even after increas
ing the balloon volume from 2.4 to 3.6 ml, suggesting that overstretch is 
prevented. This suggestion is confirmed by the significant reduction in the 
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Figure 2. Pretreatment of rabbits for ten days with propionyl-L-carnitine (PLC) increases opti
mum developed pressure in their isolated, perfused hearts. The developed and end-diastolic 
pressures measured at higher filling pressures suggest that PLC prevents overstretch. Mean 
values ± SEM (n = 6). P-values refer to differences with saline-treated rabbits. Data from [14]. 

rise in end-diastolic pressure caused by prolonged treatment with PLC (Fig
ure 2F). These results were later confirmed by us [16] and by other authors 
[9, 10]. 

Specificity of the chronic in vitro effect of propionyl-L-carnitine 

To investigate whether the chronic effect is specific for PLC or is due to L
carnitine or propionic acid, we have designed experiments in which rabbits 
were treated for ten days with either saline, L-carnitine (1 mmollkg), pro
pionic acid (1 mmollkg) or PLC (1 mmollkg). Propionic acid resulted in 98% 
mortality after ten days. No death could be detected after PLC or L-carnitine 
treatment. Figure 3 shows the volume-pressure curves which we obtained. 

Treatment with L-carnitine fails to modify the volume-pressure curves of 
the isolated left ventricle (Figures 3A and B). Treatment with PLC prevents 
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days; propionic acid administration turned out to be deadly. Mean values ::t SEM (n = 10). p
values refer to differences with saline- and carnitine-treated animals. From [16]. 

the decrease of the optimum developed pressure, which remains constant 
even after increasing volumes to as much as 3.6 ml (Figure 3A). In addition, 
it reduces the rise in end-diastolic pressure, again suggesting partial pre
vention of overstretch (Figure 3B). 

To investigate whether the availability of calcium is a rate-limiting factor 
for the hemodynamic effects caused by prolonged treatment with PLC, the 
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Figure 4. Calcium availability is unlikely to be a rate-limiting factor for the effect of propionyl
L-carnitine pretreatment (PLC, 1 mmol/kg rabbit i.p.): The increase in calcium concentration 
in the perfusion buffer results in a comparable positive inotropic effect in the hearts of control 
and PLC-treated animals. Mean ± SEM (n = 7-8). For details, see [16]. 

calcium concentration of the perfusion fluid was increased from 1. 7 to 2.5 mM 
in another series of experiments. The data obtained are reported in Figure 
4. Increasing the calcium content of the buffer results in a positive inotropic 
effect in the hearts of both control and PLC-treated animals. The shape of 
the volume-pressure curves is identical to that obtained with normal calcium, 
and the increase in contractility is of the same entity in both groups, indepen
dently from active treatment. 

This suggests that calcium availability is not a rate-limiting factor for the 
effects of PLC. 

Pharmacokinetics of propionyl-L-carnitine 

We measured the levels of (acyl)carnitine found in rabbit blood and tissue 
after one, five and ten days of treatments [16]. Blood and tissue content of 
free carnitine increases at least twofold after administration of PLC (Figures 
5 and 6). Blood (Figure 5) and tissue [16] short-chain acylcarnitines also 
increase. Radiochromatographic analysis of the short-chain acylcarnitine 
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Figure 5. Intraperitoneal treatment of rabbits with propionyl-L-carnitine for one to ten days 
more than doubles the blood concentration of free carnitine and short-chain acy1carnitines. The 
latter fraction consists almost entirely of acetyl-L-carnitine, indicating that rapid conversion of 
PLC took place. Mean ± SEM (n = 7-9). * P < 0.05 vs. saline. Data from [16). 

fraction, performed after the isotopic exchange with [3H]carnitine, demon
strates that it consists almost completely of the acetyl-ester. Long-chain 
acylcarnitines (Figure 6) and acyl-CoAs [16] also increase in the heart after 
PLC administration. Several other CoA esters, as well as free CoA, remain 
unchanged; succinate also remains constant [16]. The increase in tissue carni
tine demonstrates that PLC is taken up and utilized by the heart [1, 18]. 
Clearly this rise in myocardial carnitine content cannot be attributed to the 
increase in plasma carnitine in the same experimental group. If one considers 
an average water content of 0.4 mllheart, of which 40% is present in the 
extracellular space, plasma carnitine values <100 f.LM cannot contribute more 
than 4% of the observed augmented tissue carnitine content. 
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Figure 6. Treatment of rabbits with propionyl-L-carnitine increases the cardiac concentration 
of carnitine and long-chain acylcarnitines. The short-chain acylcarnitines increase as well, but 
to a smaller extent. gww = gram wet weight. For other details, see legend to Figure 5. 

When measured 6 h after sacrifice of the animals, myocardial content of 
PLC is increased, but only after prolonged (ten days) treatment [14]. How
ever, the increase in PLC content is no longer apparent when the assay is 
performed 24 h after sacrifice [16]. Due to the high carnitine acetyltransferase 
activity of cardiac muscle mitochondria, short-chain acy1carnitines and short
chain acyJ-CoAs are rapidly metabolized. 

Metabolical effect of propionyl-L-carnitine 

In our previous studies [14, 16), we postulated that PLC enhances the me
chanical performance of the heart by improving its metabolism. It is known 
that pyruvate increases heart contractility allowing a more efficient energy 
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Figure 7. Treatment of rabbits with propionyl-L-carnitine (PLC) causes a statistically significant 
prolongation of the action potential duration in the plateau phase in comparison to treatment 
with L-carnitine (LC) or saline (data not shown). Average values are given for 8-9 individual 
records, obtained from isolated papillary muscles, driven at 1 Hz. Adapted from [16]. 

utilization [22]. Administration of pyruvate in fact leads to a higher cytosolic 
phosphorylation potential which in conjunction with a reduced Pi concentra
tion translates into an increased contraction. 

We investigated whether a similar mechanism is at the basis of the PLC 
effects. Energy metabolism does not seem to be involved, since high-energy 
phosphates, Pi and mitochondrial function remain unchanged after chronic 
PLC administration [16]. These findings, however, lead to some important 
implications. Usually, typical inotropic agents such as digitalis, calcium and 
adrenergic compounds stimulate contractility by increasing myofibrillar 
energy utilization at the expense of energy supply. Consequently these agents 
cause a decline in phosphocreatine/Pi ratio, suggesting that they place the 
heart in a supply/demand imbalance [22]. This is not the case for PLC. 
Energy metabolism remains unchanged despite the increase in myocardial 
performance. 

Eiectrophysiological effect of propionyl-L-carnitine 

Finally, we investigated whether the mechanical effects of prolonged treat
ment with propionyl-L-carnitine are related to electro physiological changes. 
It is known that acute administration of PLC does not influence the action 
potential parameters [23]. In contrast, chronic treatment causes a prolong
ation of the action potential duration in the plateau phase; other action 
potential parameters are not modified (Figure 7). This action appears to be 
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a specific effect for PLC, as prolonged treatment with L-carnitine does not 
cause any electrophysiological change [16]. During the repolarization phase, 
which is modified by PLC, important events occur which are able to influence 
contractility [24]. It is attractive to correlate the effect on papillary muscle 
action potential duration with that on cardiac mechanical performance, since 
PLC, but not L-carnitine, affects both of them. In addition, the electro
physiological and mechanical effects of propionyl-L-carnitine are not depen
dent on the extracellular calcium concentration. However, the improvement 
in mechanical performance is observed not only in the spontaneously beating 
heart, but also at driving rates (180 beats/min) at which the effect on action 
potential duration is completely lost. Consequently the relationship between 
the two events remains uncertain, and the intrinsic difference between the 
two experimental preparations does not allow to draw a definitive link. 

Conclusion 

When added acutely to isolated and perfused heart, PLC does not improve 
mechanical function. When given chronically, for ten days, to animals before 
the isolation of their heart, it results in a long-lasting increase of the Frank
Starling curve of the isolated myocardium. This effect, although modulated 
by an increase of the calcium concentration, is unlikely to depend upon 
a modification to calcium sensitivity of the various Ca2 + -ATPases of the 
myocardium. The effect is also independent of changes in phosphorylation 
potential. 

The effects of propionyl-L-carnitine are evident 8 h after the last injection 
to the animals and remain for at least 24 h. Overstretching is also completely 
prevented. It is therefore possible that prolonged treatment with PLC causes 
molecular conformational changes of the contractile component, and this 
hypothesis should be carefully investigated. 

Prolonged administration of PLC also alters the action potential. However, 
a clear relationship between electrophysiological and mechanical effects of 
PLC, although suggestive, cannot be drawn at the moment. 
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20. Mechanical recovery with propionyl-L-carnitine 

A. JAMES LIEDTKE 

"Some effects noted with propionyl-L-carnitine are associative epiphenomena with 
no clear insight into pharmacological mechanism(s), some are in direct conflict in 
terms of observational content, others are in agreement and at face value would seem 
to rule out possible mechanisms, while still others are suggestive of attractive leads 
to possible explanations of drug effect in enhancing myocardial contractility." 

Introduction 

Carnitine has received attention in the past as a naturally occurring com
pound which can transiently improve or preserve cardiac performance during 
myocardial ischemia [1]. An example of this preservative effect on mechan
ical function is shown in Figure 1 from experimental observations in extracor
pore ally perfused pig hearts at conditions of moderate global ischemia and 
excess fatty acids (FF A) in coronary perfusion fluid [2]. The exact mechanism 
for this therapeutic influence has never been identified but hypotheses have 
centered on a sparing effect from a deleterious lipid burden known to occur 
in ischemic heart muscle which drains essential energy stores and disrupts 
membrane integrity and enzyme functions via accumulation of amphiphiles 
[3, 4]. Unfortunately, by definition, the benefits of carnitine (or any other 
therapy) in ischemic myocardium must be short-lived since any treatment 
strategy in the absence of expeditious repletion of oxygen delivery cannot 
be sustained for long. Irreversible cardiac injury with its accompanying me
chanical dysfunction must occur in a matter of minutes-to-hours. 

Perhaps a better experimental environment to study therapeutic agents 
with potential enhancing properties on mechanical function is myocardial 
reperfusion following reversible ischemic injury. Here the cell is capable of 
complete, eventual recovery and may be assisted by a variety of adjunctive 
metabolic schemes to hasten the repair and recuperative process. One inter
esting legacy of ischemic stress which carries over into the reperfusion con
dition in reversibly injured tissue is mechanical stunning. The mechanism(s) 
for this phenomenon, which may take hours-to-days to resolve, has/have 

l. W. de long and R. Ferrari (eds): The carnitine system. 275-289. 
© 1995 Kluwer Academic Publishers. 
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Figure 1. Mechanical and metabolic functions in FFA-supplemented pig hearts at control (-30 
to +20 min perfusion time) and globally ischemic (+20 to +60 min perfusion time; average 
reduction in total coronary flow by 41%) conditions. Treatments with DL-carnitine (closed 
symbols) improved global and regional mechanical performance, particularly during ischemia, 
and decreased oxygen consumption during normal flows. Numbers above data points refer to 
statistical P values between treated and untreated hearts [2]. 

been the focus of wide debate, and arguments supporting altered bioener
getics, injury from free radical formation, and imbalance of calcium homeost
asis have been proposed. Stunning, both regional and global in compass 
depending on the protocol and preparation, makes an excellent backdrop 
for testing agents designed to enhance mechanical performance since it is 
quickly reversed when exposed to standard inotropic drugs (see Figure 2) 
[5]. The theme of the text of this monograph deals with the transition 
from carnitine to propionyl-L-carnitine as treatment choices in impaired 
myocardium. The topic of this chapter will review the efficacy of this latter 
compound in restoring contractile function in reperfusion following myocar
dial ischemia. 
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Figure 2. Panel A. Solid circles indicate segmental function in dogs during 30 min of LAD 
coronary occlusion, after reperfusion, and during infusions of dopamine. SS = systolic shorten
ing; EDL = end-diastolic length. Open circles indicate segmental function during ischemia and 
after reperfusion in control dogs that did not receive dopamine. Panel B. Solid circles indicate 
segmental function during 3 h of LAD coronary occlusion, after reperfusion, and during infusions 
of dopamine in nine dogs. In these dogs, necrosis was limited to the subendocardial one-third 
of wall thickness. Open circles indicate segmental function in five dogs not receiving dopamine. 
In these dogs, necrosis in the area of the length gauge was virtually transmural [5]. 

Mechanical benefits of propionyl-L-carnitine 

The first report which clearly described a therapeutic advantage with pro
pionyl-L-carnitine in myocardial reflow was by Paulson and co-workers [6] 
who demonstrated a cardioprotective effect in isolated perfused rat hearts. 
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Figure 3. Effects of 5.5 mM propionyl-L-carnitine on the recovery of cardiac output in isolated 
perfused rat hearts subjected to various durations of ischemia followed by fifteen min of reper
fusion. In parentheses is the proportion of hearts in each group that recovered the ability to 
work. Values are mean ± SEM. * P < 0.05 for difference between 0 and 5.5 mM propionyl
L-carnitine groups [6]. 

Propionyl-L-carnitine at two different dosing schedules (5.5 and 11 
mmol x 1-1), when administered to coronary perfusion fluid beginning in the 
preischemic perfusion interval, improved mechanical function as estimated 
by increased cardiac output (see Figure 3), left ventricular pressure and left 
ventricular dp/dt during 15 min of reperfusion following several perfusion 
intervals of ischemia. This compound and two of its synthetic derivatives, 
propiony1carnitine taurine amide and butyry1carnitine taurine amide, proved 
equally efficacious in restoring function and were superior in effect when 
compared with those of carnitine, taurine or taurine plus propionyl-L-carni
tine [7]. 

Substantiating evidence supporting improved functional recovery in is
chemia-reperfusion protocols using isolated, perfused heart preparations has 
since been reported from one other laboratory (see Figure 4) [8] and sug
gested in data from a second laboratory [9]. There is also information to 
suggest that propionyl-L-carnitine has an enhancing influence on cardiac 
performance (cardiac output and heart rate-pressure product) at conditions 
of aerobic perfusion in an isolated heart model [10]. 

Propionyl-L-carnitine has further been tested using a more physiological 
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Figure 4. Effect of L-carnitine, propionic acid and propionyl-L-carnitine on the ischemia and 
reperfusion induced alterations of left ventricular pressure. Under aerobic and reperfusion 
conditions isolated rabbit hearts were perfused at a mean coronary flow of 25 mllmin. Ischemia 
was induced (at time 0) by reducing coronary flow to 1 ml/min. The administration of the 
different substances was started 30 min before the onset of ischemia. Each point is the mean 
of at least six separate experiments. P relates to the significance of the difference between the 
controls and the relative treated groups [8]. 
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preparation with features of whole blood coronary perfusion fluid in intact, 
working hearts. The laboratory of the author has for some time employed 
an intact pig heart model system with extracorporeally-controlled coronary 
perfusion, which allows for regulation of regional and/or global coronary 
flows. In a perfusion protocol of 20 min of control, aerobic flows; 45 min of 
regional ischemia rendered by reducing flow in the anterior descending 
(LAD) perfusion bed by 60%; and 35 min reperfusion at aerobic preischemic 
levels, hearts underwent predictable mechanical stunning during reperfusion 
with accompanying declines in myocardial oxygen consumption. Pretreat
ment with propiony1carnitine (50 mg/kg at 0 min perfusion and 40 mg/kg at 
40 min perfusion), infused IV, improved function (albeit not significantly) 
during ischemia but essentially restored function to near preischemic values 
during reperfusion (see Figure 5) [11]. MV02 was also higher in treated 
hearts (see Figure 6, panel A). A different yet complementary response in 
contractile function was reported by Sassen et al. [12] in another intact, pig 
heart preparation. In this protocol, LAD flow was more significantly curtailed 
( - 80~ % for 60 min) and then reperfused for 120 min. Hemodynamics in 
saline-treated hearts during reflow were further impaired below ischemic 
values (-20~ % in mean arterial blood pressure; - 25~ % in left ventricular 
dp/dtmax; - 25~ % in cardiac output; - 24~ % in stroke volume; about + 17 ~ % 
in left ventricular end-diastolic pressure; and + 30~ % in systemic vascular 
resistance). Propionyl-L-carnitine pretreatment (50 mg/kg) attenuated these 
deteriorating trends with clear increases in cardiac output and left ventricular 
dp/dtmax and decreases in left ventricular end-diastolic pressure and systemic 
vascular resistance (see Figure 7). 

A final result suggesting a mechanical enhancing property of propionyl-L
carnitine, although brief, was reported in a canine infarct preparation which 
featured a thrombus-forming technique induced by a copper wire placed in 
the LAD artery [13]. At 30 and 180 min following coronary occlusion, 
treated animals evinced a more stabilized cardiac output and improved left 
ventricular pressures. The hemodynamic effects were associated with a reduc
tion in infarct size. 

Possible mechanisms 

The above reports have also provided additional descriptions of other treat
ment effects noted with propionyl-L-carnitine. Some are associative epi
phenomena with no clear insight into pharmacological mechanism(s), some 
are in direct conflict in terms of observational content, others are in agree
ment and at face value would seem to rule out possible mechanisms, while 
still others are suggestive of attractive leads to possible explanations of drug 
effect in enhancing myocardial contractility. The record is as yet incomplete 
and obviously subject to revision and recategorization. The following is the 
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Figure 5. Regional motion changes showing% active contraction (Panel A) and relative recoil 
(Panel B) displayed as a function of perfusion times in the LAD extracorporeally perfused bed. 
Control aerobic flows were maintained from 0 to 20 min perfusion time; LAD flow thereafter 
was reduced by 60% from 20 to 65 min perfusion time; reperfusion at preischemic aerobic flows 
was restored again during the final 35 min reperfusion. % Active contraction is expressed as% 
of initial values at 0 min perfusion, whereas% relative recoil is expressed as the difference from 
initial values. Significant loss of motion and failure of mechanical recovery were noted in placebo 
porcine hearts. Treatment with propionyl-L-carnitine (LPC) spared motion loss during ischemia 
and reversed mechanical stunning during reflow. Asterisk symbols for statistical difference of 
intergroup comparisons are: * p ~ 0.05; ** P ~ 0.025 [11]. 
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Figure 6. Indexes of aerobic metabolism including myocardial oxygen consumption (MV02; 

Panel A) and 14C02 production rates from labeled palmitate (Panel B). Perfusion conditions 
and perfusion times are those described in Figure 5. Values of MV02 closely paralleled those 
changes noted in regional motion in the LAD perfusion bed. Rates of fatty acid oxidation were 
almost identical between treatment groups during ischemia and the reperfusion portions of the 
perfusion trials. Relative uncoupling of substrate utilization from aerobic levels of performance 
in placebo porcine hearts was restored or partially reversed in treated hearts. LPC, L-propionyl
carnitine. Asterisk symbols for statistical difference of intergroup comparisons are: * p ,,; 0.05; ** 
p,,; 0.025; *** p,,; 0.005 [11]. 
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Figure 7. Systemic hemodynamic effects in saline-treated (open bar, n = 10) and propionyl-L
carnitine-treated (hatched bar, n = 9) pigs at baseline (BL) and after 30 and 60 min of ischemia 
(I) and 120 min of reperfusion (R). * P ~ 0.05 vs. BL, only presented for 30 and 60 min of 
I; + changes vs. BL in propionyl-L-carnitine-treated animals are significantly different from 
changes vs. BL in saline-treated animals; . changes vs. 60 min of 1 in propionyl-L-carnitine
treated animals are significantly different from changes vs. 60 min of I in saline-treated animals. 
MAP, mean arterial blood pressure ; HR, heart rate ; CO, cardiac output ; LVdP/dt rn a" maximal 
rate of rise of left ventricular pressure; SVR, systemic vascular resistance ; and L VEDP, left 
ventricular end-diastolic pressure [12] . 

author's attempt to survey this adjunctive material with personal interpreta
tions where obvious. 

Benefits with propionyl-L-carnitine do not seem related to shifts in myocar
dial amphiphile concentrations . Problems with lipid burden clearly occur in 
ischemic myocardium [4] with, among other consequences, accumulations of 
long-chain esters of both carnitine and CoA. The latter has particularly 
been incriminated as having nonspecific detergent-like properties which may 
accelerate ischemic injury by disrupting the integrity of cellular and organelle 
membranes. Prior studies with carnitine treatment in ischemic myocardium 
demonstrated reductions in tissue fatty acyl-CoA levels commensurate with 
a decrease in FFA cellular uptake [3]. However, with reperfusion following 
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Table 1. Effects of L-carnitine, acetyl-L-carnitine, and propionyl-L-carnitine on 14C-palmitate 
oxidation (in pmol . mg- 1 . min-I) by cardiac homogenate and myocytes. Data are mean of 
three determinations [6]. 

Drug concentration (mM) Homogenate Myocyte 

Control 202 72 

L-Carnitine: 
1 234 76 
5 286 78 

10 353 77 

Acetyl-L-carnitine: 
1 44 72 
5 35 82 

10 38 69 

Propionyl-L-carnitine: 
1 555 91 
5 398 94 

10 309 136 

myocardial ischemia, these esters in the absence of therapeutic interventions 
are rapidly returned to aerobic values [14], presumably via the powerful 
action of washout, and thus on face value would not seem to be a principal 
mechanism to explain the mechanical benefits of propionyl-L-carnitine. In
deed, two studies in isolated and intact hearts confirmed that the protective 
effects of propionylcarnitine were not associated with alterations in long
chain acyl CoA levels [6, 11]. That is not to say, however, that propionyl
L-carnitine does not contain membrane-stabilizing properties, which mayor 
may not involve local interactions with endogenous phospholipids in mem
branes. In isolated hearts, pretreatment with the carnitine derivative clearly 
spared release of creatine kinase in reperfusion following the ischemic period, 
suggesting that the compound maintained membrane integrity during the 
stress of ischemia and reperfusion [8, 15]. Aomine et al. [16] reported using 
a protocol of acidosis simulating possible ischemia in isolated guinea pig 
ventricular papillary muscles that pretreatment with propionyl-L-carnitine 
prevented most of the mechanical and electrical changes provoked by experi
mental exposure to the amphiphiles, lysophosphatidyl-L-choline and palmi
toyl-L-carnitine. This electrophysiological benefit, however, could not be 
confirmed by Yamada and coworkers [17] studying hypoxia and reoxygen
ation in isolated adult canine myocytes and epicardial tissue. 

Evidence is in conflict also regarding the role of propionyl-L-carnitine in 
influencing substrate utilization and calcium homeostasis in heart muscle. 
Paulson et al. [6] demonstrated an increase in I4C-palmitate oxidation in 
treated, aerobic, isolated cardiomyocytes and heart homeogenates (Table 1). 
The authors also reported a "rebound" in CO2 production from [U_ 14C] 
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palmitate above aerobic values during reperfusion but this increase was not 
confined to treated hearts and was equally obvious in untreated, placebo 
hearts (Figure 6, panel B) [11]. We have subsequently pursued this "re
bound" of fatty acid oxidation in separate experiments independent of carni
tine therapies and have determined that this trend may in part relate to 
distributions of radioactivity from exogenous labeling into and out of large 
free fatty acid (triacylglycerol).pools [18]. At conditions of severe ischemia 
followed by reperfusion, propionyl-L-carnitine also failed to alter by impli
cation glucose utilization as reflected by comparable release of lactate into 
coronary effluent in treated and untreated hearts using an isolated rabbit 
heart preparation [8, 15]. However, this deduction conflicts with the direct 
measurements of Broderick et al. [19, 20] who reported in both aerobic and 
reperfused myocardium that L-carnitine (without the propionyl attachment) 
stimulated glycolysis and particularly, glucose oxidation, presumably by re
lieving the allosteric inhibition of fatty acids on a key glycolytic regulatory 
site, the pyruvate dehydrogenase complex. In reperfused hearts, this relief 
was associated with improved mechanical recovery. 

Another area of controversy dealing with drug effect is calcium homeo
stasis. In ischemia the loss of function of calcium sequestration in sarco
plasmic reticulum (SR) as well as Ca2 + ATPase activity in sarcolemma lead 
to calcium overload in cytosol and mitochondria. These abnormal levels 
conspire to activate lysosomal and membrane Ca2 + dependent enzyme sys
tems which further accelerate ischemic injury and to alter adversely the local 
environment of the actin-myosin contractile proteins [21, 22]. Studies with 
amiloride, an H+ - Na+ exchange inhibitor, suggest that this exchanger, 
which is stimulated in the presence of ischemic acidosis, also contributes to 
calcium overload in ischemia and early reflow [23, 24]. In reperfusion, cal
cium dynamics do not immediately revert to normal, in part because of 
damage to the SR and its calcium transport system, such that cytosolic 
calcium overload is not cleared by SR sequestration [25]. Taken in conjunc
tion with an observed insensitivity of calcium responsiveness by myofilaments 
[26], an imbalance of calcium homeostasis has become one of the leading 
candidates to explain mechanical stunning in reperfusion. This was an ob
vious source of interest in evaluating the mechanical enhancing properties 
of propionyl-L-carnitine but as yet this interaction is uncertain. Sassen et al. 
[27] showed that SR was not selectively protected in terms of calcium uptake 
or 32p incorporation into phospholamban as a function of carnitine treatment. 
On the other hand, Ferrari and coworkers [8, 15] showed evidence that 
propionyl-L-carnitine reduced the deterioration in mitochondrial respiration 
and improved in vitro A TP production which was in part affected by a 
reversal of mitochondrial calcium overload in ischemia and reperfusion. 

A more attractive lead into possible therapeutic mechanisms was also 
provided in the studies of Sassen and coworkers [12, 27]. They demonstrated 
that the above described preservations in mechanical function were asso
ciated with an improvement in the "no-reflow" phenomenon with a 31% 
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increase in transmural myocardial blood flow during reperfusion as measured 
by radioactive microspheres. The drug prevented the increase in coronary 
vascular resistance which typically characterizes postischemic myocardium 
and which has been recently termed microvascular "stunning" [28]. The 
increase in coronary flow provided by propionylcarnitine may have improved 
mechanical recovery as has been demonstrated in experiments using vasodila
tor-enhanced coronary blood flow to enhance function in postischemic myo
cardium [29]. The vasodilator properties of propionyl-L-carnitine were also 
observed in the Sassen reports in other organ beds (skin and small intestine) 
and in systemic vascular resistance as compared with saline-treated animals. 

Another etiology which has attracted great interest is the formation of 
reactive oxygen metabolites during myocardial ischemia and reperfusion. 
These oxidants have been strongly implicated as an alternate or additional 
mechanism to explain mechanical stunning [30]. Although these metabolites 
were initially difficult to measure, increasingly sophisticated techniques have 
provided convincing evidence that superoxide anion, hydrogen peroxide, and 
hydroxyl radicals all contribute to mechanical stunning, perhaps via adverse 
interactions on cellular proteins and lipids. Peroxidation of lipid constituents 
within cell membranes with loss of membrane integrity and resulting compro
mise of critical enzyme systems in membranes have been hypothesized. The 
causative role of free radical formation on mechanical stunning has been 
further strengthened by the improvement in function afforded by treatment 
with the antioxidants, superoxide dismutase and catalase [31]. With this as 
a lead, Packer et al. [9] have tested the possible antioxidant properties of 
propionyl-L-carnitine. Using an isolated, Langendorff perfused rat heart 
preparation, they observed improvements in mechanical function and high 
energy phosphate stores in treated hearts during a protocol of ischemia 
and reperfusion. More to the point, they documented in propionylcarnitine
treated hearts that oxidative injury to proteins as estimated by the accumu
lation of protein carbonyl groups and hydroxyl radicals, as measured by the 
spin trap, 5,5-dimethyl-1-pyrroline-1-oxide method (see Figure 8), were less. 
These findings were corroborated by Ferrari et al. [8] in independent studies 
examining the effects of propionyl-L-carnitine on the oxidative stress to 
myocardium subjected to ischemia and reperfusion. These investigators de
scribed this stress in terms of the "release of reduced and oxidized glutathione 
(GSH and GSSG, respectively) from the myocardium into the coronary 
effluent, the decrease in the tissue GSHlGSSG ratios, and the shift of the 
tissue redox-state toward oxidation". In hearts pretreated with propionyl-L
carnitine, oxidative stress was less as reflected by a decrease in GSH and 
GSSG release and a reduction in tissue GSSG. Taken together, these two 
reports provide a basis for pursuing further studies to validate this very 
attractive hypothesis regarding a possible drug mechanism of action. 

A final hypothesis of drug efficacy centers on improved bioenergetics with 
propionyl-L-carnitine therapy. Despite the disparate trends in fatty acid 
oxidation (see above) observed with propionylcarnitine treatment and the 
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Figure 8. Effect of 10 mM propionyl-L-carnitine on the time course of ESR signal of 5, 5-
dimethyl-l-pyrroline-l-oxide (DMPO) spin adducts in the rat-heart perfusate after 40 min of 
global ischemia [9]. 

reports of Sassen and coworkers [12, 27] which showed further deterioration 
in the adenosine nucleotide pool with such treatment, four other laboratories 
have reported clear improvements in energy metabolism and high energy 
phosphate production under a variety of experimental conditions, protocols, 
and perfusion models and preparations [6, 9, 10, 15]. Such trends may be 
explained by the added contributions of the propionyl group attached to the 
carnitine base of the propionylcarnitine compound. Sherry et al. [32] using 
high-resolution 13C n.m.r. spectroscopy noted that enriched propionate in
itially enters the citric acid cycle at succinyl-CoA, proceeds to malate where 
it transiently exits the cycle via dispersal pathways, and then reenters the 
total pyruvate pool for eventual further processing in oxidative metabolism. 
Propionate may account for 27% of this pyruvate pool. A clue as to the 
benefits of the propionyl moiety in myocardial ischemia was provided by Di 
Lisa and colleagues [33] who described in hypoperfused rat hearts increases 
in measured propionyl CoA, relative retention of succinyl CoA, and an 
associated decrease in acetyl CoA, all compatible with an increase in flux of 
the tricarboxylic-acid cycle by contributions from the anaplerotic pathways. 
The participation of propionate in oxidative metabolism was confirmed in 
the laboratory of the author [34] who showed a clear dose-response relation
ship of 14C02 production from labeled propionate with a 12-fold increase in 
propionate oxidation between the doses of 0.1 and 10 mM propionate in 
coronary perfusate of isolated, working rat hearts. Propionate as a sole 
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substrate was shown to be inadequate to support mechanical function alone. 
However, under more physiological conditions of mixed substrate avail
ability, particularly at conditions of reperfusion where intermediate meta
bolism is again charging the citric acid cycle with acetyl CoA from fatty acid 
and glucose substrate utilizations, the added "bonus" of propionate as an 
anaplerotic contributor of Krebs cycle intermediates may increase cycle flux 
rates and in so doing, accelerate energy production and mechanical recovery. 

Acknowledgement 

This work was supported in part by Sigma Tau Pharmaceuticals, the Oscar 
Mayer Cardiovascular Research Fund and U.S. Public Health Service Grants 
HL-41914 and HL32350. 

References 

1. Liedtke AJ, Saless-Molaparast FMS. Secondary carnitine deficiency in cardiac disease. In: 
Borum PR, editor. Clinical aspects of human carnitine deficiency. Elmsford, New York: 
Pergamon Press, 1986: 2'04-15. 

2. Liedtke AJ, Nellis SR. Effects of carnitine in ischemic and fatty acid supplemented swine 
hearts. J Clin Invest 1979; 64: 44'0-7. 

3. Liedtke AJ, Nellis SR, Whitesell LF. Effects of carnitine isomers on fatty acid metabolism 
in ischemic swine hearts. Circ Res 1981; 48: 859-66. 

4. Liedtke AJ. Lipid burden in ischemic myocardium. J Mol Cell Cardiol 1988; 2'O(Suppl 2): 
65-74. 

5. Mercier JC, Lando U, Kanmatsuse K et al. Divergent effects of inotropic stimulation on 
the ischemic and severely depressed reperfused myocardium. Circulation 1982; 66: 397-
4'0'0. 

6. Paulson DJ, Traxler J, Schmidt M, Noonan J, Shug AL. Protection of the ischaemic 
myocardium by L-propionylcarnitine: Effects on the recovery of cardiac output after ischae
mia and reperfusion, carnitine transport, and fatty acid oxidation. Cardiovasc Res 1986; 2'0: 
536-41. 

7. Regitz V, Paulson DJ, Noonan J, Fleck E, Shug AJ. Protection of the ischemic myocardium 
by propionylcarnitine taurine amide. Comparison with other carnitine derivatives. Z Kardiol 
1987; 76(Suppl 5): 53-8. 

8. Ferrari R, Ceconi C, Curello S, Pasini E, Visioli O. Protective effect of propionyl-L
carnitine against ischaemia and reperfusion-damage. Mol Cell Biochem 1989; 88: 161-8. 

9. Packer L. Valenza M, Serbinova E, Starke-Reed P, Frost K, Kagan V. Free radical 
scavenging is involved in the protective effect of L-propionyl-carnitine against ischemia
reperfusion injury of the heart. Arch Biochem Biophys 1991; 288: 533-7. 

10. Bertelli A, Conte A, Ronca G, Zucchi R. Effect of propionyl carnitine on cardiac energy 
metabolism evaluated by the release of purine catabolites. Drugs Exp Clin Res 1991; 17: 
115-8. 

U. Liedtke AJ, DeMaison L, Nellis SR. Effects of L-propionylcarnitine on mechanical recovery 
during reflow in intact hearts. Am J Physiol 1988; 255: HI69-76. 

12. Sassen LMA, Bezstarosti K, Van der Giessen WJ, Lamers JMJ. Verdouw PD. L-propionyl
carnitine increases postischemic blood flow but does not affect recovery of energy charge. 
Am J Physiol 1991; 261: RI72-8'O. 



Mechanical recovery with propionyl-L-carnitine 289 

13. Leasure JE, Kordenat K. Effect of propionyl-L-carnitine on experimental myocardial infarc
tion in dogs. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 85-96. 

14. Liedtke AJ, DeMaison L, Eggleston AM, Cohen LM, Nellis SH. Changes in substrate 
metabolism and effects of excess fatty acids in reperfused myocardium. Circ Res 1988; 62: 
535-42. 

15. Ferrari R, Ceconi C, Cargnoni A, Pasini E, Boffa GM, Curello S, Visioli 0. The effect of 
propionyl-L-carnitine on the ischemic and reperfused intact myocardium and on their de
rived mitochondria. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 57-66. 

16. Aomine M, Arita M, Schimada T. Effects of L-propionylcarnitine on electrical and mechan
ical alterations induced by amphiphilic lipids in isolated guinea pig ventricular muscle. Heart 
Vessels 1988; 4: 197-206. 

17. Yamada KA, Dobmeyer DJ, Kanter EM, Priori SG, Corr PB. Delineation of the influence 
of propionylcarnitine on the accumulation of long-chain acylcarnitines and electrophysio
logic derangements evoked by hypoxia in canine myocardium. Cardiovasc Drugs Ther 1991; 
5(Suppl 1): 67-76. 

18. Nellis SH, Liedtke AJ, Renstrom B. Distribution of carbon flux within fatty acid utilization 
during myocardial ischemia and reperfusion. Circ Res 1991; 69: 779-90. 

19. Broderick TL, Quinney HA, Lopaschuk GD. Carnitine stimulation of glucose oxidation in 
the fatty acid perfused isolated working rat heart. J Bioi Chern 1992; 25: 3758-63. 

20. Broderick TL, Quinney HA, Barker CC, Lopaschuk GD. Beneficial effect of carnitine on 
mechanical recovery of rat hearts reperfused after a transient period of global ischemia is 
accompanied by a stimulation of glucose oxidation. Circulation 1993; 87: 972-81. 

21. Nayler WG, Daly MJ. Calcium and the injured cardiac myocyte. In: Sperelakis N, editor. 
Physiology and pathophysiology of the heart. Boston: Martinus Nijhoff Publishing, 1984: 
477-92. 

22. Braunwald E. Mechanism of action of calcium-channel-blocking agents. New Engl J Med 
1982; 307: 1618-27. 

23. Tani M, Neely JR. Role of intracellular Na + in Ca2 + overload and depressed recovery of 
ventricular function of reperfused ischemic rat hearts: Possible involvement of H+ -Na + and 
Na + _Ca2+ exchange. Circ Res 1989; 65: 1045-56. 

24. Murphy E, Perlman M, London RE, Steenbergen C. Amiloride delays the ischemia-induced 
rise in cytosolic free calcium. Circ Res 1991; 68: 1250-8. 

25. Krause SM, Jacobus WE, Becker LC. Alterations in cardiac sarcoplasmic reticulum calcium 
transport in the postischemic "stunned" myocardium. Circ Res 1989; 65: 526-30. 

26. Marban E. Myocardial stunning and hibernation: The physiology behind the colloquialisms. 
Circulation 1991; 83: 681-8. 

27. Sassen LMA, Bezstarosti K, Koning MMG, Van der Giessen WJ, Lamers JMJ. Verdouw 
PD. Effects of administration of L-propionylcarnitine during ischemia on the recovery of 
myocardial function in the anesthetised pig. Cardioscience 1990; 1: 155-61. 

28. Bolli R, Triana JF, Jeroudi MO. Prolonged impairment of coronary vasodilation after 
reversible ischemia: Evidence for microvascular "stunning". Circ Res 1990; 67: 332-43. 

29. Stahl LD, Aversano TR, Becker LC. Selective enhancement of function of stunned myocar
dium by increased flow. Circulation 1986; 74: 843-51. 

30. Bolli R. Mechanism of myocardial "stunning". Circulation 1990: 82: 723-38. 
31. Jeroudi MO, Triana JF. Patel BS, Bolli R. Effect of superoxide dis mutase and catalase. 

given separately, on myocardial "stunning". Am J Physiol 1990; 259: H889-90 1. 
32. Sherry AD, Malloy CR, Roby RE, Rajagopal A, Jeffrey FMH. Propionate metabolism in 

the rat heart by BC n.m.r. spectroscopy. Biochem J 1988; 254: 593-8. 
33. Di Lisa F, Menabo R, Siliprandi N. L-propionylcarnitine protection of mitochondria in 

ischemic rat hearts. Mol Cell Biochem 1989; 88: 169-73. 
34. Bolukoglu H, Nellis SH, Liedtke AJ. Effects of propionate on mechanical and metabolic 

performance in aerobic rat hearts. Cardiovasc Drugs Ther 1991; 5(Suppl 1): 37-44. 

Corresponding Author: Dr A. James Liedtke. Section of Cardiology, Hospital and Clinics, 
Highland Avenue, H6/339, University of Wisconsin, Madison, WI 53792-3248. USA 



21. Dissociation of hemodynamic and metabolic 
effects of propionyl-L-carnitine in ischemic 
pig heart 

PIETER D. VERDOUW, LOES M.A. SASSEN, 
DIRK J. DUNCKER and JOS M.J. LAMERS 

"Post-ischemic blood flow to the myocardium perfused by the left anterior descending 
coronary artery was higher in the propionyl-L-carnitine-treated than in the untreated 
animals. It has been well established that reperfusion after a prolonged period of 
myocardial ischemia does not always result in a complete return of blood flow since 
the vasculature of the ischemic myocardium can become obstructed by extravascular 
compression or by intravascular obstructions (the "no-reflow"-phenomenon). It could 
then be argued that propionyl-L-carnitine treatment attenuated this no-reflow phe
nomenon." 

Introduction 

Propionyl-L-carnitine protects ischemic myocardium in the isolated working 
rat heart preparation [1] and enhances recovery of myocardial function fol
lowing mild myocardial ischemia in an in vivo porcine model [2]. The en
hanced recovery of post-ischemic myocardium has been ascribed to a positive 
inotropic action of the drug [2]. Stimulation with catecholamines will also 
improve function of depressed post-ischemic ("stunned") myocardium [3, 4], 
but this is accompanied by a shift in substrate utilization in favor of free fatty 
acids [4, 5]. Free fatty acid oxidation could, however, still be impaired 
because of a carnitine deficiency, depletion of mitochondrial pools of citric 
acid cycle intermediates and fatty acyl-CoA inhibition-induced adenine nucle
otide translocation across the inner mitochondrial membrane. Propionyl-L
carnitine administration has the potential to relieve the deficiency of carnit
ine, to supply propionyl-CoA as a source of succinyl-CoA and to reduce 
fatty acyl- CoA accumulation (as we discussed in [6]). In this respect it is of 
interest that carnitine has increased the tolerance to pacing-induced myocar
dial ischemia in patients undergoing diagnostic cardiac catheterization [7]. 
Thus, propionyl-L-carnitine could, because of its metabolic actions, be useful 
during inotropic stimulation of post-ischemic myocardium with catechol
amines. 

In the present communication we review the results of our studies [6, 8, 

f. W. de fong and R. Ferrari (eds): The carnitine system, 291-306. 
© 1995 Kluwer Academic Publishers. 
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9] on the effects of propionyl-L-carnitine on recovery of function and meta
bolism (i) following severe myocardial ischemia in open-chest anesthetized 
pigs, and (ii) in view of the metabolic effects of catecholamine stimulation, 
during chronotropic (atrial pacing) and inotropic stimulation of post-ischemic 
myocardium with dobutamine. 

Materials and methods 

Cross-bred Landrace x Yorkshire pigs (n = 47, 22-40 kg) were sedated, 
anesthetized and intubated for artificial ventilation, before the animals were 
catheterized for continuous administration of the anesthesia, the measure
ment of the arterial and left ventricular blood pressures and the withdrawal 
of blood samples [6, 8, 9]. After opening the thorax with a midsternal split, 
an electromagnetic flow probe (Skalar, Delft, The Netherlands) was placed 
around the ascending aorta for the measurement of aortic blood flow, while 
the left anterior descending coronary artery (LADCA) was dissected free 
distal from its first diagonal branch for placement of an inflatable balloon 
(R.E. Jones, Silver Spring, MD, USA) or an atraumatic clamp, depending 
on the study protocol. The vein accompanying the LADCA was cannulated 
for the withdrawal of blood samples in which coronary venous oxygen content 
was determined. To determine regional blood flows, the left atrial appendage 
was catheterized for injection of radioactively labelled microspheres. 

In the first protocol regional myocardial function was assessed from myo
cardial wall thickness recordings, which were obtained using a 5 MHz ultra
sonic transducer (Krautkamer-Branson, Lewistown, PA, USA) sutured onto 
a part of the epicardial surface in the distribution area of the LADCA. 
Systolic wall thickening (SWT, % ) was calculated as 100 x (EST -EDT)/EDT, 
in which EST and EDT are wall thickness at end systole and end diastole, 
respectively. In two other protocols two pairs of ultrasonic crystals (Triton 
Technology, San Diego, CA, USA) were implanted in the distribution area 
of the LADCA and the LCXCA (left circumflex coronary artery) to record 
regional myocardial segment length changes. Systolic segment length shorten
ing was calculated as: SLS (%) = 100 x (EDL-ESL)/EDL, in which EDL 
and ESL are the segment length at end diastole and end systole, respectively. 

Experimental protocols 

General. In all protocols, values of systemic hemodynamics, regional myo
cardial function and regional blood flows were taken at baseline and during 
the course of the experiments, while biopsies for the measurement of high 
energy phosphates, (acyl)carnitine, short-chain fatty acylcarnitine and sarco
plasmic reticulum function were collected as described below. 
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Protocol 1. After administration of propionyl-L-carnitine (50 mg/kg over a 
period of 10 min, n = 9) or an equal volume of saline (20 ml, n = 10) the 
flow in the LADCA was gradually reduced by inflation of the balloon, until 
SWT had virtually been abolished. After 60 min, the balloon was deflated 
and the myocardium reperfused for two h. At the end of this reperfusion 
period, biopsies were taken from both the area perfused by the LADCA 
and from the control area for the determination of sarcoplasmic reticulum 
function (not discussed in this paper; for results see [8]) and tissue levels of 
free carnitine and short-chain fatty acylcarnitine. 

Protocol 2. In this protocol, 7 animals were pretreated p.o. with propionyl
L-carnitine (50 mg/kg b.i.d. for 3 days). On the day of the experiments the 
animals received 50 mg/kg p.o. and 50 mg/kg iv. (administered over a period 
of 20 min), three h prior to the experiment. Seven other animals served as 
control. The myocardium perfused by the LADCA underwent two periods 
of 10 min of ischemia seperated by 30 min of myocardial reperfusion. Thirty 
min after the second reperfusion, heart rate was increased by 50 beats/min 
via left atrial pacing and 5 min later, a 10 min intravenous infusion of 
2 fLg/kg/min dobutamine was started, while the heart rate was kept constant. 

Protocol 3. This protocol included 6 propionyl-L-carnitine-pretreated ani
mals (for the dose see protocol 2) and 8 controls. These animals also under
went two sequences of 10 min coronary artery occlusion and 30 min of 
myocardial reperfusion, but at the end of the second reperfusion period, 
biopsies were taken from both the area perfused by the LADCA and from 
the control area for the determination of sarcoplasmic reticulum function 
(not discussed in this paper; for results see [6]) and tissue levels of free 
carnitine and short-chain fatty acylcarnitine. 

Drugs. Propionyl-L-carnitine HCI and NaHC03 , in an equimolar ratio, were 
dissolved in distilled water. pH of the final solution was between 6.8 and 
7.3. 

Statistics. All data have been presented as means ± SE. Because the animals 
in protocol 2 and 3 underwent the same procedure during the two sequences 
of 10 min LADCA occlusion and 30 min of reperfusion, the data obtained 
at baseline and after induction of stunning have been pooled. The significance 
of the propionyl-L-carnitine-induced changes was determined by comparing 
these changes with those observed in the saline-treated animals at corre
sponding time-points. Statistical significance was accepted for P < 0.05. 
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Results 

Protocol 1 

Effects of propionyl-l-carnitine during 60 min of ischemia and 2 h 
of reperfusion 
Propionyl-L-carnitine administration before the flow reduction did not affect 
any of the systemic hemodynamic variables and regional blood flow data. 
The data determined after administration have therefore been presented as 
baseline before the flow reduction. 

Ventricular arrhythmias. Seven of the 9 propionyl-L-carnitine-treated and 8 
of the 10 saline-treated animals encountered an episode of ventricular fibril
lation during the 60 min of flow reduction. All animals could be defibrillated 
within 30 s and resumed pre-fibrillation values and were therefore included 
in the analysis of the study. There was not a single period of ventricular 
fibrillation in either group during reperfusion. 

Systemic hemodynamics. In the saline-treated animals mean arterial blood 
pressure (MAP), cardiac output (CO), stroke volume (SV) and LVdP/dtmax 

decreased, while left ventricular end diastolic pressure (LVEDP) increased 
(P < 0.05) during the flow reduction. There was no recovery during the 2 h 
of reperfusion as MAP (by 20%), LVdP/dtmax (by 25%), CO (by 25%) and 
SV (by 24%) further decreased, while L VED P increased. Systemic vascular 
resistance (SVR) also increased (by 30%) and this prevented a larger fall in 
MAP (Figure 1). 

Pretreatment with propionyl-L-carnitine had no effect on the ischemia
induced changes in MAP, CO, SV and LVdP/dtmax , while LVEDP increased 
from 8 ± 1 to 12 ± 1 mmHg during the first 30 min of flow reduction but, at 
variance with the saline-treated pigs, decreased to 9 ± 1 mmHg during the 
last 30 min of the 60 min flow reduction (Figure 1). CO did not deteriorate 
further during reperfusion, while SVR did not increase. 

Regional myocardial wall thickening. During the coronary blood flow reduc
tion, EDT decreased in both the saline-treated and the propionyl-L-carnitine
treated animals (8-12%, P < 0.05), while there was a complete loss of sys
tolic thickening (baseline values of 29 ± 2% and 31 ± 4%, respectively). In 
both groups of animals, EDT had increased to values above baseline (10%) 
after two h of reperfusion, but there was no recovery of systolic wall thicken
mg. 

Regional blood flows. During the 60 min of ischemia the changes in flow to 
various organs were not the same in the saline-treated animals: kidneys 
( -12% ), the iliopsoas muscle (-39% ), the skin ( - 29% ), the small intestine 
(-22%) and the brains (-18%). Propionyl-L-carnitine did not modify these 
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Figure 1. Systemic hemodynamic effects in saline·treated (open bars, n = 10) and propionyl
L-carnitine-treated (hatched bars, n = 9) pigs at baseline (BL), after 30 and 60 min of ischemia 
(I) and 120 min of reperfusion (R). * P < 0.05 vs baseline, only presented for 30 and 60 min 
of ischemia; + changes vs baseline in the propionyl-L-carnitine-treated animals are significantly 
different from the changes vs baseline in the saline-treated animals; • changes vs 60 min of 
ischemia in the propionyl-L-carnitine-treated animals are significantly different from the changes 
vs 60 min of ischemia in the saline-treated animals. MAP = mean arterial blood pressure, HR = 

heart rate, CO = cardiac output, LVdPdtmax = maximal rate of rise of left ventricular pressure, 
SVR = systemic vascular resistance, L VEDP = left ventricular end diastolic pressure. (With 
permission from American Journal of Physiology [8].) 
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ischemia-induced changes. Reperfusion did not lead to recovery of regional 
blood flows in the saline-treated animals. In the propionyl-L-carnitine-treated 
animals, blood flow to the skin (79% of baseline) and small intestine were 
increased (P < 0.05 vs saline-treated animals at the end of reperfusion), but 
blood flow to the brains (96% of baseline), skeletal muscle (84% of baseline) 
and the kidneys (74% of baseline) did not change, compared to the values 
at the end of ischemia. 

Regional myocardial blood flow. Inflation of the balloon caused similar de
creases in transmural myocardial blood flow in the saline-treated and the 
propionyl-L-carnitine-treated animals during ischemia (Figure 2). After two 
h of reperfusion, transmural perfusion in the distribution area of the LADCA 
had returned to only 50% of baseline in the saline-treated animals, but to 
80% of baseline (P < 0.05) in the propionyl-L-carnitine-treated animals. 
Consequently, the coronary vascular resistance of the saline-treated animals 
had increased (25%, P < 0.05), while there was no change in the coronary 
vascular resistance of the propionyl-L-carnitine-treated animals. 

In the non-ischemic area of the saline-treated animals transmural blood 
flow decreased because of the fall in arterial blood pressure during ischemia. 
During reperfusion coronary vascular resistance did not change. In the pro
pionyl-L-carnitine-treated animals blood flow at the end of reperfusion was 
not different from that at baseline (Figure 2). In these animals coronary 
vascular resistance decreased during the experiment from 0.9 ± 0.1 mmHg . 
minlmLilOO g at baseline, 0.8 ± 0.1 mmHg . min/mLl100 g after 60 min of 
ischemia to 0.7 ± 0.1 mmHg . min/mLilOO g at the end of reperfusion. 

Regional myocardial oxygen consumption. Oxygen saturation of the coron
ary venous blood of the LADCA-perfused myocardium was 25 ± 5 and 
24 ± 2% at baseline and 64 ± 5 and 61 ± 8% after 2 h of reperfusion in the 
saline-treated and the propionyl-L-carnitine-treated animals, respectively. 
Hence myocardial oxygen consumption remained directly related to coronary 
blood flow and was, because of the higher blood flow, higher in the propionyl
L-carnitine-treated animals at the end of reperfusion. 

High-energy phosphates. Except for a 15% decrease (P < 0.05 vs baseline) 
in the adenine nucleotide pool of the propionyl-L-carnitine-treated animals 
at the end of reperfusion, there were no changes in the tissue high energy 
phosphate levels of the non-ischemic segment of either group (Figures 3 and 
4). In the distribution area of the LADCA, there were similar decreases in 
ATP, creatine phosphate (CP), energy charge and the sum of the adenine 
nucleotides of both groups during the flow reduction. During this condition, 
the sum of CP and creatine remained unchanged, however. A TP levels did 
not recover during reperfusion in either group, but especially in the saline
treated animals there were improvements in CP and in the energy charge. 
The adenine nucleotide pool did not recover in the saline-treated animals, 
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Figure 2. Transmural myocardial blood flow of non-ischemic and ischemic myocardium in saline
treated (open bars, n = 10) and propionyl-L-carnitine-treated (hatched bars, n = 9) pigs at 
baseline (EL), after 30 and 60 min of ischemia (I), and 120 min of reperfusion (R). * P < 0.05 
vs baseline. only presented for 30 min and 60 min of ischemia; + changes vs baseline in the 
propionyl-L-carnitine-treated animals are significantly different from the changes vs baseline in 
the saline-treated animals; • changes vs 60 min of ischemia in the propionyl-L-carnitine-treated 
animals are significantly different from the changes vs 60 min of ischemia in the saline-treated 
animals. (With permission from American Journal of Physiology [8].) 

while there was a further decrease in the propionyl-L-carnitine-treated ani
mals (Figure 4). The sum of CP and creatine remained constant in the saline
treated pigs but decreased to 47% of baseline (P < 0.05 vs baseline) in the 
propionyl-L-carnitine-treated animals. 

Free carnitine and short-chain fatty acylcarnitine levels in plasma and 
myocardium. The plasma levels short-chain fatty acylcarnitine increased 
from 1.20 ± 0.49 to 682 ± 65 fLM after the bolus of 50 mg/kg of propionyl
L-carnitine. During ischemia and reperfusion the plasma level of short chain 
fatty acylcarnitine gradually decreased to 67 ± 6 fLM at the end of reper-
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Figure 3. ATP and creatine phosphate (CP, fLmol/g protein) and energy charge 
[(ATP + 0.5ADP)/(ATP + ADP + AMP)] of the ischemic and non-ischemic myocardium of 
saline-treated animals (open bars, n = 10) and propionyl-L-carnitine-treated (hatched bars, n = 
9) at baseline (BL), at 30 (only for the ischemic segment) and 60 min of ischemia (I) and after 
120 min of reperfusion (R). * P < 0.05 vs baseline, only presented for 30 and 60 min of ischemia; 
+ changes vs baseline in the propionyl-L-carnitine-treated animals are significantly different 
from the changes vs baseline in the saline-treated animals; • changes vs 60 min of ischemia in 
the propionyl-L-carnitine-treated animals are significantly different from the changes vs 60 min 
of ischemia in the saline-treated animals. (With permission from American Journal of Physiology 
[8].) 
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Figure 4. Total adenine nucleotide (ATP + ADP + AMP) and creatine (CP + creatine) pools 
of the non-ischemic and ischemic myocardium in saline-treated (open bars, n = 10) and pro
pionyl-L-carnitine-treated (hatched bars, n = 9) pigs at baseline (BL), at 30 (only for the 
ischemic segment) and 60 min of ischemia (I) and after 120 min of reperfusion (R). * P < 0.05 
vs baseline, only presented for 30 and 60 min of ischemia; + changes vs baseline in the propionyl
L-carnitine-treated animals are significantly different from the changes vs baseline in the saline
treated animals; • changes vs 60 min of ischemia in the propionyl-L-carnitine-treated animals 
are significantly different from the changes vs 60 min of ischemia in the saline-treated animals. 
CP = creatine phosphate. (With permission from American Journal of Physiology [6].) 

fusion. The free carnitine levels increased rapidly by a factor of 10 after the 
bolus infusion of propionyl-L-carnitine and remained at this level until the 
end of reperfusion. 

The myocardial free carnitine levels had decreased to about 60% of base
line value at the end of reperfusion. In both the saline- and the propionyl
L-carnitine treated animals, the levels of short-chain fatty acylcarnitine re
mained unchanged [8]. 
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Table 1. The hemodynamic effects of two sequences of proximal left anterior descending coron-
ary artery occlusion (10 min) and reperfusion (30 min) in untreated (n = 14) and with propionyl-
L-carnitine (PLC, n = 13) pretreated anesthetized pigs. 

Group Baseline Occlusion- Reperfusion- Occlusion- Reperfusion-
1 (10 min) 1 (30 min) 2 (10 min) 2 (30 min) 

CO Untreated 2.9 ± 0.2 2.5 ± 0.2a 2.5 ± 0.2" 2.2 ± 0.2a 2.3 ± 0.2a 
PLC 2.9 ± 0.2 2.4 ± 0.3" 2.5 ± 0.2a 2.2 ± 0.3a 2.3 ± 0.3" 

HR Untreated 106 ± 5 107±5 106 ± 3 109±4 109 ± 4 
PLC 114±5 116±6 115±6 120 ± 6 119±6 

SV Untreated 27 ± 1 23 ± l a 23 ± l a 20 ± l a 22 ± l a 

PLC 26 ± 2 21 ± 2a 22 ± 2a 19 ± 2a 20 ± 2a 

MAP Untreated 90 ± 4 85 ± 4a 86 ± 3 79 ± 4a 86 ± 3 
PLC 89 ± 3 79 ± 2ab 80 ± 4a 69 ± 3ab 74 ± 4ab 

SVR Untreated 33 ± 2 36 ± 3" 37 ± 3a 37 ± 2a 39 ± 3" 
PLC 32 ± 2 35 ± 2" 33 ± 2 34 ± 2 34 ± 2b 

LVdP/dtmax Untreated 2150 ± 130 1720 ± 100" 1680 ± 90a 1570 ± 90a 1640 ± 100" 
PLC 2130 ± 105 1670 ± 100a 1670 ± 110" 1590 ± 110a 1590 ± 120a 

LVEDP Untreated 8 ± 1 14 ± 2a 7±1 13 ± 2" 9 ± 1 
PLC 8±1 13 ± 2" 8 ± 1 11 ± 2a 8 ± 1 

CO, cardiac output (Llmin); HR, heart rate (beats/min); SV, stroke volume (mL); MAP, mean 
arterial pressure (mmHg); SVR, systemic vascular resistance (mmHg . minlL); LV dP/dtmaxo 
maximum rate of rise of left ventricular pressure (mmHg/s); LVEDP, left ventricular end
diastolic pressure (mmHg). 
a P < 0.05 vs baseline; b PLC-induced changes vs baseline are significantly different from changes 
vs baseline in untreated pigs. (Adapted from Journal Cardiovascular Pharmacology [6].) 

Protocols 2 and 3 

Effect of propionyi-l-carnitine during two sequences of 10 min coronary 
artery occlusion and 30 min of reperfusion 

Systemic hemodynamics. CO fell from 2.9 ± 0.2 to 2.5 ± 0.2 Umin 
(P < 0.05, Table 1) in the control group during the first coronary artery 
occlusion. MAP decreased only by about 5% because of an increase in SVR. 
Because HR did not change, a decrease in SV was therefore the cause of the 
reduction in CO. LVdP/dtmax decreased by 20% (P < 0.05), while LVEDP 
doubled. Except for L VEDP, there was no recovery during the first reper
fusion period. During the second coronary artery occlusion there were ad
ditional decreases in CO, MAP, SV, while LVEDP again doubled. During 
the second reperfusion, MAP recovered partially because of vasoconstriction. 

In the propionyl-L-carnitine-treated animals, the large decrease in MAP 
at the end of the two coronary artery occlusion-reperfusion sequences was 
the major difference with the findings in the untreated animals. In concert 
with the series of experiments in protocol 1, SVR did not increase in the 
propionyl-L-carnitine-treated animals. 
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Table 2. Myocardial segment length shortening (SLS) during two sequences of proximal left 
anterior descending coronary artery (LADCA) occlusion and reperfusion in untreated and with 
propionyl-L-carnitine (PLC) pretreated anesthetized pigs. 

Group n Baseline Occlusion- Reperfusion- Occlusion- Reperfusion-
1 (10 min) 1 (30 min) 2 (10 min) 2 (30 min) 

Control Area 
SLS (%) Untreated 13 14.9 ± 1.2 16.9 ± 1.6 14.2 ± 1.3 16.4 ± 1.7 14.4 ± 1.3 

PLC 13 11.4 ± 1.0 12.0 ± 1.5 10.2 ± 1.1 11.3 ± 1.1 10.6 ± 1.1 

LADCA-Perfused Area 
SLS (%) Untreated 14 18.5 ± 1.5 -3.7 ± 2.0a 6.2 ± 1.6a -3.8 ± 0.6a 5.1 ± 1.5a 

PLC 13 17.4 ± 1.2 -4.5 ± 0.7" 7.6 ± 1.1a -5.0 ± 0.8a 6.8 ± 1.2ab 

a P < 0.05 vs baseline; b P = 0.056 for the PLC-induced change from baseline vs change from 
baseline in untreated pigs. (Adapted from Journal Cardiovascular Pharmacology [6].). 

Regional myocardial segment length shortening. Segment length shortening 
(SLS) in the distribution area of the LADCA was abolished in the untreated 
animals during the first coronary artery occlusion and recovered only partially 
during the first reperfusion (Table 2). A similar pattern was observed during 
the second occlusion-reperfusion sequence. In the propionyl-L-carnitine
treated animals, there was also a complete loss in SLS during the occlusions, 
but systolic segment shortening of the LADCA-perfused area was 39% of 
baseline at the end of reperfusion-2 in the treated animals, while this was 
28% of baseline (P = 0.056) in the untreated animals. 

Regional myocardial blood flow. Subendocardial blood flow in the not 
stunned segment (LCXCA) was reduced at the end of reperfusion-2, while 
subepicardial blood flow remained unchanged (see [6]). This resulted in a 
decrease in the subendocardial! subepicardial blood flow ratio from 
1.11 ± 0.09 at baseline to 0.92 ± 0.17 at the end of reperfusion-2 (P < 0.05). 
In the LADCA-perfused area, the two occlusion-reperfusion sequences re
duced transmural myocardial blood flow from 164 ± 38 to 101 ± 23 
mUmin/lOO g (P < 0.05). In this segment, the subendocardial/subepicardial 
blood flow ratio did not change. Pretreatment with propionyl-L-carnitine did 
not affect baseline blood flow in any of the layers of the stunned and the 
not stunned myocardium. The changes in blood flow to the LADCA-perfused 
area in the propionyl-L-carnitine group were not different from those in the 
untreated animals (see [6]). 

Regional myocardial oxygen (MV02 ) and lactate consumption (MVlactate)' In 
the untreated group, transmural MV02 of the myocardium perfused by the 
LADCA decreased by 39% (P < 0.05). This was accompanied by a marked 
reduction in MVlactate from 118 ± 40 f,Lmol/min/lOO g at baseline to 11 ± 14 
f,Lmol/min/100 g at the end of reperfusion-2 (P < 0.05). Pretreatment with 
propionyl-L-carnitine had no affect on MV02 and MVlactate at baseline. Also, 
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ischemia- and reperfusion-induced changes in MV02 and MVlactate were 
similar to those in the control group. 

Protocol 2 

Effect of propionyl-L-carnitine during chronotropic and inotropic 
stimulation of post-ischemic myocardium 

Systemic hemodynamics. In the untreated animals, atrial pacing at 50 beats/ 
min above spontaneous sinus rhythm did not change any of the hemodynamic 
variables, with the exception of SV, which decreased by 39% (see [6]). The 
additional infusion of dobutamine improved LVdP/dtmax and CO with 90% 
and 30% respectively (P < 0.05). As a result, CO returned to baseline level 
and LVdP/dtmax was increased by 60% compared to baseline. SV increased 
slightly but remained depressed compared to baseline, while L VEDP de
creased by 30% during dobutamine administration. SVR, which was ele
vated, returned to baseline values, leaving MAP unchanged. 

In the animals pretreated with propionyl-L-carnitine, SVR was not affected 
by either chronotropic or inotropic stimulation. 

Regional myocardial segment length shortening. Atrial pacing reduced SLS 
in the not stunned myocardium of the untreated animals from 13.4 ± 4.2% 
(at the end of reperfusion-2) to 9.3 ± 3.0% (P < 0.05), while there was no 
additional change after dobutamine. In the stunned area, SLS was not affec
ted by atrial pacing, but increased to 14.7 ± 6.0% during dobutamine. Pre
treatment with propionyl-L-carnitine had no effect on the response of SLS 
to atrial pacing and dobutamine. 

Myocardial bloodfiow. Atrial pacing had no affect on transmural myocardial 
blood flow in the stunned and not stunned area of the untreated group. 
During infusion of dobutamine, however, perfusion of the not stunned and 
the stunned areas increased with 25 and 50%, respectively (see [6]). These 
increases were equally distributed over the subepicardial and subendocardial 
layers. In the stunned area of the propionyl-L-carnitine treated animals, the 
changes in flow in the LADCA-perfused area were similar to those in the 
untreated group, but in the not stunned segment they did not reach levels 
of statistical significance during either atrial pacing or dobutamine infusion. 

Regional myocardial oxygen and lactate consumption. Atrial pacing had no 
effect on MV02 and MVlactate of the stunned myocardium of the untreated 
animals, but during the additional infusion of dobutamine, MV02 increased 
from 369 ± 93 /-LmoVmin/lOO g (during atrial pacing), to 518 ± 107 /-Lmol/ 
min/lOO g (P < 0.05), while MVlactate almost doubled (P < 0.05). MV02 of 
the treated animals did not change significantly during chronotropic and 
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inotropic stimulation, while changes in MVlactate were similar to those in the 
untreated animals. 

Protocol 3 

Effect of propionyl-L-carnitine on myocardial depletion of high energy phos
phates and carnitine produced by ischemia and reperfusion 

Regional myocardial high energy phosphates. After induction of stunning, 
ATP and ADP in the stunned area were reduced by 35% (see [6]). The 
energy charge, however, was unchanged, while CP increased by 50%, which 
suggests an intact oxidative phosphorylation potential. Pretreatment with 
propionyl-L-carnitine had no effect on these variables, before or after induc
tion of stunning. 

Regional myocardial free carnitine and short chain acylcarnitine levels. In the 
control group the occlusion-reperfusion sequences resulted in 25% lower 
levels of free carnitine in the stunned area than in the not stunned area at 
the end of reperfusion-2, while levels of short chain acy1carnitine in the 
ischemic area remained unchanged. Pretreatment with propionyl-L-carnitine 
increased the myocardial levels of free carnitine. The ischemia-reperfusion
induced decreases in the tissue levels of free carnitine in the LADCA per
fused myocardium were similar for both groups. However, due to the initial 
increase, the tissue levels in the post-ischemic myocardium of the treated 
animals did not fall below the baseline values of the untreated animals. 

Discussion 

The most important finding in the first protocol was that post-ischemic blood 
flow to the myocardium perfused by the LADCA was higher in the propionyl
L-carnitine-treated than in the untreated animals. It has been well established 
that reperfusion after a prolonged period of myocardial ischemia does not 
always result in a complete return of blood flow since the vasculature of the 
ischemic myocardium can become obstructed by extravascular compression 
or by intravascular obstructions (the "no-reflow"-phenomenon [10]). It could 
then be argued that propionyl-L-carnitine-treatment attenuated this no
reflow phenomenon. It has been suggested that propionyl-L-carnitine has a 
stabilizing action on plasma membrane, during ischemia and associated aci
dosis of the Langendorff-perfused rat heart [11]. Not only the sarcolemma 
of the cardiomyocytes, but also the vascular endothelium may be protected 
by the compound. Van Hinsberg and Scheffer [12] demonstrated in fura-2-
loaded human endothelial cells in culture that propionyl-L-carnitine de
creased the resting cytoplasmic free Ca2 + concentration, which also indicates 
a direct effect on the plasma membrane of these cells. The mechanism by 
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which propionyl-L-carnitine decreases resting levels of Ca2 + is not known, 
but could be mediated by a direct effect on the plasma membrane Na + /Ca2 + 

exchanger and/or Ca2+ pump. Propionyl-L-carnitine could also have pro
duced a direct coronary vasodilatory effect. The data obtained immediately 
after administration of the drug do not support this idea but at the end of 
the experiment, the higher blood flows to the non-ischemic myocardium and 
some organs may have been due to a direct vasodilatory action of propionyl
L-carnitine. 

The higher post-ischemic blood flow in the propionyl-L-carnitine-treated 
animals was not accompanied by a return of systolic contractile function 
during early reperfusion. The explanation for this can be threefold: (i) The 
myocardial tissue is irreversibly injured. In our laboratory we have shown 
that four weeks after a 60 min total coronary artery occlusion recovery of 
contractile function is absent [13, 14], but others found that 30-40% of the 
myocardium at risk was still viable [10]. In the present study we decreased 
coronary blood flow with 80% for 60 min. A significant fraction of the 
affected myocardium should therefore have still been viable. (ii) The low 
level of ATP of the post-ischemic myocardium prevented contractile func
tion. However, it has repeatedly been demonstrated that enhanced recovery 
of function occurs while the low ATP levels are not affected [15, 16]. It is 
unlikely that the stunning of the myocardium was so severe that the myocar
dium became resistant to any stimulation, as even after two h of total 
occlusion, recruitment of regional contractile function of the stunned myocar
dium is still possible [15]. Previous studies on the effects of propionyl-L
carnitine on function of post-ischemic myocardium have yielded variable 
results. Thus, in isolated rat [11] and rabbit [17] hearts, subjected to low
flow global ischemia, propionyl-L-carnitine improved the recovery of de
veloped left ventricular pressure during subsequent reperfusion. This effect 
has been ascribed to the increase in fatty acid oxidation [11] and the attenu
ation of oxidative stress as reflected by the oxidized/reduced glutathion ratio 
[17]. However, e.g. myocardial long chain acyl-CoA levels were not affected 
[11]. Observations in isolated perfused rat hearts subjected to low-flow is
chemia, suggested that preservation of fatty acid oxidation may occur as 
propionyl-L-carnitine attenuated the ischemia-induced decrease in succinyl
CoA. Propionyl-L-carnitine stimulates the tricarboxylic-acid cycle via this 
anaplerotic action [18]. (iii) In extracorporeal blood-perfused pig hearts sub
jected to 45 min of low-flow ischemia (60% flow reduction) propionyl-L
carnitine improved myocardial contractile function during reflow [2]. This 
effect was ascribed to positive inotropic actions of propionyl-L-carnitine as 
long chain acylcarnitine and long-chain-acyl-CoA levels were unchanged. In 
contrast, in the first protocol propionyl-L-carnitine had no effect on post
ischemic metabolism or function in a model of 60 min of low-flow ischemia 
(80% flow reduction). 

SLS recovered to 39% of baseline in the untreated animals after the two 
occlusion-reperfusion sequences (Protocols 2 and 3), but to 56% of baseline 
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after pretreatment with propionyl-L-carnitine. This positive effect is not 
necessarily caused by the putative inotropic action as the prevention of 
peripheral systemic vasoconstriction by propionyl-L-carnitine, and the subse
quent lower arterial blood pressure (afterload) could have been responsible 
for the slight improvement in SLS at the end of the second reperfusion 
period. During atrial pacing and dobutamine infusion, there were no appar
ent differences between propionyl-L-carnitine-pretreated and untreated ani
mals in any of the metabolic or functional variables, which also points towards 
a mechanism not related to an inotropic action. 

Although pretreatment with propionyl-L-carnitine did increase myocardial 
carnitine levels, it did not result in the expected shift from anaerobic to 
aerobic metabolism during stimulation with dobutamine [6]. These results 
indicate that myocardial depletion of carnitine or mitochondrial citric acid 
cycle intermediates does not contribute to myocardial hypofunction in the 
present model of repetitive ischemia and reperfusion. 
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22. Effect of propionyl-L-carnitine on rats with 
experimentally induced cardiomyopathies 

ROSELLA MICHELETTI, ANTONIO SCHIAVONE and 
GIUSEPPE BIANCHI 

"Propionyl-L-carnitine stands out as possessing some new and interesting features 
that could be of value in the management of congestive heart failure. It is also evident 
that, because the biochemical alterations accompanying congestive heart failure may 
differ according to either the stage of the disease or its aetiology, propionyl-L
carnitine should be particularly useful in those conditions where its biochemical 
activity could compensate for an existing metabolic deficiency." 

Introduction 

Congestive heart failure (CHF) is the functional definition of a clinical syn
drome with a heterogeneous underlying aetiology, but a common manifes
tation characterised by the "exhaustion of the reserve force of the heart" 
[1]. Despite the different classes of drugs employed in its treatment, CHF 
maintains a poor prognosis [2] and is considered a malignant disease. It is 
noteworthy that some recent editorials published in leading medical journals 
emphasise the "failure to treat heart failure" [3, 4]. Thus, despite the progress 
that has unequivocally been achieved in recent years with the development 
of pharmacological classes of agents acting through novel mechanisms, the 
need to develop effective and safe drugs remains strong [5]. 

The available therapy comprises drugs that exert their primary effect di
rectly on the myocardial cell, and drugs that act mainly on the heart load. 
The former group includes the inotropes. Digitalis glycosides, the longest 
running inotropes, are undoubtedly effective in improving symptoms in a 
subset of patients [6], but whether they are also effective in the prognosis of 
heart failure is still being investigated. Disappointing results have been 
yielded by the new inotropic agents, aimed at elevating cAMP levels: both 
the phosphodiesterase inhibitors, milrinone and enoximone, and the partial 
J3-adrenoceptor agonist, xamoterol, shorten survival in CHF patients [7-9], 
limiting their usefulness to an acute setting. 

Agents aimed at reducing preload and afterload, i.e. diuretics, vasodilators 
and angiotensin converting enzyme inhibitors (ACE), include the only drugs 

l. W. de long and R. Ferrari (eds): The carnitine system. 307-322. 
© 1995 Kluwer Academic Publishers. 
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effective both on symptoms and on prognosis [10]. It is likely that the 
therapeutic efficacy of ACE inhibitors does not depend solely on the reduc
tion of work load. In fact, in experimentally induced cardiomyopathies, they 
have been shown to directly inhibit the cardiac ACE system [11], affecting 
remodelling and the development of fibrosis [12] and to exert effects unre
lated to inhibition of angiotensin II production [13]. 

Heart function may fail due to a primary impairment of myocardial con
tractility or following the imposition of an excessive load. Depending on the 
aetiology of heart failure, different cardiac adaptive mechanisms and differ
ent pathological evolutions ensue. These will be considered separately below. 
Irrespective of the nature of the overload, the fundamental mechanism eli
cited in the attempt to reduce the increase in wall stress is the development 
of hypertrophy. However, the initial compensation consequent to the un
loading of cardiomyocytes does not ultimately prevent the transition from 
hypertrophy to failure. Katz postulated that the failing heart is in a state of 
energy starvation, due to an imbalance between energy production and use 
[14]. Possible causes, found independently of the aetiology of hypertrophy, 
include an inadequate capillary proliferation, with diminished oxygen dif
fusion and sub endocardium hypoperfusion [15]; at the cellular level, an 
unfavourable ratio of mitochondria to myofibrils [15], that may result in the 
inability of the energy-producing system to fulfil the needs of the contractile 
apparatus. Several observations sustain the possibility that impairment of 
cardiac performance depends on an energetic imbalance. Firstly, mitochon
dria from end-stage cardiomyopathic patients have decreased cytochrome 
content and activity [16]. Secondly, the newly available technique of 31p 

nuclear magnetic resonance has provided experimental evidence for the 
energy-starved state of the failing heart. A decrease in both creatine phos
phate (CP) content and creatine kinase reaction velocity was shown to be 
coupled with a significant impairment of contractile reserve in the failing rat 
heart [17, 18]. Thirdly, a negative correlation between CP to ATP ratio and 
severity of heart failure could be demonstrated in patients; importantly, in 
these patients, clinical amelioration was associated with an increase in 
CP/ATP ratio [19]. 

Alterations in energy production may also result from changes in the 
metabolic substrate used. In this regard, fatty acid oxidation was found 
reduced in homogenates from failing hearts [20] and an altered ratio of 
oxidative vs glycolytic metabolism was demonstrated in hypertrophied hearts 
[21 ]. 

No therapeutic approach has yet been aimed at preventing or opposing 
the consequences of metabolic imbalance. Propionyl-L-carnitine (PLC) re
presents the prototype of a novel class of therapeutic agents capable of 
stimulating substrate oxidation with a consequent increase in energy produc
tion. PLC, a naturally occurring L-carnitine derivative, has some advantages 
over carnitine, namely, it is able to replenish mitochondria with intermediates 
of the citric acid cycle [22]; it stimulates palmitate oxidation to a greater 
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extent than carnitine, both in heart homogenates [23] and in isolated hyper
trophied myocytes [24]; in the latter preparation, only PLC, but not carnitine, 
does increase the ATP to ADP ratio; moreover, the hydrolysed propionate 
improves the flux of intermediates throughout the tricarboxylic acid cycle 
[25, 26]. These metabolic properties are mirrored by a greater stimulation 
of cardiac performance than with L-carnitine, as shown by mechanical re
covery of isolated hearts after ischemia [23, 27]; in normal hearts, PLC, but 
not carnitine pretreatment, improves contractility at high left ventricular 
filling volumes [28]. 

This review will discuss some of the findings recently accumulated on the 
effect of PLC in different models of cardiomyopathy in the rat. Each model 
will be considered separately, because of its histological, mechanical and 
metabolic peculiarities [29]. 

Pressure overload cardiomyopathy 

We developed a model of heart hypertrophy in adult rats by constricting the 
abdominal aorta (AC) to an extent that produced an average 40% increase 
in total heart weight, and a depletion in the myocardial content of carnitine 
and high energy phosphates. This model was employed to investigate: 1) the 
haemodynamics of conscious rats; 2) the haemodynamics of anaesthetised 
rats during increased preload and during increased afterload; 3) the perfor
mance and energetic state of Langendorff perfused hearts; 4) the mechanics 
of isolated papillary muscles; 5) the left ventricle content in myosin isoen
zymes; 6) the metabolic and energetic state of isolated cardiomyocytes. 

When pressure overloaded conscious rats were treated with PLC (50 mg/kg 
intraarterially) for 4 days, they showed an improvement of haemodynamics, 
that was more significant for the rats with the higher cardiac hypertrophy 
and greater carnitine deficiency (Figure 1). Treatment produced an increase 
in cardiac output, cardiac work, stroke volume and stroke work, ac
companied by a decrease in total peripheral resistance (Figure 2); these 
haemodynamic changes subsided after treatment withdrawal (Figure 2) [30]. 

In urethane anaesthetised rats, AC did not affect basal haemodynamics. 
However, an acute preload stress induced by i. v. infusion of saline (40 ml/kg 
in 1 min) disclosed an overt impairment of cardiac function, evident as lower 
CO and SV (Donato di Paola, unpublished). Treatment with PLC (oral 
administration for 3 weeks, beginning on the third week after aortic banding) 
improved the performance of AC animals, while leaving unchanged the 
response in sham-operated rats. Peak cardiac output reached during infusion 
was significantly increased compared to untreated clip rats (Figure 3). The 
same was observed for cardiac work and stroke work calculated at peak 
cardiac output. In these experimental conditions, PLC displayed a dose
dependent effect in the range 30-180 mg/kg. These results compared favour
ably with those obtained with enalapril (3 mg/kg). 
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Figure 1. Scatter plot of relation between heart weight and haemodynamic variables in rats with 
abdominal aorta constriction treated with PLC 50 mg/kg i.a. for 4 days. Values are the maximum 
percent change recorded on any of the 4 days of treatment. Panel A: cardiac output (CO, y = 

-90.6 + 0.069x). Panel B: cardiac work (CW, y = -130.4 + 0.095x). Panel C: stroke volume 
(SV, y = -84.9 + 0.068x). Panel D: stroke work (SW, y = 135.9 + O.lOx). (From [30], with 
permission. ) 

Langendorff perfused hearts obtained from PLC-treated animals displayed 
a lower diastolic pressure and a faster relaxation rate than hearts from 
untreated animals. At the biochemical level, a significantly greater myocar
dial content in ATP (20.7 ± 1.3 f.Lmol/g dry weight, in treated animals vs 
15.5 ± 1.0 f.Lmol/g in untreated, p < 0.01) total adenine nucleotides 
(30.5 ± 0.2 vs 23.7 ± 1.4 f.Lmol/g, p < 0.05) and CP (27.2 ± 1.5 vs 20.5 ± 2.4 
f.Lmol/g, p < 0.05) was demonstrated [30]; the content in high energy phos
phates was directly correlated to the relaxation rate and inversely correlated 
to the end-diastolic pressure [31]. In Langendorff perfused hypertrophied 
hearts we also demonstrated that PLC activity depended on the presence of 
fatty acids (palmitate) in the perfusion medium [31]. 

Papillary muscles were studied from rats that had been treated with 
180 mg/kg PLC for 8 weeks, starting from weaning. AC was performed at 8 
weeks of age, and lasted 4 weeks. AC muscles displayed a prolongation of 
timing parameters, i.e. of time-to-peak tension and time from peak tension 



Effect of PLC on experimental cardiomyopathies 311 

50 
:::: 30 

~4O .. .. " .. 20 " 30 .a .1:1 
E E 20 g 10 0 .. 10 .. 
" • 0 co 0 c Q .. i ·10 z: 
u .10 r. 
I- \I ·20 

;; ·20 !-30 
u ~-40 

·30 
2 3 4 5 8 ·50 

2 3 4 5 8 

30 
ii 
~20 50 

~ 10 :40 
• 

II 
0 

.1:130 co E c 
II f20 ~ ·10 .. 
~ If. 10 
;-20 c • 0 (J r. 

-30 \I 

2 3 4 5 8 ! -10 

~ -20 
II) 

i 
50 -30 .. 40 2 3 4 5 8 .. 

.a 30 Day of experiment 
E 20 
~ 10 

• 0 CIl 
c -10 .. 
.c 
u -20 

! -30 

a: -40 
Q, 

-50 I- 2 3 4 5 8 

Day of experiment 

Figure 2. Histograms of time-course of haemodynamic changes observed during PLC or saline 
treatment (hatched and open bars, respectively), and on the 4th day after treatment withdrawal 
(day 8), in rats with abdominal aorta constriction. Data refer to rats with a heart weight 
> 1400 mg. Values are expressed as a percentage of pretreatment baseline values and plotted as 
means ± SEM (n = 9-10). Upper left panel: cardiac output (CO); middle left: cardiac work 
(CW); lower left: total peripheral resistance (TPR); upper right panel: stroke volume (SV); 
lower right: stroke work (SW). (From [30], with permission.) 



312 R. Micheletti et al. 

...... 
c 
E ..... 
E ..... 
8 

100 

90 

80 

70 

60L-~----~----~~ 

shilm clip clip + PLC 

Figure 3. Peak cardiac output reached during acute volume expansion in anaesthetised sham
operated rats, untreated aortic-constricted rats (clip) and PLC (180 mg/kg for 3 wk) treated clip 
rats. Values are means ± SEM (n = 9-14). * P < 0.05 vs sham and treated rats. 

to 30% relaxation, and a reduced peak rate of tension rise and decay (Figure 
4, lower right) [32]. PLC treatment normalised the timing parameters and 
the rate of tension decay (Figure 4, lower left). The isotonic velocity of 
contraction was also maintained by PLC treatment as fast as in sham prepara
tion (Figure 5). At the biochemical level, the slowing of muscle mechanics 
in AC preparations corresponded to a significant reduction in (Y myosin heavy 
chain and increase in the foetal f3 isoform. PLC substantially prevented the 
reduction in fast myosin isoform seen in hypertrophied preparation (Figure 
5) [32]. 

Isolated myocytes obtained from AC rats showed a 21 % reduction in A TP 
content and a 30% reduction in ATP to ADP ratio [24]. Palmitate oxidation 
in hypertrophied cells was also depressed compared to normal cells, with a 
reduction in Vmax of 27%, while KM remained unchanged. PLC (25 J..LM) 
increased palmitate oxidation by 21 %, increasing also the ATP to ADP ratio. 

In conclusion, PLC improves the function of the AC preparations de
scribed above. Experiments in papillary muscle show that the compound is 
able to affect directly muscle function. Data in isolated myocytes suggest 
that PLC corrects the defective energy producing system of hypertrophied 
cells. The maintenance of a normal myosin isoenzyme proportion is in accor
dance with the higher energy availability afforded by PLC. 

In agreement with the present view that pressure-overloaded hearts 
undergo a shift in substrate utilisation [20, 21], we found a depressed fatty 
acid oxidation in hypertrophied myocytes. PLC improvement of substrate 
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Figure 4. Average isometric contractions of left papillary muscles from sham and aortic-con
stricted rats maintained on a low-carnitine diet (upper left), low-carnitine diet + 180 mg/kg PLC 
(lower left), low-carnitine diet + 13.4 mg/kg L-carnitine (LC, upper right), and standard diet 
(lower right). Values are means ± SEM (n = 11-15). (From [32], with permission.) 

use might explain the effect OD myosin composition, since substrate utilisation 
has been suggested to influence expression of myosin isoforms [33]. The 
haemodynamic improvement may be explained by an amelioration of dias
tolic filling due to enhanced relaxation. This explanation is consistent with 
data from Langendorff perfused hearts and papillary muscles. Amelioration 
of diastolic relaxation is likely to favour the diastolic filling of the heart, 
resulting in greater stroke volume and stroke work. The parallel improve
ment in diastolic function and myocardial ATP levels supports the notion that 
the two findings may be causally related. In pressure-overload hypertrophy, 
diastolic function is often compromised earlier and more severely than sys
tolic function, due to the peculiar characteristics of concentric hypertrophy, 
i.e. increase in wall thickness and development of fibrosis. Diastolic filling 
is impaired by the alteration in the passive visco-elastic properties caused 
by collagen network remodelling [34]. Moreover, cardiac relaxation is also 
influenced by the rate of Ca2 + uptake by the sarcoplasmic reticulum, the 
rate of dissociation from troponin C and rate of uptake by the sarcolemmal 
Ca2 + pump. Evidence that Ca2 + handling is altered in hypertrophied myo
cytes, leading to diastolic cytosolic Ca2+ overload has been provided [35]. A 
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Figure 5. A. Unloaded shortening velocity (Vo) of skinned trabeculae from left ventricles of 
sham, untreated aortic-constricted and PLC-treated (180 mg/kg for 8 wk) aortic-constricted rats. 
B. Relative amounts of fast myosin heavy chain isoform (O! MHC) determined in left ventricle 
free wall of the same animals as above. Values are means ± SEM (n = 6-7). * P < 0.05 from 
both other groups. (From [32], with permission.) 

reduced Ca2 + ATPase activity and uncoupling between A TP hydrolysis and 
Ca2+ transport have been reported, as well as a lower ATPase density on 
the sarcoplasmic reticulum membrane. Whether PLC affects any of these 
biochemical functions remains to be demonstrated, although evidence for a 
greater Ca2+ uptake and Ca2 + stimulated ATPase activity have been pro
vided in the diabetic heart [36]. 

Volume overload 

At variance with the findings obtained in pressure overloaded rats, when 
PLC was administered at the same dose (50 mg/kg intraarterially for 4 days) 
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in conscious rats with a two-month aortocaval fistula, no appreciable effect 
on the haemodynamic parameters recorded could be found (Schiavone, un
published). Heart rate, cardiac output, stroke volume and stroke work, as 
well as total peripheral resistance of animals with volume overload did not 
differ from those of untreated animals. 

Papillary muscle function was also studied. Right and left muscles were 
obtained from rats with a 4 to 5 month aortocaval fistula (Micheletti, unpub
lished) that had been treated for 2 weeks with 180 mg/kg PLC in the drinking 
water. The fistula determined a considerable hypertrophy of both the left 
and right ventricles (64% and 77% increase in wet weight, respectively), but 
no alteration in left papillary muscle function. On the contrary, the right 
papillary muscle exhibited longer timing parameters. The time from peak 
tension to 30% relaxation was prolonged from 146 ± 16 to 195 ± 14 ms 
(p < 0.05). PLC prevented these changes (148 ± 13 ms), but did not affect 
left papillary muscle function. 

Hypertrophy consequent to volume overload is characterised by a dramatic 
increase in chamber volume and heart weight due to the series addition of 
new sarcomeres, with a moderate increase in wall thickness. In spite of these 
remarkable changes, clear signs of left ventricular dysfunction are rare [37]. 
In the rat, aortocaval fistula was recently shown to induce a time-dependent 
cardiac hypertrophy that reaches its maximum (nearly doubling of heart wet 
weight) at 1 month without appreciable deterioration of the pumping function 
[38,39]. The mechanical and biochemical consequences of volume overload 
are surprisingly negligible compared to the morphological ones; a recent 
study failed to show any change in either the energetic parameters or in the 
Ca2 + ATPase activity of rabbit papillary muscles from animals with clinical 
signs of overt failure [40]. The lack of impairment seen in the left papillary 
muscle is consistent with these observations. Since these muscles were de
rived from animals with a volume overload of 2 months longer duration than 
animals for the in vivo study, it is reasonable to conclude that in the latter 
left ventricle function was fully maintained. If this is the case, the failure of 
PLC to exert any effect is not surprising. 

The mechanical alterations affecting the right papillary muscles may be 
accounted for by a pressure overload on the right ventricle [39]. It is presum
able that to evidence PLC efficacy, more extreme experimental conditions 
are needed. This could explain the efficacy of PLC in isolated volume
overloaded hearts with a clearly depressed function [41] (see also elsewhere 
in this book). It should also be emphasised that volume overload is not a 
single pathological entity, as profound differences in term of prognosis exist 
between the high-pressure volume overload (arterovenous anastomosis, 
aortic insufficiency) and the low-pressure volume overload (mitral regurgi
tation) [37]. 
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Myocardial infarction 

In rats with moderate-size infarcts, comprising about 40% of the left ventricu
lar free wall, we demonstrated that PLC (60 mg/kg per os given for 5 months) 
positively influenced ventricular remodelling, being equieffective to enalapril 
(1 mg/kg per os) in limiting the magnitude of the left ventricular dilatation 
estimated by passive pressure-volume curves [42]. Both drugs significantly 
shifted the pressure-volume curves towards that of sham rats. In untreated 
infarcted rats, chamber volume at 4 mmHg pressure increased by 117% as 
compared to sham (from 0.44 ± 0.02 to 0.95 ± 0.11 ml/kg, p < 0.05), while 
the changes seen in PLC and enalapril treated rats (+ 36 and +43%, respec
tively) were not statistically significant. Finally, PLC was able to limit the 
changes in ventricular chamber stiffness induced by infarction: both at low 
and at high filling pressures, the estimated stiffness constants in PLC-treated 
rats did not differ from those of sham rats. 

Global cardiac performance under basal condition was not affected by 
either PLC or enalapril treatment. However, the beneficial effect of PLC 
treatment on pumping function of the heart was disclosed by acute volume 
expansion. During this manoeuvre we observed that a sensitive index of 
myocardial function, peak +dP/dt, was depressed in untreated infarcted rats; 
conversely, in infarcted rats treated with PLC, it reached values no different 
from those recorded in control animals (Figure 6). 

In isolated rat myocytes obtained 1 month after coronary artery occlusion, 
25 /-LM PLC increased peak shortening (20%), shortening velocity (23%) and 
peak systolic calcium (14%) [43]. 

The model of coronary ligation in the rat has been useful in detecting 
ACE inhibitors' ability to prolong survival after myocardial infarction [44, 
45]. While ACE inhibitors reduce afterload via their vasodilating effect, 
PLC does not seem to affect ventricular loading. Although not directly 
demonstrated under these conditions, the positive effect of PLC on remodel
ling might be due to enhanced generation of A TP that could ameliorate the 
cellular mechanical behaviour. This would facilitate ventricular emptying, 
resulting in a reduction in systolic and diastolic loading. The results on 
isolated myocytes are compatible with an improved function of the energy 
producing system. 

Effect of PLC on myocardial carnitine stores 

A reduction of myocardial carnitine levels has been demonstrated both in 
human and experimental cardiomyopathies, and has been suggested to play 
a causal role in the altered cardiac performance seen in these conditions [46]. 
In this context, we have been interested in investigating if PLC may act by 
replenishing myocardial carnitine stores. Data obtained with PLC in AC 
conscious rats, showing a haemodynamic activity in parallel with normalis-
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Figure 6. Maximum velocity of left ventricular pressure rise before (open bars) and during 
acute volume expansion (closed bars) in anaesthetised untreated sham-operated rats (SW). and 
infarcted rats that had been untreated (IW) or treated with 60 mg/kg PLC (IP) and 1 mg/kg 
enalapril (IE). Basal +dP/dt was significantly reduced by infarction in all groups. +dP/dt during 
volume expansion was reduced in all groups with the exception of PLC-treated rats. Values are 
means ± SEM (n = 8). 

ation of myocardial carnitine levels, were consistent with a relevant role of 
myocardial carnitine stores [30] and led to conclude that PLC activity de
pended on stores replenishment. Subsequent data in other experimental 
conditions allowed less clearcut conclusions. 

To investigate whether myocardial carnitine depletion is capable of directly 
affecting function, we studied papillary muscles obtained from animals fed 
a diet with a low total carnitine content, corresponding to 2 nmoUg pellet [32]. 
This condition, compared with a standard diet (56 nmol/g total carnitine), led 
to a significant depletion of myocardial carnitine levels, but comparable 
papillary muscle mechanics [32]. On the other hand, despite AC in the low 
carnitine group resulted in an even greater carnitine depletion than in animals 
fed the standard diet, function was not further altered. It is therefore likely 
that myocardial carnitine depletion has a different pathophysiological mean
ing whether due to reduced dietary intake or to AC. Moreover, it may not 
be excluded that carnitine is stored in different cytoplasmic compartments, 
possibly with different roles. The complexity of the cellular metabolic state 
is likely to need a wider and detailed biochemical characterisation, although 
the myocardial carnitine depletion per se obviously constitutes an index of 
metabolic derangement. 
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Diabetes 

Ferrari and coworkers investigated the effect of PLC (250 mg/kg, i.p. for 2 
months) on the perfused heart obtained from animals with streptozotocin 
induced diabetes [47]. Cardiac performance was studied under basal con
ditions and during stepwise increases in the volume of a saline-filled balloon 
inserted into the left ventricle. Results demonstrated that treatment normal
ised diabetes associated tachycardia while not affecting developed pressure. 
PLC prevented the decrease in developed pressure and the increase in dia
stolic pressure due to progressive filling of the left ventricular balloon [47]. 

The same schedule of treatment prevented the depression in sarcoplasmic 
reticulum function observed in untreated rats: Ca2+ -stimulated ATPase ac
tivity, Ca2+ uptake and Mg2+ -ATPase activity were similar to those of non
diabetic animals. On the contrary, PLC failed to reverse the diabetes associ
ated changes in Ca2+ ATPase found at the sarcolemmal level [36]. There is 
presently no explanation for this variable effect of PLC, nor for the mechan
ism underlying it. In this context it should be mentioned that treatment with 
a high dose of carnitine (3 glkg daily in the drinking water for 6 weeks) 
suppressed accumulation of long-chain acylcarnitines, but did not improve 
global cardiac function, leading the authors to conclude that sarcoplasmic 
reticulum alterations were not the main determinants for impaired cardiac 
function [48]. 

Diabetes involves widespread metabolic alterations, including disorders of 
carbohydrate, lipid and protein metabolism; the diabetic heart has a near 
total dependency on fatty acids as energy substrate. The accelerated rate of 
lipid metabolism in the heart is responsible for elevated cytosolic levels of 
triglycerides, free fatty acids and CoA, and consequently for elevation in 
acyl Co A and acylcarnitines [49]. PLC efficacy could depend on its ability to 
stimulate glucose oxidation. Carnitine has been shown to increase glucose 
oxidation in normal hearts, where fatty acids are the major energy source 
[50]. Similarly, the stimulation of glucose oxidation, induced by dichloroace
tate, positively affects function of the diabetic working heart [51]. 

Ca2+ handling in the diabetic cardiomyopathy is impaired. The ATP
dependent Ca2+ transport of the sarcoplasmic reticulum was found signifi
cantly decreased in diabetes, and both Ca2+ uptake and Ca2+ -stimulated 
ATPase activity were reduced [52]. 

Conclusions 

In conclusion, PLC displayed a therapeutic effect in a number of CHF 
models, namely, pressure overload, infarction and diabetic cardiomyo
pathies. Less clearcut results were observed in the volume-overload model. 

The most relevant findings are: in pressure overload, 
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• improvement of cardiac work and stroke work in conscious and in anaes
thetised animals; 

• improvement of the diastolic function of isolated hearts from pretreated 
animals; 

• normalisation of timing parameters and relaxation rate of isolated papillary 
muscles from pretreated rats; 

• preservation of the ratio 0:1 f3 myosin heavy chain; 
• increase in high energy phosphates in perfused hearts and isolated cardi-

omyocytes. 
In the infarct model of CHF, PLC treatment reduced ventricular dilatation 
and tended to restore the diastolic chamber stiffness towards normal values. 
Thus, PLC seems to act primarily on the diastolic function, both in its active 
component, due to sarcoplasmic reticulum function (increase in -dP/dt in 
isolated hearts and papillary muscles from pressure-overloaded rats; reduced 
relaxation time in right papillary muscles from volume-overloaded rats) and 
in its passive component, due to tissue remodelling (improvement of diastolic 
stiffness in myocardial infarcts). Importantly, in several instances (AC anaes
thetised rats, isolated hearts from AC rats, diabetic cardiomyopathy), PLC 
effect was apparent under conditions of high energy demand, induced by 
increase in work load. It seems thus plausible that PLC is able to correct 
some metabolic steps of the process that leads to CHF. CHF is an evolving 
pathology in which impairment of biochemical activities occurs progressively: 
presumably, the relative importance of the diverse biochemical steps involved 
varies during the evolution of the syndrome and plays a different role accord
ing to the stage of the disease. 

The metabolic derangement occurring in CHF is far from clear. The in
creased levels of high energy phosphates induced by PLC suggest that, in 
the experimental conditions employed, energy supply was inadequate. In 
normal conditions, PLC is ineffective, as evidenced from data in sham ani
mals and in volume overload. 

From the studies performed in different models of CHF so far discussed, 
PLC stands out as possessing some new and interesting features that could 
be of value in the management of CHF. It is also evident that, because the 
biochemical alterations accompanying CHF may differ according to either 
the stage of the disease or its aetiology, PLC should be particularly useful 
in those conditions where its biochemical activity could compensate for an 
existing metabolic deficiency. Future work should be aimed at clarifying the 
relationship between the PLC efficacy and the biochemical abnormalities in 
different settings and stages of heart failure. 
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23. Utilization of propionyl-L-carnitine for the 
treatment of heart failure 

ROBERTO FERRARI and INDER ANAND 

"Studies in carefully selected homogenous small groups of patients show that oral 
administration of propionyl-L-carnitine improves exercise capacity and skeletal mus
cle metabolism of patients with heart failure (classes II and III of NYHA). This 
provides a logical basis for individualizing therapy in order to improve exercise 
tolerance and quality of life in patients with heart failure." 

Introduction 

Heart failure is a common and disabling disease with a poor prognosis, but 
it can be easily diagnosed and recent data show that treatment of chronic 
heart failure reduces mortality, morbidity and improves quality of life [1, 2]. 

The usual treatment of chronic heart failure is with angiotensin-converting 
enzyme inhibitors, diuretics and digitalis. Other drugs are often used such 
as calcium antagonists, vasodilators, antiarrhythmics, positive inotropic 
agents, etc. Basically, all these compounds aim at reducing the progression 
of the disease, improving the hemodynamic profile of patients and/or reduc
ing the generalized neuroendocrine response. 

Several landmark trials in the treatment of heart failure have been pub
lished in the last decade [3-12]. From these studies a consolidated body 
of evidence has emerged: the addition of angiotensin-converting enzyme 
inhibitors to conventional therapy provides benefit in terms of symptomatic 
improvement, reduces hospital admissions, prevents the progression of heart 
failure, delays death and, most surprisingly, prevents coronary events. 
Though such large-scale studies provide a clear answer to simple global 
questions, many practical issues of interest for the physician are still unre
solved. Patients often do not accept to be treated solely because benefit was 
shown in a study. They are interested in knowing whether that particular 
form of treatment is appropriate for them and for their individual condition. 
They also expect to have a short-term benefit from treatment such as an 
improvement in the standard of living which in chronic heart failure is 
severely limited. 

l. W. de long and R. Ferrari (eds): The carnitine system, 323-335. 
© 1995 Kluwer Academic Publishers. 
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In general, a patient with heart failure complains of fatigue and shortness 
of breath. Usually these symptoms are alleviated by the administration of 
diuretic, digoxin and vasodilator therapy, and the majority of patients experi
ences resolution of symptoms at rest. Unhappily, however, many patients 
continue to experience exertional symptoms [13-15] and frequently report 
that they are unable to perform regular activities of daily life. During maximal 
exercise testing, patients with heart failure terminate exercise earlier than 
normal subjects of comparable weight and gender. 

Traditionally, fatigue and shortness of breath have been related to a low 
cardiac output and increased end-diastolic pressure. Although there may be 
some validity to this claim, recent studies have demonstrated that the origin 
of symptoms in heart failure is much more complex [16, 17]. In chronic heart 
failure, unlike acute heart failure, shortness of breath is not related simply 
to end-diastolic pressure either at rest or at peak exercise [16, 17]. Many 
subtle changes do take place in the lungs such as an increased ventilation 
for a given carbon dioxide production and weakness of the diaphragm. 
Equally, exertional fatigue is not simply the result of skeletal muscle under
perfusion [14]. Muscle deconditioning and altered peripheral muscle meta
bolism have recently been shown to substantially contribute to exertional 
fatigue in heart failure. 

The understanding of the role of these multiple potential contributors to 
the major symptoms of heart failure has generated new forms of interventions 
which are at the present under extensive evaluation such as, for example, 
the use of exercise programs to avoid deconditioning and of propionyl-L
carnitine to specifically improve metabolism and function of cardiac and 
skeletal muscle in heart failure. 

In this chapter, the alterations of peripheral skeletal muscle during heart 
failure, the advantages of propionyl-L-carnitine versus carnitine and the 
rationale for its use in chronic heart failure as well as the available clinical 
data are reviewed. Propionyl-L-carnitine, in addition to its effect on skeletal 
muscle, positively affects the metabolism and function of the failing cardiac 
muscle and, without doubt, these effects are an important component of 
its overall pharmacological effect. These aspects, however, are extensively 
addressed elsewhere in this volume (Chapter 24). Therefore, in the present 
chapter, attention is limited to the effects of propionyl-L-carnitine on skeletal 
muscle. 

Causes of exertional fatigue in chronic heart failure 

Patients with chronic heart failure commonly experience limitation of activity 
secondary to fatigue and shortness of breath. The underlying fear that regular 
physical activity may result in further deterioration and symptoms have 
traditionally led patients to avoid exercise and other physical efforts. There 
are three major mechanisms of exertional fatigue: 
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1. Inadequate muscle flow and arterial dilatation 

Recent observations support the concept that inadequate muscle flow is an 
important contributor to exertional fatigue [13, 18, 19]. Using a femoral 
venous thermodilution catheter, we measured leg flow responses to a low 
work-load bicycle exercise mimicking the small amount of activity encoun
tered in daily life in a group of patients with heart failure. We found a 
significant decrease in flow responses to exercise in the majority of patients, 
although in some the flow response was within the normal limits [20]. The 
failure of muscle blood flow to increase normally during exercise in patients 
with heart failure is primarily due to an abnormality of arterial vasodilation 
as evidenced by a failure of leg vascular resistances to decrease normally 
during exercise [13, 20, 21]. This, in turn, could be due to: a) compression 
of capillaries and intrinsic vascular changes due to fluid and sodium retention 
[22]; b) increase in sympathetic activation and angiotensin II, impairing 
dilatation [23]; c) abnormality of vascular endothelium and vascular remodel
ling [24]. 

2. Muscle deconditioning 

While abnormalities of the peripheral circulation in chronic heart failure 
patients have been frequently described as a major determinant of exercise 
limitation, Wiener et al. have found no relationship between plethysmo
graphic measurements of exercising forearm blood flow and muscle meta
bolism measured by phosphorus nuclear magnetic resonance (NMR) spectro
scopy [25]. These workers suggest that other mechanisms, such as alterations 
in mitochondrial population or substrate utilization may be responsible for 
the depressed exercise performance [25]. It is also of interest that in patients 
with peripheral disease and impaired arterial blood flow, the pathophysiology 
of muscle dysfunction in the limbs affected is not just due to arterial obstruc
tion but also involves type II fiber atrophy [26]. 

Perhaps the best evidence that muscle de conditioning contributes to exer
tional fatigue comes from studies demonstrating that participation in a home 
exercise or in a formal rehabilitation program can improve the maximal 
exercise capacity of patients with heart failure by 15% to 30% [27, 28]. 

Patients with chronic heart failure are deconditioned and the resulting 
muscle atrophy can easily lead to tiredness because the work or exercise falls 
disproportionately upon the remaining viable muscle fibers [27]. However, 
Mancini et al. studied the contribution of skeletal muscle atrophy to exercise 
limitation in chronic heart failure and found that muscle atrophy contributes 
only modestly to the reduced exercise capacity [30]. Using NMR spectro
scopy, it was found that abnormalities of intrinsic oxidation by exercising 
muscles correlated weakly with muscle volume used as an index of muscle 
atrophy [29]. 
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3. Altered muscle metabolism and function 

Metabolic studies have been conducted using phosphorus-31 nuclear mag
netic resonance, a technique that permits the non-invasive monitoring of 
phosphocreatine, inorganic phosphate, adenosine triphosphate (ATP) and 
pH in working muscle. Patients with heart failure have a more pronounced 
increase in the organic phosphate/phosphocreatine ratio and a more pro
nounced decrease in muscle pH than do normal subjects performing compar
able work loads [25, 29-33]. 

In other studies, the arterial-venous femoral difference has been measured 
at rest and during exercise. By using this technique, we could demonstrate 
that in patients with heart failure, the uptake of FF A is impaired both at 
rest and during exercise [34]. In addition, we and others have shown that 
the skeletal muscle metabolism in heart failure is abnormally dependent on 
anaerobic glycolysis, resulting in excessive accumulation and release of lactic 
acid [34]. These biochemical changes could not be explained by impaired 
blood flow or reduced oxygen delivery alone. One metabolic change that 
would explain these observations is a decrease in glucose and FF A oxidation 
relative to glycolysis [35]. Such an imbalance would accelerate tissue acidosis 
during exercise. 

Support for metabolic changes in chronic heart failure also comes from 
studies using a pyruvate dehydrogenase complex stimulator, dichloroacetate 
(DCA). Wilson et al. gave 35 mg/kg of DCA intravenously to 18 chronic 
heart failure patients before exercise in a double-blind cross-over trial. No 
adverse effects were observed. In this acute intravenous study, a significant 
improvement in serum lactate levels during exercise was noted but exercise 
time did not change [36]. Wargovich et al. studied the effects of DCA on 
cardiac haemodynamic and coronary blood flow during cardiac catheteriz
ation and found beneficial acute haemodynamic effects [37]. Bersin et al. 
compared the effects of intravenous DCA (50 mg/kg) with clinically optim
ized doses of dobutamine in 7 patients with severe heart failure and found 
that DCA significantly improved myocardial mechanical efficiency [38]. 

These findings suggest that oxidative phosphorylation of glucose is reduced 
in heart failure. The data from metabolic studies are confirmed by biochemi
cal and histological examination of muscle biopsy specimens taken from 
patients with chronic heart failure [39, 40]. Compared to normal controls, 
Sullivan et al. found that during submaximal exercise, patients with heart 
failure have reduced skeletal muscle aerobic activity resulting in early onset 
of anaerobic metabolism and lactate accumulation which is inversely related 
to rest aerobic enzyme activity [39]. Drexler et al. further showed that 
reduced oxidative enzyme activity, associated with decreased aerobic enzyme 
activity, occurred in all skeletal muscle fibers in chronic heart failure patients 
[40]. This reduction in oxidative enzyme activity seemed to cause a shift to 
type lIB skeletal muscle fibers that are more adapted to anaerobic meta
bolism [40]. 



Use of PLC for heart failure treatment 327 

Table 1. Advantages of propionyl-L-carnitine over L-carnitine for the improvement of cardiac 
muscle function and metabolism in heart failure and skeletal muscle abnormalities. 

Propionyl-L-carni tine 

- is superior for increase to cellular content of L-carnitine 
- has greater affinity for cardiac and skeletal muscle carnitine transferase 
- allows delivery of the propionyl-moiety to the mitochondria, a group otherwise toxic to muscle 

metabolism 
- allows the anaplerotic utilization of the propionyl-group 
- has specific pharmacological effects 

In addition to the fiber atrophy noted in muscle biopsy specimens, patients 
also exhibit generalized muscle atrophy, again consistent with inactivity and 
deconditioning. This was clearly demonstrated by means of anthropometric 
studies and measurement of muscle volume with magnetic resonance imaging 
[41 ]. 

In general, the availab~e evidence suggests that altered skeletal muscle 
metabolism can substantially influence exertional fatigue in chronic heart 
failure. 

Advantages of propionyl-L-carnitine over L-carnitine for improving skeletal 
and cardiac muscle function and metabolism 

The abnormal skeletal muscle metabolism in failing patients and particularly 
the excessive dependence on glycolysis, delayed utilization of free fatty acids 
(FF A), and excessive accumulation of lactate might potentially be reversed 
by L-carnitine or its derivatives through its effects on oxidative metabolism. 

Propionyl-L-carnitine is a naturally occurring component of the carnitine 
pool which exists endogenously and is maintained in a homeostatic balance. 

The empirical formula is C IOH200 4NCI, and the molecular weight is 253.7. 
Propionyl-L-carnitine is formed by means of carnitine acetyltransferase from 
propionyl-CoA, a product of methionine, threonine, valine and isoleucine 
as well as of odd-chain fatty acids. 

Pharmacokinetic studies have demonstrated that, in humans, the plasma 
concentration of propionyl-L-carnitine increases following intravenous ad
ministration and then decreases to baseline values within 6 to 24 h [42]. This 
timespan varies with dosage. The plasma concentrations of L-carnitine follow 
a similar pattern, but in a more sustained fashion. Urinary excretion of all 
these compounds increases after the intravenous dose of propionyl-L-carni
tine and the excretion rates reach their highest values during the first 24 h 
following administration. 

Propionyl-L-carnitine has several advantages over L-carnitine for impro
ving the abnormal skeletal muscle metabolism of patients with chronic heart 
failure (Table 1). First of all, as just mentioned, it increases plasma and 
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Table 2. Rationale for the use of propionyl-L-carnitine to improve cardiac and skeletal muscle 
function in heart failure. 

1. Data obtained from experiments under physiological conditions 

- Prolongation of plateau phase of cardiac action potential [49] 
- Long-lasting positive inotropism after prolonged administration [47,49] 
- Dose-dependent reduction of arterial peripheral resistances [48] 

2. Data obtained from experiments under ischemic conditions 

- Reduction of degree of post-ischemic left ventricular dysfunction [44] 
- Improvement of contractile recovery during post-ischemic reperfusion [52] 
- Improvement of remodelling [53] 

3. Data obtained from experiments under failing conditions 

- Improvement of myocardial performance in several models of heart failure 
- volume overloaded [56] 
- erucic acid cardiomyopathy [54] 
- pressure overload [55] 
- cardiac hypertrophy [57] 

cellular carnitine content thus enhancing FF A oxidation in carnitine-deficient 
states as well as increasing glucose oxidation rates [43]. 

Secondary, muscular carnitine transferases have higher affinity for pro
pionyl-L-carnitine than for L-carnitine or its other derivatives. Therefore, 
propionyl-L-carnitine is highly specific for both skeletal and cardiac muscle 
[44]. Third, while having a similar mechanism of action as carnitine, it carries 
the propionyl group, and enhances the uptake of this agent by the myocardial 
cell [45]. This is particularly important as propionate can be used by mito
chondria as an anaplerotic substrate, thus providing energy in the absence 
of oxygen consumption [46]. Interestingly, propionate alone cannot be ad
ministered due to its toxicity [47]. Finally, due to the particular structure of 
the molecule with a long lateral tail, propionyl-L-carnitine has a specific 
pharmacological action independently of its effect on muscle metabolism 
resulting in peripheral dilatation and positive inotropism [48, 49]. 

Rationale for the use of propionyl-L-carnitine in chronic heart failure 

Data obtained from experimental work provide the rationale for the use of 
propionyl-L-carnitine to improve cardiac and skeletal muscle function and 
metabolism in chronic heart failure (Table 2). 

Our work on rabbits has demonstrated that propionyl-L-carnitine improves 
the mechanical function of the isolated aerobic heart. This improvement was 
noted to persist for at least 24 h after the final administration of this agent 
and to be present even when propionyl-L-carnitine was undetectable in either 
blood or tissue [49]. Research conducted with ischaemic myocardium by 
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Broderick et al. [50] on isolated rat hearts and global no-flow ischaemia 
showed that, during the reperfusion of previously ischaemic hearts, carnitine 
stimulated glucose oxidation and significantly improved the functional re
covery, as measured by heart rate and peak systolic pressure. This work 
supports the theory that the beneficial effects of carnitine on ischaemic 
myocardium is a result of its ability to overcome the inhibition of glucose 
oxidation induced by increased levels of fatty acids. Other work also suggests 
an intracellular mechanism of action and implies that better protection is 
provided if the agent is administered prior to the ischaemic insult [51]. 
Paulson et al. [44] studied isolated rat hearts subjected to global, low-flow 
ischaemia. During reperfusion, the propionyl-L-carnitine group exhibited a 
significantly greater recovery of all haemodynamic variables: interestingly, a 
concentration of 1 mM of propionyl-L-carnitine had no significant protective 
effect, while concentrations of 5.5 mM and 11 mM significantly improved 
recovery of cardiac output. This beneficial effect was determined to be 
greater than that of L-acetylcarnitine or L-carnitine on a molar basis. 
Equally, propionyl-L-carnitine has been found to directly improve post
ischaemic stunning [44]. 

Furthermore, specific experimental studies have been conducted on the 
efficacy of this agent with respect to congestive heart failure [52-57]. They 
are reviewed in detail in Chapter 24. This study reports a clear improvement 
in cardiac function and metabolism. 

Finally, in dogs, propionyl-L-carnitine causes a dose-dependent enhance
ment of cardiac output, reduction of arterial peripheral resistances and in
crease in mesenteric and iliac blood flow, confirming its pharmacological 
properties besides action on metabolism [49]. 

Interestingly, systemic carnitine deficiency produces a reversible form of 
cardiomyopathy [58, 59]. Low levels of carnitine have been found in adults 
with heart failure [60, 61] and in the explanted heart of patients with dilated 
[62] or ischaemic [63] cardiomyopathy. Carnitine therapy has also been found 
to be beneficial in the treatment of diphtheric [64] and anthracycline induced 
myocarditis [65]. 

Effects of propionyl-L-carnitine in patients with chronic heart failure 

There are several pilot studies in which administration of propionyl-L-carni
tine to patients with chronic heart failure has been shown to exert several 
positive clinical effects. Furthermore, there are two current and ongoing 
large-scale national and international trials, the results of which should be 
available in a short time [66]. 

We have studied the effects of acute and chronic administration of pro
pionyl-L-carnitine (1.5 g/day) on haemodynamics, hormonal levels, exercise 
capacity and oxygen consumption measurements in 15 patients with chronic 
heart failure (NYHA classes II and III and left ventricular ejection fraction 



330 R. Ferrari and I. Anand 

<40%). There were no changes in the haemodynamic or neurohormonal 
levels after either acute or chronic administration [67]. After one month of 
treatment, however, a significant increase in exercise capacity and peak 
V02 was observed, suggesting a possible improvement of peripheral muscle 
metabolism. 

In a subsequent study, we examined the effects of propionyl-L-carnitine 
(15 g/day for one month) on limb metabolism both at rest and during exercise 
[68]. 

Skeletal muscle metabolism was assessed as femoral arterial-venous 
(A-V) difference for lactate, pyruvate and FFA. At rest, propionyl-L-carnit
ine caused a reduction of arterial and venous blood level of FF A but did not 
change overall muscle extraction of FF A, lactate or pyruvate. After maximal 
exercise propionyl-L-carnitine decreased the negative A-V difference for 
lactate, restored a positive A-V difference for pyruvate and did not change 
that for FFA. We concluded that propionyl-L-carnitine improves skeletal 
muscle metabolism in patients with idiopathic dilated cardiomyopathy by 
increasing pyruvate flux into the Krebs cycle and decreasing lactate produc
tion. This effect which occurs in the absence of major haemodynamic and 
neuroendocrine changes may underlie the ability of propionyl-L-carnitine to 
increase exercise performance in patients with heart failure. 

Very recently, Caponetto et al. [69] have reported the effects of propionyl
L-carnitine on 50 patients with mild chronic heart failure in NYHA class II, 
symptomatic, despite therapy with digitalis and diuretics, with ejection frac
tion <45%. They were randomized to receive 1.5 g of propionyl-L-carnitine 
or placebo as oral treatment for six months. Maximal exercise time in the 
treated group was significantly increased (1 min more than placebo), whilst 
lactate production was significantly reduced. Left ventricular shortening frac
tion and left ventricular ejection fraction showed a significant increase in 
propionyl-L-carnitine group (p < 0.0001) while no difference was apparent 
in the placebo group. Stroke volume index and cardiac index had significant 
increments in the treated group (p < 0.05) and systemic vascular resistance 
was lowered (p < 0.05). No haemodynamic variations were observed in the 
placebo group. The clinical score showed a significant improvement in the 
propionyl-L-carnitine treated group. 

The greatest changes occurred after the first month of treatment and 
persisted throughout the entire period of treatment. 

These authors envisage two possible mechanisms of action: an improve
ment of skeletal muscle function and metabolism as well as a positive effect 
on cardiac muscle which explains the enhancement of the haemodynamic 
parameters. 

Finally, it is interesting to note that propionyl-L-carnitine in patients with 
severe heart failure (NYHA IV) was able to reduce the increase of soluble 
receptors of TNF-a [70]. 

The specific role of TNF-a and of its soluble receptors in patients with 
heart failure is not clear and still under investigation. It is Of interest for the 
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present discussion, however, to recall that an increased tissue necrosis factor 
has been implicated in the skeletal muscle changes of heart failure [71]. 

Conclusion 

Skeletal muscle changes contribute to exertional fatigue in heart failure. 
Skeletal muscle metabolism is also altered in heart failure. Glucose and 
FFA oxidation is impaired, energy production is abnormally dependent on 
anaerobic glycolysis and lactate is produced in excess. Often there is a 
carnitine deficiency. Studies in carefully selected homogenous small groups 
of patients show that oral administration of propionyl-L-carnitine improves 
exercise capacity and skeletal muscle metabolism of patients with heart fail
ure (classes II and III of NYHA). 

This provides a logical basis for individualizing therapy in order to improve 
exercise tolerance and quality of life in patients with heart failure. The results 
of the ongoing larger trials will tell us whether this treatment should be 
recommended to all patients with heart failure. 
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24. Hemodynamic and metabolic effect of propionyl
L-carnitine in patients with heart failure 

SALVATORE CAPONNETTO and CLAUDIO BRUNELLI 

"Compared to the control group, the patients treated with propionyl-L-carnitine 
showed significant increases in the values of exercise capacity and ejection fraction, 
which became even more evident after 90 and 180 days." 

Introduction 

Congestive heart failure (CHF) is an insidious disease process associated with 
profound symptoms and a poor long-term prognosis. Today the increasing 
geriatric population may in part explain the high prevalence, and mortality 
rate, of the syndrome, despite improved therapeutic strategies in the treat
ment of hypertension, coronary artery disease, severe arrhythmias and 
sudden death. According to the Framingham study, five-year mortality for 
CHF is 60% in men and 45% in women; if we consider patients in NYHA 
class IV, one year mortality reaches almost 50% [1]. 

Heart failure alters the myocardium in several animal models and in hu
mans in a comparable way. Initial damage to the myocardium is followed by 
a period of myocardial hyperfunction that is associated with qualitative and 
quantitative alterations of cardiac metabolism and composition. This state 
can only be tolerated for a limited time, progressive deterioration of function 
leading ultimately to end-stage heart failure [2, 3]. 

The most attractive hypotheses to explain myocardial dysfunction in heart 
failure postulate biochemical defects in the myocardium other than the alter
ation in loading conditions or ischemic damage as a cause for the functional 
deficits. These biochemical causes of contractile dysfunction have not yet 
been conclusively described. The assessment of changes in the complex 
metabolism of the myocardium may improve the understanding of both 
the underlying biochemical defects and the role of exogenous factors in a 
multifactorial system. 

A low cardiac output and a high cardiac filling pressure are the hemo
dynamic hallmarks of heart failure. They are thought to be the major circulat-

l. W. de long and R. Ferrari (eds): The carnitine system. 337-35l. 
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ory determinants of the fatigue and breathlessness that characterize heart 
failure. Therefore it has been assumed that drug therapy that favorably 
influences the cardiac output and filling pressure should relieve symptoms in 
patients with CHF. A variety of oral drug regimes appear to have a favorable 
chronic effect on left ventricular hemodynamics. Nevertheless, not all of 
these agents appear to alleviate symptoms or improve quality of life. 

Exertional fatigue is a major limiting symptom in patients with CHF. 
Usually, this fatigue has been attributed to skeletal muscle underperfusion. 
However, increased cardiac output during exercise exerted by vasodilators 
cannot be translated immediately into increased exercise capacity and peak 
oxygen consumption [4-6]. Even when oxygen delivery to skeletal muscle 
is improved by pharmacological intervention, the oxygen utilization is not 
augmented acutely. 

Carnitine plays an important role in fatty acid oxidation as well as in other 
metabolic pathways. Myocardium and skeletal muscle depend on fatty acid 
oxidation and thus require carnitine to maintain energy metabolism; they 
are highly dependent on carnitine transport from its sites of synthesis [7]. 
Propionyl-L-carnitine (PLC) is an ester of propionic acid and L-carnitine 
(LC). PLC is more lipophilic and penetrates better into the myocytes; has 
enhanced affinity for carnitine acetyltransferase, the key enzyme for free 
fatty acid transport into myocardial matrix; and stimulates the Krebs cycle, 
increasing the efficiency of ischemic mitochondria [8]. 

This article outlines present concepts on carnitine and its derivatives in 
animal models of heart failure, the characteristic features of myocardial 
carnitine loss, and the chemical effects of PLC in heart failure. After a short 
note about carnitine and propionate metabolism in cardiac and skeletal 
muscle, we report a profile on long-term L-carnitine therapy in patients with 
mild chronic heart failure. 

Carnitine and its derivatives in animal models of heart failure 

Several animal species models as well as functional and metabolic parameters 
of injury have been utilized to test the possible beneficial effects of LC and 
PLC on heart failure. Suzuki et al. [9] gave anesthetized closed-chest dogs 
an intravenous infusion of 80 mg/kg/min of LC for 8 min. They demonstrated 
a 17% decrease in heart rate, a 20% increase in aortic and left ventricular 
pressure and a 35% increase in peak positive left ventricular dP/dt. The 
positive inotropic activity of LC seen in these animals was accompanied by 
a 60% rise in coronary blood flow and a 25% reduction in coronary vascular 
resistence. Brooks et al. [10] found that the positive inotropic effect of LC, 
administered intravenously, became more pronounced with increasing doses. 
A 60 mglkglmin infusion rate was associated with a doubling of stroke vol
ume, a nearly threefold increase in left ventricular end-diastolic pressure, a 
rise in left ventricular dP/dt max, and a 38% increase in left ventricular 
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contractile force. Failure of either propranolol or reserpine to reverse 
changes induced by LC infusion indicated that the hemodynamic effects seen 
in these animals were not mediated by catecholamines. 

Paulson et al. [11] showed comparable positive inotropic properties in 
isolated perfused rat hearts subjected to 90 min global ischemia followed by 
15 min of reflow. Specifically, cardiac output, left ventricular pressure, left 
ventricular dP/dt max, and tissue high-energy phosphates were all increased 
following treatment with PLC. Liedtke et al. [12] too saw improvements in 
mechanical function during reperfusion in the intact working pig heart. 

In subcellular studies, Kotaka et al. [13] and Ferrari et al. [14] noted 
improvements in mitochondrial function and respiration in the presence of 
PLC via favorable shifts in mitochondrial fatty acyl CoA and protection from 
lipid peroxidation. 

Ferrari et al. [15] studied the acute and chronic effects of PLC on mechan
ical function of isolated rabbit heart. When administered acutely PLC had 
no effect on inotropism, heart rate, or coronary perfusion pressure. When 
administered chronically it induced a positive inotropic effect, with no 
changes in heart rate or in coronary perfusion pressure, and it ameliorated 
the pressure-volume relationship. 

To understand these results the same authors [16] pretreated 253 rabbits 
up to ten days with daily doses of 1 mmollkg intraperitoneally of PLC or 
LC, using saline-treated animals as control. The studies carried out with 
perfused hearts and isolated mitochondria failed to show an effect of PLC 
pretreatment on high-energy phosphate metabolism or respiration. Perfused 
hearts displayed positive inotropy in prolonged treatment with PLC, but not 
with LC. 

Leipala et al. [17] studied the effects of PLC on mechanical function, 
creatine phosphate and ATP content, and lactate dehydrogenase leakage in 
isolated perfused rat hearts exposed to global, no-flow ischemia for 30 min 
followed by reperfusion for 20 min. Five and 10 mM PLC resulted in a 100% 
recovery of left ventricular developed pressure, whereas the recovery was 
only 40% in the hearts perfused without this agent. PLC provided protection 
for the post-ischemic, reperfused heart in a dose-dependent manner. The 
optimal time for administration was prior to the ischemic insult. High doses 
of this compound may perturb all membrane integrity. 

Cevese et al. [18] investigated the effects of iv. administration of PLC in 
anesthetized dogs instrumented for the analysis of general hemodynamic and 
electrocardiographic data, peripheral blood flow, coronary blood flow and 
oxygen consumption, urine flow and renal function. PLC was administered 
as a bolus or by infusion. In some cases LC and LC plus propionate were 
also administered in doses equimolar to those of PLC. PLC elicited dose
dependent, short-lasting enhancements of cardiac output, arterial blood pres
sure, heart rate; contractility varied slightly and impredictably. These re
sponses were not changed by (}- or f3-adrenergic blockade, nor by the admin
istration of a calcium antagonist, but they were abolished or reversed by the 
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combination of such blocking interventions. Mesenteric and iliac blood flows 
were increased by both PLC and LC; LC plus propionate increased these 
flows in addition to renal blood flow. PLC elicited coronary vasodilation 
with reduced oxygen extraction; this effect lasted longer than the general 
hemodynamic effects and was not seen with LC. 

Therefore experimental animal data show beneficial effects of LC and PLC 
on cardiac mechanical function, coronary flow, peripheral vascular resistance, 
high-energy phosphates, mitochondrial and respiratory function. Usually, 
these effects correlate with an increase in myocardial content of carnitine 
and its metabolites. 

Characteristic features of myocardial carnitine loss 

Whitmer [19] studied Syrian hamsters with inborn hypertrophic and dilated 
cardiomyopathy associated with carnitine deficiency. This investigator de
monstrated that LC administration restored myocardial carnitine concentra
tion to normal and improved myocardial function. 

Keene et al. [20] reported the occurrence of spontaneous dilated myocar
diopathy in dogs. Two of 6 animals affected by severe CHF had strongly 
diminished myocardial concentrations of carnitine. In these dogs high doses 
of LC produced an increased myocardial concentration of carnitine and 
improved their clinical status and myocardial function. 

Regitz et al. [21] investigated myocardial carnitine content in explanted 
hearts of patients with end-stage heart failure. To assess whether myocardial 
carnitine deficiency was specific for dilated cardiomyopathy or if it also 
occurred in heart failure of other origins, myocardial carnitine levels were 
determined from biopsies in patients with coronary or valvular heart disease. 
The patients with heart failure due to dilated cardiomyopathy and those 
with coronary or valvular heart diseases showed a significant reduction of 
myocardial carnitine levels in all areas of the explanted hearts. 

Decreased myocardial carnitine is not simply an answer to hemodynamic 
changes because different compensatory mechanisms may be effective in 
different patients and may lead to differing responses to metabolic stress. 
Measurements in endomyocardial biopsies enable changes in the stages of 
cardiomyopathies to be monitored, to investigate possible correlations be
tween metabolic changes and function, and to obtain normal tissue for com
parisons. In patients with dilated cardiomyopathy and mild to severe heart 
failure, myocardial carnitine was significantly reduced compared with normal 
controls and the extent of the reduction in patients with coronary heart 
disease was not different from the carnitine loss in patients with dilated 
cardiomyopathy [22]. 

Therefore, carnitine levels do not only reflect functional impairment but, 
as already stated, probably also represent the metabolic response of the 
myocardium to stress. This response can vary in different ways depending on 
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duration of the injury, genetic disposition, nutritional status, availability of 
substrates, hormonal regulations and the availability of other compensatory 
mechanisms. 

Clinical effects of carnitine and propionyl-L-carnitine in heart failure and in 
peripheral vascular disease 

The positive inotropic activity of LC observed in laboratory animals has also 
been detected in man. This effect, however, appears to be much more 
pronounced in patients with evidence of ischemic heart disease than in normal 
individuals. 

Schiavoni et al. [23] showed that an iv. dose of 40 mg/kg of LC adminis
tered to healthy volunteers over a period of 2 min produced only modest 
variations in heart rate, arterial pressure, preejection period (PEP), left 
ventricular ejection time (LVET), PEPILVET rate and in echo cardiographic 
indices of cardiac performance. In 10 patients with presumed coronary artery 
disease slight changes in arterial pressure and heart rate were observed 
during LC infusion; a maximal decrease in PEPIL VET ratio of approximately 
15% occurred at 10 min of infusion and persisted 45 min after completion. 
Echocardiographic examination of these patients showed significant increases 
in left ventricular wall motion. 

Giordano et al. [24] reported a similar beneficial effect on cardiac perfor
mance after a more prolonged period of LC administration to 18 patients 
with angina pectoris and mild heart failure symptoms. 

Ghidini et al. [25] studied 38 elderly patients with CHF secondary to 
ischemia or hypertensive heart disease. All of them received traditional 
therapy with digitalis and diuretic and, when necessary, antiarrhythmic 
agents. Twenty-one patients were also treated with oral LC at a dose of 1 g 
twice daily for 45 days. The other 17 patients constituted the control group. 
Both groups demonstrated similar improvement in subjective and objective 
clinical parameters and NYHA functional class. Echocardiographic measures 
of left ventricular wall motion and size also indicated a favorable effect. The 
LC group experienced a reduction in the incidence of cardiac arrhythmias 
and a more marked decrease in digoxin requirements. 

Hiatt et al. [26, 27] found in patients with peripheral vascular obstruction 
that skeletal-muscle oxidative metabolism was impaired as reflected by sig
nificant elevation in plasma acylcarnitines, detected after a relatively short 
duration of low-level exercise. 

Brevetti et al. [28] reported that, in one double-blind crossover trial, 20 
patients with peripheral vascular disease were treated alternately with either 
placebo or oral LC 2 g b.i.d. for three weeks. The absolute walking capacity 
achieved by these patients after LC therapy was 75% greater than that 
observed after placebo administration. Walking time increased by 67% in a 
separate series of eight patients given a short iv. course of LC. 
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Brevetti et al. [29] evaluated the effect of severe peripheral insufficiency 
on carnitine concentrations and carnitine acetyl- and palmitoyltransferase 
activity in the ischemic skeletal muscles of patients with severe peripheral 
vascular disease. In biopsies, ischemic muscles showed a significant reduction 
in total carnitine from the control value; a significantly lower free carnitine 
and acylcarnitine content contributed to this reduction. 

Brevetti et al. [30], in an acute, iv., double-blind, crossover study, com
pared the effects of PLC vs LC on walking capacity in patients with peripheral 
vascular disease. Results indicated that neither drug affected the blood velo
city nor the blood flow rate in the ischemic leg, suggesting that the beneficial 
effect on walking capacity was dependent on a metabolic action. On a molar 
basis, this beneficial effect was greater than with LC. 

Exercise capacity, hemodynamic and metabolic features in patients with 
congestive heart failure 

Mechanisms responsible for exercise intolerance in patients with CHF are 
not known, but do not seem directly related to a decrement of cardiac output 
or an increase in left ventricular filling pressure. 

Franciosa et al. [31] reported that hemodynamic measurements at rest, 
including left ventricular filling pressure and cardiac output, do not correlate 
with exercise capacity in patients with CHF and that the relation between 
exercise capacity and measurements of cardiac performance at rest is hardly 
known. Repeated studies of treatment of heart failure failed to show corre
lations between changes in exercise capacity and changes in left ventricular 
performance at rest; thus, measures of left ventricular performance obtained 
at rest do not accurately reflect exercise tolerance and symptomatic status of 
patients with CHF. 

Holloszy et al. [32] found that regularly performed endurance exercise 
induces major adaptations in skeletal muscle, including increase in the mito
chondrial content and respiratory capacity in the muscle fibers. As a conse
quence of the increase in mitochondria, exercise of the same intensity results 
in a disturbance in homeostasis that is smaller in trained than in untrained 
muscles. The major metabolic consequences of the adaptations of muscles 
to endurance exercise are a slower utilization of muscle glycogen and blood 
glucose, a greater reliance on fat oxidation and less lactate production during 
exercise of a given intensity. Moreover, regional blood flow to exercising 
skeletal muscle is reduced in patients with CHF, but the histology, biochemis
try, and contractile function are also abnormal. 

The mechanisms for the intrinsic abnormality of the skeletal muscle are 
unknown. The interpretation of experimental data is complicated by the 
different etiology of heart failure, drug treatment, exercise protocols, limi
tations of methods for the measurements of blood flow and metabolism in 
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intact humans and by selection of particular groups of muscles for study that 
can not reflect changes in other muscles in the body. 

Many observations have demonstrated that intrinsic abnormalities of skel
etal muscle emerge in CHF. Histological abnormalities of skeletal muscle in 
patients with hemodynamic evidence of cardiomyopathy have been recog
nized and an association between abnormal skeletal muscle histological find
ings and cardiac disturbances has been reported [33]. 

Furthermore, Dunnigan et al. [34] compared cardiac and skeletal muscle 
histology and biochemistry in patients whose initial manifestations of cardiac 
disease were due to symptoms resulting from CHF. Cardiac histological 
studies revealed a spectrum of abnormalities including fibrosis, dilated sarco
plasmic reticulum, increased numbers of intercalated disks and mitochondrial 
abnormalities. Histological abnormalities of skeletal muscle consisted of en
domysial fibrosis and increased lipid deposits; slightly more than half of 
these patients also had a low concentration of skeletal muscle long-chain 
acylcarnitine. These data suggested that patients with CHF may have a 
generalized myopathy. 

Massie et al. [35, 36] demonstrated by 31p nuclear magnetic resonance 
(NMR) during fatigue-limited exercise that patients with CHF exhibit phos
phocreatine depletion and increased glycolytic metabolism. Similar findings 
have been reported by Wilson et al. [37] during less strenuous steady-state 
exercise. The metabolic consequences of impaired nutritive blood flow during 
exercise may ultimately influence respiratory gas exchange to the extent that 
breathlessness and fatigue are experienced. 

Douglas [38] described a ventilatory response during submaximal exercise, 
that was related to excess CO2 production relative to oxygen utilization and 
to an increase in blood lactate. This response was termed the "anaerobic 
threshold" [39] based on the reasoning that excess CO2 production resulted 
from buffering of lactate released from exercising muscles that had switched 
on anaerobic glycolysis. The anaerobic (or ventilatory) threshold has received 
attention as a nonmotivational sub maximal measurement that correlates with 
aerobic activity in both normal subjects and patients with CHF [40]. In 
addition, since exercise in normal subjects can be sustained for a long period 
below, but not above the anaerobic threshold, this threshold may be a 
measure of functional capacity in patients with CHF that is pertinent to daily 
activity. Simonton et al. [41] studied optimal ventilatory criteria and exercise 
protocols for determining the anaerobic threshold, and the day-to-day repro
ducibility of the anaerobic threshold and its relation to peak oxygen uptake 
(V02) and blood lactate concentration in patients with CHF. Their results 
showed that the lactate increment at the anaerobic threshold occurred within 
a narrow range in patients with CHF (as well as in normal subjects), although 
the anaerobic threshold did not predict a precise lactate level for individual 
subjects. 
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Carnitine and propionate metabolism in cardiac and skeletal muscles 

A reasonable interpretation of these metabolic effects may be the following. 
Oxygen availability in skeletal muscle is critical for the conversion of pyruvate 
either to lactate or to acety1coenzyme A (acetyl-CoA). The latter reaction 
is catalyzed by pyruvate dehydrogenase, the activity of which is controlled 
by the acetyl-CoAiCoA ratio [42, 43]. 

Bieber et a1. [44] showed that, through the action of carnitine acetyl
transferase, carnitine may decrease such a ratio and stimulate the activity of 
pyruvate dehydrogenase, consequently preventing the formation of lactate. 
In patients with peripheral vascular disease, pyruvate oxidation is presumably 
limited by two conditions: the inadequacy of oxygen supply and the accumu
lation of acetyl-CoA caused by a decreased flux into the Krebs cycle. Alkonyi 
et a1. [45] and Bremer [46] demonstrated that carnitine does not apparently 
influence tissue oxygen supply but is able to decrease the acetyl-CoA concen
tration due to the presence of a very active carnitine acetyltransferase in the 
muscular tissue. This assumption is supported by the finding that adminis
tration of LC resulted in a significant increase of total carnitine in muscles 
of the affected leg. 

Both the increase in free carnitine and short-chain acy1carnitine contri
buted to such an increase. These changes in the concentrations of muscular 
carnitine fractions indicate that part of the administered carnitine was taken 
up by muscles of the affected leg and that a consistent portion was transfor
med into short-chain acy1carnitine, presumably acety1carnitine. This implies 
that a corresponding amount of short-chain acyl-CoA was removed along 
with a concurrent release of free CoA. The consequent decrease of the 
acetyl-CoAiCoA ratio would explain the above-mentioned stimulation of 
pyruvate dehydrogenase. 

Bjorkman [47] demonstrated that in short-term exercise the preferentially 
utilized substrate was conceivably muscle glycogen or blood glucose. As a 
consequence, a large increase of pyruvate production should be expected. 
The stimulation of pyruvate dehydrogenase activity by the increased avail
ability of carnitine might explain both the decreased production of lactate 
and the higher yield of energy, resulting from pyruvate oxidation. It is well 
known that 1 molecule glucose used for anaerobic glycolysis yields 2 A TP, 
whereas its utilization in the aerobic pathway produces 36 ATP. This en
hancement of pyruvate oxidation, hence in energy production, may result in 
an improvement of walking capacity after treatment with LC. 

Di Lisa et a1. [48] also showed that treatment with LC might be beneficial 
because it removed the long-chain acyl-CoA. An accumulation of these 
metabolites in oxygen deficient conditions may be detrimental to the cellular 
membrane stability. 

A few studies [23-25] are available documenting the efficiency of carnitine 
as a therapeutic agent with positive inotropic and vasodilator properties in 
aerobic and ischemic heart muscle. Carnitine has been shown to block the 
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entry of fatty acids into cardiomyocytes, to reduce intracellular concentra
tions of neutral lipids and long-chain acyl-CoA, and to improve the action 
of at least one critical enzyme system, adenine nucleotide translocase. The 
role of propionate is less certain. 

Fafournoux et al. [49] showed that propionate in liver, and by inference 
myocardium, is taken up by a carrier-mediated process that is responsive to 
external pH. An acid environment stimulates uptake, while an alkaline pH 
hinders entry. Following uptake, propionate moves into mitochondria. The 
citric acid cycle requires activation to the CoA derivative with conversion 
first to methylmalonyl-CoA and finally to succinyl-CoA. This transformation 
from propionyl-CoA to succinyl-CoA is in part catalyzed by propionyl-CoA 
carboxylase, which is energy dependent. 

Brass et al. [50, 51] showed that propionate can inhibit enzyme functions 
and oxidative metabolism in noncardiac tissue; these effects are relieved with 
the addition of carnitine. Sundqvist et al. [52] and Latipaa et al. [53] found 
that propionate can stimulate enzyme activity in cardiac tissue, and in the 
case of pyruvate dehydrogenase contributes to pyruvate synthesis. The role 
of propionate as a substrate for oxidative phosphorylation in heart muscle is 
little understood. 

Peuhkurinen [54] thought that propionate was a minor substrate, making 
only marginal contributions to cardiac ATP production. Sundqvist et al. [52] 
noted that propionate increased the citric acid cycle pool size fourfold but 
did little to influence myocardial oxygen consumption. Furthermore, as sub
strate, propionate is capable by feedback inhibitions to decrease the rates of 
glycolysis, as well as glucose, palmitate and pyruvate oxidation. 

Bolukoglu et al. [55] reported that the profile of substrate oxidation with 
substrate dosage did suggest a rate-limiting step in propionyl-CoA carboxy
lase and that there was a decline in mechanical function at the maximum 
dose of propionate (with glucose present) or when used as sole substrate. 
Therefore, the optimal advantages of propionate seem best expressed at 
moderate doses and in an environment of mixed substrate availability. 

Profile of long-term propionyl-L-carnitine therapy in patients with 
congestive heart failure 

Few studies exist about treatment with PLC in CHF. Mancini et al. [56] 
studied, in a double-blind study vs placebo, 60 patients with mild to moderate 
CHF, who had been undergoing chronic treatment with digitalis and diuretics 
for 3 or 6 months. Compared to the control group, the patients treated with 
PLC showed significant increases in the values of exercise capacity and 
ejection fraction (EF) , which became even more evident after 90 and 180 
days. 

Pucciarelli et al. [57] studied the clinical and hemodynamic effects of the 
PLC in 50 patients with mild to moderate CHF. The study was carried out 
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Table 1. Long-term propionyl-L-carnitine therapy increases maximal exercise capacity of pa
tients with congestive heart failure. 

Treatment Duration of treatment (days) 

Placebo 
PLC 

Basal 15 30 60 120 180 

5.35 ± 1.87 5.27 ± 2.07 5.32 ± 1.78 5.40 ± 1.98 5.52 ± 1.98 5.52 ± 1.94 
5.50 ± 1.75 6.27 ± 1.71 6.72 ± 1.78 6.95 ± 1.99 6.67 ± 1.88 6.62 ± 2.00 

Data (mean ± SEM) in minutes. PLC = propionyl-L-carnitine. Analysis of variance: treatment, 
p < 0.01; treatment x time interaction, p < 0.01. 

in a double-blind, randomized vs placebo way, lasting for 180 days of treat
ment with 1.5 g of PLC. At the end of the experimental period, exercise 
duration and EF were significantly increased while peripheral vascular resis
tance was reduced. 

Caponnetto et al. [58, 59] evaluated the effects of PLC vs placebo on 
exercise capacity, lactate and pyruvate metabolism before and after exercise 
test, and hemodynamics, in 80 patients who were symptomatic despite ther
apy with digitalis and diuretics. The study was of a parallel, randomized 
design, carried out single-blind during a basal period of 8 days and double
blind during a randomized controlled vs treatment period of 180 days. PLC 
and placebo were administered at a dose of 1.5 g/day orally, three times a 
day. At recruitment the patients who had satisfied all inclusion/exclusion 
criteria were assessed by an accurate analysis of physical activity. Then M
B mode and Doppler echo cardiography and a symptom-limited incremental 
test were performed. Seven days after this last test the patients were given 
placebo; the first maximal steady-state test was performed and venous blood 
lactate and pyruvate concentration were determined before and after exer
cise. The randomized treatment period was begun and the patients presented 
themselves to the investigators at day 15, 30, 60, 90, 120 and 180 to carry 
out the tests required from the experimental protocol. The endpoints were: 
1. maximal exercise capacity; 2. venous peripheral blood concentrations of 
lactate and pyruvate before and after exercise stress test; 3. hemodynamic 
values, i.e. left ventricular shortening fraction (SF), left ventricular ejection 
fraction (EF) , stroke volume index (CWI) , systolic wall stress (SWS), sys
temic vascular resistence (SVR). 

The results indicated that maximal exercise capacity was significantly better 
after the 30th day of treatment with PLC (Table 1). In relation to exercise 
capacity, expressed in terms of work performed, the PLC group achieved 
the highest loads. Analysis of the percentage changes in comparison with 
basal values showed a definite increase in the PLC group. This increment 
was statistically significant in comparison to that obtained with placebo. 

Figure 1 shows that the PLC group, at the end of the treatment period, 
had a reduction of lactate and pyruvate concentrations compared to placebo 
and to basal values (p < 0.001). Analysis of variance showed a significant 
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Figure 1. Propionyl-L-carnitine treatment reduced lactate and pyruvate concentrations in venous 
peripheral blood after submaximal exercise in patients with congestive heart failure. For details, 
see text. Bas., Basal values; PLC, propionyl-L-carnitine. 

difference between the two groups, for both lactate (p < 0.001) and pyruvate 
(p < 0.005). 

Left ventricular SF and EF showed an increase in the PLC group 
(p < 0.001), while no difference was apparent in the placebo group. SWS 
and SVR (Figure 2) lowered only in the PLC group; statistical analysis 
showed a significant difference between the two groups (for SWS p < 0.001, 
and for SVR p < 0.005). SVI, CI and CWI had significant increments in the 
PLC group in comparison with the placebo group (p < 0.005). 

Our results can be explained by two possible mechanisms. The first is that 
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Figure 2. Propionyl-L-carnitine treatment lowered systemic vascular resistance of patients with 
congestive failure. For details, see text. PLC, propionyl-L-carnitine. 

skeletal muscle, in which PLC can easily normalize the concentration of 
carnitine, increases the production of ATP for both aerobic and anaerobic 
pathways. So PLC could playa key role in the capacity of ischemic muscle 
to tolerate a larger workload, less affected by the conditions of hypoperfusion 
under which it was working. Our data support this hypothesis: they demon
strated lower levels of lactate and pyruvate in venous blood during the 
exercise stress test. 

The second proposed mechanism considers the action of cardiac muscle. 
Hemodynamic parameters demonstrated an increase of SF, EF, SVI, CI and 
CWI, as well as a reduction of SWS and SVR. It remains to be explained 
whether these effects of PLC on the hemodynamics can be interpreted as a 
metabolic action on cardiac muscle or as a direct pharmacological action 
with a positive inotropic or vasodilator effect. 

The therapeutic action of propionyl-L-carnitine described may occur 
through correction of aberrations in fatty acid metabolism underlying muscle 
dysfunction, unlike other mechanisms, as do most of the inotropic agents so 
far available. 
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25. Carnitine metabolism in peripheral 
arterial disease 

WILLIAM R. HIATT and ERIC P. BRASS 

"Both L-carnitine and propionyl-L-carnitine appear to increase muscle carnitine con
tent in peripheral arterial disease patients, and have favorable effects on muscle 
metabolism. " 

Introduction 

The atherosclerotic disease process may affect any artery, including the 
coronary, cerebral or peripheral vessels. In peripheral arterial disease 
(PAD), atherosclerotic occlusions in the major arteries feeding the lower 
extremities result in a restricted blood flow to skeletal muscle, particularly 
during exercise. During walking exercise, PAD patients develop muscle 
ischemia and the symptom of intermittent claudication that results in an 
objective impairment in walking ability. The claudication-limited peak oxy
gen consumption (measured with a graded treadmill exercise test) of PAD 
patients was typically 12 to 20 mllkglmin [1, 2], or approximately 40-60% of 
the age predicted maximal oxygen consumption for normal subjects [3]. This 
profound exercise impairment limits the ability of these patients to perform 
activities essential for daily living [4]. For example, in a European study, up 
to 38% of patients under the age of 55 years seeking treatment for claudi
cation considered themselves functionally disabled [5]. The yearly health 
care costs in the United States for symptomatic PAD averaged $ 3,100 per 
patient [6], but when interventional therapy was utilized, the costs increase 
by $11,000 for procedures such as surgery, angioplasty or amputation [7]. 
This epidemiology has greatly increased the interest in developing new, non
surgical therapies for PAD [2, 8-10]. 

In patients with claudication, the hemodynamic severity of the underlying 
vascular disease (defined by peripheral blood flow or ankle pressure) was 
not well correlated with treadmill performance [11, 12]. For example, exer
cise training substantially improved exercise performance without an increase 
in calf blood flow [2], while an improvement in peripheral blood flow with 
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bypass surgery did not normalize exercise performance [13]. Therefore in 
addition to the limited blood flow, other factors must contribute to the 
functional impairment in patients with PAD. 

Several changes in skeletal muscle structure and metabolism have been 
observed in patients with PAD. For example, muscle denervation and a 
selective loss of type II fibers leads to muscle atrophy and weakness [14-17]. 
The loss of muscle strength contributes to the reduced exercise performance 
of the patient with PAD [16]. In addition to the structural changes, calf 
muscle ischemia may alter several important aspects of muscle metabolism. 
A number of studies have addressed potential changes in skeletal muscle 
oxidative and glycolytic enzyme activities, but no consistent alterations were 
observed [16, 18, 19]. In contrast, recent studies demonstrated a number of 
clinically important changes in muscle carnitine metabolism in PAD [20, 21], 
and carnitine supplementation improved exercise performance in patients 
with claudication [l0, 22, 23]. Therefore, while the initial disease process is 
a reduced blood and oxygen delivery to skeletal muscle [24], metabolic 
sequelae contribute to the disease pathophysiology and clinical severity. 
These alterations in muscle metabolism have led to the development of 
several new therapies for claudication that target the metabolic, rather than 
hemodynamic abnormalities in PAD. 

Exercise metabolism in normal subjects 

There is a marked increase in skeletal muscle metabolic rate with exercise. 
In normal individuals, low-intensity work loads can be defined as an exercise 
intensity where blood lactate concentration did not increase [25, 26]. Under 
these exercise conditions, fatty acids were the major substrate for energy 
metabolism [27, 28], and the respiratory exchange ratio (RER, an index of 
substrate utilization) was usually less than 0.90. With incremental increases 
in work load, normal subjects cross a transition into high intensity exercise, 
defined as the exercise intensity where there was a progressive increase in 
blood lactate concentration [26]. At high work loads, the activity of pyruvate 
dehydrogenase was greatly increased [29, 30], allowing glucose to contribute 
an increasing share of ATP production. These changes in carbohydrate meta
bolism were reflected by an RER value of 1.00 or greater. 

Carnitine has several important functions in skeletal muscle intermediary 
metabolism during exercise. Carnitine is required for the transport of acti
vated long-chain fatty acids into mitochondria for subsequent beta-oxidation 
to acetyl-CoA [31]. In addition, carnitine interacts with other metabolic 
pathways through the reversible transfer of acyl groups from acyl-CoA's to 
form the corresponding acylcarnitines. Acyl-CoA's are intermediates in the 
oxidation of fuel substrates, but the accumulation of unusual acyl-CoA's may 
impair cellular metabolism [32]. Under conditions in which short-chain acyl
CoA intermediates accumulate, short-chain acylcarnitines were formed, mak-



Carnitine metabolism in peripheral arterial disease 355 

ing unesterified CoA available for other metabolic reactions [33]. Thus, the 
formation of short-chain acylcarnitines may serve to modulate changes in the 
acyl-CoA pool under conditions of acute metabolic stress. 

With prolonged durations (60 min) of low intensity exercise, muscle carni
tine metabolism remains grossly unchanged, with most of the total carnitine 
pool present as unesterified carnitine [34]. In contrast, even brief periods of 
high intensity exercise were associated with the generation of large amounts 
of short-chain acylcarnitines, particularly acetylcarnitine, in skeletal muscle 
[34, 35]. With the generation of short-chain acylcarnitines, there was a reci
procal decrease in the unesterified carnitine content [30, 34]. These changes 
in muscle carnitine metabolism reflect similar changes in the acetyl
CoAiCoASH distribution in muscle [30, 36]. Also, there was a close corre
lation between the accumulation of acetylcarnitine and lactate in skeletal 
muscle during high-intensity exercise [37]. This correlation may reflect the 
dual actions of acetyl-CoA accumulation as a precursor of acetylcarnitine, 
and inhibitor of pyruvate dehydrogenase (resulting in lactate accumulation) 
[29]. These observations in normal subjects provide a foundation for the 
understanding muscle metabolism in PAD. 

Muscle metabolism and function in patients with peripheral arterial disease 

Chronic changes in muscle metabolism and function. Several abnormalities 
have been described in ischemic skeletal muscle from patients with PAD. 
Patients with claudication have a selective loss of type II glycolytic fibers 
relative to type I oxidative fibers in the gastrocnemius muscle of affected 
legs [16, 38]. This change in fiber type distribution was associated with muscle 
weakness and decreased exercise performance [16]. In addition, a chronic 
de nervation occurs in ischemic skeletal muscle that was also correlated with 
muscle weakness and dysfunction [14, 16]. Thus, patients with PAD have a 
number of factors that may adversely affect muscle metabolism. These factors 
include inactivity, repeated episodes of muscle ischemia during ambulatory 
activity, muscle de nervation , and a change in fiber type distribution from 
glycolytic to oxidative. 

In patients with PAD, several changes in muscle enzyme activities have 
been reported. An increase in oxidative enzyme activity (a potentially adap
tive response to decreased oxygen delivery) has been observed in some 
studies [19, 39]. However, other authors have observed decreased activities 
of oxidative enzymes, perhaps reflecting inactivity and muscle denervation 
[40,41]. More importantly, there was no demonstrable correlation between 
oxidative enzyme activities and exercise performance in the patients [16, 40]. 

Patients with PAD have several alterations in muscle metabolism that are 
chronic; these changes are observed in the resting state. In skeletal muscle, 
patients with severe ischemic disease who required bypass surgery had a 
reduced total muscle carnitine content [21]. However, muscle total carnitine 
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Figure 1. Correlation between resting gastrocnemius muscle short-chain acylcarnitine content 
and subsequent claudication-limited exercise performance. Maximal exercise performance was 
defined as the peak oxygen consumption (V02) during graded exercise testing. Each point 
represents an individual patient. Data were obtained from two previous studies [20, 42]. Muscle 
biopsies were performed in the affected leg of patients with unilateral arterial occlusive disease. 

content was within the normal range in ambulatory patients with PAD who 
had claudication [20, 22]. Patients with claudication had an accumulation of 
lactate and short -chain acylcarnitines in ischemic skeletal muscle at rest [20]. 
Importantly, there was an inverse correlation between muscle short-chain 
acylcarnitine content in the diseased leg at rest and peak exercise perfor
mance. Thus, patients with PAD accumulate acylcarnitines in plasma [1] and 
ischemic muscle [20], and this accumulation was a marker of the functional 
disease severity (Figure 1). These observations suggest that there is an in
crease in the acyl-CoA/CoASH ratio at rest in legs affected by PAD. Further 
studies are needed to determine if the accumulating short -chain acylcarnitines 
are acetylcarnitine (as are generated during high-intensity exercise in normal 
subjects) or non-acetyl acylcarnitines. 

The functional relationship between carnitine metabolism and exercise 
performance was further confirmed in a study of exercise training in patients 
with PAD [2]. Patients completing a 12-week training regimen significantly 
improved their treadmill walking capacity. The improvement in walking time 
was correlated to the decrease in the ratio of the resting plasma short-chain 
acylcarnitine/total acid-soluble carnitine ratio. These studies suggest that 



Carnitine metabolism in peripheral arterial disease 357 

plasma and muscle acylcarnitine accumulation is associated with PAD, is a 
marker of functional disease severity, and can be modified by training. 

Acute changes in muscle metabolism with exercise. With exercise, patients 
with PAD had an impaired increase in leg blood flow as compared to control 
subjects at comparable work loads [12, 42, 43]. Despite an increase in oxygen 
extraction across the exercising muscle bed, patients with PAD had a greater 
depletion in phosphocreatine than control subjects [44], suggesting that com
pensatory mechanisms were inadequate to maintain A TP production. As a 
result, the amount of muscular work was severely limited by muscle contrac
tile dysfunction and the symptom of claudication pain [42, 43]. Also related 
to the reduced blood flow, lactate production was greatly increased from 
ischemic muscle at work loads not associated with lactate generation in 
normal subjects [12]. In contrast to the findings in normal subjects at similar 
work loads, patients with PAD had a lower leg respiratory quotient (pre
dominately fatty acid oxidation) despite a higher lactate production [43]. 
Thus, the metabolic state of exercising muscle in patients with PAD is 
markedly different from normal subjects. At work loads that are low intensity 
for normal subjects, patients with PAD have an inadequate oxygen delivery, 
rapid depletion of high-energy phosphates, and large lactate generation. 
Despite this "high intensity" metabolic profile, fatty acids appear to remain 
a dominant oxidative substrate, as type I oxidative fibers are prevalent, and 
the respiratory quotient is lower than control values. 

Additional metabolic abnormalities have been observed in patients with 
PAD. In a study of patients with unilateral arterial occlusions, the non
diseased leg served as a control for the changes observed in the leg with 
arterial disease [20]. In these patients, muscle biopsies were preformed in 
the gastrocnemius muscle at rest, and immediately after claudication-limited 
exercise. In the diseased legs, there was a large increase in muscle short
chain acylcarnitine content that was not related to a change in muscle lactate 
content. Rather, the increase in muscle short-chain acykarnitine content in 
the ischemic muscle occurred at all work loads and correlated strongly with 
exercise duration. In contrast, changes in muscle carnitine metabolism in the 
non-diseased legs were that predicted from the findings in normal subjects 
[34]. With exercise, short-chain acylcarnitine content in the non-diseased legs 
changed in parallel with changes in muscle lactate content. Thus in the 
non-diseased leg, there was a metabolic-state dependent change in muscle 
carnitine metabolism with exercise. These findings demonstrate that acylcar
nitines are generated and accumulate in under-perfused muscle during walk
ing activities that are associated with claudication. Further, the exercise
induced changes in ischemic muscle carnitine metabolism were not associated 
with changes in muscle or systemic lactate metabolism. Thus, acylcarnitine 
accumulation may represent qualitatively distinct processes in the ischemic 
skeletal muscles of patients with PAD as compared with normal subjects. 
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Carnitine supplementation 

Animal studies. In animals, administration of intravenous carnitine improved 
muscle contractile force and delayed fatigue in an in situ dog model [45]. 
However, since the animals had no increase in muscle carnitine content, the 
authors suggested that the benefit of carnitine on muscle fatigue was due to 
effects outside of the muscle cell. Subsequent in vitro studies in rats also 
demonstrated that carnitine delayed muscle fatigue [46]. This fatigue-limiting 
effect of carnitine was specific for type I, slow twitch fibers, with no benefit 
observed in type II glycolytic fibers. Also, the effect of carnitine on muscle 
fatigue was associated with a five- to six-fold increase in muscle total carnitine 
content that occurred with preincubation. 

Normal human studies. In normal subjects, studies of the effects of carnitine 
administration on exercise performance have shown inconsistent results. In 
some studies, carnitine had no effect on exercise performance or maximal 
oxygen consumption [47-50], while in other studies there was a modest 
improvement in either the total work performed on a bicycle ergometer or 
maximal oxygen consumption [51-54]. The lack of effect of L-carnitine 
supplementation in normal subjects may be related to the fact that even large 
doses of intravenous L-carnitine given acutely did not increase total muscle 
carnitine content [50]. In addition, intravenous administration of L-carnitine 
at the start of high intensity exercise did not modify the accumulation of 
lactate or short-chain acy1carnitines in muscle. Therefore, the plasma and 
muscle carnitine compartments are highly segregated in normal humans. Any 
acute benefits of L-carnitine in healthy individuals may be modest, and not 
related to perturbation of muscle carnitine metabolism. 

Peripheral arterial disease. In contrast to the findings in normal subjects, 
carnitine administration to patients with PAD has several important clinical 
effects. Oral administration of L-carnitine (2 g BID for 15 days) increased 
total muscle carnitine content [22]. In the same study, an acute intravenous 
dose of carnitine (3 g bolus followed by 2 mg/kg/min for 30 min) reduced 
popliteal vein lactate concentration and the lactate/pyruvate ratio during 
exercise as compared to placebo. The intravenous dose of L-carnitine had 
no effects on resting calf blood flow or ankle pressure, but did increase the 
blood flow response to reactive hyperemia [55]. Thus, the favorable meta
bolic effects of L-carnitine (reduced popliteal vein lactate concentration) may 
be due to either an improvement in ischemic muscle metabolism during 
exercise, or perhaps to increased blood flow. 

In another study, administration of propionyl-L-carnitine (1.5 g bolus fol
lowed by 1 mg/kg/min for 30 min) to patients with severe PAD increased 
muscle total carnitine content and citrate synthase activity [21]. However, 
extrapolation of these observations must be done with caution because treat
ment effects were not assessed in the same patients before and after adminis-
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Table 1. Clinical efficacy of L-carnitine and propionyl-L-carnitine. 

Authors N Drug Design Outcomes 

Brevetti et al. 20 Oral: L-carnitine 2 g Double-blind Oral L-carnitine 
1988 (22) BID for 3 weeks vs crossover improved ACD 75% 

placebo for 3 weeks compared to placebo 
8 Intravenous: Double-blind IV L-carnitine 

L-carnitine 3 g bolus crossover improved ACD 67% 
2 mg/kg/min for 30 compared to placebo 
mm 

Brevetti et al. 14 Intravenous: Double-blind L-Carnitine improved 
1992 (10) L-carnitine 500 mg crossover ICD 17% and ACD 

bolus vs Propionyl- 18% compared to 
L-carnitine 600 mg placebo 
bolus 

PLC improved ICD 
20% and ACD 28% 
compared to placebo 
PLC was more 
effective than L-
carnitine on ACD 

Coto et al. 300 Oral: Propionyl- Double-blind PLC improved ICD 
1992 (23) L-carnitine 2 g BID parallel 31 % and ACD 30% 

for 6 months vs compared to placebo 
placebo for 6 months 

Three placebo-controlled trials have evaluated the efficacy of L-carnitine and propionyl-L-
carnitine (PLC) in patients with claudication. ICD = initial claudication distance, ACD = abso-
lute claudication distance. 

tration of propionyl-L-carnitine. However, both L-carnitine and propionyl
L-carnitine appear to increase muscle carnitine content in PAD patients, and 
have favorable effects on muscle metabolism. These results also suggest that 
ischemic muscle may be more responsive to the beneficial effects of carnitine 
supplementation than is normal skeletal muscle. 

Three randomized controlled studies have evaluated the clinical efficacy of 
L-carnitine or propionyl-L-carnitine in patients with intermittent claudication 
(Table 1). The primary measures of outcome were changes in the onset of 
claudication pain (initial claudication distance or ICD) and the maximal 
walking distance (absolute claudication distance or ACD) on a constant-load 
treadmill protocol. In 20 patients, oral L-carnitine (2 g BID for three weeks) 
increased ACD by 75% as compared to placebo [22]. Interestingly in the 
same study, eight patients acutely treated with L-carnitine given as a 3 g 
intravenous bolus followed by 2 mg/kg/min infusion for 30 min increased 
their ACD by 67%. 

In another study, a single intravenous dose of L-carnitine (500 mg) was 
compared to a similar dose of propionyl-L-carnitine (600 mg) given intraven-
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ously to PAD subjects [10]. The ICD was improved by a similar amount by 
both drugs. However, while the ACD improved 18% with L-carnitine, the 
improvement of 28% with propionyl-L-carnitine was greater than with L
carnitine. 

The largest therapeutic trial of propionyl-L-carnitine to date was conducted 
in 300 patients with claudication. Oral propionyl-L-carnitine was given as 2 g 
BID for six months. Propionyl-L-carnitine increased the ICD by 31% and 
the ACD 30% as compared to placebo. 

Taken together, these studies demonstrate that L-carnitine and propionyl
L-carnitine are effective in improving exercise performance in PAD patients 
with both chronic oral dosing as well as with acute intravenous adminis
tration. Thus, both L-carnitine and propionyl-L-carnitine are promising new 
agents for the treatment of claudication. Several studies are ongoing to 
evaluate the efficacy of propionyl-L-carnitine in patients with claudication. 

Conclusions 

In normal humans, muscle energy demands are maintained by metabolic 
processes that differ according to the exercise intensity. With increasing 
work loads, there is a change in the profile of substrate utilization from 
predominantly fatty acid oxidation to an incremental reliance on glycolysis. 
Associated with these changes in substrate flux at high intensity work loads 
is an accumulation of lactate and acetyl-CoA in skeletal muscle. Carnitine 
serves as a buffer for the accumulating acetyl-CoA, forming acetylcarnitine 
and free coenzyme A. These changes in the muscle CoA and carnitine 
pools are highly compartmentalized, and are largely unaffected by exogenous 
carnitine administration. 

In contrast to the findings in normal subjects, patients with PAD have a 
number of structural and metabolic abnormalities in their skeletal muscle. 
In particular, the accumulation of short-chain acylcarnitines in ischemic mus
cle has significance as a functional marker in that the greater the accumu
lation, the worse the exercise performance of the patient. Treatment of 
patients with L-carnitine has been shown to improve ischemic skeletal muscle 
metabolism during exercise. Finally, L-carnitine and propionyl-L-carnitine 
supplementation increase treadmill walking distance in patients with claudi
cation. Future studies of propionyl-L-carnitine in large patient popUlations 
will better determine the magnitude of the improvement in exercise perfor
mance as well as the effects of the drug on other clinically relevant endpoints. 
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26. Effect of propionyl-L-carnitine on experimental 
models of peripheral arteriopathy in the rat 

NERINA CORSICO and EDOARDO ARRIGONI-MARTELLI 

"Propionyl-L-carnitine and pentoxifylline both provided protection against vascular 
damages caused by ergotamine tartrate administration, as evidenced by lower fre
quencies of epithelial tissue damage, at the site of injection, and a lower degree of 
ulceration and tissue necrosis. Propionyl-L-carnitine treatment (120 mg/kg per os) 
significantly restored the walking ability of the rats when the treatment started one 
week after streptozotocin injection, and lasted up to 9 weeks." 

Introduction 

A common feature of several different vascular pathologies is an imbalance 
of energy metabolism in vascular and muscular tissues in the area affected, 
independent of the cause of the disease (vascular obstruction, diabetic status, 
sickle cell anemia, etc.). The energy production in these tissues is strongly 
dependent on the oxidation of fatty acids via the Krebs cycle. The crucial 
role of L-carnitine (L-C) in this process has been recognized for many years 
and explained by many authors [1-3]. L-C is a fundamental cofactor for fatty 
acid oxidation within the mitochondria; fatty acids, free or CoA-activated, 
cannot penetrate the mitochondrial membrane, while carnitine esters are 
transported through the membrane into the mitochondria by carnitine trans
locase. A beneficial effect of L-C in patients with peripheral vascular diseases 
(PVD) has already been shown in different clinical studies, as well as, se
condary carnitine deficiency in the skeletal muscles of these subjects [4-6]. 
During the search for new derivatives with an improved activity in compari
son to the original compound, an acyl-derivative of L-C, propionyl-L-carni
tine (PLC), has been selected. Biochemical studies have indicated that PLC 
presents some advantages over L-C, mainly due to its better transport into 
the cells, related to the presence of the propionyl group [7-9]. PLC can be 
converted to propionyl-CoA by carnitine acetyltransferase (CAT) and further 
to methylmalonyl-CoA by mitochondrial propionyl-CoA carboxylase. 
Whereas methyl malonyl-CoA remains in the matrix for further conversion 
to succinyl-CoA and subsequently to succinate (thereby entering the Krebs 

f. W. de fong and R. Ferrari (eds): The carnitine system. 365-382. 
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cycle), PLC may move across the mitochondrial inner membrane by a rever
sible transport mechanism. As a consequence, PLC administration could 
result in an activation of the Krebs cycle through an "anaplerotic effect" 
with a subsequent increase of energy supply [10, 11]. This enhancement of 
energy production should be particularly useful in all those conditions in 
which a reduced oxygen availability is involved. 

On the basis of these findings, PLC has been tested in vitro and in vivo 
in different models of peripheral vascular diseases, focusing on the effect of 
PLC on vascular and muscular tissues in terms of function, morphology and 
metabolism. An issue of major importance is the methodological approach. 
The most commonly used experimental models are ergotamine-induced tail 
necrosis and bilateral ligation of femoral arteries in the rat. Both methods 
have serious limitations and, apparently, are hardly predictive of the thera
peutic activity of new compounds. Efforts have therefore been aimed at a 
new methodological approach, encompassing functional, morphological and 
biochemical alterations consequent to the reduction of blood flow in the 
hind limbs of rats. This review describes the findings obtained in different 
experimental models; they suggest that PLC, due to its particular profile of 
activity, is a good candidate for the treatment of peripheral vascular diseases. 

Ergotamine model 

Ergotamine, an ergot alkaloid derivative, is a potent vasoconstrictor agent 
exerting its effect via adrenergic receptors. Subcutaneous injection of er
gotamine tartrate into the root of the rat tail results in a long-lasting vaso
constriction, leading to decreased blood flow in the tail arteries and to 
thrombosis. Cyanotic areas appear, with skin dystrophy and necrosis at the 
site of injection, and necrosis of the terminal part of the tail [11, 12]. We 
administered PLC at doses of 100 and 300 mg/kg, and pentoxifylline 
(30 mglkg) , tested as reference drug and vehicle, by oral route before the 
injection of ergotamine tartrate. Treatment took place once a day for 18 days. 
Propionyl-L-carnitine and pentoxifylline both provided protection against 
vascular damages caused by ergotamine tartrate administration, as evidenced 
by lower frequencies of epithelial tissue damage at the site of injection, a 
lower degree of ulceration and tissue necrosis [11]. Since PLC does not 
interact with the adrenergic system (as shown by adrenergic receptor binding 
studies not reported here) a different mechanism has to be taken into account 
for explaining this PLC action. A direct protective effect on vasal endo
thelium cannot be ruled out, also considering in vitro studies on endothelial 
cells [13] that indicate that PLC can protect endothelial cell membranes from 
damage induced by peroxidative agents. 
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Bilateral femoral artery occlusion model 

In this case a peripheral arterial insufficiency was induced by permanent 
ligature of both femoral arteries of the rat [11, 14]. Under barbiturate anes
thesia femoral arteries were isolated just distal from their appearance from 
beneath the inguinal ligament and were ligated with a surgical thread. Sham
operated animals underwent anesthesia and the same surgical procedure 
without the ligation. As a consequence of the reduction of blood flow a 
severe impairment of the motor performance of the animals was observed 
by using the "treadmill test"; a motor-driven treadmill, constructed at the 
Sigma-Tau technical facilities, was used. Rats were forced to run the treadmill 
(fixed speed: 20 mlmin and fixed inclination 15%). A shock was delivered 
to their paws every time the rats stopped walking on the treadmill; the 
number of shocks given to the animal in the test period (5 min) was con
sidered an index of its walking capacity. Rats were tested before (basal), 
and four and eight days after surgery and the start of the treatment with 
PLC a dose of 100 mg/kg by gavage. The sham-treated animals had a stable 
baseline, with a number of shocks (n) not significantly different before (n = 

2) and after the surgical intervention (n = 3). The administration of PLC 
(100 mg/kg os x 4 days) caused a significant improvement (p < 0.05) in the 
walking capacity of the animals (ligated control n = 47 ± 5; ligated PLC n = 
21 ± 4). This effect is not associated with an analgesic effect, as in the 
Randall-Selitto test for analgesia no increase in pain threshold was observed 
after PLC treatment (data not reported). However, the model used presents 
some drawbacks, since following complete occlusion of the femoral arteries, 
collateral circulation develops very early. Therefore the experiment had to 
be ended four days after the ligature: a week later, control ligated rats were 
no longer significantly different from sham-operated rats. Anyway, these 
results can be considered indicative of the capacity of PLC to counteract a 
decrease in motor capability, induced by a drastic reduction of blood flow. 

Na-laurate model of peripheral arteriopathy 

A novel model of peripheral arteriopathy in the rat was established in our 
laboratory, since available experimental models were not considered com
pletely satisfactory. Na-Iaurate is a detergent reported to induce vascular 
damage after its direct injection into rat arteries [12, 15, 16]. The endothelial 
tissue damage in turn causes platelet adhesion with attendant thrombus 
formation and blood flow reduction. Functional (walking ability), morpho
logical (vascular and muscular tissue examination) and metabolic (muscle 
energy metabolism) alterations associated with the administration of the 
damaging agent were evaluated. Using this experimental procedure, the 
effect of short and long-term treatment with PLC was tested in different 
experiments. For comparison, pentoxifylline (a drug used clinically, for peri-
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Figure 1. Long-term effect of propionyl-L-carnitine (PLC) on walking capacity ("treadmill 
test"). Groups of ten rats were treated daily by oral gavage and tested weekly, starting from 
24 h after Na-laurate injection. The arrow indicates when the treatment was discontinued. The 
animals were tested again a week later. .: p < 0.05 vs Na-laurate control (Dunnett test for 
unpaired data). Mean ± SE. 

pheral arteriopathy therapy), L-carnitine, and the dextroisomer of propionyl
carnitine were used in some tests [17-19]. 

Effect on walking ability 

Impairment of motor performance, caused by injection of 0.06 ml Na-Iaurate 
(5 mglml in 0.05% ethanol) into both femoral arteries, was evaluated by the 
treadmill test (see above). Before surgery, animals were selected for their 
ability to run the treadmill; unable rats were not admitted to the test. 
Propionyl-L-carnitine was administered by gavage per os at doses of 60 and 
250 mg/kglday, pentoxifylline was given at a dose of 60 mg/kg/day. Controls 
received water 5 mllkg. Treatment lasted for 4 weeks and started the day 
after the surgery. The first walking test was performed one week after surgery 
and treatment, followed by tests at weekly intervals during the treatment 
period, and a week after its discontinuation. (The test was run once a week 
to avoid an exercise effect.) Results reported in Figure 1 show that the 
pattern of sham-operated animals was stable throughout the experiment and 
could be superimposed on that of control animals. There were no significant 
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Figure 2. Effect on walking capacity ("treadmill test"): Dose-response relationship after 7 days 
of treatment. The duration of the test was 5 min, the treadmill speed was 20 m/min, and the 
inclination 15%. Ten rats/dose were used . • : p < 0.05 vs Na-Laurate group (Dunnett t test for 
unpaired data). PDC and PLC, D- and L-form of propionylcarnitine, respectively. Mean ± SE. 

differences between the two groups, indicating a good reliability of the 
experimental conditions. In contrast Na-Iaurate caused severe impairment of 
motor performance of the rats; the number of shocks taken during the 5-
min test period was about 7-8x higher than that of sham-operated rats. The 
values were significantly different (p < 0.05) throughout the entire study 
period (5 weeks). Both PLC doses studied caused a significant (p < 0.05) 
improvement in the motor performance of the animals. The highest dosage 
was more effective ( + 38%) after one week of treatment; no clear-cut differ
ences between the two dosages were recorded later on. When rats were 
tested one week after the discontinuation of the treatment, the improvement 
in walking capacity still persisted unmodified. The reference compound, 
pentoxifylline, tested only at the dose of 60 mg/kg, was effective but its 
protective effect was less than that of PLC administered at the same dosage. 

The dose-dependency of PLC was assayed by using the same experimental 
conditions after a week of oral treatment. In the same paradigm the effect 
of the dextro-isomer propionyl-D-carnitine (PDC) was investigated. This 
compound is not recognized by CAT, the enzyme involved in the transport 
of PLC into the cells, and thus is metabolically inactive [3]. In addition, L
carnitine was tested for comparison. Figure 2 shows that in the Na-Iaurate 
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injected rats the number of shocks delivered to the animals was significantly 
higher (p < 0.05) than in control or sham-operated rats, in agreement with 
the data obtained in the previous experiment. These findings indicate the 
good reproducibility and reliability of the model. The oral daily adminis
tration of PLC at 30, 60, 120 and 250 mglkg caused a dose-dependent im
provement in motor performance. The number of shocks received by the 
rats decreased by 19, 41, 64 and 71 %, respectively, in comparison to N a
laurate controls. The differences were statistically significant (p < 0.05) ex
cept for the lowest dose. Treatment with L-carnitine at 120 mglkg caused an 
effect comparable to that of PLC 60 mglkg (the number of shocks was 
reduced by 40%). The metabolically inactive PDC was devoid of any bene
ficial effect. 

Effect on vascular and muscular damage 

Tissue damage at the macroscopic and histologic level was evaluated in the 
rats tested for their walking ability during long-term treatment. 

Macroscopic observation. Visual observation for hind-leg damage was made 
at weekly intervals throughout the experiment from 7 days to 5 weeks after 
Na-Iaurate injection. A scoring system was adopted for the degree of severity 
ranging from 0 (normal) to 4 (mummification of half the paw). No detectable 
changes were observed in the hind limbs of sham-operated rats. In the Na
laurate group, the lesions progressed in time; in the first days after the 
damaging injection, swelling of the paws occurred. By the end of the first 
week, swelling disappeared and most of the rats walked leaning on the back 
of their hind paws (score 1). Afterwards there was a worsening of 60% in 
the rats in which mummification of the nails, toes and half of the paw 
occurred. PLC at both dosages studied (60 and 250 mglkg for 4 weeks) 
induced a clear-cut reduction of the development of the lesions, both in 
terms of severity and incidence. These effects persisted one week after 
the treatment was discontinued. Comparable findings were obtained after 
treatment with pentoxifylline (60 mg/kg). 

Microscopic observation. At the end of the experiment (5 weeks after Na
laurate injection, one week after discontinuation of oral treatment) femoral 
arteries, hind-limb muscles and hind paws were also sampled for histological 
evaluation. The samples were processed and stained either with hematoxilin 
or with Movat pentachromatic solution. An arbitrary score was given to each 
sample of artery, indicating the severity of the damage, ranging from 0 
(normal) to 4 (thrombotic obstruction of the lumen). Damage to the muscles 
was graded from 0 (normal) to 4 (atrophy of bundles of muscular fibers 
substituted by fibroadipose tissue). The small size of the samples (five sub
jects/group) did not allow a statistical evaluation of the data; however, they 
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can be considered indicative of the severity of the morphological changes 
observed: 

Femoral arteries: Sham-control samples did not show differences of histo
logical significance, indicating no influence of the surgical procedure. The 
injection of Na-Iaurate caused, on the contrary, thickening of the intima of 
different thickness. They consisted of juxtaposition of two or more smooth 
muscle cell layers, separated by small quantities of interstitial tissue. In some 
samples, the thickness of myointimal thickening exceeded that of the tunica 
media, causing a marked narrowing of the vasal lumen. No marked differ
ences were detected among the Na-Iaurate control group and the groups 
treated in addition with PLC 60 mg/kg or pentoxyfilline; in the samples of 
the group treated with I PLC 250 mg/kg, the severity of the vascular damages 
was reduced, and the score was intermediate between the normal control 
and the Na-Iaurate control. Specimens obtained from the Na-Iaurate control 
and the PLC-treated are depicted in Figure 3. 

Hind-limb muscles: No changes of muscular tissue, sampled at the thigh 
level, were detectable in any of the experimental groups, indicating no 
systemic diffusion of the damaging agent. The gastrocnemius muscle of Na
laurate injected rats was markedly injured; the damage consisted mainly of 
atrophied muscular fiber groups, with fibroadipose substitution. The exten
sion of the lesions varied, and in some specimens the whole muscle was 
involved. Lesions of arteries with small to medium diameter, consisting of 
myointimal thickening or occluding organized thrombi, also occurred. These 
latter lesions were frequently associated with calcification of internal elastic 
lamina. Atrophic muscular lesions were topographically correlated with le
sions of muscular vessels with small and medium size. These findings evidence 
that the damages have been developed slowly over time and are to be 
considered of ischemic origin. PLC oral treatment (60 and 250 mg/kg for 4 
weeks) reduced the extent and severity of the muscular damage, as indicated 
by the lower scores attributed to specimens in these groups (control and 
sham-operated score: 0; Na-Iaurate score: 2.17; PLC 60 and 250 mg/kg score: 
1.26 and 0.61, respectively). Pentoxifylline scored the same as the Na-Iaurate 
control group. Some specimens are displayed in Figure 4. 

Effect on muscle energy metabolism 

Alterations of muscle cell energy metabolism were investigated ex vivo and 
in vivo by 31p_NMR spectroscopy. 

Ex vivo study: The animals were subjected to the previously described 
procedure to induce peripheral vascular insufficiency by Na-Iaurate and were 
treated per os with PLC at the dose of 120 mg/kg/day. The treatment lasted 
15 days and started 24 h after the surgical procedure, while another group 
was treated for 11 days starting four days after Na-Iaurate injection. PLC 
was also given at the same dose to a group of control rats. At the end of 
the treatment period, under anesthesia, the gastrocnemius muscles were 
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A 

B 

Figure 3. A: Femoral artery of a Na-laurate treated rat. The lumen of the artery is narrowed 
by a severe myointimal thickening (black arrows). The elastic lamellae are also visible. (Movat 
pentachromic staining. Magnification X40.) B: Femoral artery of a rat treated with Na-laur
ate + PLC 250 mg/kg for 4 weeks. Note the presence of a mild muscular thickening of the tunica 
intima (black arrows). (Hematoxylin eosin staining [H&E]. Magnification x40.) 

removed and immediately frozen in liquid nitrogen. On the muscle extracts 
the following biochemical parameters were evaluated by means of 31p_NMR 
spectroscopy [20]: adenosine triphosphate (ATP), phosphocreatine (PCr), 
adenosine diphosphate (ADP), inorganic phosphate (Pi), the sum of adeno
sine mono phosphate + inosine monophosphate (AMP + IMP), sugar phos
phate (SP) and diphosphodiesters including nicotinamide coenzymes 
[NAD(P)/NAD(P)H] and others such as uri dine diphospho-glucose and 
-galactose, reported as the sum of NAD(P) + DPDE. Concentrations of the 
metabolites examined were expressed as the percent of total phosphorus 
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A 

B 

Figure 4. Changes in gastrocnemius muscle of a Na-laurate treated rat. (H&E. Magnification 
x40.) A: Two small arteries are depicted, one of which is obliterated by an organized thrombus; 
the lumen of the other is narrowed by a myointimal thickening (white arrow). B: Large group 
atrophy of muscle fibers in the same muscle shown in A (black arrows). 

calculated by measuring peak areas from NMR spectra. Single values were 
obtained as the ratio between the single peak area and the total area x 100. 
Muscular phosphorus content was expressed as f,Lmol/mg protein and calcu
lated by comparing the sum of peak areas of all the metabolites with the 
area of the trimer in the external tube. Significant and marked modifications 
in muscle metabolism were observed 15 days after Na-Iaurate injection. ATP 
and PCr levels were reduced by 42% and 25%, respectively, as compared 
to sham-operated rats, and changes were also observed in Pi (+64%), ADP 
(+ 138%) and AMP + IMP (+ 300%) levels. These alterations were counter
acted by PLC treatment, started 24 h after Na-Iaurate injection. PCr and 
ATP levels in rat muscles treated with PLC were higher than those of Na-
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Figure 5. Total phosphorus content in gastrocnemius muscle aqueous extract. PLC was given 
at a dose of 120 mg/kg os for 15 days starting 24 h after Na-laurate (PLC 24 h) or for 11 days 
starting 4 days after Na-laurate (PLC 4 days). Sham animals were treated with the same dose 
for 15 days (sham + PLC) . Mean ± SD (n = 5) . * P < 0.05 vs sham-treated rats. ** p < 0.05 vs 
Na-laurate treated rats (Student's t-test) . 

laurate injected animals, and a parallel reduction in ADP, AMP + IMP, Pi 
and SP levels was also recorded. The same biochemical trend was also 
observed when PLC treatment started 4 days after the Na-Iaurate injection. 
However, in this group the levels of ADP and AMP + IMP were still signifi
cantly increased in comparison to the sham-operated group. No significant 
differences in the phosphorylated metabolite levels have been observed 
among control normal, sham-operated and PLC-treated sham-operated rats. 
These investigations provided additional important information. The treat
ment of normal rats with PLC did not result in any modification of the 
biochemical parameters measured, thus suggesting that this compound 
specifically restores deranged metabolic parameters. 

The total phosphorus content provides a quantitative evaluation of the 
conditions of the muscular tissue; the marked decrease (-67%, P < 0.05) 
observed in the Na-Iaurate control indicates muscular-fiber necrosis in agree
ment with histological data. PLC treatment appears to have a protective 
effect on phosphorus content depletion when administered 24 h after the 
damaging agent, while it seemed to be ineffective when the delay between 
damage and pharmacological treatment was increased (Figure 5). This last 
finding suggests that muscular necrosis is too severe at this time and cannot 
be reversed. 
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In vivo study: In vivo NMR spectroscopy represents a powerful tool [21] 
to investigate the evolution of the metabolic alterations induced by Na
laurate, as it allows the sequential visualization of the muscle metabolic 
status under basal condition, and at different times after the injection of the 
damaging agent. After barbiturate anesthesia of the rat, 31p_NMR spectra 
were obtained on a Vivospec 4.7 T spectrometer using a 4-cm 31p.1H double
resonance surface coil placed around the paws. Chemical shift values have 
been reported relative to the phosphocreatine signal set at 0 ppm. Evaluation 
of the spectral line area was performed by using a home-made simulation 
program which iteratively fits the spectrum with Lorentzian and/or Gaussian 
line shapes. All the animals were subjected to Na-laurate injection as de
scribed previously and divided into two groups. Starting on the day after 
damage induction, one group was treated with PLC per os (120 mg/kg/die, 
T group) for 23 days and the second was used as control (NT group). 
31p_NMR spectra were obtained before the Na-Iaurate injection (control 
spectra), and 3, 10, 15 and 23 days later. Metabolite levels are reported in 
Table 1. A large increase of the Pi levels was evident in both the groups on 
the third day; it was followed in both cases by a decrease. The PLC-treated 
animals showed a significant difference in Pi versus the control group up to 
the 15th day. Conversely, the PCr levels were dramatically reduced in both 
groups on the third day, with a gradual recovery in the following days. A 
large increase of the PME levels was observed in both groups on the third 
day. Then the treated animals showed a gradual recovery, in contrast to the 
control group which recovered only partially (p < 0.05). The ATP levels 
changed little in both groups. Some spectra are depicted in Figure 6. The 
Pi/PCr ratio is close to 0 under normal physiological conditions; it was 
significantly increased at different times after Na-laurate injection. Figure 7 
shows Pi/PCr ratios for both groups, which differ significantly from each 
other on the 3rd, 10th and 15th day, indicating a better recovery for the PLC 
group. 

All the above reported findings show that the peripheral arteriopathy 
induced by Na-Iaurate injection into femoral arteries can be considered a 
reliable experimental model of peripheral vascular disease. Under our modi
fied experimental conditions Na-Iaurate injection resulted in a long-lasting 
impairment of the walking capacity of rats, as evaluated by a treadmill test. 
Histological findings showed lesions of small, medium and large diameters, 
vessels associated with atrophic lesions of muscles, most likely consequent 
to the reduced blood flow. Nuclear magnetic spectroscopy revealed severe 
alterations of muscle energy metabolism. Phosphorylated metabolite levels 
were markedly reduced, probably due to an impairment in cell energy pro
duction. Muscular phosphorus content markedly decreased, suggesting fiber 
damage (atrophy and/or necrosis), in agreement with the histological find
ings. This pattern of lesion seems consistent with an ischemic pathogenesis 
more than with a direct detergent effect of Na-Iaurate on muscle plasma 
membrane. Repeated oral administration of propionyl-L-carnitine clearly 



Ta
bl

e 
1.

 
E

ff
ec

t 
o

f 
pr

op
io

ny
l-

L
-c

ar
ni

ti
ne

 o
n

 r
at

 s
ke

le
ta

l 
m

us
cl

e,
 d

am
ag

ed
 b

y 
N

a-
la

ur
at

e 
tr

ea
tm

en
t.

 

D
ay

s 
P

M
E

 
Pi

 
p

e
r 

A
T

P
 

B
as

al
 

3.
8 

±
 

1.
4 

7.
0 

±
 

1.
4 

41
.9

 ±
 

1.
8 

15
.9

 ±
 

1.
3 

N
T

 G
ro

u
p

 
T

 G
ro

u
p

 
N

T
 G

ro
u

p
 

T
 G

ro
u

p
 

N
T

 G
ro

u
p

 
T

 G
ro

u
p

 
N

T
 G

ro
u

p
 

T
 G

ro
u

p
 

3 
12

.1
 ±

 
1.

7 
11

.0
 ±

 
16

 
31

.5
 ±

 5
.1

 
22

.1
 ±

 0
.5

* 
12

.1
 ±

 
1.

4 
15

.2
 ±

 2
.9

 
15

.4
 ±

 
4.

4 
17

.8
 x

 .
3 

10
 

11
.7

 ±
 3

.1
 

9.
6 

±
 

2.
6 

21
.3

 ±
 4

.2
 

13
.1

 ±
 

2.
1*

 
22

.9
 ±

 
2.

8 
27

.4
 ±

 
4.

3 
14

.9
 ±

 4
.4

 
18

.5
 ±

 0
.9

 

15
 

7.
5 

±
 3

.2
 

7.
3 

±
 

2.
8 

16
.4

 ±
 3

.4
 

11
.0

 ±
 

1.
5*

 
32

.9
 ±

 2
.6

 
36

.6
 ±

 0
.4

* 
11

.1
 ±

 2
.9

 
13

.7
 ±

 2
.2

 

23
 

8.
8 

±
 3

.4
 

3.
7 

±
 0

.6
* 

12
.8

 ±
 3

.6
 

11
.8

 ±
 4

.5
 

34
.2

 ±
 4

.1
 

35
.4

 ±
 

2.
4 

13
.0

 ±
 2

.2
 

14
.1

 ±
 

1.
2 

V
al

ue
s 

ar
e 

ex
pr

es
se

d 
as

 p
er

ce
nt

ag
e 

o
f 

th
e 

to
ta

l 
ph

os
ph

or
us

 c
on

te
nt

 (
m

ea
n

 ±
 S

D
).

 B
o

th
 g

ro
up

s 
o

f 
ra

ts
 r

ec
ei

ve
d 

th
e 

da
m

ag
in

g 
tr

ea
tm

en
t 

w
it

h 
N

a-
la

ur
at

e 
af

te
r 

ba
sa

l 
N

M
R

 m
ea

su
re

m
en

ts
. 

O
nl

y 
gr

ou
p 

T
 w

as
 t

re
at

ed
 p

er
 o

s 
w

it
h 

pr
op

io
ny

l-
L

-c
ar

ni
ti

ne
 (

12
0m

gl
kg

ld
ie

).
 P

M
E

 =
 

P
ho

sp
ho

ro
us

 m
on

oe
st

er
s.

 
* 

p 
<

 0
.0

5 
vs

 N
T

. 

V
.)

 
-.

.J
 

0
\ :<;
 
~
 

~
 

1=
;' 

o ~
 

;:::s
 

1:
l.. ~
 
~
 

~
 

~
.
 

::=.
 ~ ~ ~
 



Propionyl-L-carnitine and arteriopathy 377 

3 days later 

~ 10 

I)· --./\" .. -...... A 

I 'Y-ATP . -~ "'--16 
a-ATP 

~-23 

FREQUENCY [ppm] 

Na·Laurate + PLC 120 mg/Kg os 24 h later 

15000 5000 -5000 -15000 
FREQUENCY [ppm] 

Na·Lauratc Control 

Figure 6. 31p_NMR spectra obtained from both paw muscles at different times after Na-laurate 
injection in a control and in a PLC-treated rat. 

had a beneficial effect on the functional, histological and metabolic para
meters. The effect on function was dose-dependent. It persisted for at least 
a week after the discontinuation of the treatment. It is of interest that the 
dextro-isomer of propionylcarnitine was completely inactive. This inactivity 
of the dextro-isomer, which is not recognized by carnitine acetyltransferase, 
gives support to a metabolic action of PLC. Accordingly, NMR spectroscopy 
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Figure 7. Pi/PCr ratios over time (mean ± SD). The two data sets can be fitted with hyperboles 
which have the basal value as the common asymptote. r2 = 0.873 for NT (Na-laurate control) 
and r2 = 0.656 for T (Na-laurate, PLC-treated). 

showed that PLC has a positive effect on altered muscle energy metabolism, 
as shown by the recovery of high-energy phosphate levels such as ATP and 
PCr, even when the treatment was initiated four days after the Na-Iaurate 
injection. 

Diabetes-induced peripheral arteriopathy 

Alterations of the cardiovascular and peripheral nervous system observed in 
diabetes seem to be associated to vascular damages, mainly of the microcir
culation; the diabetic rat can be therefore considered an experimental model 
of peripheral arteriopathy [22-24]. Diabetes was induced by injecting the rat 
tail vein with 45 mg/kg of streptozotocin (STZ). Control rats were injected 
with the vehicle only. One week after STZ injection, only those animals with 
a blood glucose ~500 mg/dl were used. Two weeks after STZ injection, rats 
were treated daily with either PLC (120 mg/kg) or vehicle by oral route. As 
an index of the occurrence of peripheral arteriopathy we measured motor 
performance of the rat by "treadmill test". The experimental conditions were 
the same as above reported. Before STZ injection rats were trained to walk 
the treadmill and unable animals were excluded from the study. The number 
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Figure 8. Walking ability ('"treadmill test") in diabetic control and diabetic PLC-treated rats at 
different times after diabetes induction with streptozotocin (STZ; mean ± SE, n = 10). * 
P < 0.05 vs diabetic control (Dunnett test). 

of shocks received by the animal in the test period was considered to be an 
index of its walking capacity. Rats were tested before STZ (basal) and at 
different times thereafter. Figure 8 indicates that in STZ rats with progressing 
diabetic status, motor performance on the "treadmill test" reduced, as in
dicated by the augmented number of shocks taken. Since our experimental 
procedures allowed testing of rats under basal conditions (before STZ injec
tion) and at different times after diabetes induction, it was possible to follow 
both the development of the alterations associated with the diabetic status 
and the effect of the pharmacological treatment. PLC treatment (120 mg/kg 
per os) significantly restored the walking ability of the rats when the treat
ment started one week after STZ injection, and lasted up to 8 weeks. Our 
data show that in the experimental model of diabetes, induced by STZ, 
symptoms comparable to peripheral arteriopathy can be detected by using 
the "treadmill test" for motor performance. Since PLC has no hypoglycemic 
and aldose-reductase inhibitor effect (data not shown), it is not unlikely that 
the beneficial action of PLC is associated with a protective effect on the 
microcirculation. As in other models, a metabolic mechanism (preservation 
of energy cellular metabolism impaired by ischemic status) or a direct protec
tive effect on endothelium seems possible. 
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Conclusions 

The earliest alterations observed in peripheral artery disease are of hemo
dynamic origin with reduction of blood supply and associated surrounding 
tissue hypoxia, followed, however, by several changes in skeletal muscle 
morphology and metabolism [25, 26]. Secondary carnitine deficiency, an 
accumulation of intermediates of oxidative metabolism (acyl-CoAs and acyl
carnitines) and an impairment of energy metabolism in ischemic muscles is 
associated in these patients with muscle dysfunction and exercise impairment 
[27, 28]. Thus, while the primary disease process is hemodynamic, sequelae 
of metabolic events contribute to the disease pathophysiology. In the Na
laurate model of peripheral vascular insufficiency the evolution is comparable 
to the pattern clinically observed; vessel lesions develop in time, in asso
ciation with atrophic muscle degeneration and necrosis, particularly of the 
surrounding area (findings consistent with an ischemic pathogenesis). In this 
model, PLC treatment reduced the severity of the vascular and muscular 
tissue damage. In the same model NMR spectroscopic studies ex vivo and 
in vivo showed that in the gastrocnemius muscle, PLC counteracted the 
significant reduction of phosphorylated metabolite levels caused by vascular 
insufficiency. This effect indicates that PLC can restore the deficit occurring 
in cell energy production. In rats made diabetic by STZ, PLC was able to 
reduce the impairment of motor performance (index of peripheral vascular 
insufficiency) caused by the diabetic status. These effects are independent 
from an hypoglycemic or aldose-reductase inhibition effect. It has been 
also observed [29] that in the STZ-diabetic rat a severe impairment of the 
phospholipid fatty acid turnover in the erythrocyte membrane occurs. The 
potential relevance of these membrane defects in the microvascular complica
tion of diabetic disease is apparent. This metabolic derangement could be 
corrected by oral PLC administration [29]. All these findings indicate that 
PLC can exert a beneficial effect in different pathologies when an impaired 
cell energy production involves both the vascular and muscle tissues. Most 
likely, PLC activity is associated with its role in lipid metabolism, that is, 
stimulation of fatty acid oxidation and with its "anaplerotic action" (stimula
tion of citric acid cycle activity). Consequently, a direct protective effect on 
endothelium cannot be ruled out, since endothelial cells are strongly depen
dent on f3-oxidation for their functioning; they lose carnitine under ischemic 
conditions [30]. In vitro, in endothelial cells PLC was able to counteract 
metabolic changes induced by hypoxia and subsequent reoxygenation [13]. 
A membrane stabilizing effect was also observed in human erythrocytes [31]. 
In vivo, oral administration of PLC to rats exerted a protective effect on tail 
lesions caused by a vasoconstrictor (ergotamine) in terms of reduced damage 
incidence and intensity. This effect is not related to an action on the adren
ergic system, as it was shown that PLC does not interfere with this system, 
but most likely to an effect at the endothelial level. In conclusion, all these 
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findings provide the rationale for testing PLC clinically in patients affected 
by peripheral vascular diseases of different etiopathologies. 
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27. Effect of L-carnitine and propionyl-L-carnitine 
on cardiovascular diseases: a summary 

JAN WILLEM DE JONG and ROBERTO FERRARI 

Deficiencies in carnitine biochemistry 

Aberrations in carnitine biochemistry often lead to cardiovascular disorders. 
At the level of the heart, the abnormalities are probably due to the toxic 
effects of long-chain acylcarnitines [1]. Table 1 shows the effect of L-carnitine 
on patients with such deficiencies. Data from the literature indicate clearly 
the benefit of L-carnitine treatment for primary and secondary muscular and 
systemic carnitine deficiency linked to inborn errors of metabolism [2, 3]. It 
is one of the 30 drugs for life-threatening illnesses approved by the Food 
and Drug Administration in the 1980s [10]. 

Acquired carnitine deficiency 

Ischaemic and infarcted myocardium is characterized by a decrease in the 
tissue levels of carnitine; this has been shown in animals and humans where 
serum free carnitine levels and urinary total carnitine excretion are increased 
[11]. Plasma carnitine concentrations are elevated in patients with congestive 
heart failure as well as dilated and hypertrophic cardiomyopathies [12-15]. 
On the other hand, free carnitine and the ratio free to long-chain acylcarni
tine in these hearts may be lowered [14-18]. Plasma carnitine and acylcarni
tines are normal in patients with peripheral vascular disease [19], but free 
and total carnitine contents are lower in skeletal muscle of patients with 
severe peripheral arterial insufficiency [20]. Thus, it is difficult to estimate 
from plasma or serum carnitine levels the presence of an acquired carnitine 
deficiency in the tissues. 

L-carnitine treatment appears to be a safe therapy. Studies convincingly 
support claims of successful treatment for patients with coronary heart dis
ease and angina (see Chapter 16 and Table 2). No studies are presently 
available which compare the effects of L-carnitine with those of other well
known anti-anginal agents. It is advisable to use carnitine alongside regular 
medication. 

There are interesting data which propose its use in the treatment of myo-

f. W. de fong and R. Ferrari (eds): The carnitine system, 383-388. 
© 1995 Kluwer Academic Publishers. 
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Table 1. Effect of L-carnitine on patients with deficiency of carnitine biochemistry. 

Deficiency Plasma [carnitine] 

Total Esterified/total 

Carnitine Minute Normal? 
transporter 

Carnitine High Low 
palmitoyl-
transferase I 
Carnitine- Low High 
acylcarnitine 
translocase 
Carnitine Low High 
palmitoyl-
transferase II 

Cardiovascular 
disorder 

Dilated 
cardiomyopathy 

Heart failure 

Cardiomyopathy, 
auriculo 
ventricular block 
Heart-beat 
disorders; 
cardiomyopathy 
(severe cases) 

Response to 
carnitine treatment 

Dramatic relief of 
symptoms, muscle 
carnitine not 
corrected 
No response 

No response 

Recovery? 

Refs. 

[2-4] 

[5] 

[6,7] 

[8,9] 

"Total" refers to the free plus acylcarnitine concentration, "Esterified/total" to the ratio [acylcar-
nitine ]/[ total carnitine]. 

Table 2. L-carnitine and cardiovascular diseases. 

Disorder 

Primary carnitine deficiency 

Coronary artery disease 

Acute myocardial infarction 

Peripheral vascular disease 

Congestive heart failure 

Anthracycline-induced 
cardiotoxicity 

Effect of carnitine 

Cardiomyopathy t ; Myocardial 
function t 
Metabolism t ; Exercise 
performance t ; Arrhythmias t ; 
Symptoms t 
Cellular injury t ; Arrhythmias t ; 
Mortality t ? 
Walking distance t *; Intermittent 
claudication t 
Arrhythmias t ; Physical 
performance t 
Cellular injury t 

* Only studied after short-term administration. 

Literature data 
[references] 

Convincing [2, 21] 

Convincing [23-32] 

Promising [11, 33-35] 

Limited [36-38] 

Preliminary 
[29, 31, 39, 40] 
Preliminary [21, 41] 

cardial infarction. However, more extensive study will be needed to support 
this indication and such studies are presently in progress (see, e.g. Chapter 
17 and ref. [22]). For other cardiovascular diseases, data are promising (Table 
2) but more extensive trials will have to be carried out [21]. Carnitine could 
protect the heart against ischaemia induced during aortocoronary bypass 
grafting [42]. In chronic ischaemia, such as during ischaemic heart failure, 
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Table 3. Propionyl-L-carnitine and cardiovascular diseases. 

Disorder 

Coronary artery disease 

Peripheral vascular disease 

Congestive heart failure 

Effect of carnitine Literature data 
[references] 

Cardiac function i ; Exercise Limited [44-47] 
tolerance t 
Walking distance t ; Intermittent Reasonable [38, 48, 49] 
claudication t 
Exercise performance t Suggestive [50, 51] 

there is preliminary evidence that prolonged treatment with L-carnitine im
proves symptoms and cardiac function (Table 2). 

For propionyl-L-carnitine, there are less published clinical data than for 
L-carnitine. The former compound could be more specific for skeletal and 
cardiac muscle than carnitine. In addition, it delivers propionate to the 
mitochondria. Propionyl-L-carnitine improves exercise performance (Chap
ters 23-25). Further proof of its efficacy in peripheral vascular disease (Chap
ter 25) and congestive heart failure (Chapter 24) will depend on ongoing 
studies (see, e.g. [43]). The literature provides reasonable evidence that 
propionyl-L-carnitine is effective in the treatment of coronary artery disease 
(Table 3). 

The exact mechanism of action to explain the beneficial effect of L-carnit
ine and propionyl-L-carnitine in cardiovascular disease is lacking. Of interest 
are data showing [52, 53] that propionyl-L-carnitine but not L-carnitine 
replenishes citric acid cycle intermediates. 
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